BEA Tuxedo

Creating CORBA
Server Applications

BEA Tuxedo Release 8.0
Document Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA Weblogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Creating CORBA Server Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

What Y OU NEed t0 KINOWcccoeiuiiiiiieeeetie sttt ettt Xii
E-00CSWED SItO....oeiieeeee et r e e sreeaaeerea Xii
How to Print the DOCUMENT..........ceeie et st st e Xiii
Documentation CONVENLIONSc.coicuiie e e s e s sr s et srae st sraeseesaeenne s Xiv

1. CORBA Server Application Concepts

The Entities Y ou Create to Build a CORBA Server Application 1-2
The Implementation of the CORBA Objects for Y our Server Application1-2
How Interface Definitions Establish the Operations on a CORBA

L@ o= OSSR 1-3
How Y ou Implement the Operations on a CORBA Object................ 1-4
How Client Applications Access and Manipulate Y our Application’s
CORBA ODJECES ...ccueceireieie sttt 1-4
How Y ou Instantiate a CORBA Object at Run Time........ccccceeveenee. 1-7
The Server ODJECL..... ..ot et 1-8
Process for Developing CORBA Server Applications.........ccccoeeeeneieeescneennnne 1-9
Generating Object REfEreNnCeS.........covcveiiiveciececeeee e 1-9
How Client Applications Find Y our Server Application’s Factories1-10
Creating an Active Object Reference..........cccevcveeeccecceccccceeceeeiee 1-10
Managing ObJECE SEALE.........cccecuecie et s e e 1-11
ADOUL ODJECE SEALE........ecue et e e 1-11
Object Activation POIICIESccocvevcee e 1-13
Application-controlled Deactivation..............ccoereerrneeireniene e 1-14
Reading and Writing an Object’ SData.........cccoceeveveeeceeceecieceecree e 1-16
Available Mechanisms for Reading and Writing an Object’s Durable
SEBLE ..ttt e sr e e 1-16
Reading State at Object Activation...........cccccveveeveiceveece e 1-19

Creating CORBA Server Applications iii

iv

Reading State Within Individual Operations on an Object............... 1-19

Stateless Objects and Durable State..........oeeveeeirincene e 1-20
Stateful Objects and Durable State...........ccoevveeveeeieiceeveece e, 1-21
Y our Responsibilities for Object Deactivationcocoeieveneees 1-22
Avoiding UnNNeCesSary 1O ..o e 1-22
Sample Activation Walkthrough............ccooiiiinniie e 1-22
USING DESIGN PatEINScocveiieieecieetie ettt s sreeraesre e 1-23
Process-Entity Design Pattern.........c.ccoeeeeveieieececcceeseecee et 1-23
List-Enumerator Design Pattern...........ccceeeeceeiecieie e 1-24

Steps for Creating a BEA Tuxedo CORBA Server Application

Summary of the CORBA Server Application Development Process................ 2-2
Step 1: Compilethe OMG IDL Filefor the Server Applicationc.cc.c..... 2-3
Using the IDL COmMPIIENc.oouiie e e 2-4
Generating the Skeleton and Implementation Files...........cccoovvveeininccenne 2-5
Generating Tie ClaSSES.....cuiiiiiieiise et e eree e 2-6
Step 2: Write the Methods That |mplement Each Interface’ s Operations......... 2-6
The Implementation File Generated by the IDL Compilerccccceene. 2-7
IMplementing @ FaCtOrY ..o 2-7
Step 3: Create the Server ODJECT........ooviiir i 2-8
Initializing the Server AppliCationcooie e veneie e 2-9
Writing the Code That Creates and Registers aFactoryccccevveeeenes 2-10
Creating SEIVANES......cccocieie ettt st st sree e s s e e e eerean 2-11
Releasing the Server AppliCation ... iineein e 2-13
Step 4: Define the In-memory Behavior of Objects........ccoverceievevecieienennee 2-14
Specifying Object Activation and Transaction Paliciesin the ICF File..2-14
Step 5: Compile and Link the Server Application.........ccooeioeieveneicseseeenne 2-17
Step 6: Deploy the Server APPliCatioNcooeueieieieeee e 2-18
Development and Debugging TiPS.....cccceeeereereeeseereenieie e eseseeseeas 2-19
Use of CORBA Exceptionsand the User LOgccceceeeveeneeieieneeneenenns 2-19
Client Application View of EXCEptionscccovveeieinenenenienecienns 2-20

Server Application View of EXCEptions..........cccooeeeeinencenenieneciennn. 2-20
Detecting Error Conditionsin the Callback Methods...........cc.ccccvevienees 2-25
Common Pitfalls of OMG IDL Interface Versioning and Modification.. 2-26
Caveat for State Handling in Tobj_ServantBase::deactivate object()..... 2-27

Creating CORBA Server Applications

SEVANE POOLING ...veeieee ettt e e e see e 2-28

How Servant Pooling WOrKS..........ccoiririiine e 2-28
How You Implement Servant PO0lINGcccooeieieieinieee e 2-28
Delegation-based Interface Implementation............ccccooeeeirneeneeeinie e 2-29
About Tie Classes in the BEA Tuxedo System..........ccccevveeeircnceneceenens 2-30
When to USE Ti@ ClaSSES......ccouiiriieeeiieeceee et 2-32
How to Create Tie Classesin a CORBA Application..........cccccoceeeeruenenne 2-32

3. Designing and Implementing a Basic CORBA Server

Application

How the Basic University Sample Application Works..........ccccooviniiienenenne 3-2
The Basic University Sample Application OMG IDLcccccoeeivenenenne. 3-2
APPLICATON SEAITUD ..eeeeeeeee et e e e 3-4
Browsing COUISE SYNOPSES....c.erverueuereereerseeesesaeessesesseseesessessessesesssesesnsens 34
Browsing Course DEaIIS............cueeecieie e e e e 3-7
Design Considerations for the University Server Application...........ccccocveuee 3-7
Design Considerations for Generating Object References............ccccceenee. 3-8
Design Considerations for Managing Object State.........ccceoeviieeerienenne 3-10
The RegistrarFactory ObJECt.........coco i 3-10
The Registrar ObJECLcvoiieiieeceeeeeeeeeeee e e e 3-10
The CourseSynopsisSEnumerator ODJECtccoceeverereerenevecreeieeene 3-10
Basic University Sample Application ICF File..........cococevinennee. 311
Design Considerations for Handling Durable State Information............. 312
The Registrar ObJECLcoeiieieieceeccee et 312
The CourseSynopsisEnumerator ObJECtccoceeverereeienevecreeieeene 3-13
Using the University Database...........ccccoevevveiiieiieevenie e 3-14
How the Basic Sample Application Applies Design Patterns.................. 3-15
Process-Entity Design Pattern............cocccoeeeevieieeveecceeseeese e 3-15
List-Enumerator Design Pattern..........ccccoeeevececiececeec e 3-15
Additional Performance Efficiencies Built into the BEA Tuxedo System......

3-17
Preactivating an Object with State.........ccccvviveivecececee e 3-17
How Y ou Preactivate an Object with State...........ccccevevveieiiiciennene 3-18
Usage Notes for Preactivated Objects..........cccoevveveeiceeciecceseeseeee e 3-18

Creating CORBA Server Applications %

4. Creating Multithreaded CORBA Server Applications

OVEIVIBIV ..ottt ettt ettt et e e et es e e eeese e teneese et aneeseeeeneeneseeas 4-2
INEFOTUCTION ..ttt s st en s 4-2
Requirements, Goals, and CONCEPLS..........everueeereereerieie e reeeeeee s 4-3
Threading MOEIScoe e e 4-5
REENTraNt SEIVANTS.........oouiiiie ettt s 4-7
The Current ODJECL.........cceeecece et e 4-8
Mechanisms for Supporting Multithreaded CORBA Servers.................... 4-9
CONLEXE SEIVICES. ... vt ettt ettt e s en e e 4-9
Classes and Methodsin the TP Frameworkcccoeoevrieiincnenne. 4-10
Capabilitiesin the Build Commands...........ccceoveeeeoerenenienieseeneeienns 4-11
Tools for AdMINISLIAtIONcoueieie et e 4-11
Running Single-threaded Server Applicationsin a Multithreaded
Y £SO RP O SRPRP 4-12
Developing and Building Multithreaded CORBA Server Applications 4-13
Using the buildobjserver Command............ccccceveieciececeniecce e 4-13
Platform-specific Thread Libraries..........cooveioeie e, 4-13
Specifying Multithreaded SUPPOItccooeiiirniiie e 4-14
Specifying an Alternate Server Class.......cooveerreeenireenieie e 4-14
Using the buildobjclient Command.............cccoveieieciece e 4-15
Creating Non-reentrant SErVants..........ccccoeeveeveseeeiesiesie e e e sseeseens 4-15
Creating Reentrant SErVantS........cccocceveeveeieeviese st e e 4-17
Building and Running the Multithreaded Simpapp Sample Application........ 4-18
About the Simpapp Multithreaded Sample..........ccoeoeieieniiniiicecns 4-18
How the Sample Application WOrKS.........ccooovireeinneiie e 4-18
OMG IDL Code for the Simpapp Multithreaded Sample
P2 o] o] 1o d o] o OSSR 4-20
How to Build and Run the Sample Application.........cccccovevvveiiiiennenns 4-21
Setting the TUXDIR Environment Variable.........cccoccevevecvece e, 4-22
Verifying the TUXDIR Environment Variable.........ccccocevvevennnee. 4-23
Changing the Setting of the Environment Variable.........ccccoc......... 4-23
Creating a Working Directory for the Sample Application.............. 4-24
Checking Permissions on All the Files ... vivie e, 4-27
Executing the runme Command............coeveeieiecieie e 4-27
Running the Sample Application Step-by-Stepcccoevevcveceeeenen. 4-32

Vi Creating CORBA Server Applications

Shutting Down the Sample Application..........cocoeirniiinene e 4-34

Multithreaded CORBA Server Application Administration............ccccceeeeennene 4-36
Specifying Thread POOI SIZe.........cooeiiiiiiieieeee e 4-36
MAXDISPATCHTHREADS.cociiereeitiere et 4-36
MINDISPATCHTHREADS. ...ttt 4-38
Specifying a Threading MOde ..o 4-38
Specifying the Number of Active ObJeCtS........cccovereieeirircece e 4-39
Sample UBBCONFIG File......ccoveiinieirieieire st 4-39

Security and CORBA Server Applications

Overview of Security and CORBA Server Applications.........cccoouvereeneeenene 5-1
Design Considerations for the University Server Application...........ccccocvenene 5-2
How the Security University Sample Application Works.............cccceenee 5-3
Design Considerations for Returning Student Details to the Client
APPHCALTON ...t e e e 5-5

Integrating Transactions into a CORBA Server Application

Overview of Transactions in the BEA Tuxedo System.........cccccceeeeeeeevencienens 6-2
Designing and |mplementing Transactionsin a CORBA Server Application.. 6-4
How the Transactions University Sample Application Works.................. 6-6
Transactional Model Used by the Transactions University Sample
APPIICAITON...cee et e e 6-7
Object State Considerations for the University Server Application 6-8
Object Policies Defined for the Registrar Object..........ccoooceeevereenenne 6-8
Object Policies Defined for the RegistrarFactory Object 6-9
Using an XA Resource Manager in the Transactions Sample
APPIICAITON. ...t e 6-9
Configuration Requirements for the Transactions Sample Application .. 6-10
Integrating Transactionsin a CORBA Client and Server Application............ 6-10
Making an Object Automatically Transactionalcccceevevececnennen. 6-11
Enabling an Object to Participatein a Transaction.........c.ccccceeeeceieveenenne 6-12
Preventing an Object from Being Invoked While a Transaction I's Scoped.....
6-13
Excluding an Object from an Ongoing Transaction.............ccceeveeeevennen. 6-14
ASSIGNING POICIES ..ot eeren 6-15
Opening an XA ResoUrce Managercccooeeeererieneneseeneeie s sese s 6-15

Creating CORBA Server Applications Vii

Closing an XA ReSoUrce Managercccoereeeeeernerieeeereesiene e seeseenee s 6-15

Transactions and Object State Management...........cccooeoeeririe e sereene s 6-16
Delegating Object State Management to an XA Resource Manager 6-16
Waiting Until Transaction Work Is Complete Before Writing to the

DALADASEeeveeeeee et 6-16

Notes on Using Transactionsin the BEA Tuxedo System.........cccccoeeevreenene. 6-18

User-defined EXCEPLIONS........cocoueriiriee et e s 6-20
Defining the EXCEPLION........coiii et 6-21
Throwing the EXCEPLIONc.oviiiieie e 6-21

7. Wrapping a BEA Tuxedo Service in a CORBA Object

Overview of Wrapping a BEA TuXedo SErViCe......ccoervreinernneee e 7-2

Designing the Object That Wrapsthe BEA Tuxedo Service.........cccc........ 7-3

Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls 7-4
Implementing the Operations That Send M essages to and from the BEA

TUXEAO SEIVICE.eeuveeieiteiee ettt en e 7-5
RESIICHIONS......ccviee ettt 7-7
Design Considerations for the Wrapper Sample Application............ccccceeeeeeene 7-8
How the Wrapper University Sample Application Works.................. 7-9
Interface Definitions for the Billing Server Application................... 7-11

Additional Design Considerations for the Wrapper Sample
APPHICELTION...c.eeiiie e e s 7-11

8. Scaling a BEA Tuxedo CORBA Server Application
Overview of the Scalability Features Availablein the BEA Tuxedo System... 8-2

Scaling aBEA Tuxedo Server Application..........ccocoereieieieneneeieee e 8-2
OMG IDL Changes for the Production Sample Application...................... 8-4
Replicating Server Processes and Server GroUPS........ccoeveeeevereereereesereennas 8-4

Replicated SErver PrOCESSES.......ooaeeerrireeeeseereenie e seeseeseeseeseeeeseseeenes 8-5
Replicated SErVer GIrOUPS........coereaeererrereeeeeeereesieseeseeseesessesseeeeseseesnas 8-7
Configuring Replicated Server Processes and Groups..........ccceeeeeueee. 8-8
Scaling the Application Via Object State Managementccccceeeene. 8-10
Factory-based ROULING........cccoreiie e 8-12
How Factory-based Routing WOrKS..........cccceeeveeveseniece e 8-13
Configuring for Factory-based Routing in the UBBCONFIG file....8-14
Implementing Factory-based Routing in aFactorycccceeevenee 8-16

Viii Creating CORBA Server Applications

What Happens at RUN TiMe........ccoiiiiiiiieeeeeiseee e 8-17
Additional Design Considerations for the Registrar and Teller Objects.. 8-18

Instantiating the Registrar and Teller Objects..........oocooeiriricienenn. 8-19
Ensuring That Student Registration Occursin the Correct Server

L€ (01U o USROS 8-20

Ensuring That the Teller Object Is Instantiated in the Correct Server
GIOUP -ttt et ettt et e et es e se e eb e aee sae e s saeennenean 8-21
How the Production Server Application Can Be Scaled Further 8-22
Choosing Between Stateless and Stateful Objects.........ccoveeecviiecceciecieenen, 8-23
When Y ou Want Stateless ODJECES........ccovuveieeecie e 8-24
When You Want Stateful ObjECS........cccccuveieee e 8-25

Index

Creating CORBA Server Applications iX

Creating CORBA Server Applications

About This Document

This document describes how programmers can implement key featuresin the BEA
Tuxedo® product to design and implement scalable, high-performance, server
applications that run in a BEA Tuxedo domain. The examplesin Chapter 3,
“Designing and Implementing a Basic CORBA Server Application,” are based on the
sample applications described in the Guide to the CORBA Univer sity Sample
Applications.

This document includes the following topics:

m Chapter 1, “CORBA Server Application Concepts,” presents a number of basic
concepts about creating BEA Tuxedo server applications and describes the two
primary programming entities you create for aBEA Tuxedo server application.

m Chapter 2, “Steps for Creating a BEA Tuxedo CORBA Server Application,” lists
and describes the basic steps you follow to create a BEA Tuxedo server
application.

m Chapter 3, “Designing and Implementing a Basic CORBA Server Application,”
explains the fundamental concepts and processes involved with designing and
implementing a CORBA server application, based on the Basic University
sample application.

m Chapter 4, “Creating Multithreaded CORBA Server Applications,” providesan
overview of the requirements, goals, and concepts for creating multithreaded
CORBA server applications. Additionally, this chapter outlines the steps for
developing and building a multithreaded CORBA server application, describes
how to build and run the simpapp_mt Sample Application, and how to
administer amultithreaded CORBA server application.

m Chapter 5, “Security and CORBA Server Applications,” explainsthe role of a
CORBA server application in implementing a security model for aBEA Tuxedo
domain.

Creating CORBA Server Applications Xi

m Chapter 6, “Integrating Transactions into a CORBA Server Application,”
describes how the BEA Tuxedo system supports transactions in a BEA Tuxedo
domain and how you can implement transactions into your server applications.

m Chapter 7, “Wrapping a BEA Tuxedo Servicein a CORBA Object,” describes
how to integrate a BEA Tuxedo application into a CORBA server application.

m Chapter 8, “Scaling a BEA Tuxedo CORBA Server Application,” describesthe
key scalability features that you can build into your BEA Tuxedo applicationsto
make them highly scalable, including replicated server processes and groups,
factory-based routing, and object state management.

What You Need to Know

This document is intended for programmers who are interested in creating secure,
scalable, transaction-based server applications. It assumes your are knowledgeable
with the BEA Tuxedo system, CORBA, and C++ programming.

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

Xii Creating CORBA Server Applications

How to Print the Document

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavail able on the BEA Tuxedo documentation Home
page on the e-docs Web site (and a so on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, and Java programming, see the CORBA
Bibliography in the BEA Tuxedo online documentation.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

Creating CORBA Server Applications Xiii

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
m Your hame, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xiv

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Creating CORBA Server Applications

Documentation Conventions

Convention Item
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
.doc
t ux. doc
Bl TVAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
text void comit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Creating CORBA Server Applications XV

XVi

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Creating CORBA Server Applications

CHAPTER

1 CORBA Server
Application Concepts

Thistopic includes the following sections:

m The Entities You Create to Build a CORBA Server Application:
e The Implementation of the CORBA Objects for Your Server Application
e The Server Object

m Processfor Developing CORBA Server Applications:
e Generating Object References
¢ Managing Object State
e Reading and Writing an Object’s Data
e Using Design Patterns

Each of the chapters in this book gives procedures for and examples of building
CORBA server applications that take advantage of various BEA Tuxedo software
features. For background information about BEA Tuxedo CORBA server applications
and how they work, see Getting Started with BEA Tuxedo CORBA Applications.

Creating CORBA Server Applications 1-1

1

CORBA Server Application Concepts

The Entities You Create to Build a CORBA
Server Application

To build a CORBA server application, you create the following two entities:

m Theimplementation of the CORBA objects that execute your server
application’s business logic.

m The Server object, which implements the operations that initialize and rel ease
the server application and instantiate the CORBA objects needed to satisfy client
requests.

There are also anumber of filesthat you work with that are generated by the IDL
compiler and that you buildinto aCORBA server application. Thesefilesarelisted and
described in Chapter 2, “ Steps for Creating a BEA Tuxedo CORBA Server
Application.”

The sections that follow provide introductory information about these entities. For
complete detail s about how to generate these components, see Chapter 2, “ Steps for
Creating a BEA Tuxedo CORBA Server Application.”

The Implementation of the CORBA Objects for Your
Server Application

1-2

Having aclear understanding of what CORBA objects are, and how they are defined,
implemented, instantiated, and managed is critical for the person who is designing or
creating a CORBA server application.

The CORBA objectsfor which you have defined interfacesin the Object M anagement
Group Interface Definition Language (OMG IDL) contain the business logic and data
for your CORBA server applications. All client application requests involve invoking
an operation on a CORBA object. The code you write that implements the operations
defined for an interface is called an object implementation. For example, in C++, the
object implementation is a C++ class.

This topic includes the following sections:

Creating CORBA Server Applications

The Entities You Create to Build a CORBA Server Application

m How OMG IDL interface definitions establish the operations that can be invoked
on a CORBA object

m How you implement the operations on a CORBA object

m How client applications access and manipulate your application’s CORBA
objects

m How you instantiate a CORBA aobject with code and data at run time in response
to aclient request

How Interface Definitions Establish the Operations on a CORBA Object

A CORBA object’ sinterface identifies the operations that can be performed on it. A
distinguishing characteristic of CORBA abjectsisthat an object’ sinterface definition
isseparatefrom itsimplementation. The definition for theinterface establishes how the
operations on the interface must be implemented, including what the valid parameters
are that can be passed to and returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/server
contract for an application. That is, for agiven interface, the server application is
bound to do the following:

m Implement the operations defined for that interface
m Always use the parameters defined with each operation

How the server application implements the operations may change over time. Thisis
acceptabl e behavior aslong asthe server application continuesto meet the requirement
of implementing the defined interface and using the defined parameters. In thisway,
the client stub is always a reliable proxy for the object implementation on the server
machine. Thisunderscores one of thekey architectural strengths of CORBA—that you
can change how a server application implements an object over time without requiring
the client application to be modified or even to be aware that the obj ect implementation
has changed.

The interface definition also determines the content of both the client stub and the
skeleton in the server application; these two entities, in combination with the ORB and
the Portable Object Adapter (POA), ensure that aclient request for an operation on an
object can be routed to the code in the server application that can satisfy the request.

Creating CORBA Server Applications 1-3

1 CORBA Server Application Concepts

Once the system designer has specified the interfaces of the business objects in the
application, the programmer’ sjobisto implement thoseinterfaces. Thisbook explains
how.

For more information about OMG IDL, see Creating CORBA Client Applications.

How You Implement the Operations on a CORBA Object

As stated earlier, the code that implements the operations defined for a CORBA
object’ sinterface is called an object implementation. For C++, this code consists of a
set of methods, one for each of the operations defined for the interfacesin your
application'sOMG IDL file. Thefile containing the set of object implementationsfor
your application is known as an implementation file. The BEA Tuxedo system
provides an IDL compiler, which compiles your application's OMG IDL fileto
produce several files, one being an implementation file, shown in the following figure.

OMG IDL File [——— >(IDL Compiler J——> 'mplergielgtatlon

The generated implementation file contains method templates, method declarations,
object constructors and destructors, and other data that you can use as a starting place
for writing your application’s object implementations. For example, in C++, the
generated implementation file contains signatures for each interface’ s methods. Y ou
enter the businesslogic for each method in thisfile, and then provide thisfile asinput
to the command that builds the executabl e server application file.

How Client Applications Access and Manipulate Your Application’s CORBA

Objects

Client applications access and manipulate the CORBA objects managed by the server
application viaobject referencesto those objects. Client applicationsinvoke operations
(that is, requests) on an object reference. These requests are sent as messages to the
server application, which invokes the appropriate operations on CORBA aobjects. The
fact that these requests are sent to the server application and invoked in the server
applicationiscompletely transparent to the client; client applications appear simply to
be making invocations on the client stub.

1-4 Creating CORBA Server Applications

The Entities You Create to Build a CORBA Server Application

Client applications may manipulate a CORBA object only by means of an object
reference. One primary design consideration is how to create object references and
return them to the client applications that need them in away that is appropriate for
your application.

Typically, object referencesto CORBA objectsare created in the BEA Tuxedo system
by factories. A factory isany CORBA object that returns, as one of its operations, a
reference to another CORBA object. Y ou implement your application’s factories the
sameway that you implement other CORBA objectsdefined for your application. Y ou
can make your factorieswidely known to the BEA Tuxedo domain, and to clients
connected to the BEA Tuxedo domain, by registering them with the FactoryFinder.
Registering a factory is an operation typically performed by the Server object, which
is described in the section “The Server Object” on page 1-8. For more information
about designing factories, seethe section “ Generating Object References’ on page 1-9.

The Content of an Object Reference

From the client application’ s perspective, an object reference is opague; it islike a
black box that client applications use without having to know what isinside. However,
object references contain all the information needed for the BEA Tuxedo system to
locate a specific object instance and to locate any state data that is associated with that
object.

An object reference contains the following information:

m Theinterface name

Thisisthe Interface Repository 1D of the object’'s OMG IDL interface.
m Theobject ID (OID)

The OID uniquely identifies the instance of the object to which the reference
applies. If the object has data in external storage, the OID also typically includes
akey that the server machine can use to locate the object’s data.

m Group ID

The group ID identifies the server group to which the object reference is routed
when a client application makes arequest using that object reference. Generating
anondefault group ID is part of akey BEA Tuxedo feature called factory-based
routing, which is described in the section “Factory-based Routing” on page 8-12.

Creating CORBA Server Applications 1-5

1 CORBA Server Application Concepts

Note: Thecombination of thethree itemsin the preceding list uniquely identifiesthe
CORBA object. It is possible for an object with a given interface and OID to
be simultaneously activein two different groups, if those two groups both
contain the same object implementation. If you need to guarantee that only one
object instance of agiven interface name and OID isavailable at any onetime
inyour domain, either: use factory-based routing to ensure that objectswith a
particular OID are always routed to the same group, or configure your domain
so that a given object implementation isin only one group. Thisassuresthat if
multiple clients have an object reference containing a given interface name
and OID, the reference is always routed to the same object instance.

For more information about factory-based routing, see the section
“Factory-based Routing” on page 8-12.

The Lifetime of an Object Reference

Object references created by server applications running in aBEA Tuxedo domain
typically have a usable lifespan that extends beyond the life of the server process that
creates them. BEA Tuxedo object references can be used by client applications
regardlessof whether the server processesthat originally created them arestill running.
In this way, object references are not tied to a specific server process.

An object reference created with the TP: : cr eat e_act i ve_obj ect _r ef erence()
operation isvalid only for the lifetime of the server processin which it was created.
For more information, see the section “ Preactivating an Object with State” on

page 3-17.

Passing Object Instances

The ORB cannot marshal an object instance as an object reference. For example,
passing afactory reference in the following code fragment generates a CORBA
marshal exception in the BEA Tuxedo system:

connection: :setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the
proxy instead, as in the following example:

CORBA: : Cbj ect nyRef = TP:.:get_object _reference();

Resul t Set Factory factoryRef = Result SetFactoryHel per:: _narrow nyRef);
connection: : setFact oryRef (factoryRef);

1-6 Creating CORBA Server Applications

The Entities You Create to Build a CORBA Server Application

How You Instantiate a CORBA Object at Run Time

When a server application receives arequest for an object that is not mapped in the
server machine’ smemory (that is, the object is not active), the TP Framework invokes
the Ser ver : : creat e_ser vant () operation. The

Server: : create_servant () operation isimplemented in the Server object, which,
as mentioned in the section “The Implementation of the CORBA Objectsfor Y our
Server Application” on page 1-2, is acomponent of a CORBA server application that
you create.

TheSer ver : : creat e_ser vant () operation causes an instance of the CORBA object
implementation to be mapped into the server machine' s memory. Thisinstance of the
object’simplementation is called the object’ s servant. Formally speaking, aservant is
an instance of the C++ class that implements an interface defined in the application’s
OMG IDL file. The servant is generated viathe C++ new statement that you write in
the Ser ver : : cr eat e_ser vant () operation.

After the object’s servant has been created, the TP Framework invokes the

Tobj _Servant Base: : acti vat e_obj ect () operation on the servant. The

Tobj _Servant Base: : acti vat e_obj ect () operation isavirtual operation that is
defined on the Tobj _Ser vant Base base class, from which all object implementation
classes inherit. The TP Framework invokes the

Tobj _Servant Base: : acti vat e_obj ect () operation to tie the servant to an object
ID (OID). (Conversely, when the TP Framework invokes the

Tobj _Servant Base: : deacti vat e_obj ect () operation on an object, the servant’s
association with the OID is broken.)

If your object has data on disk that you want to read into memory when the CORBA
object is activated, you can have that data read by defining and implementing the
Tobj _Servant Base: : acti vat e_obj ect () operation on the object. The

Tobj _Servant Base: : acti vat e_obj ect () operation can contain the specific read
operations required to bring an object’ s durable state into memory. (There are
circumstancesin which you may prefer instead to have an object’ s disk dataread into
memory by one or more separate operations on the object that you may have coded in
the implementation file. For more information, see the section “ Reading and Writing
an Object’s Data” on page 1-16.) After the invocation of the

Tobj _Servant Base: : acti vat e_obj ect () operation iscomplete, the object is said
to be active.

This collection of the object’ s implementation and data compose the run-time, active
instance of the CORBA object.

Creating CORBA Server Applications 1-7

1 CORBA Server Application Concepts

Servant Pooling

Servant pooling provides your CORBA server application the opportunity to keep a
servant in memory after the servant’ s association with aspecific OID has been broken.
When aclient request that can be satisfied with a pooled servant arrives, the TP
Framework bypassesthe TP: : cr eat e_ser vant operation and createsalink between
the pooled servant and the OID provided in the client request.

Servant pooling thus provides the CORBA server application with ameansto
minimizethe costs of reinstantiating a servant each time arequest arrives for an object
that can be satisfied by that servant. For more information about servant pooling and
how to useit, see the section “ Servant Pooling” on page 2-28.

Note: Servant pooling wasfirst introduced in release 4.2 of the WebL ogic Enterprise
product.

The Server Object

The Server object is the other programming code entity that you create for a CORBA
server application. The Server object implements operationsthat execute thefollowing
tasks:

m Performing basic server application initialization operations, which may include
registering factories managed by the server application and all ocating resources
needed by the server application. If the server application istransactional, the
Server object also implements the code that opens an XA resource manager.

m Instantiating the CORBA objects needed to satisfy client requests.

m Performing server process shutdown and cleanup procedures when the server
application has finished servicing requests. For example, if the server application
istransactional, the Server object also implements the code that closesthe XA
resource manager.

Y ou create the Server object from scratch, using a common text editor. Y ou then
provide the Server object as input into the server application build command,

bui | dobj ser ver . For more information about creating the Server object, see
Chapter 2, “ Stepsfor Creating a BEA Tuxedo CORBA Server Application.”

1-8 Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Process for Developing CORBA Server
Applications

This section presents important background information about the following topics,
which have amajor influence on how you design and implement CORBA server
applications:

m Generating Object References

m Managing Object State

m Reading and Writing an Object’s Data
m Using Design Patterns

It is not essential that you read these topics before proceeding to the next chapter;
however, this information is located here because it applies broadly to fundamental
design and implementation issues for all CORBA server applications.

Generating Object References

One of the most basic functions of a CORBA server application is providing client
applications with object references to the objects they need to execute their business
logic. CORBA client applicationstypically get object referencesto theinitial CORBA
objects they use from the following two sources:

m The Bootstrap object
m Factories managed in the BEA Tuxedo domain

Client applications use the Bootstrap object to resolve initial references to a specific
set of objectsin the BEA Tuxedo domain, such as the FactoryFinder and the
SecurityCurrent objects. The Bootstrap object isdescribed in Getting Started with BEA
Tuxedo CORBA Applications and Creating CORBA Client Applications.

Factories, however, are designed, implemented and registered by you, and they
providethe means by which client applications get referencesto objectsin the CORBA
server application, particularly the initial server application object. At itssimplest, a

Creating CORBA Server Applications 1-9

1

CORBA Server Application Concepts

factory isa CORBA object that returns an object reference to another CORBA object.
The client application typically invokes an operation on afactory to obtain an object
reference to a CORBA object of a specific type. Planning and implementing your
factories carefully is an important task when developing CORBA server applications.

How Client Applications Find Your Server Application’s Factories

Client applications are able to locate via the FactoryFinder the factories managed by
your server application. When you develop the Server object, you typically include
code that registers with the FactoryFinder any factories managed by the server
application. It isviathis registration operation that the FactoryFinder keeps track of
your server application’s factories and can provide object references to them to the
client applications that request them. We recommend that you use factories and
register themwith the FactoryFinder; thismodel makesit simplefor client applications
to find the objectsin your CORBA server application.

Creating an Active Object Reference

1-10

An active object reference is afeature that gives an aternate means through which
your server application can generate object references. Active object references are
not typically created by factories as described in the previous section, and active object
references are meant for preactivating objects with state. The next section discusses
object state in more detail.

While an object associated with aconventional object referenceisnot instantiated until
aclient application makes an invocation on the object, the object associated with an
active object reference is created and activated at the time the active object reference
iscreated. Active object references are especially convenient for specific purposes,
such asiterator objects. The section“Preactivating an Object with State”’ on page 3-17
provides more information about active object references.

Note: The active object reference feature was first introduced in WebL ogic
Enterprise version 4.2.

Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Managing Object State

Object state management is a fundamentally important concern of large-scale
client/server systems, because it is critical that such systems optimize throughput and
response time. The majority of high-throughput applications, such as applications you
run in a BEA Tuxedo domain, tend to be stateless, meaning that the system flushes
state information from memory after a service or an operation has been fulfilled.

Managing state is an integral part of writing CORBA-based server applications.
Typically, itisdifficult to manage statein these server applicationsin away that scales
and performs well. The BEA Tuxedo software provides an easy way to manage state
and simultaneously ensure scal ability and high performance.

The scalability qualities that you can build into a CORBA server application help the
server application function well in an environment that includes hundreds or thousands
of client applications, multiple machines, replicated server processes, and a
proportionately greater number of objects and client invocations on those objects.

About Object State

In aBEA Tuxedo domain, object state refers specifically to the process state of an
object across client invocations on it. The BEA Tuxedo software uses the following
definitions of stateless and stateful objects:

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an
invocation on one of the object’s operations, and is deactivated
and hasitsprocess state flushed from memory after theinvocation
iscomplete; that is, the object’ sstate is not maintained in memory
after the invocation is complete.

Creating CORBA Server Applications 1-11

1

CORBA Server Application Concepts

1-12

Object Behavior Characteristics

Stateful The object remains activated between invocations on it, and its
state ismaintained in memory across those invocations. The state
remains in memory until a specific event occurs, such as:

m The server processin which the object existsis stopped or is
shut down

m Thetransaction in which the object is participating is either
committed or rolled back

m Theobject invokesthe TP: : deact i vat eEnabl e()
operation on itself.

Each of these eventsis discussed in more detail in this section.

Both stateless and stateful objects have data; however, stateful objects may have
nonpersistent datain memory that is required to maintain context (state) between
operation invocationson those obj ects. Thus, subsequent invocations on such astateful
object always go to the same servant. Conversely, invocationson a statel ess object can
bedirected by the BEA Tuxedo system to any available server processthat can activate
the object.

State management also involves how long an object remains active, which has
important implications on server performance and the use of machine resources. The
duration of an active object is determined by object activation policiesthat you assign
to an object’s interface, described in the section that follows.

Object state is transparent to the client application. Client applications implement a
conversational model of interaction with distributed objects. Aslong as aclient
application has an object reference, it assumes that the object is always available for
additional requests, and the object appears to be maintained continuously in memory
for the duration of the client application interaction with it.

To achieve optimal application performance, you need to carefully plan how your
application’s objects manage state. Objects are required to save their state to durable
storage, if applicable, before they are deactivated. Objects must also restore their state
from durable storage, if applicable, when they are activated. For more information
about reading and writing object state information, see the section “Reading and
Writing an Object’ s Data” on page 1-16.

Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Note: BEA Tuxedo Release 8.0 provides support for parallel objects, as a
performance enhancement. This feature allows you to designate all business
objectsin a particular application as statel ess objects. For complete
information, see Chapter 3, “TP Framework,” in the CORBA Programming

Reference.

Object Activation Policies

The BEA Tuxedo software providesthree object activation policiesthat you can assign
to an object’ sinterface to determine how long an object remainsin memory after it has
beeninvoked by aclient request. These policies determine whether the object to which
they apply is generally stateless or stateful.

The three policies are listed and described in the following table.

Policy

Description

Met hod

Causes the object to be active only for the duration of the
invocation on one of the object’ s operations; that is, the object
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called a method-bound object.

The met hod activation policy is associated with stateless
objects. This activation policy isthe default.

Transacti on

Causesthe object to be activated when an operation isinvoked
onit. If the object is activated within the scope of atransaction,
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of atransaction, its behavior is the same as that of a
method-bound object. An object with this activation policy is
called a transaction-bound object.

For more information about object behavior within the scope of
atransaction, and general guidelines about using this policy,
see Chapter 6, “Integrating Transactionsinto aCORBA Server
Application.”

Thetransacti on activation policy is associated with
stateful objects for alimited time and under specific
circumstances.

Creating CORBA Server Applications 1-13

1

CORBA Server Application Concepts

Policy Description

Process Causes the object to be activated when an operation isinvoked
on it, and to be deactivated only under the following
circumstances:

m The server process that manages this object is shut down.

m Anoperation on this object invokes the
TP: : deacti vat eEnabl e() operation, which causes
this object to be deactivated. (Thisis part of akey BEA
Tuxedo feature called application-controlled deactivation,
which is described in the section “ Application-controlled
Deactivation” on page 1-14.

An object with this activation policy is called a process-bound
object. The pr ocess activation policy is associated with
stateful objects.

Y ou determine what events cause an object to be deactivated by assigning object
activation policies. For more information about how you assign object activation
policiesto an object’s interface, see the section “ Step 4: Define the In-memory
Behavior of Objects” on page 2-14.

Application-controlled Deactivation

1-14

The BEA Tuxedo software a so provides a feature called application-controlled
deactivation, which provides a meansfor an application to deactivate an object during
run time. The BEA Tuxedo software providesthe TP: : deact i vat eEnabl e()
operation, which a process-bound object can invoke on itself. When invoked, the

TP: : deact i vat eEnabl e() operation causes the object in which it exists to be
deactivated upon completion of the current client invocation on that object. An object
can invokethis operation only on itself; you cannot invoke this operation on any object
but the object in which the invocation is made.

Theapplication-controlled deactivation featureis particul arly useful when youwant an
object to remain in memory for the duration of alimited number of client invocations
on it, and you want the client application to be able to tell the object that the client is
finished with the object. At this point, the object takes itself out of memory.

Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Application-controlled deactivation, therefore, allows an object to remain in memory
in much the same way that a process-bound object can: the object is activated asa
result of aclient invocation on it, and it remains in memory after the initial client
invocation on it is completed. Y ou can then deactivate the object without having to
shut down the server process in which the object exists.

An alternative to application-controlled deactivation isto scope atransaction to
maintain a conversation between a client application and an object; however,
transactions areinherently more costly, and transactions are generally inappropriatein
situations where the duration of the transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled
deactivation and transactions for a conversation is whether there are any disk writing
operations involved. If the conversation involves read-only operations, or involves
maintaining state only in memory, then application-controlled deactivation is
appropriate. If the conversation involveswriting datato disk during or at the end of the
conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversational
model between a client application and an object managed by the server
application, make sure that the object eventually invokes the
TP: : deact i vat eEnabl e() operation. Otherwise, the object remainsidlein
memory indefinitely. (Note that this can be arisk if the client application
crashes before the TP: : deact i vat eEnabl e() operation isinvoked.
Transactions, on the other hand, implement a timeout mechanism to prevent
the situation in which the object remainsidlefor an indefinite period. This may
be another consideration when choosing between the two conversational
models.)

Y ou implement application-controlled deactivation in an object using the following
procedure:

1. Intheimplementationfile, insert aninvocation to the TP: : deact i vat eEnabl e()
operation at the appropriate location within the operation of the interface that uses
application-controlled deactivation.

2. Inthe Implementation Configuration File (ICF file), assign the pr ocess
activation policy to the interface that contains the operation that invokes the
TP: : deact i vat eEnabl e() operation.

3. Build and deploy your application as described in the sections “ Step 5: Compile
and Link the Server Application” on page 2-17 and “ Step 6: Deploy the Server
Application” on page 2-18.

Creating CORBA Server Applications 1-15

1 CORBA Server Application Concepts

Reading and Writing an Object’s Data

Many of the CORBA objects managed by the server application may have datathat is
in external storage. This externally stored data may be regarded as the persistent or
durable state of the object. You must address durable state handling at appropriate
points in the object implementation for object state management to work correctly.

Because of the wide variety of requirements you may have for your client/server
application with regards to reading and writing an object’s durable state, the TP
Framework cannot automatically handle durable object state on disk. In general, if an
object’ s durable state is modified as a result of one or more client invocations, you
must make sure that durable state is saved before the object is deactivated, and you
should plan carefully how the object’s datais stored or initialized while the object is
active.

The sections that follow describe the mechanisms available to you to handle an
object’ sdurable state, and give some general advice how to read and write object state
under specific circumstances. The specific topics presented include:

m Theavailable mechanisms for reading and writing an object’s durable state
m Reading state at object activation

m Reading state within individual operations on an object

m Stateless objects and durable state

m Stateful objects and durable state

m Your responsibilities for object deactivation

m Avoiding unnecessary 1/0

How you choose to read and write durable state invariably depends on the specific
reguirements of your client/server application, especially with regard to how the data
isstructured. In general, your priority should be to minimize the number of disk
operations, especialy where a database controlled by an X A resource manager is
involved.

Available Mechanisms for Reading and Writing an Object’s Durable State

Table 1-1 and Table 1-2 describe the avail able mechanisms for reading and writing an
object’s durable state.

1-16 Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Table 1-1 Available M echanismsfor Reading an Object’s Durable Sate

M echanism

Description

Tobj _Servant Base: :
acti vate_object()

After the TP Framework creates the servant for an object, the
TP Framework invokes the

Tobj _Servant Base: : acti vat e_obj ect () operation
on that servant. As mentioned in the section “How You
Instantiate a CORBA Object at Run Time” on page 1-6, this
operation isdefined on the Tobj _Ser vant Base base class,
from which all the CORBA objects you define for your
client/server application inherit.

Y ou may choose not to define and implement the

Tobj _Servant Base: : acti vat e_obj ect () operation
on your object, in which case nothing happens regarding
specific object state handling when the TP Framework
activates your object. However, if you define and implement
this operation, you can choose to include code in this operation
that reads someor all of an object’ sdurable state into memory.
Therefore, the

Tobj _Servant Base: : acti vat e_obj ect () operation
provides your server application with its first opportunity to
read an object’ s durable state into memory.

Note that if an object’s OID contains a database key, the
Tobj _Servant Base: : acti vat e_obj ect () operation
providesthe only meansthe object hasto extract that key from
the OID.

For more information about implementing the

Tobj _Servant Base: : acti vat e_obj ect () operation,
see “ Step 2: Write the Methods That Implement Each
Interface’ s Operations’ on page 2-6. For an example of
implementing the

Tobj _Servant Base: : acti vat e_obj ect () operation,
see Chapter 3, “Designing and Implementing a Basic CORBA
Server Application.”

Operations on the object

Y ou can include inside the individual operations that you
define on the object the code that reads an object’ s durable
state.

Creating CORBA Server Applications 1-17

1

CORBA Server Application Concepts

1-18

Table 1-2 Available M echanisms for Writing an Object’s Durable Sate

M echanism

Description

Tobj _Servant Base: :
deactivate_object ()

When an object isbeing deactivated by the TP Framework, the
TP Framework invokesthis operation on the object asthefinal
step of object deactivation. Aswith the

Tobj _Ser vant Base: : acti vat e_obj ect () operation,
the Tobj _Ser vant Base: : deacti vat e_obj ect ()
operation is defined on the Tobj _Ser vant Base class. You
implement the deact i vat e_obj ect () operation on your
object optionally if you have specific object state that you want
flushed from memory or written to a database.

The Tobj _Servant Base: : deacti vate_obj ect ()
operation providesthefinal opportunity your server application
has to write durable state to disk before the object is
deactivated.

If your object keeps any datain memory, or alocates memory
for any purpose, you implement the

Tobj _Servant Base: : deacti vat e_obj ect ()
operation so your object has afinal opportunity to flush that
datafrom memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object

Asyou may haveindividual operations on the objects that read
durable state from disk, you may also have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, you
typically perform database write operations within these
operations and not in the

Tobj _Servant Base: : deacti vat e_obj ect ()
operation.

For transaction-bound objects, however, writing durable state
inthe Tobj _Servant Base: : deacti vat e_obj ect ()
operation provides a number of object management
efficiencies that may make sense for your transactional server
applications.

Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Note: If you usethe Tobj _Ser vant Base: : deact i vat e_obj ect () operation to
write any durable state to disk, any errors that occur while writing to disk are
not reported to the client application. Therefore, the only circumstances under
which you should write datato disk in this operation is when: the object is
transaction-bound (that is, it hasthet r ansact i on activation policy assigned
to it), or you scope the disk write operations within a transaction by invoking
the TransactionCurrent object. Any errors encountered while writing to disk
during atransaction can be reported back to the client application. For more
information about using the Tobj _Ser vant Base: : deacti vat e_obj ect ()
operation to write object state to disk, see the section “ Caveat for State
Handling in Tobj_ServantBase::deactivate_object()” on page 2-27.

Reading State at Object Activation

Usingthe Tobj _Ser vant Base: : acti vat e_obj ect () operation on an object toread
durable state may be appropriate when either of the following conditions exist:

m Object dataisalways used or updated in all the object’s operations.
m All the object’s datais capable of being read in one operation.

The advantages of using the Tobj _Ser vant Base: : act i vat e_obj ect () operation
to read durable state include:

m You write code to read data only once, instead of duplicating the code in each of
the operations that use that data.

m None of the operations that use an object’s data need to perform any reading of
that data. In this sense, you can write the operations in away that is independent
of state initialization.

Reading State Within Individual Operations on an Object

With all objects, regardless of activation policy, you can read durable state in each
operation that needs that data. That is, you handle the reading of durable state outside
the Tobj _Ser vant Base: : act i vat e_obj ect () operation. Cases where this
approach may be appropriate include the following:

m Object state is made up of discrete data el ements that require multiple operations
to read or write.

m Objectsdo not always use or update state data at object activation.

Creating CORBA Server Applications 1-19

1

CORBA Server Application Concepts

For example, consider an object that representsacustomer’ sinvestment portfolio. The
object contains several discrete records for each investment. If a given operation
affects only one investment in the portfolio, it may be more efficient to allow that
operation to read the one record than to have a general-purpose

Tobj _Servant Base: : acti vat e_obj ect () operation that automatically readsinthe
entire investment portfolio each time the object is invoked.

Stateless Objects and Durable State

1-20

In the case of stateless objects—that is, objects defined with the met hod activation
policy—you must ensure the following:

m That any durable state needed by the request is brought into memory by the time
the operation’s business logic starts executing.

m That any changesto the durable state are written out by the end of the
invocation.

The TP Framework invokes the Tobj _Ser vant Base: : act i vat e_obj ect ()
operation on an object at activation. If an object has an OID that contains akey to the
object’ s durable state on disk, the Tobj _Ser vant Base: : act i vat e_obj ect ()
operation provides the only opportunity the object has to retrieve that key from the
OID.

If you have a statel ess object that you want to be able to participate in atransaction, we
generally recommend that if the object writes any durable state to disk that it be done
within individual methods on the object. However, if you have a statel ess object that
isalways transactional—that is, a transaction is always scoped when this object is
invoked—you have the option to handle the database write operationsin the

Tobj _Servant Base: : deact i vat e_obj ect () operation, because you have a
reliable mechanismin the XA resource manager to commit or roll back database write
operations accurately.

Note: Evenif your object is method-bound, you may have to take into account the
possibility that two server processes are accessing the same disk data at the
sametime. In this case, you may want to consider a concurrency management
technique, the easiest of which istransactions. For more information about
transactions and transactional objects, see Chapter 6, “ Integrating
Transactionsinto a CORBA Server Application.”

Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Servant Pooling and Stateless Objects

Servant pooling is a particularly useful feature for statel ess objects. When your
CORBA server application pools servants, you can significantly reduce the costs of
instantiating an object each time a client invokesit. Asmentioned in the section
“Servant Pooling” on page 1-8, a pooled servant remains in memory after a client
invocation on it is complete. If you have an application in which a given object is
likely to be invoked repeatedly, pooling the servant means that only the object’ s data,
and not its methods, needsto beread into and out of memory for each clientinvocation.
If the cost associated with reading an object’s methods into memory is high, servant
pooling can reduce that cost.

For information about how to implement servant pooling, see the section “Servant
Pooling” on page 2-28.

Stateful Objects and Durable State

For stateful objects, you should read and write durable state only at the point where it
is needed. This may introduce the following optimizations:

m Inthe case of process-bound objects, you avoid the situation in which an object
allocates alarge amount of memory over along period.

m Inthe case of transaction-bound objects, you can postpone writing durable state
until the Tobj _Ser vant Base: : deact i vat e_obj ect () operation isinvoked,
when the transaction outcome is known.

In general, transaction-bound objects must depend on the XA resource manager to
handle all database write or rollback operations automatically.

Note: For objectsthat areinvolved in atransaction, we do not support having those
objectswrite data to external storage that is not managed by an XA resource
manager.

For more information about objects and transactions, see Chapter 6, “Integrating
Transactions into a CORBA Server Application.”

Servant Pooling and Stateful Objects

Servant pooling does not make sense in the case of process-bound objects; however,
depending on your application design, servant pooling may provide a performance
improvement for transaction-bound objects.

Creating CORBA Server Applications 1-21

1 CORBA Server Application Concepts

Your Responsibilities for Object Deactivation

As mentioned in the preceding sections, you implement the

Tobj _Servant Base: : deact i vat e_obj ect () operation asameansto write an
object’s durable state to disk. Y ou should also implement this operation on an object
asameansto flush any remaining object datafrom memory so that the object’ s servant
can be used to activate another instance of that object. Y ou should not assume that an
invocation to an object’s Tobj _Ser vant Base: : deact i vat e_obj ect () operation
also results in an invocation of that object’s destructor.

Avoiding Unnecessary 1/0

Be careful not tointroduce inefficienciesinto the application by doing unnecessary 1/0
in objects. Situations to be aware of include the following:

m If many operationsin an object do not use or affect object state, it may be
inefficient to read and write state each time these operations are invoked. Design
these objects so that they handle state only in the operations that need it; in such
cases, you may not want to have al of the object’s durable state read in at object
activation.

m |f object state is made up of datathat isread in multiple operations, try to do
only the necessary operations at object activation by doing one of the following:

e Reading only the state that is common to all the operationsin the
Tobj _Servant Base: : acti vat e_obj ect () operation. Defer the reading of
additional state to only the operationsthat require it.

e Writing out only the state that has changed. You can do this by managing
flags that indicate the data that was changed during an activation, or by
comparing before and after data images.

A general optimization isto initidize adi rt ySt at e flag on activation and to
write datain the Tobj _Ser vant Base: : deact i vat e_obj ect () operation
only if the flag has been changed while the object was active. (Note that this
worksonly if you can be assured that the object is always activated in the
same server process.)

Sample Activation Walkthrough

For examples of the sequence of activity that takes place when an object is activated,
see Getting Started with BEA Tuxedo CORBA Applications.

1-22 Creating CORBA Server Applications

Process for Developing CORBA Server Applications

Using Design Patterns

It isimportant to structure the business logic of your application around awell-formed
design. The BEA Tuxedo software provides a set of design patterns to address this
need. A design patternissimply astructured solution to aspecific design problem. The
value of adesign pattern liesin its ability to be expressed in aform you can reuse and
apply to other design problems.

The BEA Tuxedo design patterns are structured solutions to enterprise-class
application design problems. Y ou can use them to design successful large-scale
client/server applications.

The design patterns summarized here are a guide to using good design practicesin
CORBA client and server applications. They are an important and integral part of
designing CORBA client and server applications, and the chaptersin this book show
examples of using these design patterns to implement the University sample
applications.

Process-Entity Design Pattern

The Process-Entity design pattern applies to alarge segment of enterprise-class
client/server applications. This design pattern is referred to as the flyweight pattern in
Object-Oriented Design Patterns, Gammaet a., and asthe M odel-View-Controller in
other publications.

In this pattern, the client application creates along-lived process object that the client
application interacts with to make requests. For example, in the University sample
applications, this object might be the registrar that handles course browsing operations
on behalf of theclient application. The coursesthemsel ves are database entitiesand are
not made visible to the client application.

The advantages of the Process-Entity design pattern include:

m You can achieve the advantages of a fine-grained object model without
implementing fine-grained objects. Instead, you use CORBA struct datatypes
to simulate objects.

m Machine resource usage is optimized because there is only a single object
mapped into memory: the process object. By contrast, if each database entity
were activated into memory as a separate object instance, the number of objects

Creating CORBA Server Applications 1-23

1

CORBA Server Application Concepts

that would need to be handled could overwhelm the machine’s resources quickly
in alarge-scale deployment.

m Becausethey are not exposed to the client application, database entities heed not
be implemented as CORBA objects. Instead, entities can be implemented as
local language objects in the server process. Thisisafundamental principle of
three-tier designs, but it also accurately models the way in which many
businesses operate (for example, aregistrar at areal university). The individual
who serves as the registrar at a university can handle a large course database for
multiple students; you do not need an individual registrar for each individual
student. Thus, the process object state is distinct from the entity object state.

An example of applying the Process-Entity design pattern is described in Chapter 3,
“Designing and Implementing a Basic CORBA Server Application.” For complete
details on the Process-Entity design pattern, see Technical Articles.

List-Enumerator Design Pattern

1-24

The List-Enumerator design pattern also appliesto alarge segment of enterprise-class
client/server applications. The List-Enumerator design pattern leverages a key BEA
Tuxedo feature, application-controlled object deactivation, to handle a cache of data
that isstored and tracked in memory during several client invocations, and thento flush
the data from memory when the datais no longer needed.

An example of applying the List-Enumerator design pattern is described in Chapter 3,
“Designing and Implementing a Basic CORBA Server Application.”

Object preactivation, which is an especially useful tool for implementing the
List-Enumerator design, is described in the section “ Preactivating an Object with
State” on page 3-17.

Creating CORBA Server Applications

CHAPTER

2

Steps for Creating a

BEA Tuxedo CORBA
Server Application

This chapter describes the basic steps involved in creating a CORBA server
application. The steps shown in this chapter are not definitive; there may be other steps
you may need to take for your particular server application, and you may want to
change the order in which you follow some of these steps. However, the devel opment
process for every CORBA server application has each of these stepsin common.

Thistopic includes the following sections:

m Summary of the CORBA Server Application Development Process
m Development and Debugging Tips

m Servant Pooling

m Delegation-based Interface Implementation

This chapter begins with a summary of the steps, and also lists the devel opment tools
and commands used throughout this book. Y our particular deployment environment
might use additional software development tools, so thetoolsand commandslisted and
described in this chapter are also not definitive.

The chapter uses examples from the Basic University sample application, whichis
provided with the BEA Tuxedo software. For complete details about the Basic
University sample application, see the Guide to the CORBA University Sample
Applications. For complete information about the tools and commands used
throughout this book, see the CORBA Programming Reference.

Creating CORBA Server Applications 2-1

2

Steps for Creating a BEA Tuxedo CORBA Server Application

For information about creating multithreaded CORBA server applications, see
Chapter 4, “Creating Multithreaded CORBA Server Applications.”

Summary of the CORBA Server Application
Development Process

2-2

The basic steps to create a server application are:

Step 1: Compilethe OMG IDL File for the Server Application

Step 2: Write the Methods That |mplement Each Interface’ s Operations
Step 3: Create the Server Object

Step 4: Define the In-memory Behavior of Objects

Step 5: Compile and Link the Server Application

Step 6: Deploy the Server Application

The BEA Tuxedo software also provides the following development tools and

commands:
Tool Description
IDL compiler Compiles your application’s OMG IDL file.
geni cf Generates an Implementation Configuration File (ICF file),

which you can revise to specify nondefault object activation
and transaction policies.

bui | dobj server

Creates the executable image of your CORBA server
application.

t m oadcf Creates the TUXCONFI Gfile, abinary file for the CORBA
domain that specifies the configuration of your server
application.

tmadmi n Among other things, createsalog of transactiona activities,

which is used in some of the sample applications.

Creating CORBA Server Applications

Step 1: Compile the OMG IDL File for the Server Application

Step 1: Compile the OMG IDL File for the
Server Application

The basic structure of the client and server portions of the application that runsin the
BEA Tuxedo domain are determined by statementsin the application’sOMG IDL file.
When you compile your application’s OMG IDL file, the IDL compiler generates
some or al of thefilesshown in thefollowing diagram, depending upon which options
you specify inthei dl command. The shaded components are the generated files that
you modify to create a server application.

Client Stub File

Client Stub
Header File

Skeleton File

IDL Compiler

Skeleton
Header File

Implementation
File

Implementation
Header File

Creating CORBA Server Applications 2-3

2

Steps for Creating a BEA Tuxedo CORBA Server Application

Thefiles produced by the IDL compiler are described in Table.

Table 2-1 Files Produced by the IDL Compiler

File Default Name Description

Client stub file application_c.cpp Containsgenerated code for sending arequest.

Client stub header file application_c.h Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application_s.cpp Containsskeletonsfor each interface specified in the OMG
IDL file. The skeleton mapsclient requeststo the appropriate
operation in the server application during run time.

Skeleton header file application_s.h Contains the skeleton class definitions.

Implementation file application_i.cpp Containssignaturesfor the methodsthat implement the

operations on the interfaces specified in the OMG IDL file.

Implementation application_i.h Contains theinitial class definitionsfor each interface
header file specified in the OMG IDL file.

Using the IDL Compiler

2-4

To generate thefiles listed in Table 2-1, enter the following command:
idl [options] idl-filenane [icf-fil enane]
Inthei dl command syntax:

m options represents one or more command-line options to the IDL compiler. The
command-line options are described in the CORBA Programming Reference. If
you want to generate implementation files, you need to specify the-i option.

m idl-filenane representsthe name of your application’'s OMG IDL file.

m icf-filenane isan optional parameter that represents the name of your
application’s Implementation Configuration File (ICF file), which you use to
specify object activation policies or to limit the number of interfaces for which
you want skeleton and implementation files generated. Using the ICFfileis
described in the section “ Step 4: Define the In-memory Behavior of Objects’ on
page 2-14.

Creating CORBA Server Applications

Step 1: Compile the OMG IDL File for the Server Application

Note: The C++ IDL compiler implementation of pragmas changed in WebL ogic
Enterprise 5.1 to support CORBA 2.3 functionality and may affect your IDL
files. The CORBA 2.3 functionality changes the scope that the pragma prefix
definitions can affect. Pragmas do not affect definitions contained within
included IDL files, nor do pragma prefix definitions made within included IDL
files affect objects outside the included file.

The C++ IDL compiler has been modified to correct the handling of pragma prefixes.
This change can effect the repository ID of objects, resulting in failures for some
operations, such asa_narr ow.

To prevent such failures:

m If youreload your IDL into the repository, you must also regenerate the client
stubs and server skeletons of the application.

m If you regenerate any client stub or server skeleton, you must regenerate all stubs
and skeletons of the application, and you must reload the IDL into the Interface
Repository.

For more information about the IDL compiler, including detailson thei dI command,
see the CORBA Programming Reference.

Generating the Skeleton and Implementation Files

The following command line generates client stub, skeleton, and initial
implementation files, along with skeleton and implementation header files, for the
OMG IDL fileuni vb.idl :

idl -i univb.idl

For more information about thei dI command, see the CORBA Programming
Reference. For more information about generating these files for the BEA Tuxedo
University sample applications, see the Guide to the CORBA University Sample
Applications.

Note: If you plan to specify nondefault object activation or transaction policies, or if
you plan to limit the number of interfaces for which you want skeleton and
implementation files generated, you need to generate and modify an

Creating CORBA Server Applications 2-5

2 Steps for Creating a BEA Tuxedo CORBA Server Application

Implementation Configuration File (ICF) and pass the ICF file to the IDL
compiler. For more information, see “ Specifying Object Activation and
Transaction Policiesin the ICF File” on page 2-14.

Generating Tie Classes

The IDL compiler also provides the - T command-line option, which you can use for
generating tie class templates for your interfaces. For more information about
implementing tie classesin a CORBA application, see the section “Delegation-based
Interface Implementation” on page 2-29.

Step 2: Write the Methods That Implement
Each Interface’s Operations

Astheserver application programmer, your task isto write the methods that implement
the operationsfor each interface you have defined in your application’sOMG IDL file.

Theimplementation file contains:
m Method declarations for each operation specified in the OMG IDL file.

m Your application’s business logic, include files, and other data you want the
application to use.

m Constructors and destructors for each interface implementation (implementing
these is optional).

m Optionaly, the Tobj _Ser vant Base: : acti vat e_obj ect () and
Tobj _Ser vant Base: : deact i vat e_obj ect () operations.

Within the Tobj _Ser vant Base: : acti vat e_obj ect () and

Tobj _Ser vant Base: : deact i vat e_obj ect () operations, you write code that
performs any particular steps related to activating or deactivating an object. This
includes reading and writing the object’s durabl e state from and to disk,
respectively. If you implement these operationsin your object, you must a so

2-6 Creating CORBA Server Applications

Step 2: Write the Methods That Implement Each Interface’s Operations

edit the implementation header file and add the definitions for these operations
in each implementation that uses them.

The Implementation File Generated by the IDL Compiler

Although you can create your server application’s implementation file entirely by
hand, the IDL compiler generates an implementation file that you can use asa starting
place for writing your implementation file. The implementation file generated by the
IDL compiler contains signatures for the methods that implement each of the
operations defined for your application’ s interfaces.

Y outypically generatethisimplementation file only once, using the-i option with the
command that invokes the IDL compiler. Asyou iteratively refine your application’s
interfaces, and modify the operations for those interfaces, including operation
signatures, you add all the required changes to the implementation file to reflect those
changes.

Implementing a Factory

Asmentioned in the section “How Client Applications Access and Manipulate Y our
Application’s CORBA Objects’ on page 1-4, you need to create factories so that client
applications can easily locate the objects managed by your server application. A
factory islike any other CORBA object that you implement, with the exception that
you register it with the FactoryFinder object. Registering afactory is described in the
section “Writing the Code That Creates and Registers a Factory” on page 2-10.

The primary function of afactory isto create object references, which it does by
invoking the TP: : creat e_obj ect _r ef erence() operation. The

TP: : create_obj ect _ref erence() operation requires the following input
parameters:

m TheInterface Repository ID of the object’'sOMG IDL interface

m Theobject ID (OID) in string format

m Optionally, routing criteria

For example, in the Basic University sample application, the Regi st r ar Fact ory

interface specifies only one operation, as follows:

Creating CORBA Server Applications 2-7

2 Steps for Creating a BEA Tuxedo CORBA Server Application

Step 3:

Uni versity::Registrar_ptr RegistrarFactory i::find registrar()

Thefind_registrar () operation onthe Regi st r ar Fact or y object contains the
following invocationtothe TP: : cr eat e_obj ect _r ef erence() operationto createa
reference to aRegi st rar object:

CORBA: : Obj ect _var v_reg_oref =
TP: : create_object_reference(
University:: tc_Registrar->id(),
obj ect _id,
CORBA: : NVIist:: nil()
)
In the previous code example, notice the following:

m Thefollowing parameter specifiesthe Regi st rar object’s Interface Repository
ID by extracting it from its typecode:

University:: tc_Registrar->id()

m Thefollowing parameter specifies that no routing criteria are used, with the
result that an object reference created for the Regi st rar object isrouted to the
same group as the Regi st r ar Fact or y object that created the object reference:

CORBA: :NVIist:: nil()
For information about specifying routing criteria that affect the group to which

object references are routed, see Chapter 8, “Scaling a BEA Tuxedo CORBA
Server Application.”

Create the Server Object

Implementing the Server object is not like implementing other language objects. The
header classfor the Server object has already been created, and the Server object class
has already been instantiated for you. Creating the Server object involves
implementing a specific set of methods in the prepackaged Server object class. The
methods you implement are described in this section.

To create the Server object, create a new file using a common text editor and
implement the following operations:

2-8 Creating CORBA Server Applications

Step 3: Create the Server Object

Operation Description

Server::initialize(); After the server application is booted, the TP Framework invokesthis
operation as the last step in the server application initialization process.
Within this operation, you perform a number of initiaization tasks
needed for your particular server application. What you provide within
this operation is described in the section “Initializing the Server
Application” on page 2-9.

Server::create_servant(); When a client request arrives that cannot be serviced by an existing
servant, the TP Framework invokes this operation, passing the Interface
Repository ID of the OMG IDL interface for the CORBA object to be
activated. What you provide within this operation is described in the
section “ Creating Servants’ on page 2-11.

Server::rel ease(); The TP Framework invokes this operation when the server application is
being shut down. This operation includes code to unregister any object
factories managed by the server application and to perform other
shutdown tasks. What you provide within this operation is described in
the section “ Releasing the Server Application” on page 2-13.

Thereisonly oneinstance of the Server object in any server application. If your server
application is managing multiple CORBA object implementations, the
Server::initialize(),Server::create_servant(),andServer::rel ease()
operations you write must include code that appliesto all those implementations.

The code that you write for most of these tasks involves interaction with the TP
Framework. The sectionsthat follow explain the code required for each of these Server
object operations and shows sample code from the Basic University sample
application.

Initializing the Server Application

The first operation that you implement in your Server object is the operation that
initializes the server application. This operation isinvoked when the BEA Tuxedo
system startsthe server application. The TP Framework invokes the following
operation in the Server object during the startup sequence of the server application:

CORBA: : Bool ean Server::initialize(int argc, char** argv)

Creating CORBA Server Applications 2-9

2

Steps for Creating a BEA Tuxedo CORBA Server Application

Any command-line options specified in the CLOPT parameter for your specific server
application in the SERVERS section of the BEA Tuxedo domain’s UBBCONFI Gfile are
passed to the Server: :initialize() operationasar gc and ar gv. For more
information about passing arguments to the server application, see Administering a
BEA Tuxedo Application at Run Time. For examples of passing argumentsto the server
application, see the Guide to the CORBA University Sample Applications.

Withinthe Server: :initialize() operation, youinclude code that does the
following, if applicable:

m Creates and registers factories

m Allocates any machine resources

m Initializes any global variables needed by the server application
m Opens the databases used by the server application

m Opensthe XA resource manager

Writing the Code That Creates and Registers a Factory

2-10

If your server application manages afactory that you want client applicationsto be able
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object, which isinvoked typicaly asthe final step of the server
application initialization process.

To write the code that registers a factory managed by your server application, you do
the following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section
“Implementing a Factory” on page 2-7. In this step, you include an invocation to
the TP: : creat e_obj ect _r ef erence() operation, specifying the Interface
Repository ID of the factory’s OMG IDL interface. The following example
creates an object reference, represented by the variables_v_fact _ref, tothe
Regi strar Fact ory factory:

Uni versity::RegistrarFactory s v _fact_ref =
TP: : create_obj ect _reference(
University:: tc_RegistrarFactory->id(),
object _id,

Creating CORBA Server Applications

Step 3: Create the Server Object

CORBA: : NVList:: _nil()
)i

2. Register the factory with the BEA Tuxedo domain.

This step involves invoking the following operation for each of the factories
managed by the server application:

TP::register _factory (CORBA:: Object_ptr factory_or,
const char* factory_id);

The TP: : regi ster _fact ory() operation registers the server application’s
factories with the FactoryFinder object. This operation requires the following
input parameters:

e The object reference for the factory, created in step 1 above.

e A dtring identifier, based on the factory object’sinterface typecode, used to
identify the Interface Repository 1D of the factory’s OMG IDL interface.

The following example registersthe Regi st r ar Fact or y factory with the BEA
Tuxedo domain:

TP::register _factory(s_v_fact_ref.in(),

University:: tc_RegistrarFactory->id());
Notice the parameter Uni versity:: _tc_Regi strarFactory->id(). Thisis
the same parameter specified in the TP: : creat e_obj ect _r ef er ence()
operation. This parameter extracts the Interface Repository ID of the object’s
OMG IDL interface from its typecode.

Creating Servants

After the server application initialization process is complete, the server applicationis
ready to begin processing client requests. If arequest arrives for an operation on a
CORBA object for which thereisno servant available in memory, the TP Framework
invokes the following operation in the Server object:

Tobj _Servant Server::create_servant(const char* interfaceNane)

TheServer:: creat e_servant () operation contains code that instantiates a servant
for the object required by the client request. For example, in C++, thiscodeincludesa
new statement on the interface class for the object.

Creating CORBA Server Applications 2-11

2 Steps for Creating a BEA Tuxedo CORBA Server Application

The Server: :create_servant () operation does not associate the servant with an
OID. The association of a servant with an OID takes place when the TP Framework
invokesthe Tobj _Servant Base: : act i vat e_obj ect () operation on the servant,
which completes the instantiation of the object. (Y ou cannot associate an Ol D with an
object in the object’s constructor.) Likewise, the disassociation of a servant with an
OID takes place when the TP Framework invokesthe deact i vat e_obj ect ()
operation on the servant.

Thisbehavior of aservant inthe BEA Tuxedo system makesit possible, after an object
has been deactivated, for the TP Framework to make a servant available for another
object instantiation. Therefore, do not assume that an invocation of an object’s

Tobj _Servant Base: : deact i vat e_obj ect () operation resultsin an invocation of
that object’s destructor. If you use the servant pooling feature in your server
application, you can implement the TP: : appl i cati on_responsi bi l i ty()
operation in an object’s Tobj _Ser vant Base: : deacti vat e_obj ect () operation to
pass a pointer to the servant to a servant pool for later reuse. Servant pooling is
discussed in the section “ Servant Pooling” on page 2-28.

The Server::create_servant () operation requiresasingle input argument. The
argument specifies a character string containing the Interface Repository ID of the
OMG IDL interface of the object for which you are creating a servant.

In the code you writefor this operation, you specify the I nterface Repository IDs of the
OMG IDL interfaces for the objects managed by your server application. During run
time, the Server : : creat e_ser vant () operation returns the servant needed for the
object specified by the request.

Thefollowing code implements the Ser ver : : cr eat e_ser vant () operation in the
University server application from the Basic University sample application:

Tobj _Servant Server::create_servant(const char* intf_repos_id)

if (!'strcnp(intf_repos_id, University:: tc RegistrarFactory->id())) {
return new Regi strarFactory_i();

if (!strcnp(intf_repos_id, University:: tc Registrar->id())) {
return new Registrar_i();

if (!strcnp(intf_repos_id, University:: tc_CourseSynopsi sEnunerator->id())) {
return new Cour seSynopsi sEnunmerator _i ();

}

return O;

// unknown interface

2-12 Creating CORBA Server Applications

Step 3: Create the Server Object

Releasing the Server Application

When the BEA Tuxedo system administrator entersthet nshut down command, the TP
Framework invokesthe following operationin the Server object of each running server
application in the BEA Tuxedo domain:

void Server::release()

WithintheSer ver : : r el ease() operation, you may perform any application-specific
cleanup tasksthat are specific to the server application, such as:

m Unregistering object factories managed by the server application
m Deallocating resources

m Closing any databases

m Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server processif a second server process
containsaninvocationinitsSer ver : : r el ease() operationto thefirst server process.

During server shutdown, you may want to include the following invocation to
unregister each of the server application’s factories:

TP: :unregi ster_factory (CORBA:: bject _ptr factory_or,
const char* factory_id)

Theinvocation of the TP: : unr egi st er _fact ory() operation should be one of the
first actionsinthe Server: : rel ease() implementation. The

TP::unregi ster_factory() operation unregistersthe server application’ sfactories.
This operation requires the following input arguments:

m The object reference for the factory.

m A string identifier, based on the factory object’s interface typecode, used to
identify Interface Repository ID of the object’'s OMG IDL interface.

The following example unregisters the Regi st r ar Fact or y factory used in the Basic
sample application:

TP: :unregister_factory(s_v_fact_ref.in(), UnivB::_tc_RegistrarFactory->id());

Creating CORBA Server Applications 2-13

2 Steps for Creating a BEA Tuxedo CORBA Server Application

In the preceding code example, notice the use of the global variables_v_fact _ref.
Thisvariablewassetinthe Server: :initialize() operation that registered the
Regi st rar Fact ory object, which is used again here.

Notice al so the parameter Uni vB: : _t c_Regi strar Fact or y- >i d() . Thisisalso the
same as the interface name used to register the factory.

Step 4: Define the In-memory Behavior of
Objects

As stated in the section “Managing Object State” on page 1-11, you determine what
events cause an object to be deactivated by assigning object activation policies,
transaction policies, and, optionally, using the application-controlled deactivation
feature.

Y ou specify object activation and transaction policiesin the ICF file, and you
implement application-controlled deactivation viathe TP: : deact i vat eEnabl e()
operation. This section explains how you implement both mechanisms, using the Basic
University sample application as an example.

The sections that follow describe the following:
m How to specify object activation and transaction policies in the ICF file

m How to implement application-controlled deactivation

Specifying Object Activation and Transaction Policies in
the ICF File

The BEA Tuxedo software supports the following activation policies, described in
“Object Activation Policies’ on page 1-13:

2-14 Creating CORBA Server Applications

Step 4: Define the In-memory Behavior of Objects

Activation Policy

Description

met hod

Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction

Causesthe object to be activated when an operation isinvoked on
it. If the object is activated within the scope of atransaction, the
object remains active until the transaction is either committed or
rolled back.

process

Causesthe object to be activated when an operation isinvoked on
it, and to be deactivated only when one of the following occurs:

m The processin which the server application existsis shut
down.

m Theobject hasinvoked the TP: : deact i vat eEnabl e()
operation on itself.

The BEA Tuxedo software al so supports the following transaction policies, described
in Chapter 6, “Integrating Transactionsinto a CORBA Server Application”:

Transaction Policy

Description

al ways

When an operation on thisobject isinvoked, thispolicy causesthe
TP Framework to begin atransaction for thisobject, if thereisnot
aready an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction if
the operation raises an exception.

opti onal

When an operation on thisobject isinvoked, thispolicy causesthe
TP Framework to include this object in atransaction if a
transaction is active. If no transaction is active, the invocation on
this object proceeds according to the activation policy defined for
this object.

Thisis the default transaction policy.

never

Causes the TP Framework to generate an error condition if this
object isinvoked during a transaction.

Creating CORBA Server Applications 2-15

2

Steps for Creating a BEA Tuxedo CORBA Server Application

2-16

Transaction Policy Description

i gnore If atransaction is currently active when an operation on this
object isinvoked, the transaction is suspended until the operation
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

To assign these policies to the objects in your application:

1. Generate the ICF file by entering the geni ¢cf command, specifying your
application's OMG IDL file asinput, asin the following example:

genicf university.idl

The preceding command generatesthe fileuni versity.i cf.
2. Edit the ICF file and specify the activation policies for each of your application’s
interfaces. The following example shows the | CF file generated for the Basic

University sample application. Notice that the default object activation policy is
met hod, and that the default transaction activation policy isopt i onal .

nmodul e POA Uni versityB

{
i mpl enent ati on Cour seSynopsi sEnuner at or _i
{
activation_policy (method);
transaction_policy (optional);
i npl enents (UniversityB:: CourseSynopsi sEnunerator);
}
nmodul e POA Uni versityB
{
i mpl enent ati on Regi strar _i
{
activation_policy (nethod);
transaction_policy (optional);
implements (UniversityB::Registrar);
b
nmodul e POA Uni versityB
{
i mpl enent ati on Regi strarFactory_i

{

activation_policy (nethod);
transaction_policy (optional);

Creating CORBA Server Applications

Step 5: Compile and Link the Server Application

3.

i mpl ements (UniversityB:: RegistrarFactory);
b
b

If you want to limit the number of interfaces for which you want skeleton and
implementation files generated, you can remove from the ICF file the
implementation blocks that implement those interfaces. Using the preceding ICF
code as an example, to prevent skeleton and implementation files from being
generated for the Regi st r ar Fact ory interface, remove the following lines:

i mpl enentati on Regi strarFactory_i

{

activation_policy (nethod);
transaction_policy (optional);

i mpl ements (UniversityB:: RegistrarFactory);

}

Passthe ICF file to the IDL compiler to generate the skeleton and
implementation files that correspond to the specified policies. For more
information, see the section “Generating the Skeleton and Implementation Files”
on page 2-5.

Step 5: Compile and Link the Server
Application

After you have finished writing the code for the Server object and the object
implementations, you compile and link the server application.

Y ou use the bui | dobj ser ver command to compile and link CORBA server
applications. The bui | dobj ser ver command has the following format:

bui | dobj server [-0 servernane] [options]

In the bui | dobj ser ver command syntax:

-0 server name represents the name of the server application to be generated
by this command.

opt i ons represents the command-line options to the bui | dobj ser ver
command.

Creating CORBA Server Applications 2-17

2 Steps for Creating a BEA Tuxedo CORBA Server Application

Step 6:

For complete information about compiling and linking the University sample
applications, see the Guide to the CORBA University Sample Applications. For
complete details about the bui | dobj ser ver command, see the BEA Tuxedo
Command Reference.

There are specia considerations for designing and building multithreaded CORBA
server applications. See “ Using the buildobjserver Command” on page 4-13.

Note: If you are running the BEA Tuxedo software on IBM AlIX 4.3.3 systems, you
need to recompile your CORBA applicationsusing the - brt | compiler
option.

Deploy the Server Application

Y ou or the system administrator deploy the CORBA server application by using the
procedure summarized in this section. For complete details on building and deploying
the University sample applications, see the Guide to the CORBA University Sample
Applications.

To deploy the server application:

1. Placethe server application executable file in an appropriate directory on a
machine that is part of the intended BEA Tuxedo domain.

2. Createthe application’s configuration file, also known as the UBBCONFI Gfile, ina
common text editor.

3. Set the following environment variables on the machine from which you are
booting the CORBA server application:

e TUXCONFI G which needs to match exactly the TUXCONFI Gentry in the
UBBCONFI Gfile. This variable represents the location or path of the
application’s UBBCONFI Gfile.

e APPDI R, which represents the directory in which the application’s executable
file exists.

2-18 Creating CORBA Server Applications

Development and Debugging Tips

Set the TUXDI R environment variable on all machines that are running in the BEA
Tuxedo domain or that are connected to the BEA Tuxedo domain. This
environment variable pointsto the location where the BEA Tuxedo softwareis
installed.

Enter the following command to create the TUXCONFI Gfile:
tm oadcf -y application-ubbconfig-file

The command-line argument appl i cat i on- ubbconfi g-fil e represents the
name of your application’s UBBCONFI Gfile. Note that you may need to remove
any old TUXCONFI Gfiles to execute this command.

Enter the following command to start the CORBA server application:
tnboot -y
You can reboot a server application without rel oading the UBBCONFI Gfile.

For complete details about configuring the University sample applications, see the
Guideto the CORBA University Sample Applications. For complete detailson creating
the UBBCONFI Gfile for CORBA applications, see Setting Up a BEA Tuxedo
Application.

Development and Debugging Tips

Thistopic includes the following sections:

Use of CORBA exceptions and the user log
Detecting error conditions in the callback methods
Common pitfalls of OMG IDL interface versioning and modification

Caveat for state handling in the Tobj _Ser vant Base: : deacti vat e_obj ect ()
operation

Use of CORBA Exceptions and the User Log

Thistopic includes the following sections:

Creating CORBA Server Applications 2-19

2 Steps for Creating a BEA Tuxedo CORBA Server Application

m Theclient application view of exceptions

m The server application view of exceptions

Client Application View of Exceptions

When aclient application invokes an operation on a CORBA object, an exception may
be returned as aresult of theinvocation. Theonly valid exceptionsthat can bereturned
to aclient application are the following:

m Standard CORBA-defined exceptions that are known to every
CORBA-compliant ORB

m Exceptions that are defined in OMG IDL and known to the client application via
either its stub or the Interface Repository

The BEA Tuxedo system works to ensure that these CORBA-defined restrictions are
not violated, which is described in the section “ Server Application View of
Exceptions” on page 2-20.

Because the set of exceptions exposed to the client application is limited, client
applications may occasionally catch exceptions for which the cause is ambiguous.
Whenever possible, the BEA Tuxedo system supplements such exceptions with
descriptive messagesin the user log, which serves asan aid in detecting and debugging
error conditions. These cases are described in the following section.

Server Application View of Exceptions

This topic includes the following sections:

m Exceptions raised by the BEA Tuxedo system that can be caught by application
code

m TheBEA Tuxedo system’s handling of exceptions raised by application code
during the invocation of operations on CORBA objects

Exceptions Raised by the BEA Tuxedo System That Can Be Caught by Application Code

The BEA Tuxedo system may return the following types of exceptionsto an
application when operations on the TP object are invoked:

m CORBA-defined system exceptions

2-20 Creating CORBA Server Applications

Development and Debugging Tips

m CORBA User Except i ons defined inthefile Tobj S_c. h. The OMG IDL for
the exceptions defined in thisfileisthe following:

interface Tobj S {

excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

Al readyRegi stered { };
ActivateObjectFailed { string reason; };
Applicati onProblem{ };

Cannot Proceed { };

CreateServantFail ed { string reason; };
DeactivatebjectFailed { string reason; };
Illegal Interface { };

Il'l egal Operation { };

InitializeFailed { string reason; };
Inval idDomain { };

Invalidlinterface { };

I nval i dName { };

InvalidObject { };

InvalidObjectld { };

I nvalidServant { };

Ni | Object { string reason; };

NoSuchEl ement { };

Not Found { };

O bProblem { };

QtOf Menmory { };

OverFlow { };

Regi strar Not Avai | able { };

Rel easeFailed { string reason; };
TpfProblem { };

Unknownl nterface { };

The BEA Tuxedo System’s Handling of Exceptions Raised by Application Code During the
Invocation of Operations on CORBA Objects

A server application can raise exceptions in the following places in the course of

servicing a client invocation:

m IntheServer::create_servant,
Tobj _Servant Base: : acti vat e_obj ect (), and
Tobj _Servant Base: : deact i vat e_obj ect () callback methods.

m Intheimplementation code for the invoked operation.

Itispossiblefor the server application to raise any of thefollowing types of exceptions:

m A CORBA-defined system exception.

Creating CORBA Server Applications 2-21

2 Steps for Creating a BEA Tuxedo CORBA Server Application

m A CORBA user-defined exception defined in OMG IDL

m A CORBA user-defined exception defined in the file Tobj S_c. h. The following
exceptions are intended to be used in server applications to help the BEA
Tuxedo system send messages to the user log, which can help with
troubleshooting:

interface Tobj S {
exception ActivateojectFailed { string reason; };
exception CreateServantFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception InitializeFailed { string reason; };
exception Rel easeFailed { string reason; };

}

m Any other C++ exception type

All exceptions raised by server application code that are not caught by the server
application are caught by the BEA Tuxedo system. When these exceptions are caught,
one of the following occurs:

m Theexception is returned to the client application without alteration.

m Theexception is converted to a standard CORBA exception, which is then
returned to the client application.

m Theexception is converted to a standard CORBA exception, and the following
actions occur:

e Theexception is returned to the client application

e One or more messages containing descriptive information about the error are
sent to the user log. The descriptive information may originate from either
the server application code or from the BEA Tuxedo system.

The following sections show how the BEA Tuxedo system handles exceptions raised
by the server application during the course of aclient invocation on a CORBA object.

Exceptions Raised in the Ser ver: : creat e_servant () Operation
If any exception israised inthe Server : : creat e_servant () operation, then:
m The CORBA: : OBJECT_NOT_EXI ST exception is returned to the client application.

m |f the exceptionraised is Tobj S: : Creat eSer vant Fai | ed, then amessage is
sent to the user log. If areason string is supplied in the constructor for the
exception, then the reason string is also written as part of the message.

2-22 Creating CORBA Server Applications

Development and Debugging Tips

Neither the Tobj _Servant Base: : acti vate_obj ect () or
Tobj _Servant Base: : deact i vat e_obj ect () operations are invoked. The
operation requested by the client is not invoked.

Exceptions Raised in the Tobj _Ser vant Base: : acti vate_obj ect () Operation

If any exception israised in the Tobj _Ser vant Base: : acti vat e_obj ect ()
operation, then:

The CORBA: : OBJECT_NOT_EXI ST exception isreturned to the client application.

If the exception raised is Tobj S: : Act i vat eObj ect Fai | ed, amessageis sent to
the user log. If areason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

Neither the operation requested by the client nor the
Tobj _Servant Base: : deacti vat e_obj ect () operation isinvoked.

Exceptions Raised in Operation mplementations

The BEA Tuxedo system requires operation implementations to throw either CORBA
system exceptions, or user-defined exceptions defined in OMG IDL that are known to
the client application. If these types of exceptions are thrown by operation
implementations, then the BEA Tuxedo system returns them to the client application,
unless one of the following conditions exists:

The object has the al ways transaction policy, and the BEA Tuxedo system
automatically started a transaction when the object was invoked. In this case, the
transaction is automatically rolled back by the BEA Tuxedo system. Because the
client application is unaware of the transaction, the BEA Tuxedo system then
raises the CORBA: : OBJ_ADAPTER CORBA system exception, and not the

CORBA: : TRANSACTI ON_ROLLEDBACK exception, which would have been the
case had the client initiated the transaction.

The exception isdefined in the file Tobj S_c. h. In this case, the exception is
converted to the CORBA: : BAD OPERATI ON exception and is returned to the client
application. In addition, the following message is sent to the user log:

"WARN: Application didn't catch Tobj S exception. TP Franework
throwi ng CORBA: : BAD OPERATI ON. "

If the exception is Tobj S: : 111 egal Oper at i on, the following supplementary
message is written to warn the devel oper of a possible coding error in the
application:

Creating CORBA Server Applications 2-23

2

Steps for Creating a BEA Tuxedo CORBA Server Application

2-24

"WARN: Application called TP::deactivateEnable() illegally and
didn't catch Tobj S exception."

This can occur if the TP: : deact i vat eEnabl e() operation isinvoked inside an
object that hasthet r ansact i on activation policy. (Application-controlled
deactivation is not supported for transaction-bound objects.)

m TheBEA Tuxedo system raised an internal system exception following the client
invocation. In this case, the CORBA: : | NTERNAL exception is returned to the
client. This usualy indicates serious system problems with the processin which
the object is active.

As defined by the CORBA standard, areply sent back to the client can either contain
result values from the operation implementation, or an exception thrown in the
operation implementation, but not both. In the first case—that is, if the reply status
valueisNO_EXCEPTI ON-the reply containsthe operation’sreturn value and any i nout
or out argument values. Otherwise—that is, if the reply statusvalueis
USER_EXCEPTI ON or SYSTEM EXCEPTI ON—all the reply contains is the encoding of
the exception.

Exceptions Raised in the Tobj _Ser vant Base: : deacti vat e_obj ect ()
Operation

If any exception israised in the Tobj _Ser vant Base: : deact i vat e_obj ect ()
operation, the following occurs:

m Theexception is not returned to the client application.

m |f theexceptionraisedis Tobj S: : Dect i vat eCbj ect Fai | ed, amessageis sent
to the user log. If areason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

m A messageissent to the user log for exceptions other than the
Tobj S: : Deact i vat eObj ect Fai | ed exception, indicating the type of exception
caught by the BEA Tuxedo system.

CORBA Mar shal Exception Raised When Passing Object | nstances

The ORB cannot marshal an object instance as an object reference. For example,
passing afactory reference in the following code fragment generates a CORBA
marshal exception in the BEA Tuxedo system:

connection: :setFactory(this);

Creating CORBA Server Applications

Development and Debugging Tips

To pass an object instance, you should create a proxy object reference and pass the
proxy instead, asin the following example:

CORBA: : (hj ect nyRef = TP::get_object _reference();
Resul t Set Factory factoryRef = Result Set FactoryHel per:: _narrow nyRef);
connection:: set Fact oryRef (fact oryRef);

Detecting Error Conditions in the Callback Methods

The BEA Tuxedo system provides a set of predefined exceptions that allow you to
specify message strings that the TP Framework writes to the user log if application
code gets an error in any of the following callback methods:

m Tobj Servant Base::activate_object()

m Tobj Servant Base: :deacti vate_object()
W Server::create_servant()

B Server::initialize()

m Server::release()

Y ou can use these exceptions as a useful debugging aid that allows you to send
unambiguous information about why an exception is being raised. Note that the TP
Framework writes these messages to the user log only. They are not returned to the
client application.

Y ou specify these messages with the following exceptions, which have an optional

reason string:
Exception Callback M ethods That Can Raise This
Exception
Act i vat eCbj ect Fai | ed Tobj _Servant Base: : activate_obj ect ()

Deacti vat ebj ect Fai l ed Tobj _Servant Base: : deacti vate_obj ect ()

Creat eServant Fai | ed Server::create_servant()
InitializeFailed Server::initialize()
Rel easeFai |l ed Server::rel ease()

Creating CORBA Server Applications 2-25

2

Steps for Creating a BEA Tuxedo CORBA Server Application

To send a message string to the user log, specify the string in the exception, asin the
following example:

t hrow O eat eServant Fai | ed(" Unknown i nterface");

Note that when you throw these exceptions, the reason string parameter isrequired. If
you do not want to specify a string with one of these exceptions, you must use the
double quote characters, as in the following example:

throw Activat eCbjectFailed("");

Common Pitfalls of OMG IDL Interface Versioning and
Modification

2-26

The Server object’'simplementation of the Server: : create_servant () operation
instantiates an object based on itsinterface ID. It is crucial that thisinterface ID isthe
same as the one supplied in the factory when the factory invokes the

TP: : creat e_obj ect _r ef er ence() operation. If theinterface IDs do not match, the
Server::create_servant () operation usually raises an exception or returns a
NULL servant. The BEA Tuxedo system then returns a CORBA: : OBJECT_NOT_EXI ST
exception to the client application. The BEA Tuxedo system does not perform any
validation of interface IDsinthe TP: : cr eat e_obj ect _r ef er ence() operation.

It is possible for this condition to ariseif, during the course of development, different
versions of theinterface are being devel oped or many modifications are being madeto
IDL file. Even if you typically specify string constants for interface IDsin OMG IDL
and use these in the factory and the Ser ver : : creat e_ser vant () operation, it is
possible for amismatch to occur if the object implementation and factory are in
different executables. This potential problem may be difficult to diagnose.

Y ou may want to consider the following defensive programming strategies during
development to avoid this potential problem. This code should be included only in
debugging versions of your application, because it introduces performance
inefficiencies that may be unacceptable in the production versions of your software.

m Immediately before factory invokesthe TP: : creat e_obj ect _r ef erence()
operation, include code that checks the Interface Repository to seeif the required
interface exists. Make sure that all the application OMG IDL is up-to-date and
loaded into the Interface Repository. Should this check fail to find the interface
ID, you can assume that there is a mismatch.

Creating CORBA Server Applications

Development and Debugging Tips

m Following the invocation of the TP: : cr eat e_obj ect _r ef er ence() operation
in your factories, include code that “pings’ the object. That is, the code invokes
any operation on the object (typically an operation that does not do anything). If
thisinvocation raises the CORBA: : OBJECT_NOT_EXI ST exception, an interface
ID mismatch exists. Note that “pinging” an object causes the object to be
activated, with the overhead associated with the activation.

Caveat for State Handling in
Tobj_ServantBase::deactivate object()

The Tobj _Ser vant Base: : deact i vat e_obj ect () operation isinvoked when the
activation boundary for an object isreached. Y ou may, optionally, write durable state
to disk in the implementation of this operation. It isimportant to understand that
exceptionsraised in this operation are not returned to the client application. Theclient
application will be unaware of any error conditions raised in this operation unless the
object isparticipating in atransaction. Therefore, in caseswhereit isimportant that the
client application know whether thewriting of state viathis operation is successful, we
recommend that transactions be used.

If you decideto usethe Tobj _Ser vant Base: : deacti vat e_obj ect () operation for
writing state, and the client application needs to know the outcome of the write
operations, we recommend that you do the following:

m Ensure that each operation that affects object state isinvoked within a
transaction, and that deactivation occurs within the transaction boundaries. This
can be done by using either the met hod or t r ansact i on activation policies, and
is possible with the pr ocess activation policy if the TP: : deact i vat eEnabl e()
operation is invoked within the transaction boundary.

m If an error occurs during the writing of object state, invoke the
COSTransactions:: CQurrent::rol | back_onl y() operation to ensure that the
transaction is rolled back. This ensures that the client application receives one of
the following exceptions:

e |f the client application initiated the transaction, the client application
receives the CORBA: : TRANSACTI ON_ROLLEDBACK exception.

e |f the BEA Tuxedo system initiated the transaction, the client application
receives the CORBA: : OBJ_ADAPTER exception.

Creating CORBA Server Applications 2-27

2 Steps for Creating a BEA Tuxedo CORBA Server Application

If transactions are not used, we recommend that you write object state within the scope
of individual operations on the object, rather than via the

Tobj _Servant Base: : deact i vat e_obj ect () operation. Thisway, if an error
occurs, the operation can raise an exception that is returned to the client application.

Servant Pooling

As mentioned in the section “ Servant Pooling and Statel ess Objects’ on page 1-21,
servant pooling provides a means to reduce the cost of object instantiation for
method-bound or transaction-bound objects.

How Servant Pooling Works

Normally, during object deactivation (that is, when the TP Framework invokes the
Tobj _Servant Base: : deact i vat e_obj ect () operation), the TP Framework
deletesthe object’ s servant; however, when servant pooling is used, the TP Framework
does not delete the servant at object deactivation. Instead, the server application
maintains a pointer to the servant in a pool. When a subsequent client request arrives
that can be satisfied by a servant in that pool, the server application reuses the servant
and assigns a new object ID. When a servant is reused from apool, the TP Framework
does not create a new servant.

How You Implement Servant Pooling

Y ou implement servant pooling by doing the following:

1. IntheServer::initialize() operationonthe Server object, writethe code that
sets up the servant pool. The pool consists of aset of pointers to one or more
servants, and the code for the pool specifies how many servants for a given class
are to be maintained in the pool.

2. Inthe pooled servant’s Tobj _Ser vant Base: : deact i ve_obj ect () operation,
you implement the TP: : appl i cati on_r esponsi bi l i ty() operation. Inthe
implementation of the TP: : appl i cati on_r esponsi bi | ity() operation, you

2-28 Creating CORBA Server Applications

Delegation-based Interface Implementation

provide code that places a pointer to the servant into the servant pool at the time
that the TP Framework invokes the
Tobj _Servant Base: : deacti vat e_obj ect () operation.

3. Inthe Server object’'s implementation of the Ser ver: : cr eat e_ser vant ()
operation, write code that does the following when a client request arrives:

a. Checksthe pool to seeif thereis a servant that can satisfy the request.

b. If aservant does not exist, create a servant and invoke the
Tobj _Servant Base: : acti vat e_obj ect () operation on it.

c. If aservant exists, invoke the Tobj _Ser vant Base: : act i vat e_obj ect ()
operation on it, assigning the object ID contained in the client request.

Note: Support for the TP: : appl i cati on_responsi bi | i ty() operation has
changed in thisrelease. For complete information, see the CORBA
Programming Reference.

Delegation-based Interface Implementation

There are two primary waysin which an object can beimplemented in a BEA Tuxedo
CORBA application: by inheritance, or by delegation. When an object inherits from
the POA skeleton class, and is thus a CORBA object, that object is said to be
implemented by inheritance.

However, there may be instancesin which you want to use a C++ object in a CORBA
application in which inheriting from the POA skeleton classisdifficult or impractical.
For example, you might have aC++ object that would require amajor rewriteto inherit
from the POA skeleton class. Y ou can bring this non-CORBA object into a CORBA
application by creating atie class for the object. The tie class inherits from the POA
skeleton class, and the tie class contains one or more operations that delegate to the
legacy class for the implementation of those operations. The legacy classis thereby
implemented in the CORBA application by delegation.

Creating CORBA Server Applications 2-29

2 Steps for Creating a BEA Tuxedo CORBA Server Application

About Tie Classes in the BEA Tuxedo System

To create a delegation-based interface implementation, use the - T command-line
option of the IDL compiler to generatetie classtemplates for each interface defined in
the OMG IDL file.

Using tie classesin a CORBA application also affects how you implement the
Server:: create_servant () operation inthe Server object. Thefollowing sections
explain the use of tie classesin the BEA Tuxedo product in more detail, and aso
explainshow toimplement the Ser ver : : creat e_ser vant () operationto instantiate
those classes.

In BEA Tuxedo CORBA, thetie classisthe servant, and, therefore, servesbasically as
awrapper object for the legacy class.

The following figure shows the inheritance characteristics of the interface Account ,
which serves as awrapper for alegacy object. The legacy object containsthe
implementation of the operation op1. Thetie class delegatesopl to the legacy class.

2-30 Creating CORBA Server Applications

Delegation-based Interface Implementation

OMG IDL
Interface
Account

IDL Compiler

Skeleton for Skeleton Header for
Account Account

C++ Template Class
Account tie
(Generated Using -T)

e

Implementation of Account _ti e:
opl(_ptr val);

Delegates opl to
legacy class,
passing val .

Tie classes are transparent to the client application. To the client application, the tie
class appears to be a complete implementation of the object that the client application

invokes. The tie class delegates al operationsto the legacy class, which you provide.
In addition, the tie class contains the following:

m Constructor and destructor code, which handles startup and shutdown procedures
for the tie class and the legacy class

Creating CORBA Server Applications 2-31

2 Steps for Creating a BEA Tuxedo CORBA Server Application

m Housekeeping code, which implements operations such as accessors

When to Use Tie Classes

Tie classes are not unique to BEA Tuxedo CORBA, and they are not the only way to
implement delegationin a CORBA application. However, the BEA Tuxedo CORBA
convenience features for tie classes can greatly reduce the amount of coding you need
to do for the basic constructor, destructor, and housekeeping operations for those tie

classes.

Using tie classes might be recommended in one of the following situations:

m You want to implement an object in a CORBA application in which inheriting
from the POA skeleton classisdifficult or impractical.

m All theinvocations on alegacy class instance can be accomplished from asingle
servant.

m You areusing alegacy classin your CORBA application, and you want to tie the
lifetime of an instance of that legacy classto a servant class.

m Delegation isthe only purpose of a particular servant; therefore, nearly al the
code in that servant is dedicated to legacy object startup, shutdown, access, and
delegation.

Tie classes are not recommended when:

m The operations on an object instance delegate to more than one legacy object
instance.

m Delegation is only a part of the purpose of an object.

How to Create Tie Classes in a CORBA Application

To createtie classes in an application in aBEA Tuxedo domain:

1. Createthe interface definition for thetie classin an OMG IDL file, asyou would
for any object in your application.

2. Compilethe OMG IDL file using the - T option.

2-32 Creating CORBA Server Applications

Delegation-based Interface Implementation

The IDL compiler generates a C++ template class, which takes the name of the
skeleton, with the string _t i e appended to it. The IDL compiler adds this
template class to the skeleton header file.

Note that the IDL compiler does not generate the implementation file for the tie
class; you need to create this file by hand, as described in the next step.

3. Create an implementation file for thetie class. The implementation file contains
the code that del egates its operations to the legacy class.

4. Inthe Server object’sSer ver : : creat e_ser vant () operation, write the code
that instantiates the legacy object.

In the following example, the servant for tie class POA_Account _ti e iscreated,
and the legacy class LegacyAccount isinstantiated.

Account * Account _pt

r new LegacyAccount ();
Account Fact or ySer vant

new POA Account _tie<LegacyAccount> (Account_ptr)

Note: When compiling tie classes with the Compag C++ Tru64 compiler for UNIX,
you must include the - noi npl i ci t _i ncl ude option in the definition of the
CFLAGS or CPPFLAGS environment variables used by the bui | dobj ser ver
command. This option prevents the C++ compiler from automatically
including the server skeleton definition file (_s. cpp) everywhere the server
skeleton header file (_s. h) isincluded, which is necessary to avoid
multiply-defined symbol errors. See Compaq publications for additional

information about using class templates, such as the tie classes, with Trué4
C++.

Creating CORBA Server Applications 2-33

2 Steps for Creating a BEA Tuxedo CORBA Server Application

2-34 Creating CORBA Server Applications

CHAPTER

3

Designing and
Implementing a Basic
CORBA Server
Application

This chapter describes how to design and implement a CORBA server application,
using the Basic University sample application as an example. The content of this
chapter assumes that the design of the application to be implemented is complete and
isexpressed inOMG IDL. This chapter focuses on design and implementation choices
that are oriented to the server application.

Thistopic includes the following sections:

m How the Basic University Sample Application Works, which helps provide
context to the design and implementation considerations

m Design Considerations for the University Server Application, which includes
comprehensive discussions about the following topics:

e Design Considerations for Generating Object References

e Design Considerations for Managing Object State

e Design Considerations for Handling Durable State |nformation

¢ How the Basic Sample Application Applies Design Patterns

e Additional Performance Efficiencies Built into the BEA Tuxedo System

Creating CORBA Server Applications 31

3 Designing and Implementing a Basic CORBA Server Application

e Preactivating an Object with State

How the Basic University Sample
Application Works

The Basic University sample application provides the student with the ability to
browse courseinformation from acentral University database. Using the Basic sample
application, the student can do the following:

m Browse course synopses from the database by specifying a search string. The
server application then returns synopses for al coursesthat have atitle,
professor, or description containing the search string. (A course synopsis
returned to the client application includes only the course number and title.)

m View detailed information about specific courses. The detailed information
available for a specified course includes the following, in addition to synopsis
information:

e Cost

e Number of credits

e Class schedule

e Number of seats

o Number of registered students
e Professor

e Description

The Basic University Sample Application OMG IDL

InitsOMG IDL file, the Basic University sample application defines the following
interfaces:

3-2 Creating CORBA Server Applications

How the Basic University Sample Application Works

Interface Description Operations

Regi strar Fact ory Creates object references to the find_registrar()
Regi strar object

Regi strar Obtains course information from the get _courses_synopsi s()
database get _courses_detail s()

Cour seSynopsi sEnuner at or Fetches synopses of coursesthat match get _next _n()
thesearch criteriafromthedatabaseand dest r oy()
reads them into memory

The Basic University sample application is shown in Figure 3-1.

Figure3-1 Basic University Sample Application

University Server Application

RegistrarFactory Registrar

CourseSynopsis
Client Enumerator
Application
=

Course

Database

For the purposes of explaining what happens when the Basic University sample
application runs, the following separate groups of events are described:

Creating CORBA Server Applications 3-3

3 Designing and Implementing a Basic CORBA Server Application

m Application startup—when the server application is booted and the client
application gets an object referenceto the Regi st rar object

m Browsing course synopses—when the client application sends a request to view
course synopses

m Browsing course details—when the client application sends a request to view
details on a specific list of courses

Application Startup

Thefollowing sequence shows atypical set of events that take place when the Basic
client and server applications are started and the client application obtains an object
reference to the Regi st r ar object:

1. TheBasic client and server applications are started, and the client application
obtains areference to the Regi st r ar Fact ory object from the FactoryFinder.

2. Using thereference to the Regi st r ar Fact or y object, the client application
invokesthefi nd_regi strar () operation onthe Regi st r ar Fact ory object.

3. TheRegi strar Fact ory object isnot in memory (because no previous request
for that object has arrived in the server process), so the TP Framework invokes
the Server: : create_servant () operation in the Server object to instantiate it.

4. Onceinstantiated, the Regi strar Fact ory object'sfi nd_regi strar ()
operation isinvoked. The Regi st r ar Fact ory object createsthe Regi str ar
object reference and returnsit to the client application.

Browsing Course Synopses

The following sequence traces the events that may occur when the student browses a
list of course synopses:

1. Using the object referenceto the Regi st r ar object, the client application invokes
the get _courses_synopsi s() operation, specifying:

e A search string to be used for retrieving course synopses from the database.

3-4 Creating CORBA Server Applications

How the Basic University Sample Application Works

e Aninteger, represented by the variable nunber _t o_get , which specifies the
size of the synopsislist to be returned.

2. TheRegi strar objectis notin memory (because no previous reguest for that
object has arrived in the server process), so the TP Framework invokes the
Server: : create_servant () operation, which isimplemented in the Server
object. This causes the Regi st r ar object to be instantiated in the server
machine’s memory.

3. TheRegi strar object receives the client request and creates an object reference
to the Cour seSynopsi sEnumer at or object. The Cour seSynopsi sEnuner at or
object isinvoked by the Regi st rar object to fetch the course synopses from the
database.

To create the object reference Cour seSynopsi sEnuner at or object, the
Regi strar object doesthe following:

a. Generates aunique ID for the Cour seSynopsi sEnuner at or object.

b. Generates an object ID for the Cour seSynopsi sEnuner at or object that isa
concatenation of the unique ID generated in the preceding step and the search
string specified by the client.

c. Getsthe Cour seSynopsi sEnuner at or object’s Interface Repository ID from
the interface typecode.

d. Invokesthe TP: : creat e_obj ect _r ef er ence() operation. Thisoperation
creates an object referenceto the Cour seSynopsi sEnuner at or object needed
for the initial client request.

4. Using the object reference created in the preceding step, the Regi st rar object
invokesthe get _next _n() operation on the Cour seSynopsi sEnuner at or
object, passing the list size. The list size is represented by the parameter
nunmber _t o_get , described in step 1.

5. The TP Framework invokesthe Server: : creat e_servant () operation on the
Server object to instantiate the Cour seSynopsi sEnuner at or object.

6. The TP Framework invokestheacti vat e_obj ect () operation on the
Cour seSynopsi sEnuner at or object. This operation does the following two
things:

e Extracts the search criteriafromits OID.

Creating CORBA Server Applications 3-5

3 Designing and Implementing a Basic CORBA Server Application

3-6

e Using the search criteria, fetches matching course synopses from the
database and reads them into the server machine's memory.

7. The Cour seSynopsi sEnuner at or object returns the following information to
the Regi st rar object:

e A course synopsis list, specified in the return value Cour seSynopsi sLi st ,
which isasequence containing the first list of course synopses.

e Thenumber of matching course synopses that have not yet been returned,
specified by the parameter nunber _r enai ni ng.

8. TheRegi strar object returnsthe Cour seSynopsi sEnumer at or object
reference to the client application, and also returns the following information
obtained from that object:

e Theinitia course synopsis list
e Thenunber renmai ni ng variable

(If the nunber _r emai ni ng variableis 0, the Regi st rar object invokes the
dest roy() operation on the Cour seSynopsi sEnumer at or object and returns a
nil reference to the client application.)

9. Theclient application sends directly to the Cour seSynopsi sEnuner at or object
its next request to get the next batch of matching synopses.

10. The Cour seSynopsi sEnuner at or object satisfies the client request, also
returning the updated nunber _r emai ni ng variable.

11. When the client application is done with the Cour seSynopsi sEnuner at or
object, the client application invokes the dest r oy() operation on the
Cour seSynopsi sEnuner at or object. This causes the
Cour seSynopsi sEnuner at or object to invokethe TP: : deact i vat eEnabl e()
operation.

12. The TP Framework invokes the deact i vat e_obj ect () operation on the
Cour seSynopsi sEnuner at or object. This causes the list of course synopses
maintained by the Cour seSynopsi sEnuner at or object to be erased from the
server computer’s memory so that the Cour seSynopsi sEnuner at or object’s
servant can be reused for another client request.

Creating CORBA Server Applications

Design Considerations for the University Server Application

Browsing Course Details

The following sequence shows atypical set of eventsthat take place when the client
application browses course details:

1. The student enters the course numbers for the courses about which he or sheis
interested in viewing details.

2. Theclient application invokesthe get _cour se_det ai | s() operation on the
Regi strar object, passing the list of course numbers.

3. TheRegi st rar object searches the database for matches on the course numbers,
and then returns alist containing full detailsfor each of the specified courses.
Thelist iscontained in the Cour seDet ai | sLi st variable, which is a sequence
of st ruct scontaining full course details.

Design Considerations for the University
Server Application

The Basic University sample application contains the University server application,
which deals with several fundamental CORBA server application design issues. This
section addresses the following topics:

m Design Considerations for Generating Object References

m Design Considerations for Managing Object State

m Design Considerations for Handling Durable State |nformation

m How the Basic Sample Application Applies Design Patterns

This section al so addresses the following two topics:

m Additiona Performance Efficiencies Built into the BEA Tuxedo System

m Preactivating an Object with State

Creating CORBA Server Applications 3-7

3 Designing and Implementing a Basic CORBA Server Application

Design Considerations for Generating Object References

3-8

The Basic client application needs references to the following objects, which are
managed by the University server application:

m TheRegi strar Fact ory object

m TheRegi strar object

m The Cour seSynopsi sEnuner at or object

The following table shows how these references are generated and returned.

Object

How the Object Referencels
Generated and Returned

Regi strarFactory

The object reference for the Regi str ar Factory
object isgenerated in the Server object, which registers
the Regi st r ar Fact or y object with the
FactoryFinder. The client application then obtains a
referencetotheRegi st r ar Fact or y object from the
FactoryFinder.

Thereisonly oneRegi st r ar Fact or y objectinthe
Basic University server application process.

Regi strar

The object reference for the Regi st r ar objectis
generated by the Regi st r ar Fact or y object and is
returned when the client application invokes the
find_registrar () operation. The object reference
created for theRegi st r ar object is dwaysthe same;
this object reference does not contain a unique OID.

Thereisonly oneRegi strar objectintheBasic
University server application process.

Creating CORBA Server Applications

Design Considerations for the University Server Application

Object How the Object Referencels
Generated and Returned

Cour seSynopsi sEnunerat or The object reference for the
Cour seSynopsi sEnumrer at or object is generated
by the Regi st r ar object when the client application
invokesthe get _cour ses_synopsi s() operation.
In thisway, the Regi st r ar object isthe factory for
the Cour seSynopsi sEnuner at or object. The
design and use of the
Cour seSynopsi sEnurrer at or object is described
later in this chapter.

There can be any number of
Cour seSynopsi sEnuner at or objectsin the Basic
University server application process.

Note the following about how the University server application generates object
references:

m The Server object registers the Regi st r ar Fact or y object with the
FactoryFinder. This is the recommended way to ensure that client applications
can locate the factories they need to obtain references to the basic objectsin the
application.

m The object reference to the Regi st r ar object is created by the
Regi strar Fact ory object. This shows avery common and basic way to return
object references to the client application; namely, that there is a factory
dedicated to creating and returning references to the primary object that is
required by the client application to execute business logic.

m The object reference to the Cour seSynopsi sEnuner at or object is created
outside aregistered factory. In the University sample applications, thisis a good
design because of the way the Cour seSynopsi sEnuner at or object is meant to
be used; namely, its existence is specific to a particular client application
operation. The Cour seSynopsi sEnuner at or object returns a specific list and
results that are not related to the results from other queries.

m Becausethe Regi st rar object creates, in one of its operations, an object
reference to another object, the Regi st rar object is afactory. However, the
Regi strar object is not registered as a factory with the FactoryFinder;
therefore, client applications cannot get areferenceto the Regi st r ar object
from the FactoryFinder.

Creating CORBA Server Applications 39

3 Designing and Implementing a Basic CORBA Server Application

Design Considerations for Managing Object State

Each of thethree objectsin the Basic sample application hasits own state management
reguirements. This section discusses the object state management requirements for
each.

The RegistrarFactory Object

The Regi st rar Fact ory object does not need to be unique for any particular client
reguest. It makes sense to keep this object in memory and avoid the expense of
activating and deactivating this object for each client invocation on it. Therefore, the
Regi st rar Fact ory object hasthe pr ocess activation policy.

The Registrar Object

The Basic sample application is meant to be deployed in a small-scale environment.
The Regi st rar object has many qualities similar to the Regi st r ar Fact or y object;
namely, this object does not need to be unique for any particular client request. Also,
it makes sense to avoid the expense of continually activating and deactivating this
object for each invocation on it. Therefore, in the Basic sample application, the

Regi st rar object hasthe pr ocess activation policy.

The CourseSynopsisEnumerator Object

3-10

Thefundamental design problem for the University server applicationishow to handle
alist of course synopses that is potentially too big to be returned to the client
application in asingle response. Therefore, the solution centers on the following:

m To begin a conversation between the client application and an object that can
fetch the course synopses from the University database.

m To havethe object return an initial batch of synopsesto the client application.

m To keep the remainder of the course synopses in memory so that the client
application can retrieve them one batch at atime.

m To have the client application terminate the conversation when finished, thus
freeing machine resources.

Creating CORBA Server Applications

Design Considerations for the University Server Application

The University server application has the Cour seSynopsi sEnuner at or object,
which implements this solution. Although this object returns an initial batch of
synopses when it is first invoked, this object retains an in-memory context so that the
client application can get the remainder of the synopsesin subsequent requests. To
retain an in-memory context, the CourseSynopsisEnumerator object must be stateful;
that is, this object stays in memory between client invocations on it.

When the client is finished with the Cour seSynopsi sEnuner at or object, this object
needs away to be flushed from memory. Therefore, the appropriate state management
decision for the Cour seSynopsi sEnuner at or object isto assign it the pr ocess
activation policy and to implement the CORBA application-controlled deactivation
feature.

Application-controlled deactivation isimplemented in the dest r oy() operation on
that object.

The following code example shows the dest r oy() operation on the
Cour seSynopsi sEnuner at or object:

voi d CourseSynopsi sEnunerator _i::destroy()
{
/1 \When the client calls "destroy" on the enunerator,
/1 then this object needs to be "destructed".
/1 Do this by telling the TP framework that we're
/1 done with this object.

TP: : deact i vat eEnabl e() ;

Basic University Sample Application ICF File

The following code exampl e shows the ICF file for the Basic sample application:

nmodul e POA Uni versityB

{

i npl enent ati on CourseSynopsi sEnuner at or _i

{

}s

activation_policy (process);
transaction_policy (optional);
i npl enent s (UniversityB:: CourseSynopsi sEnunerator);

i npl enentation Registrar_i

{

activation_policy (process);
transaction_policy (optional)

Creating CORBA Server Applications 3-11

3 Designing and Implementing a Basic CORBA Server Application

}s

b

i npl enent s (UniversityB::Registrar);

i mpl enent ati on Regi strarFactory_i

{

}

activation_policy (process
transaction_policy (optional
i npl enent s (UniversityB::RegistrarFactory

~— ——

Design Considerations for Handling Durable State
Information

Handling durable state information refers specifically to reading durable state
information from disk at some point during or after the object activation, and writing
it, if necessary, at some point before or during deactivation. The following two objects
in the Basic sample application handle durabl e state information:

m TheRegi strar object
m The Cour seSynopsi sEnuner at or object

Thefollowing two sections describe the design considerations for how these two
objects handle durabl e state information.

The Registrar Object

3-12

One of the operations on the Regi st r ar object returns detailed course information to
the client application. In atypical scenario, a student who has browsed dozens of
course synopses may beinterested in viewing detailed information on perhaps as few
astwo or three courses at one time.

Toimplement this usage scenario efficiently, the Regi st r ar object isdefined to have
the get _course_det ai | s() operation. This operation accepts an input parameter
that specifies alist of course numbers. This operation then retrieves full course details
from the database and returns the details to the client application. Because the object
in which this operation isimplemented is process-bound, this operation should avoid
keeping any state datain memory after an invocation on that operation is complete.

Creating CORBA Server Applications

Design Considerations for the University Server Application

The Regi st rar object does not keep any durable state in memory. When the client
applicationinvokestheget _cour se_det ai | s() operation, thisobject simply fetches
therelevant course information from the University database and sendsit to the client.
This object does not keep any course datain memory. No durable state handling is
doneviatheact i vat e_obj ect () or deacti vat e_obj ect () operations on this
object.

The CourseSynopsisEnumerator Object

The Cour seSynopsi sEnumer at or object handles course synopses, which this object
retrieves from the University database. The design considerations, with regard to
handling state, involve how to read state from disk. Thisobject does not write any state
to disk.

There are three important aspects of how the Cour seSynopsi sEnuner at or object
works that influence the design choices for how this object reads its durable state:

m The OID for this object contains the search criteria provided in the initial client
request for synopses. The search criteriawork as a key to the database: this
object extracts information from the database based on search criteria stored in
the OID.

m All the operations on this object use the course synopses that this object reads
into memory.

m Thisobject must flush course synopses from memory when it is deactivated.
Given these three aspects, it makes sense for this object to:

m Read its durable state information when activated; namely, viathe
activat e_obj ect () operation on this object.

m Flush the course synopses from memory when deactivated; namely, viathe
deact i vate_obj ect () operation.

Therefore, when the Cour seSynopsi sEnuner at or object is activated, the
activat e_obj ect () operation on this object does the following:

1. Extractsthe search criteriafromits OID.

2. Retrieves from the database course synopses that match the search criteria.

Creating CORBA Server Applications 3-13

3 Designing and Implementing a Basic CORBA Server Application

Note: If you implement the Tobj _Ser vant Base: : acti vat e_obj ect () or

Tobj _Servant Base: : deact i vat e_obj ect () operations on an object,
remember to edit the implementation header file (that is, the
application_i.h file) and add the definitions for those operations to the
class definition template for the object’ sinterface.

Using the University Database

3-14

Note the following about the way in which the University sample applications use the
University database:

m All of the University sample applications access the University database to

mani pulate course and student information. Typically thisis alarge part of the
code you write in the implementation files. To make the University sample
implementation files simpler, and to help you focus on CORBA features instead
of database code, the samples have wrapped all the code that reads and writes to
the database within a set of classes. Thefilesanpl esdb. hintheutil s
directory contains the definitions of these classes. These classes make all the
necessary SQL callsto read and write the course and student recordsin the
University database.

Note: TheBEA Tuxedo Teller Application in the Wrapper and Production sample

applications accesses the account information in the University database
directly and does not use the sanpl esdb. h file.

For more information on the files you build into the Basic server application, see
the Guide to the CORBA University Sample Applications.

The Cour seSynopsi sEnuner at or object uses a database cursor to find
matching course synopses from the University database. Because database
Ccursors cannot span transactions, the act i vat e_obj ect () operation on the
Cour seSynopsi sEnuner at or object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to the Cour seSynopsi sEnumer at or object. For more information about
how the University sample applications use transactions, see Chapter 6,
“Integrating Transactions into a CORBA Server Application.”

Creating CORBA Server Applications

Design Considerations for the University Server Application

How the Basic Sample Application Applies Design
Patterns

The Basic sample application uses the following design patterns:
m Process-Entity
m List-Enumerator

This section describes why these two patterns are appropriate for the Basic sample
application and how this application implements them.

Process-Entity Design Pattern

Asmentioned in the section “Process-Entity Design Pattern” on page 1-23, thisdesign
patternis appropriatein situations where you can have one process object that handles
data entities needed by the client application. The data entities are encapsul ated as
CORBA st ruct s that are manipulated by the process object and not by the client
application.

Adapting the Process-Entity design pattern to the Basic sample application allowsthe
application to avoid implementing fine-grained objects. For example, the Regi st r ar
object is an efficient alternative to a similarly numerous set of course objects. The
processing burden of managing a single, coarse-grained Regi st r ar object is small
relative to the potentia overhead of managing hundreds or thousands of fine-grained
course objects.

For complete detail s about the Process-Entity design pattern, see the Design Patterns
technical article.

List-Enumerator Design Pattern

This design pattern is appropriate in situations where an object has generated an
internal list of datathat is potentially too large to return to the client application in a
single response. Therefore, the object must return an initial batch of datato the client
application in one response, and have the ability to return the remainder of the datain
subsequent responses.

Creating CORBA Server Applications 3-15

3 Designing and Implementing a Basic CORBA Server Application

3-16

A list-enumerator object must also simultaneously keep track of how much of the data
has already been returned so that the object can return the correct subsequent batch.
List-enumerator objects are always stateful (that is, they remain active and in memory
between client invocations on them) and the server application has the ability to
deactivate them when they are no longer needed.

Thelist-enumerator design pattern is an excellent choice for the
Cour seSynopsi sEnuner at or object, and implementing this design pattern provides
the following benefits:

m TheUniversity server application has a means to return potentially large lists of

course synopsesin away that client applications can handle; namely, in
manageabl e chunks.

Each Cour seSynopsi sEnuner at or object is unique, and its content is
determined by the request that caused this object to be created. (In addition, each
Cour seSynopsi sEnuner at or object ID is aso unique.) When the client
invokesthe get _cour ses_synopsi s() operation on the Regi st rar object, the
Regi st rar object returns the following:

e Aninitid list of synopses.

e An object reference to a Cour seSynopsi sEnumer at or object that can return
the remainder of the synopses.

Therefore, all subsequent invocations go to the correct

Cour seSynopsi sEnuner at or object. Thisiscritical in the situation where the
server process has multiple active instances of the

Cour seSynopsi sEnuner at or class.

Becausethe get _courses_synopsi s() operation returns a unique

Cour seSynopsi sEnuner at or object reference, client requests never collide;
that is, aclient request never mistakenly goesto the wrong

Cour seSynopsi sEnumer at or object.

Although the Regi st rar object hasthe get _cour ses_synopsi s() operation on it,
the knowledge of the database query and the synopsis list is embedded entirely in the
Cour seSynopsi sEnuner at or object. In thissituation, the Regi st r ar object serves
only as ameans for the client to get the following:

m Theinitia list of synopses.

m A referenceto aCour seSynopsi sEnuner at or object that can return the

remainder of the synopses.

Creating CORBA Server Applications

Design Considerations for the University Server Application

Additional Performance Efficiencies Built into the BEA
Tuxedo System

The BEA Tuxedo system implements a performance efficiency in which data
marshaling between two objects in the same server process is automatically disabled.
This efficiency existsif the following circumstances exist:

m An object reference routes to the same group as the one containing the server
process in which the object reference was created.

m Anobject inthat server process invokes an operation using that object reference
that causes an object to be instantiated in the same process.

An example of thisiswhen the Regi st r ar object creates an object reference to the
Cour seSynopsi sEnuner at or object and causes that object to be instantiated. No
data marshaling takes place in the requests and responses between those two objects.

Preactivating an Object with State

The preactivate object with state feature allows you to preactivate an object before a
client application invokes that object. This feature can be particularly useful for
creating iterator objects, such as the Cour seSynopsi sEnuner at or object in the
University samples.

Preactivating an object with state centers around using the

TP: :create_acti ve_object _reference() operation. Typicaly, objects are not
created in a CORBA server application until aclient issues an invocation on that
object. However, by preactivating an object and using the

TP: : create_active_object _reference() operation to passareference to that
object back to the client, your client application can invoke an object that is already
active and populated with state.

Note: The preactivate object with state feature was first introduced in WebL ogic
Enterprise version 4.2.

Creating CORBA Server Applications 3-17

3 Designing and Implementing a Basic CORBA Server Application

How You Preactivate an Object with State

Theprocessfor using the preactivation feature isto write code in the server application
that:

1
2.
3.

Includes an invocation of the C++ new statement to create an object.
Sets the object’s state.

Invokesthe TP: : create_acti ve_obj ect _reference() operation to obtain a
reference for the newly created object. This object reference can then be returned
to the client application.

Thus, the preactivated object is created in such a way that the TP Framework invokes
neither the Server: : creat e_servant () nor the
Tobj _Servant Base: : acti vat e_obj ect () operationsfor that object.

Usage Notes for Preactivated Objects

Note the following when using the preactivation feature:

Preactivated objects must have the pr ocess activation policy. Therefore, these
objects can be deactivated only at the end of the process or by an invocation to
the TP: : deact i vat eEnabl e() operation on those objects.

The object reference created by the

TP: : create_active_obj ect_reference() operationistransient. Thisis
because a preactivated object should exist only for the lifetime of the processin
which it was created, and this object should not be reactivated again in another
Server process.

If aclient application invokes on a transient object reference after the processin
which the object reference was created is shut down, the TP Framework returns
the following exception:

CORBA: : OBJECT_NOT_EXI ST

For objects that are preactivated, the state usually cannot be recovered if a crash
occurs. However, thisis acceptable because such objects are typically meant to
be used within the context of a specific series of operations, and then deleted. Its
state has no meaning outside that specific series.

To prevent the situation in which a server has crashed, and a client application
subsequently attempts to invoke the now-deleted object, add the

3-18 Creating CORBA Server Applications

Design Considerations for the University Server Application

Tobj S:: Acti vat eQbj ect Fai | ed exception to the implementation of the
Tobj _Servant Base: : acti vat e_obj ect () operation to the object meant for
preactivation. Then, if aclient attempts to invoke such an object after a server
crash, in which case the TP Framework invokes the

Tobj _Servant Base: : acti vat e_obj ect () operation on that object, the TP
Framework returns the following exception to the client application:

CORBA: : OBJECT_NOT_EXI ST

Use preactivation sparingly because, as with all process-bound objects,
preactivation preallocates scarce resources.

Creating CORBA Server Applications 3-19

3 Designing and Implementing a Basic CORBA Server Application

3-20 Creating CORBA Server Applications

CHAPTER

A4

Creating Multithreaded

CORBA Server
Applications

Thistopic includes the following sections:

Overview

Developing and Building Multithreaded CORBA Server Applications
Building and Running the Multithreaded Simpapp Sample Application
Multithreaded CORBA Server Application Administration

Creating CORBA Server Applications

4 Creating Multithreaded CORBA Server Applications

Overview

This topic includes the following sections:

m Introduction

m Mechanismsfor Supporting Multithreaded CORBA Servers

m Running Single-threaded Server Applications in a Multithreaded System

Introduction

Designing an application to use multiple, independent threads provides concurrency
within an application and can improve overall throughput. Using multiple threads
enables applications to be structured efficiently with threads servicing several
independent tasks in parallel. Multithreading is particularly useful when:

m Thereisaset of lengthy operations that do not necessarily depend on other
processing.

m Theamount of datato be shared is small and identifiable.
m You can break the task into various activities that can be executed in parallel.
m There are occasions where objects must be reentrant.

Historically, industry-wide, multithreaded applications have been complicated to
design and implement. The support provided by BEA Tuxedo simplifies this
complexity by managing threads within a CORBA server environment.

The BEA Tuxedo software supports server applications that have the following
multithreading characteristics (see Figure 4-1):

m Instances of server objects can handle multiple client requests simultaneously.
B A server object can make recursive invocations on itself.

m Server objects can create and monitor their own threads to implement
parallelism within a servant method.

4-2 Creating CORBA Server Applications

Overview

Figure4-1 Multithreaded CORBA Server Application

CORBA Server

— Thread1

— | Thread?

| Thread3

Generally, the BEA Tuxedo software creates and manages threadson behalf of aserver
application. Building multithreaded server applications affects how you use the TP
Framework, implement servants, and design objects that create their own threads.

The BEA Tuxedo software allows you to implement either the thread-per-request
model or athread-per-object model. Each model is explained in “ Threading Models”
on page 4-5.

Requirements, Goals, and Concepts

Some computer operations take a substantial amount of time to complete. A
multithreaded design can significantly reduce the wait time between the request and
completion of operations. Thisistruein situations when operations perform alarge
number of 1/O operations such as when accessing a database, invoking operations on

Creating CORBA Server Applications 4-3

4

Creating Multithreaded CORBA Server Applications

4-4

remote objects, or are CPU-bound on a multiprocessor machine. |mplementing
multithreading in a server process can increase the number of requests a server
processes in a fixed amount of time.

The primary requirement for multithreaded server applications is the simultaneous
handling of multiple client requests. The motivationsfor devel oping thistype of server
areto:

m Simplify program design

Thisis achieved by allowing multiple server tasks to proceed independently
using conventional programming abstractions.

m Improve throughput

Thisis achieved by taking advantage of the parallel processing capabilities of
multiprocessor hardware platforms and overlapping computation with
communication.

m Improve perceived response time

By associating separate threads with different server tasks, clients do not block
each other for an extended period of time.

m Simplify coding of remote procedure calls and conversations

Some applications are easier to code when you use separate threads to interact
with different remote procedure calls (RPCs) and conversations.

m Provide simultaneous access to multiple applications

When wrapping legacy applications or databasesin a CORBA server,
implementations can interact with more than one legacy application at atime.

m Reduce the number of serversrequired

Because one server can dispatch multiple service threads, the number of servers
your application requires can be reduced.

However, amultithreaded design is not without cost. In general, multithreaded server
applications require more complicated synchronization strategies than single-threaded
servers. An application devel oper must write thread-safe code. Additionally, the
overhead of creating athread to handle a request might be greater than the potential
benefit of parallelism. The actual performance of a particular concurrency model
depends on the following factors:

m Characteristics of requests from the client

Creating CORBA Server Applications

Overview

Are the requests of long or short duration?

m How threads are implemented

Are the threads managed in the operating system kernel, in alibrary in user
space, or some combination of both?

m Operating system and network overhead

How much additional overhead isintroduced by repeatedly setting up and
tearing down connections?

m Higher-level system configuration factors

Do replication, dynamic load balancing, or other factors affect performance?

While threading libraries provide the mechanisms for creating concurrency models,
developers are ultimately responsible for knowing how to use the mechanisms
successfully. By studying design patterns, application devel operscan master the subtle
differences and make better design choices for different situations.

Threading Models

There are anumber of different models you can use for designing concurrency in
servers. The following sections describe the thread-per-request model, the
thread-per-object model, the thread pool, and how the BEA Tuxedo software
implements each model. A specific server isdesigned for either the thread-per-request
model or the thread-per-object model.

Thread-Per-Request Model

In this model, each request from aclient is processed in a different thread of control.
Thismodel is useful when a server typically receives requests of long duration from
multiple clients. It is less useful for requests of short duration due to the overhead of
creating a new thread for each request. Each time a new request arrives, BEA Tuxedo
associ ates that request with athread and executes it. Because a multithreaded
application server process can host more than onethread at atime, it can
simultaneously execute more than one client request at atime. BEA Tuxedo controls
the association of arequest to athread, therefore, applications do not need to explicitly
create threads unless the applications require a greater degree of control than that
provided by BEA Tuxedo.

Creating CORBA Server Applications 4-5

4

Creating Multithreaded CORBA Server Applications

The thread-per-request model requires that you design your application serversto be
thread-safe, which means that you must implement concurrency mechanismsto
control accessto datathat might be shared among multiple server objects. The need to
use concurrency control mechanisms increases the complexity of the applications
development process. Additionally, if many clients make requests simultaneously, this
design can consume a large number of operating system resources.

Thread-Per-Object Model

The Thread Pool

4-6

The thread-per-object model associates each active object in the server processwith a
single thread at any one time. Each request for an object establishes an association
between a dispatch thread and the object. Seria reguests for the same object can be
serviced by different threads. A specific thread can be shared by multiple objects.

Thread pools are ameans to reduce the cost of managing threads. At startup and as
needed, threads are created, assigned, and released to apool of avail ablethreads where
the thread waits until it is needed again to process future requests. Thread pools can
be used to support any of the threading models previously described. For example, a
thread may be allocated for arequest in a thread-per-request model, used for the
method execution, and rel eased back to the pool.

Allocating and deall ocating threads can be time-consuming and expensive, especially
for short-lived requests and objects. Thread pools provide ameans of reducing the cost
of managing threads. During startup, or as needed, threads are created, assigned, and
released by the BEA Tuxedo software to apool of availablethreads. A thread existsin
the pool and waits until it is needed to process future requests.

Theinitial and ultimate size of the BEA Tuxedo thread pool for an application server
process is controlled through settings in the server configuration file. At startup, the
minimum pool sizeispre-allocated. Asrequestsarriveto be serviced, the BEA Tuxedo
software assigns a thread from the pool to handle the request. If the pool does not
contain an available thread to process the request and the pool has not been filled, the
BEA Tuxedo software creates a new thread to handle the request. If arequest arrives
when there are no threads available in the pool, and no new threads can be created, the
reguest will be queued until athread is available.

Creating CORBA Server Applications

Overview

Thread pools are appropriate for situations in which you want to limit the amount of
system resources that can be consumed for server threading. When athread pool is
used, client requests are executed concurrently until the number of simultaneous
requests exceeds the number of threads in the pool.

The BEA Tuxedo thread pool has the following characteristics and behavior:

m You can set the maximum size of the pool asaBEA Tuxedo administration
function. You can adjust the size of this pool without making changes to the
application itself.

m The BEA Tuxedo software allocates threads from the pool as necessary. The
threads are used during the processing of arequest, and are then released back to
the pool.

m Threads can be serially reused for servicing multiple requests and multiple
objects.

Reentrant Servants

The BEA Tuxedo software provides the capability for an object to invoke operations
on itself recursively. Using this capability requires a great deal of care in how you
implement an object, because the application code must employ the operating system
concurrency mechanisms needed to control access to shared state data. In some cases,
such as with objects that implement the Process or Distribution Adapter design
patterns, thereislittle or no shared statefor an object, and itisrelatively easy to support
reentrancy.

BEA Tuxedo software also allows you to enable or prohibit reentrant method
invocations on an active object. Reentrancy is disabled by default. If arequest for an
active object is received while the object is currently executing another request in a
different thread, the following rules apply:

m Ifthe is_reentrant method returns TRUE, anew thread is allocated from the
pool and the request is dispatched to the appropriate method using the same
servant instance. It is the responsibility of the servant implementation code to
ensure the integrity of the state of the object when multiple threads interact with
it.

m Ifthe_is_reentrant method returns FALSE, a new instance of the servant is
created and the method is dispatched to the new instance. This instance is not
automatically deleted. Future reentrant requests may be dispatched to either
instance.

Creating CORBA Server Applications 4-7

4

Creating Multithreaded CORBA Server Applications

Note: Thereentrant servant mechanism is available only when a server is started
with the PER_REQUEST concurrency strategy specified.

For information about using this method, see the CORBA Programming Reference.

The Current Object

4-8

One of the most important attributes of a multithreaded CORBA server application
environment is ensuring that the Current object is used and managed correctly. This
ensures behavior such as the following:

m Individual threads function within the correct transaction and security contexts.
m The Current object behaves correctly when accessed from different threads.

The BEA Tuxedo product conforms to the multithreading model defined by the ORB
Portability Specification, published by the OMG, which has been incorporated into the
OMG CORBA specification. In the BEA Tuxedo product, operations on interfaces
derived from CORBA: : Cur r ent have access to the state associated with the thread in
which operations are invoked, not to the state associated with the thread from which
the Current object was obtained. The reason for this behavior is twofold:

m Prevents one thread from manipulating the state of another thread

m Avoidsthe need to obtain and narrow a new Current object in the thread context
for each method

When used in amultithreaded environments, the behaviors of thefollowing objectsare
consistent with the ORB Portability Specification:

m CosTransactions:: Current

m SecuritylLevel 1:: Qurrent

m Securitylevel 2:: Qurrent

m Portabl eServer:: CQurrent

For example, when an application passes a transaction from one thread to another, the
application should not use the CosTr ansact i ons: : Cur r ent object. Instead, the
application passes the CosTr ansact i ons: : Control object to the other thread. To
passthe CosTranscti ons: : Cur rent object would only allow the receiving thread to
gain access to the transaction state associated with that thread.

Creating CORBA Server Applications

Overview

Mechanisms for Supporting Multithreaded CORBA
Servers

This section provides an overview of the following tools, APIs, and administrative
capabilitiesin BEA Tuxedo CORBA that support multithreaded server applications:

m Context Services
m Classes and Methods in the TP Framework
m Capabilitiesin the Build Commands

m Toolsfor Administration

Context Services

Y ou can choose to create and manage your own threads in your object
implementations. Other threads are managed automatically by the BEA Tuxedo
CORBA software. The BEA Tuxedo CORBA software maintains context information
internally for each thread that it creates and maintains. This required context
information is used during the processing of CORBA requests. Since BEA Tuxedo
CORBA has no knowledge of when an application creates and deletesits own threads,
the context services mechanism allows programmersto initialize their own threads
correctly, prior to calling BEA Tuxedo services, and to release any context resources
that are no longer needed when athread is deleted.

The following set of ORB methods satisfies the thread management requirements.
Together these are called context services:

m ORB::get_ctx()

When an object creates athread, the object invokes this operation on the ORB to
obtain system context information that the object can pass onto the thread. This
operation must be called from athread that already has a context. For example,
the thread in which a method was dispatched will aready have a context. For
information about using this operation, see ORB: : get _ct x() inthe CORBA
Programming Reference.

m ORB::set_ctx()

When an object spawns athread, the spawned thread typically retrievesthe
context information from the thread that invoked the get _ct x method. The

Creating CORBA Server Applications 4-9

4

Creating Multithreaded CORBA Server Applications

spawned thread then uses the retrieved context information when invoking

ORB: : set _ct x to set the system context in which the spawned thread should
execute. For information about using this operation, see ORB: : set _ct x() inthe
CORBA Programming Reference.

ORB: : cl ear_ct x()

When a spawned thread has completed its work, the thread invokes this method
to dissociate itself from the system context. For information about using this
operation, see ORB: : cl ear _ct x() in the CORBA Programming Reference.

ORB::informthread_exit()

When athread has completed its work, the thread invokes this method to inform
the BEA Tuxedo system that resources associated with an application-managed
thread can be released. For information about using this operation, see

ORB: :informthread_exit() inthe CORBA Programming Reference.

Classes and Methods in the TP Framework

4-10

These classes and methods in the BEA Tuxedo TP Framework support multithreaded
server applications:

m Server Base class

To override the default implementations of the Ser ver Base class, an application
developer can create a class that derives from Ser ver Base. In addition to

Ser ver Base methods already supported, these methods are provided to support
the implementation of multithreaded server applications:

e create_servant_with_id()
e thread_ initialize()
e thread release()

These methods allow you to obtain a high-degree of granularity of control over
the multithreading characteristics of your application. For information on how to
use these methods see Server Base d ass inthe CORBA Programming
Reference.

Tobj _Ser vant Base class

This class provides these methods to support multithreaded server applications:
e Tobj ServantBase:: _is_reentrant()

e Tobj ServantBase:: _add_ref()

Creating CORBA Server Applications

Overview

e Tobj ServantBase:: _renove_ref ()

For information about using these methods, see Tobj _Ser vant Base Cl ass in
the CORBA Programming Reference.

Capabilities in the Build Commands

The bui | dobj server and bui | dobj cl i ent commands include the following
thread-management capabilities.

m Thebui | dobj server command includes platform-specific thread library
support so that server applications are compatible with the multithreading
support in the BEA Tuxedo software.

The bui | dobj server command includes command-line options for building
multithreaded or single-threaded server applications.

m Thebui | dobj cl i ent command includes platform-specific thread library
support so that client applications can be compatible with the multithreading
support provided in the BEA Tuxedo software.

Tools for Administration

The BEA Tuxedo system employs configuration files to assemble and run
applications. Typically, the application developer createsthesefiles, and BEA Tuxedo
system administrators modify the contents of thefile as necessary to satisfy application
and system requirements.

The control parameters associated with the support of threads specify the following:
m Whether aserver should be single-threaded or multithreaded
m Thesize of the thread pool available for dispatching methods on objects

For more information about threads parameters in the UBBCONFI Gfile, see “Sample
UBBCONFIG File" on page 4-39.

Creating CORBA Server Applications 4-11

4 Creating Multithreaded CORBA Server Applications

Running Single-threaded Server Applications in a
Multithreaded System

The default behavior of the threading support provided in BEA Tuxedo CORBA isto
emulate a single-threaded server support environment. To run a single-threaded
CORBA application in a multithreaded environment, you do not need to change the
server application code or the configuration files. However, before you run an existing
single-threaded application, you must rebuild it using the bui | dobj ser ver and

bui | dobj cl i ent commands. If you do not specifically enable multithreading for a
server application, the application runs as a single-threaded server.

4-12 Creating CORBA Server Applications

Developing and Building Multithreaded CORBA Server Applications

Developing and Building Multithreaded
CORBA Server Applications

Thistopic includes the following sections:
m Using the buildobjserver Command

m Using the buildobjclient Command

m Creating Non-reentrant Servants

m Creating Reentrant Servants

m Building and Running the Multithreaded Simpapp Sample Application

Using the buildobjserver Command

Thebui | dobj server command supports multithreaded CORBA server applications
through the following capabilities:

m Platform-specific Thread Libraries
m Specifying Multithreaded Support
m Specifying an Alternate Server Class

Platform-specific Thread Libraries

Server applications generated by the bui | dobj ser ver command are compiled using
the correct platform-specific compiler settings, and are linked using the correct
platform-specific thread support libraries. This ensures compatibility with the shared
libraries provided by the BEA Tuxedo software.

Creating CORBA Server Applications 4-13

4

Creating Multithreaded CORBA Server Applications

Specifying Multithreaded Support

When you create a CORBA server application to support multithreading, you must
specify the -t option on thebui | dobj ser ver command when you build the
application. At run time, the BEA Tuxedo system verifies compatibility between the
executable program and the threading model selected in the CORBA server
application configuration file UBBCONFI G. For information on how to set the threading
model in the UBBCONFI Gfile, see“ Sample UBBCONFIG File’ on page 4-39.

Note: Whenyou specify -t inyour build of aCORBA server application, you should
set the MAXDI SPATCHTHREADS parameter in the UBBCONFI Gfile to avalue
greater than 1; otherwise, the CORBA server application will run as a
single-threaded server.

Note: Multithreaded joint client/server implementations are not supported.

If you attempt to start a single-threaded executable with an incompatible threading
model specification in the configuration file, these events occur:

m TheBEA Tuxedo software records awarning in the log file.

m The server executable program is started as a single-threaded server.

Specifying an Alternate Server Class

4-14

If you implement your own Ser ver class, inheriting from the Ser ver Base class, you
must specify your aternate Ser ver classinthebui | dobj ser ver command using the
- b option. Thebui | dobj ser ver command provides the following syntax to support
the - b option:

bui | dobj server [-v] [-0 outfile] [-f {firstfiles|@ef-file}]
[-1 {lastfiles|@ef-file}] [-r rmmanme] [-b bootserverclass] [-t]

In the preceding syntax, thevaluefor boot ser ver cl ass specifiesthe C++ classto be
used when the CORBA server application is booted. If you do not specify the - b
option, the BEA Tuxedo system creates an instance of the class named Ser ver .

When you specify the - b option, the Tuxedo system creates a main function for the
alternate server class, and your project must supply a header file with the name you
specified for boot ser ver cl ass on the - b option. The header file contains the
definition of the alternate C++ class. Thisaternate Ser ver classmust inherit from the
Ser ver Base class.

Creating CORBA Server Applications

Developing and Building Multithreaded CORBA Server Applications

For example, if the command line specifies- b Asl anSer ver , the application project
must supply an Asl anServer . h file. TheAsl anServer. h fileisan exampleof a
boot server cl ass. h file. A boot ser ver cl ass file provideslogic similar to this
code sample:

Listing4-1 Example of a bootserver class.h File

/1 File name: AslanServer.h
#i ncl ude <Server. h>
cl ass AslanServer : public ServerBase {
public:
CORBA: : Bool ean initialize(int argc, char** argv);
voi d rel ease();
Tobj _Servant create_servant (const char* interfaceNane);
Tobj _Servant create_servant_w th_id(const char* interfaceNane,
const char* stroid);
CORBA: : Bool ean thread initialize(int argc, char** argv);
void thread_rel ease();

Using the buildobjclient Command

When you usethe bui | dobj cl i ent command to create a client application
executable program, the application is compiled using the correct platform-specific
compiler settings and linked using the correct thread support libraries for your
operating system. This ensures that clients are compatible with the shared libraries
provided by the BEA Tuxedo software.

Creating Non-reentrant Servants

Before you can run any CORBA server application in the BEA Tuxedo CORBA
environment, you must build it using the bui | dobj ser ver command.

Creating CORBA Server Applications 4-15

4

Creating Multithreaded CORBA Server Applications

4-16

Usethebui | dobj server -t option to inform the BEA Tuxedo system that the
CORBA server application isthread safe. The -t option indicates that the application
does not employ shared context data or other programming constructs that are not
thread safe. If you run single-threaded applications that are not thread safein a
multithreaded environment, you risk data corruption.

If you update configuration files for an application to enable multithreading support,
but the application code has not been updated to indicate that the servant
implementation can support reentrancy, note the following:

Methods are executed in arbitrary threads assigned by the BEA Tuxedo system.

Servant implementation code does not necessarily protect an object from
concurrent access to its state. However, active servants are limited to asingle
thread of execution at atime.

You cannot assume that a method is executed in a specific thread. Do not use
storage that depends on or istied to a specific thread.

Do not assume that the servant’'sact i vat e_obj ect or deacti vat e_obj ect
methods are executed in the same thread as the request in which they were
originally invoked.

Additional application-managed threads can be created within a servant method.
Your object implementations must ensure that threads are created, handled, and
destroyed properly.

An application-managed thread can include invocations on other objects.

Do not use signals for synchronization; the mixing of signals and threadsis not
supported.

Note: ThesSl &K LL signal to terminate aprocessis supported. Theuse of SI @ O is

not supported in BEA Tuxedo CORBA for single or multithreaded
applications.

Request-level interceptors are invoked by BEA Tuxedo CORBA through the
same thread used by the method.

Creating CORBA Server Applications

Developing and Building Multithreaded CORBA Server Applications

Creating Reentrant Servants

To create a multithreaded reentrant servant:

Build the CORBA server application using the bui | dobj ser ver command with
the - t option, and modify the UBBCONFI G server configuration file for the
application.

Update the CORBA server application code to enable reentrancy using the
Tobj Servant Base: : _i s_reentrant method.

Start the server using the thread-per-request threading model, by specifying
CONCURR_STRATEGY = PER_REQUEST in the UBBCONFI Gfile.

If you do create a multithreaded, reentrant servant, the implementation code for that
object must protect the state of the object, in order to ensureitsintegrity while multiple
threads interact with it.

Considerations for Client Applications

There are considerations for CORBA client applications running in the BEA Tuxedo
environment:

Multithreaded CORBA clients using |1 OP are supported.
Multithreaded native CORBA clients are not supported.

A multithreaded CORBA client is limited to a single bootstrap object.
A multithreaded CORBA client is limited to a single logon.

CORBA clients using stub-based invocation are supported.

CORBA clients using the Dynamic Invocation Interface (DI1) are not supported.

Creating CORBA Server Applications 4-17

4 Creating Multithreaded CORBA Server Applications

Building and Running the Multithreaded
Simpapp Sample Application

This topic includes the following sections:

About the Simpapp Multithreaded Sample
How the Sample Application Works

How to Build and Run the Sample Application
Shutting Down the Sample Application

About the Simpapp Multithreaded Sample

The BEA Tuxedo software provides a multithreaded CORBA sample application,
consisting of aclient program and a CORBA server program. The server receives an
alphabetic string from the client and returns the string in uppercase and lowercase
letters. The multithreading capability of simpapp_mt provides parallel processing.
Through this parallelism, asingle server process can handle concurrent requests from

multiple clients for multiple objects or for a single object.

Note: Theclient application in the simpapp_mt sampleis not a multithreaded client

application.

How the Sample Application Works

The purpose of amultithreaded server isto handle multiple requests from one or more

clientsin aparallel manner. The simpapp_mt sample application isa CORBA
application that demonstrates multithreading functionality, by using the

bui | dobj server -t command-line option and using the UBBCONFI Gfileto specify

concurrency strategy.

4-18 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

The simpapp_mt samplefirst creates a server process named Si npl ePer Obj ect and
secondly a server process named Si npl ePer Request . The client communicates first
with the Si npl ePer Request server and then with the Si npl ePer Obj ect server.

The thread-per-request server implementation for Si npl ePer Request demonstrates
the use of a user-defined server class that implements thread initialization methods.
The Si npl ePer Request server process handles each request from aclientin a
separate thread of control. Each time anew request arrives, athread is allocated from
the thread pool to handle the request. Once the request has been processed and the
reply sent, the thread is rel eased back to the pool. This model isuseful for serversthat
handle long-duration requests from multiple clients.

The simpapp_mt sample application provides an implementation of a CORBA object
that has the following methods:

m Theto_upper method accepts a string from the client application and converts
it to uppercase letters.

m Theto_l| ower method accepts a string from the client application and converts
it to lowercase | etters.

m Theforward_upper method creates an application-managed thread to another
instance of the server and forwards the request received from the client to the
new server instance to convert the string to uppercase | etters.

m Theforward_| oner method creates another instance of the Si npl e object and
forwards the request received from the client to the new instance to convert the
string to lowercase letters.

Figure 4-2 showsthe operation of thesimpapp_mt sample application, employing both
the thread-per-object and thread-per-request threading models.

Creating CORBA Server Applications 4-19

4 Creating Multithreaded CORBA Server Applications

Figure4-2 simpapp_mt Sample Application

Multithreaded
CORBA Server
Application

SimplePerObject Server
SimplePeribijectFactory
find simple ()

Simple

to_upper ()
to_lover()
forward upper ()

CORBA Client forrardtLoves)
Application
SimplePerRequest Server
SimplePerRequestFactory
find simple ()
Simple
o to_wpper()

to_lover()
forward upper ()
forward lower ()

OMG IDL Code for the Simpapp Multithreaded Sample Application

The simpapp multithreaded sample application described in this chapter implements
the CORBA interfaces listed in the following table.

Interface Description Action

Si npl ePer Request Fact ory Creates object references to the Si npl e object find_sinple()

Si npl ePer Obj ect Fact ory Creates object references to the Si npl e object find_sinple()

Sinpl e Converts the case of astring to_upper ()
to_lower()
forward_upper ()
forward_| ower ()

Listing 4-2 shows the content of the si npl e. i dI file, describing the CORBA
interface in the simpapp_mt sample application.

4-20 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

Listing4-2 OMG IDL Codefor the simpapp_mt Sample Application

#pragma prefix "beasys. cont

interface Sinple

{
/Il Convert a string to |ower case (return a new string)
string to_lower(in string val);
/] Convert a string to upper case (in place)
string to_upper(in string val);
/1 Use other server to convert string to | ower case
string forward_lower(in string val);
/1 Use other server to convert string to upper case
string forward_upper(in string val);

b

interface S npl ePer Request Factory

{
Sinple find_sinple();

b

interface Sinpl ePer Obj ect Factory

{

Sinple find_sinple();
}

How to Build and Run the Sample Application

This section leads you, step-by-step, through the process of building and running the
simpapp_mt sampl e application. The flowchart summarizes the process and following
sections explain how to perform the tasks.

Creating CORBA Server Applications 4-21

4 Creating Multithreaded CORBA Server Applications

Figure4-3 Processfor Building and Running simpapp_mt

Setthe Toxp1R environment variahle.

Y

Copy the files for simpapp mt
into a work directory.

v

Check the permissions on the files.

v

Execute the mmme command.

Setting the TUXDIR Environment Variable

Before building and running the simpapp_mt sample application, ensure that the
TUXDI R environment variableis set on your system. Typically, the environment
variableisset during theinstallation process. Y ou should confirm that the environment

variable defines the correct directory location.

TheTUxDI Renvironment variable must be set to the directory path whereyouinstalled
the BEA Tuxedo software. For example:

4-22 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

Windows
TUXDI R=D: \ TUXDI R

UNIX
TUXDI R=/ usr /1 ocal / TUXDI R

Verifying the TUXDIR Environment Variable

Before you run the application, perform the following procedure to ensure that the
environment variable contains the correct information.

Windows

Execute the echo command to show the setting of TUXDI R:
pronpt > echo %UXDI R%

UNIX
1. Executetheksh command at the prompt to launch the Korn shell.

2. Executethe print env command to show the setting of TUXDI R:
ksh pronpt> printenv TUXDI R

Changing the Setting of the Environment Variable
To change the value of the environment variable:
Windows

Execute the set command to set anew value for TUXDI R:

pronpt> set TUXD R=directorypath
UNIX
1. At the system prompt, execute the ksh command to launch the Korn shell.

2. Attheksh prompt, enter the export command to set the value for the TUXDI R
environment variable:

ksh pronpt> export TUXD R=directorypath

Creating CORBA Server Applications 4-23

4 Creating Multithreaded CORBA Server Applications

Creating a Working Directory for the Sample Application

Note: Thetechnique of using awork directory is recommended so that you can see
what additional files are created when you run the simpapp multithreaded
sample. After you execute ther unme command, comparethe set of filesin the
installation directory to the set of filesin your work directory.

Thefiles required for the simpapp multithreaded sample application arein the
following directories:

Windows
%IUXDl R sanpl es\ cor ba\ si npapp_nt
UNI X
$TUXDI R/ sanpl es/ cor ba/ si npapp_nt
Create aworking directory containing all of the simpapp multithreaded files.

Windows

Y ou can use Windows Explorer to create a copy of the simpapp_mt directory, or you
can use the command prompt as follows:

1. Create atarget working directory for a copy of the simpapp_mt files.

> nkdir work _directory
2. Copy thesi mpapp_nt filesto the working directory.

> copy %UXDI RoA sanpl es\ corba\ si npapp_nt* work_directory
3. Change to the working directory.

cd work_directory

4. List al the filesin the working directory.

pronpt> dir

mekefile. nk si npl e_per_object _i.h
mekefile. nt si npl e_per _obj ect _server. cpp
Readne. t xt si npl e_per_request _i.cpp
runmne. cnd si npl e_per_request_i.h

runmne. ksh si npl e_per _request _server. cpp
sinmple.idl si nmpl e_per_request_server. h
sinmple_client.cpp t hread_nmacr os. cpp

sinpl e_per_object_i.cpp thread _nacros. h

4-24 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

UNIX

Y ou can use your user interface tool to create a copy of the simpapp_mt directory, or
you can use the command prompt as follows:

1. Create atarget working directory for a copy of the si npapp_nt files.
> nkdir work_directory
2. Copy all si npapp_nt filesto the working directory.
> cp $TUXDI R/ sanpl es/ cor ba/ si npapp_nt/* work_directory
3. Changeto the working directory.

cd work_directory

4. List al thefilesin the working directory.

$1s

makefil e. nmk sinmpl e_per_object _i.h

makefil e.nt si mpl e_per _obj ect _server. cpp
Readne. t xt sinmpl e_per_request _i.cpp
runme. crd sinmpl e_per _request _i.h

runme. ksh si npl e_per _request _server. cpp
sinmpl e.idl si mpl e_per _request _server.h
sinmple_client.cpp t hread_macros. cpp

si npl e_per _object _i.cpp thread _nmacros. h

Table 4-1 lists and describes the simpapp_mt files used to build and run the
application.

Table4-1 simpapp_mt Files

File Description

makefil e. mk (UNIX) Makefile for the ssimpapp_mt sample
application. Usethisfile to build the
application.

makefile. nt (Windows) Makefile for the ssimpapp_mt
sampl e application. Usethisfile to build the
application.

Readne. t xt Readne filethat provides information about
building and running the simpapp_mt sample
application.

Creating CORBA Server Applications 4-25

4 Creating Multithreaded CORBA Server Applications

Table4-1 simpapp_mt Files (Continued)

File Description

runme. crd (Windows) Command file for building and
running the simpapp_mt sample application.

runme. ksh (UNIX) Korn shell script for building and
running the simpapp_mt sample application.

sinmple.idl Object Management Group (OMG) Interface

Definition Language (IDL) code that declares
the Si npl ePer Request Fact ory,

Si npl ePer Obj ect Fact ory, and Si npl e
interfaces.

sinmple_client.cpp

CORBA client program source code for the
simpapp_mt sampl e application.

si npl e_per _obj ect _i.cpp

Source code that includes implementations for
Si npl e and Si npl ePer bj ect Factory
servants that are to be included in aserver. The
CORBA server is started using a
thread-per-object concurrency strategy.

sinmpl e_per_object _i.h

Source code file for declaring Si npl e and
Si npl ePer Obj ect Fact ory servantsto be
included in a server.

si mpl e_per _obj ect _server. cpp

CORBA server program source code for the
simpapp_mt sampl e application,
thread-per-object concurrency strategy. Set
CONCURR_STRATEGY = PER_OBJECT in
the UBBCONFI Gfile.

si npl e_per _request _i.cpp

Source code that includes implementations for
Si npl e and Si npl ePer Request Fact ory
servants that are to be included in a reentrant
server. The reentrant CORBA server is started
using a thread-per-request concurrency

strategy.

si mpl e_per _request _i.h

4-26 Creating CORBA Server Applications

Source code file for declaring Si npl e and
Si npl ePer Request Fact or y servantsto be
included in areentrant server.

Building and Running the Multithreaded Simpapp Sample Application

Table4-1 simpapp_mt Files (Continued)

File Description

simpl e_per_request _server.cpp CORBA server program source code for the
simpapp_mt sample application,
thread-per-request concurrency strategy. Set
CONCURR_STRATEGY = PER REQUEST in
the UBBCONFI Gfile.

si npl e_per_request_server.h An example of aboot servercl ass. hfile,
containing the declarations required for the
user-defined Server class in the smpapp_mt
sampl e application.

t hr ead_nmcr os. cpp Platform-independent thread convenience
macros that support the simpapp_mt sample
application.

thread_nacros. h Source codefilefor declaring all the classesand

variables for thread convenience macros.

Checking Permissions on All the Files

To build and run the simpapp_mt sample application, you must have user and read
permissions on all the files you copied into your working directory. Check the
permissions, and change the permissionsif required.

Note: Ensure that the make utility isin your path.

Windows

> attrib -R/S *.*
UNI X

> / bi n/ ksh

> chnod u+r work_directory/*.*

Executing the runme Command

This section describes the steps required to execute the application end-to-end. Enter
ther unme command asfollows:

Creating CORBA Server Applications 4-27

4 Creating Multithreaded CORBA Server Applications

Windows

> cd work _directory

>

./ runme

UNIX

> [bin/ksh

> cd work _directory

>

./ runne. ksh

Ther unme command automates the following steps:

1

2
3.
4

o

8.
9.

Checks the TUXDI R environment variable.

. Setsthe environment variables that are used by this application.

Ensures that the proper bi n directories are in the PATH.

. If thisisnot the first time this script has been run, removes unneeded files from

the directory.
Creates adirectory to capture the results from running this script.

Createsaset env. ksh file (UNIX) or set env. bat file (Windows) so that you
can build and run this sample step-by-step.

Creates the ubb configuration file for this sample.
Creates afile containing the user input for the client.

Creates afile with the expected output from the client.

10. Buildsthe sample.

11. Loads the configuration file.

12. Starts the thread-per-object server.

13. Starts the thread-per-request server.

14. Runsthe client and captures the outpui.

15. Compares the output with the expected output.

16. Shuts down the server application.

4-28 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

17. Captureslogs that are generated when you run the sample.
18. Savesthe results.
19. Informs the user whether the sample ran successfully.

The simpapp_mt sampl e application printsthefollowing messageswhile executing the
runme command:

Testing si npapp_nmnt
cl eaned up
prepar ed
bui | t
| oaded ubb
boot ed
ran
shut down
saved results

PASSED

The entire run-time output for the simpapp_mt sample application is stored in the
results directory in your working directory. To see the output created at run time,
examine the following files:

e | og—compile, server boot, or server shutdown errors
e out put —client application output and exceptions

e ULOG dat e—server application errors and exceptions

Table 4-2 and Table 4-3 identify and describe the files created by executing ther unme
command.

Table 4-2 FilesCreated in the Working Directory

File Description

sinple_c. cpp Created by thei dl command for the
sinple.idl file. Thismodule containsthe
client stub function for the Si npl e and
Si npl ePer Request Fact ory interface.

sinple_c. h Created by thei dl command for the
sinpl e.idl file. This module contains
definitions and prototypes for the Si npl e and
Si npl ePer Request Fact or y interfaces.

Creating CORBA Server Applications 4-29

Creating Multithreaded CORBA Server Applications

Table 4-2 Files Created in the Working Directory (Continued)

File

Description

sinmple_s.cpp

Created by thei dl command for the

si npl e. i dl file. This module containsthe
skeleton functions for the Si mpl e i and

Si npl ePer Request Factory i
implementations.

sinmple_s.h

Created by thei dl command for the

si npl e. i dl file. This module contains
definitions and prototypes for the skeleton
classesfor the Si npl e_i and

Si npl ePer Request Fact ory_i interfaces.

sinmple_client

Created by the bui | dobj cl i ent command
for thesi npl e_c. cpp and
sinpl e _client.cpp files.

si npl e_per _obj ect _server

Created by the bui | dobj ser ver command
for thesi npl e_c. cpp, si npl e_s. cpp,
si npl e_per _obj ect _i . cpp,

si npl e_per _obj ect _server. cpp, and
t hr ead_macr os. cpp files.

si nmpl e_per _request _server

Created by the bui | dobj ser ver command
for thesi npl e_c. cpp, si npl e_s. cpp,

si nmpl e_per _request _i.cpp,

si npl e_per _request_server. cpp, and
t hr ead_macr os. cpp files.

resul t s directory

Created by the r unme command to capture the
results from running this script.

admdirectory

Created by the r unme command to contain the
security encryption key database file.

4-30 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

Table 4-3 FilesCreated in the Results Directory

Files Description

i nput Created by ther unne command to store the input that
the r unme command provides to the C++ client
application.

out put Created by ther unnme command to contain the output

when the r unme command executes the C++ client
application.

expect ed_out put

Created by ther unnme command to contain the expected
output when the r unme command is executed. The
output file is compared to determine whether the test
passed or failed.

| og

Created by ther unnme command to contain the output
generated by ther unne command. If thecommand fails,
check thisfile and the ULOGfile for errors.

set env. cnd

(Windows) Command file to set up environment
variables required to build and run the smpapp_mt
sampl e application step-by-step.

set env. ksh

(UNIX) Command file to set up environment variables
required to build and run the simpapp_mt sample

application step-by-step.

stderr Contains messages generated by t mboot . If the
- nor edi r ect server option isspecified in the
UBBCONFI Gfile, thef pri nt f method sendsthe output
to thisfile.

st dout Contains messages generated by t mboot . If the

- nor edi r ect server option isspecified in the
UBBCONFI Gfile, thef pri nt f method sendsthe output
to thisfile.

t neysevt . dat

Generated by thet mhoot command in ther unne
command. It containsfiltering and notification rulesused
by the TMSYSEVT process.

tuxconfig

A binary version of the configuration file.

Creating CORBA Server Applications 4-31

4 Creating Multithreaded CORBA Server Applications

Table 4-3 Files Created in the Results Directory (Continued)

Files Description
ubb UBBCONFI Gfilefor the ssimpapp_mt sampl e application.
ULOG dat e ULOGfile for storing run-time errors.

Running the Sample Application Step-by-Step

This section explains how to run the simpapp_mt sample application in step-by-step
mode. Y ou must execute the r unnme command before running simpapp_mt in
step-by-step mode.

Follow the numbered steps to run the ssmpapp_mt application:

1. Setthe environment variables.
Windows
> .. \results\setenv
UNIX
> . ./results/setenv. ksh

2. Executet mboot -y tolaunch the application. Information similar to the
following is displayed:

>t nboot -y
Booting all admin and server processes in /work directory/results/tuxconfig

Booting adm n processes ...
exec BBL -A : process id=212 ... Started.

Booting server processes ...

exec TMBYSEVT -A : process id=289 ... Started.

exec TMFFNAME -A -- -N -M: process id=297 ... Started.

exec TMFFNAME -A -- -N : process id=233 ... Started.

exec TMFFNAME -A -- -F : process id=265 ... Started.

exec sinple_per_object_server -A : process id=116 ... Started.
exec sinple_per_request_server -A : process id=127 ... Started.
exec ISL -A -- -n //MBeaver:2468 : process id=270 ... Started.
7 processes started.

>

4-32 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

Table 4-4 describes the server processes started by t nboot .

Table 4-4 Server Processes Started by tmboot

Process Description
TMSYSEVT System EventBroker.
TVFENAVE TVFFENANE Server processes:

m Mast er NameManager —TM-FNAME server
process started when you specify both the - N
option and the - Moption.

m SLAVE NaneManager —TMFFENAME server
process started when you specify only the- N
option.

m Fact or yFi nder object—a TMFFNAMVE
server process started with the - F option
contains this object.

si npl e_per _obj ect _server Started as a thread-per-object server.

si npl e_per _request _server Started as a reentrant thread-per-regquest server.

I SL I1OP listener process.

3. Execute the client application.
Windows
> .\sinple_client
UNIX

> ./sinple_client

When you execute the client application, messages similar to the following are
displayed:

Listing 4-3 Messages Displayed When simpapp_mt Client |s Executed

Nurmber of sinul taneous requests to post (1-50)7?
String to convert using thread-per-request server?
Sending 4 deferred forward_| ower requests
forward_| ower request #0

Creating CORBA Server Applications 4-33

4 Creating Multithreaded CORBA Server Applications

r et ur ned: aabbccddeef f gghhi i j kkl | nmnooppqqrr sstt uuvvwwxyyzz
forward_| ower request #1
r et ur ned: aabbccddeef f gghhi i jj kkl | nmnooppqqrr sstt uuvvwwxyyzz
forward_| ower request #2
r et ur ned: aabbccddeef f gghhi i j kkl | nmnooppqqrr sstt uuvvwwxyyzz
forward_| ower request #3
r et ur ned: aabbccddeef f gghhi i jj kkl | nmnooppqqrr sstt uuvvwwxyyzz

Sending 4 deferred forward_upper requests
forward_upper request #0 returned:
AABBCCDDEEFFGGHH! | J J KKLLMVNNOOPPQQORRSSTTUUWWWIAKXYYZZ
forward_upper request #1 returned:
AABBCCDDEEFFGGHH! | J J KKLLMVNNOOPPQQRRSSTTUUWWWIAKXYYZZ
f orward_upper request #2 returned:
AABBCCDDEEFFGGHH! | J J KKLLMVNNOOPPQORRSSTTUUWWWAKXYYZZ
f orwar d_upper request #3 returned:
AABBCCDDEEFFGGHH! | J J KKLLMVNNOOPPQQRRSSTTUUWWWIAKXYYZZ
String to convert using thread-per-object server?
Sending 4 deferred forward_| ower requests
forward_| ower request #0

r et urned: aabbccddeef f gghhi i j j kkl | nmnooppqqrr sstt uuvvwawxyyzz
forward_| ower request #1
ret urned: aabbccddeef f gghhi i j j kkl | nmnooppqqrr sstt uuvvwwxyyzz
forward_| ower request #2
ret urned: aabbccddeef f gghhi i j j kkl | nmnooppqqrr sstt uuvvwawxyyzz
forward_| ower request #3
r et urned: aabbccddeef f gghhi i j j kkl | nmnooppqqrr sstt uuvvwawxyyzz

Sending 4 deferred forward_upper requests

f orward_upper request #0 returned:
AABBCCDDEEFFGGHHI | JJKKLLMVINNOOPPQQRRSSTTUWWNKXYYZZ
f orward_upper request #1 returned:
AABBCCDDEEFFGGHHI | JJKKL L MVNNOOPPQQRRSSTTUWWNKXYYZZ
f orward_upper request #2 returned:
AABBCCDDEEFFGGHHI | JJKKL L MVINNOOPPQQRRSSTTUWWKXYYZZ

f orward_upper request #3 returned:
AABBCCDDEEFFGGHHI | JJKKL L MVINNOOPPQQRRSSTTUWWKXYYZZ

Shutting Down the Sample Application

Before running another sample application, you should shut down the simpapp_mt
sample application and eliminate all unwanted files from the working directory.

1. Toendthe application, run thet nshut down -y command. Information similar to
the following is displayed:

4-34 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

>t nshut down -y
Shutting down all

Shutting down

Server Id =5
Server Id = 2
Server Id = 4
Server Id = 3
Server Id = 2
Server Id =1

Shutting down
Server Id =0

server processes ...

Group Id = SYS _GRP Machi ne
Group Id = APP_GRP2 Machi ne
Group Id = SYS _GRP Machi ne
Group Id = SYS _GRP Machi ne
Group Id = SYS _GRP Machi ne
Group Id = SYS _GRP Machi ne

adm n processes ...

Group Id = SITEL Machine =

7 processes stopped.

= SITE1: shut down succeeded.
= SI TEL: shut down succeeded.
= SITE1: shut down succeeded.
= SITE1: shut down succeeded.
= SITE1: shut down succeeded.
= SITE1: shut down succeeded.

SI TE1l: shut down succeeded.

2. Restorethe working directory to itsoriginal state.

Windows

> . .\results\setenv
> make -f clean

UNIX

> . ./results/setenv. ksh

> make -f mmkefile.nk clean

Creating CORBA Server Applications

adm n and server processes in /work directory/results/tuxconfig

4-35

4 Creating Multithreaded CORBA Server Applications

Multithreaded CORBA Server Application
Administration

This topic includes the following sections:

m Specifying Thread Pool Size

Specifying a Threading Model

Specifying the Number of Active Objects

Sample UBBCONFIG File

Specifying Thread Pool Size

The MAXDI SPATCHTHREADS and M NDI SPATCHTHREADS parameters for specifying
the maximum and minimum sizes of the thread pool are in the SERVERS section of the
UBBCONFI Gfile. For examples of how to specify these parameters, see Listing 4-4. A
multithreaded CORBA application uses these values to create and manage the thread
pool.

MAXDISPATCHTHREADS

The MAXDI SPATCHTHREADS parameter determines the maximum number of
concurrently dispatched threads that each server process can spawn. When specifying
this parameter, consider the following:

m Thevaluefor MAXDI SPATCHTHREADS determines the maximum size the thread
pool can grow to be, as it increases in size to accommodate incoming regquests.

m Thedefault value for MAXDI SPATCHTHREADS is 1. If you specify a value greater
than 1, the system creates and uses a specia dispatcher thread. This dispatcher
thread is not included in the number of threads determining the maximum size of
the thread pool.

Note: If you specify avalue greater than 1 for MAXDI SPATCHTHREADS and do not
supply avauefor the CONCURR _STRATEGY threading model parameter, the

4-36 Creating CORBA Server Applications

Multithreaded CORBA Server Application Administration

threading model for the application defaults to thread-per-object. For a
discussion of the CONCURR_STRATEGY threading model parameter, see
“Specifying a Threading Model” on page 4-38.

m Specifying avalue of 1 for the MAXDI SPATCHTHREADS parameter indicates that
the CORBA server application should be configured as a single-threaded server.

Note: When you build amultithreaded CORBA server application specifying
bui | dobj server -t,that server is capable of running in multithreaded
mode. To run as a multithreaded CORBA server application, the
MAXDI SPATCHTHREADS parameter in the UBBCONFI G file must be set to a
value greater than 1; if it is not, the server application will runin
single-threaded mode.

m The value you specify for the MAXDI SPATCHTHREADS parameter must not be less
than the value you specify for the M NDI SPATCHTHREADS parameter.

m The operating system resources limit the maximum number of threads that can
be created in a process. MAXDI SPATCHTHREADS should be less than that limit,
minus the number of application managed threads that your application requires.

The value of the MAXDI SPATCHTHREADS parameter affects other parameters. For
example, the MAXACCESSORS parameter controls the number of simultaneous accesses
to the BEA Tuxedo system, and each thread counts as one accessor. For a
multithreaded server application, you must account for the number of system-managed
threads that each server is configured to run. A system-managed thread is athread that
is started and managed by the BEA Tuxedo software, as opposed to threads started and
managed by an application. Internally, BEA Tuxedo manages a pool of available
system-managed threads. When a client request is received, an available
system-managed thread from the thread pool isschedul ed to execute the request. When
the request is completed, the system-managed thread is returned to the pool of
available threads.

For example, if that you have 4 multithreaded serversin your system and each server
is configured to run 50 system-managed threads, the accessor requirement for these
serversisthe sum total of the accessors, calculated as follows:

50 + 50 + 50 + 50 = 200 accessors

Creating CORBA Server Applications 4-37

4

Creating Multithreaded CORBA Server Applications

MINDISPATCHTHREADS

Usethe M NDI SPATCHTHREADS parameter to specify the number of server
dispatch threads that are started when the server isinitially booted. When you
specify this parameter, consider the following:

e Thevalue for M NDI SPATCHTHREADS determines the initial allocation of
threads in the thread pool.

e The separate dispatcher thread that is created when MAXDI SPATCHTHREADS is
greater than 1 is not counted as part of the M NDI SPATCHTHREADS limit.

e Thevalue you specify for M NDI SPATCHTHREADS must not be greater than
the value you specify for MAXDI SPATCHTHREADS.

e Thedefault value for M NDI SPATCHTHREADS is 0.

Specifying a Threading Model

4-38

To specify athreading model, you set the CONCURR_STRATEGY parameter which is
defined in the SERVERS section of the UBBCONFI Gfile.

Usethe CONCURR_STRATEGY parameter to specify thethreading model amultithreaded
CORBA server application isto use. The CONCURR_STRATEGY parameter accepts
either of these values:

m CONCURR_STRATEGY

PER REQUEST
® CONCURR STRATEGY = PER OBJECT

When you specify CONCURR_STRATEGY = PER REQUEST to employ the
thread-per-request model, each invocation on the CORBA server application is
assigned to an arbitrary thread from the threads pool.

When you specify CONCURR_STRATEGY = PER_OBJECT to employ the
thread-per-object model, each active object is associated with asingle thread at any
one time. Each request for an object establishes an association between a dispatch
thread and the object.

If the value for MAXDI SPATCHTHREADS is greater than one and you do not specify a
value for CONCURR_STRATEGY, the threading model is set to PER_CBJECT.

For more information on the characteristics of threading models, see “ Threading
Models’ on page 4-5.

Creating CORBA Server Applications

Multithreaded CORBA Server Application Administration

Specifying the Number of Active Objects

Use the MAXOBJECTS parameter to specify the maximum number of objects per
machine to be accommodated in the Active Object Map tables in the bulletin board.
Y ou can set thisvalue in either the RESOURCES section or the MACH NES section of the
configuration file. The MAXOBJECTS nunber in the RESOURCES section isa
system-wide setting. Usethe MAXOBJECTS nunber inthe MACHI NES sectionto override
the system-wide setting on a per-machine basis.

For a system-wide setting, specify:

* RESOURCES
MAXOBJECTS nunber

To override a system-wide setting for a specific machine, specify:

* MACHI NES
MAXOBJECTS = nunber

The value for nunber islimited only by the resources of your operating system.

Sample UBBCONFIG File

Listing 4-4 shows a the UBBCONFI Gfile for the BEA Tuxedo Threads sample
application. The threads-related parameters are presented in boldface text.

Note: The vaue for the MAXOBJECTS parameter affects the operation of a
multithreaded server. However, this parameter is not specific to multithreaded
servers, since it also affects the operation of single-threaded servers.
Increasing the val ue for MAXOBJ ECTS resultsin the consumption of additional
system resources for any server.

Listing 4-4 Threads Sample Application UBBCONFIG File

* RESOURCES
| PCKEY 55432
DOVAI NI D si npapp
MAXOBJECTS 100
MASTER SI TE1
MODEL SHM

Creating CORBA Server Applications 4-39

4

Creating Multithreaded CORBA Server Applications

LDBAL N
* MACH NES
"sunstar"”
LMD = SITElL
APPDI R = "/rusersl/|yon/ sanpl es/ corba/si npapp_nt"
TUXCONFI G = "/rusersl/|yon/ sanpl es/ corba/si npapp_nt/resul ts/tuxconfig"
TUXDI R = "/usr/local / TUXD R
MAXWSCLI ENTS = 10
MAXACCESSERS = 200
* CROUPS
SYS_GRP
LM D = SITElL
GRPNO =1
APP_CRP1
LMD = SITEL
GRPNO =2
APP_CRP2
LMD = SITEL
GRPNO =3
* SERVERS
DEFAULT:
RESTART =Y
MAXGEN =5
TMBYSEVT
SRVGRP = SYS _CRP
SRvib =1
TMFENAME
SRVGRP = SYS _CRP
SRVID =2
CLOPT ="-A-- -N-M
TMFENAME
SRVGRP = SYS _CRP
SRviD =3
CLOPT ="-A-- -N'
TMFENAME
SRVGRP = SYS CRP
SRVID =14
CLOPT ="-A-- -F'
si npl e_per _obj ect _server
SRVGRP = APP_GRP1
SRvib =1
M NDI SPATCHTHREADS = 10
MAXDI SPATCHTHREADS = 100
CONCURR_STRATEGY = PER_OBJECT

4-40

RESTART

N

si npl e_per _request _server

Creating CORBA Server Applications

Multithreaded CORBA Server Application Administration

SRVGRP = APP_CRP2
SRVID =2

M NDI SPATCHTHREADS = 10
MAXDI SPATCHTHREADS = 100

CONCURR_STRATEGY = PER _REQUEST

RESTART = N
I SL
SRVGRP = SYS GRP
SRID =5
CLOPT = "-A-- -n //sunbstar: 2468 -d /dev/tcp"
* SERVI CES

Creating CORBA Server Applications 4-41

4 Creating Multithreaded CORBA Server Applications

4-42 Creating CORBA Server Applications

CHAPTER

5 Security and CORBA
Server Applications

This chapter discusses security and CORBA server applications, using the Security
University sample application as an example. The Security sample application
implements a security model that requires student users of the University sample
application to be authenticated as part of the application login process.

Thistopic includes the following sections:
m Overview of Security and CORBA Server Applications

m Design Considerations for the University Server Application

Overview of Security and CORBA Server
Applications

Generally, CORBA server applications have little to do with security. Security in the
BEA Tuxedo domain is specified by the system administrator in the UBBCONFI Gfile,
and client applications are responsible for logging on, or authenticating, to the domain.
None of the security models supported in the BEA Tuxedo system make any
requirements on server applications running in the BEA Tuxedo domain.

However, there may be occasions when implementing or enhancing a security model
in your CORBA application involves adding objects, or adding operationsto existing
objects, that are managed by the server application.

Creating CORBA Server Applications 5-1

5

Security and CORBA Server Applications

This chapter showshow the University server application isenhanced to add thenotion
of astudent, which isincorporated into the client application as a meansto identify,
and log in, users of the client application.

For information about how client applications are authenticated into the BEA Tuxedo
domain, see Creating CORBA Client Applications. For information about
implementing a security model in the BEA Tuxedo domain, see Setting Up a BEA
Tuxedo Application.

Design Considerations for the University
Server Application

5-2

The design rationale for the Security University sample application isto require users
of the client application to log on before they can do anything. The Security sample
application, therefore, needs to define the notion of a user.

Tolog ontotheapplication, the client application needsto provide thefollowing to the
security servicein the BEA Tuxedo domain (note that the student user of the
application provides only the username and application password):

m Client name
m Username
m An application password

The Security sample application adds an operation, get _st udent _det ai | s(), tothe
Regi st rar object. Thisoperation enables the client application to obtain information
about each student user from the University database after the client application is
logged on to the BEA Tuxedo domain.

Note: Theget_student _detai | s() operation has nothing to do with
implementing a security model in the BEA Tuxedo domain. The addition of
this operation is only a supplemental feature added to the Security sample
application. For details about the security model added to the Security sample
application, and how client applications log on to the Security server
application, see Creating CORBA Client Applications.

Creating CORBA Server Applications

Design Considerations for the University Server Application

The sections that follow explain:
m How the Security University sample application works

m Design considerations for returning student details to the client application

How the Security University Sample Application Works

To implement the Security sample application, the client application adds alogon
dialog with the student end user. This dialog uses the local SecurityCurrent object on
the client machine to invoke operations on the Principal Authenticator object, whichis
part of logging on to access the BEA Tuxedo domain. After the user authentication
process, theclient application invokestheget _st udent _det ai | s() operation onthe
Regi strar object to obtain information about each student user.

The University database used in the Security sample application is updated to contain
student information in addition to course information, and is shown in the following
figure:

University Database

Student
Information

Course
Information

\—/

Creating CORBA Server Applications 5-3

5 Security and CORBA Server Applications

Theget _student _detai | s() operation accesses the student information portion of
the database to obtain student information needed by the client logon operation. The
following figure shows the primary objects involved in the Security sample
application:

University Server Application

Registrar

RegistrarFactory get _student _detail s()

/

Client
Application

Database

Student Info |

SecurityCurrent
Object

A typical usage scenario of the Security sample application may include the following
seguence of events:

1. Theclient application obtains a reference to the SecurityCurrent object from the
Bootstrap object.

2. Theclient application invokes the SecurityCurrent object to determine the level
of security that is required by the BEA Tuxedo domain.

3. Theclient application queries the student user for a student ID and the required
passwords.

4. Theclient application authenticates the student by obtaining information about
the student from the Authentication Service.

5. If the authentication processis successful, the client application logs on to the
BEA Tuxedo domain.

5-4 Creating CORBA Server Applications

Design Considerations for the University Server Application

6. Theclient application invokesthe get _student _det ai | s() operation on the
Regi strar object, passing a student ID, to obtain information about the student.

7. TheRegi strar object scans the database for student information that matches
the student ID in the client request.

8. If there is a match between the student ID provided in the client application
request and the student information in the database, the Regi st r ar object returns
thestruct StudentDetail s to the client application. (If the student enters an
ID that does not match the information in the database, the Regi st r ar object
returns a CORBA exception to the client application.)

9. If theRegi strar object returns St udent Det ai | s to the client application, the
client application displays a personalized wel come message to the student user.

Design Considerations for Returning Student Details to
the Client Application

The client application needs to provide ameans by which to log a user on to the BEA
Tuxedo system so that the user can continue to use the University application. To do
this, the client application needs an identity for the user. In the Security sample
application, thisidentity isthe student ID.

All that isrequired of the University server application isto return dataabout astudent,
based on the student 1D, so that the client application can complete the user
authentication process. Therefore, the OMG IDL for the Security sample application
adds the definition of the get _st udent _det ai | s() operation to the Regi strar
object. The primary design consideration for the University server application is based
on the operational scenario described earlier; namely, that one student interacts with
one client application at one time, so there is no need for the server application to deal
with a sizable batch of datato implement the get _st udent _det ai | s() operation.

Theget _student _det ai | s() operation hasthe following OMG IDL definition:

struct StudentDetails

{

St udent | d student i d;

string nane;

Cour seDet ai | sLi st registered_courses;
b

Creating CORBA Server Applications 5-5

5 Security and CORBA Server Applications

5-6 Creating CORBA Server Applications

CHAPTER

6

Integrating

Transactions Into a
CORBA Server
Application

This chapter describes how to integrate transactionsinto a CORBA server application,
using the Transactions University sample application asan example. The Transactions
sample application encapsulates the process of a student registering for a set of
courses. The Transactions sample application does not show all the possible ways to
integrate transactions into a CORBA server application, but it does show two models
of transactional behavior, showing the impact of transactional behavior on the
application in general and on the durable state of objectsin particular.

Thistopic includes the following sections:
m Overview of Transactionsin the BEA Tuxedo System
m Designing and Implementing Transactionsin a CORBA Server Application

m Integrating Transactionsin a CORBA Client and Server Application. This
section describes:

e Making an Object Automatically Transactional
e Enabling an Object to Participate in a Transaction
e Preventing an Object from Being Invoked While a Transaction |s Scoped

e Excluding an Object from an Ongoing Transaction

Creating CORBA Server Applications 6-1

6

Integrating Transactions into a CORBA Server Application

e Assigning Policies

e Opening an XA Resource Manager

e Closing an XA Resource Manager
m Transactions and Object State Management
m Noteson Using Transactions in the BEA Tuxedo System
m User-defined Exceptions

This chapter also presents a section on user-defined exceptions. The Transactions
sample application introduces a user-defined exception, which can be returned to the
client application and that potentially causes a client-initiated transaction to be rolled
back.

Overview of Transactions in the BEA Tuxedo

System

6-2

The BEA Tuxedo system provides transactions as a means to guarantee that database
transactions are completed accurately and that they take on all the ACID properties
(atomicity, consistency, isolation, and durability) of a high-performance transaction.
That is, you have arequirement to perform multiple write operations on durable
storage, and you must be guaranteed that the operations succeed; if any one of the
operationsfails, the entire set of operationsisrolled back.

Transactions typically are appropriate in the situations described in the following list.
Each situation encapsul ates a transactional model supported by the BEA Tuxedo
system.

m Theclient application needs to make invocations on severa different objects,
which may involve write operations to one or more databases. If any one
invocation is unsuccessful, any state that is written (either in memory or, more
typically, to a database) must be rolled back.

For example, consider atravel agent application. The client application needs to
arrange for ajourney to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such ajourney would inevitably require multiple

Creating CORBA Server Applications

Overview of Transactions in the BEA Tuxedo System

individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paristo New York, New York to Los Angeles. However, if any individua
flight reservation cannot be made, the client application needs away to cancel

all the flight reservations made so far. For example, if the client application
cannot book aflight from Los Angeles to Honolulu on a given date, the client
application needsto cancel the flight reservations made up to that point.

The client needs a conversation with an object managed by the server
application, and the client needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

e Dataiscached in memory or written to a database during or after each
successive invocation.

e Dataiswritten to a database at the end of the conversation.

e The client needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the datathat isbeing
maintained in memory across the conversation.

e Attheend of the conversation, the client needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an Internet-based online shopping application. The user of
the client application browses through an online catalog and makes multiple
purchase selections. When the user is done choosing al the items he or she
wants to buy, the user clicks on a button to make the purchase, where the user
may enter credit card information. If the credit card check fails (for example, the
user cannot provide valid credit card information), the shopping application
needs away to cancel all the pending purchase selections or roll back any
purchase transactions made during the conversation.

Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (And in this situation, the individual
database edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on ateller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

e Invoking the debit method on one account

Creating CORBA Server Applications 6-3

6 Integrating Transactions into a CORBA Server Application

e Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
away to roll back the previous debit invocation.

Designing and Implementing Transactions
In a CORBA Server Application

This section explains how to design and implement transactions in a CORBA server
application using the Transactions University sample application as an example. This
section also describes how the Transactions sample application works, and discusses
the design considerations for implementing transactions in it. For additional general
information about transactions, see the section “ Integrating Transactionsin aCORBA
Client and Server Application” on page 6-10.

The Transactions sample application uses transactions to encapsul ate the task of a
student registering for aset of courses. Thetransactional model used in thisapplication
is a combination of the conversational model and the model in which asingle
invocation makes multiple individual operations on a database, as described in the
preceding section.

The Transactions sample application builds on the Security sample application by
adding the following capabilities:

m Students can submit alist of courses for which they want to register. (Each
course is represented by a number.)

m For each coursein thelist, the University server application checksthe
following:

e Whether the courseisin the University database
¢ Whether the student is already registered for the course

e Whether the student exceeds the maximum number of credits he or she can
take

m If the course passes the checks in the preceding list, the University server
application registers the student for the course.

6-4 Creating CORBA Server Applications

Designing and Implementing Transactions in a CORBA Server Application

m If the server application cannot register the student for a course because the
course does not exist in the database or because the student is already registered
for the course, the server application returnsto the client application alist of
courses for which the registration process failed. The client application can then
choose whether to commit the transaction to register the student for the courses
for which the registration process succeeds, or to roll back the entire transaction.

m If acourse registration fails because the student exceeds the maximum number
of credits he or she can take, the server application returns a CORBA exception
to the client application that provides a brief message explaining why the
registration for the course was not successful. (The server application does not
mark the transaction for rollback only.)

The Transactions sample application shows two ways in which a transaction can be
rolled back:

m Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

m Fata. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returnsiit to the client. The decision to roll back the
transaction a so lies with the client application.

Thus, the Transactions sample application a so shows how to implement
user-defined CORBA exceptions. For example, if the student triesto register for
a course that would exceed the maximum number of courses for which the
student can register, the server application returns the TooManyCredit s
exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

The sections that follow explain:

m How the Transactions University Sample Application Works

m Transactiona Model Used by the Transactions University Sample Application
m Object State Considerations for the University Server Application

m Configuration Requirements for the Transactions Sample Application

Creating CORBA Server Applications 6-5

6

Integrating Transactions into a CORBA Server Application

How the Transactions University Sample Application
Works

6-6

To implement the student registration process, the Transactions sample application
does the following:

m Theclient application obtains a reference to the TransactionCurrent object from
the Bootstrap object.

m When the student submits the list of courses for which he or she wants to
register, the client application:

a

Begins atransaction by invoking the Cur r ent : : begi n() operation on the
TransactionCurrent object

Invokestheregi ster _for_courses() operation onthe Regi st rar object,
passing alist of courses

m Theregister_for_courses() operation ontheRegi strar object processes
the registration request by executing aloop that does the following iteratively for
each coursein the list:

a

Checksto see how many credits the student is already registered for

b. Addsthe coursetothelist of courses for which the student is registered

The Regi st rar object checks for the following potential problems, which
prevent the transaction from being committed:

e Thestudent isalready registered for the course.

e A coursein thelist does not exist.

e The student exceeds the maximum credits allowed.

m Asdefined in the application'sOMG IDL, theregi ster _f or _cour ses()
operation returns a parameter to the client application, Not Regi st er edLi st ,
which contains alist of the courses for which the registration failed.

If the Not Regi st er edLi st value is empty, the client application commits the
transaction.

If the Not Regi st er edLi st value contains any courses, the client application
queries the student to indicate whether he or she wants to complete the

Creating CORBA Server Applications

Designing and Implementing Transactions in a CORBA Server Application

registration process for the courses for which the registration succeeded. If the
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client application
rolls back the transaction.

m If theregistration for a course has failed because the student exceeds the
maximum number of credits he or she can take, the Regi st rar object returnsa
TooManyCr edi t s exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at atime. This design helps to minimize the
number of remote invocations on the Regi st r ar object.

In implementing this design, the Transactions sample application shows one model of
theuse of transactions, which were described in the section “ Overview of Transactions
in the BEA Tuxedo System” on page 6-2. The model is asfollows:

m The client begins atransaction by invoking the begi n() operation on the
TransactionCurrent object, followed by making an invocation to the
regi ster_for_courses() operation onthe Regi strar object.

The Regi st rar object registers the student for the courses for which it can, and
then returns alist of courses for which the registration process was unsuccessful.
The client application can choose to commit the transaction or rall it back. The
transaction encapsul ates this conversation between the client and the server
application.

m Theregister_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be rolled
back.

Creating CORBA Server Applications 6-7

6

Integrating Transactions into a CORBA Server Application

Object State Considerations for the University Server
Application

Because the Transactions University sample application istransactional, the
University server application generally needs to consider the implications on object
state, particularly in the event of arollback. In cases where there is arollback, the
server application must ensurethat all affected objects havetheir durable staterestored
to the proper state.

Because the Regi st rar object isbeing used for database transactions, agood design
choice for this object isto make it transactional; that is, assign the al ways transaction
policy to thisobject’ sinterface. If atransaction has not already been scoped when this
object isinvoked, the BEA Tuxedo system will start a transaction automatically.

By making the Regi st rar object automatically transactional, al database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the server
application uses an XA resource manager, and since the object isguaranteed tobein a
transaction when the object writesto a database, the object does not have any rollback
or commit responsibilities because the X A resource manager takes responsibility for
these database operations on behalf of the object.

TheRegi st rar Fact or y object, however, can be excluded from transactions because
this object does not manage data that is used during the course of atransaction. By
excluding thisobject from transactions, you minimizethe processing overhead implied
by transactions.

Object Policies Defined for the Registrar Object

6-8

To make the Regi st r ar object transactional, the ICF file specifies the al ways
transaction policy for the Regi st r ar interface. Therefore, in the Transaction sample
application, the ICF file specifies the following object policies for the Regi st r ar
interface:

Activation Policy Transaction Policy

process al ways

Creating CORBA Server Applications

Designing and Implementing Transactions in a CORBA Server Application

Object Policies Defined for the RegistrarFactory Object

ToexcludetheRegi strar Fact or y object from transactions, the | CFfile specifiesthe
i gnor e transaction policy for theRegi st rar interface. Therefore, in the Transaction
sample application, the |CF file specifies the following object policies for the

Regi st rar Fact ory interface:

Activation Policy Transaction Policy

process i gnore

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sample application uses the Oracle Transaction Manager Server
(TMS), which handles object state data automatically. Using any XA resource
manager imposes specific requirements on how different objects managed by the
server application may read and write data to that database, including the following:

m Some XA resource managers (for example, Oracle) require that all database
operations be scoped within a transaction. This means that the
Cour seSynopsi sEnuner at or object needs to be scoped within atransaction
because this object reads from a database.

m When atransaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the X A resource manager ensures that all
database updates are made permanent. Likewise, if thereis arollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of arollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application.

Creating CORBA Server Applications 6-9

6 Integrating Transactions into a CORBA Server Application

Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracle transaction manager server (TMS).
To use an Oracle database, you must include specific Oracle-provided filesin the
server application build process.

For details about building, configuring, and running the Transactions sample
application, seethe Guide to the CORBA University Sample Applications. Thisonline
document a so contains the UBBCONFI Gfiles for each sample application and explains
the entriesin that file.

Integrating Transactions in a CORBA Client
and Server Application

The BEA Tuxedo system supports transactions in the following ways:

m Theclient or the server application can begin and end transactions explicitly by
using calls on the TransactionCurrent object. For information about the
TransactionCurrent object, see Creating CORBA Client Applications and Using
CORBA Transactions.

m You can assign transactional policiesto an object’s interface so that when the
object isinvoked, the BEA Tuxedo system can start a transaction automatically
for that object, if atransaction has not already been started, and commit or roll
back the transaction when the method invocation is complete. You use
transactional policies on objectsin conjunction with an XA resource manager
and database when you want to delegate all the transaction commit and rollback
responsibilities to that resource manager.

m Objectsinvolved in atransaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of atransaction, the object
caninvoketherol | back_onl y() operation on the TransactionCurrent object to
mark the transaction for rollback only. This prevents the current transaction from
being committed. An object may need to mark atransaction for rollback if an

6-10 Creating CORBA Server Applications

Integrating Transactions in a CORBA Client and Server Application

entity, typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

m Objectsinvolved in atransaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of atransaction that is about to be committed, these
objects are polled by the BEA Tuxedo system immediately before the resource
managers prepare to commit the transaction. (In this sense, polling means
invoking the object’s Tobj _Ser vant Base: : deact i vat e_obj ect () operation
and passing a reason value.)

When an object is polled, the object may veto the current transaction by
invoking ther ol | back_onl y() operation on the TransactionCurrent object. In
addition, if the current transaction isto be rolled back, objects have an
opportunity to skip any writes to a database. If no object vetos the current
transaction, the transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to get the transactional behavior you want in your objects. Note
that these policies apply to an interface and, therefore, to all operations on all objects
implementing that interface.

Note: If aserver application manages an object that you want to be ableto participate
in atransaction, the Server object for that application must invoke the
TP: : open_xa_rm() and TP: : cl ose_xa_rm() operations. For more
information about database connections, see “Opening an XA Resource
Manager” on page 6-15.

Making an Object Automatically Transactional

The BEA Tuxedo system providesthe al ways transactional policy, which you can
define on an object’ sinterface to have the BEA Tuxedo system start a transaction
automatically when that object is invoked and a transaction has not aready been
scoped. When an invocation on that object is completed, the BEA Tuxedo system
commitsor rollsback the transaction automatically. Neither the server application, nor
the object implementation, needs to invoke the TransactionCurrent object in this
situation; the BEA Tuxedo system automatically invokes the TransactionCurrent
object on behalf of the server application.

Assigning theal ways transactional policy to an object’ sinterface isappropriate when:

Creating CORBA Server Applications 6-11

6

Integrating Transactions into a CORBA Server Application

m The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is
invoked.

m You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’ sinterface in the Implementation Configuration File (ICF file):

Activation Policy Transaction Policy

process, net hod, or al ways
transaction

Note: Database cursors cannot span transactions. The
Cour seSynopsi sEnuner at or object in the CORBA University sample
applications uses a database cursor to find matching course synopses from the
University database. Because database cursors cannot span transactions, the
activate_obj ect () operation onthe Cour seSynopsi sEnuner at or object
reads all matching course synopses into memory. Note that the cursor is
managed by an iterator class and is thus not visible to the
Cour seSynopsi sEnumer at or object.

Enabling an Object to Participate in a Transaction

6-12

If you want an object to be able to be invoked within the scope of atransaction, you
canassignthe opti onal transaction policiesto that object’ sinterface. Theopt i onal
transaction policy may be appropriate for an object that does not perform any database
write operations, but that you want to have the ability to be invoked during a
transaction.

Y ou can use the following policies, when specified in the ICF file for that object’s
interface, to make an object optionally transactional:

Creating CORBA Server Applications

Integrating Transactions in a CORBA Client and Server Application

Activation Policy Transaction Policy

process, net hod, or opti onal
transaction

If the object does perform database write operations, and you want the object to be able
to participate in atransaction, assigning the al ways transactional policy isgenerally a
better choice. However, if you prefer, you can use the opt i onal policy and
encapsulate any write operations within invocations on the TransactionCurrent object.
That is, within your operations that write data, scope a transaction around the write
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object isnot already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of atransaction, all the database read operations are
nontransactional, and therefore more streamlined.

Note: Some XA resource managers used in the BEA Tuxedo system require that any
object participating in a transaction scope their database read operations, in
addition to write operations, within atransaction. (However, you can still
scope your own transactions.) For example, using an Oracle TM S with the
BEA Tuxedo system has this requirement. When choosing the transaction
policies to assign to your objects, make sure you are familiar with the
requirements of the XA resource manager you are using.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from atransaction. If such an
object isinvoked during a transaction, the object returns an exception, which may
cause the transaction to be rolled back. The BEA Tuxedo system providesthe never
transaction policy, which you can assign to an object’ sinterface to specifically prevent
that object from being invoked within the course of a transaction, even if the current
transaction is suspended.

Creating CORBA Server Applications 6-13

6

Integrating Transactions into a CORBA Server Application

This transaction policy is appropriate for objects that write durable state to disk that
cannot berolled back; for example, for an object that writes data to a disk that is not
managed by an XA resource manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if atransaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the I CF file:

Activation Policy Transaction Policy

process or net hod never

Excluding an Object from an Ongoing Transaction

6-14

In some cases, it may be appropriate to permit an object to be invoked during the
course of atransaction but also keep that object from being a part of the transaction. If
such an object isinvoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The BEA Tuxedo system providesthei gnor e transaction
policy for this purpose.

Thei gnor e transaction policy may be appropriate for an object such as afactory that
typically does not write datato disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of a transaction.
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policiesto that object’sinterface in the ICF file:

Activation Policy Transaction Policy

process or net hod i gnore

Creating CORBA Server Applications

Integrating Transactions in a CORBA Client and Server Application

Assigning Policies

For information about how to create an | CF file and specify policies on objects, seethe
section “ Step 4: Define the In-memory Behavior of Objects’ on page 2-14.

Opening an XA Resource Manager

If an object’s interface has the al ways or opt i onal transaction policy, you must
invokethe TP: : open_xa_r () operationintheServer::initialize() operaion
in the Server object. The resource manager is opened using the information provided
in the OPENI NFO parameter, which isin the GROUPS section of the UBBCONFI Gfile.
Note that the default version of the Server: :initialize() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participatesin a
transaction—the object typically hasthe opt i onal transaction policy—you still need
to include an invocation to the TP: : open_xa_r m() operation. In that invocation,
specify the NULL resource manager.

Closing an XA Resource Manager

If your Server object’s Server::initialize() operation opensan XA resource
manager, you must include the following invocation in the Ser ver : : r el ease()
operation:

TP::close xa_rm();

Creating CORBA Server Applications 6-15

6 Integrating Transactions into a CORBA Server Application

Transactions and Object State Management

If you need transactions in your CORBA client and server application, you can
integrate transactionswith object state management in afew different ways. Ingeneral,
the BEA Tuxedo system can automatically scope the transaction for the duration of an
operation invocation without requiring you to make any changesto your application’s
logic or the way in which the object writes durable state to disk.

Thefollowing sections address some key points regarding transactions an object state
management.

Delegating Object State Management to an XA Resource

Manager

Using an XA resource manager, such as Oracle which is used in the CORBA
University sample applications, generally simplifies the design problems associated
with handling object state datain the event of arollback. Transactional objects can
always del egate the commit and rollback responsibilitiesto the XA resource manager,
which greatly eases the task of implementing a server application. This means that
process- or method-bound objects involved in a transaction can write to a database
during transactions, and can depend on the resource manager to undo any data written
to the database in the event of atransaction rollback.

Waiting Until Transaction Work Is Complete Before
Writing to the Database

The transacti on activation policy isagood choicefor objectsthat maintain statein
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign thet r ansact i on activation policy to
an object, the object:

m Isbrought into memory when it is first invoked within the scope of atransaction

m Remainsin memory until the transaction is either committed or rolled back

6-16 Creating CORBA Server Applications

Transactions and Object State Management

When the transaction work is complete, the BEA Tuxedo system invokes each
transaction-bound object’ sTobj _Ser vant Base: : deact i vat e_obj ect () operation,
passing ar eason code that can be either DR_TRANS_COWM TTI NG or
DR_TRANS_ABORT. If thevariableisDR_TRANS_COWM TTI NG, the object caninvokeits
database write operations. If thevariableisDR_TRANS_ABORT, the object skipsitswrite
operations.

Assigning thet r ansact i on activation policy to an object may be appropriate in the
following situations:

m You want the object to write its durable state to disk at the time that the
transaction work is complete.

Thisintroduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

m You want to provide the object with the ability to veto a transaction that is about
to be committed.

If the BEA Tuxedo system passes the reason DR_TRANS_COWM TTI NG, the object
can, if necessary, invokether ol | back_onl y() operation on the
TransactionCurrent object. Note that if you do make an invocation to the

rol | back_onl y() operation from within the

Tobj _Servant Base: : deacti vat e_obj ect () operation, the

Tobj _Servant Base: : deact i vat e_obj ect () operation is not invoked again.

m You have an object that is likely to be invoked multiple times during the course
of asingle transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

To give an object the ability to wait until the transaction is committing before writing
to adatabase, assign the following policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

transaction al ways or opt i onal

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside the Tobj _Ser vant Base: : deact i vat e_obj ect () operation.
The only valid invocations transaction-bound objects can make inside the
Tobj _Servant Base: : deacti vat e_obj ect () operation are write
operations to the database.

Creating CORBA Server Applications 6-17

6 Integrating Transactions into a CORBA Server Application

Also, if you have an object that isinvolved in atransaction, the Server object
that manages that object must include invocations to open and close,
respectively, the XA resource manager, even if the object does not write any
datato disk. (If you have atransactional object that does not write datato disk,
you specify the NULL resource manager.) For more information about
opening and closing an XA resource manager, see the sections “Opening an
XA Resource Manager” on page 6-15 and “Closing an XA Resource
Manager” on page 6-15.

Notes on Using Transactions in the BEA
Tuxedo System

Note the following about integrating transactions into your CORBA client/server
applications:

m Thefollowing transactions are not permitted in the BEA Tuxedo system:
e Nested transactions

You cannot start a new transaction if an existing transaction is already active.
You may start a new transaction if you first suspend the existing one;
however, the object that suspends the transaction is the only object that can
subsequently resume the transaction.

e Recursive transactions

A transactional object cannot call a second object, which in turn calls the
first object.

m Theobject that starts atransaction is the only entity that can end the transaction.
(In astrict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that is invoked within
the scope of atransaction may suspend and resume the transaction. While the
transaction is suspended, the object can start and end other transactions.
However, you cannot end a transaction in an object unless you began the
transaction there.

m Objects can beinvolved with only one transaction at one time. The BEA Tuxedo
system does not support concurrent transactions.

6-18 Creating CORBA Server Applications

Notes on Using Transactions in the BEA Tuxedo System

The BEA Tuxedo system does not queue requests to objects that are currently
involved in atransaction. If anontransactional client application attemptsto
invoke an operation on an object that is currently in atransaction, the client
application receives the following error message:

CORBA: : OBJ_ADAPTER

If aclient that isin atransaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receivesthe
following error message:

CORBA: : | NVALI D_TRANSACTI ON

For transaction-bound objects, you might consider doing all state handling in the
Tobj _Servant Base: : deacti vat e_obj ect () operation. This makesit easier
for the object to handl e its state properly, since the outcome of the transaction is
known at the time that the Tobj _Ser vant Base: : deact i vat e_obj ect ()
operation isinvoked.

For method-bound objects that have several operations, but only a few that affect
the object’s durable state, you may want to consider the following:

e Assigntheopti onal transaction policy.

e Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object isinvoked outside a transaction, the object does not incur the
overhead of scoping atransaction for reading data. This way, regardless of
whether the object isinvoked within atransaction, all the object’s write
operations are handled transactionally.

Transaction rollbacks are asynchronous. Therefore, it is possible for an object to
be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

If an object with the al ways transaction policy isinvolved in atransaction that
is started by the BEA Tuxedo system, and not the client application, note the
following:

If an exception israised inside an operation on that object, the client application
receives an OBJ_ADAPTER exception. In this situation, the BEA Tuxedo system
automatically rolls back the transaction. However, the client application is
completely unaware that a transaction has been scoped in the BEA Tuxedo
domain.

Creating CORBA Server Applications 6-19

6 Integrating Transactions into a CORBA Server Application

m |f the client application initiates a transaction, and the server application marks
the transaction for a rollback and returns a CORBA exception, the client
application receives only atransaction rollback exception but not the CORBA
exception.

Note: Inthe WebL ogic Enterprise version 4.2 software, no workaround exists for
this situation. We recommend that applications perform as much data
validation as possible before starting a transaction.

m Note the following restriction on atransactional object that has the
TP: : deact i vat eEnabl e method:

If the TP: : deact i vat eEnabl e method is invoked during a transaction, the
object is deactivated when the transaction ends. However, if any methods are
invoked on the object between the time that the TP: : deact i vat eEnabl e
method is called and the time that the transaction is committed, the object is
never deactivated.

User-defined Exceptions

The Transactions sampl e application includes an instance of a user-defined exception,
TooManyCr edi t s. Thisexception isthrown by the server application when the client
application tries to register a student for a course, and the student has exceeded the
maximum number of courses for which he or she can register. When the client
application catches this exception, the client application rolls back the transaction that
registers a student for a course. This section explains how you can define and
implement user-defined exceptions in your CORBA client/server application, using
the TooMany Cr edi t s exception as an example.

Including auser-defined exception in a CORBA client/server application involvesthe
following steps:

1. Inyour OMG IDL file, definethe exception and specify the operationsthat can use
it.

2. Inthe implementation file, include code that throws the exception.

3. Intheclient application source file, include code that catches and handles the
exception.

6-20 Creating CORBA Server Applications

User-defined Exceptions

The sections that follow explain and give examples of the first two steps.

Defining the Exception

Inthe OMG IDL filefor your client/server application:

1. Definethe exception and define the data sent with the exception. For example, the
TooManyCr edi t s exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for the TooMany Or edi t s exception contains the following OMG IDL

statements:
excepti on TooManyCredits
{
unsi gned short maxi mumcredits;
}

2. Inthedefinition of the operations that throw the exception, include the exception.
The following example showsthe OMG IDL statementsfor the
regi ster_for_courses() operation onthe Regi st rar interface:

Not Regi st eredLi st regi ster_for_courses(
in Studentld st udent,
i n CourseNunber Li st courses)
rai ses (TooManyCredits);

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that
throws the exception, as in the following example.

if (...) {
Uni versi tyZ:: TooManyCredits e;
e.maxi mumcredits = 18;
t hr ow e;

}

Creating CORBA Server Applications 6-21

6 Integrating Transactions into a CORBA Server Application

6-22 Creating CORBA Server Applications

CHAPTER

.

Wrapping a BEA
Tuxedo Service In a
CORBA Object

This chapter presents an overview of one way in which you can call aBEA Tuxedo
service from within an object managed by a CORBA server application, using the
Wrapper sample application as an example.

Thistopic includes the following sections:

m Overview of Wrapping a BEA Tuxedo Service
This section describes:
e Designing the Object That Wrapsthe BEA Tuxedo Service
e Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls

¢ Implementing the Operations That Send Messages to and from the BEA
Tuxedo Service

m Design Considerations for the Wrapper Sample Application

The Wrapper sample application delegates aset of billing operationsto aBEA Tuxedo
ATMI teller application, which contains a set of servicesthat perform basic billing
procedures. The approach in this chapter shows onetechniquefor incorporating aBEA
Tuxedo application into a BEA Tuxedo domain.

The examples shown in this chapter demonstrate a one-to-one relationship between
operations on a CORBA object and callsto specific services within an application. In
asense, the callsto the BEA Tuxedo services are wrapped as operations on aCORBA

Creating CORBA Server Applications 7-1

4 Wrapping a BEA Tuxedo Service in a CORBA Object

object; thus, the object delegatesits work to the BEA Tuxedo application. If you have
aset of BEA Tuxedo servicesthat you want to usein aCORBA server application, the
technique shown in this chapter may work for you.

This chapter does not provide any details about BEA Tuxedo ATMI applications. For
information about how to build and configure BEA Tuxedo ATMI applications, and
for information about how they work, see the BEA Tuxedo ATMI information set,
whichisincluded in the BEA Tuxedo online documentation.

Overview of Wrapping a BEA Tuxedo Service

7-2

The process described in this chapter for wrapping a set of BEA Tuxedo services
encompasses the following steps:

1. Designing the object that structures a set of tasks that are oriented to the BEA
Tuxedo system as operations on that object.

2. Creating the message buffer used by the BEA Tuxedo services. You use this
message buffer to send and receive messages to and from the BEA Tuxedo
services. You can allocate the buffer in the object’s constructor in the
application’s implementation file.

3. Implementing on the object the operations that send and receive messages to and
from the BEA Tuxedo services. This step a so includes choosing the
implementation for how the BEA Tuxedo services are called.

Thefollowing figure shows a high-level view of the relationship among the client
application, the CORBA object managed by the CORBA server application, and the
BEA Tuxedo ATMI application that implements the services called from the CORBA
object.

Creating CORBA Server Applications

Overview of Wrapping a BEA Tuxedo Service

M3 Server Application BEA TUXEDO Teller
Application
CORBA Object OP1 Service

Client Application
operationl(); operationl()

operationi(); (Ipcall (op1()); ———] OP2 Service

operation3();

operation2()

tpcall (op2()); —— | OP3 Service

operation3()

tpcall (op3()); —
}

Designing the Object That Wraps the BEA Tuxedo Service

Thefirst step described in this chapter isdesigning the object that wrapsthe callsto the
BEA Tuxedo ATMI application. For example, the goal for the Wrapper sample
applicationisto add billing capability to the student registration process, which can be
done by delegating a set of billing operations to an existing BEA Tuxedo ATMI teller
application.

The BEA Tuxedo ATMI teller application used by the Wrapper sample application
contains the following services:

m CURRBALANCE—oObtains the current balance of a given account

m CRED T—credits an account by a given dollar amount

m DEBI T—debits an account by a given dollar amount

To wrap these services, the Wrapper sample application includes a separate OMG I DL
file that defines a new interface, Tel | er, which has the following operations:

m get _bal ance()

m credit()

m debit()

Each of these operationsonthe Tel | er object maps one-to-oneto calls on the services
in the BEA Tuxedo ATMI teller application.

A typical usage scenario of the Tel | er object may be the following:

Creating CORBA Server Applications 7-3

4 Wrapping a BEA Tuxedo Service in a CORBA Object

1. Theclient application invokesther egi st er _f or _courses() operation on the
Regi st rar object, which requires a student 1D.

2. Aspart of the registration process, the Regi st r ar object invokes the
get _bal ance() operation onthe Tel | er object, passing an account number.

3. Theget _bal ance() operation onthe Tel | er object puts the account number
into a message buffer and sends the buffer to the BEA Tuxedo ATMI teller
application’s CURRBALANCE service.

4. TheBEA Tuxedo ATMI teller application receives the message buffer, extracts
its contents, and makes the appropriate call to the CURRBALANCE service.

5. The CURRBALANCE service obtains from the University database the current
balance of the account and givesit to the BEA Tuxedo ATMI teller application.

6. The BEA Tuxedo ATMI teller application inserts the current balance into a
message buffer and returns it to the Tel | er object.

7. TheTel | er object extracts the current balance amount from the message buffer
and returns the current balance to the Regi st rar object.

For more design information about the Tel | er object and the Wrapper sample
application, see the section “Design Considerations for the Wrapper Sample
Application” on page 7-8.

Creating the Buffer in Which to Encapsulate BEA Tuxedo
Service Calls

7-4

Thenext step described in this chapter is creating the buffer within which messagesare
sent between the object and the BEA Tuxedo service. There are a number of buffer
typesthat may be used by various BEA Tuxedo ATMI applications, and the examples
used in this chapter are based on the FML buffer type. For more information about
buffer typesin the BEA Tuxedo system, see the BEA Tuxedo information set.

In your application implementation file, you need to alocate the chosen buffer type.
Y ou can allocate the buffer in the object’ s constructor, because the buffer you allocate
does not need to be unique to any particular Tel | er object instance. This allocation
operation typically includes specifying the buffer type, passing any flags appropriate
for the procedure call to the BEA Tuxedo service, and specifying a buffer size.

Creating CORBA Server Applications

Overview of Wrapping a BEA Tuxedo Service

Y ou also need to add to your implementation’ s header file the definition of thevariable
that represents the buffer.

The following code exampl e shows the constructor for the Wrapper application’s
Tel | er object that allocates the BEA Tuxedo buffer, m t uxbuf :

Teller_i::Teller_i() :
m t uxbuf ((FBFR32*) t pal | oc("FM.32", "", 1000))
{

if (mtuxbuf == 0) {
throw CORBA: : | NTERNAL() ;
}
}

Note the following about the line that allocates the FML buffer:

Code Description
tpal |l oc Allocates the buffer.
" FML32" Specifiesthe FML buffer type.

Typically enclose any flags passed to the BEA Tuxedo service. In
this example, no flags are passed.

1000 Specifiesthe buffer size in bytes.

The object’ simplementation file should also deallocate the buffer in the destructor, as
in the following statement from the Wrapper application implementation file:

tpfree((char*)mtuxbuf);

Implementing the Operations That Send Messages to
and from the BEA Tuxedo Service

The next step isimplementing the operations on the object that wraps callsto the BEA
Tuxedo ATMI application. In this step, you choose the implementation of how the

BEA Tuxedo servicesare called from the object. The Wrapper sample application uses
thet pcal | implementation.

Creating CORBA Server Applications 7-5

v

Wrapping a BEA Tuxedo Service in a CORBA Object

An operation on an object that wraps a BEA Tuxedo service typically includes
statements that do the following:

m Fill the message buffer with the data that you want to send to the BEA Tuxedo
service.

m Call the BEA Tuxedo service. The following arguments are included in the call:
a. TheBEA Tuxedo service that you want to invoke.
b. The message buffer to be sent to the BEA Tuxedo service.
c. Themessage buffer to be returned from the BEA Tuxedo service.

d. Thesize of the buffer in which the BEA Tuxedo service response isto be
placed.

m Extract the response from the BEA Tuxedo service.
m Return the resultsto the client application.

Thefollowing exampl e showsthe implementation of theget _bal ance() operationin
the Wrapper application Tel | er object. This operation retrieves the balance of a
specific account, and the BEA Tuxedo service being called is CURRBALANCE.

CORBA: : Doubl e Tell er_i::get_bal ance(BillingW:Account Nunber account)

{

7-6

/1 "marshal" the "in" paraneters (account nunber)
Fchg32(m t uxbuf, ACCOUNT_NO, 0, (char*)&account, 0);
long size = Fsizeof 32(tuxbuf);
/1 Call the CURRBALANCE Tuxedo service
if (tpcall ("CURRBALANCE', (char*)tuxbuf, O,
(char**) & uxbuf, &size, 0)) {

t hrow CORBA: : PERSI ST_STORE() ;
}
/1 "unmarshal" the "out" paranmeters (current bal ance)
CORBA: : Doubl e currbal;
Fget 32(m t uxbuf, CURR BALANCE, 0, (char*)&currbal, 0);
return currbal;

The statement in the following code exampl e fills the message buffer, m t uxbuf , with
the student account number. For information about FML, see the BEA Tuxedo ATMI
FML Function Reference.

Fchg32(m tuxbuf, ACCOUNT_NO 0, (char*)&account, 0);

Creating CORBA Server Applications

Overview of Wrapping a BEA Tuxedo Service

Thefollowing statement calls the CURRBAL ANCE BEA Tuxedo service, viathet pcal |
implementation, passing the message buffer. This statement also specifies where the
BEA Tuxedo service response is to be placed, which in this example is also the same
buffer as the one in which the request was sent.

if (tpcall ("CURRBALANCE', (char*)tuxbuf, O,
(char**) & uxbuf, &size, 0)) {
t hrow CORBA: : PERSI ST_STORE() ;
}

The following statement extracts the balance from the returned BEA Tuxedo message
buffer:

Fget 32(m t uxbuf, CURR _BALANCE, 0, (char*)&currbal, 0);

Thelast lineinthe get _bal ance() operation returns the results to the client
application:

return currbal;

Restrictions

Note the following restrictions regarding how you can incorporate BEA Tuxedo
services within a BEA Tuxedo domain:

m You may not combine object implementations and BEA Tuxedo services within
the same server application. The BEA Tuxedo services may only exist within a
separate BEA Tuxedo server application in the same domain as the CORBA
server application.

m You may notincludethet pr et urn() ort pforward() BEA Tuxedo
implementations within an object that calls a BEA Tuxedo service.

Creating CORBA Server Applications 7-7

4 Wrapping a BEA Tuxedo Service in a CORBA Object

Design Considerations for the Wrapper
Sample Application

7-8

The basic design considerations for the Wrapper sample application are based on the
scenario that is described in this section. When a student registers for a course, the
Regi st rar object performs, as part of its registration process, invocations to the

Tel | er object, which charges the student’ s account for the course.

This section describes the design for the Wrapper sample application, which
incorporates an additional server application, Billing, into the configuration.
Therefore, the Wrapper sample application consists of the following four server
applications:

m University, which hasthe Regi str ar Fact ory, Regi strar, and
Cour seSynopsi sEnuner at or objects

m Billing, which hasthe Tel | er Fact ory and Tel | er objects

m BEA Tuxedo ATMI Teller Application, which has the CURRBALANCE, CREDI T,
and DEBI T services

m The Oracle Transaction Manager Server (TMS)

In addition, the UBBCONFI Gfile for the Wrapper sample application specifies the
following groups:

m ORA_GRP, which contains the University server application, the BEA Tuxedo
ATMI Teller application, and the Oracle TMS. Since these three processes are
involved in transactions on the University database, they must all be in the same
group, along with the database itself.

m APP_GRP, which contains the Billing server application. This application does
not need to bein ORA_GRP, because this application does not interact with the
University database.

The configuration of the BEA Tuxedo domain in the Wrapper sample application is
shown in the following figure.

Creating CORBA Server Applications

Design Considerations for the Wrapper Sample Application

APP_GRP

University Server BEA TUXEDO Teller
Application

RegistrarFactory Object CURRBALANCE
Service

Billing Server

TellerFactory Object

DEBIT Service

Registrar Object Teller Object

CREDIT Service

Object

Database Oracle7

Student Info Transaction

Manager Server

Course Info
Account Info

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} CourseSynopsisEnumerator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Incorporating a BEA Tuxedo ATMI application into the University sample
applications makes sense from the standpoint of using the Process-Entity design
pattern. BEA Tuxedo ATMI applications generally implement the Process-Entity
design pattern, which are also used in the University sample applications.

The University database is updated to include a new table containing account
information for each student. Therefore, when servicesin the BEA Tuxedo ATMI
Teller Application process billing data, they perform transactions using the University
database.

How the Wrapper University Sample Application Works

A typical usage scenario in the Wrapper sample application encompasses the
following sequence of events:

1. After the student logon procedure, the client application invokesthe
get _student _det ai | s() operation on the Regi st rar object. Included in the
implementation of the get _st udent _det ai | s() operation is code that retrieves:

e The student’s account number from the student table in the database

Creating CORBA Server Applications 7-9

4 Wrapping a BEA Tuxedo Service in a CORBA Object

7-10

e The student’s bal ance from the account table in the database, which is
obtained by invoking the get _bal ance() operation ontheTel | er object

. The student browses courses, as with the Basic sample application, and identifies

alist of courses for which he or she wantsto register.

. Theclient application sends a request to the Regi st r ar object, as with the

Transactions sampl e application scenario, to invoke the
regi ster_for_courses() operation. The request continues to include only a
list of course numbers and a student ID.

. While registering the student for the list of courses, the

regi ster_for_courses() operationinvokes:

e Theget_bal ance() operation ontheTel | er object, to make surethat the
student does not have a delinquent account

e Thedebit () operation onthe Tel | er object, which is managed by the
Billing server application to bill for courses

. Theget _bal ance() and debit () operationsonthe Tel | er object each send a

reguest to the BEA Tuxedo ATMI Teller application. Encapsulated in the request
isan FML buffer containing the appropriate calls, including the account number
callsto, respectively, the CURRBALANCE and DEBI T servicesin the BEA Tuxedo
ATMI Teller application.

. The CURRBALANCE and DEBI T services perform the appropriate database calls to,

respectively, obtain the current balance and debit the student’s account to reflect
the charges for the courses for which he or she has registered.

If the student has a delinquent account, the Regi st r ar object returnsthe
Del i nquent Account exception to the client application. The client application
then rolls back the transaction.

If the debi t () operation fails, the Tel | er object invokesthe

rol | back_onl y() operation on the TransactionCurrent object. Because the

Tel | er and Regi strar objects are scoped within the same transaction, this
rollback affects the entire registration process and thus prevents the situation
where there is an inconsistent database (showing, for example, that the student is
registered for the course, but the student’s account balance has not been debited
for the course).

. If no exceptions have been raised, the Regi st r ar object registers the student for

the desired courses.

Creating CORBA Server Applications

Design Considerations for the Wrapper Sample Application

Interface Definitions for the Billing Server Application

The following interface definitions are defined for the Billing server application:

m TheTel | er Fact or y object, whose only operation isfi nd_tel l er().The

find_teller() operationworksexactly thesameasthefind_regi strar()
operation in the University server Regi st r ar Fact or y object.

The Tel | er object, which, as mentioned earlier, implements the following
operations:

e debit()

e credit()

e current_bal ance()

Likethe Regi strar object, the Tel | er object has no state data and does not
have a unique object ID (OID).

Additional Design Considerations for the Wrapper Sample Application

The following additional considerations influence the design of the Wrapper sample
application:

The Regi st rar object needs away to send requeststo the Tel | er object to
handle billing operations.

The University server application and the BEA Tuxedo ATMI teller application
need access to the same database. Therefore, for course registration transactions
to work properly, both server applications need to be in the same server group as
the Oracle TM'S and the University database.

Both of these considerations have implications on the UBBCONFI Gfile for the Wrapper
sample application. The following sections discuss these and other additional design
considerationsin detail.

Sending Requests to the Teller Object

Up until now, al the objectsin the University server application have been defined in
the same server process. Therefore, for one object to send arequest to another object
isfairly straightforward, and is summarized in the following steps, using the

Regi strar and Cour seSynopsi sEnumer at or objects as an example:

Creating CORBA Server Applications 7-11

4 Wrapping a BEA Tuxedo Service in a CORBA Object

7-12

1. TheRegi strar object creates an object reference to the
Cour seSynopsi sEnumer at or object.

2. Using the newly created object reference, the Regi st r ar object sends the request
to the Cour seSynopsi sEnuner at or object.

3. If the Cour seSynopsi sEnuner at or object is not in memory, the TP Framework
invokesthe Server: : create_servant () operation on the Server object to
instantiate the Cour seSynopsi sEnuner at or object.

However, now that thereare two server processes running, and an object in one process
needs to send a request to an object managed by the second process, the procedureis
not quite so straightforward. For example, the notion of getting an object referenceto
an object in another server process has important implications. For one, the second
server process has to be running when the request is made. Also, the factory for the
object in the other server process must be available.

The Wrapper sample application addresses this by incorporating the following
configuration and design elements:

m TheUniversity server application gets the object reference to the
Tel | er Fact ory object in the University Server object’s
Server::initialize() operation. The University server application then
cachesthe Tel | er Fact or y object reference. Thisintroduces a performance
optimization because, otherwise, the Regi st r ar object would need to do the
following each time it needsaTel | er Fact or y object:

e Invoketheresol ve_initial _references() operation onthe Bootstrap
object to get the FactoryFinder object.

e Invokethefind_one_factory_by_id() operation on the FactoryFinder
object to obtain areferenceto aTel | er Fact ory object.

m TheBilling server process is started before the University server processis
started. When the Regi st rar object subsequently invokes the Tel | er Fact ory
object, the Regi st r ar object uses the object reference acquired by the
Server::initialize() operation (described inthe preceding list item). You
specify in the UBBCONFI G file the order in which server processes are started.

m To handle billing during the course registration process, the
regi ster_for_courses() andget _student _detail s() operationson the
Regi st rar object are modified to include code that invokes operations on the
Tel | er object.

Creating CORBA Server Applications

Design Considerations for the Wrapper Sample Application

Exception Handling

The Wrapper sample application is designed to handle the situation in which the
amount owed by the student exceeds the maximum allowed. If the student tries to
register for a course when he or she owes more than is permitted by University, the
Regi strar object generates a user-defined Del i nquent Account exception. When
thisexception isreturned to the client application, the client application rolls back the
transaction. For information about how to implement user-defined exceptions, see the
section “User-defined Exceptions” on page 6-20.

Setting Transaction Policies on the Interfaces in the Wrapper Sample Application

Another consideration that affects the performance of the Wrapper sample application
is setting the appropriate transaction policies for the interfaces of the objectsin that
application. TheRegi st rar, Cour seSynopsi sEnuner at or, and Tel | er objectsare
configured with the al ways transaction policy. The Regi strar Fact ory and

Tel | er Fact or y objects are configured with thei gnor e transaction policy, which
preventsthe transactional context from being propagated to these objects, which do not
need to be included in transactions.

Configuring the University and Billing Server Applications

Asmentioned earlier, the Billing server application is configured in a group separate
from the group containing the University database and the University application,
BEA Tuxedo ATMI Teller application, and Oracle Transaction Manager Server
(TMS) application.

However, since the Billing server application participates in the transactions that
register students for courses, the Billing server application must include invocationsto
the TP: : open_xa_rn() and TP: : cl ose_xa_r n() operationsin the Server object.
Thisisarequirement for any server application that manages an object that isincluded
in any transaction. If that object does not perform any read or write operationson a
database, you can specify the NUL L resource manager in the following locations:

m Inthe appropriate group definition in the UBBCONFI Gfile

m |nan argument to the bui | dobj ser ver command when you build the server
application

For information about building, configuring, and running the Wrapper sample
application, see the Guide to the CORBA University Sample Applications.

Creating CORBA Server Applications 7-13

4 Wrapping a BEA Tuxedo Service in a CORBA Object

7-14 Creating CORBA Server Applications

CHAPTER

8

Scaling a BEA Tuxedo

CORBA Server
Application

This chapter shows how you can take advantage of severa key scalability features of
the BEA Tuxedo system to make a CORBA server application highly scalable, using
the Production University sample application as an example. The Production sample
application uses these scalability features to achieve the following goals:

m To add a parallel processing capability, enabling the BEA Tuxedo domain to
process multiple client requests simultaneously

m To spread the processing load on the server applications in the Production
sample application across multiple machines

Thistopic includes the following sections:
m Overview of the Scalability Features Available in the BEA Tuxedo System
m Scaling a BEA Tuxedo Server Application. This section describes:
e Replicating Server Processes and Server Groups
e Scaling the Application Via Object State Management
e [Factory-based Routing
m How the Production Server Application Can Be Scaled Further
m Choosing Between Stateless and Stateful Objects

Creating CORBA Server Applications 8-1

8

Scaling a BEA Tuxedo CORBA Server Application

Overview of the Scalability Features
Available in the BEA Tuxedo System

Supporting highly scalable applicationsis one of the strengths of the BEA Tuxedo
system. Many applications may perform well in an environment characterized by 1 to
10 server processes, and 10 to 100 client applications. However, in an enterprise
environment, applications need to support:

m Hundreds of server processes
m Tens of thousands of client applications
m Millions of objects

Deploying an application with such demands quickly reveals the resource
shortcomings and performance bottlenecks in your application. The BEA Tuxedo
system supports such large-scale deployments in several ways, three of which are
described in this chapter as follows:

m Replicated server processes and server groups
m Object state management
m Factory-based routing

Other features provided in the BEA Tuxedo system to make an application highly
scalable include the I OP Listener/Handler, which is summarized in Getting Sarted
with BEA Tuxedo CORBA Applications and fully described in Setting Up a BEA
Tuxedo Application. See also Scaling, Distributing, and Tuning CORBA Applications.

Scaling a BEA Tuxedo Server Application

8-2

This section explains how to scale an application to meet a significantly greater
processing capability, using the Production sample application as an example. The
basic design goal for the Production sample application is to greatly scale up the
number of client applications it can accommodate by doing the following:

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

Processing in parallel and on one machine client requests on multiple objects
that implement the same interface.

Directing requests on behalf of some students to one machine, and other students
to other machines.

Adding more machines across which to spread the processing load.

To accommodate these design goals, the Production sample application does the
following:

Replicates the University, Billing, and BEA Tuxedo Teller Application server
processes within the groups in which they are configured.

Replicates the groups described above on an additional machine.

Implements a statel ess object model to scale up the number of client requests the
server process can manage simultaneously.

Assigns unique object I1Ds (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups. This makes
these objects available on a per-client-application (and not per-process) basis,
thereby accommodating a parallel-processing capability:

e RegistrarFactory
e Registrar

e TellerFactory

e Teller

Implements factory-based routing to direct client requests on behalf of some
students to one machine, and other students to another machine.

Note: To make the Production sample application easy for you to use, this

application is configured on the BEA Tuxedo software kit to run on one
machine, using one database. The examples shown in this chapter, however,
show running this application on two machines using two databases.

The design of the Production sample application is set up so that it can be
configured to run on several machinesand to use multipl e databases. Changing
the configuration to multiple machines and databases involves modifying the
UBBCONFI Gfile and partitioning the databases, and is described in “How the
Production Server Application Can Be Scaled Further” on page 8-22.

Creating CORBA Server Applications 8-3

8

Scaling a BEA Tuxedo CORBA Server Application

The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meetsits scalability goals. The first section that follows
provides a description of the OMG IDL changes implemented in the Production
sample application.

OMG IDL Changes for the Production Sample Application

The only OMG IDL changes for the Production sample application are limited to the
find_registrar() andfind_teller() operationson, respectively, the

Regi strar Fact ory and Tel | er Fact or y objects. Thesetwo operations are modified
to require, respectively, astudent ID and account number, which is needed to
implement factory-based routing. See the section “ Factory-based Routing” on

page 8-12 to read about how the Production sample application implements and uses
factory-based routing.

Replicating Server Processes and Server Groups

8-4

The BEA Tuxedo system offers awide variety of choices for how you may configure
your server applications, such as:

m One machine with one server process that implements one interface
m One machine with multiple server processes implementing one interface

m One machine with multiple server processes implementing multiple interfaces,
with or without factory-based routing

m Multiple machines with multiple server processes and multiple interfaces, with
or without factory-based routing

In summary:

m To add more parallel processing capability to your client/server application,
replicate your server processes.

m To add more machinesto your deployment environment, add more groups and
implement factory-based routing.

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

The following sections describe replicated server processes and groups, and also
explain how you can configure them in the BEA Tuxedo system.

Replicated Server Processes

When you replicate the server processes in your application:

m You obtain ameans to balance the load of incoming requests on that server
application. Asrequests arrive in the BEA Tuxedo domain for the server group,
the BEA Tuxedo system routes the request to the least busy server process
within that group.

m You can improve the server application’s performance. Instead of having one
server process that can process one client request at one time, you can have
multiple server processes available that can process multiple client requests
simultaneously. (Note that to make this work, you need to make each object
unigque, which you can do by having your server application’s factory assign
unique OIDs.)

m You obtain auseful failover protection in the event that one of the server images
stops.

To achieve the full benefit of replicated server processes, make sure that the objects

instantiated by your server application generally have unique IDs. Thisway, a client
invocation on an object can cause the object to be instantiated on demand, within the
bounds of the number of server processes that are available, and not queued up for an
already active object.

Figure 8-1 shows the following:

m The University server application, BEA Tuxedo Teller Application, and Oracle
TMS server processes are replicated within the ORA_GRP group.

m TheBilling server process is replicated within the APP_GRP group.

Both groups are shown in this figure as running on a single machine.

Creating CORBA Server Applications 8-5

8

Scaling a BEA Tuxedo CORBA Server Application

8-6

Figure8-1 Replicated Server Groupsin the Production Sample

—_———— e ———— —— —

University Server — \

RegistrarFactory \

Registrar

CourseSynopsys
Enumerator I

BEA TUXEDO
Teller Application
debi t ()
credit()
current_bal ance()

Database

T

Oracle7
Transaction
Manager Server

—

Production Machine

When arequest arrivesfor either of these groups, the BEA Tuxedo domain has severa
server processes available that can process the request, and the BEA Tuxedo domain

can choose the server processthat isleast busy.

In Figure 8-1, note the following:

m At any time, there may be no more than one instance of the Regi st r ar Fact ory,
Regi strar, Tel | er Fact ory, or Tel | er objectswithin agiven server process.

m There may be any number of Cour seSynopsi sEnuner at or objectsin any

University server process.

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

Replicated Server Groups

The notion of server groups is specific to the BEA Tuxedo system and adds valueto a
CORBA implementation; server groupsare an important part of the scal ability features
of the BEA Tuxedo system. Basicaly, to add more machines to a deployment, you
need to add more groups.

Figure 8-2 shows the Production sample application groups replicated on another
machine, as specified in the application’s UBBCONFI Gfile, as ORA_GRP2 and
APP_GRP2.

Figure8-2 Replicating Server Groups Across Machines

Production Machine 1 Production Machine 2
| 1 777777777777“ | 1 777777777777“
| ORA_GRP1 } I APP GRP1 | I ORA_GRP2 } I APP GRP2 |
| | - | | -
I I VL [|
| } | | | } | |
| | | |
| University 1 ! | University [!
| Server [Billing Server } | Server I Billing Server }
| [| I
I I VL [|
I		I
[I
I		I
[I
I		I
[I
		o __J
} Database 1 } } Database 2 }		
		\
	BEATUXEDO	
Teller		Teller
Application		Application
w w hN——s>		
Oracle7		Oracle7 !
Transaction }	Transaction }	
} Manager Server	} Manager Server	

In Figure 8-2, the only difference between the content of the groups on Production
Machines 1 and 2 isthe database. The database for Production Machine 1 contains
student and account information for a subset of students. The database for Production
Machine 2 contains student and account information for adifferent subset of students.
(The course information table in both databases is identical.) Note that the student
information in a given database may be completely unrelated to the account
information in the same database.

Creating CORBA Server Applications 8-7

8

Scaling a BEA Tuxedo CORBA Server Application

Theway inwhich server groups are configured, wherethey run, and the waysin which
they are replicated is specified in the UBBCONFI Gfile. When you replicate a server
group, you can do the following:

Have ameans to spread processing load for a given application or set of
applications across additional machines.

Use factory-based routing to send one set of requests on a given interface to one
machine, and another set of requests on the same interface to another machine.

The effect of having multiple server groups includes the following:

When aclient request arrivesin the BEA Tuxedo domain, the BEA Tuxedo
system checks the group ID specified in the object reference.

The BEA Tuxedo domain sends the request to the least busy server process
within the group to which the request is routed that can process the reguest.

The section “ Factory-based Routing” on page 8-12 shows how the Production sample
application uses factory-based routing to spread the application’s processing load
across multiple machines.

Configuring Replicated Server Processes and Groups

8-8

To configure replicated server processes and groups in your BEA Tuxedo domain:

1
2.
3.

Bring your application’s UBBCONFI Gfile into a text editor, such as WordPad.
In the GROUPS section, specify the names of the groups you want to configure.

In the SERVERS section, enter the following information for the server process
you want to replicate:

e A server gpplication name.

e The GROUP parameter, which specifies the name of the group to which the
server process belongs. If you are replicating a server process across multiple
groups, specify the server process once for each group.

e The SRVI D parameter, which specifies a numeric identifier, giving the server
process a unique identity.

e TheM N parameter, which specifies the number of instances of the server
process to start when the application is booted.

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

e The MAX parameter, which specifies the maximum number of server
processes that can be running at any one time.

Thusthe M N and MAX parameters determine the degree to which a given server
application can process requests on a given object in parallel. During run time,
the system administrator can examine resource bottlenecks and start additional
server processes, if necessary. In this sense, the application is designed so that
the system administrator can scale it.

The following example shows lines from the GROUPS and SERVERS sections of the
UBBCONFI Gfile for the Production sample application.

* GROUPS
APP_GRP1
LM D = SI TE1
GRPNO =2
TMSNAME = TMS
APP_GRP2
LM D = SI TE1
GRPNO =3
TMSNAME = TMS
ORA_GRP1
LM D = SI TE1
GRPNO =4
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/scott/..."
CLCSEI NFO = ""
TMSNAME = "TMS_CORA"
ORA_GRP2
LM D = SI TE1
GRPNO =5
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/scott/..."
CLCSEINFO = ""
TMSNAME = "TMS_CORA"
* SERVERS

By default, activate 2 instances of each server
and allow the adninistrator to activate up to 5
i nstances of each server

DEFAULT:
M N =2
MAX =5

tell p_server
SRVGRP = ORA GRP1
SRviD =10
RESTART = N

tell p_server
SRVGRP = ORA GRP2

Creating CORBA Server Applications 8-9

Scaling a BEA Tuxedo CORBA Server Application

SRVID =10
RESTART = N

bill p_server
SRVGRP = APP_GRP1
SRVID =10
RESTART = N

bill p_server
SRVGRP = APP_GRP2
SRVID =10
RESTART = N

uni vp_server
SRVGRP = ORA GRP1
SRVID = 20
RESTART = N

uni vp_server

SRVGRP = ORA GRP2
SRVID = 20
RESTART = N

Scaling the Application Via Object State Management

8-10

As stated in Chapter 1, “CORBA Server Application Concepts,” object state
management isafundamentally important concern of large-scale client/server systems
becauseit is critically important that such systems achieve optimized throughput and
response time. This section explains how you can use object state management to
increase the scalability of the objects managed by a BEA Tuxedo server application,
usingtheRegi strar and Tel | er objectsin the Production sample applicationsas an
example.

Thefollowing table summarizes how you can use the object state management models
supported inthe BEA Tuxedo system to achieve major gainsin scalability inyour BEA
Tuxedo applications.

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

State M odel

How You Can Use It to Achieve Scalability

M ethod-bound

M ethod-bound objects are brought into the machine’ s memory only
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state data
for that object is flushed from memory.

Y ou can use method-bound objectsto create a statel ess server model
in your application, in which thousands of objects are managed by
your application. From theclient application view, al theobjectsare
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application arein memory at any given
moment.

A method-bound object is said in this document to be a statel ess
object.

Process-bound

Process-bound objectsremainin memory fromthetimethey arefirst
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with alarge amount of state data can remain in memory to service
multiple client invocations, and the system’ s resources need not be
tied up reading and writing the object’ s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can a so be considered
stateful, since they can remain in memory between invocations on
them within the scope of atransaction.)

To achieve scalability gains, the Regi strar and Tel | er objectsare configured in the
Production server application to have the met hod activation policy. The net hod
activation policy assigned to these two objects results in the following behavior
changes:

Whenever these objects are invoked, they are instantiated by the BEA Tuxedo
domain in the appropriate server group.

After the invocation is complete, the BEA Tuxedo domain deactivates these

objects.

Creating CORBA Server Applications 8-11

8

Scaling a BEA Tuxedo CORBA Server Application

With the Basic through the Wrapper sample applications, the Regi st r ar object was
process-bound. All client requests on that object invariably went to the same object
instance in the machine's memory. The Basic sample application design may be
adequate for a small-scale deployment. However, as client application demands
increase, client requests on the Regi st r ar object eventually become queued, and
response time drops.

However, when the Regi strar and Tel | er objects are stateless, and the server
processes that manage these objects are replicated, these objects can be made available
to process client requests on them in paralel. The only constraint on the number of
simultaneous client requests that these objects can handle isthe number of server
processes that are available that can instantiate these objects. These stateless objects,
thereby, makefor more efficient use of machineresources and reduced client response
time.

Most importantly, so that the BEA Tuxedo system can instantiate copies of the

Regi strar and Tel | er objectsin each of the replicated server processes, each copy
of these objects must be unique. To make each instance of these objects unique, the
factories for those objects must assign unique object IDsto them. This, and other
design considerations on these two objects, are described in the section “ Additional
Design Considerations for the Registrar and Teller Objects’ on page 8-18.

Factory-based Routing

8-12

Factory-based routing is a powerful feature that provides a meansto send a client
request to a specific server group. Using factory-based routing, you can spread that
processing load for a given application across multiple machines, because you can
determine the group, and thus the machine, in which a given object is instantiated.

Y ou can use factory-based routing to expand upon the variety of |oad-balancing and
scalability capabilities in the BEA Tuxedo system. In the case of the Production
sample application, you can use factory-based routing to send requests to register one
subset of students to one machine, and requests for another subset of studentsto
another machine. Asyou add machines to ramp up your application’s processing
capability, the BEA Tuxedo system makesit easy to modify the factory-based routing
in your application to add more machines.

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

The chief benefit of factory-based routing is that it provides a simple meansto scale
up an application, and invocations on a given interface in particular, acrossagrowing
deployment environment. Spreading the deployment of an application across
additional machinesis strictly an administrative function that does not require any
recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in your
client/server application is in choosing the value on which routing is based. The
sections that follow describe how factory-based routing works, using the Production
sample application, which uses factory-based routing in the following way:

m Client application requests to the Regi st r ar object are routed based on the
student ID. That is, requests on behalf of one subset of students go to one group;
and requests on behalf of another subset of students go to another group.

m Requeststothe Tel | er object are routed based on the account number. That is,
billing requests on behalf of one subset of accounts go to one group; and
requests on behalf of another subset of accounts go to another group.

How Factory-based Routing Works

Y our factories implement factory-based routing by changing the way they create
object references. All object references contain a group 1D, and by default the group
ID isthe same as the factory that creates the object reference. However, using
factory-based routing, the factory creates an object reference that includes routing
criteriathat determinesthe group ID. Then when client applications send aninvocation
using such an object reference, the BEA Tuxedo system routes the request to the group
ID specified in the object reference. This section focuses on how the group ID is
generated for an object reference.

To implement factory-based routing, you need to coordinate the following:
m Datain the | NTERFACES and ROUTI NG sections of the UBBCONFI Gfile.
m Groups, machines, and databases configured in the UBBCONFI Gfile.

m How thefactory specifies routing criteria. The interface definition for the factory
needs to specify the parameter that represents the routing criteria used to
determine the group ID.

To describe the data that needs to be coordinated, the following two sections discuss
configuring for factory-based routing in the UBBCONFI Gfile, and implementing
factory-based routing in the factory.

Creating CORBA Server Applications 8-13

8

Scaling a BEA Tuxedo CORBA Server Application

Configuring for Factory-based Routing in the UBBCONFIG file

8-14

For each interface for which requests are routed, you need to establish the following
information in the UBBCONFI Gfile:

m Details about the data in the routing criteria
m For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, the UBBCONFI Gfile needs to specify the
following datain the | NTERFACES and ROUTI NG sections, and also in how groups and
machines are identified:

1. Thel NTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies what kinds
of criteriathe interface routes on. This section specifies the routing criteriaviaan
identifier, FACTORYROUTI NG asin the following example:

| NTERFACES
"I DL: beasys. conif Uni versi tyP/ Regi strar:1.0"
FACTORYROUTI NG = STU I D
"I DL: beasys. conl Bil lingP/ Teller:1.0"
FACTORYROUTI NG = ACT_NUM

The preceding example shows the fully qualified interface names for the two
interfaces in the Production sample in which factory-based routing is used. The
FACTORYROUTI NG identifier specifies the names of the routing values, which are
STU_I Dand ACT_NUM respectively.

2. The ROUTI NG section specifies the following data for each routing value:

e The TYPE parameter, which specifies the type of routing. In the Production
sample, the type of routing is factory-based routing. Therefore, this
parameter is defined to FACTCRY.

e TheFI ELD parameter, which specifies the name that the factory insertsin the
routing value. In the Production sample, the field parameters are
student _i d and account _nunber, respectively.

e TheFI ELDTYPE parameter, which specifies the data type of the routing
value. In the Production sample, the field types for st udent _i d and
account _nunber arel ong.

e The RANGES parameter, which specifies the values that are routed to each
group.

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

The following example shows the ROUTI NG section of the UBBCONFI G file used
in the Production sample application:

ROUTI NG
STU ID
FI ELD = "student _id"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "100001-100005: ORA_GRP1, 100006- 100010: ORA_GRP2"
ACT_NUM
FI ELD = "account _numrber"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "200010- 200014: APP_GRP1, 200015- 200019: APP_GRP2"

The preceding example shows that Regi st r ar object references for students
with IDs in one range are routed to one server group, and Regi st r ar object
references for studentswith IDs in another range are routed to another group.
Likewise, Tel | er object references for accounts in one range are routed to one
server group, and Tel | er object references for accountsin another range are
routed to another group.

The groups specified by the RANGES identifier in the ROUTI NG section of the
UBBCONFI Gfile need to be identified and configured. For example, the
Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GRP1,
and ORA_GRP2. These groups need to be configured, and the machines on
which they run need to be identified.

The following example shows the GROUPS section of the Production sample
UBBCONFI Gfile, in which the ORA_GRP1 and ORA_GRP2 groups are
configured. Notice how the names in the GROUPS section match the group names
specified in the ROUTI NG section; thisis critical for factory-based routing to
work correctly. Furthermore, any change in the way groups are configured in an
application must be reflected in the ROUTI NG section. (Note that the Production
sample packaged with the BEA Tuxedo software is configured to run entirely on
one machine. However, you can easily configure this application to run on
multiple machines.)

* GROUPS

APP_GRP1
LM D
GRPNO
TIVENANE
APP_GRP2
LM D
GRPNO

SI TE1

o n
N

T™S

SI TE1

Creating CORBA Server Applications 8-15

8

Scaling a BEA Tuxedo CORBA Server Application

TMSNAME = TMB
ORA_GRP1
LM D = SITEL
GRPNO =4
OPENI NFO = "ORACLE XA: Oracl e XA+Acc=P/scott/..."
CLCSEI NFO = ""
TVMSNAME = "TMS_ORA"
ORA_GRP2
LM D = SITEL
GRPNO =5
OPENI NFO = "ORACLE XA: Oracl e XA+Acc=P/scott/..."
CLCSEI NFO = ""
TVMSNAME = "TMS_ORA"

Implementing Factory-based Routing in a Factory

8-16

Factories implement factory-based routing by the way the invocation to the
TP: : creat e_obj ect _r ef erence() operation isimplemented. This operation has
the following C++ binding:

CORBA: : Cbject _ptr TP::create_object _reference (
const char* interfaceNane,
const Portabl eServer::oid &stroid,
CORBA: : N\VIist_ptr criteria);

Thethird parameter to thisoperation, cri t eri a, specifiesalist of named valuesto be
used for factory-based routing. Therefore, the work of implementing factory-based
routing in afactory isin building the N1 i st .

As stated previously, the Regi st r ar Fact or y object in the Production sample
application specifies the value STU_I D. This value must match exactly the following
in the UBBCONFI Gfile:

m Therouting name, type, and allowabl e values specified by the FACTORYROUTI NG
identifier in the | NTERFACES section.

m Therouting criteria name, field, and field type specified in the ROUTI NG section.

The Regi strar Fact ory object inserts the student ID into the NVl i st using the
following code:

/1 put the student id (which is the routing criteria)
/1 into a CORBA NVLi st:

CORBA: : NVLi st _var v_criteria;
TP::orb()->create_list(1l, v_criteria.out());
CORBA: : Any any;

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

any <<= (CORBA::Long)student;
v_criteria->add_val ue("student _id", any, 0);

The Regi st r ar Fact or y object has the following invocation to the
TP: : create_obj ect _ref erence() operation, passing the NVl i st created in the
preceding code example:

/] create the registrar object reference using
/1 the routing criteria :
CORBA: : Obj ect _var v_reg_oref =
TP: : create_object _reference(
UniversityP:: tc_Registrar->id(),
object _id,
v_criteria.in()

)

The Production sample application aso uses factory-based routing in the
Tel | er Fact or y object to determine the group in which Tel | er objects should be
instantiated based on an account number.

Note: Itispossiblefor an object with agiven interfaceand OID to be simultaneously
activein two different groups, if those two groups both contai n the same object
implementation. (However, if your factories generate unique OIDs, this
situation is very unlikely.) If you need to guarantee that only one object
instance of agiven interfacenameand OID isavailableat any onetimein your
domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that agiven object implementationisin only one group. Thisassuresthat if
multiple clients have an object reference containing a given interface name
and OID, thereference is always routed to the same object instance.

To enable routing on an object’s OI D, specify the OID as the routing criterion
inthe TP: : creat e_obj ect _ref er ence() operation, and set up the
UBBCONFI Gfile appropriately.

What Happens at Run Time

When you implement factory-based routing in a factory, the BEA Tuxedo system
generatesan object reference. Thefollowing example shows how the client application
gets an object referenceto aRegi st rar object when factory-based routing is
implemented:

1. Theclient application invokesthe Regi st r ar Fact or y object, requesting a
reference to aRegi st r ar object. Included in the request isa student ID.

Creating CORBA Server Applications 8-17

8

Scaling a BEA Tuxedo CORBA Server Application

5.

The Regi st r ar Fact ory insertsthe student ID into an NVl i st , which is used as
the routing criteria.

TheRegi st rar Fact ory invokesthe TP: : creat e_obj ect _reference()
operation, passing the Regi st r ar interface name, aunique OID, and the
NV i st.

The BEA Tuxedo system compares the contents of the routing tables with the
valuein the NVl i st to determine agroup ID.

The BEA Tuxedo system inserts the group 1D into the object reference.

When the client application subsequently does an invocation on an object using the
object reference, the BEA Tuxedo system routes the request to the group specified in
the object reference.

Note: Be careful how you implement factory-based routing if you use the

Process-Entity design pattern. The object can service only those entities that
are contained in the group’ s database.

Additional Design Considerations for the Registrar and
Teller Objects

8-18

The principal considerations that influence the design of the Regi st rar and Tel | er
objects include:

How to ensure that the Regi strar and Tel | er objectswork properly for the
Production deployment environment; namely, across multiple replicated server
processes and multiple groups. Given that the University and Billing server
processes are replicated, the design must consider how these two objects should
be instantiated.

How to ensure that client requests for registration and billing operations for a
given student go to the correct server group, given that the two server groupsin
the Production BEA Tuxedo domain each deal with different databases.

The primary implications of these considerations are that these objects must:

Have unique object IDs (OIDs)

Be method-bound; that is, have the net hod activation policy assigned to them

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

Theremainder of this section discusses these considerations and implicationsin detail.

Instantiating the Registrar and Teller Objects

In University server applications prior to the Production sample application, the
run-time behavior of the Regi st rar and Tel | er objects wasfairly smple:

m Each object was process-bound, meaning that each was activated the first time it
was invoked, and it stayed in memory until the server processin which it ran
was shut down.

m Since there was only one server group running in the BEA Tuxedo domain, and
only one University and Billing server processin the group, all client requests
were directed to the same objects. As multiple client requests arrived in the BEA
Tuxedo domain, these objects each processed one client request at one time.

m Because there was only one instance of each object in the server processesin
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, since the University and Billing server processes are now replicated, the
BEA Tuxedo domain must have ameansto differentiate between multipleinstances of
the Regi st rar and Tel | er objects. That is, if there are two University server
processes running in agroup, the BEA Tuxedo domain must have a means to
distinguish between, say, the Regi st r ar object running in the first University server
process and the Regi st rar object running in the second University server process.

The way to provide the BEA Tuxedo domain with the ability to distinguish among
multiple instances of these objects is to make each object instance unique.

To make each Regi strar and Tel | er object unique, the factories for those objects
must change the way in which they make object referencesto them. For example, when
the Regi st rar Fact or y object in the Basic sample application created an object
reference to the Regi st rar object, the TP: : creat e_obj ect _r ef erence()
operation specified an OID that consisted only of the string r egi st r ar . However, in
the Production sample application, the same TP: : cr eat e_obj ect _ref erence()
operation uses a generated unique OID instead.

A consequence of giving each Regi st rar and Tel | er object aunique OID is that
there may be multiple instances of these objects running simultaneously in the BEA
Tuxedo domain. This characteristic istypical of the stateless object model, and isan
example of how the BEA Tuxedo domain can be highly scalable and at the sametime
offer high performance.

Creating CORBA Server Applications 8-19

8

Scaling a BEA Tuxedo CORBA Server Application

And last, since unique Regi strar and Tel | er objects need to be brought into
memory for each client request on them, it is critical that these objects be deactivated
when the invocations on them are completed so that any object state associated with
them does not remainidlein memory. The Production server application addressesthis
issue by assigning the net hod activation policy to these two objectsin the ICF file.

Ensuring That Student Registration Occurs in the Correct Server Group

8-20

The chief scalability advantage of having replicated server groupsis to be able to
distribute processing across multiple machines. However, if your application interacts
with adatabase, which isthe case with the University sample applications, it iscritical
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, thisapplication can easily be configured to accommodate more. The system
administrator can decide how many.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information isidentical. Having
identical course information in both databases is not a problem because the course
information is read-only for the purposes of course registration. However, the student
and account information is read-write. If multiple databases were also to contain
identical datafor students and accounts (that is, the database is not partitioned), the
application would need to deal with the overhead of synchronizing the updates to
student and account information across all the databases each time any student or
account information were to change.

The Production sample application uses factory-based routing to send one set of
reguests to one machine, and another set to the other machine. As mentioned earlier,
factory-based routing isimplemented in the Regi st r ar Fact or y object by theway in
which references to Regi st r ar objects are created.

For example, when the client application sends arequest to the Regi st r ar Fact ory
object to get an object referenceto aRegi st r ar object, the client application includes
astudent ID in that request. The client application must use the object reference that
the Regi st r ar Fact ory object returns to make all subsequent invocations on a

Regi st rar object on a particular student’s behalf, because the object reference

Creating CORBA Server Applications

Scaling a BEA Tuxedo Server Application

returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes the get _st udent _det ai | s() operation on the
Regi strar object, the client application can be assured that the Regi st rar objectis
activein the server group associ ated with the database containing datafor that student.
To show how thisworks, consider the following execution scenario, which is
implemented in the Production sample application:

1. Theclient application invokesthefi nd_regi strar () operation onthe
Regi strar Fact ory object. Included in thisinvocation isthe student ID 1000003.

2. The BEA Tuxedo domain routes the client request to any Regi str ar Fact ory
object.

3. TheRegi st rar Fact ory object usesthe student ID to create an object reference
to aRegi st rar objectin ORA_GRP1, based on the routing information in the
UBBCONFI Gfile, and returns that object reference to the client application.

4. Theclient application invokesther egi st er _f or _cour ses() operation on the
Registrar object.

5. The BEA Tuxedo domain receives the client request and routes it to the server
group specified in the object reference. In this case, the client request goes to the
University server processin ORA_GRP1, which is on Production Machine 1.

6. The University server process instantiates a Regi st r ar object and sends the
client invocation to it.

The Regi st r ar Fact or y object from the preceding scenario returns to the client
application a unique reference to aRegi st r ar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has a database containing
student datafor students with IDsin the range 100001 to 100005. Therefore, when the
client application sends subsequent requests to this Regi st r ar object on behalf of a
given student, the Regi st r ar object interacts with the correct database.

Ensuring That the Teller Object Is Instantiated in the Correct Server Group

WhentheRegi strar object needsaTel | er object, theRegi st rar objectinvokesthe
Tel | er Fact ory object, using the Tel | er Fact or y object reference cached in the
University Server object, as described in “ Sending Requests to the Teller Object” on
page 7-11.

Creating CORBA Server Applications 8-21

8

Scaling a BEA Tuxedo CORBA Server Application

However, because factory-based routing is used in the Tel | er Fact or y object, the
Regi st rar object passes the student’ s account number when the Regi st r ar object
requestsareferenceto aTel | er object. Thisway, the Tel | er Fact or y object creates
areferencetoaTel | er object in the group that has the correct database.

Note: For the Production sample application to work properly, it is essentia that the
system administrator configures the server groups and the databases properly.
In particular, the system administrator must make sure that a match exists
between the routing criteriaspecified in the routing tables and the databases to
which requests using those criteriaare routed. Using the Production sample as
an example, the database in a given group must contain the correct student and
account information for the requests that are routed to that group.

How the Production Server Application Can
Be Scaled Further

8-22

In the future, the system administrator of the Production sample application may want
to add capacity to the BEA Tuxedo domain. For example, the University may
eventually have alarge increase in the student population, or the Production
application may be scaled up to accommodate the course registration process for an
entire state university system encompassing several campuses. This can be done
without modifying or rebuilding the application.

The system administrator has the following tools avail able to continually add capacity:

m Replicating the Production sample application server groups across additional
machines.

Doing this requires modifying the UBBCONFI G file to specify the additional
groups, what server processes run in those groups, and what machines they run
on.

m Changing the factory-based routing tables

For example, instead of routing to the two groups shown earlier in this chapter,
the system administrator can modify the routing rules in the UBBCONFI Gfile to
partition the application further among the new groups added to the BEA

Tuxedo domain. Any modification to the routing tables must be consistent with

Creating CORBA Server Applications

Choosing Between Stateless and Stateful Objects

any changes or additions made to the server groups and machines configured in
the UBBCONFI Gfile.

Note: If you add capacity to an application that uses a database, you must also
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Production sample application
is spread across six machines, the database on each machine must be set up
appropriately and in accordance with the routing tablesin the UBBCONFI Gfile.

Choosing Between Stateless and Stateful
Objects

In general, you need to balance the costs of implementing statel ess objects against the
costs of implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive—
because, for example, the object’ s data takes up a great deal of space, or the durable
stateislocated on adisk very remoteto the servant that activatesit—it may make sense
to keep the object stateful, even if the object isidle during a conversation. In the case
where the cost to keep an object active is expensivein terms of machine resource
usage, it may make sense to make such an object stateless.

By managing object state in away that’ s efficient and appropriate for your application,
you can maximize your application’ s ahility to support large numbers of simultaneous
client applications that use large numbers of objects. Y ou generally do this by
assigning the net hod activation policy to these objects, which has the effect of
deactivating idle object instances so that machine resources can be allocated to other
object instances. However, your specific application characteristics and needs may
vary.

Note: BEA Tuxedo Release 8.0 provides support for parallel objects, as a
performance enhancement. This feature allows you to designate all business
objectsin a particular application as statel ess objects. For complete
information, see Chapter 3, “TP Framework,” in the CORBA Programming
Reference.

Creating CORBA Server Applications 8-23

8

Scaling a BEA Tuxedo CORBA Server Application

When You Want Stateless Objects

8-24

Stateless objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Stateless
objects are generally a good approach to implementing server applications. Stateless
objects are particularly appropriate in the following situations:

The client application typically waits for user input between invocations on the
object.

The client request typically contains all the data needed by the server
application, and the server can process the client request using only that data.

The object has very high access rates, but low access rates from any one
particular client application.

By making an object stateless, you can generally assure that server application
resources are not being tied up for an arbitrarily long time waiting for input from the
client application.

Note the following characteristics about an application that employs a statel ess object
model:

Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

An incoming client request is sent to the first available server process: after the
reguest has been satisfied, the application state vanishes and the server
application is available for another client application request.

Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

The BEA Tuxedo domain may direct successive requests on an object from a
given client application to a different server process.

The overall system performance of a machine that is running statel ess objectsis
usually enhanced.

Creating CORBA Server Applications

Choosing Between Stateless and Stateful Objects

When You Want Stateful Objects

A stateful object, once activated, remainsin memory until aspecific event occurs, such
as the process in which the object existsis shut down, or the transaction in which the
object is activated is completed.

Stateful objects are typically appropriate in the following situations:

When an object is used very frequently by alarge number of client applications.
Thisisthe case for long-lived, well-known objects like factories. When the
server application keeps these objects active, the client application typically
experiences minimal response time in accessing them. Since these active objects
are shared by many client applications, there are relatively few objects of this
type in memory.

Note: Plan carefully how process objects are potentially involved in atransaction.

Any object that isinvolved in atransaction cannot beinvoked by another client
application or object. Process objects meant to be used by alarge number of
client applications can create problems if they are involved in transactions
frequently or for long durations.

When aclient application must invoke successive operations on an object to
compl ete a transaction, and the client application is not idle while waiting for
user input between those invocations. In this case, if the object were deactivated
between invocations, there would be a degradation of response time because
state would be written and read between each invocation; such behavior may not
be appropriate for transactions. You can trade holding server resources for better
response time.

Note the following behavior with stateful objects:

State information is maintained between server invocations, and the servant
typically remains dedicated to a given client application for a specified duration.

Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

In cases where one or more stateful objects are using alot of machine resources,
server performance for tasks and processes not associated with the stateful object
may be worse than with a statel ess server model.

Creating CORBA Server Applications 8-25

8 Scaling a BEA Tuxedo CORBA Server Application

For example, if an object has alock on a database and is caching alot of datain
memory, that database and the memory used by that stateful object are
unavailable to other abjects, potentially for the entire duration of atransaction.

8-26 Creating CORBA Server Applications

Index

A

accessors
calculating requirement 4-37
ACID properties 6-2
activate_object method 4-16
activate_object() operation
and exceptions 2-21
and preactivated objects 3-18
example 3-13
activation policies
method 8-10
process 3-10
transaction 6-16
active objects
specifying maximum number 4-39
adm directory 4-30
administrative parameters
CONCURR_STRATEGY 4-38
MAXACCESSORS 4-37
MAXDISPATCHTHREADS 4-36
MINDISPATCHTHREADS 4-36, 4-38
allocating FML 32 buffers 7-4
allocating threads 4-6
always transaction policy 6-11
example 7-13
application_responsibility() operation 2-28
application-controlled deactivation
example 3-10
overview 1-14
AUTOTRANS
see transactional objects

B

BAD_OPERATION 2-21
Basic University sample
design considerations 3-7
handling durable state in 3-12
ICF file 3-11
managing object state 3-10
OMG IDL for 3-2
summary 3-2
use of design patternsin 3-15
BEA Tuxedo server applications
designing an object that has callsto 7-3
using in aBEA Tuxedo domain 7-2
BEA Tuxedo service
calling from a CORBA application 7-3
choosing buffer type for 7-4
Billing server application
in University samples 7-11
build commands
buildobjclient 4-11
buildobjserver 4-11
buildobjclient command 4-11
compiler settings 4-15
threads support libraries 4-15
buildobjserver command 4-11
-b option 4-14
compiler settings 4-13
modifications to support threads 4-13
specifying multithreaded support 4-37
-t option 4-16, 4-37
thread libraries 4-13

Creating CORBA Server Applications -1

C

callback methods

detecting error conditions in 2-25
client applications

how they access objects 1-4
client stub 1-3
client/server contract 1-3
close_xa rm() operation 6-15
closing an XA resource manager 6-15
compiling OMG IDL 2-3
CONCURR_STRATEGY parameter 4-38
concurrency

mechanisms 4-6

strategy 4-26
concurrent access 4-16
concurrent requests 4-18
configuration file 4-11

control parameters 4-11

settings 4-6
context services

purpose 4-9
convenience macros 4-27
conversations

implementing transactionally 6-2
CORBA interfaces 4-20
CORBA objects

See objects
CORBA server applications

and security 5-1

and transactions 6-4
CORBA::Current 4-8
CosTransactions::Control object 4-8
CosTransactions::Current object 4-8
create_active _object_reference() operation

3-17

create_object_reference() operation

example 2-7

specifying routing criteria 8-16
create_servant() operation

and exceptions 2-21

[-2 Creating CORBA Server Applications

and OBJECT_NOT_EXIST 2-26
create_servant_with_id method 4-10
creating object references 2-10
creating server applications

summary 2-2
current object 4-8

narrowing 4-8

operations and interfaces 4-8
Cursors

database 6-11
customer support contact information xiii

D

data
reading and writing for an object 1-16
data corruption
risk of 4-16
data marshaling
disabling 3-17
database cursors 6-11
databases
opening and closing 2-11
data-dependent routing
See factory-based routing
deactivate_object method 4-16
deactivate _object() operation
and exceptions 2-21
and servant pooling 2-28
and transactions 6-16
handling state in 2-27
restrictions on using 2-27
deactivateEnable() operation 3-10
and preactivated objects 3-18
example of 3-10
overview 1-14
deallocating threads 4-6
debugging tips 2-19
design patterns
List-Enumerator 1-23
List-Enumerator (example) 3-15

Process-Entity 1-23
Process-Entity (example) 3-15
used in University samples 3-15
development process
summary 2-2
directory path 4-22
documentation, where to find it Xii
DR_TRANS_ABORT 6-16
DR_TRANS_COMMITTING 6-16
durable objects 1-16
durable state handling
example 3-12

E

environment variables
directory path 4-22
setting 4-22
verifying 4-23

exceptions
ActivateObjectFailed 2-20
AlreadyRegistered 2-20
and client applications 2-19
and create_servant 2-21
and server applications 2-19
BAD_OPERATION 2-21
CannotProceed 2-20
CORBA 2-19
CreateServantFailed 2-20
DeactivateObjectFailed 2-20
how to write user-defined 6-20
[llegalInterface 2-20
in activate object() 2-21
in deactivate object() 2-21
InitializeFailed 2-20
INVALID_TRANSACTION 6-18
InvalidDomain 2-20
Invalidinterface 2-20
InvalidName 2-20
InvalidObject 2-20
InvalidObjectI D 2-20

InvalidServant 2-20
NilObject 2-20
NoSuchElement 2-20
OBJ ADAPTER 6-18
OBJECT_NOT_EXIST 2-21
OrbProblem 2-20
OutOfMemory 2-20
OverFlow 2-20
RegistrarNotAvailable 2-20
ReleaseFailed 2-20
TpfProblem 2-20
Unknownlnterface 2-20
UserExceptions 2-20
expected_output file 4-31

F

facilities

for multithreaded server applications 4-9

factories
advantages of 1-10
and factory-based routing 8-16
and object references 1-4
example 3-8
how clients obtain 1-10
overview 1-9
registering 2-10

factory-based routing
and UBBCONFIG file 8-14
how it works 8-13
implementing in a factory 8-16
summary 8-12

FML 7-4

FML32 buffers
allocating 7-4

forward _lower method 4-19

forward_upper method 4-19

G

generating object references 1-9

Creating CORBA Server Applications

groups
configuring server 8-7
creating 8-7
routing requests to specific 8-13

ICFfile 2-7
assigning transaction policiesin 6-15
IDL
See OMG IDL
idl command 2-3
IDL compiler 1-4
generating tie classes 2-6
using 2-4
ignore transaction policy 6-14
[1OP Listener/Handler 8-2
Implementation Configuration File (ICFfile)
See ICFfile
implementation object, See object
implementations
input file 4-31
instantiating objects 1-7
Interface Repository 1-3
Interface Repository identifier 1-5
interfaces
defining 1-3
delegating implementation of 2-29
limiting compilation of 2-7
validating 2-26
INVALID_TRANSACTION exception 6-18
is_reentrant method 4-7

K
Korn shell 4-23

L

legacy objects
integrating into BEA Tuxedo CORBA 2-

-4 Creating CORBA Server Applications

29
Listener/Handler
[1OP8-2
List-Enumerator design pattern 1-24
List-Enumerator design pattern (example) 3-
15
log file 4-31

M

makefilemk file 4-25
makefilent file 4-25
MAXACCESSORS parameter 4-37
MAXDISPATCHTHREADS parameter 4-
14, 4-36
impact on other parameters 4-37
method templates 1-4
method-bound objects 1-13
MINDISPATCHTHREADS parameter 4-36,
4-38
multithreading model
definition 4-8
specification 4-8

N

nested transactions 6-18
never transaction policy 6-13
new

C++ statement 1-7
non-reentrant servants 4-15
NULL resource manager 6-16

0]

OBJ ADAPTER exception 6-18
object factories
See factories
Object ID
See OID
object implementations

delegated 2-29
overview 1-2
See also objects 1-2
object references
about 1-4
contents of 1-5
creating 2-10
generating 1-9
generating (example) 3-8
lifespan of 1-6
object state
and the BEA Tuxedo system 1-11
object state management
and scalability 8-10
and transactions 6-8
delegating to an XA resource manager 6-
16
managing in Basic sample 3-10
OBJECT_NOT_EXIST 2-21
and OMG IDL mismatches 2-26
objects
activating 1-19
bypassing in atransaction 6-14
choose stateful 8-25
choosing stateless 8-24
constructors 1-4
deactivating 1-19
deactivating process 1-14
destructors 1-4
excluding from atransaction 6-13
implementing an interface for 1-4
including optionally in atransaction 6-
12
instantiating 1-7
legacy 2-29
making always transactional 6-11
making aways transactional (example)
7-13
managing 1-11
method-bound 1-13
polling in atransaction 6-16

pooling servants for 2-28
process-bound 1-13
reading and writing state data 1-16
setting activation policiesfor 1-11
transaction-bound 1-13
transient 3-18
OID 3-8
OMG CORBA
specification 4-8
OMG IDL
defining an object with 1-3
defining operations with 1-3
for the Basic University sample 3-2
for Wrapper University sample 7-11
in Production University sample 8-4
versioning mismatch 2-26
open_xa rm() operation 6-15
opening an XA resource manager 6-15
optional transaction policy 6-12
Oracle 6-9
ORB Portability Specification 4-8
ORB::clear_ctx 4-10
ORB::get_ctx 4-9
ORB::inform_thread exit 4-10
ORB::set_ctx 4-9
output file 4-31

P
parallelism 4-2, 4-18
persistent objects 1-16
pooling
servant 2-28
PortableServer::Current object 4-8
printing product documentation Xiii
process-bound objects
transaction-bound objects 1-13
Process-Entity design pattern 1-23

Process-Entity design pattern (example) 3-15

Production University sample
OMG IDL for 8-4

Creating CORBA Server Applications

-5

UBBCONFIG file 8-8

R

Readme.txt file 4-25
recursive invocations 4-2, 4-7
recursive transactions 6-18
reentrancy 4-7

concurrency rules 4-7

default setting 4-7
reentrant servants 4-7

about 4-7

creating 4-17

protecting object state 4-17
Registrar object

policiesin Transactions University

sample 6-8

RegistrarFactory object 3-8
related information xiii
replicating server processes 8-4
request-level interceptors 4-16
resource manager

closing an XA 6-15

delegating object state management to 6-

16

NULL 6-16

opening XA 6-15
results directory 4-30
routing

factory-based, See factory-based routing
routing criteria

specifying in afactory 8-16
runme.cmd file 4-26
runme.ksh file 4-26

S

samplesdb.h 3-14

scaling an application 8-4
summary features for 8-2

SECURITY

-6 Creating CORBA Server Applications

parameter in UBBCONFIG file 5-2
security and CORBA server applications 5-1
security models

implementing in server applications 5-2
Security University sample

design of 5-2

OMG IDL for 5-5

overview 5-3
SecurityCurrent object 5-3
SecuritylL evel 1::Current object 4-8
SecuritylL evel2::Current object 4-8
servant 4-16, 4-17
servants 4-3

creating 2-11

overview 1-7

pooling 2-28
server applications

configuring in groups 8-7

developing 1-9

replicating in a group 8-4

scaling 8-4
Server class 4-14
Server groups

configuring 8-7
Server processes

replicating 8-4
server skeleton

See skeletons
ServerBase class 4-10, 4-14
setenv.cmd file 4-31
setenv.ksh file 4-31
signals 4-16
simpapp_mt sample application

building and running 4-21

changing permissions 4-27

how it works 4-18

list of files4-25
simple.id! file 4-26
simple_c.cpp file 4-29
simple_c.hfile 4-29
simple_client file 4-30

simple_client.cpp file 4-26
simple_per_object_i.cpp file 4-26
simple_per_object_i.h file 4-26
simple_per_object_server file 4-30
simple_per_request_i.cpp file 4-26
simple_per_request_i.hfile 4-26
simple_per_request_server file 4-30
simple_per_request_server.cpp file 4-27
simple_per_request_server.h file 4-27
simple_s.cpp file 4-30
simple_s.hfile4-30
SimplePerRequest server process 4-19
SimplePerRequestFactory i

implementations 4-30

interfaces 4-30
single-threaded executable 4-14
single-threaded servers

behavior 4-12
skeletons

limiting compilation of 2-7

overview 1-3
state data

preactivating an object with 3-17

reading and writing 1-16
stateful objects

criteriafor choosing 8-25

definition 1-11

See also process-bound and transaction-

bound objects 1-11

stateless objects

criteriafor choosing 8-24

definition 1-11

See aso method-bound objects 1-11
stderr file 4-31
stdout file 4-31
support

technica xiv

T
thread_initialize method 4-10

thread_macros.cpp file 4-27
thread_macros.h file 4-27
thread release method 4-10
threading model

specifying 4-38

thread-per-request 4-3, 4-6
threading models

thread-per-object, thread-per-request 4-5
thread-per-object 4-3, 4-5
thread-per-request 4-3, 4-6
thread-per-request model 4-38
thread-per-request server

implementation 4-19
threads

concurrent requests 4-18

context information 4-9

parallelism 4-18

recursive invocations 4-7
threads pool 4-6

allocating threads 4-7

maximum size 4-7

minimum size 4-6

releasing threads back to 4-7

reusing threads for multiple requests 4-7

setting maximum size 4-7

size exceeded 4-7

size of 4-6

system resources consumed 4-7
thread-safe 4-6
tie classes

generating 2-6

See also delegation-based interface

implementation

TMS6-9

configuring 6-9

Oracle 6-9

reguirements for 6-9
tmsysevt.dat file 4-31
to_lower method 4-19
to_upper method 4-19
Tobj_ServantBase class 4-10

Creating CORBA Server Applications -7

Tobj_ServantBase::_is reentrant method 4-
10
Tobj_serverBase::_add_ref method 4-10
Tobj_serverBase::_remove _ref method 4-11
TobjS c.h2-20
TobjServantBase::_is reentrant method 4-17
TP Framework 4-3
tpeall() 7-5
tpforward() 7-7
tpreturn() 7-7
transaction activation policy 6-16
Transaction Manager Server
See TMS
transaction policies
aways 6-11
always (example) 7-13
assigning in ICF file 6-15
ignore 6-14
never 6-13
optional 6-12
transaction state
associated with athread 4-8
transactiona objects
defining 6-11
transactions
and conversations 6-2
and object state management 6-16
implementing in a CORBA server
application 6-4
nested 6-18
overview of 6-2
passing from one thread to another 4-8
recursive 6-18
Transactions University sample
configuring 6-10
how it works 6-6
object state management 6-8
overview 6-4
transient objects 3-18
tuning and scaling 4-39
tuxconfig file 4-31

-8 Creating CORBA Server Applications

TUXDIR 4-22, 4-23, 4-40
Tuxedo
See BEA Tuxedo

U

ubb file 4-32

UBBCONFIGfile 4-11, 4-14
and factory-based routing 8-14
control parameters 4-11
in Production University sample 8-8
overview 2-18
sample 4-39
SECURITY parameter 5-2
settings 4-6

ULOG.datefile 4-32

user-defined exceptions 6-20

\Y

vetoing atransaction 6-16

W
working directory 4-24, 4-27, 4-29, 4-34
Wrapper University sample
configuring 7-13
design summary 7-8
how it works 7-9
wrapping a Tuxedo service
asan object 7-3

X

XA resource manager
closing 6-15
delegating object state management to 6-
16
opening 6-15
using in Transactions University sample
6-9

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 CORBA Server Application Concepts
	The Entities You Create to Build a CORBA Server Application
	The Implementation of the CORBA Objects for Your Server Application
	How Interface Definitions Establish the Operations on a CORBA Object
	How You Implement the Operations on a CORBA Object
	How Client Applications Access and Manipulate Your Application’s CORBA Objects
	The Content of an Object Reference
	The Lifetime of an Object Reference
	Passing Object Instances

	How You Instantiate a CORBA Object at Run Time
	Servant Pooling

	The Server Object

	Process for Developing CORBA Server Applications
	Generating Object References
	How Client Applications Find Your Server Application’s Factories
	Creating an Active Object Reference

	Managing Object State
	About Object State
	Object Activation Policies
	Application-controlled Deactivation

	Reading and Writing an Object’s Data
	Available Mechanisms for Reading and Writing an Object’s Durable State
	Reading State at Object Activation
	Reading State Within Individual Operations on an Object
	Stateless Objects and Durable State
	Servant Pooling and Stateless Objects

	Stateful Objects and Durable State
	Servant Pooling and Stateful Objects

	Your Responsibilities for Object Deactivation
	Avoiding Unnecessary I/O
	Sample Activation Walkthrough

	Using Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	2 Steps for Creating a BEA Tuxedo CORBA Server Application
	Summary of the CORBA Server Application Development Process
	Step 1: Compile the OMG IDL File for the Server Application
	Using the IDL Compiler
	Generating the Skeleton and Implementation Files
	Generating Tie Classes

	Step 2: Write the Methods That Implement Each Interface’s Operations
	The Implementation File Generated by the IDL Compiler
	Implementing a Factory

	Step 3: Create the Server Object
	Initializing the Server Application
	Writing the Code That Creates and Registers a Factory
	Creating Servants
	Releasing the Server Application

	Step 4: Define the In-memory Behavior of Objects
	Specifying Object Activation and Transaction Policies in the ICF File

	Step 5: Compile and Link the Server Application
	Step 6: Deploy the Server Application
	Development and Debugging Tips
	Use of CORBA Exceptions and the User Log
	Client Application View of Exceptions
	Server Application View of Exceptions
	Exceptions Raised by the BEA Tuxedo System That Can Be Caught by Application Code
	The BEA Tuxedo System’s Handling of Exceptions Raised by Application Code During the Invocation o...

	Detecting Error Conditions in the Callback Methods
	Common Pitfalls of OMG IDL Interface Versioning and Modification
	Caveat for State Handling in Tobj_ServantBase::deactivate_object()

	Servant Pooling
	How Servant Pooling Works
	How You Implement Servant Pooling

	Delegation-based Interface Implementation
	About Tie Classes in the BEA Tuxedo System
	When to Use Tie Classes
	How to Create Tie Classes in a CORBA Application

	3 Designing and Implementing a Basic CORBA Server Application
	How the Basic University Sample Application Works
	The Basic University Sample Application OMG IDL
	Application Startup
	Browsing Course Synopses
	Browsing Course Details

	Design Considerations for the University Server Application
	Design Considerations for Generating Object References
	Design Considerations for Managing Object State
	The RegistrarFactory Object
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Basic University Sample Application ICF File

	Design Considerations for Handling Durable State Information
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Using the University Database

	How the Basic Sample Application Applies Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	Additional Performance Efficiencies Built into the BEA Tuxedo System
	Preactivating an Object with State
	How You Preactivate an Object with State
	Usage Notes for Preactivated Objects

	4 Creating Multithreaded CORBA Server Applications
	Introduction
	Requirements, Goals, and Concepts
	Threading Models
	Thread-Per-Request Model
	Thread-Per-Object Model
	The Thread Pool

	Reentrant Servants
	The Current Object

	Mechanisms for Supporting Multithreaded CORBA Servers
	Context Services
	Classes and Methods in the TP Framework
	Capabilities in the Build Commands
	Tools for Administration

	Running Single-threaded Server Applications in a Multithreaded System
	Using the buildobjserver Command
	Platform-specific Thread Libraries
	Specifying Multithreaded Support
	Specifying an Alternate Server Class

	Using the buildobjclient Command
	Creating Non-reentrant Servants
	Creating Reentrant Servants
	About the Simpapp Multithreaded Sample
	How the Sample Application Works
	OMG IDL Code for the Simpapp Multithreaded Sample Application

	How to Build and Run the Sample Application
	Setting the TUXDIR Environment Variable
	Verifying the TUXDIR Environment Variable
	Changing the Setting of the Environment Variable
	Creating a Working Directory for the Sample Application
	Checking Permissions on All the Files
	Executing the runme Command
	Running the Sample Application Step-by-Step

	Shutting Down the Sample Application
	Specifying Thread Pool Size
	MAXDISPATCHTHREADS
	MINDISPATCHTHREADS

	Specifying a Threading Model
	Specifying the Number of Active Objects
	Sample UBBCONFIG File

	5 Security and CORBA Server Applications
	Overview of Security and CORBA Server Applications
	Design Considerations for the University Server Application
	How the Security University Sample Application Works
	Design Considerations for Returning Student Details to the Client Application

	6 Integrating Transactions into a CORBA Server Application
	Overview of Transactions in the BEA Tuxedo System
	Designing and Implementing Transactions in a CORBA Server Application
	How the Transactions University Sample Application Works
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	Integrating Transactions in a CORBA Client and Server Application
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database

	Notes on Using Transactions in the BEA Tuxedo System
	User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	7 Wrapping a BEA Tuxedo Service in a CORBA Object
	Overview of Wrapping a BEA Tuxedo Service
	Designing the Object That Wraps the BEA Tuxedo Service
	Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls
	Implementing the Operations That Send Messages to and from the BEA Tuxedo Service
	Restrictions

	Design Considerations for the Wrapper Sample Application
	How the Wrapper University Sample Application Works
	Interface Definitions for the Billing Server Application
	Additional Design Considerations for the Wrapper Sample Application
	Sending Requests to the Teller Object
	Exception Handling
	Setting Transaction Policies on the Interfaces in the Wrapper Sample Application
	Configuring the University and Billing Server Applications

	8 Scaling a BEA Tuxedo CORBA Server Application
	Overview of the Scalability Features Available in the BEA Tuxedo System
	Scaling a BEA Tuxedo Server Application
	OMG IDL Changes for the Production Sample Application
	Replicating Server Processes and Server Groups
	Replicated Server Processes
	Replicated Server Groups
	Configuring Replicated Server Processes and Groups

	Scaling the Application Via Object State Management
	Factory-based Routing
	How Factory-based Routing Works
	Configuring for Factory-based Routing in the UBBCONFIG file
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations for the Registrar and Teller Objects
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object Is Instantiated in the Correct Server Group

	How the Production Server Application Can Be Scaled Further
	Choosing Between Stateless and Stateful Objects
	When You Want Stateless Objects
	When You Want Stateful Objects

	Index

