BEA Tuxedo

Using CORBA Server-to-Server
Communication

BEA Tuxedo Release 8.0
Document Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Using CORBA Server-to-Server Communication

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KINOWccoiuiiiiiieseietie sttt sttt st v
E-00CSWED SItO....ciiiieecteeee e et r e sr et saeerae e enaens Vi
How to Print the DOCUMENL..........coooe et e e e Vi
Related INfOrmMation.........ccccuecieiiee et e et e s Vi
CONLBCE US! ...t ettt ea e sae e s ee e e snesreesreas Vii
Documentation CONVENLIONScc.ccecueieeieie e s ee s e rae st sreesreeraenaeere e vii

1. Understanding CORBA Server-to-Server Communication

Overview of CORBA Server-to-Server Communication..........cceeeeeeeeeveenneen. 1-1
Joint Client/Server APPliCations...........cviiererereeieie et e 1-2
Object Policies for Callback ODJECLS..........cooiireiiriie e 1-5

2. Developing C++ Joint Client/Server Applications

DeVelOPMENE PIOCESScouiiuiieiiireeieeie ettt e e sae e e seeseeseene s 2-2
Chat Room Sample APPlICaLiON.........cccecieiriere e 2-3
Step 1: Writing the OMG IDL ...t e 2-5
Step 2: Generating Skeletons and Client StUbS..........cooeeeeeeirnieee e 2-7
Step 3: Writing the Methods That | mplement the Operations for Each Object 2-9
Step 4: Writing the Client Portion of the Joint Client/Server Application...... 2-11
Step 5: Creating a Callback Object Using the Callbacks Wrapper Object...... 2-13
Step 6: Invoking Operations on an Object by Passing a Reference to the
Callback OBJECL.....ccoiieeeieiireeeee et et st 2-15
Step 7: Specifying Configuration Information...........ccoeceeeeeeinenie e scneeee 2-15
Step 8: Compiling Joint Client/Server Applications..........ccccovvveeirenicncnenens 2-17
Using the POA to Create a Callback Objectccccveveiicie e, 2-17
Creating a Callback Object with a Transient Object Policy..................... 2-18

Using CORBA Server-to-Server Communication i

iv

Creating a Callback Object with a Persistent/User ID Object Policy 2-20
Creating a Callback Object with a Persistent/System ID Object Policy .. 2-22

Threading Considerations for C++ Joint Client/Server Applications............. 2-23
Building and Running the Chat Room Sample Application...........ccccceeeenne. 2-24
Copying the Files for the Chat Room Sample Application into a Work
(D1 (= (o] YOS 2-25
Changing the Protection Attribute on the Files for the Chat Room Sample
APPHICELTON ...ttt 2-26
Verifying the Setting of the TUXDIR Environment Variable.................. 2-27
Executing the ChatSetup COmMMAaNd...........ccooeeeeeeneeeneerineerene s 2-28
Starting the Server ApPliCatioNcccoueerieiieeie e 2-29
Starting the Client APPliCatioN..........cooeeereriee e e 2-30
Stopping the Chat Room Sample Application...........ccceevnrenieienenienie 2-30

3. Java Joint Client/Server Applications

Devel OPMENE PIOCESSoiuiiieiieeeie ettt e e e en e e 3-1
Support for Joint Client/Server AppliCationscooeoeeeeieieeienireerie e 32
Index

Using CORBA Server-to-Server Communication

About This Document

This document describes using the CORBA server-to-server functionality in the BEA
Tuxedo® product. This document defines concepts associated with using
server-to-server communication and describes the development process for Java and
C++ joint client/server applications. In addition, instructions for building and running
the Chat Room and Callback sample applications are included in this document.

This document includes the following topics:

m Chapter 1, “Understanding CORBA Server-to-Server Communication,” explains
the concepts you heed to understand to use server-to-server communication and
build joint client/server applications.

m Chapter 2, “Developing C++ Joint Client/Server Applications,” describes
building C++ joint client/server applications and how to build and run the Chat
Room sample application.

m Chapter 3, “Java Joint Client/Server Applications,” outlines the steps for building
Javajoint client/server applications.

What You Need to Know

This document is intended for programmers who are interested in implementing
CORBA server-to-server communication in their BEA Tuxedo applications.

Using CORBA Server-to-Server Communication v

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA System, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

Vi

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, and Java programming, see the CORBA
Bibliography in the BEA Tuxedo online documentation.

Using CORBA Server-to-Server Communication

Documentation Conventions

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo Enterprise 8.0 release.

If you have any questions about this version of the BEA Tuxedo product, or if you have
problems installing and running BEA Tuxedo, contact BEA Customer Support
through BEA WebSUPPORT at www.bea.com. Y ou can also contact Customer
Support by using the contact information provided on the Customer Support Card,
which isincluded in the product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using CORBA Server-to-Server Communication Vii

viii

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
BI TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ()
nonospace Identifies variables in code.
italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui l dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Using CORBA Server-to-Server Communication

Documentation Conventions

Convention

Item

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Using CORBA Server-to-Server Communication

iX

Using CORBA Server-to-Server Communication

CHAPTER

1 Understanding

CORBA
Server-to-Server
Communication

Thistopic includes the following sections:

m Overview of CORBA Server-to-Server Communication
m Joint Client/Server Applications

m Object Policies for Callback Objects

Overview of CORBA Server-to-Server
Communication

CORBA server-to-server communication allows BEA Tuxedo applications to invoke
CORBA objects and handle invocations from those CORBA objects (referred to as
callback objects). The CORBA objects can be either inside or outside of a BEA
Tuxedo domain.

Using CORBA Server-to-Server Communication 1-1

1 Understanding CORBA Server-to-Server Communication

The BEA Tuxedo product offersanimplementation of the Internet Inter-ORB Protocol
(I1OP) version 1.2, which provides inbound and outbound communication with the
CORBA objects. Server-to-server communication provides more efficient use of
network resources and provides integration with third-party Object Request Brokers
(ORBS). In addition, server-to-server communication is supported with CORBA
objects that are implemented using 11OP versions 1.0 and 1.1.

Joint Client/Server Applications

Server-to-server communication allows client applicationsto act asserver applications
for requests from other client applications. In addition, server-to-server
communication allows BEA Tuxedo server applications to invoke objects on other
ORBs.

Note: Inearlier versions of the BEA Tuxedo and WebL ogic Enterprise products,
client applications invoked operations defined in Object Management Group
(OMG@G) Interface Definition Language (IDL) on a CORBA object. The server
applications implemented the operations of the CORBA object. The CORBA
objects in the server application used BEA Tuxedo TP Framework and
environmental objects to implement state management, security, and
transactions. These CORBA objects are referred to as BEA Tuxedo objects.
Server applications could act as client applications for other server
applications; however, client applications could not act as server applications
for other client applications.

The server-to-server communication functionality is available through a callback
object. A callback object has two purposes:

m It invokes operations on either BEA Tuxedo or CORBA objects.
m It implements the operations of a CORBA object.

Callback objects do not use the TP Framework and are not subject to BEA Tuxedo
administration. Y ou should use them only when transactional behavior, security,
reliability, and scalability are not important.

Callback objects are implemented in joint client/server applications. A joint
client/server application consists of the following:

1-2 Using CORBA Server-to-Server Communication

Joint Client/Server Applications

m Program logic that performs BEA Tuxedo client application functions, such as
initializing the ORB, using the BEA Tuxedo environmental objects to establish
connections, resolving initial references to the FactoryFinder object, and using
factories to create BEA Tuxedo objects

m Program logic that creates a servant for a callback object and activates the
callback object using an object ID

Note: Release 8.0 of the CORBA environment inthe BEA Tuxedo CORBA product
continues to include the BEA client environmental objects provided in earlier
releases of BEA WebL ogic Enterprise for use with the BEA Tuxedo 8.0
CORBA clients. BEA Tuxedo 8.0 clients should use these environmental
objectsto resolveinitial references to bootstrapping, security, and transaction
objects. In thisrelease, support has been added for using the OMG
Interoperable Naming Service (INS) to resolve initial references to
bootstrapping, security, and transaction objects. For information on INS, see
Chapter 4, “CORBA Bootstrapping Programming Reference” in the CORBA
Programming Reference.

Figure 1-1 shows the structure of ajoint client/server application.

Figure1-1 Structureof a Joint Client/Server Application

CORBA

Joint Client/Server Application Server Application

Create Callback Object Factory

Cal | backs W apper cal | backobj ;
operati on; A

CORBA Object

. . i nvoke_WLEobj ect (cal | backobj
Client main() Ly - op;r . i(on; i)

Boot strap
Fact oryFi nder
create_cal | backobj ;
i nvoke_W.Eobj ect (cal | backobj);

C++ and Javajoint client/server applications are supported.

Use of callback objectsin Java appletsislimited due to Java applet security
mechanisms. Any Javaapplet run-time environment that allows a Javaapplet to create
and listen on sockets (via the proprietary environment or protocol of the Java applet)

Using CORBA Server-to-Server Communication 1-3

1 Understanding CORBA Server-to-Server Communication

can act as ajoint client/server application. However, if the Java applet run-time
environment restricts socket communication, the Java applet cannot act as ajoint
client/server application.

Joint client/server applications use |1 OP to communicate with the BEA Tuxedo server
applications. [lOP can work in the following ways, depending on the version of the
[1OP protocol you are using:

m Bidirectiond

Joint client/server applications are always connected to the same | OP Server
Handler (ISH) in the BEA Tuxedo domain. That ISH reuses the same connection
to send requests to and receive requests from the joint client/server application.

m Dual-paired connection

Joint client/server applications usether egi st er _cal | back_port method of
the Bootstrap object to register the listening port of the joint client/server
application in the ISH. Invocations from server applications on the callback
object in the joint client/server application are routed through the | SH connected
to the joint client/server application. This ISH uses a second outbound
connection to send requests to and receive replies from the connected joint
client/server application. The outbound connection is paired with the incoming
connection. This differs from bidirectional I10P, which uses only one
connection.

m Asymmetric

Joint client/server applications can invoke on any callback object, and are not
restricted to invoking callback objects implemented in joint client/server
applications connected to an ISH. Asymmetric |10P forces the ORB
infrastructure to search for an available ISH to handle the invocation.

Note: Depending on the type of remote object and the desired outbound 110P
configuration, you may have to perform additional programming tasks.

1-4 Using CORBA Server-to-Server Communication

Object Policies for Callback Objects

Table 1-1 lists the requirements for each type of object and outbound I10P
configuration.

Table 1-1 Programming Requirementsfor Using Outbound I1OP

Types of Asymmetric Paired-connection Bidirectional Requirements
Objects Requirements Requirements
Remote joint Setl SL CLOPT Usethe Usethe
client/servers - Ooption. Tobj Bootstrap::register CORBA :ORB::create policy
_cal | back_port methodto method to set Bi Di r Pol i cy onthe
register the callback port. POA.
Foreign (non Setl SL CLOPT Not applicable. If theforeign ORB supports the POA
BEA-Tuxedo) - Ooption. and Bi Di r Pol i cy, usethe
ORBs CORBA: : ORB: : create_policy
method to set Bi Di r Pol i cy onthe
POA.

Remote clients Remote clients are not servers, so outbound I10P is not possible.

Native joint Outbound I1OP is not used.
client/servers

Nativeclients Outbound I1OPisnot used.

For a more detailed description of bidirectional, dual-paired connnection, and
asymmetric 110P, see the CORBA Programming Reference.

Object Policies for Callback Objects

Callback objectsare assigned policiesthat control how long an object referenceisvalid
and how an object ID is assigned to the object. Object policies are defined when the
reference to the callback object is created. In addition, they can be defined in the
Callbacks Wrapper object, which simplifies the devel opment of joint client/server
applications.

The following object policies are supported for callback objects:

Using CORBA Server-to-Server Communication 1-5

1

Understanding CORBA Server-to-Server Communication

1-6

m Transient/System |D—the object reference for this type of callback object is
valid only for the life of the joint client/server application. The object ID is

assigned by the BEA Tuxedo system. Thistype of object is used for invocations

that ajoint client/server application wantsto receive only until it terminates.

m Persistent/System |D—the object reference for this type of callback object is
valid across multiple invocationsin ajoint client/server application. The object
ID is assigned by the BEA Tuxedo system. This type of object isuseful in joint
client/server applications that stop and restart over a period of time. When the
joint client/server application is running, it can receive requests on a particular
callback object with that object reference. Typically, the joint client/server
application creates the object reference once, savesit in its own permanent
storage area, and reactivates the servant for the object every time the joint
client/server application is started.

m Persistent/User |D—this object policy is the same as Persistent/System ID,
except that the object ID is assigned by thejoint client/server application.

When creating acallback object with an object policy of transient, the object reference

isvalid only until the joint client/server application isterminated or until the
stop_al | _obj ects method is called.

When creating a callback object with an object policy of persistent, the object

referenceisvalid even after the termination of the joint client/server application. If the
joint client/server application terminates, restarts, and activates a servant for the same

object ID, the servant accepts requests made on that object reference.

Note: If you are creating a native joint client/server application (that is, ajoint

client/server applicationthat islocated in the same BEA Tuxedo domain asthe
server applicationsthat invokeit), you cannot use the Persistent/System ID or

Persistent/User 1D object policies.

Using CORBA Server-to-Server Communication

CHAPTER

2

Developing C++ Joint
Client/Server
Applications

Thistopic includes the following sections:

Development Process

Chat Room Sample Application

Step 1: Writing the OMG IDL

Step 2: Generating Skeletons and Client Stubs

Step 3: Writing the Methods That |mplement the Operations for Each Object
Step 4: Writing the Client Portion of the Joint Client/Server Application
Step 5: Creating a Callback Object Using the Callbacks Wrapper Object

Step 6: Invoking Operations on an Object by Passing a Reference to the
Callback Object

Step 7: Specifying Configuration Information

Step 8: Compiling Joint Client/Server Applications

Using the POA to Create a Callback Object

Threading Considerations for C++ Joint Client/Server Applications
Building and Running the Chat Room Sample Application

Using CORBA Server-to-Server Communication

2-1

2 Developing C++ Joint Client/Server Applications

Development Process

2-2

Table 2-1 outlines the development process for C++ joint client/server applications.

Table 2-1 Development Process for C++ Joint Client/Server Applications

Step Description

1 Write the OMG IDL for the callback interface and for the
CORBA interfaces you want to use in your BEA Tuxedo
application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement the operations for each
object.

4 Write the client portion of the joint client/server application.

5 Create a callback object using the Callbacks Wrapper object.

6 Invoke operationson aBEA Tuxedo object by passing the object
reference for the callback object.

7 Specify configuration information.

8 Compile the joint client/server application.

These steps are explained in detail in subsequent topics.

Because the callback object in ajoint client/server application is not transactional and
has no object management capabilities, you do not need to create an Implementation
Configuration File (fi | enane. i cf) for it. However, you till need to create an ICF
file for the BEA Tuxedo objectsin your BEA Tuxedo application. For information
about writing an ICF file, see Creating CORBA Server Applications.

Using CORBA Server-to-Server Communication

Chat Room Sample Application

Chat Room Sample Application

Throughout this topic, the Chat Room sample application is used to demonstrate the
development steps. A chat room isan application that allows several peopleat different
locations to communicate with each other. Think of the chat room as a moderator
whosejob it isto keep track of client applicationsthat have logged in, and to distribute
messages to those client applications.

A client application logs in to the moderator, supplying a username. When messages
are entered at the keyboard, the client application invokes the moderator, and passes

the messages to the moderator. The moderator then distributes the messagesto all the
other client applications by making an invocation on the callback object.

The Chat Room sample application consists of a C++ joint client/server application
and a BEA Tuxedo server application. The joint client/server application receives
keyboard input and makes invocations on the moderator. The joint client/server
application also sets up the callback object to listen for messages from the moderator
(that is, to receive invocations from the moderator). The BEA Tuxedo server
application in the Chat Room sample application implements the moderator.

Figure 2-1 illustrates how the Chat Room sample application works.

Using CORBA Server-to-Server Communication 2-3

2 Developing C++ Joint Client/Server Applications

Figure2-1 How the Chat Room Sample Application Works

Joint Client/Server Application CORBA Server Application
Create Listener Object

Cal | backs Wapper Listener_obj; .

Li stener_i:: post Moderator Object

Mbder at or Factory_i : : get _Mbder at or

Boot strap - Listener_ptr call back_ref)

Fact oryFi nder {
get _Moder at or () /1Store call back obj ect

i nvoke_NMbder at or _ptr->si gnon(cal I backs[i]=_duplicate(call back_ref);

create_Li st ener_obj;

Client main() /’V Moder ator _i : : si gnon(const char* who,

const char* who,
Listener_ptr call back_obj); }

Moder at or _i : : send(const char* who,

const char* input_line)
{
/'l nvoke cal | back
cal | backs[i] - >post (who i nput_line);
}

Moder ator _i :: signoff();

The Chat Room sample application works as follows:

1

Thejoint client/server application implementsthelogic for the callback object (the
Listener object), createsa servant for the Listener object, and activatesthe Listener
object.

Thejoint client/server application creates an object reference for the Listener
object and passes it to the Moderator object as part of the si gnon operation.

The server application in the Chat Room sample application checks the keyboard
for messages.

When messages are generated at the keyboard, the Chat Room sampl e application
sends the messages to the Moderator object viathe send operation.

The Chat Room sample application temporarily passes control over to the ORB
to allow the Listener object in the joint client/server application to receive post
invocations from the Moderator object.

The Listener object in the joint client/server application saves the posted
messages until a client application requests them.

2-4 Using CORBA Server-to-Server Communication

Step 1: Writing the OMG IDL

The source files for the Chat Room sample application are located in the
TUXDI R sanpl es\ cor ba\ chat r oom directory in the BEA Tuxedo software
directory. See“Building and Running the Chat Room Sample Application” on
page 2-24 for more information.

Step 1: Writing the OMG IDL

Y ou use Object Management Group (OMG) Interface Definition Language (IDL) to
describe available CORBA interfaces to client applications. An interface definition
writtenin OMG IDL completely definesthe CORBA interface and fully specifieseach
operation’s arguments. OMG IDL isapurely declarative language. This meansthat it
contains no implementation details. For more information about OMG IDL, see
Creating CORBA Client Applications.

The Chat Room sampl e application implements the CORBA interfaceslisted in
Table 2-2.

Table2-2 CORBA Interfacesfor the Chat Room Sample Application

Interface Description Operation
Li st ener The callback object post ()
Moder at or Receives input from client applications si gnon()

and uses the callback object to forward ~ send()
messages back to thejoint client/server g gnof f ()
application

Moder at or Fact ory Creates object references to the get _noder at or ()
Moderator object

Using CORBA Server-to-Server Communication 2-5

2 Developing C++ Joint Client/Server Applications

Listing 2-1 showsthechatcli ent.idl that definestheLi st ener interface.

Listing2-1 OMG IDL for theListener Interface

nmodul e Chatd i ent{
interface Listener {
oneway void post (in string from
in string output_line);

}s

Listing 2-2 showsthe chat room i dI that defines the Moder at or and

Moder at or Fact ory interfacesfor the Chat Room sample application. The #i ncl ude
is used to resolve referencesto interfaces in another OMG IDL file. In the Chat Room
sample application, the si gnon method requires a Listener object as a parameter and
its IDL file must #i ncl ude the OMG IDL file that defines the Listener interface.

Listing2-2 OMG IDL for the Moderator and M oderator Factory I nterfaces

#include "Chatdient.idl"
nmodul e Chat Room {

interface Mdderator {
exception | dAl readyUsed{};
excepti on NoRoonlLeft{};
excepti on | dNot Known{};

void signon(in string who,
in Chatdient::Listener callback ref)
rai ses(|dAl readyUsed, NoRoonlLeft);

void send (in string who,
in string input_line)
rai ses(| dNot Known);

void signoff(in string who)
rai ses(| dNot Known);

2-6 Using CORBA Server-to-Server Communication

Step 2: Generating Skeletons and Client Stubs

interface MdderatorFactory {
Moder at or get _noderator(in string chatroomnane);

}s

Step 2: Generating Skeletons and Client

Stubs

The interface specification defined in OMG IDL is used by the IDL compiler to
generate skeletons and client stubs. Note that a joint client/sever application uses the
client stub for the BEA Tuxedo object and the skeleton and client stub for the callback
object.

For example, in the Chat Room sample application, the joint client/server application
uses the skeleton and client stub for the Listener object (that is, the callback object) to
implement the object. The joint client/server application a so uses the client stubs for
the Moder at or and Moder at or Fact or y interfaces to invoke operations on the
objects. The BEA Tuxedo server application usesthe skeletons for the Moderator and
M oderatorFactory objects to implement the objects and the client stub for the Listener
object to invoke operations on the object.

During the development process, usethei di command with the-Pand-i options
to compile the OMG IDL file that defines the callback object (for example, the
chatclient.idl fileinthe Chat Room sample application). The options work as
follows:

m The - P option creates a skeleton class that inherits directly from the
Por t abl eSer ver : : Ser vant Base class. Inheriting from
Por t abl eSer ver : : Ser vant Base means the joint client/server application must
explicitly create a servant for the callback object and initialize the servant’s state.
The servant for the callback object cannot use the act i vat e_obj ect and
deact i vat e_obj ect methods as they are members of the
Por t abl eServer : : Ser vant Base class.

Using CORBA Server-to-Server Communication 2-7

2 Developing C++ Joint Client/Server Applications

m The-i option resultsin the generation of an implementation template file. This
fileisatemplate for the code that implements the interfaces defined in the OMG
IDL for the Listener object.

Y ou then need to compile the OMG IDL file that defines the interfaces in the BEA
Tuxedo server application (for example, the chat r oom i dI filein the Chat Room
sample application). Usethei dI command with only the-i option to compile that
OMG IDL file.

Table Note: lists the filesthat are created by thei dl command.

Note: Inthe Chat Room sample application, the generated template files for the
Chatdient.idl andChat Roomidl fileshavebeenrenamedto reflect the
objects (Listener and M oderator) they implement. In addition, thetemplatefile
for the Moderator object includes the implementation for the
M oderatorFactory object.

Table 2-3 Files Produced by theidl Command

File FilesintheChat Room Description
Sample Application
Created by theidl

Command

Client stub file Li stener_c.cpp Contains client stubs for each interface specified in the
Li stener_c. h OMG IDL file. Theclient stubs are used to send arequest
Mbder at or _c. cpp to an object.

Moderator_c. h

Implementation file Li stener _i.cpp Contains signatures for the methods that implement the
Moder at or _i . cpp operations of the Li st ener, Moder at or, and
Moder at or Fact or y interfaces specified in the OMG
IDL file. TheLi st ener _i . h filecontains
implementation files that inherit from the
POA Chatdient::Listener class

Skeleton file Li stener_s. cpp Contains skeletons for each interface specified in the
Li stener_s.h OMG IDL file. During run time, the skeleton maps client
Moder at or _s. cpp requests to the appropriate operation in the server
Mbder at or _s. h application. TheLi st ener _s. h file contains

POA_skel et on class definitions (for example,
POA Chatdient::Listener).

2-8 Using CORBA Server-to-Server Communication

Step 3: Writing the Methods That Implement the Operations for Each Object

Step 3: Writing the Methods That Implement
the Operations for Each Object

After you compile each of the OMG IDL files, you need to write methods that
implement the operationsfor each object. In ajoint client/server application, you write
the implementation file for the callback object (that is, the Listener object). Y ou write
the implementation for a callback object as you would write the implementation for
any other CORBA object, except that you use the POA instead of the TP Framework.
Y ou al so write implementation files for the BEA Tuxedo objects (that is, the
Moderator and ModeratorFactory objects) in the BEA Tuxedo server application.

An implementation file contains the following:

m Method declarations for each operation specified in the OMG IDL file

m Businesslogic for your application

m Congtructors for each interface implementation (implementing these is optional)

m Optionally, for BEA Tuxedo objects, the
com beasys. Tobj _Servant. activate_obj ect and
com beasys. Tobj _Servant . deact i vat e_obj ect methods

Withinthe acti vat e_obj ect and deacti vat e_obj ect methods, you write
code that performs any particular steps related to activating or deactivating an
object.

Listing 2-3 includes the implemention file for the Listener object, and Listing 2-4
includes the implementation file for the Moderator and M oderatorFactory objects.

Note: Additional methods and data were added to the implementation file for the
Moderator and ModeratorFactory objects. The template for the
implementation file was created by the i dl -i command.

Using CORBA Server-to-Server Communication 2-9

2 Developing C++ Joint Client/Server Applications

Listing 2-3 Implementation Filefor theListener Object

/1 This nmodul e contains the definition of the inplenmentation class
/1 Listener i

#i fndef _Listener_i_h
#define _Listener_i_h
#include "Chatdient_s.h"

class Listener i : public POA ChatClient::Listener {
public:

Li stener i ();
virtual ~Listener _i();

voi d post (
const char * from
const char * output_line);

b
#endi f

Listing 2-4 Implementation File for Moderator and Moder ator Factory Objects

/1 This nodul e contains the definitions of the inplenentation class
/1 Moder ator and Moderat or Fact ory

#i fndef _Mderator_i_h
#define _Mderator_i_h

#i ncl ude "Chat Room s. h"

const int CHATTER LIMT = 5;
/'l the nost chatters allowed

class Mdderator_i : public PQA Chat Room : Moder at or {
public:
/1 Define the operations
void signon (const char* who,
Chatdient::Listener_ptr cal | back_ref);
void send (const char * who,
const char * input _|ine);

2-10 Using CORBA Server-to-Server Communication

Step 4: Writing the Client Portion of the Joint Client/Server Application

voi d signoff (const char * who);

// Define the Framework functions
virtual void activate object (const char* stroid);
virtual void deactivate object(const char* stroid,
Tobj S: : Deacti vat eReasonVal ue
reason);
private:

/! Define function to find nanme on li st
int find(const char * handle);

/1 Define nane of the chat room overseen by the Modderator
char* m chat room nane;

/] Data for maintaining |list
/] Chatter[n] id
CORBA: : String chatters[CHATTER LIM T];

/1 Chatter[n] callback ref
ChatClient::Listener_var call backs[CHATTER LI M T];

}
cl ass MbderatorFactory_i : public POA Chat Room : Moder at or Factory {
publi c:
Chat Room : Mbderat or _ptr get_noderator (const char*
chat room nane);
h
#endi f

Step 4: Writing the Client Portion of the
Joint Client/Server Application

During development of ajoint client/server application, you write the client portion of
the joint client/server application as you would write any BEA Tuxedo client
application. The client application needs to include code that does the following:

1. Initializesthe ORB. The BEA Tuxedo system activates an ORB using the correct
protocol (in this case, 110P).

Using CORBA Server-to-Server Communication 2-11

2 Developing C++ Joint Client/Server Applications

2. Usesthe Bootstrap object to establish communication with the BEA Tuxedo
domain.

3. Resolvesinitial referencesto the FactoryFinder object.

4. Uses afactory to get an object reference for the desired BEA Tuxedo object (that
is, the Moderator object).

Note: Release8.0 of the CORBA environment of the BEA Tuxedo product continues
toincludethe BEA client environmental objects provided in earlier releases of
BEA WebL ogic Enterprise for use with the BEA Tuxedo 8.0 CORBA clients.
BEA Tuxedo 8.0 clients should use these environmental objects to resolve
initial references to bootstrapping, security, and transaction objects. In this
release, support has been added for using the OMG Interoperable Naming
Service (INS) to resolveinitial references to bootstrapping, security, and
transaction objects. For information on INS, see Chapter 4, “CORBA
Bootstrapping Programming Reference” in the CORBA Programming
Reference.

The client development steps are illustrated in Listing 2-5, which includes code from
the Chat Room sample application. In the Chat Room sample application, the client
portion of the joint client/server application uses afactory to get an object referenceto
the Moderator object, and then invokes the si gnon, send, and si gnof f methods on
the Moderator object.

Listing 2-5 Client Portion of the Chat Room Joint Client/Server Application

/1 Initialize the ORB
orb _ptr = CORBA :ORB init(argc, argv, "BEA IIOP");

/1 Create a Bootstrap object to establish conmunication with the
/1 domain

boot strap = new Tobj _Bootstrap(orb_ptr,"");

/1l Get a FactoryFi nder object, use it to find a Mdderator factory,
/1 and get a Moderator.

/1 Use the Bootstrap object to find the FactoryFi nder object

CORBA: : Obj ect _var var_factory finder_oref =

2-12 Using CORBA Server-to-Server Communication

Step 5: Creating a Callback Object Using the Callbacks Wrapper Object

boot st rap->resol ve_initial _references("FactoryFi nder");
/1 Narrow the FactoryFi nder object

Tobj : : Fact oryFi nder _var var _factory finder =
Tobj :: FactoryFi nder:: narrowvar_factory finder_oref.in());

/1 Use the FactoryFi nder object to find a factory for the Mderator

CORBA: : Obj ect _var var_noderator_factory oref =
var_factory finder->find_one factory by id(
" Moder at or Factory");

/1 Narrow the Moderator Factory

Chat Room : Moder at or Factory_var var_noderator _factory =
Chat Room : Moder at or Fact ory: : _narrow
var_noderator_factory oref.in());

// Get a Moderator
/1 The chatroom nanme is passed as a conmand |ine paraneter

var _noderator_oref =
var _noderator _factory->get noderat or
(var_chat _roomnane.in());

Step 5: Creating a Callback Object Using the
Callbacks Wrapper Object

Since the basic steps for creating a callback object are always the same, the BEA
Tuxedo product provides a Callbacks Wrapper object that simplifies the development
of callback objects.

The Callbacks Wrapper object does the following:

m Defines the object policy for the callback object. The following object policies
are supported:

e Transient/System ID (_transi ent)

Using CORBA Server-to-Server Communication 2-13

2 Developing C++ Joint Client/Server Applications

e Persistent/System ID (_persi st ent/ systemni d)
e Persistent/User ID (_persi stent/useri d)

For acomplete description of the object policies for callback objects, see
“Object Policies for Callback Objects’ on page 1-5.

m Creates aservant for the callback object.

m Setsthe ORB and the POA to the state in which they will accept requests on the
callback object.

m Returns an object reference to the activated callback object. The object ID can
be generated by the system or supplied by the user.

m Tellsthe ORB to stop accepting requests on either a single servant or &l the
active servants.

For a compl ete description of the Callbacks Wrapper object and its methods, see the
CORBA Programming Reference.

Listing 2-6 shows how a Callbacks Wrapper object is used in the Chat Room sample
application.

Listing 2-6 Using the Callbacks Wrapper Object in the Chat Room Sample
Application

/1 Use the Callbacks object to create a servant for the
/1 Listener object, activate the Listener object, and create an
/1 object reference for the Listener object.

BEAW apper: : Cal | backs* cal | backs =
new BEAW apper:: Cal | backs(orb_ptr);

Listener_i * listener_call back_servant = new Listener_i();
CORBA: : Cbj ect _var v_listener_oref=call backs->start _transient(

i stener _call back_servant,

Chatdient:: tc_Listener->id());
Chatdient::Listener_var v_|listener_call back oref =

Chatd ient::Listener:: narrow

var _listener_oref.in());

2-14 Using CORBA Server-to-Server Communication

Step 6: Invoking Operations on an Object by Passing a Reference to the Callback Ob-

Step 6: Invoking Operations on an Object by
Passing a Reference to the Callback Object

Once you have an object reference to a callback object, you can pass the callback
object reference as aparameter to amethod of aBEA Tuxedo object. Inthe Chat Room
sample application, the M oderator object uses an object referenceto the Listener object
as a parameter to the si gnon method. Listing 2-7 illustrates this step.

Listing 2-7 Invoking the signon Method

/1 Sign on to the Chat roomusing a user-defined handle and a
/1 reference to the Listener object (the callback object) to receive
/1 input fromother client applications |logged into the Chat room

var _noder at or _r ef er ence- >si gnon(handl e,
var _|istener_call back oref.in());

Step 7: Specifying Configuration
Information

When running remote joint client/server applications that use [10P, the object
references for the callback object must contain a host and port number, as follows.

m For transient callback objects, any valid port number (as defined by TCP/IP) can
be used, and it can be obtained dynamically by the ORB.

m For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.

Using CORBA Server-to-Server Communication — 2-15

2 Developing C++ Joint Client/Server Applications

2-16

The user specifies the port number from the user range of port numbers, rather than
from the dynamic range. Assigning port numbers from the user range prevents joint
client/server applications from using conflicting ports. To specify a particular port for
the joint client/server application to use, include the following on the command line
that starts the process for the joint client/server application:

- ORBport nnn

where nnn isthe number of the port to be used by the ORB when creating invocations
and listening for invocations on the callback object in the joint client/server
application.

Usethiscommand when you want the object referencefor the callback object in ajoint
client/server application to be persistent and when you want to stop and restart thejoint
client/server application. If this command is not used, the ORB uses arandom port. If
the joint client/server application is stopped and then started, invocations to callback
objects in the the joint client/server application will fail.

The port number is part of the input to the ar gv argument of the CORBA: : orb_i ni t
member function. When the ar gv argument i s passed, the ORB readsthat information,
establishing the port for any object references created in that process. Y ou can also use
the bootstrap object’sr egi st er _cal | back_port operation for the same purpose.

For ajoint client/server application to communicate with a BEA Tuxedo object in the
same domain, a configuration file for the server application is needed. The
configuration file should be written as part of the development of the server
application. The binary version of the configuration file, the TUXCONFI Gfile, must
exist before the joint client/server application is started. The TUXCONFI Gfileis created
using thet m oadcf command. For information about creating a TUXCONFI Gfile, see
Getting Sarted with BEA Tuxedo CORBA Applications and Setting Up a BEA Tuxedo
Application.

If you are using ajoint client/server application that uses [IOP version 1.0 or 1.1, the
administrator needsto boot the I IOP Server Listener (1SL) with startup parametersthat
enable outbound I10P to invoke callback objects not connected to an I1OP Server
Handler (I1SH). The - Ooption of the | SL command enables outbound | 1OP. Additional
parameters allow administrators to obtain the optimum configuration for their BEA
Tuxedo application. For more information about the ISL command, see the BEA
Tuxedo Command Reference.

Using CORBA Server-to-Server Communication

Step 8: Compiling Joint Client/Server Applications

Step 8: Compiling Joint Client/Server
Applications

Thefinal step in the development of ajoint client/server application is to produce the
executable program. To do this, you need to compile the code and link against the
skeleton and client stub.

Usethebui | dobj cl i ent command with the - P option to construct ajoint
client/server application executable. To build an executable program, the command
combines the client stub for the BEA Tuxedo object, the client stub for the callback
object, the skeleton for the callback object, and the implementation for the callback
object with the appropriate POA libraries.

Note: Beforeyou can usethe - P option of the bui | dobj cl i ent command, you
must have used the - P option of thei di command when you created the
skeleton and client stub for the callback object.

Using the POA to Create a Callback Object

Y ou can use the POA directly to create a callback object. Y ou would use the POA
directly when you want to use POA features and object policies not available through
the Callbacks Wrapper object. For example, if you want to use the POA optimization
features, you need to use the POA directly. The following topics describe how to use
the POA to create callback objects with the supported object policies.

Note: Only asubset of the POA interfaces are supported in this version of the BEA
Tuxedo product. For alist of supported interfaces, see the CORBA
Programming Reference.

Using CORBA Server-to-Server Communication — 2-17

2 Developing C++ Joint Client/Server Applications

Creating a Callback Object with a Transient Object Policy

To usethe POA to create a callback object with atransient object policy, you need to
write code that does the following:

1. Establishes a connection with a POA.

2. Creates achild POA.

Since the root POA does not allow use of bidirectional 110P, you need to create
achild POA. The child POA can use the defaultsfor Li f espanPol i cy

(TRANSI ENT) and | DAssi gnnent Pol i cy (SYSTEM. You must specify a

Bi Di r Pol i cy policy of BOTH.

[1OP version 1.2 supports reuse of the TCP/IP connection for both incoming and
outgoing requests. Allowing reuse of a TCP/IP connection is the choice of the
ORB. To allow reuse, you create an ORB policy object that allows reuse of a
TCP/IP connection, and you use that policy object in the list of policies when
initializing an ORB. The policy object is created using the

CORBA: : ORB: : cr eat e_pol i cy operation. For more information about the
CORBA: : ORB: : create_pol i cy operation, see the CORBA Programming
Reference.

3. Creates aservant for the callback object.

4. Informs the POA that the servant is ready to accept requests for the callback
object.

In this step, the joint client/server application activates the callback object in the
POA using an object ID.

5. Activates the POA.
6. Creates an object reference for the callback object.

7. Makes an invocation on a BEA Tuxedo object using the object reference for the
callback object as a parameter to one of the methods of the BEA Tuxedo object.

Listing 2-8 shows the portion of the Chat Room sample application that uses the POA
to create the Listener object.

2-18 Using CORBA Server-to-Server Communication

Using the POA to Create a Callback Object

Listing 2-8 Using the POA to Createthe Listener Object

/1 Establish comrmuni cation with the PQA

orb ptr = CORBA:: ORB_init(argc, argv, "BEA II1OP");
CORBA: : Pol i cyLi st policy_ list(1);
CORBA: : Any val ;

CORBA: : Cbj ect_ptr o_init_poa;
O _init_poa = orb_ptr->resolve_initial_references("Root POA");

/1 Narrow to get the Root PQA

root_poa_ptr = Portabl eServer::PQA:: narrow(o_init_poa);

CORBA: : rel ease(o_init_poa);

/1 Specify an I1OP Policy of Bidirectional for the PQA

val <<= Bi DirPolicy::BOTH;

CORBA: : Policy ptr bidir_pol _ptr = orb_ptr->create_policy(

Bi Di r Pol i cy: : Bl DI RECTI ONAL_POLI CY_TYPE, val);

policy_list.length (1);

policy_list[0] = bidir_pol_ptr;

// Create the BiDirectional POA

bi dir_poa_ptr = root_poa_ptr->create_POA("Bi D r POA",
root _poa_ptr->
t he_PQAManager (),
policy_list);

/1 Activate the PQA

root _poa_ptr->t he_POAManager ()->activate();

/1l Create the Listener object

ChatClient::Listener_var v_listener_callback ref;

/] Create a servant for Listener object and activate it

listener _call back_servant = new Listener _i();

CORBA: : Obj ect _var v_listener_oref;
Portabl eServer:: Qbjectld_var tenp_Od =

bi dir_poa_ptr ->activate_object(listener_callback_servant);

/]l Create object reference for the Listener object with a

Using CORBA Server-to-Server Communication — 2-19

2 Developing C++ Joint Client/Server Applications

/1l system generated bject Id

v_listener_oref = bidir_poa ptr->create reference with_id

(temp_O d,
ChatClient:: tc_Listener->id());

v_listener_callback ref = ChatClient::Listener:: _narrow

(v_listener _oref.in());

Creating a Callback Object with a Persistent/User 1D
Object Policy

To usethe POA to create a callback object with a Persistent/User I D object policy, you
must write code that does the following:

1
2.

5.

Uses a string to store the user 1D and converts the string to the object ID.

Creates achild POA with aLi f espanPol i cy setto PERSI STENT and
| DAssi gnnent Pol i cy set to USERI D.

Creates aservant for the Listener object.

Creates an object reference for the Listener object using the stringified object 1D
and the repository ID of the Listener object.

Activates the Listener object.

Note: The Persistent/User ID object policy isonly used with remote joint

client/server applications (that is, ajoint client/server application thatisnotin
aBEA Tuxedo domain).

Listing 2-9 shows code that performs these steps.

Note: The code example does not use bidirectional [10P.

2-20 Using CORBA Server-to-Server Communication

Using the POA to Create a Callback Object

Listing 2-9 Example Code for Listener Object with Persistent/User I D Object
Policy

/1 Declare a string and convert it to an object Id.
const char* oid_string = "783";
Port abl eServer: : Obj ectl D var oid=
Portabl eServer::string_to _Objectld(oid string);

/1 Find the root POA
CORBA: : (bj ect _var oref =

orb _ptr->resolve_initial _references("Root POA");
Por t abl eServer:: POA var root_poa =

Port abl eServer:: PQA:: _narrow oref);

/] Create and activate a Persistent/ Userl D POA
CORBA: : Pol i cyLi st policies(2);
policies.length(2);

policies[0] = root_poa->create_lifespan_policy(
Por t abl eSer ver: : PERSI STENT) ;
policies[1l] = root_poa->create_id_assignment_policy(

Portabl eServer:: USER ID);
Portabl eServer:: POA var poa_ref =

root _poa->create_PQOA("poa_ref",

r oot _poa- >t he_POAManager (), pol i ci es);
root _poa- >t he_PQANManager () - >activate();

/1l COreate object reference for the Listener object.

oref = poa_ref->create_reference_with_id(oid,
ChatClient:: tc_Listener->id());

ChatClient::Listener_ptr Listener_oref =
ChatClient::Listener:: _narrow oref);

/1l Create Listener_i servant and activate the Listener object
Li stener _i* ny_Listener_i = new Listener_i();
poa_ref->activate_object_with_id(oid, ny_Listener_i);

/1 Make call passing the reference to the Listener object
v_noder ator _ref->si gnon(handl e, Listener_oref);

Using CORBA Server-to-Server Communication 2-21

2 Developing C++ Joint Client/Server Applications

Creating a Callback Object with a Persistent/System 1D
Object Policy

To usethe POA to create a callback object with a Persistent/System ID object policy,
you need to write code that does the following:

1. Createsachild POA withalLifespanPol i cy settoPERSI STENT and
| DAssi gnnment Pol i cy set to the default.

2. Creates aservant for the Listener object.

3. Creates an object reference for the Listener object using a system generated
object ID (the repository ID of the Listener object).

4. Activatesthe Listener object.

Note: The Persistent/System ID object policy isonly used with remote joint
client/server applications (that is, ajoint client/server application thatisnotin
aBEA Tuxedo domain).

Listing 2-10 shows code that performs these steps.

Listing 2-10 Example Codefor Listener Object with Persistent/System 1D
Object Policy

/1 Find the root POA
CORBA: : Obj ect _var oref=

orb_ptr->resolve_initial _references("Root POA")
Port abl eServer:: POA var root_poa =

Port abl eServer:: POA:: _narrow(oref);

/1 Create and activate a Persistent/System|D POA

CORBA: : Pol i cyList policies(l);

policies.length(1);

policies[0] = root_poa->create_lifespan_policy(
Por t abl eSer ver : : PERSI STENT) ;

/11 DAssignment Policy is the default so you do not need to specify it
Port abl eServer:: POA var poa_ref = root_poa->create_ POA(

"poa_ref", root_poa->the POAManager (), policies);
r oot _poa- >t he_POAManager () - >activate();

2-22 Using CORBA Server-to-Server Communication

Threading Considerations for C++ Joint Client/Server Applications

/1 Create Listener_i servant and activate the Listener object

Li stener _i* ny_Listener_i = new Listener_i();

Portabl eServer::Objectld var tenp Od =
poa_ref->activate_object (ny_Listener_i);

/1 Oreate object reference for Listener object with returned
/] systemobject Id
oref = poa_ref->create_reference_wth_id(
tenp_Ad, ChatClient:: tc_Listener->id());
ChatClient::Listener_var Listener_oref =
ChatClient::Listener:: _narrow oref);

/1 Make the call passing the reference to the Listener object
v_noder ator _ref->signon(handl e, Listener_oref);

Threading Considerations for C++ Joint
Client/Server Applications

A joint client/server application can first function as a client application and then
switch to functioning as a server application. To do this, the joint client/server
application gives complete control of the thread to the ORB by invoking the following:

orb -> run();

If amethod in the server portion of ajoint client/server application invokes

ORB: : shut down() , all server activity stops and control isreturned to the statement
after ORB: : run() isinvokedintheserver portion of the joint client/server application.
Only under this condition does control return to the client functionality of the joint
client/server application.

Since a client application has only a single thread, the client functionality of the joint
client/server application must share the central processing unit (CPU) with the server
functionality of thejoint client/server application. This sharing is accomplished by
occasionally checking with the ORB to seeif thejoint client/server application has
server application work to perform. Use the following code to perform the check with
the ORB:

if (orb->work_pending()) orb->performwork();

Using CORBA Server-to-Server Communication 2-23

2 Developing C++ Joint Client/Server Applications

After the ORB compl etes the server application work, the ORB returns to the joint
client/server application, which then performs client application functions. The joint
client/server application must remember to occasionally check with the ORB;
otherwise, the joint client/server application will never process any invocations.

The ORB cannot service callbacks while thejoint client/server application is blocking
on arequest. If ajoint client/server application invokes an object in another BEA
Tuxedo server application, the ORB blocks whileit waits for the response. While the
ORB isblocking, it cannot service any callbacks, so the callbacks are queued until the
request is completed.

Building and Running the Chat Room
Sample Application

Perform the following steps to build and run the Chat Room sample application:
1. Copy thefilesfor the Chat Room sample application into a work directory.

2. Change the protection attribute on the files for the Chat Room sample
application.

3. Verify the settings of the environment variables.
4. Executethe Chat Set up command.

The following sections describe these steps.

2-24 Using CORBA Server-to-Server Communication

Building and Running the Chat Room Sample Application

Copying the Files for the Chat Room Sample Application
into a Work Directory

Y ou need to copy thefilesfor the Chat Room sample application into awork directory
on your local machine. The files for the Chat Room sample application are located in
the following directories:

Windows
drive:\ TUXD R sanpl es\ cor ba\ chat room
UNIX

/usr/ 1 ocal / TUXDI R/ sanpl es/ cor ba/ chat r oom

Usethefileslisted in Table 2-4 to build and run the Chat Room sample application.

Table 2-4 FilesIncluded in the Chat Room Sample Application

File Description

Chat Room i dl The OMG IDL code that declares the Mbder at or
and Mbder at or Fact or y interfaces.

Chatd ient.idl The OMG IDL code that declaresthe Li st ener
interface.

Listener_i.h The C++ source code for method implementations of

Li stener _i.cpp the Listener object in the joint client/server
application.

Moderator _i . h The C++ source code for method implementations of

Moder at or _i . cpp the M oderator and M oderatorFactory objectsin the
BEA Tuxedo server application.

Chat d i ent Mai n. cpp The C++ source code for the joint client/server
application.

Chat RoonSer ver . cpp The C++ source code for the BEA Tuxedo server
application.

Keyboar dManager . h The C++ source code that handles input from the

Keyboar dManager . cpp keyboard in the Chat Room sample application. This

codeisused by Chat C i ent Mai n. cpp.

Using CORBA Server-to-Server Communication — 2-25

2 Developing C++ Joint Client/Server Applications

Table 2-4 FilesIncluded in the Chat Room Sample Application (Continued)

File Description

Chat Room i cf The Implementation Configuration File (ICF) for the
Moderator and ModeratorFactory objectsinthe BEA
Tuxedo server application in the Chat Room sample

application.

Chat Room ksh For UNIX systems, ascript that setsthe environment
variables and builds the Chat Room sample
application.

Chat Room cnd For Windows systems, a command procedure that

sets the environment variables and builds the Chat
Room sample application.

Chat Room rrk The UNIX operating systemmakef i | e for the Chat
Room sample application.

Chat Room nt The Windows operating system nmakef i | e for the
Chat Room sample application.

Readne. t xt The file that provides the latest information about
building and running the Chat Room sample
application.

Changing the Protection Attribute on the Files for the
Chat Room Sample Application

During the installation of the BEA Tuxedo software, the sample application files are
marked read-only. Before you can edit or build the filesin the Chat Room sample
application, you need to change the protection attribute of the files you copied into
your work directory, asfollows:

Windows

pronpt> attrib /S -r drive:\workdirectory*.*
UNI X
pronpt > / bi n/ ksh

2-26 Using CORBA Server-to-Server Communication

Building and Running the Chat Room Sample Application

ksh pronpt > chnod u+w /workdirectory/*.*

On UNIX operating system platforms, you also need to change the permission of
Chat Room ksh to give execute permission to the file, as follows:

ksh pronpt > chnod +x Chat Room ksh

Verifying the Setting of the TUXDIR Environment

Variable

Before building and running the Chat Room sample application, you need to ensure
that the TUXDI R environment variable is set on your system. In most cases, this
environment variable is set as part of the installation procedure. The TUXDI R
environment variable defines the directory path where you installed the BEA Tuxedo
software. For example:

Windows
TUXDI R=C: \ TUXDI R

UNIX
TUXDI R=/ usr /1 ocal / TUXDI R

To verify that theinformation for the environment variables defined during installation
is correct, perform the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.
The Environment page appears.

5. Check the setting for TUXDI R.

Using CORBA Server-to-Server Communication — 2-27

2 Developing C++ Joint Client/Server Applications

UNIX

ksh pronpt >printenv TUXDI R
To change the settings, perform the following steps:
Windows

1. Onthe Environment page in the System Properties window, click the TUXDI R
environment variable.

2. Enter the correct information for the environment variable in the Va ue field.
3. Click OK to save the changes.

UNI X
ksh pronpt >export TUXD R=directorypath

Executing the ChatSetup Command

The Chat Set up command automates the following steps:

1. Setsthe system environment variables.

2. Creates and loads the configuration file.

3. Compilesthe code for the client application.

4. Compilesthe code for the server application.

Before running the Chat Set up command, you need to check the following:

m Ensure that you have the appropriate administrative privileges to build and run
applications.

m On Windows, make sure nmake isin the path of your machine.

m On UNIX, make sure the make executable program isincluded in the PATH
variable.

To build and run the sample application, enter the Chat Set up command, as follows:

Windows

pronpt >cd wor kdi rectory

2-28 Using CORBA Server-to-Server Communication

Building and Running the Chat Room Sample Application

pronpt > Chat Set up. cnd
UNIX

ksh pronpt > cd workdirectory
ksh pronpt > ./ Chat Set up. ksh

Starting the Server Application

Start the server application and the system server processesin the Chat Room sample
application by entering the following command:

pronpt> tnboot -y
This command starts the following server processes:
B TMSYSEVT

The system EventBroker. This server processis used only by the BEA Tuxedo
system.

m TMFFENAME
The following three TMFFNAME server processes are started:

e The TMFFNAME server process started with the - N and - Moptions is the
Master NameManager service. The NameManager service maintains a
mapping of the application-supplied names to object references. This server
process is used only by the BEA Tuxedo system.

e The TMFFNAME server process started with only the - N option is the Slave
NameManager service.

e The TMFFNAME server process started with the - F option contains the
FactoryFinder object.

m Chat Room
The server application process for the Chat Room sampl e application.
m | SL

The I1OP Listener/Handler process.

Using CORBA Server-to-Server Communication 2-29

2 Developing C++ Joint Client/Server Applications

Starting the Client Application

Stopping

Start the client application in the Chat Room sample application by entering the
following command:

pronpt > ChatClient chatroom nane -ORBport nnn

wherechat r oom nane isthe name of a chat room to which you want to connect. Y ou
can enter any value. Y ou will be prompted for a handle to identify yourself. You can
enter any value. If the handle you chose isin use, you will be prompted for another
handle.

To optimize the usefulness of the Chat Room sample application, you should run a
second client application using the same chat room name.

To exit the client application, enter \ .

the Chat Room Sample Application

Before using another sample application, enter the following commands to stop the
Chat Room sample application and to remove unnecessary files from the work
directory:

Windows

pronpt > t nshut down -y

pronpt > Admi n\ set env

pronpt > nmake -f Chat Room nt supercl ean
prompt > nmake -f Chat Room nt adni ncl ean
UNIX

ksh pronpt> tmshutdown -y

ksh pronmpt> . ./ Adm n/setenv. ksh

ksh pronpt> make -f Chat Room nk supercl ean

ksh pronpt> make -f Chat Room nt adm ncl ean

2-30 Using CORBA Server-to-Server Communication

CHAPTER

3 Java Joint

Client/Server
Applications

Thistopic includes the following sections:
m Development Process

m Support for Joint Client/Server Applications

Development Process

Table 3-1 outlines the devel opment process for Java joint client/server applications.

Table 3-1 Development Processfor Java Joint Client/Server Applications

Step Description

1 Writethe OMG IDL for the callback interface and the CORBA
interfaces you want to use in your BEA Tuxedo application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement the operations for each
interface.

Using CORBA Server-to-Server Communication 31

3

Java Joint Client/Server Applications

Step

Description

4

Initialize the ORB.

Write the client main portion of the joint client/server
application.

Create a callback object using the Callbacks Wrapper object.

Establish communication with an ISH.

Invoke operations on the BEA Tuxedo object by passing an
object reference for the callback object.

Specify configuration information.

10

Compile the joint client/server application.

Because the callback object in ajoint client/server application is not transactional and
has no object management capabilities, you do not need to create a Server Description
File(fi | ename. xm) for it. However, you still need to create a Server Description File
for the BEA Tuxedo objectsin your BEA Tuxedo application.

Support for Joint Client/Server Applications

3-2

BEA Tuxedo CORBA supports Java clients and joint client /servers.

Note:

Release 8.0 of the CORBA environment of the BEA Tuxedo product does not
support Java servers. Support for Javaserverswasincluded in versions 5.0 and
5.1 of the BEA WebL ogic Enterprise product. That support was removed
when BEA WebL ogic Enterprise was merged with BEA Tuxedo in release
8.0.

An implementation of ajoint client/server employs a callback object. Figure 3-1
illustrates the concept of ajoint client/server application using a callback object.

Using CORBA Server-to-Server Communication

Support for Joint Client/Server Applications

Figure3-1 The Concept of a Joint Client/Server Application

Joint Client/Server Application

Create Callback Object

Cal | backs W apper Cal | back_obj ;
Cal | back_obj: : print _converted

CORBA Server
Application

Simple Object

(string message);

CORBA Client Program
Boot strap
Fact oryFi nder
creat e_Cal | back_obj ;
find_Sinple();
Sinpl e. cal | _cal | back

(m xed, Callback_obj ref);

{

call _cal I back(String data,

Cal | back_obj ref);

cal | back_ref. print_converted

(data);

For a complete example of ajoint client/server application, see Chapter 6, “Building
the Advanced Sample Application,” in Using the CORBA Notification Service. The

subscriber component in the Advanced sampl e application implements a joint

client/server application. The Java Advanced sample application isimplemented using

the BEA Simple Events API.

Using CORBA Server-to-Server Communication

3-3

3 JavaJoint Client/Server Applications

34 Using CORBA Server-to-Server Communication

Index

A

asymmetric |[1OP
defined 1-4

B

bidirectional 110P
defined 1-4
Bootstrap object
C++ joint client/server applications 2-12
Chat Room sample application 2-12
building
C++ joint client/server applications 2-17
buildobjclient command 2-17

C

C++ joint client/server applications
compiling 2-17
configuration information 2-15
creating a callback object 2-13
development process 2-2
generating skeletons and client stubs 2-7
threading considerations 2-23
using the callback object 2-13, 2-15
using the Callbacks Wrapper object 2-13
writing method implementations 2-9
writing OMG IDL 2-5
writing the client portion 2-11

callback object
defined 1-2

object policies 1-5
using Callbacks Wrapper object to create
2-13
using POA to create 2-17
Callback sample application
description 3-2
Callbacks Wrapper object
C++ code example 2-14
creating C++ callback object 2-13
description 2-13
callbacks wrapper object 2-14
Chat Room sample application
building 2-24
changing protection on files 2-26
client portion 2-12
description 2-3
illustrated 2-3
implementation files for 2-10
invoking the callback object 2-15
loading the UBBCONFIG file 2-28
OMG IDL 2-6
required environment variables 2-27
source files 2-25
using Callbacks Wrapper object 2-14
ChatRoom application process
Chat Room sample application 2-29
client stubs
for C++ joint client/server applications
2-7
compiling
C++ joint client/server applications 2-17

Using CORBA Server-to-Server Communication -1

Chat Room sample application client
2-28
Chat room sample application server
2-28
configuration information, specifying 2-15
create the listener object 2-19
customer support contact information vii

D

development process 2-7

C++ joint client/server applications 2-2

Javajoint client/server applications 3-1
directory location of source files

Chat Room sample application 2-25
documentation, where to find it vi
dual-paired connection |1OP

defined 1-4

E

environment variables
Chat Room sample application 2-27
JAVA HOME 2-27
TUXDIR 2-27, 2-28

F

file protections
Chat Room sample application 2-26

idl command
generated files 2-8
use with C++ joint client/server
applications 2-7
[1OP
asymmetric 1-4
bidirectional 1-4
dual-paired connection 1-4
supported versions 1-2

[-2 Using CORBA Server-to-Server Communication

use in server-to-server communication
1-2
[1OP Server Handler
seeISH 1-4
implementation file
Listener object 2-10
Moderator object 2-10
M oderatorFactory object 2-10
interfaces
Listener 2-5
Moderator 2-5
M oderatorFactory 2-5
writing methods to implement
operations 2-9
Internet Inter-ORB Protocol
seellOP 1-2
Interoperable Naming Service 1-3, 2-12
ISH
useinllOP 1-4
ISL application process
Chat Room sample application 2-29

J

Javajoint client/server applications

devel opment process 3-1
JAVA_HOME parameter

Chat Room sample application 2-27
joint client/server application

defined 1-2

illustrated 1-3

structure 1-2

supported languages 1-3

L

listener 2-6

listener object with persistent userid object
policy 2-21

M

Moderator Interface 2-6
M oderatorFactory object 2-8

0

object policies
defined 1-5
Persistent/System ID 1-6
Persistent/User ID 1-6
Transient/System ID 1-6

OMG IDL
Listener interface 2-5
Moderator interface 2-5
ModeratorFactory interface 2-5

P
persistent userid object policy 2-20
POA
creating callback objects 2-17
Persistent/System ID 2-22
Persistent/User ID 2-21
Transient/System ID 2-18
Portable Object Adpater
see POA 2-17
printing product documentation vi

R
register_callback_port method

use in dual-paired connection 110P 1-4
related information vi

S

server-to-server communication
callback object 1-2
concepts 1-2
description 1-1
IIOP 1-2

signon method 2-15
skeletons
for C++ joint client/server applications
2-7
specification, interface 2-7
support
technical vii

T

TMFFNAME application process

Chat Room sample application 2-29
TMSY SEVT application process

Chat Room sample application 2-29
TUXDIR environment variable

Chat Room sample application 2-27

Using CORBA Server-to-Server Communication -3

-4 Using CORBA Server-to-Server Communication

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding CORBA Server-to-Server Communication
	Overview of CORBA Server-to-Server Communication
	Joint Client/Server Applications
	Object Policies for Callback Objects

	2 Developing C++ Joint Client/Server Applications
	Development Process
	Chat Room Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Skeletons and Client Stubs
	Step 3: Writing the Methods That Implement the Operations for Each Object
	Step 4: Writing the Client Portion of the Joint Client/Server Application
	Step 5: Creating a Callback Object Using the Callbacks Wrapper Object
	Step 6: Invoking Operations on an Object by Passing a Reference to the Callback Object
	Step 7: Specifying Configuration Information
	Step 8: Compiling Joint Client/Server Applications
	Using the POA to Create a Callback Object
	Creating a Callback Object with a Transient Object Policy
	Creating a Callback Object with a Persistent/User ID Object Policy
	Creating a Callback Object with a Persistent/System ID Object Policy

	Threading Considerations for C++ Joint Client/Server Applications
	Building and Running the Chat Room Sample Application
	Copying the Files for the Chat Room Sample Application into a Work Directory
	Changing the Protection Attribute on the Files for the Chat Room Sample Application
	Verifying the Setting of the TUXDIR Environment Variable
	Executing the ChatSetup Command
	Starting the Server Application
	Starting the Client Application
	Stopping the Chat Room Sample Application

	3 Java Joint Client/Server Applications
	Development Process
	Support for Joint Client/Server Applications

	Index

