BEA Tuxedo

Using CORBA
Request-Level Interceptors

BEA Tuxedo 8.0
Document Edition 8.0
June 2001

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using CORBA Request-L evel I nterceptors

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KNMOWcceeiuiiiiiiiiieiie ettt s viii
E-0OCSWED SItE....oceieeeeceeee ettt s e r e e e r e e e viii
How to Print the DOCUMENT..........ceeie et st st e viii
Related INfOrmMation.........ccoueeieieieee et st s e e e iX
CONLBCE US! ...ttt et st et e ae e s e et e e e sreeraesranns iX
Documentation CONVENLIONScc.cceeiuiieeieie e et ee e ereeree e srae st sraesae e eaeereens X

1. Introduction to CORBA Request-Level Interceptors

INterceptor ArChITECIUNE. ...t s 1-2
Capabilities and Limitations..........c.coceeeeeeeiriere et e 1-4
EXECULTON FIOW......coeiiiiiiiiiee ettt 1-5
Client-Side EXECULIONcveiiieriie et 1-6
Client-side Exception Handlingcccooeeeieneneeieeininece e 1-8
Target-side EXECULIONooiiiieieieeie et e 1-10
Target-side Exception Handlingcooeeeeiinrieieninineee e 1-12

The exception_occurred Method............cooeoeiiiiniiiie i 1-13
About Short-Circuit BENaVIONccceovivirieiiiicieeeee e 1-14
Using Multiple Request-Level INterceptors.......couavverenerereeneeie e 1-14
Multiple Client-side INterCeptorsccoiieiireieirreee e 1-16
Multiple Target-side INtErCEPLOrS.coeve et 1-16
Interceptors and M eta-Operations..........ccevereeieiererreeieeee e s e 1-17

2. Developing CORBA Request-Level Interceptors

Step 1: Identify the Interfaces of Your CORBA Application.........c..ccoceeeueenee. 2-2
Step 2: Write the Interceptor Implementation Code..........cceererieeeeirencceeens 2-3
Starting the Implementation File...........ccoooiieneie e 2-3

Using CORBA Request-Level Interceptors iii

iv

Initializing the Interceptor at RUN TIMe.......ccoieviieie e 2-4

Obtaining the Interface Name from a RequEeStcccovreie e veenirie v 2-5
[dentifying Operations in the REQUESL..........c.ooerereeieirreee e 2-5
Implementing the Interceptor’ s Response Operation............ccocceeeeeeeeneennee 2-6
Reading Parameters Out of a Data Input Stream...........ccooeeeveneeieiencnenn 2-7
EXCEPLIONS ..ottt et e e en s 2-8
Step 3: Create the Interceptor Header File ... 2-8
Step 4: Build the INterceptor..... ..o e 2-10
Step 5: TeSt the INLEIrCEPLOTcc.eieieeee ettt 2-10

Deploying CORBA Request-Level Interceptors

Registering an INtErCEPLONc..ooiiieieeeee ettt st ee e e 31
Unregistering an INterCeptorot e e 3-2
Changing the Order in Which Interceptors Are Calledccoooooeveeeiiiccnenne 3-3

PersonQuery Sample Application

How the PersonQuery Sample Application WOrkS.........ccovereeeienecinienenes 4-1
PersonQuEry DatahaSe.........coeueiirieieieeieee et 4-2
Client Application Command-line Interface..........coovoevereenniecencnce 4-3

The OMG IDL for the PersonQuery Sample Application.........ccocoeeeieneeecenns 4-5

Building and Running the PersonQuery Sample Application...........ccccccueveneeee. 4-8
Copying the Files for the PersonQuery Sample Application 4-8
Changing the Protection on PersonQuery Application Files.................... 4-12
Setting the Environment Variables..........ccooveveiieiccice e 4-13
Building the CORBA Client and Server Applications...........ccccoveeeenneens 4-13
Start the PersonQuery Client and Server Applications...........ccoceoeevenenne. 4-13
Running the PersonQuery Sample Application...........ccveeeeiiiciennnaens 4-14
Stopping the PersonQuery Sample Applicationccccooicieneicienenne. 4-14

InterceptorSimp Sample Interceptors

How the PersonQuery Sample Interceptors Work.........ccocooeeeieneeeecieiene e 5-1
Registering and Running the PersonQuery Interceptorsocooeeeeennieeeenens 5-2
Examining the Output of the INterceptorsoovoieeieierieie e 5-3
Unregistering the INterceptors veeoeeee e e 5-4

Unregistering the INterceptors........cooo e 5-4

Using CORBA Request-Level Interceptors

6. InterceptorSec Sample Interceptors
How the PersonQuery Sample Interceptors Workccccoeeoeeninicsescneennne 6-1
How the InterceptorSec Target-side Interceptor Works...........cccceceveeeeneee 6-2
Using the SecurityCurrent ODJECtcoeieie e 6-3
Obtaining the SecurityCurrent ObjeCL..........c.cooeierereeie e 6-3
Creating the List of User AtrHDULES..........cocecieie e 6-4
Registering and Running the PersonQuery Interceptors..........ocoooevvneeeenenennae 6-6
Examining the Interceptor OULPULccoireree e s 6-7
Unregistering the INterCeptorso e 6-8
7. InterceptorData Sample Interceptors
InterceptorDataClient INtErCePLONcoioue i e 7-1
InterceptorDatal arget INTErCEPLONoovuii et e 7-2
Implementing the InterceptorData INterCeptors........oovveerrreeeeseriene e 7-3
Registering and Running the InterceptorData Interceptors.........ccoceeeevevenennnne 7-4
Examining the Interceptor OQULPULc.cceirereie e s 7-5
Unregistering the INterCeptorsoo e e 7-7
8. Request-Level Interceptor API
Interceptor HIerarChyooioiie et 8-2
Note on Unused INTEIfacES ..o e 8-2
Interceptors::Interceptor INterface.........cov e 8-3
RequestL evel | nterceptor::
Requestinterceptor INterface ... 8-8
RequestL evel | nterceptor::
ClientRequestinterceptor Interfacecooceveeeieiniecie s 8-18
RequestL evel | nterceptor::
TargetRequestinterceptor INterface.........ovvvveoeveeirecrecrc e 8-25
CORBA ::Datal nputStream INErface..........coovernerreneee e 8-33
A. Starter Request-Level Interceptor Files
Starter Implementation COUE........ ..o e e A-1
Starter Header File COUR........ocviuiiieriieeeie e e A-10
Index

Using CORBA Request-Level Interceptors %

Vi

Using CORBA Request-Level Interceptors

About This Document

This document describes how programmers can implement request-level interceptors
in the CORBA environment of the BEA Tuxedo® product. Using CORBA
request-level interceptorsisan advanced programming feature of the BEA Tuxedo
system.

This document includes the following topics:

m Chapter 1, “Introduction to CORBA Request-Level Interceptors,” provides an
overview of request-level interceptors and how they work in the CORBA
environment of the BEA Tuxedo product.

m Chapter 2, “Developing CORBA Request-Level Interceptors,” describes the
process for implementing C++ request-level interceptors.

m Chapter 3, “Deploying CORBA Request-Level Interceptors,” describesthe
administration commands you use for registering and unregistering interceptors.

m Chapter 4, “PersonQuery Sample Application,” describes the PersonQuery
sample application, which serves as the base application with which the sample
interceptors, also provided with the BEA Tuxedo software, are used.

m Chapter 5, “InterceptorSimp Sample Interceptors,” describes the InterceptorSimp
sample interceptor, which collects simple data about requests that go between
the PersonQuery client and server applications.

m Chapter 6, “InterceptorSec Sample Interceptors,” describes the I nterceptorSec
sample interceptor, which is a basic security interceptor.

m Chapter 7, “InterceptorData Sample Interceptors,” describes the two sample
interceptors that are specific to the PersonQuery sample application.

m Chapter 8, “Request-L evel Interceptor API,” documents the request-level
interceptor API for C++.

Using CORBA Request-Level Interceptors Vii

m Appendix A, “ Starter Request-L evel Interceptor Files,” contains code that you
can use as a starting place for implementing a C++ request-level interceptor.

What You Need to Know

This document is intended for programmers who want to create secure, scalable,
transaction-based server applications. It assumes you are familiar with CORBA and
the C++ programming language.

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for freefrom
the Adobe Web site at http://www.adobe.com/.

Viii Using CORBA Request-Level Interceptors

How to Print the Document

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, and C++ programming, see the CORBA Bibliography in the
BEA Tuxedo online documentation.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can al so contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

Using CORBA Request-Level Interceptors iX

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

fl oat

nonospace
bol df ace
t ext

I dentifies significant wordsin code.
Example:
void commt ()

nonospace
italic
t ext

Identifies variablesin code.
Example:
String expr

Using CORBA Request-Level Interceptors

Documentation Conventions

Convention Item
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin asyntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using CORBA Request-Level Interceptors Xi

Xii Using CORBA Request-Level Interceptors

CHAPTER

1 Introduction to CORBA

Request-Level
Interceptors

A request-level interceptor isauser-written CORBA object that provides ameans to
insert functionality, such as security or monitoring components, into the invocation
path between the client and server components of a CORBA application. When you
have an interceptor installed and registered with an Object Request Broker (ORB) on
a particular machine, the interceptor is involved with all the CORBA applicationson
that machine. Y ou can use interceptors to insert any additional functionality into the
invocation path of an object invocation, at either the client, or the server, or both ends
of the invocation.

Request-level interceptors are not usually part of atypical CORBA environment.
Implementing them is considered an advanced programming task.

The CORBA environment in the BEA Tuxedo system supports two categories of
interceptors:

m Client-side interceptors, which are called by the ORB at the client side of an
invocation and are run in the process of an entity making a request. Client-side
interceptors inherit from the d i ent Request I nt er cept or class.

m Target-side interceptors, which are called by the ORB at the target side of an
invocation and are run with the target application process. The target of an
invocation may be a CORBA server application or a CORBA joint client/server
application. Target-side interceptors inherit from the
Tar get Request | nt er cept or class.

Using CORBA Request-Level Interceptors 1-1

1 Introduction to CORBA Request-Level Interceptors

The CORBA environment BEA Tuxedo system is very flexible about where you can
install and use interceptors, with respect to the relative location of the client and target
objects. It istransparent to aclient application whether the target of itsrequest isin the
same or a different process.

Although client- and target-sideinterceptorsinherit from separateinterfaces, it is often
convenient to implement the interceptorsin a single source file.

Interceptor Architecture

Thefollowing figure showsthe relationship between request-level interceptorsand the
BEA Tuxedo system.

Entity Making a Request Target Object
Request-Level [1| Request-Level
—>| Interceptor |] 'w P Interceptor {~
LI: :l“
ORB ‘ ORB
‘ Request
L N
<} Response]

Note the following about the BEA Tuxedo implementation of CORBA interceptors:

m Interceptors are registered administratively and are called by the ORB at the
appropriate time during the execution of the application.

m When aclient-side interceptor isinstalled and registered with an ORB, that
interceptor is called with every request coming from any CORBA client
application on that machine.

1-2 Using CORBA Request-Level Interceptors

Interceptor Architecture

During the course of a single, successful request-response cycle of an
invocation, a client-side interceptor is called twice by the ORB:

a. When the reguest is first issued from the client application and arrives at the
ORB (thecl i ent _i nvoke operation)

b. When the target response arrives back at the client application process (the
cl i ent _r esponse operation)

m When atarget-side interceptor isinstalled and registered with an ORB, that
interceptor is called with every request that arrives for any target object on that
machine.

During the course of a single request-response cycle of an invocation, a
target-side interceptor is called twice by the ORB:

a. When the client request first arrives at the ORB (thet ar get _i nvoke
operation)

b. When the target object response arrives at the ORB (thet ar get _r esponse
operation)

m You caninstall and register multiple client- or target-side interceptors with an
ORB.

m Interceptors are independent of each other, and they do not require knowledge
about the potentia presence of other interceptors.

m Interceptors can short-circuit an invocation by returning a response directly to
the client without involving the target object at all.

m Interceptorsimpact overall application performance because they add an
additional step in the execution of every request.

The ORB maintains a list of registered interceptors. Registering an interceptor is
something you do asan administrative task. During application run time, the ORB uses
thislist to determine when to call the interceptors and in what order, because multiple
interceptors can be installed and created. When you have multiple interceptors
registered, the ORB executes each interceptor consecutively. Establishing the order in
which multiple interceptors are called is a so an administrative task.

Using CORBA Request-Level Interceptors 1-3

1 Introduction to CORBA Request-Level Interceptors

Capabilities and Limitations

Request-level interceptors are especially useful for implementing several different
types of service applications, such as:

m Instrumentation points for collecting statistics
m Probe points that include monitoring or tracing facilities

m Security checksto determine whether a particular type of invocation should be
permitted, or whether a specific bit of information can be returned to a client
application. For moreinformation about interceptors and security, see Chapter 6,
“InterceptorSec Sample Interceptors.”

Thefollowing are current limitations on CORBA interceptors:

m Interceptors are called only by an ORB. Neither CORBA client nor server
applications can call an interceptor directly.

m |Interceptors implemented in a specific programming language can intercept
invocations only from entities that are also implemented in that same language.

m Interceptors cannot write to the Dat al nput St r eamobject.

m Interceptors cannot pass or manipulate the service context object.

m Interceptors cannot pass or manipul ate the transaction current object.
m Interceptors cannot invoke methods on the Tobj _Boot st r ap object.

m TheREPLY_NO EXCEPTI ONreturn status value is not supported, although it
appears in the method signatures operations on interceptor classes.

m Aninterceptor can make invocations on other objects; however, those
invocations are subject to interception as well. When an interceptor invokes an
object, make sure the interceptor doesn’t intercept its own invocation in an
infinite loop—which will happen if the object being invoked isin the same
server process as the interceptor. 1n such a situation, the system can hang.

m The method signatures for operations on classes derived from the
Request Level | nt er cept or interface include parameters for the following
interfaces:

1-4 Using CORBA Request-Level Interceptors

Execution Flow

e Request Level I nt erceptor:: Dat aQut put St ream

e RequestLevel I nterceptor:: Servi ceCont ext Li st

These interfaces are not used in the BEA Tuxedo product. Theseinterfaces are
defined in the BEA Tuxedo software so that you do not need to recompile your
CORBA application if an implementation of these interfacesis ever provided in
afuture release of the BEA Tuxedo product. The ORB will always pass a nil
object for the actual argument. You should not attempt to use these arguments,
doing so will likely end the process with a serious error.

Execution Flow

The following sections explain what happens during the execution of a CORBA
applicationthat usesinterceptors. In general, request-level interceptors areinstantiated
and initialized only when the ORB is initialized. At no other time can request-level
interceptors be instantiated.

Thereturn status of an interceptor controlsthe execution flow of the ORB run-timeand
any other request-level interceptors that may be installed.

Depending on the return status of an interceptor after it has been called, one of the
following events may occur:

m Theinvocation resumes its normal path to the target object, back to the client
application, or to another interceptor.

m Theinterceptor on either the client or the server side services the client request
and sends an exception back to the client. (In this case, the request may never be
sent to the target object, or the target object may provide a response that the
interceptor replaces with an exception. This would happen transparently to the
client application.)

Multiple request-level interceptors can be involved in a single invocation, and no
interceptor needs to know about any other interceptor.

The events that take place during a request-response cycle of an invocation are
presented in two categories:

m Client-side execution

Using CORBA Request-Level Interceptors 1-5

1 Introduction to CORBA Request-Level Interceptors

m Target-side execution

Client-side Execution

Each interceptor is called twice during the request-response cycle of an invocation:
once when areguest is going from the client towards the target, and again when a
response returns back to the client. The client interceptor class,

d i ent Request I nt er cept or , has two corresponding operations, among others, for
these two calls:

m client_i nvoke()—called when the request made on an object reference
arrives at the client-side ORB.

m client_response()—called when the response is returned back towards the
entity making the request.

Theflow of execution of a CORBA application that uses a client-side interceptor is
shown in Figure 1-1. Thisfigure shows a basic and successful request-response
invocation cycle (that is, no exceptions are raised).

1-6 Using CORBA Request-Level Interceptors

Execution Flow

Figure1-1 Client-side | nter ceptor

Entity Issuing a Request

Target Object

Request

VAN
ORB o M
Client-side
Interceptor

client_invoke()

Response

client_response() a D

In Figure 1-1, note the following events that are called out:

1
2.

The request leaves the client and arrives at the ORB.

The ORB callsthecl i ent _i nvoke operation on the client-side interceptor. (The
section “Using Multiple Request-Level Interceptors,” explains what happens
when you have multiple client-side interceptorsinstalled.)

The client-side interceptor processes the request and returns a status code to the
ORB.

If no exception isreturned as aresult of thecl i ent _i nvoke operation, the
request resumesits path toward the target object.

The target object processes the request and issues a response.

Using CORBA Request-Level Interceptors 1-7

1 Introduction to CORBA Request-Level Interceptors

6. Theresponse arrives back at the ORB, and the ORB callsthecl i ent _r esponse
operation on the interceptor.

7. Theinterceptor processes the response and returns a status code to the ORB.

8. Theresponse is sent to the client application.

Client-side Exception Handling

Thecl i ent _i nvoke andcl i ent _r esponse operations each return astatusval uethat
indicates whether the client interceptor processing should continue. The interceptors
may return exception status values, which cause exception handling to take place.
Table 1-1 shows what happens depending on what status value is returned from these
operations, and shows how the interceptors, together with the ORB, handle exceptions.

1-8 Using CORBA Request-Level Interceptors

Execution Flow

Table 1-1 Client I nterceptor Return Status Values

Operation

Return Status Value

What Happens

client_invoke()

| NVOKE_NO_EXCEPTI ON

The ORB continues normal processing of the
request toward the target, calling other
interceptors, if any.

REPLY_NO_EXCEPTI ON

(Inversion 8.0 of the BEA
Tuxedo product, the ORB
cannot process thisreturn value,
so do not implement thisas a
return value in your
interceptors.)

The interceptor has serviced the request and no
further process toward the target is needed. The
request will be considered serviced asif the target
processed it. Thus, the ORB short circuitsthe
invocation and starts calling interceptors back
towardstheclient. Thecl i ent _response
operationisnot called on the sameinterceptor, but
this operation on any previoudy invoked
interceptor is called.

REPLY_EXCEPTI ON

The interceptor returns an exception to the ORB.
The ORB then calls each previous client-side
interceptors’ except i on_occur r ed operation.
Theexcepti on_occur r ed method givesthese
previous interceptors an opportunity to clean up
state before the ORB returns an exception back to
the client application. Thus, the ORB short
circuits the invocation, and the invocation is now
complete. For more information about the
excepti on_occur r ed method, seethe section
“The exception_occurred Method” on page 1-13.

client_response()

RESPONSE_NO_EXCEPTI ON

The ORB continues normal processing of the
request toward the client, calling other
interceptors, if any.

RESPONSE_EXCEPTI ON

The interceptor passes an exception back to the
ORB, overriding any previous result of the
request. The ORB invokesthe

excepti on_occurred method on each
previous interceptor back towardsthe client, then
returns an exception to the client application.

Using CORBA Request-Level Interceptors 1-9

1 Introduction to CORBA Request-Level Interceptors

Target-side Execution

Asontheclient side, atarget-side interceptor is called twice during arequest-response
cycle. Target-side interceptors inherit from the Tar get Request I nt er cept or class,
which includes the following operations:

m target_i nvoke()—called when the request arrives at the ORB that is part of
the target object process.

m target_response()—called when the responseis sent back to the client.

Theflow of execution of a CORBA application that uses a target-side interceptor is
shown in Figure 1-2. Thisfigure shows a basic and successful request-response
invocation cycle (that is, no exceptions are raised).

1-10 Using CORBA Request-Level Interceptors

Execution Flow

Figure1-2 Target-side Interceptor

Entity Making

a Request

Request

Target Object

(1) ORB

Target-side
Interceptor e

target _i nvoke()

Response

target _response()

O
¢>

In Figure 1-2, note the following events that are called out:

1
2.

The client request arrives at the ORB.

The ORB callsthet ar get _i nvoke operation on the target-side interceptor. (The
section “Using Multiple Request-Level Interceptors,” explains what happens
when you have multiple target-side interceptors installed.)

The target-side interceptor processes the request and returns a status code to the
ORB.

If no exception is raised during the execution of thet ar get _i nvoke operation,
the request resumes its path toward the target object.

The target object processes the request and issues a response.

Using CORBA Request-Level Interceptors 1-11

1 Introduction to CORBA Request-Level Interceptors

6. Thetarget-side ORB callsthet ar get _r esponse operation on the interceptor.

7. Theinterceptor processes the response and returns a status code to the ORB.

8. Theresponse is sent to the client application.

Target-side Exception Handling

Table 1-2 shows what happens to an invocation on the target side depending on what
status values arereturned by thet ar get _i nvoke andt ar get _r esponse operations,
explaining what happens when exceptions are thrown.

Table 1-2 Target Interceptor Return Satus Values

Operation

Return Status Value

What Happens

target_invoke() I NVOKE_NO_EXCEPTI ON

The ORB continues normal processing of the
request toward the target (the object
implementation), calling other interceptors, if any.

REPLY_NO_EXCEPTI ON

(Inversion 8.0 of the BEA
Tuxedo product, the ORB
cannot processthisreturn value,
so do not implement thisas a
return value in your
interceptors.)

The interceptor has serviced the request and no
further process toward the target is needed. The
reguest will be considered serviced asif the target
processed it. Thus, the ORB short circuits the
invocation and starts calling interceptors back
towardstheclient. Thet ar get _r esponse
operation isnot called on the sameinterceptor, but
this operation on any previously invoked
interceptor is called.

REPLY_EXCEPTI ON

The interceptor returns an exception to the ORB.
The ORB then calls each previous target-side
interceptors except i on_occur r ed operation.
Theexcept i on_occur r ed method givesthese
previous interceptors an opportunity to clean up
state before the ORB returns an exception back to
the client ORB. Thus, the target ORB short
circuitsthe invocation, and the invocation is now
complete. For more information about the
excepti on_occurr ed method, seethe section
“The exception_occurred M ethod” on page 1-13.

1-12 Using CORBA Request-Level Interceptors

Execution Flow

Operation

Return Status Value What Happens

target _response() | RESPONSE_NO EXCEPTI ON The ORB continues normal processing of the

request toward the client, calling other
interceptors, if any.

RESPONSE_EXCEPTI ON Theinterceptor passesanew exception back ORB,
overriding any previous result of the request.
Instead of calling thet ar get _r esponse
operation for interceptors on the way back to the
client, the ORB cdlls the
excepti on_occurr ed operation on those
interceptors instead.

The exception_occurred Method

Every interceptor hasthe excepti on_occur r ed method, which the ORB may call
under the following circumstances:

The ORB has found an internal problem; for example, an operating system
resource error or a communication problem.

A different interceptor has set an exception (rather than an exception being
generated by the ORB or the method). For example, the ORB iscalling
Interceptors A and B, respectively. Interceptor A has set an exception, so the
ORB then callsthe except i on_occur r ed method on Interceptor B instead of
thecli ent _response ort arget _response methods. Y our interceptor can
take advantage of this behavior to examine both the context in which the
response containing the exception is being processed and the actua value of the
exception without reading the exception from the Dat al nput St r eamstructure.

The client application is using a deferred synchronous DIl invocation on a
Request object and then releasesthe Request object. In this case no responseis
delivered to the client.

When one of the preceding situations has occurred, calling theexcept i on_occurred
method is an alternative to calling thecl i ent _r esponse or t ar get _r esponse
methods; however, the effect is essentially the same in that the client invocation is
compl ete.

Using CORBA Request-Level Interceptors 1-13

1

Introduction to CORBA Request-Level Interceptors

For more information about keeping track of requests, see the section “Implementing
the Interceptor’ s Response Operation” on page 2-6.

About Short-circuit Behavior

Asmentioned earlier, an interceptor can short-circuit a client request by servicing the
request itself or by returning an exception. In either case, the client request is never
actually serviced by the target object.

This short-circuit behavior works only inthecl i ent _i nvoke ort ar get _i nvoke
methods. It doesn’'t apply tothecl i ent _r esponse or t ar get _r esponse methods.

Using Multiple Request-Level Interceptors

1-14

Multiple request-level interceptors are installed in a queue such that the ORB can
execute one after the other in a sequential order. The ORB gives each request-level
interceptor the request in succession until there are no more request-level interceptors
left inthe queueto execute. If al interceptorsindicate success, therequest is processed.
The ORB delivers the resulting response to the transport in the client case, or to the
object implementation in the target case. The ORB executes the interceptors servicing
aresponse in the reverse order than that of servicing arequest.

When an interceptor does not indicate success, a short circuit response results. This
short circuit can be performed by thecl i ent _i nvoke ort ar get _i nvoke operations.
The status returned from the interceptor tellsthe ORB that the interceptor itself has
decided to respond to the request with an exception, rather than to allow the target
object to handle the request. (An interceptor’'scl i ent _r esponse or

t ar get _r esponse operation cannot perform any short-circuit behavior, but it can
replace the target response.)

Each interceptor is normally unaware of the other interceptors, unless they explicitly
share information. Thisindependent programming model is preserved by the
execution semantics with regards to short circuits: When an interceptor indicates that
aresponse should be short-circuited and not reach itsintended destination (which is
the transport on the client side, and the object implementation on the target side), the
response circulates back through the interceptors through which it has successfully

Using CORBA Request-Level Interceptors

Using Multiple Request-Level Interceptors

passed. For example, if Interceptor A returnsthe status value | NVOKE_NO_EXCEPTI ON
after processing acl i ent _i nvoke operation, expecting the request to be delivered,
and the next Interceptor, B, denies the request with an exception, that exception gets
put into the response and is delivered to Interceptor A’sexcepti on_occurred
operation. The analogous execution model on the target side isin effect al so.

Figure 1-3 shows the sequence of execution when multiple client-side interceptors are
installed on an ORB. (A similar series of operations occur with multiple target-side
interceptors.)

Figure1-3 Multiple Interceptorson an ORB

Entity Making a Request

Request

E Target Object

ORB M

Interceptor A

Interceptor B
Response

Interceptor C

Interceptor D

In Figure 1-3, note the following events that are called out:

1. Theclient request arrivesin the ORB, and the ORB calls Interceptors A through D
in sequence.

Using CORBA Request-Level Interceptors 1-15

1

Introduction to CORBA Request-Level Interceptors

N

The request goes to the target object.
3. Thetarget object processes the request and returns a response.

4. Theresponse arrives back at the ORB with the client-side interceptors. The ORB
then calls each of the registered interceptors in a sequence that's the reverse of
the order in which they were called when the request went out.

5. Theresponse arrives back at the client application.

Multiple Client-side Interceptors

When the ORB receives a request, the ORB calls each client-side interceptor’s

cli ent _i nvoke operation in turn. If the return value | NVOKE_NO_EXCEPTI ONis
returned from each cl i ent _i nvoke operation (the normal case), the resulting request
ismarshaled into a message by the ORB and sent to the target object.

Under the following circumstances, instead of calling thecl i ent _r esponse
operation on remaining interceptors back towards the client, the ORB callsthe
except i on_occurr ed onthoseinterceptors, and then returns an exception back to the
client application:

m Thereturn value from any cl i ent _i nvoke operation is REPLY_EXCEPTI ON.

In this instance, the ORB ceases to propagate the request to remaining
interceptors or to the transport. The ORB thus short-circuits the request.

m Thereturn value from any cl i ent _r esponse operation is
RESPONSE_EXCEPTI ON.

In this instance, the interceptor passes an exception back to the ORB, overriding
any previous result of the request.

Multiple Target-side Interceptors

1-16

As with the client-side interceptor processing, the ORB calls each target-side
interceptor’st ar get _i nvoke operation in succession. If the return value

I N\VOKE_NO_EXCEPTI ONisreturned from eacht ar get _i nvoke operation, therequest
is passed onto the target object.

Using CORBA Request-Level Interceptors

Interceptors and Meta-Operations

Under the following circumstances, instead of calling thet ar get _r esponse
operation on remaining interceptors back towards the client, the ORB calls the
excepti on_occurred on those interceptors, and then returns an exception back
towards the client application:

m Thereturn valuefrom any t ar get _i nvoke operation is REPLY_EXCEPTI ON\.

In thisinstance, the ORB ceases to propagate the request to any remaining
interceptors and the target object. At this point the ORB returns a response to the
client ORB, and the target ORB short-circuits the request.

m Thereturn valuefrom any t ar get _r esponse operation is
RESPONSE_EXCEPTI ON.

In thisinstance, the interceptor passes an exception back to the ORB, overriding
any previous result of the request.

Interceptors and Meta-Operations

M eta-operations are operations that support the CORBA bj ect interface, such as
is_a,get_interface,andnon_exi st ent . Some meta-operations can be performed
by the ORB without issuing an invocation, but other operations sometimes need to
invoke the object; namely, thei s_a, get _i nt er f ace, and non_exi st ent methods.
These operations can thus trigger interceptors.

The CORBA-specified language binding of these operations converts the operation
names from the names defined in IDL to the following:

m is a
m _interface

B _non_exi stent (Or _not_existent)

If you are implementing a security-based interceptor, be aware of this behavior
because the ORB may invoke these operations as part of aclient request. Y ou typically
should avoid the situation where an interceptor permits only a specific set of client
requests to be sent to atarget object, but fails to take these meta-operations into
account.

Using CORBA Request-Level Interceptors 1-17

1 Introduction to CORBA Request-Level Interceptors

1-18 Using CORBA Request-Level Interceptors

CHAPTER

2 Developing CORBA

Request-Level
Interceptors

Developing a CORBA request-level interceptor typically involvesthe following steps:

m Step 1: Identify the Interfaces of Your CORBA Application

Also identify the machines on which you plan to deploy the interceptors.
m Step 2: Write the Interceptor Implementation Code
m Step 3: Create the Interceptor Header File
m Step 4: Build the Interceptor
m Step 5: Test the Interceptor

The preceding steps are usually iterative. For example, thefirst timeyou build and test
your interceptor, you might have only the most basic code in the interceptor that
merely verifiesthat the interceptor is running. With subsequent builds and tests, you
gradually implement the full functionality of the interceptor.

The sections that follow explain each of these stepsin detail, using the sample
interceptors packaged with the BEA Tuxedo software for examples.

Using CORBA Request-Level Interceptors 2-1

2 Developing CORBA Request-Level Interceptors

Step 1: Identify the Interfaces of Your
CORBA Application

2-2

Deploying an interceptor on a given machine constitutes a significant overhead
because that interceptor will be invoked every time any application on that machine
issues (in the case of aclient-side interceptor) or receives (target-side interceptor) a
request. Therefore, any interceptor you create must be well-matched to those
applications.

For example, a security interceptor typically needs to know about what kinds of
reguests are of concern, and what kinds of data are being handled in the request.

Any interceptor that deals with specific requests needs to be able to extract the
interfacerepository 1D from therequest. With that interface knowledge, theinterceptor
then has away of knowing what kind of dataisin the request, and can then handl e that
datain arequest-specific fashion.

Inaddition, if arequest is sent that is not of interest, the interceptor needsto be able to
pass the request through quickly and efficiently.

The PersonQuery example described in Chapter 4, “PersonQuery Sample
Application,” uses an interceptor that determines whether the user of the PersonQuery
client application can receive addresses. If theidentity of the user matches specific
criteria, the interceptor allows the full address number to be returned to the client. If
no match exists, the interceptor returns only the string of x charactersto thelog filein
place of the address.

Using CORBA Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

Step 2: Write the Interceptor
Implementation Code

To implement an interceptor:

m For your first pass on implementing an interceptor, keep it smple. For example,
you might decide for each function member to implement a statement that prints
amessage to alog file. Thiswould simply verify that the interceptor is properly
built, registered, and running. Once you know your interceptor is working
properly, you can iteratively add code until you have all the functionality you
need.

m If you are planning to deploy client- and target-side interceptors to implement a
specific piece of functionality, you can implement both interceptorsin asingle
source file. Then when you build and deploy the interceptors, you can configure
them separately on the client- and target-side machines if you desire. The sample
interceptors provided with the BEA Tuxedo software are done this way.

The topics that follow discuss implementation considerations that may be typical of
many interceptors. Examples from the InterceptorData interceptors, which are
described in Chapter 7, “InterceptorData Sample Interceptors,” are provided.

Starting the Implementation File

Y ou can use the code fragments included in Appendix A as a placeto start
implementing your interceptor. Y ou may use the code included in Appendix A, or you
may copy the following starter files available at the WebL ogic Enterprise Developer

Center on the BEA Web site:
File Name Description
intercep.h Interceptor header starter file. The contents of thisfile, and

instructions for using it, are in the section “ Step 3: Create the
Interceptor Header File” on page 2-8.

i ntercep. cpp Interceptor implementation starter file.

Using CORBA Request-Level Interceptors 2-3

2 Developing CORBA Request-Level Interceptors

For information about getting these starter files from the WebL ogic Enterprise
Developer Center, see the Release Notes.

Y ou can start your interceptor implementation using the sample interceptor code
provided in Appendix A, where Your I nt er cept or represents the name of the
interceptor you are implementing. The ORB will always pass nil references for the
Ser vi ceCont ext Li st and CORBA: : Dat aQut put St r eamparameters. Y ou should not
use or reference those parameters. Y ou should not test those parameters for ni |
because this restriction may change in a future version.

Initializing the Interceptor at Run Time

All interceptors are instantiated when the ORB is initialized. At no other time are
request-level interceptors instantiated. As part of initializing, the interceptor’s
initialization routine must instantiate an instance of an implementation for a client
interceptor, or atarget interceptor, or both, depending upon what the interceptor
intends to support. Asmentioned earlier, asingle shareableimage can support both the
client-side and target-side interceptors. The instances of any interceptor instantiated
are then returned from the initialization routine and registered with the ORB run time.

Thefollowing code fragment is from the InterceptorData interceptor, and shows the
declaration of the initialization operation invoked by the client-side ORB when that
ORB isinitiaized:
void InterceptorDataClientlnit(
CORBA: : ORB_ptr The ORB,
Request Level Interceptor::CientRequestinterceptor ** ClientPtr,

Request Level I nt ercept or: : Target Request | nterceptor ** TargetPtr,
CORBA: : Bool ean * Ret St at us)

Thefollowing code fragment shows the statements to instantiate the I nterceptorData
client interceptor class. Note that thisfragment usesaclassnamed t r acker , whichis
used for keeping track of each incoming client request so that it can be matched with
the response returned by the target object. The tracker classisdescribed in the section
“ldentifying Operations in the Request” on page 2-5.

ClientlnterceptorData * client = new ClientlnterceptorData(TheORB, tracker);
if (!lclient)
{
tnmpfile << "InterceptorDataClientlnit: Client alloc failed"
<< endl << endl;
*Ret St at us = CORBA _FALSE;

2-4 Using CORBA Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

del ete tracker;

return;

}
Thefollowing code fragment showsthe statementsto return theinterceptor classto the
ORB:
*ClientPtr = client;
*TargetPtr = O;
*Ret St at us = CORBA_TRUE;
return;

Obtaining the Interface Name from a Request

If you have an interceptor that works with specific interfaces or requests, the
interceptor needs away to extract theinterface ID associated with arequest so that the
interceptor can identify it and thus know how to handle the data in the request. For
example, the InterceptorData interceptor manipul ates the request parameters sent in
requests from the PersonQuery application. To manipul ate the request parameters, the
interceptor needs to know which request is being sent.

The following code fragment from the InterceptorData sample shows the interface ID
extracted from the RequestContext structure:

if (strcnp(request_context.interface_id.in(),
Per sonQuery:: get _interface nane()) != 0)
return ret_status;

|dentifying Operations in the Request

Using the extracted interface ID, the InterceptorData sample usesasimple swi t ch
statement to identify the operation in the client request. That way, the interceptor will
know what do with the request parameters contained in the request.

The following code fragment shows the switch statement that checks for either the
Exi t operation or the operation to query the database for a person by name. Note the
useof thepar ser object, which extracts operationsfrom the request retrieved from the
tracker object.

Using CORBA Request-Level Interceptors 2-5

2 Developing CORBA Request-Level Interceptors

moutfile << * Oper at i on: “ << request _context.operation << endl;
PQ parser;
PQ : op_key key = parser. MapQperati on(request _context.operation.in());
switch (key)

defaul t:
moutfile << * ERROR: operation is not nenber of *
<< request_context.interface_id.in() << endl;
excep_val = new CORBA: : BAD OPERATI O\();
return I nterceptors:: REPLY_EXCEPTI O\

case PQ :Exit:
moutfile << endl;
return ret_status;

case PQ : ByPerson:

{
Per sonQuery: : Person per;
par ser. Get ByPer son(request_arg_stream &per);
moutfile << “ Par aneters:” << endl;
moutfile << per << endl;

}

br eak;

Implementing the Interceptor’s Response Operation

Extracting an interface ID out of a client request is fairly straightforward. However,
it' snot quite assimpleto do that with atarget response. If an interceptor needs to know
what interface and operation is associated with the response it receives from the ORB,
it needsto have special logic for tracking requests. It isthe interceptor’ sresponsibility
to track requests coming from the client.

The InterceptorData samplesimplement alanguage object, called Tr acker , that keeps
arecord of the target-bound requests, and then matches the target responses to them
when those responses arrive back at the interceptor.

Theclient _response andt ar get _r esponse operations on the InterceptorData
samples extract interface and operation information from the Tr acker object when
responses are returned from the target.

2-6 Using CORBA Request-Level Interceptors

Step 2: Write the Interceptor Implementation Code

The following InterceptorData code fragment extracts the request associated with a
response:

RequestInfo * reqg_info = mtracker->Conpl et eRequest (reply_context);
if ('reqg_info)

{
moutfile << * unable to find request for this reply (nust not be one
we care about)” << endl << endl;
return I nterceptors:: RESPONSE_NO EXCEPTI ON;

}

/1

/1 This is the interface we are expecting. Now identify the operation
/1 being invoked, so we can parse the request paraneters.

/1

moutfile << * Repl ySt at us: “

Qut put Repl ySt atus(m outfile, reply_context.reply_status);
moutfile << endl;

moutfile << * I nterface: “ << req_info->intf() << endl;
moutfile << Oper at i on: “ << req_info->op() << endl;
PQ par ser;

PQ : op_key key = parser. MapOperation(req_info->op());

“

Now that the interceptor has obtained the request associated with the response, the
interceptor can handle the data in the response appropriately.

Reading Parameters Out of a Data Input Stream

The following code fragment shows an example of how the InterceptorData sample
places the request parameters from a data stream into a structure. The parameter S in
the following code fragment represents apointer to aDat al nput St r eamstructure that
can be used by the interceptor implementation to retrieve the value of the reply
parameters of the PersonQuery operation. The code encapsul ated by the bracesin this
code fragment extracts the parameters of the response from the Dat al nput St r eam
structure. For moreinformation about the Dat al nput St r eamstructure, see Chapter 8,
“Request-Level Interceptor API.”

void PQ :get_addr (CORBA: : Dat al nput Stream ptr S,
PersonQuery: : Address *addr)
{

addr - >nunber S->read_short();
addr - >str eet S->read_string();
addr->town = S->read_string();

Using CORBA Request-Level Interceptors 2-7

2 Developing CORBA Request-Level Interceptors

addr->state = S->read_string();
addr - >country = S->read_string();

Exceptions

Exceptions from interceptors returned viathe excep_val parameter can only be a
derived type from the CORBA: : Syst enExcept i on base class. (Any other exception
type that the interceptor implementations return to the ORB is converted by the ORB
to a CORBA: : UNKNOWN exception, which is passed viatheexcep_val parameter.) You
need to map exceptionsto a CORBA: : Syst enExcept i on classor oneof itsderivatives.

Step 3: Create the Interceptor Header File

After you have created any implementation code in the interceptor implementation
file, you need to provide any data or operations as needed to the interceptor header file.

Thefollowing code example shows basic information that isrequired in the header file
for an interceptor implementation file that implements both client- and target-side
interceptors.

This example also shows:
m Thei ncl ude file needed for security
m Target data members for security

In this code example, Your | nt er cept or represents the name of the interceptor you
are creating.

#i ncl ude <CORBA. h>
#i ncl ude <RequestLevel I nterceptor. h>
#i nclude <security_c. h> /lfor security

class Yourlnterceptordient : public virtual
Request Level I nterceptor:: Client Request | nt erceptor

{

private:
YourInterceptordient() {}

2-8 Using CORBA Request-Level Interceptors

Step 3: Create the Interceptor Header File

CORBA: : ORB _ptr m.orb;

public:

}s

YourlInterceptorCient (CORBA:: ORB ptr TheOrb);
~Yourlnterceptordient() {}
I nt er cept or s: : Shut downRet ur nSt at us shut down(
I nterceptors:: ShutdowmmReason reason,
CORBA: : Exception_ptr & excep_val);
CORBA: : String id();
voi d exception_occurred (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
CORBA: : Exception_ptr excep_val);
Interceptors::lnvokeReturnStatus client_invoke (
const RequestLevel I nterceptor:: Request Context & request_context,
Request Level I nterceptor: : Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val);
I nterceptors:: ResponseReturnStatus client_response (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
Request Level I nterceptor: : Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr arg_stream
CORBA: : Exception_ptr & excep_val);

cl ass YourlnterceptorTarget : public virtual
Request Level I nt erceptor: : Tar get Request | nt er cept or

-
private:
YourlnterceptorTarget () {}
CORBA: : ORB_ptr morb;
Securitylevel 1:: Qurrent _ptr msecurity_current; /lfor security
Security::AttributeTypelList * mattributes_to_get; /lfor security
publi c:

Your | nt ercept or Tar get (CORBA: : ORB_ptr TheO b);
~Your | nt erceptor Target () ;
I nt er cept ors: : Shut downRet ur nSt at us shut down(
I nterceptors:: ShutdownReason reason,
CORBA: : Exception_ptr & excep_val);
CORBA: : String id();
voi d exception_occurred (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
CORBA: : Exception_ptr excep_val);
Interceptors::lnvokeReturnStatus target_invoke (
const RequestLevel I nterceptor:: Request Context & request_context,
Request Level I nterceptor: : Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val);

Using CORBA Request-Level Interceptors 2-9

2

Developing CORBA Request-Level Interceptors

Interceptors:: ResponseReturnStatus target _response (
const Request Level I nterceptor:: Repl yContext & reply_context,
Request Level I nterceptor:: Servi ceContext Li st_ptr service_cont ext,
CORBA: : Dat al nput St ream ptr arg_stream
CORBA: : Exception_ptr & excep_val);

Step 4: Build the Interceptor

Interceptors are built into shareable libraries. Therefore, the steps for building an
interceptor are platform-specific. For details about the specific commands and options
used to build interceptors on any particular platform, execute the makefile that builds
the interceptor sample applications provided with the BEA Tuxedo software, and view
the results of the build in the log file that results from the build.

The command to build the sample interceptors is as follows:
Windows 2000

> nnmake -f makefil e.nt

UNIX

> make -f nmakefile. nk

For more information about building and running the sample interceptors provided
with the BEA Tuxedo software, see Chapter 4, “ PersonQuery Sample Application.

Step 5: Test the Interceptor

2-10

Testing an interceptor requires you to perform the following tasks:
m Register the interceptor
m Boot the CORBA server application using thet mboot command

m Runthe CORBA client application

Using CORBA Request-Level Interceptors

Step 5: Test the Interceptor

m Check theinterceptor’slog file to verify the interceptor’s behavior

For information about registering interceptors, see Chapter 3, “ Deploying CORBA
Request-Level Interceptors.”

Using CORBA Request-Level Interceptors 2-11

2 Developing CORBA Request-Level Interceptors

2-12 Using CORBA Request-L evel Interceptors

CHAPTER

3 Deploying CORBA
Request-Level
Interceptors

There are three administrative tasks associated with managing the registration of
CORBA request-level interceptors:

m Registering an Interceptor
m Unregistering an Interceptor
m Changing the Order in Which Interceptors Are Called

This section explains these three tasks.

Registering an Interceptor

Y ou usetheepi f r eg command to register your interceptors with an ORB. When you
register an interceptor, the interceptor is added to the end of the list of interceptors
already registered with the ORB. Thisisimportant when you have multiple
interceptors registered with an ORB.

The syntax of the epi f r eg command for registering interceptorsis the following:
epifreg -t bea/we -i AppRequestinterceptor \

—p <InterceptorName> —f <Fil eNane> —e <EntryPoi nt> \
-u "D spl ayName=<Adm ni strati ve Name>" -v 1.0

Using CORBA Request-Level Interceptors 31

3 Deploying CORBA Request-Level Interceptors

In the preceding command line:

I nt er cept or Nane represents the name of the interceptor registered with the
ORB, and the name you choose needs to be unique among those previously
registered. You use this name for specifying the order of multiple interceptors
and for unregistering an interceptor. The Fi | eNane, Ent r yPoi nt , and

Di spl ayNane argumentsthat follow are associated with this name.

Fi | eName represents the location of the file containing the implementation of
the interceptor. This name is operating system and language dependent. Thisfile
isasharable imagefile.

Ent r yPoi nt represents a string value that is the name of the entry point for the
interceptor. This name is programming language specific. Thisvalueis the name
of the initialization function in the shareable image that creates an instance of
the interceptor.

Di spl ayNane specifies a string value used for administrative functions and
other reporting purposes. This name s strictly an administrative name.

Note: When you register an interceptor on a machine on which BEA Tuxedo

CORBA server processes are already running, those processes will not be
subject to interception. Only those processes that are started after an
interceptor is registered are subject to interception. If you want to make sure
that all CORBA server processes are subject to interception, make sure that
you register you interceptors before you boot any CORBA server processes.

Unregistering an Interceptor

3-2

Usethe epi f unr eg command to unregister an interceptor from an ORB. This
command has the following syntax:

epi funreg -t bea/wl e -p <InterceptorNane>

Theargument <I nt er cept or Name> isthe same case-insensitive name specified in the
epi f reg command. Unregistering an interceptor takes it out of the interceptor order.

Using CORBA Request-Level Interceptors

Changing the Order in Which Interceptors Are Called

Changing the Order in Which Interceptors
Are Called

epi fregedt -t

epi fregedt -t

Y ou can see the order in which interceptors are registered, and thus called, by using
the following command:

bea/w e -g -k SYSTEM i nterfaces/ AppRequest | nt er cept or

Theepi fregedi t displays the order in which interceptors are executed when the
ORB receives arequest.

Y ou can change the order in which the interceptors are executed using the following
command:

bea/w e -s -k SYSTEM i nterfaces/ AppRequest I nterceptor \

-a Selector=Order -a Oder=<InterceptorNanel>, <l nterceptorNanme2>, ...

Each <I nt er cept or Name> is the case-insensitive name of the interceptor that must
have been previously registered. This command replaces the order currently in the
registry. The epi f r egedt command must specify every interceptor that you want to
have|loaded and executed by the ORB. If aninterceptor is still registered and if you do
not specify its name using epi f r egedt command, the interceptor is not loaded.

Using CORBA Request-Level Interceptors 3-3

3 Deploying CORBA Request-Level Interceptors

3-4 Using CORBA Request-Level Interceptors

CHAPTER

4 PersonQuery Sample
Application

To understand and use the interceptor examples packaged with the BEA Tuxedo
software, you need to build and run the PersonQuery sample application. The
PersonQuery sample application itself does not contain any interceptors; however, this
application isused as the basis for the sample interceptor applications that are
described in the three chapters that follow.

Thistopic includes the following sections:
m How the PersonQuery Sample Application Works
m The OMG IDL for the PersonQuery Sample Application

m Building and Running the PersonQuery Sample Application

How the PersonQuery Sample Application
Works

The PersonQuery sample application implements a simple database query interface.
Using the PersonQuery application, a user can get information about people in the
database that match specific search criteria, such as:

m Physical characteristics, such as age, weight, hair color, eye color, or skin color

m Name, address, or other details

Using CORBA Request-Level Interceptors 4-1

4 PersonQuery Sample Application

The PersonQuery application contains the following components:

m A client application, which issues requests that contain a variety of datatypes as
parameters. The client application accepts command line input from the user in a
specific form, packages the input according to the sample interface, and sends
the appropriate request.

When the client application receives the result of the query from the server, it
will report the number of items that were found. The user can then enter the
command that displays the result of the latest query, or specify a new query.

m A server application, which contains a simple, built-in database. The server
application accesses the database to service the client request.

PersonQuery Database

The PersonQuery database in the server application containsthe following information
about each person in the database:

m Name

m Address

m U.S. Socia Security number
m Sex

m Age

m Marital status
m Hobby

m Date of birth
m Height

= Weight

m Hair color

m Skin color

m Eyecolor

4-2 Using CORBA Request-Level Interceptors

How the PersonQuery Sample Application Works

m Other physical characteristics

Client Application Command-line Interface

The PersonQuery sample application implements a simple command-lineinterface in
the client component with which the user can enter database query commands and the
command to exit from the application.

The database query commands have the following syntax:
Opti on? command [keyword] [command [keyword]]. ..

In this command syntax:
m (ption? isthe PersonQuery command prompt.
m command is one of the PersonQuery commands from Table 4-1.

m keywor d isone of the keywords from Table 4-1. Note the following rules on
specifying keywords:

e Compound keywords, astypically supplied for the name and address
commands, must be separated by spaces and enclosed in double-quote
characters (""), asin the following command:

Opti on? nanme " Thomas Mann"

¢ When specifying an address, always separate street name, city name, state or
province, country name, and other parts of the address with commas, asin
the following command:

Opti on? address "116 Ei nbahnstrasse, Frankfurt am Main, BRD'

m You may specify multiple commands in asingle line, asin the following
example:

Option? hair brown eyes blue

Table4-1 PersonQuery Application Commands and K eywords

Command Keyword Description

name "firstname | astnane” Queries by name. Strings with spaces
must be quoted.

Using CORBA Request-Level Interceptors 4-3

4

PersonQuery Sample Application

4-4

Command Keyword Description
addr ess "nunber street, Queries by address. Strings with spaces
city..." must be quoted. Address parts are street

number, street, town, state, and country.
Entries for street, town, state, and
country must be separated by commas.

ss XXX- XX- XXXX Queriesby U.S. Socia Security number.
The keyword must in the form

sex sex Queries by sex. Choices are mal e,
femal e,andcant _tell.

age age Queries by age.

marri age st at us Queries by marital status. Choicesare
marri ed, si ngl e, di vorced, and
not _known.

hobby hobby Queries by hobby. Choices are
who_cares, rocks,swi mtv,
st anps, phot o, and weavi ng.

dob mm dd/ yyyy Queries by date. The keyword must be
in the form mm/dd/yyyy.

hei ght i nches Queries by height, ininches.

wei ght pounds Queries by weight, in pounds.

hai r col or Queries by hair color. Choices are
white, black, red, brown, green, yellow,
blue, gray, and unknown.

skin col or Queries by skin color. Choices are
white, black, brown, yellow, green, and
red.

eyes col or Queries by eyecolor. Choicesare blue,

brown, gray, green, violet, black, and
hazel.

Using CORBA Request-Level Interceptors

The OMG IDL for the PersonQuery Sample Application

Command Keyword Description

ot her feature Queries by other physical features.
Choices are tattoo, limb (that is, alimb
is missing), scar, and none.

result Displays the result of last query on
output.
exit Displays bill for services rendered and

closes application.

The OMG IDL for the PersonQuery Sample
Application

Listing 4-1 provides the OMG IDL code for the implemented in the PersonQuery
sample application.

Listing4-1 OMG IDL Codefor the PersonQuery Application | nterfaces

#pragma prefix “beasys.conf

interface PersonQuery
{
enum MONTHS { Enpty, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Cct, Nov, Dec};
struct date_ {
MONTHS Mbnt h;
short Day;
short Year;

b
typedef date_ Date;
struct addr_ {
short nunber;
string street;
string town;
string state;
string country;

Using CORBA Request-Level Interceptors 4-5

4

PersonQuery Sample Application

4-6

}s

typedef addr__ Address;

enum MARRI AGE {not _known, single, married, divorced};

enum HOBBI ES {who_cares, rocks, swim tv, stanps,
weavi ng};

enum SEX {cant _tell, male, female};

enum COLOR {white

gray, violet, hazel, unknown, dontcare};
enum MARKI NGS {dont _care, tattoo, scar, missing_|linb
none};

struct person_ {

string nanme;

Addr ess addr ;

string SS;

SEX sex;

short age;

MARRI AGE mar

HOBBI ES rec;

Dat e dob;

short ht;

| ong W ;

COLOR hair;

COLOR eye;

COLOR ski n;

MARKI NGS ot her;

b

typedef person_ Person;

phot o,

bl ack, brown, yellow, red, green

typedef sequence <Person> Possi bl es;

uni on reason_ Swi
{
case
case
case
case
case
case
case
case
case
case
case 10:
case 11:
case 12:
case 13:

CaNoORrONEQ

b

tch (short)

string nane;
Addr ess addr ;
string SS;
SEX sex;
short age;
MARRI AGE mar ;
HOBBI ES rec
Dat e dob;
short ht;
| ong W ;
COLOR hair;
COLOR eyes;
COLOR ski n;
MARKI NGS ot her;

typedef reason_ Reason

excepti on DataCut Of Range

{

Using CORBA Request-Level Interceptors

bl ue,

The OMG IDL for the PersonQuery Sample Application

}
i
{

}s

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

bool ean

voi d

’

Reason why;

findPerson (

in Person who, out Possibles hits)
rai ses (DataQut Of Range);

findPer sonByNane (

in string name, out Possibles hits)
rai ses (DataQut Of Range);

fi ndPer sonByAddr ess (

in Address addr, out Possibles hits)
rai ses (DataQut Of Range);
findPersonBySS (

in string ss, out Possibles hits)
rai ses (DataQut Of Range);

fi ndPer sonByAge (

in short age, out Possibles hits)
rai ses (DataQut Of Range);
findPersonByMarriage (

in MARRI AGE mar, out Possibles hits)
rai ses (DataQut Of Range);

fi ndPer sonByHobbi es (

in HOBBI ES rec, out Possibles hits)
rai ses (DataQut Of Range);

fi ndPer sonBydob (

in Date dob, out Possibles hits)
rai ses (DataQut Of Range);

fi ndPer sonByHei ght (

in short ht, out Possibles hits)
rai ses (DataQut Of Range);

fi ndPer sonByWei ght (

inlong wt, out Possibles hits)

rai ses (DataQut Of Range);

fi ndPer sonByHai r Col or (

in COLOR col, out Possibles hits)
rai ses (DataQut Of Range);

f i ndPer sonBySki nCol or (

in COLOR col, out Possibles hits)
rai ses (DataQut Of Range);

fi ndPersonByEyeCol or (

in COLOR col, out Possibles hits)
rai ses (Dat aQut Of Range) ;
findPersonByQt her (

in MARKI NGS ot her, out Possibles hits)
rai ses (DataQut Of Range);

exit();

nterface QueryFactory

Using CORBA Request-Level Interceptors 4-7

4

PersonQuery Sample Application

Per sonQuery createQuery (in string nane);

Building and Running the PersonQuery
Sample Application

To build and run the PersonQuery sample application:

1
2
3
4.
5
6

. Copy thefilesfor the PersonQuery sample application into awork directory.
. Change the protection of the files for the PersonQuery sample application.

. Set the environment variables.

Build the CORBA client and server sample applications.

. Start the PersonQuery client and server applications.

. Using the client application, enter a number of commandsto search the database

on the server.

Stop the PersonQuery sample application.

Copying the Files for the PersonQuery Sample

Application

4-8

Therequest-level interceptor sample application files are located in the following
directory:

$TUXDI R sanpl es\ corba\i nt ercept ors_cxx

To create a copy of these files so that you can build them and run them, do the
following:

1

Create aworking directory into which to copy the sample files.

Using CORBA Request-Level Interceptors

Building and Running the PersonQuery Sample Application

2. Copy thei nt er cept or s_cxx samplesto the working directory created in the
previous step:

Windows 2000
> xcopy /s/i %UXDI R% sanpl es\ corbali nt erceptors_cxx <workdirect ory>\ cxx
UNIX
> cp -R $TUXD R/ sanpl es/ corba/interceptors_cxx <workdirectory>/ cxx
3. Changeto the working directory containing the samplefiles:
Windows 2000
> cd <wor kdi rect ory>\ cxx
UNIX
> cd <wor kdi rect ory>/cxx

Y ou will use the fileslisted and described in Table 4-2 in the PersonQuery sample
application.

Using CORBA Request-Level Interceptors 4-9

4 PersonQuery Sample Application

Table 4-2 FilesIncluded in the Interceptors Sample Applications

Directory File

Description

app_Ccxx Readne. t xt
(subdirectory under
i nt er cept ors_cxx)

The file that provides the latest information about
building and running the set of interceptor sample
applications.

makefil e. nk

The makefilefor building the entire set of interceptor
sample applications (the PersonQuery application
and all the sample interceptors) on UNIX systems.

makefile.nt

The makefile for building the entire set of
interceptors sample applications (the PersonQuery
application and all the sample interceptors) on
Windows 2000 systems.

makefile.inc

The generic makefile that usesthe macros defined in
the appropriate pl at f orm i nc file.

personquery_i.h and
per sonquery_i . cpp

The implementation of the PersonQuery interfaces.

per sonqueryc. cpp

The PersonQuery client application source file.

per sonquerys. cpp

The PersonQuery database server source file.

set env. ksh

The shell file that sets all the required environment
variables for building the entire set of interceptor
sample applications on UNIX systems.

setenv. cnd

The command file that sets all the required
environment variables for building the entire set of
interceptor sample applications on Windows 2000
systems.

4-10 Using CORBA Request-Level Interceptors

Building and Running the PersonQuery Sample Application

Directory

File

Description

dat a_cxx
(subdirectory under
i nt ercept ors_cxx)

I nt er cept or Dat a. cpp

The InterceptorData C++ source file.

InterceptorData.h

The InterceptorData class definition file.

makefile.inc

The generic makefile that uses the macrosdefined in
the appropriate pl at f or m i nc fileto build the
InterceptorData interceptors.

makefil e. nk

The makefile that builds the InterceptorData
interceptorson UNIX systems.

makefil e. nt

The makefile that builds the InterceptorData
interceptors on Windows 2000 systems.

si mpl e_cxx
(subdirectory under
i nt ercept ors_cxx)

I nt er cept or Si np. cpp

The InterceptorSimp C++ sourcefile.

InterceptorSinp.h

The InterceptorSimp class definition file.

makefile.inc

The generic makefile that uses the macrosdefined in
the appropriate pl at f or m i nc fileto build the
InterceptorSimp interceptors.

makefil e. nk

The makefile that builds the InterceptorSimp
interceptorson UNIX systems.

makefil e. nt

The makefile that builds the InterceptorSimp
interceptors on Windows 2000 systems.

security_cxx
(subdirectory under
i nt ercept ors_cxx)

I nt er cept or Sec. cpp

The InterceptorSec C++ sourcefile.

I nterceptorSec. h

The InterceptorSec class definition file.

makefile.inc

The generic makefile that uses the macrosdefined in
the appropriate pl at f or m i nc fileto build the
InterceptorSec interceptors.

makefil e. nk

The makefile that builds the InterceptorSec
interceptorson UNIX systems.

makefil e. nt

The makefile that builds the InterceptorSec
interceptors on Windows 2000 systems.

Using CORBA Request-Level Interceptors 4-11

4 PersonQuery Sample Application

Directory File Description
conmon (subdirectory app.inc Thefile that contains the makefile definitions for the
under application configuration.

i nt er cept ors_cxx)

platforminc The file that contains platform-specific make
definitions for building the set of interceptor sample
applications, where pl at f or mrepresents the
system platform for the machine you are using.

conmon. nk The file that contains makefile definitions for UNIX
systems.
makefile.inc The generic makefile that usesthe macros defined in

the appropriate pl at f orm i nc file.

makefil e. mk The makefile that builds the entire set of sample
application fileson UNIX systems.

makefile. nt The makefile that builds the entire set of sample
application files on Windows systems.

per sonquery. i dl The OMG IDL filethat definesthe interfaces for the
PersonQuery sample application.

Changing the Protection on PersonQuery Application

Files

4-12

During the installation of the BEA Tuxedo software, the sample application files are
marked read-only. Before you can edit or build the filesin the PersonQuery sample
application, you need to change the protection attribute of the files you copied into
your work directory, asfollows. First make sure you are in the working directory into
which you copied the sample application files.

Windows 2000
pronpt >attrib -r /s *.*
UNI X

pronpt >/ bi n/ ksh
ksh pronpt>chnmod -R u+w *.*

Using CORBA Request-Level Interceptors

Building and Running the PersonQuery Sample Application

Setting the Environment Variables

Before building and running the PersonQuery sample application, you need to set the
environment in which the application runs. To set the environment variables and other
property settings needed to build and run the PersonQuery sample application, enter
the following command:

Windows 2000
> setenv. cnd
UNIX:

> $. ./setenv. ksh

Building the CORBA Client and Server Applications

The following command builds the PersonQuery application, creates a
machine-specific UBBCONFI Gfile, and |oads the UBBCONFI Gfile:

Windows 2000
> nnake -f makefile.nt
UNIX

$ make -f nmakefile. nk

Note: For convenience, the makefile executed in this step builds the entire set of
interceptor samples. This includes the InterceptorSimp, I nterceptorSec, and
InterceptorData interceptors as well. Details on implementing and building
those interceptors, as well as running them with the PersonQuery sample
application, are provided in the chapters that follow.

Start the PersonQuery Client and Server Applications

Start the PersonQuery sample application by entering the following command:

pronpt> tnboot -y

Using CORBA Request-Level Interceptors 4-13

4 PersonQuery Sample Application

Running the PersonQuery Sample Application

A typical usage scenario of the PersonQuery sample application involvesthefollowing
steps:

1. Enter aquery command for one feature, and check for number of returned items,
for example:

Option? hair brown eyes bl ue

Enter additional query data about the feature queried in the preceding step.
Continue queries until all the query datais narrowed down to a desirable level.
Enter ther esul t command to see the final query result.

Start a new query cycle.

o o M~ w Db

Enter the exi t command to quit from the application.

Stopping the PersonQuery Sample Application

To stop the PersonQuery sample application, enter the following command:

pronpt >t nshut down -y

4-14 Using CORBA Request-Level Interceptors

CHAPTER

5 InterceptorSimp
Sample Interceptors

Thistopic includes the following sections:

How the PersonQuery Sample Interceptors Work
Registering and Running the PersonQuery Interceptors
Examining the Output of the I nterceptors

Unregistering the Interceptors

Beforetrying out the steps described in this chapter, make sure you have completed all
the steps described in Chapter 4, “ PersonQuery Sample Application.”

How the PersonQuery Sample Interceptors

Work

The InterceptorSimp sample interceptor shows how the operation in a request passed
to an interceptor can be accessed via a RequestContext object. When the
InterceptorSimp sample intercepts arequest, the interceptor does the following:

m Writes the operation name out to a data file, but does not interpret or modify the

parameters in the request

m Returns appropriate status from the interceptor methods

Using CORBA Request-Level Interceptors 5-1

5 InterceptorSimp Sample Interceptors

Assuming a successful call to the interceptor, the client invocation is passed onto the
target object and serviced in the usual way. Thus the InterceptorSimp sample
interceptor shows the following:

m Animplementation of abasic monitoring service, which simply tracks each
operation on the target object that has been invoked.

m How an interceptor can identify the operation contained in the request by
accessing the parameters passed by the ORB to the interceptor methods.

The InterceptorSimp sample interceptor a so shows two different interceptors being
defined and registered, but implemented in a single source file. In this example, the

client and target interceptors are registered separately, with the client interceptor
initialized first.

Registering and Running the PersonQuery
Interceptors

When you run the makefile that builds the PersonQuery sample application in
Chapter 4, “PersonQuery Sample Application,” the entire set of sample interceptors
arebuilt aswell, including the Interceptor Simp interceptor. This section describes how
to register the InterceptorSimp interceptor so that it works with PersonQuery
application at run time.

To register and run the InterceptorSimp client and server interceptors:

1. Changedirectory to the InterceptorSimp sample directory, wherewor kdi rect ory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 4, “PersonQuery Sample Application.”

Windows 2000

> cd <wor kdi rect ory>\ cxx\ si npl e_cxx

UNI X
$ cd <workdirectory>/cxx/sinple_cxx

2. Register the interceptor:

5-2 Using CORBA Request-Level Interceptors

Examining the Output of the Interceptors

Windows 2000
> nmake -f makefile.nt config

UNI X
$ make -f nmmkefile.nk config

3. Boot the CORBA server and run the client:
Windows 2000

> cd <wor kdi rect ory>\ cxx\ app_cxx

> tnboot -y
> PersonQueryd i ent
UNIX

> cd <wor kdi rect ory>/ cxx/ app_cxx
> tnboot -y
> PersonQueryd i ent

4. Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 4, “PersonQuery Sample
Application.”

5. Stop the PersonQuery application:

> tnshut down -y

Examining the Output of the Interceptors

The output from the simple client interceptor isin files named with the following
syntax:

I nt er cept or Si npd i ent xxxx. out

In the preceding syntax line, xxxx represents the process ID of the executable within
which the interceptor ran. For example, there are three
I nt er cept or Si mpd i ent xxx. out files; one each for the following:

m The FactoryFinder, TMFFNAME

m The PersonQueryServer

Using CORBA Request-Level Interceptors 5-3

5 InterceptorSimp Sample Interceptors

m The PersonQueryClient

The content of each file varies according to how the ORB interacted with the
executable. For example, target interceptors run on servers and client interceptorsrun
on clients, so the InterceptorSimpClient log filestypically have very little output from
the target interceptor, but it has more output from the client interceptor.

Unregistering the Interceptors

After you have run the PersonQuery sample application with the InterceptorSimp
sample interceptors, you can unregister those interceptors using the following steps:

1. Shut down all running CORBA applications by entering the following command:
> t mshut down -y

2. Unregister the interceptors.

Unregistering the Interceptors

To unregister the InterceptorSimp client and server interceptors:

1. Changedirectory to the InterceptorSimp sample directory, wherewor kdi rect ory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 4, “PersonQuery Sample Application:”

Windows 2000

> cd <wor kdi rect ory>\ cxx\ si npl e_cxx

UNIX

$ cd <workdirectory>/cxx/sinple_cxx
2. Unregister the interceptors:

Windows 2000

> nmeke -f nakefile.nt unconfig

5-4 Using CORBA Request-Level Interceptors

Unregistering the Interceptors

UNIX

$ nmake -f makefile.nk unconfig

Using CORBA Request-Level Interceptors 5-5

5 InterceptorSimp Sample Interceptors

5-6 Using CORBA Request-Level Interceptors

CHAPTER

0 InterceptorSec Sample
Interceptors

Thistopic includes the following sections:

How the PersonQuery Sample Interceptors Work
Registering and Running the PersonQuery Interceptors
Examining the Interceptor Output

Unregistering the Interceptors

Beforetrying out the steps described in this chapter, make sure you have completed all
the steps described in Chapter 4, “ PersonQuery Sample Application.”

How the PersonQuery Sample Interceptors

Work

The InterceptorSec sample interceptors show a simple client/server interceptor pair
that implement a basic security model. The InterceptorSec client-side interceptor
simply logs each client request that is handled by the ORB. The InterceptorSec
target-side interceptor implements a simple security mechanism that checks to see
whether the user of the client application is authorized to perform the operation in the
request.

Using CORBA Request-Level Interceptors 6-1

6

InterceptorSec Sample Interceptors

The InterceptorSec sample interceptors show the client and target interceptor pair
initialized through a single initialization function and implemented in asingle library.
Since asingle initialization function is called, the interceptor registration command
registers oneinitialization function and one implementation library.

How the InterceptorSec Target-side Interceptor Works

6-2

When the target-side ORB receives arequest, the ORB calls the I nterceptorSec
target-side interceptor and passes the Request Cont ext and Dat al nput St r eam
objects from the client request.

The target-side interceptor then does the following to authorize the user of the client
application for the operation contained in the request:

1. Checksto seeif the request is an invocation on the PersonQuery interface. If it is
not, the interceptor returns al NVOKE_NO_EXCEPTI ON.

2. If the operation contained in the request is an invocation on the PersonQuery
interface, the interceptor:

a. Obtainsareferenceto the SecurityCurrent object, which the interceptor then
narrows.

b. Invokesthe SecurityContext object, requesting the attribute list for the user of
the client application.

c. Walksthrough the attribute list to obtain two attributes:

Pri maryG oupld Identifiesthe client name of the user of the client application. Inthis
interceptor, the client name must contain either the character r or a
NULL string.

Accessl d Identifies the user of the client application. In this interceptor, the
username must have the characters R, P, or N (either upper- or
lowercase).

d. Matches the user against the Pri mar yG oupl d and the Accessl d. If the user
successfully matchesthe criteriafor these two attributes, theinterceptor returns
I NVOKE_NO_EXCEPTI ON.

Using CORBA Request-Level Interceptors

How the PersonQuery Sample Interceptors Work

e. If nomatch isfound, the interceptor returns REPLY_EXCEPTI ON, which
prevents the request from being sent to the target object. Instead, the ORB
returns an exception to the client application.

The sectionsthat immediately follow discussinterceptor security topicsand show code
fragments of interest from the InterceptorSec target-side interceptor.

Using the SecurityCurrent Object

Interceptors obtain the SecurityCurrent object from the ORB, not from the Bootstrap
object. The SecurityCurrent object available from the ORB has the API that
interceptors need for obtaining information about the client.

To obtain the SecurityCurrent object, your interceptors can invoke the

resol ve_initial _references(“SecurityCurrent”) operationonthe ORB. The
interceptor can then narrow the SecurityCurrent reference to a

SecurityCurrent Level 1 current.

Obtaining the SecurityCurrent Object

The SecurityCurrent object is available only through the ORB, and this object’s
primary functionality isto provide CORBA server applications access to attributes
related to the client invocation.

The ORB’sresol ve_initial _references(“SecurityCurrent”) method
provides the interceptor areference to a SecurityCurrent object from which the
interceptor is provided with Level 1 Security functionality. The interceptor can obtain
the attributes of the client invocation viathe get _at t ri but es method on the
SecurityCurrent object, which returns an attribute list to the interceptor. The attribute
list contains the attributes that pertain to the user of the client application that
performed the invocation being intercepted. The behavior of any and all methods from
the CORBA security service is till the same, with the exceptions noted above.

Using CORBA Request-Level Interceptors 6-3

6 InterceptorSec Sample Interceptors

Thefollowing C++ code fragment shows obtaining the SecurityCurrent object.

try
{
sec_current = morb->resolve_initial _references("SecurityCurrent");
}
catch (...)
{

*moutfile <<
"ERROR: ORB::resolve_initial _references threw exception"
<< endl << endl << flush;

excep_val = new CORBA: : UNKNOWN() ;

return Interceptors:: REPLY_EXCEPTI ON,

}
if (CORBA::is_nil(sec_current.in()))
{

*moutfile << "ERROR No SecurityQurrent present”
<< endl << endl << flush;

excep_val = new CORBA:: NO_PERM SSI O\() ;

return Interceptors:: REPLY_EXCEPTI ON,

}

m security current = SecuritylLevel 1::Qurrent:: _narrow(sec_current.in());
if (!msecurity _current)

{
*moutfile << "ERROR Couldn’t narrow security
current to SecuritylLevel 1::Current"”
<< endl << endl << flush;
excep_val = new CORBA:: NO_PERM SSI O\() ;
return Interceptors:: REPLY_EXCEPTI ON,
}

Creating the List of User Attributes

The code fragmentsin this section show how the InterceptorSec target-sideinterceptor
creates alist of user attributes and then walks through thislist to determine if the user
matches the authorization criteria

In the InterceptorSec sample, creating thelist of attributes, then walking through them
are done in separate steps. Note that if you specify aclient attribute list length of zero
(0) to be returned, the SecurityCurrent object returns all the attributes for the client.

/1l Get the attributes that correspond to the information that we need to

/1 do an authorization check:
/1 PrimaryGroupld (clientname of the |logged in client)

6-4 Using CORBA Request-Level Interceptors

How the PersonQuery Sample Interceptors Work

/1 Accessl d (username of the logged in client)
Security::AttributelList _var client_attr = 0;

try

{

client_attr = msecurity current->get_attributes(*mattributes to get);
The following fragment shows creating the list:

Security::AttributeTypeList_var attr = new Security::AttributeTypelList(2);
if (lattr.ptr())
{
cout <<
"ERROR: can’'t allocation security list: Qut of nmenory"
<< endl << endl << flush;
return;
}
attr.inout().length(2);
attr[(CORBA:: ULong) 0] .attribute famly.fam ly definer = 0;
attr[(CORBA:: ULong) O] .attribute famly.famly = 1;
attr[(CORBA:: ULong) 0] .attribute_type = Security::PrimryG oupld;
attr[(CORBA:: ULong) 1] .attribute famly.fam |y_definer = O;
attr[(CORBA:: ULong) 1] .attribute famly.famly = 1;
attr[(CORBA:: ULong) 1] .attribute_ type = Security::Accessld;
mattributes to get = attr. _retn();
return;

Thefollowing fragment shows walking through the attribute list to check whether the
user matches the authorization criteria:

if (client_attr[i].attribute type.attribute type == Security::PrimaryG oupld)
/] This attribute is the client nane.

/1 Conpare to sone client nanme val ue.
/1 For this exanple, we're going to accept anything with

/l an 'r’ init, or a NULL string. You will want to conpare
/1 the client nane to sonme set of val ues you have authorized.
I/l
if ((strlen(value_buffer) == 0) ||

(strchr(value_buffer, 'r’) 1= 0))
{

*moutfile << " INFO Valid client nane found: "

<< val ue_buffer << endl;
clientname_ok = 1;

}

el se

{

*moutfile << " ERROR Invalid client nanme found: "
<< val ue_buffer << endl;

Using CORBA Request-Level Interceptors 6-5

6

InterceptorSec Sample Interceptors

}

}
else if (client_attr[i].attribute type.attribute_type == Security::Accessld)

{
/1 This attribute is the user nane. W're arbitrarily
/1 choosing to authorize anyone who has an 'r’, 'n’, or 'p
/1 in their user id. You will likely want to choose
/1 some other criteria for authorization.
I
if ((strchr(value_buffer, "r’) I'=0) []
(strchr(value_buffer, "R) I'=0) ||
(strchr(value_buffer, "P) I=0) ||
(strchr(value_buffer, "p') = 0) ||
(strchr(value_buffer, "N) I'=0) ||
(strchr(val ue_buffer, 'n") '=0))
{
*moutfile << " INFO Valid usernane found:
<< val ue_buffer << endl;
usernane_ok = 1;
}

Registering and Running the PersonQuery
Interceptors

6-6

When you run the makefile that builds the PersonQuery sample application in
Chapter 4, “PersonQuery Sample Application,” the entire set of sample interceptors
are built aswell, including the InterceptorSec interceptor. This section describes how
toregister the InterceptorSec interceptor so that it workswith PersonQuery application
at run time.

To register and run the InterceptorSec client and server interceptors:

1. Change directory to the InterceptorSec sample directory, where wor kdi rect ory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 4, “PersonQuery Sample Application:”

Windows 2000

> cd <wor kdirectory>\cxx\security cxx

UNIX

Using CORBA Request-Level Interceptors

Examining the Interceptor Output

$ cd <workdirectory>/cxx/security_ cxx
2. Register the interceptor:
Windows 2000

> nmake -f makefile.nt config

UNIX
$ make -f nmmkefile.nk config

3. Boot the CORBA server and run the CORBA client:
Windows 2000

> cd <wor kdi rect ory>\ cxx\ app_cxx

> tnboot -y
> PersonQueryd i ent
UNIX

> cd <wor kdi rect ory>/ cxx/ app_cxx
> tnboot -y
> PersonQueryd i ent

4. Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 4, “ PersonQuery Sample
Application.”

5. Stop the PersonQuery application:

> t nshut down -y

Examining the Interceptor Output

The InterceptorSec client and target interceptors log their output to the files named,
respectively, | nt er cept or SecCl i ent xxx. out and

I nt er cept or SecTar get xxx. out . These files contain debugging output from the
interceptorsthat isautomatically loaded and executed by the ORB for the PersonQuery
application.

Using CORBA Request-Level Interceptors 6-7

6 InterceptorSec Sample Interceptors

Unregistering the Interceptors

After you have run the PersonQuery sample application with the InterceptorSec
sample interceptors, you can unregister those interceptors using the following steps:

1. Shut down all running CORBA applications by entering the following command:
> t mshut down -y

2. Change directory to the InterceptorSec sample directory, where wor kdi rect ory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 4, “PersonQuery Sample Application:”

Windows 2000

> cd <wor kdirectory>\cxx\security cxx

UNIX

$ cd <workdirectory>/cxx/security_ cxx
3. Unregister the interceptors:

Windows 2000

> nmeke -f nakefile.nt unconfig

UNIX

$ make -f mekefile.nk unconfig

6-8 Using CORBA Request-Level Interceptors

CHAPTER

[InterceptorData
Sample Interceptors

This chapter describes the following two sample interceptors that are designed to be
used with the PersonQuery sample application:

m InterceptorDataClient Interceptor, which isinstalled on the machine hosting the
PersonQuery client component.

m InterceptorDataTarget Interceptor, which isinstalled on the machine hosting the
PersonQuery server component.

This chapter explains how each interceptor works, then shows how to build and run
them with the PersonQuery sample application.

InterceptorDataClient Interceptor

The InterceptorDataClient interceptor intercepts and logs each client application
request and reply parameters. This interceptor aso allows certain operations on the
PersonQuery server application to be invoked by users of the client application who
meet specific criteria. The InterceptorDataClient interceptor implements the

I nt er cept or Dat ad i ent interface, which inherits from the

d i ent Request | nt er cept or class.

The InterceptorDataClient class implements the methods as follows:
m id()
This method returns the string | nt er cept or Dat aCl i ent .

Using CORBA Request-Level Interceptors 7-1

4 InterceptorData Sample Interceptors

m shut down()
This method removes the request from thet r acker object.
m exception_occurred()

When invoked by the ORB, this method removes the request from thet r acker
object.

m client_invoke()

This method determinesif the interface and operation are “of interest.” If the
client request is “ of interest,” this method parses the request parameters and
outputs the parameters to the log file. If the client request is not “of interest,”
this method simply returns.

m client_response()

This method determinesif the interface and operation in the request are “of
interest.” If the interface and operation are “of interest,” this method walks
through the CORBA Dat al nput St r eamparameter to obtain the reply
parameters and write them to the log file. If the interface and operation in the
request are not “of interest,” this method simply returns.

In addition, the datainterceptor providesthe nt er cept or Dat ad i ent I ni t method
toinitialize the client interceptor class.

InterceptorDataTarget Interceptor

The InterceptorDataT arget interceptor intercepts and logs request and reply data
parameters. This interceptor also removes sensitive data from specific reply
parameters by masking the data with x characters. The InterceptorDataTarget
interceptor implements the | nt er cept or Dat aTar get interface, which inheritsfrom
the Tar get Request | nt er cept or class.

7-2 Using CORBA Request-Level Interceptors

Implementing the InterceptorData Interceptors

Thel nt er cept or Dat aTar get classimplements the methods as follows:
m id()
This method returns the string | nt er cept or Dat aTar get .
® shutdown()
This method simply returns.
m exception_occurred()
This method removes the request from thet r acker object.
m target _invoke()

This method determines if the interface and operation are“ of interest.” If so, this
method parses the request parameters and outputs that datato the log file. If the
interface and operation in the request are not “of interest,” this method simply
returns. If the operation in the request is exi t , this method returns the status
value | NVOKE_NO_EXCEPTI ON.

m target _response()

This method determines if the interface and operation are“ of interest.” If so, this
method walks through the Dat al nput St r eamparameter to obtain the response
parameters and output to the log file. Sensitive data items are substituted in the
log. For example, a person’s social security number will not be output to the log.
If the interface and operation in the request are not “ of interest,” this method
simply returns.

In addition, the datainterceptor providesthe | nt er cept or Dat aTar get | ni t method
to initialize the target interceptor class.

Implementing the InterceptorData
Interceptors

Information about the code used to implement the InterceptorData interceptors is
provided in Chapter 2, “Developing CORBA Request-L evel Interceptors.” Refer to
that chapter for information about how to do the following:

1. “Starting the Implementation File’ on page 2-3.

Using CORBA Request-Level Interceptors 7-3

v

InterceptorData Sample Interceptors

“Initializing the Interceptor at Run Time” on page 2-4.
“Obtaining the Interface Name from a Request” on page 2-5.
“|dentifying Operationsin the Request” on page 2-5.

“Implementing the Interceptor’s Response Operation” on page 2-6.

o o ~c w D

“Reading Parameters Out of a Data Input Stream” on page 2-7.

Registering and Running the
InterceptorData Interceptors

7-4

When you run the makefile that builds the PersonQuery sample application in
Chapter 4, “PersonQuery Sample Application,” the entire set of sample interceptors
are built aswell, including the InterceptorData interceptors. This section describes
how to register the InterceptorData interceptor so that it works with PersonQuery
application at run time.

To register and run the InterceptorData client and server interceptors:

1. Change directory to the InterceptorData sample directory, where wor kdi rect ory
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 4, “PersonQuery Sample Application:”

Windows 2000

> cd <wor kdirect ory>\ cxx\ dat a_cxx

UNI X
$ cd <workdirectory>/ cxx/ data_cxx

2. Register the interceptor:
Windows 2000

> nmeke -f nakefile.nt config

UNIX

$ make -f mekefile.nk config

Using CORBA Request-Level Interceptors

Examining the Interceptor Output

3. Boot the CORBA server and run the CORBA client:
Windows 200

> cd <wor kdi rect ory>\ cxx\ app_cxx
> tnboot -y
> PersonQueryd ient

UNIX

> cd <wor kdi rect ory>/ cxx/ app_cxx
> tnboot -y
> PersonQueryd ient

4. Perform any number of invocations using the PersonQuery client application,
using the command syntax described in Chapter 4, “ PersonQuery Sample
Application.”

5. Stop the PersonQuery application:

> tnshut down -y

Examining the Interceptor Output

The InterceptorData client and target interceptors log each invocation. For each
PersonQuery application session, the client interceptor creates alog file named

I nt er cept or Dat ad i ent xxx. out , and the target interceptor createsalog file
named I nt er cept or Dat aTar get xxx. out . This section shows sample log file data
for each interceptor.

Sample Client I nterceptor Log Output

InterceptorDatadientlnit called
ClientlnterceptorData::id called

CientlnterceptorbData::client_invoke called
ClientlnterceptorData::client_response called

Request 1d: 1

unable to find request for this reply (nust not be one we care about)

CientlnterceptorbData::client_invoke called

Request 1d: 2
Interface: | DL: beasys. coni Per sonQuery: 1.0

Using CORBA Request-Level Interceptors 7-5

InterceptorData Sample Interceptors

Operat i on:
Par aneters:

fi ndPer son

nane: ALI STER LANCASH RE

addr ess: 3 PENNY LANE
LONDON GB UK

Ss: 999- 99- 9999

sex: can't tel

age(yrs.): 85

marital status: single

hobby: stanp col |l ecting

date-of -birth: 11/25/1913

height(in.): 32

wei ght (I bs.): 57

hair color: unknown

eye col or: bl ue

skin col or: white

other markings: mssing linb

Sample Target I nterceptor Log Output

I nterceptorDataTargetlnit called
TargetInterceptorData::id called

TargetInterceptorData::target_response called

Request |d: 2

Repl ySt at us: G OP: : NO_EXCEPTI ON

I nterface: | DL: beasys. conif PersonQuery: 1.0
Operat i on: fi ndPer son

Met hod Resul t:
Par anmeters:

TRUE

Maxi mum 8

Length: 8

ItemO
name: ALl STER LANCASH RE
addr ess: 3 PENNY LANE

LONDON GB UK

SS: NO PRI VI LEDGE
sex: NO PRI VI LEDGE
age (years): NO PRI VI LEDGE
marital status: NO PRI VI LEDGE
hobby: stanp col l ecting
date-of -birth: NO PRI VI LEDGE
hei ght (in.): 32
weight (lbs.): 57
hair color: unknown
eye col or: bl ue

Using CORBA Request-Level Interceptors

Unregistering the Interceptors

skin col or: NO PRI VI LEDGE
ot her markings: mssing |linb

Unregistering the Interceptors

After you have run the PersonQuery sample application with the InterceptorData
sample interceptors, you can unregister those interceptors using the following steps:

1. Shut down all running CORBA applications by entering the following command:
> tnshut down -y

2. Changedirectory to the InterceptorData sample directory, wherewor kdi r ect or y
represents the name of the directory into which you copied the interceptor sample
applications in Chapter 4, “ PersonQuery Sample Application:”

Windows 2000

> cd <wor kdi rectory>\cxx\data_cxx

UNIX

$ cd <workdirectory>/cxx/data_cxx
3. Unregister the interceptors:

Windows 2000

> nmake -f makefile.nt unconfig

UNIX

$ make -f makefile.nk unconfig

Using CORBA Request-Level Interceptors 7-7

4 InterceptorData Sample Interceptors

7-8 Using CORBA Request-Level Interceptors

CHAPTER

8 Request-Level
Interceptor API

This chapter documents the following interfaces that you use to implement
request-level interceptors:

B Interceptors::Interceptor

m Request Level I nterceptor:: Request | nterceptor

B Request Level I nterceptor:: dientRequestlnterceptor
m Request Level I nterceptor:: Target Request | nt ercept or

m CORBA: : Dat al nput St ream

Each of these interfacesis alocality-constrained object. Any attempt to pass a
reference outside its locality (that is, its process), or any attempt to externalize an
object supporting this interface using the CORBA ORB obj ect _to_string
operation, resultsinthe CORBA MARSHAL system exception (CORBA: : MARSHAL) being
raised.

Using CORBA Request-Level Interceptors 8-1

8 Request-Level Interceptor API

Interceptor Hierarchy

Request-level interceptors are divided into two interfaces, providing separate client-
and target-side functionality. Thefollowing figureillustrates the inheritance hierarchy
of the request-level interceptors supported in the BEA Tuxedo product.

rierceptor |
(B 1w b o))
B © siring

®shutdown() |

Clnbafaces»
F':_-qusq:lnlp'fsrcur
(T 10 o] e Lot e i1 0 B

®acaplion_pecumed)

7 F
ol L
<l prface s : <l prfacp ==
ClientRequestimerceptor : TargeiReques Inlercepiar
(freem Raquasilewslinsamcapied | | (from Requasilesslindsraito
“l;.lr:_hnl_rr.l-jkalj ‘hn;ﬂ-'._ln-.'u_'h &)
¥clienl_responser Wange_response()

Note on Unused Interfaces

The method signatures for operations on classes derived from the
Request Level | nt er cept or interface include parameters for the following
interfaces:

m Request Level | ntercept or:: Dat aCut put St r eam

8-2 Using CORBA Request-Level Interceptors

Interceptors::Interceptor Interface

m Request Level I nterceptor:: Servi ceCont ext Li st

These interfaces are not used in the BEA Tuxedo product. However, they are defined
in the BEA Tuxedo product so that you do not need to recompile your CORBA
application if animplementation of theseinterfacesisever provided in afuture rel ease
of the BEA Tuxedo product. The ORB aways passesanil for the actual argument. Y ou
should not attempt to use this argument; doing so will likely end the process with a
Sserious error.

Interceptors::Interceptor Interface

Thel nterceptors: :Interceptor interfaceisdefined as the base interface of al
types of interceptors, including request-level interceptors. Thisinterface containsthe
set of operations and attributes that are supported by all types of interceptors. The
Interceptors::|nterceptor interfaceisdefined as an abstract interface; thus an
instance of the interface cannot be instantiated.

Listing8-1 OMG IDL for thelnterceptors::Interceptor Interface

/IFile: Interceptors.idl
#i f ndef _| NTERCEPTORS_| DL
#defi ne _| NTERCEPTORS | DL

#pragma prefix "beasys. cont

nodul e I nterceptors

{

native ExceptionVal ue;

| ocal Interceptor

{

readonly attribute string id; // identifier of interceptor

/1 called by ORB when interceptor is being shutdown

Shut downRet ur nSt at us shut down(

in ShutdownReason reason,
out ExceptionVal ue excep_val

)

}; // locality constrained

Using CORBA Request-Level Interceptors 8-3

8 Request-Level Interceptor API

}s
#endi f /* | NTERCEPTORS | DL */

Theimplementation of the operations _dupl i cate, _narrow, and _ni | areinherited
from the implementation of the CORBA: : Local Base interface provided by the
CORBA ORB in the BEA Tuxedo product.

Listing 82 C++ Declaration of the Interceptors::I nterceptor I nterface

#i f ndef _| NTERCEPTORS_H
#define _| NTERCEPTORS_H

#i nclude <string. h>
#i ncl ude <CORBA. h>

class OBBEXPDLL Interceptors

{

public:

class Interceptor;

typedef Interceptor * Interceptor_ptr;

enum | nvokeRet ur nSt at us

{

I NVOKE_NO_EXCEPTI ON, // proceed nornal |y

REPLY_NO EXCEPTION, // stop proceeding; start reply processing
REPLY_EXCEPTI ON /1 stop proceeding; reply with exception

h
enum ResponseRet ur nSt at us

RESPONSE_NO EXCEPTION, // proceed normally
RESPONSE_EXCEPTI ON

}s
enum Shut downRet ur nSt at us

{
SHUTDOMN_NO_EXCEPTI ON,
SHUTDOWN_EXCEPTI ON

b
enum Shut downReason

ORB_SHUTDOWN,
CONNECT!I ON_ABORTED,
RESOURCES_EXCEEDED

}s

8-4 Using CORBA Request-Level Interceptors

Interceptors::Interceptor Interface

struct Version

{
CORBA: : Cct et nmaj or _version;
CORBA: : Cct et m nor _versi on;
b
typedef Version * Version_ptr;
I+
/1 Abstract base interface for all Interceptors
/-

class OBBEXPDLL Interceptor : public virtual CORBA:: Local Base

public:
static Interceptor_ptr _duplicate(lnterceptor_ptr obj);
static Interceptor_ptr _narrow(Interceptor_ptr obj);
static Interceptor_ptr _nil();
virtual ShutdownReturnStat us
shut down(Shut downReason reason,
CORBA: : Exception_ptr & excep_val) = 0;
virtual CORBA::String id() = 0;

protected:

Interceptor();

virtual ~Interceptor();
3

};#endif /* _I NTERCEPTORS_H */

Using CORBA Request-Level Interceptors 8-5

8 Request-Level Interceptor API

Interceptor::id

Synopsis

C++ Mapping
Parameters
Exceptions

Description

Return Values

Obtains the vendor assigned identity of the interceptor as a string value.
virtual CORBA::String id() = 0;
None.

None.

Thei d accessor operation is used by the ORB to obtain the vendor assigned identity
of the interceptor as a string value. This attribute is used primarily for debugging and
tracing of operations on the interceptors called by the ORB.

This operation returns a pointer to a null-terminated string containing the identity of
the interceptor as assigned by the provider of the interceptor implementation.

8-6 Using CORBA Request-Level Interceptors

Interceptors::Interceptor Interface

Interceptor::shutdown
Synopsis Notifies an implementation of an interceptor that the interceptor is being shut down.

C++Binding virtual ShutdownReturnStatus
shut down(Shut downReason reason,
CORBA: : Exception_ptr & excep_val) = 0;

Parameters reason
A shut downReason value that indicates the reason why the interceptor is
being shut down. The following Shut downReason values can be passed to

the operation:
Status Value Description
ORB_SHUTDOWN Indicates that the ORB is being shut down.

RESOURCES_EXCEEDED Indicates that resources of the process have been
exhausted.

CONNECTI ON_ABORTED This exception is not reported in BEA Tuxedo 8.0.

excep_val
A reference to an Except i onVal ue in which the operation is to store any
exception raised. This parameter isvalid only if avalue of
SHUTDOWN_EXCEPTI ONis returned from the operation.
Except i onVal ue is mapped to the class CORBA: : Except i on.

Exceptions None.

Description The shut down operation isused by the ORB to notify an implementation of an
interceptor that the interceptor is being shut down. The ORB destroys the instance of
the interceptor once control is returned from the operation back to the ORB.

Return Values ~ SHUTDOWN_NO_EXCEPTI ON
Indicates that the operation has not raised an exception.

SHUTDOAN_EXCEPTI ON
Indicates that the operation has raised an exception. The value of the
exception is stored in the excep_val parameter.

Using CORBA Request-Level Interceptors 8-7

8 Request-Level Interceptor API

RequestLevellnterceptor::
Requestinterceptor Interface

The Request Level I nter cept or: : Request | nt er cept or interface is the base
interface of all request-level interceptors. It inherits directly from the

I nterceptors::|Interceptor interface. The

Request Level | nt ercept or : : Request | nt er cept or interface:

m Contains the set of operations and attributes that are supported by all
request-level interceptors.

m |sdefined as an abstract interface; therefore, an instance of the interface cannot
be instantiated.

Thel ocal keywordin OMG IDL indicatesthat the Request I nt er cept or interface
isnot anorma CORBA object, so it cannot be used as such.

Listing 83 OMG IDL for the RequestL evell nter ceptor:: Requestl nter ceptor
Interface

#i f ndef _REQUEST LEVEL_| NTERCEPTOR | DL
#define REQUEST LEVEL_| NTERCEPTOR | DL

#include <orb.idl>
#i nclude <G op.idl >
#include <Interceptors.idl>

#pragma prefix “beasys. conf

nodul e Request Level | ntercept or

{
| ocal Requestlnterceptor : Interceptors::Interceptor
{
voi d exception_occurred(
in ReplyContext reply_context,
in ExceptionVal ue excep_val
)
b
b

#endif /* _REQUEST LEVEL_| NTERCEPTOR | DL */

8-8 Using CORBA Request-Level Interceptors

RequestLevellnterceptor:: Requestinterceptor Interface

The implementation of the Request | nt er cept or interface inherits from

CORBA: : Local Base rather than from CORBA: : (bj ect . CORBA: : Local Base provides
an implementation of the operations _dupl i cate, _narrow, and _ni |, similar to
those of CORBA: : (bj ect .

Listing 8-4 C++ Declaration for the Requestl nter ceptor | nterface

#i f ndef _RequestLevel I nterceptor_h
#defi ne _RequestLevel I nterceptor_h

#i ncl ude <CORBA. h>

#i ncl ude <l OP. h>

#i ncl ude <@ OP. h>

#i ncl ude <Interceptors. h>

cl ass OBBEXPDLL RequestLevel | nterceptor

{
public:
cl ass Request | nt er ceptor;
typedef Requestlnterceptor * Request | nterceptor_ptr;

struct Request Cont ext
{
Interceptors::Version struct_version;
CORBA: : ULong request _i d;
CORBA: : Oct et response_fl ags;
Gl OP: : Tar get Addr ess target;
CORBA: : String_var interface_id;
CORBA: : String_var operation;
Request Cont ext &oper at or =(const Request Cont ext & obj);
s

typedef Request Context * Request Context _ptr;
typedef G OP::Repl yStatusType_1 2 Repl yStatus;

struct Repl yContext
{

I nterceptors::Version struct_version;
CORBA: : ULong request _i d;
Repl yStatus reply_status;

typedef ReplyContext * ReplyContext_ptr;

cl ass OBBEXPDLL Request | nterceptor
public virtual Interceptors::|Interceptor

Using CORBA Request-Level Interceptors 8-9

8 Request-Level Interceptor API

{
public:
stati c Requestlnterceptor_ptr
_duplicate(RequestInterceptor_ptr obj);
stati c Requestlnterceptor_ptr
_narrow Request | nterceptor_ptr obj);
inline static Requestinterceptor_ptr nil() { return 0; }

virtual void
exception_occurred(const ReplyContext & reply_context,
CORBA: : Exception_ptr excep_val) = 0;

pr ot ect ed:
Request | nt er cept or (CORBA: : Local Base_ptr obj = 0) { }
virtual ~Requestlnterceptor(){ }

private:
Request | nterceptor(const Requestlinterceptor&) { }
voi d operator=(const Requestlnterceptor& { }
}; I/ class Requestlnterceptor
#endif /* _RequestLevel Interceptor_h */

8-10 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: Requestinterceptor Interface

RequestContext Structure

Synopsis

C++ Binding

Members

Contains the information that represents the context in which arequest is to be
processed.

Request Cont ext
{
Interceptors::Version struct_version;
CORBA: : ULong request _id;
CORBA: : Cctet response_fl ags;
Gl OP: : Tar get Addr ess target;
CORBA: : String_var interface_id;
CORBA: : String_var operation;
Request Cont ext &operat or=(const Request Context & obj);
H

struct_version

Anindication of theversion of the RequestContext that providesanindication
of the format and members. The version information is separated into the
following two pieces:

Version Member Description

maj or _versi on Indicates the major version value. The value of this
member is incremented anytime a change is made to the
contents or layout of a Request Cont ext that is not
backward compatible with previous versions.

m nor _versi on Indicates the minor version value. The value of this
member is incremented anytime a change is made to the
contents or layout of aRequest Cont ext that is
backward compatible with previous versions.

request _id

An unsigned long value that specifies the identifier assigned to arequest by
the initiating ORB.

response_fl ags

The lowest order bit of response_f 1 agsissetto 1if areply messageis
expected for this request. If the operation is not defined as oneway, and the
request is not invoked viathe DIl with the | N\v_NO RESPONSE flag set,
response_f | ags will besetto \ x03.

Using CORBA Request-Level Interceptors 8-11

8

Request-Level Interceptor API

8-12

t ar get

If the operation is defined as oneway, or the request is invoked viathe DI
with thel NV_NO_RESPONSE flag set, r esponse_f | ags may be set to \ x00

or\ x01.

When thisflagissetto\ x01 for aoneway operation, receipt of areply does
not imply that the operation has necessarily completed.

A discriminated union that identifies the object that is the target of the
invocation. The discriminator indicates the format in which the target
addressing is presented. The possible discriminator values are:

Discriminator

Description

KeyAddr

The obj ect _key field from the transport-specific GIOP
profile (for example, from the encapsulated |10P profile of
the IOR for the target object). Thisvalueis meaningful only
to the server and is not interpreted or modified by the client.

Profi | eAddr

The transport-specific GIOP profile selected for the target’s
IOR by the client ORB.

Note: Inthe BEA Tuxedo 8.0 product, this discriminator
value is not supported, but is provided for future
support of GIOP 1.2.

Ref er enceAddr

Thefull IOR of the target object. The

sel ected_profile_i ndex indicatesthe
transport-specific GIOP profile that was selected by the
client ORB.

Note: Inthe BEA Tuxedo 8.0 product, this discriminator
value is not supported, but is provided for future
support of GIOP 1.2.

interface_id
A NULL-terminated string that specifies the repository identifier assigned to
the interface of the object.

operation
A NULL-terminated string that specifies the name of the operation being
reguested on the target object indicated by the target member and that
supports the interface specified by the value of thei nt er f ace_i d member.

Using CORBA Request-Level Interceptors

RequestLevellnterceptor:: Requestinterceptor Interface

Description

TheRequest Cont ext dataobject containstheinformation that represents the context
in which arequest isto be processed. The context information contained in the
Request Cont ext providesinformation necessary to coordinate between the
processing of a given request and its corresponding reply.

The context information in the Request Cont ext structure cannot be modified by the
interceptor implementation. The ORB maintains ownership of the Request Cont ext
and is responsible for freeing any resources associated with the Request Cont ext
when it has completed using it.

Using CORBA Request-Level Interceptors 8-13

8 Request-Level Interceptor API

ReplyContext Structure

Synopsis Containstheinformation that representsthe context in which areply isto be processed.

C++Binding struct Repl yCont ext
{

I nterceptors::Version struct_version;
CORBA: : ULong request _id;
ReplyStatus reply_status;

’

Members struct _version
Anindication of theversion of the Repl yCont ext that providesan indication
of the format and members. The version information is separated into the
following two pieces:

Version Member Description

maj or _version Indicates the major version value. The value of this
member isincremented anytime a change is made to the
contents or layout of aRepl yCont ext that is not
backward compatible with previous versions.

m nor _version Indicates the minor version value. The value of this
member isincremented anytime a change is made to the
contents or layout of a Repl yCont ext that isbackward
compatible with previous versions.

request _id
An unsigned long vaue that specifies the identifier assigned to arequest by
the initiating ORB.

reply_status
Indicates the compl etion status of the associated request, and also determines
part of the reply body contents.

StatusValue Description

NO_EXCEPTI ON Indicates that the requested operation
completed successfully and that the val ue of the
ar g_st r eamparameter contains the return
values of the operation.

8-14 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: Requestinterceptor Interface

Description

Status Value

Description

USER_EXCEPTI ON

Indicates that the requested operation failed
because of an exception reported by the target
object.

SYSTEM _EXCEPTI ON

Indicates that the request operation failed
because of an exception reported either by the
target object or by the infrastructure.

LOCATI ON_FORWARD

Indicates that the body contains an object
reference (IOR). The client ORB isresponsible
for resending the original request to that
(different) object. Thisresending is transparent
totheclient program making therequest, but the
resending is not transparent to the interceptor.

LOCATI ON_FORWARD_PERM

Indicates that the body contains an object
reference. The usageis similar to

LOCATI ON_FORWARD, but when used by a
server, thisvalue also provides an indication to
the client that the client may replacethe old |OR
with the new 10R. Both the old IOR and the
new IOR arevalid, but the new |OR is preferred
for future use. Thisresending is transparent to
the client program making the request, but the
resending is not transparent to the interceptor.

NEEDS_ADDRESSI NG_MODE

Indicates that the body contains a

G OP: : Addressi ngDi sposi tion. The
client ORB is responsible for resending the
origind request using the requested addressing
mode. Thisresending istransparent to the client
program making the request, but the resending
is not transparent to the interceptor.

The Repl yCont ext data object containsthe information that represents the context in
which areply isto be processed. The context information contained in Repl yCont ext
provides information necessary to coordinate between the processing of a given

request and its corresponding reply.

Using CORBA Request-Level Interceptors 8-15

8 Request-Level Interceptor API

The context information in Repl yCont ext cannot be modified by the interceptor
implementation. The ORB maintains ownership of Repl yCont ext and is responsible

for freeing any resources associated with Repl yCont ext when it has completed using
it.

8-16 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: Requestinterceptor Interface

Requestinterceptor::exception_occurred

Synopsis

C++ Binding

Parameters

Exceptions

Description

Return Values

Iscalled by the ORB to allow the interceptor to clean up any state that the interceptor
might have been managing that is specific to a request.

virtual void
exception_occurred(const ReplyContext & reply_context,
CORBA: : Exception_ptr excep_val) = 0;

reply_cont ext
A reference to aRepl yCont ext that contains information about the context
in which the reply is being performed.

excep_val
A pointer to the exception reported by the ORB or by another interceptor.

None.

The excepti on_occur r ed operation is called on a request-level interceptor
implementation in one of three cases:

1. Another interceptor sets an exception (rather than an exception being generated by
the ORB or the method).

2. The ORB detects an operating system or communication-related problem.

3. Aclient deletesaRequest object that was used to initiate a deferred synchronous
DII. Theexcepti on_occurred method is called instead of the
client_response ortarget_response method of that interceptor. The ORB
callstheexcepti on_occur red method to allow the interceptor implementation
to clean up any state that it might have been managing that is specific to a
request.

None.

Using CORBA Request-Level Interceptors 8-17

8 Request-Level Interceptor API

RequestLevellnterceptor::
ClientRequestinterceptor Interface

Thisisthe baseinterface of all request-level interceptors. It inherits directly from the
Request Level I ntercept or: : Request | nt er cept or interface. The interface
contains the set of operations and attributes that are supported by all client-side
request-level interceptors.

Listing 85 OMG IDL Definition

/1 File: RequestLevellnterceptor.idl

#i f ndef _REQUEST LEVEL_I NTERCEPTOR | DL
#define REQUEST LEVEL_| NTERCEPTOR | DL

#include <orb.idl>
#i nclude <G op.idl >
#include <Interceptors.idl>

#pragma prefix “beasys. conf

nmodul e Request Level I ntercept or

{

|l ocal CientRequestinterceptor : Requestlnterceptor
{
I nvokeRet ur nSt at us
client_invoke(

in Request Cont ext request _context,
in Servi ceCont ext Li st service_context,
in CORBA: : Dat al nput Stream request_arg_stream
in CORBA: : DataQut put Stream reply_arg_stream
out Except i onVal ue excep_val

)

ResponseRet ur nSt at us
client_response(

in Repl yCont ext reply_context,
in Servi ceCont ext Li st service_context,
in CORBA: : Dat al nput Stream arg_stream

out Excepti onVal ue excep_val

)

8-18 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: ClientRequestinterceptor Interface

}s
}s
#endif /* _REQUEST LEVEL_ | NTERCEPTCR IDL */

The implementation of the operations _dupl i cat e, _narrow, and _ni | areinherited
indirectly from the implementation of the CORBA: : Local Base interface provided by

the CORBA ORB in the BEA Tuxedo product.

Listing 8-6 C++ Declaration

#i f ndef _RequestLevel I nterceptor_h
#defi ne _RequestLevellnterceptor_h

#i ncl ude <CORBA. h>

#i ncl ude <l OP. h>

#i ncl ude <@ OP. h>

#i ncl ude <Interceptors. h>

cl ass OBBEXPDLL Request Level I nterceptor
{
public:
cl ass d i ent Request I nterceptor;
typedef dientRequestlnterceptor *
CientRequest!nterceptor _ptr;

class OBBEXPDLL d ientRequestl| nterceptor
public virtual Requestlnterceptor
{

public:
static dientRequestlnterceptor_ptr
_duplicate(dientRequestinterceptor_ptr obj);
static dientRequestlnterceptor_ptr
_narrow(Cl i ent Request | nterceptor_ptr obj);
inline static dientRequestlnterceptor_ptr
_nil() { return O; }

virtual |Interceptors::InvokeReturnStatus
client_invoke(
const Request Context & request_context,
Ser vi ceCont ext Li st _ptr service_cont ext,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

virtual |Interceptors::ResponseReturnStatus
client_response(

Using CORBA Request-Level Interceptors

8-19

8 Request-Level Interceptor API

const ReplyContext & reply_context,
Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

pr ot ect ed:
Cli ent Request | nter cept or (CORBA: : Local Base _ptr obj = 0) { }
virtual ~ClientRequestinterceptor(){ }

private:
Client RequestInterceptor(const CientRequestlnterceptor&)
{1}
voi d operator=(const ClientRequestlnterceptor& { }
}; I/ class dientRequestlnterceptor
b
#endif /* _RequestLevel Interceptor_h */

8-20 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: ClientRequestinterceptor Interface

ClientRequestinterceptor::client_invoke

Synopsis

C++ Binding

Parameters

Exceptions

Is called by the client-side ORB anytime the client application sends an invocation to
atarget object.

virtual Interceptors::InvokeReturnStatus
client_invoke(
const Request Context & request_context,
Servi ceCont ext Li st_ptr service_cont ext,
CORBA: : Dat al nput St ream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

request _cont ext
A reference to a RequestContext that contains information about the context
in which the request is being performed.

servi ce_cont ext
A pointer toaSer vi ceCont ext Li st containing service context information
to be sent as part of the request to the target object.

Note: In BEA Tuxedo 8.0, the value of this parameter is alwaysanil object.

request _arg_stream
A pointer to a Dat al nput St r eamthat can be used by the interceptor
implementation to retrieve the value of the parameter of the operation.
TheDat al nput St r eamcontainsall i n andi nout parameters, intheorder in
which they are specified in the operation’s IDL definition, from left to right.
A nil Dat al nput St r eamindicates that no arguments exist.

reply_arg_stream
A pointer to a CORBA: : Dat aQut put St r eamthat can be used to populate the
parameters to be returned to theinitiator of theinvocation asareply. The use
of this parameter is only valid if astatus of REPLY_NO_EXCEPTI ONiis
returned.

Note: In BEA Tuxedo 8.0, the value of this parameter is always anil object.

excep_val
A reference to alocation in which the interceptor can return an exception in
order to report an error. The use of this parameter is only valid if a status of
REPLY_EXCEPTI ONisreturned. Note that the ORB is responsible for the
memory management for the excep_val parameter.

None.

Using CORBA Request-Level Interceptors 8-21

8 Request-Level Interceptor API

Description

Return Values

Thecl i ent _i nvoke operation is called on an interceptor implementation that
supports the Request Level I nt ercept or: : C i ent Request | nt er cept or
interceptor interface. The operation is called by the ORB anytimethat aninvocation is
being sent to atarget object, regardless of whether the target object isin a different
address space or the same address space as the target object.

I NVOKE_NO_EXCEPTI ON
Indicates that the interceptor successfully performed any processing required
and that the ORB should continue processing the invocation in order to
deliver it to the target object.

REPLY_NO_EXCEPTI ON
Indicates that the interceptor successfully performed any processing required
tototally satisfy the request. The ORB should consider the request compl eted
and begins processing any informationintherepl y_ar g_st r eam if any, as
the return parameter values for the request.

Note: In BEA Tuxedo 8.0, an interceptor cannot return this status value.

REPLY_EXCEPTI ON
Indicates that the interceptor encountered an error that should result in the
discontinued processing of the request toward the target. The parameter
excep_val isused to report the exception to the ORB. The ORB calls
interceptors on the way back to the client application with the
exception_occurr ed operation rather than with thecl i ent _r esponse
operation. Notethat the ORB isresponsible for the memory management for
the excep_val parameter.

8-22 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: ClientRequestinterceptor Interface

ClientRequestinterceptor::client_response

Synopsis

C++ Binding

Parameters

Is called on an interceptor implementation that supports the
Request Level I nt ercept or: : Cl i ent Request | nt er cept or interface.

virtual Interceptors::ResponseReturnStatus
client_response(
const ReplyContext & reply_context,
Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

repl y_cont ext
A referenceto aRepl yCont ext that contains information about the context
in which the reply is being performed.

servi ce_cont ext
A pointer toaSer vi ceCont ext Li st containing service context information
received as aresult of processing the request by the target object.
Note: In BEA Tuxedo 8.0, the value of this parameter is always a nil object.

arg_stream
A pointer to aDat al nput St r eamthat can be used by the interceptor
implementation to retrieve the value of the reply parameters of the operation.

Thefollowing tableidentifieswhat thecl i ent _r esponse method returnsin
the Dat al nput St r eamobject based on the status contained in the
Repl yCont ext object:

Status Value Description

LOCAT!I ON_FORWARD, A nil Dat al nput St r eamis supplied.
LOCATI ON_FORWARD_PERM

or

NEEDS_ADDRESS|I NG_MODE

NO_EXCEPTI ON The Dat al nput St r eamcontains first any operation
return value, then any i nout and out parametersin the
order in which they appear in the operation's IDL
definition, from left to right. A nil Dat al nput St ream
indicates that no arguments exist.

USER_EXCEPTI ONor TheDat al nput St r eamcontainsthe exception that was
SYSTEM _EXCEPTI ON raised by the operation.

Using CORBA Request-Level Interceptors 8-23

8 Request-Level Interceptor API

Exceptions

Description

Return Values

Note: Exceptions contain a string followed by any exception members. The
string contains the repository ID for the exception. The exception members
are passed in the same manner as a struct. A system exception contains two
unsigned long members, a minor code, and a compl etion status.

excep_val
A reference to alocation in which the interceptor can return an exception in
order to report an error. The use of this parameter is only valid if a status of
REPLY_EXCEPTI ONisreturned. Note that the ORB is responsible for the
memory management for the excep_val parameter.

None.

Theclient _response operation is called on an interceptor implementation that
supports the Request Level I nt ercept or: : C i ent Request I nt er cept or
interface. The operation is called by the ORB anytime that areply to an invocation is
being received by theinitiator of the request, regardless of whether theinitiator isin a
different address space or the same address space as the target object.

RESPONSE_NO_EXCEPTI ON
Indicates that the interceptor successfully performed any processing required
and that the ORB should continue processing the reply to the request to
deliver it to theinitiator of the request.

RESPONSE_EXCEPTI ON
Indicatesthat theinterceptor encountered an error. The parameter excep_val
is used to report the exception to the ORB. Any interceptors not yet called on
the way back to the client havetheir except i on_occur r ed operation called
by the ORB to notify them that processing the request has fail ed.

8-24 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: TargetRequestinterceptor Interface

RequestLevelinterceptor::
TargetRequestinterceptor Interface

Thisisthe base interface of all request-level interceptors. It inherits directly from the
Request Level | nt er cept or: : Request | nt er cept or interface. The interface
contains the set of operations and attributes that are supported by all target-side
request-level interceptors.

Listing8-7 OMG IDL Definition

/1 File: RequestLevellnterceptor.idl

#i f ndef _REQUEST LEVEL_| NTERCEPTOR | DL
#define _REQUEST LEVEL_| NTERCEPTOR | DL

#i ncl ude <orb.idl >
#i ncl ude <G op.idl >
#i ncl ude <Interceptors.idl>

#pragma prefix “beasys.conf

nmodul e Request Level | nt er ceptor

{

| ocal Target Requestlnterceptor : Requestlnterceptor
{
I nvokeRet ur nSt at us
target _i nvoke(

in Request Cont ext request _context,
in Ser vi ceCont ext Li st servi ce_context,
in CORBA: : Dat al nput Stream request_arg_stream
in CORBA: : Dat aQut put Stream reply_arg_stream
out Excepti onVal ue excep_val

)

ResponseRet ur nSt at us
target _response(

in Repl yCont ext repl y_context,
in Ser vi ceCont ext Li st servi ce_context,
in CORBA: : Dat al nput Stream arg_stream

out Excepti onVal ue excep_val

)

Using CORBA Request-Level Interceptors 8-25

8 Request-Level Interceptor API

}
}s
#endif /* _REQUEST LEVEL | NTERCEPTOR | DL */

Theimplementation of the operations _dupl i cate, _narrow, and _ni | areinherited
indirectly from the implementation of the CORBA: : Local Base interface provided by
the CORBA ORB in the BEA Tuxedo product.

Listing 88 C++ Declaration

#i f ndef _Request Level Interceptor_h
#def i ne _Request Level Interceptor_h

#i ncl ude <CORBA. h>

#i ncl ude <l CP. h>

#i ncl ude <d OP. h>

#i nclude <lnterceptors. h>

cl ass OCBBEXPDLL Request Level I nt er ceptor
{
public:
cl ass Tar get Request I nt er ceptor;
typedef Target Requestl|nterceptor *
Tar get Request I nter ceptor_ptr;

cl ass OBBEXPDLL Tar get Request | nt erceptor
public virtual Requestlnterceptor
{

publi c:
static Target RequestInterceptor_ptr
_duplicat e(Tar get Request I nterceptor_ptr obj);
static Target RequestInterceptor_ptr
_narrow Tar get Request I nterceptor_ptr obj);
inline static Target RequestlInterceptor_ptr
_nil() { return 0; }

virtual Interceptors::|nvokeReturnStatus target i nvoke(
const Request Context & request_context,
Servi ceCont ext Li st_ptr service_cont ext,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

virtual Interceptors:: ResponseRet urnStat us

8-26 Using CORBA Request-L evel Interceptors

RequestLevellnterceptor:: TargetRequestinterceptor Interface

target_response(
const Repl yContext & reply_context,
Servi ceContext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

prot ect ed:

Tar get Request I nt er cept or (CORBA: : Local Base_ptr obj = 0) { }
virtual ~TargetRequestinterceptor(){ }

private:
Tar get Request I nterceptor(const Target Request | nterceptor&)
{1
voi d operator=(const TargetRequestInterceptor&) { }
}; Il class Target Request | nterceptor
b

#endi f /* _RequestlLevellnterceptor_h */

Using CORBA Request-Level Interceptors ~ 8-27

8

Request-Level Interceptor API

TargetRequestinterceptor::target_invoke

Synopsis

C++ Binding

Parameters

8-28

Exceptions

Is called by the target-side ORB anytime an invocation is being received by atarget
object.

virtual Interceptors::InvokeReturnStatus
target i nvoke(
const Request Cont ext & request_context,
Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

request _cont ext
A reference to a Request Cont ext that contains information about the
context in which the request is being performed.

servi ce_cont ext
A pointertoaSer vi ceCont ext Li st containing service context information
received as part of the request to the target object.
In BEA Tuxedo 8.0, the value of this parameter is always anil object.

request_arg_stream
A pointer to a Dat al nput St r eamthat can be used by the interceptor
implementation to retrieve the value of the parameter of the operation.
TheDat al nput St r eamcontainsall i nandi nout parameters, intheorderin
which they are specified in the operation’s IDL definition, from left to right.
A nil Dat al nput St r eamindicates that no arguments exist.

reply_arg stream
A pointer to a Dat aQut put St r eamthat can be used to populate the
parametersto be returned to theinitiator of the invocation asareply. The use
of this parameter is only valid if a status of REPLY_NO_EXCEPTI ONis
returned.

In BEA Tuxedo 8.0, the value of this parameter is always anil object.

excep_val
A reference to alocation in which the interceptor can return an exception in
order to report an error. The use of this parameter is only valid if a status of
REPLY_EXCEPTI ONisreturned. Note that the ORB is responsible for the
memory management for the excep_val parameter.

None.

Using CORBA Request-Level Interceptors

RequestLevellnterceptor:: TargetRequestinterceptor Interface

Description

Return Values

Thet ar get _i nvoke operation is called on an interceptor implementation that
supportsthe Request Level I nt er cept or: : Tar get Request | nt er cept or
interface. The operation is called by the ORB anytime that an invocation is being
received by atarget object, regardless of whether the target object isin a different
address space or the same address space as the target object.

I N\VOKE_NO_EXCEPTI ON
Indicates that the interceptor successfully performed any processing required
and that the ORB should continue processing the invocation in order to
deliver it to the target object.

REPLY_NO_EXCEPTI ON
Indicates that the interceptor successfully performed any processing required
tototally satisfy the request. The ORB should consider the request completed
and begins processing any informationinther epl y_arg_streamif any, as
the return parameter values for the request.

Note: In BEA Tuxedo 8.0, an interceptor cannot return this status value.

REPLY_EXCEPTI ON
Indicates that the interceptor encountered an error that should result in the
discontinued processing of the request in order to deliver it to the target
object. Theparameter excep_val isused toreport the exceptionto the ORB.
The ORB calls interceptors on the way back to the client with the
excepti on_occurred operation, rather than with thet ar get _r esponse
operation. Notethat the ORB isresponsible for the memory management for
the excep_val parameter.

Using CORBA Request-Level Interceptors 8-29

8

Request-Level Interceptor API

TargetRequestinterceptor::target_response

C

8-30

Synopsis Iscalled by the target-side ORB anytime that areply to an invocation is being sent to
theinitiator of the request.

++Binding virtual Interceptors::ResponseReturnStatus
target _response(
const ReplyContext & reply_context,
Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput St ream ptr arg_stream
CORBA: : Exception_ptr & excep_val) = 0;

Parameters repl y_cont ext
A referenceto aRepl yCont ext that contains information about the context
in which the reply is being performed.

servi ce_cont ext
A pointer toaSer vi ceCont ext Li st containing service context information
to be sent as aresult of processing the request by the target object.
Note: In BEA Tuxedo 8.0, the value of this parameter is always anil object.

arg_stream
A pointer to aDat al nput St r eamthat can be used by the interceptor
implementation to retrieve the value of the reply parameters of the operation.

Thefollowing tableidentifieswhat thet ar get _r esponse method returnsin
the Dat al nput St r eamobject based on the status contained in the
Repl yCont ext object:

Status Value Description

LOCATI ON_FORWARD, A nil Dat al nput St r eamis supplied
LOCATI ON_FORWARD_PERM

or

NEEDS_ADDRESSI NG_MODE

NO_EXCEPTI ON The Dat al nput St r eamcontains first any operation
return value, then any i nout and out parametersin the
order in which they appear in the operation's IDL
definition, from left to right. A nil Dat al nput St r eam
indicates that no arguments exist.

USER_EXCEPTI ONor TheDat al nput St r eamcontainsthe exception that was
SYSTEM _EXCEPTI ON raised by the operation.

Using CORBA Request-Level Interceptors

RequestLevellnterceptor:: TargetRequestinterceptor Interface

Exceptions

Description

Return Values

Note: Exceptions contain a string followed by any exception members. The
string contains the repository ID for the exception. The exception members

are passed in the samemanner asast r uct . A system exception containstwo
unsigned long members, aminor code, and a completion status.

excep_val
A reference to alocation in which the interceptor can return an exception in
order to report an error. The use of this parameter is valid only if a status of
REPLY_EXCEPTI ONisreturned. Note that the ORB is responsible for the
memory management for the excep_val parameter.

None.

Thet ar get _r esponse operation is called on an interceptor implementation that
supportsthe Request Level I nt er cept or: : Tar get Request | nt er cept or
interface. The operation is called by the target-side ORB anytime that areply to an
invocationisbeing sent to theinitiator of the request, regardl ess of whether theinitiator
isin adifferent address space or the same address space as the target object.

RESPONSE_NO_EXCEPTI ON
Indicates that the interceptor successfully performed any processing required

and that the ORB should continue processing the reply to the request to
deliver it to theinitiator of the request.

RESPONSE_EXCEPTI ON
Indicatesthat the interceptor encountered an error. The parameter excep_val
isused to report the exception to the ORB. Any interceptors not yet called on
the way back to the client have their except i on_occur r ed operation called
by the ORB in order to notify them that processing the request has failed.
Note that the ORB is responsible for the memory management for the
excep_val parameter.

Using CORBA Request-Level Interceptors 8-31

8 Request-Level Interceptor API

AppRequestinterceptorlnit

Synopsis
C++ Binding

Parameters

Exceptions

Description

Return Values

Instantiates and initializes client-side and target-side interceptors.

typedef void (*AppRequestlnterceptorlnit)(
CORBA: : ORB ptr TheORB,
Request Level I nterceptor:: Client Requestinterceptor ** ClientPtr,
Request Level I nt ercept or:: Tar get Request | nt erceptor ** TargetPtr,
CORBA: : Bool ean * Ret Status);

TheORB
A pointer to the ORB object with which the implementation of the
interceptors are associated.

ClientPtr
A pointer in which to return a pointer to the instance of the
Request Level I nterceptor:: d i ent Request | nt er cept or that was
instantiated for use by the ORB.

TargetPtr
A pointer in which to return a pointer to the instance of the
Request Level I ntercept or: : Tar get Request | nt er cept or that was
instantiated for use by the ORB.

Ret St at us
A pointer to alocation into which the interceptor implementation indicates
whether the instantiation and initialization of the interceptor was successful.
A value of CORBA: : TRUE is used to indicate that instantiation and
initialization of the interceptors was successful. A value of CORBA: : FALSEis
used to indicate that the instantiation and initialization of the interceptorswas
unsuccessful for some reason.

None.

The AppRequest I nt er cept or I ni t function isauser-provided function that is used
by the ORB to instantiate and initialize client-side and target-side interceptors.

None.

8-32 Using CORBA Request-L evel Interceptors

CORBA::DatalnputStream Interface

CORBA::DatalnputStream Interface

Theabstract val uetype keywordsin IDL applied to Dat al nput St r eamindicates
that it is not the same as an interface.

Listing8-9 OMG IDL Definition

nmodul e CORBA {
/... all the rest

/1 Definitions used by Datal nput Stream

typedef sequence<any>

t ypedef sequence<bool ean>
typedef sequence<char>

typedef sequence<oct et >

typedef sequence<short >

typedef sequence<unsi gned short>
typedef sequence<| ong>

typedef sequence<unsigned | ong>
typedef sequence<fl oat >

typedef sequence<doubl e>

AnySeq;
Bool eanSeq
Char Seq;
Cct et Seq;
Shor t Seq;
UShort Seq;
LongSeq;
ULongSeq;
FI oat Seq;
Doubl eSeq;

// DatalnputStream- for reading data fromthe stream
abstract val uetype Dat al nput St ream

any
bool ean

char

octet

short

unsi gned short
| ong

unsi gned | ong
f | oat

doubl e

string

oj ect
TypeCode

voi d

voi d

read_any(); // Raises NO_| MPLEVENT

read_bool ean();

read_char ();

read_octet();

read_short();

read_ushort ()

read_| ong();

read_ul ong();

read_float();

read_doubl e()

read_string ();

read_Obj ect ()

read_TypeCode();

read_any_array(inout AnySeq seq
in unsigned | ong offset,
in unsigned | ong I ength);

/1 Rai ses NO_| MPLEMENT
read_bool ean_array(i nout Bool eanSeq seq,

Using CORBA Request-Level Interceptors 8-33

8 Request-Level Interceptor API

in unsigned |ong offset,
in unsigned long | ength);
voi d read_char _array(inout CharSeq seq,
in unsigned | ong offset,
in unsigned | ong | ength);
voi d read_octet _array(i nout CctetSeq seq,
in unsigned | ong offset,
in unsigned | ong | ength);
voi d read_short _array(i nout Short Seq seq,
in unsigned | ong offset,
in unsigned | ong | ength);
voi d read_ushort _array(inout UShort Seq seq,
in unsigned | ong of fset,
in unsigned |ong |ength);
voi d read_|l ong_array(inout LongSeq seq,
in unsigned | ong offset,
in unsigned | ong | ength);
voi d read_ul ong_array(inout ULongSeq seq,
in unsigned | ong offset,
in unsigned long | ength);
voi d read_float _array(inout Fl oatSeq seq,
in unsigned | ong offset,
in unsigned [ong | ength);
voi d read_doubl e_array(inout Doubl eSeq seq,
in unsigned | ong of fset,
in unsigned |ong |ength);

Theimplementation of CORBA: : Dat al nput St r eaminherits from

CORBA: : Val ueBase rather than from CORBA: : (bj ect . Y ou cannot use, for example,
_duplicate,_narrow and_nil operationssince they apply only to

CORBA: : Obj ect . At thistime, there is nothing of interest for usersin the

CORBA: : Val ueBase interface.

8-34 Using CORBA Request-L evel Interceptors

CORBA::DatalnputStream Interface

Listing 8-10 C++ Declaration

cl ass CORBA

{

public:

cl ass AnySeq {/* Normal sequence definition */};
t ypedef AnySeq * AnySeq_ptr;

cl ass Bool eanSeq {/* Nornmal sequence definition */};
t ypedef Bool eanSeq * Bool eanSeq_ptr;
static const CORBA:: TypeCode ptr _tc_Bool eanSeq;

cl ass Char Seq {/* Normal sequence definition */};
t ypedef Char Seq * Char Seq_ptr;
static const CORBA:: TypeCode_ptr _tc_Char Seq;

cl ass OctetSeq {/* Normal sequence definition */};
t ypedef Cctet Seq * Cct et Seq_ptr;
static const CORBA:: TypeCode ptr _tc_Cctet Seq;

cl ass ShortSeq {/* Normal sequence definition */};
t ypedef Short Seq * Short Seq_ptr;
static const CORBA:: TypeCode ptr _tc_Short Seq;

cl ass Ushort Seq {/* Nornmal sequence definition */};
t ypedef UShort Seq * UShort Seq_ptr;
static const CORBA:: TypeCode_ptr _tc_UShort Seq;

cl ass LongSeq {/* Normal sequence definition */};

t ypedef LongSeq * LongSeq_ptr;
static const CORBA:: TypeCode_ptr _tc_LongSeq;

cl ass U ongSeq {/* Nornmal sequence definition */};
t ypedef ULongSeq * ULongSeq_ptr;
static const CORBA:: TypeCode_ptr _tc_ULongSeq;

cl ass Fl oat Seq {/* Nornal sequence definition */};
t ypedef Fl oat Seq * Fl oat Seq_ptr;
static const CORBA:: TypeCode_ptr _tc_Fl oat Seq;

cl ass Doubl eSeq {/* Nornmal sequence definition */};

t ypedef Doubl eSeq * Doubl eSeq_ptr;
static const CORBA:: TypeCode_ptr _tc_Doubl eSeq;

Using CORBA Request-Level Interceptors 8-35

8

Request-Level Interceptor API

cl ass OBBEXPDLL Dat al nput Stream :

public:
static Datal nputStream ptr _downcast (Val ueBase _ptr obj)

public virtua

Val ueBase

/1 Rai ses NO_| MPLEMENT

AnySeq & seq,

ULong | ength);

ULong | ength);
Char Seq & seq,
ULong | ength);
Octet Seq & seq,
ULong | ength);
Short Seq & seq,
ULong | ength);

ULong | ength);
LongSeq & seq,
ULong | ength);
ULongSeq & seq,
ULong | ength);
Fl oat Seq & seq,
ULong | ength);

ULong | ength);

virtual Any * read_any ();
vi rtual Bool ean read_bool ean ();
virtual Char read_char ();
virtual Cctet read_octet ();
virtual Short read_short ();
virtual UShort read_ushort ();
virtual Long read_long ();
virtual ULong read_ul ong ();
virtual Fl oat read float ();
virtual Double read_doubl e ();
virtual Char * read_string ();
virtual Object_ptr read_Object ();
virtual TypeCode_ ptr read_TypeCode ();
virtual void read _any_array (
ULong of f set,
/1 Rai ses NO_| MPLEMENT
virtual void read_bool ean_array(Bool eanSeq & seq,
ULong of f set,
virtual void read char_array (
ULong of f set,
virtual void read octet_array (
ULong of f set,
virtual void read short_array (
ULong of f set,
virtual void read_ushort_array (UShortSeq & seq
ULong of f set,
virtual void read |ong_array (
ULong of f set,
virtual void read_ulong_array (
ULong of f set,
virtual void read_float_array (
ULong of fset,
virtual void read_double_array (Doubl eSeq & seq
ULong of f set,
protected:
Dat al nput Stream(){ };
virtual ~Datal nputStream(){ }
private:
voi d operator=(const Datal nputStream&) { }
b
8-36 Using CORBA Request-L evel Interceptors

CORBA::DatalnputStream Interface

typedef Dat al nput St ream * Dat al nput Stream ptr;
b

Using CORBA Request-Level Interceptors ~ 8-37

8 Request-Level Interceptor API

DatalnputStream::read_<primitive>

Synopsis Returns avalue from the stream.
C++Binding <prinitive> read <primitive>();
Parameters None.
Exceptions None.

Description ~ Theoperationsto read aprimitiveelement (<pri m ti ve>) fromabDat al nput St r eam
all have the same format. Each operation returns a value from the stream.

Note: String_var, TypeCode_var, Or Obj ect _var can be used for memory
management. Otherwise, strings must be released using the stri ng_free()
operation on the CORBA object, and TypeCode or Cbj ect pointers must be
released using ther el ease() operation on the CORBA object.

The primitives are the following:

AnySeq (Not implemented)
Bool eanSeq

Char Seq

Cct et Seq

Shor t Seq

Ushort Seq

LongSeq

U ongSeq

Fl oat Seq

Doubl eSeq

Return Values None.

8-38 Using CORBA Request-L evel Interceptors

CORBA::DatalnputStream Interface

DatalnputStream::read_array_<primitive>

Synopsis
C++ Binding

Parameters

Exceptions

Description

Return Values

Returns an array of primitive values from the stream into a CORBA sequence.

void read_array_<primtive>(<primtive>Seq & seq,
ULong of f set,
ULong | ength);

<primtive>Seq
A sequence of the appropriate type that will receive the array elementsread.

If the sequence was not long enough to contain the additional elements, the
length will be set to the sum offset+length. (The length will not be adjusted
down.)

O f set
The offset into the array to read the elements. That is, the array will have new
elements starting at array index offset up to array index offset+length-1.

Length
The number of elements of the array to be returned into the seq parameter.

None.

The operations to read an array of primitive elements (<pri mi ti ve>) froma
Dat al nput St r eamall have the same format. Each operation returns an array of
primitive values from the stream into a CORBA sequence of that same primitive type.

The primitives are the following:

AnySeq (Not implemented)
Bool eanSeq

Char Seq

Cct et Seq

Short Seq

Ushort Seq

LongSeq

U ongSeq

FI oat Seq

Doubl eSeq

None.

Using CORBA Request-Level Interceptors 8-39

8 Request-Level Interceptor API

8-40 Using CORBA Request-Level Interceptors

CHAPTER

A Starter Request-Level
Interceptor Files

This appendix contains the following code that you can use as a place to start
implementing your interceptors:

m Starter Implementation Code
m Starter Header File Code

If you use this code, replace the string Your I nt er cept or with the name of the
interceptor you are implementing.

Starter Implementation Code

#i f defined(WN32)
#i ncl ude <wi ndows. h>
#endi f

#i ncl ude <ctype. h>

#i ncl ude "Yourl nterceptor.h"

/1 deanup class -- suggested
cl ass C eanup
{

public:

Cleanup() {}

~d eanup()

Using CORBA Request-Level Interceptors

A-1

A Starter Request-Level Interceptor Files

/1l <<<Fill in your code here>>>

}
b
static C eanup C eanupOnl mageExit;

#def i ne SECURI TY_BUFFSI ZE 100

#if defi ned(W N32)
/'l suggestion for standard DLL processing

BOOL W NAPI DI | Mai n(HANDLE hDLL,
DWORD dwReason,
LPVA D | pReserved)

switch(dwReason)

{

case DLL_PROCESS ATTACH:
br eak;

case DLL_PROCESS DETACH
br eak;

case DLL_THREAD ATTACH:
br eak;

case DLL_THREAD_ DETACH:
br eak;

}

// Return that the operation was successful
return(TRUE);
}
#endif /* WN32 */
/***
FUNCTI ON NAME: Your I nterceptorlnit
FUNCTI ONAL DESCRI PTI O\:
Initialization routine called by the ORB during initialization.
This routine will create and return instances of the
Request Level I nterceptor classes that it supports.
NOTE: An interceptor library can support nore than one set of
interceptors by supplying multiple initialization entry points
(each initialization entry nust be separately registered with the

ORB) Also, it is legal for only one kind of interceptor to be
supplied (i.e. only a client or only a target.)

A-2 Using CORBA Request-Level Interceptors

Starter Implementation Code

***/

#i fdef WN32

extern "C' _ decl spec(dllexport) void __ cdecl

#el se

extern "C' void

#endi f

YourlInterceptorlnit(
CORBA: : ORB_ptr TheORB,
Request Level Interceptor:: ClientRequestlnterceptor ** dienthbtr,
Request Level I nt ercept or:: Tar get Request | nterceptor ** TargetPtr,
CORBA: : Bool ean * Ret St at us)

/1 <<<Fill in your code here>>>

}

/***

FUNCTI ON NAME: Yourlnterceptordient constructor

FUNCTI ONAL DESCRI PTI ON:

***/

Yourlnterceptordient:: YourlnterceptorCient(CORBA : ORB ptr TheOrb)
/1 This next line is useful, but not absolutely necessary.
morb = TheO b;

/1 <<<Fill in your code here>>>

}

/***

FUNCTI ON NAME: Your |l nterceptordient::shutdown
FUNCTI ONAL DESCRI PTI ON:

The shutdown operation is used by the ORB to notify an
i mpl ementati on of an interceptor that the interceptor
i s being shutdown. The ORB will destroy the instance
of the interceptor once control is returned fromthe
operation back to the ORB.

***/

I nt ercept ors: : Shut downRet ur nSt at us Your I nterceptorCient::shutdown(
I nt er cept or s: : Shut downReason r eason,
CORBA: : Exception_ptr & excep_val)

Using CORBA Request-Level Interceptors A-3

A Starter Request-Level Interceptor Files

/1 The following lines are a suggestion only. Replace themif you wi sh.

I nterceptors:: ShutdownReturnStatus ret_status =
I nt ercept or s: : SHUTDOAN_NO_EXCEPTI ON;
switch (reason)

{

case Interceptors:: ORB_SHUTDON:
/] <<<Fill in your code here>>>
br eak;

case Interceptors:: CONNECTI ON_ABORTED:
/] <<<Fill in your code here>>>
br eak;

case Interceptors:: RESOURCES EXCEEDED:
/] <<<Fill in your code here>>>
br eak;

}

return ret_status;

}

/***

FUNCTI ON NAME: YourlnterceptorClient::id

FUNCTI ONAL DESCRI PTI O\:
The id accessor operation is used by the ORB to obtain
the vendor assigned identity of the interceptor as a string
value. This attribute is used primarily for debugging and
tracing of operations on the interceptors called by the ORB.

***/

CORBA: : String YourlnterceptorClient::id()

{
// <<<Fill in your code here>>>
/1 The next line is a possible inplenentation that is useful
return CORBA::string_dup("Yourlnterceptordient");

}

/***
FUNCTI ON NAME: Your I nterceptorClient::exception_occurred
FUNCTI ONAL DESCRI PTI ON:

The exception_occurred operation is called on a request-Ievel
interceptor inplenentation when an exception occurs.

A-4 Using CORBA Request-Level Interceptors

Starter Implementation Code

It is called instead of the <xxx>_response

method of that interceptor. The ORB calls this operation to
allow the interceptor inplenmentation to clean-up any state

that it mght have been nanaging that is specific to a request.

***/

void YourlnterceptorCQient::exception_occurred (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
CORBA: : Exception_ptr excep_val)

{
}

/***

/] <<<Fill in your code here>>>

FUNCTI ON NAME: Yourlnterceptordient::client_invoke
FUNCTI ONAL DESCRI PTI ON:

This operation is called by the ORB anytime that an
invocation is being sent to a target object, regardless
of whether the target object is in a different address
space or the same address space as the target object.

***/
Interceptors::|lnvokeReturnStatus YourlnterceptorCient::client_invoke (

const RequestLevel I nterceptor:: Request Context & request_context,
Request Level I ntercept or: : Servi ceCont ext Li st_ptr servi ce_context,

CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put St ream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val)

/1 The next line is a suggestion that works in conjunction with the last |ine
bel ow

Interceptors::lnvokeReturnStatus ret_status =
I nterceptors:: | NVOKE_NO_EXCEPTI O\

/1 <<<Fill in your code here>>>

return ret_status,;

}

/***

FUNCTI ON NAME: Yourlnterceptordient::client_response

Using CORBA Request-Level Interceptors A-5

A Starter Request-Level Interceptor Files

FUNCTI ONAL DESCRI PTI ON:

The operation is called by the ORB anytinme that a reply
to an invocation is being received by the initiator of

the request, regardl ess of whether the initiator is in

a different address space or the sane address space as

the target object.

***/

I nterceptors:: ResponseReturnStatus Yourlnterceptordient::client_response (

const Request Level I nterceptor:: Repl yCont ext & reply_context,
Request Level I nt erceptor:: Servi ceCont ext Li st_ptr servi ce_cont ext,
CCORBA: : Dat al nput St ream ptr arg_stream
CORBA: : Exception_ptr & excep_val)

/1 The next line is a suggestion that works in conjunction with the last line
bel ow

/1 See the exanples for other suggestions of general use

Interceptors:: ResponseReturnStatus ret_status =
I nterceptors: : RESPONSE_NO_EXCEPTI ON,

// <<<Fill in your code here>>>

return ret_status;

}

/***

FUNCTI ON NAME: Your I nt er cept or Target construct or
FUNCTI ONAL DESCRI PTI O\:

This function constructs the target interceptor instance.
Thi s exanpl e provi des data nmenbers that could be used to
i mpl ement a security interceptor.

***/
Your | nt er cept or Tar get : : Your | nt er cept or Tar get (CORBA: : ORB_ptr TheO b)
m or b(TheOrb), /1 suggestion
msecurity_current(0), // suggestion for security interceptors
mattributes_to_get(0) // suggestion for security interceptors

A-6 Using CORBA Request-Level Interceptors

Starter Implementation Code

/] <<<Fill in your code here>>>

/***

FUNCTI ON NAME: Your I nt er cept or Tar get : : shut down
FUNCTI ONAL DESCRI PTI ON:

The shutdown operation is used by the ORB to notify an
i npl enentation of an interceptor that the interceptor
is being shutdown. The ORB will destroy the instance
of the interceptor once control is returned fromthe
operation back to the ORB.

***/

I nt er cept ors: : Shut downRet ur nSt at us Your I nt er cept or Tar get : : shut down(

I nterceptors:: Shut downReason reason,
CORBA: : Exception_ptr & excep_val)
/] <<<Fill in your code here>>>

/1 The following lines are a suggestion only. Replace themif you w sh.
I nterceptors:: ShutdownRet urnStatus ret_status =

I nterceptors:: SHUTDOWN_NO_EXCEPTI ON;
swi tch (reason)

case Interceptors:: ORB_SHUTDOMN

/1 <<<Fill in your code here>>>
br eak;

case I nterceptors:: CONNECTI ON_ABORTED:
/1 <<<Fill in your code here>>>
br eak;

case | nterceptors:: RESOURCES EXCEEDED:
/1 <<<Fill in your code here>>>
br eak;

}

return ret_status,;

}

/***

FUNCTI ON NAME: YourlnterceptorTarget::id

Using CORBA Request-Level Interceptors A-7

A Starter Request-Level Interceptor Files

FUNCTI ONAL DESCRI PTI ON:

The id accessor operation is used by the ORB to obtain

the vendor assigned identity of the interceptor as a string
value. This attribute is used primarily for debuggi ng and
tracing of operations on the interceptors called by the ORB.

***/

CORBA: : String YourlnterceptorTarget::id()

{
// <<<Fill in your code here>>>
/1 The next line is a possible inplenentation that is useful
return CORBA::string_dup("YourlnterceptorTarget");

}

/***

FUNCTI ON NAME: Your | nt er cept or Target : : excepti on_occurred
FUNCTI ONAL DESCRI PTI O\:

The exception_occurred operation is called on a request-Ievel
interceptor inplenentation when an exception occurs.

It is called instead of the <xxx>_response

met hod of that interceptor. The ORB calls this operation to

all ow the interceptor inplementation to clean-up any state

that it m ght have been nmanaging that is specific to a request.

***/

voi d YourlnterceptorTarget::exception_occurred (
const Request Level Interceptor::Repl yContext & reply_context,
CORBA: : Exception_ptr excep_val)

// <<<Fill in your code here>>>

}

/***

FUNCTI ON NAME: Your | nt erceptor Target : : target_i nvoke
FUNCTI ONAL DESCRI PTI O\:
The operation is called by the ORB anytime that an
invocation is being received by a target object,

regardl ess of whether the target object is in a
different address space or the sanme address space

A-8 Using CORBA Request-Level Interceptors

Starter Implementation Code

as the target object.

***/

Interceptors::|nvokeReturnStatus YourlnterceptorTarget::target_invoke (

const RequestLevel | nt erceptor:: Request Context & request _context,
Request Level I nterceptor:: Servi ceCont ext Li st_ptr servi ce_context,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg _stream
CORBA: : Exception_ptr & excep_val)

/1 The next line is a suggestion that works in conjunction with the last |ine
bel ow

I nterceptors::lnvokeReturnStatus ret_status =
I nterceptors:: | NVOKE_NO_EXCEPTI ON;

/1 <<<Fill in your code here>>>

return ret_status,;

}

/***

FUNCTI ON NAME: Your I nterceptorTarget::target_response
FUNCTI ONAL DESCRI PTI ON:

The operation is called by the ORB anytinme that a reply
to an invocation is being sent to the initiator of the
request, regardl ess of whether the initiator is in a

di fferent address space or the same address space as
the target object.

***/

I nterceptors:: ResponseRet urnSt at us Your | nterceptorTarget: :target_response (

const RequestLevel Interceptor:: ReplyContext & reply_context,
Request Level I ntercept or: : Servi ceCont ext Li st_ptr servi ce_context,
CORBA: : Dat al nput Stream ptr arg_stream
CORBA: : Exception_ptr & excep_val)

/1 The next line is a suggestion that works in conjunction with the last |ine
bel ow

I nterceptors::ResponseReturnStatus ret_status =

Using CORBA Request-Level Interceptors A-9

A Starter Request-Level Interceptor Files

I nt er cept or s: : RESPONSE_NO_EXCEPTI ON;
/] <<<Fill in your code here>>>

return ret_status;

}

/***

FUNCTI ON NAME: Your I nt er cept or Target destructor

FUNCTI ONAL DESCRI PTI ON:

***/

Your I nt er cept or Tar get : : ~Your I nt er cept or Tar get ()

{

/] <<<Fill in your code here>>>

Starter Header File Code

#i ncl ude <CORBA. h>
#i ncl ude <RequestLevel I nterceptor. h>
#i nclude <security_c. h> /lused with security

class Yourlnterceptordient : public virtual
Request Level I nterceptor:: Client Request | nt erceptor
L
privat e:
YourInterceptordient() {}
CORBA: : ORB_ptr m.orb;
public:
Your I nterceptord ient (CORBA:: ORB_ptr TheOrb);
~YourlnterceptorClient() {}
I nterceptors:: ShutdownRet ur nSt at us shut down(
I nt er cept or s: : Shut downReason reason,
CORBA: : Exception_ptr & excep_val);
CORBA: : String id();

A-10 Using CORBA Request-Level Interceptors

Starter Header File Code

voi d exception_occurred (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
CORBA: : Exception_ptr excep_val);

I nterceptors::lnvokeReturnStatus client_invoke (
const RequestLevel | nt erceptor:: Request Context & request _context,
Request Level I nterceptor:: Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : DataQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val);

I nterceptors:: ResponseReturnStatus client_response (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
Request Level I nterceptor: : Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr arg_stream
CORBA: : Exception_ptr & excep_val);

}s

cl ass YourlnterceptorTarget : public virtual
Request Level I nt erceptor: : Tar get Request | nt er cept or

{

private:

Your |l nterceptorTarget () {}
CORBA: : ORB_ptr morb;
Securitylevel 1:: Qurrent _ptr msecurity_current; /lused with security
Security::AttributeTypelList * mattributes_to_get; //used with security
publi c:
Your | nt ercept or Tar get (CORBA: : ORB_ptr TheO b);
~Your | nt erceptor Target () ;
I nt er cept ors: : Shut downRet ur nSt at us shut down(
I nterceptors:: ShutdownReason reason,
CORBA: : Exception_ptr & excep_val);
CORBA: : String id();
voi d exception_occurred (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
CORBA: : Exception_ptr excep_val);
Interceptors::lnvokeReturnStatus target_invoke (
const RequestLevel I nterceptor:: Request Context & request_context,
Request Level I nterceptor: : Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr request_arg_stream
CORBA: : Dat aQut put Stream ptr reply_arg_stream
CORBA: : Exception_ptr & excep_val);
I nterceptors:: ResponseRet urnStatus target_response (
const RequestLevel I nterceptor:: ReplyContext & reply_context,
Request Level I nterceptor: : Servi ceCont ext Li st_ptr service_context,
CORBA: : Dat al nput Stream ptr arg_stream
CORBA: : Exception_ptr & excep_val);

Using CORBA Request-Level Interceptors A-11

A Starter Request-Level Interceptor Files

A-12 Using CORBA Request-Level Interceptors

Index

A
AppRequestl nterceptorlnit operation 8-33

B

Bootstrap object
invoking in an interceptor 1-4

C

client interceptors

return status values 1-8
client_invoke operation 8-22
client_response operation 8-24
ClientRequestI nterceptor interface 8-19
client-side interceptors 1-6
CONNECTION_ABORTED 8-8
customer support contact information ix

D

Datal nputStream interface 8-34
DataOutputStream interface 8-2
deploying interceptors 2-10
documentation, where to find it viii

E

exception_occurred operation 8-18

I
id operation 8-7
Interceptor interface 8-3
interceptor sample
building and running 5-2
InterceptorData sample interceptor 7-1
interceptors
architecture summary 1-2
class hierarchy 8-2
deploying 2-10
developing 2-1, 3-1
execution on client side 1-6
execution walkthrough 1-5
instantiating 1-5
InterceptorData sample 7-1
overview 1-1
purpose of 1-4
return status values on client 1-8
return status values on target 1-12
shutting down 8-8
using multiple 1-14
InterceptorSec sample interceptor
interceptors
InterceptorSec sample 6-1
InterceptorSimp sample interceptor
interceptors
InterceptorSimp sample 5-1
interfaces 2-2
ClientRequestI nterceptor 8-19
Datal nputStream 8-34
Interceptor 8-3

Using CORBA Request-Level Interceptors -1

Requestinterceptor 8-9
TargetRequesti nterceptor 8-26

K
KeyAddr discriminator value 8-12

L

LOCATION_FORWARD 8-15
LOCATION_FORWARD_PERM 8-15

M
multiple interceptors 1-14

N

NEEDS ADDRESSING_MODE 8-15
NO_EXCEPTION 8-15

0
object_to_string operation 8-1
ORB_SHUTDOWN 8-8

P

PersonQuery sample application 4-1
building and running 4-8
command-line interface to 4-3
database for 4-2
environment variables for 4-13
OMG IDL for 4-5
running 4-14
source filesfor 4-8

printing product documentation viii

ProfileAddr discriminator value 8-12

R
read primitive 8-39

[-2 Using CORBA Request-Level Interceptors

read_array primitive 8-40
ReferenceAddr discriminator value 8-12
related information ix
ReplyContext structure 8-15
RequestContext structure 8-12
Requestlnterceptor interface 8-9
request-level interceptors

overview 1-1

See also interceptors 1-1

See interceptors
RESOURCES_EXCEEDED 8-8
return status values

on client side 1-8

target 1-12

S

security current object

obtaining 1-4
SecurityCurrent object

obtaining in an interceptor 1-4
shutdown operation 8-8
skeleton header file

creating 2-8
support

technical ix
SYSTEM_EXCEPTION 8-15

T

target interceptor return status values 1-12
target_invoke operation 8-29
target_response operation 8-31
TargetRequestInterceptor interface 8-26
target-side interceptors 1-10
transactions context object 1-4

U
USER_EXCEPTION 8-15

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to CORBA Request-Level Interceptors
	Interceptor Architecture
	Capabilities and Limitations
	Execution Flow
	Client-side Execution
	Client-side Exception Handling

	Target-side Execution
	Target-side Exception Handling

	The exception_occurred Method
	About Short-circuit Behavior

	Using Multiple Request-Level Interceptors
	Multiple Client-side Interceptors
	Multiple Target-side Interceptors

	Interceptors and Meta-Operations

	2 Developing CORBA Request-Level Interceptors
	Step 1: Identify the Interfaces of Your CORBA Application
	Step 2: Write the Interceptor Implementation Code
	Starting the Implementation File
	Initializing the Interceptor at Run Time
	Obtaining the Interface Name from a Request
	Identifying Operations in the Request
	Implementing the Interceptor’s Response Operation
	Reading Parameters Out of a Data Input Stream
	Exceptions

	Step 3: Create the Interceptor Header File
	Step 4: Build the Interceptor
	Step 5: Test the Interceptor

	3 Deploying CORBA Request-Level Interceptors
	Registering an Interceptor
	Unregistering an Interceptor
	Changing the Order in Which Interceptors Are Called

	4 PersonQuery Sample Application
	How the PersonQuery Sample Application Works
	PersonQuery Database
	Client Application Command-line Interface

	The OMG IDL for the PersonQuery Sample Application
	Building and Running the PersonQuery Sample Application
	Copying the Files for the PersonQuery Sample Application
	Changing the Protection on PersonQuery Application Files
	Setting the Environment Variables
	Building the CORBA Client and Server Applications
	Start the PersonQuery Client and Server Applications
	Running the PersonQuery Sample Application
	Stopping the PersonQuery Sample Application

	5 InterceptorSimp Sample Interceptors
	How the PersonQuery Sample Interceptors Work
	Registering and Running the PersonQuery Interceptors
	Examining the Output of the Interceptors
	Unregistering the Interceptors
	Unregistering the Interceptors

	6 InterceptorSec Sample Interceptors
	How the PersonQuery Sample Interceptors Work
	How the InterceptorSec Target-side Interceptor Works
	Using the SecurityCurrent Object
	Obtaining the SecurityCurrent Object
	Creating the List of User Attributes

	Registering and Running the PersonQuery Interceptors
	Examining the Interceptor Output
	Unregistering the Interceptors

	7 InterceptorData Sample Interceptors
	InterceptorDataClient Interceptor
	InterceptorDataTarget Interceptor
	Implementing the InterceptorData Interceptors
	Registering and Running the InterceptorData Interceptors
	Examining the Interceptor Output
	Unregistering the Interceptors

	8 Request-Level Interceptor API
	Note on Unused Interfaces
	Interceptors::Interceptor Interface
	Starter Implementation Code
	Starter Header File Code

	Index

