BEA Tuxedo

Scaling, Distributing,
and Tuning CORBA Applications



Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Scaling, Distributing, and Tuning CORBA Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0




Contents

About This Document

What Y OU NEed t0 KINOW ......oueiiieiiiieiee et e s e Viii
E-0OCS WED SItE....eeieiie et ettt e e enes Viii
HOW to Print the DOCUMENE .........coiuiieieieeeeee et Viii
Related INfOrMEatioN...... ..o e e e iX
L0091 7= ox AL U LS ST iX
Documentation CONVENLIONS ..........coueuerrieeieeienere e eeese e e seeseeseesee e eneeseesee e eae e X
1. Scaling BEA Tuxedo CORBA Applications
About Scaling BEA Tuxedo CORBA Applications.........ccocoeeeeveererieseeneeneenen. 1-2
Application Scalability ReqUIremMents...........coeoeeereeieeenerie e 1-2
BEA Tuxedo Scaability FEAIUIES.........cceuririieiiriee e 1-2
Using Object State Management ............ccoeeerereresereeeie e seee s seeseeseeee 1-3
CORBA Object State MOGEIS .....c..ooeeieieeeeeeeirier et 1-3
Implementing Stateless and Stateful Objects.........coceueeririeririiee e 1-5
Parallel ODJECES ...ttt e e s eene e 1-7
Replicating Server Processes and Server GroUPS. ........ooeveereeeeeeerneeeseereeseneesens 1-8
About Replicating Server Processes and Server Groups ..........ccooeeeeeeneene 1-8
Configuration OPLIONS........ccueoueieieee et s e e e 1-9
Replicating Server PrOCESSES .......cocovereieiieieeeeie et 1-9
Replicating Server GrOUPS ........ccocieeeirierenie e seesieee st ee e sese e seeseanes 1-11
Using Multithreaded SErVErS........ccv i s 1-11
About Multithreaded CORBA SEIVENS ......cccoueerrieeeinieseeseeseeieiee e 1-12
When to Use Multithreaded CORBA SEIVErS........coeueirrerieeeenieniene e 1-12
Coding RecommeNdations ...........cuccueeieirecieeiiesce e 1-13
Configuring a Multithreaded CORBA SEIVEr.......ccoevecveereeienie e 1-13
Using Factory-based Routing (CORBA Servers Only)........ccoceveevevveevvecnee 1-14

Scaling, Distributing, and Tuning CORBA Applications iii



About Factory-based ROULING. ........cooiiiiiiieee e 1-14

Characteristics of Factory-based ROULING ........ccevroeeiriniene e 1-15
How Factory-based IsImplemented ... 1-15
Configuring Factory-based Routing in the UBBCONFIG File................ 1-16
Using Parallel ODJECES.......coooiiiiiie e e s 1-17
About Parallel ODJECtS........coiiieiiiee e e 1-17
Configuring Parallel ODJectS.........coviiiieiiieee e 1-20
Multiplexing Incoming Client CONNECLIONS...........ccoereiereeneeieee e 1-20
[HOP Listener and Handler...........ccueieieieieneeee et 1-21
Increasing the Number of ISH ProCesses........ccocvveveeveceieiece e, 1-21

Scaling CORBA Server Applications

About Scaling the Production Sample Application...........cocooeoeiniiieeieninennes 2-2
DESION GOAIS ..ottt sttt r e e r e aaeereeaaan 2-2
How the Application HasBeen Scaled ..o e 2-2

Changing thE OMG DL .....c.eovvieieceiece e eneas 2-4

Using a Stateless Object MOdE ..o 2-4

Scaling by Replicating Server Processes and Server Groups...........cooceeeeeeeeenes 2-5
Replicating Server Processes in the Production Application .................... 2-6
Replicating Server Groups in the Production Application...........cccccceueu.e. 2-8
Configuring Replicated Server Processes and Groups in the Production

YN o] o [ Tor= 1 o] o RS TUSRRTR 2-9

Scaling with Factory-based ROULING .......cccceeeeiiiiieivierie e 2-11
About Factory-based Routing in the Production Application................... 2-11
Configuring Factory-based Routing in the UBBCONFIG File................ 2-12
Implementing Factory-based Routing in a Factory ..........cccoceeeveveneen. 2-15
What Happens at RUN TIME ........cooooiiiiiiee e e 2-16

Additional Design ConSiderations..........ccccoiveirieireeveese s et 2-17
About the Additional Design Considerations...........cccccoeeverveeveeeieeseeeenne 2-17
Instantiating the Registrar and Teller Objects.........cccevevveiececiece e, 2-18

Ensuring That Student Registration Occurs in the Correct Server Group 2-19
Ensuring That the Teller Object Is Instantiated in the Correct Server

Scaling, Distributing, and Tuning CORBA Applications



3. Distributing CORBA Applications

Why Distribute an AppliCatioN?..........cocoerireee e 3-2
About Distributing an Application...........ccoeeeieieneee e 3-2
Benefits of aDistributed Application ...........ccocooeieeinieie e 3-2
Characteristics of Distributing an Application ...........cccoeevnieenincnnnnn 3-3

Using Data-dependent Routing (BEA Tuxedo ATMI Servers Only) .............. 3-4
About Data-dependent ROULING.........cccooeririieiiee e e 34
Characteristics of Data-dependent ROULING ........cccooeveeneeinerneeneeirenceieees 35
Sample Distributed AppliCation ...........coooieiineie e 3-5
Example of UBBCONFIG Sectionsin a Distributed Application ............ 3-6

Configuring the UBBCONFIG Fil€.....cccccveiiciiecececeeceereeee e e 3-7
About the UBBCONFIG Filein Distributed Applications...........ccccceeue. 3-7
Modifying the GROUPS SECLION .......cccoieiecieie e 3-8
Modifying the SERVICES SeCtion.........cccoevecie e 3-9
Modifying the INTERFACES SECtiON........ccccveviiieieiecee e 3-11
Creating the ROUTING SECHION .....c.coeiviieieeceecie et 312

Configuring the factory_finder.ini (CORBA Applications Only)..........c.cc..... 3-13

Modifying the Domain Gateway Configuration File to Support Routing ...... 3-13
About the Domain Gateway Configuration File .........ccccoecovviveiieiennenns 3-14
Parametersin the DM_ROUTING Section of the DMCONFIG File (BEA

TUXEdO ATMI ONIY) ..ot e e 3-14
4. Tuning CORBA Applications

Maximizing Application RESOUICES ........ccccveierieiiereeieie et 4-2

When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only) ......c.cccceeeeeenees 4-2

Enabling System-controlled Load BalanCing .........cccccevereeoeeercnieee e 4-4

Configuring Replicated Server Processes and GroupS.........ccveeereeeeeeereseneenees 4-4

Configuring Multithreaded SErVErS.........cceeecieie e 4-6
Setting the OPENINFO Parameter for Database | nteroperation................ 4-6
Parameters Used to Configure Multithreaded Servers...........cccceeeevvenneee. 4-6
Assigning Prioritiesto INterfaces. ... 4-7

Bundling Services into Servers (BEA Tuxedo ATMI Servers Only) .............. 4-9
About BUNdliNg SEIVICES .......ccuvciece et s 4-9
When t0 BUNAIE SEIVICES .....coueieiieiiie e e 4-9

Performance OPLiONS..........coucie ittt et e e e 4-10

Scaling, Distributing, and Tuning CORBA Applications %



Vi

Enhancing Efficiency with Application Parameters...........ccocooveieienecieenenne. 4-11

MAXDISPATCHTHREADS......c.o oottt 4-12
MINDISPATCHTHREADS ...ttt 4-13
Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters ................. 4-13
Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
ParamELErS ......ccooiiiieeiei e e 4-14
Setting the SANITY SCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
ParamELErS ......coooiiiiieiee e e e 4-14
Setting Application Parameters ........cooviieienenenee e 4-14
Determining IPC REQUITEMENES .......oouiiiieiireiee et 4-15
Measuring System TraffiC ....ccocveieceie e e e 4-17
About System Traffic and Bottlenecks..........ccoeeee e 4-17
Example of Detecting a System Bottleneck ..........cccooeeeiivenieienenecienn. 4-18
Detecting Bottlenecks on UNIX ......coooeiieie i 4-18
Detecting Bottlenecks on WindOWS...........cocccveieieciece e 4-20
Index

Scaling, Distributing, and Tuning CORBA Applications



About This Document

This document explains how to tune and scale CORBA applications that run in the
BEA Tuxedo® CORBA environment.

This document includes the following topics:

m  Chapter 1, “Scaling BEA Tuxedo CORBA Applications,” describes how to scale
CORBA applications that run in the BEA Tuxedo environment.

m Chapter 2, “Scaling CORBA Server Applications,” describes how to scale
CORBA C++ server applications using the Production sample application as an
example.

m Chapter 3, “Distributing CORBA Applications,” describes how to distribute
applications using the Production and Bankapp sample applications as examples.

m  Chapter 4, “Tuning CORBA Applications,” describes how to tune applications to
optimize performance.

Scaling, Distributing, and Tuning CORBA Applications Vii



What You Need to Know

This document is intended primarily for application developers who are interested in
building scalable C++ that run in the BEA Tuxedo environment. It assumes a
familiarity with the BEA Tuxedo platform and C++ programming.

e-docs Web Site

The BEA Tuxedo product documentation is avail able on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

viii

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Scaling, Distributing, and Tuning CORBA Applications



How to Print the Document

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, see the CORBA Bibliography in the BEA
Tuxedo online documentation.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can a so contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Scaling, Distributing, and Tuning CORBA Applications iX



Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main ( ) the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ( )
nonospace Identifies variables in code.
italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Scaling, Distributing, and Tuning CORBA Applications



Documentation Conventions

Convention

Item

{1}

Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m  That an argument can be repeated severa timesin acommand line

m  That the statement omits additional optional arguments

m  That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Scaling, Distributing, and Tuning CORBA Applications

Xi



Xii Scaling, Distributing, and Tuning CORBA Applications



CHAPTER

1 Scaling BEA Tuxedo
CORBA Applications

Thistopic introduces key concepts and tasks for scaling BEA Tuxedo CORBA
applications. Thistopic includes the following sections:

m  About Scaling BEA Tuxedo CORBA Applications

m Using Object State Management

m Replicating Server Processes and Server Groups

m Using Multithreaded Servers

m Using Factory-based Routing (CORBA Servers Only)
m  Multiplexing Incoming Client Connections

For more detailed information and examples for BEA Tuxedo CORBA applications,
see Chapter 2, “ Scaling CORBA Server Applications.”

Scaling, Distributing, and Tuning CORBA Applications 1-1



1 Scaling BEA Tuxedo CORBA Applications

About Scaling BEA Tuxedo CORBA
Applications

This topic includes the following sections:
m Application Scalability Requirements
m BEA Tuxedo Scalability Features

m Using Object State Management

Application Scalability Requirements

Many applications perform adequately in an environment where between 1 to 10
server processes and 10 to 100 client applications are running. However, in an
enterprise environment, applications may need to support hundreds of execution
contexts (where the context can be a thread or a process), tens of thousands of client
applications, and millions of objects at satisfactory performance levels.

Subjecting an application to exponentially increasing demands quickly reveals any
resource shortcomings and performance bottlenecks in the application. Scalability is
therefore an essential characteristic of BEA Tuxedo applications.

Y ou can build highly scalable BEA Tuxedo applications by:

m Adding parallel processing capability to enable the BEA Tuxedo domain to
process multiple client requests simultaneously.

m Sharing the processing load on the server applications across multiple machines.

BEA Tuxedo Scalability Features

BEA Tuxedo supports large-scal e application deployments by:

m  Optimizing object state management

1-2 Scaling, Distributing, and Tuning CORBA Applications



Using Object State Management

m Load balancing objects and requests across replicated server processes and
Sserver groups

m Using multithreaded servers, which are appropriate for certain types of
applications and processing environments

m For CORBA applications, using factory-based routing
m Using data-dependent routing (BEA Tuxedo ATMI only)

m  Multiplexing incoming client connections

Using Object State Management

Thistopic includes the following sections:

m CORBA Object State Models

m Implementing Statel ess and Stateful Objects
m Parallel Objects

Object state management isafundamental concern of large-scale client/server systems
becauseit is critical that such systems achieve optimized throughput and response
time. For more detailed information about using object state management, see“Using
a Stateless Object Model” on page 2-4 and the technical article Process-Entity Design
Pattern.

CORBA Object State Models

BEA Tuxedo CORBA supports three object state management models:
m  Method-bound Objects
m Process-bound Objects

m Transaction-bound Objects

Scaling, Distributing, and Tuning CORBA Applications 1-3



1

Scaling BEA Tuxedo CORBA Applications

For more information about these models, see “ Server Application Concepts’ in
Creating CORBA Server Applications

Method-bound Objects

M ethod-bound objects are |oaded into the machine’ s memory only for the duration of
the client invocation. When the invocation is complete, the object is deactivated and
any state data for that object is flushed from memory. In this document, a
method-bound object is considered to be a stateless object.

Y ou can use method-bound objects to create a statel ess server model in your
application. By using a stateless server model, you move requests that are already
directed to active objects to any available server, which allows concurrent execution
for thousands and even millions of objects. From the client application view, al the
objectsare availableto service requests. However, because the server application maps
objects into memory only for the duration of client invocations, few of the objects
managed by the server application are in memory at any given moment.

Process-bound Objects

Process-bound objects remain in memory beginning when they are first invoked until
the server process in which they are running is shut down. A process-bound object can
be activated upon a client invocation or explicitly before any client invocation (a
preactivated object). Applications can control the deactivation of process-bound
objects. In this document, a process-bound object is considered to be a stateful object.

When appropriate, process-bound objects with alarge amount of state datacan remain
inmemory to service multiple client invocations, thereby avoiding reading and writing
the object’ s state data on each client invocation.

Transaction-bound Objects

1-4

Transaction-bound objects can a so be considered stateful because, within the scope of
atransaction, they can remain in memory between invocations. If the object is
activated within the scope of atransaction, the object remains active until the
transaction is either committed or rolled back. If the object is activated outside the
scope of atransaction, its behavior isthe same asthat of a method-bound object (it is
loaded for the duration of the client invocation).

Scaling, Distributing, and Tuning CORBA Applications



Using Object State Management

Implementing Stateless and Stateful Objects

In general, application developers need to balance the costs of implementing stateless
objects against the costs of implementing stateful objects.

About Stateless and Stateful Objects

The decision to use statel ess or stateful objects depends on various factors. In the case
where the cost to initialize an object with its durable state is expensive—because, for
example, the object’ s data takes up agreat deal of space, or the durable stateislocated
on adisk very remote from the servant that activatesit—it may make senseto keep the
object stateful, even if the object is idle during a conversation. In the case where the
cost to keep an object active is expensive in terms of machine resource usage, it may
make sense to make such an object stateless.

By managing object statein away that is efficient and appropriate for your application,
you can maximize your application’ s ahility to support large numbers of simultaneous
client applications that use large numbers of objects. The way that you manage object
state depends on the specific characteristics and requirements of your application. For
CORBA applications, you manage object state by assigning the met hod activation
policy to these objects, which hasthe effect of deactivating idle object instances so that
machine resources can be allocated to other object instances.

When to Use Stateless Objects

Statel ess objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Using
statel ess objectsis agood approach to implementing server applications and are
particularly appropriate when:

m  The client application waits for user input between invocations on the object.

m The client request contains all the data needed by the server application, and the
server can process the client request using only that data.

m The object has high access rates, but low access rates from any one particular
client application.

Scaling, Distributing, and Tuning CORBA Applications 1-5



1 Scaling BEA Tuxedo CORBA Applications

By making an object stateless, you can generally assure that server application
resources are not being reserved unnecessarily while waiting for input from the client
application.

An application that employs a statel ess object model has the following characteristics:

Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

An incoming client request is sent to the first available server process. After the
reguest has been satisfied, the application state disappears and the server
application is available for another client application request.

Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

Successive requests on an object from a given client application may be
processed by a different server process.

The overall system performance of a machine that is running statel ess objectsis
usually enhanced.

When to Use Stateful Objects

A stateful object, once activated, remainsin memory until aspecific event occurs, such
asthe process in which the object exists is shut down, or the transaction in which the
object is activated is completed.

Using stateful objects is recommended when:

An object is used frequently by alarge number of client applications, such as
long-lived, well-known objects. When the server application keeps these objects
active, the client application typically experiences minimal responsetimein
accessing them. These active objects are shared by many client applications, and
therefore relatively few objects of this type exist in memory.

Note: Y ou should carefully consider how objects will potentially be involved in
atransaction. An object can be bound to a particular process temporarily
(transaction-bound) or permanently (process-bound). An object that is
involved in atransaction cannot be invoked by another client application
or object (BEA Tuxedo will likely return an error indicating that the object
isbusy). Stateful objectsthat are intended to be used by alarge number of

1-6 Scaling, Distributing, and Tuning CORBA Applications



Using Object State Management

client applications can create bottlenecks if they areinvolved in
transactions frequently or for long durations.

m A client application must invoke successive operations on an object to complete
atransaction, and the client application is not idle while it waits for user input
between invocations. If the object were deactivated between invocations, there
would be a degradation of response time because state would be written and read
between each invocation.

Stateful objects have the following behavior:

m State information is maintained between server invocations, and the object
typically remains dedicated to a given client application for a specified duration.
Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

m  When one or more stateful objects use alot of machine resources, server
performance for tasks and processes not associated with the stateful object may
be lower than with a stateless server model.

For example, if an object has alock on a database and is caching large amounts
of datain memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of a transaction.

Parallel Objects

Parallel objects are, by definition, stateless objects so they can exist concurrently on
more than one server. In release 8.0 of BEA Tuxedo, you can use the Implementation
Configuration File (ICF) to force al objectsin a specific implementation to be parallel
objects. The effect isto improve performance. For more information on parallel
objects, see “Using Parallel Objects’ on page 1-17.

Scaling, Distributing, and Tuning CORBA Applications 1-7



1

Scaling BEA Tuxedo CORBA Applications

Replicating Server Processes and Server
Groups

This topic includes the following sections:

m About Replicating Server Processes and Server Groups
m Configuration Options

m Replicating Server Processes

m Replicating Server Groups

For more detailed information about replicating server processes and server groups,
see the following topics:

m “Configuring Replicated Server Processes and Groups’ on page 4-4.

m “Scaling by Replicating Server Processes and Server Groups’ on page 2-5.

About Replicating Server Processes and Server Groups

1-8

The BEA Tuxedo CORBA environment allows CORBA objects to be deployed across
multiple serversto provide additiona failover reliability and to split the client’s
workload through load balancing. BEA Tuxedo CORBA load balancing is enabled by
default. For more information about configuring load balancing, see “Enabling
System-controlled Load Balancing” on page 4-4. For more information about
distributing the application workload using BEA Tuxedo CORBA features, see
Chapter 3, “Distributing CORBA Applications.”

The BEA Tuxedo architecture provides the following server organization:

m  Groups—individual servers can be combined to form a group. A group of
servers runs on a single machine. Typicaly, the serversin a group access
common resources (such as a database).

m Domains—machines can be combined to form a domain. A domain is
administered centrally. Multiple domains are administered separately. Domains

Scaling, Distributing, and Tuning CORBA Applications



Replicating Server Processes and Server Groups

can aso be interconnected and requests can be transparently routed from one
domain to another. However, each domain isindependently administered.

Thisarchitecture allows new servers, groups, or machines to be dynamically added or
removed, to adapt the application to high- or low-demand periods, or to accommodate
internal changes required to the application. The BEA Tuxedo run time provides load
balancing and failover by routing requests across available servers.

System administrators can scale a BEA Tuxedo application by:

m Replicating Server Processes. Increase the number of server processes to support
more active objects within a group and load balancing among servers.

m  Replicating Server Groups. Increase the number of server groups so that BEA
Tuxedo can balance the load by distributing processing requests across multiple
server machines.

Configuration Options

Y ou can configure server applications as:

m A single machine with one or more server processes implementing one or more
interfaces. The servers can be single-threaded or multithreaded.

m  Multiple machines with multiple server processes and multiple interfaces.

Y ou can add more parallel processing capability to client/server applications by
replicating server processes or add more threads. Y ou can add more server groups to
split processing across resource managers. For CORBA applications, you can
implement factory-based routing, as described in “Using Factory-based Routing
(CORBA Servers Only)” on page 1-14.

Replicating Server Processes

System administrators can scal e an application by replicating the servers to support
more concurrent active objects, or process more concurrent requests, on the server
node. To configure replicated server processes, see “Configuring Replicated Server
Processes and Groups’ on page 4-4.

Scaling, Distributing, and Tuning CORBA Applications 1-9



1 Scaling BEA Tuxedo CORBA Applications

Note: Release 8.0 of BEA Tuxedo supports the user-controlled concurrency model
for active objects. For a discussion of the concurrency policy feature, see
“Parallel Objects” on page 1-7.

Benefits

The benefits of using replicated server processes include:
m L oad balancing incoming requests.

m Processing client requests on any server within agroup. Asrequests arrive in the
BEA Tuxedo domain for the server group, BEA Tuxedo routes the request to the
least busy server process within that group.

m Improving the server application’s performance by using multiple server
processes. Instead of having one server process handling one client request at
one time, multiple server processes are available to handle multiple client
reguests simultaneously.

m Providing failover protection in the event that one of the server processes stops.

Guidelines

To achieve the maximum benefit of using replicated server processes, make sure that
the CORBA objects instantiated by your server application have unique object IDs.
This allows a client invocation on an object to cause the object to be instantiated on
demand, within the bounds of the number of server processesthat are available, and
not queued up for an already active object.

Y ou should also consider the trade-off between providing better application recovery
by using multiple processesversus more efficient performance using threads (for some
types of application patterns and processing environments).

Better failover occurs only when you add processes, not threads. For information about
using single-threaded and multithreaded servers, see “When to Use Multithreaded
CORBA Servers’ on page 1-12.

1-10  Scaling, Distributing, and Tuning CORBA Applications



Using Multithreaded Servers

Replicating Server Groups

Server groups are unique to BEA Tuxedo and are key to the scalability features of BEA
Tuxedo. A group contains one or more serverson asingle node. System administrators
can scaleaBEA Tuxedo application by replicating server groups and configuring load
balancing within adomain.

Replicating a server group involves defining another server group with the same type
of servers and resource managers to provide parallel access to a shared resource (such
as adatabase). CORBA applications, for example, can use factory-based routing to
split processing across the database partitions.

The UBBCONFI G file specifies how server groups are configured and where they run.
By using multiple server groups, BEA Tuxedo can:

m  Spread the processing load for a given application or set of applications across
additional machines.

m For CORBA applications, use factory-based routing to send one set of requests
on agiven interface to one group, and another set of requests on the same
interface to another group.

To configure replicated server groups, see “Configuring Replicated Server Processes
and Groups’ on page 4-4.

Using Multithreaded Servers

Thistopic includes the following sections:

m  About Multithreaded CORBA Servers

m  When to Use Multithreaded CORBA Servers
m Coding Recommendations

m Configuring a Multithreaded CORBA Server

For instructions on how to configure servers for multithreading, see “Configuring
Multithreaded Servers’ on page 4-6.

Scaling, Distributing, and Tuning CORBA Applications  1-11



1

Scaling BEA Tuxedo CORBA Applications

About Multithreaded CORBA Servers

System administrators can scale aBEA Tuxedo application by enabling multithreading
in CORBA servers, and by tuning configuration parameters (the maximum number of
server threads that can be created) in the application’s UBBCONFI Gfile.

BEA Tuxedo CORBA supports the ability to configure multithreaded CORBA
applications. A multithreaded CORBA server can service multiple object requests
simultaneously, while a single-threaded CORBA server runs only onerequest at a
time.

Server threads are started and managed by the BEA Tuxedo CORBA software rather
than an application program. Internally, BEA Tuxedo CORBA manages a pool of
available server threads. If a CORBA server is configured to be multithreaded, then
when aclient request is received, an available server thread from the thread pool is
scheduled to execute the request. While the object is active, the thread is busy. When
the request is complete, the thread is returned to the pool of available threads.

When to Use Multithreaded CORBA Servers

1-12

Designing an application to use multiple, independent threads provides concurrency
within an application and can improve overall throughput. Using multiple threads
enables applications to be structured efficiently with threads servicing several
independent tasks in parallel. Multithreading is particularly useful when:

m Thereisaset of lengthy operations that do not necessarily depend on other
processing.

m Theamount of datato be shared is small and identifiable.
m You can break the task into various activities that can be executed in parallel.
m There are occasions where objects must be reentrant.

Some computer operations take a substantial amount of time to complete. A
multithreaded application design can significantly reduce the wait time between the
reguest and completion of operations. Thisistrue in situations when operations
perform alarge number of 1/0O operations such aswhen accessing a database, invoking

Scaling, Distributing, and Tuning CORBA Applications



Using Multithreaded Servers

operations on remote objects, or are CPU-bound on a multiprocessor machine.
Implementing multithreading in a server process can increase the number of requests
a server processes in afixed amount of time.

The primary requirement for multithreaded server applicationsis the simultaneous
handling of multiple client requests. For more information on the requirements and
benefits of using multithreaded servers, see Creating CORBA Server Applications.

Coding Recommendations

So asto be able to anayze the performance of multithreaded servers, include one of
the following identifiers in each message if your client or server application sends
messages to the user log (ULOG):

e Object ID
e Transaction ID (if the object is transactional)

Configuring a Multithreaded CORBA Server

To configure amultithreaded CORBA server, you change settingsin the application’s
UBBCONFI Gfile. For information about defining the UBBCONFI G parameters to

implement a multithreaded server, see “ Configuring Multithreaded Servers’ on page
4-6.

Scaling, Distributing, and Tuning CORBA Applications  1-13



1

Scaling BEA Tuxedo CORBA Applications

Using Factory-based Routing (CORBA
Servers Only)

This topic includes the following sections:

m  About Factory-based Routing

m How Factory-based |s Implemented

m Configuring Factory-based Routing in the UBBCONFIG File

Thistopic introducesfactory-based routing in BEA Tuxedo CORBA applications. For
more detailed information about using factory-based routing, see “Configuring
Factory-based Routing in the UBBCONFIG Fil€” on page 2-12.

About Factory-based Routing

1-14

Factory-based routing enables you to a specify what server group isassociated with an
object reference. As aresult, you can define the group and machine in which a given
object isinstantiated and then distribute the processing load for a given application
across multiple machines.

With factory-based routing, routing is performed when afactory creates an object
reference. The factory specifies field information in its call to the BEA Tuxedo
CORBA TP Framework to create an object reference. The TP Framework executes the
routing algorithm based on the routing criteriathat is defined in the ROUTI NG section
of an application’ s UBBCONFI Gfile. The resulting object reference has, asitstarget, an
appropriate server group for the handling of method invocations on the object
reference. Any server that implements the interface in that server group is eligible to
activate the servant for the object reference.

Thus, the activation of CORBA objects can be distributed by server group based on the
defined criteria and different implementations of CORBA interfaces can be supplied
in different groups. So you can replicate the same CORBA interface across multiple
server groups, based on defined, group-specific differences.

Scaling, Distributing, and Tuning CORBA Applications



Using Factory-based Routing (CORBA Servers Only)

The primary benefit of factory-based routing isthat it providesasimple meansto scale
an application, and invocations on a given interface in particular, across a growing
deployment environment. Distributing the deployment of an application across
additional machinesis strictly an administrative function that does not require you to
recode or rebuild the application.

Characteristics of Factory-based Routing

Factory-based routing has the following characteristics:

m The factory object implementation can indirectly control the location of the
created CORBA object by supplying application-specific routing information.

m  Animplementation of a particular CORBA interface can exist in more than one
server process, as shown in “Configuring Factory-based Routing in the
UBBCONFIG File" on page 2-12.

m  Multiple CORBA interfaces can reside in a single server group.

m All server processesin a particular server group do not need to use the same
CORBA interfaces.

m All object instances that offer a given interface within a group must support the
same version of the implementation.

m Routing uses the bulletin board criteria and occursin aserver call.

How Factory-based Is Implemented

To implement factory-based routing, you must change the way your factories create
object references. First, you must coordinate with the system designer to determine the
fields and valuesto be used as the basisfor routing. Then, for each interface, you must
configure factory-based routing such that the interface definition for the factory
specifies the parameter that representsthe routing criteriathat i s used to determine the
group ID.

To configure factory-based routing, define the following information in the
UBBCONFI Gfile:

Scaling, Distributing, and Tuning CORBA Applications  1-15



1

Scaling BEA Tuxedo CORBA Applications

Routing criteriaidentifier for a CORBA interface in the | NTERFACES section.

As many server groups as are required for distributing the system in the GROUPS
section.

Routing criteriain the ROUTI NG section.

Groups, machines, and databases as required.

Notes: When implementing factory-baed routing, remember that an object with a

given interface and OID can be simultaneously active in two different groups
if those two groups both contain the same object implementation. This can be
avoided if your factories generate unique OIDs. To guarantee that only one
object instance of agiven interface name and OID isavailable at any onetime
in your domain, you must either:

m  Usefactory-based routing to ensure that objects with a particular OID
are always routed to the same group, or

= Configure your domain so that a given object implementationisin only
one group.

If multiple clients have an object reference that contains a given interface
name and OID, thereference will always be routed to the same object instance.

Thereafter, the object referencewill contain additional information that is used
to provide an indication of where the target server exists. Factory-based
routing is performed once per CORBA object, when the object referenceis
created.

Configuring Factory-based Routing in the UBBCONFIG
File

1-16

Routing criteria specify the data values used to route requests to a particular server
group. To configure factory-based routing, you define routing criteriain the ROUTI NG
section of the UBBCONFI G file (for each interface for which requests are routed). For
more detailed information about configuring factory-based routing, see “ Configuring
Factory-based Routing in the UBBCONFIG Fil€” on page 2-12.

Scaling, Distributing, and Tuning CORBA Applications



Using Parallel Objects

To configure factory-based routing across multiple domains, you must also configure
thefactory_finder.ini filetoidentify factory objectsthat are used in the current
(local) domain but that are resident in a different (remote) domain. For more
information, see “ Configuring Multiple Domains for CORBA Applications’ in the
Using the BEA Tuxedo Domains Component.

Using Parallel Objects

Thistopic includes the following sections:
m  About Parallel Objects

m Configuring Parallel Objects

About Parallel Objects

Support for parallel objects has been added in release 8.0 of BEA Tuxedo asa
performance enhancement. The parallel objects feature enables you to designate all
business objectsin particular application as stateless objects. The effect isthat, unlike
stateful business objects, which can only run on one server in asingle domain, stateless
business objects can run on all serversin asingle domain. Thus, the benefits of parallel
objects are as follows:

Note: You enable the parallel objects feature by setting the concurrency policy
option to user _cont rol | ed in the ICF file. For more information, see
“Configuring Parallel Objects’ on page 1-20.

m Parallel objects, which are stateless, can run on multiple servers in the same
domain at the same time. The resulting utilization of all serversto service
concurrent multiple requests improves performance.

m  When BEA Tuxedo services requests to parallel business objects, it always |ooks
for an available server to thelocal machinefirst. If all servers on the local
machine are busy processing the requested business object, BEA Tuxedo looks
for an available server on other machinesin the local domain. Thus, if there are

Scaling, Distributing, and Tuning CORBA Applications  1-17



1

Scaling BEA Tuxedo CORBA Applications

1-18

multiple servers on the local machine, network traffic is reduced and
performance isimproved.

Asillustrated in Figure 1-1, if a stateful business object is active on a server on
Machine 2, all subsequent requests to that business object will be sent to Group 2 on
Machine 2. If the active object on Machine 2 is busy processing another request, the
reguest isqueued. Even after the busi ness object stops processing requests on Machine
2, all subseguent requests on that stateful business object will still be sent to Group 2.
After the object isdeactivated on Machine 2, subsequent requestswill be sent to Group
2 on Machine 2 and can be processed by other serversin Group 2.

Figure1-1 Using Stateful Business Objects

Machine 1
Group 1
R3 .
R2
E] P
\ Machine 2

Group 2
If Parallel Objects are

not used and a business
objectis activeon a
serverin Group 2, all
subsequent requests on
that business object will
be sent to the same
single sever in Group 2

Scaling, Distributing, and Tuning CORBA Applications



Using Parallel Objects

Asillustrated in Figure 1-2, if aparallel object isrunning on all the serversin Group 1
on Machine 1 (multiple instances of stateless, user-controlled business objects can run
on multiple servers at the same time), subsequent requests to that business object will
be sent to Machine 2 and distributed to the serversin Group 2 until a server becomes
availablein Group 1. Aslong as there is a server available on the local machine,
requests will be distributed to the servers on Machine 1, unless the BEA Tuxedo
load-balancing feature determines that, due to loads on the servers, the request should
be serviced by a server in Group 2. To make this determination, the load-balancing
feature uses the LOAD parameter, which is set in the | NTERFACES section of the

Figure1-2 Using Stateless Business Objects

Machine 1

Group 1
- . .
R4

\ \ Machine 2

If Parallel Objects are used

Group 2
and a business objectis
busy on all servers on
Machine 1, subsequent
requests on that business

object will be distributed
to servers in Machine 2
until servers in Machine 1
become available.

Scaling, Distributing, and Tuning CORBA Applications  1-19



1

Scaling BEA Tuxedo CORBA Applications

UBBCONFI Gfile. For information on the LQAD parameter, see “Modifying the
INTERFACES Section” on page 3-11.

Configuring Parallel Objects

Support for parallel objectswas added to BEA Tuxedo inrelease 8.0. Y ou usethe ICF
file to implement parallel objects for a particular CORBA application. The ICF
includes a user-controlled concurrency policy option that sets all business objects
implemented in the application, to which the ICF file applies, to stateless objects.

The concurrency policy determines whether the Active Object Map (AOM) isused to
guarantee that an object is activein only one server at any onetime. In previous
releases, use of the AOM was mandatory, not optional. Use of the AOM isreferred to
as system-controlled concurrency. Unlike the system-controlled concurrency model,
the user-controlled model, which does not use the AOM, allows the same object to be
activein morethan oneserver at atime. Thus, user-controlled concurrency can be used
to improve performance and load balancing. For more information about configuring
user-controlled concurrency for parallel objects, see “Parallel Objects’ inthe CORBA
Programming Reference.

Multiplexing Incoming Client Connections

1-20

This topic includes the following sections:
m ||OP Listener and Handler
m Increasing the Number of ISH Processes

System administrators can scale a BEA Tuxedo application by increasing, in the
UBBCONFI Gfile, the number of incoming client connections that an application site
supports. BEA Tuxedo provides a multicontexted, multistated gateway of
listener/handlers to handle the multiplexing of all the requestsissued by the client.

Scaling, Distributing, and Tuning CORBA Applications



Multiplexing Incoming Client Connections

[IOP Listener and Handler

The I1OP Listener (ISL) enables access to BEA Tuxedo CORBA objects by remote
BEA Tuxedo CORBA clientsthat use [IOP. ThelSL isaprocessthat listensfor remote
CORBA clientsrequesting I1OP connections. ThellOP Handler (1SH) isamultiplexor
process that acts as a surrogate on behalf of the remote CORBA client. Both the ISL
and ISH run on the application site. An application site can have one or more I SL
processes and multiple associated | SH processes. Each ISH is associated with asingle
ISL.

The client connects to the ISL process using a known network address. The I SL
balancestheload among | SH processes by selecting the best available | SH and passing
the connection directly to it. The ISL/ISH manages the context on behalf of the
application client. For moreinformation about 1SL and | SH, see the description of I SL
in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

Increasing the Number of ISH Processes

System administrators can scale aBEA Tuxedo CORBA application by increasing the
number of ISH processes on an application site, thereby enabling the ISL to load
balance among more ISH processes. By default, an ISH can handle up to 10 client
connections. To increase this number, pass the optional CLOPT -x npx- f act or
parameter to the ISL command, specifying in npx- f act or the number of ISH client
connections each | SH can handle (up to 4096), and therefore the degree of
multiplexing, for the ISH. Increasing the number of ISH processes may affect
application performance as the application site services more concurrent processes.

System administrators can tune other | SH options as well to scale BEA Tuxedo
applications. For more information, see the description of ISL in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Scaling, Distributing, and Tuning CORBA Applications  1-21



1 Scaling BEA Tuxedo CORBA Applications

1-22  Scaling, Distributing, and Tuning CORBA Applications



CHAPTER

2

Scaling CORBA Server
Applications

Thistopic includes the following sections:

About Scaling the Production Sample Application
Changing the OMG IDL

Using a Statel ess Object Model

Scaling by Replicating Server Processes and Server Groups
Scaling with Factory-based Routing

Additional Design Considerations

Scaling the Application Further

Using the Production sample application as an example, this topic demonstrates
scaling an CORBA C++ application to increase its processing capability. Before you
begin, be sure to read:

m Chapter 1, “Scaling BEA Tuxedo CORBA Applications,” for a comprehensive

introduction to tuning and scaling BEA Tuxedo CORBA applications.

Production Sample Application in the BEA Tuxedo online documentation.

Scaling, Distributing, and Tuning CORBA Applications

2-1



2 Scaling CORBA Server Applications

About Scaling the Production Sample
Application

The Production sample application provides the same end-user functionality as the
Wrapper sample application. The Production sample application demonstrates how to
use features of the BEA Tuxedo software to scale an existing BEA Tuxedo application.

This section includes the following topics:
m Design Goals
m How the Application Has Been Scaled

Design Goals

The primary design goal of the Production sample application is to significantly
increase the number of client applications it can accommodate by:

m Processing, in parallel and on one machine, client requests on multiple objects
that implement the same interface.

m Directing requests on behalf of certain studentsto one machine, and other
students to other machines.

m Adding more machinesto share the processing load.

How the Application Has Been Scaled

To accommodate these design goal s, the Production sample application has been
scaled by:

m Implementing a stateless object model to scale up the number of client requests
the server process can manage simultaneously.

2-2 Scaling, Distributing, and Tuning CORBA Applications



About Scaling the Production Sample Application

m Replicating the University, Billing, and BEA Tuxedo Teller Application server
processes within the groups in which they are configured (the ORA_GRP and
APP_GRP server groups defined in the UBBCONFI Gfile).

m Replicating the ORA_GRP and APP_GRP server groups on an additional server
machine, Production Machine 2, and also partitioning the database.

m Assigning unigque object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups.

Regi strarFactory
Regi strar
Tel l erFactory

Tel |l er

This makes these objects available on a per-client application (and not
per-process) basis, thereby accommodating a parallel processing capability.

m Implementing factory-based routing to direct client requests on behalf of some
students to one machine, and other students to another machine.

Note: To make the Production sample application easy to use, this application is

configured on the BEA Tuxedo softwarekit to run on one machine, using one
database. The examples shown in this chapter, however, show running this
application on two machines using two databases.

The Production sample application is designed so that it can be configured to
run on several machines and to use multiple databases. Changing the
configuration to multiple machines and databases involves modifying the
UBBCONFI Gfile and partitioning the databases, which is described in “ Scaling
the Application Further” on page 2-22.

The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meet its scalability goals.

Scaling, Distributing, and Tuning CORBA Applications 2-3



2

Scaling CORBA Server Applications

Changing the OMG IDL

The only OMG IDL changes for the Production sample application are limited to the
find_registrar() andfind_teller() operationson, respectively, the

Regi strar Fact ory and Tel | er Fact or y objects. These two operations need to be
modified to require, respectively, astudent ID and account number, which are needed
to implement factory-based routing. See “ Scaling with Factory-based Routing” on
page 2-11 to read about how the Production sample application implements and uses
factory-based routing.

Using a Stateless Object Model

2-4

This section describes how object state management is used with the Regi strar and
Tel | er objectsin the Production sample applications to increase the application’s
scalability. For an introduction to object state management, see “ Using Object State
Management” on page 1-3.

To increase scalability, the Regi st rar and Tel | er objects are configured in the
Production server application with the met hod activation policy. The net hod
activation policy assigned to these two objects results in the following behavior
changes:

m  Whenever these objects are invoked, they are instantiated by the BEA Tuxedo
domain in the appropriate server group.

m After theinvocation is complete, the BEA Tuxedo domain deactivates these
objects.

With the Basic through the Wrapper sample applications, the Regi st r ar object was
process-bound (pr ocess activation policy). All client requests on the Regi st r ar
object invariably went to the same object instance in the memory of the server
machine. The Basic sample application design may be adequate for a small-scale
deployment. However, as client application demands increase, client requests on the
Regi st rar object eventually become queued, and response time drops.

Scaling, Distributing, and Tuning CORBA Applications



Scaling by Replicating Server Processes and Server Groups

However, when the Regi st rar and Tel | er objects are stateless (net hod activation
policy), and the server processes that manage these objects are replicated, the

Regi strar and Tel | er objects can process multiple client requestsin parallel. The
only constraint on the number of simultaneous client requests that these objects can
handle isthe number of server processes that are available that can instantiate the
Regi strar and Tel | er objects. These statel ess objects, thereby, make for more
efficient use of machine resources and reduced client response time.

Most importantly, so that BEA Tuxedo CORBA can instantiate copies of the

Regi strar and Tel | er objectsin each of the replicated server processes, each copy
of these objects must be unique. To make each instance of these objects unique, the
factories for those objects must assign unique object I Ds to them.

For the BEA Tuxedo application to instantiate copies of the Regi strar and Tel | er
objectsin each of the replicated server application processes, each copy of the

Regi strar and Tel | er objects have an unique object ID (OID). The factories that
create these objects are responsible for assigning them unique OIDs. For information
about generating unique object 1Ds, see Creating CORBA Server Applications. For
more information about other design considerations, see “Additional Design
Considerations” on page 2-17.

Scaling by Replicating Server Processes and
Server Groups

Thistopic includes the following sections:
m  Replicating Server Processes in the Production Application
m Replicating Server Groups in the Production Application

m Configuring Replicated Server Processes and Groups in the Production
Application

Thistopic describes how the Production sample application was scaled by replicating
server processes and server groups. For an introduction to this topic, see “Replicating
Server Processes and Server Groups’ on page 1-8.

Scaling, Distributing, and Tuning CORBA Applications 2-5



2 Scaling CORBA Server Applications

Replicating Server Processes in the Production
Application

This section describes how the Production sample application replicates server
applications. For an introduction to thisfeature, see“Replicating Server Processes’ on
page 1-9.

Figure 2-1 shows the replicated ORA_GRP and APP_GRP groups running on asingle
machine.

m TheUniversity server application, BEA Tuxedo Teller Application, and Oracle?
TMS server processes are replicated within the ORA_GRP group.

m TheBilling server process is replicated within the APP_GRP group.

2-6 Scaling, Distributing, and Tuning CORBA Applications



Scaling by Replicating Server Processes and Server Groups

Figure2-1 Replicated Server Groupsin the Production Sample

Production Machine

ORA_GRP \ ' APP_GRP

University Server =\ Billing Server

RegistrarFactory \

Registrar

—_

CourseSynopsis \
Enumerator II \

|
|
|
|
|
|
\ |
|
|
|
|
|
I

BEA TUXEDO \

Teller Application \
debit()

Database credit) \

current_balance() \

o

Oracle7
Database Server

When arequest arrives for either of these groups, the BEA Tuxedo domain has several

server processes avail able that can process the request, and the BEA Tuxedo domain
can choose the server process that is the least busy.

In Figure 2-1, note the following points:

m At any time, there may be no more than one instance of the Regi st r ar Fact ory,
Regi strar, Tel | er Factory, or Tel | er objectswithin a given server process.

m  There may be any number of Cour seSynopsi sEnumer at or objectsin any
University server process.

Scaling, Distributing, and Tuning CORBA Applications 2-7



2 Scaling CORBA Server Applications

Replicating Server Groups in the Production Application

This section describes how the Production sample application replicates server groups.
For an introduction to this feature, see “Replicating Server Groups’ on page 1-11.

Figure 2-2 shows the Production sample application groups replicated on another
machine, as specified in the application’s UBBCONFI Gfile, as ORA_GRP2 and
APP_GRP2.

Figure2-2 Replicating Server GroupsAcross Machines

Production Machine 1 Production Machine 2
r ORA_GRP1 I |r APP GRP1 : |r ORA_GRP2 I |r APP GRP2 :
I _ I _
| | | I | | |
University | l I l University | l I
Server | | | Billing Server | | Server | | | Billing Server |
A | | !
- || | | = || |
|| | I || |
|| | I || |
| | | I | | |
Databasel | | —— — ———— — | Database2 | | —— — — — — ——

BEA TUXEDO
Teller

BEA TUXEDO
Teller

Oracle7
Database
Server

Oracle7
Database
Server

I I
I I
I I
I I
I I
Application | Application |
I I
I I
I I
I I
I I
I I

In Figure 2-2, the only difference between the content of the groups on Production
Machines 1 and 2 is the database:

m  Thedatabase on Production Machine 1 contains student and account information
for students with IDs between 100001 and 100005.

2-8 Scaling, Distributing, and Tuning CORBA Applications



Scaling by Replicating Server Processes and Server Groups

m The database on Production Machine 2 contains student and account information
for students with IDs between 100006 and 100010.

Note: The course information table in both databases is identical.

Note that the student information in a given database may be completely unrelated to
the account information in the same database.

For moreinformation about how the Production sampl e application uses factory-based
routing to distribute the application’ s processing load across multiple machines, see
“Scaling with Factory-based Routing” on page 2-11.

Configuring Replicated Server Processes and Groups in
the Production Application

Listing 2-1 shows excerpts from the GROUPS and SERVERS sections of the UBBCONFI G
file for the Production sample application.

Listing 2-1 GROUPS and SERVERS Sectionsin a UBBCONFIG File

* GROUPS
APP_GRP1
LM D
GRPNO
TIVENANE
APP_GRP2
LM D
GRPNO
TIVENANE
ORA_GRP1
LM D
GRPNO
CPENI NFO
CLOSE! NFO
TIVENANE
ORA_GRP2
LM D
GRPNO
CPENI NFO
CLOSE! NFO

SI TE1
2
T™MS

SI TE1
3
T™S

S| TE1
4
"ORACLE_XA: Oracl e_XA+Acc=P/scott/..."

"TVB_ORA"
SI TE1

5
"ORACLE_XA: Oracl e_XA+Acc=P/scott/..."

Scaling, Distributing, and Tuning CORBA Applications

2-9



2 Scaling CORBA Server Applications

TVMBNAME = "TMs_ORA"

* SERVERS
# By default, activate 2 instances of each server
# and all ow the admnistrator to activate up to 5
# instances of each server

DEFAULT:
M N =2
MAX =5

tell p_server
SRVGRP = ORA_GRP1
SRVID =10
RESTART = N

tell p_server
SRVGRP = ORA_GRP2
SRVID =10
RESTART = N

bi Il p_server
SRVGRP = APP_GRP1
SRVID =10
RESTART = N

bi Il p_server
SRVGRP = APP_GRP2
SRVID =10
RESTART = N

uni vp_server
SRVGRP = ORA_GRP1
SRVID = 20
RESTART = N

uni vp_server
SRVGRP = ORA_GRP2
SRVID = 20
RESTART = N

2-10  Scaling, Distributing, and Tuning CORBA Applications



Scaling with Factory-based Routing

Scaling with Factory-based Routing

Thistopic includes the following sections:

m  About Factory-based Routing in the Production Application
m Configuring Factory-based Routing in the UBBCONFIG File
m Implementing Factory-based Routing in a Factory

m What Happens at Run Time

Thistopic describes how the Production sample application was scaled using
factory-based routing. For an introduction to factory-based routing, see “Using
Factory-based Routing (CORBA Servers Only)” on page 1-14.

About Factory-based Routing in the Production
Application

This section describes how the Production sample application uses a factory-based
routing. For an introduction to thisfeature, see “ Using Factory-based Routing
(CORBA Servers Only)” on page 1-14.

Y ou can use factory-based routing to expand the load-balancing and scalability
features of BEA Tuxedo CORBA. In the Production sample application, you can use
factory-based routing to send requests to register one subset of studentsto one
machine, and requests for another subset of students to another machine. As you
increase your application’s processing capability, you can easily modify the
factory-based routing in your application to add more machines.

The primary design consideration regarding implementing factory-based routing in the
Production sample application isin choosing the value on which routing is based. The
Production sample application uses factory-based routing in the following ways:

m Requests from client applications to the Regi st r ar object are routed based on
the student ID. Requests from student ID 100001 to 100005 go to Production
Machine 1. Requests from student ID 100006 to 100010 go to Production
Machine 2.

Scaling, Distributing, and Tuning CORBA Applications  2-11



2 Scaling CORBA Server Applications

m Requests from the Regi st r ar object tothe Tel | er object are routed based on
account number. Billing requests for account 200010 to 200014 go to
Production Machine 1. Billing requests for account 200015 to 200019 go to
Production Machine 2.

Configuring Factory-based Routing in the UBBCONFIG
File

The University Production sample application demonstrates how to implement
factory-based routing. The | NTERFACES, ROUTI NG, and GROUPS sections from the
ubb_b. nt configuration file show how you can implement factory-based routing in a
BEA Tuxedo CORBA application. Y ou can find the ubb_p. nt or ubb_p. mk
UBBCONFI Gfilesfor this sample in the directory where the BEA Tuxedo software is
installed (see the\ sanpl es\ cor ba\ uni ver si t y\ product i on subdirectory).

The UBBCONFI Gfile must specify the following datain thel NTERFACES and ROUTI NG
sections, aswell as how groups and machines are identified.

1. Thel NTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies the kinds of
criteriaon which the interface routes. This section specifiesthe routing criteriavia
an identifier, FACTORYROUTI NG as shown in Listing 2-2.

Listing 2-2 INTERFACES Section of a UBBCONFIG File

| NTERFACES
"I DL: beasys. conif Uni versi tyP/ Regi strar:1.0"
FACTORYROUTI NG = STU I D
"| DL: beasys. conl Bil lingP/ Teller:1.0"
FACTORYROUTI NG = ACT_NUM

Listing 2-2 showsthe fully qualified interface names for the two interfacesin the
Production sample in which factory-based routing is used. The

FACTORYROUTI NG identifier specifies the names of the routing values, which are
STU_I Dand ACT_NUM respectively.

2-12  Scaling, Distributing, and Tuning CORBA Applications



Scaling with Factory-based Routing

2. The ROUTI NG section specifies the parameters in Table 2-1 for each routing value.

Table 2-1 Parameters Specified in the ROUTING Section

Parameter Description

TYPE Specifies the type of routing. In the Production sample, the type of
routing is factory-based routing. Therefore, this parameter is defined as
FACTCRY.

FI ELD Specifies the variable name that the factory insertsin the routing va ue.

In the Production sample, the field parameters are st udent _i d and
account _nunber, respectively.

FI ELDTYPE Specifies the data type of the routing value. In the Production sample,
the field typesfor st udent _i d and account _nunber arel ong.

RANGES Specifies the values that are routed to each group.

Listing 2-3 shows the ROUTI NG section of the UBBCONFI Gfile used in the
Production sample application.

Listing 2-3 ROUTING Section of the UBBCONFIG File

ROUTI NG
STU ID
FI ELD = "student _id"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "100001- 100005: ORA_GRP1, 100006- 100010: ORA_GRP2"
ACT_NUM
FI ELD = "account _nunber"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "200010- 200014: APP_GRP1, 200015- 200019: APP_GRP2"

Listing 2-3 shows that Regi st r ar object references for students with IDsin one
range are routed to one server group, and Regi st r ar object references for
students with IDs in another range are routed to another group. Likewise,

Tel | er object references for accounts in one range are routed to one server

Scaling, Distributing, and Tuning CORBA Applications  2-13



2 Scaling CORBA Server Applications

group, and Tel | er object references for accounts in another range are routed to
another group.

The groups specified by the RANGES identifier in the ROUTI NG section of the
UBBCONFI Gfile need to be identified and configured. For example, the
Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GRP1, and
ORA_GRP2. These groups need to be configured, and the machines on which they
run need to be identified.

Listing 2-4 shows the GROUPS section of the Production sample UBBCONFI Gfile,
in which the ORA_GRP1 and ORA_GRP2 groups are configured. Notice how the
names in the GROUPS section match the group names specified in the RANGES
parameter in the ROUTI NG section. Thisiscritical for factory-based routing to
work correctly. Furthermore, any change in the way groups are configured in an
application must be reflected in the ROUTI NG section. (Note that the Production
sample packaged with the BEA Tuxedo software is configured to run entirely on
one machine. However, you can easily configure this application to run on
multiple machines.)

Listing 2-4 GROUPS Section of a UBBCONFIG File

* GROUPS
APP_CRP1
LM D = SITEL
GRPNO =2
TMSNAME = TMB
APP_CRP2
LM D = SITEL
GRPNO =3
TMSNAME = TMB
ORA_GRP1
LM D = SITEL
GRPNO =4
OPENI NFO =
"ORACLE_XA: O acl e_XA+Acc=P/ scott/ti ger +SesTm=100+LogDi r =. +MaxCur =5"
CLCSEI NFO = ""
TVMSNAME = "TMS_ORA"
ORA_GRP2
LM D = SITEL
GRPNO =5
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/ scott/tiger+SesTnmr100+LogD r =. +MaxCur =5"
CLCSEI NFO = ""
TVMSNAME = "TMS_ORA"

2-14  Scaling, Distributing, and Tuning CORBA Applications



Scaling with Factory-based Routing

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing in the way the invocation to the
TP: : create_obj ect _ref erence() operation isimplemented. This operation has
the C++ binding in Listing 2-5.

Listing 2-5 C++ Binding for create_object_reference

CORBA: : Cbj ect _ptr TP::create_object_reference (
const char* interfaceNane,
const Portabl eServer::oid &stroid,
CORBA: : N\VIist_ptr criteria);

Thethird parameter to this operation, cri t eri a, specifiesalist of named valuesto be
used for factory-based routing. To implement factory-based routing in afactory, you
needto buildtheNw i st . The use of factory-based routing isoptional and isdependent
on this argument. Instead of using factory-based routing, you can pass a value of 0
(zero) for this argument.

As stated previoudly, the Regi st r ar Fact or y object in the Production sample
application specifiesthe value STU_I D. This value must exactly match the following
information in the UBBCONFI Gfile:

m Therouting name, type, and allowable values specified by the FACTORYROUTI NG
identifier in the | NTERFACES section.

m Therouting criterianame, field, and field type specified in the ROUTI NG section.
The Regi st rar Fact or y object insertsthe student ID into the NVI i st using the code
shown in Listing 2-6.

Listing 2-6 NVlist in the Registrar Factory Object

/1 put the student id (which is the routing criteria)
/1 into a CORBA NVList:

CORBA: : NVLi st _var v_criteria;

TP::orb()->create list(1l, v_criteria.out());
CORBA: : Any any;

Scaling, Distributing, and Tuning CORBA Applications  2-15



2 Scaling CORBA Server Applications

any <<= (CORBA::Long)student;
v_criteria->add_val ue("student _id", any, 0);

The Regi st rar Fact ory object hasthe invocation to the
TP: : creat e_obj ect _r ef er ence() operation, shown in Listing 2-7, passing the
NVl i st created in Listing 2-6.

Listing 2-7 Invoking create object_referencein the RegistrarFactory Object

/1l create the registrar object reference using
/1 the routing criteria :
CORBA: : Obj ect _var v_reg_oref =
TP:: creat e_obj ect _reference(
UniversityP:: tc _Registrar->id(),
obj ect _id,
v_criteria.in()

The Production sample application also uses factory-based routing in the
Tel | er Fact ory object to determine the group in which Tel | er objects should be
instantiated based on an account number.

What Happens at Run Time

When you implement factory-based routing in a factory, BEA Tuxedo CORBA
generates an object reference. Thefollowing example showshow the client application
gets an object referenceto aRegi st rar object when factory-based routing is
implemented.

1. Theclient application invokes the Regi st r ar Fact or y object, requesting a
reference to aRegi st rar object. The request includes a student ID.

2. TheRegi strar Fact ory insertsthe student ID into an Nv1 i st , which is used as
the routing criteria.

2-16  Scaling, Distributing, and Tuning CORBA Applications



Additional Design Considerations

3. TheRegi strarFactory invokesthe TP: : creat e_obj ect _ref erence()

operation, passing the Regi st r ar interface name, a unique OID, and the
NVIist.

4. BEA Tuxedo CORBA compares the contents of the routing tables with the value
inthe NVl i st to determine agroup ID.

5. BEA Tuxedo CORBA inserts information about the group into the object
reference.

When the client application subsequently invokes an object using the object reference,
BEA Tuxedo CORBA routes the request to the group specified in the object reference.

Note: If you usethe process-entity design pattern, you should use cautionin how you
implement factory-based routing. The object can service only those entities
that are contained in the group’s database.

Additional Design Considerations

Thistopic includes the following sections:

m About the Additional Design Considerations

m Instantiating the Registrar and Teller Objects

m Ensuring That Student Registration Occurs in the Correct Server Group

m Ensuring That the Teller Object Is Instantiated in the Correct Server Group

About the Additional Design Considerations

When designing the Regi st rar and Tel | er objects, you should ensure that:

m TheRegistrar and Tel | er objectswork properly for the Production
deployment environment; namely, across multiple replicated server processes
and multiple groups. Given that the University and Billing server processes are
replicated, the design must consider how these two objects should be
instantiated.

Scaling, Distributing, and Tuning CORBA Applications  2-17



Scaling CORBA Server Applications

m Client requestsfor registration and billing operations for a given student go to
the correct server group, given that the two server groups in the Production BEA
Tuxedo domain each dea with different databases.

These objects must have unique object IDs (Ol Ds) and must be method-bound (that is,
they must have the met hod activation policy assigned to them).

Instantiating the Registrar and Teller Objects

2-18

In the University server applications that are less sophisticated than the Production
sample application, the run-time behavior of the Regi strar and Tel | er objectswas
simpler:

m Each object was process-bound, meaning that each was activated the first time it
was invoked, and it stayed in memory until the server process in which it ran
was shut down.

m  Since there was only one server group running in the BEA Tuxedo domain, and
only one University and Billing server process in the group, al client requests
were directed to the same objects. As multiple client requests arrived in the BEA
Tuxedo domain, these objects each processed one client request at one time.

m Because there was only one instance of each object in the server processesin
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, because the University and Billing server processes are now replicated,
BEA Tuxedo CORBA must be able to differentiate among multiple instances of the
Regi strar and Tel | er objects. For example, if there are two University server
processes running in agroup, BEA Tuxedo CORBA must have ameansto distinguish
between the Regi st r ar object running in the first University server process and the
Regi st rar object running in the second University server process. To distinguish
multiple instances of these objects, each object instance must be unique.

To make each Regi strar and Tel | er object unique, the factories for those objects
must change the way in which they make object referencesto them. For example, when
the Regi st r ar Fact or y object in the Basic sample application created an object
reference to the Regi str ar object, the TP: : cr eat e_obj ect _r ef er ence()
operation specified an OID that consisted only of the string r egi st r ar . However, in
the Production sample application, the same TP: : cr eat e_obj ect _r ef er ence()
operation uses a generated unique OID instead.

Scaling, Distributing, and Tuning CORBA Applications



Additional Design Considerations

Asaresult of giving each Regi st rar and Tel | er object aunique OID, multiple
instances of these objects may be running simultaneously in the BEA Tuxedo domain.
This characteristic istypical of the stateless object model, and is an example of how
the BEA Tuxedo domain can be highly scalable while it offers high performance.

Finally, because unique Regi strar and Tel | er objects need to be brought into
memory for each client request on them, it is critical that these objects be deactivated
when the invocations on them are completed so that any object state associated with
them does not remain idlein memory. The Production server application addressesthis
issue by assigning the net hod activation policy to these two objects in the
Implementation Configuration File (ICF).

Ensuring That Student Registration Occurs in the Correct
Server Group

The primary scalability advantage of using replicated server groupsis being able to
distribute processing across multiple machines. However, if your application interacts
with a database, which isthe case with the University sample applications, it iscritical
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, this application can easily be configured to accommodate more. The system
administrator can decide on how many databases to use.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information isidentical. Having
identical course information in both databases is not a problem because the course
information isread-only for the purposes of course registration. However, the student
and account information is read-write. If multiple databases were also to contain
identical datafor students and accounts (that is, the database is not partitioned), the
application would need to dea with the overhead of synchronizing the updates to
student and account information across all the databases each time any student or
account information were to change.

Scaling, Distributing, and Tuning CORBA Applications  2-19



2

Scaling CORBA Server Applications

2-20

The Production sample application uses factory-based routing to send one set of
reguests to one machine, and another set to the other machine. How factory-based
routingisimplemented inthe Regi st r ar Fact or y object dependsontheway inwhich
references to Regi st r ar objects are created.

For example, when the client application sends arequest to the Regi st r ar Fact ory
object to get an object referenceto aRegi st r ar object, the client application includes
astudent ID in that request. The client application must use the object reference that
the Regi st r ar Fact or y object returns to make all subsequent invocations on a

Regi st rar object on a particular student’s behalf, because the object reference
returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes the get _st udent _det ai | s() operation on the
Regi st rar object, the client application can be assured that the Regi st rar objectis
active in the server group associated with the database containing data for that student.

To show how this works, consider the following execution scenario, which is
implemented in the Production sample application:

1. Theclient application invokesthefind_r egi strar () operation on the
Regi st rar Fact ory object. Included in thisinvocation isthe student ID 1000003.

2. BEA Tuxedo CORBA routes the client request to any Regi st r ar Factory
object.

3. TheRegi strar Fact ory object uses the student ID to create an object reference
toaRegi strar objectin ORA_GRP1, based on the routing information in the
UBBCONFI Gfile, and returns that object reference to the client application.

4. Theclient application invokesther egi st er _f or _cour ses() operation on the
Regi strar object.

5. BEA Tuxedo CORBA receives the client request and routesit to the server group
specified in the object reference. In this case, the client request goes to the
University server processin ORA_GRP1, which is on Production Machine 1.

6. TheUniversity server processinstantiates aRegi st r ar object and sendsthe
client invocation to it.

The Regi st rar Fact ory object from the preceding scenario returns to the client
application a unique reference to aRegi st r ar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has a database contai ning student
datafor students with IDs in the range 100001 to 100005. Therefore, when the client
application sends subsequent requests to this Regi st r ar object on behalf of a given
student, the Regi st rar object interacts with the correct database.

Scaling, Distributing, and Tuning CORBA Applications



Additional Design Considerations

Ensuring That the Teller Object Is Instantiated in the
Correct Server Group

WhentheRegi strar objectneedsaTel | er object, theRegi st rar objectinvokesthe
Tel | er Fact ory object, using the Tel | er Fact or y object reference cached in the
University Server object.

However, because factory-based routing isused in the Tel | er Fact or y object, the
Regi strar object passes the student’ s account number when the Regi st r ar object
requestsareferenceto aTel | er object. Thisway, the Tel | er Fact ory object creates
areferencetoaTel | er object in the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that the
system administrator configures the server groups and the databases properly.
In particular, the system administrator must make sure that a match exists
between the routing criteria specified in therouting tables and the databasesto
which requests using those criteria are routed. Using the Production sample as
an exampl e, the database in a given group must contain the correct student and
account information for the requests that are routed to that group.

Scaling, Distributing, and Tuning CORBA Applications  2-21



2 Scaling CORBA Server Applications

Scaling the Application Further

In the future, the system administrator of the Production sample application may want
to add capacity to the BEA Tuxedo domain. For example, the University may
eventually experience alarge increase in the student population, or the Production
application may be scaled up to accommodate the course registration process for an
entire state university system, encompassing several campuses. This can be done
without modifying or rebuilding the application.

The system administrator can continually add capacity by:

m  Replicating the server groups in the Production sample application across
additional machines.

The system administrator must modify the UBBCONFI Gfile to specify the
additional server groups, the server processes that run in those groups, and the
machines on which the server groupsrun.

m Changing the factory-based routing tables.

For example, instead of routing to the two existing groups in the Production
sample application, the system administrator can modify the routing rulesin the
UBBCONFI Gfile to partition the application further anong additional server
groups added to the BEA Tuxedo domain. Any modification to the routing tables
must match the information for the configured server groups and machines in the
UBBCONFI Gfile.

Note: If you add capacity to an existing BEA Tuxedo CORBA application that uses
a database, you must a so consider the impact on how the database is set up,
particularly when you are using factory-based routing. For example, if the
Production sample application is distributed across six machines, the database
on each machine must be set up appropriately and in accordance with the
routing tables in the UBBCONFI Gfile.

2-22  Scaling, Distributing, and Tuning CORBA Applications



CHAPTER

3 Distributing CORBA
Applications

Thistopic includes the following sections:

m  Why Distribute an Application?

m Using Data-dependent Routing (BEA Tuxedo ATMI Servers Only)

m Configuring the UBBCONFIG File

m Configuring the factory_finder.ini (CORBA Applications Only)

m  Modifying the Domain Gateway Configuration File to Support Routing

Thistopic describes how to distribute applications in the BEA Tuxedo CORBA
environment, using a CORBA application as an example.

Scaling, Distributing, and Tuning CORBA Applications 31



3 Distributing CORBA Applications

Why Distribute an Application?

This topic includes the following sections:

m About Distributing an Application

m Benefits of aDistributed Application

m Characteristics of Distributing an Application

About Distributing an Application

Distributing an application enables you to select which parts of an application should

be grouped together logically and where these groups should run. Y ou distribute an

application by creating more than one entry in the GROUPS section of the UBBCONFI G
file, and by dividing application resources or tasks among the groups. Creating groups
of servers enablesyou to partition avery large application into its component business

applications, and to assure that each of these into logical componentsis of a
manageable size and in an optimal location.

Benefits of a Distributed Application

The benefits of adistributed application include:

m Scalability—to increase the load that an application can sustain:

Place extra server processes in agroup.

Add machines to the application and redistribute the groups across the
machines.

Replicate a group onto other machines within the application and use load
balancing.

Segment a database and use data-dependent routing to reach the groups
dealing with these separate database segments (the BEA Tuxedo ATMI
system).

3-2 Scaling, Distributing, and Tuning CORBA Applications



Why Distribute an Application?

With the BEA Tuxedo CORBA system, you can use factory-based routing to
distribute the processing of a particular CORBA interface across multiple server
groups and, if desired, across multiple machines. This feature allows you to
distribute the processing load, which can prevent the processing bottlenecks that
occur when concurrent, resource-intensive applications compete for the available
CPU, memory, disk 1/O, and network resources. For an example of using
factory-based routing, see “ Scaling with Factory-based Routing” on page 2-11.

For more information about BEA Tuxedo CORBA scalability features, see
Chapter 1, “Scaling BEA Tuxedo CORBA Applications.”

Ease of Development and Maintenance—the separation of the business
application logic into services or components that communicate through
well-defined messages or interfaces allows both devel opment and maintenance
to be similarly separated and thereby simplified.

Reliability—when multiple machines are in use and one fails, the remainder can
continue operation. Similarly, when multiple server processes are within a group
and one fails, the others are available to perform work. Finally, if a machine
should fail, but there are multiple machines within the application, these other
machines can be used to handle the load.

Coordination of Autonomous Actions—if you have separate applications, you
can coordinate autonomous actions, as asingle logical unit of work, among
applications. Autonomous actions are actions that involve multiple server groups
and multiple resource manager interfaces.

Characteristics of Distributing an Application

A distributed application:

Enlarges the client and/or server model.
Establishes multiple server groups.

Enables transparent access to BEA Tuxedo services or BEA Tuxedo CORBA
interfaces.

In BEA Tuxedo, allows data-dependent partitioning of data.

Scaling, Distributing, and Tuning CORBA Applications 3-3



3 Distributing CORBA Applications

m In BEA Tuxedo CORBA, alows partitioning of CORBA objectsin multiple
groups across multiple machines, or distributing application factory interfaces
and application interfaces.

m Enables management of multiple resources.

m Supports a networked model.

Using Data-dependent Routing (BEA Tuxedo
ATMI Servers Only)

This topic includes the following sections:

m  About Data-dependent Routing

m Characteristics of Data-dependent Routing

m  Sample Distributed Application

m Example of UBBCONFIG Sectionsin a Distributed Application

Note: Thistopic appliesto BEA Tuxedo serversonly.

About Data-dependent Routing

Data-dependent routing is a mechanism whereby a service request isrouted by aclient
(or aserver acting as aclient) to a server within a specific group based on adatavaue
contained within the buffer that is sent. Within theinternal code of aservicecall, BEA
Tuxedo chooses adestination server by comparing adatafield with the routing criteria
it finds in the bulletin board shared memory.

For any given service, arouting criteriaidentifier can be specified in the SERVI CES
section of the UBBCONFI Gfile. The routing criteriaidentifier (in particular, the
mapping of data rangesto server groups) is specified in the ROUTI NG section.

3-4 Scaling, Distributing, and Tuning CORBA Applications



Using Data-dependent Routing (BEA Tuxedo ATMI Servers Only)

Characteristics of Data-dependent Routing

Data-dependent routing has the following characteristics:
m  The service request assigned to a server in the group is based on a data value.
m Routing uses the bulletin board criteria and occursin aserver call.

m Therouting criteriaidentifier for aservice is specified in the SERVI CES section
of the UBBCONFI Gfile.

m Therouting criteriaidentifier is defined in the ROUTI NG section of the
UBBCONFI Gfile.

Sample Distributed Application

Table 3-1illustrates how client requests are routed to servers. In this example, a
banking application called bankapp uses data-dependent routing. For bankapp, there
are three groups (BANKBL, BANKB2, and BANKB3), and two routing criteria

(Account _I Dand Br anch_I D). The services W THDRAW DEPCSI T, and | NQUI RY are
routed using the Account _I Dfield. The services OPEN and CLOSE arerouted using the
Branch_I Dfield.

Table 3-1 Data-dependent Routing Criteria for Sample Distributed Application

Server Group  Routing Criteria Services
BANKB1 Account _I D: 10000 - 49999 W THDRAW DEPCSI T, and
I NQUI RY
Branch_ID: 1 - 4 OPENand CLOSE
BANKB2 Account _I D: 50000 - 79999 W THDRAW DEPCSI T, and
I NQUI RY
Branch_ID 5 - 7 OPENand CLOSE
BANKB3 Account _|I D: 80000 - W THDRAW DEPCSI T, and
109999 I NQUI RY
Branch_ID: 8 - 10 OPENand CLOSE

Scaling, Distributing, and Tuning CORBA Applications 3-5



3 Distributing CORBA Applications

Example of UBBCONFIG Sections in a Distributed
Application

Listing 3-1 shows a sample UBBCONFI Gfile that contains the GROUPS, SERVI CES, and
ROUTI NG sections of aconfiguration file to accomplish data-dependent routing in the
BEA Tuxedo system.

Listing 3-1 Sample UBBCONFIG File

* GROUPS
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3
#
* SERVI CES
W THDRAW ROUTI NG=ACCOUNT_I D
DEPCSI T ROUTI NG=ACCOUNT_I D
| NQUI RY ROUTI NG=ACCOUNT_| D
OPEN_ACCT ROUTI NG=BRANCH_| D
CLOSE_ACCT ROUTI NG=BRANCH_| D
#
* ROUTI NG
ACCOUNT_I D FI ELD=ACCOUNT_| D BUFTYPE="FM."
RANGES="M N - 9999: *,
10000- 49999: BANKBL,
50000- 79999: BANKBZ,
80000- 109999: BANKB3,
* . kD
BRANCH_| D FI ELD=BRANCH_| D BUFTYPE="FM."
RANGES="M N - 0: *,
1- 4: BANKBL,
5- 7: BANKB2,
8- 10: BANKBS,

P 2

3-6 Scaling, Distributing, and Tuning CORBA Applications



Configuring the UBBCONFIG File

Configuring the UBBCONFIG File

Thistopic includes the following sections:

m  About the UBBCONFIG Filein Distributed Applications
m  Modifying the GROUPS Section

m  Modifying the SERVICES Section

m  Modifying the INTERFACES Section

m Creating the ROUTING Section

For more information about the UBBCONFI Gfile, see “ Creating a Configuration File”
in Setting Up a BEA Tuxedo Application.

About the UBBCONFIG File in Distributed Applications

The UBBCONFI Gfile contains a description of either data-dependent routing (BEA
Tuxedo) or factory-based routing (BEA Tuxedo CORBA), as follows:

m  The GROUPS section is populated with as many server groups as are required for
distributing the system. This alows the system to route arequest to a server in a
specific group. These groups can all reside on the same site (SHMmode) or, if
thereis networking, the groups can reside on different sites (MP mode).

m For data-dependent routing in BEA Tuxedo, the SERVI CES section must list the
routing criteriafor each service that uses the ROUTI NG parameter.

Note: If aservice has multiple entries, each with a different SRVGRP parameter,
all such entries must set ROUTI NGthe same way to ensure consistency for
that service. A service can route only on onefield, which must bethe same
for all the same services.

m For factory-based routing in BEA Tuxedo CORBA, the | NTERFACES section
must list the name of the routing criteriafor each CORBA interface that uses the
FACTORYROUTI NG parameter. This parameter is set to the name of arouting
criteriadefined in the ROUTI NG section.

Scaling, Distributing, and Tuning CORBA Applications 3-7



3 Distributing CORBA Applications

m Add a ROUTI NG section to the configuration file to show mappings between data
ranges and groups so that the system can send the request to a server in a
specific group. Each ROUTI NG section item contains an identifier that isused in
the | NTERFACES section (for BEA Tuxedo ATMI) or in the SERVI CES section

(for BEA Tuxedo).

Modifying the GROUPS

Section

The parametersin the GROUPS section implement two important aspects of distributed

transaction processing:

m They associate a group of servers with aparticular LM Dand a particular
instance of aresource manager.

m By allowing asecond LM Dto be associated with the server group, they name an
alternate machine to which a group of servers can be migrated if the M GRATE

option is specified.

Table 3-2 describes the parameters in the GROUPS section.

Table 3-2 Parameters Specified in the GROUPS Section

Parameter

Meaning

LM D

LM D must be assigned in the MACHI NES section to indicate that
this server group runs on this particular machine. A second LM D
value can be specified (separated from the first by a comma) to
name an alternate machine to which this server group can be
migrated if theM GRATE option has been specified. Serversinthe
group must specify RESTART=Y to migrate.

GRPNO

Associates a numeric group humber with this server group. The
number must be greater than zero (0) and less than 30000. It must
be unique among entries in the GROUPS section in this
configuration file. (Required)

TMSNAME

Specifies which transaction management server (TMB) should be
associated with this server group.

3-8 Scaling, Distributing, and Tuning CORBA Applications



Configuring the UBBCONFIG File

Table 3-2 Parameters Specified in the GROUPS Section (Continued)

Parameter M eaning

TMSCOUNT Specifies how many copies of TMSNAME should be started for this
server group. The minimum valueis 2. If not specified, the
default is 3. All TMSNAME servers started for a server group are
automatically set up in an M5SQset. (Optional)

OPENI NFO Specifies information needed to open a particul ar instance of a
particular resource manager, or it indicates that such information
isnot required for this server group. When aresource manager is
named in the OPENI NFO parameter, information such as the
name of the database and the access modeisincluded. The entire
value string must be enclosed in double quotes and must not be
more than 256 characters. The format of the OPENI NFOstring is
dependent on the requirements of the vendor providing the
underlying resource manager. The string required by the vendor
must be prefixed withr m_nane:, which isthe published name of
the vendor’stransaction (XA) interface followed immediately by
acolon (:).

The OPENI NFO parameter isignored if TMSNAME is not set or is
set to TVS. If TMSNAME is set but the OPENI NFOstring is set to
the null string (" ") or if this parameter does not appear on the
entry, it means that a resource manager exists for the group but
does not require any information for executing an open operation.

CLCSEl NFO Specifiesinformation the resource manager needswhen closing a
database. The parameter can be omitted or the null string can be
specified. The default is the null string.

Modifying the SERVICES Section

The SERVI CES section contains parameters that control the way application services
are handled. An entry line in this section is associated with a service by itsidentifier
name. Because the same service can be link edited with more than one server, the
SRVGRP parameter is provided to tie the parameters for an instance of aserviceto a
particular group of servers.

Scaling, Distributing, and Tuning CORBA Applications 39



3 Distributing CORBA Applications

Parameters to Modify

Two parameters in the SERVI CES section are particularly related to distributed
transaction processing (DTP) for BEA Tuxedo CORBA applications that use BEA
Tuxedo ATMI services: AUTOTRAN, and TRANTI ME.

Table 3-4 describes the parameters in the SERVI CES section.

Table 3-3 Parameters Specified in the SERVICES Section

Par ameter Meaning

AUTOTRAN Determines whether atransaction should be started automatical ly
if amessage received by this serviceisnot aready in transaction
mode. The default is N. Use of the parameter should be
coordinated with the programmersthat code the services for your
application.

TRANTI ME Specifies atimeout value, in seconds, for transactions
automatically started in this service. The default is 30 seconds.
Required only if AUTOTRAN=Y and another timeout valueis
needed.

Sample SERVICES Section

Listing 3-2 shows a sample SERVI CES section.

Listing 3-2 Production Sample SERVICES Section

*SERVI CES

# Publish Tuxedo Tell er application services
#
DEBI T
AUTOTRAN=Y
CREDI T
AUTOTRAN=Y
CURRBAL ANCE
AUTOTRAN=Y

3-10  Scaling, Distributing, and Tuning CORBA Applications



Configuring the UBBCONFIG File

Modifying the INTERFACES Section

The | NTERFACES section contains parameters that control the way application
interfaces are handled. An entry linein this section is associated with an interface by
its identifier name. Because the same interface can be link edited with more than one
server, the SRVGRP parameter is provided to tie the parameters for an instance of a
interface to a particular group of servers.

Parameters to Modify

Three parameters in the | NTERFACES section are particularly related to distributed
transaction processing (DTP): FACTORYROUTI NG, AUTOTRAN, and TRANTI ME.

Table 3-4 describes the parameters in the | NTERFACES section.

Table 3-4 Parameters Specified in the INTERFACES Section

Parameter

M eaning

FACTORYROUTI NG =
criterion-nane

Specifies the name of the routing criteriato be used for
factory-based routing for this BEA Tuxedo CORBA interface.
You must specify a FACTORYROUTI NG parameter for interfaces
requesting factory-based routing.

AUTOTRAN

Determines whether atransaction should be started automatically
if amessagereceived by thisinterfaceis not already intransaction
mode.The default is N. Use of this parameter should be
coordinated with the programmersthat code theinterfacefor your
application so that it matches the setting of thet r ansact i on
pol i cy option in the application’s ICF file.

TRANTI ME

Specifies atimeout value, in seconds, for transactions
automatically started in thisinterface. The default is 30 seconds.
Required only if AUTOTRAN=Y and atimeout val ue other thanthe
default is needed.

Scaling, Distributing, and Tuning CORBA Applications  3-11



3 Distributing CORBA Applications

Table 3-4 Parameters Specified in the INTERFACES Section (Continued)

Par ameter Meaning

LOAD = nunber Specifies an arbitrary number between 1 and 100 that represents
therelative load that the CORBA interface is expected to impose
on the system. The numbering scheme is relative to the LOAD
numbers assigned to other CORBA interfaces used by this
application. The default is50. This number is used by the BEA
Tuxedo system to select the best server to which to route the
request

Sample INTERFACES Section

Listing 3-2 shows a sample | NTERFACES section.

Listing 3-3 Sample INTERFACES Section

* | NTERFACES

"1 DL: beasys. conf Uni versityP/ Regi strar: 1.0"
FACTORYROUTI NG = STU I D
AUTOTRAN=Y
TRANTI ME=50

"1 DL: beasys.conm BillingP/ Teller:1.0"
FACTORYROUTI NG = ACT_NUM
AUTOTRAN=Y

Creating the ROUTING Section

For information about ROUTI NG parametersthat support BEA Tuxedo data-dependent
routing or BEA Tuxedo CORBA factory-based routing, see* Creating aConfiguration
File” in Setting Up a BEA Tuxedo Application.

Listing 3-4 shows the ROUTI NG section of the UBBCONFI Gfile used in the Production
sample application for factory-based routing.

3-12  Scaling, Distributing, and Tuning CORBA Applications



Configuring the factory_finder.ini (CORBA Applications Only)

Listing 3-4 Production Sample ROUTING Section

* ROUTI NG
STU ID
FI ELD = "student _id"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "100001-100005: ORA_GRP1, 100006- 100010: ORA GRP2"
ACT_NUM
FI ELD = "account _numrber"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "200010-200014: APP_GRP1, 200015- 200019: APP_GRP2"

Configuring the factory finder.ini (CORBA
Applications Only)

For CORBA applications, to configure factory-based routing across multiple domains,
you must configurethef act ory_finder.ini filetoidentify factory objectsthat are
used in the current (local) domain but that are resident in a different (remote) domain.
For more information, see “ Configuring Multiple Domains Multiple Domains for
CORBA Applications in Using the BEA Tuxedo Domains Component.

Modifying the Domain Gateway
Configuration File to Support Routing

Thistopic includes the following sections:

m  About the Domain Gateway Configuration File

Scaling, Distributing, and Tuning CORBA Applications  3-13



Distributing CORBA Applications

m Parametersin the DM_ROUTING Section of the DMCONFIG File (BEA
Tuxedo ATMI Only)

This sectionis specific to BEA Tuxedo and explainshow and why you need to modify
the domain gateway configuration to support routing. For more information about the
domain gateway configuration file, see “ Configuring Multiple Domains Multiple
Domains for CORBA Applicationsin Using the BEA Tuxedo Domains Component.

About the Domain Gateway Configuration File

The Domain gateway configuration information is stored in a binary file called
BDMCONFI G. The DMCONFI Gfile (ASCII) is created and edited with any text editor.
The compiled BDMCONFI Gfile can be updated while the system is running by using the
dmadmi n(1) command.

Y ou must have one BDMCONFI Gfilefor each BEA Tuxedo application that requiresthe
Domains functionality. System access to the BDMCONFI Gfile is provided through the
Domains administrative server, DMADM5). When a gateway group is booted, the
gateway administrative server, GWADM5), requests from the DMADMserver acopy of the
configuration required by that group. The GwaDMserver and the DMADM server also
ensure that run-time changes to the configuration are reflected in the corresponding
Domain gateway groups.

Note: For more information about modifying the DMCONFI Gfile, see “ Configuring
Multiple Domains Multiple Domainsfor CORBA Applications’ in Using the
BEA Tuxedo Domains Component.

Parameters in the DM_ROUTING Section of the
DMCONFIG File (BEA Tuxedo ATMI Only)

3-14

The DM_ROUTI NG section provides information for data-dependent routing of service
requests using FM_, VI EW X_C_TYPE, and X_COWMON typed buffers. Lines within the

DM _ROUTI NGsection havetheform CRI TERI ON_NAVE, where CRI TERI ON_NAME isthe
(identifier) name of the routing entry specified in the SERVI CES section. The

CRI TERI ON_NAME entry may contain no more than 15 characters.

Scaling, Distributing, and Tuning CORBA Applications



Modifying the Domain Gateway Configuration File to Support Routing

Parameters to Specify

Table 3-5 describes the parameters in the DM_ROUTI NG section.

Table 3-5 Parameters Specified in the DM_ROUTING Section

Parameter Description

FIELD=identifier Specifiesthe name of therouting field. It must contain 30
characters or fewer. Thisfield is assumed to be a field name
identified in an FM_ field table (for FML buffers) or an FML
VI Ewtable (for VI EW X_C_TYPE, or X_COWON buffers). The
FLDTBLDI Rand FI ELDTBLS environment variables are used
to locate FML field tables; the VI EWDI Rand VI EWFI LES
environment variables are used to locate FML VI EWtables. If a
field in an FML32 buffer isused for routing, it must have afield
number less than or equal to 8191.

BUFTYPE = Specifieslist of typesand subtypes of databuffersfor which this
"typell: subtypel] routing entry isvalid. The types are restricted to FM_, VI EW

, subtype2 . . . X_C_TYPE, and X_COMVON.

1115 type2[: subtyp  nq g htype can be specified for type FM_, and subtypes are
e?[ oo required for the other types (* is not allowed).

Duplicate type/subtype pairs cannot be specified for the same
routing criteria name; more than one routing entry can have the
same criteria name aslong as the type/subtype pairs are unique.
This parameter isrequired.

If multiple buffer types are specified for a single routing entry,
the data types of the routing field for each buffer type must be

the same. (If thefield value is not set (for FM. buffers), or does
not match any specific range, and awildcard range has not been
specified, then an error isreturned to the application processthat
requested the execution of the remote service.)

Scaling, Distributing, and Tuning CORBA Applications ~ 3-15



3 Distributing CORBA Applications

Table 3-5 Parameters Specified in the DM_ROUTING Section (Continued)

Parameter

Description

RANGES

="rangel:rdoml[,r
ange2: rdong ..

N

Specifies the ranges and associated remote domain names
(RDOM) for the routing field. The string must be enclosed in
double quotes, with the format of a comma-separated ordered
list of r ange/ RDOMpairs.

A rangeis either asingle value (signed numeric value or
character string in single quotes), or arange of the form lower -
upper (wherelower and upper are both signed numeric valuesor
character stringsin single quotes). The value of lower must be
less than or equal to upper. A single quote embedded in a
character string value (suchas“ O Bri en” ), must be preceded
by two backdashes (“ O\\ ' Bri en”).

m  UseM Nto indicate the minimum value for the data type of
the associated FI ELD. For strings and carrays, it is the null
string; for character fields, it is O; for numeric values, it is
the minimum numeric value that can be stored in the field.

m  Use MAXtoindicate the maximum value for the datatype of
the associated FI ELD. For strings and carrays, it is
effectively an unlimited string of octal-255 characters; for a
character field, itisasingle octal-255 character; for numeric
values, it isthe maximum numeric vaue that can be stored
in the field.

Thus, M N - -5 isall numberslessthan or equa to- 5, and
6 - MAXisall numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of arange
indicates any values not covered by the other ranges previously
seen in the entry. Only one wildcard range is allowed per entry
and it should be last (ranges following it are ignored).

Routing Field Description

Therouting field can be of any datatype supported in FM or VI EW A numeric routing
field must have numeric range values, and a string routing field must have string range

values.

String range valuesfor string, carray, and character field types must be placed inside a
pair of single quotation marks and cannot be preceded by asign. Short and long integer
values are a string of digits, optionally preceded by a plus (+) or minus (- ) sign.

3-16  Scaling, Distributing, and Tuning CORBA Applications



Modifying the Domain Gateway Configuration File to Support Routing

Floating point numbers are of the form accepted by the C compiler or at of () : an
optional sign, followed by a string of digits optionally containing a decimal point, and
an optional e or E followed by an optional sign or space, and an integer.

When afield value matches a range, the associated RDOMVval ue specifies the remote
domain to which the request should be routed. An RDOMvalue of * indicates that the
request can go to any remote domain known by the gateway group. Within a

r ange/ RDOMpair, the range is separated from the RDOMby a colon (: ).

Example of a Five-Site Domain Configuration Using Routing

Listing 3-5 shows a configuration file that defines a five-site domain configuration. It
has four bank branch domains communicating with a Central Bank Branch. Three of
the bank branches run within other BEA Tuxedo system domains. The fourth branch
runs under the control of another TP domain, and OSI-TPis used in thecommunication
with that domain. The example shows the BEA Tuxedo Domain gateway
configuration file from the Central Bank point of view. In the DM _TDOVAI N section,
this example shows a mirrored gateway for b01.

Listing 3-5 DMCONFIG Filefor a Five-Site Domains Configuration

# BEA TUXEDO DONMAI N CONFI GURATI ON FI LE FOR THE CENTRAL BANK

#

#

*DM _LOCAL_ DOVAI NS

# <l ocal domai n nane> <Gateway Group nane> <donmi n type> <domain i d> <l og devi ce>

# [<audit log>] [<blocktinme>]
# [<log nane>] [<log offset>] [<log size>]
# [ <maxrdon®] [<maxrdtran>] [ <maxtran>]
# [ <maxdat al en>] [<security>]
# [ <tuxconfig>] [<tuxoffset>]
#
#
DEFAULT: SECURI TY = NONE
c01 GWGRP = bankgl
TYPE = TDOVAI N
DOMAI NI D = " BA. CENTRALO1"
DMILOGDEV = "/ usr/apps/ bank/ DMILOG'
DMTLOGNAME = " DMILG _CO01"
c02 GWGRP = bankg2

TYPE = CSI TP
DOVAI NI D = " BA. CENTRALO1"

Scaling, Distributing, and Tuning CORBA Applications  3-17



3 Distributing CORBA Applications

DMILOGDEV = "/ usr/ apps/ bank/ DMILOG'
DMILOGNAME = "DMILG (02"
NWDEVI CE = " OSI TP
URCH = " ABCD"'
#
* DM_REMOTE_DOVAI NS
#<renote domai n nane> <donmmin type> <domain id>

#
b01 TYPE = TDOVAI N
DOVAI NI D = "BA. BANKO1"
b02 TYPE = TDOVAI N
DOVAI NI D = " BA. BANKO2"
b03 TYPE = TDOVAI N
DOVAI NI D = " BA. BANKO3"
b04 TYPE = COSI TP
DOVAI NI D = " BA. BANKO4"
URCH = " ABCD'
#
* DM_TDOVAI N
#
# <l ocal or renote domai nname> <network address> [nwdevi ce]
#
# Local network addresses
c01 NWADDR = "//newyor k. acrme. com 65432" NWDEVI CE ="/ dev/t cp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVI CE ="/ dev/t cp"

# Renote network addresses: second b0l specifies a mirrored gateway

b0o1 NWADDR = "//192.11.109. 5: 1025" NWDEVI CE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5: 1025" NWDEVI CE = "/dev/tcp"
b02 NWADDR = "//dal | as. acnme. com 65432" NWDEVI CE = "/dev/tcp"
b03 NWADDR = "//192.11.109. 156: 4244" NWDEVI CE = "/dev/tcp"
#
*DM OSI TP
#
#<l ocal or renote domai n name> <apt> <aeq>
# [<aet>] [<acn>] [<apid>] [<aeid>]
# [<profile>]
#
c02 APT = "BA. CENTRALO1"
AEQ = "TUXEDO. R. 4. 2. 1"
AET = "{1.3.15.0.3},{1}"
ACN = "XATM "
b04 APT = "BA. BANKO4"
AEQ = "TUXEDO R 4. 2. 1"
AET = "{1.3.15.0.4},{1}"

ACN = "XATM "
* DM_LOCAL_SERVI CES
#<service_nane> [<Local Dommi n name>] [<access control>] [<exported svcname>]
# [ <i nbuftype>] [<outbuftype>]
#

3-18  Scaling, Distributing, and Tuning CORBA Applications



Modifying the Domain Gateway Configuration File to Support Routing

open_act ACL = branch

cl ose_act ACL = branch

credit

debi t

bal ance

| oan LDOM = c02 ACL = | oans

* DM _REMOTE_SERVI CES
#<servi ce_nane> [ <Renpt e donai n name>] [ <l ocal donmain name>]

# [ <renote svcnane>] [<routing>] [<conv>]
# [<trantine>] [<inbuftype>] [<outbuftype>]
#

tlr_add LDOM = c01 ROUTI NG = ACCOUNT

tlr_bal LDOM = c01 ROUTI NG = ACCOUNT

tlr_add RDOM
tlr_bal RDOM

b04 LDOM = c02 RNAME ="TPSU002"
b04 LDOM = c02 RNAME ="TPSU003"

*DM_RQUTI NG
# <routing criteria> <fiel d> <typed buffer> <ranges>
#

ACCOUNT FI ELD = branchid BUFTYPE ="VI EW account"
RANGES ="M N - 1000: b01, 1001-3000:b02, *:b03"

*DM ACCESS CONTROL

#<acl nanme> <Renote domain |ist>

#

branch ACLI ST

| oans ACLI ST

b01, b02, b03
b04

Scaling, Distributing, and Tuning CORBA Applications  3-19



3 Distributing CORBA Applications

3-20  Scaling, Distributing, and Tuning CORBA Applications



CHAPTER

A4

Tuning CORBA
Applications

Thistopic includes the following sections:

Maximizing Application Resources

When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only)
Enabling System-controlled L oad Balancing

Configuring Replicated Server Processes and Groups

Configuring Multithreaded Servers

Bundling Servicesinto Servers (BEA Tuxedo ATMI Servers Only)
Performance Options

Enhancing Efficiency with Application Parameters

Setting Application Parameters

Determining |PC Reguirements

Measuring System Traffic

For more information about monitoring BEA Tuxedo applications, see “Monitoring a
Running System” in the Administering a BEA Tuxedo Application at Run Time.

Scaling, Distributing, and Tuning CORBA Applications 4-1



4 Tuning CORBA Applications

Maximizing Application Resources

Making correct decisions in the following areas can improve the functioning of your
BEA Tuxedo applications:

m Whento Use MSSQ Sets (BEA Tuxedo ATMI Servers Only).
m How to assign load factors.

m How to package interfaces and/or servicesinto servers.

m How to set application parameters.

m How to tune operating system | PC parameters.

m  How to detect and eliminate bottlenecks.

When to Use MSSQ Sets (BEA Tuxedo ATMI
Servers Only)

Note: Multiple Servers, Single Queue (M SSQ) sets are not supported in BEA
Tuxedo CORBA servers.

Table 4-1 describes when to use MSSQ sets with BEA Tuxedo servers.

Table4-1 When and When Not to Use MSSQ Sets
Use M SSQ Sets When Do Not Use M SSQ Sets When

There are several, but not too many servers. Thereis alarge number of servers.
(A compromiseisto use many M SSQ sets.)

Buffer sizes are not too large. Buffer sizesare large enough to exhaust one
queue.

The servers offer identical sets of services.  Services are different for each server.

4-2 Scaling, Distributing, and Tuning CORBA Applications



When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only)

Table4-1 When and When Not to Use M SSQ Sets (Continued)

Use M SSQ Sets When Do Not Use M SSQ SetsWhen
The messages involved are reasonably Long messages are being passed to the
sized. services causing the queue to be exhausted.

This causes nonbl ocking sends to fail, or
blocking sends to block.

Optimization and consistency of service Optimization and consistency of service
turnaround time is paramount. turnaround time is not critical.

Thefollowing two anal ogies hel p to show why using M SSQ setsis sometimes, but not
always, beneficial:

m  An application in which MSSQ sets are used appropriately is similar to a bank,
where all the tellers offer the same services and customers wait in line for the
first available teller. This efficient arrangement ensures the best use of available
services.

m Anapplication in which it is better to avoid using MSSQ setsis similar to a
supermarket, where each cashier offers a different set of services: some accept
cash only, some accept credit cards, and still others serve only customers buying
fewer than ten items.

Scaling, Distributing, and Tuning CORBA Applications 4-3



4 Tuning CORBA Applications

Enabling System-controlled Load Balancing

Y ou can control whether aload-balancing algorithm is used on the BEA Tuxedo
system asawhole. When load balancing isused, aload factor is applied to each service
within the system, allowing you to track the total load on every server. Every service
request is sent to the qualified server that isleast loaded.

Note: On BEA Tuxedo CORBA systems, system-controlled load balancing is
enabled automatically. Y ou cannot disable load balancing by specifying
LDBAL=N.

To determine how to assign load factors (located in the SERVI CES section), run an
application continually and cal cul ate the average time it takes for each service to be
performed. Assigh aLOAD value of 50 (LQAD=50) to any service that requires the
average amount of timethat you calculated. Any servicetaking longer to execute than
the calculated average should have aLOAD>50. Any servicetaking lessto execute than
the calculated average should have a LQAD<50.

A LoADfactor isassigned to each service performed, which keepstrack of thetotal |oad
of servicesthat each server has performed. Each service request is routed to the server
with the smallest total load. The routing of that request causes the server’s total to be
increased by the LoaD factor of the service requested.

Y ou can aso apply LOAD factors to interfaces. For more information about LOAD
factors, see “Creating a Configuration File” in the Administering a BEA Tuxedo
Application at Run Time.

Configuring Replicated Server Processes
and Groups

To configure replicated server processes and groups in the BEA Tuxedo domain,
complete the following steps:

1. Edit the application’s UBBCONFI Gfile using a text editor.

4-4 Scaling, Distributing, and Tuning CORBA Applications



Configuring Replicated Server Processes and Groups

2. Inthe GROUPS section, specify the names of the groups you want to configure.

3. Inthe SERVERS section, specify the parameters in Table 4-2 for the server process
you want to replicate.

Table 4-2 Parameters Specified in the SERVERS Section

Parameter Description

Server Specifies the name of the executable file that contains the application
application name  server.

GROUP Specifies the name of the group to which the server process belongs. If
you are replicating a server process across multiple groups, specify the
server process once for each group.

SRVI D Specifies anumeric identifier, giving the server process a unique
identity.
M N Specifiesthe number of instances of the server processto start when you

start the application.

MAX Specifies the maximum number of server processes that can be running
at any onetime.

The M Nand MAX parameters determine the degree to which a given server
application can process requests on a given interface in paralel. During run
time, the system administrator can examine resource bottlenecks and start
additional server processes, if necessary, thereby scaling the application. For
more information, see “Monitoring a Running Application” in the Administering
a BEA Tuxedo Application at Run Time.

Note: The MAX parameter controls the maximum number of instances. However,
BEA Tuxedo does not spawn instances automatically. The system will
automatically start up to the specified M N humber of instances. Between
M N and MAX, the system administrator will need to spawn new instances
manually. Once MAX is reached, an error will be returned by t mboot ,

t madni n, or the TM B API.

Scaling, Distributing, and Tuning CORBA Applications 4-5



4 Tuning CORBA Applications

Configuring Multithreaded Servers

This topic includes the following sections:

m  Setting the OPENINFO Parameter for Database Interoperation
m Parameters Used to Configure Multithreaded Servers

m Assigning Priorities to Interfaces

For more information about multithreaded servers, see* Using Multithreaded Servers”
on page 1-11.

Setting the OPENINFO Parameter for Database
Interoperation

To enable the use of threads by a multithreaded server when interoperating with the
Oracle XA database software, you must add Thr eads=t r ue to the CPENI NFO

parameter in the GROUPS section of the UBBCONFI Gfile, as shown in Listing 4-1. For
more information, see the Oracle XA online documentation.

Listing 4-1 Adding Threads=truetothe OPENINFO Parameter

OPENI NFO=" ORACLE_XA: Oracl e_XA+Acc=P/ scott/tiger+SesTn=100+LogDi r =
. +MaxCur =5+Thr eads=t r ue"

Parameters Used to Configure Multithreaded Servers

Thefollowing parameters are used configure multithreaded CORBA servers. These
parameters are set in UBBCONFI Gfile:

m MAXOBJECTS

4-6 Scaling, Distributing, and Tuning CORBA Applications



Configuring Multithreaded Servers

Note: While the MAXOBJECTS parameter does not specifically apply to threads,
you may want to increase this parameter because multithreaded
applications have the potential to activate more objectsat any pointintime
than single-threaded applications.

MAXACCESSERS
MAXDISPATCHTHREADS
MINDISPATCHTHREADS
THREADSTACKSIZE
CONCURR_STRATEGY

For a description how to set these parameters, see the following topics:

“Creating the Configuration File” and “How to Configure the BEA Tuxedo
System to Take Advantage of Threads’ in Setting Up a BEA Tuxedo Application.

“Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters’ in Administering a BEA Tuxedo Application at
Run Time.

Assigning Priorities to Interfaces

Thistopic includes the following sections:

m  About Prioritiesto Interfaces

Characteristics of the PRIO Parameter

About Priorities to Interfaces

Y ou can exert significant control over the flow of datain an application by assigning
prioritiesto BEA Tuxedo Interfaces using the PRI O parameter. For a CORBA

application running on aBEA Tuxedo system, you can specify the PRI O parameter for
each interface named in the | NTERFACES section of the application’s UBBCONFI Gfile.

Scaling, Distributing, and Tuning CORBA Applications 4-7



4 Tuning CORBA Applications

For example, Server 1 offersinterfaces A, B, and C. Interfaces A and B have apriority
of 50 and Interface C hasa priority of 70. An interface requested for C is always
dequeued before arequest for A or B. Requestsfor A and B are dequeued equally with
respect to one another. The system dequeues every tenth request in first in first out
(FIFO) order to prevent a message from waiting indefinitely on the queue.

Y ou can aso dynamically change a priority with thet pspri o() call. Only preferred
clients should be able to increase the interface priority. In a system on which servers
perform interface request, the server can cal t pspri o() toincreasethe priority of its
interface so the user does not wait in line for every interface request that is required.

Characteristics of the PRIO Parameter

The PRI Oparameter should be used carefully. Depending on the order of messages on
the queue (for example, A, B, and C), some (such as A and B) will be dequeued only
onein ten times. This means reduced performance and potential slow turnaround time
on the service.

The characteristics of the PRI Oparameter are as follows:
m It determinesthe priority of an interface on the server’s queue.

m Thehighest assigned priority gets first preference. Thisinterface should occur
less frequently.

m A lower priority message does not remain forever enqueued, because every tenth
message is retrieved on a FIFO basis. Response time should not be a concern of
the lower priority interface.

Assigning priorities enables you to provide more efficient service to the most
important requests and slower serviceto thelessimportant requests. Y ou can also give
priority to specific users or in specific circumstances.

4-8 Scaling, Distributing, and Tuning CORBA Applications



Bundling Services into Servers (BEA Tuxedo ATMI Servers Only)

Bundling Services into Servers (BEA Tuxedo
ATMI Servers Only)

Thistopic includes the following sections:
m  About Bundling Services

m  When to Bundle Services

About Bundling Services

The easiest way to package servicesinto server executablesisto not package them at
all. Unfortunately, if you do not package services, the number of server executables,
and al so message queues and semaphores, rises beyond an acceptablelevel. Thereisa
trade-off between not bundling services and bundling services too much.

When to Bundle Services

Y ou should bundle services for the following reasons:

m Functiona similarity—if some services are similar in their rolein the
application, you can bundle them in the same server. The application can offer
all or none of them at agiven time. An example isthe bankapp application, in
which the W THDRAW DEPCSI T, and | NQUI RY services are all teller operations.
Administration of services becomes simpler.

m  Similar libraries—for example, if you have three services that use the same
100K library and three services that use different 100K libraries, bundling the
first three services saves 200K . Often, functionally equivalent services have
similar libraries.

m Filling the queue—bundle only as many servicesinto a server as the queue can
handle. Each service added to an unfilled MSSQ set may add relatively littleto
the size of an executable, and nothing to the number of queues in the system.

Scaling, Distributing, and Tuning CORBA Applications 4-9



4 Tuning CORBA Applications

Once the queue isfilled, however, the system performance degrades and you
must create more executables to compensate.

m Placement of call-dependent services—avoid placing, in the same server, two (or
more) services that call each other. If you do so, the server will issue acall to

itself, causing a deadlock.

Performance Options

Performance options were added to BEA Tuxedo in release 8.0. These options enable
you to turn off specific featuresin the BEA Tuxedo infrastructure. Y ou should turn off
these features only if they are not required by your CORBA or ATMI applications.

Table 4-3 describes these options.

Table 4-3 Performance Options

Option Description

Howtoset ...

Serviceand InterfaceCaching  This option enables you to cache
options serviceand interface entries, and to
(SI CACHEENTRI ESMAX and  usethe cached copiesof theservice
TMSI CACHEENTRI ESMAX)  or interface without locking the

For more information about these options,
see Administering a BEA Tuxedo
Application at Run Time and

UBBCONFI G 5) and TM_M B( 5) , and

bulletin board. t uxenv(5) inthe File Formats, Data
Descriptions, MIBs, and System Processes
Reference.
Turning off threads Set this option to yes to turn off Youusethet uxenv(5) tosetthisoption.
(TMNOTHREADS) multithreaded processing. For For moreinformation, see Administering a

applications that do not use
threads, turning them off should
significantly improve
performance.

BEA Tuxedo Application at Run Time and
t uxenv(5) inthe File Formats, Data
Descriptions, MIBs, and System Processes
Reference.

4-10  Scaling, Distributing, and Tuning CORBA Applications



Enhancing Efficiency with Application Parameters

Table 4-3 Performance Options (Continued)

Option

Description

Howtoset...

Turning off auditing and
authorization (Options
{[NO_AAT})

Setting this option disables the
auditing and authorization
functions on a per application
basis.

Y ou set this option in the RESOURCES
section of the UBBCONFI Gfile. For more
information, see Administering a BEA
Tuxedo Application at Run Time and
OPTI ONin the RESOURCES section of
UBBCONFI & 5) inthe File Formats,
Data Descriptions, MIBs, and System
Processes Reference.

Turning off XA Transactions
(NO_XA)

Setting this option turns Off XA
Transactions.

For more information about the NO_XA
option, see Administering a BEA Tuxedo
Application at Run Time and

UBBCONFI G(5) and TM_M B(5) inthe
File Formats, Data Descriptions, MIBs,
and System Processes Reference.

Enhancing Efficiency with Application

Parameters

Thistopic includes the following sections:

m Determining |PC Requirements

m MINDISPATCHTHREADS

m MAXDISPATCHTHREADS

m  Setting the MAXGTT, MAXBUFTY PE, and MAXBUFSTY PE Parameters

m  Setting the SANITY SCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT
Parameters

Y ou can set these application parameters to enhance the efficiency of your system.

Scaling, Distributing, and Tuning CORBA Applications  4-11



4 Tuning CORBA Applications

MAXDISPATCHTHREADS

4-12

The MAXDI SPATCHTHREADS parameter determines the maximum number of
concurrently dispatched threads that each server process can spawn. When specifying
this parameter, consider the following:

m  Thevaluefor MAXDI SPATCHTHREADS determines the maximum size that the
thread pool can grow to be, asit increases in size to accommodate incoming
requests.

m Thedefault value for MAXDI SPATCHTHREADS is 1. If you specify a value greater
than 1, the system creates and uses a specid dispatcher thread. This dispatcher
thread is not included in the number of threads determining the maximum size of
the thread pool.

m  Specifying avalue of 1 for the MAXDI SPATCHTHREADS parameter indicates that
the server application should be configured as a single-threaded server. A value
greater than 1 indicates that the server application should be configured as a
multithreaded server.

m Thevalue you specify for the MAXDI SPATCHTHREADS parameter must not be less
than the value you specify for the M NDI SPATCHTHREADS parameter.

m The operating system resources limit the maximum number of threads that can
be created in a process. MAXDI SPATCHTHREADS should be less than that limit,
minus the number of application managed threads that your application requires.

The value of the MAXDI SPATCHTHREADS parameter affects other parameters. For
exampl e, the MAXACCESSORS parameter controls the number of simultaneous accesses
to the BEA Tuxedo system, and each thread counts as one accessor. For a
multithreaded server application, you must account for the number of system-managed
threadsthat each server isconfigured to run. A system-managed thread is athread that
isstarted and managed by the BEA Tuxedo software, as opposed to threads started and
managed by an application. Internally, BEA Tuxedo manages a pool of available
system-managed threads. When aclient request is received, an available
system-managed thread from the thread pool is schedul ed to execute therequest. When
the request is completed, the system-managed thread is returned to the pool of
available threads.

For example, if that you have 4 multithreaded serversin your system and each server
is configured to run 50 system-managed threads, the accessor requirement for these
serversisthe sum total of the accessors, calculated asfollows:

Scaling, Distributing, and Tuning CORBA Applications



Enhancing Efficiency with Application Parameters

50 + 50 + 50 + 50 = 200 accessors

MINDISPATCHTHREADS

Use the M NDI SPATCHTHREADS parameter to specify the number of server
dispatch threads that are started when the server isinitialy booted. When you
specify this parameter, consider the following:

e Thevauefor M NDI SPATCHTHREADS determines the initial allocation of
threads in the thread pool.

e The separate dispatcher thread that is created when MAXDI SPATCHTHREADS iS
greater than 1 is not counted as part of the M NDI SPATCHTHREADS limit.

e Thevalue you specify for M NDI SPATCHTHREADS must not be greater than
the value you specify for MAXDI SPATCHTHREADS.

e Thedefault value for M NDI SPATCHTHREADS is 0.

Setting the MAXACCESSERS, MAXOBJECTS,
MAXSERVERS, MAXINTERFACES, and MAXSERVICES
Parameters

The MAXACCESSERS, MAXOBJ ECTS, MAXSERVERS, MAXI NTERFACES, and MAXSERVI CES
parameters increase semaphore and shared memory costs, so you should choose the
minimum value that satisfies the needs of the system. Y ou should also allow for the
variation in the number of clients accessing the system at the same time. Defaults may
be appropriate for agenerous allocation of 1PC resources. However, it is prudent to set
these parameters to the lowest appropriate values for the application.

For multithreaded servers, you must account for the number of threadsthat each server
is configured to run. The MAXACCESSERS parameter sets the maximum number of
concurrent accessors of a BEA Tuxedo system. Accessors include native and remote
clients, servers, and administration processes. For more information on setting the
MAXACCESSERS parameter, see “MAXDISPATCHTHREADS’ on page 4-12.

Scaling, Distributing, and Tuning CORBA Applications  4-13



4 Tuning CORBA Applications

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters

Y ou should increase the value of the MAXGTT parameter if the product of multiplying
the number of clientsin the system times the percentage of time they are committing
atransactionis close to 100. This may require agreat number of clients, depending on
the speed of commit. If you increase MAXGTT, you should also increase TLOGSI ZE
accordingly for every machine. Y ou should set MAXGTT to 0 for applicationsthat do not
use distributed transactions.

Y ou can limit the number of buffer types and subtypes allowed in the application with
the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default for
MAXBUFTYPE is 16. Unless you are creating many user-defined buffer types, you can

omit MAXBUFTYPE. However, if you intend to use many different vi Ewsubtypes, you
may want to set MAXBUFSTYPE to exceed its current default of 32.

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters

If asystem isrunning on slower processors (for example, due to heavy usage), you can
increase the timing parameters: SANI TYCAN, BLOCKTI ME, and individual transaction

timeouts. If networking is slow, you can increase the value of the BLOCKTI ME,

BBLQUERY, and DBBLWAI T parameters.

Setting Application Parameters

4-14

Table 4-4 describes the system parameters available for tuning an application.

Scaling, Distributing, and Tuning CORBA Applications



Determining IPC Requirements

Table 4-4 System Parametersfor Application Tuning

Parameters

Action

MAXACCESSERS, MAXOBJECTS,
MAXSERVERS, MAXI NTERFACES, and
MAXSERVI CES

Set the small est satisfactory value because of
IPC cost.

Allow for extraclients.

MAXGTT, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGT T for many clients; set
MAXGTT to 0 for nontransactional
applications.

Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.

If you use many different VI EWsubtypes,
increase the va ue of MAXBUFSTYPE.

BLOCKTI ME, TRANTI ME, and
SANI TYSCAN

Increase the value for a slow system.

BLOCKTI ME, TRANTI ME, BBLQUERY, and
DBBLWAI T

Increase values for slow networking.

Determining IPC Requirements

The values of different system parameters determine IPC reguirements. Y ou can use
thet mboot - ¢ command to test a configuration’s |PC needs. The values of the
following parameters affect the |PC needs of an application:

MAXACCESSERS
REPLYQ

RQADDR (that allows M5SQ sets to be formed)

MAXSERVERS
MAXSERVI CES
MAXGIT

Table 4-5 describes the system parameters that affect the |PC needs of an application.

Scaling, Distributing, and Tuning CORBA Applications

4-15



4 Tuning CORBA Applications

Table 4-5 Tuning | PC Parameters

Par ameter (s) Action

MAXACCESSERS  Equals the number of semaphores.

Number of message queues is almost equal to MAXACCESSERS + the
number of servers with reply queues (the number of serversin MSSQ
set + the number of MSSQ sets).

MAXSERVERS, While MAXSERVERS, MAXSERVI CES, MAXGTT, and the overall size
MAXSERVI CES, of the ROUTI NG, GROUP, and NETWORK sections affect the size of
and MAXGTT shared memory, an attempt to devise formulas that correlate these

parameters can become complex. Instead, simply runt mboot -c or
t ml oadcf - c tocaculate the minimum IPC resource requirements
for your application.

Queue-related Need to be tuned to manage the flow of buffer traffic between clients

kernel parameters  and servers. The maximum total size of aqueuein bytesmust be large
enough to handle the largest message in the application, and to
typically be 75 to 85 percent full. A smaller percentage is wasteful.
A larger percentage causes message sends to block too frequently.

Set the maximum size for a message to handle the largest buffer that
the application sends.

Maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the
application’s operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This may be atrial and error processin
which tunables are estimated before the application is run and are
adjusted after running under performance analysis.

For alarge system, analyze the effect of parameter settings onthe size
of the operating system kernel. If unacceptable, reduce the number of
application processesor distribute the application to more machinesto
reduce MAXACCESSERS.

4-16  Scaling, Distributing, and Tuning CORBA Applications



Measuring System Traffic

Measuring System Traffic

Thistopic includes the following sections:

m  About System Traffic and Bottlenecks

m Example of Detecting a System Bottleneck
m Detecting Bottlenecks on UNIX

m Detecting Bottlenecks on Windows

For more information about monitoring BEA Tuxedo applications and measuring
traffic, see “Monitoring a Running System” in the Administering a BEA Tuxedo
Application at Run Time.

About System Traffic and Bottlenecks

Bottlenecks can occur in your system when traffic volume nears resource capacity.
Y ou can measure service traffic using a global counter in your implementation code.

For example, in Tuxedo applications, whent psvri ni t () isinvoked at boot time, you
can initialize aglobal counter and record a starting time. Subsequently, each time a
particular serviceis called, the counter isincremented. When the server is shut down
by invoking thet psvr done() function, thefina count and the ending time are
recorded. This mechanism allows you to determine how busy a particular serviceis
over a specified period of time.

Note: For CORBA C++ applications, usethe Server: :initialize() and
Server: :rel ease() operations.

In BEA Tuxedo, bottlenecks can originate from data flow patterns. The quickest way
to detect bottlenecks is to begin with the client and measure the amount of time
required by relevant services.

Scaling, Distributing, and Tuning CORBA Applications  4-17



4 Tuning CORBA Applications

Example of Detecting a System Bottleneck

Suppose Client 1 requires 4 secondsto print to the screen. Callsto t i me(2) determine
that thet pcal | to service A isthe culprit with a 3.7 second delay. Service A is
monitored at the top and bottom and takes 0.5 seconds. Thisimplies that a queue may
be clogged, which was determined by using the pqg command.

On the other hand, suppose service A takes 3.2 seconds. Theindividual parts of
Service A can be bracketed and measured. Perhaps Service A issuesat pcal | to
Service B, which requires 2.8 seconds. It should then be possible to isolate queue time
or message send blocking time. Once the relevant amount of time has been identified,
the application can be retuned to handle the traffic.

Using t i me(2), you can measure the duration of the following:
m Theentire client program.

m A client service request only.

m  Theentire service function.

m The service function making a service request (if any).

Detecting Bottlenecks on UNIX

On UNIX systems, the sar (1) command provides valuable performance information
that can be used to find system bottlenecks. Y ou can use the sar (1) command to:

m  Sample cumulative activity counters in the operating system at predetermined
intervals.

m Extract datafrom a system file.

Table 4-6 describes the sar (1) command options.

4-18  Scaling, Distributing, and Tuning CORBA Applications



Measuring System Traffic

Table 4-6 sar(1) Command Options

Option

Description

-u

Gathers CPU utilization numbers, including theportion
of the time running in user mode, running in system
mode, idle with some process waiting for block 1/0,
and otherwise idle.

Reports buffer activity, including transfers per second
of databetween system buffers and disk, or other block
devices.

Reports system call activity. Thisincludes system calls
of all types, aswell as specific system calls such as
f or k(2) and exec(2).

Monitors system swapping activity. This includes the
number of transfers for swap-ins and swap-outs.

Reports average queue lengths while occupied and the
percent of time occupied.

Reports message and system semaphore activities,
including the number of primitives per second.

Reports paging activity, including the address
translation page faults, page faults and protection
errors, and the valid pages reclaimed for freelists.

Reports unused memory pages and disk blocks,
including the average number of pagesavailableto user
processes and the disk blocks available for process

swapping.

Note: Some UNIX platforms do not provide the sar (1) command, but offer
equivalent commands instead. BSD, for example, offersthei ost at (1)
command. Sun Microsystems, Inc. offers per f met er (1).

Scaling, Distributing, and Tuning CORBA Applications  4-19



4 Tuning CORBA Applications

Detecting Bottlenecks on Windows

On Windows, use the Performance Monitor to collect system information and detect
bottlenecks. Click the Start button and select Programs, then Administration Tools,
and then click Performance M onitor.

4-20  Scaling, Distributing, and Tuning CORBA Applications



Index

A

accessors
calculating requirement 4-12
administrative parameters
MAXACCESSORS 4-12
MAXDISPATCHTHREADS 4-12
MINDISPATCHTHREADS 4-13
application parameters
setting 4-14
using 4-11
application scalability requirements 1-2
AUTOTRAN parameter 3-10, 3-11

B

BBLQUERY parameter 4-14, 4-15
BLOCKTIME parameter 4-14, 4-15
bottlenecks, detecting 4-18
bundling services
about bundling services 4-9
when to bundle services 4-9

C

CLOSEINFO parameter 3-9

configuration file parameters
FACTORYROUTING 3-11
MAXOBJECTS 4-15

create object_reference() operation 2-15

customer support contact information ix

D

data-dependent routing
about data-dependent routing
3-4
characteristics 3-5
sample application 3-5
using (Tuxedo only) 3-4
DBBLWAIT parameter 4-14, 4-15
distributing applications
about distributing applications 3-2
benefits 3-2
characteristics of adistributed
application 3-3
domain gateway file and routing 3-13
factory-based routing in multiple
domains 3-13
sample application 3-5
UBBCONFIG file 3-6
DMCONFIG file
about the DMCONFIG file 3-14
DM_ROUTING section 3-14
example 3-17
documentation, where to find it viii
domain gateway configuration file
(DMCONFIG) 3-13

F
factory_finder.ini 3-13
factory-based routing

about factory-based routing 1-14

Scaling, Distributing, and Tuning CORBA Applications -1



characteristics of 1-15
configuring 1-16
in Production sample application

2-12

configuring for multiple domains 3-13

how it works 1-15

implementing in a factory 2-15

in Production sample application 2-11

G

GROUP parameter 4-5
GRPNO parameter 3-8

I
[1OP Handler (ISH)
about the ISH 1-21
increasing the number of ISH processes
1-21
[1OP Listener (ISL) 1-21
interfaces, assigning prioritiesto 4-7
iostat(1) command 4-19
I PC requirements
determining 4-15-4-16
tuning parameters 4-16
tuning queue-related kernel parameters
4-16

K

kernel parameters, tuning 4-16

L

LMID parameter 3-8
load balancing
enabling 4-4

M
MAX parameter 4-5

MAXACCESSERS parameter 4-13, 4-15,
4-16
MAXACCESSORS parameter 4-12
MAXBUFSTY PE parameter 4-14, 4-15
MAXBUFTY PE parameter 4-14, 4-15
MAXDISPATCHTHREADS parameter
4-12
impact on other parameters4-12
MAXGTT parameter 4-14, 4-15, 4-16
MAXINTERFACES parameter 4-13, 4-15
MAXSERVERS parameter 4-13, 4-15, 4-16
MAXSERVICES parameter 4-13, 4-15, 4-16
method-bound objects 1-4
MIN parameter 4-5
MINDISPATCHTHREADS parameter 4-13
M SSQ sets
example 4-3
using 4-2
multiple server single queue (MSSQ) 4-2
multiplexing incoming client connections
1-20
multithreading
about multithreaded Java servers 1-12
coding recommendations 1-13
configuring
OPENINFO parameter 4-6
when to use 1-12

0]

object state management
in Production sample application 2-4

object state models
stateful objects 1-5
stateless objects 1-5

objects
method-bound 1-4
process-bound 1-4
stateful objects 1-5
stateless objects 1-5
transaction-bound 1-4

[-2 Scaling, Distributing, and Tuning CORBA Applications



OMG IDL, Production sample application
2-4
OPENINFO parameter 3-9

P

perfmeter(1) command 4-19

printing product documentation viii

PRIO parameter 4-8

priorities
assigning to interfaces or services 4-7
PRIO parameter 4-8

process-bound objects 1-4

Production sample application
additional design considerations 2-17
changing the OMG IDL 2-4
design goals 2-2
factory-based routing 2-11
how it has been scaled 2-2
replicating server groups 2-8
replicating server processes 2-6
scaling the application further 2-22
stateless object model 2-4
UBBCONFIG file 2-9

R

related information ix
replicating
about replicating server processes and
server groups 1-8
configuration options 1-9
Server groups
about replicating server groups 1-11
in Production sample application
2-8
Server processes
about replicating server processes
1-9
benefits of 1-10
guidelines for 1-10

Scaling, Distributing, and Tuning CORBA Applications

Production sample application 2-6
resources, maximizing application 4-2—4-15

S

SANITY SCAN parameter 4-14, 4-15
sar(1) command 4-18
scalability
features 1-2
requirements 1-2
server groups
about replicating 1-8
replicating 1-11
Server processes
about replicating 1-8
replicating 1-9
SRVID parameter 4-5
stateful objects
about stateful objects 1-5
when to use 1-6
stateless objects
about stateless objects 1-5
when to use 1-5
support
technical ix

T

tmboot(1) -c command 4-15
TMSCOUNT parameter 3-9
TMSNAME parameter 3-8
traffic, measuring system 4-17—4-19
transaction-bound objects 1-4
TRANTIME parameter 3-10, 3-11, 4-15
tsprio call 4-8
tuning applications 4-1-4-19
determining | PC requirements 4-15
maximizing application resources 4-2
bundling servicesinto servers 4-9
enabling load balancing 4-4
measuring system traffic 4-17

-3



detecting a system bottleneck 4-18
using application parameters 4-11, 4-13,
4-14

U

UBBCONFIG file
distributed application example 3-6
GROUPS section
CLOSEINFO parameter 3-9
GRPNO parameter 3-8
LMID parameter 3-8
OPENINFO parameter 3-9, 4-6
TMSCOUNT parameter 3-9
TMSNAME parameter 3-8
in Production sample application 2-9
ROUTING section 3-12
SERVERS section
GROUP parameter 4-5
MAX parameter 4-5
MIN parameter 4-5
SRVID parameter 4-5
SERVICES section
AUTOTRAN parameter 3-10, 3-11
sample 3-10, 3-12
TRANTIME parameter 3-10, 3-11

-4 Scaling, Distributing, and Tuning CORBA Applications



	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions

	1 Scaling BEA Tuxedo CORBA Applications
	About Scaling BEA Tuxedo CORBA Applications
	Application Scalability Requirements
	BEA Tuxedo Scalability Features

	Using Object State Management
	CORBA Object State Models
	Method-bound Objects
	Process-bound Objects
	Transaction-bound Objects

	Implementing Stateless and Stateful Objects
	About Stateless and Stateful Objects
	When to Use Stateless Objects
	When to Use Stateful Objects

	Parallel Objects

	Replicating Server Processes and Server Groups
	About Replicating Server Processes and Server Groups
	Configuration Options
	Replicating Server Processes
	Benefits
	Guidelines

	Replicating Server Groups

	Using Multithreaded Servers
	About Multithreaded CORBA Servers
	When to Use Multithreaded CORBA Servers
	Coding Recommendations
	Configuring a Multithreaded CORBA Server

	Using Factory-based Routing (CORBA Servers Only)
	About Factory-based Routing
	Characteristics of Factory-based Routing
	How Factory-based Is Implemented
	Configuring Factory-based Routing in the UBBCONFIG File

	Using Parallel Objects
	About Parallel Objects
	Configuring Parallel Objects

	Multiplexing Incoming Client Connections
	IIOP Listener and Handler
	Increasing the Number of ISH Processes


	2 Scaling CORBA Server Applications
	About Scaling the Production Sample Application
	Design Goals
	How the Application Has Been Scaled

	Changing the OMG IDL
	Using a Stateless Object Model
	Scaling by Replicating Server Processes and Server Groups
	Replicating Server Processes in the Production Application
	Replicating Server Groups in the Production Application
	Configuring Replicated Server Processes and Groups in the Production Application

	Scaling with Factory-based Routing
	About Factory-based Routing in the Production Application
	Configuring Factory-based Routing in the UBBCONFIG File
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations
	About the Additional Design Considerations
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object Is Instantiated in the Correct Server Group

	Scaling the Application Further

	3 Distributing CORBA Applications
	Why Distribute an Application?
	About Distributing an Application
	Benefits of a Distributed Application
	Characteristics of Distributing an Application

	Using Data-dependent Routing (BEA Tuxedo ATMI Servers Only)
	About Data-dependent Routing
	Characteristics of Data-dependent Routing
	Sample Distributed Application
	Example of UBBCONFIG Sections in a Distributed Application

	Configuring the UBBCONFIG File
	About the UBBCONFIG File in Distributed Applications
	Modifying the GROUPS Section
	Modifying the SERVICES Section
	Parameters to Modify
	Sample SERVICES Section

	Modifying the INTERFACES Section
	Parameters to Modify
	Sample INTERFACES Section

	Creating the ROUTING Section

	Configuring the factory_finder.ini (CORBA Applications Only)
	Modifying the Domain Gateway Configuration File to Support Routing
	About the Domain Gateway Configuration File
	Parameters in the DM_ROUTING Section of the DMCONFIG File (BEA Tuxedo ATMI Only)
	Parameters to Specify
	Routing Field Description
	Example of a Five-Site Domain Configuration Using Routing



	4 Tuning CORBA Applications
	Maximizing Application Resources
	When to Use MSSQ Sets (BEA Tuxedo ATMI Servers Only)
	Enabling System-controlled Load Balancing
	Configuring Replicated Server Processes and Groups
	Configuring Multithreaded Servers
	Setting the OPENINFO Parameter for Database Interoperation
	Parameters Used to Configure Multithreaded Servers
	Assigning Priorities to Interfaces
	About Priorities to Interfaces
	Characteristics of the PRIO Parameter


	Bundling Services into Servers (BEA Tuxedo ATMI Servers Only)
	About Bundling Services
	When to Bundle Services

	Performance Options
	Enhancing Efficiency with Application Parameters
	MAXDISPATCHTHREADS
	MINDISPATCHTHREADS
	Setting the MAXACCESSERS, MAXOBJECTS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters

	Setting Application Parameters
	Determining IPC Requirements
	Measuring System Traffic
	About System Traffic and Bottlenecks
	Example of Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX
	Detecting Bottlenecks on Windows


	Index

