BEA Tuxedo

Using CORBA Transactions

BEA Tuxedo Release 8.0
Document Edition 8.0
June 2001

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using CORBA Transactions

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KINOWcccoeiuiiiiiieeeetie sttt ettt vii
E-0OCSWED SItE....oceieeeeceeee ettt s e r e e e r e e e viii
How to Print the DOCUMENT..........ceeie et st st e viii
Related INfOrmMation.........cocueeieeiiee et st s s eaae s viii
CONLBCE US! ...ttt et st et e ae e s e et e e e sreeraesranns iX
Documentation CONVENLIONSccecuieiuecieie e eree e sree s ixX

1. Introducing Transactions

Overview of Transactionsin BEA Tuxedo CORBA Applications................... 1-2
ACID Properties of TranSaCtionscccccvereiereneneie e e 1-2
RESOUICE MaANAGEYc.eeeiee ettt st e e sa e e sreaenes 1-2
Supported Programming MOde ..o 1-3
Supported AP MOEL ..o e e 1-3
Support for BUSINESS TranSaCtiONS.c..cuveeeeeeeeiieiere et e e seese e 1-4
Distributed Transactions and the Two-Phase Commit Protocol 1-4

When to USE TranSaCtiONS.........coiuereiiriee ettt 1-5

How to Use Transactionsin BEA Tuxedo CORBA Applications.................... 1-6
How to Use Transactions When Using the BEA Bootstrapping

MECNENISIT ...t e 1-7
How to Use Transactions When Using the INS Bootstrapping
MECNENISIT ...t e 1-8

Writing a Transactions Sample AppliCation............cooeerinieeie s 1-9
Workflow for the Transactions Sample Application.........cc.cccoeeevrneeene 1-10
DeVelOPMENE SEEPSveuveeie ettt ettt st e e e sae e e se e 1-12

Using CORBA Transactions iii

iv

2. Transaction Service

About the TranSaCtion SEIVICEooeerieireie e e s 2-2
Capabilities and LimitationS...........coeoeeiririinie e e e 2-2
Lightweight Clients with Delegated Commitc.cooevevincienenecinenes 2-3
Support for Third-Party Clients Using INS.........cccooiriiiineeeree 2-3
Multithreaded Transaction Client SUPPOItccoeieiereneeieie e 2-5
Transaction Propagation (CORBA ONlY)cccieieirerieni e 2-5
TranSaction INEEGIILY ...c.eoiueereeeee ettt e e 2-5
Transaction TEMMINALTIONooiiiiiiieee e e e 2-6
Flat TranSaCtiONSoueiiiiiee et eseeee s 2-6
Interoperability Between CORBA Remote Clients and the BEA Tuxedo
[0 4=l o H TSRS 2-6
Intradomain and Interdomain Interoperabilityccocoveieiiinncieninenes 2-6
Network Interoperabilitycooeoe e 2-7
Relationship of the Transaction Service to Transaction Processing 2-7
PrOCESS FAIlUIE ...ttt et et s e 2-8
GENEral CONSLTAINEScivieiaieiie ettt e b e e 2-8
Transaction Service in CORBA ApPPlICatioNS..........cooeererieneie e 2-9
Getting Initial References to the TransactionCurrent Object Using the
BOOLSIraD ODJECL.ceeieeieieie et 2-10
Getting Initial References to the TransactionFactory Object Using INS. 2-10
CORBA Transaction ServiCe APcoo i 2-11
CORBA Transaction Service APl EXtENSIONScccoeeverencienieieie e 2-23
Notes on Using Transactions in BEA Tuxedo CORBA Applications2-25
UsSerTransaCtion AP ... e e e 2-27
UserTransaction Methods............cuoieiiiinine e 2-27
Exceptions Thrown by UserTransaction Methods...........cccccevveviiceennnns 2-29

Transactions in CORBA Server Applications

Integrating Transactions in a BEA Tuxedo Client and Server Application 3-2
Transaction Support in CORBA Applications.........cccceernrieeesenene e 32
Making an Object Automatically Transactional............cccccovieeerenerinnnne. 3-3
Enabling an Object to Participatein a Transactioncocceeeveeneeineennes 3-4
Preventing an Object from Being Invoked While a Transaction

[SSCOPEA ..ttt e s 3-6

Using CORBA Transactions

Excluding an Object from an Ongoing Transaction..........cc.cceceeeeeveeneennnne 3-6

ASSIGNING POLICIES ..ottt s s e 3-7
Using an XA ReSOUICE MaNaEYccceoeeueruernireeiereesiee e seeeseeseeeene e 3-7
Opening an XA ReSoUrce ManagErcccoeeeeeeerenie e seeneeie e seee e 3-8
Closing an XA ReSOUrCeE Managerccoceeueeeeeereeieseeieeeeeie e e 3-8
Transactions and Object State Managementccoceoeeererieniesenescene e 39
Delegating Object State Management to an XA Resource Manager 3-9
Waiting Until Transaction Work |s Complete Before Writing to the
DALBDASE ... ettt e n e e s 3-10
User-defined EXCEPLIONSc.eiiieieiiriieee et e 311
About User-defined EXCEPLIONScoceiririinee e 312
Defining the EXCEPLION........coi it e 312
Throwing the EXCEPLIONceiiiiie et 3-13
How the Transactions University Sample Application Works...........c.ccceee.. 3-13
About the Transactions University Sample Application............c.cccceeunee. 3-13
Transactional Model Used by the Transactions University Sample
APPIICAITON....cee et e 3-15
Object State Considerations for the University Server Application 3-15

Configuration Requirements for the Transactions Sample Application . 3-17

4. Transactions in CORBA Client Applications

Overview of BEA Tuxedo CORBA TransaCtions...........c.coereereemreeeneeeneenenns 4-2
Summary of the Development Process for Transactionsc.cccecvcevereeeenee. 4-2
Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object.. 4-3
Crt BXAMPIE <. et e s 4-3
JAVE EXAMPIE.....ceeeiee e e 4-4
Visual BasiC EXAMPIEoiiiiieieeiiee et st s 4-4
Step 2: Using the TransactionCurrent Methodsccocoveeeeirnieie v, 4-4
Crt BXAMPIE <. et e s 4-6
JAVE EXAMPIE.....eeeeee e e 4-7
Visual BasiC EXAMPIEcoiiiiiiriiiee ettt s e e 4-7

5. Administering Transactions

Modifying the UBBCONFIG Fileto Accommodate Transactions................... 8-2
SUMMAY Of SEEPS -...ecveeie ettt et e e e 8-2

Using CORBA Transactions %

Vi

Step 1: Specify Application-wide Transactionsin the RESOURCES

SECLIOMN .ttt e e e e e e 8-3
Step 2: Create a Transaction Log (TLOG)c.eveeueiereeneeieee e 8-3
Step 3: Define Each Resource Manager (RM) and the Transaction Manager
Server in the GROUPS SECHIONccuvveuiieeiieiine e 8-6
Step 4: Enable an Interface to Begin a Transactionccccceeeieieeeeeenne 8-8
Modifying the Domain Configuration Fileto Support Transactions (BEA Tuxedo
CORBA SEIVEIS) ..o etireeeie et seereaieaee e eeeseese st e sse st e eneeseessansenseseenes 8-11
Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters..........coceeeenereriennee. 8-11
Characteristics of the AUTOTRAN and TRANTIME Parameters (BEA
Tuxedo CORBA and ATMI SEIVErS)......ccoeeeeieeieeiieeieeseeeseeeree e 8-13
Sample Distributed Application Using Transactionsccccveeeievereneneene 8-14
RESOURCES SECHIONceivrueieeeeieeieiseeteieseseses e esesssesssse s sessssesssens 8-14
MACHINES SECHON ...ttt sttt et e s 8-15
GROUPS and NETWORK SECHIONS........coviieriieriieriieriiereieree e 8-16
SERVERS, SERVICES, and ROUTING Sections.........cccveueeenererenenennns 8-17
Index

Using CORBA Transactions

About This Document

Thisdocument explains how to usetransactionsin CORBA applicationsthat run in the
BEA Tuxedo® environment.

This document includes the following topics:

m Chapter 1, “Introducing Transactions,” introduces transactionsin CORBA
applications running in the BEA Tuxedo CORBA environment.

m Chapter 2, “Transaction Service,” describesthe BEA Tuxedo Transaction
Service.

m Chapter 3, “Transactions in CORBA Server Applications,” describes how to
implement transactionsin CORBA C++ applications.

m Chapter 4, “Transactionsin CORBA Client Applications,” describes how to
implement transactions in CORBA client applications.

m Chapter 5, “Administering Transactions,” describes how to administer
transactions in the BEA Tuxedo CORBA environment.

What You Need to Know

This document is intended primarily for application devel opers who are interested in
building transactional C++ applications that run in the BEA Tuxedo CORBA
environment. It assumes a familiarity with the BEA Tuxedo platform, C++
programming, and transaction processing concepts.

Using CORBA Transactions vii

e-docs Web Site

The BEA Tuxedo product documentation is avail able on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, and C++ programming, see the CORBA Bibliography in the
BEA Tuxedo online documentation.

Viii Using CORBA Transactions

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

Inyour e-mail message, pleaseindicate that you are using the documentation for BEA
Tuxedo release 8.0.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can al so contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using CORBA Transactions iX

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
BI TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ()
nonospace Identifies variables in code.
italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui | dobjclient [-v]
[-1 file-list]...

[-0 name | [-f file-list]...

Using CORBA Transactions

Convention

Item

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Using CORBA Transactions

Xi

Xii Using CORBA Transactions

CHAPTER

1 Introducing
Transactions

Thistopic includes the following sections:

m Overview of Transactionsin BEA Tuxedo CORBA Applications
m When to Use Transactions

m How to Use Transactions in BEA Tuxedo CORBA Applications

m Writing a Transactions Sample Application

Using CORBA Transactions 1-1

1

Introducing Transactions

Overview of Transactions in BEA Tuxedo
CORBA Applications

This topic includes the following sections:
m ACID Properties of Transactions

m Resource Manager

m Supported Programming Model

m Supported APl Model

m Support for Business Transactions

m Distributed Transactions and the Two-Phase Commit Protocol

ACID Properties of Transactions

One of the most fundamental features of the BEA Tuxedo system is transaction
management. Transactions are a means to guarantee that database transactions are
completed accurately and that they take on all the ACID properties (atomicity,
consistency, isolation, and durability) of ahigh-performancetransaction. BEA Tuxedo
protects the integrity of your transactions by providing a complete infrastructure for
ensuring that database updates are done accurately, even across avariety of resource
managers (RMs). If any one of the operationsfails, the entire set of operationsisrolled
back.

Resource Manager

1-2

A Resource Manager (RM) isadatarepository, such asadatabase management system
or the BEA Tuxedo system’s Application Queuing Manager, with tools for accessing
the data. The BEA Tuxedo system uses one or more RMs to maintain the state of an

application. For example, bank records in which account balances are maintained are

Using CORBA Transactions

Overview of Transactions in BEA Tuxedo CORBA Applications

kept in an RM. When the state of the application changes through a servicethat allows
a customer to withdraw money from an account, the new balance in the account is
recorded in the appropriate RM.

The BEA Tuxedo system helps you manage transactions involving resource managers
that support the XA interface. To coordinate all the operations performed and all the
modules affected by atransaction, the BEA Tuxedo system playsthe role of the
Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. L ocal
resource managers (RMs) are responsible for individual resources. The Transaction
Manager Server (TMS) begins, commits, and aborts transactions involving multiple
resources. The application code uses the normal embedded SQL interface to the RM
to perform reads and updates. The TM S uses the XA interface to the RM to perform
the work of a global transaction.

Supported Programming Model

BEA Tuxedo supports the Object Management Group Common Object Request
Broker (CORBA) in C++, in compliance with the The Common Object Request
Broker: Architecture and Specification, Revision 2.4.2, January 2001.

Supported API Model

BEA Tuxedo supports the CORBA services Object Transaction Service (OTS). BEA
Tuxedo provides a C++ interface to the OTS and is based on the OTS. The OTS is
accessed through the or g. ong. CosTr ansacti ons. Current environmental object.
For information about using the Tr ansact i onCur r ent environmental object, seethe
“CORBA Bootstrapping Programming Reference” in the CORBA Programming
Reference.

Note: BEA Tuxedo also supports use of the CORBA |nteroperable Naming Service
(INS) bootstrapping mechanism. For information on INS, see the “CORBA
Bootstrapping Programming Reference” in the CORBA Programming
Reference.

Using CORBA Transactions 1-3

1

Introducing Transactions

Support for Business Transactions

OT S provides the following support for your business transactions:

Creates aglobal transaction identifier when a client application initiates a
transaction.

Works with the BEA Tuxedo infrastructure to track objects that are involved in a
transaction and, therefore, need to be coordinated when the transaction is ready
to commit.

Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of atransaction. Resource managers then lock the
accessed records until the end of the transaction.

Orchestrates the two-phase commit when the transaction compl etes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using Open Group’s XA protocol. Almost al relational databases
support this standard.

Executes the rollback procedure when the transaction must be stopped.

Executes arecovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

Distributed Transactions and the Two-Phase Commit
Protocol

1-4

BEA Tuxedo CORBA supports distributed transactions and the two-phase commit
protocol for enterprise applications. A distributed transaction is a transaction that
updates multiple resource managers (such as databases) in a coordinated manner. The
two-phase commit protocol (2PC) is amethod of coordinating a single transaction
across one or more resource managers. It guarantees dataintegrity by ensuring that
transactional updates are committed in all of the participating databases, or are fully
rolled back out of all the databases, reverting to the state prior to the start of the
transaction.

Using CORBA Transactions

When to Use Transactions

When to Use Transactions

Transactions are appropriate in the situations described in the following list. Each
situation describes a transaction model supported by BEA Tuxedo CORBA.

m The client application needs to make invocations on several objects, which may
involve write operations to one or more databases. If any one invocation is
unsuccessful, any state that is written (either in memory or, more typically, to a
database) must be rolled back.

For example, consider atravel agent application. The client application needs to
arrange for ajourney to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such ajourney would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paristo New York, New York to Los Angeles. However, if any individua
flight reservation cannot be made, the client application needs away to cancel

all the flight reservations made up to that point.

m The client application needs a conversation with an object managed by the
server application, and the client application needs to make multiple invocations
on a specific object instance. The conversation may be characterized by one or
more of the following:

e Dataiscached in memory or written to a database during or after each
successive invocation.

e Dataiswritten to a database at the end of the conversation.

e Theclient application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data
that is being maintained in memory across the conversation.

e Atthe end of the conversation, the client application needs the ability to
cancel all database write operations that may have occurred during or at the
end of the conversation.

For example, consider an Internet-based online shopping cart application. Users
of the client application browse through an online catalog and make multiple
purchase selections. When the users are done choosing all the items they want to
buy, they proceed to check out and enter their credit card information to make
the purchase. If the credit card check fails, the shopping application needs a way

Using CORBA Transactions 1-5

1

Introducing Transactions

to cancel al the pending purchase selections in the shopping cart, or roll back
any purchase transactions made during the conversation.

Within the scope of asingle client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (In this situation, the individual database
edits are not necessarily CORBA.)

For example, consider a banking application. The client invokes the transfer
operation on ateller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

e Invoking the debit method on one account.
e Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs
away to roll back the previous debit invocation.

How to Use Transactions in BEA Tuxedo
CORBA Applications

1-6

Figure 1-1 illustrates transactions in a BEA Tuxedo CORBA application.

Using CORBA Transactions

How to Use Transactions in BEA Tuxedo CORBA Applications

Figure1-1 Transactionsin a BEA Tuxedo CORBA Application

CORBA C++ Client
Application

Get Student Details

Get Course Details

Browse Courses

: Register for Courses
CORBA Qavg Client . . .| University Server
Application v

i . ' g Application
: CORBA : A i
ActiveX Client . . v

Application

University

Database

A Part of a Transaction

The way you use transactions differs depending on whether you use the BEA

bootstrapping mechanism or the Interoperable Naming Service (INS) bootstrapping
mechanism.

Note: Y ou should use the BEA bootstrapping mechanism if you are using BEA
Tuxedo CORBA client software. Y ou should use the INS bootstrapping
mechanism if you are using athird-party client.

How to Use Transactions When Using the BEA
Bootstrapping Mechanism

When the BEA proprietary Bootstrapping mechanism is used, you use a basic
transaction in the following way:

1. Theclient application uses the Bootstrap object to return an object reference to the
TransactionCurrent object for the BEA Tuxedo domain.

Using CORBA Transactions 1-7

1 Introducing Transactions

2. A client application begins a transaction using the
Tobj : : TransactionCurrent: : begi n() operation, and issues arequest to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of atransaction.

e If acdl to any of these operations raises an exception (either explicitly or as
aresult of acommunication failure), the exception can be caught.

e |f all the changes that need to occur have taken place successfully, and the
state of the database (or objects) is consistent, then the transaction should be
committed; otherwise, the transaction should be rolled back.

e Theclient application commits the current transaction using the
Tobj : : TransactionCurrent:: comnit() operation. Thisoperation ends
the transaction and starts the processing of the operation. The transaction is
committed only if all of the participantsin the transaction agree to commit.

3. TheTobj :: Transacti onCurrent:commit () operation causesthe TP
Framework to call the transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource
managers to update the database.

How to Use Transactions When Using the INS
Bootstrapping Mechanism

When you use CORBA services Interoperable Naming Service (INS) bootstrapping
mechanism is used, you use a basic transaction in the following way:

1. Theclient application usesthe ORB: : resol ve_i ni ti al _references()
operation to get a FactoryFinder object for the BEA Tuxedo domain.

2. Theclient application uses the FactoryFinder to get a TransactionFactory.

Note: The TransactionFactory returns objects that adhere to the standard
CORBA Services Transaction Service interfacesinstead of the BEA
delegated interfaces. This meansthat athird-party client can use their
ORB’sresol ve_initial _references() function to get the
TransactionFactory from a BEA Tuxedo CORBA server and use stubs
generated from standard OMG IDL to act on the instances returned.

1-8 Using CORBA Transactions

Writing a Transactions Sample Application

3. Theclient application then usesthe cr eat e() operation on the
TransactionFactory to begin atransaction and issues a request to the CORBA
interface through the TP Framework.

4. From the Control object returned from the cr eat e() operation, the client
application usesthe get _t er ni nat or () operation to get the transaction
Terminator interface.

5. Theclient application then usesthe conmi t () or rol | back() operation on the
Terminator interface to end or abort the transaction. The conmi t () operation
causes the TP Framework to call the transaction manager to complete the
transaction.

6. The transaction manager is responsible for coordinating with the resource
managers to update the database.

Note: All operations on the CORBA interface execute within the scope of a
transaction.

m |f acall to any of these operations raises an exception (either explicitly
or as aresult of acommunication failure), the exception can be caught.

m |f all the changes that need to occur have taken place successfully, and
the state of the database (or objects) is consistent, then the transaction
should be committed; otherwise, the transaction should be rolled back.

m Theclient application commits the current transaction using the
Term nat or: : conmi t () operation. This operation ends the transaction
and starts the processing of the operation. The transaction is committed
only if al of the participantsin the transaction agree to commit.

Note: For moreinformation on INS, seethe “CORBA Bootstrapping Programming
Reference” in the CORBA Programming Reference.

Writing a Transactions Sample Application

Thistopic includes the following sections:

m Workflow for the Transactions Sample Application

Using CORBA Transactions 1-9

1 Introducing Transactions

m Development Steps

Workflow for the Transactions Sample Application

In the Transactions sample CORBA application, the operation of registering for
courses is executed within the scope of atransaction. The transaction model used in
the Transactions sampl e application is a combination of the conversational model and
the model in which asingle client invocation makes multiple individual operationson
adatabase.

The Transactions sample application works in the following way:

1. Students submit alist of courses for which they want to be registered.

2. For each coursein thelist, the server application checks whether:

The course isin the database.
The student is already registered for a course.

The student exceeds the maximum number of credits the student can take.

3. One of thefollowing occurs:

If the course meets all the criteria, the server application registers the student
for the course.

If the courseis not in the database or if the student is aready registered for
the course, the server application adds the course to alist of courses for
which the student could not be registered. After processing all the
registration requests, the server application returns the list of courses for
which registration failed. The client application can then choose to either
commit the transaction (thereby registering the student for the courses for
which registration request succeeded) or to roll back the transaction (thus,
not registering the student for any of the courses).

If the student exceeds the maximum number of credits the student can take,
the server application returns a TooManyCr edi t s user exception to the client
application. The client application provides a brief message explaining that
the request was rejected. The client application then rolls back the
transaction.

Figure 1-2 illustrates how the Transactions sample application works.

1-10 Using CORBA Transactions

Writing a Transactions Sample Application

Figure1-2 Transactions Sample Application

CORBA C++ Client
Application

CORBA Java Client

get _student _detail s()
get _course_detail s()
br owse_courses()

regi ster_for_courses()

University Server

Application

ActiveX Client
Application

A Part of a Transaction

CORBA
Server

Application

A i
Y

University

Database

The Transactions sample application shows two ways in which a transaction can be

rolled back:

m Nonfatal. If the registration for a course fails because the courseis not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

m Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returnsiit to the client. The decision to roll back the
transaction a so lies with the client application.

Thus, the Transactions sample application aso shows how to implement
user-defined CORBA exceptions. For example, if the student triesto register for
a course that would exceed the maximum number of courses for which the
student can register, the server application returns the TooManyCredit s
exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

Using CORBA Transactions 1-11

1

Introducing Transactions

Note: For information about how transactions are implemented in BEA Tuxedo
CORBA applications, see the Transactions Sampleinthe BEA Tuxedo online
documentation.

Development Steps

This topic describes the following devel opment steps for writing a BEA Tuxedo
application that contains transaction processing code:

m Step 1: Writing the OMG IDL

m Step 2: Defining Transaction Policies for the Interfaces
m Step 3: Writing the Server Application

m Step 4: Writing the Client Application

m Step 5: Creating a Configuration File

The Transactions sample application is used to demonstrate these devel opment steps.
The source files for the Transactions sample application are located in the

\ sanpl es\ corba\ uni versi ty directory of the BEA Tuxedo software. For
information about building and running the Transactions sample application, see the
Transactions Sample in the BEA Tuxedo online documentation.

Step 1: Writing the OMG IDL

1-12

Y ou need to specify interfacesinvolved in transactionsin Object Management Group
(OMG@G) Interface Definition Language (IDL) just as you would any other CORBA
interface. Y ou must also specify any user exceptions that might occur from using the
interface.

For the Transactions sample application, you would definein OMG IDL the

Regi strar interface and ther egi st er _f or _cour ses() operation. The

regi ster_for_courses() operation hasaparameter, Not Regi st er edLi st , which
returns to the client application the list of courses for which registration failed. If the
value of Not Regi st er edLi st isempty, then the client application commits the
transaction. Y ou also need to define the TooManyCr edi t s user exception.

Listing 1-1 includes the OMG IDL for the Transactions sample application.

Using CORBA Transactions

Writing a Transactions Sample Application

Listing1-1 OMG IDL for the Transactions Sample Application

#pragma prefix "beasys. cont
nmodul e UniversityT

{

typedef unsi gned | ong CourseNunber;
typedef sequence<Cour seNunber > CourseNunber Li st ;

struct CourseSynopsi s

{
Cour seNunber cour se_nunber;
string title;

b

typedef sequence<CourseSynopsi s> Cour seSynopsi sLi st;

interface CourseSynopsi sEnuner at or
{
/I Returns a list of length O if there are no nore entries
Cour seSynopsi sLi st get _next _n(
in unsigned | ong nunber _to get, // O = return all
out unsigned | ong nunber _remaini ng

)

voi d destroy();
b
typedef unsigned short Days;

const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRI DAY = 16;

/1 Classes restricted to sane tine block on all schedul ed days,
/lstarting on the hour

struct

{

}s

struct

{

Cl assSchedul e

Days cl ass_days; // bitmask of days
unsi gned short start_hour; // whole hours in mlitary time
unsi gned short duration; // mnutes

CourseDetail s
Cour seNunber cour se_nunber;

doubl e cost ;
unsi gned short nunber_of _credits;

Using CORBA Transactions ~ 1-13

1

Introducing Transactions

1-14

struct

b

Cl assSchedul e cl ass_schedul e;
unsi gned short nunber of seats;

string title;
string prof essor;
string descri ption;

t ypedef sequence<CourseDetail s> CourseDetail sList;
typedef unsigned | ong Studentld;

St udent Detai | s

Student | d student _id;
string nane;
Cour seDet ai | sLi st registered_courses;

enum Not Regi st er edReason

{

b

struct

b

Al r eadyRegi st er ed,
NoSuchCour se

Not Regi st er ed

Cour seNunber cour se_nunber;
Not Regi st er edReason not _regi st ered_reason;

typedef sequence<Not Regi st er ed> Not Regi st er edLi st;

exception TooManyCredits

{
b

unsi gned short maxi mumcredits;

/1 The Registrar interface is the main interface that allows
//students to access the dat abase.
interface Registrar

{

Cour seSynopsi sLi st
get _cour ses_synopsi s(

in string search_criteria,
in unsigned | ong nunber _to_get,
out unsigned | ong nunber _renai ni ng,

out Cour seSynopsi sEnumnerat or rest

Cour seDet ai | sLi st get _courses_detail s(in CourseNunberLi st
courses);

StudentDetail s get_student _detail s(in Studentld student);

Not Regi st er edLi st regi ster_for_courses(

Using CORBA Transactions

Writing a Transactions Sample Application

in Studentld st udent,
in Cour seNunber Li st courses

) raises (

TooManyCredits

)
}

/1l The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

{

Registrar find_ registrar(

)
b

Step 2: Defining Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decided
which interfaceswithin aBEA Tuxedo application will handletransactions. Table 1-1
describes the CORBA transaction policies.

Table 1-1 CORBA Transaction Policies

Transaction Policy

Description

al ways

The interface must always be part of atransaction. If the
interfaceis not part of atransaction, a transaction will be
automatically started by the TP Framework.

i gnore

The interface is not transactional. However, requests made to
this interface within a scope of atransaction are allowed. The
AUTOTRAN parameter, specified in the UBBCONFI Gfilefor this
interface, isignored.

never

The interface is not transactional. Objects created for this
interface can never beinvolved in atransaction. The BEA
Tuxedo system generates an exception

(I NVALI D_TRANSACTI ON) if an interface with thispolicy is
involved in atransaction.

opti onal

Theinterface may be transactional. Objectscan beinvolvedina
transactionif therequest istransactional . Thistransaction policy
isthe default.

Using CORBA Transactions 1-15

1

Introducing Transactions

During devel opment, you decide which interfaces will execute in atransaction by
assigning transaction policies. Y ou specify transaction policiesin the Implementation
Configuration File (ICF). A template | CF file is created by thegeni cf command. For
more information about the ICFs, see “Implementation Configuration File (ICF)” in
the CORBA Programming Reference.

In the Transactions sample application, the transaction policy of the Regi st r ar
interfaceis set to al ways.

Step 3: Writing the Server Application

1-16

When using transactionsin server applications, you need to write methods that
implement the interface’ s operations. In the Transactions sample application, you
would write a method implementation for ther egi st er _f or _cour ses() operation.

If your BEA Tuxedo application uses a database, you need to include in the server
application code that opens and closes an XA resource manager. These operations are
includedintheServer::initialize() andServer::rel ease() operationsof the
Server object. Listing 1-2 shows the portion of the code for the Server object in the
Transactions sample application that opens and closes the XA resource manager.

Note: For acomplete example of a CORBA server application that implements
transactions, see the Transactions Sample in the BEA Tuxedo online
documentation.

Listing 1-2 C++ Server Object in Transactions Sample Application

CORBA: : Bool ean Server::initialize(int argc, char* argv[])
{
TRACE METHOD("Server::initialize");
try {
open_dat abase();
begi n_transactional ();
regi ster_fact();
return CORBA TRUE;

catch (CORBA: : Exception& e) {
LOG(“ CORBA exception : “ <<e);

}
catch (Sanpl esDBExcepti on& e) {

LOG “Can’t connect to database”);
}

Using CORBA Transactions

Writing a Transactions Sample Application

}

catch (...) {
LOG “ Unexpect ed dat abase error : “ <<e);
}

catch (...) {
LOG “ Unexpect ed exception”);
}

cl eanup();
return CORBA_FALSE;

void Server::release()

{

static

}
I1Wili

CORBA: :
static

{

}

static

{

try {

TRACE_METHOD(“ Ser ver: :rel ease”);
cl eanup();

voi d cl eanup()

unregi ster_factory();
end_transactional ();
cl ose_dat abase();

ties to manage transaction resource manager

Bool ean s_becane_transactional = CORBA FALSE;
voi d begin_transactional ()

TP: : open_xa_rm();
s_becane_transactional = CORBA TRUE;

voi d end_transactional ()
if(!s_becane_transactional){
return//cl eanup not necessary
TP::close xa_ rm();

catch (CORBA:: Exception& e) {
LOG(“ CORBA Exception : “ << e);

}
catch (...) {

LOE “unexpect ed exception”);
}

s_becane_transactional = CORBA FALSE;

Using CORBA Transactions ~ 1-17

1 Introducing Transactions

Step 4: Writing the Client Application

The client application needs code that performs the following tasks:
1. Obtains areference to the TransactionCurrent object from the Bootstrap object.

2. Beginsatransaction by invoking the Tobj : : Transacti onCurrent : : begi n()
operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
client application invokesther egi st er _f or _cour ses() operation on the
Registrar object, passing alist of courses.

Listing 1-3 shows the portion of the CORBA C++ client applicationsin the
Transactions sample application that illustratesthe development stepsfor transactions.

Note: The sample code shown in Listing 1-3 illustrates how to use the BEA
bootstrapping mechanism. For information on how to usethe INS
bootstrapping mechanism, see the “ CORBA Bootstrapping Programming
Reference” in the CORBA Programming Reference.

For an example of using transactionsin an ActiveX client application, see Chapter 4,
“Transactionsin CORBA Client Applications.”

Listing 1-3 Transactions Code for CORBA C++ Client Applications

CORBA: : Cbj ect _var var _transaction_current_oref =

Boot strap.resolve_initial _references(”“Transacti onCurrent”);
CosTransactions::Current_var transaction_current_oref=

CosTransactions::Current:: _narrowvar_transaction_current_oref.in());
//Begin the transaction
var _transacti on_current _oref->begin();
try {
/I Performthe operation inside the transaction

poi nter_Registar_ref->regi ster_for_courses(student _id, course_nunber |ist);

/11f operation executes with no errors, conmt the transaction:
CORBA: : Bool ean report_heuristics = CORBA_TRUE;
var _transaction_current _ref->commt(report_heuristics);

}
catch (...) {
/11f the operation has probl ems executing, rollback the
//transaction. Then throw the original exception again.
/11f the rollback fails, ignore the exception and throw the

1-18 Using CORBA Transactions

Writing a Transactions Sample Application

/1 original exception again.
try {
var_transaction_current_ref->roll back();
}
catch (...) {
TP: :userlog("roll back failed");
}
t hr ow;

}

Step 5: Creating a Configuration File

Y ou need to add the following information to the configuration file for a transactional
BEA Tuxedo application:

m |n the GROUPS section:

e Inthe OPENI NFO parameter, include the information needed to open the
resource manager for the database. You obtain this information from the
product documentation for your database. Note that the default version of the
com beasys. Tobj . Server. i ni tial i ze method automatically opens the
resource manager.

¢ Inthe CLOSEI NFO parameter, include the information needed to close the
resource manager for the database. By default, the CLOSEI NFO parameter is
empty.

e Specify the TMSNAME and TMSCOUNT parameters to associate the XA resource
manager with a specified server group.

m Inthe SERVERS section, define a server group that includes both the server
application that includes the interface and the server application that manages
the database. This server group needs to be specified as transactional.

m Include the pathname to the transaction log (TLOG) in the TLOGDEVI CE
parameter. For more information about the transaction log, see Chapter 5,
“Administering Transactions.”

Listing 1-4 includes the portions of the configuration file that define thisinformation
for the Transactions sample application.

Using CORBA Transactions 1-19

1 Introducing Transactions

Listing 1-4 Configuration Filefor Transactions Sample Application

* RESOQURCES
| PCKEY 55432
DOVAI NI D university
MASTER SI TE1

MODEL SHMV

LDBAL N

SECURI TY APP_PW
* MACH NES

BLOTTO

LMD = SITEL

APPDI R = C:\ TRANSACTI ON_SAMPLE

TUXCONFI G=C: \ TRANSACTI ON_SAMPLE\ t uxconfi g
TLOGDEVI CE=C: \ APP_DI R\ TLOG

TLOGNAME=TLOG

TUXDI R="C: \ tuxdir"

MAXWSCLI ENTS=10

* GROUPS
SYS _GRP
LM D
GRPNO
ORA_GRP
LM D
GRPNO

SI TE1
1

SI TE1
2

OPENI NFO = "ORACLE_XA: O acl e_XA+Sql Net =ORCL+Acc=P
/scott/tiger+SesTm=100+LogDi r =. +MaxCur =5"

CLCSEI NFO = ""

TNVSNAVE " TVS_ORA"

TNMSCOUNT 2

* SERVERS
DEFAULT:
RESTART
MAXCGEN

o<

TMBYSEVT
SRVGRP
SRVI D

SYS GRP

TMFENAME
SRVGRP
SRVI D
CLOPT

SYS GRP

I mn
N

"A-- -N-M

1-20 Using CORBA Transactions

Writing a Transactions Sample Application

TMFENAVE
SRVGRP = SYS GRP
SRVID =3
CLOPT ="-A-- -N'
TMFENAVE
SRVGRP = SYS GRP
SRVID =4
CLOPT ="-A-- -F
TM FRSVR
SRVGRP = SYS GRP
SRVID =5
UNI VT_SERVER
SRVGRP = ORA GRP
SRVID =1
RESTART = N
I SL
SRVGRP = SYS GRP
SRVID =6
CLOPT = -A -- -n //NACH NENAME: 2500
* SERVI CES

For information about the transaction log and defining parametersin the Configuration
file, see Chapter 5, “Administering Transactions.”

Using CORBA Transactions

1-21

1 Introducing Transactions

1-22 Using CORBA Transactions

CHAPTER

2 Transaction Service

Thistopic includes the following sections:

m About the Transaction Service

m Capabilitiesand Limitations

m Transaction Service in CORBA Applications
m UserTransaction AP

Thistopic provides the information that programmers need to write transactional
CORBA applicationsfor the BEA Tuxedo system. Before you begin, you should read
Chapter 1, “Introducing Transactions.”

Using CORBA Transactions 2-1

2

Transaction Service

About the Transaction Service

BEA Tuxedo provides a Transaction Service that supports transactionsin CORBA
applications. The Transaction Service provides an implementation of the CORBA
Services Transaction Service that is described in the OMG CORBA Services
Transaction Service Specification. This specification defines the interfaces for an
object service that provides transactional functions.

Capabilities and Limitations

2-2

This topic includes the following sections:

Lightweight Clients with Delegated Commit

Support for Third-Party Clients Using INS

Multithreaded Transaction Client Support

Transaction Integrity

Transaction Termination

Flat Transactions

Interoperability Between CORBA Remote Clients and the BEA Tuxedo Domain
Intradomain and Interdomain Interoperability

Network Interoperability

Relationship of the Transaction Service to Transaction Processing
Process Failure

General Constraints

These sections describe the capabilities and limitations of the Transaction Service that
supports CORBA applications.

Using CORBA Transactions

Capabilities and Limitations

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability. Owners may turn their desktop systems off when they arenot in
use. These single-user, unmanaged desktop systems should not be required to perform
network functions such as transaction coordination. In particular, unmanaged systems
should not be responsible for ensuring atomicity, consistency, isolation, and durability
(ACID) properties across failures for transactions involving server resources. BEA
Tuxedo CORBA remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which
means that the Transaction Service allows lightweight clients to begin and terminate
transactions while the responsibility for transaction coordination is delegated to a
transaction manager running on aserver machine. Client applications do not require a
local transaction server. The remote TransactionCurrent implementation that CORBA
clients use delegatesthe actual responsibility of transaction coordinationto transaction
manager on the server.

Support for Third-Party Clients Using INS

In BEA Tuxedorelease 8.0 and later, the CORBA Interoperable Naming Service (INS)
is supported. Therefore, clients that implement the CORBA services Object
Transaction Service (OTS) can communicate with BEA Tuxedo CORBA serversand
initiate and terminate transactions. Using INS, any third-party client ORB that can
compilethe standard OTS IDL filesand produce usable stub files can interact with the
BEA Tuxedo CORBA transaction manager. However, such interaction islimited
because the transaction coordination interfaces that would allow athird-party ORB to
become aresource manager are not supported. Only BEA provided resource managers
and/or XA compliant resource managers can participate in the coordination of a
transaction. Further, the BEA provided and XA compliant resource managers can
participate in transaction coordination only if they use the XA protocols—not the
CORBA services OTS protocols—for transaction coordination.

In summary, athird-party client ORB can be used to initiate a transaction, and the
client can request the rollback or commit of the transaction, however, the client ORB
cannot participate in the coordination of the two-phase commit protocol using the
CORBA services OTS.

Using CORBA Transactions 2-3

2

Transaction Service

Multithreaded Transaction Client Support

In release 8.0, BEA Tuxedo CORBA supports multithreaded clients for
nontransactional clients and transactional clients.

Transaction Propagation (CORBA Only)

For CORBA applications, the OMG CORBA Services Transaction Service
specification states that a client can choose to propagate a transaction context either
implicitly or explicitly. BEA Tuxedo providesimplicit propagation. Explicit
propagation is strongly discouraged.

Objects that are related to transaction contexts that are passed around using explicit
transaction propagation should not be mixed with implicit transaction propagation
APIs. It should be noted, however, that explicit propagation does not place any
constraintson when transactional methods can be processed. Thereisno guaranteethat
all transactional methods will be completed before the transaction is committed.

Transaction Integrity

2-4

Checked transaction behavior provides transaction integrity by guaranteeing that a
commi t will not succeed unless all transactional objectsinvolved in the transaction
have completed the processing of their transactional requests. If implicit transaction
propagation is used, the Transaction Service provides checked transaction behavior
that is equivalent to that provided by the request/responseinterprocess communication
models defined by The Open Group. For CORBA applications, for example, the
Transaction Service performsr epl y checks, conmi t checks, and r esune checks, as
described in the OMG CORBA Services Transaction Service Specification.

Unchecked transaction behavior relies completely on the application to provide
transaction integrity. If explicit propagation is used, the Transaction Service does not
provide checked transaction behavior and transaction integrity is not guaranteed.

Using CORBA Transactions

Capabilities and Limitations

Transaction Termination

BEA Tuxedo CORBA allows transactions to be terminated only by the client that
created the transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions

BEA Tuxedo CORBA implements the flat transaction model. Nested transactions are
not supported.

Interoperability Between CORBA Remote Clients and the
BEA Tuxedo Domain

BEA Tuxedo CORBA supports remote clients invoking methods on server objectsin
different BEA Tuxedo domainsin the same transaction.

Remote CORBA clients with multiple connections to the same BEA Tuxedo domain
may make invocationsto server objects on these separate connections within the same
transaction.

Intradomain and Interdomain Interoperability

BEA Tuxedo CORBA supports native clients invoking methods on server objectsin
the BEA Tuxedo domain. In addition, BEA Tuxedo supports server objects invoking
methods on other objects in the same or in different processes within the same BEA
Tuxedo domain.

In BEA Tuxedo applications, transactions can span multiple domains as long as
factory-based routing is properly configured across multiple domains. To support
transactions across multiple domains, you must configurethef act ory_f i nder . i ni

Using CORBA Transactions 2-5

2 Transaction Service

file to identify factory objects that are used in the current (local) domain but that are
resident in a different (remote) domain. For more information, see Using the BEA
Tuxedo Domains Component.

Network Interoperability

A client application can have only one active Bootstrap object and TransactionCurrent
object within asingle domain. BEA Tuxedo CORBA does not support exporting or
importing transactionsto or from remote BEA Tuxedo domains.

However, transactions can encompass multiple domainsin a serial fashion. For
example, a server with atransaction active in Domain A can communicate with a
server in Domain B within the context of that same transaction.

Relationship of the Transaction Service to Transaction
Processing

The Transaction Service relates to various transaction processing servers, interfaces,
protocols, and standardsin the following ways:

m Support for BEA Tuxedo ATMI servers. Servers using the BEA Tuxedo CORBA
Transaction Service can make invocations on other BEA Tuxedo
Application-to-Transaction Monitor Interface (ATMI) server processes in the
same domain. In addition, ATMI services can invoke CORBA objects in both
transactional and nontransactional contexts, both within the same domain and
across domains via a BEA Tuxedo Domains gateway. However, BEA Tuxedo
CORBA does not support remote clients or native clients invoking ATMI
servicesin the BEA Tuxedo domain.

m Support for The Open Group XA interface. The Open Group resource managers
are resource managers that can be involved in a distributed transaction by
allowing their two-phase commit protocol to be controlled via The Open Group
XA interface. BEA Tuxedo supports interaction with The Open Group resource
managers.

m Support for the OSI TP protocol. Open Systems Interconnect Transaction
Processing (OSI TP) is the transactional protocol defined by the International

2-6 Using CORBA Transactions

Capabilities and Limitations

Organization for Standardization (1SO). BEA Tuxedo CORBA does not support
interactions with OS| TP transactions.

Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.21is
atransactional protocol defined by IBM. BEA Tuxedo CORBA does not support
interactionswith LU 6.2 transactions.

Support for the ODM G standard. ODM G-93 is a standard defined by the Object
Database Management Group (ODMG) that describes a portable interface to
access Object Database Management Systems. BEA Tuxedo CORBA does hot
support interactions with ODM G transactions.

Process Failure

The Transaction Service monitors the participants in a transaction for failures and
inactivity. The BEA Tuxedo system provides management tools for keeping the
application running when failures occur. Because BEA Tuxedo CORBA is built upon
the BEA Tuxedo transaction management system, it inheritsthe BEA Tuxedo
capabilities for keeping applications running.

General Constraints

The following constraints apply to the Transaction Service:

In BEA Tuxedo CORBA, aclient or a server object cannot invoke methods on
an object that isinfected with (or participating in) another transaction. The
method invocation issued by the client or the server will return an exception.

For CORBA applications, a server application object using transactions from the
BEA Tuxedo CORBA Transaction Service library requires the TP Framework
functionality. For more information about the TP Framework, see “TP
Framework” in the CORBA Programming Reference.

For CORBA applications, areturn from ther ol | back method on the Cur r ent
object is asynchronous.

Asaresult, the objects that were infected by (or participating in) the rolled back
transaction get their states cleared by BEA Tuxedo a little later. Therefore, no
other client can infect these objects with a different transaction until BEA

Using CORBA Transactions 2-7

2

Transaction Service

Tuxedo clears the states of these objects. This condition exists for avery short
amount of time and is typically not noticeable in a production application. A
simple workaround for this race condition is to try the appropriate operation
after a short (typically a 1-second) delay.

In BEA Tuxedo CORBA applications, clients may not make one-way method
invocations within the context of a transaction to server objects having the
NEVER, OPTI ONAL, Or ALWAYS transaction policies.

No error or exception will be returned to the client because it is a one-way
method invocation. However, the method on the server object will not be
executed, and an appropriate error message will be written to the log. Clients
may make one-way method invocations within the context of a transaction to
server objects with the | GNORE transaction policy. In this case, the method on the
server object will be executed, but not in the context of a transaction. For more
information about the transaction policies, see “Implementation Configuration
File (ICF)” in the CORBA Programming Reference.

Transaction Service in CORBA Applications

2-8

This topic includes the following sections:

Getting Initial References to the TransactionCurrent Object Using the Bootstrap
Object

Getting Initial References to the TransactionFactory Object Using INS
CORBA Transaction Service API
CORBA Transaction Service APl Extensions

Notes on Using Transactions in BEA Tuxedo CORBA Applications

These sections describe how BEA Tuxedo implementsthe OTS, with particul ar
emphasis on the portion of the CORBA services Object Transaction Service that is
described as implementation-specific. They describe the OTS application
programming interface (API) that you use to begin or terminate transactions, suspend
or resume transactions, and get information about transactions.

Using CORBA Transactions

Transaction Service in CORBA Applications

Getting Initial References to the TransactionCurrent
Object Using the Bootstrap Object

To use the TransactionCurrent object to access the Transaction Service APl and the
extension to the Transaction Service APl as described later in this chapter, an
application needs to complete the following operations:

1. CreateaBootstrap object. For moreinformation about creating a Bootstrap object,
see the “CORBA Bootstrapping Programming Reference” in the CORBA
Programming Reference.

2. Invoketheresol ve_initial _reference("TransactionCurrent") method
on the Bootstrap object. The invocation returns a standard CORBA object
pointer. For a description of this Bootstrap object method, see the CORBA
Programming Reference.

3. If an application requires only the Transaction Service APIs, it should issue an
org.ong. CosTransacti ons. Current. narrow() (in Java) or
CosTransactionsCurrent::_narrow() (in C++) on the object pointer
returned from step 2 above.

If an application requires the Transaction Service APIs with the extensions, it
should issue acom beasys. Tobj . Transacti onCurrent. narrow() (inJava)
or Tobj : : Transacti onCurrent:: _narrow() (in C++) onthe object pointer
returned from step 2 above.

Getting Initial References to the TransactionFactory
Object Using INS

BEA Tuxedo al so supportsthe use of the CORBA I nteroperable Naming Service (INS)
by third-party clientsto obtain initial transaction object references. INS uses the
ORB: :resol ve_initial _references() operation.

Listing 2-1 shows an example of how a client application, using INS, gets an object
referenceto the TransactionFactory object. For acompl ete codeexample, seetheclient
application in the University Sample.

Using CORBA Transactions 2-9

2 Transaction Service

Listing 2-1 Code Examplefor a Client Application that UsesINS

/1l Get the factory finder fromthe ORB:
CORBA: : Obj ect _var v_fact_finder_oref =
orb->resolve_initial _references("FactoryFi nder");

/1 Narrow the factory finder
Tobj :: FactoryFi nder _var v_fact _finder_ref =
Tobj : : FactoryFi nder:: _narrowv_fact _finder_oref.in());

/1l Get the TransactionFactory fromthe FactoryFi nder
CORBA: : Cbj ect _var v_txn_fac_oref =
v_fact_finder_ref->find one_factory_ by id(
"1 DL: ong. org/ CosTransacti ons/ Transacti onFactory: 1. 0");

/1 Narrow the Transacti onFactory object reference
CosTransactions:: Transacti onFactory_var v_txn_fac_ref =
CosTransactions:: Transacti onFactory:: narrow
v_txn_fac_oref.in());

For more information about using the ORB: : r esol ve_i ni tial _ref erences()
operation, see “CORBA Bootstrapping Programming Reference” in the CORBA
Programming Reference.

CORBA Transaction Service API

This topic includes the following sections:
m Data Types

m Exceptions

m Current Interface

m Control Interface

m TransactionalObject Interface

These sections describe the CORBA-based components of the CosTr ansact i ons
modules that BEA Tuxedo implements to support the Transaction Service. For more
information about these components, see the OMG CORBA Services Transaction
Service Specification, Version 1.1, May 2000.

2-10 Using CORBA Transactions

Transaction Service in CORBA Applications

Data Types

Exceptions

Listing 2-2 shows the supported data types.

Listing 2-2 Data Types Supported by the Transaction Service

enum St atus {

St at usActi ve,
St at usMar kedRol | back,
St at usPr epar ed,
StatusComm tt ed,
St at usRol | edBack,
St at usUnknown,
St at usNoTr ansact i on,
St at usPr epari ng,
StatusCommitting,
St at usRol | i ngBack

}s

/! This information conmes fromthe OMG Transacti on Service

/1 Specification, Version 1.1, My 2000. Used w th pernission

/1 of the OMG

Listing 2-3 shows the supported exceptionsin IDL code.

Listing 2-3 Exceptions Supported by the Transaction Service

/1 Heuristic exceptions
exception HeuristicMxed {};
exception HeuristicHazard {};

/1 Gt her transaction-specific exceptions
excepti on Subtransacti onsUnavail able {};
excepti on NoTransaction {};

exception InvalidControl {};

excepti on Unavail able {};

Using CORBA Transactions

2-11

2

Transaction Service

Table 2-1 describes the exceptions.

Note: Thisinformation comesfromthe OMG CORBA Services Transaction Service
Specification, Version 1.1, May 2000. Used with permission of the OMG.

Table 2-1 Exceptions Supported by the Transaction Service

Exception

Description

Heuri sticM xed

A request raises this exception to report that a heuristic
decision was made and that some rel evant updates have been
committed and others have been rolled back.

Heuri sti cHazard

A request raises this exception to report that a heuristic
decision was made, that the disposition of all relevant
updatesis not known, and that for those updates whose
disposition is known, either al have been committed or all
have been rolled back. Therefore, the Heuri sti cM xed
exception takes priority over the Heur i sti cHazard
exception.

Subtransacti onsUnava
ilable

This exception israised for the Cur r ent interface begi n
method if the client already has an associated transaction.

NoTr ansacti on

This exception israised for the Cur r ent interface
rol | back andr ol | back_onl y methodsif thereis no
transaction associated with the client application.

I nval i dContr ol

Thisexceptionisraised for the Cur r ent interfacer esune
method if the parameter is not valid in the current execution
environment.

Unavai | abl e

This exception israised for the Cont r ol interface
get _term nator andget_coordi nat or methodsif
the Cont r ol interface cannot provide the requested object.

Current Interface

2-12

The cur rent interface defines methods that allow aclient of the Transaction Service
to explicitly manage the association between threads and transactions. The Cur r ent
interface al so defines methods that simplify the use of the Transaction Service for most
applications. These methods can be used to begin and end transactions, to suspend and
resume transactions, and to obtain information about the current transaction.

Using CORBA Transactions

Transaction Service in CORBA Applications

The CosTr ansact i ons moduledefinesthe Cur r ent interface (shownin Listing 2-4).

Listing 2-4 Current Interface |DL

/1 CQurrent transaction
interface CQurrent : CORBA:: Qurrent {

}s

11
11
11

voi d begin()
rai ses(Subtransacti onsUnavai |l abl e);
void conmt(in bool ean report_heuristics)
rai ses(
NoTr ansacti on,
Heuri sti cM xed,
Heuri sti cHazard
)
voi d rol | back()
rai ses(NoTransaction);
voi d rol | back_onl y()
rai ses(NoTransaction);
Status get_status();
string get_transacti on_nane();
void set _tinmeout(in unsigned | ong seconds);
Control get_control ();
Control suspend();
void resune(in Control which)
rai ses(lnvalidControl);

This informati on cones fromthe OMG Transaction Service
Speci fication, Version 1.1, My 2000. Used w th pernission
of the OMG

Table 2-2 provides a description of the Cur r ent transaction methods.

Note: Thisinformation was taken from the OMG CORBA Services Transaction

Service Specification, Version 1.1, May 2000. Used with permission of the
OMG.

Using CORBA Transactions ~ 2-13

2

Transaction Service

2-14

Table 2-2 Transaction Methodsin the Current Object

M ethod

Description

begin

Creates a new transaction. The transaction context of the
client application ismodified so that the thread is associated
with the new transaction. If theclient applicationiscurrently
associated with atransaction, the

Subt ransact i onsUnavai | abl e exceptionisraised. If
the client application cannot be placed in transaction mode
due to an error while starting the transaction, the standard
system exception | NVALI D_TRANSACTI ONisraised. If the
call was made in an improper context, the standard system
exception BAD_| NV_ORDERs raised.

comm t

Using CORBA Transactions

If there is no transaction associated with the client
application, the NoTr ansact i on exception is raised.

If the call was made in an improper context, the standard
system exception BAD_| NV_ORDER is rai sed.

If the system decides to roll back the transaction, the
standard exception TRANSACTI ON_ROLLEDBACK israised
and the thread' s transaction context is set to NULL.

A Heuri sti cM xed exception israised to report that a
heuristic decision was made and that some relevant updates
have been committed and others have been rolled back. A
Heuri sti cHazar d exception israised to report that a
heuristic decision was made, and that the disposition of all
relevant updates is not known; for those updates whose
disposition is known, either al have been committed or all
have been rolled back. The Heur i sti cM xed exception
takes priority over the Heur i st i cHazar d exception. If a
heuristic exception is raised or the operation completes
normally, the thread’ s transaction exception context isset to
NULL.

If the operation completes normally, the thread's transaction
context is set to NULL.

Transaction Service in CORBA Applications

Table 2-2 Transaction Methodsin the Current Object (Continued)

M ethod

Description

rol | back

If there is no transaction associated with the client
application, the NoTr ansact i on exception is raised.

If the call was made in an improper context, the standard
system exception BAD | NV_ORDER is raised.

If the operation completes normally, the thread’s transaction
context is set to NULL.

rol | back_only

If there is no transaction associated with the client
application, the NoTr ansact i on exception is raised.
Otherwise, the transaction associated with the client
application is modified so that the only possible outcomeis
to roll back the transaction.

get _status

If there is no transaction associated with the client
application, the St at usNoTr ansact i on valueis
returned. Otherwise, this method returns the status of the
transaction associated with the client application.

get _transacti on_nane

If there is no transaction associated with the client
application, an empty string is returned. Otherwise, this
method returns a printable string describing the transaction
(specifically, the XI D as specified by The Open Group). The
returned string is intended to support debugging.

Using CORBA Transactions ~ 2-15

2

Transaction Service

2-16

Table 2-2 Transaction Methodsin the Current Object (Continued)

M ethod

Description

set _timeout

This method modifies a state variable associated with the
target object that affects the timeout period associated with
transactionscreated by subsequent invocationsof thebegi n
method.

Theinitial transaction timeout value is 300 seconds. Calling
set _ti meout () with an argument vaue larger than zero
specifies a new timeout value. Calling set _t i meout ()
with a zero argument sets the timeout value back to the
default of 300 seconds.

After calling set _t i neout (), transactions created by
subsequent invocations of begi n are subject to being rolled
back if they do not compl ete before the specified number of
seconds after their creation.

Note: Theinitial transaction timeout value is 300
seconds. If atransaction is started via AUTOTRAN
instead of the begi n method, then the timeout
valueis determined by the TRANTI ME value in the
BEA Tuxedo configuration file. For more
information, see Chapter 5, “Administering
Transactions.”

get _control

Using CORBA Transactions

If the client is not associated with a transaction, aNULL
object referenceisreturned. Otherwise, aCont r ol objectis
returned that represents the transaction context currently
associated with the client application. This object may be
given to ther esune method to reestablish this context.

Transaction Service in CORBA Applications

Table 2-2 Transaction Methodsin the Current Object (Continued)

M ethod

Description

suspend

If the client application is not associated with a transaction,
aNULL object reference is returned.

If the associated transaction isin a state such that the only
possible outcome of the transaction is to be rolled back, the
standard system exception TRANSACTI ON_ROLLEDBACK
israised and the client application becomes associated with
no transaction.

If the call was made in an improper context, the standard
system exception BAD | NV_ORDER israised. The caller's
state with respect to the transaction is not changed.

Otherwise, an object is returned that represents the
transaction context currently associated with the client
application. The same client can subsequently give this
object to the r esune method to reestablish this context. In
addition, the client application becomes associated with no
transaction.

Note: Asdefined in The Common Object Request
Broker: Architecture and Specification, Revision
2.4, the standard system exception
TRANSACTI ON_ROLLEDBACK indicates that the
transaction associated with the request has already
been rolled back or has been marked to roll back.
Thus, the requested method either could not be
performed or was not performed because further
computation on behalf of the transaction would be
fruitless.

Using CORBA Transactions ~ 2-17

2 Transaction Service

Table 2-2 Transaction Methodsin the Current Object (Continued)

M ethod

Description

resune

If the client application is already associated with a
transaction which isin a state such that the only possible
outcome of the transaction isto be rolled back, the standard
system exception TRANSACTI ON_ROLLEDBACK israised
and the client application becomes associated with no
transaction.

If the call was made in an improper context, the standard
system exception BAD_| NV_ORDER is rai sed.

If the system isunable to resume the global transaction
because the caller is currently participating in work outside
any global transaction with one or more resource managers,
the standard system exception | NVALI D_TRANSACTI ONis
raised.

If the parameter isa NULL object reference, the client
application becomes associated with no transaction. If the
parameter isvalid in the current execution environment, the
client application becomes associated with that transaction
(in place of any previous transaction). Otherwise, the

I nval i dCont r ol exception israised.

Note Seesuspend for adefinition of the standard
system exception TRANSACTI ON_ROLLEDBACK.

Control Interface

The Cont rol interface allows a program to explicitly manage or propagate a
transaction context. An object that supports the Cont r ol interface isimplicitly
associated with one specific transaction.

Listing 2-5 showsthe Cont r ol interface, which is defined in the CosTr ansact i ons

module.

Listing 2-5 Control Interface

interface Control

Term nator get _term nator()

Coor di nat or

2-18 Using CORBA Transactions

rai ses(Unavail abl e) ;
get _coordinator ()

Transaction Service in CORBA Applications

rai ses(Unavai | abl e);

}

/1 This information conmes fromthe OMG Transaction Service
/1 Specification, Version 1.1, May 2000. Used with perm ssion
/1 of the OMG

The Cont r ol interfaceis used only in conjunction with the suspend and r esune
methods.

Terminator Interface

The Terminator interface supports operations to commit or roll back atransaction.
Typically, these operations are used by the transaction originator. An implementation
of the Transaction Service may restrict the scope in which a Terminator can be used;
at aminimum, it can be used within a single thread.

Listing 2-6 shows the Terminator interface.

Listing 2-6 Terminator Interface

interface Term nator {
void commt(in bool ean report_heuristics)
rai ses(
HeuristicM xed,
Heuri sticHazard
)i

b

/1 This information was taken fromthe OMG Transacti on Service
/1 Specification, Version 1.1, May 2000. Used with perm ssion
/1l of the OMG

voi d rol | back();

Table 2-3 describes the Terminator interface methods.

Using CORBA Transactions ~ 2-19

2

Transaction Service

Table 2-3 Termination Interface M ethods

M ethod

Description

comm t

If the transaction has not been marked rollback only, and all of the
participants in the transaction agree to commit, the transaction is
committed and the operation terminates normally. Otherwise, the
transaction isrolled back (asdescribed below for ther ol | back method)
and the TRANSACT| ON_ROLLEDBACK standard exception is raised.

If ther eport _heuri st i cs parameter istrue, the Transaction Service
will report inconsistent or possibly inconsistent outcomes using the
Heuri sti cM xed and Heuri sti cHazar d exceptions. A
Transaction Service implementation may optionally use the CORBA
Notification Service to report heuristic decisions.

The conmi t operation may roll back the transaction if there are
subtransactions of the transaction that have not themselves been
committed or rolled back or if there are existing or potential activities
associated with the transaction that have not completed. The nature and
extent of such error checking is implementation-dependent. When a
top-level transaction is committed, all changes to recoverable objects
made in the scope of this transaction are made permanent and visible to
other transactions or clients. When a subtransaction is committed, the
changes are made visible to other related transactions as appropriate to
the degree of isolation enforced by the resources.

rol | back

Thetransaction is rolled back.

When atransaction isrolled back, al changes to recoverable objects
made in the scope of this transaction (including changes made by
descendant transactions) are rolled back. All resources locked by the
transaction are made available to other transactions as appropriate to the
degree of isolation enforced by the resources.

TransactionalObject Interface

2-20

In BEA Tuxedo release 8.0 and later, the

CosTransactions: : Tr ansact i onal Obj ect isno longer used by an object to
indicatethat it istransactional. If an interface inherits from a Transactional Object and
the ICF indicates a different transaction policy, awarning isissued. The
Transactional Object is not used for any other purpose. For details on transaction
policiesthat need to be set to infect objects with transactions, see “Implementation
Configuration File (ICF)” in the CORBA Programming Reference.

Using CORBA Transactions

Transaction Service in CORBA Applications

TheCosTransact i ons module definesthe Tr ansact i onal Cbj ect interface (shown
in Listing 2-7). This interface defines no methods; it is simply a marker.

Listing 2-7 TransactionalObject Interface

interface Transacti onal Cbject {

b

/1 This information was taken fromthe OMG Transacti on Service
/1 Specification, Version 1.1, May 2000. Used with perm ssion
/1 of the OMG

TransactionFactory Interface

TheTransact i onFact ory interfaceis provided to allow the transaction originator to
begin atransaction. This interface defines two operations, create and recreate, which
create anew representation of atop-level transaction. A TransactionFactory islocated
using the Fact or yFi nder interface of the life cycle service and not by the

resol ve_initial _reference() operation onthe ORB interface.

Listing 2-8 showsthe Tr ansact i onFact or y interface.
Note: TheControl recreate method of the Transacti onFact ory interfaceis

not supported.

Listing 2-8 TransactionFactory Interface

interface Transacti onFactory {
Control create(in unsigned long tine_out);
Control recreate(in PropagationContext ctx);

b

/1 This information was taken fromthe OMG Transacti on Service
/1 Specification, Version 1.1, May 2000. Used with perm ssion
/1l of the OMG

Table 2-4 describesthe Tr ansact i onFact or y interface methods.

Using CORBA Transactions ~ 2-21

2

Transaction Service

Table 2-4 TransactionFactory Interface M ethods

Method Description

create A new top-level transaction is created and aCont r ol object is returned.
The Cont r ol object can be used to manage or to control participationin
the new transaction. An implementation of the Transaction Service may
restrict the ability for the Cont r ol object to be transmitted to or used in
other execution environments; at aminimum, it can be used by the client
application.
If the parameter has a nonzero value n, then the new transaction will be
subject to being rolled back if it does not complete before n seconds have

elapsed. If the parameter is zero, then no application specified timeout is
established.

recreate Not supported.

Other CORBAservices Object Transaction Service Interfaces

All other CORBA services Object Transaction Service interfaces are not supported.
Note that the cur r ent interface described earlier is supported only if it has been
obtained from the Bootstrap object. The Cont r ol interface described earlier is
supported only if it has been obtained using the get _cont r ol and the suspend
methods on the Current object.

CORBA Transaction Service API Extensions

2-22

This topic describes specific extensions to the CORBA services Transaction Service
API described earlier. The APIsin thistopic enable an application to open or close an
Open Group resource manager.

Thefollowing APIs help facilitate participation of resource managers in a distributed
transaction by allowing their two-phase commit protocol to be controlled viaThe Open
Group XA interface.

Thefollowing definitions and interfaces are defined in the Tobj module.

Using CORBA Transactions

Transaction Service in CORBA Applications

Exception

The following exception is supported:

exception Rvfailed {};

A reguest raises this exception to report that an attempt to open or close aresource
manager failed.

TransactionCurrent Interface

Thisinterface supports all the methods of the Cur r ent interfacein the
CosTransacti ons module and is described in “ C++ Bootstrap Object Programming
Reference” in the CORBA Programming Reference. Additionally, this interface
supports APIs to open and close the resource manager.

Listing 2-9 showsthe Tr ansact i onCur r ent interface, which is defined in the Tobj
module.

Listing 2-9 TransactionCurrent | nterface

Interface TransactionCurrent: CosTransactions:: Qurrent {
void open_xa_rm)
rai ses(RMail ed);
void close_xa_rm))
rai ses(Rnfailed);

Table 2-5 describes APIs that are specific to the resource manager. For more
information about these APIs, see the CORBA Programming Reference.

Table 2-5 Resource Manager APIsfor the Current Interface

M ethod Description

open_xa_rm This method opens The Open Group resource manager to which this
processislinked. A RM ai | ed exception israised if thereisafailure
while opening the resource manager.
Any attemptsto invoke this method by remote clientsor the nativeclients
raises the standard system exception NO_| MPLEMENT.

Using CORBA Transactions ~ 2-23

Transaction Service

Table 2-5 Resource Manager APIsfor the Current Interface (Continued)

Method Description

cl ose_xa_rm Thismethod closes The Open Group resource manager to which this

processislinked. An RM ai | ed exception israised if thereisafailure
while closing the resource manager. A BAD_| NV_ORDER standard
system exception israised if the function was called in an improper
context (for example, the caller isin transaction mode).

Any attempts by the remote clients or the native clients to invoke this
method raises the standard system exception NO_| MPLEMENT.

Notes on Using Transactions in BEA Tuxedo CORBA
Applications

2-24

Consider the following guidelines when integrating transactions into your BEA
Tuxedo CORBA client/server applications:

m Nested transactions are not permitted in the BEA Tuxedo system. You cannot

start a new transaction if an existing transaction is already active. (You may start
anew transaction if you first suspend the existing one; however, the object that
suspends the transaction is the only object that can subsequently resume the
transaction.)

The object that starts atransaction is the only entity that can end the transaction.
(In astrict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that is invoked within
the scope of atransaction may suspend and resume the transaction (and while
the transaction is suspended, the object can start and end other transactions).
However, you cannot end a transaction in an object unless you began the
transaction there.

BEA Tuxedo does not support concurrent transactions. Objects can be involved
with only one transaction at one time. An object isinvolved in a transaction for
the duration of the entire transaction, and is available to beinvolved in a
different transaction only after the current transaction is completed.

BEA Tuxedo does not queue requests to objects that are currently involved in a
transaction. If a nontransactional client application attempts to invoke an

Using CORBA Transactions

Transaction Service in CORBA Applications

operation on an object that is currently in atransaction, the client application
receives the following error message:

Java

or g. ong. CORBA. OBJ_ADAPTER
C++

CORBA: : OBJ_ADAPTER

If aclient that isin atransaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receivesthe
following error message:

Java

or g. ony. CORBA. | NVALI D_TRANSACTI ON
C++

CORBA: : | NVALI D_TRANSACTI ON

For transaction-bound objects, consider doing al state handling in the

Tobj _Servant Base: : deact i vat e_obj ect () operation. This makesit easier
for the object to handle its state properly, because the outcome of the transaction
isknown at thetime that deact i vat e_obj ect () isinvoked.

For method-bound objects that have several operations, but only afew that affect
the object’s durable state, consider doing the following:

e Assigntheopti onal transaction policy.

e Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object isinvoked outside a transaction, the object does not incur the
overhead of scoping atransaction for reading data. This way, regardless of
whether the object isinvoked within atransaction, all the object’s write
operations are handled transactionally.

Transaction rollbacks are asynchronous. Therefore, it is possible for an object to
be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

If an object with the al ways transaction policy isinvolved in atransaction that
is started by the BEA Tuxedo system, and not the client application, note the
following:

Using CORBA Transactions ~ 2-25

2 Transaction Service

If the server application marks the transaction for rollback only and the
server throws a CORBA exception, the client application receives the
CORBA exception.

If the server application marks the transaction for rollback only and the
server does not throw a CORBA exception, the client application receivesthe
OBJ_ADAPTER exception. In this case, the BEA Tuxedo system automatically
rolls back the transaction. However, the client application is completely
unaware that a transaction has been scoped in the BEA Tuxedo domain.

m |f the client application initiates a transaction, and the server application marks
the transaction for a rollback, one of the following occurs:

If the server throws a CORBA exception, the client application receives a
CORBA exception.

If the server does not throw a CORBA exception, the client application
receives the TRANSACTI ON_ROLLEDBACK exception.

UserTransaction API

This topic includes the following sections:

m UserTransaction Methods

m Exceptions Thrown by UserTransaction Methods

UserTransaction Methods

Table 2-6 describes the methods in the UserTransaction object.

Table 2-6 Methodsin the User Transaction Object

Method Name Description

begi n Starts a transaction on the current thread.

commi t Commits the transaction associated with the current
thread.

2-26 Using CORBA Transactions

UserTransaction API

Table2-6 Methodsin the User Transaction Object (Continued)

M ethod Name

Description

get St at us

Returns the transaction status, or
STATUS _NO TRANSACTI ONif no transaction is
associated with the current thread.
One of the following values:
STATUS_ACTI VE
STATUS_COW TTED
STATUS_COWM TTI NG
STATUS_MARKED ROLLBACK
STATUS_NO _TRANSACTI ON
STATUS_PREPARED
STATUS_PREPARI NG
STATUS_ROLLEDBACK
STATUS_ROLLI NG_BACK
STATUS_UNKNOAN

rol | back

Rolls back the transaction associated with the current
thread.

set Rol | backOnl y

Marks the transaction associated with the current thread
so that the only possible outcome of the transaction isto
roll it back.

set Transact i onTi neout

Specifies the timeout value for the transactions started by
the current thread with the begi n method. If an
application has not called the begi n method, then the
Transaction Service uses a default value for the
transaction timeout.

Using CORBA Transactions ~ 2-27

2

Transaction Service

Exceptions Thrown by UserTransaction Methods

2-28

Table 2-7 describes exceptions thrown by methods of the UserTransaction object.

Table 2-7 Exceptions Thrown by User Transaction M ethods

Exception

Description

Heuri sti cM xedException

Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
committed while others have been rolled back.

Heuri sti cRol | backExcepti on

Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
rolled back.

Not Support edExcepti on

Thrown when the requested operation is not
supported (such as a nested transaction).

Rol | backExcepti on

Thrown when the transaction has been marked for
rollback only or the transaction has been rolled
back instead of committed.

I1'l egal St ateExcepti on

Thrownif thecurrent thread isnot associated with
atransaction.

SecurityException

Thrown to indicate that the thread is not allowed
to commit the transaction.

Syst enException

Thrown by the transaction manager to indicate
that it has encountered an unexpected error
conditionthat preventsfuture transaction services
from proceeding.

Using CORBA Transactions

CHAPTER

3 Transactions in CORBA
Server Applications

Thistopic includes the following sections:

m Integrating Transactionsin a BEA Tuxedo Client and Server Application
m Transactions and Object State Management

m User-defined Exceptions

These sections describe how to integrate transactions into a BEA Tuxedo server
application. Before you begin, you should read Chapter 1, “Introducing Transactions.”

Using CORBA Transactions 31

3 Transactions in CORBA Server Applications

Integrating Transactions in a BEA Tuxedo
Client and Server Application

This topic includes the following sections:

m Transaction Support in CORBA Applications

m Making an Object Automatically Transactional

m Enabling an Object to Participate in a Transaction

m Preventing an Object from Being Invoked While a Transaction |s Scoped
m Excluding an Object from an Ongoing Transaction

m Assigning Policies

m Using an XA Resource Manager

m Opening an XA Resource Manager

m Closing an XA Resource Manager

Transaction Support in CORBA Applications

BEA Tuxedo supports transactions in the following ways:

m Theclient or the server application can begin and end transactions explicitly by
using calls on the TransactionCurrent object. For details about the
TransactionCurrent object, see Chapter 4, “ Transactionsin CORBA Client
Applications.”

m You can assign transactional policiesto an object’s interface so that when the
object isinvoked, the BEA Tuxedo system can start a transaction automatically
for that object, if atransaction has not already been started, and commit or roll
back the transaction when the method invocation is complete. You use
transactional policies on objectsin conjunction with an XA resource manager
and database when you want to delegate all the transaction commit and rollback
responsibilities to that resource manager.

3-2 Using CORBA Transactions

Integrating Transactions in a BEA Tuxedo Client and Server Application

m Objectsinvolved in atransaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of a transaction, the object
caninvoker ol | back_onl y() onthe TransactionCurrent object to mark the
transaction for rollback only. This prevents the current transaction from being
committed. An object may need to mark a transaction for rollback if an entity,
typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

m Objectsinvolved in atransaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of atransaction that is about to be committed, these
objects are polled by the BEA Tuxedo system immediately before the resource
managers prepare to commit the transaction. In this sense, polling means
invoking the object’s Tobj _Ser vant Base: : deact i vat e_obj ect () operation
and passing a reason value.

When an object is polled, the object may veto the current transaction by

invoking r ol | back_onl y() on the TransactionCurrent object. In addition, if the
current transaction isto be rolled back, objects have an opportunity to skip any
writes to a database. If no object vetoes the current transaction, the transaction is
committed.

The following sections explain how you can use object activation policies and
transaction policies to determine the transactional behavior you want in your objects.
Note that these policies apply to an interface and, therefore, to all operations on all
objectsimplementing that interface.

Note: If aserver application manages an object that you want to be ableto participate
in atransaction, the Server object for that application must invoke the
TP: : open_xa_rm() and TP: : cl ose_xa_rm() operations. For more
information about database connections, see “ Opening an XA Resource
Manager” on page 3-8.

Making an Object Automatically Transactional

The BEA Tuxedo system providestheal ways transactional policy, which you can
define on an object’ sinterface to have the BEA Tuxedo system start a transaction
automatically when that object is invoked and a transaction has not aready been
scoped. When an invocation on that object is completed, the BEA Tuxedo system
commitsor rollsback the transaction automatically. Neither the server application, nor

Using CORBA Transactions 3-3

3 Transactions in CORBA Server Applications

the object implementation, needs to invoke the TransactionCurrent object in this
situation; the BEA Tuxedo system automatically invokes the TransactionCurrent
object on behalf of the server application.

Assign the al ways transactional policy to an object’ sinterface when:

m The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is
invoked.

m You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’ sinterface in the Implementation Configuration File:

Activation Policies Transaction Policy
m process al ways
m et hod

m transaction

Note: Database cursors cannot span transactions. However, in C++, the
CourseSynopsisEnumerator object in the BEA Tuxedo University sample
applications uses a database cursor to find matching course synopses from the
University database. Because database cursors cannot span transactions, the
activate_obj ect () operation on the CourseSynopsi SEnumerator object
reads all matching course synopses into memory. Note that the cursor is
managed by an iterator class and is thus not visible to the
CourseSynopsisEnumerator object.

Enabling an Object to Participate in a Transaction

If you want an object to be able to be invoked within the scope of atransaction, you
can assign the opt i onal transaction policiesto that object’ sinterface. Theopt i onal
transaction policy may be appropriate for an object that does not perform any database
write operations, but that you want to have the ability to be invoked during a
transaction.

3-4 Using CORBA Transactions

Integrating Transactions in a BEA Tuxedo Client and Server Application

Y ou can use the following policies, when they are specified in the Implementation
Configuration File for that object’ sinterface, to make an object optionally
transactional:

Activation Policies Transaction Policy
m process opti onal
m et hod

m transaction

When thetransaction policy isopt i onal , if the AUTOTRAN parameter is enabled in the
application’ s UBBCONFI Gfile, the implementation istransactional. Servers containing
transactional objects must be configured within a group associated with an
XA-compliant resource manager.

If the object does perform database write operations, and you want the object to be able
to participate in atransaction, assigning the al ways transactional policy isgenerally a
better choice. However, if you prefer, you can use the opt i onal policy and
encapsulate any write operations within invocations on the TransactionCurrent object.
That is, within your operations that write data, scope a transaction around the write
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object is not already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of atransaction, all the database read operations are
nontransactional, and, therefore, more streamlined.

Note: When choosing the transaction policies to assign to your objects, make sure
you are familiar with the requirements of the XA resource manager you are
using. For example, some XA resource managers (such as the Oracle 7
Transaction Manager Server) require that any object participating in a
transaction scope their database read operations, in addition to write
operations, within atransaction (you can still scope your own transactions,
however). Other resource managers, such as Oracle8i, do not require a
transaction context for read and write operations. If an application attempts a
write operation without a transaction context, Oracle8i will start alocal
transaction implicitly, in which case the application needs to commit the local
transaction explicitly.

Using CORBA Transactions 3-5

3

Transactions in CORBA Server Applications

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from atransaction. If such an
object isinvoked during a transaction, the object returns an exception, which may
cause the transaction to be rolled back. BEA Tuxedo CORBA providesthe never
transaction policy, which you can assignto an object’ sinterfaceto specifically prevent
that object from being invoked within the course of atransaction, even if the current
transaction is suspended.

This transaction policy is appropriate for objects that write durable state to disk that
cannot be rolled back, such asfor an object that writes data to a disk that is not
managed by an XA resource manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if atransaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the Implementation Configuration File:

Activation Policies Transaction Policy
B process never
m et hod

Excluding an Object from an Ongoing Transaction

3-6

In some cases, it may be appropriate to permit an object to be invoked during the
course of atransaction but also keep that object from being a part of the transaction. If
such an object isinvoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. BEA Tuxedo CORBA providesthei gnor e transaction policy
for this purpose.

Using CORBA Transactions

Integrating Transactions in a BEA Tuxedo Client and Server Application

Thei gnor e transaction policy may be appropriate for an object such as afactory that
typically does not write datato disk. By excluding thefactory from the transaction, the
factory can be available to other client invocations during the course of atransaction.
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policies to that object’ sinterface in the Implementation Configuration File:

Activation Policies Transaction Policy
m process i gnore
m et hod

Assigning Policies

For information about how to create an | mplementation Configuration File and specify
policies on objects, see “ Step 4: Define the in-memory behavior of objects” in “ Steps
for Creating a BEA Tuxedo CORBA Server Application” in the CORBA
Programming Reference.

Using an XA Resource Manager

The Transaction Manager Server (TMS) handles object state data automatically. For
an example, the University sample C++ application in the

dri ve:\ TUX8\ sanpl es\ cor ba\ uni versi ty\ transacti ons directory uses the
Oracle TMS as an example of arelationa database management service (RDBMS).

Using any XA resource manager imposes specific requirements on how different
objects managed by the server application may read and write data to that database,
including the following:

m Some XA resource managers, such as Oracle?, require that all database
operations be scoped within a transaction. This means that all method
invocations on the DBaccess object need to be scoped within atransaction
because this object reads from a database. The transaction can be started either
by the client or by the BEA Tuxedo system.

Using CORBA Transactions 3-7

3

Transactions in CORBA Server Applications

Other XA resource managers, such as Oracle8i, do not require a transaction
context for read and write operations. |f an application attempts a write operation
without a transaction context, Oracle8i will start alocal transaction implicitly, in
which case the application needs to commit the local transaction explicitly.

When atransaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the X A resource manager ensures that all
database updates are made permanent. Likewise, if there isarollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of arollback much
simpler. Transactional objects can always del egate the commit and rollback
responsibilities to the X A resource manager, which greatly simplifies the task of
implementing a server application.

Opening an XA Resource Manager

If an object’ sinterface hasthe al ways or opt i onal transaction policy, you must
invokethe TP: : open_xa_r m() operationinthe Server::initialize() operation
in the Server object. The resource manager is opened using the information provided
in the OPENI NFO parameter, which isin the GROUPS section of the UBBCONFI Gfile.
Notethat the default version of theSer ver : :initi al i ze() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participatesin a
transaction—the object typically hasthe opt i onal transaction policy—you still need
toinclude an invocation to the TP: : open_xa_r n() operation. In that invocation,
specify the NULL resource manager.

Closing an XA Resource Manager

3-8

If your Server object’s Server: :initialize() operation opensan XA resource
manager, you must include the following invocation in the Ser ver: : r el ease()
operation:

Using CORBA Transactions

Transactions and Object State Management

TP: :close xa_rm();

Transactions and Object State Management

Thistopic includes the following sections:
m Delegating Object State Management to an XA Resource Manager
m Waiting Until Transaction Work |s Complete Before Writing to the Database

If you need transactionsin your BEA Tuxedo CORBA client and server application,
you can integrate transactions with object state management in afew different ways.
In general, BEA Tuxedo CORBA can automatically scope the transaction for the
duration of an operation invocation without requiring you to make any changesto your
application’slogic or the way in which the object writes durable state to disk.

Delegating Object State Management to an XA Resource

Manager

Using an XA resource manager, such as Oracle, generally simplifiesthe design
problems associated with handling object state data in the event of arollback. (The
Oracle resource manager is used in the BEA Tuxedo CORBA University sample C++
applications). Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application. This meansthat process- or method-bound objects
involved in atransaction can write to a database during transactions, and can depend
on the resource manager to undo any data written to the database in the event of a
transaction rollback.

Using CORBA Transactions 39

3

Transactions in CORBA Server Applications

Waiting Until Transaction Work Is Complete Before
Writing to the Database

Thetransacti on activation policy isagood choice for objectsthat maintain statein
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign thet r ansact i on activation policy to
an object, the object:

m Isbrought into memory when it is first invoked within the scope of atransaction.
m Remainsin memory until the transaction is either committed or rolled back.

When the transaction work is complete, BEA Tuxedo CORBA invokes each
transaction-bound object’ s Tobj _Ser vant Base: : deact i vat e_obj ect () operation
passing ar eason code that can be either DR_TRANS_COVM TTI NG or
DR_TRANS_ABORTED. If thevariableisDR_TRANS_COWM TTI NG, the object can invoke
its database write operations. If the variable is DR_TRANS_ABORTED, the object skips
its write operations.

When to Assign the Transaction Activation Policy

3-10

Assigning thet r ansact i on activation policy to an object may be appropriate in the
following situations:

m You want the object to write its persistent state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

m You want to provide the object with the ability to veto a transaction that is about
to be committed.

If BEA Tuxedo CORBA passes the reason DR_TRANS_COMM TTI NG, the object
can, if necessary, invoker ol | back_onl y() on the TransactionCurrent object.
Note that if you do make an invocationtor ol | back_onl y() from within the
Tobj _Ser vant Base: : deact i vat e_obj ect () operation, then

deacti vat e_obj ect () isnot invoked again.

m You want to provide the object with the ability to perform batch updates.

Using CORBA Transactions

User-defined Exceptions

m You have an object that is likely to be invoked multiple times during the course
of asingle transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

Transaction Policies to Use with the Transaction Activation Policy

To give an object the ability to wait until the transaction is committing before writing
to adatabase, assign the following policies to that object’ s interface in the
Implementation Configuration File:

Activation Policy Transaction Policy

transaction al ways or opt i onal

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside the Tobj _Ser vant Base: : deact i vat e_obj ect () operation.
The only valid invocations transaction-bound objects can make inside
deact i vate_obj ect () arewrite operationsto the database.

Also, if you have an object that isinvolved in a transaction, the Server object
that manages that object must include invocations to open and close the XA
resource manager, even if the object does not write any data to disk. (If you
have atransactional object that does not write data to disk, you specify the
NULL resource manager.) For moreinformation about opening and closing an
XA resource manager, see “Opening an XA Resource Manager” on page 3-8
and “Closing an XA Resource Manager” on page 3-8.

User-defined Exceptions

Thistopic includes the following sections:
m About User-defined Exceptions
m Defining the Exception

m Throwing the Exception

Using CORBA Transactions 3-11

3

Transactions in CORBA Server Applications

About User-defined Exceptions

Including auser-defined exceptionin aBEA Tuxedo CORBA client/server application
involves the following steps:

1. Inyour OMG IDL file, definethe exception and specify the operationsthat can use
it.
2. Inthe implementation file, include code that throws the exception.

3. Intheclient application source file, include code that catches and handles the
exception.

For example, the Transactions sample C++ application includes an instance of a
user-defined exception, TooMany Cr edi t s. This exception is thrown by the server
application when the client application tries to register a student for a course, and the
student has exceeded the maximum number of coursesfor which heor she canregister.
When the client application catches this exception, the client application rolls back the
transaction that registers a student for a course. This section explains how you can
define and implement user-defined exceptions in your BEA Tuxedo CORBA
client/server application, using the TooMany Cr edi t s exception as an example.

Defining the Exception

3-12

Inthe OMG IDL filefor your client/server application:

1. Definethe exception and define the data sent with the exception. For example, the
TooManyCr edi t s exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for the TooMany Cr edi t s exception contains the following OMG IDL
statements:

exception TooManyCredits
{

}s

2. Inthe definition of the operations that throw the exception, include the exception.
The following example shows the OMG IDL statements for the
regi ster_for_courses() operationontheRegistrar interface:

unsi gned short maxi mumcredits;

Using CORBA Transactions

How the Transactions University Sample Application Works

Not Regi st eredLi st regi ster_for_courses(
in Studentld st udent,
i n CourseNunberList courses

) raises (
TooManyCredits

)

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that
throws the exception, as in the following C++ example.
if (...) {

Uni versi tyZ:: TooManyCredits e;

e.maxi mumcredits = 18;
t hr ow e;

How the Transactions University Sample
Application Works

Thistopic includes the following sections:

m About the Transactions University Sample Application

m Transactiona Model Used by the Transactions University Sample Application
m Object State Considerations for the University Server Application

m Configuration Requirements for the Transactions Sample Application

About the Transactions University Sample Application

To implement the student registration process, the Transactions sample application
does the following:

Using CORBA Transactions 3-13

3

Transactions in CORBA Server Applications

3-14

The client application obtains a reference to the TransactionCurrent object from
the Bootstrap object.

When the student submits the list of courses for which he or she wants to
register, the client application:

a. Beginsatransaction by invoking the Cur r ent : : begi n() operation on the
TransactionCurrent object.

b. Invokestheregi ster_f or_courses() operation on the Registrar object,
passing alist of courses.

Theregi ster_for_courses() operation on the Registrar object processes the
registration request by executing aloop that does the following iteratively for
each coursein the list:

a. Checksto see how many credits the student is already registered for.

b. Addsthe coursetothelist of courses for which the student is registered.

The Registrar object checks for the following potentia problems, which prevent
the transaction from being committed:

e Thestudent isalready registered for the course.
e A coursein thelist does not exist.

e The student exceeds the maximum credits allowed.

Asdefined in the application's OMG IDL, ther egi ster _f or _cour ses()
operation returns a parameter to the client application, Not Regi st er edLi st ,
which contains alist of the courses for which the registration failed.

If the Not Regi st er edLi st value is empty, the client application commits the
transaction.

If the Not Regi st er edLi st value contains any courses, the client application
gueries the student to indicate whether he or she wants to complete the
registration process for the courses for which the registration succeeded. If the
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client application
rolls back the transaction.

If the registration for a course has failed because the student exceeds the
maximum number of credits he or she can take, the Registrar object returns a

Using CORBA Transactions

How the Transactions University Sample Application Works

TooManyCr edi t s exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at atime. This design helps to minimize the
number of remote invocations on the Registrar object.

In implementing this design, the Transactions sample application shows one model of
the use of transactions, which were described in “Integrating Transactionsin a BEA
Tuxedo Client and Server Application” on page 3-2. The model is asfollows:

m The client begins atransaction by invoking the begi n() operation on the
TransactionCurrent object, followed by making an invocation to the
regi ster_for_courses() operation on the Registrar object.

The Registrar object registers the student for the courses for which it can, and
then returns alist of courses for which the registration process was unsuccessful.
The client application can choose to commit the transaction or rall it back. The
transaction encapsul ates this conversation between the client and the server
application.

m Theregister_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be rolled
back.

Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the
University server application generally needsto consider the implications on object
state, particularly in the event of arollback. In cases where thereis arollback, the
server application must ensure that al | affected objects have their durable state restored
to the proper state.

Using CORBA Transactions 3-15

3 Transactions in CORBA Server Applications

Because the Registrar object is being used for database transactions, a good design
choice for thisobject isto make it transactional (assign the al ways transaction policy
tothisobject’ sinterface). If atransaction hasnot already been scoped when this object
isinvoked, the BEA Tuxedo system will start atransaction automatically.

By making the Registrar object automatically transactional, al database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the server
application uses an XA resource manager, and since the object isguaranteed tobein a
transaction when the object writes to a database, the object does not have any rollback
or commit responsibilities because the X A resource manager takes responsibility for
these database operations on behalf of the object.

The RegistrarFactory object, however, can be excluded from transactions because this
object does not manage data that is used during the course of atransaction. By
excluding thisobject from transactions, you minimizethe processing overhead implied
by transactions.

Object Policies Defined for the Registrar Object

To make the Registrar object transactional, the | CF file specifiesthe al ways
transaction policy for the Regi st r ar interface. Therefore, in the Transaction sample
application, the ICF file specifies the following object policies for the Regi st r ar

interface:
Activation Policy Transaction Policy
process al ways

Object Policies Defined for the RegistrarFactory Object

To exclude the RegistrarFactory object from transactions, the ICF file specifies the

i gnor e transaction policy for the Regi st r ar interface. Therefore, in the Transaction
sample application, the I CF file specifies the following object policies for the

Regi st rar Fact ory interface:

Activation Policy Transaction Policy

process i gnore

3-16 Using CORBA Transactions

How the Transactions University Sample Application Works

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sample application uses the Oracle Transaction Manager Server
(TMS), which handles object state data automatically. Using any XA resource
manager imposes specific requirements on how different objects managed by the
server application may read and write data to that database, including the following:

m Some XA resource managers, such as Oracle?, require that all database
operations be scoped within a transaction. This means that the
CourseSynopsisEnumerator object needs to be scoped within a transaction
because this object reads from a database.

m When atransaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the X A resource manager ensures that all
database updates are made permanent. Likewise, if thereis arollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associ ated with handling object state data in the event of arollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application.

Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracle Transaction Manager Server (TMS).
To use the Oracle database, you must include specific Oracle-provided files in the
server application build process. For more information about building, configuring,
and running the Transactions sample application, see The Transaction Sample
Applicationinthe BEA Tuxedo online documentation. For moreinformation about the
configurable settings in the UBBCONFI Gfile, see “Modifying the UBBCONFIG Fileto
Accommodate Transactions’ on page 5-2.

Using CORBA Transactions ~ 3-17

3 Transactions in CORBA Server Applications

3-18 Using CORBA Transactions

CHAPTER

A4

Transactions in CORBA
Client Applications

Thistopic includes the following sections:

m Overview of BEA Tuxedo CORBA Transactions

m Summary of the Development Process for Transactions

m Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
m Step 2: Using the TransactionCurrent Methods

Thistopic describes how to usetransactionsin CORBA C++, Java, and ActiveX client
applications for the BEA Tuxedo CORBA software. Before you begin, you should
read Chapter 1, “Introducing Transactions.”

Note: BEA Tuxedo also supports use of the CORBA |nteroperable Naming Service
(INS) bootstrapping mechanism. For information on INS, see the “CORBA
Bootstrapping Programming Reference” in the CORBA Programming
Reference. For limitations when using INS, see “ Support for Third-Party
ClientsUsing INS” on page 2-3.

For an example of how transactions are implemented in working client applications,
see the The Transaction Sample Application in the BEA Tuxedo online
documentation. For an overview of the TransactionCurrent object, see “Client
Application Development Concepts” in Creating CORBA Client Applications.

Using CORBA Transactions 4-1

4 Transactions in CORBA Client Applications

Overview of BEA Tuxedo CORBA
Transactions

Client applications use transaction processing to ensure that data remains correct,
consistent, and persistent. The transactionsin the BEA Tuxedo software allow client
applications to begin and terminate transactions and to get the status of transactions.
The BEA Tuxedo software usestransactions as defined in the CORBA services Object
Transaction Service, with extensions for ease of use.

Transactions are defined on interfaces. The application designer decides which
interfaces within a BEA Tuxedo client/server application will handle transactions.
Transaction policies are defined in the Implementation Configuration File (1CF) for
server applications. Generally, the ICF file for the available interfacesis provided to
the client programmer by the application designer.

Summary of the Development Process for
Transactions

4-2

To add transactions to a client application, complete the following steps:
m Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
m Step 2: Using the TransactionCurrent Methods

Therest of this topic describes these steps using portions of the client applicationsin
the Transactions University sample application. For information about the
Transactions University sample application, see The Transactions Sample Application
in the BEA Tuxedo online documentation.

The Transactions University sample application is located in the following directory
on the BEA Tuxedo software kit:

m For Microsoft Windows systems:
drive: \tuxdir\sanpl es\corba\university\transacti ons

Using CORBA Transactions

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object

m For UNIX systems:
drive:/tuxdir/sanpl es/ corbal/university/transactions

Step 1: Using the Bootstrap Object to Obtain
the TransactionCurrent Object

If you are using the BEA Tuxedo CORBA client software, you should use the
Bootstrap object to obtain an object reference to the TransactionCurrent object for the
specified BEA Tuxedo domain. For more information about the TransactionCurrent
object, see “Client Application Development Concepts’ in Creating CORBA Client

Applications.

Note: If you are using athird-party client ORB, you should the CORBA
Interoperable Naming Service (INS)
CORBA: : ORB: : resol ve_i ni tial _references operation to obtain an
object reference to the FactoryFinder object for the specified BEA Tuxedo
domain. For information on how to use INSto get initial object referencesfor
transaction clients, see “CORBA Bootstrapping Programming Reference” in
the CORBA Programming Reference.

The following C++, Java, and Visual Basic examplesillustrate how the
Bootstrap object is used to return the TransactionCurrent object.

C++ Example

CORBA: : Cbj ect _var var_transaction_current_oref =
Boot strap.resolve_initial _references(“Transacti onCurrent”);

CosTransactions:: Qurrent_var transaction_current_oref=

CosTransactions:: Qurrent::_narrow
var _transaction_current_oref.in());

Using CORBA Transactions 4-3

4 Transactions in CORBA Client Applications

Java Example

org. ong. CORBA. bj ect transCurObj =
gBoot strapObj Ref .resol ve_initial _references(
“TransactionCurrent”);
org. ong. CosTransactions. Current gTransCur=
org. ong. CosTransacti ons. Curr ent Hel per. narrow transCur (bj);

Visual Basic Example

Set obj Transacti onCurrent =
obj Boot strap. O eat eCbj ect (“ Tobj . Transacti onCurrent”)

Step 2: Using the TransactionCurrent
Methods

The TransactionCurrent object has methods that allow a client application to manage
transactions. These methods can be used to begin and end transactions and to obtain
information about the current transaction.

Note: Alternatively, a CORBA Java client could use the UserTransaction object
instead.

Table 4-1 describes the methods in the TransactionCurrent object.

Table4-1 Methodsin the TransactionCurrent Object

Method Description

begin Creates a new transaction. Future operations take place
within the scope of this transaction. When aclient
application begins a transaction, the default transaction
timeout is300 seconds. Y ou can changethisdefault, using
theset tinmeout method.

4-4 Using CORBA Transactions

Step 2: Using the TransactionCurrent Methods

Table4-1 Methodsin the TransactionCurrent Object (Continued)

M ethod Description

commi t Ends the transaction successfully. Indicates that all
operations on this client application have completed
successfully.

rol | back Forcesthe transaction to roll back.

rol | back_only

M arks the transaction so that the only possible action isto
roll back. Generally, this method is used only in server
applications.

suspend Suspends participation in the current transaction. This
method returns an object that identifiesthetransaction and
alowsthe client application to resume the transaction
|ater.

resume Resumes participation in the specified transaction.

get _status

Returns the status of atransaction with aclient
application.

get _transacti on_nane

Returns a printable string describing the transaction.

set _ti neout

M odifies the timeout period associated with transactions.
The default transaction timeout value is 300 seconds. If a
transaction is automatically started instead of explicitly
started with the begi n method, the timeout valueis
determined by the value of the TRANTI ME parameter in
the UBBCONFI Gfile. For more information about setting
the TRANTI ME parameter, see Chapter 5, “ Administering
Transactions.”

get _control

Returns a control object that represents the transaction.

A basic transaction works in the following way:

1. A client application begins a transaction using the
Tobj : : Transact i onCurrent : : begi n method. This method does not return a

vaue.

Using CORBA Transactions 4-5

4 Transactions in CORBA Client Applications

2. The operations on the CORBA interface execute within the scope of a
transaction. If acall to any of these operations raises an exception (either
explicitly or as aresult of acommunications failure), the exception can be caught
and the transaction can be rolled back.

3. UsetheTobj:: TransactionCurrent::conmmt method to commit the current
transaction. This method ends the transaction and starts the processing of the
operation. The transaction is committed only if al of the participantsin the
transaction agree to commit.

The association between the transaction and the client application ends when the
client application callsthe Tobj : : Transact i onCurrent : conmi t method or the
Tobj : : Transacti onCurrent: rol | back method.Thefollowing C++, Java, and
Visual Basic examplesillustrate using a transaction to encapsul ate the operation
of astudent registering for aclass.

C++ Example

//Begin the transaction
transaction_current _oref->begin();
try {
/I Performthe operation inside the transaction
poi nter_Registar_ref->regi ster_for_courses(student _id, course_nunber |ist);

/11f operation executes with no errors, commit the transaction:
CORBA: : Bool ean report_heuristics = CORBA TRUE;
transaction_current_ref->commt(report_heuristics);

}

catch (CORBA: : Exception &) {

/11f the operation has probl ems executing, rollback the

//transaction. Then throw the original exception again.

/11f the rollback fails, ignore the exception and throw the

/loriginal exception again.

try {
transaction_current_ref->roll back();

}
catch (CORBA: : Exception &) {
TP: :userl og("rol | back failed");

t hr ow;

}

4-6 Using CORBA Transactions

Step 2: Using the TransactionCurrent Methods

Java Example

try{
gTransCur. begi n();
/I Performthe operation inside the transaction
not _registered =
gRegi strar Obj Ref.regi ster_for_courses(student i d, sel ected_course_nunbers);

if (not_registered !'= null)

/11f operation executes with no errors, conmmt the transaction
bool ean report_heuristics = true;
gTransCur. comm t(report_heuristics);

} el se gTransCur.roll back();

} catch(org. ong. CosTransacti ons. NoTransaction nte) {
Systemerr.println(“NoTransaction: “ + nte);
Systemexit(1);

} catch(org. ong. CosTransacti ons. Subt ransacti onsUnavail abl e e) {
Systemerr.println(“Subtransacti ons Unavail able: “ + e);
Systemexit(1);

} catch(org. ong. CosTransactions. Heuri sticHazard e) {
Systemerr.println(“HeuristicHazard: “ + e);
Systemexit(1);

} catch(org. ong. CosTransactions. HeuristicM xed e) {
Systemerr.println(“HeuristicMxed: “ + e);
Systemexit(1);

Visual Basic Example

Begin the transaction

obj Transacti onCurrent. begin

' Try to register for courses
Not Regi st eredLi st = obj Regi strar.regi ster_for_courses(ntStudent| D,
Cour selLi st, exception)

I f exception. EX ngj or Code = NO _EXCEPTI ON t hen

Using CORBA Transactions 4-7

4 Transactions in CORBA Client Applications

" Request succeeded, commit the transaction
Dim report_heuristics As Bool ean

report _heuristics = True

obj TransactionCurrent.conmmt report_heuristics

El se
" Request failed, Roll back the transaction
obj Transacti onCurrent.roll back
MsgBox "Transaction Rolled Back"
End |f

4-8 Using CORBA Transactions

CHAPTER

5 Administering
Transactions

Thistopic includes the following sections:
m Modifying the UBBCONFIG File to Accommodate Transactions

m Modifying the Domain Configuration File to Support Transactions (BEA Tuxedo
CORBA Servers)

m Sample Distributed Application Using Transactions

Before you begin, you should read Chapter 1, “Introducing Transactions.”

Note: The administrative information applies whether you are using the Bootstrap
object or the CORBA interoperable Naming Service (INS) to obtain initial
object referencesto the BEA Tuxedo ORB.

Using CORBA Transactions 5-1

5 Administering Transactions

Modifying the UBBCONFIG File to
Accommodate Transactions

This topic includes the following sections:

Summary of Steps
Step 1: Specify Application-wide Transactions in the RESOURCES Section
Step 2: Create a Transaction Log (TLOG)

Step 3: Define Each Resource Manager (RM) and the Transaction Manager
Server in the GROUPS Section

Step 4: Enable an Interface to Begin a Transaction

Summary of Steps

5-2

To accommodate transactions, you must modify the RESOURCES, MACHI NES, GROUPS,
and the | NTERFACES or SERVI CES sections of the application’ s UBBCONFI Gfilein the
following ways:

In the RESOURCES section, specify the application-wide number of allowed
transactions and the value of the commit control flag.

In the MACHI NES section, create the TLOG information for each machine.

In the GROUPS section, indicate information about each resource manager and
about the Transaction Manager Server.

In the | NTERFACES section (for BEA Tuxedo CORBA applications only) or the
SERVI CES section (for BEA Tuxedo ATMI applications only), enable the
automatic transaction option.

For instructions about modifying these sections in the UBBCONFI Gfile, see “Creating
a Configuration File’ in the Setting Up a BEA Tuxedo Application.

Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Step 1: Specify Application-wide Transactions in the
RESOURCES Section

Table 5-1 provides a description of transaction-related parameters in the RESOURCES
section of the configuration file.

Table5-1 Transaction-related Parametersin the RESOURCES Section

Parameter Meaning

MAXGTT Limitsthetotal number of global transactionidentifiers (GTRI Ds) allowed on
one machineat onetime. The maximum vaueallowedis 2048, theminimum
is 0, and the default is 100. Y ou can override this value on a per-machine
basisin the MACHI NES section.

Entries remain in the table only while the global transaction is active, so this
parameter has the effect of setting alimit on the number of simultaneous
transactions.

CMIRET Specifiestheinitia setting of the TP_COVM T_CONTROL characteristic. The
default is COMPLETE. Following are its two settings:

m LOGGED—the TP_COVWM T_CONTROL characteristicis set to
TP_CMI_LOGGED, which meansthatt pconmi t () returnswhen all the
participants have successfully precommitted.

m COVPLETE—the TP_COWM T_CONTROL characteristic is set to
TP_CMI_COWPLETE, which meansthatt pcormmi t () will not return
until all the participants have successfully committed.

Note: You should consult with the RM vendors to determine the
appropriate setting. If any RM in the application uses the late
commit implementation of the XA standard, the setting should be
COVPLETE. If al the resource managers use the early commit
implementation, the setting should be LOGGED for performance
reasons. (Y ou can override this setting with t pscnt () .)

Step 2: Create a Transaction Log (TLOG)

This section discusses creating atransaction log (TLOG), which refersto alog in which
information on transactionsis kept until the transaction is completed.

Using CORBA Transactions 5-3

5 Administering Transactions

Creating the UDL

The Universal Device List (UDL) islike amap of the BEA Tuxedo file system. The
UDL getsloaded into shared memory when an applicationisbooted. To createan entry
inthe UDL for the TLOG device, create the UDL on each machine using global
transactions. If the TLOGDEVI CE is mirrored between two machines, it is unnecessary
todo thison the paired machine. The Bulletin Board Liaison (BBL) theninitializesand
opens the TLOG during the boot process.

To create the UDL, enter acommand using the following format, before the
application has been booted:

tmadmn -c crdl -z config -b bl ocks

where:
-z config Specifiesthe full pathname for the device where you should create the
UDL.
-b bl ocks Specifies the number of blocks to be allocated on the device.
config Should match the value of the TLOGDEVI CE parameter in the

MACHI NES section of the UBBCONFI Gfile.

Note: Ingeneral, the value that you supply for bl ocks should not be less than the
value for TLOGSI ZE. For example, if TLOGSI ZE is specified as 200 blocks,
specifying - b 500 would not cause a degradation.

For more information about storing the TLOG, see Installing the BEA Tuxedo System.

Defining Transaction-related Parameters in the MACHINES Section

5-4

Y ou can define a global transaction log (TLOG) using several parametersin the
MACHI NES section of the UBBCONFI Gfile. Y ou must manually create the device list
entry for the TLOGDEVI CE on each machine where aTLOG is heeded. Y ou can do this
either before or after TUXCONFI G has been loaded, but it must be done before the
system is booted.

Note: If you are not using transactions, the TLOG parameters are not required.

Table 5-2 provides a description of transaction-related parameters in the MACHI NES
section of the configuration file.

Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table5-2 Transaction-related Parametersin the MACHINES Section

Parameter M eaning
TLOGNAME The name of the DTP transaction log for this machine.
TLOGDEVI CE Specifies the BEA Tuxedo or BEA Tuxedo file system that contains

the DTP transaction log (TLOG) for this machine. If this parameter is
not specified, the machine is assumed not to have aTLOG. The
maximum string value length is 64 characters.

TLOGSI ZE Thesize of the TLOGfile in physical pages. Itsvalue must be between
1 and 2048, and its default is 100. The value should be large enough
to hold the number of outstanding transactions on the machine at a
given time. One transaction is logged per page. The default should
suffice for most applications.

TLOGOFFSET Specifies the offset in pages from the beginning of TLOGDEVI CE to
the start of the VTOC that contains the transaction log for this
machine. The number must be greater than or equal to 0 and lessthan
the number of pages on the device. The default is 0.

TLOGOFFSET israrely necessary. However, if two VTCCs share the
samedevice or if aVTCC is stored on a device (such as afile system)
that is shared with another application, you can use TLOGOFFSET to
indicate a starting address relative to the address of the device.

Creating the Domains Transaction Log (BEA Tuxedo ATMI Servers Only)

This section appliesto the ATMI serversonly.

Y ou can create the Domains transaction log before starting the Domains gateway
group by using the following command:

dmadm n(1l) crdmog (crdlog) -d | ocal _donai n_name

Create the Domains transaction log for the named local domain on the current machine
(the machine on which dmadni n isrunning). The command uses the parameters
specified in the DMCONFI Gfile. Thiscommand failsif the named local domainisactive
on the current machine or if the log aready exists. If the transaction log has not been
created, the Domains gateway group creates the log when it starts up.

Using CORBA Transactions 5-5

5 Administering Transactions

Step 3: Define Each Resource Manager (RM) and the
Transaction Manager Server in the GROUPS Section

Additions to the GROUPS section fall into two categories:

m Defining the Transaction Manager Serversthat perform most of the work that
controls global transactions:

e The TMSNAME parameter specifies the name of the server executable.

e The TMSCOUNT parameter specifies the number of such servers to boot
(the minimum is 2, the maximum is 10, and the default is 3).

A NULL Transactional Manager Server does not communicate with any
resource manager. It is used to exercise an application’s use of the transactional
primitives before actually testing the application in a recoverable, real
environment. This server is named TMs and it ssimply begins, commits, or
terminates without talking to any resource manager.

m Defining opening and closing information for each resource manager:
e OPENI NFOis astring with information used to open a resource manager.

e CLOSEI NFOis used to close a resource manager.

Sample GROUPS Section

The following sample GROUPS section derives from the bankapp banking application:

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENI NFO=" TUXEDQO SQL: <APPDI R>/ bankdl 1: bankdb: r eadwri t e”

Table 5-3 describes the transaction values specified in this sample GROUPS section.

Table 5-3 Transaction Valuesin the GROUPS Section of a Sample
UBBCONFIG File

Transaction Value M eaning

BANKB1 GRPNC=1 Contains the name of the Transaction Manager
TMSNAME=TMS_SQL\ TMSCOUNT=2 Server (TM5_SQL) and the number (2) of these
servers to be booted in the group BANKB1

5-6 Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table 5-3 Transaction Valuesin the GROUPS Section of a Sample
UBBCONFI G File (Continued)

Transaction Value M eaning

TUXEDO SQL Published name of the resource manager
<APPDI R>/ bankd| 1 Includes a device name

bankdb Database name

readwite Access mode

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO

Parameters

Table 5-4 lists the characteristics of the TMSNAME, TMSCOUNT, OPENI NFO, and
CLOSEI NFO parameters.

Table 5-4 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO Parameters

Parameter Characteristics

TVSNAMVE Name of the Transaction Manager Server executable.
Required parameter for transactional configurations.
TMSisaNULL Transactional Manager Server.

TMSCOUNT Number of Transaction Manager Servers (must be between 2 and 10).
Default is 3.

OPENI NFO Represents information to open or close a resource manager.

CLGOSEI NFO

Content depends on the specific resource manager.
Starts with the name of the resource manager.
Omi ssion means the resource manager needs no information to open.

Using CORBA Transactions 5-7

5 Administering Transactions

Step 4: Enable an Interface to Begin a Transaction

To enable an interface to begin a transaction, you change different sections in the
UBBCONFI Gfile, depending on whether you are configuring a BEA Tuxedo CORBA
server or BEA Tuxedo ATMI server.

m Changing the INTERFACES Section (BEA Tuxedo CORBA Servers)
m Changing the SERVICES Section (BEA Tuxedo ATMI Servers)

Changing the INTERFACES Section (BEA Tuxedo CORBA Servers)

The I NTERFACES section in the UBBCONFI Gfile supports BEA Tuxedo CORBA
interfaces:

m For each CORBA interface, set AUTOTRANtO Y if you want atransaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no
effect if the interface is aready in transaction mode. The default is N. The effect
of specifying avalue for AUTOTRAN depends on the transactional policy specified
by the devel oper in the Implementation Configuration File (ICF) for the
interface. Thistransactional policy will become the transactional policy attribute
of the associated T_I FQUEUE M B object at run time. The only time thisvalue
affects the behavior of the application isif the developer specified a transaction
policy of opti onal .

Note: To work properly, this feature depends on collaboration between the
system designer and the administrator. If the administrator setsthis value
to Y without prior knowledge of the transaction policy defined by the
developer intheinterface’ sICF, the actual run time effect of the parameter
might be unknown.

m |f AUTOTRANIS set to Y, you must set the TRANTI ME parameter, which specifies
the transaction timeout, in seconds, for the transactions to be created. The value
must be greater than or equal to zero and must not exceed 2,147,483,647
(2% - 1, or about 70 years). A value of zero implies there is no timeout for the
transaction. (The default is 30 seconds.)

Table 5-5 describes the characteristics of the AUTOTRAN, TRANTI ME, and
FACTORYROUTI NG parameters.

5-8 Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate Transactions

Table5-5 Characteristics of the AUTOTRAN, TRANTIME, and
FACTORYROUTING Parameters

Parameter Characteristics

AUTOTRAN [

Makes an interface the initiator of atransaction.

To work properly, it is dependent on collaboration between
the system designer and the system administrator. |f the
administrator sets this value to Y without prior knowledge of
the ICF transaction policy set by the developer, the actua
run-time effort of the parameter might be unknown.

Theonly timethisvalue affectsthe behavior of the application
isif the developer specified a transaction policy of
optional .

If atransaction already exists, a new oneis not started.

Default is N.

TRANTI ME [

Represents the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 231 - 1, inclusive.
Zero (0) represents no timeout.
Default is 30 seconds.

FACTORYROUTI NG [

Specifies the name of the routing criteriato be used for
factory-based routing for this CORBA interface.

Y ou must specify a FACTORYROUTI NG parameter for
interfaces requesting factory-based routing.

Changing the SERVICES Section (BEA Tuxedo ATMI Servers)

The following are three transaction-rel ated features in the SERVI CES section:

If you want a service (instead of a client) to begin atransaction, you must set the
AUTOTRAN flag to Y. Thisis useful if the service is not needed as part of any
larger transaction, and if the application wants to relieve the client of making
transaction decisions. If the service is called when there is already an existing
transaction, this call becomes part of it. (The default isN.)

Note: Generally, clients are the best initiators of transactions because a service
has the potentia of participating in alarger transaction.

Using CORBA Transactions 5-9

5 Administering Transactions

5-10

m |f AUTOTRANIS set to Y, you must set the TRANTI ME parameter, which is the
transaction timeout, in seconds, for the transactions to be created. The value
must be greater than or equal to 0 and must not exceed 2,147,483,647 (23! - 1, or
about 70 years). A value of zero impliesthereis no timeout for the transaction.
(The default is 30 seconds.)

m You must specify a ROUTI NG parameter for transactions that request
data-dependent routing.

Table 5-6 describes the characteristics of the AUTOTRAN, TRANTI ME, and ROUTI NG
parameters:

Table5-6 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING

Parameters

Par ameter Characteristics

AUTOTRAN Makes a service the initiator of atransaction.
Rdlieves the client of the transactiona burden.
If atransaction aready exists, a new oneis not started.
Default is N

TRANTI ME Represents the timeout for the AUTOTRAN transactions.
Vaid values are between 0 and 231 - 1, inclusive.
0 represents no timeout.
Default is 30 seconds.

ROUTI NG Pointsto an entry in the ROUTI NG section where data-dependent routing

is specified for transactions that request this service.

Using CORBA Transactions

Modifying the Domain Configuration File to Support Transactions (BEA Tuxedo COR-

Modifying the Domain Configuration File to
Support Transactions (BEA Tuxedo CORBA
Servers)

Thistopic includes the following sections:

m Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters

m Characteristics of the AUTOTRAN and TRANTIME Parameters (BEA Tuxedo
CORBA and ATMI Servers)

To enable transactions across domains, you need to set parameters in both the

DM _LOCAL_DQOVAI NS and the DM REMOTE_SERVI CES sections of the Domains
configuration file (DMCONFI G). Entriesinthe DM_LOCAL_DOMAI NS section define local
domain characteristics. Entries in the DM_REMOTE_SERVI CES section define
information on services that are imported and that are available on remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

The DM _LOCAL_DOMAI NS section of the Domains configuration file identifies local
domains and their associated gateway groups. This section must have an entry for each
gateway group (local domain). Each entry specifies the parameters required for the
Domains gateway processes running in that group.

Table 5-7 provides a description of the five transaction-related parametersin this
section: DMTLOGDEV, DMTLOGNAME, DMTLOGSI ZE, MAXRDTRAN, and MAXTRAN.

Using CORBA Transactions 5-11

5 Administering Transactions

5-12

Table5-7 Characteristics of the DMTLOGDEYV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

Parameter

Characteristics

DMTLOGDEV

Specifies the BEA Tuxedo file system that contains the Domains
transaction log (DMrLOG) for this machine. The DMILOG s stored as a
BEA Tuxedo VTOCtable onthe device. If thisparameter is not specified,
the Domains gateway group is not allowed to process requestsin
transaction mode. Local domainsrunning on the same machine can share
the same DMTLOGDEV file system, but each local domain must have its
own log (atable in the DMILOGDEV) named as specified by the

DMTL OGNAME keyword.

DMTLOGNAME

Specifies the name of the Domains transaction log for thisdomain. This
name must be unique when the same DMI'LOGDEYV is used for several
local domains. If avalueis not specified, the value defaults to the string
DMTLOG. The name must contain 30 characters or |ess.

DMTLOGSI ZE

Specifies the numeric size of the Domains transaction log for this
machine (in pages). It must be greater than zero and less than the amount
of available space on the BEA Tuxedo file system. If avalue is not
specified, the value defaults to 100 pages.

Note: The number of domainsin a transaction determine the number
of pagesyou must specify inthe DMTLOGSI ZE parameter. One
transaction does not necessarily equal one log page.

MAXRDTRAN

Specifies the maximum number of domains that can be involved in a
transaction. It must be greater than zero and less than 32,768. If avalue
is not specified, the value defaultsto 16.

MAXTRAN

Specifies the maximum number of simultaneous global transactions
alowed onthislocal domain. It must be greater than or equd to zero, and
lessthan or equal to the MAXGTT parameter specified in the TUXCONFI G
file. If not specified, the default is the value of MAXGTT.

Using CORBA Transactions

Modifying the Domain Configuration File to Support Transactions (BEA Tuxedo COR-

Characteristics of the AUTOTRAN and TRANTIME
Parameters (BEA Tuxedo CORBA and ATMI Servers)

The DM_REMOTE_SERVI CES section of the Domains configuration file identifies
information on services imported and available on remote domains. Remote services
are associated with a particular remote domain.

Table 5-8 describes the two transaction-related parameters in this section: AUTOTRAN
and TRANTI ME.

Table 5-8 Characteristics of the AUTOTRAN and TRANTIME Parameters

Parameter Characteristics

AUTOTRAN Used by gateways to automatically start/terminate transactions for
remote services. This capability is required if you want to enforce
reliable network communication with remote services. Y ou specify this
capability by setting the AUTOTRAN parameter to Y in the corresponding
remote service definition.

TRANTI ME Specifies the default timeout value in seconds for a transaction
automatically started for the associated service. The value must be
greater than or equal to zero, and less than 2147483648. The default is
30 seconds. A value of zero implies the maximum timeout value for the
machine.

Using CORBA Transactions ~ 5-13

5 Administering Transactions

Sample Distributed Application Using
Transactions

This topic includes the following sections:

m RESOURCES Section

m MACHINES Section

m GROUPS and NETWORK Sections

m SERVERS, SERVICES, and ROUTING Sections

This topic describes a sample configuration file for asample CORBA application that
enables transactions and distributes the application over three sites. The application
includes the following features:

m Data-dependent routing on ACCOUNT_|I D.

m Datadistributed over three databases.

m BRI DGE processes communicating with the system viathe ATM interface.
m System administration from one site.

The configuration file includes seven sections: RESOURCES, MACHI NES, GROUPS,
NETWORK, SERVERS, SERVI CES, and ROUTI NG.

RESOURCES Section

5-14

The RESOURCES section shown in Listing 5-1 specifies the following parameters:

m MAXSERVERS, MAXSERVI CES, and MAXGTT are |ess than the defaults. This makes
the Bulletin Board smaller.

m MASTERIS SI TE3 and the backup master is SI TEL.

m MODEL is set to MP and OPTI ONS is set to LAN, M GRATE. This allows a networked
configuration with migration.

Using CORBA Transactions

Sample Distributed Application Using Transactions

® BBLQUERY is set to 180 and SCANUNI T is set to 10. This means that DBBL checks
of the remote BBLs are done every 1800 seconds (one half hour).

Listing5-1 Sample RESOURCES Section

* RESOURCES

#

| PCKEY 99999
ubD 1

G D 0
PERM 0660

MAXACCESSERS 25
MAXSERVERS 25
MAXSERVI CES 40

MAXGTT 20

MASTER SI TE3, SITE1l
SCANUNI T 10

SANI TYSCAN 12

BBLQUERY 180

BLOCKTI ME 30

DBBLWAI T 6

OPTI ONS LAN, M GRATE
MODEL P

LDBAL Y

MACHINES Section

The MACHI NES section shown in Listing 5-2 specifies the following parameters:

m TLOGDEVI CE and TLOGNAME are specified, which indicate that transactions will
be done.

m The TYPE parameters are all different, which indicates that encode/decode will
be done on all messages sent between machines.

Listing5-2 Sample MACHINES Section

*MACHI NES
G sela LM D=SI TE1

Using CORBA Transactions ~ 5-15

5 Administering Transactions

TUXDI R="/ usr/t uxedo”

APPDI R="/ usr / hone”

ENVFI LE="/ usr/ home/ ENVFI LE”
TLOGDEVI CE="/ usr/ hone/ TLOG’
TLOGNAME=TLOG

TUXCONFI G="/ usr/ home/ t uxconfi g”
TYPE=" 3B600"

roneo LM D=SI TE2
TUXDI R="/ usr/t uxedo”
APPDI R="/ usr / hone”
ENVFI LE="/ usr/ home/ ENVFI LE”
TLOGDEVI CE="/ usr/ hone/ TLOG’
TLOGNAMVE=TLOG
TUXCONFI G="/ usr/ home/ t uxconfi g”
TYPE=" SEQUENT”

juliet LM D=SI TE3
TUXDI R="/usr/ tuxedo”
APPDI R=" / usr/ hone”
ENVFI LE="/ usr/ home/ ENVFI LE”
TLOGDEVI CE="/ usr/ honme/ TLOG'
TLOGNAME=TLOG
TUXCONFI G="/ usr/ hone/ t uxconfi g”
TYPE=" ANDAHL"

GROUPS and NETWORK Sections

The GROUPS and NETWORK sections shown in Listing 5-3 specify the following
parameters:

m The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction
manager serverswill be booted per group.

m The OPENI NFOstring indicates that the application will perform database access.

Listing 5-3 Sample GROUPS and NETWORK Sections

* CROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LM D=SI TE1 GRPNC=1

5-16 Using CORBA Transactions

Sample Distributed Application Using Transactions

OPENI NFO=" TUXEDQO SQL: / usr/ hone/ bankdl 1: bankdb: readwite”

BANKB2 LM D=SI TE2 GRPNO=2
OPENI NFO=" TUXEDQO SQL: / usr/ hone/ bankdl 2: bankdb: readw i te”
BANKB3 LM D=SI TE3 GRPNC=3
OPENI NFO=" TUXEDQO SQL: / usr/ hone/ bankdl 3: bankdb: readwite”
* NETWORK
SI TE1 NADDR=" 0X0002ab117B2D4359"
BRI DGE="/ dev/ t cp”
NLSADDR="0X0002ab127B2D4359"
S| TE2 NADDR=" 0X0002ab117B2D4360"
BRI DGE="/ dev/ t cp”
NL SADDR="0X0002ab127B2D4360"
S| TE3 NADDR=" 0X0002ab117B2D4361"

BRI DGE="/ dev/tcp”
NLSADDR="0X0002ab127B2D4361"

SERVERS, SERVICES, and ROUTING Sections

The SERVERS, SERVI CES, and ROUTI NG sections shown in Listing 5-4 specify the
following parameters:

m TheTLRservershavea- T nunmber passed totheirtpsrvrinit() functions.
m All requests for the services are routed on the ACCOUNT _I D field.

m None of the serviceswill be performed in AUTOTRAN mode.

Listing5-4 Sample SERVERS, SERVICES, and ROUTING Sections

* SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLCPT="-A’

TLR SRVCGRP=BANKB1 SRvI D=1 CLOPT="-A -- -T 100"
TLR SRVCGRP=BANKB2 SRVI D=3 CLOPT="-A -- -T 400"
TLR SRVCGRP=BANKB3 SRvI D=4 CLOPT="-A -- -T 700"
XFER SRVCGRP=BANKB1 SRVI D=5 REPLYQ=Y

XFER SRVCGRP=BANKB2 SRVI D=6 REPLYQ=Y

XFER SRVCGRP=BANKB3 SRVI D=7 REPLYQ=Y

Using CORBA Transactions ~ 5-17

5 Administering Transactions

*SERVI CES

DEFAULT: AUTOTRAN=N

W THDRAW ROUTI NG=ACCOUNT_I D

DEPCSI T ROUTI NG=ACCOUNT_| D

TRANSFER ROUTI NG=ACCOUNT_| D

I NQUI RY ROUTI NG=ACCOUNT_| D

*ROUTI NG

ACCOUNT_I D FI ELD=ACCOUNT_I D BUFTYPE=" FM."

RANGES="MON - 9999: *,
10000 - 39999: BANKB1
40000 - 69999: BANKB2
70000 - 100000: BANKB3

wn

5-18 Using CORBA Transactions

Index

A
ACID properties 1-2, 2-3
activation policies

transaction 3-10
always transaction policy 3-3, 3-11
API models, supported 1-3
Application-to-Transaction Monitor

Interface (ATMI) 2-7

assigning transaction policies 3-7
atomicity (ACID properties) 1-2
AUTOTRAN parameter 8-9, 8-10, 8-13

B

business transactions, support 1-4

C

client applications
multithreading 2-5
using transactions 4-5
close xa rm method 3-8
CLOSEINFO parameter 8-7
closing an XA resource manager 3-8
CMTRET parameter 8-3
code example
C++ CORBA server object that supports
transactions 1-16
OMG IDL for Transactions sample
CORBA application 1-13
TransactionCurrent object 4-3

transactions
C++4-6
Java 4-7
Visual Basic 4-7
transactionsin C++ CORBA client
application 1-18
UBBCONFIG file for Transactions
sample CORBA application
1-20
consistency (ACID properties) 1-2
Control interface 2-19
CORBA applications
transaction propagation 2-5
Transaction Service 2-9
Transaction Service API
Control interface 2-19
Current interface 2-13
data types 2-12
exceptions 2-12
TransactionalObject interface 2-21
transactionsin client applications 1-7,
4-2
transactions overview 1-6
transactions support 3-2
CORBA server applications
and transactions
CORBA ServicesObject Transaction Service
(OTS) 1-3, 2-2,4-2
CosTransactions module 2-14, 2-22
Current interface
about the Current interface 2-13

Using CORBA Transactions -1

begin method 2-15
commit method 2-15
get_control method 2-17
get status method 2-16
get transaction_name method 2-16
resume method 2-19
rollback method 2-16
rollback_only method 2-16
set_timeout method 2-17
suspend method 2-18
customer support contact information ix

D

data types

CORBA Transaction Service APl 2-12
database cursors 3-3
deactivate _object method

and transactions 3-10
defining user-defined exceptions 3-12
delegated commit 2-3
development process

client applications

Transactions sample CORBA
application 1-18

transactions 4-2
distributed transactions

about distributed transactions 1-4
DMTLOGDEYV parameter 8-12
DMTLOGNAME parameter 8-12
DMTLOGSIZE parameter 8-12
documentation, where to find it viii
domain transaction log, creating 8-5
DR_TRANS ABORT 3-10
DR_TRANS COMMITTING 3-10
durability (ACID properties) 1-2

E

exceptions
CORBA Transaction Service APl 2-12

[-2 Using CORBA Transactions

HeuristicHazard 2-13
HeuristicMixed 2-13
INVALID TRANSACTION 2-25
InvalidControl 2-13
NoTransaction 2-13
OBJ ADAPTER 2-25
SubtransactionsUnavailable 2-13
TRANSACTION_ROLLEDBACK
2-18
Unavailable 2-13
user-defined exceptions 3-11
explicit propagation, in CORBA applications
2-5

F

FACTORYROUTING parameter 8-9
flat transactions 2-6

G
GROUPS section 8-16

H

HeuristicHazard exception 2-13
HeuristicMixed exception 2-13

ICFfile

defining transaction policies 4-2
ignore transaction policy 3-6
Implementation Configuration File (ICF)

defining transaction policies 1-15
implicit propagation, in CORBA applications

2-5

INS 1-8
interdomain interoperability 2-6
interoperability

interdomain 2-6

intradomain 2-6

network 2-7
remote clientsand BEA Tuxedo domain
2-6
Interoperable Naming Service (INS)
SeeINS
intradomain interoperability 2-6
INVALID_TRANSACTION exception 2-25
InvalidControl exception 2-13
isolation (ACID properties) 1-2

L

lightweight clients
about lightweight clients 2-3
Application-to-Transaction Monitor

Interface (ATMI)I 2-7

interoperability 2-6

listings
sample GROUPS section 8-16
sample MACHINES section 8-15
sample NETWORK section 8-16
sample RESOURCES section 8-15

M

MACHINES section 8-4, 8-15
MAXGTT parameter 8-3
MAXRDTRAN parameter 8-12
MAXTRAN parameter 8-12
multithreading

clients 2-5

N

nested transactions 2-6, 2-25
network interoperability 2-7
NETWORK section 8-16
never transaction policy 3-6
NoTransaction exception 2-13
NULL resource manager 3-10

0]

OBJ ADAPTER exception 2-25
object state management 3-9
delegating to an XA RM 3-9
Transactions University sample
application 3-15
object transaction service (OTS) 2-3
ODMG standard 2-8
OMG IDL
Transactions sample CORBA
application 1-12
open_xa_rm method 3-8
OPENINFO parameter 8-7
opening an XA resource manager 3-8
optiona transaction policy 3-4, 3-11
Oracle7 3-17
OSI TP protocol 2-7
0TS 2-3

P

printing product documentation viii
process failure, handling 2-8
programming models, supported 1-3

R

recursive transactions 2-25
related information viii
remote clients and interoperability 2-6
resource manager 1-2
closing an XA 3-8
delegating object state management 3-9
NULL 3-10
opening XA 3-8
RESOURCES section 8-14
ROUTING parameter 8-10
ROUTING section 8-17

Using CORBA Transactions -3

S

Server object
supporting databases 1-16
Transactions sample CORBA
application 1-16
SERVERS section 8-17
SERVICES section 8-17
SNA LU 6.2 protocol 2-8
SubtransactionsUnavail able exception 2-13
support
technical ix

T

terminating transactions 2-6
The Open Group XA interface 2-7
third-party client ORBs

support for 2-4
third-party clients

support 2-3
throwing user-defined exceptions 3-13
TLOG 8-3
TLOGDEVICE parameter 1-19, 8-5
TLOGNAME parameter 8-5
TLOGOFFSET parameter 8-5
TLOGSIZE parameter 8-5
TMS3-17

configuring 3-7

Oracle7 3-7

requirements for 3-7
TMSCOUNT parameter 8-7
TMSNAME parameter 8-7
transaction activation policy 3-10
transaction log, creating 8-3
Transaction Manager Server

See TMS
transaction policies

aways 3-3, 3-11

assigning 3-7

defined 1-15

defining in ICF file 4-2

-4 Using CORBA Transactions

ignore 3-6
never 3-6
optiona 3-4, 3-11
Transactions sample CORBA
application 1-15
Transaction Service
about the Transaction Service 2-2
capabilities 2-2
CORBA applications 2-9
API extensions 2-23
clients supported 2-4
features 1-4
genera constraints 2-8
limitations 2-2
transactional objects
defining 3-3
Transactiona Object interface 2-21
TransactionCurrent object
begin method 4-4
code examples 4-3
commit method 4-5
get _control method 4-5
get status method 4-5
get transaction_name method 4-5
getting initial referencesto 2-10
methods 4-4
resume method 4-5
rollback method 4-5
rollback_only method 4-5
set_timeout method 4-5
suspend method 4-5
transaction-related parametersin
MACHINES section, defining 8-4
transactions
client CORBA applications 4-2
configuring
AUTOTRAN parameter 8-9, 8-10,
8-13
CMTRET parameter 8-3
creating a transaction log
creating the domain transaction

log 8-5
creating the Universal Device
List (UDL) 8-4
defining transaction-related pa-
rameters in MA-
CHINES section 8-4
defining each resource manager and
the transaction manager
server in GROUPS section
8-6
DMTLOGDEYV parameter 8-12
DMTLOGNAME parameter 8-12
DMTLOGSIZE parameter 8-12
enabling aTuxedo serviceto begina
transaction in the
SERVICES section 8-9
FACTORYROUTING parameter
8-9
INTERFACES section 8-8
MAXGTT parameter 8-3
MAXRDTRAN parameter 8-12
MAXTRAN parameter 8-12
modifying thedomain configuration
file to support transactions
8-11
modifying the UBBCONFIG file
8-2
ROUTING parameter 8-10
sample GROUPS section 8-6
specifying application-wide
transactionsin
RESOURCES 8-3
TLOGDEVICE parameter 8-5
TLOGNAME parameter 8-5
TLOGOFFSET parameter 8-5
TLOGSIZE parameter 8-5
transaction log (TLOG) 8-3
transaction values description in
sample GROUPS section
8-6
TRANTIME parameter 8-9, 8-10,

8-13

CORBA applications 1-6
distributed

sample application 8-14
flat transactions 2-6
implementing in a CORBA server

application

in client applications 4-5
in CORBA client applications 1-7
integrity 2-5
nested 2-25
nested transactions 2-6
object state management 3-9
propagating, in CORBA applications 2-5
recursive 2-25
termination 2-6
transaction processing 2-7
when to use transactions 1-5

Transactions CORBA sample application

workflow 1-10

Transactions sample CORBA application

client application 1-18
development steps 1-12
illustrated 1-10

location 1-12

OMG IDL 1-12

transaction policies 1-15
UBBCONFIG file 1-19

user exceptions 1-10

writing server applications 1-16

Transactions University sample application

about the application 3-13
configuration requirements 3-17
object state management 3-15
transaction model used 3-15

transactions, configuring

CLOSEINFO parameter 8-7
OPENINFO parameter 8-7
TMSCOUNT parameter 8-7
TMSNAME parameter 8-7

TRANTIME parameter 8-9, 8-10, 8-13

Using CORBA Transactions [-5

two-phase commit protocol (2PC) 1-4

U

UBBCONFIG file

adding transactions 1-19
UDL 8-4
Unavailable exception 2-13
Universal Device List (UDL) 8-4
unmanaged desktops 2-3
user exceptions

Transactions sample CORBA

application 1-10

user-defined exceptions

about user-defined exceptions 3-12

defining 3-12

throwing 3-13

\Y

vetoing atransaction 3-10

X

XA resource manager
closing 3-8

delegating object state management 3-9

opening 3-8
Transactions University sample
application 3-17

-6 Using CORBA Transactions

	Copyright
	Contents
	About This Document
	1 Introducing Transactions
	Overview of Transactions in BEA Tuxedo CORBA Applications
	ACID Properties of Transactions
	Resource Manager
	Supported Programming Model
	Supported API Model
	Support for Business Transactions
	Distributed Transactions and the Two-Phase Commit Protocol

	When to Use Transactions
	How to Use Transactions in BEA Tuxedo CORBA Applications
	How to Use Transactions When Using the BEA Bootstrapping Mechanism
	How to Use Transactions When Using the INS Bootstrapping Mechanism

	Writing a Transactions Sample Application
	Workflow for the Transactions Sample Application
	Development Steps
	Step 1: Writing the OMG IDL
	Step 2: Defining Transaction Policies for the Interfaces
	Step 3: Writing the Server Application
	Step 4: Writing the Client Application
	Step 5: Creating a Configuration File

	2 Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Support for Third-Party Clients Using INS
	Multithreaded Transaction Client Support
	Transaction Propagation (CORBA Only)
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Interoperability Between CORBA Remote Clients and the BEA Tuxedo Domain
	Intradomain and Interdomain Interoperability
	Network Interoperability
	Relationship of the Transaction Service to Transaction Processing
	Process Failure
	General Constraints

	Transaction Service in CORBA Applications
	Getting Initial References to the TransactionCurrent Object Using the Bootstrap Object
	Getting Initial References to the TransactionFactory Object Using INS
	CORBA Transaction Service API
	Data Types
	Exceptions
	Current Interface
	Control Interface
	Terminator Interface
	TransactionalObject Interface
	TransactionFactory Interface
	Other CORBAservices Object Transaction Service Interfaces

	CORBA Transaction Service API Extensions
	Exception
	TransactionCurrent Interface

	Notes on Using Transactions in BEA Tuxedo CORBA Applications

	UserTransaction API
	UserTransaction Methods
	Exceptions Thrown by UserTransaction Methods

	3 Transactions in CORBA Server Applications
	Integrating Transactions in a BEA Tuxedo Client and Server Application
	Transaction Support in CORBA Applications
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Using an XA Resource Manager
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database
	When to Assign the Transaction Activation Policy
	Transaction Policies to Use with the Transaction Activation Policy

	User-defined Exceptions
	About User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	How the Transactions University Sample Application Works
	About the Transactions University Sample Application
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	4 Transactions in CORBA Client Applications
	Overview of BEA Tuxedo CORBA Transactions
	Summary of the Development Process for Transactions
	Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
	C++ Example
	Java Example
	Visual Basic Example

	Step 2: Using the TransactionCurrent Methods
	C++ Example
	Java Example
	Visual Basic Example

	5 Administering Transactions
	Modifying the UBBCONFIG File to Accommodate Transactions
	Summary of Steps
	Step 1: Specify Application-wide Transactions in the RESOURCES Section
	Step 2: Create a Transaction Log (TLOG)
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log (BEA Tuxedo ATMI Servers Only)

	Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in the GROUPS Section
	Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	Step 4: Enable an Interface to Begin a Transaction
	Changing the INTERFACES Section (BEA Tuxedo CORBA Servers)
	Changing the SERVICES Section (BEA Tuxedo ATMI Servers)

	Modifying the Domain Configuration File to Support Transactions (BEA Tuxedo CORBA Servers)
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters (BEA Tuxedo CORBA and ATMI Servers)

	Sample Distributed Application Using Transactions
	RESOURCES Section
	MACHINES Section
	GROUPS and NETWORK Sections
	SERVERS, SERVICES, and ROUTING Sections

	Index

