o®7%%,

7 hea
BEA Tuxedo

Using the ATMI
/Q Component

BEA Tuxedo Release 8.0
Documen t Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commerciad Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document i s subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS"' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebL ogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebLogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Usingthe ATMI /Q Component

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

1. BEA Tuxedo /Q Overview

GENEral DESCIIPLION......eiveeieieeeiieeiiee et e e e e en e e 1-1
Queuing System Components and TasKSccueereeerieeneerine e 1-2
AdMINISITAEOr TASKS ...veeiveieeee ettt e e e e e 1-3
ProOgramMIMEr TESKS.. ..o iuererie it seete ettt ettt b ettt r bbb st e e e 1-6
Transaction ManagemMeNtooe i 1-7
Handling REPlY MESSA0ES.......c.cvvrueriiiirieiirieeirieesie s 1-9
Error HAandliNg.......ccove e e e 1-9
SUMIMEBIY <ottt ettt e s et er et er e nr e nne 1-10
2. BEA Tuxedo /Q Administration

INEFOTUCTION ...ttt e ettt bbb bbb e s e e 2-1
Available Sample Program Called gsample...........c.ccooniiiiinniicinenns 2-2
CONFIGUIALTON.......ecv ettt e e e e b 2-2
Specifying the QM SErVEr GrOUP.cvcvereerereereriererieresierese e s s 2-2
Specifying the Message QUEUE SEIVENccccoevcineine e 2-3
Operation TIMEOULcccoriierieie ettt ettt e e e 2-3

Queue Space Names, Queue Names, and Service Names...........ccoceeeeenee. 2-4
Data-dependent ROULINGccvrerriiene e 2-5
Customized BUFfEr TYPES ...ooveve vttt e e e 2-5

BUFfer SUDLYPES. ..ot e 2-6
Specifying the Message Forwarding SErVer.........ccevvveeneeeneeneeseeene 2-6
Queue Names and Service Names: The - optionc.ccocvevrennienene 2-6
Controlling Transaction Timeout: The -t option.........cc.cocve v v 2-7
Controlling Idle Time: The =i OptioN.........cccocvvvirre s 2-7

Using the ATMI /Q Component iii

iv

Controlling Server Exit: The-e option..........cccovevvie i 2-7

Delete Message After Service Failure: The -d option..........ccocveveene 2-7
Customized BUFfer TYPES.......cvvviireiineire e 2-8
Dynamic CONfIQUIELIONceieirie ettt st 2-8
Creating Queue Spaces and QUELIEScoiuereerereerereeie ettt ere s sieresierenees 2-8
Working with gmadmin COmMmMaNSc.coerrerneneeene e 29
Creating an Entry in the Universal Device List: crdlcccocvevvineinene 29
Creating a Queue SPace: gSPaCECTEALE.curereereierieeirieeerieeerie e 2-10
Creating @ QUEUE: QCEALEc.vrereereieireeeirieeiee e s s 2-11
SpecCifying QUEUE OFGEScurvieireeeireeiree e e e 2-12
Enabling Out-of-Order ENQUEUING.........ccerererereirieeirieeisiriesie e 2-12
Specifying Retry Parameters..........ooovevriinienie s 2-13

Using Queue Capacity LimitS........coereirrneiirenesieise e 2-13

Reply and Faillure QUEUES..........c.coireeiirereireceireee e e 2-14

EFror QUEUESooiiieiieii ettt et 2-15
Handling Encrypted Message BUFfErs..........cooevenenen e 2-16
Maintenance of the BEA Tuxedo /Q FEAtUrecceeeveverieirnere e 2-16
Adding Extents to 8 QUEUE SPECE.c.coueveeverieie ettt 2-16
Backing Up or Moving QUEUE SPACE...........ceerereereimriiireeineeese s 2-17
Moving the Queue Space to a Different Type of Machine.............c......... 2-17
TMQFORWARD and Non-Global Transactions..........c.cccceeoeveneneienens 2-18
TMQFORWARD and Commit CONLrolcocoreeeeeernereeesenese e seeneens 2-18
Handling Transaction TIMEOUL.........c.coouereeereeeneeee e 2-18
TMQFORWARD and Retries for an Unavailable Service..........cccoue... 2-19
WiINdOws StANAard 1/Occovicinciiieiere e e 2-19

BEA Tuxedo /Q C Language Programming

INEFOTUCTION ...ttt bbb e 31
Prerequisite KNOWIEAGE.........ccoiriiiieieee e e 3-2
Where ReqUESES Can OFigiNaLe..........ucirierererire et 3-2
Emphasis on the Default Case...........ccvreiriienenne e 3-2
ENQUEUING MESSAJESccvieetieetere ettt ettt st b e e 3-3
tPENQUEUE(3C) ATGUMENES ..c.ccviiiriietiiet e b e 3-3
tpengueue(): The gspace ArguMENLc.cceveeereeereerereeereeeser e 3-3
tpengueue(): The gname ArguMENt..........ccoeeeneeeneeene s 3-4

Using the ATMI /Q Component

tpenqueue(): The data and len Arguments..........cocoevve v veceseens 3-4

tpenqueue(): The flags ArgUMENLS..........oevrerrevne v 35
TPQCTL SHUCIUME ...ttt st s sr e e s e se e 3-6
Overriding the QUEUE OFTErocerieverieierie ettt 3-13
Overriding the QUEUE PriOrty..........ccoreincirnineeneese e 313
Setting a Message Availability TIMe........cccviviiininiec e 3-13
tpenqueue() and TranSACtIONS.........covevevrreee et e ee e 3-14
DeqUEUING MESSBOESccuereete ettt ettt ter bbb st st st e st ebe e ebe e 3-15
tPAEqUEUE(3C) ATQUMENTSccuiieeveeeeeie ettt et en e e es e e sne 3-15
tpdequeue(): The gspace ArgUMENTcccervveveereeieie e 3-15
tpdequeue(): The gname ArguMENLcocoeveeveereenieieseeneenineennenneas 3-16
tpdequeue(): The data and len Arguments..........ccoceveeereeeeeeineniennens 3-16
tpdequeue(): The flagsS ArgUMENtS..........ccocvvveereeneeniee e 3-17
TPQCTL SHUCIUIE ...ttt et st snbe e sr e en e sre e 3-18
USING TPQWAIT oot seae e ses s sen s 322
Error Handling When Using TMQFORWARD SefViCes........cooevveveneene. 3-23
Procedure for Dequeuing Replies from Services Invoked Through
TMQFORWARDooiiiictieeeete sttt st aeeneesre e 3-25
Sequentia Processing Of MESSAgES........ccoviriieereriine e et ee e 3-26
Using Queues for Peer-to-Peer Communicationccocceeeevenereeceennenn. 3-26

BEA Tuxedo /Q COBOL Language Programming

INEFOTUCTION ...ttt et ettt bbb bbb et s e e 4-1
Prerequisite KNOWIEAQE.o.cviiiieic et e 4-2
Where Requests Can OFigiNatecoeereeerieerieeireeire e 4-2
Emphasis on the Default Case..........cuiirirrenne e 4-2
ENQUEUING MESSATESccveeeve ettt ettt e s s e s e e 4-3
TPENQUEUE() ATQUMENES.....ccoi ettt ettt esier et s e s e 4-3
TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument
4-4

TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument....... 4-5

TPENQUEUE(): The DATA-REC and LEN in TPTYPE-REC
ATGUMEBNES.....oii s 4-5
TPENQUEUE(): The Settings in TPQUEDEF-REC...........ccccecveue. 4-5
TPQUEDEF-REC SITUCLUIE.......co it st 4-6
Overriding the QUEUE OFTErccererereire e 4-15

Using the ATMI /Q Component v

Vi

Overriding the QUEUE Prioritycccoveiiiirere e 4-16

Setting aMessage Availability TIMe ... 4-16
TPENQUEUE() and TranSaClioNS.........c.cvreireirieiee s 4-17
DeqUEUING IMESSAJES........ceetireerire ettt bbbt sttt st s sr e er e e 4-17
TPDEQUEUE() ArQUMENES ..ottt s s s e 4-18
TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument
4-18
TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument.....4-19
TPDEQUEUE(): The DATA-REC and LEN in TPTYPE-REC
ATGUMENTS......oiiii e e e 4-19
TPDEQUEUE(): The Settingsin TPQUEDEF-REC...............c.c..... 4-20
TPQUEDEF-REC SITUCIUIE........ccutiieteieie et 4-21
USING TPQWAIT ..ottt ettt et et st nenen 4-26
Error Handling When Using TMQFORWARD ServicCes........ccccoveenenens 4-27
Procedure for Dequeuing Replies from Services Invoked Through
TMQFORWARDooctiiiitiietiere ettt s e e 4-29
Sequential Processing Of MESSA0EScovueiriereee ettt 4-30
Using Queues for Peer-to-Peer CommuniCation............coccvveeiecnccenennne 4-30

. A Sample Application

OVEIVIBIW ..ottt ettt e et e s et sttt et e e saese et en e see e sneen e e e sneeeeees A-1
PrErEQUISITES.ecvieceie ettt e e e e e A-1
What 1S GSBMPIE?.....ee ettt e e e e e A-2
BUIldING gSBMPIE......ccuiieiiirect ettt e e e e A-2
Suggestions for Further EXplOration.............coeveereeeneienecineeneereeeseee A-5
setenv: Set the ENVIFONMENL..........c.ooiiriiiieirceie e A-5
makefile: Make Your APPliCAIoN.cooeiveincine e A-6
ubb.sample: The ASCII Configuration Filecccoevinencnceee A-6
crlog: Create the Transaction LOQcoceveeerieiereine e A-7
crque: Create the Queue Space and QUEUES...........coveeveiererreeeeeernere e A-7
Boot, Run, and Shut Down the AppliCation............cccuoeeneineineneneneene A-7
ClEAN UP ettt e e e et e A-8

Using the ATMI /Q Component

About This Document

This document explains how to configure, program, and use the /Q component in the
BEA Tuxedo environment. The BEA Tuxedo /Q component allows messages to be
gueued to persistent (disk) or non-persistent storage (memory) for later processing and
retrieval.

This document covers the following topics:

Chapter 1, “BEA Tuxedo /Q Overview,” provides an overview of the BEA
Tuxedo /Q component architecture and describes administrative and
programming tasks required for use.

Chapter 2, “BEA Tuxedo /Q Administration,” provides instructions on how to
configure and manage the BEA Tuxedo /Q component.

Chapter 3, “BEA Tuxedo /Q C Language Programming,” provides instructions
on using C language functions to enqueue and degqueue messages.

Chapter 4, “BEA Tuxedo /Q COBOL Language Programming,” provides
instructions on using COBOL language functions to enqueue and dequeue
messages.

Appendix A, “A Sample Application,” provides a sample client-server
application using the BEA Tuxedo /Q component.

What You Need to Know

This document is intended for the following audiences:

administrators who are interested in configuring and managing message
gueueing applications in a BEA Tuxedo environment

Using the ATMI /Q Component Vil

m application developers who are interested in programming message queueing
applications in a BEA Tuxedo environment

This document assumes a familiarity with the BEA Tuxedo platform and either C or
COBOL programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “ e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefileat atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

viii Using the ATMI /Q Component

http://e-docs.bea.com

Related Information

The following BEA Tuxedo documents contain information that is relevant to using
the BEA Tuxedo /Q component and understanding how to implement message
queueing applications in the BEA Tuxedo environment:

® TMQUEUE(5) and TMQFORWARD(5) in File Formats, Data Descriptions, MIBs, and
System Processes Reference

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

®m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Using the ATMI /Q Component iX

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, datatypes, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream h> void main () the pointer psz
chrmod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

fl oat

nonospace
bol df ace
t ext

I dentifies significant wordsin code.
Example:
void conmt ()

nonospace
italic
t ext

Identifies variablesin code.
Example:
String expr

UPPERCASE
TEXT

I ndicates device names, environment variables, and logical operators.
Examples:

LPT1

SIGNON

OR

Using the ATMI /Q Component

Convention

tem

{1}

Indicates a set of choices in asyntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin asyntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-o0 name] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-o0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsisitself should never be typed.

Using the ATMI /Q Component

Xi

Xii Using the ATMI /Q Component

CHAPTER

1 BEA Tuxedo /Q
Overview

Thistopic includes the following sections:
m General Description

m Queuing System Components and Tasks
m Administrator Tasks

m Programmer Tasks

General Description

The BEA Tuxedo /Q component allows messages to be queued to persistent storage
(disk) or to non-persistent storage (memory) for later processing or retrieval. The BEA
Tuxedo Application-to-Transaction Monitor Interface (ATMI) providesfunctionsthat
allow messages to be added to or read from queues. Reply messages and error
messages can be queued for later return to client programs. An administrative
command interpreter is provided for creating, listing, and modifying the queues.
Servers are provided to accept requests to enqueue and dequeue messages, to forward
messages from the queue for processing, and to manage the transactions that involve
the queues.

Using the ATMI /Q Component 1-1

1

BEA Tuxedo /Q Overview

Queuing System Components and Tasks

The following figure shows the components of the queued message facility.

Figure1-1 Queued Service Invocation

1-2

QUEUE SERVER

CLIENT | TMQUEUE TMQFORWARD | SERVER
1,3 : local local : 5 SERVICEL

tpenqueue ¢ T enqueue enqueue /{

I \ / t I 6

pcall
I
,8’10 | \‘I\ tpreturn

tpdequeue ¢ | local local | }

| dequeue dequeue |

: TMS_QM :

: 2 APP : SERVER

| 9 Queue |

| Space | {SERVICEZ

I - - I

I . I

| | SERVICE1 | tpreturn

I I

| | L

| | SERVICE2 |

I I I

: | CLIENT_REPLY1 :
System/T ' ! '
Clients | i FAILUREQ | Systen
Using /Q | | |

I I

I I

I I

I I

GROUP

gmadmin

Thefigureillustrates how each component of the queuing system operates for queued
service invocation. In thisdiscussion, we use the figure to explain how administrators
and programmers work with the BEA Tuxedo /Q component to define it and use it to

Using the ATMI /Q Component

Administrator Tasks

gueue amessage for processing and get back areply. The queuing service may also be
used for simple peer-to-peer communication by using a subset of the components
shown in the figure.

A queue space is aresource. Access to the resource is provided by an X/OPEN
XA-compliant resource manager interface. This interface is necessary so that
enqueuing and dequeuing can be done as part of atwo-phase committed transactionin
coordination with other X A-compliant resource managers.

Administrator Tasks

The BEA Tuxedo administrator is responsible for defining servers and creating queue
spaces and queues like those shown between the vertical dashed linesin the figure
“Queued Service Invocation” on page 1-2.

The administrator must define at least one queue server group with TM5_QMasthe
transaction manager server for the group.

Two additional system-provided servers need to be defined in the configuration file.
These servers perform the following functions:

m The message queue server, TMQUEUE(5) , is used to enqueue and dequeue
messages. This provides a surrogate server for doing message operations for
clients and servers, whether or not they are local to the queue.

m The message forwarding server, TMQFORWARD(5) , is used to dequeue and
forward messages to application servers. The BEA Tuxedo system provides a
mai n() for servers that handles server initialization and termination, allocates
buffersto receive and dispatch incoming requests to service routines, and routes
repliesto the correct destination. All of this processing is transparent to the
application. Existing servers do not dequeue their own messages or enqueue
replies. One goal of BEA Tuxedo /Q is to be able to use existing serversto
service queued messages, without change. The TMQFORWARD server dequeues a
message from one or more queues in the queue space, forwards the message to a
server with a service that is named the same as the queue, waits for the reply,
and queues the success reply or failure reply on the associated reply or failure
queues, respectively, as specified by the originator of the message (if the
originator specified areply or failure queue).

Using the ATMI /Q Component 1-3

1

BEA Tuxedo /Q Overview

1-4

An administrator also must create a queue space using the queue administration
program, gmadni n(1) , or the APPQ_M B(5) Management Information Base (MIB).
The queue space contains a collection of queues. In the figure “Queued Service
Invocation” on page 1-2, for example, four queues are present within the APP queue
space. Thereisaone-to-one mapping of queue space to queue server group since each
gueue space is aresource manager (RM) instance and only asingle RM can existin a
group.

The notion of queue space allows for reducing the administrative overhead associated
with a queue by sharing the overhead among a collection of queuesin the following
ways.

m The queues in a queue space share persistent and non-persistent storage areas for
messages.

m A single message queue server, TMQUEUE in the figure “ Queued Service
Invocation” on page 1-2, can be used to enqueue and dequeue messages for
multiple queues within a single queue space.

m A single message forwarding server, TMQFORWARD in the figure “ Queued Service
Invocation” on page 1-2, can be used to dequeue and forward messages to
services from multiple queues within a single queue space.

m Two instances of the transaction manager server, TMS_QMin the figure “ Queued
Service Invocation” on page 1-2, can be used to complete transactions for
multiple queues within a single queue space. One instance of the transaction
manager server isreserved for non-blocking transactions so that they will be
processed as quickly as possible and not be held up by blocking transactions.
Blocking transactions are handled by the second instance of the transaction
manager server.

The administrator can define a single server group in the application configuration for
the queue space by specifying the group in UBBCONFI Gor by usingt nconfi g(1) (see
tconfig, wtnconfig(1)) toaddthegroup dynamically.

m Finaly, when the administrator moves messages between queues within a queue
space, the overhead isless than if the messages were in different stable storage
areas, because a one-phase commit can be done.

Part of the task of defining a queue is specifying the order for messages on the queue.
Queue ordering can be determined by message availability time, expiration time,
priority, FI FO, LI FO, or acombination of these criteria

Using the ATMI /Q Component

Administrator Tasks

The administrator specifies one or more of these sort criteriafor the queue, listing the
most significant criteriafirst. The FI FOand LI FO values must be the least significant
sort criteria. M essages are put on the queue according to the specified sort criteriaand
dequeued from thetop of the queue. The administrator can configure as many message
gueuing servers as are needed to keep up with the requests generated by clientsfor the
stable queues.

Data-dependent routing can be used to route between multiple server groups with
servers offering the same service.

For housekeeping purposes, the administrator can set up acommand to be executed
when athreshold is reached for a queue that does not routinely get drained. This can
be based on the bytes, blocks, or percentage of the queue space used by the queue or
the number of messages on the queue. The command might boot a TMQFORWARD server
to drain the queue or send mail to the administrator for manual handling.

The BEA Tuxedo system uses the Queueing Services component of the BEA Tuxedo
infrastructure for some operations. (The BEA Tuxedo infrastructure provides services
such as security, scalability, message queuing, and transactions.) For example,
administrative operations for shared memory are provided by the Queuing Services
component. Some functions are not currently applicableto BEA Tuxedo applications;
thisis noted in descriptions of these functions.

Y ou can & so use the queued messagefacility for peer-to-peer communication between
clients, such that a client communicates with other clients without using any
forwarding server. The peer-to-peer communication model is shown in the following
figure.

Figure1-2 Peer-to-Peer Communication

STORAGE
CLIENT (persistent or CLIENT

non-persistent)

N

tpenqueue N b tpdequeue

tpdequeue ¢ ¢ tpenqueue

Using the ATMI /Q Component 1-5

1

BEA Tuxedo /Q Overview

Programmer Tasks

1-6

In steps 1 through 3 of the figure “Queued Service Invocation” on page 1-2, aclient
engueues a message to the SERVI CE1 queue in the APP queue space using

t penqueue(3c) . Optionally, the name of areply queue and afailure queue can be
included in the call to t penqueue(). In the example they are the queues

CLI ENT_REPLY1 and FAI LURE_Q Theclient can specify acorrelationidentifier value
to accompany the message. This value is persistent across queues so that any reply or
failure message associated with the queued message can be identified when it is read
from the reply or failure queue.

The client can use the default queue ordering (for example, atime after which the
message should be made available for dequeuing), or can specify an override of the
default queue ordering (asking, for example, that this message be put at the top of the
gueue or ahead of another message on the queue). t penqueue() sends the message to
the TMQUEUE server, the message is queued, and an acknowledgment (step 3) issent to
the client; the acknowledgment is not seen directly by the client but can be assumed
when the client gets a successful return. (A failure return includes information about
the nature of the failure.)

A messageidentifier assigned by the queue manager isreturned to the application. The
identifier can be used to dequeue a specific message. It can aso be used in another

t penqueue() toidentify a message already on the queue that the subsequent message
should be enqueued ahead of .

Before an enqueued message is made available for dequeuing, the transactioninwhich
the message is enqueued must be committed successfully.

When using BEA Tuxedo /Q for queued service invocation, and the message reaches
thetop of the queue, the TMQFORWARD server dequeues the message and forwardsit, via
t pcal | (3c), to aservice with the same name as the queue name. In the figure
“Queued Service Invocation” on page 1-2, the queue and the service are named
SERVI CE1 and steps 4, 5, and 6 in the figure show this. The client identifier and the
application authentication key are set to the client that caused the message to be
engueued; they accompany the dequeued message as it is sent to the service.

When the service returns a reply, TMQFCRWARD enqueues the reply (with an optional
user-return code) to the reply queue (step 7 in the figure “ Queued Service Invocation”
on page 1-2).

Using the ATMI /Q Component

Programmer Tasks

Sometime later (steps 8, 9 and 10 in the figure “ Queued Service Invocation” on page
1-2), theclient usest pdequeue(3c) toread fromthereply queue CLI ENT_REPLY1 in
order to get the reply message.

Y ou can dequeue messages without removing them from the queue by using the
TPQPEEK flag with t pdequeue(). Messages that have expired or have been deleted by
an administrator are immediately removed from the queue.

Transaction Management

With regard to transaction management, one goal isto ensurereliability by enqueuing
and dequeuing messages within global transactions. However, a conflicting goal isto
reduce the execution overhead by minimizing the number of transactions that are
involved.

An option is provided for the caller to enqueue a message outside any transaction in
which the caller isinvolved (decoupling the queuing from the caller's transaction).
However, atimeout in this situation leaves it unknown as to whether or not the
message is enqueued.

A better approach isto enqueue the message within the call er'stransaction, asis shown
in the following figure.

Using the ATMI /Q Component 1-7

1

BEA Tuxedo /Q Overview

1-8

Figure 1-3 Transaction Demar cation

CLIENT
TRAN1 t pbegi n()
Put Request Message on QUEUE t penqueue()
tpcomi t ()
TMQFORWARD
TRAN2 t pbegi n()
Get Request Message and Delete from Queue t pdequeue()
Process Message tpcal | ()
Put Reply Message on Queue t penqueue()
tpcomi t ()
CLIENT
TRAN3 t pbegi n()
Get Reply Message and Delete from Queue t pdequeue()
Put Next Request Message on Queue t penqueue()
tpcomi t ()

In the figure, the client starts atransaction, queues the message and commits the
transaction. The message is dequeued within a second transaction started by
TMQFORWARD; the serviceis called with t pcal | (3c), isexecuted and the reply is
enqueued within the same transaction. A third transaction, started by the client, is used
to dequeue the reply (and possibly engqueue another request message). In ongoing
processing, the third and first transactions can meld into one since enqueuing the next
request can be done in the same transaction as dequeuing the response from the
previous request.

Note: The system allows you to dequeue a response from one message and enqueue
the next request within the same transaction, but doesnot allow you to enqueue
arequest and dequeue the response within the same transaction. The
transaction in which the request is enqueued must be successfully committed
before the message is available for dequeuing.

Using the ATMI /Q Component

Programmer Tasks

Handling Reply Messages

A reply queue can be either specified or not by the application when calling
t penqueue(). The effect isasfollows:

If areply queueis not specified for a queued message, then no further work is
required beyond processing the message.

If amessage is dequeued that does specify areply queue, then the originator of
the message expects areply to be enqueued upon successful completion of the
execution of the request.

In the case where the application explicitly dequeues the message using

t pdequeue(), it isthe responsibility of the application to call t penqueue() to
enqueue the reply. Normally, thiswould be done in the same transaction in
which the request message is dequeued and executed so the entire operation
is handled atomically (that is, the reply is enqueued only if the transaction
succeeds).

In the case where the message is automatically processed by a service
(dequeued and passed to the application viaat pcal | ()) by TMQFORWARD,
TMQFORWARD enqueues areply if the application service returns successfully
(that is, the service routine called t pr et ur n(3c) with TPSUCCESS and
tpcal I () did not return 1). If t pcal | () receives data, then the typed buffer
used is enqueued to the reply queue. If no dataisreceived in t pcal | (), then
amessage with no data (that is, aNULL message) is enqueued; the fact that
amessage isenqueued (even if NULL) is sufficient to signify that the
operation has been completed.

Error Handling

Handling of errors requires both an understanding of the nature of the errors the
application may encounter and careful planning and coordination between the BEA
Tuxedo administrator and the application program developers. The way BEA
Tuxedo /Q works, if amessage is dequeued within atransaction and thetransaction is
rolled back, then (if the retry parameter is greater than 0) the message ends up back on
the queue where it can be dequeued and executed again.

Using the ATMI /Q Component 1-9

1

BEA Tuxedo /Q Overview

Summary

1-10

For atransient problem, it may be desirable to delay for a short period before retrying
to degueue and execute the message, allowing the transient problem to clear. For
example, if thereis alot of activity against the application database, there may be
occasions when all you need isalittle timeto allow locks in a database to be released
by another transaction. Normally, alimit on the number of retriesis also useful to
ensure that some application flaw doesn't cause significant waste of resources. When
aqueueis configured by the administrator, both a retry count and a delay period (in
seconds) can be specified. A retry count of 0 impliesthat no retries are done. After the
retry count is reached, the message is moved to an error queue that can be configured
by the administrator for the queue space.

There are cases where the problem is not transient. For example, the queued message
may request operations on an account that does not exist. Inthis case, it is desirablenot
to waste any resources by trying again. If the application programmer or administrator
determines that failures for a particular operation are never transient, then it issimply
amatter of setting the retry count to zero. It ismore likely the case that for the same
service some problemswill be transient and some problems will be permanent; the
administrator and application developers need to have more than a single approach to
handle errors.

Other variations come about because the application may either dequeue messages
directly or use the TMQFORWARD server and because an error may cause atransaction to
be rolled back and the message requeued while logic dictates that the transaction
should be committed. These variations and ways to deal with them are discussed in
“BEA Tuxedo /Q Administration” on page 2-1, “BEA Tuxedo /Q C Language
Programming” on page 3-1, and “BEA Tuxedo /Q COBOL Language Programming”
on page 4-1.

To summarize, BEA Tuxedo /Q provides the following features to BEA Tuxedo
application programmers and administrators:

m An application programming interface that |ets you enqueue a request for
subsequent processing. The system guarantees to execute the request
successfully exactly once (by default, failure causes the message to be put back
on the queue). An application programming interface is also provided to dequeue
messages either from the top of a queue or by message identifier or correlation
identifier.

Using the ATMI /Q Component

Programmer Tasks

m The application program and/or the administrator can control the ordering of
messages on the queue. Control is viathe sort criteria, which may be based on
message availability time, expiration time, priority, LI FO, FI FO, or a
combination of these criteria. The application can override the ordering to place
the message at the queue top or ahead of a specific message that is aready
queued.

m A BEA Tuxedo server is provided to enqueue and dequeue messages on behal f
of, possibly remote, clients and servers. The administrator decides how many
copies of the server should be configured.

m A BEA Tuxedo server is provided to dequeue queued messages and forward
them to services for execution. This server allows for existing serversto handle
gueued requests without modification. Each forwarding server can be configured
to handle one or more queues. Transactions are used to guarantee exactly-once
processing. The administrator controls how many forwarding servers are
configured.

m The administrator can control messages stored on the queues for processing.
Thisincludes the number of times requests are retried on failure and how much
time elapses between retries, reordering messages on queues, managing queue
capacity and so on.

There are many application paradigms in which queued messages can be used. This
feature can be used to queue requests when a machine, server, or resource is
unavailableor unreliable (for example, in the case of awide area or wireless networks).
Thisfeature can aso be used for work flow provisioning where each step generates a
gueued request to do the next step in the process. Y et another use is for batch
processing of potentially long running transactions, such that the initiator does not
have to wait for completion but is assured that the message will eventually be
processed. Thisfacility may a so be used to provide a data pipe between two otherwise
unrelated applications in a peer-to-peer relationship.

Using the ATMI /Q Component 1-11

1 BEA Tuxedo /Q Overview

1-12 Using the ATMI /Q Component

CHAPTER

2 BEA Tuxedo /Q
Administration

Thistopic includes the following sections:

m Introduction

m Configuration

m Creating Queue Spaces and Queues

m Handling Encrypted Message Buffers

m Maintenance of the BEA Tuxedo /Q Feature

m Windows Standard 1/0

Introduction

The BEA Tuxedo /Q administrator hasthree primary areas of responsibility, which are:
m Configuration of resources

m Creation of the queue space and queues

m Monitoring and maintenance of the facility

Close cooperation with the application developers and programmers is a must; the
configuration and the queue attributes must reflect the requirements of the application.

Using the ATMI /Q Component 2-1

2 BEATuxedo /Q Administration

Available Sample Program Called gsample

A brief example of the use of the queued message facility is distributed with the
software and is described in “A Sample Application” on page A-1.

Configuration

Three servers are provided with the BEA Tuxedo /Q component. One is the
Transaction Manager Server (TMS), TM5_QM for the BEA Tuxedo /Q resource
manager. That is, it manages global transactions for the queued message facility. It
must be defined in the GROUPS section of the configuration file.

The other two, TMQUEUE(5) and TMQFORWARD(5) , provide servicesto users. They
must be defined in the SERVERS section of the configuration file.

The application can also create its own queue servers, if the functionality of
TMQFORWARD does not fully meet the needs of the application. For example, the
administrator might want to have a special server to dequeue messages moved to the
error queue.

The application can also choose peer-to-peer communication. In this case, the
application communicates with other applications, or aclient communicates with other
clients, by not using any forwarding server.

Specifying the QM Server Group

In addition to the standard requirements of agroup nametag and avalue for GRPNO(see
UBBCONFI G(5) for details), there must be aserver group defined for each queue space
the application will use. The TMSNAME and OPENI NFO parameters need to be set. Here
are examples:

TVSNAMVE=TNMS_QM
and

OPENI NFO="TUXEDQ' Q\t <devi ce_nane: <queue_space_nane>"

2-2 Using the ATMI /Q Component

Configuration

TM5_QMis the name for the transaction manager server for BEA Tuxedo /Q. In the
CPENI NFO parameter, TUXEDO' QMis the literal name for the resource manager as it
appearsin $TUXDI R/ udat aobj / RM Thevaluesfor <devi ce_nanme> and
<queue_space_nane> are instance-specific and must be set to the pathname for the
universal device list and the name associated with the queue space, respectively. These
values are specified by the BEA Tuxedo administrator using gmadni n(1) .

Note: The chronological order of these specificationsis not critical. The
configuration file can be created either before or after the queue spaceis
defined. The important thing is that the configuration must be defined and
gueue space and queues created before the facility can be used.

There can be only one queue space per GROUPS section entry. The CLOSElI NFO
parameter is not used.

The following example is taken from the reference page for TMQUEUE(5) .

* GROUPS
TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM

OPENI NFO="TUXEDQ' Q\t / dev/ devi cel: nyqueuespace"”
TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM

OPENI NFO="TUXEDO' Q\t / dev/ devi ce2: nyqueuespace"

Specifying the Message Queue Server

The TMQUEUE(5) reference page givesafull description of the SERVERS section of the
configuration file, but there are some points worth additional emphasis here.

Operation Timeout

TMQUEUE recognizesa-t ti meout option when specified after the double dash (- -)
in the CLOPT parameter. This timeout value affects only operations begun within the
server if it findsthat atransaction isnot in effect, in other words, either theclient called
t penqueue(3c) ort pdequeue(3c) without first callingt pbegi n(3c) or it began a
transaction and called t penqueue() or t pdequeue() with the TPNOTRAN flag set to
exclude the queue request from the client's transaction. The default for t i neout is30
seconds. If at pdequeue request isreceived withthe f 1 ags setto TPQAAI T, aTPETI ME
error will be returned if the wait exceeds -t t i meout seconds.

Using the ATMI /Q Component 2-3

2

BEA Tuxedo /Q Administration

Note: ctl isastructure of type TPQCTL used by t penqueue(3c) and
t pdequeue(3c) to pass parameters between the calling process and the
system. TPQWAI T is aflag setting available in t pdequeue to indicate that the
process wishesto wait for areply message. The structureis explained in detail
in“TPQCTL Structure” on page 3-6 and “ TPQUEDEF-REC Structure” on
page 4-6. The COBOL equivaent isthe TPQUEDEF- REC record.

Queue Space Names, Queue Names, and Service Names

2-4

Thereis potential confusion among queue space names, queue hames, and service
names. Thefirst place you are apt to encounter the confusion is in the specification of
the message queue server: TMQUEUE. When specifying this server in the configuration
fileyou can usethe - s flag of the CLOPT parameter to name the queue space served by
agiven instance of the server, which isthe same assaying it isaservice advertised by
the function: TMQUEUE. In an application that uses only one queue space, it is not
necessary to specify the CLOPT - s option; it will default to - s TMQUEUE: TMQUEUE. If
the application requires more than asingle queue space, the names of the queue spaces
areincluded asargumentsto the - s option in the SERVERS section entry for the queued
message server.

An alternative way of making this specification isto rebuild the message queue server,
using bui | dser ver (1) , and name the queue spaces with the similar sounding - s
option. This has the result of fixing, or hardcoding, the service names in the server
executable.

The follow ng two specifications are equival ent:

* SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="-s nyqueuespace: TMQUEUE"

and

bui | dserver -o TMQUEUE -s nyqueuespace: TMQUEUE -r TUXEDQ QM \
-f ${TUXDI R}/ | i b/ TMQUEUE. o
fol |l owed by

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="- A"

Using the ATMI /Q Component

Configuration

Data-dependent Routing

The preceding discussion described the specification of services (that is, queue space
names) in the message queue server. This capability can be used to bring about
data-dependent routing of queued messages such that the message is queued for
processing by a service within a specific group depending on avalue in afield of the
message buffer. To do this the same queue space name is specified in two different
groups and arouting specification is made part of the configuration file to govern the
group where the message is queued. The following example is taken from the
TMQUEUE(5) reference page (the queue space name has been changed).

* GROUPS
TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM
OPENI NFO="TUXEDQ' Q\t / dev/ devi cel: nyqueuespace"”
TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM
OPENI NFO="TUXEDQ' Q\t / dev/ devi ce2: nyqueuespace"
* SERVERS
TMQUEUE SRVGRP="TMQUEUEGRP1" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="-s ACCOUNTI NG TMQUEUE"
TMQUEUE SRVGRP="TMQUEUEGRP2" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="-s ACCOUNTI NG TMQUEUE"
* SERVI CES
ACCOUNTI NG ROUTI NG=" MYROUTI NG'
* ROUTI NG
MYROUTI NG FI ELD=ACCOUNT BUFTYPE="FM." \
RANGES="M N- 60000: TMQUEUEGRP1, 60001- MAX: TMQUEUEGRP2"

Customized Buffer Types

TMQUEUE supports all of the standard ATMI buffer types. If your application needsto
add other types, it can be done by copying

$TUXDI R/ t uxedo/ t uxl i b/ t ypes/t msypesw. ¢, adding an entry for your specia
buffer types, making sureto leave thefinal line null, and using the revised file asinput
to abui | dserver (1) command. An example of the bui | dserver command is
shown on the TMQUEUE(5) reference page.

You can aso use the - s option of thebui | dser ver command to associate additional
service names with TMQUEUE as an alternative to specifying them in the server CLOPT
parameter (see above).

Using the ATMI /Q Component 2-5

2

BEA Tuxedo /Q Administration

Buffer Subtypes

Y ou can assign a subtype to a buffer using thet pal | oc(3c) subtype parameter and
later extract the subtype using thet pt ypes(3c) function. Thisgivesyou the ability to
assign atype to datawithout having to create an entirely new user-defined ATMI
buffer type. Thisis especially useful for buffers containing character arrays (CARRAY)
or strings (STRI NG).

Specifying the Message Forwarding Server

The third system-supplied server included with the BEA Tuxedo /Q component is
TMQFORWARD 5) . Thisisthe server that takes messages from specified queues, passes
them aong to BEA Tuxedo serversviat pcal | (3c), and handles associated reply
messages. Thefull description of how the server isdefined in the configuration file can
be found on the TMQFORWARD(5) reference page, but the topics that follow bring out
some points that are worth additional emphasis.

TMQFORWARD is referred to as a server and each instance used by an application must
be defined in the SERVERS section of the configuration file, but it has characteristics
that set it apart from ordinary servers. For example:

m Itisincorrect to specify services for TMQFORWARD.

m A client process cannot post a message for TMQFORWARD as you would expect in
anormal request/response relationship.

® TMQFORWARD should not be defined as a member of an MSSQ set.
m TMQFORWARD should never have areply queue.

An instance of TMQFORWARD is tied to a queue space through the server group with
which it isassociated, specifically through the third field in the OPENI NFO statement
for the group. In the topics that follow we will examine other key parameters,
especially CLOPT parameters that come after the double dash.

Queue Names and Service Names: The -q option

2-6

A required parameter is- q queuenane, queuenane. . . This parameter specifies the
queue(s) to be checked by this instance of the server. queuenane isa
NULL-terminated string of up to 15 characters; it is the same as the name of the

Using the ATMI /Q Component

Configuration

application service that will process the message once it has been taken off the queue
by TMQFORWARD. It is also the name that a programmer specifies as the second
argument of t penqueue(3c) or t pdequeue(3c) when preparing to call the message
queue server, TMQUEUE.

Controlling Transaction Timeout: The -t option

TMQFORWARD does its work within a transaction that it begins and ends. The

-t trantime option is availableto specify the length of time in seconds before the
transaction istimed out. The transaction is begun when TMQFORWARD finds a message
on the queue it is checking; it is committed after areply has been enqueued either to
the reply queue or the failure queue, so the transaction encompasses calling the service
that processes the message and receiving areply. The default is 60 seconds.

Controlling Idle Time: The -i option

Once TMQFORWARD is booted it periodically checksthe queuetowhichitisassigned. If
it finds the queue empty, it pausesfor -i i dl et i me seconds before checking again. If
avalueisnot specified, the default is 30 seconds; a value of 0 says to keep checking
the queue constantly, which can be wasteful of CPU resources if the queue is
frequently empty.

Controlling Server Exit: The -e option

If the - e option is specified, the server will shut itself down gracefully (and will create
auser log message) when it finds the queue empty. This behavior may be used to your
advantage in connection with the threshold command that you can specify for aqueue.
There is a more complete discussion about the - e option and the threshold command
in “Creating Queue Spaces and Queues’ on page 2-8.

Delete Message After Service Failure: The -d option

When aservicerequest failsafter being called by TMQFORWARD, thetransactionisrolled
back, and the message is put back on the queue for alater retry (up to alimit of retries
specified for the queue). The - d option adds the following refinement: if the failed
servicereturnsanon-NULL reply, the reply (and its associated t pur code) are put on
afailure queue (if oneis associated with the message and the queue exists) and the

Using the ATMI /Q Component 2-7

2 BEATuxedo /Q Administration

original request message is deleted. Also with the - d option, if the original request
message isto be deleted at the same time as the retry limit configured for the queueis
reached, the original request message is put into the error queue.

The rationale behind this option is that rather than blindly retrying, the originating
client can be coded to examine the failure message and determine whether further
attempts are reasonable. It provides away of handling afailure that is due to some
inherently reasonabl e condition (for example, arecord is not found becausethe account
does not exist).

Customized Buffer Types

Customized application buffer types can be added to the type switch and incorporated
into TMQFORWARD with the bui | dser ver (1) command. It should be noted, however,
that when you customize TMQFORWARD it is an error to specify servicenameswith a- s
option.

Dynamic Configuration

We have described configuration parametersin terms of UBBCONFI G parameters.
However, it should be noted that the specifications in the GROUPS and SERVERS
sections can also be added to the TUXCONFI Gfile of arunning application by using
tmconfig(1) (seetnmconfig, wt nconfig(l)).Of course, thegroup and the servers
will have to be booted once they have been defined.

Creating Queue Spaces and Queues

This topic covers three of the gmadmi n(1) commands that are used to establish the
resources of the BEA Tuxedo/Q component. The APPQ_M B Management Information
Base provides an alternative method of administering BEA Tuxedo /Q
programmatically. See the APPQ M B(5) reference page for more information on the
MIB.

2-8 Using the ATMI /Q Component

Creating Queue Spaces and Queues

Working with gmadmin Commands

Most of the key commands of gmadni n have positional parameters. If the positional
parameters (those not specified with adash (-) preceding the option) are not specified
on the command line when the command isinvoked, gmadni n prompts you for the
required information.

Creating an Entry in the Universal Device List: crdl

The universal devicelist (UDL) isaVTOC file under the control of the BEA Tuxedo
system. It mapsthe physical storage space on a machine where the BEA Tuxedo
systemis run. An entry in the UDL poaints to the disk space where the queues and
messages of a queue space are stored; the BEA Tuxedo system manages the input and
output for that space. If the queued message facility isinstalled as part of a new BEA
Tuxedo installation, the UDL is created by t m oadcf (1) when the configuration file
isfirst loaded.

Before you create a queue space, you must create an entry for it in the UDL. The
following is an example of the commands:

First invoke the /Q adm nistrative interface, gmadnin

The QVCONFI G variable points to an existing device where the UDL
either resides or will reside.

QVCONFI G=/ dev/ rawfs qmadni n

Next create the device list entry

crdl /dev/rawfs 50 500

The above command sets asi de 500 physi cal pages begi nni ng at bl ock
50

|f the UDL has no previous entries, offset (block nunmber) O nust

be used

If you are going to add an entry to an existing BEA Tuxedo UDL, the value for the
QVICONFI G variable must be the same pathname specified in TUXCONFI G. Once you
have invoked gmadmi n, it isrecommend that you runal i di command to see where
space is available before creating your new entry.

Using the ATMI /Q Component 29

2

BEA Tuxedo /Q Administration

Creating a Queue Space: gspacecreate

2-10

A queue space makes use of |PC resources, when you define a queue space you are
allocating ashared memory segment and asemaphore. As noted above, the easiest way
to use the command isto let it prompt you. (Y ou can also use the T_APPQSPACE class
of the APPQ_M B(5) to create a queue space.) The sequence looks like this:

> gspacecreate

Queue space nane: nyqueuespace

| PC Key for queue space: 230458

Si ze of queue space in di sk pages: 200

Nunmber of queues in queue space: 3

Nunmber of concurrent transactions in queue space: 3
Nunmber of concurrent processes in queue space: 3
Nurmber of nessages in queue space: 12

Error queue nane: errq

Initialize extents (y, n [default=n]):

Bl ocki ng factor [defaul t=16]: 16

The program insists that you provide values for all prompts except the final three. As
you can see, there are defaultsfor the last two; while you will almost certainly want to
name an error queue, you are not required to. If you provide a name here, you must
create the error queue with thegcr eat e command. If you choose not to name an error
gueue, bear in mind that messages that normally would be moved to the error queue
(for example, when aretry limit is reached), are permanently lost.

The program does not prompt you to specify the size of the area to reserve in shared
memory for storing non-persistent messages for all queues in the queue space. When
you require non-persi stent (memory-based) messages, you must specify the size of the
memory area on the gspacecr eat e command line with the - n option.

Thevalue for the IPC key should be picked so as not to conflict with your other
requirements for | PC resources. It should be avalue greater than 32,768 and less than
262,143.

The size of the queue space, the number of queues, and the number of messages that
can be queued at one time all depend on the needs of your application. Of course, you
cannot specify asize greater than the number of pages specified in your UDL entry. In
connection with these parameters, you also need to look ahead to the queue capacity
parameters for an individual queue within the queue space. Those parameters allow
you to (@) set alimit on the number of messages that can be put on a queue, and (b)
name acommand to be executed when the number of enqueued messages on the queue

Using the ATMI /Q Component

Creating Queue Spaces and Queues

reaches the threshold. If you specify alow number of concurrent messages for the
gueue space, you may create a situation where your threshold on aqueue will never be
reached.

To calculate the number of concurrent transactions, count each of the following as one
transaction:

m Each TMs_QVserver in the group that uses this queue space
m Each TMQUEUE or TMQFORWARD server in the group that uses this queue space
® gmadmin

If your client programs begin transactions before they call t penqueue, increase the
count by the number of clients that might access the queue space concurrently. The
worst caseis that all clients access the queue space at the same time.

For the number of concurrent processes count one for each TMS_QM TMQUEUE or
TMQFORWARD server in the group that uses this queue space and one for afudge factor.

Y ou can choose to initialize the queue space as you use the gspacecr eat e command,
or you can let it be done by the gopen command when you first open the queue space.

Creating a Queue: gcreate

Each queue that you intend to use must be created with the gmadmi n gcreat e
command. Y ou first have to open the queue space with the gopen command. If you do
not provide a queue space name, gopen will prompt for it. (Y ou can also use the
T_APPQclass of the APPQ M B(5) to create a queue.)

The prompt sequence for gcr eat e looks like the following:

> qcreate

Queue nane: servicel

Queue order (priority, tinme, fifo, lifo): fifo

Qut -of -ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 2

Retry delay in seconds [defaul t=0]: 30

Hgh limt for queue capacity warning (b for bytes used, B for
bl ocks used,

% for percent used, mfor nessages [defaul t=100%): 80%

Reset (low) limt for queue capacity warning [defaul t=09%: 0%
Queue capacity command:

Using the ATMI /Q Component 2-11

2

BEA Tuxedo /Q Administration

No def ault queue capacity command
Queue 'servicel' created

Y ou can skip all of these prompts (except the prompt for the queue name); if you do
not provide a name for the queue, the program displays a warning message and
prompts again. For the other parameters, the program provides a default and displays
amessage that specifies the default.

The program does not prompt you for adefault delivery policy and memory threshold
options. The default delivery policy option allows you to specify whether messages
with no specified delivery mode are delivered to persistent (disk-based) or
non-persistent (memory-based) storage. The memory threshold option allows you to
specify values used to trigger command execution when a non-persistent memory
threshold is reached. To use these options, you must specify them on the gcr eat e
command line with - d and - n, respectively.

Specifying Queue Order

Messages are put into the queue based on the order specified by this parameter and
dequeued from the top of the queue unless selection criteria are applied to the
dequeuing operation. If priority, expiration, and/or ti me are chosen as queue
order criteria, then messages are inserted into the queue according to valuesin the
TPQCTL structure. A combination of sort criteria may be specified with the most
significant criteria specified first. Separate multiple criteriawith commas(,). If fifo
or | i f o (which are mutually exclusive) are specified, they must be the last value
specified. The sequence in which parameters are specified determinesthe sort criteria
for the queue. In other words, a specification of priority, fifo would say that the
gueue should be arranged by message priority and that within messages of equal
priority they should be dequeued on afirst in, first out basis.

Enabling Out-of-Order Enqueuing

2-12

If the administrator enables out-of-order enqueues; that is, if t op and/or msgi d are
specified at the prompt, programmers can specify (viavalues in the TPQCTL structure
of at penqueue call) that amessage isto be put at the top of the queue or ahead of the
message identified by msgi d. Give thisoption some thought; once the choice is made
you have to destroy and recreate the queue to change it.

Using the ATMI /Q Component

Creating Queue Spaces and Queues

Specifying Retry Parameters

Using Queue

Normal behavior for aqueued message facility isto put a message back on the queue
if the transaction that dequeuesit is rolled back. It will be dequeued again when it
reaches the top of the queue. Y ou can specify the number of retries that should be
attempted and also atime delay between retries. Note that when a dequeued message
is put back on the queue for retry, queue order specifications are, in effect, suspended
for Ret ry del ay seconds. During thistime, the message is unavailable for any
dequeuing operation.

The default for the number of retriesis 0, which means that no retries are attempted.
When the retry limit is reached, the system moves the message to the error queue for
the queue space, assuming an error queue has been named and created. If the error
gueue does not exist the message is discarded.

Thedelay timeis expressed in seconds. When message queues are lightly populated so
that amessage restored to the queue reaches the top almost immediately, you can save
CPU cycles by building in adelay factor. Your genera policy on retries should be
based on the experience of your particular application. If you have afair amount of
contention for the service associated with agiven queue, you may get alot of transient
problems. One way to deal with them isto specify alarge number of retries. (The
number is strictly subjective, asis the time between retries.) If the nature of your
application is such that any rolled back transaction signals afailurethat is never going
to go away, you might want to specify O retries and move the message immediately to
the error queue. (Thisis very much like what happens when you specify the -d option
for TMQFORWARD; the only differenceisthat anon-zero length failure message must be
received for TMQFORWARD automatically to drop the message from the queue.)

Capacity Limits

There are three parameters of the gqcr eat e command that can be used to partially
automate the management of a queue. The parameters set a high and low threshold
figure (it can be expressed as bytes, blocks, messages or percent of queue capacity) and
allow you to specify acommand that is executed when the high threshold is reached.
(Actually, the command is executed once when the high threshold is reached, but not
again until the low threshold is reached first prior to the high threshold.)

The following are two examples of ways the parameters can be used:

Hgh limt for queue capacity warning (b for bytes used, B for
bl ocks used, %for percent used, mfor nessages [defaul t=100%): 80%

Using the ATMI /Q Component 2-13

2

BEA Tuxedo /Q Administration

Reset (low) limt for queue capacity warning [defaul t=0%: 10%
Queue capacity conmmand: /usr/app/ bin/mail me nmyqueuespace servicel

This sequence sets the upper threshold at 80% of disk-based queue capacity and
specifies a command to be executed when the queue is 80% full. The command isa
script you have created that sends you a mail message when the threshold is reached.
(myqueuespace and ser vi cel are hypothetical arguments to your command.)
Presumably, once you have been informed that the queue is filling up you can take
action to ease the situation. Y ou do not get the warning message again unlessthe queue
load dropsto 10% of capacity or below, and then rises again to 80%. Y ou can also set
thresholds and specify commands for the management of non-persistent
(memory-based) queue capacity using the - n option of the gcr eat e command.

Note: If you are working on a Windows machine, see “Windows Standard 1/0” on
page 2-19 for additional information about configuring commands within a
gradm n() session.

The second exampleis somewhat more automated and takes advantage of the-e option
of the TMQFORWARD server.

High limt for queue capacity warning (b for bytes used, B for

bl ocks used, %for percent used, mfor messages [defaul t=100%): 90%
Reset (low) limt for queue capacity warning [defaul t=0%: 0%
Queue capacity conmand: tmboot -i 1002

This sequence assumes that you have configured a reserve TMQFORWARD server for the
queue in question with SRvI D=1002 and have included the -e option in its CLOPT
parameter. (It also assumes that the server is not booted or, if booted, has shut itself
down as aresult of finding the queue empty.) When the queue reaches 90% capacity,
thet nboot command is executed to boot the reserve server. The -e option causes the
server to shut itself down when the queueis empty. Y ou have set the low threshold to
0% so as not to kick off unnecessary t mboot commands for a server that is already
booted.

The default values for the three options are 100%, 0%, and no command.

Reply and Failure Queues

2-14

The discussion above about creating a queue and providing parameters for its
operation was written from the viewpoint of creating a queue for messagesto be
processed by a service of the same name. A queue may also be used for other purposes
asweéll, such as peer-to-peer communication. The parameters for creating aqueue are
the same regardless of its use. The TPQCTL structure used when a message is enqueued

Using the ATMI /Q Component

Creating Queue Spaces and Queues

to aservice queue includes fields to specify areply queue and a failure queue.
TMQFORWARD detects the success or failure of the t pacal | (3c) it makesto the
requested service and, if these queues have been created by the administrator,
enqueues the reply accordingly. If no reply or failure queue exists, the success or
failure response message from the service is dropped leaving the originating client
with no information about the outcome of the queued request. Eveniif thereisno reply
message from the service, if areply queue exists, a zero-length message is enqueued
there by TMQFORWARD to inform the originating client of the outcome.

When creating areply or afailure queue, bear in mind that in most cases messages are
dequeued from these queues by a client process looking for information about an
earlier enqueued request. Since the most common way of dequeuing such messagesis
by the msgi d (message identifier) or cor ri d (correlation identifier) associated with
the message—as opposed to taking a message off the top of the queue—the queue
ordering criteriaare less significant. In this case, fi f o is probably sufficient. The
retriesandretry del ay parametershave no significancefor reply queues; just take
the defaults. The queue capaci ty thresholds and commands are likely to be useful
on reply queues, and the recommended usage isto aert the administrator so that he or
she can intervene.

Error Queues

An error queue is a system queue. One of the gspacecr eat e prompts asks for the
name of the error queue for the queue space. When you have actually created an error
gueue of the name specified, the system usesiit as a place to move messages from the
service queue that have reached their retry limit. The management of the error queue
is up to the administrator who can either handle the messages manually through
commands of gmadni n or can set up an automated way of handling them through the
APPQ M BMIB. Thequeue capacity parameters can be used, but all of the other
qcr eat e parameters, with the exception of gnane, are not useful for the error queue.

Note: Werecommend against using the same queue as both an error queue and a
service failure queue; doing so makes it more difficult to cleanly manage the
application and could lead to clients trying to access the administrator's area.

Using the ATMI /Q Component 2-15

2

BEA Tuxedo /Q Administration

Handling Encrypted Message Buffers

In general, TMQUEUE and TMQFORWARD handl e encrypted message buffers without
decrypting them. However, there are situations where the /Q component needs to
decrypt enqueued message buffers, as described in “Compatibility/Interaction with
/Q” on page 1-63 in Using Security in ATMI Applications.

As mentioned in the “ Compatibility/Interaction with /Q” discussion, a
non-transactional t pdequeue() operation has the side effect of destroying an
encrypted queued message if the invoking process does not hold a valid decryption
key. Thus, application programmers need to open adecryption key for aprocessbefore
the process callst pdequeue() to retrieve an encrypted message; otherwise, the
message will be lost.

For information on opening a decryption key, see “Initializing Decryption Keys
Through the Plug-ins” on page 2-50 and “Writing Code to Receive Encrypted
Messages’ on page 3-44 in Using Security in ATMI Applications.

Maintenance of the BEA Tuxedo /Q Feature

This topic covers some things the queue administrator may have to do from time to
time to keep a queue space operating efficiently.

Adding Extents to a Queue Space

2-16

If you find you need more disk storage for a queue space, you can add it with the
gaddext command of gmadni n(1) . (You can also use the TA_ MAXPAGES attribute of
the T_APPQSPACE class of APPQ M B(5) to add extents.) The gmadmi n command
takesthe queue space name and anumber of pagesas arguments. The pagescomefrom
extentsdefined inthe UDL for the devicein your QUCONFI Gvariable. The queue space
must be inactive; you can use the exclamation point to execute acommand outside of
gradm n to shut down the associated server group. For example:

Using the ATMI /Q Component

Maintenance of the BEA Tuxedo /Q Feature

> ltmshut down -g TMQUEUEGRP1
followed by

> qcl ose
> gaddext nyqueue 100

The queue space must be closed; gnadni n closesit for you if you try to add extentsto
it whileit is open. All non-persistent messages currently in the queue space are lost
when the gaddext command isissued and completes successfully.

Backing Up or Moving Queue Space

A convenient command to use to back up a queue space is the UNIX command dd.
Shut down the associated server group first. The command lines should look like this:

t mshut down - g TMQUEUEGRP1
dd if=<qgspace_device_fil e> of =<out put _devi ce_fil enane>

For other options, see dd(1) in a UNIX system reference manual.

This same command can be used to migrate the queue space to a machine of the same
architecture, although you may need to start the command sequence with agmadni n
chdl command to provide anew device nameif the present name does not exist on the
target machine.

Similar archival techniques are available on server platformsthat do not have the dd
command. First, shut down the group containing the queue space you want to back up
or migrate. Then, use an archival tool to save the queue space device to afile or other
medium that may then be used as a backup or used to move the queue space to another
server.

Moving the Queue Space to a Different Type of Machine

If you need to move a queue space to amachine with adifferent architecture (primarily
byte order), the procedure is more complex. Create and run an application program to
dequeue all messages from all queues in the queue space and write them out in
machine-independent format. Then enqueue the messages in the new queue space.

Using the ATMI /Q Component 2-17

2

BEA Tuxedo /Q Administration

TMQFORWARD and Non-Global Transactions

M essages dequeued and forwarded using TMQFORWARD are executed within a global
transaction because the operation crosses group boundaries. If the messages are
executed by servers that are not associated with an RM or that do not run within a
global transaction, they should have a server group with TMSNAVE=TMS (for the NULL
XA interface).

TMQFORWARD and Commit Control

The global transaction begun by TMQFORWARD when it dequeues a message for
execution isterminated by at pcommi t (). The administrator can set the CMTRET
parameter in the configuration fileto control whether the transaction commitswhen it
islogged or when it is complete. (See the discussion of CMIRET in the RESOURCES
section of the UBBCONFI G 5) reference page.)

Handling Transaction Timeout

2-18

Handling transaction timeout requires cooperation between the queue administrator
and the programmer developing client programs that dequeue messages. When

t pdequeue(3c) iscalled with the f I ags argument set to include TPQMAI T, the
TMQUEUE server will wait for a message to arrive on a queue before returning to the
caler. The number of seconds before it times out is based on the following:

m Theti meout specifiedinthet pbegi n cal (if the transaction is started in the
client)

m The-t tineout flag of the TMQUEUE server (if the client has not started the
transaction)

If amessage is not immediately available when using TPQAAI T, TMQUEUE requires an
action resource so that TMQUEUE may service other requests. Y ou may want to increase
the number of actions the queue space may handle concurrently. Usethe - A act i ons
option to the gspacecr eat e or gspacechange commands. This option specifies the
number of additional actionsthat can be handled concurrently. When awaiting

operation is encountered and additional actions are available, the blocking operationis
set aside until it can be satisfied. If no actions are available, thecall tot pdequeue fails.

Using the ATMI /Q Component

Windows Standard I/O

TMQFORWARD and Retries for an Unavailable Service

When a TMQFORWARD server attempts to forward messages to a service that is not
available, the situation can develop wheretheretry limit for the queue may be reached.
The message is then moved to the error queue (if one exists). To avoid this situation
the administrator should either shut the TMQFORWARD server down or set the retry count
higher.

When amessage is moved to the error queueit isno longer associated with the original
queue. If errors are going to be handled by the administrator moving the message back
to the service queue when the service is known to be available, then the queue name
may be stored as part of the corri d in the TPQCTL structure so the queue name is
associated with the message.

Windows Standard 1/0

In order to carry out acommand that you have configured within agnadmni n() session,
such astheqgchange ... Queue capacity conmand described in“Using Queue
Capacity Limits’ on page 2-13, the Windows O eat ePr ocess() function spawns a
child process as a DETACHED PROCESS. This type of process does not have an
associated console for standard input/output. Therefore, for instance, if you use
standard DOS syntax to set theqchange ... Queue capacity conmand toruna
built-in DOS command (such as di r or dat e) and then pipe or redirect the standard
output to afile, the file will be empty when the command completes.

Asan example of resolving this problem, suppose that for the gchange ... Queue
capacity command you want to capture dat e information in a file using command
date /t > x.out.Toaccomplish thistask interactively, you would proceed as
follows:

gmadm n
> qopen your @pace
> qchange your Qhane

> go through all the setups... the threshol d queue capacity warni ng,
and so on
> "Queue capacity command: " cnd /c date /t > Xx.out

Using the ATMI /Q Component 2-19

2 BEATuxedo /Q Administration

To accomplish thistask from acommand file, say your Fi I e. cnd, you would add the
commanddate /t > x.out toyourFile.cmd and then proceed as follows:

grmadm n
> qopen your @space
> qchange your Qhane

> go through all the setups... the threshold queue capacity warning,
and so on
> "Queue capacity comand: " yourFile.cmd

2-20 Using the ATMI /Q Component

CHAPTER

3 BEA Tuxedo /Q
C Language
Programming

Thistopic includes the following sections:

Introduction

Prerequisite Knowledge

Where Reguests Can Originate
Emphasis on the Default Case
Enqueuing Messages

Dequeuing Messages

Sequentia Processing of Messages

Introduction

Thistopic deals with the use of the ATMI C language functions for enqueuing and
dequeuing messages: t penqueue(3c) and t pdequeue(3c) , plus some ancillary
functions.

Using the ATMI /Q Component 31

3 BEATuxedo/QC Language Programming

Prerequisite Knowledge

The BEA Tuxedo programmer coding client or server programs for the queued
message facility should be familiar with the C language binding to the BEA Tuxedo
ATMI. General guidance on BEA Tuxedo programming is available in Programming
BEA Tuxedo ATMI Applications Using C. Detailed pages on al the ATMI functions
are in the BEA Tuxedo ATMI C Function Reference.

Where Requests Can Originate

The calls used to place a message on a BEA Tuxedo /Q queue can originate from any
client or server process associated with the application. The list includes:

m Clients or servers on the same machine as the queue space or on another
machine on the network.

m Conversational programs, although you cannot have a conversational connection
with a queue (or with the TMQUEUE(5) server).

m Workstation clients via a surrogate process on the server side; the administrative
interface is aso entirely on the server side.

Emphasis on the Default Case

The coverage of BEA Tuxedo /Q programming in thistopic primarily reflectsthe
left-hand portion of the figure “ Queued Service Invocation” on page 1-2. In thefigure,
aclient (or aprocess acting in the role of a client) queues a message by calling

t penqueue(3c) and specifying a queue space made available through a TMQUEUE(5)
server. The client later retrieves areply viaat pdequeue(3c) call to TMQUEUE.

3-2 Using the ATMI /Q Component

Enqueuing Messages

The figure“ Queued Service Invocation” on page 1-2 showsthe queued message being
dequeued by the server TMQFORWARD(5) and sent to an application server for
processing (viat pcal | (3c)). When areply to thet pcal | () isreceived, TMQFORWARD
enqueues the reply message. Because a major goa of TMQFORWARD is to provide an
interface between the queue space and existing application services, it doesnot require
further application coding. For that reason, thistopic concentrates on the
client-to-queue space side.

A brief example of the use of the queued message facility is distributed with the
software and is described in “A Sample Application” on page A-1.

Enqueuing Messages

The syntax for t penqueue() is as follows:

#i ncl ude <atni.h>
i nt tpenqueue(char *gspace, char *gnane, TPQCTL *ct/,
char *data, long len, long flags)

When at penqueue() call isissued, it tellsthe system to store amessage on the queue
identified in gnane in the space identified in gspace. The message is in the buffer
pointed to by dat a and has a length of / en. By the use of bit settingsin f/ ags, the
system isinformed how the call to t penqueue() isto be handled. Further information
about the handling of the enqueued message and repliesis provided in the TMQCTL
structure pointed to by ct /.

tpenqueue(3c) Arguments

There are some important arguments to control the operation of t penqueue(3c) .
Let’slook at some of them.

tpenqueue(): The gspace Argument
gspace identifies a queue space previously created by the administrator. When a

server isdefined in the SERVERS section of the configuration file, the service names it
offersare aliases for the actual queue space name (which is specified as part of the

Using the ATMI /Q Component 3-3

3

BEA Tuxedo /Q C Language Programming

OPENI NFO parameter in the GROUPS section). For example, when your application uses
the server TMQUEUE, the value pointed at by the gspace argument is the name of a

service advertised by TMQUEUE. If no service aliases are defined, the default serviceis
the sameasthe server name, TMQUEUE. In thiscasethe configuration file might include;

TMQUEUE
SRVGRP = QUEL SRVID = 1
GRACE = 0 RESTART = Y COW = N
CLOPT = "- A"

or
CLOPT = "-s TMQUEUE"

Theentry for server group QUEL has an OPENI NFO parameter that specifiesthe resource
manager, the pathname of the device and the queue space name. Thegspace argument
inaclient program then looks like this:

i f (tpenqueue("TMQEUE', "STRING', (TPQCTL *)&qctl,
(char *)reqgstr, 0,0) == -1) {
Error checking

}

The example shown on the TMQUEUE(5) reference page shows how alias service
names can be included when the server is built and specified in the configuration file.
The sample program in “A Sample Application” on page A-1, also specifiesan alias
service name.

tpenqueue(): The gname Argument

Within a queue space, when queues are being used to invoke services, message queues
are named according to the application servicesavailable to processrequests. gnaneis
a pointer to such an application service. Otherwise, gname is simply the name of the
location where the message isto be stored until it is dequeued by an application (either
the same application that enqueued it or another one).

tpenqueue(): The data and len Arguments

34

dat a pointsto a buffer that contains the message to be processed. The buffer must be
one that was alocated with acall tot pal | oc(3c) . / en givesthe length of the
message. Some BEA Tuxedo buffer types (such as FML) do not require that the length
of the message be specified; in such cases, the / en argument isignored. dat a can be
NULL; whenitis, / enisignored and the message is enqueued with no data portion.

Using the ATMI /Q Component

Enqueuing Messages

tpenqueue(): The flags Arguments

f1 ags vaues are used to tell the BEA Tuxedo system how thet penqueue() cal is
handled; the following are valid flags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, the message is not
gueued within the caller’ s transaction. A caller in transaction mode that sets
thisflagisstill subject to thetransaction timeout (and no other) when queuing
the message. If message queuing fails, the caller’ stransaction is not affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If thisflag is set
and a blocking condition exists such asthe internal buffers into which the
message istransferred are full, the call failsand t per r no(5) isset to
TPEBLOCK. If thisflag is set and a blocking condition exists because the target
gueue is opened exclusively by another application, the call fails, t per r no()
is set to TPEDI AGNGOSTI C, and the diagnostic field of the TPQCTL structureis
set to QVESHARE. |n the latter case, the other application, which isbased on a
BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI).

When TPNOBL OCK is hot set and a blocking condition exists, the caller blocks
until the condition subsides or atimeout occurs (either transaction or blocking
timeout). If atimeout occurs, the call failsand t per r no() is set to TPETI ME.

TPNOTI ME
Setting this flag signifies that the caller is willing to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSI GRSTRT
Setting thisflag indicatesthat any underlying system callsthat areinterrupted
by asignal should be reissued. When thisflagisnot set and asignal interrupts
asystem call, the call fails and setst per rno(5) to TPGOTSI G.

Using the ATMI /Q Component 3-5

3 BEATuxedo/QC Language Programming

TPQCTL Structure

Thethird argument to t penqueue() is a pointer to a structure of type TPQCTL. The
TPQCTL structure hasmembersthat are used by the application and by the BEA Tuxedo
system to pass parameters in both directions between application programs and the
gueued message facility. The client that callst penqueue() setsflagsto mark fieldsthe
application wants the system to fill in. The structure isalso used by t pdequeue();
some of the fields do not come into play until the application calls that function. The
complete structure is shown in the following listing.

Listing 3-1 Thetpqctl_t Structure

#def i ne TMONAMELEN 15
#def i ne TMVSG DLEN 32
#def i ne TMCORRI DLEN 32

struct tpgctl _t { /* control paranmeters to queue prinitives */
I ong flags; /* indicates which of the values are set */
| ong deq_ti ne; /* absolute/relative tine for dequeuing */
long priority; /* enqueue priority */
| ong di agnosti c; /* indicates reason for failure */
char msgi d[TMVSGA DLEN] ; /* 1D of message before which to queue */
char corrid[TMCORRI DLEN] ; /* correlation I D used to identify message */
char repl yqueue[TMONAMVELEN+1] ; /* queue narme for reply nessage */
char fail urequeue] TMONAMELEN+1]; /* queue nane for failure nessage */
CLI ENTID cl tid; /* client identifier for originating client */
| ong urcode; /* application user-return code */
| ong appkey; /* application authentication client key */
| ong delivery_qos; /* delivery quality of service */
| ong reply_qos; /* reply message quality of service */
| ong exp_ti me; /* expiration time */

H

typedef struct tpgctl_t TPQCTL;

Thefollowing isalist of valid bits for the f 1 ags parameter controlling input
information for t penqueue().

TPNOFLAGS
No flags or values are set. No information is taken from the control structure.
L eaving fields of the structure not set is equivalent to a setting of TPNOFLAGS.

3-6 Using the ATMI /Q Component

Enqueuing Messages

TPQTCOP

Setting this flag indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue ordering to put a message at the top of the queue. TPQToP and
TPQBEFOREMSG D are mutually exclusive flags

TPQBEFOREMSG D

Setting this flag indicates that the queue ordering be overridden and the
message placed in the queue before the message identified by ct / - >nsgi d.
This request may not be granted depending on whether or not the queue was
configured to allow overriding the queue ordering. TPQTOP and
TPQBEFOREMSG D are mutualy exclusive flags. Note that the entire 32 bytes
of the message identifier value are significant, so the value identified by

ct ! - >nmsgi d must be completely initialized (for example, padded with
NULL characters).

TPQTI ME_ABS

If thisflag is set, the message is made available after the time specified by
ctl->deq_tinme. Thedeq_ti nmeisan asolute time value as generated by
ti me(2) or nkti nme(3C), if they areavailable to your application, or
gp_nkti me(3c), provided with the BEA Tuxedo system. The value set in
ct!->deq_t i me isthe number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1,1970. The absolute timeis set based on
the clock on the machine where the queue manager process resides.

TPQTI ME_ABS and TPQTI ME_REL are mutually exclusive flags.

TPQTI ME_REL

If thisflag is set, the message is made available after atime relative to the
completion of the enqueuing operation. ct/ - >deq_t i me specifiesthe
number of secondsto delay after the enqueuing completes before the
submitted message should be available. TPQTI ME_ABS and TPQT| ME_REL are
mutually exclusive flags.

TPQPRI ORI TY

If thisflagisset, the priority at which the request should be enqueued is stored
inct!->priority. Thepriority must beintherange1to 100, inclusive. The
higher the number, the higher the priority, that is, a message with a higher
number is dequeued before a message with alower number from queues
ordered by priority. For queues not ordered by priority, the valueis
informational.

If thisflag is not set, the priority for the message is 50 by default.

Using the ATMI /Q Component 3-7

3

BEA Tuxedo /Q C Language Programming

3-8

TPQCCRRI D

If thisflag is set, the correlation identifier value specifiedinct/ - >corri dis
available when arequest is dequeued with t pdequeue(3c) . Thisidentifier
accompaniesany reply or failure messagethat is queued so an application can
correlate areply with a particul ar request. Note that the entire 32 bytes of the
correlation identifier value are significant, so the value specified in
ct!->corridmust becompletely initialized (for example, padded with
NULL characters).

TPQREPLYQ

If thisflag is set, areply queue named in ct | - >r epl yqueue is associated
with the queued message. Any reply to the message is queued to the named
gueue within the same queue space as the request message. This string must
be NULL-terminated (maximum 15 charactersin length). If areply is
generated for the service and areply queue is not specified or the reply queue
does not exist, thereply is dropped.

TPQFAI LUREQ

If thisflag is set, afailure queue named in the ct | - >f ai | ur equeue is
associ ated with the queued message. If (1) the enqueued messageis processed
by TMFORWARLY), (2) TMFORWARDWas started with the - d option, and (3) the
service fails and returnsanon-NULL reply, a failure message consisting of
thereply and itsassociated t pur code is enqueued to the named queue within
the same queue space as the original request message. This string must be
NULL-terminated (maximum 15 charactersin length).

TPQDEL| VERYQCS, TPQREPL YQUS

If the TPQDELI VERYQCS flag is set, the flags specified by

ctl->del i very_qgos control the quality of service for delivery of the
message. |n this case, one of three mutually exclusive flags—
TPQQUSDEFAULTPERSI ST, TPQQOSPERSI STENT, or

TPQQOSNONPERSI STENT—must be setin ct | - >del i very_qos. If
TPQDELI VERYQOS is not set, the default delivery policy of the target queue
dictates the delivery quality of service for the message.

If the TPQREPLYQCS flag is set, the flags specified by ct I - >repl y_qos
control the quality of servicefor any reply to the message. In this case, one of
three mutually exclusive flags—TPQQOSDEFAULTPERSI ST,

TPQQCSPERS| STENT, or TPQQOSNONPERS| STENT—must be set in
ctl->reply_qos. The TPQREPLYQOS flag is used when areply is returned
from messages processed by TMQFORWARD. A pplications not using

Using the ATMI /Q Component

Enqueuing Messages

TMQFORWARD to invoke services may use the TPQREPLYQCS flag as a hint for
their own reply mechanism.

If TPQREPLYQQCS is ot set, the default delivery policy of the

ct | - >repl yqueue queue dictates the delivery quality of service for any
reply. Note that the default delivery policy is determined when thereply to a
message is enqueued. That is, if the default delivery policy of thereply queue
is modified between the time that the original message is enqueued and the
reply to the message is enqueued, the policy used isthe onein effect when the
reply isfinally enqueued.

Thefollowing isthe list of valid flagsfor ct/ - >del i very_qos and
ctl->reply_qos:

TPQQOSDEFAULTPERSI ST
Thisflag specifies that the message is to be delivered using the
default delivery policy specified on the target queue.

TPQQUSPERSI STENT
Thisflag specifiesthat the message is to be delivered in a persistent
manner using the disk-based delivery method. When specified, this
flag overrides the default delivery policy specified on the target
queue.

TPQQOSNONPERS| STENT
Thisflag specifies that the message isto be delivered in a
non-persistent manner using the memory-based delivery method.
Specifically, the messageis queued in memory until it is dequeued.
When specified, thisflag overrides the default delivery policy
specified on the target queue. If the caller is transactional,
non-persi stent messages are enqueued within the caller’s
transaction, however, non-persistent messages are lost if the system
isshut down, crashes, or the IPC shared memory for the queue space
is removed.

TPQEXPTI ME_ABS
If thisflag is set, the message has an absolute expiration time, which isthe
absol ute time when the message will be removed from the queue.
The absol ute expiration timeis determined by the clock on themachinewhere
the queue manager process resides.

The absolute expiration time is indicated by the value stored in
ctl->exp_time. Thevalueof ct/ - >exp_ti me must be set to an absolute

Using the ATMI /Q Component 39

3

BEA Tuxedo /Q C Language Programming

3-10

time value generated by ti me(2) , mkti me(3C), or gp_nkti ne(3c) (the
number of seconds since 00:00:00 Universal Coordinated Time—UTC,
January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue
operation, the operation succeeds, but the message is not counted for the
purpose of calculating thresholds. If the expiration timeisbeforethe message
availability time, the message is not available for dequeuing unless either the
availability or expiration timeischanged so that the avail ability timeisbefore
the expiration time. In addition, these messages are removed from the queue
at expiration time even if they were never available for dequeuing. If a
message expireswhileit iswithin atransaction, the expiration does not cause
the transaction to fail. Messages that expire while being enqueued or
dequeued within a transaction are removed from the queue when the
transaction ends. There is no notification that the message has expired.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusive flags. If none of these flags is set, the default expiration time
associated with the target queue is applied to the message.

TPQEXPTI ME_REL

If thisflag is set, the message has arelative expiration time, which is the
number of seconds after the message arrives at the queue that the messageis
removed from the queue. The relative expiration time is indicated by the
value stored in ct | - >exp_ti ne.

If the expiration timeis before the message availability time, the message is
not available for dequeuing unless either the availability or expiration timeis
changed so that the avail ability timeisbeforethe expiration time. In addition,
these messages are removed from the queue at expiration time even if they
were never available for dequeuing. The expiration of a message during a
transaction, does not cause the transaction to fail. M essages that expire while
being enqueued or dequeued within atransaction are removed from the queue
when the transaction ends. Thereisno acknowledgment that the message has
expired.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusive flags. If none of these flags is set, the default expiration time
associated with the target queue is applied to the message.

TPQEXPTI ME_NONE

Setting this flag indicates that the message should not expire, even if the
default policy of the queue includes an expiration time.

Using the ATMI /Q Component

Enqueuing Messages

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusive flags. If none of these flagsis set, the default expiration time
associated with the target queue is applied to the message.

Additionally, the ur code field of TPQCTL can be set with auser-return code. Thisvalue
will bereturned to the application that callst pdequeue(3c) to dequeue the message.

Onoutput fromt penqueue(), thefollowing fields may be set in the TPQCTL structure:

long fl ags; /* indicates which of the values are set */
char msgid[32]; /* | D of enqueued nessage */
| ong di agnosti c; /* indicates reason for failure */

The following isavalid bit for the f/ ags parameter controlling output information
fromt penqueue(). If thisflag isturned on when t penqueue() is called, the /Q server
TMQUEUE(5) populates the associated element in the structure with a message
identifier. If thisflag isturned off when t penqueue() is called, TMQUEUE() does not
popul ate the associated element in the structure with a message identifier.

TPQVBA D
If thisflag is set and the call to t penqueue() is successful, the message
identifier isstored in ct I - >nsgi d. The entire 32 bytes of the message
identifier value are significant, so the value stored in ct / - >nsgi d is
completely initialized (for example, padded with null characters). The actual
padding character used for initialization varies between rel eases of the BEA
Tuxedo /Q component.

The remaining members of the control structure are not used oninput tot penqueue().

If thecall tot penqueue() failsand t per r no(5) isset to TPEDI AGNOSTI C, avalue
indicating thereason for failureisreturnedin ct I - >di agnost i ¢. The possiblevalues
are;

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
An invalid resource manager identifier was specified.

[QVENCTOPEN]
The resource manager is not currently open.

[QVETRAN]

The call was made in transaction mode or was made with the TPNOTRAN flag
set and an error occurred trying to start atransaction in which to enqueue the

Using the ATMI /Q Component 3-11

3

BEA Tuxedo /Q C Language Programming

3-12

message. This diagnostic is not returned by queue managers from BEA
Tuxedo release 7.1 or later.

[QVEBADNBG D)
An invalid message identifier was specified.

[QVESYSTEM
A system error occurred. The exact nature of the error iswritten to alog file.

[QVECS]
An operating system error occurred.

[QVEABORTED]
The operation was aborted. If the aborted operation was being executed

within aglobal transaction, the global transaction is marked rollback-only.
Otherwise, the queue manager aborts the operation.

[QVEPROTQ|
An enqueue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENCSPACE]
Due to an insufficient resource, such as no space on the queue, the message
with itsrequired quality of service (persistent or non-persistent storage) was
not enqueued. QVENOSPACE isreturned when any of thefollowing configured
resourcesis exceeded: (1) theamount of disk (persistent) spaceallotted to the
gueue space, (2) the amount of memory (non-persistent) space alotted to the
gueue space, (3) the maximum number of simultaneously active transactions
allowed for the queue space, (4) the maximum number of messages that the
gueue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or (6)
the maximum number of authenticated users that may concurrently use the
Queuing Services component.

[QVERELEASE]
An attempt was made to enqueue a message to a queue manager that is from
aversion of the BEA Tuxedo system that does not support a newer feature.

[QVESHARE]
When enqueuing a message from a specified queue, the specified queueis
opened exclusively by another application. The other application is one based

Using the ATMI /Q Component

Enqueuing Messages

on aBEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

Overriding the Queue Order

If theadministrator, in creating aqueue, alowst penqueue() calsto overridethe order
of messages on the queue, you have two mutually exclusive waysto usethat capability.
Y ou can specify that the message isto be placed at the top of the queue by setting

f1 ags to include TPQTOP or you can specify that it be placed ahead of a specific
message by setting f / ags to include TPQBEFOREMSG Dand setting ct / - >nsgi dtothe
ID of the message you wish to precede. This assumes that you saved the message-1D
from apreviouscall in order to be able to useit here. Y our administrator must tell you
what the queue supports; it can be created to allow either or both of these overrides, or
to allow neither.

Overriding the Queue Priority

Youcansetavaueinct/ ->priority to specify the priority of the message. The
value must be in the range 1 to 100; the higher the number the higher the priority. If
pri ority wasnot one of the queue ordering parameters, setting a priority here hasno
effect on the dequeuing order, however the priority value is retained so that the value
can be inspected when the message is dequeued.

Setting a Message Availability Time

Y ou can specify in deq_t i me either an absolute time or atime relative to the
completion of the enqueuing operation for the message to be made available. Y ou set
f1 ags to include either TPQTI ME_ABS or TPQTI ME_REL to indicate how the value
should be treated. A queue may be created witht i me asaqueue ordering criterion, in
which case the messages are ordered by the message availability time.

BEA Tuxedo /Q provides afunction, gp_nkt i me(3c) , that isused to convert adate
and time provided in at mstructure to the number of seconds since January 1, 1970.
Thet i me(2) and nkt i me(3C) functions may &l so be used instead of gp_nkt i me(3c).
Thevaueisreturnedinti me_t, at ypedef' d long. To set an absolute time for the
message to be dequeued (we are using 12:00 noon, December 9, 2001), do the
following.

Using the ATMI /Q Component 3-13

3 BEATuxedo/QC Language Programming

1. Place the values for the date you want to use in the t mstructure.

#i ncl ude <stdi o. h>
#include <tine.h>
static char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wadnesday",

"Thur sday", "Friday", "Saturday", "-unknown-"
b
struct tmtime_str;
[*..0.0%]

time_str.tmyear = 2001 - 1900;
tinme_str.tmnmon = 12 - 1;

time_str.tmunday = 9;
time_str.tmhour = 12;
time_str.tmmn = 0;
tinme_str.tmsec = 1;
time_str.tmisdst = -1;

2. Call gp_nkti e to produce avalue for deq_t i me and set the f/ ags to indicate
that an absolute time is being provided.

#include <atm . h>

TPQCTL qctl;

if ((gctl->deqg_time = (long)gp_nktine(&ime_str)) == -1) {
/* check for errors */

}
qctl->fl ags = TPQTI ME_ABS
3. Cadll t penqueue().

i f (tpenqueue(gspace, gnanme, qctl, *data,*len,*flags) == -1) {
/* check for errors */
}

If you want to specify arelativetimefor dequeuing, for example, nnn seconds after the
completion of the enqueuing operation, place the number of secondsindeq_t i me and
set f | ags toinclude TPQTI ME_REL.

tpenqueue() and Transactions

If acaller of t penqueue() isin transaction mode and TPNOTRAN is not set, then the
enqueuing isdonewithin the caller's transaction. Thecaller knowsfor certain from the
successor faillureof t penqueue() whether the message was enqueued or not. If the call
succeeds, the message is guaranteed to be on the queue. If the call fails, the transaction
isrolled back, including the part where the message was placed on the queue.

3-14 Using the ATMI /Q Component

Dequeuing Messages

If acaller of t penqueue() isnot in transaction mode or if TPNOTRANI s set, the message
is enqueued outside of the caller’s transaction. If the call to t penqueue() returns
success, the message is guaranteed to be on the queue. If thecall to t penqueue() fals
with acommunication error or with atimeout, the caller isleft in doubt about whether
the failure occurred before or after the message was enqueued.

Note that specifying TPNOTRAN while the caller is not in transaction mode has no
meaning.

Dequeuing Messages

The syntax for t pdequeue() is as follows:

#i ncl ude <atni.h>
int tpdequeue(char *gspace, char *qgname, TPQCTL *ctl, \
char **data, long *len, long flags)

When thiscal isissued it tell sthe system to dequeue a message from the gnane queue
in the queue space named gspace. The message is placed in a buffer (originally
allocated by t pal | oc(3c)) at the address pointed to by * dat a. | en points to the
length of the data. If / en is0 on return from t pdequeue(), the message had no data
portion. By the use of bit settingsin f/ ags, the systemisinformed how the call to

t pdequeue() isto be handled. The TPQCTL structure pointed to by ct I carries further
information about how the call should be handled.

tpdequeue(3c) Arguments

There are someimportant argumentsto control the operation of t pdequeue(3c) . Let's
look at some of them.

tpdequeue(): The gspace Argument

gspace identifies a queue space previously created by the administrator. When the
TMQUEUE server isdefined in the SERVERS section of the configuration file, the service
namesit offers are aliases for the actual queue space name (which is specified as part
of the OPENI NFO parameter in the GROUPS section). For example, when your

Using the ATMI /Q Component 3-15

3

BEA Tuxedo /Q C Language Programming

application uses the server TMQUEUE, the value pointed at by the gspace argument is
the name of a service advertised by TMQUEUE. If no service aliases are defined, the
default service isthe same asthe server name, TMQUEUE. In this case the configuration
file may include:

TMQUEUE
SRVCRP = QUE1 SRVID = 1

GRACE = 0 RESTART = Y COW = N
CLOPT = "- A"

or
CLOPT = "-s TMQUEUE"

Theentry for server group QUEL has an OPENI NFO parameter that specifiesthe resource
manager, the pathname of the device and the queue space name. The gspace argument
inaclient program then looks like this:

i f (tpdequeue("TMQUEUE', "REPLYQ', (TPQCTL *)&qctl,
(char **)®str, & en, TPNOTIME) == -1) {
Error checking

}

The example shown on the TMQUEUE(5) reference page shows how alias service
names can be included when the server is built and specified in the configuration file.
The sample program in “A Sample Application” on page A-1, also specifiesan alias
service/queue space name.

tpdequeue(): The gname Argument

Queue namesin a queue space must be agreed upon by the applicationsthat will access
the queue space. Thisis especially important for reply queues. If gnane refersto a
reply queue, the administrator createsit (and often an error queue) in the same manner
that he or she creates any other queue. gnane isa pointer to the name of the queuefrom
which to retrieve the message or reply.

tpdequeue(): The data and len Arguments

3-16

These arguments have slightly different meanings than their counterpartsin

t penqueue(). * dat a pointsto the address of abuffer where the systemisto place the
message being dequeued. When t pdequeue() iscalled, it isan error for itsvalueto be
NULL.

Using the ATMI /Q Component

Dequeuing Messages

Whent pdequeue() returns, / en pointsto avalue of typel ong that carriesinformation
about the length of the dataretrieved. If it is0O, it means that the reply had no data
portion. This can be alegitimate and successful reply in some applications; receiving
even a0 length reply can be used to show successful processing of the enqueued
request. If you wish to know whether the buffer has changed from before the call to

t pdequeue(), save the length prior to the call to t pdequeue() and compareitto / en
after the call completes.

tpdequeue(): The flags Arguments

f1 ags vaues are used to tell the BEA Tuxedo system how thet pdequeue() cal is
handled; the following are valid flags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, the message is not
dequeued within the caller’ stransaction. A caller in transaction modethat sets
thisflag is still subject to the transaction timeout (and no other) when
dequeuing the message. |If message dequeuing fails, the caller’ stransactionis
not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If thisflag is set
and a blocking condition exists such asthe internal buffers into which the
message istransferred are full, the call failsand t per r no(5) isset to
TPEBLOCK. If thisflag is set and a blocking condition exists because the target
gueue is opened exclusively by another application, the call fails, t per r no()
is set to TPEDI AGNGSTI C, and the diagnostic field of the TPQCTL structureis
set to QVESHARE. |n the latter case, the other application, which isbased on a
BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI).

When TPNOBL OCK is hot set and a blocking condition exists, the caller blocks
until the condition subsides or atimeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQAAI T option in f/ ags (of the TPQCTL structure) is specified.

TPNOTI ME
Setting this flag signifies that the caller is willing to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

Using the ATMI /Q Component 3-17

3 BEATuxedo/QC Language Programming

TPNOCHANGE
When thisflag is set, the type of the buffer pointed to by * dat aisnot allowed
to change. By default, if a buffer isreceived that differsin type from the
buffer pointed to by * dat a, then * dat a's buffer type changes to the received
buffer'stype so long asthe receiver recognizestheincoming buffer type. That
is, the type and subtype of the received buffer must match the type and
subtype of the buffer pointed to by * dat a.

TPSI GRSTRT
Setting thisflag indicatesthat any underlying system callsthat areinterrupted
by asignal should bereissued. When thisflag isnot set and asignal interrupts
asystem call, the call failsand setst per r no(5) to TPGOTSI G.

TPQCTL Structure

Thethird argument to t pdequeue() is a pointer to a structure of type TPQCTL. The
TPQCTL structure hasmembersthat are used by the application and by the BEA Tuxedo
system to pass parameters in both directions between application programs and the
gueued message facility. Theclient that callst pdequeue() setsflagsto mark fields for
which the system should supply values. As described earlier, the structure is also used
by t penqueue(); some of the members apply only to that function. Theentire structure
isshown in “The tpgctl_t Structure” on page 3-6.

3-18 Usingthe ATMI /Q Component

Dequeuing Messages

Asinput tot pdequeue(), the following fields may be set in the TPQCTL structure:

long fl ags; /* indicates which of the values are set */
char msgid[32]; /* id of message to dequeue */
char corrid[32]; /* correlation identifier of nessage to dequeue */

The following are valid flags on input to t pdequeue():

TPNCOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSG D
Setting this flag requests that the message with the message identifier
specified by ct I - >nsgi d be dequeued. The messageidentifier is determined
through aprior call tot penqueue(). Notethat the message identifier changes
if the message is moved from one queue to another. Note also that the entire
32 bytes of the message identifier value are significant, so the value specified
by ct I - >nsgi d must be completely initialized (for example, padded with
null characters).

TPQGETBYCORRI D
Setting this flag requests that the message with the correlation identifier
specified by ct I - >corri d be dequeued. The correlation identifier is
specified by the application when enqueuing the message witht penqueue().
Notethat the entire 32 bytes of the correlation identifier value are significant,
so the value specified by ct I - >cor ri d must be completely initialized (for
example, padded with null characters).

TPQMI T
Setting this flag indicates that an error should not be returned if the queueis
empty. Instead, the process should wait until a message is available. If
TPQWAI T is set in conjunction with TPQGETBYMSG D or TPQGETBYCORRI D, it
indicatesthat an error should not be returned if no message with the specified
message identifier or correlationidentifier ispresent in the queue. Instead, the
process should wait until a message meeting the criteriaisavailable. The
process is still subject to the caller’ s transaction timeout, or, when not in
transaction mode, the process is till subject to the timeout specified for the
TMQUEUE process by the -t option.

If a message matching the desired criteriais not immediately available and
the configured action resources are exhausted, t pdequeue() returns -1,

t perr no() isset to TPEDI AGNCSTI C, and the diagnostic field of the TPQCTL
structure is set to QVESYSTEM

Using the ATMI /Q Component 3-19

3

BEA Tuxedo /Q C Language Programming

3-20

Note that each t pdequeue() request specifying the TPQAAI T control
parameter requiresthat aqueue manager (TMQUEUE) action object beavailable
if amessage satisfying the conditionisnot immediately available. If an action
object is not available, the t pdequeue() request fails. The number of
available queue manager actions are specified when a queue space is created
or modified. When awaiting dequeue request compl etes, the associated
action object associated is made available for another request.

TPQPEEK
If thisflag is set, the specified message isread but is not removed from the
gueue. The TPNOTRAN flag must also be set.

When athread is non-destructively dequeuing amessage using TPQPEEK, the
message may not be seen by other non-blocking dequeuers for the brief time
the system is processing the non-destructive dequeue request. This includes
dequeuers using specific selection criteria (such as message identifier and
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

Thefollowing isalist of valid bits for the f 1 ags parameter controlling output
information fromt pdequeue(). For any of these bits, if the flag bit is turned on when
t pdequeue() is called, the associated field in the structure (see“ The tpactl _t
Structure” on page 3-6) is populated with the value provided when the message was
queued, and the bit remains set. If avalue is not available (that is, no value was
provided when the message was queued) or the bit is not set when t pdequeue() is
called, t pdequeue() completes with the flag turned off.

TPQPRI ORI TY
If thisflagisset, the call tot pdequeue() is successful, and the message was
queued with an explicit priority, then the priority is stored in
ctl->priority.Thepriority isintherange 1 to 100, inclusive, and the
higher the number, the higher the priority (that is, amessage with a higher
number is dequeued before a message with alower number). For queues not
ordered by priority, the value is informational.

If no priority was explicitly specified when the message was queued and the
call to t pdequeue() issuccessful, the priority for the message is 50.

TPQVBG D
If thisflag is set and the call tot pdequeue() is successful, the message
identifier isstored in ct / - >nsgi d. The entire 32 bytes of the message
identifier value are significant.

Using the ATMI /Q Component

Dequeuing Messages

TPQCORRI D
If thisflag is set, the call to t pdequeue() is successful, and the message was
gueued with acorrelation identifier, then the correlation identifier isstored in
ct!->corrid. Theentire 32 bytes of the correlation identifier value are
significant. Any BEA Tuxedo /Q provided reply to a message has the
correlation identifier of the original request message.

TPQDELI VERYQOS
If thisflag is set, the call to t pdequeue() is successful, and the message was

gueued with a delivery quality of service, then the flag—
TPQQUSDEFAULTPERSI ST, TPQQOSPERSI STENT, or

TPQQOSNONPERSI STENT—is stored in ¢t / - >del i ver y_qos. If no delivery
quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

TPQREPLYQCS
If thisflag is set, the call to t pdequeue() is successful, and the message was
gueued with areply quality of service, then the flag—
TPQQOSDEFAULTPERSI ST, TPQQOSPERS| STENT, or
TPQQOSNONPERSI STENT—is stored in ct | - >repl y_qos. If no reply quality
of service was explicitly specified when the message was queued, the default
delivery policy of the ct I - >r epl yqueue queue dictates the delivery quality
of service for any reply.

Note that the default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of thereply queue
is modified between the time that the original message is enqueued and the
reply to the message is enqueued, the policy used isthe onein effect when the
reply isfinally enqueued.

TPQREPLYQ
If thisflag is set, thecall to t pdequeue() is successful, and the message was
gueued with areply queue, then the name of the reply queueis stored in
ct ! ->repl yqueue. Any reply to the message should go to the named reply
gueue within the same queue space as the request message.

TPQFAI LUREQ
If thisflag is set, thecall to t pdequeue() is successful, and the message was
gueued with afailure queue, then the name of the failure queueis stored in
ct | ->fail urequeue. Any failure message should go to the named failure
gueue within the same queue space as the request message.

Using the ATMI /Q Component 3-21

3

BEA Tuxedo /Q C Language Programming

The following remaining bits for the f | ags parameter are cleared (set to zero) when
t pdequeue() is called: TPQTOP, TPQBEFOREMSG D, TPQTI ME_ABS, TPQTI ME_REL,
TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE. These bits are valid
bits for the f 1 ags parameter controlling input information for t penqueue().

If the call tot pdequeue() failed and t per rno(5) is set to TPEDI AGNOSTI C, avalue
indicating the reason for failureisreturned in ct I - >di agnost i c. The valid codesfor
ct!->di agnost i c include thosefor t penqueue() described in “ TPQCTL Structure”
on page 3-6 (except for QVENOSPACE and QVEREL EASE) and the following additional
codes.

[QVENOVEG]
No message was available for dequeuing. Note that it is possible that the
message exists on the queue and another application process has read the
message from the queue. In this case, the message may be put back on the
queue if that other processrolls back the transaction.

[QVEI NUSE]
When dequeuing a message by message identifier or correlation identifier,
the specified message isin use by another transaction. Otherwise, all
messages currently on the queue are in use by other transactions. This
diagnostic is not returned by queue managers from BEA Tuxedo release 7.1
or later.

Using TPQWAIT

3-22

When t pdequeue() is called with f 1 ags (of the TPQCTL structure) set to include
TPQWAI T, if amessage is not immediately avail able, the TMQUEUE server waits for the
arrival, on the queue, of amessage that matches the t pdequeue() request before

t pdequeue() returns control to the caller. The TMQUEUE process sets the waiting
reguest aside and processes requests from other processes while waiting to satisfy the
first request. If TPQGETBYMSG Dand/or TPQGETBYCORRI Darealso specified, theserver
waitsuntil amessage with theindicated messageidentifier and/or correlationidentifier
becomes available on the queue. If neither of these flagsis set, the server waits until
any message is put onto the queue. The amount of time it waitsis controlled by the
caller’ stransaction timeout, if the call isin transaction mode, or by the-t optioninthe
CLOPT parameter of the TMQUEUE server, if the call is not in transaction mode.

Using the ATMI /Q Component

Dequeuing Messages

The TMQUEUE server can handleanumber of waitingt pdequeue() requestsat the same
time, as long as action resources are available to handle the request. If there are not
enough action resources configured for the queue space, t pdequeue() fails. If this
happens on your system, increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services

In considering how best to handle errors when dequeuing it is helpful to differentiate
between two types of errors:

m Errors encountered by TMOFORWARD(5) asit attempts to dequeue a message to
forward to the requested service

m Errorsthat occur in the service that processes the request

By default, if amessage is dequeued within a transaction and the transaction is rolled
back, then (if ther et r y parameter is greater than 0) the message ends up back on the
gueue and can be dequeued and executed again. It may be desirableto delay for ashort
period before retrying to dequeue and execute the message, allowing the transient
problem to clear (for example, allowing for locks in a database to be released by
another transaction). Normally, alimit on the number of retriesis also useful to ensure
that an application flaw doesn't cause significant waste of resources. When aqueueis
configured by the administrator, both aretry count and adelay period (in seconds) can
be specified. A retry count of 0 implies that no retries are done. After the retry count
is reached, the message is moved to an error queue that is configured by the
administrator for the queue space. If the error queue is not configured, then messages
that have reached the retry count are simply deleted. M essages on the error queue must
be handled by the administrator who must work out away of notifying the originator
that meets the requirements of the application. The message handling method chosen
should be mostly transparent to the originating program that put the message on the
gueue. Thereisavirtual guaranteethat once amessageis successfully enqueued it will
be processed according to the parameters of t penqueue() and the attributes of the
gueue. Notification that a message has been moved to the error queue should bearare
occurrence in a system that has properly tuned its queue parameters.

A failure queue (normaly, different from the queue space error queue) may be
associ ated with each queued message. This queueisspecified on the enqueuing call as
the place to put any failure messages. The failure message for a particular request can
beidentified by an application-generated correlation identifier that is associated with
the message when it is enqueued.

Using the ATMI /Q Component 3-23

3

BEA Tuxedo /Q C Language Programming

3-24

The default behavior of retrying until success (or a predefined limit) is quite
appropriate when the failure is caused by atransient problem that is later resolved,
allowing the message to be handled appropriately.

There are cases where the problem is not transient. For example, the queued message
may request operating on an account that does not exist (and the application is such
that it won't come into existence within areasonable time period if at al). In this case,
itisdesirable not to waste any resources by trying again. If the application programmer
or administrator determines that failures for a particular operation are never transient,
then it issimply amatter of setting the retry count to zero, although thiswill require a
mechanism to constantly clear the queue space error queue of these messages (for
exampl e, a background client that reads the queue periodically). More likely, it isthe
case that some problems will be transient (for example, database lock contention) and
some problemswill be permanent (for example, the account doesn't exist) for the same
service.

In the case that the message is processed (dequeued and passed to the application via
atpcal | ()) by TMQFORWARD, there is no mechanism in the information returned by

t pcal | () to indicate whether a TPESVCFAI L error is caused by atransient or
permanent problem.

Asin the case where the application is handling the dequeuing, asimple solution isto
return success for the service, that is, t pr et ur n with TPSUCCESS, even though the
operation failed. Thisallowsthe transaction to be committed and the message removed
from the queue. If reply messages are being used, the information in the buffer returned
from the service can indicate that the operation failed and the message will be
engueued on the reply queue. The r code argument of t pr et ur n can aso be used to
return application specific information.

In the case where the servicefails and the transaction must berolled back, it isnot clear
whether or not TMQFORWARD should execute a second transaction to remove the
message from the queue without further processing. By default, TMQFORWARD will not
delete a message for a service that fails. TMQFORWARD' s transaction isrolled back and
the message is restored to the queue. A command-line option may be specified for
TMQFORWARD that indicates that a message should be deleted from the queue if the
servicefalsand areply message is sent back with length greater than 0. The message
is deleted in a second transaction. The queue must be configured with adelay timeand
retry count for thisto work. If the messageis associated with afailure queue, thereply
datawill be enqueued to the failure queue in the same transaction as the onein which
the message is deleted from the queue.

Using the ATMI /Q Component

Dequeuing Messages

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD

If your application expects to receive replies to queued messages, the following is a
procedure you may want to follow:

1. Asapreliminary step, the queue space must include areply queue and afailure
gueue. The application must also agree on the content of the correlation identifier.
The service should be coded to return TPSUCCESS on alogical failure and return an
explanatory code in the r code argument of t pret ur n.

2. When you cal t penqueue() to put the message on the queue, set f | ags to turn
on the bits for the following flags:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVBG D

Fill inthevaluesfor corri d, repl yqueue and f ai | ur equeue before issuing
the call. On return from the call, save corri d.

3. When you call t pdequeue() to check for areply, specify the reply queue in the
gnane argument and set f | ags to turn on the bits for the following flags:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVEG D
TPQGETCORRI D

Use the saved correlation identifier to populate cor ri d before issuing the call. If
the call to t pdequeue() faills and setst per rno(5) to TPEDI AGNOSTI C, then
further information is available in di agnosti c. If you receive the error code
QVENQOVSBG it means that no message was available for dequeuing.

4. Set up another call tot pdequeue(). Thistime have gnane point to the name of
the failure queue and set f | ags to turn on the bits for the following flags:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVEG D
TPQGETBYCORRI D

Populate cor ri d with the correlation identifier. When the call returns, check
I en to see if data has been received and check ur code to seeif the service has
returned a user return code.

Using the ATMI /Q Component 3-25

3

BEA Tuxedo /Q C Language Programming

Sequential Processing of Messages

Sequential processing of messages can be achieved by having one service enqueue a
message for the next service in the chain before its transaction is committed. The
originating process can track the progress of the sequencewith aseriesof t pdequeue()
callstotherepl y_queue, if each member uses the same correlation-ID and returnsa
0 length reply.

Alternatively, word of the successful completion of the entire sequence can bereturned
to the originator by using unsolicited notification. To make sure that the last
transaction in the sequence ended with at pconmi t , ajob step can be added that calls
t pnoti fy using the client identifier that is carried in the TPQCTL structure returned
fromt pdequeue() or inthe TPSVCI NFOstructure passed to the service. Theoriginating
client must have called t pset unsol to name the unsolicited message handler being
used.

Using Queues for Peer-to-Peer Communication

3-26

Inall of theforegoing discussion of enqueuing and dequeuing messagesthere hasbeen
an implicit assumption that queues were being used as an aternative form of
reguest/response processing. A message does not have to be a service request. The
gueued message facility can transfer datafrom one process to another as effectively as
aservicereguest. Thisstyle of communication between applicationsor clientsiscalled
peer-to-peer communication.

If it suits your application to use BEA Tuxedo /Q for this purpose, have the
administrator create a separate queue and code your own receiving program for
degueuing messages from that queue.

Using the ATMI /Q Component

CHAPTER

4 BEA Tuxedo /Q

COBOL Language
Programming

Thistopic includes the following sections:
m Introduction

m Prerequisite Knowledge

m Where Requests Can Originate

m Emphasison the Default Case

m Enqueuing Messages

m Dequeuing Messages

m Sequentiad Processing of Messages

Introduction

Thistopic providesinformation about usingthe ATMI COBOL language functionsfor
enqueuing and dequeuing messages. TPENQUEUE(3cbl) and TPDEQUEUE(3cbl), plus
some ancillary functions.

Using the ATMI /Q Component 4-1

4 BEA Tuxedo /Q COBOL Language Programming

Prerequisite Knowledge

The BEA Tuxedo programmer coding client or server programs for the queued
message facility should be familiar with the COBOL language binding to the BEA
Tuxedo ATMI. General guidance on BEA Tuxedo programming is availablein
Programming BEA Tuxedo ATMI Applications Using COBOL. Detailed pages on al
the ATMI functions are in the BEA Tuxedo ATMI COBOL Function Reference.

Where Requests Can Originate

The calls used to place a message on a BEA Tuxedo /Q queue can originate from any
client or server process associated with the application. The list includes:

m Clients or servers on the same machine as the queue space or on another
machine on the network

m Conversational programs, although you cannot have a conversational connection
with a queue (or with the TMQUEUE(5) Server)

m Workstation clients via a surrogate process on the native side; the administrative
interface is aso entirely on the native side

Emphasis on the Default Case

The discussion of BEA Tuxedo /Q programming in this topic primarily reflects the
client-side portion of the figure “Queued Service Invocation” on page 1-2. Thefigure
shows how aclient (or a process acting in the role of aclient) queues a message by
calling TPENQUEUE(3cbl) and specifying a queue space made available through a
TMQUEUE(5) server. The client later retrieves areply viaa TPDEQUEUE(3cbl) call to
TMQUEUE.

4-2 Using the ATMI /Q Component

Enqueuing Messages

The figure shows the queued message being dequeued by the server TMFORWARD(5)
and sent to an application server for processing (via TPCALL(3cbl)). When areply to
TPCALL is received, TMQFORWARD enqueues the reply message. Because TMQFORWARD
provides an interface between the queue space and existing application services,
further application coding is not required. For that reason, this topic concentrates on
the client-to-queue space side.

Some examples of customization are given after the discussion of the basic model.

Enqueuing Messages

01

01

01

01

The syntax for TPENQUEUE() is as follows:

TPQUEDEF- REC.
COPY TPQUEDEF.
TPTYPE- REC.
COPY TPTYPE.

COPY User Dat a.
TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPENQUEUE" USI NG TPQUEDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

When a TPENQUEUE() call isissued it tells the system to store a message on the queue
identified in QNAVE in TPQUEDEF- RECin the space identified in QSPACE- NAME in
TPQUEDEF- REC. The messageisin DATA- REG and LEN in TPTYPE- REChas the length
of the message. By the use of settings in TPQUEDEF- REC, the system isinformed how
the call to TPENQUEUE() isto be handled. Further information about the handling of the
enqueued message and repliesis provided in the TPQUEDEF- REC structure.

TPENQUEUE() Arguments

There are some important arguments to control the operation of TPENQUEUE(3cbl) .
Lets look at some of them.

Using the ATMI /Q Component 4-3

4

BEA Tuxedo /Q COBOL Language Programming

TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument

4-4

QSPACE- NAME identifies a queue space previously created by the administrator. When
aserver is defined in the SERVERS section of the configuration file, the service names
it offersare aliases for the actual queue space name (which is specified as part of the
OPENI NFO parameter in the GROUPS section). For example, when your application uses
the server TMQUEUE, the value pointed at by QSPACE- NAME is the name of a service
advertised by TMQUEUE. If no service aliases are defined, the name of the default
service is the same as the server name, TMQUEUE. In this case the configuration file
might include the following:

TMQUEUE
SRVCRP = QUE1 SRVID = 1

GRACE = 0 RESTART = Y COW = N
CLOPT = "- A"

or
CLOPT = "-s TMQUEUE'

Theentry for server group QUEL has an OPENI NFO parameter that specifiesthe resource
manager, the pathname of the device and the queue space name. The QSPACE- NAVE
argument in a client program then looks like this:

01 TPQUEDEF- REC.
CCPY TPQUEDEF.
01 TPTYPE-REC.
CCPY TPTYPE.
01 TPSTATUS- REC.
CCOPY TPSTATUS.
01 USER-DATA-REC PIC X(100).

*
*

*

MOVE LOW VALUES TO TPQUEDEF- REC.
MOVE " TMQUEUE" TO QSPACE- NAME | N TPQUEDEF- REC.
MOVE "STRING' TO QNAME | N TPQUEDEF- REC.
SET TPTRAN I N TPQUEDEF- REC TO TRUE.
SET TPBLOCK | N TPQUEDEF- REC TO TRUE.
SET TPTI ME I N TPQUEDEF- REC TO TRUE.
SET TPSI GRSTRT | N TPQUEDEF- REC TO TRUE.
MOVE LOWM VALUES TO TPTYPE- REC.
MOVE "STRING' TO REC-TYPE | N TPTYPE- REC.
MOVE LENGIH OF USER- DATA- REC TO LEN I N TPTYPE- REC.
CALL "TPENQUEUE" USI NG
TPQUEDEF- REC
TPTYPE- REC
USER- DATA- REC
TPSTATUS- REC.

Using the ATMI /Q Component

Enqueuing Messages

The example shown on the TMQUEUE(5) reference page shows how alias service
names can be included when the server is built and specified in the configuration file.
The sample program in “A Sample Application” on page A-1, also specifies an dlias
service name,

TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument

When message queues are being used within aqueue space to invoke services, they are
named according to application servicesthat processthe requests. QNAME contains such
avalue; an exception in which QNAME is not an application service is described in
“Procedure for Dequeuing Replies from Services Invoked Through
TMQFORWARD” on page 4-29.

TPENQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments

DATA- REC contains the message to be processed. LENin TPTYPE- RECgivesthe length
of the message. Some BEA Tuxedo record types (VI EW for example) do not require
LENto be specified; in such cases, theargument isignored. If RECTYPE in TPTYPE- REC
iS SPACES, DATA- RECand LEN areignored and the message is enqueued with no data
portion.

TPENQUEUE(): The Settings in TPQUEDEF-REC

Settings in TPQUEDEF- REC are used to tell the BEA Tuxedo system how the
TPENQUEUE() call is handled; the following are valid settings:

TPNOTRAN
If the caller isin transaction mode and this setting is used, the messageis not
enqueued within the caller’ stransaction. A caller in transaction modethat sets
thisto trueisstill subject to the transaction timeout (and no other). If message
enqueuing fails that was invoked with this setting, the caller’ s transaction is
not affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller isin transaction mode, this setting specifies that the enqueuing of
the message is to be done within the same transaction. Either TPNOTRAN or
TPTRAN must be set.

Using the ATMI /Q Component 4-5

4

BEA Tuxedo /Q COBOL Language Programming

TPNOBLOCK
The message is not enqueued if ablocking condition exists. If TPNOBLOCK is
set and a blocking condition exists such asthe internal buffersinto which the
message is transferred are full, the call failsand t per rno(5) issetto
TPEBLOCK. If TPNOBLOCK is set and a blocking condition exists because the
target queue is opened exclusively by another application, the call fails,
t per rno() is set to TPEDI AGNOSTI C, and the diagnostic field of the TPQCTL
structureis set to QVESHARE. I n the latter case, the other application, which is
based on aBEA product other than the BEA Tuxedo system, opened the
queue for exclusive read and/or write using the Queuing Services AP
(QSAPI). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks until
the condition subsides or atimeout occurs (either transaction or blocking
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTI ME
This setting asks that the call be immune to blocking timeouts; transaction
timeouts may still occur. Either TPNOTI ME or TPTI ME must be set.

TPTI NE
This setting asks that the call will receive blocking timeouts. Either
TPNOTI ME or TPTI ME must be set.

TPSI GRSTRT
This setting says that any underlying system callsthat are interrupted by a
signal should bereissued. Either TPSI GRSTRT or TPNOSI GRSTRT must be set.

TPNOSI GRSTRT
This setting says that any underlying system callsthat are interrupted by a
signal should not be reissued. The call failsand sets TP- STATUS to
TPEGOTSI G. Either TPSI GRSTRT or TPNOSI GRSTRT must be set.

TPQUEDEF-REC Structure

46

The TPQUEDEF- RECstructure has members that are used by the application and by the
BEA Tuxedo system to pass parameters in both directions between application

programs and the queued message facility. It is defined in the COBOL COPY file. The
client that calls TPQUEDEF- REC uses settings to mark members the application wants

Using the ATMI /Q Component

Enqueuing Messages

the system tofill in. The structure isalso used by TPDEQUEUE(); some of the members
do not come into play until the application calls that function. The complete structure
is shown in the following listing.

Listing4-1 The TPQUEDEF-REC Structure

05 TPBLOCK- FLAG Pl C S9(9) COMP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.
05 TPTRAN- FLAG PIC S9(9) COWP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.
05 TPTI ME-FLAG PIC S9(9) COWP-5.
88 TPTI ME VALUE 0.
88 TPNOTI ME VALUE 1.
05 TPSI GRSTRT- FLAG Pl C S9(9) COMP-5.
88 TPNOSI GRSTRT VALUE 0.
88 TPSI GRSTRT VALUE 1.
05 TPNOCHANGE- FLAG Pl C S9(9) COMP-5.
88 TPCHANGE VALUE 0.
88 TPNOCHANGE VALUE 1.
05 TPQUE- ORDER- FLAG Pl C S9(9) COMP-5.
88 TPQDEFAULT VALUE 0.
88 TPQTOP VALUE 1.
88 TPQBEFOREMSG D VALUE 2.
05 TPQUE- TI ME- FLAG Pl C S9(9) COMP-5.
88 TPQNOTI ME VALUE 0.
88 TPQTI ME- ABS VALUE 1.
88 TPQTI ME- REL VALUE 2.
05 TPQUE- PRI ORI TY-FLAG PI C S9(9) COWP-5.
88 TPQNOPRI ORI TY VALUE 0.
88 TPQPRI ORI TY VALUE 1.
05 TPQUE- CORRI D-FLAG ~ PI C S9(9) COWP-5.
88 TPQNOCORRI D VALUE 0.
88 TPQUORRI D VALUE 1.
05 TPQUE- REPLYQ FLAG PIC S9(9) COWP-5.
88 TPQNOREPLYQ VALUE 0.
88 TPQREPLYQ VALUE 1.
05 TPQUE- FAI LQ FLAG Pl C S9(9) COMP-5.
88 TPQNOFAI LUREQ VALUE 0.
88 TPQFAI LUREQ VALUE 1.
05 TPQUE- MSG D- FLAG Pl C S9(9) COMP-5.
88 TPQNOVSG D VALUE 0.
88 TPQVBG D VALUE 1.
05 TPQUE- GETBY- FLAG Pl C S9(9) COMP-5.
88 TPQGETNEXT VALUE 0.

Using the ATMI /Q Component 4-7

4 BEA Tuxedo /Q COBOL Language Programming

88 TPQGETBYMsSG DOLD VALUE 1.
88 TPQGETBYCORRI DOLD VALUE 2.
88 TPQGETBYMsSG D VALUE 3.
88 TPQGETBYCORRI D VALUE 4.

05 TPQUE-WAI T- FLAG PIC S9(9) COWP-5.

88 TPQNOMI T
88 TPQMI T

VALUE
VALUE

0.
1.

05 TPQUE- DELI VERY- FLAG PIC S9(9) COWP-5.
88 TPQNCDELI VERYQCS VALUE O.
88 TPQDELI VERYQCS VALUE 1.
05 TPQUEQCS- DELI VERY- FLAG PIC S9(9) COWP-5.
88 TPQQOSDELI VERYDEFAULTPERSI ST VALUE
88 TPQQOSDELI VERYPERSI STENT VALUE
88 TPQQOSDELI VERYNONPERSI STENT VALUE
05 TPQUE- REPLY- FLAG PIC S9(9) COWP-5.
88 TPQNCREPLYQOS VALUE
88 TPQREPLYQCS VALUE
05 TPQUEQOS- REPLY- FLAG PIC S9(9) COWP-5.
88 TPQQROSREPLYDEFAULTPERSI ST VALUE
88 TPQQROSREPLYPERSI STENT VALUE
88 TPQROSREPLYNONPERSI STENT VALUE

N = O

= O

NP~ O

48

05 TPQUE- EXPTI ME- FLAG PIC S9(9) COWP-5.

88 TPQNCEXPTI ME VALUE 0.
88 TPQEXPTI ME- ABS VALUE 1.
88 TPQEXPTI ME- REL VALUE 2.
88 TPQEXPTI ME- NONE VALUE 3.
05 TPQUE- PEEK- FLAG PIC S9(9) COMP-5.
88 TPQNCPEEK VALUE 0.
88 TPQPEEK VALUE 1.
05 DI AGNCSTIC PIC S9(9) COMP-5.
88 QVEI NVAL VALUE -1.
88 QVEBADRM D VALUE - 2.
88 QVENOTOPEN VALUE - 3.
88 QVETRAN VALUE -4.
88 QVEBADVBG D VALUE -5.
88 QVESYSTEM VALUE -6.
88 QVEOS VALUE -7.
88 QVEABORTED VALUE -8.
88 QVEPROTO VALUE -9.
88 QVEBADQUEUE VALLE - 10.
88 QVENOVBG VALUE -11.
88 QVEI NUSE VALUE -12.
88 QVENOSPACE VALUE -13.
88 QVERELEASE VALUE - 14.
88 QVEI NVHANDLE VALUE -15.
88 QVESHARE VALUE -16.
05 DEQ TI ME PIC 9(9) COWP-5.
05 EXP- TI ME PIC 9(9) COWP-5.
05 PRI ORI TY PIC S9(9) COMP-5.

Using the ATMI /Q Component

Enqueuing Messages

05 MSG D PI C X(32).

05 CORRI D PI C X(32).

05 QNAME Pl C X(15).

05 QSPACE- NAVE Pl C X(15).

05 REPLYQUEUE PI C X(15).

05 FAl LUREQUEUE Pl C X(15).

05 CLI ENTID OCCURS 4 TIMES PI C S9(9) COWP-5.
05 APPL- RETURN- CODE Pl C S9(9) COMP-5.

05 APPKEY PI C S9(9) COMP-5.

Thefollowingisalist of valid settings for the parameters controlling input information
for TPENQUELE.

TPQTCOP

Setting this value indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue ordering. Set TPQDEFAULT to use default queue ordering. TPQTCP,
TPQBEFOREMSG D, or TPQDEFAULT must be set.

TPQBEFOREMSG D

Setting this value indicates that the queue ordering be overridden and the
message placed in the queue before the message identified by MSG D. This
request may not be granted depending on whether or not the queue was
configured to allow overriding the queue ordering. Set TPQDEFAULT to use
default queue ordering. TPQTOP, TPQBEFOREMSG D, or TPQDEFAULT must be
Set.

Note that the entire 32 bytes of the message identifier value are significant, so
the value identified by MSG D must be completely initialized (for example,
padded with spaces).

TPQTI ME- ABS

If thisvalue is set, the message is made availabl e after the time specified by
DEQ TI ME. DEQ TI ME is an absolute time value as generated by t i me(2) or
mkt i me(3C) (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970). Set TPQNOTI ME if neither an absolute or
relativetime valueis set. TPQTI ME- ABS, TPQTI ME- REL, or TPQNOTI ME must
be set. The absolute timeisdetermined by the clock on the machine wherethe
gueue manager process resides.

Using the ATMI /Q Component 4-9

4

BEA Tuxedo /Q COBOL Language Programming

4-10

TPQTI ME- REL

If thisvalue is set, the message is made available after atime relative to the
completion of the enqueuing operation. DEQ- TI ME specifies the number of
secondsto delay after the enqueuing compl etes before the submitted message
should be available. Set TPQNOTI ME if neither an absolute or relative time
valueis set. TPQTI ME- ABS, TPQTI ME- REL, or TPQNOTI ME must be set.

TPQPRI ORI TY

If thisvalue is set, the priority at which the message should be enqueued is
stored in PRI ORI TY. Thepriority must bein therange 1to 100, inclusive. The
higher the number, the higher the priority (that is, amessage with a higher
number is dequeued before a message with alower number). For queues not
ordered by priority, thisvalueisinformational. If TPQNOPRI ORI TY isset, the
priority for the message is 50 by default.

TPQCCRRI D

If thisvalue is set, the correlation identifier value specified in CORRI Dis
available when a message is dequeued with TPDEQUEUE(). This identifier
accompaniesany reply or failure message that i s queued so that an application
can correlate areply with a particular request. Set TPQNOCORRI Dif a
correlation identifier is not available.

Notethat the entire 32 bytes of the correlation identifier value are significant,
so the value specified in CORRI D must be compl etely initialized (for example,
padded with spaces).

TPQREPLYQ

If thisvalueis set, areply queue named in REPL YQUEUE isassociated with the
gueued message. Any reply to the message is queued to the named queue
within the same queue space as the request message. Set TPQNOREPLYQIf a
reply queue name is not available.

TPQFAI LUREQ

If thisvalueisset, afailure queue namedin FAI LUREQUEUE isassociated with
the queued message. If (1) the enqueued message is processed by
TMFORWARD(), (2) TMQFORWARD was started with the - d option, and (3) the
service fails and returns anon-NULL reply, afailure message consisting of
thereply and itsassociated t pur code is enqueued to the named queue within
the same queue space astheoriginal request message. Set TPQNCFAI LUREQIf
afailure queue nameis not available.

Using the ATMI /Q Component

Enqueuing Messages

TPQDEL| VERYQCS

TPQREPLYQOS
If TPQDELI VERYQOS is set, the flags specified by
TPQUEQOS- DELI VERY- FLAG control the quality of service for message
delivery. One of the following mutually exclusive flags must be set:
TPQQOSDELI VERYDEFAULTPERSI ST, TPQQOSDEL| VERYPERSI STENT, or
TPQQOSDELI VERYNONPERSI STENT. If TPQDELI VERYQOS is not set,
TPQNODEL | VERYQOS must be set. When TPQNODELI VERYQOS is set, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

If TPQREPLYQUS is set, theflags specified by TPQUEQOS- REPLY- FLAGcontrol
the quality of service for reply message delivery for any reply. One of the
following mutualy exclusive flags must be set:

TPQQOSREPL YDEFAUL TPERSI ST, TPQQOSREPLYPERSI STENT, or
TPQQOSREPL YNONPERSI STENT. The TPQREPLYQOS flag is used when areply
isreturned from messages processed by TMQFORWARD. A pplications not using
TMQFORWARD to invoke services may use the TPQREPLYQCS flag as a hint for
their own reply mechanism.

If TPQREPLYQOS is not set, TPQNOREPL YQOS must be set. When
TPQNOREPLYQCS is set, the default delivery policy of the REPLYQUEUE queue
dictates the delivery quality of service for any reply. Note that the default
delivery policy is determined when the reply to a message is enqueued. That
is, if the default delivery policy of the reply queue is modified between the
time that the original message is enqueued and the reply to the message is
enqueued, the policy used is the one in effect when the reply isfinally
enqueued.

The valid TPQUEQOS- DELI VERY- FLAG and TPQUEQOS- REPLY- FLAG flags
are:

TPQQOSDELI VERYDEFAULTPERSI ST

TPQQOSREPL YDEFAULTPERSI ST
These flags specify that the message is to be delivered using the
default delivery policy specified on the target or reply queue.

TPQQOSDELI VERYPERS| STENT

TPQQOSREPL YPERS| STENT
Theseflags specify that the messageisto be delivered in apersistent
manner using the disk-based delivery method. When specified, these
flags override the default delivery policy specified on the target or

reply queue.

Using the ATMI /Q Component 4-11

4 BEA Tuxedo /Q COBOL Language Programming

TPQQOSDEL| VERYNONPERS| STENT

TPQQOSREPL YNONPERSI STENT
These flags specify that the message is to be delivered in a
non-persistent manner using the memory-based delivery method;
the message is queued in memory until it is dequeued. When
specified, these flags override the default delivery policy specified
on the target or reply queue.

If the caller is transactional, non-persistent messages are enqueued
within the caller’ s transaction, however, non-persistent messages
arelost if the system is shut down or crashes or the IPC shared
memory for the queue space is removed.

TPQEXPTI ME- ABS
If this value is set, the message has an absolute expiration time, which isthe
absolute time when the message will be removed from the queue.
Theabsolute expiration timeisdetermined by the clock on the machinewhere
the queue manager process resides.

The absolute expiration timeis specified by the value stored in EXP- TI ME.
EXP- TI ME must be set to an absolute time generated by t i me(2) or

mkt i me(3C) (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue
operation, the operation succeeds, but the message is not counted for the
purpose of calculating thresholds. If the expiration timeisbeforethe message
availability time, the message is not avail able for dequeuing unless either the
availability or expiration timeis changed so that the avail ability timeisbefore
the expiration time. In addition, these messages are removed from the queue
at expiration time even if they were never available for dequeuing. If a
message expires during a transaction, the expiration does not cause the
transaction to fail. Messages that expire while being enqueued or dequeued
within atransaction are removed from the queue when the transaction ends.
There is no acknowledgment that the message has expired.

One of the following must be set: TPQEXPTI ME- ABS, TPQEXPTI ME- REL,
TPQEXPTI ME- NONE, Oor TPQNOEXPTI ME.

TPQEXPTI ME- REL
If this value is set, the message has a relative expiration time, which isthe
number of seconds after the message arrives at the queue that the message is

4-12 Using the ATMI /Q Component

Enqueuing Messages

removed from the queue. Therelative expiration timeis specified by thevalue
stored in EXP- Tl ME.

If the expiration time is before the message avail ability time, the message is
not available for dequeuing unless either the availability or expiration timeis
changed so that the availability timeisbefore the expiration time. In addition,
these messages are removed from the queue at expiration time even if they
were never available for dequeuing. The expiration of a message during a
transaction does cause the transaction to fail. Messages that expire while
being enqueued or dequeued within atransaction are removed from the queue
when the transaction ends. There is no acknowledgment that the message has
expired.

One of the following must be set: TPQEXPTI ME- ABS, TPQEXPTI ME- REL,
TPQEXPTI ME- NONE, or TPQNOEXPTI ME.

TPQEXPTI ME- NONE
Setting this value indicates that the message should not expire. This flag
overrides any default expiration policy associated with the target queue. Y ou
can remove amessage by dequeuing it or by deleting it viaan administrative
interface. One of the following must be set: TPQEXPTI ME- ABS,
TPQEXPTI ME- REL, TPQEXPTI ME- NONE, or TPQNOEXPTI ME.

TPQNOEXPTI ME
Setting thisvalue specifiesthat the default expiration time associated with the
target queue applies to the message. One of the following must be set:
TPQEXPTI ME- ABS, TPQEXPTI ME- REL, TPQEXPTI ME- NONE, Or

TPQNOEXPTI ME.

Additionally, the APPL- RETURN- CODE member of TPQUEDEF- REC can be set with a
user-return code. This value is returned to the application that calls TPDEQUEUE() to
dequeue the message.

As output from TPENQUEUE(), the following may be set in the TPQUEDEF- REC
structure:

05 DI AGNOSTI C PI C S9(9) COMP-5.
05 MBG D PIC X(32).

Thefollowingisavalid setting in TPQUEDEF- RECcontrolling output information from
TPENQUEUE(). If this setting is true when TPENQUEUE() is called, the BEA Tuxedo /Q
server TMQUEUE(5) populates the associated element in the record with a message
identifier. If this setting is not true when TPENQUEUE() is called, TMQUEUE() does not
popul ate the associated element in the record with a message identifier.

Using the ATMI /Q Component 4-13

4

BEA Tuxedo /Q COBOL Language Programming

4-14

TPQVSG D
If thisvalue is set and the call to TPENQUEUE() is successful, the message
identifier is stored in V5@ D. The entire 32 bytes of the message identifier
value are significant, so the value stored in M5G D is completely initialized
(for example, padded with null characters). The actual padding character used
for initialization varies between releases of the BEA Tuxedo /Q component.
If TPQNOVSA Dis set, the message identifier is not available.

The remaining members of the control structure are not used on input to TPENQUEUE().

If the call to TPENQUEUE() fails and TP- STATUS is set to TPEDI AGNOSTI C, avalue
indicating the reason for failure is returned in DI AGNOSTI C. The following are the
possible values:

[QVEI NVAL]
An invalid setting val ue was specified.

[QVEBADRM D]
An invalid resource manager identifier was specified.

[QVENCTCOPEN]
The resource manager is not currently open.

[QVETRAN]
The call was not in transaction mode or was made with the TPNOTRAN setting

and an error occurred trying to start a transaction in which to enqueue the
message. This diagnostic is not returned by a queue manager from BEA
Tuxedo release 7.1 or later.

[QVEBADNBG D)
An invalid message identifier was specified.

[QVESYSTEM
A system error has occurred. The exact nature of the error iswritten to alog

file.

[QVECS]
An operating system error has occurred.

[QVEABORTED]
The operation was aborted. If the aborted operation was being executed

within aglobal transaction, the global transaction is marked rollback-only.
Otherwise, the queue manager aborts the operation.

Using the ATMI /Q Component

Enqueuing Messages

[QvEPROTQ|
An enqueue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENGCSPACE]
Due to an insufficient resource, such as no space on the queue, the message
with itsrequired quality of service (persistent or non-persistent storage) was
not enqueued. QVENOSPACE is returned when any of the following configured
resourcesisexceeded: (1) the amount of disk (persistent) space allotted to the
gueue space, (2) the amount of memory (non-persistent) space allotted to the
gueue space, (3) the maximum number of simultaneously active transactions
allowed for the queue space, (4) the maximum number of messages that the
gueue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or (6)
the maximum number of authenticated users that may concurrently use the
Queuing Services component.

[QVERELEASE]
An attempt was made to enqueue a message to a queue manager that is from
aversion of the BEA Tuxedo system that does not support a newer feature.

[QVESHARE]
When enqueuing a message from a specified queue, the specified queueis
opened exclusively by another application. The other application isone based
on aBEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

Overriding the Queue Order

If theadministrator, in creating aqueue, allows TPENQUEUE() callsto overridethe order
of messages on the queue, you have two mutually exclusive waysto use the override
capability. You can specify that the message isto be placed at the top of the queue by
setting TPQTCOP or you can specify that it be placed ahead of a specific message by
setting TPQBEFOREMSG D and setting MSG D to the ID of the message you wish to
precede. This assumes that you saved the message-ID from a previous call in order to
be ableto useit here. Y our administrator must tell you what the queue supports; it can
be created to allow either or both of these overrides, or to allow neither.

Using the ATMI /Q Component 4-15

4 BEA Tuxedo /Q COBOL Language Programming

Overriding the Queue Priority

You can set avaluein PRI ORI TY to specify the priority for the message. The value
must be in the range 1 to 100; the higher the number, the higher the priority, unlike
values specified withthe UNIX ni ce command. If PRI ORI TY was not one of the queue
ordering parameters, setting a priority here has no effect on the dequeuing order. The
priority value isretained however, so that it can be inspected when the message is
dequeued.

Setting a Message Availability Time

Y ou can specify in DEQ Tl ME either an absolute time or atime relative to the
completion of the enqueuing operation at which the message is made available. You
set either TPQTI ME- ABS or TPQTI ME- REL to indicate how the value should betreated.
A queue may be created with t i me as aqueue-ordering criterion, in which case
messages are ordered by the message availability time.

The following example shows how to enqueue a message with arelative time. The
sample message will become available sixty seconds in the future.

01 TPQUEDEF- REC.
COPY TPQUEDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 TPSTATUS- REC.
COPY TPSTATUS.
01 USER- DATA-REC PIC X(100).

MOVE LOW VALUES TO TPQUEDEF- REC.

MOVE " QSPACE1" TO QSPACE- NAME | N TPQUEDEF- REC.
MOVE " Q1" TO QNAME | N TPQUEDEF- REC.

SET TPTRAN | N TPQUEDEF- REC TO TRUE.

SET TPBLOCK | N TPQUEDEF- REC TO TRUE.

SET TPTIME | N TPQUEDEF- REC TO TRUE.

SET TPSI GRSTRT | N TPQUEDEF- REC TO TRUE.
SET TPQDEFAULT I N TPQUEDEF- REC TO TRUE.
SET TPQTI ME- REL | N TPQUEDEF- REC TO TRUE.
MOVE 60 TO DEQ TI ME | N TPQUEDEF- REC.

SET TPONOPRI ORI TY | N TPQUEDEF- REC TO TRUE.
SET TPONOCORRI D I N TPQUEDEF- REC TO TRUE.
SET TPONOREPLYQ | N TPQUEDEF- REC TO TRUE.

4-16 Using the ATMI /Q Component

Dequeuing Messages

SET TPONCFAI LUREQ | N TPQUEDEF- REC TO TRUE.
SET TPQWSA D | N TPQUEDEF- REC TO TRUE.
MOVE LOMVALUES TO TPTYPE- REC.
MOVE " STRING' TO REC-TYPE | N TPTYPE- REC.
MOVE LENGIH OF USER- DATA- REC TO LEN I N TPTYPE- REC.
CALL " TPENQUEUE" USI NG
TPQUEDEF- REC
TPTYPE- REC
USER- DATA- REC
TPSTATUS- REC.

TPENQUEUE() and Transactions

If the caller of TPENQUEUE() is in transaction mode and TPTRAN s set, then the
enqueuing is done within the call er'stransaction. The caller knowsfor certain from the
success or failure of TPENQUEUE() whether the message was enqueued or not. If the call
succeeds, the message is guaranteed to be on the queue. If the call fails, the transaction
isrolled back, including the part where the message was placed on the queue.

If the caller of TPENQUEUE() is not in transaction mode or if TPNOTRAN s set, the
message is enqueued outside of the caller’ s transaction. If the call to TPENQUEUE()
returns success, the message is guaranteed to be on the queue. If the call to
TPENQUEUE() fails with a communication error or with atimeout, the caller isleft in
doubt about whether the failure occurred before or after the message was enqueued.

Note that specifying TPNOTRAN while the caller is not in transaction mode has no
meaning.

Dequeuing Messages

01

01

01

01

The syntax for TPDEQUEUE() is as follows:

TPQUEDEF- REC.
COPY TPQUEDEF.
TPTYPE- REC.
COPY TPTYPE.

COPY User Dat a.
TPSTATUS- REC.

Using the ATMI /Q Component 4-17

4

BEA Tuxedo /Q COBOL Language Programming

CCPY TPSTATUS.
CALL " TPDEQUEUE" USI NG TPQUEDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

When this call isissued it tells the system to dequeue a message from the QNAME in
TPQUEDEF- REC queue, in the queue space hamed QSPACE- NAME in TPQUEDEF- REC.
The message is placed in DATA- REC. LENin TPTYPE- RECis set to the length of the
data. If LENis 0 on return from TPDEQUEUE(), the message had no data portion. By the
use of settingsin TPQUEDEF- RECthe system isinformed how the call to TPDEQUEUE()
isto be handled.

TPDEQUEUE() Arguments

There are some important arguments to control the operation of TPDEQUEUE(3cbl) .
Let'slook at some of them.

TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC
Argument

4-18

QSPACE- NAME identifies a queue space previously created by the administrator. When
the TMQUEUE server isdefined in the SERVERS section of the configuration file, the
service names it offers are aliases for the actual queue space name (which is specified
as part of the OPENI NFO parameter in the GROUPS section). For example, when your
application usesthe server TMQUEUE, the value pointed at by QSPACE- NAME is the name
of aservice advertised by TMQUEUE. If no service aliases are defined, the name of the
default serviceisthe sameasthat of the server, TMQUEUE. In this case the configuration
file may include the following:

TMQUEUE
SRVCRP = QUE1 SRVID = 1

GRACE = 0 RESTART = Y COW = N
CLOPT = "- A"

or
CLOPT = "-s TMQUEUE"

Theentry for server group QUEL has an OPENI NFO parameter that specifiesthe resource
manager, the pathname of the device, and the queue space name. The QSPACE- NAVE
argument in aclient program then looks like the following:

Using the ATMI /Q Component

Dequeuing Messages

01 TPQUEDEF- REC.
COPY TPQUEDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 TPSTATUS- REC.
COPY TPSTATUS.
01 USER- DATA-REC PI C X(100).

MOVE LOMVALUES TO TPQUEDEF- REC.
MOVE " TMQUEUE" TO QSPACE- NAME | N TPQUEDEF- REC.
MOVE " REPLYQ' TO QNAME | N TPQUEDEF- REC.
SET TPTRAN I N TPQUEDEF- REC TO TRUE.
SET TPBLOCK | N TPQUEDEF- REC TO TRUE.
SET TPTI ME I N TPQUEDEF- REC TO TRUE.
SET TPSI GRSTRT I N TPQUEDEF- REC TO TRUE.
MOVE LOMVALUES TO TPTYPE- REC.
MOVE " STRING' TO REC-TYPE | N TPTYPE- REC.
MOVE LENGITH OF USER- DATA- REC TO LEN I N TPTYPE- REC.
CALL " TPDEQUEUE" USI NG
TPQUEDEF- REC
TPTYPE- REC
USER- DATA- REC
TPSTATUS- REC.

The example shown on the TMQUEUE(5) reference page shows how alias service
names can be included when the server is built and specified in the configuration file.
The sample program in “A Sample Application” on page A-1, also specifies an dlias
service name,

TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument

Queue names in aqueue space must be agreed upon by the applicationsthat will access
the queue space. This requirement is especially important for reply queues. If QNAVE
refersto areply queue, the administrator creates it (and often an error queue) in the
same manner that he or she creates any other queue. QUAVE contains the name of the
gueue from which to retrieve a message or reply.

TPDEQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments

These arguments have a different flavor than they do on TPENQUEUE(). DATA- RECIisS
where the system is to place the message being dequeued.

Using the ATMI /Q Component 4-19

4

BEA Tuxedo /Q COBOL Language Programming

It isan error for LENto be O on input. When TPDEQUEUE() returns, LEN contains the
length of the dataretrieved. If it is O, it means that the reply had no data portion. This
can be alegitimate and successful reply in some applications; receiving even a0 length
reply can be used to show successful processing of the enqueued request. If you wish
to know whether the record has changed from before the call to TPDEQUEUE(), save the
length prior to the call to TPDEQUEUE() and compareit to LEN after the call completes.
If the reply islarger than LEN, then DATA- RECwill contain only as many bytes as will
fit. The remainder are discarded and TPDEQUEUE() fails with TPTRUNCATE.

TPDEQUEUE(): The Settings in TPQUEDEF-REC

4-20

Settings in TPQUEDEF- REC are used to tell the BEA Tuxedo system how the
TPDEQUEUE() call is handled; the following are valid settings:

TPNOTRAN
If the caller isin transaction mode, this setting specifies that the messageisto
be dequeued outside of the caller’s transaction. Either TPNOTRAN or TPTRAN
must be set.

TPTRAN
If the caller isin transaction mode, this setting specifies that the messageisto
be dequeued within the same transaction. Either TPNOTRAN or TPTRAN must
be set.

TPNOBLOCK
The message is not dequeued if ablocking condition exists. If TPNOBLOCK is
set and a blocking condition exists such asthe internal buffersinto which the
message is transferred are full, the call failsand t per rno(5) issetto
TPEBLOCK. If TPNOBLOCK is set and a blocking condition exists because the
target queue is opened exclusively by another application, the call fails,
t per rno() is set to TPEDI AGNOSTI C, and the diagnostic field of the TPQCTL
structureis set to QVESHARE. I n the latter case, the other application, which is
based on aBEA product other than the BEA Tuxedo system, opened the
gueue for exclusive read and/or write using the Queuing Services API
(QSAPI). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks until
the condition subsides or atimeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQAAI T setting is specified. Either TPNOBL OCK or TPBLOCK must
be set.

Using the ATMI /Q Component

Dequeuing Messages

TPNOTI ME
Setting this value asks that the call be immune to blocking timeouts;
transaction timeouts may still occur. Either TPNOTI ME or TPTI ME must be set.

TPTI ME
Setting this value asks that the call receive blocking timeouts. Either
TPNOTI ME or TPTI ME must be set.

TPNOCHANGE
If thisvalueisset, the record type of DATA- RECisnot allowed to change. That
is, the type and subtype of the received record must match the type and
subtype of the record DATA- REC. Either TPNOCHANGE or TPCHANGE must be
Set.

TPCHANGE
By default, if arecord isreceived that differsin type from the record
DATA- REC, DATA- RECs record type changes to the received record's type so
long asthereceiver recognizestheincoming record type. That is, thetypeand
sub-type of the received record must match the type and sub-type of the
record DATA- REC. Either TPNOCHANGE or TPCHANGE must be set.

TPSI GRSTRT
Setting thisval ue saysthat any underlying system callsthat are interrupted by
asignal should be reissued. Either TPSI GRSTRT or TPNOSI GRSTRT must be
Set.

TPNOSI GRSTRT
If thisvalue is set and asignal isreceived, the call fails and sets TP- STATUS
to TPEGOTSI G. Either TPSI GRSTRT or TPNOSI GRSTRT must be set.

TPQUEDEF-REC Structure

The first argument to TPDEQUEUE() is the structure TPQUEDEF- REC. The

TPQUEDEF- REC structure has members that are used by the application and by the
BEA Tuxedo system to pass parameters in both directions between application
programs and the queued message facility. The client that calls TPDEQUEUE() uses
settings to mark members the application wants the system to fill in. As described
earlier, the structure is also used by TPENQUEUE(); some of the members only apply to
that function. The entire structure is shown in “The TPQUEDEF-REC Structure” on
page 4-7.

Using the ATMI /Q Component 4-21

4

BEA Tuxedo /Q COBOL Language Programming

4-22

As input to TPDEQUEUE(), the following elements may be set in the TPQUEDEF
structure:

05 MSG D PIC X(32).
05 CORRI D PI C X(32).

Thefollowing isalist of valid settings in TPQUEDEF- RECthat control input for
TPDEQUEUE():

TPQGETNEXT

Setting this value requests that the next message on the queue be dequeued,
using the default queue order. One of thefoll owing must be set: TPQGETNEXT,
TPQGETBYMSG D, or TPQGETBYCORRI D.

TPQGETBYMSG D

Setting this val ue requests that the messageidentified by M5G D be dequeued.
The message identifier isreturned by a prior call to TPENQUEUE(). Note that
the message identifier is not valid if the message has moved from one queue
to another. Note also that the entire 32 bytes of the message identifier value
are significant, so the value identified by MSG D must be completely
initialized (for example, padded with spaces).

One of the following must be set: TPQGETNEXT, TPQGETBYMSG D, or
TPQGETBYCCORRI D.

TPQGETBYCORRI D

Setting this value requests that the message identified by CORRI D be
dequeued. The correlation identifier is specified by the application when
engueuing the message with TPENQUEUE(). Note that the entire 32 bytes of the
correlation identifier value are significant, so the value identified by CORRI D
must be completely initialized (for example, padded with spaces).

One of the following must be set: TPQGETNEXT, TPQGETBYMSG D, or
TPQGETBYCCORRI D.

TPOMI T

Setting this value indicatesthat an error should not be returned if the queueis
empty. Instead, the process should wait until a message is available. Set
TPQNOWAI T to not wait until amessage is available. If TPQMI T issetin
conjunction with TPQGETBYMSG D or TPQGETBYCORRI D, it indicates that an
error should not bereturned if no message with the specified message
identifier or correlation identifier is present in the queue. Instead, the process
should wait until a message meeting the criteriais available. The processis
still subject to the caller’ s transaction timeout, or, when not in transaction

Using the ATMI /Q Component

Dequeuing Messages

mode, the process is still subject to the timeout specified on the TMQUEUE
process by the -t option.

If a message matching the desired criteriais not immediately available and
the configured action resources are exhausted, TPDEQUEUE fails, TP- STATUS
is set to TPEDI AGNOSTI C, and DI AGNOSTI Cis set to QVESYSTEM

Note that each TPDEQUEUE() request specifying the TPQWAI T control
parameter requiresthat aqueue manager (TMQUEUE) action object beavailable
if a message satisfying the condition is not immediately available. If oneis
not available, the TPDEQUEUE() request fails. The number of available queue
manager actions are specified when a queue space is created or modified.
When awaiting dequeue request compl etes, the associated action object
associated is made available for another request.

TPQPEEK
If TPQPEEK is set, the specified message is read but not removed from the
gueue. The TPNOTRAN flag must be set. It is not possible to read messages
enqueued or dequeued within a transaction before the transaction completes.

When athread is non-destructively dequeuing amessage using TPQPEEK, the
message may not be seen by other non-blocking dequeuers for the brief time
the system is processing the non-destructive dequeue request. Thisincludes
dequeuers using specific selection criteria (such as message identifier and
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

Using the ATMI /Q Component 4-23

4

BEA Tuxedo /Q COBOL Language Programming

4-24

On output from TPDEQUEUE(), the following elements may be set in TPQUEDEF- REC.

05

PRI ORI TY Pl C S9(9) COMP-5.

MSG D Pl C X(32).

CORRI D Pl C X(32).

TPQUEQCS- DELI VERY- FLAG Pl C S9(9) COMP- 5.
TPQUEQOS- REPLY- FLAG PI C S9(9) COVP-5.
REPLYQUEUE PI C X(15).

FAl LUREQUEUE PI C X(15).

DI AGNOSTI C PI C S9(9) COVP-5.
CLIENTID OCCURS 4 TIMES PIC S9(9) COWP-5
APPL- RETURN- CODE PI C S9(9) COVP-5.
APPKEY PI C S9(9) COVP-5.

Thefollowingisalist of valid settingsin TPQUEDEF- REC controlling output
information from TPDEQUEUE(). For any of these settings, if the setting is true when
TPDEQUEUE() iscalled, the associated element in therecord is popul ated with the value
provided when the message was queued, and the setting remains true. If the valueis
not available (that is, no value was provided when the message was queued) or the
setting is not true when TPDEQUEUE() is called, TPDEQUEUE() compl etes with the
setting not true.

TPQPRI ORI TY

If thisvalueisset, thecall to TPDEQUEUE() is successful, and the message was
gueued with an explicit priority, then the priority is stored in PRI ORI TY. The
priority isin the range 1 to 100, inclusive, and the higher the number, the
higher the priority (that is, a message with a higher number is dequeued
before a message with alower number). If TPQNOPRI ORI TY isset, the priority
isnot available.

Note that if no priority was explicitly specified when the message was
queued, the priority for the message is 50.

TPQVEG D

If thisvalue is set and the call to TPDEQUEUE() is successful, the message
identifier is stored in V5@ D. The entire 32 bytes of the message identifier
value are significant. If TPQNOMSG Dis set, the message identifier is not
available.

TPQCCRRI D

If thisvalueisset, thecall to TPDEQUEUE() is successful, and the message was
gueued with acorrelation identifier, then the correlation identifier isstored in
CORRI D. The entire 32 bytes of the correlation identifier value are significant.
Any BEA Tuxedo /Q provided reply to a message has the correlation

Using the ATMI /Q Component

Dequeuing Messages

identifier of the original message. If TPQNOCORRI Dis set, the correlation
identifier is not available.

TPQDELI VERYQOS
If thisvalueis set, the call to TPDEQUEUE() is successful, and the message was

gueued with a delivery quality of service, then the flag—

TPQQOSDELI VERYDEFAUL TPERSI ST, TPQQOSDEL | VERYPERSI STENT, or
TPQQOSDELI VERYNONPERSI STENT—specified by

TPQUEQOS- DELI VERY- FLAG indicates the delivery quality of service. If
TPQNODEL | VERYQOS is set, the delivery quality of serviceis not available.

Note that if no delivery quality of service was explicitly specified when the
message was queued, the default delivery policy of the target queue dictates
the delivery quality of service for the message.

TPQREPLYQOS
If thisvalueis set, the call to TPDEQUEUE() is successful, and the message was

gueued with areply quality of service, then the flag—

TPQQUSREPL YDEFAULTPERSI ST, TPQQOSREPLYPERSI STENT, or
TPQQOSREPL YNONPERS| STENT—specified by TPQUEQOS- REPLY- FLAG
indicates the reply quality of service. If TPQNOREPLYQCS is set, the reply
quality of serviceis not available.

Note that if no reply quality of service was explicitly specified when the
message was queued, the default delivery policy of the REPL YQUEUE queue
dictates the delivery quality of service for any reply. The default delivery
policy is determined when the reply to a message is enqueued. That is, if the
default delivery policy of the reply queue is modified between the time that
the original message is enqueued and the reply to the message is enqueued,
the policy used is the one in effect when the reply isfinally enqueued.

TPQREPLYQ
If thisvalueis set, the call to TPDEQUEUE() is successful, and the message was
gueued with areply queue, then the name of the reply queueis stored in
REPLYQUEUE. Any reply to the message should go to the named reply queue
within the same queue space as the request message. If TPQNOREPLYQI S Set,
thereply queueis not available.

TPQFAI LUREQ
If thisvalueisset, the call to TPDEQUEUE() is successful, and the message was
gueued with afailure queue, then the name of the failure queueis stored in
FAI LUREQUEUE. Any failure message should go to the named failure queue

Using the ATMI /Q Component 4-25

BEA Tuxedo /Q COBOL Language Programming

within the same queue space as the request message. |f TPQNOFAI LUREQI'S
set, the failure queue is not available.

The remaining settingsin TPQUEDEF- REC are et to the following values when
TPDEQUEUE() is called: TPQNOTOP, TPQNOBEFCREMSG D, TPQNOTI ME_ABS,
TPQNOTI ME_REL, TPQNOEXPTI ME_ABS, TPQNOEXPTI ME_REL, and
TPQNCEXPTI ME_NONE.

If the call to TPDEQUEUE() fails and TP- STATUS is set to TPEDI AGNOSTI C, avalue
indicating the reason for failure is returned in DI AGNOSTI C. The valid settings for

DI AGNOSTI C include those for TPENQUEUE() described in “ TPQUEDEF-REC
Structure” on page 4-6 (except for QVENOSPACE and QVERELEASE) and the following
additional codes.

[QVENOVEG]
No message was available for dequeuing. Note that it is possible that the
message exists on the queue and another application process has read the
message from the queue. In this case, the message may be put back on the
queueif that other processrolls back the transaction.

[QVEI NUSE]
When dequeuing a message by message identifier or correlation identifier,
the specified messageisin use by another transaction. Otherwise all messages
currently on the queue are in use by other transactions. This diagnostic is not
returned by a queue manager from BEA Tuxedo release 7.1 or later.

Using TPQWAIT

4-26

When TPDEQUEUE() is called with flags set to include TPQWAI T, if amessageis not
immediately available, the TMQUEUE server waits for the arrival, on the queue, of a
message that matches the TPDEQUEUE() request before TPDEQUEUE() returns control to
the caller. The TMQUEUE process sets the waiting request aside and processes requests
from other processes while waiting to satisfy the first request. If TPQGETBYMSG D
and/or TPQGETBYCORRI D are also specified, the server waits until a message with the
indicated message identifier and/or correlation identifier becomes available on the
gueue. If neither of these flagsis set, the server waits until any messageis put onto the
gueue. The amount of time it waitsis controlled by the caller’ s transaction timeout, if
the call isin transaction mode, or by the -t option in the CLOPT parameter of the
TMQUEUE server, if the call isnot in transaction mode.

Using the ATMI /Q Component

Dequeuing Messages

The TMQUEUE server can handle anumber of waiting TPDEQUEUE() requests at the same
time, as long as action resources are available to handle the request. If there are not
enough action resources configured for the queue space, TPDEQUEUE() fails. If this
happens on your system, increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services

In considering how best to handle errors when dequeuing it is helpful to differentiate
between two types of errors:

m Errors encountered by TMOFORWARD(5) asit attempts to dequeue a message to
forward to the requested service

m Errorsthat occur in the service that processes the request

By default, if a message is dequeued within a transaction and the transaction is rolled
back, then the message ends up back on the queue and can be dequeued and executed
again. It may be desirable to delay for a short period before retrying to dequeue and
execute the message, allowing thetransient problemto clear (for example, alowing for
locks in a database to be released by another transaction). Normally, alimit on the
number of retriesis also useful to ensure that an application flaw doesn't cause
significant waste of resources. When a queue is configured by the administrator, both
aretry count and adelay period (in seconds) can be specified. A retry count of O
impliesthat no retries are done. After the retry count is reached, the messageis moved
to an error queuethat is configured by the administrator for the queue space. If theerror
queue is not configured, then messages that have reached the retry count are smply
deleted. Messages on the error queue must be handled by the administrator who must
work out away of notifying the originator that meets the requirements of the
application. The message handling method chosen should be mostly transparent to the
originating program that put the message on the queue. Thereisavirtual guaranteethat
once a message is successfully enqueued it will be processed according to the
parameters of TPENQUEUE() and the attributes of the queue. Notification that amessage
has been moved to the error queue should be arare occurrence in a system that has
properly tuned its queue parameters.

A failure queue (normaly, different from the queue space error queue) may be
associ ated with each queued message. This queue isspecified on the enqueuing call as
the place to put any failure messages. The failure message for a particular request can
beidentified by an application-generated correlation identifier that is associated with
the message when it is enqueued.

Using the ATMI /Q Component 4-27

4

BEA Tuxedo /Q COBOL Language Programming

4-28

The default behavior of retrying until success (or a predefined limit) is quite
appropriate when the failure is caused by atransient problem that is later resolved,
allowing the message to be handled appropriately.

There are cases where the problem is not transient. For example, the queued message
may request operating on an account that does not exist (and the application is such
that it won't come into existence within areasonable time period if at al). In this case,
itisdesirable not to waste any resources by trying again. If the application programmer
or administrator determines that failures for a particular operation are never transient,
then it issimply amatter of setting the retry count to zero, although thiswill require a
mechanism to constantly clear the queue space error queue of these messages (for
exampl e, a background client that reads the queue periodically). More likely, it isthe
case that some problems will be transient (for example, database lock contention) and
some problemswill be permanent (for example, the account doesn't exist) for the same
service.

In the case that the message is processed (dequeued and passed to the application via
aTPCALL) by TMQFORWARD, there is no mechanism in the information returned by
TPCALL to indicate whether a TPESVCFAI L error is caused by atransient or permanent
problem.

Asin the case where the application is handling the dequeuing, asimple solution isto
return success for the service, that is, TPRETURN with TPSUCCESS, even though the
operation failed. Thisallowsthe transaction to be committed and the message removed
from the queue. If reply messages are being used, the information in the buffer returned
from the service can indicate that the operation failed and the message will be
enqueued on the reply queue. The APPL- CODE in the TPSVCRET- REC argument of
TPRETURN can also be used to return application specific information.

In the case where the servicefails and the transaction must berolled back, it isnot clear
whether or not TMQFORWARD should execute a second transaction to remove the
message from the queue without further processing. By default, TMQFORWARD will not
delete a message for a service that fails. TMQFORWARD's transaction is rolled back and
the message is restored to the queue. A command-line option may be specified for
TMQFORWARD that indicates that a message should be deleted from the queue if the
servicefalsand areply message is sent back with length greater than 0. The message
is deleted in a second transaction. The queue must be configured with adelay timeand
retry count for thisto work. If the messageis associated with afailure queue, thereply
datais enqueued to the failure queue in the same transaction as the one in which the
message is deleted from the queue.

Using the ATMI /Q Component

Dequeuing Messages

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD

If your application expects to receive replies to queued messages, the following is a
procedure you may want to follow:

1. Asapreliminary step, the queue space must include areply queue and afailure
gueue. The application must also agree on the content of the correlation identifier.
The service should be coded to return TPSUCCESS on alogical failure and return an
explanatory code inthe APPL- CODE inthe TPSVCRET- RECargument of TPRETURN.

2. When you call TPENQUEUE() to put the message on the queue, set the following:

TPQCORRI D TPQREPLYQ

TPQFAI LUREQ TPQVSG D

(Fill in the values for CORRI D, REPL YQUEUE and FAI LUREQUEUE before issuing
the call. On return from the call, save CORRI D.)

3. When you call TPDEQUEUE() to check for areply, specify the reply queue in
QNAME and set the following:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVEG D
TPQGETBYCORRI D

(Use the saved correlation identifier to populate CORRI D before issuing the call.
If the call to TPDEQUEUE() fails and sets TP- STATUS to TPEDI AGNOSTI C, then
further information is available in the DI AGNCSTI C settings. If you receive the
error code QVENOVSG it means that no message was available for dequeuing.)

4. Set up another call to TPDEQUEUE(). This time have QNAME point to the name of
the failure queue and set the following:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVEG D
TPQGETBYCORRI D

Populate TPQCORRI D with the correlation identifier. When the call returns, check
LENto see if data has been received and check APPL- RETURN- CODE to seeif the
service has returned a user return code.

Using the ATMI /Q Component 4-29

4

BEA Tuxedo /Q COBOL Language Programming

Sequential Processing of Messages

Sequential processing of messages can be achieved by having one service enqueue a
message for the next service in the chain before its transaction is committed. The
originating process can track the progress of the sequence with a series of TPDEQUEUE()
callstotherepl y_queue, if each member uses the same correlation-ID and returnsa
0 length reply.

Alternatively, word of the successful completion of the entire sequence can bereturned
to the originator by using unsolicited notification. To make sure that the last
transaction in the sequence ended with a TPCOVMM T, ajob step can be added that calls
TPNOTI FY using theclient identifier that is carried in the TPQUEDEF- RECstructure. The
originating client must have called TPSETUNSOL to name the unsolicited message
handler being used.

Using Queues for Peer-to-Peer Communication

4-30

Inall of theforegoing discussion of enqueuing and dequeuing messagesthere hasbeen
an implicit assumption that queues were being used as an aternative form of
reguest/response processing. A message does not have to be a service request. The
gueued message facility can transfer datafrom one processto another aseffectively as
aservicereguest. Thisstyle of communication between applicationsor clientsiscalled
peer-to-peer communication.

If it suits your application to use BEA Tuxedo /Q for this purpose, have the
administrator create a separate queue and code your own receiving program for
degueuing messages from that queue.

Using the ATMI /Q Component

CHAPTER

A A Sample Application

Thistopic includes the following sections:

Overview
Prerequisites
What Is gsample?
Building gsample

Suggestions for Further Exploration

Overview

The sample application in this topic contains a description of a one-client, one-server
application using BEA Tuxedo /Q called gsanpl e. An interactive form of this
software is distributed with the BEA Tuxedo software.

Prerequisites

Before you can run the sampl e application, the BEA Tuxedo software must beinstalled
and built so that the files and commands referred to in this topic are available. If you
are personally responsible for installing the BEA Tuxedo software, consult the
Installing the BEA Tuxedo System for information about how to install the BEA
Tuxedo system.

Using the ATMI /Q Component A-1

A A Sample Application

If the installation has already been done by someone else, you need to know the
pathname of the root directory of the installed software. Y ou also need to have read
and execute permissions on the directories and files in the BEA Tuxedo directory
structure so you can copy gsanpl e files and execute BEA Tuxedo commands.

What Is gsample?

gsanpl e isavery basic BEA Tuxedo application that usesBEA Tuxedo /Q. It hasone
application client and server, and uses two system servers. TMQUEUE(5) and
TMQFORWARD 5) . The client calls TMQUEUE to enqueue a message in a queue space
created for gsanpl e. The message is dequeued by TMQFORWARD and passed to the
application server. The server converts a string from lower case to upper case and
returns to TMQFORWARD. TMQFORWARD engueues the reply message. The client
meanwhile has called TMQUEUE to dequeue the reply. When the reply is received, the
client displaysit on the user's screen.

Building gsample

A-2

The following procedure provides instructions on building and running the gsanpl e
application.

1. Makeadirectory for gsanpl e and cd toit:

nmkdi r gsanpdi r
cd gsanpdir

Thisis suggested so you will be able to see clearly the gsanpl e files you have
at the start and the additional files you create along the way. Use the standard
shell (/ bi n/ sh) or the Korn shell; not the C shell (/ bi n/ csh).

2. Copy the gsanpl e files.
cp $TUXDI R/ apps/ gsanpl e/ * .

Using the ATMI /Q Component

Building gsample

You will be editing some of the files and making them executable, so it is best to

begin with a copy of the files rather than the originals delivered with the
software.

. List thefiles.

$1s
READVE
client.c
crlog
crque
makefil e
rm pc
runsanpl e
server.c
set env
ubb. sanpl e
$

The files that make up the application are:

READVE

A filethat describes the application and how to configure and run it.

set env
A script that sets environment variables.

crlog
A script that creates a TLOG file.

crque

A script that defines the queue space and queues for the application.

makefil e
A makefile that creates the executables for the application.

client.c
The source code for the client program.

server.c
The source code for the server program.

ubb. sanmpl e
The ASCII form of the configuration file for the application.

Using the ATMI /Q Component

A A Sample Application

runsanpl e
A script that calls all the necessary commands to build and run the
sample application.

rmpc
A script that removes the IPC resources for the queue space.

4, Editthesetenv file.

Open the set env file and modify the TUXDI R value to the absolute path of the
root directory of the BEA Tuxedo system installation. Remove the angle bracket
characters (< and >) when editing this value.

5. Runrunsanpl e.

Ther unsanpl e script contains several commands; each command is preceded
by a comment line that describes the purpose of the command.

#set the environnent
./ setenv
chrmod +w ubb. sanpl e
unane=""unane -n "
ed ubb. sanpl e<<!
g; <unane -n>;s;; ${unane};
g;<full path of Tuxedo software>;s;; ${TUXD R};
g;<full path of APPDI R>;s;;${APPDIR};
w

q
1

#build the client and server
make client server

#create the tuxconfig file

t ml oadcf -y ubb. sanpl e
#create the TLOG

.lcrlog

#create the QUE

./lcrque

#boot the application

t nboot -y

#run the client

client

#shut down t he application

t mshut down -y

#renmove the client and server
make cl ean

#renmove the QUE ipc resources
./rmpc

A-4 Using the ATMI /Q Component

Suggestions for Further Exploration

#renove all files created
rmtuxconfig QUE stdout stderr TLOG ULOG

When you run this script you will see a series of messages on your screen that
are generated by the various commands. Included among them are the following
lines:

before: this is a gq exanple
after: THS IS A Q EXAMPLE

Thebef or e: lineisacopy of the string that cl i ent enqueues for processing by
server. Theafter: lineiswhat server sendsback. These two lines prove that
the program worked successfully.

Suggestions for Further Exploration

While it might prove interesting to build and run the sample application using
runserver, youwill probably find it moreinstructiveto examinetheindividual pieces
of the application. In this topic, we suggest some things that we recommend you look
at and try; you will undoubtedly be able to think of others as you explore the
application more closely.

setenv: Set the Environment

The script set env is an example of afile often used in BEA Tuxedo development.
Three of the variablesthat are set (TUXDI R, APPDI R, and PATH) are needed whenever
you are working with the BEA Tuxedo system. Noticethat if you are running on a Sun
machine, there is another bi n you must have at the beginning of your PATH variable.
LD_LI BRARY_PATH, SHLI B_PATH, or L1 BPATHare important if you are building the
system with shared libraries. The correct variable to use depends on your operating
system. TUXCONFI Gmust be set before you can boot the system. QvADM N can be set
in avariable or provided on the gnmadni n(1) command line.

Points to consider: should you plan to have such afile where you will be doing your
BEA Tuxedo/Q work? Should you have acommand inyour . pr of i | e so that you set
your environment as you log in?

Using the ATMI /Q Component A-5

A A Sample Application

makefile: Make Your Application

Notice that the makef i | e usesbui | dserver (1) and bui | dcl i ent (1) to build the
server and client, respectively. Y ou can, of course, execute these commands
individually or use the capability of make to keep the application current.

Whileweareon the subject of themakef i | e, thismight beagood timeto look through
the. c filesfor theclient and server programs. Of particular interest in connection with
BEA Tuxedo /Q arethet penqueue and t pdequeue cals. Notice particularly the
values for the gspace and the gname arguments. When we look at the configuration
file, we will see where those values come from.

ubb.sample: The ASCII Configuration File

A-6

The three most pertinent entries in the configuration file are the CLOPT parametersfor
the TMQUEUE and TMQFORWARD servers and the OPENI NFO parameter in the * GROUPS
entry. We will extract those items to call them to your attention here:

First the CLOPT paraneter from TMQUEUE:

CLOPT = "-s QSPACENAME: TMQUEUE - -
Then the CLOPT paraneter from TMOFORWARD:
CLOPT="-- -i 2 -gq STRING'

Finally, the OPENI NFO paraneter fromthe QUEL group:
OPENI NFO = " TUXEDO' QM <APPDI R pat hnanme>/ QUE: QSPACE"

The CLOPT parameter from TMQUEUE specifies a service alias of QSPACENAME. Look
back again at cl i ent . ¢ and check the gspace argument of t penqueue and

t pdequeue. The CLOPT parameter for TMQFORWARD specifies a service STRI NG by
means of the - g option. Thisis aso the name given to the queue where messages are
engueued for that service and is specified as the gnane argument of t penqueue in
client.c.

Thet m oadcf (1) command is used to compile the ASCII configuration file into a
TUXCONFI Gfile.

Using the ATMI /Q Component

Suggestions for Further Exploration

crlog: Create the Transaction Log

Thescriptincr1 og invokest madmi n(1) to createadevice list entry for the TLOGand
then create thelog for the site specified in our configuration. Because all messages for
the queued message facility are enqueued and dequeued within transactions, you must
have alog in which to keep track of transactions managed by the TMS_QViserver.

crque: Create the Queue Space and Queues

Thescriptincr que invokesgmadmi n(1) to create the queue space and queues for the
sample application. Noticethat the queue spaceisnamed QSPACE (that isa so thename
specified as the last argument of the OPENI NFO parameter in the configuration file).
Queues named STRI NG and RPLYQare created. In the gspacecr eat e portion of the
script an error queue is named, but the script does not include any qcr eat e command
to create that queue. That is amodification you might want to make later.

Boot, Run, and Shut Down the Application

After making the application programs, loading TUXCONFI G, and creating the queue
space and queues, the next step isto boot the application and run it. The command to
boot is:

t mboot -y

The -y option keepst nboot from prompting for an okay before booting.
The sample application is run simply by entering the command:

client

Thet mshut down command is used to bring the application down.

Using the ATMI /Q Component A-7

A A Sample Application

Clean Up

Ther unsanpl e script includes three commands that restore the environment to the
state it was in before the script was run. The make cl ean command uses meke to
remove the object and executable files for the client and server.

Ther m pc command isincluded becausethe IPC resourcesfor the queue space are not
automatically removed by t nshut down (which does remove the BEA Tuxedo |PC
resources used by the application). If you look at r mi pc, you will find that it invokes
gmadni n and uses its version of thei pcr mcommand naming QSPACE to identify
resources to be removed.

Thefina command in the script isthe r mcommand, which removes a number of files
that are generated by the application. Thereisno harmin leaving thesefiles; in fact, as
you work more with the sample application you will probably want to keep

t uxconfi g, QUE, and TLOGto save having to recreate them.

A-8 Using the ATMI /Q Component

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	1. BEA Tuxedo /Q Overview
	2. BEA Tuxedo /Q Administration
	3. BEA Tuxedo /Q C Language Programming
	4. BEA Tuxedo /Q COBOL Language Programming
	A. A Sample Application
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 BEA Tuxedo /Q Overview
	General Description
	Queuing System Components and Tasks
	Figure 1�1 Queued Service Invocation

	Administrator Tasks
	Figure 1�2 Peer-to-Peer Communication

	Programmer Tasks
	Transaction Management
	Figure 1�3 Transaction Demarcation

	Handling Reply Messages
	Error Handling
	Summary

	2 BEA Tuxedo /Q Administration
	Introduction
	Available Sample Program Called qsample

	Configuration
	Specifying the QM Server Group
	Specifying the Message Queue Server
	Operation Timeout

	Queue Space Names, Queue Names, and Service Names
	Data-dependent Routing
	Customized Buffer Types
	Buffer Subtypes

	Specifying the Message Forwarding Server
	Queue Names and Service Names: The -q option
	Controlling Transaction Timeout: The -t option
	Controlling Idle Time: The -i option
	Controlling Server Exit: The -e option
	Delete Message After Service Failure: The -d option
	Customized Buffer Types

	Dynamic Configuration

	Creating Queue Spaces and Queues
	Working with qmadmin Commands
	Creating an Entry in the Universal Device List: crdl
	Creating a Queue Space: qspacecreate
	Creating a Queue: qcreate
	Specifying Queue Order
	Enabling Out-of-Order Enqueuing
	Specifying Retry Parameters
	Using Queue Capacity Limits
	Reply and Failure Queues
	Error Queues

	Handling Encrypted Message Buffers
	Maintenance of the BEA Tuxedo /Q Feature
	Adding Extents to a Queue Space
	Backing Up or Moving Queue Space
	Moving the Queue Space to a Different Type of Machine
	TMQFORWARD and Non-Global Transactions
	TMQFORWARD and Commit Control
	Handling Transaction Timeout
	TMQFORWARD and Retries for an Unavailable Service

	Windows Standard I/O

	3 BEA Tuxedo /Q C Language Programming
	Introduction
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	tpenqueue(3c) Arguments
	tpenqueue(): The qspace Argument
	tpenqueue(): The qname Argument
	tpenqueue(): The data and len Arguments
	tpenqueue(): The flags Arguments
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	TPQCTL Structure
	Listing 3-1 The tpqctl_t Structure
	#define TMQNAMELEN 15 #define TMMSGIDLEN 32 #define TMCORRIDLEN 32 struct tpqctl_t { /* control p...
	TPNOFLAGS
	TPQTOP
	TPQBEFOREMSGID
	TPQTIME_ABS
	TPQTIME_REL
	TPQPRIORITY
	TPQCORRID
	TPQREPLYQ
	TPQFAILUREQ
	TPQDELIVERYQOS, TPQREPLYQOS
	TPQQOSDEFAULTPERSIST
	TPQQOSPERSISTENT
	TPQQOSNONPERSISTENT

	TPQEXPTIME_ABS
	TPQEXPTIME_REL
	TPQEXPTIME_NONE
	TPQMSGID
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOSPACE]
	[QMERELEASE]
	[QMESHARE]

	Overriding the Queue Order
	Overriding the Queue Priority

	Setting a Message Availability Time
	1. Place the values for the date you want to use in the tm structure.
	2. Call gp_mktime to produce a value for deq_time and set the flags to indicate that an absolute ...
	3. Call tpenqueue().

	tpenqueue() and Transactions

	Dequeuing Messages
	tpdequeue(3c) Arguments
	tpdequeue(): The qspace Argument
	tpdequeue(): The qname Argument
	tpdequeue(): The data and len Arguments
	tpdequeue(): The flags Arguments
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPNOCHANGE
	TPSIGRSTRT

	TPQCTL Structure
	TPNOFLAGS
	TPQGETBYMSGID
	TPQGETBYCORRID
	TPQWAIT
	TPQPEEK
	TPQPRIORITY
	TPQMSGID
	TPQCORRID
	TPQDELIVERYQOS
	TPQREPLYQOS
	TPQREPLYQ
	TPQFAILUREQ
	[QMENOMSG]
	[QMEINUSE]

	Using TPQWAIT
	Error Handling When Using TMQFORWARD Services
	Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD
	1. As a preliminary step, the queue space must include a reply queue and a failure queue. The app...
	2. When you call tpenqueue() to put the message on the queue, set flags to turn on the bits for t...
	3. When you call tpdequeue() to check for a reply, specify the reply queue in the qname argument ...
	4. Set up another call to tpdequeue(). This time have qname point to the name of the failure queu...

	Sequential Processing of Messages
	Using Queues for Peer-to-Peer Communication

	4 BEA Tuxedo /Q COBOL Language Programming
	Introduction
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	01 TPQUEDEF-REC. COPY TPQUEDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTA...
	TPENQUEUE() Arguments
	TPENQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument
	TPENQUEUE(): The QNAME in TPQUEDEF-REC Argument
	TPENQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments
	TPENQUEUE(): The Settings in TPQUEDEF-REC
	TPNOTRAN
	TPTRAN
	TPNOBLOCK
	TPBLOCK
	TPNOTIME
	TPTIME
	TPSIGRSTRT
	TPNOSIGRSTRT

	TPQUEDEF-REC Structure
	Listing 4-1 The TPQUEDEF-REC Structure
	TPQTOP
	TPQBEFOREMSGID
	TPQTIME-ABS
	TPQTIME-REL
	TPQPRIORITY
	TPQCORRID
	TPQREPLYQ
	TPQFAILUREQ
	TPQDELIVERYQOS TPQREPLYQOS
	TPQQOSDELIVERYDEFAULTPERSIST TPQQOSREPLYDEFAULTPERSIST
	TPQQOSDELIVERYPERSISTENT TPQQOSREPLYPERSISTENT
	TPQQOSDELIVERYNONPERSISTENT TPQQOSREPLYNONPERSISTENT

	TPQEXPTIME-ABS
	TPQEXPTIME-REL
	TPQEXPTIME-NONE
	TPQNOEXPTIME
	TPQMSGID
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOSPACE]
	[QMERELEASE]
	[QMESHARE]

	Overriding the Queue Order
	Overriding the Queue Priority

	Setting a Message Availability Time
	TPENQUEUE() and Transactions

	Dequeuing Messages
	01 TPQUEDEF-REC. COPY TPQUEDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTA...
	TPDEQUEUE() Arguments
	TPDEQUEUE(): The QSPACE-NAME in TPQUEDEF-REC Argument
	TPDEQUEUE(): The QNAME in TPQUEDEF-REC Argument
	TPDEQUEUE(): The DATA-REC and LEN in TPTYPE-REC Arguments
	TPDEQUEUE(): The Settings in TPQUEDEF-REC
	TPNOTRAN
	TPTRAN
	TPNOBLOCK
	TPBLOCK
	TPNOTIME
	TPTIME
	TPNOCHANGE
	TPCHANGE
	TPSIGRSTRT
	TPNOSIGRSTRT

	TPQUEDEF-REC Structure
	TPQGETNEXT
	TPQGETBYMSGID
	TPQGETBYCORRID
	TPQWAIT
	TPQPEEK
	TPQPRIORITY
	TPQMSGID
	TPQCORRID
	TPQDELIVERYQOS
	TPQREPLYQOS
	TPQREPLYQ
	TPQFAILUREQ
	[QMENOMSG]
	[QMEINUSE]

	Using TPQWAIT
	Error Handling When Using TMQFORWARD Services
	Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD
	1. As a preliminary step, the queue space must include a reply queue and a failure queue. The app...
	2. When you call TPENQUEUE() to put the message on the queue, set the following:
	3. When you call TPDEQUEUE() to check for a reply, specify the reply queue in QNAME and set the f...
	4. Set up another call to TPDEQUEUE(). This time have QNAME point to the name of the failure queu...

	Sequential Processing of Messages
	Using Queues for Peer-to-Peer Communication

	A A Sample Application
	Overview
	Prerequisites
	What Is qsample?
	Building qsample
	1. Make a directory for qsample and cd to it:
	2. Copy the qsample files.
	3. List the files.
	README
	setenv
	crlog
	crque
	makefile
	client.c
	server.c
	ubb.sample
	runsample
	rmipc
	4. Edit the setenv file.
	5. Run runsample.

	Suggestions for Further Exploration
	setenv: Set the Environment
	makefile: Make Your Application
	ubb.sample: The ASCII Configuration File
	crlog: Create the Transaction Log
	crque: Create the Queue Space and Queues
	Boot, Run, and Shut Down the Application
	Clean Up

