
Creating CORBA

B E A T u x e d o R e l e a s e 8 . 0
D o c u m e n t E d i t i o n 8 . 0

J u n e 2 0 0 1

BEA Tuxedo

Server Applications

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA Weblogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Creating CORBA Server Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

What You Need to Know ... xii

e-docs Web Site .. xii

How to Print the Document... xiii

Documentation Conventions ... xiv

1. CORBA Server Application Concepts
The Entities You Create to Build a CORBA Server Application 1-2

The Implementation of the CORBA Objects for Your Server Application1-2

How Interface Definitions Establish the Operations on a CORBA
Object... 1-3

How You Implement the Operations on a CORBA Object 1-4

How Client Applications Access and Manipulate Your Application’s
CORBA Objects .. 1-4

How You Instantiate a CORBA Object at Run Time 1-7

The Server Object... 1-8

Process for Developing CORBA Server Applications...................................... 1-9

Generating Object References.. 1-9

How Client Applications Find Your Server Application’s Factories 1-10

Creating an Active Object Reference.. 1-10

Managing Object State ... 1-11

About Object State .. 1-11

Object Activation Policies .. 1-13

Application-controlled Deactivation... 1-14

Reading and Writing an Object’s Data .. 1-16

Available Mechanisms for Reading and Writing an Object’s Durable
State ... 1-16

Reading State at Object Activation ... 1-19
Creating CORBA Server Applications iii

Reading State Within Individual Operations on an Object 1-19

Stateless Objects and Durable State .. 1-20

Stateful Objects and Durable State.. 1-21

Your Responsibilities for Object Deactivation 1-22

Avoiding Unnecessary I/O .. 1-22

Sample Activation Walkthrough... 1-22

Using Design Patterns .. 1-23

Process-Entity Design Pattern ... 1-23

List-Enumerator Design Pattern.. 1-24

2. Steps for Creating a BEA Tuxedo CORBA Server Application
Summary of the CORBA Server Application Development Process................ 2-2

Step 1: Compile the OMG IDL File for the Server Application 2-3

Using the IDL Compiler... 2-4

Generating the Skeleton and Implementation Files.................................... 2-5

Generating Tie Classes ... 2-6

Step 2: Write the Methods That Implement Each Interface’s Operations......... 2-6

The Implementation File Generated by the IDL Compiler 2-7

Implementing a Factory.. 2-7

Step 3: Create the Server Object.. 2-8

Initializing the Server Application ... 2-9

Writing the Code That Creates and Registers a Factory 2-10

Creating Servants.. 2-11

Releasing the Server Application ... 2-13

Step 4: Define the In-memory Behavior of Objects .. 2-14

Specifying Object Activation and Transaction Policies in the ICF File .. 2-14

Step 5: Compile and Link the Server Application... 2-17

Step 6: Deploy the Server Application .. 2-18

Development and Debugging Tips .. 2-19

Use of CORBA Exceptions and the User Log ... 2-19

Client Application View of Exceptions .. 2-20

Server Application View of Exceptions.. 2-20

Detecting Error Conditions in the Callback Methods 2-25

Common Pitfalls of OMG IDL Interface Versioning and Modification.. 2-26

Caveat for State Handling in Tobj_ServantBase::deactivate_object() 2-27
iv Creating CORBA Server Applications

Servant Pooling ... 2-28

How Servant Pooling Works.. 2-28

How You Implement Servant Pooling ... 2-28

Delegation-based Interface Implementation.. 2-29

About Tie Classes in the BEA Tuxedo System.. 2-30

When to Use Tie Classes.. 2-32

How to Create Tie Classes in a CORBA Application.............................. 2-32

3. Designing and Implementing a Basic CORBA Server
Application

How the Basic University Sample Application Works 3-2

The Basic University Sample Application OMG IDL 3-2

Application Startup .. 3-4

Browsing Course Synopses.. 3-4

Browsing Course Details.. 3-7

Design Considerations for the University Server Application 3-7

Design Considerations for Generating Object References......................... 3-8

Design Considerations for Managing Object State 3-10

The RegistrarFactory Object ... 3-10

The Registrar Object ... 3-10

The CourseSynopsisEnumerator Object ... 3-10

Basic University Sample Application ICF File................................. 3-11

Design Considerations for Handling Durable State Information 3-12

The Registrar Object ... 3-12

The CourseSynopsisEnumerator Object ... 3-13

Using the University Database.. 3-14

How the Basic Sample Application Applies Design Patterns.................. 3-15

Process-Entity Design Pattern... 3-15

List-Enumerator Design Pattern.. 3-15

Additional Performance Efficiencies Built into the BEA Tuxedo System
3-17

Preactivating an Object with State ... 3-17

How You Preactivate an Object with State....................................... 3-18

Usage Notes for Preactivated Objects... 3-18
Creating CORBA Server Applications v

4. Creating Multithreaded CORBA Server Applications
Overview ... 4-2

Introduction .. 4-2

Requirements, Goals, and Concepts.. 4-3

Threading Models ... 4-5

Reentrant Servants... 4-7

The Current Object.. 4-8

Mechanisms for Supporting Multithreaded CORBA Servers 4-9

Context Services.. 4-9

Classes and Methods in the TP Framework 4-10

Capabilities in the Build Commands... 4-11

Tools for Administration ... 4-11

Running Single-threaded Server Applications in a Multithreaded
System ... 4-12

Developing and Building Multithreaded CORBA Server Applications 4-13

Using the buildobjserver Command... 4-13

Platform-specific Thread Libraries ... 4-13

Specifying Multithreaded Support .. 4-14

Specifying an Alternate Server Class.. 4-14

Using the buildobjclient Command.. 4-15

Creating Non-reentrant Servants .. 4-15

Creating Reentrant Servants ... 4-17

Building and Running the Multithreaded Simpapp Sample Application 4-18

About the Simpapp Multithreaded Sample .. 4-18

How the Sample Application Works.. 4-18

OMG IDL Code for the Simpapp Multithreaded Sample
Application... 4-20

How to Build and Run the Sample Application 4-21

Setting the TUXDIR Environment Variable..................................... 4-22

Verifying the TUXDIR Environment Variable................................. 4-23

Changing the Setting of the Environment Variable 4-23

Creating a Working Directory for the Sample Application 4-24

Checking Permissions on All the Files ... 4-27

Executing the runme Command.. 4-27

Running the Sample Application Step-by-Step 4-32
vi Creating CORBA Server Applications

Shutting Down the Sample Application... 4-34

Multithreaded CORBA Server Application Administration 4-36

Specifying Thread Pool Size .. 4-36

MAXDISPATCHTHREADS ... 4-36

MINDISPATCHTHREADS ... 4-38

Specifying a Threading Model ... 4-38

Specifying the Number of Active Objects ... 4-39

Sample UBBCONFIG File... 4-39

5. Security and CORBA Server Applications
Overview of Security and CORBA Server Applications 5-1

Design Considerations for the University Server Application 5-2

How the Security University Sample Application Works 5-3

Design Considerations for Returning Student Details to the Client
Application.. 5-5

6. Integrating Transactions into a CORBA Server Application
Overview of Transactions in the BEA Tuxedo System..................................... 6-2

Designing and Implementing Transactions in a CORBA Server Application .. 6-4

How the Transactions University Sample Application Works 6-6

Transactional Model Used by the Transactions University Sample
Application.. 6-7

Object State Considerations for the University Server Application 6-8

Object Policies Defined for the Registrar Object................................ 6-8

Object Policies Defined for the RegistrarFactory Object 6-9

Using an XA Resource Manager in the Transactions Sample
Application... 6-9

Configuration Requirements for the Transactions Sample Application .. 6-10

Integrating Transactions in a CORBA Client and Server Application............ 6-10

Making an Object Automatically Transactional 6-11

Enabling an Object to Participate in a Transaction 6-12

Preventing an Object from Being Invoked While a Transaction Is Scoped.....
6-13

Excluding an Object from an Ongoing Transaction................................. 6-14

Assigning Policies .. 6-15

Opening an XA Resource Manager ... 6-15
Creating CORBA Server Applications vii

Closing an XA Resource Manager ... 6-15

Transactions and Object State Management.. 6-16

Delegating Object State Management to an XA Resource Manager 6-16

Waiting Until Transaction Work Is Complete Before Writing to the
Database .. 6-16

Notes on Using Transactions in the BEA Tuxedo System.............................. 6-18

User-defined Exceptions.. 6-20

Defining the Exception... 6-21

Throwing the Exception ... 6-21

7. Wrapping a BEA Tuxedo Service in a CORBA Object
Overview of Wrapping a BEA Tuxedo Service .. 7-2

Designing the Object That Wraps the BEA Tuxedo Service 7-3

Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls 7-4

Implementing the Operations That Send Messages to and from the BEA
Tuxedo Service.. 7-5

Restrictions ... 7-7

Design Considerations for the Wrapper Sample Application............................ 7-8

How the Wrapper University Sample Application Works.................. 7-9

Interface Definitions for the Billing Server Application................... 7-11

Additional Design Considerations for the Wrapper Sample
Application... 7-11

8. Scaling a BEA Tuxedo CORBA Server Application
Overview of the Scalability Features Available in the BEA Tuxedo System ... 8-2

Scaling a BEA Tuxedo Server Application ... 8-2

OMG IDL Changes for the Production Sample Application 8-4

Replicating Server Processes and Server Groups....................................... 8-4

Replicated Server Processes.. 8-5

Replicated Server Groups.. 8-7

Configuring Replicated Server Processes and Groups........................ 8-8

Scaling the Application Via Object State Management 8-10

Factory-based Routing.. 8-12

How Factory-based Routing Works .. 8-13

Configuring for Factory-based Routing in the UBBCONFIG file.... 8-14

Implementing Factory-based Routing in a Factory........................... 8-16
viii Creating CORBA Server Applications

What Happens at Run Time .. 8-17

Additional Design Considerations for the Registrar and Teller Objects.. 8-18

Instantiating the Registrar and Teller Objects................................... 8-19

Ensuring That Student Registration Occurs in the Correct Server
Group ... 8-20

Ensuring That the Teller Object Is Instantiated in the Correct Server
Group ... 8-21

How the Production Server Application Can Be Scaled Further 8-22

Choosing Between Stateless and Stateful Objects .. 8-23

When You Want Stateless Objects... 8-24

When You Want Stateful Objects .. 8-25

Index
Creating CORBA Server Applications ix

x Creating CORBA Server Applications

About This Document

This document describes how programmers can implement key features in the BEA
Tuxedo® product to design and implement scalable, high-performance, server
applications that run in a BEA Tuxedo domain. The examples in Chapter 3,
“Designing and Implementing a Basic CORBA Server Application,” are based on the
sample applications described in the Guide to the CORBA University Sample
Applications.

This document includes the following topics:

n Chapter 1, “CORBA Server Application Concepts,” presents a number of basic
concepts about creating BEA Tuxedo server applications and describes the two
primary programming entities you create for a BEA Tuxedo server application.

n Chapter 2, “Steps for Creating a BEA Tuxedo CORBA Server Application,” lists
and describes the basic steps you follow to create a BEA Tuxedo server
application.

n Chapter 3, “Designing and Implementing a Basic CORBA Server Application,”
explains the fundamental concepts and processes involved with designing and
implementing a CORBA server application, based on the Basic University
sample application.

n Chapter 4, “Creating Multithreaded CORBA Server Applications,” provides an
overview of the requirements, goals, and concepts for creating multithreaded
CORBA server applications. Additionally, this chapter outlines the steps for
developing and building a multithreaded CORBA server application, describes
how to build and run the simpapp_mt Sample Application, and how to
administer a multithreaded CORBA server application.

n Chapter 5, “Security and CORBA Server Applications,” explains the role of a
CORBA server application in implementing a security model for a BEA Tuxedo
domain.
Creating CORBA Server Applications xi

n Chapter 6, “Integrating Transactions into a CORBA Server Application,”
describes how the BEA Tuxedo system supports transactions in a BEA Tuxedo
domain and how you can implement transactions into your server applications.

n Chapter 7, “Wrapping a BEA Tuxedo Service in a CORBA Object,” describes
how to integrate a BEA Tuxedo application into a CORBA server application.

n Chapter 8, “Scaling a BEA Tuxedo CORBA Server Application,” describes the
key scalability features that you can build into your BEA Tuxedo applications to
make them highly scalable, including replicated server processes and groups,
factory-based routing, and object state management.

What You Need to Know

This document is intended for programmers who are interested in creating secure,
scalable, transaction-based server applications. It assumes your are knowledgeable
with the BEA Tuxedo system, CORBA, and C++ programming.

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.
xii Creating CORBA Server Applications

How to Print the Document
How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, and Java programming, see the CORBA
Bibliography in the BEA Tuxedo online documentation.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.
Creating CORBA Server Applications xiii

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xiv Creating CORBA Server Applications

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
Creating CORBA Server Applications xv

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xvi Creating CORBA Server Applications

CHAPTER
1 CORBA Server
Application Concepts

This topic includes the following sections:

n The Entities You Create to Build a CORBA Server Application:

l The Implementation of the CORBA Objects for Your Server Application

l The Server Object

n Process for Developing CORBA Server Applications:

l Generating Object References

l Managing Object State

l Reading and Writing an Object’s Data

l Using Design Patterns

Each of the chapters in this book gives procedures for and examples of building
CORBA server applications that take advantage of various BEA Tuxedo software
features. For background information about BEA Tuxedo CORBA server applications
and how they work, see Getting Started with BEA Tuxedo CORBA Applications.
Creating CORBA Server Applications 1-1

1 CORBA Server Application Concepts
The Entities You Create to Build a CORBA
Server Application

To build a CORBA server application, you create the following two entities:

n The implementation of the CORBA objects that execute your server
application’s business logic.

n The Server object, which implements the operations that initialize and release
the server application and instantiate the CORBA objects needed to satisfy client
requests.

There are also a number of files that you work with that are generated by the IDL
compiler and that you build into a CORBA server application. These files are listed and
described in Chapter 2, “Steps for Creating a BEA Tuxedo CORBA Server
Application.”

The sections that follow provide introductory information about these entities. For
complete details about how to generate these components, see Chapter 2, “Steps for
Creating a BEA Tuxedo CORBA Server Application.”

The Implementation of the CORBA Objects for Your
Server Application

Having a clear understanding of what CORBA objects are, and how they are defined,
implemented, instantiated, and managed is critical for the person who is designing or
creating a CORBA server application.

The CORBA objects for which you have defined interfaces in the Object Management
Group Interface Definition Language (OMG IDL) contain the business logic and data
for your CORBA server applications. All client application requests involve invoking
an operation on a CORBA object. The code you write that implements the operations
defined for an interface is called an object implementation. For example, in C++, the
object implementation is a C++ class.

This topic includes the following sections:
1-2 Creating CORBA Server Applications

The Entities You Create to Build a CORBA Server Application
n How OMG IDL interface definitions establish the operations that can be invoked
on a CORBA object

n How you implement the operations on a CORBA object

n How client applications access and manipulate your application’s CORBA
objects

n How you instantiate a CORBA object with code and data at run time in response
to a client request

How Interface Definitions Establish the Operations on a CORBA Object

A CORBA object’s interface identifies the operations that can be performed on it. A
distinguishing characteristic of CORBA objects is that an object’s interface definition
is separate from its implementation. The definition for the interface establishes how the
operations on the interface must be implemented, including what the valid parameters
are that can be passed to and returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/server
contract for an application. That is, for a given interface, the server application is
bound to do the following:

n Implement the operations defined for that interface

n Always use the parameters defined with each operation

How the server application implements the operations may change over time. This is
acceptable behavior as long as the server application continues to meet the requirement
of implementing the defined interface and using the defined parameters. In this way,
the client stub is always a reliable proxy for the object implementation on the server
machine. This underscores one of the key architectural strengths of CORBA—that you
can change how a server application implements an object over time without requiring
the client application to be modified or even to be aware that the object implementation
has changed.

The interface definition also determines the content of both the client stub and the
skeleton in the server application; these two entities, in combination with the ORB and
the Portable Object Adapter (POA), ensure that a client request for an operation on an
object can be routed to the code in the server application that can satisfy the request.
Creating CORBA Server Applications 1-3

1 CORBA Server Application Concepts
Once the system designer has specified the interfaces of the business objects in the
application, the programmer’s job is to implement those interfaces. This book explains
how.

For more information about OMG IDL, see Creating CORBA Client Applications.

How You Implement the Operations on a CORBA Object

As stated earlier, the code that implements the operations defined for a CORBA
object’s interface is called an object implementation. For C++, this code consists of a
set of methods, one for each of the operations defined for the interfaces in your
application’s OMG IDL file. The file containing the set of object implementations for
your application is known as an implementation file. The BEA Tuxedo system
provides an IDL compiler, which compiles your application’s OMG IDL file to
produce several files, one being an implementation file, shown in the following figure.

The generated implementation file contains method templates, method declarations,
object constructors and destructors, and other data that you can use as a starting place
for writing your application’s object implementations. For example, in C++, the
generated implementation file contains signatures for each interface’s methods. You
enter the business logic for each method in this file, and then provide this file as input
to the command that builds the executable server application file.

How Client Applications Access and Manipulate Your Application’s CORBA
Objects

Client applications access and manipulate the CORBA objects managed by the server
application via object references to those objects. Client applications invoke operations
(that is, requests) on an object reference. These requests are sent as messages to the
server application, which invokes the appropriate operations on CORBA objects. The
fact that these requests are sent to the server application and invoked in the server
application is completely transparent to the client; client applications appear simply to
be making invocations on the client stub.

IDL CompilerOMG IDL File
Implementation

File
1-4 Creating CORBA Server Applications

The Entities You Create to Build a CORBA Server Application
Client applications may manipulate a CORBA object only by means of an object
reference. One primary design consideration is how to create object references and
return them to the client applications that need them in a way that is appropriate for
your application.

Typically, object references to CORBA objects are created in the BEA Tuxedo system
by factories. A factory is any CORBA object that returns, as one of its operations, a
reference to another CORBA object. You implement your application’s factories the
same way that you implement other CORBA objects defined for your application. You
can make your factories widely known to the BEA Tuxedo domain, and to clients
connected to the BEA Tuxedo domain, by registering them with the FactoryFinder.
Registering a factory is an operation typically performed by the Server object, which
is described in the section “The Server Object” on page 1-8. For more information
about designing factories, see the section “Generating Object References” on page 1-9.

The Content of an Object Reference

From the client application’s perspective, an object reference is opaque; it is like a
black box that client applications use without having to know what is inside. However,
object references contain all the information needed for the BEA Tuxedo system to
locate a specific object instance and to locate any state data that is associated with that
object.

An object reference contains the following information:

n The interface name

This is the Interface Repository ID of the object’s OMG IDL interface.

n The object ID (OID)

The OID uniquely identifies the instance of the object to which the reference
applies. If the object has data in external storage, the OID also typically includes
a key that the server machine can use to locate the object’s data.

n Group ID

The group ID identifies the server group to which the object reference is routed
when a client application makes a request using that object reference. Generating
a nondefault group ID is part of a key BEA Tuxedo feature called factory-based
routing, which is described in the section “Factory-based Routing” on page 8-12.
Creating CORBA Server Applications 1-5

1 CORBA Server Application Concepts
Note: The combination of the three items in the preceding list uniquely identifies the
CORBA object. It is possible for an object with a given interface and OID to
be simultaneously active in two different groups, if those two groups both
contain the same object implementation. If you need to guarantee that only one
object instance of a given interface name and OID is available at any one time
in your domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that a given object implementation is in only one group. This assures that if
multiple clients have an object reference containing a given interface name
and OID, the reference is always routed to the same object instance.

For more information about factory-based routing, see the section
“Factory-based Routing” on page 8-12.

The Lifetime of an Object Reference

Object references created by server applications running in a BEA Tuxedo domain
typically have a usable lifespan that extends beyond the life of the server process that
creates them. BEA Tuxedo object references can be used by client applications
regardless of whether the server processes that originally created them are still running.
In this way, object references are not tied to a specific server process.

An object reference created with the TP::create_active_object_reference()
operation is valid only for the lifetime of the server process in which it was created.
For more information, see the section “Preactivating an Object with State” on
page 3-17.

Passing Object Instances

The ORB cannot marshal an object instance as an object reference. For example,
passing a factory reference in the following code fragment generates a CORBA
marshal exception in the BEA Tuxedo system:

connection::setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the
proxy instead, as in the following example:

CORBA::Object myRef = TP::get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);
1-6 Creating CORBA Server Applications

The Entities You Create to Build a CORBA Server Application
How You Instantiate a CORBA Object at Run Time

When a server application receives a request for an object that is not mapped in the
server machine’s memory (that is, the object is not active), the TP Framework invokes
the Server::create_servant()operation. The
Server::create_servant()operation is implemented in the Server object, which,
as mentioned in the section “The Implementation of the CORBA Objects for Your
Server Application” on page 1-2, is a component of a CORBA server application that
you create.

The Server::create_servant()operation causes an instance of the CORBA object
implementation to be mapped into the server machine’s memory. This instance of the
object’s implementation is called the object’s servant. Formally speaking, a servant is
an instance of the C++ class that implements an interface defined in the application’s
OMG IDL file. The servant is generated via the C++ new statement that you write in
the Server::create_servant()operation.

After the object’s servant has been created, the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on the servant. The
Tobj_ServantBase::activate_object() operation is a virtual operation that is
defined on the Tobj_ServantBase base class, from which all object implementation
classes inherit. The TP Framework invokes the
Tobj_ServantBase::activate_object() operation to tie the servant to an object
ID (OID). (Conversely, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation on an object, the servant’s
association with the OID is broken.)

If your object has data on disk that you want to read into memory when the CORBA
object is activated, you can have that data read by defining and implementing the
Tobj_ServantBase::activate_object() operation on the object. The
Tobj_ServantBase::activate_object() operation can contain the specific read
operations required to bring an object’s durable state into memory. (There are
circumstances in which you may prefer instead to have an object’s disk data read into
memory by one or more separate operations on the object that you may have coded in
the implementation file. For more information, see the section “Reading and Writing
an Object’s Data” on page 1-16.) After the invocation of the
Tobj_ServantBase::activate_object() operation is complete, the object is said
to be active.

This collection of the object’s implementation and data compose the run-time, active
instance of the CORBA object.
Creating CORBA Server Applications 1-7

1 CORBA Server Application Concepts
Servant Pooling

Servant pooling provides your CORBA server application the opportunity to keep a
servant in memory after the servant’s association with a specific OID has been broken.
When a client request that can be satisfied with a pooled servant arrives, the TP
Framework bypasses the TP::create_servant operation and creates a link between
the pooled servant and the OID provided in the client request.

Servant pooling thus provides the CORBA server application with a means to
minimize the costs of reinstantiating a servant each time a request arrives for an object
that can be satisfied by that servant. For more information about servant pooling and
how to use it, see the section “Servant Pooling” on page 2-28.

Note: Servant pooling was first introduced in release 4.2 of the WebLogic Enterprise
product.

The Server Object

The Server object is the other programming code entity that you create for a CORBA
server application. The Server object implements operations that execute the following
tasks:

n Performing basic server application initialization operations, which may include
registering factories managed by the server application and allocating resources
needed by the server application. If the server application is transactional, the
Server object also implements the code that opens an XA resource manager.

n Instantiating the CORBA objects needed to satisfy client requests.

n Performing server process shutdown and cleanup procedures when the server
application has finished servicing requests. For example, if the server application
is transactional, the Server object also implements the code that closes the XA
resource manager.

You create the Server object from scratch, using a common text editor. You then
provide the Server object as input into the server application build command,
buildobjserver. For more information about creating the Server object, see
Chapter 2, “Steps for Creating a BEA Tuxedo CORBA Server Application.”
1-8 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Process for Developing CORBA Server
Applications

This section presents important background information about the following topics,
which have a major influence on how you design and implement CORBA server
applications:

n Generating Object References

n Managing Object State

n Reading and Writing an Object’s Data

n Using Design Patterns

It is not essential that you read these topics before proceeding to the next chapter;
however, this information is located here because it applies broadly to fundamental
design and implementation issues for all CORBA server applications.

Generating Object References

One of the most basic functions of a CORBA server application is providing client
applications with object references to the objects they need to execute their business
logic. CORBA client applications typically get object references to the initial CORBA
objects they use from the following two sources:

n The Bootstrap object

n Factories managed in the BEA Tuxedo domain

Client applications use the Bootstrap object to resolve initial references to a specific
set of objects in the BEA Tuxedo domain, such as the FactoryFinder and the
SecurityCurrent objects. The Bootstrap object is described in Getting Started with BEA
Tuxedo CORBA Applications and Creating CORBA Client Applications.

Factories, however, are designed, implemented and registered by you, and they
provide the means by which client applications get references to objects in the CORBA
server application, particularly the initial server application object. At its simplest, a
Creating CORBA Server Applications 1-9

1 CORBA Server Application Concepts
factory is a CORBA object that returns an object reference to another CORBA object.
The client application typically invokes an operation on a factory to obtain an object
reference to a CORBA object of a specific type. Planning and implementing your
factories carefully is an important task when developing CORBA server applications.

How Client Applications Find Your Server Application’s Factories

Client applications are able to locate via the FactoryFinder the factories managed by
your server application. When you develop the Server object, you typically include
code that registers with the FactoryFinder any factories managed by the server
application. It is via this registration operation that the FactoryFinder keeps track of
your server application’s factories and can provide object references to them to the
client applications that request them. We recommend that you use factories and
register them with the FactoryFinder; this model makes it simple for client applications
to find the objects in your CORBA server application.

Creating an Active Object Reference

An active object reference is a feature that gives an alternate means through which
your server application can generate object references. Active object references are
not typically created by factories as described in the previous section, and active object
references are meant for preactivating objects with state. The next section discusses
object state in more detail.

While an object associated with a conventional object reference is not instantiated until
a client application makes an invocation on the object, the object associated with an
active object reference is created and activated at the time the active object reference
is created. Active object references are especially convenient for specific purposes,
such as iterator objects. The section “Preactivating an Object with State” on page 3-17
provides more information about active object references.

Note: The active object reference feature was first introduced in WebLogic
Enterprise version 4.2.
1-10 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Managing Object State

Object state management is a fundamentally important concern of large-scale
client/server systems, because it is critical that such systems optimize throughput and
response time. The majority of high-throughput applications, such as applications you
run in a BEA Tuxedo domain, tend to be stateless, meaning that the system flushes
state information from memory after a service or an operation has been fulfilled.

Managing state is an integral part of writing CORBA-based server applications.
Typically, it is difficult to manage state in these server applications in a way that scales
and performs well. The BEA Tuxedo software provides an easy way to manage state
and simultaneously ensure scalability and high performance.

The scalability qualities that you can build into a CORBA server application help the
server application function well in an environment that includes hundreds or thousands
of client applications, multiple machines, replicated server processes, and a
proportionately greater number of objects and client invocations on those objects.

About Object State

In a BEA Tuxedo domain, object state refers specifically to the process state of an
object across client invocations on it. The BEA Tuxedo software uses the following
definitions of stateless and stateful objects:

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an
invocation on one of the object’s operations, and is deactivated
and has its process state flushed from memory after the invocation
is complete; that is, the object’s state is not maintained in memory
after the invocation is complete.
Creating CORBA Server Applications 1-11

1 CORBA Server Application Concepts
Both stateless and stateful objects have data; however, stateful objects may have
nonpersistent data in memory that is required to maintain context (state) between
operation invocations on those objects. Thus, subsequent invocations on such a stateful
object always go to the same servant. Conversely, invocations on a stateless object can
be directed by the BEA Tuxedo system to any available server process that can activate
the object.

State management also involves how long an object remains active, which has
important implications on server performance and the use of machine resources. The
duration of an active object is determined by object activation policies that you assign
to an object’s interface, described in the section that follows.

Object state is transparent to the client application. Client applications implement a
conversational model of interaction with distributed objects. As long as a client
application has an object reference, it assumes that the object is always available for
additional requests, and the object appears to be maintained continuously in memory
for the duration of the client application interaction with it.

To achieve optimal application performance, you need to carefully plan how your
application’s objects manage state. Objects are required to save their state to durable
storage, if applicable, before they are deactivated. Objects must also restore their state
from durable storage, if applicable, when they are activated. For more information
about reading and writing object state information, see the section “Reading and
Writing an Object’s Data” on page 1-16.

Stateful The object remains activated between invocations on it, and its
state is maintained in memory across those invocations. The state
remains in memory until a specific event occurs, such as:

n The server process in which the object exists is stopped or is
shut down

n The transaction in which the object is participating is either
committed or rolled back

n The object invokes the TP::deactivateEnable()
operation on itself.

Each of these events is discussed in more detail in this section.

Object Behavior Characteristics
1-12 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Note: BEA Tuxedo Release 8.0 provides support for parallel objects, as a
performance enhancement. This feature allows you to designate all business
objects in a particular application as stateless objects. For complete
information, see Chapter 3, “TP Framework,” in the CORBA Programming
Reference.

Object Activation Policies

The BEA Tuxedo software provides three object activation policies that you can assign
to an object’s interface to determine how long an object remains in memory after it has
been invoked by a client request. These policies determine whether the object to which
they apply is generally stateless or stateful.

The three policies are listed and described in the following table.

Policy Description

Method Causes the object to be active only for the duration of the
invocation on one of the object’s operations; that is, the object
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called a method-bound object.

The method activation policy is associated with stateless
objects. This activation policy is the default.

Transaction Causes the object to be activated when an operation is invoked
on it. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of a transaction, its behavior is the same as that of a
method-bound object. An object with this activation policy is
called a transaction-bound object.

For more information about object behavior within the scope of
a transaction, and general guidelines about using this policy,
see Chapter 6, “Integrating Transactions into a CORBA Server
Application.”

The transaction activation policy is associated with
stateful objects for a limited time and under specific
circumstances.
Creating CORBA Server Applications 1-13

1 CORBA Server Application Concepts
You determine what events cause an object to be deactivated by assigning object
activation policies. For more information about how you assign object activation
policies to an object’s interface, see the section “Step 4: Define the In-memory
Behavior of Objects” on page 2-14.

Application-controlled Deactivation

The BEA Tuxedo software also provides a feature called application-controlled
deactivation, which provides a means for an application to deactivate an object during
run time. The BEA Tuxedo software provides the TP::deactivateEnable()
operation, which a process-bound object can invoke on itself. When invoked, the
TP::deactivateEnable() operation causes the object in which it exists to be
deactivated upon completion of the current client invocation on that object. An object
can invoke this operation only on itself; you cannot invoke this operation on any object
but the object in which the invocation is made.

The application-controlled deactivation feature is particularly useful when you want an
object to remain in memory for the duration of a limited number of client invocations
on it, and you want the client application to be able to tell the object that the client is
finished with the object. At this point, the object takes itself out of memory.

Process Causes the object to be activated when an operation is invoked
on it, and to be deactivated only under the following
circumstances:

n The server process that manages this object is shut down.

n An operation on this object invokes the
TP::deactivateEnable() operation, which causes
this object to be deactivated. (This is part of a key BEA
Tuxedo feature called application-controlled deactivation,
which is described in the section “Application-controlled
Deactivation” on page 1-14.

An object with this activation policy is called a process-bound
object. The process activation policy is associated with
stateful objects.

Policy Description
1-14 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Application-controlled deactivation, therefore, allows an object to remain in memory
in much the same way that a process-bound object can: the object is activated as a
result of a client invocation on it, and it remains in memory after the initial client
invocation on it is completed. You can then deactivate the object without having to
shut down the server process in which the object exists.

An alternative to application-controlled deactivation is to scope a transaction to
maintain a conversation between a client application and an object; however,
transactions are inherently more costly, and transactions are generally inappropriate in
situations where the duration of the transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled
deactivation and transactions for a conversation is whether there are any disk writing
operations involved. If the conversation involves read-only operations, or involves
maintaining state only in memory, then application-controlled deactivation is
appropriate. If the conversation involves writing data to disk during or at the end of the
conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversational
model between a client application and an object managed by the server
application, make sure that the object eventually invokes the
TP::deactivateEnable() operation. Otherwise, the object remains idle in
memory indefinitely. (Note that this can be a risk if the client application
crashes before the TP::deactivateEnable() operation is invoked.
Transactions, on the other hand, implement a timeout mechanism to prevent
the situation in which the object remains idle for an indefinite period. This may
be another consideration when choosing between the two conversational
models.)

You implement application-controlled deactivation in an object using the following
procedure:

1. In the implementation file, insert an invocation to the TP::deactivateEnable()
operation at the appropriate location within the operation of the interface that uses
application-controlled deactivation.

2. In the Implementation Configuration File (ICF file), assign the process
activation policy to the interface that contains the operation that invokes the
TP::deactivateEnable() operation.

3. Build and deploy your application as described in the sections “Step 5: Compile
and Link the Server Application” on page 2-17 and “Step 6: Deploy the Server
Application” on page 2-18.
Creating CORBA Server Applications 1-15

1 CORBA Server Application Concepts
Reading and Writing an Object’s Data

Many of the CORBA objects managed by the server application may have data that is
in external storage. This externally stored data may be regarded as the persistent or
durable state of the object. You must address durable state handling at appropriate
points in the object implementation for object state management to work correctly.

Because of the wide variety of requirements you may have for your client/server
application with regards to reading and writing an object’s durable state, the TP
Framework cannot automatically handle durable object state on disk. In general, if an
object’s durable state is modified as a result of one or more client invocations, you
must make sure that durable state is saved before the object is deactivated, and you
should plan carefully how the object’s data is stored or initialized while the object is
active.

The sections that follow describe the mechanisms available to you to handle an
object’s durable state, and give some general advice how to read and write object state
under specific circumstances. The specific topics presented include:

n The available mechanisms for reading and writing an object’s durable state

n Reading state at object activation

n Reading state within individual operations on an object

n Stateless objects and durable state

n Stateful objects and durable state

n Your responsibilities for object deactivation

n Avoiding unnecessary I/O

How you choose to read and write durable state invariably depends on the specific
requirements of your client/server application, especially with regard to how the data
is structured. In general, your priority should be to minimize the number of disk
operations, especially where a database controlled by an XA resource manager is
involved.

Available Mechanisms for Reading and Writing an Object’s Durable State

Table 1-1 and Table 1-2 describe the available mechanisms for reading and writing an
object’s durable state.
1-16 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Table 1-1 Available Mechanisms for Reading an Object’s Durable State

Mechanism Description

Tobj_ServantBase::
activate_object()

After the TP Framework creates the servant for an object, the
TP Framework invokes the
Tobj_ServantBase::activate_object() operation
on that servant. As mentioned in the section “How You
Instantiate a CORBA Object at Run Time” on page 1-6, this
operation is defined on the Tobj_ServantBase base class,
from which all the CORBA objects you define for your
client/server application inherit.

You may choose not to define and implement the
Tobj_ServantBase::activate_object() operation
on your object, in which case nothing happens regarding
specific object state handling when the TP Framework
activates your object. However, if you define and implement
this operation, you can choose to include code in this operation
that reads some or all of an object’s durable state into memory.
Therefore, the
Tobj_ServantBase::activate_object() operation
provides your server application with its first opportunity to
read an object’s durable state into memory.

Note that if an object’s OID contains a database key, the
Tobj_ServantBase::activate_object() operation
provides the only means the object has to extract that key from
the OID.

For more information about implementing the
Tobj_ServantBase::activate_object() operation,
see “Step 2: Write the Methods That Implement Each
Interface’s Operations” on page 2-6. For an example of
implementing the
Tobj_ServantBase::activate_object() operation,
see Chapter 3, “Designing and Implementing a Basic CORBA
Server Application.”

Operations on the object You can include inside the individual operations that you
define on the object the code that reads an object’s durable
state.
Creating CORBA Server Applications 1-17

1 CORBA Server Application Concepts
Table 1-2 Available Mechanisms for Writing an Object’s Durable State

Mechanism Description

Tobj_ServantBase::
deactivate_object()

When an object is being deactivated by the TP Framework, the
TP Framework invokes this operation on the object as the final
step of object deactivation. As with the
Tobj_ServantBase::activate_object() operation,
the Tobj_ServantBase::deactivate_object()
operation is defined on the Tobj_ServantBase class. You
implement the deactivate_object() operation on your
object optionally if you have specific object state that you want
flushed from memory or written to a database.

The Tobj_ServantBase::deactivate_object()
operation provides the final opportunity your server application
has to write durable state to disk before the object is
deactivated.

If your object keeps any data in memory, or allocates memory
for any purpose, you implement the
Tobj_ServantBase::deactivate_object()
operation so your object has a final opportunity to flush that
data from memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object As you may have individual operations on the objects that read
durable state from disk, you may also have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, you
typically perform database write operations within these
operations and not in the
Tobj_ServantBase::deactivate_object()
operation.

For transaction-bound objects, however, writing durable state
in the Tobj_ServantBase::deactivate_object()
operation provides a number of object management
efficiencies that may make sense for your transactional server
applications.
1-18 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Note: If you use the Tobj_ServantBase::deactivate_object() operation to
write any durable state to disk, any errors that occur while writing to disk are
not reported to the client application. Therefore, the only circumstances under
which you should write data to disk in this operation is when: the object is
transaction-bound (that is, it has the transaction activation policy assigned
to it), or you scope the disk write operations within a transaction by invoking
the TransactionCurrent object. Any errors encountered while writing to disk
during a transaction can be reported back to the client application. For more
information about using the Tobj_ServantBase::deactivate_object()
operation to write object state to disk, see the section “Caveat for State
Handling in Tobj_ServantBase::deactivate_object()” on page 2-27.

Reading State at Object Activation

Using the Tobj_ServantBase::activate_object() operation on an object to read
durable state may be appropriate when either of the following conditions exist:

n Object data is always used or updated in all the object’s operations.

n All the object’s data is capable of being read in one operation.

The advantages of using the Tobj_ServantBase::activate_object() operation
to read durable state include:

n You write code to read data only once, instead of duplicating the code in each of
the operations that use that data.

n None of the operations that use an object’s data need to perform any reading of
that data. In this sense, you can write the operations in a way that is independent
of state initialization.

Reading State Within Individual Operations on an Object

With all objects, regardless of activation policy, you can read durable state in each
operation that needs that data. That is, you handle the reading of durable state outside
the Tobj_ServantBase::activate_object()operation. Cases where this
approach may be appropriate include the following:

n Object state is made up of discrete data elements that require multiple operations
to read or write.

n Objects do not always use or update state data at object activation.
Creating CORBA Server Applications 1-19

1 CORBA Server Application Concepts
For example, consider an object that represents a customer’s investment portfolio. The
object contains several discrete records for each investment. If a given operation
affects only one investment in the portfolio, it may be more efficient to allow that
operation to read the one record than to have a general-purpose
Tobj_ServantBase::activate_object() operation that automatically reads in the
entire investment portfolio each time the object is invoked.

Stateless Objects and Durable State

In the case of stateless objects—that is, objects defined with the method activation
policy—you must ensure the following:

n That any durable state needed by the request is brought into memory by the time
the operation’s business logic starts executing.

n That any changes to the durable state are written out by the end of the
invocation.

The TP Framework invokes the Tobj_ServantBase::activate_object()
operation on an object at activation. If an object has an OID that contains a key to the
object’s durable state on disk, the Tobj_ServantBase::activate_object()
operation provides the only opportunity the object has to retrieve that key from the
OID.

If you have a stateless object that you want to be able to participate in a transaction, we
generally recommend that if the object writes any durable state to disk that it be done
within individual methods on the object. However, if you have a stateless object that
is always transactional—that is, a transaction is always scoped when this object is
invoked—you have the option to handle the database write operations in the
Tobj_ServantBase::deactivate_object() operation, because you have a
reliable mechanism in the XA resource manager to commit or roll back database write
operations accurately.

Note: Even if your object is method-bound, you may have to take into account the
possibility that two server processes are accessing the same disk data at the
same time. In this case, you may want to consider a concurrency management
technique, the easiest of which is transactions. For more information about
transactions and transactional objects, see Chapter 6, “Integrating
Transactions into a CORBA Server Application.”
1-20 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Servant Pooling and Stateless Objects

Servant pooling is a particularly useful feature for stateless objects. When your
CORBA server application pools servants, you can significantly reduce the costs of
instantiating an object each time a client invokes it. As mentioned in the section
“Servant Pooling” on page 1-8, a pooled servant remains in memory after a client
invocation on it is complete. If you have an application in which a given object is
likely to be invoked repeatedly, pooling the servant means that only the object’s data,
and not its methods, needs to be read into and out of memory for each client invocation.
If the cost associated with reading an object’s methods into memory is high, servant
pooling can reduce that cost.

For information about how to implement servant pooling, see the section “Servant
Pooling” on page 2-28.

Stateful Objects and Durable State

For stateful objects, you should read and write durable state only at the point where it
is needed. This may introduce the following optimizations:

n In the case of process-bound objects, you avoid the situation in which an object
allocates a large amount of memory over a long period.

n In the case of transaction-bound objects, you can postpone writing durable state
until the Tobj_ServantBase::deactivate_object() operation is invoked,
when the transaction outcome is known.

In general, transaction-bound objects must depend on the XA resource manager to
handle all database write or rollback operations automatically.

Note: For objects that are involved in a transaction, we do not support having those
objects write data to external storage that is not managed by an XA resource
manager.

For more information about objects and transactions, see Chapter 6, “Integrating
Transactions into a CORBA Server Application.”

Servant Pooling and Stateful Objects

Servant pooling does not make sense in the case of process-bound objects; however,
depending on your application design, servant pooling may provide a performance
improvement for transaction-bound objects.
Creating CORBA Server Applications 1-21

1 CORBA Server Application Concepts
Your Responsibilities for Object Deactivation

As mentioned in the preceding sections, you implement the
Tobj_ServantBase::deactivate_object() operation as a means to write an
object’s durable state to disk. You should also implement this operation on an object
as a means to flush any remaining object data from memory so that the object’s servant
can be used to activate another instance of that object. You should not assume that an
invocation to an object’s Tobj_ServantBase::deactivate_object() operation
also results in an invocation of that object’s destructor.

Avoiding Unnecessary I/O

Be careful not to introduce inefficiencies into the application by doing unnecessary I/O
in objects. Situations to be aware of include the following:

n If many operations in an object do not use or affect object state, it may be
inefficient to read and write state each time these operations are invoked. Design
these objects so that they handle state only in the operations that need it; in such
cases, you may not want to have all of the object’s durable state read in at object
activation.

n If object state is made up of data that is read in multiple operations, try to do
only the necessary operations at object activation by doing one of the following:

l Reading only the state that is common to all the operations in the
Tobj_ServantBase::activate_object() operation. Defer the reading of
additional state to only the operations that require it.

l Writing out only the state that has changed. You can do this by managing
flags that indicate the data that was changed during an activation, or by
comparing before and after data images.

A general optimization is to initialize a dirtyState flag on activation and to
write data in the Tobj_ServantBase::deactivate_object() operation
only if the flag has been changed while the object was active. (Note that this
works only if you can be assured that the object is always activated in the
same server process.)

Sample Activation Walkthrough

For examples of the sequence of activity that takes place when an object is activated,
see Getting Started with BEA Tuxedo CORBA Applications.
1-22 Creating CORBA Server Applications

Process for Developing CORBA Server Applications
Using Design Patterns

It is important to structure the business logic of your application around a well-formed
design. The BEA Tuxedo software provides a set of design patterns to address this
need. A design pattern is simply a structured solution to a specific design problem. The
value of a design pattern lies in its ability to be expressed in a form you can reuse and
apply to other design problems.

The BEA Tuxedo design patterns are structured solutions to enterprise-class
application design problems. You can use them to design successful large-scale
client/server applications.

The design patterns summarized here are a guide to using good design practices in
CORBA client and server applications. They are an important and integral part of
designing CORBA client and server applications, and the chapters in this book show
examples of using these design patterns to implement the University sample
applications.

Process-Entity Design Pattern

The Process-Entity design pattern applies to a large segment of enterprise-class
client/server applications. This design pattern is referred to as the flyweight pattern in
Object-Oriented Design Patterns, Gamma et al., and as the Model-View-Controller in
other publications.

In this pattern, the client application creates a long-lived process object that the client
application interacts with to make requests. For example, in the University sample
applications, this object might be the registrar that handles course browsing operations
on behalf of the client application. The courses themselves are database entities and are
not made visible to the client application.

The advantages of the Process-Entity design pattern include:

n You can achieve the advantages of a fine-grained object model without
implementing fine-grained objects. Instead, you use CORBA struct datatypes
to simulate objects.

n Machine resource usage is optimized because there is only a single object
mapped into memory: the process object. By contrast, if each database entity
were activated into memory as a separate object instance, the number of objects
Creating CORBA Server Applications 1-23

1 CORBA Server Application Concepts
that would need to be handled could overwhelm the machine’s resources quickly
in a large-scale deployment.

n Because they are not exposed to the client application, database entities need not
be implemented as CORBA objects. Instead, entities can be implemented as
local language objects in the server process. This is a fundamental principle of
three-tier designs, but it also accurately models the way in which many
businesses operate (for example, a registrar at a real university). The individual
who serves as the registrar at a university can handle a large course database for
multiple students; you do not need an individual registrar for each individual
student. Thus, the process object state is distinct from the entity object state.

An example of applying the Process-Entity design pattern is described in Chapter 3,
“Designing and Implementing a Basic CORBA Server Application.” For complete
details on the Process-Entity design pattern, see Technical Articles.

List-Enumerator Design Pattern

The List-Enumerator design pattern also applies to a large segment of enterprise-class
client/server applications. The List-Enumerator design pattern leverages a key BEA
Tuxedo feature, application-controlled object deactivation, to handle a cache of data
that is stored and tracked in memory during several client invocations, and then to flush
the data from memory when the data is no longer needed.

An example of applying the List-Enumerator design pattern is described in Chapter 3,
“Designing and Implementing a Basic CORBA Server Application.”

Object preactivation, which is an especially useful tool for implementing the
List-Enumerator design, is described in the section “Preactivating an Object with
State” on page 3-17.
1-24 Creating CORBA Server Applications

CHAPTER
2 Steps for Creating a
BEA Tuxedo CORBA
Server Application

This chapter describes the basic steps involved in creating a CORBA server
application. The steps shown in this chapter are not definitive; there may be other steps
you may need to take for your particular server application, and you may want to
change the order in which you follow some of these steps. However, the development
process for every CORBA server application has each of these steps in common.

This topic includes the following sections:

n Summary of the CORBA Server Application Development Process

n Development and Debugging Tips

n Servant Pooling

n Delegation-based Interface Implementation

This chapter begins with a summary of the steps, and also lists the development tools
and commands used throughout this book. Your particular deployment environment
might use additional software development tools, so the tools and commands listed and
described in this chapter are also not definitive.

The chapter uses examples from the Basic University sample application, which is
provided with the BEA Tuxedo software. For complete details about the Basic
University sample application, see the Guide to the CORBA University Sample
Applications. For complete information about the tools and commands used
throughout this book, see the CORBA Programming Reference.
Creating CORBA Server Applications 2-1

2 Steps for Creating a BEA Tuxedo CORBA Server Application
For information about creating multithreaded CORBA server applications, see
Chapter 4, “Creating Multithreaded CORBA Server Applications.”

Summary of the CORBA Server Application
Development Process

The basic steps to create a server application are:

Step 1: Compile the OMG IDL File for the Server Application
Step 2: Write the Methods That Implement Each Interface’s Operations
Step 3: Create the Server Object
Step 4: Define the In-memory Behavior of Objects
Step 5: Compile and Link the Server Application
Step 6: Deploy the Server Application

The BEA Tuxedo software also provides the following development tools and
commands:

Tool Description

IDL compiler Compiles your application’s OMG IDL file.

genicf Generates an Implementation Configuration File (ICF file),
which you can revise to specify nondefault object activation
and transaction policies.

buildobjserver Creates the executable image of your CORBA server
application.

tmloadcf Creates the TUXCONFIG file, a binary file for the CORBA
domain that specifies the configuration of your server
application.

tmadmin Among other things, creates a log of transactional activities,
which is used in some of the sample applications.
2-2 Creating CORBA Server Applications

Step 1: Compile the OMG IDL File for the Server Application
Step 1: Compile the OMG IDL File for the
Server Application

The basic structure of the client and server portions of the application that runs in the
BEA Tuxedo domain are determined by statements in the application’s OMG IDL file.
When you compile your application’s OMG IDL file, the IDL compiler generates
some or all of the files shown in the following diagram, depending upon which options
you specify in the idl command. The shaded components are the generated files that
you modify to create a server application.

IDL Compiler

Implementation
File

Skeleton File

Client Stub
Header File

Skeleton
Header File

Implementation
Header File

Client Stub File
Creating CORBA Server Applications 2-3

2 Steps for Creating a BEA Tuxedo CORBA Server Application
The files produced by the IDL compiler are described in Table .

Using the IDL Compiler

To generate the files listed in Table 2-1, enter the following command:

idl [options] idl-filename [icf-filename]

In the idl command syntax:

n options represents one or more command-line options to the IDL compiler. The
command-line options are described in the CORBA Programming Reference. If
you want to generate implementation files, you need to specify the -i option.

n idl-filename represents the name of your application’s OMG IDL file.

n icf-filename is an optional parameter that represents the name of your
application’s Implementation Configuration File (ICF file), which you use to
specify object activation policies or to limit the number of interfaces for which
you want skeleton and implementation files generated. Using the ICF file is
described in the section “Step 4: Define the In-memory Behavior of Objects” on
page 2-14.

Table 2-1 Files Produced by the IDL Compiler

File Default Name Description

Client stub file application_c.cpp Contains generated code for sending a request.

Client stub header file application_c.h Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application_s.cpp Contains skeletons for each interface specified in the OMG
IDL file. The skeleton maps client requests to the appropriate
operation in the server application during run time.

Skeleton header file application_s.h Contains the skeleton class definitions.

Implementation file application_i.cpp Contains signatures for the methods that implement the
operations on the interfaces specified in the OMG IDL file.

Implementation
header file

application_i.h Contains the initial class definitions for each interface
specified in the OMG IDL file.
2-4 Creating CORBA Server Applications

Step 1: Compile the OMG IDL File for the Server Application
Note: The C++ IDL compiler implementation of pragmas changed in WebLogic
Enterprise 5.1 to support CORBA 2.3 functionality and may affect your IDL
files. The CORBA 2.3 functionality changes the scope that the pragma prefix
definitions can affect. Pragmas do not affect definitions contained within
included IDL files, nor do pragma prefix definitions made within included IDL
files affect objects outside the included file.

The C++ IDL compiler has been modified to correct the handling of pragma prefixes.
This change can effect the repository ID of objects, resulting in failures for some
operations, such as a _narrow.

To prevent such failures:

n If you reload your IDL into the repository, you must also regenerate the client
stubs and server skeletons of the application.

n If you regenerate any client stub or server skeleton, you must regenerate all stubs
and skeletons of the application, and you must reload the IDL into the Interface
Repository.

For more information about the IDL compiler, including details on the idl command,
see the CORBA Programming Reference.

Generating the Skeleton and Implementation Files

The following command line generates client stub, skeleton, and initial
implementation files, along with skeleton and implementation header files, for the
OMG IDL file univb.idl:

idl -i univb.idl

For more information about the idl command, see the CORBA Programming
Reference. For more information about generating these files for the BEA Tuxedo
University sample applications, see the Guide to the CORBA University Sample
Applications.

Note: If you plan to specify nondefault object activation or transaction policies, or if
you plan to limit the number of interfaces for which you want skeleton and
implementation files generated, you need to generate and modify an
Creating CORBA Server Applications 2-5

2 Steps for Creating a BEA Tuxedo CORBA Server Application
Implementation Configuration File (ICF) and pass the ICF file to the IDL
compiler. For more information, see “Specifying Object Activation and
Transaction Policies in the ICF File” on page 2-14.

Generating Tie Classes

The IDL compiler also provides the -T command-line option, which you can use for
generating tie class templates for your interfaces. For more information about
implementing tie classes in a CORBA application, see the section “Delegation-based
Interface Implementation” on page 2-29.

Step 2: Write the Methods That Implement
Each Interface’s Operations

As the server application programmer, your task is to write the methods that implement
the operations for each interface you have defined in your application’s OMG IDL file.

The implementation file contains:

n Method declarations for each operation specified in the OMG IDL file.

n Your application’s business logic, include files, and other data you want the
application to use.

n Constructors and destructors for each interface implementation (implementing
these is optional).

n Optionally, the Tobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() operations.

Within the Tobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object()operations, you write code that
performs any particular steps related to activating or deactivating an object. This
includes reading and writing the object’s durable state from and to disk,
respectively. If you implement these operations in your object, you must also
2-6 Creating CORBA Server Applications

Step 2: Write the Methods That Implement Each Interface’s Operations
edit the implementation header file and add the definitions for these operations
in each implementation that uses them.

The Implementation File Generated by the IDL Compiler

Although you can create your server application’s implementation file entirely by
hand, the IDL compiler generates an implementation file that you can use as a starting
place for writing your implementation file. The implementation file generated by the
IDL compiler contains signatures for the methods that implement each of the
operations defined for your application’s interfaces.

You typically generate this implementation file only once, using the -i option with the
command that invokes the IDL compiler. As you iteratively refine your application’s
interfaces, and modify the operations for those interfaces, including operation
signatures, you add all the required changes to the implementation file to reflect those
changes.

Implementing a Factory

As mentioned in the section “How Client Applications Access and Manipulate Your
Application’s CORBA Objects” on page 1-4, you need to create factories so that client
applications can easily locate the objects managed by your server application. A
factory is like any other CORBA object that you implement, with the exception that
you register it with the FactoryFinder object. Registering a factory is described in the
section “Writing the Code That Creates and Registers a Factory” on page 2-10.

The primary function of a factory is to create object references, which it does by
invoking the TP::create_object_reference() operation. The
TP::create_object_reference() operation requires the following input
parameters:

n The Interface Repository ID of the object’s OMG IDL interface

n The object ID (OID) in string format

n Optionally, routing criteria

For example, in the Basic University sample application, the RegistrarFactory
interface specifies only one operation, as follows:
Creating CORBA Server Applications 2-7

2 Steps for Creating a BEA Tuxedo CORBA Server Application
University::Registrar_ptr RegistrarFactory_i::find_registrar()

The find_registrar() operation on the RegistrarFactory object contains the
following invocation to the TP::create_object_reference() operation to create a
reference to a Registrar object:

CORBA::Object_var v_reg_oref =
 TP::create_object_reference(
 University::_tc_Registrar->id(),
 object_id,
 CORBA::NVlist::_nil()
);

In the previous code example, notice the following:

n The following parameter specifies the Registrar object’s Interface Repository
ID by extracting it from its typecode:

University::_tc_Registrar->id()

n The following parameter specifies that no routing criteria are used, with the
result that an object reference created for the Registrar object is routed to the
same group as the RegistrarFactory object that created the object reference:

CORBA::NVlist::_nil()

For information about specifying routing criteria that affect the group to which
object references are routed, see Chapter 8, “Scaling a BEA Tuxedo CORBA
Server Application.”

Step 3: Create the Server Object

Implementing the Server object is not like implementing other language objects. The
header class for the Server object has already been created, and the Server object class
has already been instantiated for you. Creating the Server object involves
implementing a specific set of methods in the prepackaged Server object class. The
methods you implement are described in this section.

To create the Server object, create a new file using a common text editor and
implement the following operations:
2-8 Creating CORBA Server Applications

Step 3: Create the Server Object
There is only one instance of the Server object in any server application. If your server
application is managing multiple CORBA object implementations, the
Server::initialize(), Server::create_servant(), and Server::release()
operations you write must include code that applies to all those implementations.

The code that you write for most of these tasks involves interaction with the TP
Framework. The sections that follow explain the code required for each of these Server
object operations and shows sample code from the Basic University sample
application.

Initializing the Server Application

The first operation that you implement in your Server object is the operation that
initializes the server application. This operation is invoked when the BEA Tuxedo
system starts the server application. The TP Framework invokes the following
operation in the Server object during the startup sequence of the server application:

CORBA::Boolean Server::initialize(int argc, char** argv)

Operation Description

Server::initialize(); After the server application is booted, the TP Framework invokes this
operation as the last step in the server application initialization process.
Within this operation, you perform a number of initialization tasks
needed for your particular server application. What you provide within
this operation is described in the section “Initializing the Server
Application” on page 2-9.

Server::create_servant(); When a client request arrives that cannot be serviced by an existing
servant, the TP Framework invokes this operation, passing the Interface
Repository ID of the OMG IDL interface for the CORBA object to be
activated. What you provide within this operation is described in the
section “Creating Servants” on page 2-11.

Server::release(); The TP Framework invokes this operation when the server application is
being shut down. This operation includes code to unregister any object
factories managed by the server application and to perform other
shutdown tasks. What you provide within this operation is described in
the section “Releasing the Server Application” on page 2-13.
Creating CORBA Server Applications 2-9

2 Steps for Creating a BEA Tuxedo CORBA Server Application
Any command-line options specified in the CLOPT parameter for your specific server
application in the SERVERS section of the BEA Tuxedo domain’s UBBCONFIG file are
passed to the Server::initialize() operation as argc and argv. For more
information about passing arguments to the server application, see Administering a
BEA Tuxedo Application at Run Time. For examples of passing arguments to the server
application, see the Guide to the CORBA University Sample Applications.

Within the Server::initialize() operation, you include code that does the
following, if applicable:

n Creates and registers factories

n Allocates any machine resources

n Initializes any global variables needed by the server application

n Opens the databases used by the server application

n Opens the XA resource manager

Writing the Code That Creates and Registers a Factory

If your server application manages a factory that you want client applications to be able
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object, which is invoked typically as the final step of the server
application initialization process.

To write the code that registers a factory managed by your server application, you do
the following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section
“Implementing a Factory” on page 2-7. In this step, you include an invocation to
the TP::create_object_reference() operation, specifying the Interface
Repository ID of the factory’s OMG IDL interface.The following example
creates an object reference, represented by the variable s_v_fact_ref, to the
RegistrarFactory factory:

University::RegistrarFactory s_v_fact_ref =
 TP::create_object_reference(
 University::_tc_RegistrarFactory->id(),
 object_id,
2-10 Creating CORBA Server Applications

Step 3: Create the Server Object
 CORBA::NVList::_nil()
);

2. Register the factory with the BEA Tuxedo domain.

This step involves invoking the following operation for each of the factories
managed by the server application:

TP::register_factory (CORBA::Object_ptr factory_or,
 const char* factory_id);

The TP::register_factory() operation registers the server application’s
factories with the FactoryFinder object. This operation requires the following
input parameters:

l The object reference for the factory, created in step 1 above.

l A string identifier, based on the factory object’s interface typecode, used to
identify the Interface Repository ID of the factory’s OMG IDL interface.

The following example registers the RegistrarFactory factory with the BEA
Tuxedo domain:

TP::register_factory(s_v_fact_ref.in(),
 University::_tc_RegistrarFactory->id());

Notice the parameter University::_tc_RegistrarFactory->id(). This is
the same parameter specified in the TP::create_object_reference()
operation. This parameter extracts the Interface Repository ID of the object’s
OMG IDL interface from its typecode.

Creating Servants

After the server application initialization process is complete, the server application is
ready to begin processing client requests. If a request arrives for an operation on a
CORBA object for which there is no servant available in memory, the TP Framework
invokes the following operation in the Server object:

Tobj_Servant Server::create_servant(const char* interfaceName)

The Server::create_servant() operation contains code that instantiates a servant
for the object required by the client request. For example, in C++, this code includes a
new statement on the interface class for the object.
Creating CORBA Server Applications 2-11

2 Steps for Creating a BEA Tuxedo CORBA Server Application
The Server::create_servant() operation does not associate the servant with an
OID. The association of a servant with an OID takes place when the TP Framework
invokes the Tobj_ServantBase::activate_object() operation on the servant,
which completes the instantiation of the object. (You cannot associate an OID with an
object in the object’s constructor.) Likewise, the disassociation of a servant with an
OID takes place when the TP Framework invokes the deactivate_object()
operation on the servant.

This behavior of a servant in the BEA Tuxedo system makes it possible, after an object
has been deactivated, for the TP Framework to make a servant available for another
object instantiation. Therefore, do not assume that an invocation of an object’s
Tobj_ServantBase::deactivate_object() operation results in an invocation of
that object’s destructor. If you use the servant pooling feature in your server
application, you can implement the TP::application_responsibility()
operation in an object’s Tobj_ServantBase::deactivate_object() operation to
pass a pointer to the servant to a servant pool for later reuse. Servant pooling is
discussed in the section “Servant Pooling” on page 2-28.

The Server::create_servant() operation requires a single input argument. The
argument specifies a character string containing the Interface Repository ID of the
OMG IDL interface of the object for which you are creating a servant.

In the code you write for this operation, you specify the Interface Repository IDs of the
OMG IDL interfaces for the objects managed by your server application. During run
time, the Server::create_servant()operation returns the servant needed for the
object specified by the request.

The following code implements the Server::create_servant() operation in the
University server application from the Basic University sample application:

Tobj_Servant Server::create_servant(const char* intf_repos_id)
{
 if (!strcmp(intf_repos_id, University::_tc_RegistrarFactory->id())) {
 return new RegistrarFactory_i();
 }
 if (!strcmp(intf_repos_id, University::_tc_Registrar->id())) {
 return new Registrar_i();
 }
 if (!strcmp(intf_repos_id, University::_tc_CourseSynopsisEnumerator->id())) {
 return new CourseSynopsisEnumerator_i();
 }
 return 0; // unknown interface
}

2-12 Creating CORBA Server Applications

Step 3: Create the Server Object
Releasing the Server Application

When the BEA Tuxedo system administrator enters the tmshutdown command, the TP
Framework invokes the following operation in the Server object of each running server
application in the BEA Tuxedo domain:

void Server::release()

Within the Server::release() operation, you may perform any application-specific
cleanup tasks that are specific to the server application, such as:

n Unregistering object factories managed by the server application

n Deallocating resources

n Closing any databases

n Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server process if a second server process
contains an invocation in its Server::release() operation to the first server process.

During server shutdown, you may want to include the following invocation to
unregister each of the server application’s factories:

TP::unregister_factory (CORBA::Object_ptr factory_or,
const char* factory_id)

The invocation of the TP::unregister_factory() operation should be one of the
first actions in the Server::release() implementation. The
TP::unregister_factory() operation unregisters the server application’s factories.
This operation requires the following input arguments:

n The object reference for the factory.

n A string identifier, based on the factory object’s interface typecode, used to
identify Interface Repository ID of the object’s OMG IDL interface.

The following example unregisters the RegistrarFactory factory used in the Basic
sample application:

TP::unregister_factory(s_v_fact_ref.in(), UnivB::_tc_RegistrarFactory->id());
Creating CORBA Server Applications 2-13

2 Steps for Creating a BEA Tuxedo CORBA Server Application
In the preceding code example, notice the use of the global variable s_v_fact_ref.
This variable was set in the Server::initialize() operation that registered the
RegistrarFactory object, which is used again here.

Notice also the parameter UnivB::_tc_RegistrarFactory->id(). This is also the
same as the interface name used to register the factory.

Step 4: Define the In-memory Behavior of
Objects

As stated in the section “Managing Object State” on page 1-11, you determine what
events cause an object to be deactivated by assigning object activation policies,
transaction policies, and, optionally, using the application-controlled deactivation
feature.

You specify object activation and transaction policies in the ICF file, and you
implement application-controlled deactivation via the TP::deactivateEnable()
operation. This section explains how you implement both mechanisms, using the Basic
University sample application as an example.

The sections that follow describe the following:

n How to specify object activation and transaction policies in the ICF file

n How to implement application-controlled deactivation

Specifying Object Activation and Transaction Policies in
the ICF File

The BEA Tuxedo software supports the following activation policies, described in
“Object Activation Policies” on page 1-13:
2-14 Creating CORBA Server Applications

Step 4: Define the In-memory Behavior of Objects
The BEA Tuxedo software also supports the following transaction policies, described
in Chapter 6, “Integrating Transactions into a CORBA Server Application”:

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction Causes the object to be activated when an operation is invoked on
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed or
rolled back.

process Causes the object to be activated when an operation is invoked on
it, and to be deactivated only when one of the following occurs:

n The process in which the server application exists is shut
down.

n The object has invoked the TP::deactivateEnable()
operation on itself.

Transaction Policy Description

always When an operation on this object is invoked, this policy causes the
TP Framework to begin a transaction for this object, if there is not
already an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction if
the operation raises an exception.

optional When an operation on this object is invoked, this policy causes the
TP Framework to include this object in a transaction if a
transaction is active. If no transaction is active, the invocation on
this object proceeds according to the activation policy defined for
this object.

This is the default transaction policy.

never Causes the TP Framework to generate an error condition if this
object is invoked during a transaction.
Creating CORBA Server Applications 2-15

2 Steps for Creating a BEA Tuxedo CORBA Server Application
To assign these policies to the objects in your application:

1. Generate the ICF file by entering the genicf command, specifying your
application’s OMG IDL file as input, as in the following example:

genicf university.idl

The preceding command generates the file university.icf.

2. Edit the ICF file and specify the activation policies for each of your application’s
interfaces. The following example shows the ICF file generated for the Basic
University sample application. Notice that the default object activation policy is
method, and that the default transaction activation policy is optional.

module POA_UniversityB
 {
 implementation CourseSynopsisEnumerator_i
 {
 activation_policy (method);
 transaction_policy (optional);
 implements (UniversityB::CourseSynopsisEnumerator);
 };
 };
module POA_UniversityB
 {
 implementation Registrar_i
 {
 activation_policy (method);
 transaction_policy (optional);
 implements (UniversityB::Registrar);
 };
 };
module POA_UniversityB
 {
 implementation RegistrarFactory_i
 {
 activation_policy (method);
 transaction_policy (optional);

ignore If a transaction is currently active when an operation on this
object is invoked, the transaction is suspended until the operation
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

Transaction Policy Description
2-16 Creating CORBA Server Applications

Step 5: Compile and Link the Server Application
 implements (UniversityB::RegistrarFactory);
 };
 };

3. If you want to limit the number of interfaces for which you want skeleton and
implementation files generated, you can remove from the ICF file the
implementation blocks that implement those interfaces. Using the preceding ICF
code as an example, to prevent skeleton and implementation files from being
generated for the RegistrarFactory interface, remove the following lines:

implementation RegistrarFactory_i
 {
 activation_policy (method);
 transaction_policy (optional);
 implements (UniversityB::RegistrarFactory);
 };

4. Pass the ICF file to the IDL compiler to generate the skeleton and
implementation files that correspond to the specified policies. For more
information, see the section “Generating the Skeleton and Implementation Files”
on page 2-5.

Step 5: Compile and Link the Server
Application

After you have finished writing the code for the Server object and the object
implementations, you compile and link the server application.

You use the buildobjserver command to compile and link CORBA server
applications. The buildobjserver command has the following format:

buildobjserver [-o servername] [options]

In the buildobjserver command syntax:

n -o servername represents the name of the server application to be generated
by this command.

n options represents the command-line options to the buildobjserver
command.
Creating CORBA Server Applications 2-17

2 Steps for Creating a BEA Tuxedo CORBA Server Application
For complete information about compiling and linking the University sample
applications, see the Guide to the CORBA University Sample Applications. For
complete details about the buildobjserver command, see the BEA Tuxedo
Command Reference.

There are special considerations for designing and building multithreaded CORBA
server applications. See “Using the buildobjserver Command” on page 4-13.

Note: If you are running the BEA Tuxedo software on IBM AIX 4.3.3 systems, you
need to recompile your CORBA applications using the -brtl compiler
option.

Step 6: Deploy the Server Application

You or the system administrator deploy the CORBA server application by using the
procedure summarized in this section. For complete details on building and deploying
the University sample applications, see the Guide to the CORBA University Sample
Applications.

To deploy the server application:

1. Place the server application executable file in an appropriate directory on a
machine that is part of the intended BEA Tuxedo domain.

2. Create the application’s configuration file, also known as the UBBCONFIG file, in a
common text editor.

3. Set the following environment variables on the machine from which you are
booting the CORBA server application:

l TUXCONFIG, which needs to match exactly the TUXCONFIG entry in the
UBBCONFIG file. This variable represents the location or path of the
application’s UBBCONFIG file.

l APPDIR, which represents the directory in which the application’s executable
file exists.
2-18 Creating CORBA Server Applications

Development and Debugging Tips
4. Set the TUXDIR environment variable on all machines that are running in the BEA
Tuxedo domain or that are connected to the BEA Tuxedo domain. This
environment variable points to the location where the BEA Tuxedo software is
installed.

5. Enter the following command to create the TUXCONFIG file:

tmloadcf -y application-ubbconfig-file

The command-line argument application-ubbconfig-file represents the
name of your application’s UBBCONFIG file. Note that you may need to remove
any old TUXCONFIG files to execute this command.

6. Enter the following command to start the CORBA server application:

tmboot -y

You can reboot a server application without reloading the UBBCONFIG file.

For complete details about configuring the University sample applications, see the
Guide to the CORBA University Sample Applications. For complete details on creating
the UBBCONFIG file for CORBA applications, see Setting Up a BEA Tuxedo
Application.

Development and Debugging Tips

This topic includes the following sections:

n Use of CORBA exceptions and the user log

n Detecting error conditions in the callback methods

n Common pitfalls of OMG IDL interface versioning and modification

n Caveat for state handling in the Tobj_ServantBase::deactivate_object()
operation

Use of CORBA Exceptions and the User Log

This topic includes the following sections:
Creating CORBA Server Applications 2-19

2 Steps for Creating a BEA Tuxedo CORBA Server Application
n The client application view of exceptions

n The server application view of exceptions

Client Application View of Exceptions

When a client application invokes an operation on a CORBA object, an exception may
be returned as a result of the invocation. The only valid exceptions that can be returned
to a client application are the following:

n Standard CORBA-defined exceptions that are known to every
CORBA-compliant ORB

n Exceptions that are defined in OMG IDL and known to the client application via
either its stub or the Interface Repository

The BEA Tuxedo system works to ensure that these CORBA-defined restrictions are
not violated, which is described in the section “Server Application View of
Exceptions” on page 2-20.

Because the set of exceptions exposed to the client application is limited, client
applications may occasionally catch exceptions for which the cause is ambiguous.
Whenever possible, the BEA Tuxedo system supplements such exceptions with
descriptive messages in the user log, which serves as an aid in detecting and debugging
error conditions. These cases are described in the following section.

Server Application View of Exceptions

This topic includes the following sections:

n Exceptions raised by the BEA Tuxedo system that can be caught by application
code

n The BEA Tuxedo system’s handling of exceptions raised by application code
during the invocation of operations on CORBA objects

Exceptions Raised by the BEA Tuxedo System That Can Be Caught by Application Code

The BEA Tuxedo system may return the following types of exceptions to an
application when operations on the TP object are invoked:

n CORBA-defined system exceptions
2-20 Creating CORBA Server Applications

Development and Debugging Tips
n CORBA UserExceptions defined in the file TobjS_c.h. The OMG IDL for
the exceptions defined in this file is the following:

interface TobjS {
 exception AlreadyRegistered { };
 exception ActivateObjectFailed { string reason; };
 exception ApplicationProblem { };
 exception CannotProceed { };
 exception CreateServantFailed { string reason; };
 exception DeactivateObjectFailed { string reason; };
 exception IllegalInterface { };
 exception IllegalOperation { };
 exception InitializeFailed { string reason; };
 exception InvalidDomain { };
 exception InvalidInterface { };
 exception InvalidName { };
 exception InvalidObject { };
 exception InvalidObjectId { };
 exception InvalidServant { };
 exception NilObject { string reason; };
 exception NoSuchElement { };
 exception NotFound { };
 exception OrbProblem { };
 exception OutOfMemory { };
 exception OverFlow { };
 exception RegistrarNotAvailable { };
 exception ReleaseFailed { string reason; };
 exception TpfProblem { };
 exception UnknownInterface { };
}

The BEA Tuxedo System’s Handling of Exceptions Raised by Application Code During the
Invocation of Operations on CORBA Objects

A server application can raise exceptions in the following places in the course of
servicing a client invocation:

n In the Server::create_servant,
Tobj_ServantBase::activate_object(), and
Tobj_ServantBase::deactivate_object() callback methods.

n In the implementation code for the invoked operation.

It is possible for the server application to raise any of the following types of exceptions:

n A CORBA-defined system exception.
Creating CORBA Server Applications 2-21

2 Steps for Creating a BEA Tuxedo CORBA Server Application
n A CORBA user-defined exception defined in OMG IDL

n A CORBA user-defined exception defined in the file TobjS_c.h. The following
exceptions are intended to be used in server applications to help the BEA
Tuxedo system send messages to the user log, which can help with
troubleshooting:

interface TobjS {
 exception ActivateObjectFailed { string reason; };
 exception CreateServantFailed { string reason; };
 exception DeactivateObjectFailed { string reason; };
 exception InitializeFailed { string reason; };
 exception ReleaseFailed { string reason; };
}

n Any other C++ exception type

All exceptions raised by server application code that are not caught by the server
application are caught by the BEA Tuxedo system. When these exceptions are caught,
one of the following occurs:

n The exception is returned to the client application without alteration.

n The exception is converted to a standard CORBA exception, which is then
returned to the client application.

n The exception is converted to a standard CORBA exception, and the following
actions occur:

l The exception is returned to the client application

l One or more messages containing descriptive information about the error are
sent to the user log. The descriptive information may originate from either
the server application code or from the BEA Tuxedo system.

The following sections show how the BEA Tuxedo system handles exceptions raised
by the server application during the course of a client invocation on a CORBA object.

Exceptions Raised in the Server::create_servant() Operation

If any exception is raised in the Server::create_servant() operation, then:

n The CORBA::OBJECT_NOT_EXIST exception is returned to the client application.

n If the exception raised is TobjS::CreateServantFailed, then a message is
sent to the user log. If a reason string is supplied in the constructor for the
exception, then the reason string is also written as part of the message.
2-22 Creating CORBA Server Applications

Development and Debugging Tips
n Neither the Tobj_ServantBase::activate_object() or
Tobj_ServantBase::deactivate_object() operations are invoked. The
operation requested by the client is not invoked.

Exceptions Raised in the Tobj_ServantBase::activate_object() Operation

If any exception is raised in the Tobj_ServantBase::activate_object()
operation, then:

n The CORBA::OBJECT_NOT_EXIST exception is returned to the client application.

n If the exception raised is TobjS::ActivateObjectFailed, a message is sent to
the user log. If a reason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

n Neither the operation requested by the client nor the
Tobj_ServantBase::deactivate_object() operation is invoked.

Exceptions Raised in Operation Implementations

The BEA Tuxedo system requires operation implementations to throw either CORBA
system exceptions, or user-defined exceptions defined in OMG IDL that are known to
the client application. If these types of exceptions are thrown by operation
implementations, then the BEA Tuxedo system returns them to the client application,
unless one of the following conditions exists:

n The object has the always transaction policy, and the BEA Tuxedo system
automatically started a transaction when the object was invoked. In this case, the
transaction is automatically rolled back by the BEA Tuxedo system. Because the
client application is unaware of the transaction, the BEA Tuxedo system then
raises the CORBA::OBJ_ADAPTER CORBA system exception, and not the
CORBA:: TRANSACTION_ROLLEDBACK exception, which would have been the
case had the client initiated the transaction.

n The exception is defined in the file TobjS_c.h. In this case, the exception is
converted to the CORBA::BAD_OPERATION exception and is returned to the client
application. In addition, the following message is sent to the user log:

"WARN: Application didn’t catch TobjS exception. TP Framework
throwing CORBA::BAD_OPERATION."

If the exception is TobjS::IllegalOperation, the following supplementary
message is written to warn the developer of a possible coding error in the
application:
Creating CORBA Server Applications 2-23

2 Steps for Creating a BEA Tuxedo CORBA Server Application
"WARN: Application called TP::deactivateEnable() illegally and
didn’t catch TobjS exception."

This can occur if the TP::deactivateEnable() operation is invoked inside an
object that has the transaction activation policy. (Application-controlled
deactivation is not supported for transaction-bound objects.)

n The BEA Tuxedo system raised an internal system exception following the client
invocation. In this case, the CORBA::INTERNAL exception is returned to the
client. This usually indicates serious system problems with the process in which
the object is active.

As defined by the CORBA standard, a reply sent back to the client can either contain
result values from the operation implementation, or an exception thrown in the
operation implementation, but not both. In the first case—that is, if the reply status
value is NO_EXCEPTION—the reply contains the operation’s return value and any inout
or out argument values. Otherwise—that is, if the reply status value is
USER_EXCEPTION or SYSTEM_EXCEPTION—all the reply contains is the encoding of
the exception.

Exceptions Raised in the Tobj_ServantBase::deactivate_object()
Operation

If any exception is raised in the Tobj_ServantBase::deactivate_object()
operation, the following occurs:

n The exception is not returned to the client application.

n If the exception raised is TobjS::DectivateObjectFailed, a message is sent
to the user log. If a reason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

n A message is sent to the user log for exceptions other than the
TobjS::DeactivateObjectFailed exception, indicating the type of exception
caught by the BEA Tuxedo system.

CORBA Marshal Exception Raised When Passing Object Instances

The ORB cannot marshal an object instance as an object reference. For example,
passing a factory reference in the following code fragment generates a CORBA
marshal exception in the BEA Tuxedo system:

connection::setFactory(this);
2-24 Creating CORBA Server Applications

Development and Debugging Tips
To pass an object instance, you should create a proxy object reference and pass the
proxy instead, as in the following example:

CORBA::Object myRef = TP::get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);

Detecting Error Conditions in the Callback Methods

The BEA Tuxedo system provides a set of predefined exceptions that allow you to
specify message strings that the TP Framework writes to the user log if application
code gets an error in any of the following callback methods:

n Tobj_ServantBase::activate_object()

n Tobj_ServantBase::deactivate_object()

n Server::create_servant()

n Server::initialize()

n Server::release()

You can use these exceptions as a useful debugging aid that allows you to send
unambiguous information about why an exception is being raised. Note that the TP
Framework writes these messages to the user log only. They are not returned to the
client application.

You specify these messages with the following exceptions, which have an optional
reason string:

Exception Callback Methods That Can Raise This
Exception

ActivateObjectFailed Tobj_ServantBase::activate_object()

DeactivateObjectFailed Tobj_ServantBase::deactivate_object()

CreateServantFailed Server::create_servant()

InitializeFailed Server::initialize()

ReleaseFailed Server::release()
Creating CORBA Server Applications 2-25

2 Steps for Creating a BEA Tuxedo CORBA Server Application
To send a message string to the user log, specify the string in the exception, as in the
following example:

throw CreateServantFailed("Unknown interface");

Note that when you throw these exceptions, the reason string parameter is required. If
you do not want to specify a string with one of these exceptions, you must use the
double quote characters, as in the following example:

throw ActivateObjectFailed("");

Common Pitfalls of OMG IDL Interface Versioning and
Modification

The Server object’s implementation of the Server::create_servant() operation
instantiates an object based on its interface ID. It is crucial that this interface ID is the
same as the one supplied in the factory when the factory invokes the
TP::create_object_reference() operation. If the interface IDs do not match, the
Server::create_servant() operation usually raises an exception or returns a
NULL servant. The BEA Tuxedo system then returns a CORBA::OBJECT_NOT_EXIST
exception to the client application. The BEA Tuxedo system does not perform any
validation of interface IDs in the TP::create_object_reference() operation.

It is possible for this condition to arise if, during the course of development, different
versions of the interface are being developed or many modifications are being made to
IDL file. Even if you typically specify string constants for interface IDs in OMG IDL
and use these in the factory and the Server::create_servant() operation, it is
possible for a mismatch to occur if the object implementation and factory are in
different executables. This potential problem may be difficult to diagnose.

You may want to consider the following defensive programming strategies during
development to avoid this potential problem. This code should be included only in
debugging versions of your application, because it introduces performance
inefficiencies that may be unacceptable in the production versions of your software.

n Immediately before factory invokes the TP::create_object_reference()
operation, include code that checks the Interface Repository to see if the required
interface exists. Make sure that all the application OMG IDL is up-to-date and
loaded into the Interface Repository. Should this check fail to find the interface
ID, you can assume that there is a mismatch.
2-26 Creating CORBA Server Applications

Development and Debugging Tips
n Following the invocation of the TP::create_object_reference() operation
in your factories, include code that “pings” the object. That is, the code invokes
any operation on the object (typically an operation that does not do anything). If
this invocation raises the CORBA::OBJECT_NOT_EXIST exception, an interface
ID mismatch exists. Note that “pinging” an object causes the object to be
activated, with the overhead associated with the activation.

Caveat for State Handling in
Tobj_ServantBase::deactivate_object()

The Tobj_ServantBase::deactivate_object() operation is invoked when the
activation boundary for an object is reached. You may, optionally, write durable state
to disk in the implementation of this operation. It is important to understand that
exceptions raised in this operation are not returned to the client application. The client
application will be unaware of any error conditions raised in this operation unless the
object is participating in a transaction. Therefore, in cases where it is important that the
client application know whether the writing of state via this operation is successful, we
recommend that transactions be used.

If you decide to use the Tobj_ServantBase::deactivate_object() operation for
writing state, and the client application needs to know the outcome of the write
operations, we recommend that you do the following:

n Ensure that each operation that affects object state is invoked within a
transaction, and that deactivation occurs within the transaction boundaries. This
can be done by using either the method or transaction activation policies, and
is possible with the process activation policy if the TP::deactivateEnable()
operation is invoked within the transaction boundary.

n If an error occurs during the writing of object state, invoke the
COSTransactions::Current::rollback_only() operation to ensure that the
transaction is rolled back. This ensures that the client application receives one of
the following exceptions:

l If the client application initiated the transaction, the client application
receives the CORBA::TRANSACTION_ROLLEDBACK exception.

l If the BEA Tuxedo system initiated the transaction, the client application
receives the CORBA::OBJ_ADAPTER exception.
Creating CORBA Server Applications 2-27

2 Steps for Creating a BEA Tuxedo CORBA Server Application
If transactions are not used, we recommend that you write object state within the scope
of individual operations on the object, rather than via the
Tobj_ServantBase::deactivate_object() operation. This way, if an error
occurs, the operation can raise an exception that is returned to the client application.

Servant Pooling

As mentioned in the section “Servant Pooling and Stateless Objects” on page 1-21,
servant pooling provides a means to reduce the cost of object instantiation for
method-bound or transaction-bound objects.

How Servant Pooling Works

Normally, during object deactivation (that is, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation), the TP Framework
deletes the object’s servant; however, when servant pooling is used, the TP Framework
does not delete the servant at object deactivation. Instead, the server application
maintains a pointer to the servant in a pool. When a subsequent client request arrives
that can be satisfied by a servant in that pool, the server application reuses the servant
and assigns a new object ID. When a servant is reused from a pool, the TP Framework
does not create a new servant.

How You Implement Servant Pooling

You implement servant pooling by doing the following:

1. In the Server::initialize() operation on the Server object, write the code that
sets up the servant pool. The pool consists of a set of pointers to one or more
servants, and the code for the pool specifies how many servants for a given class
are to be maintained in the pool.

2. In the pooled servant’s Tobj_ServantBase::deactive_object() operation,
you implement the TP::application_responsibility() operation. In the
implementation of the TP::application_responsibility() operation, you
2-28 Creating CORBA Server Applications

Delegation-based Interface Implementation
provide code that places a pointer to the servant into the servant pool at the time
that the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation.

3. In the Server object’s implementation of the Server::create_servant()
operation, write code that does the following when a client request arrives:

a. Checks the pool to see if there is a servant that can satisfy the request.

b. If a servant does not exist, create a servant and invoke the
Tobj_ServantBase::activate_object() operation on it.

c. If a servant exists, invoke the Tobj_ServantBase::activate_object()
operation on it, assigning the object ID contained in the client request.

Note: Support for the TP::application_responsibility() operation has
changed in this release. For complete information, see the CORBA
Programming Reference.

Delegation-based Interface Implementation

There are two primary ways in which an object can be implemented in a BEA Tuxedo
CORBA application: by inheritance, or by delegation. When an object inherits from
the POA skeleton class, and is thus a CORBA object, that object is said to be
implemented by inheritance.

However, there may be instances in which you want to use a C++ object in a CORBA
application in which inheriting from the POA skeleton class is difficult or impractical.
For example, you might have a C++ object that would require a major rewrite to inherit
from the POA skeleton class. You can bring this non-CORBA object into a CORBA
application by creating a tie class for the object. The tie class inherits from the POA
skeleton class, and the tie class contains one or more operations that delegate to the
legacy class for the implementation of those operations. The legacy class is thereby
implemented in the CORBA application by delegation.
Creating CORBA Server Applications 2-29

2 Steps for Creating a BEA Tuxedo CORBA Server Application
About Tie Classes in the BEA Tuxedo System

To create a delegation-based interface implementation, use the -T command-line
option of the IDL compiler to generate tie class templates for each interface defined in
the OMG IDL file.

Using tie classes in a CORBA application also affects how you implement the
Server::create_servant() operation in the Server object. The following sections
explain the use of tie classes in the BEA Tuxedo product in more detail, and also
explains how to implement the Server::create_servant() operation to instantiate
those classes.

In BEA Tuxedo CORBA, the tie class is the servant, and, therefore, serves basically as
a wrapper object for the legacy class.

The following figure shows the inheritance characteristics of the interface Account,
which serves as a wrapper for a legacy object. The legacy object contains the
implementation of the operation op1. The tie class delegates op1 to the legacy class.
2-30 Creating CORBA Server Applications

Delegation-based Interface Implementation
Tie classes are transparent to the client application. To the client application, the tie
class appears to be a complete implementation of the object that the client application
invokes. The tie class delegates all operations to the legacy class, which you provide.
In addition, the tie class contains the following:

n Constructor and destructor code, which handles startup and shutdown procedures
for the tie class and the legacy class

OMG IDL
Interface
Account

IDL Compiler

Skeleton for
Account

Skeleton Header for
Account

C++ Template Class
Account_tie

(Generated Using -T)

Implementation of Account_tie:
op1(_ptr val);

Delegates op1 to
legacy class,
passing val.
Creating CORBA Server Applications 2-31

2 Steps for Creating a BEA Tuxedo CORBA Server Application
n Housekeeping code, which implements operations such as accessors

When to Use Tie Classes

Tie classes are not unique to BEA Tuxedo CORBA, and they are not the only way to
implement delegation in a CORBA application. However, the BEA Tuxedo CORBA
convenience features for tie classes can greatly reduce the amount of coding you need
to do for the basic constructor, destructor, and housekeeping operations for those tie
classes.

Using tie classes might be recommended in one of the following situations:

n You want to implement an object in a CORBA application in which inheriting
from the POA skeleton class is difficult or impractical.

n All the invocations on a legacy class instance can be accomplished from a single
servant.

n You are using a legacy class in your CORBA application, and you want to tie the
lifetime of an instance of that legacy class to a servant class.

n Delegation is the only purpose of a particular servant; therefore, nearly all the
code in that servant is dedicated to legacy object startup, shutdown, access, and
delegation.

Tie classes are not recommended when:

n The operations on an object instance delegate to more than one legacy object
instance.

n Delegation is only a part of the purpose of an object.

How to Create Tie Classes in a CORBA Application

To create tie classes in an application in a BEA Tuxedo domain:

1. Create the interface definition for the tie class in an OMG IDL file, as you would
for any object in your application.

2. Compile the OMG IDL file using the -T option.
2-32 Creating CORBA Server Applications

Delegation-based Interface Implementation
The IDL compiler generates a C++ template class, which takes the name of the
skeleton, with the string _tie appended to it. The IDL compiler adds this
template class to the skeleton header file.

Note that the IDL compiler does not generate the implementation file for the tie
class; you need to create this file by hand, as described in the next step.

3. Create an implementation file for the tie class. The implementation file contains
the code that delegates its operations to the legacy class.

4. In the Server object’s Server::create_servant() operation, write the code
that instantiates the legacy object.

In the following example, the servant for tie class POA_Account_tie is created,
and the legacy class LegacyAccount is instantiated.

Account * Account_ptr = new LegacyAccount();
AccountFactoryServant = new POA_Account_tie<LegacyAccount> (Account_ptr)

Note: When compiling tie classes with the Compaq C++ Tru64 compiler for UNIX,
you must include the -noimplicit_include option in the definition of the
CFLAGS or CPPFLAGS environment variables used by the buildobjserver
command. This option prevents the C++ compiler from automatically
including the server skeleton definition file (_s.cpp) everywhere the server
skeleton header file (_s.h) is included, which is necessary to avoid
multiply-defined symbol errors. See Compaq publications for additional
information about using class templates, such as the tie classes, with Tru64
C++.
Creating CORBA Server Applications 2-33

2 Steps for Creating a BEA Tuxedo CORBA Server Application
2-34 Creating CORBA Server Applications

CHAPTER
3 Designing and
Implementing a Basic
CORBA Server
Application

This chapter describes how to design and implement a CORBA server application,
using the Basic University sample application as an example. The content of this
chapter assumes that the design of the application to be implemented is complete and
is expressed in OMG IDL. This chapter focuses on design and implementation choices
that are oriented to the server application.

This topic includes the following sections:

n How the Basic University Sample Application Works, which helps provide
context to the design and implementation considerations

n Design Considerations for the University Server Application, which includes
comprehensive discussions about the following topics:

l Design Considerations for Generating Object References

l Design Considerations for Managing Object State

l Design Considerations for Handling Durable State Information

l How the Basic Sample Application Applies Design Patterns

l Additional Performance Efficiencies Built into the BEA Tuxedo System
Creating CORBA Server Applications 3-1

3 Designing and Implementing a Basic CORBA Server Application
l Preactivating an Object with State

How the Basic University Sample
Application Works

The Basic University sample application provides the student with the ability to
browse course information from a central University database. Using the Basic sample
application, the student can do the following:

n Browse course synopses from the database by specifying a search string. The
server application then returns synopses for all courses that have a title,
professor, or description containing the search string. (A course synopsis
returned to the client application includes only the course number and title.)

n View detailed information about specific courses. The detailed information
available for a specified course includes the following, in addition to synopsis
information:

l Cost

l Number of credits

l Class schedule

l Number of seats

l Number of registered students

l Professor

l Description

The Basic University Sample Application OMG IDL

In its OMG IDL file, the Basic University sample application defines the following
interfaces:
3-2 Creating CORBA Server Applications

How the Basic University Sample Application Works
The Basic University sample application is shown in Figure 3-1.

Figure 3-1 Basic University Sample Application

For the purposes of explaining what happens when the Basic University sample
application runs, the following separate groups of events are described:

Interface Description Operations

RegistrarFactory Creates object references to the
Registrar object

find_registrar()

Registrar Obtains course information from the
database

get_courses_synopsis()

get_courses_details()

CourseSynopsisEnumerator Fetches synopses of courses that match
the search criteria from the database and
reads them into memory

get_next_n()

destroy()

Client
Application

RegistrarFactory Registrar

CourseSynopsis
Enumerator

Course
Database

University Server Application
Creating CORBA Server Applications 3-3

3 Designing and Implementing a Basic CORBA Server Application
n Application startup—when the server application is booted and the client
application gets an object reference to the Registrar object

n Browsing course synopses—when the client application sends a request to view
course synopses

n Browsing course details—when the client application sends a request to view
details on a specific list of courses

Application Startup

The following sequence shows a typical set of events that take place when the Basic
client and server applications are started and the client application obtains an object
reference to the Registrar object:

1. The Basic client and server applications are started, and the client application
obtains a reference to the RegistrarFactory object from the FactoryFinder.

2. Using the reference to the RegistrarFactory object, the client application
invokes the find_registrar() operation on the RegistrarFactory object.

3. The RegistrarFactory object is not in memory (because no previous request
for that object has arrived in the server process), so the TP Framework invokes
the Server::create_servant() operation in the Server object to instantiate it.

4. Once instantiated, the RegistrarFactory object’s find_registrar()
operation is invoked. The RegistrarFactory object creates the Registrar
object reference and returns it to the client application.

Browsing Course Synopses

The following sequence traces the events that may occur when the student browses a
list of course synopses:

1. Using the object reference to the Registrar object, the client application invokes
the get_courses_synopsis() operation, specifying:

l A search string to be used for retrieving course synopses from the database.
3-4 Creating CORBA Server Applications

How the Basic University Sample Application Works
l An integer, represented by the variable number_to_get, which specifies the
size of the synopsis list to be returned.

2. The Registrar object is not in memory (because no previous request for that
object has arrived in the server process), so the TP Framework invokes the
Server::create_servant() operation, which is implemented in the Server
object. This causes the Registrar object to be instantiated in the server
machine’s memory.

3. The Registrar object receives the client request and creates an object reference
to the CourseSynopsisEnumerator object. The CourseSynopsisEnumerator
object is invoked by the Registrar object to fetch the course synopses from the
database.

To create the object reference CourseSynopsisEnumerator object, the
Registrar object does the following:

a. Generates a unique ID for the CourseSynopsisEnumerator object.

b. Generates an object ID for the CourseSynopsisEnumerator object that is a
concatenation of the unique ID generated in the preceding step and the search
string specified by the client.

c. Gets the CourseSynopsisEnumerator object’s Interface Repository ID from
the interface typecode.

d. Invokes the TP::create_object_reference() operation. This operation
creates an object reference to the CourseSynopsisEnumerator object needed
for the initial client request.

4. Using the object reference created in the preceding step, the Registrar object
invokes the get_next_n() operation on the CourseSynopsisEnumerator
object, passing the list size. The list size is represented by the parameter
number_to_get, described in step 1.

5. The TP Framework invokes the Server::create_servant() operation on the
Server object to instantiate the CourseSynopsisEnumerator object.

6. The TP Framework invokes the activate_object() operation on the
CourseSynopsisEnumerator object. This operation does the following two
things:

l Extracts the search criteria from its OID.
Creating CORBA Server Applications 3-5

3 Designing and Implementing a Basic CORBA Server Application
l Using the search criteria, fetches matching course synopses from the
database and reads them into the server machine’s memory.

7. The CourseSynopsisEnumerator object returns the following information to
the Registrar object:

l A course synopsis list, specified in the return value CourseSynopsisList,
which is a sequence containing the first list of course synopses.

l The number of matching course synopses that have not yet been returned,
specified by the parameter number_remaining.

8. The Registrar object returns the CourseSynopsisEnumerator object
reference to the client application, and also returns the following information
obtained from that object:

l The initial course synopsis list

l The number_remaining variable

(If the number_remaining variable is 0, the Registrar object invokes the
destroy() operation on the CourseSynopsisEnumerator object and returns a
nil reference to the client application.)

9. The client application sends directly to the CourseSynopsisEnumerator object
its next request to get the next batch of matching synopses.

10. The CourseSynopsisEnumerator object satisfies the client request, also
returning the updated number_remaining variable.

11. When the client application is done with the CourseSynopsisEnumerator
object, the client application invokes the destroy() operation on the
CourseSynopsisEnumerator object. This causes the
CourseSynopsisEnumerator object to invoke the TP::deactivateEnable()
operation.

12. The TP Framework invokes the deactivate_object() operation on the
CourseSynopsisEnumerator object. This causes the list of course synopses
maintained by the CourseSynopsisEnumerator object to be erased from the
server computer’s memory so that the CourseSynopsisEnumerator object’s
servant can be reused for another client request.
3-6 Creating CORBA Server Applications

Design Considerations for the University Server Application
Browsing Course Details

The following sequence shows a typical set of events that take place when the client
application browses course details:

1. The student enters the course numbers for the courses about which he or she is
interested in viewing details.

2. The client application invokes the get_course_details() operation on the
Registrar object, passing the list of course numbers.

3. The Registrar object searches the database for matches on the course numbers,
and then returns a list containing full details for each of the specified courses.
The list is contained in the CourseDetailsList variable, which is a sequence
of structs containing full course details.

Design Considerations for the University
Server Application

The Basic University sample application contains the University server application,
which deals with several fundamental CORBA server application design issues. This
section addresses the following topics:

n Design Considerations for Generating Object References

n Design Considerations for Managing Object State

n Design Considerations for Handling Durable State Information

n How the Basic Sample Application Applies Design Patterns

This section also addresses the following two topics:

n Additional Performance Efficiencies Built into the BEA Tuxedo System

n Preactivating an Object with State
Creating CORBA Server Applications 3-7

3 Designing and Implementing a Basic CORBA Server Application
Design Considerations for Generating Object References

The Basic client application needs references to the following objects, which are
managed by the University server application:

n The RegistrarFactory object

n The Registrar object

n The CourseSynopsisEnumerator object

The following table shows how these references are generated and returned.

Object How the Object Reference Is
Generated and Returned

RegistrarFactory The object reference for the RegistrarFactory
object is generated in the Server object, which registers
the RegistrarFactory object with the
FactoryFinder. The client application then obtains a
reference to the RegistrarFactory object from the
FactoryFinder.

There is only one RegistrarFactory object in the
Basic University server application process.

Registrar The object reference for the Registrar object is
generated by the RegistrarFactory object and is
returned when the client application invokes the
find_registrar() operation. The object reference
created for the Registrar object is always the same;
this object reference does not contain a unique OID.

There is only one Registrar object in the Basic
University server application process.
3-8 Creating CORBA Server Applications

Design Considerations for the University Server Application
Note the following about how the University server application generates object
references:

n The Server object registers the RegistrarFactory object with the
FactoryFinder. This is the recommended way to ensure that client applications
can locate the factories they need to obtain references to the basic objects in the
application.

n The object reference to the Registrar object is created by the
RegistrarFactory object. This shows a very common and basic way to return
object references to the client application; namely, that there is a factory
dedicated to creating and returning references to the primary object that is
required by the client application to execute business logic.

n The object reference to the CourseSynopsisEnumerator object is created
outside a registered factory. In the University sample applications, this is a good
design because of the way the CourseSynopsisEnumerator object is meant to
be used; namely, its existence is specific to a particular client application
operation. The CourseSynopsisEnumerator object returns a specific list and
results that are not related to the results from other queries.

n Because the Registrar object creates, in one of its operations, an object
reference to another object, the Registrar object is a factory. However, the
Registrar object is not registered as a factory with the FactoryFinder;
therefore, client applications cannot get a reference to the Registrar object
from the FactoryFinder.

CourseSynopsisEnumerator The object reference for the
CourseSynopsisEnumerator object is generated
by the Registrar object when the client application
invokes the get_courses_synopsis() operation.
In this way, the Registrar object is the factory for
the CourseSynopsisEnumerator object. The
design and use of the
CourseSynopsisEnumerator object is described
later in this chapter.

There can be any number of
CourseSynopsisEnumerator objects in the Basic
University server application process.

Object How the Object Reference Is
Generated and Returned
Creating CORBA Server Applications 3-9

3 Designing and Implementing a Basic CORBA Server Application
Design Considerations for Managing Object State

Each of the three objects in the Basic sample application has its own state management
requirements. This section discusses the object state management requirements for
each.

The RegistrarFactory Object

The RegistrarFactory object does not need to be unique for any particular client
request. It makes sense to keep this object in memory and avoid the expense of
activating and deactivating this object for each client invocation on it. Therefore, the
RegistrarFactory object has the process activation policy.

The Registrar Object

The Basic sample application is meant to be deployed in a small-scale environment.
The Registrar object has many qualities similar to the RegistrarFactory object;
namely, this object does not need to be unique for any particular client request. Also,
it makes sense to avoid the expense of continually activating and deactivating this
object for each invocation on it. Therefore, in the Basic sample application, the
Registrar object has the process activation policy.

The CourseSynopsisEnumerator Object

The fundamental design problem for the University server application is how to handle
a list of course synopses that is potentially too big to be returned to the client
application in a single response. Therefore, the solution centers on the following:

n To begin a conversation between the client application and an object that can
fetch the course synopses from the University database.

n To have the object return an initial batch of synopses to the client application.

n To keep the remainder of the course synopses in memory so that the client
application can retrieve them one batch at a time.

n To have the client application terminate the conversation when finished, thus
freeing machine resources.
3-10 Creating CORBA Server Applications

Design Considerations for the University Server Application
The University server application has the CourseSynopsisEnumerator object,
which implements this solution. Although this object returns an initial batch of
synopses when it is first invoked, this object retains an in-memory context so that the
client application can get the remainder of the synopses in subsequent requests. To
retain an in-memory context, the CourseSynopsisEnumerator object must be stateful;
that is, this object stays in memory between client invocations on it.

When the client is finished with the CourseSynopsisEnumerator object, this object
needs a way to be flushed from memory. Therefore, the appropriate state management
decision for the CourseSynopsisEnumerator object is to assign it the process
activation policy and to implement the CORBA application-controlled deactivation
feature.

Application-controlled deactivation is implemented in the destroy() operation on
that object.

The following code example shows the destroy() operation on the
CourseSynopsisEnumerator object:

void CourseSynopsisEnumerator_i::destroy()
{
 // When the client calls "destroy" on the enumerator,
 // then this object needs to be "destructed".
 // Do this by telling the TP framework that we’re
 // done with this object.

 TP::deactivateEnable();
}

Basic University Sample Application ICF File

The following code example shows the ICF file for the Basic sample application:

module POA_UniversityB
{
 implementation CourseSynopsisEnumerator_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (UniversityB::CourseSynopsisEnumerator);
 };
 implementation Registrar_i
 {
 activation_policy (process);
 transaction_policy (optional);
Creating CORBA Server Applications 3-11

3 Designing and Implementing a Basic CORBA Server Application
 implements (UniversityB::Registrar);
 };
 implementation RegistrarFactory_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (UniversityB::RegistrarFactory);
 };
};

Design Considerations for Handling Durable State
Information

Handling durable state information refers specifically to reading durable state
information from disk at some point during or after the object activation, and writing
it, if necessary, at some point before or during deactivation. The following two objects
in the Basic sample application handle durable state information:

n The Registrar object

n The CourseSynopsisEnumerator object

The following two sections describe the design considerations for how these two
objects handle durable state information.

The Registrar Object

One of the operations on the Registrar object returns detailed course information to
the client application. In a typical scenario, a student who has browsed dozens of
course synopses may be interested in viewing detailed information on perhaps as few
as two or three courses at one time.

To implement this usage scenario efficiently, the Registrar object is defined to have
the get_course_details() operation. This operation accepts an input parameter
that specifies a list of course numbers. This operation then retrieves full course details
from the database and returns the details to the client application. Because the object
in which this operation is implemented is process-bound, this operation should avoid
keeping any state data in memory after an invocation on that operation is complete.
3-12 Creating CORBA Server Applications

Design Considerations for the University Server Application
The Registrar object does not keep any durable state in memory. When the client
application invokes the get_course_details() operation, this object simply fetches
the relevant course information from the University database and sends it to the client.
This object does not keep any course data in memory. No durable state handling is
done via the activate_object() or deactivate_object() operations on this
object.

The CourseSynopsisEnumerator Object

The CourseSynopsisEnumerator object handles course synopses, which this object
retrieves from the University database. The design considerations, with regard to
handling state, involve how to read state from disk. This object does not write any state
to disk.

There are three important aspects of how the CourseSynopsisEnumerator object
works that influence the design choices for how this object reads its durable state:

n The OID for this object contains the search criteria provided in the initial client
request for synopses. The search criteria work as a key to the database: this
object extracts information from the database based on search criteria stored in
the OID.

n All the operations on this object use the course synopses that this object reads
into memory.

n This object must flush course synopses from memory when it is deactivated.

Given these three aspects, it makes sense for this object to:

n Read its durable state information when activated; namely, via the
activate_object() operation on this object.

n Flush the course synopses from memory when deactivated; namely, via the
deactivate_object() operation.

Therefore, when the CourseSynopsisEnumerator object is activated, the
activate_object() operation on this object does the following:

1. Extracts the search criteria from its OID.

2. Retrieves from the database course synopses that match the search criteria.
Creating CORBA Server Applications 3-13

3 Designing and Implementing a Basic CORBA Server Application
Note: If you implement the Tobj_ServantBase::activate_object() or
Tobj_ServantBase::deactivate_object()operations on an object,
remember to edit the implementation header file (that is, the
application_i.h file) and add the definitions for those operations to the
class definition template for the object’s interface.

Using the University Database

Note the following about the way in which the University sample applications use the
University database:

n All of the University sample applications access the University database to
manipulate course and student information. Typically this is a large part of the
code you write in the implementation files. To make the University sample
implementation files simpler, and to help you focus on CORBA features instead
of database code, the samples have wrapped all the code that reads and writes to
the database within a set of classes. The file samplesdb.h in the utils
directory contains the definitions of these classes. These classes make all the
necessary SQL calls to read and write the course and student records in the
University database.

Note: The BEA Tuxedo Teller Application in the Wrapper and Production sample
applications accesses the account information in the University database
directly and does not use the samplesdb.h file.

For more information on the files you build into the Basic server application, see
the Guide to the CORBA University Sample Applications.

n The CourseSynopsisEnumerator object uses a database cursor to find
matching course synopses from the University database. Because database
cursors cannot span transactions, the activate_object() operation on the
CourseSynopsisEnumerator object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to the CourseSynopsisEnumerator object. For more information about
how the University sample applications use transactions, see Chapter 6,
“Integrating Transactions into a CORBA Server Application.”
3-14 Creating CORBA Server Applications

Design Considerations for the University Server Application
How the Basic Sample Application Applies Design
Patterns

The Basic sample application uses the following design patterns:

n Process-Entity

n List-Enumerator

This section describes why these two patterns are appropriate for the Basic sample
application and how this application implements them.

Process-Entity Design Pattern

As mentioned in the section “Process-Entity Design Pattern” on page 1-23, this design
pattern is appropriate in situations where you can have one process object that handles
data entities needed by the client application. The data entities are encapsulated as
CORBA structs that are manipulated by the process object and not by the client
application.

Adapting the Process-Entity design pattern to the Basic sample application allows the
application to avoid implementing fine-grained objects. For example, the Registrar
object is an efficient alternative to a similarly numerous set of course objects. The
processing burden of managing a single, coarse-grained Registrar object is small
relative to the potential overhead of managing hundreds or thousands of fine-grained
course objects.

For complete details about the Process-Entity design pattern, see the Design Patterns
technical article.

List-Enumerator Design Pattern

This design pattern is appropriate in situations where an object has generated an
internal list of data that is potentially too large to return to the client application in a
single response. Therefore, the object must return an initial batch of data to the client
application in one response, and have the ability to return the remainder of the data in
subsequent responses.
Creating CORBA Server Applications 3-15

3 Designing and Implementing a Basic CORBA Server Application
A list-enumerator object must also simultaneously keep track of how much of the data
has already been returned so that the object can return the correct subsequent batch.
List-enumerator objects are always stateful (that is, they remain active and in memory
between client invocations on them) and the server application has the ability to
deactivate them when they are no longer needed.

The list-enumerator design pattern is an excellent choice for the
CourseSynopsisEnumerator object, and implementing this design pattern provides
the following benefits:

n The University server application has a means to return potentially large lists of
course synopses in a way that client applications can handle; namely, in
manageable chunks.

n Each CourseSynopsisEnumerator object is unique, and its content is
determined by the request that caused this object to be created. (In addition, each
CourseSynopsisEnumerator object ID is also unique.) When the client
invokes the get_courses_synopsis() operation on the Registrar object, the
Registrar object returns the following:

l An initial list of synopses.

l An object reference to a CourseSynopsisEnumerator object that can return
the remainder of the synopses.

Therefore, all subsequent invocations go to the correct
CourseSynopsisEnumerator object. This is critical in the situation where the
server process has multiple active instances of the
CourseSynopsisEnumerator class.

Because the get_courses_synopsis() operation returns a unique
CourseSynopsisEnumerator object reference, client requests never collide;
that is, a client request never mistakenly goes to the wrong
CourseSynopsisEnumerator object.

Although the Registrar object has the get_courses_synopsis() operation on it,
the knowledge of the database query and the synopsis list is embedded entirely in the
CourseSynopsisEnumerator object. In this situation, the Registrar object serves
only as a means for the client to get the following:

n The initial list of synopses.

n A reference to a CourseSynopsisEnumerator object that can return the
remainder of the synopses.
3-16 Creating CORBA Server Applications

Design Considerations for the University Server Application
Additional Performance Efficiencies Built into the BEA
Tuxedo System

The BEA Tuxedo system implements a performance efficiency in which data
marshaling between two objects in the same server process is automatically disabled.
This efficiency exists if the following circumstances exist:

n An object reference routes to the same group as the one containing the server
process in which the object reference was created.

n An object in that server process invokes an operation using that object reference
that causes an object to be instantiated in the same process.

An example of this is when the Registrar object creates an object reference to the
CourseSynopsisEnumerator object and causes that object to be instantiated. No
data marshaling takes place in the requests and responses between those two objects.

Preactivating an Object with State

The preactivate object with state feature allows you to preactivate an object before a
client application invokes that object. This feature can be particularly useful for
creating iterator objects, such as the CourseSynopsisEnumerator object in the
University samples.

Preactivating an object with state centers around using the
TP::create_active_object_reference() operation. Typically, objects are not
created in a CORBA server application until a client issues an invocation on that
object. However, by preactivating an object and using the
TP::create_active_object_reference() operation to pass a reference to that
object back to the client, your client application can invoke an object that is already
active and populated with state.

Note: The preactivate object with state feature was first introduced in WebLogic
Enterprise version 4.2.
Creating CORBA Server Applications 3-17

3 Designing and Implementing a Basic CORBA Server Application
How You Preactivate an Object with State

The process for using the preactivation feature is to write code in the server application
that:

1. Includes an invocation of the C++ new statement to create an object.

2. Sets the object’s state.

3. Invokes the TP::create_active_object_reference() operation to obtain a
reference for the newly created object. This object reference can then be returned
to the client application.

Thus, the preactivated object is created in such a way that the TP Framework invokes
neither the Server::create_servant() nor the
Tobj_ServantBase::activate_object() operations for that object.

Usage Notes for Preactivated Objects

Note the following when using the preactivation feature:

n Preactivated objects must have the process activation policy. Therefore, these
objects can be deactivated only at the end of the process or by an invocation to
the TP::deactivateEnable() operation on those objects.

n The object reference created by the
TP::create_active_object_reference() operation is transient. This is
because a preactivated object should exist only for the lifetime of the process in
which it was created, and this object should not be reactivated again in another
server process.

If a client application invokes on a transient object reference after the process in
which the object reference was created is shut down, the TP Framework returns
the following exception:

CORBA::OBJECT_NOT_EXIST

n For objects that are preactivated, the state usually cannot be recovered if a crash
occurs. However, this is acceptable because such objects are typically meant to
be used within the context of a specific series of operations, and then deleted. Its
state has no meaning outside that specific series.

To prevent the situation in which a server has crashed, and a client application
subsequently attempts to invoke the now-deleted object, add the
3-18 Creating CORBA Server Applications

Design Considerations for the University Server Application
TobjS::ActivateObjectFailed exception to the implementation of the
Tobj_ServantBase::activate_object() operation to the object meant for
preactivation. Then, if a client attempts to invoke such an object after a server
crash, in which case the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on that object, the TP
Framework returns the following exception to the client application:

CORBA::OBJECT_NOT_EXIST

n Use preactivation sparingly because, as with all process-bound objects,
preactivation preallocates scarce resources.
Creating CORBA Server Applications 3-19

3 Designing and Implementing a Basic CORBA Server Application
3-20 Creating CORBA Server Applications

CHAPTER
4 Creating Multithreaded
CORBA Server
Applications

This topic includes the following sections:

n Overview

n Developing and Building Multithreaded CORBA Server Applications

n Building and Running the Multithreaded Simpapp Sample Application

n Multithreaded CORBA Server Application Administration
Creating CORBA Server Applications 4-1

4 Creating Multithreaded CORBA Server Applications
Overview

This topic includes the following sections:

n Introduction

n Mechanisms for Supporting Multithreaded CORBA Servers

n Running Single-threaded Server Applications in a Multithreaded System

Introduction

Designing an application to use multiple, independent threads provides concurrency
within an application and can improve overall throughput. Using multiple threads
enables applications to be structured efficiently with threads servicing several
independent tasks in parallel. Multithreading is particularly useful when:

n There is a set of lengthy operations that do not necessarily depend on other
processing.

n The amount of data to be shared is small and identifiable.

n You can break the task into various activities that can be executed in parallel.

n There are occasions where objects must be reentrant.

Historically, industry-wide, multithreaded applications have been complicated to
design and implement. The support provided by BEA Tuxedo simplifies this
complexity by managing threads within a CORBA server environment.

The BEA Tuxedo software supports server applications that have the following
multithreading characteristics (see Figure 4-1):

n Instances of server objects can handle multiple client requests simultaneously.

n $�VHUYHU�REMHFW�FDQ�PDNH�UHFXUVLYH�LQYRFDWLRQV�RQ�LWVHOI�

n Server objects can create and monitor their own threads to implement
parallelism within a servant method.
4-2 Creating CORBA Server Applications

Overview
Figure 4-1 Multithreaded CORBA Server Application

Generally, the BEA Tuxedo software creates and manages threads on behalf of a server
application. Building multithreaded server applications affects how you use the TP
Framework, implement servants, and design objects that create their own threads.

The BEA Tuxedo software allows you to implement either the thread-per-request
model or a thread-per-object model. Each model is explained in “Threading Models”
on page 4-5.

Requirements, Goals, and Concepts

Some computer operations take a substantial amount of time to complete. A
multithreaded design can significantly reduce the wait time between the request and
completion of operations. This is true in situations when operations perform a large
number of I/O operations such as when accessing a database, invoking operations on
Creating CORBA Server Applications 4-3

4 Creating Multithreaded CORBA Server Applications
remote objects, or are CPU-bound on a multiprocessor machine. Implementing
multithreading in a server process can increase the number of requests a server
processes in a fixed amount of time.

The primary requirement for multithreaded server applications is the simultaneous
handling of multiple client requests. The motivations for developing this type of server
are to:

n Simplify program design

This is achieved by allowing multiple server tasks to proceed independently
using conventional programming abstractions.

n Improve throughput

This is achieved by taking advantage of the parallel processing capabilities of
multiprocessor hardware platforms and overlapping computation with
communication.

n Improve perceived response time

By associating separate threads with different server tasks, clients do not block
each other for an extended period of time.

n Simplify coding of remote procedure calls and conversations

Some applications are easier to code when you use separate threads to interact
with different remote procedure calls (RPCs) and conversations.

n Provide simultaneous access to multiple applications

When wrapping legacy applications or databases in a CORBA server,
implementations can interact with more than one legacy application at a time.

n Reduce the number of servers required

Because one server can dispatch multiple service threads, the number of servers
your application requires can be reduced.

However, a multithreaded design is not without cost. In general, multithreaded server
applications require more complicated synchronization strategies than single-threaded
servers. An application developer must write thread-safe code. Additionally, the
overhead of creating a thread to handle a request might be greater than the potential
benefit of parallelism. The actual performance of a particular concurrency model
depends on the following factors:

n Characteristics of requests from the client
4-4 Creating CORBA Server Applications

Overview
Are the requests of long or short duration?

n How threads are implemented

Are the threads managed in the operating system kernel, in a library in user
space, or some combination of both?

n Operating system and network overhead

How much additional overhead is introduced by repeatedly setting up and
tearing down connections?

n Higher-level system configuration factors

Do replication, dynamic load balancing, or other factors affect performance?

While threading libraries provide the mechanisms for creating concurrency models,
developers are ultimately responsible for knowing how to use the mechanisms
successfully. By studying design patterns, application developers can master the subtle
differences and make better design choices for different situations.

Threading Models

There are a number of different models you can use for designing concurrency in
servers. The following sections describe the thread-per-request model, the
thread-per-object model, the thread pool, and how the BEA Tuxedo software
implements each model. A specific server is designed for either the thread-per-request
model or the thread-per-object model.

Thread-Per-Request Model

In this model, each request from a client is processed in a different thread of control.
This model is useful when a server typically receives requests of long duration from
multiple clients. It is less useful for requests of short duration due to the overhead of
creating a new thread for each request. Each time a new request arrives, BEA Tuxedo
associates that request with a thread and executes it. Because a multithreaded
application server process can host more than one thread at a time, it can
simultaneously execute more than one client request at a time. BEA Tuxedo controls
the association of a request to a thread, therefore, applications do not need to explicitly
create threads unless the applications require a greater degree of control than that
provided by BEA Tuxedo.
Creating CORBA Server Applications 4-5

4 Creating Multithreaded CORBA Server Applications
The thread-per-request model requires that you design your application servers to be
thread-safe, which means that you must implement concurrency mechanisms to
control access to data that might be shared among multiple server objects. The need to
use concurrency control mechanisms increases the complexity of the applications
development process. Additionally, if many clients make requests simultaneously, this
design can consume a large number of operating system resources.

Thread-Per-Object Model

The thread-per-object model associates each active object in the server process with a
single thread at any one time. Each request for an object establishes an association
between a dispatch thread and the object. Serial requests for the same object can be
serviced by different threads. A specific thread can be shared by multiple objects.

The Thread Pool

Thread pools are a means to reduce the cost of managing threads. At startup and as
needed, threads are created, assigned, and released to a pool of available threads where
the thread waits until it is needed again to process future requests. Thread pools can
be used to support any of the threading models previously described. For example, a
thread may be allocated for a request in a thread-per-request model, used for the
method execution, and released back to the pool.

Allocating and deallocating threads can be time-consuming and expensive, especially
for short-lived requests and objects. Thread pools provide a means of reducing the cost
of managing threads. During startup, or as needed, threads are created, assigned, and
released by the BEA Tuxedo software to a pool of available threads. A thread exists in
the pool and waits until it is needed to process future requests.

The initial and ultimate size of the BEA Tuxedo thread pool for an application server
process is controlled through settings in the server configuration file. At startup, the
minimum pool size is pre-allocated. As requests arrive to be serviced, the BEA Tuxedo
software assigns a thread from the pool to handle the request. If the pool does not
contain an available thread to process the request and the pool has not been filled, the
BEA Tuxedo software creates a new thread to handle the request. If a request arrives
when there are no threads available in the pool, and no new threads can be created, the
request will be queued until a thread is available.
4-6 Creating CORBA Server Applications

Overview
Thread pools are appropriate for situations in which you want to limit the amount of
system resources that can be consumed for server threading. When a thread pool is
used, client requests are executed concurrently until the number of simultaneous
requests exceeds the number of threads in the pool.

The BEA Tuxedo thread pool has the following characteristics and behavior:

n You can set the maximum size of the pool as a BEA Tuxedo administration
function. You can adjust the size of this pool without making changes to the
application itself.

n The BEA Tuxedo software allocates threads from the pool as necessary. The
threads are used during the processing of a request, and are then released back to
the pool.

n Threads can be serially reused for servicing multiple requests and multiple
objects.

Reentrant Servants

The BEA Tuxedo software provides the capability for an object to invoke operations
on itself recursively. Using this capability requires a great deal of care in how you
implement an object, because the application code must employ the operating system
concurrency mechanisms needed to control access to shared state data. In some cases,
such as with objects that implement the Process or Distribution Adapter design
patterns, there is little or no shared state for an object, and it is relatively easy to support
reentrancy.

BEA Tuxedo software also allows you to enable or prohibit reentrant method
invocations on an active object. Reentrancy is disabled by default. If a request for an
active object is received while the object is currently executing another request in a
different thread, the following rules apply:

n If the _is_reentrant method returns TRUE, a new thread is allocated from the
pool and the request is dispatched to the appropriate method using the same
servant instance. It is the responsibility of the servant implementation code to
ensure the integrity of the state of the object when multiple threads interact with
it.

n If the _is_reentrant method returns FALSE, a new instance of the servant is
created and the method is dispatched to the new instance. This instance is not
automatically deleted. Future reentrant requests may be dispatched to either
instance.
Creating CORBA Server Applications 4-7

4 Creating Multithreaded CORBA Server Applications
Note: The reentrant servant mechanism is available only when a server is started
with the PER_REQUEST concurrency strategy specified.

For information about using this method, see the CORBA Programming Reference.

The Current Object

One of the most important attributes of a multithreaded CORBA server application
environment is ensuring that the Current object is used and managed correctly. This
ensures behavior such as the following:

n Individual threads function within the correct transaction and security contexts.

n The Current object behaves correctly when accessed from different threads.

The BEA Tuxedo product conforms to the multithreading model defined by the ORB
Portability Specification, published by the OMG, which has been incorporated into the
OMG CORBA specification. In the BEA Tuxedo product, operations on interfaces
derived from CORBA::Current have access to the state associated with the thread in
which operations are invoked, not to the state associated with the thread from which
the Current object was obtained. The reason for this behavior is twofold:

n Prevents one thread from manipulating the state of another thread

n Avoids the need to obtain and narrow a new Current object in the thread context
for each method

When used in a multithreaded environments, the behaviors of the following objects are
consistent with the ORB Portability Specification:

n CosTransactions::Current

n SecurityLevel1::Current

n SecurityLevel2::Current

n PortableServer::Current

For example, when an application passes a transaction from one thread to another, the
application should not use the CosTransactions::Current object. Instead, the
application passes the CosTransactions::Control object to the other thread. To
pass the CosTransctions::Current object would only allow the receiving thread to
gain access to the transaction state associated with that thread.
4-8 Creating CORBA Server Applications

Overview
Mechanisms for Supporting Multithreaded CORBA
Servers

This section provides an overview of the following tools, APIs, and administrative
capabilities in BEA Tuxedo CORBA that support multithreaded server applications:

n Context Services

n Classes and Methods in the TP Framework

n Capabilities in the Build Commands

n Tools for Administration

Context Services

You can choose to create and manage your own threads in your object
implementations. Other threads are managed automatically by the BEA Tuxedo
CORBA software. The BEA Tuxedo CORBA software maintains context information
internally for each thread that it creates and maintains. This required context
information is used during the processing of CORBA requests. Since BEA Tuxedo
CORBA has no knowledge of when an application creates and deletes its own threads,
the context services mechanism allows programmers to initialize their own threads
correctly, prior to calling BEA Tuxedo services, and to release any context resources
that are no longer needed when a thread is deleted.

The following set of ORB methods satisfies the thread management requirements.
Together these are called context services:

n ORB::get_ctx()

When an object creates a thread, the object invokes this operation on the ORB to
obtain system context information that the object can pass onto the thread. This
operation must be called from a thread that already has a context. For example,
the thread in which a method was dispatched will already have a context. For
information about using this operation, see ORB::get_ctx() in the CORBA
Programming Reference.

n ORB::set_ctx()

When an object spawns a thread, the spawned thread typically retrieves the
context information from the thread that invoked the get_ctx method. The
Creating CORBA Server Applications 4-9

4 Creating Multithreaded CORBA Server Applications
spawned thread then uses the retrieved context information when invoking
ORB::set_ctx to set the system context in which the spawned thread should
execute. For information about using this operation, see ORB::set_ctx() in the
CORBA Programming Reference.

n ORB::clear_ctx()

When a spawned thread has completed its work, the thread invokes this method
to dissociate itself from the system context. For information about using this
operation, see ORB::clear_ctx() in the CORBA Programming Reference.

n ORB::inform_thread_exit()

When a thread has completed its work, the thread invokes this method to inform
the BEA Tuxedo system that resources associated with an application-managed
thread can be released. For information about using this operation, see
ORB::inform_thread_exit() in the CORBA Programming Reference.

Classes and Methods in the TP Framework

These classes and methods in the BEA Tuxedo TP Framework support multithreaded
server applications:

n ServerBase class

To override the default implementations of the ServerBase class, an application
developer can create a class that derives from ServerBase. In addition to
ServerBase methods already supported, these methods are provided to support
the implementation of multithreaded server applications:

l create_servant_with_id()

l thread_initialize()

l thread_release()

These methods allow you to obtain a high-degree of granularity of control over
the multithreading characteristics of your application. For information on how to
use these methods see ServerBase Class in the CORBA Programming
Reference.

n Tobj_ServantBase class

This class provides these methods to support multithreaded server applications:

l Tobj_ServantBase::_is_reentrant()

l Tobj_ServantBase::_add_ref()
4-10 Creating CORBA Server Applications

Overview
l Tobj_ServantBase::_remove_ref()

For information about using these methods, see Tobj_ServantBase Class in
the CORBA Programming Reference.

Capabilities in the Build Commands

The buildobjserver and buildobjclient commands include the following
thread-management capabilities.

n The buildobjserver command includes platform-specific thread library
support so that server applications are compatible with the multithreading
support in the BEA Tuxedo software.

The buildobjserver command includes command-line options for building
multithreaded or single-threaded server applications.

n The buildobjclient command includes platform-specific thread library
support so that client applications can be compatible with the multithreading
support provided in the BEA Tuxedo software.

Tools for Administration

The BEA Tuxedo system employs configuration files to assemble and run
applications. Typically, the application developer creates these files, and BEA Tuxedo
system administrators modify the contents of the file as necessary to satisfy application
and system requirements.

The control parameters associated with the support of threads specify the following:

n Whether a server should be single-threaded or multithreaded

n The size of the thread pool available for dispatching methods on objects

For more information about threads parameters in the UBBCONFIG file, see “Sample
UBBCONFIG File” on page 4-39.
Creating CORBA Server Applications 4-11

4 Creating Multithreaded CORBA Server Applications
Running Single-threaded Server Applications in a
Multithreaded System

The default behavior of the threading support provided in BEA Tuxedo CORBA is to
emulate a single-threaded server support environment. To run a single-threaded
CORBA application in a multithreaded environment, you do not need to change the
server application code or the configuration files. However, before you run an existing
single-threaded application, you must rebuild it using the buildobjserver and
buildobjclient commands. If you do not specifically enable multithreading for a
server application, the application runs as a single-threaded server.
4-12 Creating CORBA Server Applications

Developing and Building Multithreaded CORBA Server Applications
Developing and Building Multithreaded
CORBA Server Applications

This topic includes the following sections:

n Using the buildobjserver Command

n Using the buildobjclient Command

n Creating Non-reentrant Servants

n Creating Reentrant Servants

n Building and Running the Multithreaded Simpapp Sample Application

Using the buildobjserver Command

The buildobjserver command supports multithreaded CORBA server applications
through the following capabilities:

n Platform-specific Thread Libraries

n Specifying Multithreaded Support

n Specifying an Alternate Server Class

Platform-specific Thread Libraries

Server applications generated by the buildobjserver command are compiled using
the correct platform-specific compiler settings, and are linked using the correct
platform-specific thread support libraries. This ensures compatibility with the shared
libraries provided by the BEA Tuxedo software.
Creating CORBA Server Applications 4-13

4 Creating Multithreaded CORBA Server Applications
Specifying Multithreaded Support

When you create a CORBA server application to support multithreading, you must
specify the -t option on the buildobjserver command when you build the
application. At run time, the BEA Tuxedo system verifies compatibility between the
executable program and the threading model selected in the CORBA server
application configuration file UBBCONFIG. For information on how to set the threading
model in the UBBCONFIG file, see “Sample UBBCONFIG File” on page 4-39.

Note: When you specify -t in your build of a CORBA server application, you should
set the MAXDISPATCHTHREADS parameter in the UBBCONFIG file to a value
greater than 1; otherwise, the CORBA server application will run as a
single-threaded server.

Note: Multithreaded joint client/server implementations are not supported.

If you attempt to start a single-threaded executable with an incompatible threading
model specification in the configuration file, these events occur:

n The BEA Tuxedo software records a warning in the log file.

n The server executable program is started as a single-threaded server.

Specifying an Alternate Server Class

If you implement your own Server class, inheriting from the ServerBase class, you
must specify your alternate Server class in the buildobjserver command using the
-b option. The buildobjserver command provides the following syntax to support
the -b option:

buildobjserver [-v] [-o outfile] [-f {firstfiles|@def-file}]
[-l {lastfiles|@def-file}] [-r rmname] [-b bootserverclass] [-t]

In the preceding syntax, the value for bootserverclass specifies the C++ class to be
used when the CORBA server application is booted. If you do not specify the -b
option, the BEA Tuxedo system creates an instance of the class named Server.

When you specify the -b option, the Tuxedo system creates a main function for the
alternate server class, and your project must supply a header file with the name you
specified for bootserverclass on the -b option. The header file contains the
definition of the alternate C++ class. This alternate Server class must inherit from the
ServerBase class.
4-14 Creating CORBA Server Applications

Developing and Building Multithreaded CORBA Server Applications
For example, if the command line specifies -b AslanServer, the application project
must supply an AslanServer.h file. The AslanServer.h file is an example of a
bootserverclass.h file. A bootserverclass file provides logic similar to this
code sample:

Listing 4-1 Example of a bootserverclass.h File

// File name: AslanServer.h
#include <Server.h>
class AslanServer : public ServerBase {
 public:
 CORBA::Boolean initialize(int argc, char** argv);
 void release();
 Tobj_Servant create_servant(const char* interfaceName);
 Tobj_Servant create_servant_with_id(const char* interfaceName,
 const char* stroid);
 CORBA::Boolean thread_initialize(int argc, char** argv);
 void thread_release();
};

Using the buildobjclient Command

When you use the buildobjclient command to create a client application
executable program, the application is compiled using the correct platform-specific
compiler settings and linked using the correct thread support libraries for your
operating system. This ensures that clients are compatible with the shared libraries
provided by the BEA Tuxedo software.

Creating Non-reentrant Servants

Before you can run any CORBA server application in the BEA Tuxedo CORBA
environment, you must build it using the buildobjserver command.
Creating CORBA Server Applications 4-15

4 Creating Multithreaded CORBA Server Applications
Use the buildobjserver -t option to inform the BEA Tuxedo system that the
CORBA server application is thread safe. The -t option indicates that the application
does not employ shared context data or other programming constructs that are not
thread safe. If you run single-threaded applications that are not thread safe in a
multithreaded environment, you risk data corruption.

If you update configuration files for an application to enable multithreading support,
but the application code has not been updated to indicate that the servant
implementation can support reentrancy, note the following:

n Methods are executed in arbitrary threads assigned by the BEA Tuxedo system.

n Servant implementation code does not necessarily protect an object from
concurrent access to its state. However, active servants are limited to a single
thread of execution at a time.

n You cannot assume that a method is executed in a specific thread. Do not use
storage that depends on or is tied to a specific thread.

n Do not assume that the servant’s activate_object or deactivate_object
methods are executed in the same thread as the request in which they were
originally invoked.

n Additional application-managed threads can be created within a servant method.
Your object implementations must ensure that threads are created, handled, and
destroyed properly.

n An application-managed thread can include invocations on other objects.

n Do not use signals for synchronization; the mixing of signals and threads is not
supported.

Note: The SIGKILL signal to terminate a process is supported. The use of SIGIO is
not supported in BEA Tuxedo CORBA for single or multithreaded
applications.

n Request-level interceptors are invoked by BEA Tuxedo CORBA through the
same thread used by the method.
4-16 Creating CORBA Server Applications

Developing and Building Multithreaded CORBA Server Applications
Creating Reentrant Servants

To create a multithreaded reentrant servant:

n Build the CORBA server application using the buildobjserver command with
the -t option, and modify the UBBCONFIG server configuration file for the
application.

n Update the CORBA server application code to enable reentrancy using the
TobjServantBase::_is_reentrant method.

n Start the server using the thread-per-request threading model, by specifying
CONCURR_STRATEGY = PER_REQUEST in the UBBCONFIG file.

If you do create a multithreaded, reentrant servant, the implementation code for that
object must protect the state of the object, in order to ensure its integrity while multiple
threads interact with it.

Considerations for Client Applications

There are considerations for CORBA client applications running in the BEA Tuxedo
environment:

n Multithreaded CORBA clients using IIOP are supported.

n Multithreaded native CORBA clients are not supported.

n A multithreaded CORBA client is limited to a single bootstrap object.

n A multithreaded CORBA client is limited to a single logon.

n CORBA clients using stub-based invocation are supported.

n CORBA clients using the Dynamic Invocation Interface (DII) are not supported.
Creating CORBA Server Applications 4-17

4 Creating Multithreaded CORBA Server Applications
Building and Running the Multithreaded
Simpapp Sample Application

This topic includes the following sections:

n About the Simpapp Multithreaded Sample

n How the Sample Application Works

n How to Build and Run the Sample Application

n Shutting Down the Sample Application

About the Simpapp Multithreaded Sample

The BEA Tuxedo software provides a multithreaded CORBA sample application,
consisting of a client program and a CORBA server program. The server receives an
alphabetic string from the client and returns the string in uppercase and lowercase
letters. The multithreading capability of simpapp_mt provides parallel processing.
Through this parallelism, a single server process can handle concurrent requests from
multiple clients for multiple objects or for a single object.

Note: The client application in the simpapp_mt sample is not a multithreaded client
application.

How the Sample Application Works

The purpose of a multithreaded server is to handle multiple requests from one or more
clients in a parallel manner. The simpapp_mt sample application is a CORBA
application that demonstrates multithreading functionality, by using the
buildobjserver -t command-line option and using the UBBCONFIG file to specify
concurrency strategy.
4-18 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
The simpapp_mt sample first creates a server process named SimplePerObject and
secondly a server process named SimplePerRequest. The client communicates first
with the SimplePerRequest server and then with the SimplePerObject server.

The thread-per-request server implementation for SimplePerRequest demonstrates
the use of a user-defined server class that implements thread initialization methods.
The SimplePerRequest server process handles each request from a client in a
separate thread of control. Each time a new request arrives, a thread is allocated from
the thread pool to handle the request. Once the request has been processed and the
reply sent, the thread is released back to the pool. This model is useful for servers that
handle long-duration requests from multiple clients.

The simpapp_mt sample application provides an implementation of a CORBA object
that has the following methods:

n The to_upper method accepts a string from the client application and converts
it to uppercase letters.

n The to_lower method accepts a string from the client application and converts
it to lowercase letters.

n The forward_upper method creates an application-managed thread to another
instance of the server and forwards the request received from the client to the
new server instance to convert the string to uppercase letters.

n The forward_lower method creates another instance of the Simple object and
forwards the request received from the client to the new instance to convert the
string to lowercase letters.

Figure 4-2 shows the operation of the simpapp_mt sample application, employing both
the thread-per-object and thread-per-request threading models.
Creating CORBA Server Applications 4-19

4 Creating Multithreaded CORBA Server Applications
Figure 4-2 simpapp_mt Sample Application

OMG IDL Code for the Simpapp Multithreaded Sample Application

The simpapp multithreaded sample application described in this chapter implements
the CORBA interfaces listed in the following table.

Listing 4-2 shows the content of the simple.idl file, describing the CORBA
interface in the simpapp_mt sample application.

Interface Description Action

SimplePerRequestFactory Creates object references to the Simple object find_simple()

SimplePerObjectFactory Creates object references to the Simple object find_simple()

Simple Converts the case of a string to_upper()

to_lower()

forward_upper()

forward_lower()
4-20 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
Listing 4-2 OMG IDL Code for the simpapp_mt Sample Application

#pragma prefix "beasys.com"

interface Simple
{
 //Convert a string to lower case (return a new string)
 string to_lower(in string val);

 //Convert a string to upper case (in place)
 string to_upper(in string val);

 //Use other server to convert string to lower case
 string forward_lower(in string val);

 //Use other server to convert string to upper case
 string forward_upper(in string val);
};

interface SimplePerRequestFactory
{
 Simple find_simple();
};
interface SimplePerObjectFactory
{
 Simple find_simple();
};

How to Build and Run the Sample Application

This section leads you, step-by-step, through the process of building and running the
simpapp_mt sample application. The flowchart summarizes the process and following
sections explain how to perform the tasks.
Creating CORBA Server Applications 4-21

4 Creating Multithreaded CORBA Server Applications
Figure 4-3 Process for Building and Running simpapp_mt

Setting the TUXDIR Environment Variable

Before building and running the simpapp_mt sample application, ensure that the
TUXDIR environment variable is set on your system. Typically, the environment
variable is set during the installation process. You should confirm that the environment
variable defines the correct directory location.

The TUXDIR environment variable must be set to the directory path where you installed
the BEA Tuxedo software. For example:
4-22 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
Windows

TUXDIR=D:\TUXDIR

UNIX

TUXDIR=/usr/local/TUXDIR

Verifying the TUXDIR Environment Variable

Before you run the application, perform the following procedure to ensure that the
environment variable contains the correct information.

Windows

Execute the echo command to show the setting of TUXDIR:

prompt> echo %TUXDIR%

UNIX

1. Execute the ksh command at the prompt to launch the Korn shell.

2. Execute the printenv command to show the setting of TUXDIR:

ksh prompt> printenv TUXDIR

Changing the Setting of the Environment Variable

To change the value of the environment variable:

Windows

Execute the set command to set a new value for TUXDIR:

prompt> set TUXDIR=directorypath

UNIX

1. At the system prompt, execute the ksh command to launch the Korn shell.

2. At the ksh prompt, enter the export command to set the value for the TUXDIR
environment variable:

 ksh prompt> export TUXDIR=directorypath
Creating CORBA Server Applications 4-23

4 Creating Multithreaded CORBA Server Applications
Creating a Working Directory for the Sample Application

Note: The technique of using a work directory is recommended so that you can see
what additional files are created when you run the simpapp multithreaded
sample. After you execute the runme command, compare the set of files in the
installation directory to the set of files in your work directory.

The files required for the simpapp multithreaded sample application are in the
following directories:

Windows

%TUXDIR%\samples\corba\simpapp_mt

UNIX

$TUXDIR/samples/corba/simpapp_mt

Create a working directory containing all of the simpapp multithreaded files.

Windows

You can use Windows Explorer to create a copy of the simpapp_mt directory, or you
can use the command prompt as follows:

1. Create a target working directory for a copy of the simpapp_mt files.

> mkdir work_directory

2. Copy the simpapp_mt files to the working directory.

> copy %TUXDIR%\samples\corba\simpapp_mt* work_directory

3. Change to the working directory.

cd work_directory

4. List all the files in the working directory.

prompt> dir

makefile.mk simple_per_object_i.h
makefile.nt simple_per_object_server.cpp
Readme.txt simple_per_request_i.cpp
runme.cmd simple_per_request_i.h
runme.ksh simple_per_request_server.cpp
simple.idl simple_per_request_server.h
simple_client.cpp thread_macros.cpp
simple_per_object_i.cpp thread_macros.h
4-24 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
UNIX

You can use your user interface tool to create a copy of the simpapp_mt directory, or
you can use the command prompt as follows:

1. Create a target working directory for a copy of the simpapp_mt files.

> mkdir work_directory

2. Copy all simpapp_mt files to the working directory.

> cp $TUXDIR/samples/corba/simpapp_mt/* work_directory

3. Change to the working directory.

cd work_directory

4. List all the files in the working directory.

$ ls

makefile.mk simple_per_object_i.h
makefile.nt simple_per_object_server.cpp
Readme.txt simple_per_request_i.cpp
runme.cmd simple_per_request_i.h
runme.ksh simple_per_request_server.cpp
simple.idl simple_per_request_server.h
simple_client.cpp thread_macros.cpp
simple_per_object_i.cpp thread_macros.h

Table 4-1 lists and describes the simpapp_mt files used to build and run the
application.

Table 4-1 simpapp_mt Files

File Description

makefile.mk (UNIX) Makefile for the simpapp_mt sample
application. Use this file to build the
application.

makefile.nt (Windows) Makefile for the simpapp_mt
sample application. Use this file to build the
application.

Readme.txt Readme file that provides information about
building and running the simpapp_mt sample
application.
Creating CORBA Server Applications 4-25

4 Creating Multithreaded CORBA Server Applications
runme.cmd (Windows) Command file for building and
running the simpapp_mt sample application.

runme.ksh (UNIX) Korn shell script for building and
running the simpapp_mt sample application.

simple.idl Object Management Group (OMG) Interface
Definition Language (IDL) code that declares
the SimplePerRequestFactory,
SimplePerObjectFactory, and Simple
interfaces.

simple_client.cpp CORBA client program source code for the
simpapp_mt sample application.

simple_per_object_i.cpp Source code that includes implementations for
Simple and SimplePerObjectFactory
servants that are to be included in a server. The
CORBA server is started using a
thread-per-object concurrency strategy.

simple_per_object_i.h Source code file for declaring Simple and
SimplePerObjectFactory servants to be
included in a server.

simple_per_object_server.cpp CORBA server program source code for the
simpapp_mt sample application,
thread-per-object concurrency strategy. Set
CONCURR_STRATEGY = PER_OBJECT in
the UBBCONFIG file.

simple_per_request_i.cpp Source code that includes implementations for
Simple and SimplePerRequestFactory
servants that are to be included in a reentrant
server. The reentrant CORBA server is started
using a thread-per-request concurrency
strategy.

simple_per_request_i.h Source code file for declaring Simple and
SimplePerRequestFactory servants to be
included in a reentrant server.

Table 4-1 simpapp_mt Files (Continued)

File Description
4-26 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
Checking Permissions on All the Files

To build and run the simpapp_mt sample application, you must have user and read
permissions on all the files you copied into your working directory. Check the
permissions, and change the permissions if required.

Note: Ensure that the make utility is in your path.

Windows

> attrib -R /S *.*

UNIX

> /bin/ksh

> chmod u+r work_directory/*.*

Executing the runme Command

This section describes the steps required to execute the application end-to-end. Enter
the runme command as follows:

simple_per_request_server.cpp CORBA server program source code for the
simpapp_mt sample application,
thread-per-request concurrency strategy. Set
CONCURR_STRATEGY = PER_REQUEST in
the UBBCONFIG file.

simple_per_request_server.h An example of a bootserverclass.h file,
containing the declarations required for the
user-defined Server class in the simpapp_mt
sample application.

thread_macros.cpp Platform-independent thread convenience
macros that support the simpapp_mt sample
application.

thread_macros.h Source code file for declaring all the classes and
variables for thread convenience macros.

Table 4-1 simpapp_mt Files (Continued)

File Description
Creating CORBA Server Applications 4-27

4 Creating Multithreaded CORBA Server Applications
Windows

> cd work_directory

> ./runme

UNIX

> /bin/ksh

> cd work_directory

> ./runme.ksh

The runme command automates the following steps:

1. Checks the TUXDIR environment variable.

2. Sets the environment variables that are used by this application.

3. Ensures that the proper bin directories are in the PATH.

4. If this is not the first time this script has been run, removes unneeded files from
the directory.

5. Creates a directory to capture the results from running this script.

6. Creates a setenv.ksh file (UNIX) or setenv.bat file (Windows) so that you
can build and run this sample step-by-step.

7. Creates the ubb configuration file for this sample.

8. Creates a file containing the user input for the client.

9. Creates a file with the expected output from the client.

10. Builds the sample.

11. Loads the configuration file.

12. Starts the thread-per-object server.

13. Starts the thread-per-request server.

14. Runs the client and captures the output.

15. Compares the output with the expected output.

16. Shuts down the server application.
4-28 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
17. Captures logs that are generated when you run the sample.

18. Saves the results.

19. Informs the user whether the sample ran successfully.

The simpapp_mt sample application prints the following messages while executing the
runme command:

Testing simpapp_mt
 cleaned up
 prepared
 built
 loaded ubb
 booted
 ran
 shutdown
 saved results
 PASSED

The entire run-time output for the simpapp_mt sample application is stored in the
results directory in your working directory. To see the output created at run time,
examine the following files:

l log—compile, server boot, or server shutdown errors

l output—client application output and exceptions

l ULOG.date—server application errors and exceptions

Table 4-2 and Table 4-3 identify and describe the files created by executing the runme
command.

Table 4-2 Files Created in the Working Directory

File Description

simple_c.cpp Created by the idl command for the
simple.idl file. This module contains the
client stub function for the Simple and
SimplePerRequestFactory interface.

simple_c.h Created by the idl command for the
simple.idl file. This module contains
definitions and prototypes for the Simple and
SimplePerRequestFactory interfaces.
Creating CORBA Server Applications 4-29

4 Creating Multithreaded CORBA Server Applications
simple_s.cpp Created by the idl command for the
simple.idl file. This module contains the
skeleton functions for the Simple_i and
SimplePerRequestFactory_i
implementations.

simple_s.h Created by the idl command for the
simple.idl file. This module contains
definitions and prototypes for the skeleton
classes for the Simple_i and
SimplePerRequestFactory_i interfaces.

simple_client Created by the buildobjclient command
for the simple_c.cpp and
simple_client.cpp files.

simple_per_object_server Created by the buildobjserver command
for the simple_c.cpp, simple_s.cpp,
simple_per_object_i.cpp,
simple_per_object_server.cpp, and
thread_macros.cpp files.

simple_per_request_server Created by the buildobjserver command
for the simple_c.cpp, simple_s.cpp,
simple_per_request_i.cpp,
simple_per_request_server.cpp, and
thread_macros.cpp files.

results directory Created by the runme command to capture the
results from running this script.

adm directory Created by the runme command to contain the
security encryption key database file.

Table 4-2 Files Created in the Working Directory (Continued)

File Description
4-30 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
Table 4-3 Files Created in the Results Directory

Files Description

input Created by the runme command to store the input that
the runme command provides to the C++ client
application.

output Created by the runme command to contain the output
when the runme command executes the C++ client
application.

expected_output Created by the runme command to contain the expected
output when the runme command is executed. The
output file is compared to determine whether the test
passed or failed.

log Created by the runme command to contain the output
generated by the runme command. If the command fails,
check this file and the ULOG file for errors.

setenv.cmd (Windows) Command file to set up environment
variables required to build and run the simpapp_mt
sample application step-by-step.

setenv.ksh (UNIX) Command file to set up environment variables
required to build and run the simpapp_mt sample
application step-by-step.

stderr Contains messages generated by tmboot. If the
-noredirect server option is specified in the
UBBCONFIG file, the fprintf method sends the output
to this file.

stdout Contains messages generated by tmboot. If the
-noredirect server option is specified in the
UBBCONFIG file, the fprintf method sends the output
to this file.

tmsysevt.dat Generated by the tmboot command in the runme
command. It contains filtering and notification rules used
by the TMSYSEVT process.

tuxconfig A binary version of the configuration file.
Creating CORBA Server Applications 4-31

4 Creating Multithreaded CORBA Server Applications
Running the Sample Application Step-by-Step

This section explains how to run the simpapp_mt sample application in step-by-step
mode. You must execute the runme command before running simpapp_mt in
step-by-step mode.

Follow the numbered steps to run the simpapp_mt application:

1. Set the environment variables.

Windows

> ..\results\setenv

UNIX

> ../results/setenv.ksh

2. Execute tmboot -y to launch the application. Information similar to the
following is displayed:

>tmboot -y
Booting all admin and server processes in /work_directory/results/tuxconfig

Booting admin processes ...

exec BBL -A : process id=212 ... Started.

Booting server processes ...

exec TMSYSEVT -A : process id=289 ... Started.
exec TMFFNAME -A -- -N -M : process id=297 ... Started.
exec TMFFNAME -A -- -N : process id=233 ... Started.
exec TMFFNAME -A -- -F : process id=265 ... Started.
exec simple_per_object_server -A : process id=116 ... Started.
exec simple_per_request_server -A : process id=127 ... Started.
exec ISL -A -- -n //MrBeaver:2468 : process id=270 ... Started.
7 processes started.
>

ubb UBBCONFIG file for the simpapp_mt sample application.

ULOG.date ULOG file for storing run-time errors.

Table 4-3 Files Created in the Results Directory (Continued)

Files Description
4-32 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
Table 4-4 describes the server processes started by tmboot.

3. Execute the client application.

Windows

> .\simple_client

UNIX

> ./simple_client

When you execute the client application, messages similar to the following are
displayed:

Listing 4-3 Messages Displayed When simpapp_mt Client Is Executed

Number of simultaneous requests to post (1-50)?
String to convert using thread-per-request server?
Sending 4 deferred forward_lower requests
forward_lower request #0

Table 4-4 Server Processes Started by tmboot

Process Description

TMSYSEVT System EventBroker.

TMFFNAME TMFFNAME server processes:

n Master NameManager—TMFFNAME server
process started when you specify both the -N
option and the -M option.

n SLAVE NameManager—TMFFNAME server
process started when you specify only the -N
option.

n FactoryFinder object—a TMFFNAME
server process started with the -F option
contains this object.

simple_per_object_server Started as a thread-per-object server.

simple_per_request_server Started as a reentrant thread-per-request server.

ISL IIOP listener process.
Creating CORBA Server Applications 4-33

4 Creating Multithreaded CORBA Server Applications
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #1
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #2
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #3
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
Sending 4 deferred forward_upper requests
forward_upper request #0 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #1 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #2 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #3 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
String to convert using thread-per-object server?
Sending 4 deferred forward_lower requests
forward_lower request #0
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #1
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #2
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #3
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
Sending 4 deferred forward_upper requests
forward_upper request #0 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #1 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #2 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ

forward_upper request #3 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ

Shutting Down the Sample Application

Before running another sample application, you should shut down the simpapp_mt
sample application and eliminate all unwanted files from the working directory.

1. To end the application, run the tmshutdown -y command. Information similar to
the following is displayed:
4-34 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application
>tmshutdown -y
Shutting down all admin and server processes in /work_directory/results/tuxconfig

Shutting down server processes ...

Server Id = 5 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 2 Group Id = APP_GRP2 Machine = SITE1: shutdown succeeded.
Server Id = 4 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 3 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 2 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 1 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.

Shutting down admin processes ...

Server Id = 0 Group Id = SITE1 Machine = SITE1: shutdown succeeded.
7 processes stopped.

2. Restore the working directory to its original state.

Windows

> ..\results\setenv
> make -f clean

UNIX

> ../results/setenv.ksh
> make -f makefile.mk clean
Creating CORBA Server Applications 4-35

4 Creating Multithreaded CORBA Server Applications
Multithreaded CORBA Server Application
Administration

This topic includes the following sections:

n Specifying Thread Pool Size

n Specifying a Threading Model

n Specifying the Number of Active Objects

n Sample UBBCONFIG File

Specifying Thread Pool Size

The MAXDISPATCHTHREADS and MINDISPATCHTHREADS parameters for specifying
the maximum and minimum sizes of the thread pool are in the SERVERS section of the
UBBCONFIG file. For examples of how to specify these parameters, see Listing 4-4. A
multithreaded CORBA application uses these values to create and manage the thread
pool.

MAXDISPATCHTHREADS

The MAXDISPATCHTHREADS parameter determines the maximum number of
concurrently dispatched threads that each server process can spawn. When specifying
this parameter, consider the following:

n The value for MAXDISPATCHTHREADS determines the maximum size the thread
pool can grow to be, as it increases in size to accommodate incoming requests.

n The default value for MAXDISPATCHTHREADS is 1. If you specify a value greater
than 1, the system creates and uses a special dispatcher thread. This dispatcher
thread is not included in the number of threads determining the maximum size of
the thread pool.

Note: If you specify a value greater than 1 for MAXDISPATCHTHREADS and do not
supply a value for the CONCURR_STRATEGY threading model parameter, the
4-36 Creating CORBA Server Applications

Multithreaded CORBA Server Application Administration
threading model for the application defaults to thread-per-object. For a
discussion of the CONCURR_STRATEGY threading model parameter, see
“Specifying a Threading Model” on page 4-38.

n Specifying a value of 1 for the MAXDISPATCHTHREADS parameter indicates that
the CORBA server application should be configured as a single-threaded server.

Note: When you build a multithreaded CORBA server application specifying
buildobjserver -t, that server is capable of running in multithreaded
mode. To run as a multithreaded CORBA server application, the
MAXDISPATCHTHREADS parameter in the UBBCONFIG file must be set to a
value greater than 1; if it is not, the server application will run in
single-threaded mode.

n The value you specify for the MAXDISPATCHTHREADS parameter must not be less
than the value you specify for the MINDISPATCHTHREADS parameter.

n The operating system resources limit the maximum number of threads that can
be created in a process. MAXDISPATCHTHREADS should be less than that limit,
minus the number of application managed threads that your application requires.

The value of the MAXDISPATCHTHREADS parameter affects other parameters. For
example, the MAXACCESSORS parameter controls the number of simultaneous accesses
to the BEA Tuxedo system, and each thread counts as one accessor. For a
multithreaded server application, you must account for the number of system-managed
threads that each server is configured to run. A system-managed thread is a thread that
is started and managed by the BEA Tuxedo software, as opposed to threads started and
managed by an application. Internally, BEA Tuxedo manages a pool of available
system-managed threads. When a client request is received, an available
system-managed thread from the thread pool is scheduled to execute the request. When
the request is completed, the system-managed thread is returned to the pool of
available threads.

For example, if that you have 4 multithreaded servers in your system and each server
is configured to run 50 system-managed threads, the accessor requirement for these
servers is the sum total of the accessors, calculated as follows:

50 + 50 + 50 + 50 = 200 accessors
Creating CORBA Server Applications 4-37

4 Creating Multithreaded CORBA Server Applications
MINDISPATCHTHREADS

Use the MINDISPATCHTHREADS parameter to specify the number of server
dispatch threads that are started when the server is initially booted. When you
specify this parameter, consider the following:

l The value for MINDISPATCHTHREADS determines the initial allocation of
threads in the thread pool.

l The separate dispatcher thread that is created when MAXDISPATCHTHREADS is
greater than 1 is not counted as part of the MINDISPATCHTHREADS limit.

l The value you specify for MINDISPATCHTHREADS must not be greater than
the value you specify for MAXDISPATCHTHREADS.

l The default value for MINDISPATCHTHREADS is 0.

Specifying a Threading Model

To specify a threading model, you set the CONCURR_STRATEGY parameter which is
defined in the SERVERS section of the UBBCONFIG file.

Use the CONCURR_STRATEGY parameter to specify the threading model a multithreaded
CORBA server application is to use. The CONCURR_STRATEGY parameter accepts
either of these values:

n CONCURR_STRATEGY = PER_REQUEST

n CONCURR_STRATEGY = PER_OBJECT

When you specify CONCURR_STRATEGY = PER_REQUEST to employ the
thread-per-request model, each invocation on the CORBA server application is
assigned to an arbitrary thread from the threads pool.

When you specify CONCURR_STRATEGY = PER_OBJECT to employ the
thread-per-object model, each active object is associated with a single thread at any
one time. Each request for an object establishes an association between a dispatch
thread and the object.

If the value for MAXDISPATCHTHREADS is greater than one and you do not specify a
value for CONCURR_STRATEGY, the threading model is set to PER_OBJECT.

For more information on the characteristics of threading models, see “Threading
Models” on page 4-5.
4-38 Creating CORBA Server Applications

Multithreaded CORBA Server Application Administration
Specifying the Number of Active Objects

Use the MAXOBJECTS parameter to specify the maximum number of objects per
machine to be accommodated in the Active Object Map tables in the bulletin board.
You can set this value in either the RESOURCES section or the MACHINES section of the
configuration file. The MAXOBJECTS number in the RESOURCES section is a
system-wide setting. Use the MAXOBJECTS number in the MACHINES section to override
the system-wide setting on a per-machine basis.

For a system-wide setting, specify:

*RESOURCES
 MAXOBJECTS number

To override a system-wide setting for a specific machine, specify:

*MACHINES
 MAXOBJECTS = number

The value for number is limited only by the resources of your operating system.

Sample UBBCONFIG File

Listing 4-4 shows a the UBBCONFIG file for the BEA Tuxedo Threads sample
application. The threads-related parameters are presented in boldface text.

Note: The value for the MAXOBJECTS parameter affects the operation of a
multithreaded server. However, this parameter is not specific to multithreaded
servers, since it also affects the operation of single-threaded servers.
Increasing the value for MAXOBJECTS results in the consumption of additional
system resources for any server.

Listing 4-4 Threads Sample Application UBBCONFIG File

*RESOURCES
 IPCKEY 55432
 DOMAINID simpapp
 MAXOBJECTS 100
 MASTER SITE1
 MODEL SHM
Creating CORBA Server Applications 4-39

4 Creating Multithreaded CORBA Server Applications
 LDBAL N

*MACHINES
 "sunstar"
 LMID = SITE1
 APPDIR = "/rusers1/lyon/samples/corba/simpapp_mt"
 TUXCONFIG = "/rusers1/lyon/samples/corba/simpapp_mt/results/tuxconfig"
 TUXDIR = "/usr/local/TUXDIR"
 MAXWSCLIENTS = 10
 MAXACCESSERS = 200

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 APP_GRP2
 LMID = SITE1
 GRPNO = 3

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"
 simple_per_object_server
 SRVGRP = APP_GRP1
 SRVID = 1
 MINDISPATCHTHREADS = 10
 MAXDISPATCHTHREADS = 100
 CONCURR_STRATEGY = PER_OBJECT
 RESTART = N
 simple_per_request_server
4-40 Creating CORBA Server Applications

Multithreaded CORBA Server Application Administration
 SRVGRP = APP_GRP2
 SRVID = 2
 MINDISPATCHTHREADS = 10
 MAXDISPATCHTHREADS = 100
 CONCURR_STRATEGY = PER_REQUEST
 RESTART = N
 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -n //sunbstar:2468 -d /dev/tcp"

*SERVICES
Creating CORBA Server Applications 4-41

4 Creating Multithreaded CORBA Server Applications
4-42 Creating CORBA Server Applications

CHAPTER
5 Security and CORBA
Server Applications

This chapter discusses security and CORBA server applications, using the Security
University sample application as an example. The Security sample application
implements a security model that requires student users of the University sample
application to be authenticated as part of the application login process.

This topic includes the following sections:

n Overview of Security and CORBA Server Applications

n Design Considerations for the University Server Application

Overview of Security and CORBA Server
Applications

Generally, CORBA server applications have little to do with security. Security in the
BEA Tuxedo domain is specified by the system administrator in the UBBCONFIG file,
and client applications are responsible for logging on, or authenticating, to the domain.
None of the security models supported in the BEA Tuxedo system make any
requirements on server applications running in the BEA Tuxedo domain.

However, there may be occasions when implementing or enhancing a security model
in your CORBA application involves adding objects, or adding operations to existing
objects, that are managed by the server application.
Creating CORBA Server Applications 5-1

5 Security and CORBA Server Applications
This chapter shows how the University server application is enhanced to add the notion
of a student, which is incorporated into the client application as a means to identify,
and log in, users of the client application.

For information about how client applications are authenticated into the BEA Tuxedo
domain, see Creating CORBA Client Applications. For information about
implementing a security model in the BEA Tuxedo domain, see Setting Up a BEA
Tuxedo Application.

Design Considerations for the University
Server Application

The design rationale for the Security University sample application is to require users
of the client application to log on before they can do anything. The Security sample
application, therefore, needs to define the notion of a user.

To log on to the application, the client application needs to provide the following to the
security service in the BEA Tuxedo domain (note that the student user of the
application provides only the username and application password):

n Client name

n Username

n An application password

The Security sample application adds an operation, get_student_details(), to the
Registrar object. This operation enables the client application to obtain information
about each student user from the University database after the client application is
logged on to the BEA Tuxedo domain.

Note: The get_student_details() operation has nothing to do with
implementing a security model in the BEA Tuxedo domain. The addition of
this operation is only a supplemental feature added to the Security sample
application. For details about the security model added to the Security sample
application, and how client applications log on to the Security server
application, see Creating CORBA Client Applications.
5-2 Creating CORBA Server Applications

Design Considerations for the University Server Application
The sections that follow explain:

n How the Security University sample application works

n Design considerations for returning student details to the client application

How the Security University Sample Application Works

To implement the Security sample application, the client application adds a logon
dialog with the student end user. This dialog uses the local SecurityCurrent object on
the client machine to invoke operations on the PrincipalAuthenticator object, which is
part of logging on to access the BEA Tuxedo domain. After the user authentication
process, the client application invokes the get_student_details() operation on the
Registrar object to obtain information about each student user.

The University database used in the Security sample application is updated to contain
student information in addition to course information, and is shown in the following
figure:

Course
Information

Student
Information

University Database
Creating CORBA Server Applications 5-3

5 Security and CORBA Server Applications
The get_student_details() operation accesses the student information portion of
the database to obtain student information needed by the client logon operation. The
following figure shows the primary objects involved in the Security sample
application:

A typical usage scenario of the Security sample application may include the following
sequence of events:

1. The client application obtains a reference to the SecurityCurrent object from the
Bootstrap object.

2. The client application invokes the SecurityCurrent object to determine the level
of security that is required by the BEA Tuxedo domain.

3. The client application queries the student user for a student ID and the required
passwords.

4. The client application authenticates the student by obtaining information about
the student from the Authentication Service.

5. If the authentication process is successful, the client application logs on to the
BEA Tuxedo domain.

Client
Application

RegistrarFactory

Registrar

get_student_details()

Database

University Server Application

Student Info

Course Info

SecurityCurrent
Object
5-4 Creating CORBA Server Applications

Design Considerations for the University Server Application
6. The client application invokes the get_student_details() operation on the
Registrar object, passing a student ID, to obtain information about the student.

7. The Registrar object scans the database for student information that matches
the student ID in the client request.

8. If there is a match between the student ID provided in the client application
request and the student information in the database, the Registrar object returns
the struct StudentDetails to the client application. (If the student enters an
ID that does not match the information in the database, the Registrar object
returns a CORBA exception to the client application.)

9. If the Registrar object returns StudentDetails to the client application, the
client application displays a personalized welcome message to the student user.

Design Considerations for Returning Student Details to
the Client Application

The client application needs to provide a means by which to log a user on to the BEA
Tuxedo system so that the user can continue to use the University application. To do
this, the client application needs an identity for the user. In the Security sample
application, this identity is the student ID.

All that is required of the University server application is to return data about a student,
based on the student ID, so that the client application can complete the user
authentication process. Therefore, the OMG IDL for the Security sample application
adds the definition of the get_student_details() operation to the Registrar
object. The primary design consideration for the University server application is based
on the operational scenario described earlier; namely, that one student interacts with
one client application at one time, so there is no need for the server application to deal
with a sizable batch of data to implement the get_student_details() operation.

The get_student_details() operation has the following OMG IDL definition:

struct StudentDetails
 {
 StudentId student_id;
 string name;
 CourseDetailsList registered_courses;
 };
Creating CORBA Server Applications 5-5

5 Security and CORBA Server Applications
5-6 Creating CORBA Server Applications

CHAPTER
6 Integrating
Transactions into a
CORBA Server
Application

This chapter describes how to integrate transactions into a CORBA server application,
using the Transactions University sample application as an example. The Transactions
sample application encapsulates the process of a student registering for a set of
courses. The Transactions sample application does not show all the possible ways to
integrate transactions into a CORBA server application, but it does show two models
of transactional behavior, showing the impact of transactional behavior on the
application in general and on the durable state of objects in particular.

This topic includes the following sections:

n Overview of Transactions in the BEA Tuxedo System

n Designing and Implementing Transactions in a CORBA Server Application

n Integrating Transactions in a CORBA Client and Server Application. This
section describes:

l Making an Object Automatically Transactional

l Enabling an Object to Participate in a Transaction

l Preventing an Object from Being Invoked While a Transaction Is Scoped

l Excluding an Object from an Ongoing Transaction
Creating CORBA Server Applications 6-1

6 Integrating Transactions into a CORBA Server Application
l Assigning Policies

l Opening an XA Resource Manager

l Closing an XA Resource Manager

n Transactions and Object State Management

n Notes on Using Transactions in the BEA Tuxedo System

n User-defined Exceptions

This chapter also presents a section on user-defined exceptions. The Transactions
sample application introduces a user-defined exception, which can be returned to the
client application and that potentially causes a client-initiated transaction to be rolled
back.

Overview of Transactions in the BEA Tuxedo
System

The BEA Tuxedo system provides transactions as a means to guarantee that database
transactions are completed accurately and that they take on all the ACID properties
(atomicity, consistency, isolation, and durability) of a high-performance transaction.
That is, you have a requirement to perform multiple write operations on durable
storage, and you must be guaranteed that the operations succeed; if any one of the
operations fails, the entire set of operations is rolled back.

Transactions typically are appropriate in the situations described in the following list.
Each situation encapsulates a transactional model supported by the BEA Tuxedo
system.

n The client application needs to make invocations on several different objects,
which may involve write operations to one or more databases. If any one
invocation is unsuccessful, any state that is written (either in memory or, more
typically, to a database) must be rolled back.

For example, consider a travel agent application. The client application needs to
arrange for a journey to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such a journey would inevitably require multiple
6-2 Creating CORBA Server Applications

Overview of Transactions in the BEA Tuxedo System
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paris to New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel
all the flight reservations made so far. For example, if the client application
cannot book a flight from Los Angeles to Honolulu on a given date, the client
application needs to cancel the flight reservations made up to that point.

n The client needs a conversation with an object managed by the server
application, and the client needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

l Data is cached in memory or written to a database during or after each
successive invocation.

l Data is written to a database at the end of the conversation.

l The client needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being
maintained in memory across the conversation.

l At the end of the conversation, the client needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an Internet-based online shopping application. The user of
the client application browses through an online catalog and makes multiple
purchase selections. When the user is done choosing all the items he or she
wants to buy, the user clicks on a button to make the purchase, where the user
may enter credit card information. If the credit card check fails (for example, the
user cannot provide valid credit card information), the shopping application
needs a way to cancel all the pending purchase selections or roll back any
purchase transactions made during the conversation.

n Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (And in this situation, the individual
database edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

l Invoking the debit method on one account
Creating CORBA Server Applications 6-3

6 Integrating Transactions into a CORBA Server Application
l Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
a way to roll back the previous debit invocation.

Designing and Implementing Transactions
in a CORBA Server Application

This section explains how to design and implement transactions in a CORBA server
application using the Transactions University sample application as an example. This
section also describes how the Transactions sample application works, and discusses
the design considerations for implementing transactions in it. For additional general
information about transactions, see the section “Integrating Transactions in a CORBA
Client and Server Application” on page 6-10.

The Transactions sample application uses transactions to encapsulate the task of a
student registering for a set of courses. The transactional model used in this application
is a combination of the conversational model and the model in which a single
invocation makes multiple individual operations on a database, as described in the
preceding section.

The Transactions sample application builds on the Security sample application by
adding the following capabilities:

n Students can submit a list of courses for which they want to register. (Each
course is represented by a number.)

n For each course in the list, the University server application checks the
following:

l Whether the course is in the University database

l Whether the student is already registered for the course

l Whether the student exceeds the maximum number of credits he or she can
take

n If the course passes the checks in the preceding list, the University server
application registers the student for the course.
6-4 Creating CORBA Server Applications

Designing and Implementing Transactions in a CORBA Server Application
n If the server application cannot register the student for a course because the
course does not exist in the database or because the student is already registered
for the course, the server application returns to the client application a list of
courses for which the registration process failed. The client application can then
choose whether to commit the transaction to register the student for the courses
for which the registration process succeeds, or to roll back the entire transaction.

n If a course registration fails because the student exceeds the maximum number
of credits he or she can take, the server application returns a CORBA exception
to the client application that provides a brief message explaining why the
registration for the course was not successful. (The server application does not
mark the transaction for rollback only.)

The Transactions sample application shows two ways in which a transaction can be
rolled back:

n Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

n Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returns it to the client. The decision to roll back the
transaction also lies with the client application.

Thus, the Transactions sample application also shows how to implement
user-defined CORBA exceptions. For example, if the student tries to register for
a course that would exceed the maximum number of courses for which the
student can register, the server application returns the TooManyCredits
exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

The sections that follow explain:

n How the Transactions University Sample Application Works

n Transactional Model Used by the Transactions University Sample Application

n Object State Considerations for the University Server Application

n Configuration Requirements for the Transactions Sample Application
Creating CORBA Server Applications 6-5

6 Integrating Transactions into a CORBA Server Application
How the Transactions University Sample Application
Works

To implement the student registration process, the Transactions sample application
does the following:

n The client application obtains a reference to the TransactionCurrent object from
the Bootstrap object.

n When the student submits the list of courses for which he or she wants to
register, the client application:

a. Begins a transaction by invoking the Current::begin() operation on the
TransactionCurrent object

b. Invokes the register_for_courses() operation on the Registrar object,
passing a list of courses

n The register_for_courses() operation on the Registrar object processes
the registration request by executing a loop that does the following iteratively for
each course in the list:

a. Checks to see how many credits the student is already registered for

b. Adds the course to the list of courses for which the student is registered

The Registrar object checks for the following potential problems, which
prevent the transaction from being committed:

l The student is already registered for the course.

l A course in the list does not exist.

l The student exceeds the maximum credits allowed.

n As defined in the application’s OMG IDL, the register_for_courses()
operation returns a parameter to the client application, NotRegisteredList,
which contains a list of the courses for which the registration failed.

If the NotRegisteredList value is empty, the client application commits the
transaction.

If the NotRegisteredList value contains any courses, the client application
queries the student to indicate whether he or she wants to complete the
6-6 Creating CORBA Server Applications

Designing and Implementing Transactions in a CORBA Server Application
registration process for the courses for which the registration succeeded. If the
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client application
rolls back the transaction.

n If the registration for a course has failed because the student exceeds the
maximum number of credits he or she can take, the Registrar object returns a
TooManyCredits exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at a time. This design helps to minimize the
number of remote invocations on the Registrar object.

In implementing this design, the Transactions sample application shows one model of
the use of transactions, which were described in the section “Overview of Transactions
in the BEA Tuxedo System” on page 6-2. The model is as follows:

n The client begins a transaction by invoking the begin() operation on the
TransactionCurrent object, followed by making an invocation to the
register_for_courses() operation on the Registrar object.

The Registrar object registers the student for the courses for which it can, and
then returns a list of courses for which the registration process was unsuccessful.
The client application can choose to commit the transaction or roll it back. The
transaction encapsulates this conversation between the client and the server
application.

n The register_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be rolled
back.
Creating CORBA Server Applications 6-7

6 Integrating Transactions into a CORBA Server Application
Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the
University server application generally needs to consider the implications on object
state, particularly in the event of a rollback. In cases where there is a rollback, the
server application must ensure that all affected objects have their durable state restored
to the proper state.

Because the Registrar object is being used for database transactions, a good design
choice for this object is to make it transactional; that is, assign the always transaction
policy to this object’s interface. If a transaction has not already been scoped when this
object is invoked, the BEA Tuxedo system will start a transaction automatically.

By making the Registrar object automatically transactional, all database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the server
application uses an XA resource manager, and since the object is guaranteed to be in a
transaction when the object writes to a database, the object does not have any rollback
or commit responsibilities because the XA resource manager takes responsibility for
these database operations on behalf of the object.

The RegistrarFactory object, however, can be excluded from transactions because
this object does not manage data that is used during the course of a transaction. By
excluding this object from transactions, you minimize the processing overhead implied
by transactions.

Object Policies Defined for the Registrar Object

To make the Registrar object transactional, the ICF file specifies the always
transaction policy for the Registrar interface. Therefore, in the Transaction sample
application, the ICF file specifies the following object policies for the Registrar
interface:

Activation Policy Transaction Policy

process always
6-8 Creating CORBA Server Applications

Designing and Implementing Transactions in a CORBA Server Application
Object Policies Defined for the RegistrarFactory Object

To exclude the RegistrarFactory object from transactions, the ICF file specifies the
ignore transaction policy for the Registrar interface. Therefore, in the Transaction
sample application, the ICF file specifies the following object policies for the
RegistrarFactory interface:

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sample application uses the Oracle Transaction Manager Server
(TMS), which handles object state data automatically. Using any XA resource
manager imposes specific requirements on how different objects managed by the
server application may read and write data to that database, including the following:

n Some XA resource managers (for example, Oracle) require that all database
operations be scoped within a transaction. This means that the
CourseSynopsisEnumerator object needs to be scoped within a transaction
because this object reads from a database.

n When a transaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA resource manager ensures that all
database updates are made permanent. Likewise, if there is a rollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of a rollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application.

Activation Policy Transaction Policy

process ignore
Creating CORBA Server Applications 6-9

6 Integrating Transactions into a CORBA Server Application
Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracle transaction manager server (TMS).
To use an Oracle database, you must include specific Oracle-provided files in the
server application build process.

For details about building, configuring, and running the Transactions sample
application, see the Guide to the CORBA University Sample Applications. This online
document also contains the UBBCONFIG files for each sample application and explains
the entries in that file.

Integrating Transactions in a CORBA Client
and Server Application

The BEA Tuxedo system supports transactions in the following ways:

n The client or the server application can begin and end transactions explicitly by
using calls on the TransactionCurrent object. For information about the
TransactionCurrent object, see Creating CORBA Client Applications and Using
CORBA Transactions.

n You can assign transactional policies to an object’s interface so that when the
object is invoked, the BEA Tuxedo system can start a transaction automatically
for that object, if a transaction has not already been started, and commit or roll
back the transaction when the method invocation is complete. You use
transactional policies on objects in conjunction with an XA resource manager
and database when you want to delegate all the transaction commit and rollback
responsibilities to that resource manager.

n Objects involved in a transaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of a transaction, the object
can invoke the rollback_only() operation on the TransactionCurrent object to
mark the transaction for rollback only. This prevents the current transaction from
being committed. An object may need to mark a transaction for rollback if an
6-10 Creating CORBA Server Applications

Integrating Transactions in a CORBA Client and Server Application
entity, typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

n Objects involved in a transaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of a transaction that is about to be committed, these
objects are polled by the BEA Tuxedo system immediately before the resource
managers prepare to commit the transaction. (In this sense, polling means
invoking the object’s Tobj_ServantBase::deactivate_object() operation
and passing a reason value.)

When an object is polled, the object may veto the current transaction by
invoking the rollback_only() operation on the TransactionCurrent object. In
addition, if the current transaction is to be rolled back, objects have an
opportunity to skip any writes to a database. If no object vetos the current
transaction, the transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to get the transactional behavior you want in your objects. Note
that these policies apply to an interface and, therefore, to all operations on all objects
implementing that interface.

Note: If a server application manages an object that you want to be able to participate
in a transaction, the Server object for that application must invoke the
TP::open_xa_rm() and TP::close_xa_rm() operations. For more
information about database connections, see “Opening an XA Resource
Manager” on page 6-15.

Making an Object Automatically Transactional

The BEA Tuxedo system provides the always transactional policy, which you can
define on an object’s interface to have the BEA Tuxedo system start a transaction
automatically when that object is invoked and a transaction has not already been
scoped. When an invocation on that object is completed, the BEA Tuxedo system
commits or rolls back the transaction automatically. Neither the server application, nor
the object implementation, needs to invoke the TransactionCurrent object in this
situation; the BEA Tuxedo system automatically invokes the TransactionCurrent
object on behalf of the server application.

Assigning the always transactional policy to an object’s interface is appropriate when:
Creating CORBA Server Applications 6-11

6 Integrating Transactions into a CORBA Server Application
n The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is
invoked.

n You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’s interface in the Implementation Configuration File (ICF file):

Note: Database cursors cannot span transactions. The
CourseSynopsisEnumerator object in the CORBA University sample
applications uses a database cursor to find matching course synopses from the
University database. Because database cursors cannot span transactions, the
activate_object() operation on the CourseSynopsisEnumerator object
reads all matching course synopses into memory. Note that the cursor is
managed by an iterator class and is thus not visible to the
CourseSynopsisEnumerator object.

Enabling an Object to Participate in a Transaction

If you want an object to be able to be invoked within the scope of a transaction, you
can assign the optional transaction policies to that object’s interface. The optional
transaction policy may be appropriate for an object that does not perform any database
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when specified in the ICF file for that object’s
interface, to make an object optionally transactional:

Activation Policy Transaction Policy

process, method, or
transaction

always
6-12 Creating CORBA Server Applications

Integrating Transactions in a CORBA Client and Server Application
If the object does perform database write operations, and you want the object to be able
to participate in a transaction, assigning the always transactional policy is generally a
better choice. However, if you prefer, you can use the optional policy and
encapsulate any write operations within invocations on the TransactionCurrent object.
That is, within your operations that write data, scope a transaction around the write
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object is not already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of a transaction, all the database read operations are
nontransactional, and therefore more streamlined.

Note: Some XA resource managers used in the BEA Tuxedo system require that any
object participating in a transaction scope their database read operations, in
addition to write operations, within a transaction. (However, you can still
scope your own transactions.) For example, using an Oracle TMS with the
BEA Tuxedo system has this requirement. When choosing the transaction
policies to assign to your objects, make sure you are familiar with the
requirements of the XA resource manager you are using.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from a transaction. If such an
object is invoked during a transaction, the object returns an exception, which may
cause the transaction to be rolled back. The BEA Tuxedo system provides the never
transaction policy, which you can assign to an object’s interface to specifically prevent
that object from being invoked within the course of a transaction, even if the current
transaction is suspended.

Activation Policy Transaction Policy

process, method, or
transaction

optional
Creating CORBA Server Applications 6-13

6 Integrating Transactions into a CORBA Server Application
This transaction policy is appropriate for objects that write durable state to disk that
cannot be rolled back; for example, for an object that writes data to a disk that is not
managed by an XA resource manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if a transaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the ICF file:

Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the
course of a transaction but also keep that object from being a part of the transaction. If
such an object is invoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The BEA Tuxedo system provides the ignore transaction
policy for this purpose.

The ignore transaction policy may be appropriate for an object such as a factory that
typically does not write data to disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of a transaction.
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

process or method never

Activation Policy Transaction Policy

process or method ignore
6-14 Creating CORBA Server Applications

Integrating Transactions in a CORBA Client and Server Application
Assigning Policies

For information about how to create an ICF file and specify policies on objects, see the
section “Step 4: Define the In-memory Behavior of Objects” on page 2-14.

Opening an XA Resource Manager

If an object’s interface has the always or optional transaction policy, you must
invoke the TP::open_xa_rm() operation in the Server::initialize() operation
in the Server object. The resource manager is opened using the information provided
in the OPENINFO parameter, which is in the GROUPS section of the UBBCONFIG file.
Note that the default version of the Server::initialize() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participates in a
transaction—the object typically has the optional transaction policy—you still need
to include an invocation to the TP::open_xa_rm() operation. In that invocation,
specify the NULL resource manager.

Closing an XA Resource Manager

If your Server object’s Server::initialize() operation opens an XA resource
manager, you must include the following invocation in the Server::release()
operation:

TP::close_xa_rm();
Creating CORBA Server Applications 6-15

6 Integrating Transactions into a CORBA Server Application
Transactions and Object State Management

If you need transactions in your CORBA client and server application, you can
integrate transactions with object state management in a few different ways. In general,
the BEA Tuxedo system can automatically scope the transaction for the duration of an
operation invocation without requiring you to make any changes to your application’s
logic or the way in which the object writes durable state to disk.

The following sections address some key points regarding transactions an object state
management.

Delegating Object State Management to an XA Resource
Manager

Using an XA resource manager, such as Oracle which is used in the CORBA
University sample applications, generally simplifies the design problems associated
with handling object state data in the event of a rollback. Transactional objects can
always delegate the commit and rollback responsibilities to the XA resource manager,
which greatly eases the task of implementing a server application. This means that
process- or method-bound objects involved in a transaction can write to a database
during transactions, and can depend on the resource manager to undo any data written
to the database in the event of a transaction rollback.

Waiting Until Transaction Work Is Complete Before
Writing to the Database

The transaction activation policy is a good choice for objects that maintain state in
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign the transaction activation policy to
an object, the object:

n Is brought into memory when it is first invoked within the scope of a transaction

n Remains in memory until the transaction is either committed or rolled back
6-16 Creating CORBA Server Applications

Transactions and Object State Management
When the transaction work is complete, the BEA Tuxedo system invokes each
transaction-bound object’s Tobj_ServantBase::deactivate_object() operation,
passing a reason code that can be either DR_TRANS_COMMITTING or
DR_TRANS_ABORT. If the variable is DR_TRANS_COMMITTING, the object can invoke its
database write operations. If the variable is DR_TRANS_ABORT, the object skips its write
operations.

Assigning the transaction activation policy to an object may be appropriate in the
following situations:

n You want the object to write its durable state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

n You want to provide the object with the ability to veto a transaction that is about
to be committed.

If the BEA Tuxedo system passes the reason DR_TRANS_COMMITTING, the object
can, if necessary, invoke the rollback_only() operation on the
TransactionCurrent object. Note that if you do make an invocation to the
rollback_only() operation from within the
Tobj_ServantBase::deactivate_object() operation, the
Tobj_ServantBase::deactivate_object() operation is not invoked again.

n You have an object that is likely to be invoked multiple times during the course
of a single transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

To give an object the ability to wait until the transaction is committing before writing
to a database, assign the following policies to that object’s interface in the ICF file:

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside the Tobj_ServantBase::deactivate_object() operation.
The only valid invocations transaction-bound objects can make inside the
Tobj_ServantBase::deactivate_object() operation are write
operations to the database.

Activation Policy Transaction Policy

transaction always or optional
Creating CORBA Server Applications 6-17

6 Integrating Transactions into a CORBA Server Application
Also, if you have an object that is involved in a transaction, the Server object
that manages that object must include invocations to open and close,
respectively, the XA resource manager, even if the object does not write any
data to disk. (If you have a transactional object that does not write data to disk,
you specify the NULL resource manager.) For more information about
opening and closing an XA resource manager, see the sections “Opening an
XA Resource Manager” on page 6-15 and “Closing an XA Resource
Manager” on page 6-15.

Notes on Using Transactions in the BEA
Tuxedo System

Note the following about integrating transactions into your CORBA client/server
applications:

n The following transactions are not permitted in the BEA Tuxedo system:

l Nested transactions

You cannot start a new transaction if an existing transaction is already active.
You may start a new transaction if you first suspend the existing one;
however, the object that suspends the transaction is the only object that can
subsequently resume the transaction.

l Recursive transactions

A transactional object cannot call a second object, which in turn calls the
first object.

n The object that starts a transaction is the only entity that can end the transaction.
(In a strict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that is invoked within
the scope of a transaction may suspend and resume the transaction. While the
transaction is suspended, the object can start and end other transactions.
However, you cannot end a transaction in an object unless you began the
transaction there.

n Objects can be involved with only one transaction at one time. The BEA Tuxedo
system does not support concurrent transactions.
6-18 Creating CORBA Server Applications

Notes on Using Transactions in the BEA Tuxedo System
n The BEA Tuxedo system does not queue requests to objects that are currently
involved in a transaction. If a nontransactional client application attempts to
invoke an operation on an object that is currently in a transaction, the client
application receives the following error message:

CORBA::OBJ_ADAPTER

If a client that is in a transaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receives the
following error message:

CORBA::INVALID_TRANSACTION

n For transaction-bound objects, you might consider doing all state handling in the
Tobj_ServantBase::deactivate_object() operation. This makes it easier
for the object to handle its state properly, since the outcome of the transaction is
known at the time that the Tobj_ServantBase::deactivate_object()
operation is invoked.

n For method-bound objects that have several operations, but only a few that affect
the object’s durable state, you may want to consider the following:

l Assign the optional transaction policy.

l Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

n Transaction rollbacks are asynchronous. Therefore, it is possible for an object to
be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

n If an object with the always transaction policy is involved in a transaction that
is started by the BEA Tuxedo system, and not the client application, note the
following:

If an exception is raised inside an operation on that object, the client application
receives an OBJ_ADAPTER exception. In this situation, the BEA Tuxedo system
automatically rolls back the transaction. However, the client application is
completely unaware that a transaction has been scoped in the BEA Tuxedo
domain.
Creating CORBA Server Applications 6-19

6 Integrating Transactions into a CORBA Server Application
n If the client application initiates a transaction, and the server application marks
the transaction for a rollback and returns a CORBA exception, the client
application receives only a transaction rollback exception but not the CORBA
exception.

Note: In the WebLogic Enterprise version 4.2 software, no workaround exists for
this situation. We recommend that applications perform as much data
validation as possible before starting a transaction.

n Note the following restriction on a transactional object that has the
TP::deactivateEnable method:

If the TP::deactivateEnable method is invoked during a transaction, the
object is deactivated when the transaction ends. However, if any methods are
invoked on the object between the time that the TP::deactivateEnable
method is called and the time that the transaction is committed, the object is
never deactivated.

User-defined Exceptions

The Transactions sample application includes an instance of a user-defined exception,
TooManyCredits. This exception is thrown by the server application when the client
application tries to register a student for a course, and the student has exceeded the
maximum number of courses for which he or she can register. When the client
application catches this exception, the client application rolls back the transaction that
registers a student for a course. This section explains how you can define and
implement user-defined exceptions in your CORBA client/server application, using
the TooManyCredits exception as an example.

Including a user-defined exception in a CORBA client/server application involves the
following steps:

1. In your OMG IDL file, define the exception and specify the operations that can use
it.

2. In the implementation file, include code that throws the exception.

3. In the client application source file, include code that catches and handles the
exception.
6-20 Creating CORBA Server Applications

User-defined Exceptions
The sections that follow explain and give examples of the first two steps.

Defining the Exception

In the OMG IDL file for your client/server application:

1. Define the exception and define the data sent with the exception. For example, the
TooManyCredits exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for the TooManyCredits exception contains the following OMG IDL
statements:

exception TooManyCredits
{
 unsigned short maximum_credits;
};

2. In the definition of the operations that throw the exception, include the exception.
The following example shows the OMG IDL statements for the
register_for_courses() operation on the Registrar interface:

NotRegisteredList register_for_courses(
 in StudentId student,
 in CourseNumberList courses)
 raises (TooManyCredits);

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that
throws the exception, as in the following example.

if (...) {
 UniversityZ::TooManyCredits e;
 e.maximum_credits = 18;
 throw e;
 }
Creating CORBA Server Applications 6-21

6 Integrating Transactions into a CORBA Server Application
6-22 Creating CORBA Server Applications

CHAPTER
7 Wrapping a BEA
Tuxedo Service in a
CORBA Object

This chapter presents an overview of one way in which you can call a BEA Tuxedo
service from within an object managed by a CORBA server application, using the
Wrapper sample application as an example.

This topic includes the following sections:

n Overview of Wrapping a BEA Tuxedo Service

This section describes:

l Designing the Object That Wraps the BEA Tuxedo Service

l Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls

l Implementing the Operations That Send Messages to and from the BEA
Tuxedo Service

n Design Considerations for the Wrapper Sample Application

The Wrapper sample application delegates a set of billing operations to a BEA Tuxedo
ATMI teller application, which contains a set of services that perform basic billing
procedures. The approach in this chapter shows one technique for incorporating a BEA
Tuxedo application into a BEA Tuxedo domain.

The examples shown in this chapter demonstrate a one-to-one relationship between
operations on a CORBA object and calls to specific services within an application. In
a sense, the calls to the BEA Tuxedo services are wrapped as operations on a CORBA
Creating CORBA Server Applications 7-1

7 Wrapping a BEA Tuxedo Service in a CORBA Object
object; thus, the object delegates its work to the BEA Tuxedo application. If you have
a set of BEA Tuxedo services that you want to use in a CORBA server application, the
technique shown in this chapter may work for you.

This chapter does not provide any details about BEA Tuxedo ATMI applications. For
information about how to build and configure BEA Tuxedo ATMI applications, and
for information about how they work, see the BEA Tuxedo ATMI information set,
which is included in the BEA Tuxedo online documentation.

Overview of Wrapping a BEA Tuxedo Service

The process described in this chapter for wrapping a set of BEA Tuxedo services
encompasses the following steps:

1. Designing the object that structures a set of tasks that are oriented to the BEA
Tuxedo system as operations on that object.

2. Creating the message buffer used by the BEA Tuxedo services. You use this
message buffer to send and receive messages to and from the BEA Tuxedo
services. You can allocate the buffer in the object’s constructor in the
application’s implementation file.

3. Implementing on the object the operations that send and receive messages to and
from the BEA Tuxedo services. This step also includes choosing the
implementation for how the BEA Tuxedo services are called.

The following figure shows a high-level view of the relationship among the client
application, the CORBA object managed by the CORBA server application, and the
BEA Tuxedo ATMI application that implements the services called from the CORBA
object.
7-2 Creating CORBA Server Applications

Overview of Wrapping a BEA Tuxedo Service
Designing the Object That Wraps the BEA Tuxedo Service

The first step described in this chapter is designing the object that wraps the calls to the
BEA Tuxedo ATMI application. For example, the goal for the Wrapper sample
application is to add billing capability to the student registration process, which can be
done by delegating a set of billing operations to an existing BEA Tuxedo ATMI teller
application.

The BEA Tuxedo ATMI teller application used by the Wrapper sample application
contains the following services:

n CURRBALANCE—obtains the current balance of a given account

n CREDIT—credits an account by a given dollar amount

n DEBIT—debits an account by a given dollar amount

To wrap these services, the Wrapper sample application includes a separate OMG IDL
file that defines a new interface, Teller, which has the following operations:

n get_balance()

n credit()

n debit()

Each of these operations on the Teller object maps one-to-one to calls on the services
in the BEA Tuxedo ATMI teller application.

A typical usage scenario of the Teller object may be the following:

Client Application

operation1();
operation1();
operation3();

M3 Server Application BEA TUXEDO Teller
Application

CORBA Object

operation1()
 {
 tpcall (op1());
 }
operation2()
 {
 tpcall (op2());
 }
operation3()
 {
 tpcall (op3());
 }

OP1 Service

OP3 Service

OP2 Service
Creating CORBA Server Applications 7-3

7 Wrapping a BEA Tuxedo Service in a CORBA Object
1. The client application invokes the register_for_courses() operation on the
Registrar object, which requires a student ID.

2. As part of the registration process, the Registrar object invokes the
get_balance() operation on the Teller object, passing an account number.

3. The get_balance() operation on the Teller object puts the account number
into a message buffer and sends the buffer to the BEA Tuxedo ATMI teller
application’s CURRBALANCE service.

4. The BEA Tuxedo ATMI teller application receives the message buffer, extracts
its contents, and makes the appropriate call to the CURRBALANCE service.

5. The CURRBALANCE service obtains from the University database the current
balance of the account and gives it to the BEA Tuxedo ATMI teller application.

6. The BEA Tuxedo ATMI teller application inserts the current balance into a
message buffer and returns it to the Teller object.

7. The Teller object extracts the current balance amount from the message buffer
and returns the current balance to the Registrar object.

For more design information about the Teller object and the Wrapper sample
application, see the section “Design Considerations for the Wrapper Sample
Application” on page 7-8.

Creating the Buffer in Which to Encapsulate BEA Tuxedo
Service Calls

The next step described in this chapter is creating the buffer within which messages are
sent between the object and the BEA Tuxedo service. There are a number of buffer
types that may be used by various BEA Tuxedo ATMI applications, and the examples
used in this chapter are based on the FML buffer type. For more information about
buffer types in the BEA Tuxedo system, see the BEA Tuxedo information set.

In your application implementation file, you need to allocate the chosen buffer type.
You can allocate the buffer in the object’s constructor, because the buffer you allocate
does not need to be unique to any particular Teller object instance. This allocation
operation typically includes specifying the buffer type, passing any flags appropriate
for the procedure call to the BEA Tuxedo service, and specifying a buffer size.
7-4 Creating CORBA Server Applications

Overview of Wrapping a BEA Tuxedo Service
You also need to add to your implementation’s header file the definition of the variable
that represents the buffer.

The following code example shows the constructor for the Wrapper application’s
Teller object that allocates the BEA Tuxedo buffer, m_tuxbuf:

Teller_i::Teller_i() :
 m_tuxbuf((FBFR32*)tpalloc("FML32", "", 1000))
{
 if (m_tuxbuf == 0) {
 throw CORBA::INTERNAL();
 }
}

Note the following about the line that allocates the FML buffer:

The object’s implementation file should also deallocate the buffer in the destructor, as
in the following statement from the Wrapper application implementation file:

tpfree((char*)m_tuxbuf);

Implementing the Operations That Send Messages to
and from the BEA Tuxedo Service

The next step is implementing the operations on the object that wraps calls to the BEA
Tuxedo ATMI application. In this step, you choose the implementation of how the
BEA Tuxedo services are called from the object. The Wrapper sample application uses
the tpcall implementation.

Code Description

tpalloc Allocates the buffer.

"FML32" Specifies the FML buffer type.

"" Typically enclose any flags passed to the BEA Tuxedo service. In
this example, no flags are passed.

1000 Specifies the buffer size in bytes.
Creating CORBA Server Applications 7-5

7 Wrapping a BEA Tuxedo Service in a CORBA Object
An operation on an object that wraps a BEA Tuxedo service typically includes
statements that do the following:

n Fill the message buffer with the data that you want to send to the BEA Tuxedo
service.

n Call the BEA Tuxedo service. The following arguments are included in the call:

a. The BEA Tuxedo service that you want to invoke.

b. The message buffer to be sent to the BEA Tuxedo service.

c. The message buffer to be returned from the BEA Tuxedo service.

d. The size of the buffer in which the BEA Tuxedo service response is to be
placed.

n Extract the response from the BEA Tuxedo service.

n Return the results to the client application.

The following example shows the implementation of the get_balance() operation in
the Wrapper application Teller object. This operation retrieves the balance of a
specific account, and the BEA Tuxedo service being called is CURRBALANCE.

CORBA::Double Teller_i::get_balance(BillingW::AccountNumber account)
{
 // "marshal" the "in" parameters (account number)
 Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);
 long size = Fsizeof32(tuxbuf);
 // Call the CURRBALANCE Tuxedo service
 if (tpcall("CURRBALANCE", (char*)tuxbuf, 0,
 (char**)&tuxbuf, &size, 0)) {
 throw CORBA::PERSIST_STORE();
 }
 // "unmarshal" the "out" parameters (current balance)
 CORBA::Double currbal;
 Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);
 return currbal;
}

The statement in the following code example fills the message buffer, m_tuxbuf, with
the student account number. For information about FML, see the BEA Tuxedo ATMI
FML Function Reference.

Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);
7-6 Creating CORBA Server Applications

Overview of Wrapping a BEA Tuxedo Service
The following statement calls the CURRBALANCE BEA Tuxedo service, via the tpcall
implementation, passing the message buffer. This statement also specifies where the
BEA Tuxedo service response is to be placed, which in this example is also the same
buffer as the one in which the request was sent.

if (tpcall("CURRBALANCE", (char*)tuxbuf, 0,
 (char**)&tuxbuf, &size, 0)) {
 throw CORBA::PERSIST_STORE();
 }

The following statement extracts the balance from the returned BEA Tuxedo message
buffer:

Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);

The last line in the get_balance() operation returns the results to the client
application:

return currbal;

Restrictions

Note the following restrictions regarding how you can incorporate BEA Tuxedo
services within a BEA Tuxedo domain:

n You may not combine object implementations and BEA Tuxedo services within
the same server application. The BEA Tuxedo services may only exist within a
separate BEA Tuxedo server application in the same domain as the CORBA
server application.

n You may not include the tpreturn() or tpforward() BEA Tuxedo
implementations within an object that calls a BEA Tuxedo service.
Creating CORBA Server Applications 7-7

7 Wrapping a BEA Tuxedo Service in a CORBA Object
Design Considerations for the Wrapper
Sample Application

The basic design considerations for the Wrapper sample application are based on the
scenario that is described in this section. When a student registers for a course, the
Registrar object performs, as part of its registration process, invocations to the
Teller object, which charges the student’s account for the course.

This section describes the design for the Wrapper sample application, which
incorporates an additional server application, Billing, into the configuration.
Therefore, the Wrapper sample application consists of the following four server
applications:

n University, which has the RegistrarFactory, Registrar, and
CourseSynopsisEnumerator objects

n Billing, which has the TellerFactory and Teller objects

n BEA Tuxedo ATMI Teller Application, which has the CURRBALANCE, CREDIT,
and DEBIT services

n The Oracle Transaction Manager Server (TMS)

In addition, the UBBCONFIG file for the Wrapper sample application specifies the
following groups:

n ORA_GRP, which contains the University server application, the BEA Tuxedo
ATMI Teller application, and the Oracle TMS. Since these three processes are
involved in transactions on the University database, they must all be in the same
group, along with the database itself.

n APP_GRP, which contains the Billing server application. This application does
not need to be in ORA_GRP, because this application does not interact with the
University database.

The configuration of the BEA Tuxedo domain in the Wrapper sample application is
shown in the following figure.
7-8 Creating CORBA Server Applications

Design Considerations for the Wrapper Sample Application
Incorporating a BEA Tuxedo ATMI application into the University sample
applications makes sense from the standpoint of using the Process-Entity design
pattern. BEA Tuxedo ATMI applications generally implement the Process-Entity
design pattern, which are also used in the University sample applications.

The University database is updated to include a new table containing account
information for each student. Therefore, when services in the BEA Tuxedo ATMI
Teller Application process billing data, they perform transactions using the University
database.

How the Wrapper University Sample Application Works

A typical usage scenario in the Wrapper sample application encompasses the
following sequence of events:

1. After the student logon procedure, the client application invokes the
get_student_details() operation on the Registrar object. Included in the
implementation of the get_student_details() operation is code that retrieves:

l The student’s account number from the student table in the database

University Server BEA TUXEDO Teller
Application

CURRBALANCE
Service

CREDIT Service

DEBIT Service

CourseSynopsisEnumerator
Object

Registrar Object

RegistrarFactory Object

Billing Server

Teller Object

TellerFactory Object

Database

ORA_GRP APP_GRP

Oracle7
Transaction

Manager Server
Student Info

Account Info

Course Info
Creating CORBA Server Applications 7-9

7 Wrapping a BEA Tuxedo Service in a CORBA Object
l The student’s balance from the account table in the database, which is
obtained by invoking the get_balance() operation on the Teller object

2. The student browses courses, as with the Basic sample application, and identifies
a list of courses for which he or she wants to register.

3. The client application sends a request to the Registrar object, as with the
Transactions sample application scenario, to invoke the
register_for_courses() operation. The request continues to include only a
list of course numbers and a student ID.

4. While registering the student for the list of courses, the
register_for_courses() operation invokes:

l The get_balance() operation on the Teller object, to make sure that the
student does not have a delinquent account

l The debit() operation on the Teller object, which is managed by the
Billing server application to bill for courses

5. The get_balance() and debit() operations on the Teller object each send a
request to the BEA Tuxedo ATMI Teller application. Encapsulated in the request
is an FML buffer containing the appropriate calls, including the account number
calls to, respectively, the CURRBALANCE and DEBIT services in the BEA Tuxedo
ATMI Teller application.

6. The CURRBALANCE and DEBIT services perform the appropriate database calls to,
respectively, obtain the current balance and debit the student’s account to reflect
the charges for the courses for which he or she has registered.

If the student has a delinquent account, the Registrar object returns the
DelinquentAccount exception to the client application. The client application
then rolls back the transaction.

If the debit() operation fails, the Teller object invokes the
rollback_only() operation on the TransactionCurrent object. Because the
Teller and Registrar objects are scoped within the same transaction, this
rollback affects the entire registration process and thus prevents the situation
where there is an inconsistent database (showing, for example, that the student is
registered for the course, but the student’s account balance has not been debited
for the course).

7. If no exceptions have been raised, the Registrar object registers the student for
the desired courses.
7-10 Creating CORBA Server Applications

Design Considerations for the Wrapper Sample Application
Interface Definitions for the Billing Server Application

The following interface definitions are defined for the Billing server application:

n The TellerFactory object, whose only operation is find_teller(). The
find_teller() operation works exactly the same as the find_registrar()
operation in the University server RegistrarFactory object.

n The Teller object, which, as mentioned earlier, implements the following
operations:

l debit()

l credit()

l current_balance()

Like the Registrar object, the Teller object has no state data and does not
have a unique object ID (OID).

Additional Design Considerations for the Wrapper Sample Application

The following additional considerations influence the design of the Wrapper sample
application:

n The Registrar object needs a way to send requests to the Teller object to
handle billing operations.

n The University server application and the BEA Tuxedo ATMI teller application
need access to the same database. Therefore, for course registration transactions
to work properly, both server applications need to be in the same server group as
the Oracle TMS and the University database.

Both of these considerations have implications on the UBBCONFIG file for the Wrapper
sample application. The following sections discuss these and other additional design
considerations in detail.

Sending Requests to the Teller Object

Up until now, all the objects in the University server application have been defined in
the same server process. Therefore, for one object to send a request to another object
is fairly straightforward, and is summarized in the following steps, using the
Registrar and CourseSynopsisEnumerator objects as an example:
Creating CORBA Server Applications 7-11

7 Wrapping a BEA Tuxedo Service in a CORBA Object
1. The Registrar object creates an object reference to the
CourseSynopsisEnumerator object.

2. Using the newly created object reference, the Registrar object sends the request
to the CourseSynopsisEnumerator object.

3. If the CourseSynopsisEnumerator object is not in memory, the TP Framework
invokes the Server::create_servant() operation on the Server object to
instantiate the CourseSynopsisEnumerator object.

However, now that there are two server processes running, and an object in one process
needs to send a request to an object managed by the second process, the procedure is
not quite so straightforward. For example, the notion of getting an object reference to
an object in another server process has important implications. For one, the second
server process has to be running when the request is made. Also, the factory for the
object in the other server process must be available.

The Wrapper sample application addresses this by incorporating the following
configuration and design elements:

n The University server application gets the object reference to the
TellerFactory object in the University Server object’s
Server::initialize() operation. The University server application then
caches the TellerFactory object reference. This introduces a performance
optimization because, otherwise, the Registrar object would need to do the
following each time it needs a TellerFactory object:

l Invoke the resolve_initial_references() operation on the Bootstrap
object to get the FactoryFinder object.

l Invoke the find_one_factory_by_id() operation on the FactoryFinder
object to obtain a reference to a TellerFactory object.

n The Billing server process is started before the University server process is
started. When the Registrar object subsequently invokes the TellerFactory
object, the Registrar object uses the object reference acquired by the
Server::initialize() operation (described in the preceding list item). You
specify in the UBBCONFIG file the order in which server processes are started.

n To handle billing during the course registration process, the
register_for_courses() and get_student_details() operations on the
Registrar object are modified to include code that invokes operations on the
Teller object.
7-12 Creating CORBA Server Applications

Design Considerations for the Wrapper Sample Application
Exception Handling

The Wrapper sample application is designed to handle the situation in which the
amount owed by the student exceeds the maximum allowed. If the student tries to
register for a course when he or she owes more than is permitted by University, the
Registrar object generates a user-defined DelinquentAccount exception. When
this exception is returned to the client application, the client application rolls back the
transaction. For information about how to implement user-defined exceptions, see the
section “User-defined Exceptions” on page 6-20.

Setting Transaction Policies on the Interfaces in the Wrapper Sample Application

Another consideration that affects the performance of the Wrapper sample application
is setting the appropriate transaction policies for the interfaces of the objects in that
application. The Registrar, CourseSynopsisEnumerator, and Teller objects are
configured with the always transaction policy. The RegistrarFactory and
TellerFactory objects are configured with the ignore transaction policy, which
prevents the transactional context from being propagated to these objects, which do not
need to be included in transactions.

Configuring the University and Billing Server Applications

As mentioned earlier, the Billing server application is configured in a group separate
from the group containing the University database and the University application,
BEA Tuxedo ATMI Teller application, and Oracle Transaction Manager Server
(TMS) application.

However, since the Billing server application participates in the transactions that
register students for courses, the Billing server application must include invocations to
the TP::open_xa_rm() and TP::close_xa_rm() operations in the Server object.
This is a requirement for any server application that manages an object that is included
in any transaction. If that object does not perform any read or write operations on a
database, you can specify the NULL resource manager in the following locations:

n In the appropriate group definition in the UBBCONFIG file

n In an argument to the buildobjserver command when you build the server
application

For information about building, configuring, and running the Wrapper sample
application, see the Guide to the CORBA University Sample Applications.
Creating CORBA Server Applications 7-13

7 Wrapping a BEA Tuxedo Service in a CORBA Object
7-14 Creating CORBA Server Applications

CHAPTER
8 Scaling a BEA Tuxedo
CORBA Server
Application

This chapter shows how you can take advantage of several key scalability features of
the BEA Tuxedo system to make a CORBA server application highly scalable, using
the Production University sample application as an example. The Production sample
application uses these scalability features to achieve the following goals:

n To add a parallel processing capability, enabling the BEA Tuxedo domain to
process multiple client requests simultaneously

n To spread the processing load on the server applications in the Production
sample application across multiple machines

This topic includes the following sections:

n Overview of the Scalability Features Available in the BEA Tuxedo System

n Scaling a BEA Tuxedo Server Application. This section describes:

l Replicating Server Processes and Server Groups

l Scaling the Application Via Object State Management

l Factory-based Routing

n How the Production Server Application Can Be Scaled Further

n Choosing Between Stateless and Stateful Objects
Creating CORBA Server Applications 8-1

8 Scaling a BEA Tuxedo CORBA Server Application
Overview of the Scalability Features
Available in the BEA Tuxedo System

Supporting highly scalable applications is one of the strengths of the BEA Tuxedo
system. Many applications may perform well in an environment characterized by 1 to
10 server processes, and 10 to 100 client applications. However, in an enterprise
environment, applications need to support:

n Hundreds of server processes

n Tens of thousands of client applications

n Millions of objects

Deploying an application with such demands quickly reveals the resource
shortcomings and performance bottlenecks in your application. The BEA Tuxedo
system supports such large-scale deployments in several ways, three of which are
described in this chapter as follows:

n Replicated server processes and server groups

n Object state management

n Factory-based routing

Other features provided in the BEA Tuxedo system to make an application highly
scalable include the IIOP Listener/Handler, which is summarized in Getting Started
with BEA Tuxedo CORBA Applications and fully described in Setting Up a BEA
Tuxedo Application. See also Scaling, Distributing, and Tuning CORBA Applications.

Scaling a BEA Tuxedo Server Application

This section explains how to scale an application to meet a significantly greater
processing capability, using the Production sample application as an example. The
basic design goal for the Production sample application is to greatly scale up the
number of client applications it can accommodate by doing the following:
8-2 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
n Processing in parallel and on one machine client requests on multiple objects
that implement the same interface.

n Directing requests on behalf of some students to one machine, and other students
to other machines.

n Adding more machines across which to spread the processing load.

To accommodate these design goals, the Production sample application does the
following:

n Replicates the University, Billing, and BEA Tuxedo Teller Application server
processes within the groups in which they are configured.

n Replicates the groups described above on an additional machine.

n Implements a stateless object model to scale up the number of client requests the
server process can manage simultaneously.

n Assigns unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups. This makes
these objects available on a per-client-application (and not per-process) basis,
thereby accommodating a parallel-processing capability:

l RegistrarFactory

l Registrar

l TellerFactory

l Teller

n Implements factory-based routing to direct client requests on behalf of some
students to one machine, and other students to another machine.

Note: To make the Production sample application easy for you to use, this
application is configured on the BEA Tuxedo software kit to run on one
machine, using one database. The examples shown in this chapter, however,
show running this application on two machines using two databases.

The design of the Production sample application is set up so that it can be
configured to run on several machines and to use multiple databases. Changing
the configuration to multiple machines and databases involves modifying the
UBBCONFIG file and partitioning the databases, and is described in “How the
Production Server Application Can Be Scaled Further” on page 8-22.
Creating CORBA Server Applications 8-3

8 Scaling a BEA Tuxedo CORBA Server Application
The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meets its scalability goals. The first section that follows
provides a description of the OMG IDL changes implemented in the Production
sample application.

OMG IDL Changes for the Production Sample Application

The only OMG IDL changes for the Production sample application are limited to the
find_registrar() and find_teller() operations on, respectively, the
RegistrarFactory and TellerFactory objects. These two operations are modified
to require, respectively, a student ID and account number, which is needed to
implement factory-based routing. See the section “Factory-based Routing” on
page 8-12 to read about how the Production sample application implements and uses
factory-based routing.

Replicating Server Processes and Server Groups

The BEA Tuxedo system offers a wide variety of choices for how you may configure
your server applications, such as:

n One machine with one server process that implements one interface

n One machine with multiple server processes implementing one interface

n One machine with multiple server processes implementing multiple interfaces,
with or without factory-based routing

n Multiple machines with multiple server processes and multiple interfaces, with
or without factory-based routing

In summary:

n To add more parallel processing capability to your client/server application,
replicate your server processes.

n To add more machines to your deployment environment, add more groups and
implement factory-based routing.
8-4 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
The following sections describe replicated server processes and groups, and also
explain how you can configure them in the BEA Tuxedo system.

Replicated Server Processes

When you replicate the server processes in your application:

n You obtain a means to balance the load of incoming requests on that server
application. As requests arrive in the BEA Tuxedo domain for the server group,
the BEA Tuxedo system routes the request to the least busy server process
within that group.

n You can improve the server application’s performance. Instead of having one
server process that can process one client request at one time, you can have
multiple server processes available that can process multiple client requests
simultaneously. (Note that to make this work, you need to make each object
unique, which you can do by having your server application’s factory assign
unique OIDs.)

n You obtain a useful failover protection in the event that one of the server images
stops.

To achieve the full benefit of replicated server processes, make sure that the objects
instantiated by your server application generally have unique IDs. This way, a client
invocation on an object can cause the object to be instantiated on demand, within the
bounds of the number of server processes that are available, and not queued up for an
already active object.

Figure 8-1 shows the following:

n The University server application, BEA Tuxedo Teller Application, and Oracle
TMS server processes are replicated within the ORA_GRP group.

n The Billing server process is replicated within the APP_GRP group.

Both groups are shown in this figure as running on a single machine.
Creating CORBA Server Applications 8-5

8 Scaling a BEA Tuxedo CORBA Server Application
Figure 8-1 Replicated Server Groups in the Production Sample

When a request arrives for either of these groups, the BEA Tuxedo domain has several
server processes available that can process the request, and the BEA Tuxedo domain
can choose the server process that is least busy.

In Figure 8-1, note the following:

n At any time, there may be no more than one instance of the RegistrarFactory,
Registrar, TellerFactory, or Teller objects within a given server process.

n There may be any number of CourseSynopsisEnumerator objects in any
University server process.

Database

RegistrarFactory

Registrar

TellerFactory

Teller

BEA TUXEDO
Teller Application
debit()
credit()
current_balance()

University Server Billing Server

Production Machine

CourseSynopsys
Enumerator

ORA_GRP APP_GRP

Oracle7
Transaction

Manager Server
8-6 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
Replicated Server Groups

The notion of server groups is specific to the BEA Tuxedo system and adds value to a
CORBA implementation; server groups are an important part of the scalability features
of the BEA Tuxedo system. Basically, to add more machines to a deployment, you
need to add more groups.

Figure 8-2 shows the Production sample application groups replicated on another
machine, as specified in the application’s UBBCONFIG file, as ORA_GRP2 and
APP_GRP2.

Figure 8-2 Replicating Server Groups Across Machines

In Figure 8-2, the only difference between the content of the groups on Production
Machines 1 and 2 is the database. The database for Production Machine 1 contains
student and account information for a subset of students. The database for Production
Machine 2 contains student and account information for a different subset of students.
(The course information table in both databases is identical.) Note that the student
information in a given database may be completely unrelated to the account
information in the same database.

Production Machine 1

University
Server Billing Server

BEA TUXEDO
Teller

Application

Database 1

APP_GRP1ORA_GRP1

Production Machine 2

University
Server Billing Server

BEA TUXEDO
Teller

Application

Database 2

APP_GRP2ORA_GRP2

Oracle7
Transaction

Manager Server

Oracle7
Transaction

Manager Server
Creating CORBA Server Applications 8-7

8 Scaling a BEA Tuxedo CORBA Server Application
The way in which server groups are configured, where they run, and the ways in which
they are replicated is specified in the UBBCONFIG file. When you replicate a server
group, you can do the following:

n Have a means to spread processing load for a given application or set of
applications across additional machines.

n Use factory-based routing to send one set of requests on a given interface to one
machine, and another set of requests on the same interface to another machine.

The effect of having multiple server groups includes the following:

n When a client request arrives in the BEA Tuxedo domain, the BEA Tuxedo
system checks the group ID specified in the object reference.

n The BEA Tuxedo domain sends the request to the least busy server process
within the group to which the request is routed that can process the request.

The section “Factory-based Routing” on page 8-12 shows how the Production sample
application uses factory-based routing to spread the application’s processing load
across multiple machines.

Configuring Replicated Server Processes and Groups

To configure replicated server processes and groups in your BEA Tuxedo domain:

1. Bring your application’s UBBCONFIG file into a text editor, such as WordPad.

2. In the GROUPS section, specify the names of the groups you want to configure.

3. In the SERVERS section, enter the following information for the server process
you want to replicate:

l A server application name.

l The GROUP parameter, which specifies the name of the group to which the
server process belongs. If you are replicating a server process across multiple
groups, specify the server process once for each group.

l The SRVID parameter, which specifies a numeric identifier, giving the server
process a unique identity.

l The MIN parameter, which specifies the number of instances of the server
process to start when the application is booted.
8-8 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
l The MAX parameter, which specifies the maximum number of server
processes that can be running at any one time.

Thus the MIN and MAX parameters determine the degree to which a given server
application can process requests on a given object in parallel. During run time,
the system administrator can examine resource bottlenecks and start additional
server processes, if necessary. In this sense, the application is designed so that
the system administrator can scale it.

The following example shows lines from the GROUPS and SERVERS sections of the
UBBCONFIG file for the Production sample application.

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

*SERVERS
 # By default, activate 2 instances of each server
 # and allow the administrator to activate up to 5
 # instances of each server
 DEFAULT:
 MIN = 2
 MAX = 5
 tellp_server
 SRVGRP = ORA_GRP1
 SRVID = 10
 RESTART = N
 tellp_server
 SRVGRP = ORA_GRP2
Creating CORBA Server Applications 8-9

8 Scaling a BEA Tuxedo CORBA Server Application
 SRVID = 10
 RESTART = N
 billp_server
 SRVGRP = APP_GRP1
 SRVID = 10
 RESTART = N
 billp_server
 SRVGRP = APP_GRP2
 SRVID = 10
 RESTART = N
 univp_server
 SRVGRP = ORA_GRP1
 SRVID = 20
 RESTART = N
univp_server
 SRVGRP = ORA_GRP2
 SRVID = 20
 RESTART = N

Scaling the Application Via Object State Management

As stated in Chapter 1, “CORBA Server Application Concepts,” object state
management is a fundamentally important concern of large-scale client/server systems
because it is critically important that such systems achieve optimized throughput and
response time. This section explains how you can use object state management to
increase the scalability of the objects managed by a BEA Tuxedo server application,
using the Registrar and Teller objects in the Production sample applications as an
example.

The following table summarizes how you can use the object state management models
supported in the BEA Tuxedo system to achieve major gains in scalability in your BEA
Tuxedo applications.
8-10 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
To achieve scalability gains, the Registrar and Teller objects are configured in the
Production server application to have the method activation policy. The method
activation policy assigned to these two objects results in the following behavior
changes:

n Whenever these objects are invoked, they are instantiated by the BEA Tuxedo
domain in the appropriate server group.

n After the invocation is complete, the BEA Tuxedo domain deactivates these
objects.

State Model How You Can Use It to Achieve Scalability

Method-bound Method-bound objects are brought into the machine’s memory only
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state data
for that object is flushed from memory.

You can use method-bound objects to create a stateless server model
in your application, in which thousands of objects are managed by
your application. From the client application view, all the objects are
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application are in memory at any given
moment.

A method-bound object is said in this document to be a stateless
object.

Process-bound Process-bound objects remain in memory from the time they are first
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with a large amount of state data can remain in memory to service
multiple client invocations, and the system’s resources need not be
tied up reading and writing the object’s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can also be considered
stateful, since they can remain in memory between invocations on
them within the scope of a transaction.)
Creating CORBA Server Applications 8-11

8 Scaling a BEA Tuxedo CORBA Server Application
With the Basic through the Wrapper sample applications, the Registrar object was
process-bound. All client requests on that object invariably went to the same object
instance in the machine’s memory. The Basic sample application design may be
adequate for a small-scale deployment. However, as client application demands
increase, client requests on the Registrar object eventually become queued, and
response time drops.

However, when the Registrar and Teller objects are stateless, and the server
processes that manage these objects are replicated, these objects can be made available
to process client requests on them in parallel. The only constraint on the number of
simultaneous client requests that these objects can handle is the number of server
processes that are available that can instantiate these objects. These stateless objects,
thereby, make for more efficient use of machine resources and reduced client response
time.

Most importantly, so that the BEA Tuxedo system can instantiate copies of the
Registrar and Teller objects in each of the replicated server processes, each copy
of these objects must be unique. To make each instance of these objects unique, the
factories for those objects must assign unique object IDs to them. This, and other
design considerations on these two objects, are described in the section “Additional
Design Considerations for the Registrar and Teller Objects” on page 8-18.

Factory-based Routing

Factory-based routing is a powerful feature that provides a means to send a client
request to a specific server group. Using factory-based routing, you can spread that
processing load for a given application across multiple machines, because you can
determine the group, and thus the machine, in which a given object is instantiated.

You can use factory-based routing to expand upon the variety of load-balancing and
scalability capabilities in the BEA Tuxedo system. In the case of the Production
sample application, you can use factory-based routing to send requests to register one
subset of students to one machine, and requests for another subset of students to
another machine. As you add machines to ramp up your application’s processing
capability, the BEA Tuxedo system makes it easy to modify the factory-based routing
in your application to add more machines.
8-12 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
The chief benefit of factory-based routing is that it provides a simple means to scale
up an application, and invocations on a given interface in particular, across a growing
deployment environment. Spreading the deployment of an application across
additional machines is strictly an administrative function that does not require any
recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in your
client/server application is in choosing the value on which routing is based. The
sections that follow describe how factory-based routing works, using the Production
sample application, which uses factory-based routing in the following way:

n Client application requests to the Registrar object are routed based on the
student ID. That is, requests on behalf of one subset of students go to one group;
and requests on behalf of another subset of students go to another group.

n Requests to the Teller object are routed based on the account number. That is,
billing requests on behalf of one subset of accounts go to one group; and
requests on behalf of another subset of accounts go to another group.

How Factory-based Routing Works

Your factories implement factory-based routing by changing the way they create
object references. All object references contain a group ID, and by default the group
ID is the same as the factory that creates the object reference. However, using
factory-based routing, the factory creates an object reference that includes routing
criteria that determines the group ID. Then when client applications send an invocation
using such an object reference, the BEA Tuxedo system routes the request to the group
ID specified in the object reference. This section focuses on how the group ID is
generated for an object reference.

To implement factory-based routing, you need to coordinate the following:

n Data in the INTERFACES and ROUTING sections of the UBBCONFIG file.

n Groups, machines, and databases configured in the UBBCONFIG file.

n How the factory specifies routing criteria. The interface definition for the factory
needs to specify the parameter that represents the routing criteria used to
determine the group ID.

To describe the data that needs to be coordinated, the following two sections discuss
configuring for factory-based routing in the UBBCONFIG file, and implementing
factory-based routing in the factory.
Creating CORBA Server Applications 8-13

8 Scaling a BEA Tuxedo CORBA Server Application
Configuring for Factory-based Routing in the UBBCONFIG file

For each interface for which requests are routed, you need to establish the following
information in the UBBCONFIG file:

n Details about the data in the routing criteria

n For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, the UBBCONFIG file needs to specify the
following data in the INTERFACES and ROUTING sections, and also in how groups and
machines are identified:

1. The INTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies what kinds
of criteria the interface routes on. This section specifies the routing criteria via an
identifier, FACTORYROUTING, as in the following example:

INTERFACES
 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID
 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two
interfaces in the Production sample in which factory-based routing is used. The
FACTORYROUTING identifier specifies the names of the routing values, which are
STU_ID and ACT_NUM, respectively.

2. The ROUTING section specifies the following data for each routing value:

l The TYPE parameter, which specifies the type of routing. In the Production
sample, the type of routing is factory-based routing. Therefore, this
parameter is defined to FACTORY.

l The FIELD parameter, which specifies the name that the factory inserts in the
routing value. In the Production sample, the field parameters are
student_id and account_number, respectively.

l The FIELDTYPE parameter, which specifies the data type of the routing
value. In the Production sample, the field types for student_id and
account_number are long.

l The RANGES parameter, which specifies the values that are routed to each
group.
8-14 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
The following example shows the ROUTING section of the UBBCONFIG file used
in the Production sample application:

ROUTING
 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"
 ACT_NUM
 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The preceding example shows that Registrar object references for students
with IDs in one range are routed to one server group, and Registrar object
references for students with IDs in another range are routed to another group.
Likewise, Teller object references for accounts in one range are routed to one
server group, and Teller object references for accounts in another range are
routed to another group.

3. The groups specified by the RANGES identifier in the ROUTING section of the
UBBCONFIG file need to be identified and configured. For example, the
Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GRP1,
and ORA_GRP2. These groups need to be configured, and the machines on
which they run need to be identified.

The following example shows the GROUPS section of the Production sample
UBBCONFIG file, in which the ORA_GRP1 and ORA_GRP2 groups are
configured. Notice how the names in the GROUPS section match the group names
specified in the ROUTING section; this is critical for factory-based routing to
work correctly. Furthermore, any change in the way groups are configured in an
application must be reflected in the ROUTING section. (Note that the Production
sample packaged with the BEA Tuxedo software is configured to run entirely on
one machine. However, you can easily configure this application to run on
multiple machines.)

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
 LMID = SITE1
 GRPNO = 3
Creating CORBA Server Applications 8-15

8 Scaling a BEA Tuxedo CORBA Server Application
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing by the way the invocation to the
TP::create_object_reference() operation is implemented. This operation has
the following C++ binding:

CORBA::Object_ptr TP::create_object_reference (
 const char* interfaceName,
 const PortableServer::oid &stroid,
 CORBA::NVlist_ptr criteria);

The third parameter to this operation, criteria, specifies a list of named values to be
used for factory-based routing. Therefore, the work of implementing factory-based
routing in a factory is in building the NVlist.

As stated previously, the RegistrarFactory object in the Production sample
application specifies the value STU_ID. This value must match exactly the following
in the UBBCONFIG file:

n The routing name, type, and allowable values specified by the FACTORYROUTING
identifier in the INTERFACES section.

n The routing criteria name, field, and field type specified in the ROUTING section.

The RegistrarFactory object inserts the student ID into the NVlist using the
following code:

// put the student id (which is the routing criteria)
// into a CORBA NVList:
CORBA::NVList_var v_criteria;
TP::orb()->create_list(1, v_criteria.out());
CORBA::Any any;
8-16 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
any <<= (CORBA::Long)student;
v_criteria->add_value("student_id", any, 0);

The RegistrarFactory object has the following invocation to the
TP::create_object_reference() operation, passing the NVlist created in the
preceding code example:

// create the registrar object reference using
// the routing criteria :
CORBA::Object_var v_reg_oref =
 TP::create_object_reference(
 UniversityP::_tc_Registrar->id(),
 object_id,
 v_criteria.in()
);

The Production sample application also uses factory-based routing in the
TellerFactory object to determine the group in which Teller objects should be
instantiated based on an account number.

Note: It is possible for an object with a given interface and OID to be simultaneously
active in two different groups, if those two groups both contain the same object
implementation. (However, if your factories generate unique OIDs, this
situation is very unlikely.) If you need to guarantee that only one object
instance of a given interface name and OID is available at any one time in your
domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that a given object implementation is in only one group. This assures that if
multiple clients have an object reference containing a given interface name
and OID, the reference is always routed to the same object instance.

To enable routing on an object’s OID, specify the OID as the routing criterion
in the TP::create_object_reference() operation, and set up the
UBBCONFIG file appropriately.

What Happens at Run Time

When you implement factory-based routing in a factory, the BEA Tuxedo system
generates an object reference. The following example shows how the client application
gets an object reference to a Registrar object when factory-based routing is
implemented:

1. The client application invokes the RegistrarFactory object, requesting a
reference to a Registrar object. Included in the request is a student ID.
Creating CORBA Server Applications 8-17

8 Scaling a BEA Tuxedo CORBA Server Application
2. The RegistrarFactory inserts the student ID into an NVlist, which is used as
the routing criteria.

3. The RegistrarFactory invokes the TP::create_object_reference()
operation, passing the Registrar interface name, a unique OID, and the
NVlist.

4. The BEA Tuxedo system compares the contents of the routing tables with the
value in the NVlist to determine a group ID.

5. The BEA Tuxedo system inserts the group ID into the object reference.

When the client application subsequently does an invocation on an object using the
object reference, the BEA Tuxedo system routes the request to the group specified in
the object reference.

Note: Be careful how you implement factory-based routing if you use the
Process-Entity design pattern. The object can service only those entities that
are contained in the group’s database.

Additional Design Considerations for the Registrar and
Teller Objects

The principal considerations that influence the design of the Registrar and Teller
objects include:

n How to ensure that the Registrar and Teller objects work properly for the
Production deployment environment; namely, across multiple replicated server
processes and multiple groups. Given that the University and Billing server
processes are replicated, the design must consider how these two objects should
be instantiated.

n How to ensure that client requests for registration and billing operations for a
given student go to the correct server group, given that the two server groups in
the Production BEA Tuxedo domain each deal with different databases.

The primary implications of these considerations are that these objects must:

n Have unique object IDs (OIDs)

n Be method-bound; that is, have the method activation policy assigned to them
8-18 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
The remainder of this section discusses these considerations and implications in detail.

Instantiating the Registrar and Teller Objects

In University server applications prior to the Production sample application, the
run-time behavior of the Registrar and Teller objects was fairly simple:

n Each object was process-bound, meaning that each was activated the first time it
was invoked, and it stayed in memory until the server process in which it ran
was shut down.

n Since there was only one server group running in the BEA Tuxedo domain, and
only one University and Billing server process in the group, all client requests
were directed to the same objects. As multiple client requests arrived in the BEA
Tuxedo domain, these objects each processed one client request at one time.

n Because there was only one instance of each object in the server processes in
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, since the University and Billing server processes are now replicated, the
BEA Tuxedo domain must have a means to differentiate between multiple instances of
the Registrar and Teller objects. That is, if there are two University server
processes running in a group, the BEA Tuxedo domain must have a means to
distinguish between, say, the Registrar object running in the first University server
process and the Registrar object running in the second University server process.

The way to provide the BEA Tuxedo domain with the ability to distinguish among
multiple instances of these objects is to make each object instance unique.

To make each Registrar and Teller object unique, the factories for those objects
must change the way in which they make object references to them. For example, when
the RegistrarFactory object in the Basic sample application created an object
reference to the Registrar object, the TP::create_object_reference()
operation specified an OID that consisted only of the string registrar. However, in
the Production sample application, the same TP::create_object_reference()
operation uses a generated unique OID instead.

A consequence of giving each Registrar and Teller object a unique OID is that
there may be multiple instances of these objects running simultaneously in the BEA
Tuxedo domain. This characteristic is typical of the stateless object model, and is an
example of how the BEA Tuxedo domain can be highly scalable and at the same time
offer high performance.
Creating CORBA Server Applications 8-19

8 Scaling a BEA Tuxedo CORBA Server Application
And last, since unique Registrar and Teller objects need to be brought into
memory for each client request on them, it is critical that these objects be deactivated
when the invocations on them are completed so that any object state associated with
them does not remain idle in memory. The Production server application addresses this
issue by assigning the method activation policy to these two objects in the ICF file.

Ensuring That Student Registration Occurs in the Correct Server Group

The chief scalability advantage of having replicated server groups is to be able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the University sample applications, it is critical
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, this application can easily be configured to accommodate more. The system
administrator can decide how many.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information is identical. Having
identical course information in both databases is not a problem because the course
information is read-only for the purposes of course registration. However, the student
and account information is read-write. If multiple databases were also to contain
identical data for students and accounts (that is, the database is not partitioned), the
application would need to deal with the overhead of synchronizing the updates to
student and account information across all the databases each time any student or
account information were to change.

The Production sample application uses factory-based routing to send one set of
requests to one machine, and another set to the other machine. As mentioned earlier,
factory-based routing is implemented in the RegistrarFactory object by the way in
which references to Registrar objects are created.

For example, when the client application sends a request to the RegistrarFactory
object to get an object reference to a Registrar object, the client application includes
a student ID in that request. The client application must use the object reference that
the RegistrarFactory object returns to make all subsequent invocations on a
Registrar object on a particular student’s behalf, because the object reference
8-20 Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application
returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes the get_student_details() operation on the
Registrar object, the client application can be assured that the Registrar object is
active in the server group associated with the database containing data for that student.
To show how this works, consider the following execution scenario, which is
implemented in the Production sample application:

1. The client application invokes the find_registrar() operation on the
RegistrarFactory object. Included in this invocation is the student ID 1000003.

2. The BEA Tuxedo domain routes the client request to any RegistrarFactory
object.

3. The RegistrarFactory object uses the student ID to create an object reference
to a Registrar object in ORA_GRP1, based on the routing information in the
UBBCONFIG file, and returns that object reference to the client application.

4. The client application invokes the register_for_courses() operation on the
Registrar object.

5. The BEA Tuxedo domain receives the client request and routes it to the server
group specified in the object reference. In this case, the client request goes to the
University server process in ORA_GRP1, which is on Production Machine 1.

6. The University server process instantiates a Registrar object and sends the
client invocation to it.

The RegistrarFactory object from the preceding scenario returns to the client
application a unique reference to a Registrar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has a database containing
student data for students with IDs in the range 100001 to 100005. Therefore, when the
client application sends subsequent requests to this Registrar object on behalf of a
given student, the Registrar object interacts with the correct database.

Ensuring That the Teller Object Is Instantiated in the Correct Server Group

When the Registrar object needs a Teller object, the Registrar object invokes the
TellerFactory object, using the TellerFactory object reference cached in the
University Server object, as described in “Sending Requests to the Teller Object” on
page 7-11.
Creating CORBA Server Applications 8-21

8 Scaling a BEA Tuxedo CORBA Server Application
However, because factory-based routing is used in the TellerFactory object, the
Registrar object passes the student’s account number when the Registrar object
requests a reference to a Teller object. This way, the TellerFactory object creates
a reference to a Teller object in the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that the
system administrator configures the server groups and the databases properly.
In particular, the system administrator must make sure that a match exists
between the routing criteria specified in the routing tables and the databases to
which requests using those criteria are routed. Using the Production sample as
an example, the database in a given group must contain the correct student and
account information for the requests that are routed to that group.

How the Production Server Application Can
Be Scaled Further

In the future, the system administrator of the Production sample application may want
to add capacity to the BEA Tuxedo domain. For example, the University may
eventually have a large increase in the student population, or the Production
application may be scaled up to accommodate the course registration process for an
entire state university system encompassing several campuses. This can be done
without modifying or rebuilding the application.

The system administrator has the following tools available to continually add capacity:

n Replicating the Production sample application server groups across additional
machines.

Doing this requires modifying the UBBCONFIG file to specify the additional
groups, what server processes run in those groups, and what machines they run
on.

n Changing the factory-based routing tables

For example, instead of routing to the two groups shown earlier in this chapter,
the system administrator can modify the routing rules in the UBBCONFIG file to
partition the application further among the new groups added to the BEA
Tuxedo domain. Any modification to the routing tables must be consistent with
8-22 Creating CORBA Server Applications

Choosing Between Stateless and Stateful Objects
any changes or additions made to the server groups and machines configured in
the UBBCONFIG file.

Note: If you add capacity to an application that uses a database, you must also
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Production sample application
is spread across six machines, the database on each machine must be set up
appropriately and in accordance with the routing tables in the UBBCONFIG file.

Choosing Between Stateless and Stateful
Objects

In general, you need to balance the costs of implementing stateless objects against the
costs of implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive—
because, for example, the object’s data takes up a great deal of space, or the durable
state is located on a disk very remote to the servant that activates it—it may make sense
to keep the object stateful, even if the object is idle during a conversation. In the case
where the cost to keep an object active is expensive in terms of machine resource
usage, it may make sense to make such an object stateless.

By managing object state in a way that’s efficient and appropriate for your application,
you can maximize your application’s ability to support large numbers of simultaneous
client applications that use large numbers of objects. You generally do this by
assigning the method activation policy to these objects, which has the effect of
deactivating idle object instances so that machine resources can be allocated to other
object instances. However, your specific application characteristics and needs may
vary.

Note: BEA Tuxedo Release 8.0 provides support for parallel objects, as a
performance enhancement. This feature allows you to designate all business
objects in a particular application as stateless objects. For complete
information, see Chapter 3, “TP Framework,” in the CORBA Programming
Reference.
Creating CORBA Server Applications 8-23

8 Scaling a BEA Tuxedo CORBA Server Application
When You Want Stateless Objects

Stateless objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Stateless
objects are generally a good approach to implementing server applications. Stateless
objects are particularly appropriate in the following situations:

n The client application typically waits for user input between invocations on the
object.

n The client request typically contains all the data needed by the server
application, and the server can process the client request using only that data.

n The object has very high access rates, but low access rates from any one
particular client application.

By making an object stateless, you can generally assure that server application
resources are not being tied up for an arbitrarily long time waiting for input from the
client application.

Note the following characteristics about an application that employs a stateless object
model:

n Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

n An incoming client request is sent to the first available server process: after the
request has been satisfied, the application state vanishes and the server
application is available for another client application request.

n Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

n The BEA Tuxedo domain may direct successive requests on an object from a
given client application to a different server process.

n The overall system performance of a machine that is running stateless objects is
usually enhanced.
8-24 Creating CORBA Server Applications

Choosing Between Stateless and Stateful Objects
When You Want Stateful Objects

A stateful object, once activated, remains in memory until a specific event occurs, such
as the process in which the object exists is shut down, or the transaction in which the
object is activated is completed.

Stateful objects are typically appropriate in the following situations:

n When an object is used very frequently by a large number of client applications.
This is the case for long-lived, well-known objects like factories. When the
server application keeps these objects active, the client application typically
experiences minimal response time in accessing them. Since these active objects
are shared by many client applications, there are relatively few objects of this
type in memory.

Note: Plan carefully how process objects are potentially involved in a transaction.
Any object that is involved in a transaction cannot be invoked by another client
application or object. Process objects meant to be used by a large number of
client applications can create problems if they are involved in transactions
frequently or for long durations.

n When a client application must invoke successive operations on an object to
complete a transaction, and the client application is not idle while waiting for
user input between those invocations. In this case, if the object were deactivated
between invocations, there would be a degradation of response time because
state would be written and read between each invocation; such behavior may not
be appropriate for transactions. You can trade holding server resources for better
response time.

Note the following behavior with stateful objects:

n State information is maintained between server invocations, and the servant
typically remains dedicated to a given client application for a specified duration.

n Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

n In cases where one or more stateful objects are using a lot of machine resources,
server performance for tasks and processes not associated with the stateful object
may be worse than with a stateless server model.
Creating CORBA Server Applications 8-25

8 Scaling a BEA Tuxedo CORBA Server Application
For example, if an object has a lock on a database and is caching a lot of data in
memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of a transaction.
8-26 Creating CORBA Server Applications

Index

A
accessors

calculating requirement 4-37
ACID properties 6-2
activate_object method 4-16
activate_object() operation

and exceptions 2-21
and preactivated objects 3-18
example 3-13

activation policies
method 8-10
process 3-10
transaction 6-16

active objects
specifying maximum number 4-39

adm directory 4-30
administrative parameters

CONCURR_STRATEGY 4-38
MAXACCESSORS 4-37
MAXDISPATCHTHREADS 4-36
MINDISPATCHTHREADS 4-36, 4-38

allocating FML32 buffers 7-4
allocating threads 4-6
always transaction policy 6-11

example 7-13
application_responsibility() operation 2-28
application-controlled deactivation

example 3-10
overview 1-14

AUTOTRANS
see transactional objects

B
BAD_OPERATION 2-21
Basic University sample

design considerations 3-7
handling durable state in 3-12
ICF file 3-11
managing object state 3-10
OMG IDL for 3-2
summary 3-2
use of design patterns in 3-15

BEA Tuxedo server applications
designing an object that has calls to 7-3
using in a BEA Tuxedo domain 7-2

BEA Tuxedo service
calling from a CORBA application 7-3
choosing buffer type for 7-4

Billing server application
in University samples 7-11

build commands
buildobjclient 4-11
buildobjserver 4-11

buildobjclient command 4-11
compiler settings 4-15
threads support libraries 4-15

buildobjserver command 4-11
-b option 4-14
compiler settings 4-13
modifications to support threads 4-13
specifying multithreaded support 4-37
-t option 4-16, 4-37
thread libraries 4-13
Creating CORBA Server Applications I-1

C
callback methods

detecting error conditions in 2-25
client applications

how they access objects 1-4
client stub 1-3
client/server contract 1-3
close_xa_rm() operation 6-15
closing an XA resource manager 6-15
compiling OMG IDL 2-3
CONCURR_STRATEGY parameter 4-38
concurrency

mechanisms 4-6
strategy 4-26

concurrent access 4-16
concurrent requests 4-18
configuration file 4-11

control parameters 4-11
settings 4-6

context services
purpose 4-9

convenience macros 4-27
conversations

implementing transactionally 6-2
CORBA interfaces 4-20
CORBA objects

See objects
CORBA server applications

and security 5-1
and transactions 6-4

CORBA::Current 4-8
CosTransactions::Control object 4-8
CosTransactions::Current object 4-8
create_active_object_reference() operation

3-17
create_object_reference() operation

example 2-7
specifying routing criteria 8-16

create_servant() operation
and exceptions 2-21

and OBJECT_NOT_EXIST 2-26
create_servant_with_id method 4-10
creating object references 2-10
creating server applications

summary 2-2
current object 4-8

narrowing 4-8
operations and interfaces 4-8

cursors
database 6-11

customer support contact information xiii

D
data

reading and writing for an object 1-16
data corruption

risk of 4-16
data marshaling

disabling 3-17
database cursors 6-11
databases

opening and closing 2-11
data-dependent routing

See factory-based routing
deactivate_object method 4-16
deactivate_object() operation

and exceptions 2-21
and servant pooling 2-28
and transactions 6-16
handling state in 2-27
restrictions on using 2-27

deactivateEnable() operation 3-10
and preactivated objects 3-18
example of 3-10
overview 1-14

deallocating threads 4-6
debugging tips 2-19
design patterns

List-Enumerator 1-23
List-Enumerator (example) 3-15
I-2 Creating CORBA Server Applications

Process-Entity 1-23
Process-Entity (example) 3-15
used in University samples 3-15

development process
summary 2-2

directory path 4-22
documentation, where to find it xii
DR_TRANS_ABORT 6-16
DR_TRANS_COMMITTING 6-16
durable objects 1-16
durable state handling

example 3-12

E
environment variables

directory path 4-22
setting 4-22
verifying 4-23

exceptions
ActivateObjectFailed 2-20
AlreadyRegistered 2-20
and client applications 2-19
and create_servant 2-21
and server applications 2-19
BAD_OPERATION 2-21
CannotProceed 2-20
CORBA 2-19
CreateServantFailed 2-20
DeactivateObjectFailed 2-20
how to write user-defined 6-20
IllegalInterface 2-20
in activate_object() 2-21
in deactivate_object() 2-21
InitializeFailed 2-20
INVALID_TRANSACTION 6-18
InvalidDomain 2-20
InvalidInterface 2-20
InvalidName 2-20
InvalidObject 2-20
InvalidObjectID 2-20

InvalidServant 2-20
NilObject 2-20
NoSuchElement 2-20
OBJ_ADAPTER 6-18
OBJECT_NOT_EXIST 2-21
OrbProblem 2-20
OutOfMemory 2-20
OverFlow 2-20
RegistrarNotAvailable 2-20
ReleaseFailed 2-20
TpfProblem 2-20
UnknownInterface 2-20
UserExceptions 2-20

expected_output file 4-31

F
facilities

for multithreaded server applications 4-9
factories

advantages of 1-10
and factory-based routing 8-16
and object references 1-4
example 3-8
how clients obtain 1-10
overview 1-9
registering 2-10

factory-based routing
and UBBCONFIG file 8-14
how it works 8-13
implementing in a factory 8-16
summary 8-12

FML 7-4
FML32 buffers

allocating 7-4
forward_lower method 4-19
forward_upper method 4-19

G
generating object references 1-9
Creating CORBA Server Applications I-3

groups
configuring server 8-7
creating 8-7
routing requests to specific 8-13

I
ICF file 2-7

assigning transaction policies in 6-15
IDL

See OMG IDL
idl command 2-3
IDL compiler 1-4

generating tie classes 2-6
using 2-4

ignore transaction policy 6-14
IIOP Listener/Handler 8-2
Implementation Configuration File (ICF file)

See ICF file
implementation object, See object

implementations
input file 4-31
instantiating objects 1-7
Interface Repository 1-3
Interface Repository identifier 1-5
interfaces

defining 1-3
delegating implementation of 2-29
limiting compilation of 2-7
validating 2-26

INVALID_TRANSACTION exception 6-18
is_reentrant method 4-7

K
Korn shell 4-23

L
legacy objects

integrating into BEA Tuxedo CORBA 2-

29
Listener/Handler

IIOP 8-2
List-Enumerator design pattern 1-24
List-Enumerator design pattern (example) 3-

15
log file 4-31

M
makefile.mk file 4-25
makefile.nt file 4-25
MAXACCESSORS parameter 4-37
MAXDISPATCHTHREADS parameter 4-

14, 4-36
impact on other parameters 4-37

method templates 1-4
method-bound objects 1-13
MINDISPATCHTHREADS parameter 4-36,

4-38
multithreading model

definition 4-8
specification 4-8

N
nested transactions 6-18
never transaction policy 6-13
new

C++ statement 1-7
non-reentrant servants 4-15
NULL resource manager 6-16

O
OBJ_ADAPTER exception 6-18
object factories

See factories
Object ID

See OID
object implementations
I-4 Creating CORBA Server Applications

delegated 2-29
overview 1-2
See also objects 1-2

object references
about 1-4
contents of 1-5
creating 2-10
generating 1-9
generating (example) 3-8
lifespan of 1-6

object state
and the BEA Tuxedo system 1-11

object state management
and scalability 8-10
and transactions 6-8
delegating to an XA resource manager 6-

16
managing in Basic sample 3-10

OBJECT_NOT_EXIST 2-21
and OMG IDL mismatches 2-26

objects
activating 1-19
bypassing in a transaction 6-14
choose stateful 8-25
choosing stateless 8-24
constructors 1-4
deactivating 1-19
deactivating process 1-14
destructors 1-4
excluding from a transaction 6-13
implementing an interface for 1-4
including optionally in a transaction 6-

12
instantiating 1-7
legacy 2-29
making always transactional 6-11
making always transactional (example)

7-13
managing 1-11
method-bound 1-13
polling in a transaction 6-16

pooling servants for 2-28
process-bound 1-13
reading and writing state data 1-16
setting activation policies for 1-11
transaction-bound 1-13
transient 3-18

OID 3-8
OMG CORBA

specification 4-8
OMG IDL

defining an object with 1-3
defining operations with 1-3
for the Basic University sample 3-2
for Wrapper University sample 7-11
in Production University sample 8-4
versioning mismatch 2-26

open_xa_rm() operation 6-15
opening an XA resource manager 6-15
optional transaction policy 6-12
Oracle 6-9
ORB Portability Specification 4-8
ORB::clear_ctx 4-10
ORB::get_ctx 4-9
ORB::inform_thread_exit 4-10
ORB::set_ctx 4-9
output file 4-31

P
parallelism 4-2, 4-18
persistent objects 1-16
pooling

servant 2-28
PortableServer::Current object 4-8
printing product documentation xiii
process-bound objects

transaction-bound objects 1-13
Process-Entity design pattern 1-23
Process-Entity design pattern (example) 3-15
Production University sample

OMG IDL for 8-4
Creating CORBA Server Applications I-5

UBBCONFIG file 8-8

R
Readme.txt file 4-25
recursive invocations 4-2, 4-7
recursive transactions 6-18
reentrancy 4-7

concurrency rules 4-7
default setting 4-7

reentrant servants 4-7
about 4-7
creating 4-17
protecting object state 4-17

Registrar object
policies in Transactions University

sample 6-8
RegistrarFactory object 3-8
related information xiii
replicating server processes 8-4
request-level interceptors 4-16
resource manager

closing an XA 6-15
delegating object state management to 6-

16
NULL 6-16
opening XA 6-15

results directory 4-30
routing

factory-based, See factory-based routing
routing criteria

specifying in a factory 8-16
runme.cmd file 4-26
runme.ksh file 4-26

S
samplesdb.h 3-14
scaling an application 8-4

summary features for 8-2
SECURITY

parameter in UBBCONFIG file 5-2
security and CORBA server applications 5-1
security models

implementing in server applications 5-2
Security University sample

design of 5-2
OMG IDL for 5-5
overview 5-3

SecurityCurrent object 5-3
SecurityLevel1::Current object 4-8
SecurityLevel2::Current object 4-8
servant 4-16, 4-17
servants 4-3

creating 2-11
overview 1-7
pooling 2-28

server applications
configuring in groups 8-7
developing 1-9
replicating in a group 8-4
scaling 8-4

Server class 4-14
server groups

configuring 8-7
server processes

replicating 8-4
server skeleton

See skeletons
ServerBase class 4-10, 4-14
setenv.cmd file 4-31
setenv.ksh file 4-31
signals 4-16
simpapp_mt sample application

building and running 4-21
changing permissions 4-27
how it works 4-18
list of files 4-25

simple.idl file 4-26
simple_c.cpp file 4-29
simple_c.h file 4-29
simple_client file 4-30
I-6 Creating CORBA Server Applications

simple_client.cpp file 4-26
simple_per_object_i.cpp file 4-26
simple_per_object_i.h file 4-26
simple_per_object_server file 4-30
simple_per_request_i.cpp file 4-26
simple_per_request_i.h file 4-26
simple_per_request_server file 4-30
simple_per_request_server.cpp file 4-27
simple_per_request_server.h file 4-27
simple_s.cpp file 4-30
simple_s.h file 4-30
SimplePerRequest server process 4-19
SimplePerRequestFactory_i

implementations 4-30
interfaces 4-30

single-threaded executable 4-14
single-threaded servers

behavior 4-12
skeletons

limiting compilation of 2-7
overview 1-3

state data
preactivating an object with 3-17
reading and writing 1-16

stateful objects
criteria for choosing 8-25
definition 1-11
See also process-bound and transaction-

bound objects 1-11
stateless objects

criteria for choosing 8-24
definition 1-11
See also method-bound objects 1-11

stderr file 4-31
stdout file 4-31
support

technical xiv

T
thread_initialize method 4-10

thread_macros.cpp file 4-27
thread_macros.h file 4-27
thread_release method 4-10
threading model

specifying 4-38
thread-per-request 4-3, 4-6

threading models
thread-per-object, thread-per-request 4-5

thread-per-object 4-3, 4-5
thread-per-request 4-3, 4-6
thread-per-request model 4-38
thread-per-request server

implementation 4-19
threads

concurrent requests 4-18
context information 4-9
parallelism 4-18
recursive invocations 4-7

threads pool 4-6
allocating threads 4-7
maximum size 4-7
minimum size 4-6
releasing threads back to 4-7
reusing threads for multiple requests 4-7
setting maximum size 4-7
size exceeded 4-7
size of 4-6
system resources consumed 4-7

thread-safe 4-6
tie classes

generating 2-6
See also delegation-based interface

implementation
TMS 6-9

configuring 6-9
Oracle 6-9
requirements for 6-9

tmsysevt.dat file 4-31
to_lower method 4-19
to_upper method 4-19
Tobj_ServantBase class 4-10
Creating CORBA Server Applications I-7

Tobj_ServantBase::_is_reentrant method 4-
10

Tobj_serverBase::_add_ref method 4-10
Tobj_serverBase::_remove_ref method 4-11
TobjS_c.h 2-20
TobjServantBase::_is_reentrant method 4-17
TP Framework 4-3
tpcall() 7-5
tpforward() 7-7
tpreturn() 7-7
transaction activation policy 6-16
Transaction Manager Server

See TMS
transaction policies

always 6-11
always (example) 7-13
assigning in ICF file 6-15
ignore 6-14
never 6-13
optional 6-12

transaction state
associated with a thread 4-8

transactional objects
defining 6-11

transactions
and conversations 6-2
and object state management 6-16
implementing in a CORBA server

application 6-4
nested 6-18
overview of 6-2
passing from one thread to another 4-8
recursive 6-18

Transactions University sample
configuring 6-10
how it works 6-6
object state management 6-8
overview 6-4

transient objects 3-18
tuning and scaling 4-39
tuxconfig file 4-31

TUXDIR 4-22, 4-23, 4-40
Tuxedo

See BEA Tuxedo

U
ubb file 4-32
UBBCONFIG file 4-11, 4-14

and factory-based routing 8-14
control parameters 4-11
in Production University sample 8-8
overview 2-18
sample 4-39
SECURITY parameter 5-2
settings 4-6

ULOG.date file 4-32
user-defined exceptions 6-20

V
vetoing a transaction 6-16

W
working directory 4-24, 4-27, 4-29, 4-34
Wrapper University sample

configuring 7-13
design summary 7-8
how it works 7-9

wrapping a Tuxedo service
as an object 7-3

X
XA resource manager

closing 6-15
delegating object state management to 6-

16
opening 6-15
using in Transactions University sample

6-9
I-8 Creating CORBA Server Applications

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 CORBA Server Application Concepts
	The Entities You Create to Build a CORBA Server Application
	The Implementation of the CORBA Objects for Your Server Application
	How Interface Definitions Establish the Operations on a CORBA Object
	How You Implement the Operations on a CORBA Object
	How Client Applications Access and Manipulate Your Application’s CORBA Objects
	The Content of an Object Reference
	The Lifetime of an Object Reference
	Passing Object Instances

	How You Instantiate a CORBA Object at Run Time
	Servant Pooling

	The Server Object

	Process for Developing CORBA Server Applications
	Generating Object References
	How Client Applications Find Your Server Application’s Factories
	Creating an Active Object Reference

	Managing Object State
	About Object State
	Object Activation Policies
	Application-controlled Deactivation

	Reading and Writing an Object’s Data
	Available Mechanisms for Reading and Writing an Object’s Durable State
	Reading State at Object Activation
	Reading State Within Individual Operations on an Object
	Stateless Objects and Durable State
	Servant Pooling and Stateless Objects

	Stateful Objects and Durable State
	Servant Pooling and Stateful Objects

	Your Responsibilities for Object Deactivation
	Avoiding Unnecessary I/O
	Sample Activation Walkthrough

	Using Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	2 Steps for Creating a BEA Tuxedo CORBA Server Application
	Summary of the CORBA Server Application Development Process
	Step 1: Compile the OMG IDL File for the Server Application
	Using the IDL Compiler
	Generating the Skeleton and Implementation Files
	Generating Tie Classes

	Step 2: Write the Methods That Implement Each Interface’s Operations
	The Implementation File Generated by the IDL Compiler
	Implementing a Factory

	Step 3: Create the Server Object
	Initializing the Server Application
	Writing the Code That Creates and Registers a Factory
	Creating Servants
	Releasing the Server Application

	Step 4: Define the In-memory Behavior of Objects
	Specifying Object Activation and Transaction Policies in the ICF File

	Step 5: Compile and Link the Server Application
	Step 6: Deploy the Server Application
	Development and Debugging Tips
	Use of CORBA Exceptions and the User Log
	Client Application View of Exceptions
	Server Application View of Exceptions
	Exceptions Raised by the BEA Tuxedo System That Can Be Caught by Application Code
	The BEA Tuxedo System’s Handling of Exceptions Raised by Application Code During the Invocation o...

	Detecting Error Conditions in the Callback Methods
	Common Pitfalls of OMG IDL Interface Versioning and Modification
	Caveat for State Handling in Tobj_ServantBase::deactivate_object()

	Servant Pooling
	How Servant Pooling Works
	How You Implement Servant Pooling

	Delegation-based Interface Implementation
	About Tie Classes in the BEA Tuxedo System
	When to Use Tie Classes
	How to Create Tie Classes in a CORBA Application

	3 Designing and Implementing a Basic CORBA Server Application
	How the Basic University Sample Application Works
	The Basic University Sample Application OMG IDL
	Application Startup
	Browsing Course Synopses
	Browsing Course Details

	Design Considerations for the University Server Application
	Design Considerations for Generating Object References
	Design Considerations for Managing Object State
	The RegistrarFactory Object
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Basic University Sample Application ICF File

	Design Considerations for Handling Durable State Information
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Using the University Database

	How the Basic Sample Application Applies Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	Additional Performance Efficiencies Built into the BEA Tuxedo System
	Preactivating an Object with State
	How You Preactivate an Object with State
	Usage Notes for Preactivated Objects

	4 Creating Multithreaded CORBA Server Applications
	Introduction
	Requirements, Goals, and Concepts
	Threading Models
	Thread-Per-Request Model
	Thread-Per-Object Model
	The Thread Pool

	Reentrant Servants
	The Current Object

	Mechanisms for Supporting Multithreaded CORBA Servers
	Context Services
	Classes and Methods in the TP Framework
	Capabilities in the Build Commands
	Tools for Administration

	Running Single-threaded Server Applications in a Multithreaded System
	Using the buildobjserver Command
	Platform-specific Thread Libraries
	Specifying Multithreaded Support
	Specifying an Alternate Server Class

	Using the buildobjclient Command
	Creating Non-reentrant Servants
	Creating Reentrant Servants
	About the Simpapp Multithreaded Sample
	How the Sample Application Works
	OMG IDL Code for the Simpapp Multithreaded Sample Application

	How to Build and Run the Sample Application
	Setting the TUXDIR Environment Variable
	Verifying the TUXDIR Environment Variable
	Changing the Setting of the Environment Variable
	Creating a Working Directory for the Sample Application
	Checking Permissions on All the Files
	Executing the runme Command
	Running the Sample Application Step-by-Step

	Shutting Down the Sample Application
	Specifying Thread Pool Size
	MAXDISPATCHTHREADS
	MINDISPATCHTHREADS

	Specifying a Threading Model
	Specifying the Number of Active Objects
	Sample UBBCONFIG File

	5 Security and CORBA Server Applications
	Overview of Security and CORBA Server Applications
	Design Considerations for the University Server Application
	How the Security University Sample Application Works
	Design Considerations for Returning Student Details to the Client Application

	6 Integrating Transactions into a CORBA Server Application
	Overview of Transactions in the BEA Tuxedo System
	Designing and Implementing Transactions in a CORBA Server Application
	How the Transactions University Sample Application Works
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	Integrating Transactions in a CORBA Client and Server Application
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database

	Notes on Using Transactions in the BEA Tuxedo System
	User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	7 Wrapping a BEA Tuxedo Service in a CORBA Object
	Overview of Wrapping a BEA Tuxedo Service
	Designing the Object That Wraps the BEA Tuxedo Service
	Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls
	Implementing the Operations That Send Messages to and from the BEA Tuxedo Service
	Restrictions

	Design Considerations for the Wrapper Sample Application
	How the Wrapper University Sample Application Works
	Interface Definitions for the Billing Server Application
	Additional Design Considerations for the Wrapper Sample Application
	Sending Requests to the Teller Object
	Exception Handling
	Setting Transaction Policies on the Interfaces in the Wrapper Sample Application
	Configuring the University and Billing Server Applications

	8 Scaling a BEA Tuxedo CORBA Server Application
	Overview of the Scalability Features Available in the BEA Tuxedo System
	Scaling a BEA Tuxedo Server Application
	OMG IDL Changes for the Production Sample Application
	Replicating Server Processes and Server Groups
	Replicated Server Processes
	Replicated Server Groups
	Configuring Replicated Server Processes and Groups

	Scaling the Application Via Object State Management
	Factory-based Routing
	How Factory-based Routing Works
	Configuring for Factory-based Routing in the UBBCONFIG file
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations for the Registrar and Teller Objects
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object Is Instantiated in the Correct Server Group

	How the Production Server Application Can Be Scaled Further
	Choosing Between Stateless and Stateful Objects
	When You Want Stateless Objects
	When You Want Stateful Objects

	Index

