
BEA
 Tuxedo®

Using BEA Jolt with BEA
WebLogic Server
Release 8.1
January 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA
Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document
What You Need to Know ... vii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... viii
Contact Us!.. ix
Documentation Conventions ... ix

1. Introduction to BEA Jolt for BEA WebLogic Server
Key Features.. 1-2
How Jolt for WebLogic Works ... 1-2

Relationship Between Jolt for WebLogic and Tuxedo 1-2
Essential Components of the Jolt Architecture .. 1-3
WebLogic Server Startup ... 1-4
Connecting to a WebLogic Server from a Client Browser 1-5
How a Servlet Connects to Tuxedo.. 1-6
What Happens if the Request Fails .. 1-6
Responding to the Client Browser ... 1-7
Disconnecting from the Jolt Server.. 1-7

Using the Example Packages... 1-7

2. Configuring Jolt for WebLogic Server
Configuring Jolt for Tuxedo.. 2-1
Configuring Jolt for WebLogic Server.. 2-1

Jolt Startup Class and Connection Pool ... 2-2
Jolt Shutdown Class ... 2-5

Displaying Jolt in the WebLogic Administration Console................................ 2-5
Using BEA Jolt with BEA WebLogic Server iii

Resetting the Jolt Connection Pool.. 2-6
Command-line Method... 2-7
Administration Console Method .. 2-7

3. Implementing Jolt for WebLogic
Importing Packages ... 3-2
Configuring a Session Pool ... 3-2
Using a Servlet Session Pool ... 3-4

Calling a Tuxedo Service ... 3-4
Sending a ServletDataSet ... 3-5
Adding Parameters to the Dataset .. 3-5

Accessing a Tuxedo Service Through Jolt .. 3-6
Converting Java Data Types to Tuxedo Data Types ... 3-6
Receiving Results from a Service.. 3-7

Using the Result.getValue() Method.. 3-8
Using the ServletResult.getStringValue() Method..................................... 3-9

Using a Transaction ... 3-9
Handling Exceptions .. 3-10

A. Class Hierarchy
BEA Jolt Class Hierarchy for the BEA WebLogic Server API........................ A-1

B. Simple Servlet Example
Example Components and Prerequisites .. B-1
Using the Example.. B-3

Step 1. Perform Preparatory Steps... B-3
Step 2. Start the WebLogic Server .. B-5
Step 3. Configure the Servlet in WebLogic Server B-5
Step 4. Stop and Restart the WebLogic Server ... B-7
Step 5. Compile the Servlet ... B-7
Step 6. Display the simpapp.html Form .. B-7
Step 7. Post the FORM Data from the Browser .. B-8
Step 8. Process the Request ... B-9
Step 9. Return the Results to the Client... B-10
iv Using BEA Jolt with BEA WebLogic Server

C. Servlet with Enterprise JavaBean Example
About the Servlet with JavaBean Example ...C-2
Preparing to Use the Servlet with JavaBean ExampleC-3

Set Up Your Environment..C-4
Build the Example..C-4

Run the Servlet with JavaBean Example...C-5
Using BEA Jolt with BEA WebLogic Server v

vi Using BEA Jolt with BEA WebLogic Server

About This Document

This document covers the following topics:

Chapter 1, “Introduction to BEA Jolt for BEA WebLogic Server,” describes the
major features in BEA Jolt that can be used with BEA WebLogic Server.

Chapter 2, “Configuring Jolt for WebLogic Server,” describes how to configure
a Jolt Session Pool connection between Tuxedo and WebLogic Server.

Chapter 3, “Implementing Jolt for WebLogic,” describes how to set up Jolt to
connect to Tuxedo from your WebLogic application or servlet.

Appendix A, “Class Hierarchy,” shows the class hierarchy for the BEA Jolt for
WebLogic API.

Appendix B, “Simple Servlet Example,” demonstrates how to use BEA Jolt to
connect to BEA Tuxedo from a WebLogic servlet.

Appendix C, “Servlet with Enterprise JavaBean Example,” describes how to set
up and run an EJBean stateful session to a Tuxedo Server using Jolt.

What You Need to Know

This document is intended for users who want to familiarize themselves with the BEA
Tuxedo product.
Using BEA Jolt with BEA WebLogic Server vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com.

Related Information

The following BEA Tuxedo documents contain information that is relevant to the BEA
Jolt product:

BEA Tuxedo Product Overview

Introducing BEA Tuxedo ATMI

Using BEA Jolt

For more information about ATMI, CORBA, transaction processing, distributed object
computing, C++ programming, and Java programming, see Bibliography.
viii Using BEA Jolt with BEA WebLogic Server

http://e-docs.bea.com
http://www.adobe.com

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.1 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by
using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
Using BEA Jolt with BEA WebLogic Server ix

mailto:docsupport@bea.com
http://www.bea.com

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
x Using BEA Jolt with BEA WebLogic Server

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using BEA Jolt with BEA WebLogic Server xi

xii Using BEA Jolt with BEA WebLogic Server

CHAPTER
1 Introduction to BEA
Jolt for BEA WebLogic
Server

With BEA Jolt for BEA WebLogic Server, you can enable BEA Tuxedo services for
the Web, using the BEA WebLogic Server as the front-end HTTP and application
server.

BEA Jolt is a Java-based client API that manages requests to BEA Tuxedo services via
a Jolt Service Listener (JSL) running on the Tuxedo server. The Jolt API is embedded
within the WebLogic API, and is accessible from a servlet or any other BEA
WebLogic application.

Because BEA Jolt for BEA WebLogic Server is an extension to the Jolt Java class
library, the Jolt Java client class library can be used in HTTP servlets running in the
WebLogic Server. BEA Jolt for BEA WebLogic Server also uses Java HTTP servlets
to provide an interface between HTML browser clients and BEA Tuxedo services.

Hereafter, BEA Tuxedo is referred to as Tuxedo, BEA Jolt is referred to as Jolt, and
BEA WebLogic is referred to as WebLogic for readability.

This topic includes the following sections:

Key Features

How Jolt for WebLogic Works

Using the Example Packages
Using BEA Jolt with BEA WebLogic Server 1-1

1 Introduction to BEA Jolt for BEA WebLogic Server
Key Features

Key features of the BEA Jolt for BEA WebLogic Server architecture include:

Enabling the use of Java HTTP servlets to provide a dynamic HTML front-end
for Tuxedo applications

Providing session pooling to use Tuxedo resources efficiently

Supporting transactions

Integrating session pool management into the WebLogic Console

Note: Jolt for WebLogic does not provide access to asynchronous Tuxedo event
notifications.

How Jolt for WebLogic Works

This section describes the major components used for communication in Jolt, and how
BEA Jolt for BEA WebLogic Server works, including:

How the connection is initialized when the server is started

The flow of information through:

An end-user Web browser

The WebLogic Server

The Tuxedo transaction processing system

Relationship Between Jolt for WebLogic and Tuxedo

Using BEA Jolt for BEA WebLogic Server, you can access your underlying Tuxedo
system from the Web. This access allows you to write Web-enabled applications that
can interact with other systems and databases in your Tuxedo domain.
1-2 Using BEA Jolt with BEA WebLogic Server

How Jolt for WebLogic Works
The system described here is accessed through a standard Web browser. This Web
browser is served by the WebLogic Server, which uses a customized Java HTTP
servlet to handle the interactive HTTP requests of the browser. (An HTTP servlet is a
Java class that handles an HTTP request and delivers an HTTP response.) The custom
HTTP servlet uses the Jolt for WebLogic API to talk to a Jolt Server that can be on a
remote machine or behind a security firewall.

The Jolt Server lives within the Tuxedo domain and determines which Tuxedo services
are accessible to each client. The Jolt Server invokes the requested Tuxedo service and
sends any results back to the WebLogic Server. You can then compile the results into
a servlet-generated Web page, and send them to the browser. In doing so, you create a
highly accessible and user friendly interface to Tuxedo services from anywhere on the
Internet or intranet.

Essential Components of the Jolt Architecture

The fundamental object types that maintain the communications connection from the
WebLogic Java HTTP servlet to the Jolt Server and from the Jolt Server to Tuxedo, are
as follows:

Session

A session object represents a physical connection with the Tuxedo system.

SessionPool

A session pool contains one or more sessions. The sessions in the session pool
are reused for efficiency. Your WebLogic servlet uses sessions to invoke services
in Tuxedo through the methods of a session pool. Session pools are initialized by
the WebLogic server at startup and configured by attributes in the config.xml
file.

Note: For BEA WebLogic Server 6.0 or later, the xml-based config.xml
configuration file has replaced the weblogic.properties file. For more
information about the config.xml file, refer to the BEA WebLogic Server
Administration Guide.

SessionPoolManager

Use the session pool manager to get a reference to a session pool and to create,
administer, and remove session pools. The session pool manager is created just
before the WebLogic Server initializes the first session pool.
Using BEA Jolt with BEA WebLogic Server 1-3

1 Introduction to BEA Jolt for BEA WebLogic Server
Figure 1-1 shows the architecture for BEA Jolt for BEA WebLogic Server.

Figure 1-1 BEA Jolt for BEA WebLogic Server Architecture

WebLogic Server Startup

The WebLogic standards-based, pure-Java application server assembles, deploys, and
manages distributed Java applications. It supports distributed component services and
enterprise database access, including Enterprise JavaBeans, Remote Method
Invocation (RMI), distributed JavaBeans, and Java Database Connect (JDBC).

The WebLogic Server’s Administration Server is populated with JavaBean-like
objects Sun Microsystem’s Java Management Extension (JMX) standard. These
objects provide management access to domain resources.
1-4 Using BEA Jolt with BEA WebLogic Server

How Jolt for WebLogic Works
The Administration Server contains both configuration MBeans and run-time MBeans.
Configuration MBeans provide both SET (write) and GET (read) access to
configuration attributes. Run-time MBeans provide a snapshot of information about
domain resources, such as current HTTP sessions or the load on a JDBC session pool.
When a particular resource in the domain (such as a Jolt connection pool) is
instantiated, an MBean is created to collect information about that resource.

Note: For more information about configuration and run-time MBeans, refer to the
BEA WebLogic Server Administration Guide.

The WebLogic Server is configured to initialize the session pools at startup through
the config.xml file. A special startup class, PoolManagerStartUp, is invoked by
the WebLogic Server with a number of parameters. This class functions as follows:

Creates a session pool manager if one does not already exist

Creates a session pool according to the given parameters

Adds the new session pool to the pool manager

Note: Start the Jolt servers before attempting to create a session pool; otherwise the
startup classes will fail, and they will not attempt to commit again.

The number of session pools created depends on the number of
JoltConnectionPools that are configured in the config.xml file.

Connecting to a WebLogic Server from a Client Browser

In addition to its other Java services, the WebLogic Server is a fully functional HTTP
server that supports Java HTTP servlets. In general, each servlet must be registered
with a virtual name in the config.xml file.

A servlet may be invoked directly, that is, may actually present HTML to the browser,
or may be invoked indirectly from an HTML form when the user submits the form.
When the WebLogic Server receives a request containing the registered virtual name
of a servlet, it invokes the appropriate servlet's service() method. For more
information on HTTP servlets, refer to the Programming WebLogic HTTP Servlets
guide.
Using BEA Jolt with BEA WebLogic Server 1-5

1 Introduction to BEA Jolt for BEA WebLogic Server
The HTTP servlet's service() method (which invokes either the servlet's doPost()
or doGet() method, depending on the context) is invoked and passes an
HttpServletRequest object containing the HTTP data sent from the browser. In the
example packages described in “Using the Example Packages” on page 1-7, the client's
query data is used in a transaction call to Tuxedo, and the response is built into the new
HTML page.

How a Servlet Connects to Tuxedo

A servlet obtains a reference to the session pool manager that was created and
initialized by the WebLogic Server when it started. The pool manager is used to
retrieve the session pool that was configured in the config.xml file. This session pool
references the appropriate Jolt Server in a Tuxedo domain. A servlet uses the session
pool to invoke a specific Tuxedo service.

Tuxedo services are described and exported (declared accessible) on the Jolt Server in
the Jolt Repository. In the Jolt Repository, the service’s expected input and output
parameter types are declared. A servlet must supply the expected input parameters;
BEA Jolt for BEA WebLogic Server uses specialized ServletSessionPool objects
that can accept their input directly from an HttpServletRequest object. The output
is returned in a ServletResult object.

What Happens if the Request Fails

The session pool distributes the requests equally among the sessions in the pool. It
selects the least busy session to call the Tuxedo service. If the selected session is
terminated before the Tuxedo service is called, the session pool redirects the service
call to a different session, then establishes a new session to replace the disconnected
one. The session pool uses a round-robin algorithm to select and establish a connection
to a primary Jolt Server. If no primary Jolt Servers responds, the session pool connects
to a failover server.

If no sessions are available from a session pool, or the session pool is suspended, then
a SessionPoolException is thrown.

Multiple requests can be grouped into a single transaction. When a transaction fails, a
TransactionException is thrown. This exception should be caught by the servlet
and handled appropriately. (Usually, the servlet performs a rollback.)
1-6 Using BEA Jolt with BEA WebLogic Server

Using the Example Packages
Responding to the Client Browser

Provided the service call was successful, the following events occur:

The desired results are extracted from the ServletResult object.

The results are processed by the servlet and incorporated into an HTML page for
presentation to the user's browser. The HTML page can be built in one of two
ways:

With WebLogic's easy-to-use Java Server Pages (JSP) service that lets you
embed Java in a standard HTML page.

Using a more sophisticated programmatic approach with WebLogic
htmlKona.

The WebLogic Server returns the HTML page to the client via the
HttpServletResponse object.

Disconnecting from the Jolt Server

The WebLogic Server is also configured to shut down the existing session pool
connections to Tuxedo through the config.xml file.

Register the class PoolManagerShutDown so that the Jolt session pool is cleaned up
properly when the WebLogic Server shuts down. PoolManagerShutDown does not
require an attribute in the config.xml file.

Using the Example Packages

Two example packages are included with BEA Jolt for BEA WebLogic Server. These
packages are described in Appendix B, “Simple Servlet Example,” and Appendix C,
“Servlet with Enterprise JavaBean Example.” They demonstrate how Jolt is used in
WebLogic servlets to access Tuxedo services. You can build, run, and inspect these
examples to help you decide how to use WebLogic to extend Tuxedo services to the
Internet.
Using BEA Jolt with BEA WebLogic Server 1-7

1 Introduction to BEA Jolt for BEA WebLogic Server
Simple Servlet Example

A FORM-based HTML front end that submits a string to an HTTP servlet. The
servlet in turn sends this string to a Tuxedo service. The returned data is
compiled into a dynamically-generated HTML file, and sent back to the client
browser.

Servlet with Enterprise JavaBean Example

The Enterprise JavaBean (EJBean) example package contains the classes and
other files necessary to set up and run an EJBean stateful session to a Tuxedo
Server that is using Jolt.
1-8 Using BEA Jolt with BEA WebLogic Server

CHAPTER
2 Configuring Jolt for
WebLogic Server

Configuring a Jolt Session Pool connection between Tuxedo and WebLogic Server
requires two procedures:

Configuring Jolt for Tuxedo

Configuring Jolt for WebLogic Server

Configuring Jolt for Tuxedo

Refer to the Using BEA Jolt for instructions on setting up a Jolt Service Listener (JSL)
within Tuxedo. In Using BEA Jolt, it is assumed that JSL services have already been
configured within the Tuxedo domain. The guide only describes how to establish a
session pool connection to these services from WebLogic Server.

Configuring Jolt for WebLogic Server

This section describes how to set up a BEA Jolt connection pool between the
WebLogic Server and the JSL in the Tuxedo domain. Your WebLogic Server must
have access to the host running the JSL.
Using BEA Jolt with BEA WebLogic Server 2-1

2 Configuring Jolt for WebLogic Server
Jolt Startup Class and Connection Pool

You must instruct WebLogic Server to invoke the PoolManagerStartUp class
whenever the WebLogic Server is started or restarted. This invocation establishes the
pool connection to Tuxedo from the config.xml file, as shown in the following
example.

Note: For WebLogic Server 6.0 or later, Jolt startup classes and connection pool
attributes are configured via the configuration MBeans in the Administration
Console. For more information about configuration and run-time MBeans,
refer to the BEA WebLogic Server Administration Guide.

<StartupClass
 ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
 FailureIsFatal="false"
 Name="MyStartup Class"
 Targets="myserver"
/>
<JoltConnectionPool
 ApplicationPassword="tuxedo"
 MaximumPoolSize="5"
 MinimumPoolSize="3"
 Name="MyJolt Connection Pool"
 PrimaryAddresses="//TUXSERVER:6309"
 RecvTimeout="300"
 SecurityContextEnabled="true"
 Targets="myserver"
 UserName="joltuser"
 UserPassword="jolttest"
 UserRole="clt"
/>

The startup class in the preceeding example instructs WebLogic Server to invoke the
PoolManagerStartUp class when the WebLogic Server starts. The
JoltConnectionPool specifies initialization arguments that are passed to the
PoolManagerStartUp class.
2-2 Using BEA Jolt with BEA WebLogic Server

Configuring Jolt for WebLogic Server
Jolt Connection Pool Attributes

The Jolt connection pool attributes are defined as follows:

Application
Password

(Optional) Tuxedo application password. This is required only if the
Tuxedo authentication level is USER_AUTH or APP_PW.

MininumPoolSize (Required) Specifies the initial session pool size when the session
pool is created.

MaximumPoolSize (Required) Specifies the maximum session pool size. Each session
within a pool can handle up to 50 outstanding requests at any one
time.

Name (Optional) Defines a name for this session pool that should be
unique from the names of other session pools. This is an optional
argument, but it is recommended that you use it to avoid ambiguity.
The SessionPoolManager allows only one session pool to
remain unnamed. You can access this unnamed session pool from
your application by supplying null in place of the poolname
string argument to the getSessionPool() method.

Note: We strongly recommend that you name every session pool.

PrimaryAdresses (Required) Defines a list of the addresses of the primary Jolt Server
Listeners (JSLs) on the Tuxedo system. These are defined in the
format:
 //hostname:port
where hostname is the name of the server where the JSL is
running, and port is the port on which the JSL is configured to
listen for requests. You can specify multiple addresses in a
semicolon-separated (;) list.

Note: You must specify at least one primary JSL
hostname:port address.

Failover
Addresses

(Optional) You can specify a list of failover Jolt Server Listeners in
the same format used for appaddrlist above. Jolt attempts to use
these failover JSL(s) if the primary JSLs listed above fail. These
JSLs need not reside on the same host as the primary JSLs.

RecvTimeout (Required) Specifies the amount of time the client should wait to
receive a response before timing out.
Using BEA Jolt with BEA WebLogic Server 2-3

2 Configuring Jolt for WebLogic Server
It is recommended that you configure one Jolt session pool for each application
running on the WebLogic Server.

SecurityContext
Enabled

(Optional) Enables or disables the security context for this
connection pool. This option should be enabled if you want to
implement authentication propagation between WebLogic Server
and Jolt. If identity propagation is desired, then the Jolt Service
Handler (JSH) must be started with the -a option. If this option is
not set, but SecurityContext is enabled, the JSH will not accept this
request. If the SecurityContext attribute is enabled, then the Jolt
client will pass the username of the caller to the JSH.
If the JSH gets a message with the caller’s identity, it calls
impersonate_user() to get the appkey for the user. JSH caches
the appkey, so the next time the caller makes a request, the appkey
is retrieved from the cache and the request is forwarded to the
service. A cache is maintained by each JSH, which means that there
will be a cache maintained for all the session pools connected to the
same JSH.

Targets (Required) Specifies the target servers for the connection pool.

UserName (Optional) Tuxedo user name. This is required only if the Tuxedo
authentication level is USER_AUTH.

UserPassword (Optional) Tuxedo user password. This is required only if the
Tuxedo authentication level is USER_AUTH.

UserRole (Optional) Tuxedo user role. This is required only if the Tuxedo
authentication level is USER_AUTH or APP_PW.
2-4 Using BEA Jolt with BEA WebLogic Server

Displaying Jolt in the WebLogic Administration Console
Jolt Shutdown Class

To configure WebLogic Server to disconnect the Jolt session pools from Tuxedo when
it shuts down, add the following lines to the WebLogic Server config.xml file:

<ShutdownClass
 ClassName=”bea.jolt.pool.servlet.weblogic.PoolManager ShutDown.”
/>

The shutdown class instructs WebLogic Server to invoke the PoolManagerShutDown
class when the WebLogic Server shuts down.

Displaying Jolt in the WebLogic
Administration Console

If you are connecting to a WebLogic Server that has Jolt correctly installed and
configured, when you start the Administration Console you will see a configuration
MBean for the Jolt connection pool displayed in the Administration Console, as shown
in Figure 2-1.
Using BEA Jolt with BEA WebLogic Server 2-5

2 Configuring Jolt for WebLogic Server
Figure 2-1 WebLogic Server Console with Jolt Connection Pool

For each Jolt connection pool there is an individual MBean that displays the pool name,
maximum connections, pool state, and statistics about the connection status.

Note: For more information about MBeans, refer to the BEA WebLogic Server
Administration Guide.

Resetting the Jolt Connection Pool

You can reset the Jolt connection pool without having to restart WebLogic Server. The
resetConnectionPool() method calls the
SessionPoolManager.stopSessionPool() method to shut down all the
connections in the pool. It then calls the
SessionPoolManager.createSessionPool() method to restart the connection
pool.
2-6 Using BEA Jolt with BEA WebLogic Server

Resetting the Jolt Connection Pool
Command-line Method

The resetConnectionPool method can be invoked from the Admininstration
Console command-line interface by using the following command:

java weblogic.Admin -url t3://localhost:7001 -username system
-password gumby1234 -invoke -mbean
mydomain:Name=myserver.jolt.demojoltpool,Type=JoltConnectionPoolR
untime,Location=myserver -method resetConnectionPool

Administration Console Method

The Jolt connection pool can also be reset from the GUI console by using the following
method:

1. Under Services in the left frame, click the Jolt service folder.

2. Click the configured Jolt Connection Pool that you would like to monitor.

3. In the right frame, click the Monitoring tab, and then click the Monitor all Active
Pools link. The console lists all the connection pools that have been configured.

4. Click the Monitor all instances of... link next to the Jolt connection pool that you
would like to monitor. The console displays the Active Jolt Connection Pool.
Using BEA Jolt with BEA WebLogic Server 2-7

2 Configuring Jolt for WebLogic Server
5. Click the Reset Connection Pool icon at the end of the row to reset the
connection pool.
2-8 Using BEA Jolt with BEA WebLogic Server

CHAPTER
3 Implementing Jolt for
WebLogic

Setting up Jolt to connect to Tuxedo from your WebLogic application or servlet
requires the following steps:

Importing Packages

Configuring a Session Pool

Accessing a Servlet Session Pool

Using a Servlet Session Pool

Accessing a Tuxedo Service Through Jolt

Converting Java Data Types to Tuxedo Data Types

 Receiving Results from a Service

Using a Transaction

Handling Exceptions

See page B-1 for a simple example that establishes a connection and accesses a Tuxedo
service from an HTTP servlet.
Using BEA Jolt with BEA WebLogic Server 3-1

3 Implementing Jolt for WebLogic
Importing Packages

The Jolt Java class packages are automatically installed when you install Jolt for
WebLogic Server. To use BEA Jolt for BEA WebLogic Server, import the following
class packages that were installed with Jolt into your servlet:

bea.jolt.pool.*

bea.jolt.pool.servlet.*

There are other classes you must import into any servlet; for more information on
writing Java servlets, read the Programming WebLogic HTTP Servlets guide.

Configuring a Session Pool

You can access session pools through the SessionPoolManager class. WebLogic
Server uses a variation of the session pool called a servlet session pool. The servlet
session pool provides extra functionality that is convenient for use inside an HTTP
servlet.

When you configure a servlet session pool through the WebLogic Administration
Console, the following information is added to the config.xml configuration file:

<StartupClass
 ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
 FailureIsFatal="false"
 Name="MyStartup Class"
 Targets="myserver"
/>
<JoltConnectionPool
 ApplicationPassword="tuxedo"
 MaximumPoolSize="5"
 MinimumPoolSize="3"
 Name="MyJolt Connection Pool"
 PrimaryAddresses="//TUXSERVER:6309"
 RecvTimeout="300"
 SecurityContextEnabled="true"
 Targets="myserver"
3-2 Using BEA Jolt with BEA WebLogic Server

Configuring a Session Pool
 UserName="joltuser"
 UserPassword="jolttest"
 UserRole="clt"
/>

When WebLogic is started (or restarted), it invokes the PoolManagerStartUp class
and its associated startupArgs. On the first invocation, the PoolManagerStartUp
class creates a ServletSessionPoolManager object, which contains every
ServletSessionPool configured in the config.xml configuration file.

Subsequent calls add another ServletSessionPool to the same
ServletSessionPoolManager. You must add an entry for each session pool, using
a unique virtual name binding for each, as shown in the preceding example. The
WebLogic Server creates a new ServletSessionPool as defined in the config.xml
file.

For additional information about property settings and a list of definitions, see “Jolt
Startup Class and Connection Pool” on page 2-2.

Accessing a Servlet Session Pool

Once a WebLogic Server is configured to set up a Jolt session pool on startup, you can
access and use the Jolt session pool from your Java application or servlet. As described
earlier, in the WebLogic Server all ServletSessionPool objects are managed by the
same ServletSessionPoolManager.

 ServletSessionPoolManager poolMgr = (ServletSessionPoolManager)

 SessionPoolManager.poolmanager;

The WebLogic Server uses a ServletSessionPoolManager class that is derived
from SessionPoolManager. The ServletSessionPoolManager manages
ServletSessionPool objects, which offer additional HTTP servlet methods.

SessionPoolManager provides several methods for managing the administration of
a session pool. In the following example, the SessionPoolManager is used to retrieve
the SessionPool that has been named joltpoolname:

 SessionPool sPool = poolMgr.getSessionPool("joltpoolname");

However, because the WebLogic Server uses the subclass
ServletSessionPoolManager, the above example actually returns a
ServletSessionPool object in the guise of a SessionPool.
Using BEA Jolt with BEA WebLogic Server 3-3

3 Implementing Jolt for WebLogic
You must cast the SessionPool to a ServletSessionPool, as in the following code
example:

 ServletSessionPool ssPool =

 (ServletSessionPool) poolMgr.getSessionPool("joltpoolname");

Because WebLogic Server creates and configures the
ServletSessionPoolManager, it is likely that this is the only method you will use.
Other SessionPoolManager methods allow you to create, suspend, stop, or shut
down individual or all the session pools it manages. We recommend that you leave
these administrative operations to the WebLogic Server by configuring and managing
your session pools using the WebLogic config.xml configuration file.

Using a Servlet Session Pool

The reference to the named ServletSessionPool from the pool manager represents
a pool of sessions (or connections) to the Jolt Server in Tuxedo. The size of this pool
and the Tuxedo system to which it connects are abstracted from the application code
and are defined in the WebLogic config.xml configuration file. When you initiate a
request, the SessionPool uses the least-busy connection available.

Calling a Tuxedo Service

A Jolt request usually consists of a single call to a Tuxedo service using the call()
method of the SessionPool. You supply the name of the Tuxedo service and a set of
parameters to the call() method, and it returns a set of results from the Tuxedo
service. It is possible to make multiple calls within a single transaction, which allows
a servlet to comply with transactional demands of a Tuxedo application or preserve
integrity between databases. This transaction is described in more detail in “Using a
Transaction” on page 3-9.
3-4 Using BEA Jolt with BEA WebLogic Server

Using a Servlet Session Pool
Sending a ServletDataSet

The ServletSessionPool provides overloaded call() methods for use inside an
HTTP servlet. These methods accept their input parameters in terms of an
HttpServletRequest object, and therefore can conveniently be passed the same
HttpServletRequest object that was passed into your HTTP servlet's doPost() or
doGet() methods. However, in this instance, you must ensure that the names of the
HTTP posted name=value pairs correspond to those expected by the Tuxedo service.
The ordering is not important, because the data is ultimately converted into a Java
Hashtable. Other non-related data in the HttpServletRequest will not disrupt the
Tuxedo service.

A Tuxedo service is invoked from within an HTTP servlet with the following method:

 ssPool.call("serviceName", request);

where ssPool is a reference to a ServletSessionPool, "serviceName" is the name
of the Tuxedo service you wish to call, and the request argument is the
HttpServletRequest object associated with the servlet.

The ServletSessionPool.call() method internally converts the
HttpServletRequest into a ServletDataSet, which can be submitted to a regular
SessionPool.

Adding Parameters to the Dataset

You may wish to add extra data to the parameter set before calling the Tuxedo service.
For example, you may need to add a parameter representing the date and time of the
request. You would not expect to receive this parameter from the FORM data in the
HttpServletRequest. Instead, add it in the servlet, then submit the augmented data
set to the Tuxedo service. The following example illustrates this procedure:

 // Create a new dataset

 ServletDataSet dataset = new ServletDataSet();

 // Import the HttpServletRequest into the dataset.

 dataset.importRequest(request);

 // Insert an extra parameter into the dataset.
Using BEA Jolt with BEA WebLogic Server 3-5

3 Implementing Jolt for WebLogic
 dataset.setValue("REQUEST_TIME", (new Date()).toString());

 // Send the dataset to the named service.

 ssPool.call("service_name", dataset, null);

This code example demonstrates the manual conversion of the HttpServletRequest
object into a ServletDataSet object. In this new format you can add extra parameters
using the setValue() method. The new value is associated with a key, represented by
a string. Next, the call() method that is inherited from the SessionPool is invoked.
This method accepts the ServletDataSet class, but requires an extra argument for
use with transactions. Supply null for this last parameter, indicating that you are not
using a transaction to group multiple session calls. See“Using a Transaction” on page
3-9 for more details.

Accessing a Tuxedo Service Through Jolt

To access an existing Tuxedo service through Jolt, you must define and export the
service in the Jolt Repository. For details, refer to the Using BEA Jolt sections “Using
the Jolt Repository Editor” and “Bulk Loading BEA Jolt Services.” The Jolt service
definition defines the parameters that are expected by the Tuxedo application service.

Converting Java Data Types to Tuxedo Data
Types

The following table is a mapping between Java types and Tuxedo parameter types
required by a Tuxedo service. Use the appropriate Java types for the value of the
DataSet or ServletDataSet. If you specify any parameter as a Java String, it is
translated automatically to the appropriate type according to the service definition in
the Jolt Repository.
3-6 Using BEA Jolt with BEA WebLogic Server

Receiving Results from a Service
This feature is also used to convert all data inside an HttpServletRequest object,
because all parameters associated with the request are represented in string format.
Otherwise, use the type specified in the table below. Providing the correct data type
may improve efficiency because no lookup is required to convert from a string.

A Tuxedo CARRAY is specified in a Java string by describing each byte value as a
two-digit hexadecimal number. You specify multiple bytes by concatenating these
hexadecimal digit-pairs together. For example, the string "FF0A20" would represent
the Tuxedo type CARRAY { 255, 10, 32 }.

Receiving Results from a Service

The ServletSessionPool.call() method returns a ServletResult object that
contains the results from the Tuxedo service. If the service call fails, an exception is
thrown. You should always attempt to catch exceptions and handle them appropriately.
Refer to “Appendix A, BEA Jolt Exceptions” in Using BEA Jolt for details about the
possible exceptions that can occur.

BEA Tuxedo Type Java Type

char Byte

short Short

long Integer

float Float

double Double

char* String

CARRAY byte[]

XML byte[]
Using BEA Jolt with BEA WebLogic Server 3-7

3 Implementing Jolt for WebLogic
The following example retrieves a ServletResult object using the
ServletSessionPool.call() method in an HTTP servlet:

 ServletResult sResult = ssPool.call("service_name", request);

where ssPool is a ServletSessionPool, and request is an HttpServletRequest.

The ServletSessionPool.call() method returns a Result object that you must
cast as a ServletResult object. The ServletResult object provides extra methods
for retrieving data as Java Strings.

Provided the call was successful, the individual parameters can be retrieved from the
Result or ServletResult object using various forms of the getValue() method.

Using the Result.getValue() Method

The data is retrieved from a ServletResult by providing a key that corresponds to
the parameter names of the Tuxedo service, as defined in the Jolt Repository. You
supply the key to the appropriate getValue() method, which returns the
corresponding value object.

The Result.getValue() method also expects a default value object; this is returned
if the key lookup fails. It is your responsibility to cast the returned object to the
appropriate type, as defined by the Tuxedo service. For example, this line of code:

 Integer answer = (Integer) resultSet.getValue("Age", null);

sets the integer answer to the returned value in the ServletResult identified by the
key "Age", or returns null if this key does not exist in the ServletResult. Refer to
the table in “Converting Java Data Types to Tuxedo Data Types” on page 3-6 for the
Java equivalents of the Tuxedo types.

It is possible to have an array of values associated with a key. In this case, the simple
getValue() method returns the first element of an array in this instance. Use this
method signature in that case:

 public Object getValue(String name, int index, Object defVal)

to reference a particular indexed element in an array value.
3-8 Using BEA Jolt with BEA WebLogic Server

Using a Transaction
Using the ServletResult.getStringValue() Method

ServletResult extends Result, and provides the additional methods:

 public String getStringValue(String name,

 int index,

 String defVal)

 public String getStringValue(String name,

 String defVal)

These methods behave like the getValue() methods of the Result class, except that
they always return a Java string equivalent of the value object expected. The CARRAY
is converted into a string of two digit hexadecimal byte values as described in
“Converting Java Data Types to Tuxedo Data Types” on page 3-6.

Using a Transaction

You can use a transaction object to group multiple service calls into an atomic action,
maintaining data integrity within your application logic. You obtain a transaction from
a session pool with the method:

 Transaction trans = ssPool.startTransaction(timeout);

where the transaction object trans holds the reference to the transaction, ssPool is
the SessionPool or ServletSessionPool object, and the timeout argument for the
transaction is specified in seconds.

Once a transaction obtains a session, that session cannot be used by other transactions
until the transaction is committed, aborted, or times out. The session may, however,
still be used by single requests that are not part of a transaction. If a transaction fails to
obtain a session from the pool, this method throws a
bea.jolt.pool.TransactionException. If the session pool is suspended, the
method throws a bea.jolt.pool.SessionPoolException.
Using BEA Jolt with BEA WebLogic Server 3-9

3 Implementing Jolt for WebLogic
Each time your application uses the call() method, you should supply the transaction
object as the last parameter. For example:

 ssPool.call("svcName", request, trans);

You can make multiple calls in the same transaction. The calls will not complete until
you either commit or roll back the transaction using the methods of the transaction
object. The trans.commit() method completes the transaction. This method returns
0 if the commit was successful, or throws a TransactionException if the transaction
failed to commit.

If you need to abort the transaction, use the Transaction.rollback() method. This
method attempts to abort the transaction. It returns 0 if successful; otherwise it throws
a TransactionException.

Handling Exceptions

Errors or failures that may occur when Jolt initiates a Tuxedo service call are reported
to your application through Java exceptions. Always enclose the call() method
within a try / catch block and attempt to deal with any exceptions appropriately.
The call() method can throw any of the following exceptions for the following
reasons:

bea.jolt.pool.ApplicationException

Thrown when an error occurs in the logic of the Tuxedo service. For example, a
client illegally attempts to use a withdrawal service to withdraw more money
from an account than the current balance. The ApplicationException is
thrown when the Tuxedo service returns a TPESVCFAIL. Application-specific
information about the error can be included in the Result object that was
returned from the service invocation. You can access the Result object through
the ApplicationException.getResult() method.

Be sure to use the full package name of the
bea.jolt.pool.ApplicationException, because Jolt defines another
exception whose full package name is bea.jolt.ApplicationException.

bea.jolt.JoltException

A JoltException is the super class of all the following exceptions. These
exceptions all signify that a system error has occurred that is not part of the
application logic. JoltException is documented in Appendix A, “BEA Jolt
Exceptions,” in the Using BEA Jolt.
3-10 Using BEA Jolt with BEA WebLogic Server

Using a Transaction
bea.jolt.pool.SessionPoolException

Thrown when an error occurs in the Jolt SessionPool. For example, this may
occur if all sessions are busy, or if the session pool is suspended.

bea.jolt.ServiceException

Thrown when an error occurs related to invoking the Tuxedo service that
contains the application. For example, a service timeout, or a non-existent
service is called.

bea.jolt.TransactionException

Thrown when a transaction cannot be either started, committed, or aborted.
Using BEA Jolt with BEA WebLogic Server 3-11

3 Implementing Jolt for WebLogic
3-12 Using BEA Jolt with BEA WebLogic Server

APPENDIX
A Class Hierarchy

BEA Jolt Class Hierarchy for the BEA
WebLogic Server API

The following listing shows the class hierarchy for the BEA Jolt for BEA WebLogic
Server API. Refer to the appropriate Java documentation for details about each class
and method.

Package-bea.jolt.pool
Package-bea.jolt.pool.servlet
Package-bea.jolt.pool.servlet.weblogic

Class java.lang.Object
 Class bea.jolt.pool.Connection
 Class java.util.Dictionary
 Class java.util.Hashtable

 (implements java.lang.Cloneable, java.io.Serializable)
 Class bea.jolt.pool.DataSet
 Class bea.jolt.pool.Result
 Class bea.jolt.pool.servlet.ServletResult
 Class bea.jolt.pool.servlet.ServletDataSet
 Class bea.jolt.pool.SessionPoolManager
 Class bea.jolt.pool.servlet.ServletSessionPoolManager
 Class bea.jolt.pool.Factory
 Class bea.jolt.pool.SessionPool
 Class bea.jolt.pool.servlet.ServletSessionPool
 Class java.lang.Throwable
 (implements java.io.Serializable)
 Class java.lang.Exception
 Class java.lang.RuntimeException
 Class bea.jolt.pool.ApplicationException
 Class bea.jolt.pool.Transaction
 Class bea.jolt.pool.UserInfo
Using BEA Jolt with BEA WebLogic Server A-1

A Class Hierarchy
A-2 Using BEA Jolt with BEA WebLogic Server

APPENDIX
B Simple Servlet
Example

This example demonstrates how to use BEA Jolt to connect to BEA Tuxedo from a
WebLogic servlet. It uses the WebLogic Server to deliver an HTML FORM front end
in a standard Web browser.

Text entered by a user into the FORM is sent back to the WebLogic Server via the
HTTP POST method that is serviced by a registered WebLogic HTTP Servlet, which
calls a Tuxedo service using BEA Jolt. The text received by the servlet is sent to a
Tuxedo service, where it is transposed to uppercase before being returned to the
servlet. The form is compiled into a dynamically-generated HTML page by the servlet,
then sent back to the Web browser, where the uppercase version of the original text is
displayed.

This topic includes the following sections:

Example Components and Prerequisites

Using the Example

Example Components and Prerequisites

There are two parts to the simpapp example for Jolt for WebLogic Server:

The HTTP servlet that is shipped with the examples that are installed in the
samples directory where BEA Tuxedo is installed.
Using BEA Jolt with BEA WebLogic Server B-1

B Simple Servlet Example
The Tuxedo service application that is shipped with the Tuxedo examples that
are installed with BEA Tuxedo. The Tuxedo simpapp server contains the
TOUPPER service, which converts a given string to uppercase.

The source code for the Jolt servlet simpapp example is located in the
/samples/jolt/wls/servlet/ directory in the Tuxedo distribution.

The simpapp sample directory contains the following files:

A complete listing of the Tuxedo server-side source code of the simpapp application
service is located in $TUXDIR/samples/atmi/simpapp on UNIX systems and in
%TUXDIR%\samples\atmi\simpapp on Windows 2000 systems (where TUXDIR is
the Tuxedo home directory).

To run this example, you should be familiar with:

The BEA Tuxedo architecture and the simpapp application

BEA Jolt

HTML

Java language and servlet API

WebLogic Server HTTP servlets

File Name Description

SimpAppServlet.java Sample source code that issues a call to Tuxedo and returns an
HTML page with the results

simpapp.html HTML form for user input

simpapp.rep REP file for repository bulk loading

web.xml Configuration XML file for Web applications
B-2 Using BEA Jolt with BEA WebLogic Server

Using the Example
Using the Example

The simpapp example is easy to follow. Just launch the simpapp.html page from the
WebLogic Server. The simpapp.html page loads an HTML form which contains a
text field for entering the string. Type in a string and click the Post button to submit the
string as a post request. The SimpAppServlet formats the string you typed for use
with the Jolt for WebLogic class libraries, and then dispatches the request to the
Tuxedo TOUPPER service, which transposes the string to uppercase and returns it for
display in the browser.

Configuring the simpapp servlet example requires the following steps:

Step 1. Perform Preparatory Steps

Step 2. Start the WebLogic Server

Step 3. Configure the Servlet in WebLogic Server

Step 4. Stop and Restart the WebLogic Server

Step 5. Compile the Servlet

Step 6. Display the simpapp.html Form

Step 7. Post the FORM Data from the Browser

Step 8. Process the Request

Step 9. Return the Results to the Client

Step 1. Perform Preparatory Steps

1. Check that you have a supported browser installed on your client machine:

Netscape Communicator 4.7 or later

Internet Explorer 5.0 or later

2. The client machine must have a network connection to the WebLogic Server that
is used to connect to the Tuxedo environment.
Using BEA Jolt with BEA WebLogic Server B-3

B Simple Servlet Example
3. Configure and boot Tuxedo and the simpapp example.

4. Follow the directions in the Tuxedo user documentation to bring up the
server-side simpapp application. Make sure the TOUPPER service is available.

5. Set up the Jolt Server. Refer to the Using BEA Jolt for information about how to
configure a Jolt Server.

Note the hostname and port number associated with your Jolt Server Listener
(JSL).

Use the Jolt Repository BulkLoader file to ensure that the TOUPPER service is
defined in the Jolt Repository.

The simpapp example directory has a simpapp.rep file that contains the
TOUPPER service definition. Your system administrator should use the Jolt
Repository BulkLoader to add this service definition to the existing Jolt
Repository on the Tuxedo server. The Jolt Repository BulkLoader package is
supplied with the Jolt distribution for Tuxedo. Refer to Using BEA Jolt for
details on how to install this.

On the Tuxedo server, the following code example uses the Jolt BulkLoader
to add the TOUPPER service definition:
 $ java bea.joltadm.jbld //host:port simpapp.rep

where host and port are the hostname and port number of your Jolt Server
Listener (JSL), and the simpapp.rep is the BulkLoader file provided by
BEA Jolt, located in one of the following locations:

$TUXDIR/samples/jolt/wls/servlet/ on UNIX

%TUXDIR%\samples\jolt\wls\servlet\ on Windows 2000

6. Confirm that you have properly set up your CLASSPATH during installation. The
WebLogic Server classes library contains the three .jar files that you will need
to run this example:

 jolt.jar
joltjse.jar

joltwls.jar.
B-4 Using BEA Jolt with BEA WebLogic Server

Using the Example
Step 2. Start the WebLogic Server

If you are using a Windows 2000 system, you can start the WebLogic Server from the
Start menu. Otherwise, use the startWebLogic script on the command line, in the root
directory of the WebLogic Server distribution.

For more information on starting the WebLogic Server, see “Starting and Stopping the
WebLogic Server” in the BEA WebLogic Server Administration Guide.

Step 3. Configure the Servlet in WebLogic Server

Configuration of the Jolt connection pool and startup class MBeans for WebLogic
Server 6.0 or later is done through Administration Console.

1. Copy the simpapp.html page into your WebLogic document root directory.

By default, this is the \config\mydomain\applications\simpapp directory
in your WebLogic Server distribution. The HTTP server built into WebLogic
looks in this directory for HTML pages and other MIME types.

2. Start the WebLogic Server Administration Console by typing the following
address in your browser:

 http://hostname:listenport#/console

3. Open the Services folder in the left frame of the console, and then click the Jolt
folder. The Jolt Connection Pools table displays in the right frame showing all the
Jolt connection pools defined in the domain.

4. Click the Create a New Jolt Connection Pool link. A tabbed dialog box displays
in the right frame for configuring a new connection pool.

5. On the General tab, complete the following information:

a. Enter values in the Name, Minimum Pool Size, Maximum Pool Size, and the
Recv Timeout attribute fields.

b. Select the Security Context Enabled check box to enable security context (to
propagate the security information from the WebLogic Server environment to
the Tuxedo environment).
Using BEA Jolt with BEA WebLogic Server B-5

B Simple Servlet Example
c. Click Create to create a connection pool instance with the name that you
specified in the Name field. The new instance is added under the Jolt node in
the left frame.

6. Click the Config-Addresses and the Config-User tabs individually to change the
attribute fields or accept the default values as assigned, and then click Apply to
save your changes.

7. Click the Targets tab and select an available server where you want the Jolt
connection pool started.

8. Under the Deployments folder in the left frame, click the Startup & Shutdown
folder. The Startup and Shutdown table displays in the right frame showing all
the startup classes defined for your domain.

9. Click the Create a New Startup Class link. In the tabbed dialog box that displays
in the right frame, configure a new startup class, as follows.

a. Enter values in the Name, Class Name, and Arguments attribute fields.

b. Select the Abort Startup on Failure check box to prevent starting the WebLogic
Server whenever a failure occurs.

c. For the Class Name, enter the following name:
bea.jolt.pool.servlet.weblogic.PoolManagerStartUp
There are no arguments for this startup class.

d. Click Create to create a startup-class instance with the name that you specified
in the Name field. The new instance is added under the Startup & Shutdown
folder in the left frame.

10. Register the simpapp servlet as a Web application, as follows:

a. Open the Deployments folder in the left frame of the console, and then click the
Web Applications icon.

b. On the Install or Update an Application dialog box, click the Install a New Web
Application link.

c. For Step 1, either accept the default a destination directory for the simpapp
servlet or select a different one.

d. For Step 2, enter the path to the simpapp servlet (or use the Browse feature),
and then click the Upload button.
B-6 Using BEA Jolt with BEA WebLogic Server

Using the Example
The simpapp servlet is registered as a Web application in WebLogic and
appears as an icon under the Deployments\Web Applications folder.

Step 4. Stop and Restart the WebLogic Server

In order to start the Jolt session pool, you must shut down the WebLogic Server, and
then restart it. For more information on restarting the WebLogic Server, see “Starting
and Stopping the WebLogic Server” in the BEA WebLogic Server Administration
Guide.

Step 5. Compile the Servlet

After restarting the WebLogic Server, compile the SimpAppServlet file, as follows:

1. Under your WebLogic \config\mydomain\applications\simpapp document
root directory, create a new WEB-INF directory.

2. Copy the web.xml file from the Tuxedo installation directory
\samples\jolt\wls\servlet\ into the new WEB-INF directory.

3. Compile the SimpAppServlet.java file, as follows:

javac -d %WL.HOME%\config\mydomain\applications\simpapp\WEB-INF\classes
SimpAppServlet.java

This step also copies the necessary java classes into a WEB-INF\classes
directory.

Step 6. Display the simpapp.html Form

1. Open your browser.

2. Enter the URL for the simpapp.html file. For example, the default URL is:

http://localhost:port/simpapp/simpapp.html

where localhost is the host name of the WebLogic Server, and port is the port
at which the WebLogic Server is listening for login requests.
Using BEA Jolt with BEA WebLogic Server B-7

B Simple Servlet Example
A page similar to the one shown in Figure B-1 is displayed:

Figure B-1 simpapp.html Example

If you have problems displaying the form, be sure that the simpapp.html file is in the
WebLogic document root.

Step 7. Post the FORM Data from the Browser

Enter some text into the text field on the HTML page and submit it by clicking the
POST button. Along with the text you entered, other parameters are submitted to the
simpapp servlet class running in WebLogic Server.

The following is the relevant section from the simpapp.html file that describes the
HTML form:

 <form name="simpapp" action="simpapp" method="post">
 <input type="hidden" name="SVCNAME" value="TOUPPER">

 <table bgcolor=#dddddd border=1>
 <tr>
 <td>Type some text here and click the Post button:
 <input type="text" name="string">
 </td></tr>

 <tr>
 <td align=center><input type="submit" value="Post!">
 </td></tr>
 </table>
 </form>
B-8 Using BEA Jolt with BEA WebLogic Server

Using the Example
This HTML form specifies two input fields: the text you enter and a hidden field. In
this example, the value of the hidden field actually specifies the name of the Tuxedo
service to be invoked. Although putting the name of the Tuxedo service within the
HTML page is flexible and efficient, it is not recommended for production use for
security reasons. In this HTML page, you can submit an HTTP request specifying a
different service name as the hidden field.

Note: Tuxedo service names are case-sensitive.

When the WebLogic Server receives the HTTP form request, it invokes the doPost()
method of the simpapp servlet and passes the form data into an
HttpServletRequest.

Step 8. Process the Request

Before the first request to the simpapp servlet, WebLogic initializes the servlet by
calling its init() method. The Jolt session pool is established in the following
manner:

ServletSessionPoolManager b_mgr =
 (ServletSessionPoolManager).SessionPoolManager.poolmanager;

Next, the servlet’s doPost() method is executed. This method contains the code to get
a connection from the simpapp session pool that was created during the startup of the
WebLogic Server. The following code snippet shows the code that is used to retrieve
the simpapp session pool.

 // Get the "simpapp" session pool
 ServletSessionPool session =
 (ServletSessionPool) b_mgr.getSessionPool("simpapp");

The Tuxedo service that will be called is identified in a hidden field, which is
retrievable from the request object. Retrieve the service name parameter as follows:

 String svcnm[] = req.getParameterValues("SVCNAME");

You retrieve the value of the SVCNAME field in a string array that contains a single
value; use only the first element of the array. The value set for the SVCNAME hidden
field in the form is TOUPPER. This is the name of the Tuxedo service that the servlet
invokes, which is passed to the call() method as follows:

 // Invoke a service and get the result.
 result = session.call(svcnm[0], req);
Using BEA Jolt with BEA WebLogic Server B-9

B Simple Servlet Example
The session object in this example is a ServletSessionPool that can accept the
HttpServletRequest object directly. Internally, it converts the data into a Jolt
DataSet object, which contains the parameters for the TOUPPER service.

Note: The TOUPPER service expects a case-sensitive parameter called "STRING", so
it is essential for the text field within the HTML form to be labeled exactly the
same, that is, "STRING". Note also that the other data fields, such as the
SVCNAME, are not relevant as parameters but don't disrupt the Tuxedo service.

The form parameter is used to actually name the service, which you don't have to pass
as a service parameter. It is passed automatically because it is already contained in the
HttpServletRequest object.

The TOUPPER service converts the text in the "STRING" parameter to uppercase text
and passes it back to the servlet in a ServletResult object that contains the results
of an executed call, as well as details about exceptions if any are thrown during the
service call.

Step 9. Return the Results to the Client

The final step constructs and sends an HTML page, which contains the results of the
service call, back to the client through the HttpResponse output stream. The uppercase
result is retrieved from the ServletResult object using the result.getValue()
method.

The following is a simple example of passing this data back as HTML that the browser
can display:

 out.println("<p><center>"+
 result.getValue("STRING", "")+
 "</center><p><hr
 width=80%>");

The output stream produces a page similar to the one shown in Figure B-2:
B-10 Using BEA Jolt with BEA WebLogic Server

Using the Example
Figure B-2 Output Stream Results Example
Using BEA Jolt with BEA WebLogic Server B-11

B Simple Servlet Example
B-12 Using BEA Jolt with BEA WebLogic Server

APPENDIX
C Servlet with Enterprise
JavaBean Example

To use the Servlet with Enterprise JavaBean example, see the following sections:

About the Servlet with JavaBean Example

Preparing to Use the Servlet with JavaBean Example

Run the Servlet with JavaBean Example

This Enterprise JavaBean (EJBean) example package contains the classes and other
files necessary to set up and run an EJBean stateful session to a Tuxedo Server using
Jolt. The package contents are as follows:

Client application (client application documentation and source)

Deployment
DeploymentDescriptor.txt

manifest

Interfaces

Teller (remote interface documentation and source)

TellerHome (home interface documentation and source)

TellerResult (application-specific utility documentation and source)

ProcessingErrorException (application-specific exception documentation
and source)

TransactionErrorException (application-specific exception
documentation and source)
Using BEA Jolt with BEA WebLogic Server C-1

C Servlet with Enterprise JavaBean Example
Server (EJBean)

TellerBean (EJBean documentation and source)

About the Servlet with JavaBean Example

This example demonstrates an Enterprise JavaBean (EJBean), and provides an
example of a simple interface for accessing the Tuxedo Server. You can find the source
code for this example in the /samples/jolt/wls/ejb/bankapp directory included
in the BEA Tuxedo distribution.

Running this example before attempting to create your own EJBeans will show you the
different steps involved. The example is a stateful session EJBean called TellerBean
that contacts a Tuxedo Server using Jolt for WebLogic, and conducts transactions as
follows:

Contacts and calls a Tuxedo Server, and retrieves the returned results

Uses a session EJBean

Uses stateful persistence

Uses application-defined exceptions and utilities

Uses a client browser application

The client browser application performs these steps:

1. Contacts the teller home ("TellerHome") through JNDI to find the EJBean.

2. Creates a teller ("Terry").

3. The application then performs a series of transactions for the Teller that has just
been created:

Gets the current balance for account 10000.

Performs Transaction 1: Deposits $100 into the account, and displays the
balance.

Performs Transaction 2: Deposits $200 (more than the transaction limit of
$300).
C-2 Using BEA Jolt with BEA WebLogic Server

Preparing to Use the Servlet with JavaBean Example
Note: In Transaction 1, a single call is made, and is automatically committed. In
Transaction 2, a begin() and commit() bracket two separate requests (a
deposit and a withdrawal).

Attempts to withdraw $100 more than the balance of the account.

Catches an ApplicationException, retrieves the status messages embedded in
the exception, and rolls back Transaction 2.

Gets the final balance for the account.

Removes the teller.

You can see in Transaction 2 how the balance is successfully rolled back to what
it was at the end of Transaction 1.

Preparing to Use the Servlet with JavaBean
Example

To get the most out of this example, first read through the source code files to see what
is happening. Start with DeploymentDescriptor.txt to find the general structure of
the EJBean and which classes are used for the different objects and interfaces, and then
look at Client.java to see how the application works.

The following sections provide details for using this example:

Set Up Your Environment

Build the Example

Run the Servlet with JavaBean Example
Using BEA Jolt with BEA WebLogic Server C-3

C Servlet with Enterprise JavaBean Example
Set Up Your Environment

You need to add a Jolt connection pool that connects to the public Tuxedo Server at
BEA, as described in “Step 3. Configure the Servlet in WebLogic Server,” in Appendix
B, Simple Servlet Example. When you’re finished, the config.xml configuration file
will contain the following sections:

<StartupClass
 ClassName="bea.jolt.pool.servlet.weblogic.PoolManagerStartUp"
 FailureIsFatal="false"
 Name="MyStartup Class"
 Targets="myserver"
/>
<JoltConnectionPool
 ApplicationPassword="tuxedo"
 MaximumPoolSize="5"
 MinimumPoolSize="3"
 Name="MyJolt Connection Pool"
 PrimaryAddresses="//TUXSERVER:6309"
 RecvTimeout="300"
 SecurityContextEnabled="true"
 Targets="myserver"
 UserName="joltuser"
 UserPassword="jolttest"
 UserRole="clt"
/>|
<ShutdownClass
 ClassName=”bea.jolt.pool.servlet.weblogic.PoolManager
 ShutDown.”
/>

Build the Example

After configuring your WebLogic Server development environment, you need to build
the example. BEA Jolt provides separate build scripts for Windows 2000 and UNIX,
as follows:

Windows 2000: %TUXDIR%\samples\jolt\wls\ejb\bankapp\build.cmd

UNIX: $TUXDIR/samples/jolt/wls/ejb/bankapp/build.sh
C-4 Using BEA Jolt with BEA WebLogic Server

Run the Servlet with JavaBean Example
The scripts build individual examples, such as this entry for Windows 2000:

$ build

To build under Microsoft’s JDK for Java, use:

$ build -ms

The scripts will build the example and place the files in the following default
WebLogic Server directories on a Windows 2000 system:

Client files in: d:\bea\wlserver6.0\config\examples

EJBean in: d:\bea\wlserver6.0\config\mydomain\applications

Run the Servlet with JavaBean Example

When WebLogic Server is started in the default \config\mydomain directory, the
EJBean example is automatically deployed in the \applications directory.

1. Start the WebLogic Server in the \config\mydomain directory. You can check
that the EJBean has been deployed correctly either by checking the server
command-line window, or by opening the Console and examining EJB under
Deployments. You should see ejb.jolt.bankapp deployed and should be able to
monitor its activity.

2. Open a separate command-line window, and then run the client by entering the
following command:

$ java examples.jolt.ejb.bankapp.Client

If you are not running the WebLogic Server with its default settings, you will
have to use the following command line:

$ java examples.jolt.ejb.bankapp.Client "t3://WebLogicURL:Port"

where the following parameters are defined as follows:

WebLogicURL—the domain address of the WebLogic Server

Port—the port listening for connections (weblogic.system.ListenPort)

The following optional parameters are interpreted by the client in the order in
which they are listed:
Using BEA Jolt with BEA WebLogic Server C-5

C Servlet with Enterprise JavaBean Example
url—unique resource location of Server, such as t3://localhost:7001

user—username, default null

password—user password, default null

3. If you are running the Client example, you should get output that is similar to
the following from the client application:

4.Beginning jolt.bankapp.Client...
5.
6.Created teller Terry
7.
8.Getting current balance of Account 10000 for Erin
9.Balance: 27924.02
10.
11.Start Transaction 1 for Erin
12.
13. Depositing 100.0 for Erin
14. Balance: 28024.02
15.
16.End Transaction 1 for Erin
17.
18.Start Transaction 2 for Erin
19.
20. Depositing 200.0 for Erin
21. Balance: 28224.02
22.
23. Withdrawing 28324.02 for Erin
24. Transaction error:
25. examples.jolt.ejb.bankapp.TransactionErrorException:
Teller error: application
26. exception:
27.Account Overdraft
28.
29. Rolling back transaction for Erin
30.
31.End Transaction 2 for Erin
32.
33.Getting final balance of Account 10000 for Erin
34.Balance: 28024.02
35.
36.Removing teller Terry
37.
End jolt.bankapp.Client...

Note: Note how the final balance shows that Transaction 2 was rolled back to the
balance at the end of Transaction 1.
C-6 Using BEA Jolt with BEA WebLogic Server

Run the Servlet with JavaBean Example
You can read more about EJBs in the Programming WebLogic Enterprise JavaBeans
guide. To learn more about using BEA Jolt, refer to the Using BEA Jolt guide.
Using BEA Jolt with BEA WebLogic Server C-7

C Servlet with Enterprise JavaBean Example
C-8 Using BEA Jolt with BEA WebLogic Server

	Contents
	About This Document
	1. Introduction to BEA Jolt for BEA WebLogic Server
	2. Configuring Jolt for WebLogic Server
	3. Implementing Jolt for WebLogic
	A. Class Hierarchy
	B. Simple Servlet Example
	C. Servlet with Enterprise JavaBean Example

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to BEA Jolt for BEA WebLogic Server
	Key Features
	How Jolt for WebLogic Works
	Relationship Between Jolt for WebLogic and Tuxedo
	Essential Components of the Jolt Architecture
	Figure 1�1 BEA Jolt for BEA WebLogic Server Architecture

	WebLogic Server Startup
	Connecting to a WebLogic Server from a Client Browser
	How a Servlet Connects to Tuxedo
	What Happens if the Request Fails
	Responding to the Client Browser
	Disconnecting from the Jolt Server

	Using the Example Packages

	2 Configuring Jolt for WebLogic Server
	Configuring Jolt for Tuxedo
	Configuring Jolt for WebLogic Server
	Jolt Startup Class and Connection Pool
	Jolt Connection Pool Attributes

	Jolt Shutdown Class

	Displaying Jolt in the WebLogic Administration Console
	Figure 2�1 WebLogic Server Console with Jolt Connection Pool

	Resetting the Jolt Connection Pool
	Command-line Method
	Administration Console Method
	1. Under Services in the left frame, click the Jolt service folder.
	2. Click the configured Jolt Connection Pool that you would like to monitor.
	3. In the right frame, click the Monitoring tab, and then click the Monitor all Active Pools link...
	4. Click the Monitor all instances of... link next to the Jolt connection pool that you would lik...
	5. Click the Reset Connection Pool icon at the end of the row to reset the connection pool.

	3 Implementing Jolt for WebLogic
	Importing Packages
	Configuring a Session Pool
	Accessing a Servlet Session Pool

	Using a Servlet Session Pool
	Calling a Tuxedo Service
	Sending a ServletDataSet
	Adding Parameters to the Dataset

	Accessing a Tuxedo Service Through Jolt
	Converting Java Data Types to Tuxedo Data Types
	Receiving Results from a Service
	Using the Result.getValue() Method
	Using the ServletResult.getStringValue() Method

	Using a Transaction
	Handling Exceptions

	A Class Hierarchy
	BEA Jolt Class Hierarchy for the BEA WebLogic Server API

	B Simple Servlet Example
	Example Components and Prerequisites
	Using the Example
	Step 1. Perform Preparatory Steps
	1. Check that you have a supported browser installed on your client machine:
	2. The client machine must have a network connection to the WebLogic Server that is used to conne...
	3. Configure and boot Tuxedo and the simpapp example.
	4. Follow the directions in the Tuxedo user documentation to bring up the server-side simpapp app...
	5. Set up the Jolt Server. Refer to the Using BEA Jolt for information about how to configure a J...
	6. Confirm that you have properly set up your CLASSPATH during installation. The WebLogic Server ...

	Step 2. Start the WebLogic Server
	Step 3. Configure the Servlet in WebLogic Server
	1. Copy the simpapp.html page into your WebLogic document root directory.
	2. Start the WebLogic Server Administration Console by typing the following address in your browser:
	3. Open the Services folder in the left frame of the console, and then click the Jolt folder. The...
	4. Click the Create a New Jolt Connection Pool link. A tabbed dialog box displays in the right fr...
	5. On the General tab, complete the following information:
	a. Enter values in the Name, Minimum Pool Size, Maximum Pool Size, and the Recv Timeout attribute...
	b. Select the Security Context Enabled check box to enable security context (to propagate the sec...
	c. Click Create to create a connection pool instance with the name that you specified in the Name...
	6. Click the Config-Addresses and the Config-User tabs individually to change the attribute field...
	7. Click the Targets tab and select an available server where you want the Jolt connection pool s...
	8. Under the Deployments folder in the left frame, click the Startup & Shutdown folder. The Start...
	9. Click the Create a New Startup Class link. In the tabbed dialog box that displays in the right...
	a. Enter values in the Name, Class Name, and Arguments attribute fields.
	b. Select the Abort Startup on Failure check box to prevent starting the WebLogic Server whenever...
	c. For the Class Name, enter the following name: bea.jolt.pool.servlet.weblogic.PoolManagerStartU...
	d. Click Create to create a startup-class instance with the name that you specified in the Name f...
	10. Register the simpapp servlet as a Web application, as follows:
	a. Open the Deployments folder in the left frame of the console, and then click the Web Applicati...
	b. On the Install or Update an Application dialog box, click the Install a New Web Application link.
	c. For Step 1, either accept the default a destination directory for the simpapp servlet or selec...
	d. For Step 2, enter the path to the simpapp servlet (or use the Browse feature), and then click ...

	Step 4. Stop and Restart the WebLogic Server
	Step 5. Compile the Servlet
	1. Under your WebLogic \config\mydomain\applications\simpapp document root directory, create a ne...
	2. Copy the web.xml file from the Tuxedo installation directory \samples\jolt\wls\servlet\ into t...
	3. Compile the SimpAppServlet.java file, as follows:
	javac -d %WL.HOME%\config\mydomain\applications\simpapp\WEB-INF\classes SimpAppServlet.java

	Step 6. Display the simpapp.html Form
	1. Open your browser.
	2. Enter the URL for the simpapp.html file. For example, the default URL is:
	Figure B�1 simpapp.html Example

	Step 7. Post the FORM Data from the Browser
	Step 8. Process the Request
	Step 9. Return the Results to the Client
	Figure B�2 Output Stream Results Example

	C Servlet with Enterprise JavaBean Example
	About the Servlet with JavaBean Example
	1. Contacts the teller home ("TellerHome") through JNDI to find the EJBean.
	2. Creates a teller ("Terry").
	3. The application then performs a series of transactions for the Teller that has just been created:

	Preparing to Use the Servlet with JavaBean Example
	Set Up Your Environment
	Build the Example

	Run the Servlet with JavaBean Example
	1. Start the WebLogic Server in the \config\mydomain directory. You can check that the EJBean has...
	2. Open a separate command-line window, and then run the client by entering the following command:
	3. If you are running the Client example, you should get output that is similar to the following ...

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

