2?77,

7 hea
BEA Tuxedo

ATMI C Function Reference

BEA Tuxedo Release 8.0
Document Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document i s subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
ATMI C Function Reference

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

Section 3c - C Functions
Introduction to the C Language Application-to-Transaction Monitor Interface...7

AEMSethl 0CKINGNOOK(BC) ...ueuveneeeeeeieeeie ettt e 43
AEOQAALYPESW(BC) .vrervenerreiieneete ettt ettt st er e b bes e bbb s enas 45
AEPISDIOCKEA(BC) ... vttt 48
ABEWSEUNSOI(BC) ..vcvveuentenenieeie ettt ettt er et er et er e s es s e e e e e e 49
BUFFEI(BC) vt e e s e e e s 50
CAIGELS(BC) vt evee ettt ettt ettt ettt bbbt e b e e e e e e s 59
CALOPEN, CACIOSE(BC) ..ueviueerireeteniet ettt e s st e e 60
ECTMEA (BC) vttt e st s e e e e 62
OP_MKEME(BE) +.ueevene ettt e e e e e e e 65
NI_1BNGINTFO(3C) 1.ttt e e e e e e s 69
rpc_sm_allocate, rpC_sS allOCAE(3C)ovevvruererieeirieire e e 70
rpc_sm_client_free, rpc_ss client_free(3C) ..ovvovve v vereee v 72
rpc_sm_disable alocate, rpc_ss disable allocate(3C)ovvveveeeeriereneneineeiens 74
rpc_sm_enable alocate, rpc_ss enable allocate(3C)covveevererierenenieneeiens 75
rPC_SM_free, rPC_SS FrEQ(3C) .ovevirierireciiriee et e e s 77
rpc_sm_set client_aloc free, rpc_ss set client_aloc_free(3c)c.cccovveveennnnen. 78
rpc_sm_swap client_aloc_free, rpc_ss swap_client_alloc_free(3c) 80
SEHIOCAIE(BC) v v vttt et et r e en e 82
SEFEITOI(BC) . ev et erene ettt ettt ettt eb et er et eb et bt er e en e en e en b nen 84
SEFLIME(BC) vttt et r et er et n e r e en e 85
EPAIOOIT(BC) +.evire ettt e e e e e e 88
EPBCAII(BC) vt vttt e e e e e e 90
TPAAMCAIT(BC) .enevie ettt 93

ATMI C Function Reference iii

iv

TPAOVEITISE(BC) ..uveuvrinieriie ettt 96

EPAITOC(BEC) + vttt bbb e 98
EPDEOIN(BC) vttt e e e e 100
tPDrOBACAS(BE) ..veuvvereerenteee et e 102
EPCAIT(BEC) - envrerte ettt et 105
EPCANCEI (BC) vt e e ettt e e 110
EPCNKAUEN(BC) ...t 111
EPCNKUNSOI (BC) vttt e e 113
EPCIOSE(BC) uveeeeeiire ettt e e e e e 115
EPCOMIMIT(BE) .ttt bbb et 116
EPCONNECL(BC) -.eveuveninieeie ettt ettt ettt bbb et et eb et 119
EPCONVEIT(SC) .vvvveveeeetet et s st e e e 122
EPCTYPLIW(BEC) - vttt sttt ettt st sn et e 124
EPACGUEUE(BC) .ottt e e e e 126
EPAISCON(BEC) +vvveneeninteenie ettt ettt ettt r e e et er e ene e 135
EPENQUEUE(BC) .evieie ittt e e e 137
EPENVEIOPE(BC) -ovivieeiiee ettt e e e 148
tPEITOrAELAII (3C) .euvvireeriie s e e 152
EPEXPONT(BC) +evvereneeneniee ettt ettt ettt ettt er bbbttt 155
EPFOrWAIT(BC) -eeeeeeetee ettt et et 157
EPFTEE(BC) veueereeeer ettt e e e 160
tPGEtBMKEY(BC) ..ottt e 161
EPGELCEXE(BC) + vttt ettt ettt st 162
EPGELIEV(BC) vttt e e 164
EPGELIPIY(BC) vttt e e 165
EPOPITO(BE) cuvenereneee ettt e e e 170
EPIMPONT(BC) vttt ettt ettt bbbttt 172
L1011 Lo ST 174
110N Ve [0S = o) TSRO 183
11015V (= 1141 0] (o) OSSPSR 184
TPKEY OPEN(BC) ettt ettt ettt e et ee e e e e e 187
110NV = (a1 o] o) ISR 190
110101001 VZ <o) ISP 191
110700 1= o) TSSOSO 194
119010151 (o) [OOSR 195

ATMI C Function Reference

EPFEAIIOC(BEC) v vttt e e e e e e 199

EOFECV(BE) - nvventet ettt ettt b et bbb bbbttt 201
EOFESUME(BC) +nvveaet ettt ettt ettt eb et e bbb b et en et et 206
EOFELUMNI(BC) .ttt e e b e e 208
EPSCIME(BC) v vttt et e e e e en e e s 212
EOSEEI(BC) +nveveneerenter ettt ettt ettt h et bt r bbb n e et 215
EPSENU(BC) vttt ettt et e et 216
EPSEIVICE(BC) +euvrettiie sttt sttt et ettt et r bbb r e e et 220
EPSELCEXE(BEC) vttt ettt e e e e 223
EPSELUNSOI(BC) +uevereereiereiet ettt st e 225
EDSION(BEC) - envvereerenter ettt et e e e er e 227
EOSPIIO(BC) vttt ettt ettt et e e e e en e 228
EOSEFEITON(BC) 1ttt ettt ettt r et er e n e e et 230
tPSLFETOrAELA] (BC) ..veuveveier et e 231
TPSUDSCIIDE(BC) ..viveeviiet ittt e e 233
EPSUSPENA(3C) .. cver ettt ettt st e e e e e en e e 241
TPSVIAONE(BC) ...ttt e s e er e e 243
EOSVIINIT(BC) vttt e e e e e e 244
TPSVIArAONE(3C) ..ovevieicriiee et e e e e e 246
EPSVIEAITNIT(BC) c.vvie ettt e e e e 247
EPEEIITI(BC) vttt e e e 249
EPEYPES(BC) - vttt e e e e e e 252
TPUNAOVEITISE(BC) . eveverinier ettt e e e e e 253
tPUNSUDSCITDE(BC) .veee et e e e e 255
TRY (BC) cttttteerteie st et esesee e st se et e ses s et e e be e e e b e ee st e ae st e et s s benenenen 258
TUXGELENV(BC) vt evee ettt ettt e e e e en e e 267
LI 8101 1= 1/ (T TSRS 268
L= o (= 01V o) TSP 269
LR o 1= 11 To) OSSR 272
LR e 0 =T o TSP 274
Lo w0 1010 T o) ISR 276
LG 1110 < o) TSP 279
LR 0] 1< (o) TSRS 281
LG 0 o= (o TP 283
S = oo 00 o T A = (0 g o) I TR 286

ATMI C Function Reference Y,

Vi

tX_set_transaction_CONEIOI(3C) ...oevververeerreee ettt 288

tX_set_transaction_tiMEOUL(3C)cceueeveriere et 290
USETTOG(BE) erveere ettt sttt ettt et e e e e e e e 292
USIONAI(BE) 1.ttt sttt ettt ettt e b e b e e e e en s 295
UUNIX_EIT(BEC) -eveueereneeteeerie et ettt ettt tes bbb e s s et st ebe e eb e en e enen 298

ATMI C Function Reference

About This Document

This document provides reference information on C language functions used in the
BEA Tuxedo ATMI environment. The reference pages are arranged in alphabetical
order by function name.

What You Need to Know

This document is intended for the following audiences:

m administrators who are interested in configuring and managing applicationsin a
BEA Tuxedo environment

m application developers who are interested in programming applicationsin a BEA
Tuxedo environment

This document assumes a familiarity with the BEA Tuxedo platform and C
programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

ATMI C Function Reference Vii

http://e-docs.bea.com

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDFin Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

Related documents are listed in the See Also section of each reference page.

Contact Us!

viii

Y our feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

ATMI C Function Reference

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

ATMI C Function Reference iX

X

Convention

Item

nonospace Indicates code samples, commands and their options, data structures and
t ext their members, datatypes, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text voi d comit ()
nonospace Identifies variables in code.
i;ii ic Exar_nple:
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui | dobjclient [-v] [-0 nane] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

ATMI C Function Reference

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

ATMI C Function Reference

Xi

Xii ATMI C Function Reference

Section 3c - C Functions

Table 1 BEA Tuxedo ATMI C Functions

Name

Description

Introduction to the C Language
Application-to-Transaction Monitor Interface

Provides an introduction to the C language ATMI

AEMs et bl ocki nghook(3c)

Establishes an application-specific blocking hook function

AECaddt ypesw(3c)

Installs or replaces a user-defined buffer type at execution time

AEPi sbl ocked(3c)

Determinesif ablocking cal isin progress

AEWS et unsol (3c)

Posts Windows message for BEA Tuxedo ATMI unsolicited
event

buf f er (3c)

Semantics of elementsint nt ype_sw_t

cat get s(3c)

Reads a program message

cat open, catcl ose(3c)

Opens/closes a message catalogue

deci mal (3c)

Decimal conversion and arithmetic routines

gp_nktinme(3c)

Converts at mstructure to a calendar time

nl _I angi nf o(3c)

Language information

rpc_smal l ocate,
rpc_ss_al | ocat e(3c)

Allocates memory within the RPC stub

rpc_smclient_free,
rpc_ss_client_free(3c)

Frees memory returned from a client stub

ATMI C Function Reference 1

Section 3¢ - C Functions

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name

Description

rpc_smdi sabl e_al | ocat e,
rpc_ss_di sable_al | ocat e(3c)

Releases resources and allocated memory within the stub
memory management scheme

rpc_smenabl e_al | ocate,
rpc_ss_enabl e_al | ocate(3c)

Enables the stub memory management environment

rpc_smfree, rpc_ss_free(3c)

Freesmemory alocated by ther pc_sm al | ocat e()
routine

rpc_smset_client_alloc_free,
rpc_ss_set_client_alloc_free(3c)

Sets the memory all ocation and freeing mechanisms used by
the client stubs

rpc_smswap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3c)

Exchanges current memory allocation and freeing mechanism
used by client stubs with one supplied by client

setl ocal e(3c)

Modifies and queries aprogram’slocale

strerror(3c)

Gets error message string

strftime(3c)

Converts date and time to string

t pabort (3c)

Routine for aborting current transaction

tpacal | (3c)

Routine for sending a service request

t padncal | (3c)

Administers unbooted application

t padverti se(3c)

Routine for advertising a service name

tpal | oc(3c)

Routine for allocating typed buffers

t pbegi n(3c)

Routine for beginning a transaction

t pbroadcast (3c)

Routine to broadcast notification by name

tpcal | (3c)

Routine for sending service request and awaiting its reply

t pcancel (3c)

Routine for canceling a call descriptor for outstanding reply

t pchkaut h(3c)

Routine for checking if authentication required to join an
application

t pchkunsol (3c)

2 ATMI C Function Reference

Routine for checking for unsolicited message

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name Description

t pcl ose(3c) Routine for closing a resource manager

t pconmi t (3c) Routine for committing current transaction

t pconnect (3c) Routine for establishing a conversational service connection
t pconvert (3c) Converts structures to/from string representations

t pcrypt pw(3c) Encrypts application password in administrative request

t pdequeue(3c) Routine to dequeue a message from a queue

t pdi scon(3c) Routine for taking down a conversational service connection
t penqueue(3c) Routine to enqueue a message

t penvel ope(3c) Accesses the digital signature and encryption information

associated with a typed message buffer

tperrordetail (3c) Gets additional detail about an error generated from the last
BEA Tuxedo ATMI system call

t pexport (3c) Converts a typed message buffer into an exportable,
machine-independent string representation, that includes
digital signatures and encryption seals

t pf or war d(3c) Routine for forwarding a service request to another service
routine

t pf ree(3c) Routine for freeing a typed buffer

t pget adnkey(3c) Gets administrative authentication key

t pget ct xt (3c) Retrieves a context identifier for the current application
association

t pget | ev(3c) Routine for checking if atransaction isin progress

t pgetrpl y(3c) Routine for getting areply from a previous request

t pgpri o(3c) Routine for getting a service request priority

t pi nport (3c) Converts an exported representati on back into atyped message
buffer

ATMI C Function Reference 3

Section 3¢ - C Functions

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name

Description

tpinit(3c)

Joins an application

t pkey_cl ose(3c)

Closes a previoudy opened key handle

t pkey_geti nf o(3c)

Gets information associated with a key handle

t pkey_open(3c)

Opens akey handle for digital signature generation, message
encryption, or message decryption

t pkey_seti nf o(3c)

Setsoptional attribute parameters associated with akey handle

tpnotify(3c)

Routine for sending notification by client identifier

t popen(3c)

Routine for opening a resource manager

t ppost (3c)

Posts an event

tprealloc(3c)

Routine to change the size of atyped buffer

tprecv(3c)

Routinefor receiving amessagein aconversationa connection

t presune(3c)

Resumes a global transaction

tpreturn(3c)

Routine for returning from a service routine

tpscnt (3c)

Routine for setting whent pconmi t () should return

t pseal (3c)

Marks a typed message buffer for encryption

t psend(3c)

Routine for sending a message in a conversational connection

tpservi ce(3c)

Template for service routines

t pset ct xt (3c)

Sets a context identifier for the current application association

t pset unsol (3c)

Sets the method for handling unsolicited messages

t psi gn(3c)

Marks a typed message buffer for digital signature

tpsprio(3c)

Routine for setting service request priority

tpstrerror(3c)

4

ATMI C Function Reference

Gets error message string for aBEA Tuxedo ATMI system
error

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name

Description

tpstrerrordetail (3c)

Getserror detail message string for aBEA Tuxedo ATMI

system

t psubscri be(3c)

Subscribes to an event

t psuspend(3c)

Suspends a global transaction

t psvrdone(3c)

Terminates aBEA Tuxedo ATMI system server

tpsvrinit(3c)

Initializes aBEA Tuxedo ATMI system server

t psvrt hrdone(3c)

Terminates aBEA Tuxedo ATMI server thread

tpsvrthrinit(3c)

Initializes aBEA Tuxedo ATMI server thread

tpterm(3c)

Leaves an application

t pt ypes(3c)

Routine to determine information about a typed buffer

t punadverti se(3c)

Routine for unadvertising a service name

t punsubscri be(3c)

Unsubscribes to an event

TRY(3c)

Exception-returning interface

t uxget env(3c)

Returns value for environment name

t uxput env(3c)

Changes or adds value to environment

t uxr eadenv(3c)

Adds variables to the environment from afile

t x_begi n(3c)

Begins aglobal transaction

tx_cl ose(3c)

Closes a set of resource managers

tx_comit (3c)

Commits aglobal transaction

tx_i nfo(3c)

Returns global transaction information

t x_open(3c)

Opens a set of resource managers

tx_rol | back(3c)

Rolls back aglobal transaction

tx_set_commit_return(3c)

Setsconmmi t _r et ur n characteristic

ATMI C Function Reference

Section 3¢ - C Functions

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name

Description

tx_set_transaction_control (3c)

Setstransacti on_contr ol characteristic

tx_set_transaction_timeout(3c)

Setstransacti on_ti nmeout characteristic

userl og(3c)

Writes a message to the BEA Tuxedo ATMI system central
event log

Usi gnal (3c)

Signal handling in a BEA Tuxedo ATMI system environment

Uuni x_err (3c)

Prints UNIX system call error

6

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Introduction to the C Language
Application-to-Transaction Monitor
Interface

Description

Communication
Paradigms

The Application-to-Transaction Monitor Interface (ATMI) providesthe interface
between the application and the transaction processing system. Thisinterfaceisknown
asthe ATMI interface. It provides function calls to open and close resources, manage
transactions, manage typed buffers, and invoke request/response and conversational
service cals.

Thefunction calls described in the ATMI reference pages imply a particular model of
communication. Thismodel is expressed in terms of how client and server processes
can communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversational .
Request/response services are invoked by service requests along with their associated
data. Request/response services can receive exactly one reguest (upon entering the
service routine) and send at most one reply (upon returning from the service routine).
Conversationa services, on the other hand, are invoked by connection requests along
with a means of referring to the open connection (that is, a descriptor used in calling
subsequent connection routines). Once the connection has been established and the
service routine invoked, either the connecting program or the conversational service
can send and receive data as defined by the application until the connection istorn
down.

Note that a process can initiate both request/response and conversational
communication, but cannot accept both request/response and conversational service
requests. Thefollowing sections describe the two communication paradigmsin greater
detail.

Note: Invarious partsof the BEA Tuxedo documentation we refer to threads. When
thisterm isused in a discussion of multithreaded applications, it is
self-explanatory. In some instances, however, the term is used in adiscussion
of atopic that is relevant for both single-threaded and multithreaded
applications. In such cases, readers who are running single-threaded
applications may assume that the term thread refers to an entire process.

ATMI C Function Reference 7

Section 3¢ - C Functions

8

BEA Tuxedo
ATMI System
Request/
Response
Paradigm for
Client/Server

With regard to request/response communication, aclient is defined as a process that
can send requests and receive replies. By definition, clientscannot receive requests nor
send replies. A client can send any number of requests, and can wait for the replies
synchronously or receive (some limited number of) the replies at its convenience. In
certain cases, aclient can send arequest that has no reply. t pi nit () andt pt erm()
allow aclient to join and leave a BEA Tuxedo ATMI system application.

A reguest/response server is a process that can receive one (and only one) service
regquest at atime and send at most one reply to that request. (If the server is
multithreaded, however, it can receive multiple requests at onetime and issue multiple
replies at onetime.) While aserver isworking on aparticular request, it can act likea
client by initiating request/response or conversational requests and receiving their
replies. In such a capacity, a server is called arequester. Note that both client and
server processes can be requesters (in fact, a client can be nothing but a requester).

A request/response server can forward a request to another request/response server.
Here, the server passes along the request it received to another server and does not
expect areply. It isthe responsibility of the last server in the chain to send the reply to
theorigina requester. Use of the forwarding routine ensures that the original requester
ultimately receivesitsreply.

Serversand serviceroutines offer astructured approach towriting BEA Tuxedo ATMI
system applications. In a server, the application writer can concentrate on the work
performed by the service rather than communications detail s such as receiving
reguests and sending replies. Because many of the communication details are handled
by BEA Tuxedo ATMI system’s mai n, the application must adhereto certain
conventions when writing a service routine. At the time a server finishesits service
routine, it can send areply usingt pr et urn() or forward the request using

t pf orwar d() . A serviceis not allowed to perform any other work nor isit allowed to
communicate with any other process after this point. Thus, a service performed by a
server is started when arequest is received and ended when either areply is sent or the
request is forwarded.

Concerning request and reply messages, there is an inherent difference between the
two: aregquest has no associated context beforeit issent, but areply does. For example,
when sending arequest, the call er must supply addressing information, whereasareply
isalwaysreturned to the process that originated the request, that is, addressing context
is maintained for areply and the sender of the reply can exert no control over its
destination. The differences between the two message types manifest themselvesinthe
parameters and descriptions of the routines described int pcal I ().

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

BEA Tuxedo
ATMI System
Conversational
Paradigm for
Client/Server

Message
Delivery

When areguest message is sent, it is sent at aparticular priority. The priority affects
how arequest isdegqueued: when a server degqueues requests, it dequeues the onewith
the highest priority. To prevent starvation, the oldest request is dequeued every so
often regardless of priority. By default, arequest’s priority is associated with the
service name to which the request is being sent. Service names can be given priorities
at configuration time (see UBBCONFI G(5)). A default priority isused if noneisdefined.
In addition, the priority can be set at run time using aroutine, t pspri o() . By doing
so, the caller can override the configuration or default priority when the message is
sent.

With regard to conversational communication, aclient is defined as a process that can
initiate a conversation but cannot accept a connection request.

A conversational server is aprocess that can receive connection requests. Once the
connection has been established and the service routine invoked, either the connecting
program or the conversational service can send and receive data as defined by the
application until the connectionistorn down. The conversationis half-duplex in nature
such that one side of the connection has control and can send data until it gives up
control to the other side. In a single-threaded server, while the connection is
established, the server is“reserved” such that no other process can establish a
connection with it. When a connection is established to a multithreaded server,
however, that server is not reserved for exclusive use by one process. Instead, it can
accept requests from multiple client threads.

Aswith arequest/response server, the conversational server can act as a requester by
initiating other requests or connections with other servers. Unlike a request/response
server, a conversational server cannot forward arequest to another server. Thus, a
conversationa service performed by a server is started when arequest is received and
ended when the final reply issent viat preturn().

Once the connection is established, the connection descriptor implies any context
needed regarding addressing information for the participants. Messages can be sent
and received as needed by the application. Thereis no inherent difference between the
request and reply messages and no notion of priority of messages.

Sending and receiving messages, whether in conversation mode or request/response

mode, implies communication between two units of an application. The great majority
of messages lead to areply or at least an acknowledgment, so that is an assurance that
the message was received. There are, however, certain messages (some originated by
the system, others originated by an application) where areply or acknowledgment is
not expected. For example, the system can send an unsolicited message using

ATMI C Function Reference 9

Section 3¢ - C Functions

Message
Sequencing

Queued
Message Model

t pnoti fy() without the TPACK() flag, or an application can send a message using
t pacal | () withthe TPNOREPLY() flag. If the message queue of the receiving
program is full, the message is dropped.

If the sending and receiving side are on different machines, the communication takes
place between bridge processes that send and receive messages across anetwork. This
raises the additional possibility of non-delivery due to a circuit failure. Even when
either of these conditions leads to the positing of an event or to a ULOG message, it is
not easy to associate the event or ULOG message with the non-arrival of a particular

message.

Because the BEA Tuxedo ATMI system is designed to handle large volumes of
messages across broad networks, it is not programmed to detect and correct the small
percentage of failures-to-deliver described in the preceding paragraphs. For that
reason, there can be no guarantee that every message will be delivered.

In the conversational model, for messages being exchanged using t psend() and

t precv(), aseguence number is added to the message header and messages are
received in the order in which they are sent. If aserver or client gets a message out of
order, the conversation is stopped, any transaction in progress is rolled back, and
message 1572 in LI BTUX, “Bad Conversati onal Sequence Number,” islogged.

In the Request/Response model, messages are not sequenced by the system. If the
application logic implies a sequence, it is the responsibility of the application to
monitor and control it. The parallel message transmission made possible by the support
of multiple network addresses for bridge processes increases the possibility that
messages will not be received in the order sent. An application that is concerned about
this may choose to specify asingle network address for each bridge process, add
seguence numbers to their messages or require periodic acknowledgments.

The BEA Tuxedo ATMI system queued message model allows for enqueuing a
reguest message to stable storage for subsequent processing without waiting for its
completion, and optionally getting a reply viaaqueued response message. The ATMI
functions that queue messages and degueue responses aret penqueue() and

t pdequeue() . They can be called from any type of BEA Tuxedo ATMI system
application processes:. client, server, or conversational. The functionst penqueue()
andt pdequeue() canaso be used for peer-to-peer communication where neither the
engueuing application nor the dequeuing application are designated as server or client.

The queued message facility is an X A-compliant resource manager. Persistent
messages are enqueued and dequeued within transactions to ensure one-time-only
processing.

10 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

ATMI
Transactions

The BEA Tuxedo ATMI system supports two sets of mutually exclusive functionsfor
defining and managing transactions: the BEA Tuxedo system’'s ATMI transaction
demarcation functions (the names of which include the prefix t p) and X/Open’s TX
Interface functions (the names of which includethe prefix t x_). Because X/Open used
ATMI’ stransaction demarcation functions as the base for the TX Interface, the syntax
and semantics of the TX Interface are quite similar to those of the ATMI. This section
is an overview of ATMI transaction concepts. The next section introduces additional
concepts about the TX Interface.

Inthe BEA Tuxedo ATMI system, atransaction is used to define asingle logical unit
of work that either wholly succeeds or has no effect whatsoever. A transaction allows
work performed in many processes, possibly at different sites, to be treated as an
atomic unit of work. Theinitiator of atransaction normally usest pbegi n() and either
tpcommi t () ortpabort () to delineate the operations within atransaction.

The initiator may also suspend its work on the current transaction by issuing

t psuspend() . Another process may take over the role of theinitiator of a suspended
transaction by issuing t pr esume() . Asatransaction initiator, a process must call one
of the following: t psuspend(), t pconmmi t (), or t pabor t () . Thus, one process can
start a transaction that another may finish.

If aprocess calling aservice isin transaction mode, then the called service routine is
also placed in transaction mode on behalf of the same transaction. Otherwise, whether
the serviceisinvoked in transaction mode or not depends on options specified for the
service in the configuration file. A service that is not invoked in transaction mode can
define multipl e transactions between the time it isinvoked and thetime it ends. On the
other hand, a service routine invoked in transaction mode can participate in only one
transaction, and work on that transaction is completed upon termination of the service
routine. Note that a connection cannot be upgraded to transaction mode: if t pbegi n()
is called while a conversation exists, the conversation remains outside of the
transaction (asif t pconnect () had been called with the TPNOTRAN() flag).

A service routine joining a transaction that was started by another processis called a
participant. A transaction can have several participants. A service can be invoked to
do work on the same transaction more than once. Only the initiator of atransaction
(that is, aprocess calling either t pbegi n() ortpresume()) cancall t pcommit () or
t pabor t () . Participantsinfluence the outcome of atransaction by usingt pr et ur n()
ort pf orwar d() . These two calssignify the end of a service routine and indicate that
the routine has finished its part of the transaction.

ATMI C Function Reference 11

Section 3¢ - C Functions

TX Transactions

12

Chained and
Unchained
Transactions

Transactions defined by the TX Interface are practically identical with those defined
by the ATMI functions. An application devel oper may useeither set of functionswhen
writing clients and service routines, but should not intermingle one set of functions
with the other within a single process (that is, a process cannot call t pbegi n() and
later call t x_commi t ()).

TheTX Interface hastwo callsfor opening and closing resource managersin aportable
manner, t x_open() andt x_cl ose(), respectively. Transactions are started with

t x_begi n() and completed with either t x_commi t () ortx_rol | back().

t x_i nfo() isused to retrieve transaction information, and there are three calls to set
optionsfor transactions: t x_set _conmi t _return(),
tx_set_transaction_control (),andtx_set transaction_tinmeout().The
TX Interface has no equivalentsto ATMI’st psuspend() andt presunme() .

In addition to the semantics and rules defined for ATMI transactions, the TX Interface
has some additional semanticsthat are worth introducing here. First, service routine
writers wanting to use the TX Interface must supply their ownt psvri nit () routine
that callst x_open() . Thedefault BEA Tuxedo ATMI system-suppliedt psvri nit ()
calst popen() . Thesamerule appliesfor t psvr done() : if the TX Interfaceisbeing
used, then service routine writers must supply their ownt psvr done() that calls
tx_cl ose().

Second, the TX Interface has two additional semantics not found in ATMI. These are
chained and unchained transactions, and transaction characteristics.

The TX Interface supports chained and unchained modes of transaction execution. By
default, clients and service routines execute in the unchained mode; when an active
transaction is completed, a new transaction does not begin until t x_begi n() iscalled.

In the chained mode, a new transaction startsimplicitly when the current transaction
completes. Thatis,whent x_conmi t () ort x_rol | back() iscaled, the BEA Tuxedo
ATMI system coordinates the completion of the current transaction and initiates a new
transaction before returning control to the caller. (Certain failure conditions may
prevent anew transaction from starting.)

Clients and service routines enable or disable the chained mode by calling
tx_set_transaction_control (). Transitions between the chained and unchained
mode affect the behavior of the next t x_conmi t () ortx_rol | back() cal. Thecall
totx_set _transaction_control () doesnot put the caler into or takeit out of
transaction mode.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Transaction
Characteristics

Error Handling

Sincet x_cl ose() cannot be called when the caller is in transaction mode, a caller
executing in chained mode must switch to unchained mode and complete the current
transaction before calling t x_cl ose() .

A client or aserviceroutine may call t x_i nf o() to obtain the current values of their
transaction characteristics and to determine whether they are executing in transaction
mode.

The state of an application processincludes several transaction characteristics. The
caller specifiesthese by calling t x_set _*() functions. When aclient or aservice
routine setsthe value of acharacteristic, it remainsin effect until the caller specifiesa
different value. When the caller obtainsthe value of acharacteristic viat x_i nf o() , it
does not change the value.

Most of the ATMI functions have one or more error returns. An error condition is
indicated by an otherwise impossible returned vaue. Thisis usually -1 or error, or O
for abad field identifier (BADFLDI D) or address. The error type is also made available
in the externa integer t per rno() . t per r no() isnot cleared on successful calls, so it
should be tested only after an error has been indicated.

Thetpstrerror() function is provided to produce a message on the standard error

output. It takes one argument, an integer (found in t per r no()) and returns a pointer
to thetext of an error messagein LI BTUX_CAT. The pointer can be used as an argument
touserl og().

tperrordetail () canbeused as thefirst step of athree step procedure to get
additional detail about an error in the most recent BEA Tuxedo ATMI system call on
the current thread. t per rordet ai | () returns an integer which isthen used as an
argumenttot pstrerrordetail () toretrieve apointer to a string that contains the
error message. The pointer can then be used as an argument to user | og or to
fprintf().

The error codes that can be produced by an ATMI function are described on each
ATMI reference page. The F_error () and F_error 32() functionsare provided to
produce a message on the standard error output for FML errors. They take one
parameter, a string; print the argument string appended with a colon and a blank; and
then print an error message followed by a newline character. The error message
displayed is the one defined for the error number currently in Ferror () or

Ferror 32(), which is set when errors occur.

Fstrerror(),anditscounterpart, Fstrerror 32(), can beused to retrievethetext of
an FML error message from amessage catal og; it returns a pointer that can be used as
an argument to user | og.

ATMI C Function Reference 13

Section 3¢ - C Functions

14

Timeouts

Theerror codes that can be produced by an FML function are described on each FML
reference page.

There are three types of timeouts in the BEA Tuxedo ATMI system: oneis associated
with the duration of atransaction from start to finish. A second is associated with the
maximum length of time ablocking call will remain blocked before the caller regains
control. The third is aservice timeout and occurs when a call exceeds the number of
seconds specified in the SVCTI MEQUT parameter in the SERVI CES section of the
configuration file.

Thefirst kind of timeout is specified when atransaction is started with t pbegi n() .
(Seet pbegi n(3c) for details.) The second kind of timeout can occur when using the
BEA Tuxedo ATMI system communication routines definedint pcal | (3c) . Cdlers
of these routines typically block when awaiting areply that hasyet to arrive, although
they can aso block trying to send data (for example, if request queues are full). The
maximum amount of time a caller remains blocked is determined by a BEA Tuxedo
ATMI system configuration file parameter. (See the BLOCKTI ME parameter in
UBBCONFI G(5) for details.)

Blocking timeouts are performed by default when the caller isnot in transaction mode.
When aclient or server isin transaction mode, it is subject to the timeout value with
which the transaction was started and is not subject to the blocking timeout value
specified in the UBBCONFI Gfile.

When atransaction timeout occurs, replies to asynchronous requests made in
transaction mode become invalid. That is, if aprocessiswaiting for a particular
asynchronous reply for arequest sent in transaction mode and a transaction timeout
occurs, the descriptor for that reply becomesinvalid. Similarly, if atransaction timeout
occurs, an event is generated on the connection descriptor associated with the
transaction and that descriptor becomes invalid. On the other hand, if a blocking
timeout occurs, the descriptor is still valid and the waiting process can reissue the call
to await the reply.

The service timeout mechanism provides away for the system to kill processes that
may be frozen by some unknown or unexpected system error. When a service timeout
occursin arequest/response service, the BEA Tuxedo ATMI system kills the server
process that is executing the frozen service and returns error code TPESVCERR. If a
servicetimeout occursin aconversational service, the TP_EVSVCERR event is returned.

If atransaction hastimed out, the only valid communications before the transaction is
aborted are callsto t pacal | () with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Dynamic
Service
Advertisements

Buffer
Management

Since release 6.4, some additional detail has been provided beyond the TPESVCERR
error code. If a service fails due to exceeding the timeout threshold, an event,
. SysSer vi ceTi neout , is posted.

By default, aserver’ s services are advertised when it is booted and unadvertised when
it is shut down. If aserver needs to control the set of servicesthat it offersat run time,
it cando so by callingt padvertise() andt punadverti se() . Theseroutines affect
only the services offered by the calling server unlessthat server belongsto a Multiple
Server, Single Queue (MSSQ) set. Because al serversin an MSSQ set must offer the
same set of services, these routines al so affect the advertisementsof all serverssharing
the caller’'s MSSQ set.

Initially, aprocesshasno buffers. Before sending amessage, abuffer must be allocated
using t pal | oc() . The sender’ s data can then be placed in the buffer and sent. This
buffer has a specific structure. The particular structure is denoted by the t ype
argument to thet pal 1 oc() function. Since some structures can need further
classification, a subtype can also be given (for example, a particular type of C
structure).

When receiving a message, a buffer is required into which application data can be
received. Thisbuffer must be one originaly gottenfromt pal | oc() . Notethat aBEA
Tuxedo ATMI system server, initsmai n, alocates abuffer whose addressis passed to
areguest/response or conversational service upon invoking the service. (See

t pservi ce(3c) for details on how this buffer is treated.)

Buffersused for receiving messages are treated slightly differently than those used for
sending: the size and address usually change upon receipt of a message, since the
system internally swaps the buffer passed into the receive call with internal buffersit
used to processthe buffer. A buffer may grow or shrink when it receives data. Whether
it grows or shrinks depends on the amount of data sent by the sender, and the internal
data flow needed to get the data from sender to receiver. Many factors can affect the
buffer size, including compression, receiving a message from a different type of
machine, and the action of the post recv() function for the type of buffer being used
(seebuf f er (3c)). The buffer sizes in Workstation clients are usually different from
those in native clients.

It isbest to think of the receive buffer asaplaceholder, rather than the actual container
that will receive the message. The system sometimes uses the size of the buffer you
pass as a hint, so it doeshelpif it is big enough to hold the expected reply.

ATMI C Function Reference 15

Section 3¢ - C Functions

16

Buffer Type
Switch

On the sending side, buffer types that might be filled to less than their allocated
capacity (for example, FML or STRING buffers) send only the amount used. A 100K
FML 32 buffer with oneinteger field in it is sent as amuch smaller buffer, containing
only that integer.

This means that the receiver will receive abuffer smaller than what was originally
allocated by the sender, yet larger than the data that was sent. For example, if a
STRING buffer of 10K bytesis allocated, and the string “HELLO” is copied into it,
only the six bytes are sent, and the receiver will probably end up with a buffer that is
around 1K or 4K bytes. (It may be larger or smaller, depending on other factors.) The
BEA Tuxedo ATMI system guarantees only that areceived messagewill contain al of
the data that was sent; it does not guarantee that the message will contain all the free
space it originally contained.

The process receiving thereply is responsible for noting size changesin the buffer
(using t pt ypes()) and reallocating the buffer if necessary. All BEA Tuxedo ATMI
functions change areceiver’ sbuffer return information about the amount of datain the
buffer, so it should become standard practiceto check the buffer sizeevery timeareply
isreceived.

One can send and receive messages using the same data buffer. Alternatively, a
different data buffer can be allocated for each message. It is usually the responsibility
of the calling process to free its buffers by invoking t pf r ee() . However, in limited
cases, the BEA Tuxedo ATMI system frees the caller’ s buffer. For more information
about buffer usage, see the descriptions of communication functions such as
tpfree().

Thet nt ype_sw_t structure providesthe description required when adding new buffer
typestot m t ypesw() , the buffer type switch for a process. The switch elements are
defined in t ypesw(5) . The function names used in this entry are templates for the
actua function names defined by the BEA Tuxedo ATMI system or by applicationsin
which custom buffer types are created. These function names can be mapped easily to
switch elements: to create a template name simply add the prefix _t mto the element
name of afunction pointer. For example, the template name for the element i ni t buf
iS_tmnitbuf.

Thet ype element must be non-NULL and at most 8 charactersin length. If this
element is not unique in the switch, then subt ype() must be non-NULL.

Thesubt ype() element can be NULL, astring of at most 16 characters, or * (the
wildcard character). The combination of t ype() and subt ype() must uniquely
identify an element in the switch.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

A given type can have multiple subtypes. If all subtypes are to be treated the same for
agiven type, then the wildcard character, “*”, can be used. Note that the t pt ypes()
function can be used to determine a buffer’ s type and subtype if subtypes need to be
distinguished. If some subset of the subtypes within a particular type are to be treated
individually, and the rest are to be treated identically, then those that are to be singled
out with specific subtype values should appear in the switch before the subtype
designated with the wildcard. Thus, searching for types and subtypesin the switchis
done from top to bottom, and the wildcard subtype entry accepts any “leftover” type
matches.

Thedf1tsize() element isused when allocating or reallocating a buffer. The
semanticsof t pal 1 oc() andtpreal |l oc() aresuch that the larger of the following
two valuesis used to create or reallocate a buffer: the value of df | t si ze() or the
valueof thesi ze parameter for thet pal | oc() andt preal | oc() functions. For some
types of structures, such as afixed-sized C structure, the buffer size should equal the
size of the structure. If df | t si ze() isset to thisvalue, then the caller may not need to
specify the buffer’ slength to routinesin which abuffer is passed. df | t si ze() canbe
O or less. However, if t pal 1 oc() ortpreall oc() iscalled and the si ze parameter
for the function being called is also less than or equal to 0, then the routine will fail.
We recommend setting df | t si ze() to avalue greater than O.

The BEA Tuxedo ATMI system provides five basic buffer types:

m CARRAY—a character array, possibly containing NULL characters, whichis
neither encoded nor decoded during transmission

m STRING—aNULL-terminated character array
m FM.—fielded buffers (FM. or FM_32)
m XM.—XML document or datagram buffer

m VI Ew—simple C structures (VI Ewor VI Ens2); all views are handled by the same
set of routines. The name of a particular view is its subtype name.

Two of these buffer types have synonyms: X_OCTET is a synonym for CARRAY, and
both X_C_TYPE and X_COMMON are synonyms for VI EW X_C_TYPE supports al the
same elements as VI EW whereas X_COMVON supports only longs, shorts, and
characters. X_COMVON should be used when both C and COBOL programs are
communicating.

An application wishing to supply its own buffer type can do so by adding an instance
tothet m typesw() array. Whenever adding or deleting a buffer type, be careful to
leave aNULL entry at theend of the array. Note that a buffer typewithaNULL name

ATMI C Function Reference 17

Section 3¢ - C Functions

18

Unsolicited
Notification

Single or
Multiple
Application
Contexts per
Process

is not permitted. An application client or server is linked with the new buffer type
switch by explicitly specifying the name of the source or object file on the
bui | dserver () or buil dcl i ent () command line using the-f option.

There are two methods for sending messages to application clients outside the
boundaries of the client/server interaction defined above. Thefirst is the broadcast
mechanism supported by t pbr oadcast () . This function allows application clients,
servers, and administrators to broadcast typed buffer messages to a set of clients
selected on the basis of the names assigned to them. The names assigned to clients are
determined in part by the application (specifically, by the information passed in the
TPI NI T typed buffer at t pi ni t () time) and in part by the system (based on the
processor through which the client accesses the application).

The second method isthe notification of aparticular client asidentified from an earlier
or current service request. Each service request contains a unique client identifier that
identifies the originating client for the service request. Callsto thet pcal I () and

t pf orwar d() functions from within a service routine do not change the originating
client for that chain of service requests. Client identifiers can be saved and passed
between application servers. Thet pnot i f y() function is used to notify clients
identified in this manner.

The BEA Tuxedo ATMI system alows client programs to create an association with
one or more applications per process. If t pi ni t () iscaled with the

TPMULTI CONTEXTS parameter included in thef | ags field of the TPI NI T structure,
then multiple client contexts are allowed. If t pi ni t () iscaled implicitly, is caled
withaNULL parameter, or thef | ags field does not include TPMULTI CONTEXTS, then
only asingle application association is allowed.

In single-context mode, if t pi ni t () iscaled morethan once (that is, if itiscalled
after the client has already joined the application), no action istaken and successis
returned.

In multicontext mode, each call to t pi ni t () creates anew application association.
The application can obtain ahandle representing this application association by calling
t pget ct xt () . Any thread in the same process can call t pset ct xt () to set that
thread' s context.

Once an application has chosen single-context mode, al callstot pi ni t () must
specify single-context mode until all application associations are terminated.
Similarly, once an application has chosen multicontext mode, al callsto t pi nit ()
must specify multicontext mode until all application associations are terminated.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 2 Per-Proc

Server programs can be associated with only a single application and cannot act as
clients. However, within each server program, there may be multiple server dispatch
contexts. Each server dispatch context works in its own thread.

Table 2 shows the transitions that may occur, within a client process, among the
following states: the uninitialized state, theinitialized in single-context mode state, and
the initialized in multicontext mode state.

ess Context M odes

Function States
Uninitialized Initialized Initialized
S Single-context Mode Multicontext M ode
S S,
t pi ni t without S S, Sy(error)
TPMULTI CONTEXTS
tpinit with S Sy (error) S
TPMULTI CONTEXTS
Implicit t pi ni t S S, S,(error)
t pt er m—not last S
associaion
t pt er m—last association So S
t pt er m—no association S
Context State In amulticontext application, callsto various functions result in context state changes
Changesfora for the calling thread and any other threads that are active in the same context asthe

Client Thread

calling process. The following diagram illustrates the context state changesthat result
from callstothet pinit (), tpsetctxt(),andtptern() functions. (The
t pget ct xt () function does not produce any context state changes.)

ATMI C Function Reference 19

Section 3¢ - C Functions

Multicontext State Transitions

tpinit() without TPMULTI CONTEXTS t pini t() with TPMULTI CONTEXTS
or or
implicitt pi nit () invoked by ATMI function t psetct xt () to a valid context

20

tpset ct xt ()

tpterm))
or
t pset ct xt ()

tptern()
(see Note)

tpi ni t() without
TPMULTI CONTEXTS

INVALID
CONTEXT

psetct xt ()

Note: Whent ptern() iscaled by athread running in the multicontext state
(TPMULTI CONTEXTS), the calling thread is placed in the NULL context state
(TPNULLCONTEXT). All other threads associated with the terminated context
are switched to the invalid context state (TPl NVALI DCONTEXT).

Table 3 listsall possible context state changes produced by callingt pi ni t (),
tpsetctxt (), andt pt erm() . These states are thread-specific; different threads can
be in different states when they are part of a multicontexted application. By contrast,
each context state listed in the preceding table (“ Per-Process Context Modes") applies
to an entire process.

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 3 Context State Changesfor a Client Thread

When this Then athread in thiscontext state resultsin . ..
function is , . ,
executed . . . NULL Context SingleContext ~ Multicontext Invalid
Context
t pi ni t without Single context Single context Error Error
TPMULTI CONTEXTS
t pi ni t with M ulti context Error M ulticontext Error
TPMULTI CONTEXTS
t psetctxt to NULL Error NULL NULL
TPNULLCONTEXT
t psetctxt to Error Single context Error Error
context O
t psetctxt to M ulti context Error M ulticontext M ulticontext
context > 0
Implicitt pi ni t Single context N/A N/A Error
t pt er minthisthread NULL NULL NULL NULL
t pt erminadifferent N/A NULL Invalid N/A
thread of this context
Supportfor The BEA Tuxedo ATMI system supports multithreaded programmingin severa ways.
Threads If the processisusing single-context mode, then asthe application creates new threads,

Programming

those threads share the BEA Tuxedo ATMI context for the process. In aclient, after a
thread issuesat pi ni t () call in single-context mode, other threads may then proceed
to issue ATMI cdls. For example, onethread may issue at pacal | () and adifferent
thread in the same process may issueat pget rpl y().

When in multicontext mode, threads initially are not associated with a BEA Tuxedo
ATMI application. A thread can either join an existing application association by
calling t pset ct xt () or create a new association by calling t pi ni t () with the

TPMULTI CONTEXTS flag set.

ATMI C Function Reference 21

Section 3¢ - C Functions

22

Whether running in single-context mode or multicontext mode, the application is
responsible for coordinating its threads so that ATMI operations are performed at the
appropriate time.

An application may create additional threads within a server by using OS thread
functions. These threads may operate independently of the BEA Tuxedo ATMI
system, or they may operate in the same context as one of the server dispatch threads.
Initially, application-created server threads are not associated with any server dispatch
context. An application-created server thread may call t pset ct xt () toassociateitself
with a server dispatch thread. The application-created server thread must complete all
of itsATMI calls before the dispatched thread callst pret ur n() ort pf orward().A
server thread dispatched by the BEA Tuxedo ATMI system may not call

t pset ct xt () . Inaddition, application-created threads may not make ATMI callsthat
would cause an implicit t pi ni t () when not associated with a context. On the other
hand, this failure to make ATMI calls does not occur with dispatcher-created threads
because those threads are always associated with a context. All server threads are
prohibited from calling t pi ni t ().

In amultithreaded application, athread that is operating in the TPI NVALI DCONTEXT
state is prohibited from calling many ATMI functions. The following lists specify
which functions may and may not be called under these circumstances.

The BEA Tuxedo ATMI system allows athread operating in the TPI NVALI DCONTEXT
state to call the following functions:

m catgets(3c)

m catopen, catclose(3c)

m deci nal (3c¢)

m gp_nktime(3c)

m nl_| angi nfo(3c)

m rpc_smallocate, rpc_ss_allocate(3c)

m rpc_smclient_free, rpc_ss_client_free(3c)

m rpc_smdisable_allocate, rpc_ss_disable_allocate(3c)
m rpc_smenable_allocate, rpc_ss_enabl e_all ocate(3c)

m rpc_smfree, rpc_ss_free(3c)

m rpc_smset_client_alloc_free, rpc_ss_set_client_alloc_free(3c)

m rpc_smswap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3c)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

setl ocal e(3c)
strerror(3c)
strftime(3c)
tpal |l oc(3c)
tpconvert (3c)
tpcrypt pw(3c)
tperrordetail (3c)
t pfree(3c)

t pget ct xt (3c)
tpreall oc(3c)
t pset ct xt (3c)
tpstrerror(3c)
tpstrerrordetail (3c)
t pt er m(3c)

t pt ypes(3c)
TRY(3c)

tuxget env(3c)
tuxput env(3c)
tuxreadenv(3c)
user | og(3c)
Usi gnal (3c)
Uuni x_err(3c)

The BEA Tuxedo ATMI system does not allow athread operating in the
TPI NVALI DCONTEXT state to call the following functions:

AEWSet unsol (3c)
t pabort (3c)
tpacal | (3c)

t padncal | (3c)

t pbegi n(3c)

t pbroadcast (3c)

ATMI C Function Reference

23

Section 3¢ - C Functions

m tpcall (3c)

m tpcancel (3c)

m t pchkaut h(3c)

m t pchkunsol (3c)
m tpcl ose(3c)

m tpcommt(3c)

m tpconnect (3c)

m t pdequeue(3c)

m t penqueue(3c)

m tpgetadnkey(3c)
m tpgetlev(3c)

m tpgetrply(3c)

m tpgprio(3c)

m tpinit(3c)

m tpnotify(3c)

m tpopen(3c)

m tppost(3c)

m tprecv(3c)

m tpresume(3c)

m tpscnt(3c)

m tpsend(3c)

m tpsetunsol (3c)
m tpsprio(3c)

m tpsubscribe(3c)
m t psuspend(3c)

m tpunsubscri be(3c)
m tx_begin(3c)

m tx_close(3c)

m tx_commt(3c)

24 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

m tx_info(3c)
m tx_open(3c)

m tx_roll back(3c)

m tx_set_commit_return(3c)

B tx_set_transaction_control (3c)

B tx_set_transaction_timeout(3c)

be

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

included in atm.h

non- bl ocking send/rcv */
restart rcv on interrupt */

no reply expected */

not sent in transacti on node */
sent in transaction node */

no timeout */

absol ute value on tnsetprio */
get any valid reply */

force incomng buffer to match */
reserved for future use */
conversational service */
send-only node */

recv-only node */

*/

al so defined in xa.h */

0x20000000 /* service
0x08000000 /* service
0x04000000 /* service

C Language
ATMI Return
Codes and
Other
Definitions

/ *

* The follow ng definitions must
*/

/* Flags to service routines */
#defi ne TPNOBLOCK 0x00000001
#defi ne TPS|I GRSTRT 0x00000002
#defi ne TPNOREPLY 0x00000004
#defi ne TPNOTRAN 0x00000008
#defi ne TPTRAN 0x00000010
#defi ne TPNOTI ME 0x00000020
#defi ne TPABSOLUTE 0x00000040
#defi ne TPGETANY 0x00000080
#def i ne TPNOCHANGE 0x00000100
#defi ne RESERVED BI T1 0x00000200
#defi ne TPCONV 0x00000400
#defi ne TPSENDONLY 0x00000800
#defi ne TPRECVONLY 0x00001000
#defi ne TPACK 0x00002000

/* Flags to tpreturn -

#defi ne TPFAI L
#define TPEXIT
#def i ne TPSUCCESS

/* Flags to tpscmt

* characteristic val ues

*/

#define TP_CMI_LOGGED 0x01

/*

FAI LURE for tpreturn */
FAI LURE with server exit */
SUCCESS for tpreturn */

- Valid TP_COWM T_CONTROL

return after commt

ATMI C Function Reference

The following return code and flag definitions are used by the ATMI routines. For an
application to work with different transaction monitors without change or
recompilation, each system must define its flags and return codes as follows:

25

Section 3¢ - C Functions

* decision is |ogged */
#define TP_CMI_COWPLETE 0x02 /* return after commt has
* conpl eted */

/* client identifier structure */

struct clientid_t {

long clientdatal4]; /* reserved for internal use */
}

typedef struct clientid_t CLIENTID;

/* context identifier structure */

typedef | ong TPCONTEXT_T;

/* interface to service routines */

struct tpsvcinfo {

nane[32] ;

long flags; /* describes service attributes */
char *dat a; /* pointer to data */

long |en; /* request data length */

int cd; /* connection descriptor

* if (flags TPCONV) true */

| ong appkey; /* application authentication client
* key */

CLIENTID cl tid; /* client identifier for originating
* client */

H

typedef struct tpsvcinfo TPSVCI NFO

/* tpinit(3c) interface structure */

#def i ne MAXTI DENT 30
struct tpinfo_t {

char usrname[MAXTI DENT+2] ; /* client user nanme */

char cl t name[MAXTI DENT+2] ; /* app client nane */

char passwd[MAXTI DENT+2] ; /* application password */

I ong flags; [* initialization flags */

| ong datal en; /* length of app specific data */
| ong dat a; /* placehol der for app data */

s

typedef struct tpinfo_t TPINT;
/* The transactionlD structure passed to tpsuspend(3c) and tpresume(3c) */
struct tp_tranid_t {

long info[6]; /* Internally defined */
H

typedef struct tp_tranid_t TPTRAN D;

26 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

/* Fl ags
#defi ne

#defi ne

#defi ne

#defi ne

#defi ne
#defi ne

#defi ne

#defi ne

/*

for TPINIT */
TPU_MASK

TPU SI G
TPU DI P
TPU | GN

TPU_THREAD
TPSA_FASTPATH

TPSA_PROTECTED

TPMULTI CONTEXTS

/Qtpqctl _t data structure

#defi ne TMONAMELEN
#defi ne TMvVBAd DLEN
#defi ne TMCORRI DLEN

struct tpgctl _t {

~

| ong
| ong
| ong
| ong
char
char
char
char

fl ags;

deq_tine;

priority;

di agnostic;

nsgi d[TMVSG DLEN] ;

corrid[TMCORRI DLEN] ;

repl yqueue[TMONAVELEN+1] ;
fai | urequeue[TMONAMELEN+1] ;

CLIENTID cltid

| ong
| ong
| ong
| ong
| ong

} .

* /[Q structure elenments that are
#i f ndef
#def i ne

ur code;
appkey;

del i very_qos;
reply_qos;
exp_tinme

t&pedef struct tpqgctl_t TPQCTL;

TPNOFLAGS
TPNOFLAGS

#endi f

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

TPQCORRI D
TPQFAI LUREQ
TPQBEFOREMSGI D
TPQGETBYMSG DOLD
TPQVSG D

0x00000007 /* unsolicited notification
* mask */
0x00000001 /* signal based
* notification */
0x00000002 [* dip-in based
* notification */
0x00000004 /* ignore unsolicited
* messages */
0x00000040 /* THREAD notification */
0x00000008 /* System access ==
* fastpath */
0x00000010 /* System access ==
* protected */
0x00000020 /* multiple context associa-
* tions per process */
*/
15
32
32
/* control paraneters to queue prinitives */
/* indicates which values are set */
/* absolute/relative time for dequeuing */
/* enqueue priority */
/* indicates reason for failure */
/* 1D of nessage before which to queue */
/* correlation ID used to identify nessage */

queue nanme for reply nessage */

queue nanme for failure nmessage */

client identifier for */

originating client */

application user-return code */
application authentication client key */
delivery quality of service */

reply message quality of service */
expiration time */

valid - set in flags */

0x00000 /* no flags set -- no get */
0x00001 /* set/get correlation ID */
0x00002 /* set/get failure queue */
0x00004 /* enqueue before nessage ID */
0x00008 /* deprecated */

0x00010 /* get nsgid of enq/deq nessage */

ATMI C Function Reference 27

Section 3¢ - C Functions

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

/* Valid
#def i ne

#def i ne
#def i ne

/* error

TPQPRI ORI TY
TPQTOP

TPQWAI T

TPQREPLYQ

TPQTI ME_ABS

TPQTI ME_REL
TPQGETBYCORR! DOLD
TPQPEEK

TPQDEL| VERYQOS
TPQREPLYQOS
TPQEXPTI ME_ABS
TPQEXPTI ME_REL
TPQEXPTI ME_NONE
TPQGETBYMSG D
TPQGETBYCORR! D

flags for the quality of

TPQQOSDEFAULTPERSI ST

TPQQOSPERSI STENT
TPQQOSNONPERSI STENT

return codes */

extern int tperrno;
extern long tpurcode

/* tperrno values - error codes */
* The reference pages explain the context

* error
*/

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

codes can return

TPM NVAL
TPEABORT
TPEBADDESC
TPEBLOCK
TPEI NVAL
TPELIM T
TPENCENT
TPECS
TPEPERM
TPEPROTO
TPESVCERR
TPESVCFAI L
TPESYSTEM
TPETI ME
TPETRAN
TPGOTSI G
TPERMERR
TPEI TYPE

28 ATMI C Function Reference

0x00020
0x00040
0x00080
0x00100
0x00200
0x00400
0x00800
0x01000
0x02000
0x04000
0x08000
0x10000
0x20000
0x40008
0x80800

service
0x00001

0x00002
0x00004

OCoOoO~NOOUIA~,WNEO

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

set/get nessage priority */
enqueue at queue top */

wait for dequeuing */

set/get reply queue */

set absolute tine */

set relative tine */
deprecated */

non- destructi ve dequeue */
delivery quality of service */
reply msg quality of service*/
absolute expiration tine */
relative expiration time */
never expire */

dequeue by nsgid */

dequeue by corrid */

fields in the TPQCTL structure */

/*
/*
/*
/*

queue’s default persistence */
policy */

di sk message */

menory message */

in which the follow ng

/*

mni mum error message */

Introduction to the C Language Application-to-Transaction Monitor Interface

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

~

#def i
#def i
#def i
#def i
#def i

~

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

-~

ne
ne
ne
ne
ne
ne
ne
ne
ne

* conversations -

ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

* Event Br oker

TPEOTYPE
TPERELEASE
TPEHAZARD
TPEHEURI STI C
TPEEVENT
TPEVATCH
TPEDI AGNOSTI C
TPEM B
TPNVAXVAL

TPEV_DI SCONI MM
TPEV_SVCERR
TPEV_SVCFAI L
TPEV_SVCSUCC
TPEV_SENDONLY

* [Q di agnostic codes

QVEI NVAL
QVEBADRM D
QVENOTOPEN
QVETRAN
QVEBADVSG D
QVESYSTEM
QVECS
QVEABORTED
QVENOTA
QVEPROTO
QVEBADQUEUE
QVENOVEG

QVEI NUSE
QVENOSPACE
QVERELEASE
QVEI NVHANDLE
QVESHARE

#defi ne TPEVSERVI CE
#def i ne TPEVQUEUE
#defi ne TPEVTRAN
#defi ne TPEVPERSI ST

/* Subscription Contro
struct tpevectl_t {
long flags;
char nanmel[XATM _SERVI CE_NAME_LENGTH] ;
char name2[XATM _SERVI CE_NAVME_LENGTH] ;
TPQCTL qctl ;

events */

Messages */

18
19
20
21
22
23
24
25
26

0x0001
0x0002
0x0004
0x0008
0x0020

*)
-1
-2
-3
-4
-5
-6
-7
-8
QVEABORTED
-9
-10
11
-12
-13
-14
-15
-16

0x00000001
0x00000002
0x00000004
0x00000008

Structure */

/* maxinum error message */

ATMI C Function Reference

29

Section 3¢ - C Functions

3
typedef struct tpevctl_t TPEVCTL,;
Clanguage TX Thefollowing return code and flag definitions are used by the TX routines. For an
Return Codes application to work with different transaction monitors without change or
and Other recompilation, each system must define its flags and return codes as follows:

Definitions
#define TX H VERSI ON 0 /* current version of this
* header file */
/*

* Transaction identifier

*/

#def i ne Xl DDATASI ZE 128 [* size in bytes */

struct xid_t {
long formatl D /* format identifier */
long gtrid_|ength; /* value not to exceed 64 */
I ong bqual _| engt h; /* value not to exceed 64 */
char dat a[XI DDATASI ZE] ;

s

typedef struct xid_t X D

/*

* Avalue of -1 in formatlD neans that the XIDis null.

*/

/*
* Definitions for tx_ routines
*/

/* commt return values */

typedef [ong COVWM T_RETURN;

#define TX COM T_COWPLETED 0
#define TX COWM T_DECI SI ON_LOGGED 1

/* transaction control values */
typedef [ong TRANSACTI ON_CONTROL;
#def i ne TX_UNCHAI NED 0
#define TX CHAINED 1

/* type of transaction timeouts */
typedef [ong TRANSACTI ON_TI MECUT;

/* transaction state val ues */
typedef | ong TRANSACTI ON_STATE;
#define TX ACTIVE O
#define TX TI MEOUT ROLLBACK ONLY 1
#define TX ROLLBACK ONLY 2

30 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

/* structure popul ated by tx_info */

struct tx_info_t {

b

typedef struct tx_info_t TXI NFG

/*

Xl D xi d;
COW T_RETURN when_return

TRANSACTI ON_CONTROL transaction_control;
TRANSACTI ON_TI MEQUT transaction_tinmeout;

TRANSACTI ON_STATE transaction_state;

* tx_ return codes

* (transacti on manager

*/

#def i
#def i
#def i
#def i

#def i

#def i

#def i

#def i

#def i

#def i
#def i

#def i

#def i

#def i

#def i

#def i

ne
ne
ne

ne

ne

ne

ne

ne

ne

ne
ne

ne

ne

ne

ne

ne

TX_NOT_SUPPORTED
TX_OK

TX_OUTSI DE
TX_ROLLBACK

TX_M XED

TX_HAZARD

TX_PROTOCOL_ERRCR

TX_ERROR
TX_FAI L

TX_EI NVAL
TX_COWM TTED

TX_NO_BEG N

TX_ROLLBACK_NO _BEG N

TX_M XED_NO BEG N

TX_HAZARD NO BEG N

TX_COWM TTED_NO BEG N

reports to application)

1 /* option not supported */
0 /* normal execution */
-1 /* applicationis in an RM
* | ocal transaction */
-2 /* transaction was rolled
* back */
transacti on was
partially conmmitted and
partially rolled back */
transaction nay have been
partially committed and
partially rolled back */
routine invoked in an
i mproper context */
-6 /* transient error */
-7 /* fatal error */
-8 /* invalid argunents were given */
-9 /* transaction has
* heuristically conmitted */

-5/

-100 /* transaction commtted plus
* new transaction could not
* be started */

(TX_ROLLBACK+TX_NO_BEG N)
/* transaction roll back plus
* new transaction could not
* be started */

(TX_M XED+TX_NO _BEG N)
/* mxed plus new transaction
* could not be started */

(TX_HAZARD+TX_NO BEG N)
/* hazard plus new transaction
* coul d not be started */

(TX_COWM TTED+TX_NO_BEG N)

ATMI C Function Reference

31

Section 3¢ - C Functions

32

ATMI State
Transitions

/* heuristically conmtted plus
* new transaction coul d not
* be started */

The BEA Tuxedo ATMI system keeps track of the state for each process and verifies
that legal state transitions occur for the various function calls and options. The state
information includes the process type (request/response server, conversationa server,
or client), theinitialization state (uninitialized or initialized), the resource management
state (closed or open), the transaction state of the process, and the state of all
asynchronous request and connection descriptors. When an illegal state transitionis
attempted, the called function fails, setting t per r no() to TPEPROTO. The legal states
and transitions for thisinformation are described in the following tables.

Table 4 indicates which functions may be called by request/response servers,
conversational servers, and clients. Notethat t psvrinit(),t psvrdone(),
tpsvrthrinit(),andtpsvrthrdone() arenotincluded in thistable because they
arenot called by applications (that is, they are application-supplied functions that are
invoked by the BEA Tuxedo ATMI system).

Table 4 Available Functions

Function Process Type

Request/Response Conversational Client
Server Server

t pabort

<| <

t pacal |

t padvertise

tpall oc

t pbegi n

t pbr oadcast

tpcal |

t pcancel

t pchkaut h

z| <| <| <| <| <| <| <| <]| <
z| <| <| <| <| <| <| <| <]| <

<| <| <| <| <| <| <| =z

t pchkunsol

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 4 Available Functions (Continued)

Function Process Type
Request/Response Conversational Client
Server Server
t pcl ose Y Y Y
t pconmi t Y Y Y
t pconnect Y Y Y
t pdequeue Y Y Y
t pdi scon Y Y Y
t penqueue Y Y Y
t pf orward Y N N
tpfree Y Y Y
t pget ct xt Y Y Y
t pget | ev Y Y Y
t pgetrply Y Y Y
tpgprio Y Y Y
tpinit N N Y
tpnotify Y Y Y
t popen Y Y Y
t ppost Y Y Y
tprealloc Y Y Y
t precv Y Y Y
t presune Y Y Y
tpreturn Y Y N
t pscnt Y Y Y

ATMI C Function Reference 33

Section 3¢ - C Functions

34

Table 4 Available Functions (Continued)

Function Process Type
Request/Response Conversational Client
Ser ver Ser ver
t psend Y Y Y
tpservice Y Y N
tpset ct xt Y (in application- Y (in application- Y
created threads) created threads)
t pset unsol N N Y
tpsprio Y Y Y
tpsubscri be Y Y Y
t psuspend Y Y Y
tpterm N N Y
t ptypes Y Y Y
tpunadverti se Y Y N
tpunsubscri be Y Y Y

Theremaining state tables are for both clients and servers, unless otherwise noted.

Keep in mind that because some functions cannot be called by both clients and servers

(for example, t pi ni t ()), certain state transitions shown below may not be possible

for both process types. The above table should be consulted to determine whether the

process in question is allowed to call a particular function.

Thefollowing state table indicates whether or not athread in aclient process has been

initialized and registered with the transaction manager. Note that thistable assumesthe

use of t pi nit (), whichisoptiona in single-context mode. That is, a single-context
client may implicitly join an application by issuing one of many ATMI functions (for
example, t pconnect () ortpcal | ()). A client must uset pi ni t () when one of the

following is true:

m Application authentication is required. (Seet pi ni t (3c) and the description of
the SECURI TY keyword in UBBCONFI G(5) for details.)

ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

m The client wantsto access an XA-compliant resource manager directly. (See
t pi ni t (3c) for details)

m The client wants to create multiple application associations.

A server isplaced inthe initialized state by the BEA Tuxedo ATMI system’smai n()
beforeitst psvrini t () functionisinvoked, and it is placed in the uninitiaized state
by the BEA Tuxedo ATMI system’smai n() after itst psvr done() function has
returned. Note that in all of the state tables shown below, an error return from a
function causes the thread to remain in the same state, unless otherwise noted.

Table5 Thread Initialization States

Function States
Uninitialize Initialize

lo 1
tpall oc lo I1
t pchkaut h lg I1
tpfree lo I1
t pgetct xt lo I
tpinit I I1
tpreal |l oc lo I1
tpsetct xt 11 1

(set to anon-NULL context)

t psetctxt lo lo
(with the TPNULLCONTEXT
context set)

t pset unsol lo I

tpterm lo lo
(in this thread)

tpterm lo Ig
(in adifferent thread of this
context)

ATMI C Function Reference 35

Section 3¢ - C Functions

Table 5 Thread I nitialization States (Continued)

Function States
Uninitialize Initialize
lo l1
tptypes Ig 11
All other ATMI functions I I

The remaining state tables assume a precondition of state I, (regardless of whether a
process arrived in thisstate viat pi nit (), t pset ct xt (), or the BEA Tuxedo ATMI
system’snai n()).

Table 6indicatesthe state of aclient or server with respect to whether or not aresource
manager associated with the process has been initiaized.

Table 6 Resource Management States

Function States
Closed Open

Ro Ry
tpopen R R
tpcl ose Ro Ro
t pbegi n Ry
t pconmi t Ry
t pabort Ry
t psuspend Ry
tpresune Ry
t pser vi ce with flag TPTRAN Ry
All other ATMI functions Ro Ry

36 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

Table 7 indicates the state of a process with respect to whether or not the process is
associated with atransaction. For servers, transitionsto states Tqand T, assume a

precondition of state R, (for example, t popen() has been called with no subsequent
call tot pcl ose() ortptern()).

Table 7 Transaction State of Application Association

Function State

Not in Transaction Initiator Participant

To T1 T2
t pbegi n
t pabort To
t pcomi t To
t psuspend To
t presune Ty To
t pservi ce with flag TPTRAN Ts
t pservi ce (not in transaction To
mode)
tpreturn Ty To
t pf orwar d To To
t pcl ose Ro
tpterm lg To
All other ATMI functions To T, Ty

Table 8 indicates the state of a single request descriptor returned by t pacal | () .

ATMI C Function Reference 37

Section 3¢ - C Functions

Table 8 Asynchronous Request Descriptor States

Function States
No Valid
Descriptor Descriptor
Ao Aq
tpacal | Aq
tpgetrply Ag
t pcancel Ap?
t pabort Ag AP
t pconmi t Ao AP
t psuspend Ao A€
tpreturn Ag Ag
t pf or war d Ag Ag
tpterm lo lo
All other ATMI functions Ag Aq

Note: 2 This state change occursonly if the descriptor is not associated with the
caller’ stransaction.

® This state change occurs only if the descriptor is associated with the caller’s
transaction.

¢ If the descriptor is associated with the caller’ s transaction, then
t psuspend() returnsaprotocol error.

Table 9 indicates the state of a connection descriptor returned by t pconnect () or
provided by aserviceinvocation in the TPSVCl NFOstructure. For primitivesthat do not
take a connection descriptor, the state changes apply to all connection descriptors,
unless otherwise noted.

38 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

The states are asfollows:

m Cg—No descriptor

m C,—tpconnect () descriptor send-only

m C,—tpconnect () descriptor receive-only
m Cz—TPSVCI NFOdescriptor send-only

m C,—TPSVCl NFOdescriptor receive-only

Table 9 Connection Request Descriptor States

Function/Event States

C,b6, C C, C3 GC,

t pconnect with TPSENDONLY c,?

t pconnect with TPRECVONLY C,?

t pservi ce with flag TPSENDONLY C3P

t pservi ce with flag TPRECVONLY C,P

t pr ecv/no event C, Cy
t precv/TPEV_SENDONLY C, Cs
t pr ecv/TPEV_DI SCONI MM Co Co
t pr ecv/TPEV_SVCERR Co

t pr ecv/TPEV_SVCFAI L Co

t pr ecv/TPEV_SVCSUCC Co

t psend/no event C, Cs

t psend with flag TPRECVONLY C, Cy

t psend/TPEV_DI SCONI MM Co Co

ATMI C Function Reference 39

Section 3¢ - C Functions

Table 9 Connection Request Descriptor Sates (Continued)

Function/Event States

C,b6, C C, C3 Cy4

t psend/TPEV_SVCERR Co

t psend/TPEV_SVCFAI L Co

t pt er m(client only) Co Co

t pconmi t (originator only) Co Co® C

t psuspend (originator only) Co c,¢ C,¢

t pabort (originator only) Co Co¢ Cp¢

t pdi scon Co Co

t pret ur n (CONV server) Co Co Co G
t pf or war d (CONV server) Co Co Co G
All other ATMI functions Co C, C, C; C4

Note: 2If processisin transaction mode and TPNOTRAN is not specified, the
connection is in transaction mode.

b |f the TPTRANflag is set, the connection is in transaction mode.
¢ If the connection is not in transaction mode, no state change.

d1f the connection is in transaction mode, then t psuspend() returnsa
protocol error.

TX State TheBEA Tuxedo ATMI system ensuresthat aprocesscallsthe TX functionsin alegal
Transitions sequence. When anillegal state transition is attempted (that is, acall from a state with
ablank transition entry), the called function returns TX_PROTOCOL_ERROR. The legal
states and transitions for the TX functions are shown in Table 10. Calls that return
failure do not make state transitions, unless they are described by specific state table
entries. Any BEA Tuxedo ATMI system client or server isalowed to use the TX
functions.

40 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction Monitor Interface

The states are defined below:

m Sy No RMs have been opened or initialized. An application association cannot
start aglobal transaction until it has successfully called t x_open.

m S;: An application association has opened its RM but is not in atransaction. Its
transaction_control characteristicis TX_UNCHAI NED.

m S, An application association has opened its RM but is not in atransaction. Its
transaction_control characteristic is TX_CHAI NED.

m S5 An application association has opened its RM and isin atransaction. Its
transaction_control characteristicis TX_UNCHAI NED.

m S, An application association has opened its RM and isin atransaction. Its
transaction_control characteristic is TX_CHAI NED.

Table 10 TX Function States and Transitions

Function States

S S S S0y
tx_begin S3 Sy
tx_cl ose So So S
tx_commit —> TX SET1 S Sy
tx_commit —> TX_SET2 S
tx_info S S S3 Sy
tx_open S S S S3 Sy
tx_rol Il back —> TX_SET1 S Sy
tx_rol I back —> TX_SET2 S,
tx_set_commit_return S, S S3 Sy
tx_set _transaction_control control S, S Sy Sy

= TX_CHAI NED

ATMI C Function Reference 41

Section 3¢ - C Functions

42

See Also

Table 10 TX Function Sates and Transitions (Continued)

Function States

So S S &K 0K

tx_set_transaction_control control = S S S3 S3
TX_UNCHAI NED

tx_set_transaction_tinmeout S, S, S3 S,

TX_SET1 denotes any of the following: TX_OK, TX_ROLLBACK, TX_M XED,
TX_HAZARD, or TX_COVM TTED. TX_ROLLBACK is hot returned by
tx_rol | back() and TX_COW TTEDis hot returned by t x_commi t () .

TX_SET2 denotes any of the following: TX_NO BEG N,
TX_ROLLBACK_NO BEG N, TX_M XED_NO BEG N, TX_HAZARD NO BEG N, or
TX_COWM TTED_NO BEG N. TX_ROLLBACK_NO BEG Nisnot returned by
tx_rol | back() and TX_COW TTED_NO BEG Nis not returned by
tx_commit().

If TX_FAI L isreturned on any call, the application processisin an undefined
state with respect to the above table.

Whent x_i nf o() returns either TX_ROLLBACK_ONLY or

TX_TI MEOUT_ROLLBACK_ONLY in the transaction state information, the
transaction is marked rollback-only and will be rolled back whether the
application program callst x_commi t () ortx_rol | back() .

buf fer (3c),tpadvertise(3c),tpalloc(3c),tpbegin(3c),tpcall (3c),
t pconnect (3c),tpgetctxt(3c),tpinit(3c),tpopen(3c),tpservice(3c),
tpsetctxt(3c), tuxtypes(5),typesw(5)

ATMI C Function Reference

AEMsetblockinghook(3c)

AEMsetblockinghook(3c)

Name

Synopsis

Description

Return Values

Errors

AEMset bl ocki nghook() —Establishes an application-specific blocking hook
function.

#i ncl ude <atni.h>
int AEMset bl ocki nghook(_TM FARPRCC)

AEMset bl ocki nghook() isan“ATMI Extension for Mac” that allows aMac task to
install anew function which the ATMI networking software uses to implement
blocking ATMI calls. It takes a pointer to the procedure instance address of the
blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
function AEMset bl ocki nghook() givesthe application the ability to execute its own
function at “blocking” time in place of the default function. If called with aNULL
pointer, the blocking hook function isreset to the default function.

When an application invokesablocking ATMI operation, the operationisinitiated and
then aloop is entered which is equivalent to the following pseudocode:

for(;;) {
execut e operation in non-blocki ng node
if error
br eak;
if operation conplete
br eak;

whi | e(Bl ocki ngHook())

}

AEMset bl ocki nghook() returnsa pointer to the procedure-instance of the previously
installed blocking function. The application or library that calls the

AEMset bl ocki nghook() function should save this return value so that it can be
restored if necessary. (If “nesting” isnot important, the application may simply discard
the value returned by AEMset bl ocki nghook() and eventualy use

AEMset bl ocki nghook(NULL) to restore the default mechanism.)

AEMset bl ocki nghook() returns NULL on error and setst per r no() toindicate the
error condition.

Under failure, AEMset bl ocki nghook() setstperrno() to thefollowing value:

ATMI C Function Reference 43

Section 3¢ - C Functions

[TPEPROTO
AEMset bl ocki nghook() was called while ablocking operation wasin
progress.

Portability =~ Thisinterface is supported only in Mac clients.

Notices Theblocking function is reset after t pt er n(3c) iscalled by the application.

44 ATMI C Function Reference

AEOaddtypesw(3c)

AEOaddtypesw(3c)

Name

Synopsis

Description

Return Values

Errors

AECaddt ypesw() —Installs or replaces a user-defined buffer type at execution time.

#i ncl ude <atni.h>
#i ncl ude <tmtypes. h>

int FAR PASCAL AECaddtypesw(TMIYPESW *newt ype)

AECaddt ypesw() isan“ATMI Extension for OS/2” that allowsan OS/2 client to
install anew, or replace an existing, user-defined buffer type at execution time. The
argument to this function is a pointer to a TMIYPESWstructure that contains the
information for the buffer type to be installed.

If thet ype() andthesubt ype() match an existing buffer type already installed, then
all the information is replaced with the new buffer type. If the information does not
match thet ype() andthesubt ype() fields, then the new buffer type is added to the
existing types registered with the BEA Tuxedo ATMI system. For new buffer types,
make surethat the WsH and other BEA Tuxedo ATMI system processesinvolved in the
call processing have been built with the new buffer type.

The function pointers in the TMIYPESWarray should appear in the Module Definition
file of the application in the EXPORTS section.

The application can aso use the BEA Tuxedo ATMI system’s defined buffer type
routines. The application and the BEA Tuxedo ATMI system’s buffer routines can be
intermixed in one user defined buffer type.

Upon success, AECaddt ypesw() returnsthe number of user buffer typesin the system
Upon failure, AECaddt ypesw() returns -1 and setst per rno() toindicate the error
condition.

Upon failure, AECaddt ypesw() setst perrno() to one of the following values:

[TPEI NVAL]
AECaddt ypesw() was called and the t ype parameter was NULL.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

ATMI C Function Reference 45

Section 3¢ - C Functions

Portability — Thisinterfaceissupported only in Windowsclients. The preferred way to install atype
switch isto add it to the BEA Tuxedo ATMI system type switch DLL. Please refer to
Setting Up a BEA Tuxedo Application for more information.
Notices FAR PASCAL isused only for the 16-bit OS/2 environment.
Examples

#i ncl ude <os2. h>
#i nclude <atm . h>
#i ncl ude <tntypes. h>

int FAR PASCAL Nfinit(char FAR *, |ong);
int (FAR PASCAL * | pFinit)(char FAR *, long);
int FAR PASCAL Nfreinit(char FAR *, |ong);
int (FAR PASCAL * | pFreinit)(char FAR *, |long);
int FAR PASCAL Nfuninit(char FAR *, |ong);
int (FAR PASCAL * | pFuninit)(char FAR *, |ong);
TMI'YPESW newtype =
{
“ MYFM.", ‘e 1024, NULL, NULL,
NULL, _fpresend, _f post send, _fpostrecyv, _fencdec,
_froute
H

newt ype.initbuf = Nfinit;

newt ype.reinitbuf = Nfreinit;

newt ype. uni ni t buf = Nfuninit;

i f (AECaddt ypesw(newt ype) == -

user| og(“AECaddtypesw failed %", tpstrerror(tperrno));

}
int
FAR PASCAL
Nfinit(char FAR *ptr, long |en)
{

return(l);
}
int
FAR PASCAL
Nfreinit(char FAR *ptr, long |en)
{
return(l);
}
46 ATMI C Function Reference

AEOaddtypesw(3c)

int
FAR PASCAL
Nf uni nit (char FAR *ptr, |ong ndl en)

return(l);

The application Module Definition File:
; EXAMPLE. DEF file
NANVE EXAMPLE
DESCRI PTION ' EXAMPLE for QOS/ 2’
EXETYPE o5/ 2
EXPORTS
Nfinit

Nfreinit
Nf uni ni t

See Also bui I dwsh(1), buffer(3c),typesw 5)

ATMI C Function Reference 47

Section 3¢ - C Functions

AEPisblocked(3c)

Name

Synopsis

Description

Return Values

Errors
Portability

Comments

See Also

AEPi sbl ocked() —Determines if ablocking call isin progress.

#i nclude <atm . h>
int far pascal AEPi sbl ocked(voi d)

AEPi sbl ocked() isan“ATMI Extensionfor OS/2 Presentation Manager” that allows
a0S/2 PM task to determine if it is executing while waiting for a previous blocking
call to complete.

If there is an outstanding blocking function awaiting completion, AEPi sbl ocked()
returns 1. Otherwise, it returns 0.

No errors are returned.
Thisinterfaceis supported only in OS/2 PM clients.

Although a blocking ATMI call appears to an application as though it “blocks,” the
OS/2PM ATMI DLL hasto relinquish the processor to allow other applicationsto run.
This meansthat it is possible for the application which issued the blocking call to be
reentered, depending on the message(s) it receives. In thisinstance, the

AEPi sbl ocked() function can be used to ascertain whether the task has been
reentered while waiting for an outstanding blocking call to complete. Note that ATMI
prohibits more than one outstanding call per thread.

AEMs et bl ocki nghook(3c)

48 ATMI C Function Reference

AEWsetunsol(3c)

AEWsetunsol(3c)

Name

Synopsis

Description

Return Values

Errors

Portability

Notices

See Also

AEWet unsol () —Posts a Windows message for BEA Tuxedo ATMI unsolicited
event.

#i ncl ude <w ndows. h>
#i ncl ude <atni.h>
int far pascal AEWetunsol (HAND hWhd, WORD wMsQ)

In certain Microsoft Windows programming environments, it is natural and convenient
for the BEA Tuxedo ATMI system’s unsolicited messages to be posted to the
Windows event message queue.

AEWet unsol () controls which window to notify, hwd, and which Windows
message type to post, wvsg. When a BEA Tuxedo ATMI unsolicited message arrives,
aWindows message is posted. | Par am() isset to the BEA Tuxedo ATMI system
buffer pointer, or zero if none. If | Par an() isnon-zero, the application must call

t pfree() to releasethe buffer.

If wMsg is zero, any future unsolicited messages will be logged and ignored.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
to issue acall to AEW¢et unsol ().

Upon failure, AEWset unsol () returns-1 and setst perrno() to indicate the error
condition.
Upon failure, AEWset unsol () setst perrno() to one of the following values:

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

Thisinterface is supported only in Microsoft Windows clients.

AEWet unsol () posting of Windows messages may not be activated simultaneously
with at pset unsol () callback routine. The most recent t pset unsol () or
AEWet unsol () request controls how unsolicited messageswill be handled.

t pset unsol (3c)

ATMI C Function Reference 49

Section 3¢ - C Functions

buffer(3c)

Name buf f er () —Semantics of elementsintntype_sw t.

Synopsis
int /* Initialize a new data buffer */
_tmnitbuf(char *ptr, long | en)
int /* Reinitialize a reallocated data buffer */
_tnreinitbuf(char *ptr, long | en)
int /* Uninitialize a data buffer to be freed */

_trmunini tbuf (char *ptr, long | en)

long /* Process buffer before sending */

_tnpresend(char *ptr, long dlen, |ong ndl en)

void /* Process buffer after sending */

_tmpostsend(char *ptr, long dlen, |ong ndlen)

long /* Process buffer after receiving */

_tmpostrecv(char *ptr, long dlen, |ong ndlen)

long /* Encode/decode a buffer to/froma transm ssion format */

_tmencdec(int op, char *encobj, long elen, char *obj, |ong olen)

int /* Determ ne server group for routing based on data */ _tnroute(char
*routi ng_nane, char *service, char *data, long \ |en, char *group)

int /* Eval uat e bool ean expression on buffer’s data */ _tnfilter(char *ptr,
I ong dlen, char *expr, long exprlen)

int /* Extract buffer’s data based on format string */ _tnformat(char *ptr,

long dlen, char *fmt, char *result, long \ mexresult)
long /* Process buffer before sending, possibly generating copy */
_tnpresend2(char *iptr, long ilen, long ndl en, char *optr, long olen, int *flags)

Description This page describes the semantics of the elements and routines defined in the
t mt ype_sw_t structure. These descriptions are necessary for adding new buffer types
to aprocess buffer type switch, t m t ypesw. The switch elements are defined in
t ypesw(5) . Thefunction namesused in thisentry are templatesfor the actual function
names defined by the BEA Tuxedo ATMI system as well as by applications adding
their own buffer types. The names map to the switch elements very simply: the
template names are made by taking each function pointer’ s element name and
prepending _t m(for example, the element i ni t buf has the function name
_tminitbuf()).

The element t ype must be non-NULL and up to 8 charactersin length. The element
subt ype can be NULL, astring of up to 16 characters, or thewildcard character, “*".
If t ype isnot unique in the switch, then subt ype must be used; the combination of
t ype and subt ype must uniquely identify an element in the switch.

50 ATMI C Function Reference

buffer(3c)

Routine
Specifics

_tminitbuf

A given type can have multiple subtypes. If all subtypesare to be treated the same for
agiven type, then the wildcard character, “*”, can be used. Note that the function

t pt ypes() can be used to determine a buffer’s type and subtype if subtypes need to
be distinguished. If some subset of the subtypes within a particular type are to be
treated individually, and the rest are to be treated identically, then those which are to
be singled out with specific subtype values should appear in the switch before the
subtype designated with the wildcard. Thus, searching for types and subtypes in the
switch is done from top to bottom, and the wildcard subtype entry accepts any
“leftover” type matches.

df I tsi ze() isused when alocating or realocating a buffer. The larger of

df I tsi ze() andtheroutines' si ze parameter isused to create or reallocate a buffer.
For sometypes of structures, like afixed sized C structure, the buffer size should equal
thesizeof thestructure. If df | t si ze() issettothisvalue, then the caller may not need
to specify the buffer’ slength to routinesin which abuffer ispassed. df I t si ze() can
beO or less; however, if t pal | oc() ortpreal | oc() iscaledanditssi ze parameter
is aso lessthan or equal to 0, then the routine will fail. It is not recommended to set
df I tsize() toavauelessthan 0.

The names of the functions specified below are template names used within the BEA
Tuxedo ATMI system. Any application adding new routines to the buffer type switch
must use namesthat correspond to real functions, either provided by the application or
library routines. If aNULL function pointer is stored in abuffer type switch entry, the
BEA Tuxedo ATMI system calls a default function that takes the correct number and
type of arguments, and returns a default value.

_tminitbuf () iscaled fromwithintpal | oc() after abuffer has been allocated. It
is passed a pointer to the new buffer, pt r (), along with its size so that the buffer can
beinitialized appropriately. | en() isthelarger of the length passed intot pal | oc()
and the default specified indf | t si ze() inthat type's switch entry. Note that ptr ()
will never be NULL dueto the semanticsof t pal | oc() andtpreal | oc().Upon
successful return, pt r () isreturned tothecaler of t pal I oc().

If asingle switch entry is used to manipulate many subtypes, then the writer of
_tminitbuf () canuset ptypes() to determine the subtype.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success, _t mi ni t buf () returns 1. If the function fails, it returns-1 causing
tpal l oc() toalso return failure setting t per rno() to TPESYSTEM

ATMI C Function Reference 51

Section 3¢ - C Functions

52

_tmreinitbuf

_tmuninitbuf

_tmpresend

_tnreinitbuf () behavesthesameas _t ni ni t buf () exceptitisused to reinitialize
aredlocated buffer. It is called from within t preal | oc() after the buffer has been
reallocated.

If no buffer reinitialization needsto be performed, specify aNULL function pointer.

Upon success, _t nr ei ni t buf () returns 1. If the function fails, it returns -1 causing
t preal | oc() toaso return failure setting t per r no() to TPESYSTEM

_tmuni ni tbuf () iscaled by t pf ree() before the data buffer isfreed.

_tmuni ni t buf () ispassed apointer to the application portion of a data buffer, along
with its size, and can be used to clean up any structuresor state information associated
with that buffer. ptr () will never be NULL duetot pf ree() 'ssemantics. Note that
_trmuni ni t buf () should not free the buffer itself. Thet pf ree() functionis called
automatically for any FLD_PTR fieldsin the data buffer.

If no processing needs to be performed before freeing a buffer, specify aNULL
function pointer.

Upon success, _t nuni ni t buf () returns 1. If the function fails, it returns -1 causing
t pf ree() to print alog message.

_tnpresend() iscalled before abufferissentint pcal I (), tpacall (),

t pconnect (), tpsend(),t pbroadcast (), tpnotify(),tpreturn(),or

t pforward() . Itisasocaled after _t nr oute() but before _t mencdec() . If ptr()
isnon-NULL, preprocessing is performed on a buffer before it is sent.
_trnpresend() 'sfirst argument, pt r () , isthe application data buffer passed into the
send call. Its second argument, dl en() , isthe data’ slength aspassedinto the send call.
Itsthird argument, ndl en() , isthe actual size of the buffer in which the data resides.

One important requirement on this function isthat it ensures that when the function
returns, the data pointed to by pt r () canbesent “asis.” That is, since _t nencdec()
iscalled only if the buffer is being sent to adissimilar machine, _t npr esend() must
ensure upon return that no element in pt r () s buffer is a pointer to datathat is not
contiguous to the buffer.

If no preprocessing needs to be performed on the data and the amount of datathe caller
specified is the same as the amount that should be sent, specify a NULL function
pointer. The default routine returns dl en() and does nothing to the buffer.

If _tmpresend2() isnot NULL, _t npresend() isnotcalledand_t npresend2() is
caledinits place.

ATMI C Function Reference

buffer(3c)

_tmpostsend

_tmpostrecv

Upon success, _t npresend() returns the amount of datato be sent. If the function
fails, it returns -1 causing _t npr esend() 'scaller to also return failure setting
tperrno() to TPESYSTEM

_tnpost send() iscalled after abuffer issentint pcal I (), t pbroadcast (),
tpnotify(), tpacall (), tpconnect(), ortpsend().Thisroutineallowsany
post-processing to be performed on a buffer after it is sent and before the function
returns. Because the buffer passed into the send call should not be different upon
return, _t npost send() iscalled to repair abuffer changed by _t npresend() . This
function’sfirst argument, pt r () , pointsto the datasent asaresult of _t npr esend() .
The data' s length, as returned from _t npr esend() , ispassed in as thisfunction’s
second argument, dl en() . Thethird argument, mdl en() , isthe actua size of the
buffer in which the data resides. Thisroutineiscalled only whenpt r () isnon-NULL.

If no post-processing needs to be performed, specify aNULL function pointer.

_trnpostrecv() iscalled after abuffer is received, and possibly decoded, in
tpgetrply(), tpcall(), tprecv(), orintheBEA Tuxedo ATMI system’sserver
abstraction, and before it is returned to the application. If pt r () isnon-NULL,
_tpost recv() alowspost-processingto be performed on abuffer after itisreceived
and before it is given to the application. Its first argument, pt r (), pointsto the data
portion of the buffer received. Its second argument, dl en() , specifies the data' s size
cominginto_t npostrecv(). Thethird argument, mdl en(), specifiesthe actual size
of the buffer in which the dataresides.

If _tnpostrecv() changesthedatalengthin post-processing, it must returnthedata’ s
new length. The length returned is passed up to the application in amanner dependent
on the call used (for example, t pcal | () setsthe datalength in one of its arguments
for the caller to check upon return).

The buffer’s size might not be large enough for post-processing to succeed. If more
spaceisrequired, _t npostrecv() returns the negative absolute value of the desired
buffer size. The calling routine then resizes the buffer, and calls _t npostrecv() a
second time.

If no post-processing needs to be performed on the data and the amount of data
received is the same as the amount that should be returned to the application, specify
aNULL function pointer. The default routine returnsdl en() and does nothing to the
buffer.

ATMI C Function Reference 53

Section 3¢ - C Functions

54

_tmencdec

On success, _t npost recv() returnsthe size of the data the application should be
made aware of when the buffer is passed up from the corresponding receive call. If the
function fails, it returns -1 causing _t npost recv() 'scaller to return failure, setting
t perrno() to TPESYSTEM

_tmencdec() isused to encode/decode a buffer sent/received over a network to/from
amachine having different data representations. The BEA Tuxedo ATMI system
recommends the use of XDR; however, any encoding/decoding scheme can be used
that obeys the semantics of thisroutine.

Thisfunctioniscaled by t pcal | (), tpacall (), tpbroadcast(),tpnotify(),

t pconnect (), tpsend(),tpreturn(), ortpforward() toencodethecalers
buffer only when it is being sent to an “unlike” machine. In thesecalls, _t mencdec()
iscalled after both _t nrout e() and _t npresend(), respectively. Recall from the
description of _t npr esend() that the buffer passed into _t mencdec() containsno
pointers to datathat is not contiguous to the buffer.

Onthereceiving end, t precv() , t pget rpl y() , thereceivehhaf of t pcal I () andthe
server abstraction all call _t rencdec() to decode abuffer after they have received it
from an “unlike” machine but before calling _t npost recv().

_tmencdec() 'sfirst argument, op() , specifies whether the function is encoding or
decoding data. op() can be one of TMENCODE or TVDECODE.

When op() is TMENCODE, encobj () pointsto abuffer allocated by the BEA Tuxedo
ATMI system where the encoded version of the data will be copied. The unencoded
dataresidesin obj (). That is, when op() is TMENCODE, _t mencdec() transforms
obj () toitsencoded format and placestheresult in encobj () . The size of the buffer
pointed to by encobj () isspecified by el en() andisat least four timesthe size of the
buffer pointed to by obj () whoselengthisol en() . ol en() isthelength returned by
_tnpresend. _tmencdec() returnsthe size of the encoded datain encobj () (that
is, the amount of datato actually send). _t mencdec() should not free either of the
buffers passed into the function.

When op() is TMDECODE, encobj () pointsto abuffer allocated by the BEA Tuxedo
ATMI system where the encoded version of the data resides as read off a
communication endpoint. The length of the bufferisel en() . obj () pointsto abuffer
that is at least the same size as the buffer pointed to by encobj () into which the
decoded datais copied. The length of obj () isol en() . Asobj () isthe buffer
ultimately returned to the application, this buffer may be grown by the BEA Tuxedo
ATMI system before calling _t mencdec() to ensurethat itislarge enoughto hold the
decoded data. _t nencdec() returnsthe size of the decoded datain obj () . After

ATMI C Function Reference

buffer(3c)

_tmroute

_tmencdec() returns, _t mpostrecv() iscaled withobj () passed asitsfirst
argument, _t nencdec() 'sreturn value asits second, and ol en() asitsthird.
_tmencdec() should not free either of the buffers passed into the function.

_tmencdec() iscalled only when non-NULL data needs to be encoded or decoded.

If no encoding or decoding needs to be performed on the data even when dissimilar
machines exist in the network, specify a NULL function pointer. The default routine
returns either ol en() (op() equals TMENCODE) or el en() (op() equals TMDECODE).

On success, _t nencdec() returns a non-negative length as described above. If the
function fails, it returns -1 causing _t mencdec() 'scaller to return failure, setting
tperrno() to TPESYSTEM

The default for message routing isto route amessage to any avail able server group that
offersthe desired service. Each service entry in the UBBCONFI G file can specify the
logical name of some routing criteriafor the service using the ROUTI NG parameter.
Multiple services can share the same routing criteria. In the case that a service has a
routing criteria name specified, _t nr out e() isused to determine the server group to
which amessage is sent based on data in the message. This mapping of data to server
group is called “ data-dependent routing.” _t nr out e() iscalled before abuffer is sent
(andbefore_t npresend() and_t nencdec() arecalled)intpcal | (), tpacall (),
tpconnect (), andt pforward().

rout i ng_nane isthe logical name of the routing criteria (as specified in the
UBBCONFI Gfile) and is associated with every service that needs data dependent
routing. ser vi ce isthe name of the service for which the request is being made. The
parameter dat a pointsto the data that isbeing transmitted in the request and | en isits
length. Unlike the other routines described in these pages, _t nr out e() iscalled even
whenpt r () isNULL. Thegr oup parameter is used to return the name of the group to
which the request should be routed. This group name must match one of the group
names listed in the UBBCONFI Gfile (and one that is active at the time the group is
chosen). If the request can go to any available server providing the specified service,
gr oup should be set to the NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify aNULL function
pointer. The default routine sets gr oup to the NULL string and returns 1.

Upon success, _t nr out e() returns 1. If the function fails, it returns -1 causing
_tnroute()’'scalertoalsoreturnfailure; asaresult,t perr no() issetto TPESYSTEM
If _tnroute() failsbecausearequested server or serviceisnot available, t per rno()
is set to TPENCENT.

ATMI C Function Reference 55

Section 3¢ - C Functions

_tmfilter

_tmformat

_tmpresend2

If gr oup isset tothe name of aninvalid server group, thefunction calling _t nr out e()
will return an error and set t per r no() to TPESYSTEM

_tnfilter() iscaled by the EventBroker server to analyze the contents of a buffer
posted by t ppost () . An expression provided by the subscriber (t psubscribe())is
evaluated with respect to the buffer’ s contents. If the expressionistrue, _tnfilter ()
returns 1 and the EventBroker performs the subscription’s notification action.
Otherwise, if _tnfilter () returnsO, the EventBroker does not consider this posting
a“match” for the subscription.

If exprlen() is-1, expr () isinterpreted asaNULL-terminated character string.
Otherwise expr () isinterpreted asexpr| en bytes of binary data. An expr | en of 0
indicates no expression.

If filtering does not apply to this buffer type, specify aNULL function pointer. The
default routine returns 1 if there is no expression or if expr () isan empty
NULL-terminated string. Otherwise the default routine returns O.

_tnformat () iscaled by the EventBroker server to convert a buffer’sdatainto a
printabl e string, based on aformat specification namedf nt . The EventBroker converts
posted buffers to strings asinput for user | og() or systen() notification actions.

The output is stored as a character string in the memory location pointed to by
result (). Uptomaxresul t () bytesarewritteninresul t (), including a
terminating NULL character. If resul t () isnot large enough, _t nf or mat ()
truncates its output. The output string is aways NULL terminated.

On success, _t nf or mat () returns a non-negative integer. 1 means success, 2 means
the output string is truncated. If the function fails, it returns -1 and stores an empty
string inresul t ().

If formatting does not apply to thisbuffer type, specify aNULL function pointer. The
default routine succeeds and returns an empty stringinresul t ().

_tnpresend2() iscalled beforeabufferissentintpcal | (), tpacall (),

t pconnect (), t psend(),t pbroadcast (), tpnotify(),tpreturn(),and

t pforwar d() . Itisalso caled after _t nr out e() but before_t mencdec() . Ifiptr is
not NULL, preprocessing is performed on abuffer before the buffer is sent.

Thefirstargument to _t npr esend2() ,i pt r, isthe application data buffer passedinto
the send call. The second argument, i | en, is the length of the data as passed into the
send call. Thethird argument, mdl en, isthe actual size of the buffer in which the data
resides.

56 ATMI C Function Reference

buffer(3c)

Unlike _t npresend(), _t npresend2() receivesapointer, opt r, which is used to
pass a pointer to abuffer into which thedataini pt r can be placed, after any required
processing is done. Use this pointer if you want to use a new buffer for the data
modified by _t npr esend2() instead of modifying theinput buffer. The fifth
argument, ol en, isthe size of the opt r buffer. The sixth argument, f | ags, tells

_t npresend2() whether thebuffer being processed isthe parent buffer (the onebeing
sent). Thef | ags argument is returned by _t npr esend2() to indicate the results of
processing.

Thesize of theopt r buffer may not be large enough for successful postprocessing. If
more space is required, _t npresend2() returns the negative absolute val ue of the
desired buffer size. All ol en bytes of the opt r buffer are preserved. The calling
routine then resizes the buffer and calls _t npr esend2() asecond time.

If no postprocessing needs to be performed on the data, and the amount of data
received is the same as the amount that should be returned to the application, specify
aNULL function pointer. The default routine returnsi | en and does not modify the
buffer.

Thefollowing isavalid flag on input to _t npresend2() :

[TMPARENT]
Thisisthe parent buffer (the one being sent).

Theflagsreturned in f | ags specify the results of _t npr esend2() . Possible values
are:

[TMUSEI PTR]
_tnpresend2() was successful: the processed datais in the buffer
referenced by i pt r, and the return value contains the length of the datato be
sent.

[TMUSEOPTR]
_tnpresend2() was successful: the processed datais in the buffer
referenced by opt r, and the return value contains the length of the datato be
sent.

If TMUSEGPTRIs returned, the processing done after messages are transmitted is
different from the processing done by _t npr esend() : thei pt r buffer remains
unchanged and _t npost send() isnot caled. If TMUSEI PTRis returned,

_tnpost send() iscalled, asitiscalled for _t npresend() . Itisthe responsibility of
the caller to allocate and to free or cache the opt r buffer.

ATMI C Function Reference 57

Section 3¢ - C Functions

There are severa reasons why you may want to use this approach for atyped buffer:

m Thebuffer created by processing for transmission is larger than the maximum
length alowed for the input buffer.

m Undoing the processing to prepare a buffer for transmission is so complicated
that it is easier to copy the data to adifferent buffer.

The _t npresend2() function ensures that when afunction returns, the datain the
buffer to be sent can be sent without further processing. Because _t nencdec() is
called only if the buffer isbeing sent to adissimilar machine, _t npr esend2() ensures,
upon return, that all datais stored contiguously in the buffer to be sent.

If no preprocessing needsto be performed on the data, and the amount of data specified
by the caller is the same as the amount that should be sent, specify aNULL function
pointer for _t npr esend2() in the buffer type switch. If _t npresend2() isNULL,
_tnpresend() iscalled by default.

Upon success, _t npr esend2() returns the amount of datato be sent or, if alarger
buffer is needed, the negative absol ute value of the desired buffer size. If the function
fails, it returns -1, causing the caller of _t npr esend2() to also return failure, setting
tperrno() to TPESYSTEM

See Also tpacal I (3c),tpalloc(3c),tpcall(3c),tpconnect(3c),tpdiscon(3c),
tpfree(3c),tpgetrply(3c),tpgprio(3c),tprealloc(3c),tprecv(3c),
t psend(3c),tpsprio(3c),tptypes(3c),tuxtypes(5)

58 ATMI C Function Reference

catgets(3c)

catgets(3c)

Name

Synopsis

Description

Diagnostics

See Also

cat get s() —Reads a program message.

#i ncl ude <nl _types. h>
char *catgets (nl_catd catd, int set_num int nsg_num char *s)

cat get s() attemptsto read message msg_num in set set _num from the message
catalogue identified by cat d. cat d is a catalogue descriptor returned from an earlier
call to cat open() . s points to a default message string which will be returned by
cat get s() if theidentified message catal ogue is not currently available.

A thread in amultithreaded application may issue acall to cat get s() whilerunning
in any context state, including TPI NVALI DCONTEXT.

If the identified message is retrieved successfully, cat get s() returns a pointer to an
internal buffer area containing the NULL terminated message string. If thecall is
unsuccessful because the message catal ogue identified by cat d is not currently
available, apointer to s isreturned.

cat open, catcl ose(3c)

ATMI C Function Reference 59

Section 3¢ - C Functions

catopen, catclose(3c)

60

Name

Synopsis

Description

cat open(), cat cl ose() —Opens/closes a message catalogue.

#i ncl ude <nl _types. h>
nl _catd catopen (char *name, int oflag)
int catclose (nl_catd catd)

cat open() opens amessage catalogue and returns a catalogue descriptor. nane
specifies the name of the message catal ogue to be opened. If nane containsa“/ " then
nane specifies a pathname for the message catal ogue. Otherwise, the environment
variable NLSPATH is used. If NLSPATH does not exist in the environment, or if a
message catalogue cannot be opened in any of the paths specified by NLSPATH, then
the default path is used (seenl _t ypes(5)).

The names of message catalogues, and their |ocation inthefilestore, can vary from one
system to another. Individual applications can choose to name or locate message
catalogues according to their own special needs. A mechanism istherefore required to
specify where the catal ogue resides.

The NLSPATH variable provides both the location of message catal ogues, in the form
of asearch path, and the naming conventions associated with message catalogue files.
For example:

NLSPATH=/ nl sl i b/ %./ %N. cat : / nl sl i b/ %\ %

The metacharacter %introduces a substitution field, where %4 substitutes the current
setting of the LANG environment variable (seefollowing section), and 9\ substitutes the
value of the nane parameter passed to cat open() . Thus, in the above example,

cat open() will searchin/ nl sl i b/ $SLANG nane. cat ,thenin/ nl sl i b/name/$LANG,
for the required message catal ogue.

NLSPATH will normally be set up on a system wide basis (for example, in
/et c/ profil e)andthus makesthelocation and naming conventions associated with
message catal ogues transparent to both programs and users.

Thefollowing table lists the full set of metacharacters.

M etacharacter Description

9N The value of the name parameter passed to cat open.

ATMI C Function Reference

catopen, catclose(3c)

Diagnostics

See Also

% The value of LANG

% The value of the language element of LANG.
% The value of the territory element of LANG.
% The value of the codeset element of LANG.
W A single %.

The LANG environment variable provides the ability to specify the user’ srequirements
for native languages, local customs and character set, asan ASCI| string in the form
LANG=l anguage[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has aterminal that operates
in 1SO 8859/1 codeset, would want the setting of the LANG variable to be as follows:

LANG=De_A. 88591

With this setting it should be possible for the user to find relevant cataloguesif they
exist.

If the LANG variable is not set then the value of LC_MESSAGES as returned by
set | ocal e(3c) isused. If thisisNULL then the default path as defined in
nl _types(5) isused.

of I ag() isreserved for future use and should be set to 0. The results of setting this
field to any other value are undefined.

cat cl ose() closesthe message catalogue identified by cat d.

A thread inamultithreaded application may issueacall to cat open() orcat cl ose()
while running in any context state, including TPI NVALI DCONTEXT.

If successful, cat open() returnsamessage catal ogue descriptor for use on subsequent
callstocat gets() andcatcl ose() . Otherwisecat open() returns(nl _catd) -1.
cat cl ose() returnsO if successful, otherwise -1.

cat gets(3c), setlocal e(3c),nl _types(5)

ATMI C Function Reference 61

Section 3¢ - C Functions

decimal(3c)

Name deci mal () —Decimal conversion and arithmetic routines.
Synopsis

#i ncl ude “deci mal.h”

int

| ddeci mal (cp, len, np) /* load a decimal */
char*cp; /* input: location of conpacted format */
int

| en; /* input: length of conpacted format */
dec_t*np; /* output: location of dec_t format */
voi d

stdeci mal (np, cp, |en) /* store a decimal */
dec_t*np; /* input: location of dec_t format */
char*cp; /* output: location of conpacted format */
int len; /* input: length of conpacted format */
int

deccnp(nl, n2) /* conpare two deci mal nunbers */
dec_t*nil; [* input: nunber to be conpared */
dec_t*n2; [* input: nunber to be conpared */

int

dect oasc(np, cp, len, right) /* convert dec_t to ascii */
dec_t*np; [* input: nunber to be converted */
char*cp; /* output: nunber after conversion */

int len; /* input: length of output string */

int right; /* input: nunber of places to right of decinal point */
int

deccvasc(cp, |en, np) /* convert ascii to dec_t */
char *cp; /* input: nunber to be converted */

int len; /* input: maxi mum | ength of nunber to be converted */
dec_t*np; /* output: nunber after conversion */

int

dectoint(np, ip) /* convert int to dec_t */
dec_t*np; /* input: nunber to be converted */

int *ip; /* output: nunber after conversion */

int

deccvint(in, np) /* convert dec_t to int */

62 ATMI C Function Reference

decimal(3c)

int in; /* input: nunber to be converted */
dec_t *np; /* output: nunber after conversion */
int

dect ol ong(np, | ngp) /* convert dec_t to long */
dec_t *np; /* input: nunber to be converted */

I ong* | ngp; /* output: nunber after conversion */
int

deccvl ong(l ng, np) /* convert long to dec_t */

I ongl ng; /* input: nunber to be converted */
dec_t *np; /* output: nunber after conversion */
int

dect odbl (np, dbl p) /* convert dec_t to double */
dec_t *np; /* input: nunber to be converted */
doubl e *dbl p; /* output: nunber after conversion */
int

deccvdbl (dbl, np) /* convert double to dec_t */
doubl e *dbl; /* input: nunber to be converted */
dec_t *np; /* output: nunber after conversion */
int

dectoflt(np, fltp) /* convert dec_t to float */
dec_t *np; /* input: nunber to be converted */
float*fltp; /* output: nunber after conversion */
int

deccvflt(flt, np) /* convert float to dec_t */
doubl e *flt; /* input: nunber to be converted */
dec_t *np; /* output: nunber after conversion */
int

decadd(*nl, *n2, *n3) /* add two deci mal nunbers */
dec_t*nl; /* input: addend */

dec_t*n2; /* input: addend */

dec_t*n3; /* output: sum*/

int

decsub(*nl, *n2, *n3) /* subtract two deci mal nunbers */
dec_t*nl; /* input: mnuend */

dec_t*n2; /* input: subtrahend */

dec_t*n3; /* output: difference */

int

decrmul (*nl, *n2, *n3) /* multiply two deci mal nunbers */
dec_t *nl; [* input: nultiplicand */

dec_t*n2; [* input: nultiplicand */

dec_t*n3; /* output: product */

ATMI C Function Reference

63

Section 3¢ - C Functions

int

decdiv(*nl, *n2, *n3) /* divide two deci mal nunbers */
dec_t*nl; /* input: dividend */

dec_t*n2; /* input: divisor */

dec_t *n3; /* output: quotient */

Description These functions allow storage, conversion, and manipulation of packed decimal data
onthe BEA Tuxedo ATMI system. Notethat the format in which the decimal datatype
is represented on the BEA Tuxedo ATMI system is different from its representation
under CICS.

A thread in a multithreaded application may issue acall to any of the deci mal
conversion functions while running in any context state, including
TPl NVALI DCONTEXT.

Native Decimal ~ Decimalsarerepresented on native BEA Tuxedo ATMI system nodes using thedec_t
Representation structure. This definition of this structureis as follows:

#def i ne DECSI ZE 16

struct deci mal {
short dec_exp; /* exponent base 100 */
short dec_pos; /* sign: 1l=pos, O=neg, -1=null */
short dec_ndgts; /* nunber of significant digits */

char dec_dgts[DECSI ZE]; /* actual digits base 100 */
%;/pedef struct deci mal dec_t;
It should never be necessary for programmers to directly accessthe dec_t structure,
but it is presented here nevertheless to give an understanding of the underlying data
structure. If large amounts of decimal data need to be stored, the st deci mal () and
| ddeci mal () functions may be used to obtain amore compact format. dect oasc(),
dect oi nt (), dect ol ong(), dect odbl (), and dectof I t () alow the conversion of
decimalsto other datatypes. deccvasc(),deccvi nt (),deccvl ong(),deccvdbpl (),
and deccvfl t () allow the conversion of other datatypesto the decimal datatype.
deccnp() isthe function which comparestwo decimals. It returns -1 if the first
decimal is less than the second, O if the two decimals are equal, and 1 if the first
decimal is greater than the second. A negative value other than -1 is returned if either
of theargumentsisinvalid. decadd() , decsub(), decnul (), anddecdi v() perform
arithmetic operations on decimal humbers.

Return Value Unless otherwise stated, these functions return 0 on success and a negative value on
error.

64 ATMI C Function Reference

gp_mktime(3c)

gp_mktime(3c)

Name

Synopsis

Description

gp_nkti me() —Converts at mstructure to a calendar time.

#i ncl ude <tine. h>
time_t gp_nktime (struct tm*tinmeptr);

gp_nkti me() convertsthetimerepresented by thet mstructure pointedtoby t i mept r
into a calendar time (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970).

The t mstructure has the following format:

struct tm{

int tmsec; /* seconds after the mnute [0, 61] */
int tmmn; /* mnutes after the hour [0, 59] */
int tmhour; /* hour since mdnight [0, 23] */

int tmnday; /* day of the nmonth [1, 31] */

int tmnon; /* nonths since January [0, 11] */

int tmyear; /* years since 1900 */

int tmwday; /* days since Sunday [0, 6] */

int tmyday; /* days since January 1 [0, 365] */
int tmisdst; /* flag for daylight savings time */

}s

In addition to computing the calendar time, gp_nkt i me() normalizesthe suppliedt m
structure. The origina values of thet m wday and t m yday components of the
structure areignored, and the original values of the other components are not restricted
to the rangesindicated in the definition of the structure. On successful completion, the
values of thet m wday and t m yday components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values
forced to be within the appropriate ranges. The final value of t m nday isnot set until
tm nmon andt m year are determined.

The original values of the components may be either greater than or less than the
specified range. For example, at m hour of -1 means1 hour beforemidnight, t m nday
of 0 means the day preceding the current month, and t m non of -2 means 2 months
before January of t m year .

If t m.i sdst ispositive, the origina values are assumed to be in the alternate time
zone. If it turns out that the alternate time zone is not valid for the computed calendar
time, then the components are adjusted to the main time zone. Likewise, if t m i sdst

ATMI C Function Reference 65

Section 3¢ - C Functions

66

Example

Notices

Portability

is zero, the original values are assumed to be in the main time zone and are converted
to the alternate time zone if the main time zoneisnot valid. If t m i sdst isnegative,
the correct time zone is determined and the components are not adjusted.

Local time zone information isused as if gp_nkt i me() had caledt zset ().

gp_nktime() returnsthe specified calendar time. If the calendar time cannot be
represented, the function returnsthe value (ti me_t)-1.

A thread in amultithreaded application may issue acall to gp_nkt i me() while
running in any context state, including TPl NVALI DCONTEXT.

What day of the week isJuly 4, 2001?

#i ncl ude <stdi o. h>
#i ncl ude <tine.h>

static char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

h

struct tmtine_str;
[*.0.0%]
time_str.tmyear
tine_str.tmnon
time_str.tm nday
tinme_str.tm hour
tine_str.tmmn
tine_str.tmsec
tine_str.tm.sdst
if (gp_nktime(tinme_str)
time_str.tmwday=7;
printf("%\en", wday[tine_str.tmwday]);

2001 - 1900;
7 - 1;

)

LRees

1;
= -1)

t m year of thetm structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

On systems where the C compilation system already providesthe ANSI C nkti me()
function, gp_nkti me() simply callsrmkti me() to do the conversion. Otherwise, the
conversion is provided directly in gp_nkti me() .

ATMI C Function Reference

gp_mktime(3c)

In the latter case, the Tz environment variable must be set. Note that in many
installations, Tz is set to the correct value by default when the user logs on. The default
valuefor TZ isGVIT0. The format for Tz is the following:

stdoffset[dst[offset],[start[time],end[tinme]]]

st d and dst
Three or more bytesthat designate the standard time zone (st d) and daylight
savingstime time zone (dst). Only st d isrequired. If dst ismissing, then
daylight savings time does not apply in thislocale. Uppercase and lowercase
lettersareallowed. Any charactersexcept aleading colon (:), digits, acomma
(,), aminus (-) or aplus (+) are allowed.

of f set
Indicates the value one must add to the local time to arrive at Coordinated
Universal Time. Theof f set has the following form: hh[:mm{:ss]]. The
minutes (mm) and seconds (ss) are optional. The hour (hh) is required and
may be asingledigit. Theof f set following st d isrequired. If no of f set
followsdst , daylight savings timeis assumed to be one hour ahead of
standard time. One or more digits may be used; thevalueisawaysinterpreted
as a decimal number. The hour must be between 0 and 24, and the minutes
(and seconds) if present, between 0 and 59. Out of range values may cause
unpredictable behavior. If preceded by a“-", thetime zoneiseast of the Prime
Meridian; otherwise it is west (which may be indicated by an optional
preceding “+” sign).

start/time,end/tine
Indicates when to change to and back from daylight savings time, where
st ar t /time describes when the change from standard time to daylight
savingstime occurs, and end/t i me describes when the change back happens.
Each t i me field describeswhen, in current local time, the changeis made.
Theformats of st art and end are one of the following:

Jn
The Julian day n (1 n 365). Leap daysare not counted. That is, inall
years, February 28 is day 59 and March 1isday 60. It isimpossible
to refer to the occasional February 29.

The zero-based Julian day (0 n 365). Leap days are counted, and it
is possible to refer to February 29.

ATMI C Function Reference 67

Section 3¢ - C Functions

68

Mm n. d
Day d (0d 6) of week n of month min theyear (1 n 5, 1 m12), where week 5
means “the last d-day in month m” which may occur in either the fourth or
the fifth week). Week 1 isthe first week in which day d occurs. Day 0 (zero)

is Sunday.

Implementation specific defaults are used for st art and end if these optional fields
are not given.

Thet i me hasthe sameformat as of f set except that no leading sign (“-” or “+")is
allowed. The default, if ti me isnot specified, is 02:00:00.

See Also cti ne(3c), get env(3c), ti nezone(4) in aUNIX system reference manual

ATMI C Function Reference

nl_langinfo(3c)

nl_langinfo(3c)

Name

Synopsis

Description

Diagnostics

Notices

See Also

nl _I angi nf o() —Language information.

#i ncl ude <nl _types. h>
#i ncl ude <l angi nf o. h>

char *nl _langinfo (nl_itemitem;

nl _l angi nf o() returnsapointer toaNUL L-terminated string containinginformation
relevant to a particular language or cultural area defined in the programslocale. The
manifest constant names and values of i t emare defined by | angi nf o. h.

For example:
nl _l angi nfo (ABDAY_1);

returns a pointer to the string “Di nf' if the identified language is French and a French
locaeis correctly installed; or “Sun” if the identified language is English.

A thread in amultithreaded application may issue acall tonl _I angi nf o() while
running in any context state, including TPl NVALI DCONTEXT.

If setlocal e() hasnot been called successfully, or if | angi nf 0() datafor a
supported language is either not available or i t emis not defined therein, then

nl _l angi nf o() returnsa pointer to the corresponding string in the C locale. In al
locales, nl _I angi nf o() returnsa pointer to an empty string if i t emcontains an
invalid setting.

The array pointed to by the return value should not be modified by the program.
Subsequent callsto nl _I angi nf o() may overwrite the array.

setlocal e(3c),strftime(3c),langinfo(5),nl_types(5)

ATMI C Function Reference 69

Section 3¢ - C Functions

rpc_sm_allocate, rpc_ss allocate(3c)

70

Name

Synopsis

Description

rpc_smal l ocate(),rpc_ss_all ocat e() —Allocates memory within the RPC
stub memory management scheme.

#i ncl ude <rpc/rpc. h>
id _void_p_t rpc_smallocate(unsigned32 size, unsigned32 *status)
id _void_p_t rpc_ss_allocate(unsigned32 size)

Applicationscall r pc_sm al | ocat 3() to allocate memory within the RPC stub
memory management scheme. The input parameter, si ze, specifiesin bytes, the size
of memory to be allocated. Before a call to this routine, the stub memory management
environment must have been established. For service codethat is called from the server
stub, the stub itself normally establishes the necessary environment. When
rpc_sm al | ocat e() isused by code that isnot called from the stub, the application
must establish the required memory management environment by calling
rpc_smenabl e_al l ocate().

Specifically, if the parameters of a server stub include any pointers other than those
used for passing parameters by reference or the [enabl e_al | ocat e] attribute is
specified for the operation in the ACS file, then the environment is automatically set
up. Otherwise, the environment must be set up by the application by calling
rpc_smenabl e_al l ocate().

When the stub establishes the memory management environment, the stub itself frees
any memory allocated by rpc_sm al | ocat e() . The application can free such
memory before returning to the calling stub by callingr pc_sm free() .

When the application establishes the memory management environment, it must free
any memory allocated, either by calingr pc_sm free() or by calling
rpc_smdi sabl e_al |l ocate().

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Always returned. The return value is used to determine failure.

rpc_ss_al | ocat e() isthe exception-returning version of this function and has no
st at us output parameter. No exceptions are raised.

ATMI C Function Reference

rpc_sm_allocate, rpc_ss_allocate(3c)

Return Values

See Also

A thread in amultithreaded application may issueacall torpc_sm al | ocat e() or
rpc_ss_al | ocat e() whilerunningin any context state, including
TPl NVALI DCONTEXT.

Upon success, the routines return a pointer to the allocated memory. Note that in the
I SO standard C environments, i dl _voi d_p_t isdefined asvoi d * and in other
environmentsit is defined aschar *.

If there is insufficient memory, the routines return aNULL pointer.

rpc_smdisable_al locate, rpc_ss_disable_allocate(3c),
rpc_smenabl e_al | ocate, rpc_ss_enabl e_all ocate(3c),rpc_smfree,
rpc_ss_free(3c)

Programming BEA Tuxedo ATMI Applications Using TXRPC

ATMI C Function Reference 71

Section 3¢ - C Functions

rpc_sm_client_free, rpc_ss client_free(3c)

Name

Synopsis

rpc_smclient_free(),rpc_ss_client_free()—Freesmemory returnedfroma
client stub.

#i ncl ude <rpc/rpc. h>
void rpc_smclient_free (idl_void_p_t node_to_free, unsigned32 *status)
void rpc_ss_client_free (idl_void_p_t node_to_free)

Description

Return Values

Therpc_smclient_free() routinereleases memory allocated and returned from a
client stub. The input parameter, node_t o_f r ee, specifies a pointer to memory
returned from aclient stub. Note that in the | SO standard C environments,

id _void p_t isdefinedasvoi d * andin other environmentsisdefined aschar *.

Thisroutine enablesaroutineto deall ocate dynamically allocated memory returned by
an RPC call without knowledge of the memory management environment from which
it was called.

Note that thisroutine is always called from client code, even if the code can is
executing as part of a server.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_ss_client_free() isthe exception-returning version of this function and has
Nno st at us output parameter. No exceptions are raised.

A thread in amultithreaded application may issueacall torpc_smclient _free()
orrpc_ss_client_free() whilerunning in any context state, including
TPl NVALI DCONTEXT.

None.

72 ATMI C Function Reference

rpc_sm_client_free, rpc_ss_client_free(3c)

SeeAlso rpc_smfree, rpc_ss free(3c),rpc_smset _client_alloc_free,
rpc_ss_set_client_alloc_free(3c),rpc_smswap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3c)

Programming BEA Tuxedo ATMI Applications Using TXRPC

ATMI C Function Reference 73

Section 3¢ - C Functions

rpc_sm_disable allocate,
rpc_ss_disable_allocate(3c)

Name

Synopsis

Description

Return Values

74

See Also

rpc_sm di sabl e_al | ocate(), rpc_ss_di sabl e_al | ocat e() —Releases
resources and allocated memory within the stub memory management scheme.

#i ncl ude <rpc/rpc. h>
voi d rpc_smdi sabl e_al | ocat e(unsi gned32 *st at us);
voi d rpc_ss_di sabl e_al | ocate(void);

Ther pc_sm di sabl e_al | ocat e() routine releases all resources acquired by a call
torpc_sm enabl e_al | ocat e(), and any memory allocated by calls to
rpc_sm al | ocat e() afterthecall tor pc_sm enabl e_al | ocat e() was made.

Therpc_sm enabl e_al | ocat e() and rpc_sm di sabl e_al | ocat e() routines
must be used in matching pairs. Calling this routine without a previous matching call
torpc_sm enabl e_al | ocat e() resultsin unpredictable behavior.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_ss_di sabl e_al | ocat e() isthe exception-returning version of this function
and has no st at us output parameter. No exceptions are raised.

A thread in a multithreaded application may issue acall to
rpc_sm di sabl e_al | ocate() orrpc_ss_di sabl e_al | ocat () whilerunningin
any context state, including TPl NVALI DCONTEXT.

None.

rpc_smallocate, rpc_ss_allocate(3c),rpc_smenabl e_allocate,
rpc_ss_enabl e_al |l ocat e(3c)

Programming BEA Tuxedo ATMI Applications Using TXRPC

ATMI C Function Reference

rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c)

rpc_sm_enable_allocate,
rpc_ss_enable_allocate(3c)

Name

Synopsis

Description

Return Values

rpc_sm enabl e_al | ocate(),rpc_ss_enabl e_al | ocat e() —Enablesthe stub
memory management environment.

#i ncl ude <rpc/rpc. h>
voi d rpc_sm enabl e_al | ocat e(unsi gned32 *st at us)
voi d rpc_ss_enabl e_al | ocat e(voi d)

Applications can cal r pc_sm enabl e_al | ocat e() to establish a stub memory
management environment in cases where one is not established by the stub itself. A
stub memory management environment must be established before any callsare made
torpc_sm al | ocat e() . For service code called from the server stub, the stub
memory management environment isnormally established by the stub itself. Code that
is called from other contexts needsto call r pc_sm enabl e_al | ocat e() before
calingrpc_sm al | ocat e() (for example, if the service codeis called directly
instead of from the stub).

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

rpc_ss_enabl e_al | ocat e() istheexception-returning version of thisfunction and
has no st at us output parameter. The following exceptions are raised by this routine:

rpc_x_no_nmenory
Insufficient memory available to set up necessary data structures.

A thread in amultithreaded application may issue acall to
rpc_sm enabl e_al | ocate() orrpc_ss_enabl e_al | ocat e() whilerunningin
any context state, including TPI NVALI DCONTEXT.

None.

ATMI C Function Reference 75

Section 3¢ - C Functions

See Also rpc_smallocate, rpc_ss_allocate(3c),rpc_smdisable_allocate,
rpc_ss_di sabl e_al | ocate(3c)

Programming BEA Tuxedo ATMI Applications Using TXRPC

76 ATMI C Function Reference

rpc_sm_free, rpc_ss_free(3c)

rpc_sm_free, rpc_ss free(3c)

Name

Synopsis

Description

Return Values

See Also

rpc_smfree, rpc_ss_free()—Freesmemory alocated by the
rpc_sm al |l ocat e() routine.

#i ncl ude <rpc/rpc. h>
void rpc_smfree(idl _void_p t node_to_free, unsigned32 *status)
void rpc_ss_free(idl _void_p_t node_to_free)

Applicationscal rpc_sm free() to release memory allocated by

rpc_sm al | ocat e() . The input parameter, node_t o_f r ee, specifies a pointer to
memory allocated by r pc_sm al | ocat e() . Note that in SO standard C
environments, i dl _void_p_t isdefined asvoi d * and in other environmentsis
defined aschar *.

When the stub allocates memory within the stub memory management environment,
service code called from the stub can also user pc_sm f ree() to release memory
allocated by the stub.

Unpredictable behavior resultsif r pc_ss_free() iscalled with a pointer to memory
not alocated by r pc_sm al | ocat e() or memory allocatedby rpc_sm al | ocat e(),
but not the first address of such an alocation.

The output parameter, st at us, returns the status code from thisroutine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_f ree isthe exception-returning version of this function and has no st at us
output parameter. No exceptions are raised.

A thread in amultithreaded application may issueacall torpc_sm free() or
rpc_ss_free() whilerunning in any context state, including TPl NVALI DCONTEXT.

None.
rpc_smallocate, rpc_ss_all ocate(3c)

Programming BEA Tuxedo ATMI Applications Using TXRPC

ATMI C Function Reference 77

Section 3¢ - C Functions

rpc_sm_set client_alloc free,
rpc_ss_set client_alloc free(3c)

78

Name

Synopsis

Description

rpc_smset _client_alloc_free(),rpc_ss_set_client_alloc_free()—Sets
the memory allocation and freeing mechanisms used by the client stubs.

#i ncl ude <rpc/rpc. h>
void rpc_smset_client_alloc_free(
id _void_p_t (*p_allocate)(unsigned | ong size),
void (*p_free) (idl_void_p_t ptr), unsigned32 *status)

void rpc_ss_set_client_alloc_free(
id _void_p_t (*p_allocate)(unsigned | ong size),
void (*p_free) (idl_void_p_t ptr))

Therpc_smset _client_alloc_free() routineoverridesthe default routinesthat
the client stub uses to manage memory. The input parameters, p_al | ocat e and

p_f r ee specify memory allocator and freeroutines. The default memory management
routinesare ISO C nal 1 oc() andfree() except when the remote call occurs within
server code in which case the memory management routines must be

rpc_ss_al locate() andrpc_ss_free().

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_s_no_mnenory
Insufficient memory available to set up necessary data structures.

rpc_ss_set_client_all oc_freeistheexception-returning version of thisfunction
and has no st at us output parameter. The following exceptions are raised by this
routine:

rpc_x_no_menory
Insufficient memory available to set up necessary data structures.

ATMI C Function Reference

rpc_sm_set client_alloc_free, rpc_ss_set_client_alloc_free(3c)

Return Values

See Also

A thread in amultithreaded application may issue acall to
rpc_smset _client_alloc_free() orrpc_ss_set_client_alloc_free()
while running in any context state, including TPI NVALI DCONTEXT.

None.
rpc_smallocate, rpc_ss_allocate(3c),rpc_smfree, rpc_ss_free(3c)

Programming BEA Tuxedo ATMI Applications Using TXRPC

ATMI C Function Reference 79

Section 3¢ - C Functions

rpc_sm_swap_client_alloc_free,
rpc_ss _swap client_alloc_free(3c)

80

Name

Synopsis

Description

rpc_smswap_client_alloc_free(),rpc_ss_swap_client_alloc_free()—
Exchanges current memory allocation and freeing mechanism used by client stubs
with one supplied by client.

#i ncl ude <rpc/rpc. h>
voi d rpc_smswap_client_alloc_free(
idl _void_p_t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl _void_p_t ptr),
idl _void_p_t (**p_p_old_allocate)(unsigned |ong size),
void (**p_p_old_free)(idl _void_p_t ptr),
unsi gned32 *st at us)

voi d rpc_ss_swap_client_alloc_free(
idl _void_p_t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl _void_p_t ptr),
idl _void_p_t (**p_p_old_allocate)(unsigned |ong size),
void (**p_p_old_free)(idl _void_p_t ptr))

Therpc_sm swap_client_al | oc_free() routine exchangesthe current allocate
and free mechanisms used by the client stubs for routines supplied by the caller. The
input parameters, p_al | ocat e and p_f r ee, specify new memory allocation and free
routines. The output parameters, p_p_ol d_al | ocat e andp_p_ol d_f r ee return the
memory allocation and free routinesin use before the call to thisroutine.

When acallableroutineisan RPC client, it may need to ensure which allocate and free
routines are used, despite the mechanism its caller had selected. This routine allows
scoped replacement of the alocation/free mechanism to alow this.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

ATMI C Function Reference

rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c)

Return Values

See Also

rpc_ss_swap_client_all oc_free isthe exception-returning version of this
function and hasno st at us output parameter. The following exceptionsareraised by
thisroutine:

rpc_x_no_nmenory
Insufficient memory available to set up necessary data structures.

A thread in amultithreaded application may issue acall to
rpc_smswap_client_alloc_free() orrpc_ss_swap_client_alloc_free()
while running in any context state, including TPI NVALI DCONTEXT.

None.

rpc_smallocate, rpc_ss_allocate(3c),rpc_smfree, rpc_ss_free(3c),
rpc_smset_client_alloc_free, rpc_ss_set_client_alloc_free(3c)

Programming BEA Tuxedo ATMI Applications Using TXRPC

ATMI C Function Reference 81

Section 3¢ - C Functions

setlocale(3c)

82

Name

Synopsis

Description

set | ocal e() —Modifies and queries a program’s locale.

#i ncl ude <l ocal e. h>
char *setlocale (int category, const char *locale);

set| ocal e() selectsthe appropriate piece of the program’ slocale as specified by the
cat egory and | ocal e arguments. The cat egor y argument may have the following
values:

LC_CTYPE
LC_NUVERI C
LC TIME
LC_COLLATE
LC_MONETARY
LC_MESSAGES
LC ALL

These names are defined in the | ocal e. h header file. For the BEA Tuxedo ATMI
system compatibility functions, set | ocal e() allowsonly asinglel ocal e for all
categories. Setting any category is treated the same asLC_ALL, which namesthe
program’s entire locale.

A valueof “C” for | ocal e specifies the default environment.

A valueof "" forl ocal e specifiesthat thelocale should betaken from an environment
variable. The environment variable LANGis checked for alocale.

At program startup, the equivalent of
setl ocal e(LC _ALL, "C")

is executed. This hasthe effect of initializing each category to the local e described by
the environment “C”.

If apointer toastringisgivenfor | ocal e, setl ocal e() attemptsto set thelocalefor
all the categoriesto | ocal e. Thel ocal e must be asimplelocale, consisting of a
singlelocale. If set | ocal e() failsto set thelocaefor any category, aNULL pointer
isreturned and the program’ sloca efor all categoriesisnot changed. Otherwise, locale
isreturned.

ATMI C Function Reference

setlocale(3c)

Files

Note

See Also

A NULL pointer for | ocal e causesset | ocal e() to return the current locale
associated with the cat egory. The program’ slocale is not changed.

A thread in amultithreaded application may issue acall to set | ocal e() while
running in any context state, including TPl NVALI DCONTEXT.

$TUXDI R/ | ocal e/ T LANG NFO - tinme and noney dat abase for the Clocale
$TUXDI R/ | ocal e/l ocal e/ * - locale specific information for each

| ocal e $TUXDI R/ | ocal e/ O/ *_CAT - text messages for the Clocale

A composite localeis not supported. A composite locale is a string beginning with a
“/", followed by the locale of each category, separated by a“/”.

nkl angi nf o(1)

cti me(3c), ct ype(3c), get dat e(3c), | ocal econv(3c), strfti me(3c), strtod(3c),
printf(3S), environ(5) inaUNIX system reference manual

ATMI C Function Reference 83

Section 3¢ - C Functions

strerror(3c)

Name

Synopsis

Description

See Also

strerror()—Gets error message string.

#include <string. h>
char *strerror (int errnum;

strerror mapsthe error number in er r numto an error message string, and returns a
pointer to that string. str er r or usesthe same set of error messages as perr or . The
returned string should not be overwritten.

A thread in amultithreaded application may issueacall tost rer ror () whilerunning
in any context state, including TPI NVALI DCONTEXT.

per ror (3) in aUNIX system reference manua

84 ATMI C Function Reference

strftime(3c)

strftime(3c)

Name

Synopsis

Description

strftime() —Converts date and time to string.

#i ncl ude <tinme. h>

size_t *strftinme (char *s, size_t maxsize, const char *format, const
struct tm*timeptr);

strftine() placescharactersintothearray pointedto by s ascontrolled by the string
pointed to by f or mat . Thef or mat string consists of zero or more directives and
ordinary characters. All ordinary characters (including the terminating NULL
character) are copied unchanged into the array. For st rf ti me(), no more than
maxsi ze characters are placed into the array.

If f or mat is(char *)O, then the local€ s default format is used. The default format is
thesameas" %" .

Each directive is replaced by appropriate characters as described in the following list.
The appropriate characters are determined by the LC_TI ME category of the program’s
locale and by the values contained in the structure pointed to by t i mept r .

Character Description

%6 Same as %

%a Local€ s abbreviated weekday name

YA Local€ s full weekday name

% Local€ s abbreviated month name

"B Loca€ s full month name

% Local€ s appropriate date and time representation

%C Local€ s date and time representation as produced by date(1)
% Day of month (01 - 31)

% Date as %m/%d/%y

ATMI C Function Reference 85

Section 3¢ - C Functions

86

% Day of month (1-31; single digits are preceded by a blank)
9% Local€ s abbreviated month name.

% Hour (00 - 23)

% Hour (01-12)

% Day number of year (001 - 366)

%n Month number (01 - 12)

9 Minute (00-59)

% Same as\

% Locale' s equivalent of either AM or PM

% Time as %Il:%M:%S [AM|PM]

"R Time as %H:%M

%5 Seconds (00 - 61), allows for leap seconds

% Insert atab

o Time as %H:%M:%S

%) Week number of year (00 - 53), Sunday isthe first day of week 1
% Weekday number (0-6), Sunday =0

N Week number of year (00 - 53), Monday is thefirst day of week 1
X Locale' s appropriate date representation

"X Locale' s appropriate time representation

%y Y ear within century (00 - 99)

wY Year asccyy (for example, 1986)

w Time zone name or no charactersif no time zone exists

ATMI C Function Reference

strftime(3c)

Selecting the
Output
Language
Time Zone

Examples

Files

See Also

The difference between %aJand vaMiesin which day is counted asthefirst of the week.
Week number 01 isthefirst week in January starting with a Sunday for 94J or aMonday
for 9w Week number 00 contains those days before the first Sunday or Monday in
January for %J and 9w respectively.

If the total number of resulting characters including the terminating NULL character
is not more than maxsi ze, st rfti nme(), returns the number of characters placed into
the array pointed to by s not including the terminating NULL character. Otherwise,
zero is returned and the contents of the array are indeterminate.

A thread in amultithreaded application may issueacall tostrfti me() whilerunning
in any context state, including TPI NVALI DCONTEXT.

By default, the output of st rfti me(), appearsin U.S. English. The user can request
that the output of strftime() bein aspecific language by setting the | ocal e for
category LC TIMEinset|ocal e().

The time zoneis taken from the environment variable Tz. Seecti ne(3c) for a
description of Tz.

Theexampleillustratesthe useof st rf t i me() . It showswhat thestringinst r would
look like if the structure pointed to by t npt r contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "YA % % %", tnptr)
Thisresultsinstr containing "Thursday Aug 28 240".

$TUXDI R/ | ocal e/ | ocal e/ LANG NFO—file containing compiled locale-specific date
and time information

mkl angi nfo(1),setl ocal e(3c)

ATMI C Function Reference 87

Section 3¢ - C Functions

tpabort(3c)

Name

Synopsis

Description

Return Values

88

Errors

t pabor t () —Routine for aborting current transaction.

#i nclude <atm . h>
int tpabort(long flags)

t pabor t () signifiesthe abnormal end of atransaction. When this call returns, all
changes made to resources during the transaction are undone. Liket pcommi t (), this
function can be called only by theinitiator of atransaction. Participants (that is, service
routines) can express their desire to have atransaction aborted by calling t pr et ur n()
with TPFAI L.

If t pabort () iscalled while call descriptors exist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated
with the caller’s transaction are no longer valid. Call descriptors not associated with
the caller’ s transaction remain valid.

For each open connection to a conversational server in transaction mode, t pabor t ()
will send aTPEV_DI SCONI MMevent to the server, whether or not the server has control
of a connection. Connections opened beforet pbegi n() or with the TPNOTRAN flag
(that is, not in transaction mode) are not affected.

Currently, the sole argument to thet pabort () function, f | ags, isreserved for future
use and should be set to O.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pabort ().

Upon failure, t pabort () returns-1 and setst perrno() to indicate the error
condition.

Upon failure, t pabort () setst perrno() to one of the following values:

[TPEI NVAL]
f1 ags isnot equal to 0. The caller’ s transaction is not affected.

[TPEHEURI STI]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

ATMI C Function Reference

tpabort(3c)

Notices

See Also

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have

been heuristically completed.

[TPEPROTC]
t pabort () was caled improperly (for example, by a participant).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

writtento alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pconmi t (), and t pabort () to delineate a BEA Tuxedo
ATMI system transaction, it is important to remember that only the work done by a
resource manager that meetsthe X A interface (and islinked to the caller appropriately)
has transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () ort pabort ().

t pbegi n(3c), tpconmi t (3c),tpgetlev(3c)

ATMI C Function Reference 89

Section 3¢ - C Functions

tpacall(3c)

Name tpacal | () —Routine for sending a service request.

Synopsis #i ncl ude <atmi . h>
int tpacall (char *svc, char *data, long len, long flags)

Description t pacal | () sendsarequest message to the service named by svc. Therequest is sent
out at the priority defined for svc unless overridden by a previous call tot pspri () .
If dat aisnon-NULL, it must point to abuffer previously alocated by t pal I oc() and
I en should specify the amount of datain the buffer that should be sent. Note that if
dat a pointsto a buffer of atype that does not require a length to be specified, (for
example, an FML fielded buffer), then | en isignored (and may be 0). If dat a isNULL,
I en isignored and arequest issent with no data portion. The type and subtype of dat a
must match one of the types and subtypes recognized by svc. Note that for each
reguest sent while in transaction mode, a corresponding reply must ultimately be
received.

Thefollowingisalist of validf | ags:

TPNOTRAN

If the caller isin transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller’ stransaction. If svc
belongsto a server that does not support transactions, then this flag must be
set when the caller isin transaction mode. Notethat svc may still beinvoked
in transaction mode but it will not be the sametransaction: asvc may haveas
aconfiguration attribute that it is automatically invoked in transaction mode.
A caller intransaction modethat setsthisflagis still subject to the transaction
timeout (and no other). If aservice failsthat wasinvoked with this flag, the
caler’ stransaction is not affected.

TPNOREPLY
Informst pacal | () that areply isnot expected. When TPNOREPLY is set, the
function returns O on success, where 0 is an invalid descriptor. When the
caller isin transaction mode, this setting cannot be used unless TPNOTRAN is
also set.

TPNOBLCOCK
Therequest isnot sent if ablocking condition exists(for example, theinternal
buffers into which the message is transferred are full). When TPNOBLOCK is

90 ATMI C Function Reference

tpacall(3c)

Return Values

Errors

not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wantsto
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isreissued.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall totpacall ().

Upon successful completion, t pacal | () returns a descriptor that can be used to
receive the reply of the request sent.

Uponfailure, t pacal | () returnsavalueof -1 and setst perr no() toindicatetheerror
condition.

Upon failure, t pacal | () setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, svc isNULL, dat a does not
point to space allocated with t pal | oc(), or f | ags areinvalid).

[TPENCENT]
Cannot send to svc because it does not exist or is a conversational service.

[TPEI TYPE]
The type and subtype of dat a is not one of the allowed types and subtypes
that svc accepts.

[TPELI M T]
The caller’ srequest was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN]
svc belongsto aserver that does not support transactions and TPNOTRAN was
not set.

ATMI C Function Reference 91

Section 3¢ - C Functions

92

See Also

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. If atransaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is arequest
that does not block, expects no reply, and is not sent on behalf of the caller’'s
transaction (thatis, t pacal | () with TPNOTRAN, TPNOBLOCK, and TPNOREPLY
Set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t pacal I () wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred. |If a message queue on a remote
location isfilled, TPEGS may be returned even if t pacal | () returned
successfully.

tpal l oc(3c),tpcall(3c),tpcancel (3c),tpgetrply(3c),tpgprio(3c),
tpsprio(3c)

ATMI C Function Reference

tpadmcall(3c)

tpadmcall(3c)

Name

Synopsis

Description

t padntal | () —Administers unbooted application.

#i ncl ude <atm . h>
#i ncl ude <fm 32. h>
#i ncl ude <tpadm h>

int tpadncal | (FBFR32 *inbuf, FBFR32 **outbuf, long flags)

t padncal | () isused to retrieve and update attributes of an unbooted application. It
may also be used in an active application to perform direct retrieval s of alimited set of
attributes without requiring communication to an external process. This function
provides sufficient capability such that complete system configuration and
administration can take place through system provided interface routines.

i nbuf isapointer to an FML 32 buffer previously allocated with t pal | oc() that
contains the desired administrative operation and its parameters.

out buf isthe address of apointer to the FML32 buffer that should contain the results.
out buf must point to an FML 32 buffer originally allocated by t pal | oc() . If thesame
buffer isto be used for both sending and receiving, out buf should be set to the address
of i nbuf .

Currently, t padntal | () 'slast argument, f 1 ags, is reserved for future use and must
be set to 0.

M B(5) should be consulted for generic information on construction of administrative
requests. TM_M B(5) and APPQ M B(5) should be consulted for information on the
classes that are accessible through t padncal | () .

There are four modesin which callsto t padncal | () can be made.

Mode 1: Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The only
operations permitted areto SET aNEW T_DOMAIN class object, thus
defining an initia configuration for the application, and to GET and SET
objects of the classes defined in APPQ M B() .

Mode 2: Unbooted, Configured Application:
The caller isassigned administrator or other privilegesbased on acomparison
of their UID/GID to that defined in the configuration for the administrator on

ATMI C Function Reference 93

Section 3¢ - C Functions

Environment
Variables

Notices

Return Values

94

Errors

Mode 3:

Mode 4:

thelocal system. Thecaller may GET and SET any attributesfor any classin
TM M B() and APPQ M B() for whichthey havethe appropriate permissions.
Note that some classes contain only attributes that are inaccessible in an
unbooted application and attempts to access these classes will fail.

Booted Application, Unattached Process:

The caller isassigned administrator or other privileges based on acomparison
of their UID/GID to that defined in the configuration for the administrator on
the local system. The caller may GET any attributes for any classin

TM M B() for which they have the appropriate permissions. Similarly, the
caller may GET and SET any attributesfor any classin APPQ M B(), subject
to class-specific restrictions. Attributes accessible only while ACTIVE will
not be returned.

Booted Application, Attached Process:

Permissions are determined from the authentication key assigned at

t pi nit () time. Thecaller may GET any attributesfor any classinTM M B()
for which they havethe appropriate permissions. Additionally, the caller may
GET and SET any attributes for any classin APPQ M B(), subject to
class-specific restrictions.

Accessto and update of binary BEA Tuxedo ATMI system application configuration
files through this interface routine is controlled through the use of UNIX system
permissions on directory names and filenames.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot padncal I ().

The following environment variables must be set prior to calling this routine:

TUXCONFI G

Name of the file or device on which the binary BEA Tuxedo system
configuration file for this application is or should be stored.

Use of the TA_OCCURS attribute on GET requests is not supported when using
t padntal | () . GETNEXT requests are not supported when using t padncal | () .

t padncal | () returns 0 on success and -1 on failure.

Upon failure, t padntal | () setstperrno() toone of the following values:

ATMI C Function Reference

tpadmcall(3c)

Note: Except for TPEI NVAL, the caller’ s output buffer, out buf , will be modified to
include TA_ERROR, TA_STATUS, and possibly TA_BADFLD attributes to further
qualify theerror condition. SeeM B(5) ,TM_M B(5) ,and APPQ M B(5) foran
explanation of possible error codes returned in this fashion.

[TPEI NVAL]
Invalid arguments were specified. Thef | ags valueisinvalid or i nbuf or
out buf are not pointersto typed buffers of type “FML32.”

[TPEM B]
The administrative request failed. out buf isupdated and returned to the
caller with FML 32 fields indicating the cause of the error asis discussed in
M B(5) and TM_M B(5) .

[TPEPROTC)
t padncal | () was called improperly.

[TPERELEASE]
t padncal | () wascalled with the TUXCONFI Genvironment variable pointing
to adifferent release version configuration file.

[TPECS]
An operating system error has occurred. A numeric value representing the
system call that failed is availablein Uuni xerr .

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento user | og() .

Interoperability ~ Thisinterface supports access and update to the local configuration file and bulletin
board only; therefore, there are no interoperability concerns.

Portability ~ Thisinterfaceis available only on UNIX system sites running BEA Tuxedo ATMI
release 5.0 or later.

Files ${TUXDIR}/lib/libtmib.a,${TUXDIR}/Iib/libgm a,
${TUXDIR}/lib/libtmb.so.<rel> ${TUXDIR}/Ilib/libgmso.<rel >,
${TUXDIR}/lib/libtmb.lib,${TUXDIR}/lib/libgmlib

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/lib -Itnid -1gm

See Also ACL_M B(5), APPQ M B(5), EVENT_M B(5), M B(5), TM M B(5), Ws_M B(5)
Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time

ATMI C Function Reference 95

Section 3¢ - C Functions

tpadvertise(3c)

Name

Synopsis

Description

Return Values

96

Errors

t padverti se() —Routine for advertising a service name.

#i nclude <atm . h>
int tpadvertise(char *svcnane, void (*func)(TPSVC NFO *))

t padverti se() allowsaserver to advertise the services that it offers. By default, a
server’s services are advertised when it is booted and unadvertised when it is
shutdown.

All servers belonging to a Multiple Server, Single Queue (M SSQ) set must offer the
same set of services. These routines enforce thisrule by affecting the advertisements
of all servers sharing an MSSQ set.

t padverti se() advertises svcname for the server (or the set of servers sharing the
caller'sMSSQ set). svenane should be 15 characters or less, but cannot be NULL or
the NULL string (*”). (See * SERVICES section of UBBCONFI &(5) .)f unc isthe
address of a BEA Tuxedo ATMI system service function. This function will be
invoked whenever areguest for svcnane isreceived by the server. f unc cannot be
NULL. Explicitly specified function names (see ser vopt s(5)) can be up to 128
characters long. Names longer than 15 characters are accepted and truncated to 15
characters. Users should make sure that truncated names do not match other service
names.

If svename isaready advertised for the server and f unc matchesiits current function,
then t padver ti se() returns success (thisincludes truncated names that match
already advertised names). However, if svcnane is already advertised for the server
but f unc does not match its current function, then an error is returned (this can happen
if truncated names match already advertised names).

Service names starting with dot (.) are reserved for administrative services. An error
will bereturned if an application attempts to advertise one of these services.

Upon failure, t padverti se() returns-1 and setst per rno() to indicate the error
condition.

Upon failure, t padverti se() setstperrno() toone of the following values:

ATMI C Function Reference

tpadvertise(3c)

See Also

[TPEI NVAL]
svcname iSNULL or the NULL string (“”),or beginswith a“.” or func is
NULL.

[TPELI M T]
svcname cannot be advertised because of space limitations. (See
MAXSERVI CES in the RESOURCES section of UBBCONFI G 5) .)

[TPEMATCH]
svcnane is aready advertised for the server but with afunction other than
f unc. Although the function fails, svcname remains advertised with its
current function (that is, f unc does not replace the current function).

[TPEPROTC|
tpadvertise() wascalledinanimproper context (for example, by aclient).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

tpservi ce(3c),tpunadvertise(3c)

ATMI C Function Reference 97

Section 3¢ - C Functions

tpalloc(3c)

Name

Synopsis

Description

Return Values

98

Errors

t pal | oc() —Routine for dlocating typed buffers.

#i nclude <atm . h>
char * tpalloc(char *type, char *subtype, |ong size)

t pal | oc() returnsapointer to abuffer of typet ype. Depending on the type of buffer,
both subt ype and si ze are optional. The BEA Tuxedo ATMI system provides a
variety of typed buffers, and applications are free to add their own buffer types.
Consult t uxt ypes(5) for more details.

If subt ype isnon-NULL intnt ype_swfor a particular buffer type, then subt ype
must be specified when t pal | oc() iscalled. The allocated buffer will be at least as
large asthe larger of si ze and df | t si ze, where df I t si ze isthe default buffer size
specifiedint nt ype_swfor the particular buffer type. For buffer type STRI NG the
minimum is 512 bytes; for buffer types FML and Vi Ewthe minimum is 1024 bytes.

Note that only thefirst eight bytes of t ype and thefirst 16 bytes of subt ype are
significant.

Because some buffer types require initiali zation before they can be used, t pal | oc()
initializes abuffer (in a BEA Tuxedo ATMI system-specific manner) after it is
allocated and before it is returned. Thus, the buffer returned to the caller is ready for
use. Note that unlessthe initialization routine cleared the buffer, the buffer is not
initialized to zeros by t pal | oc() .

A thread in a multithreaded application may issueacall tot pal | oc() while running
in any context state, including TPI NVALI DCONTEXT.

Upon successful completion, t pal | oc() returns apointer to a buffer of the
appropriate type aligned on along word; otherwise, it returns NULL and sets
t per rno() to indicate the condition.

Upon failure, t pal | oc() setst perrno() to one of the following values:

[TPEI NVAL]
Invalid arguments were given (for example, t ype isSNULL).

[TPENCENT]
No entry int nmt ype_swmatchest ype and, if non-NULL, subt ype.

ATMI C Function Reference

tpalloc(3c)

Usage

See Also

[TPEPROTO|
tpal I oc() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

If buffer initialization fails, the allocated buffer isfreed andt pal | oc() failsreturning
NULL.

Thisfunction should not be used in concert withmal | oc() ,real l oc(),orfree() in
the Clibrary (for example, abuffer allocated witht pal | oc() should not befreed with
free()).

Two buffer types are supported by any compliant implementation of the BEA Tuxedo
ATMI system extension. Details are in the Introduction to the C Language
Application-to-Transaction Monitor | nterface.

tpfree(3c),tprealloc(3c),tptypes(3c)

ATMI C Function Reference 99

Section 3¢ - C Functions

tpbegin(3c)

Name

Synopsis

Description

Return Values

t pbegi n() —Routine for beginning atransaction.

#i nclude <atm . h>
int tpbegin(unsigned long tineout, |ong flags)

A transaction in the BEA Tuxedo ATMI system is used to define asingle logical unit
of work that either wholly succeeds or has no effect whatsoever. A transaction allows
work being performed in many processes, at possibly different sites, to betreated as an
atomic unit of work. The initiator of atransaction usest pbegi n() and either

t pcommi t () ort pabort () to delineate the operations within atransaction. Once

t pbegi n() iscaled, communication with any other program can place the | atter (of
necessity, a server) in “transaction mode” (that is, the server’ swork becomes part of
the transaction). Programs that join atransaction are called participants. A transaction
always has one initiator and can have several participants. Only theinitiator of a
transaction can call t pconmi t () or t pabort () . Participants can influence the
outcome of atransaction by the return values (r val s) they use when they call

t preturn() . Oncein transaction mode, any service requests made to servers are
processed on behalf of the transaction (unless the requester explicitly specifies
otherwise).

Notethat if a program starts a transaction while it has any open connections that it
initiated to conversationa servers, these connectionswill not be upgraded to
transaction mode. Itisasif the TPNOTRANflag had been specified on thet pconnect ()
cal.

t pbegi n() 'sfirstargument, t i meout , specifiesthat thetransaction should be allowed
at least t i meout seconds before timing out. Once a transaction times out it must be
marked abort-only. If t i meout is0, then the transaction is given the maximum number
of seconds allowed by the system before timing out (that is, the timeout value equals
the maximum value for an unsigned long as defined by the system).

Currently, t pbegi n() 's second argument, f | ags, isreserved for future use and must
be set to 0.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pbegi n() .

Upon failure, t pbegi n() returns-1 and setst perrno() to indicate the error
condition.

100 ATMI C Function Reference

tpbegin(3c)

Errors

Notices

See Also

Upon failure, t pbegi n() setst perrno() to one of the following values:

[TPEI NVAL]
f1 ags isnot equal to 0.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occurred
starting the transaction.

[TPEPROTO]
t pbegi n() wascalled in an improper context (for example, the caler is
aready in transaction mode).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pcommi t (), and t pabort () to delineate a BEA Tuxedo
ATMI system transaction, it is important to remember that only the work done by a
resource manager that meetsthe X A interface (and islinked to the caller appropriately)
has transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () ort pabort (). Seebuil dserver () for details on
linking resource managersthat meet the X A interfaceinto a server such that operations
performed by that resource manager are part of a BEA Tuxedo ATMI system
transaction.

t pabort (3c),tpconmt(3c),tpgetlev(3c),tpscnt(3c)

ATMI C Function Reference 101

Section 3¢ - C Functions

tpbroadcast(3c)

102

Name

Synopsis

Description

t pbr oadcast () —Routine to broadcast notification by hame.
#include <atm . h>

int tpbroadcast(char *Imd, char *usrname, char *cltnane,
char *data, long len, |long flags)

t pbr oadcast () allowsaclient or server to send unsolicited messages to registered
clientswithin the system. The target client set consists of those clients matching
identifiers passed to t pbr oadcast () . Wildcards can be used in specifying identifiers.

I ni d,usrnane, andcl t name arelogical identifiers used to select the target client set.
A NULL value for any argument constitutes awildcard for that argument. A wildcard
argument matches all client identifiersfor that field. A O-length string for any
argument matches only 0-length client identifiers. Each identifier must meet the size
restrictions defined for the system to be considered valid, that is, each identifier must
be between 0 and MAXTI DENT charactersin length.

The data portion of the request is pointed to by dat a, abuffer previously allocated by
t pal | oc() . | en specifies how much of dat a to send. Note that if dat a pointsto a
buffer type that does not require a length to be specified (for example, an FM fielded
buffer), then| en isignored (and may be 0). Also, dat a may be NULL, in which case
I en isignored. The buffer passes through the typed buffer switch routinesjust as any
other outgoing or incoming message would; for example, encode/decode are
performed automatically.

Thefollowingisalist of validf 1 ags:

TPNOBLCOCK
Therequest isnot sent if ablocking condition exists(for example, theinternal
buffers into which the message is transferred are full).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isreissued. Upon successful return fromt pbr oadcast () , the message

ATMI C Function Reference

tpbroadcast(3c)

Return Values

Errors

Portability

has been delivered to the system for forwarding to the selected clients.
t pbroadcast () does not wait for the message to be delivered to each
selected client.

Inamultithreaded application, athread inthe TPI NVALI DCONTEXT stateisnot
allowed toissue acall tot pbroadcast ().

Upon failure, t pbr oadcast () returns-1 and setst perr no() to indicate the error
condition.

Upon failure, t pbr oadcast () sends no broadcast messagesto application clients and
setst per rno() to one of the following values:

[TPEI NVAL]
Invalid arguments were given (for example, identifierstoo long or invalid
flags). Notethat use of anillegal LM Dwill causet pbr oadcast () tofail and
return TPEI NVAL. However, non-existent user or client names will simply
successfully broadcast to no one.

[TPETI ME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t pbroadcast () wascaled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

Theinterfaces described int pnot i fy(3c) are supported on native site UNIX-based
processors. In addition, the routines t pbr oadcast () andt pchkunsol () aswell as
the functiont pset unsol () are supported on UNIX and MS-DOS workstation
processors.

ATMI C Function Reference 103

Section 3¢ - C Functions

104

Usage

See Also

Clients that select signal-based notification may not be signal-able by the system due
to signd restrictions. When this occurs, the system generates alog message that it is
switching notification for the selected client to dip-in and the client isnotified then and
thereafter via dip-in notification. (See the description of the RESOURCES NOTI FY
parameter in UBBCONFI () for a detailed discussion of notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification
is always consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator isidentified as part of the configuration for
the application.

If signal-based notification is selected for a client, then certain ATMI calls can fail,
returning TPGOTSI Gdue to receipt of an unsolicited message if TPSI GRSTRT is hot
specified. See UBBCONFI G 5) and t pi ni t (3c) for more information on notification
method selection.

tpalloc(3c),tpinit(3c),tpnotify(3c),tpternm3c), UBBCONFI (5)

ATMI C Function Reference

tpcall(3c)

tpcall(3c)

Name

Synopsis

Description

t pcal | () —Routinefor sending service request and awaiting its reply.

int tpcall (char *svc, char *idata, long ilen, char **odata, |ong \
*olen, long flags)

tpcal | () sendsarequest and synchronously awaitsitsreply. A call to thisfunction is
thesame ascalingt pacal | () immediately followed by t pget rpl y() .t pcal I ()
sends a reguest to the service named by svc. The request is sent out at the priority
defined for svc unless overridden by aprevious cal tot pspri () . The dataportion of
arequest is pointed to by i dat a, abuffer previously alocated by t pal I oc() .il en
specifies how much of i dat a to send. Note that if i dat a pointsto a buffer of atype
that does not require alength to be specified, (for example, an FM_ fielded buffer), then
i I enisignored (and may be 0). Also, i dat a may be NULL, in which caseil en is
ignored. The type and subtype of i dat a must match one of the types and subtypes
recognized by svc.

odat a isthe address of a pointer to the buffer where areply isread into, and ol en
pointsto the length of that reply. * odat a must point to abuffer originally allocated by
tpal I oc() . If the same buffer isto be used for both sending and receiving, odat a
should be set to the address of i dat a. FML and FML32 buffers often assume aminimum
size of 4096 bytes; if thereply islarger than 4096, the size of the buffer isincreased to
asize large enough to accommaodate the data being returned. Also, if i dat a and
*odat a wereequal whent pcal | () wasinvoked, and *odat a ischanged, theni dat a
no longer points to avalid address. Using the old address can lead to data corruption
or processexceptions. As of release 6.4, the default all ocation for buffersis 1024 bytes.
Also, historical information is maintained on recently used buffers, alowing a buffer
of optimal size to be reused as a return buffer.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive abuffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address amost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) areply buffer changed in size, compareitstotal size beforet pget r pl y()

ATMI C Function Reference 105

Section 3¢ - C Functions

106

was issued with *I en. See “Introduction to the C Language
Application-to-Transaction Monitor Interface” for more information about buffer
management.

If *ol en is 0 upon return, then the reply has no data portion and neither *odat a nor
the buffer it points to were modified. It is an error for *odat a or ol en to be NULL.

Thefollowingisalist of validf I ags:
TPNOTRAN

If the caller isin transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caler’ stransaction. Note that
svc may dtill be invoked in transaction mode but it will not be the same
transaction: asvc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
setsthisflag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller’ stransaction is not
affected.

TPNOCHANGE

By default, if abuffer isreceived that differsin type from the buffer pointed
toby *odat a, then*odat a’ sbuffer type changesto the received buffer’ stype
so long asthe receiver recognizes theincoming buffer type. When thisflagis
set, thetype of the buffer pointed to by *odat a isnot allowed to change. That
is, the type and subtype of the received buffer must match the type and
subtype of the buffer pointed to by *odat a.

TPNOBLOCK

Therequest isnot sent if ablocking condition exists(for example, theinternal
buffers into which the message is transferred are full). Note that thisflag
appliesonly to the send portion of t pcal | () : thefunction may block waiting
for the reply. When TPNOBLOCK is not specified and a blocking condition
exists, the caller blocks until the condition subsidesor atimeout occurs (either
transaction or blocking timeout).

TPNOTI ME

Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. However, if the caller isin transaction
mode, this flag has no effect; it is subject to the transaction timeout limit.
Transaction timeouts may still occur.

TPSI GRSTRT

If asignal interrupts any underlying system calls, then theinterrupted system
call isreissued.

ATMI C Function Reference

tpcall(3c)

Return Values

Errors

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall totpcal I ().

Upon successful return fromt pcal | () or upon return wheret per rno() isset to
TPESVCFAI L, t pur code() contains an application defined value that was sent as part
of tpreturn().

Upon failure, t pcal | () returns-1and setst perr no() toindicatethe error condition.
If acall failswith aparticular t perrno() value, asubsequent call to
tperrordetail (), withnointermediate ATMI calls, may provide more detailed
information about the generated error. Refer to thet perr or det ai | (3c) reference
page for more information.

Upon failure, t pcal | () setst perrno() toone of the following values. (Unless
otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, svc isNULL or f | ags are
invalid).

[TPENOENT]
Cannot send to svc because it does not exist, or it isaconversational service,
or the name provided beginswith adot (.).

[TPEI TYPE]
The type and subtype of i dat a is not one of the allowed types and subtypes
that svc accepts.

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or,
TPNOCHANGE was set in f | ags and the type and subtype of *odat a do not
match the type and subtype of thereply sent by the service. Neither *odat a,
its contents, nor *ol en ischanged. If the service request was made on behal f
of the caller’s current transaction, then the transaction is marked abort-only
since the reply is discarded.

[TPETRAN]
svc belongsto aserver that does not support transactions and TPNOTRAN was
not set.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then atransaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI MVE was

ATMI C Function Reference 107

Section 3¢ - C Functions

108

specified. In either case, neither *odat a, its contents, nor *ol en is changed.
If atransaction timeout occurred, then with one exception, any attempts to
send new requests or receive outstanding replieswill fail with TPETI VE until
the transaction has been aborted. The exception is a request that does not
block, expects no reply, and is not sent on behalf of the caller’ s transaction
(that is, t pacal I with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).

[TPESVCFAI L]

The service routine sending the caller’ sreply called t pret urn() with
TPFAI L. Thisisan application-level failure. The contents of the service's
reply, if one was sent, isavailable in the buffer pointed to by *odat a. If the
servicerequest was made on behalf of the caller’ s current transaction, then the
transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the
transaction is aborted are callsto t pacal | () with TPNOREPLY, TPNOTRAN,
and TPNOBLOCK set.

[TPESVCERR]

A service routine encountered an error either int pret urn(3c) or

t pf orwar d(3c) (for example, bad arguments were passed). No reply datais
returned when this error occurs (that is, neither *odat a, its contents, nor

*ol en is changed). If the service request was made on behalf of the caller’'s
transaction (that is, TPNOTRAN was not set), then the transaction is marked
abort-only. Note that regardless of whether the transaction hastimed out, the
only vaid communications before the transaction is aborted are calls to

t pacal | () with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set. If either
SVCTI MEQUT in the UBBCONFI Gfile or TA_SVCTI MEQUT inthe TM M B is
non-zero, TPESVCERR is returned when a service timeout occurs.

[TPEBLOCK]

A blocking condition was found on the send call and TPNOBLOCK was
specified.

[TPGOTSI G

A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC]

tpcal I () was called improperly.

[TPESYSTEM

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

ATMI C Function Reference

tpcall(3c)

[TPECS]
An operating system error has occurred. If a message queue on aremote
location isfilled, TPEOS may be returned even if t pcal | () returned
successfully.

See Also tpacall (3c),tpalloc(3c),tperrordetail (3c),tpforward(3c),tpfree(3c),
tpgprio(3c),tprealloc(3c),tpreturn(3c),tpsprio(3c),
tpstrerrordetail (3c),tptypes(3c)

ATMI C Function Reference 109

Section 3¢ - C Functions

tpcancel(3c)

Name

Synopsis

Description

Return Values

Errors

See Also

t pcancel () —Routine for canceling a call descriptor for outstanding reply.

#i nclude <atm . h>
int tpcancel (int cd)

t pcancel () cancelsacall descriptor, cd, returned by t pacal I () . Itisan error to
attempt to cancel acall descriptor associated with a transaction.

Upon success, cd is no longer valid and any reply received on behalf of cd will be
silently discarded.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pcancel () .

Upon failure, t pcancel () returns-1 and setst per r no() toindicatethe error
condition.

Upon failure, t pcancel () setst perrno() to one of the following values:

[TPEBADDESC]
cd isan invalid descriptor.

[TPETRAN]
cd() is associated with the caller’s transaction. cd remains valid and the
caller’s current transaction is not affected.

[TPEPROTO|
t pcancel () wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

tpacal I (3c)

110 ATMI C Function Reference

tpchkauth(3c)

tpchkauth(3c)

Name tpchkaut h() —Routinefor checking if authentication required to join an application.
Synopsis #i ncl ude <atm . h>
int tpchkaut h(voi d)

Description t pchkaut h() checksif authentication is required by the application configuration.
Thisistypically used by application clients prior to calling t pi ni t () to determineif
a password should be obtained from the user.

Inamultithreaded application, athread in the TP NVALI DCONTEXT stateis not allowed
toissueacall tot pchkaut h().

Return Values Upon success, t pchkaut h() returns one of the following non-negative values:

TPNQAUTH
Indicates that no authentication is required.

TPSYSAUTH
Indicates that system authentication only is required.

TPAPPAUTH
Indicates that both system and application specific authentication are
required.

Upon failure, t pchkaut h() returns-1and setst perrno() to indicate the error
condition.

Errors Upon failure, t pchkaut h() setst perrno() to one of thefollowing values:

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

Interoperability t pchkaut h() isavailable only on sites running release 4.2 or later.

ATMI C Function Reference 11

Section 3¢ - C Functions

Portability ~ Theinterfaces described in t pchkaut h(3c) are supported on UNIX, Windows, and
MS-DOS operating systems.

See Also t pinit(3c)

112 ATMI C Function Reference

tpchkunsol(3c)

tpchkunsol(3c)

Name

Synopsis

Description

Return Values

Errors

Portability

t pchkunsol () —Routine for checking for unsolicited message.

#i ncl ude <atni. h>
int tpchkunsol (void)

t pchkunsol () isused by aclient to trigger checking for unsolicited messages. Calls
to thisroutine in a client using signal-based notification do nothing and return
immediately. This call has no arguments. Callsto thisroutine can result in calls to an
application-defined unsolicited message handling routine by the BEA Tuxedo ATMI
system libraries.

Inamultithreaded application, athread in the TP NVALI DCONTEXT stateis not allowed
toissueacall tot pchkunsol ().

Upon successful completion, t pchkunsol () returns the number of unsolicited
messages dispatched; otherwise it returns-1 and setst per r no() to indicate the error
condition.

Upon failure, t pchkunsol () setstperrno() to one of the following values:

[TPEPROTC)
t pchkunsol () wascaled inanimproper context (for example, from within
aserver).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

Theinterfaces described int pnot i fy(3c) are supported on native site UNIX-based
processors. In addition, the routines t pbr oadcast () andt pchkunsol () aswell as
the functiont pset unsol () are supported on UNIX and MS-DOS workstation
processors.

ATMI C Function Reference 113

Section 3¢ - C Functions

114

See Also

Clients that select signal-based notification may not be signal-able by the system due
to signd restrictions. When this occurs, the system generates alog message that it is
switching notification for the selected client to dip-in and the client isnotified then and
thereafter via dip-in notification. (See the description of the RESOURCES NOTI FY
parameter in UBBCONFI & 5) for a detailed discussion of notification methods.)

Because signaling of clientsisalways done by the system, the behavior of notification
is always consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator isidentified as part of the configuration for
the application.

If signal-based notification is selected for a client, then certain ATMI calls can fail,
returning TPGOTSI Gdue to receipt of an unsolicited message if TPSI GRSTRT is hot
specified. See UBBCONFI G 5) and t pi ni t (3c) for more information on notification
method selection.

t pbr oadcast (3c),tpinit(3c),tpnotify(3c),tpsetunsol (3c)

ATMI C Function Reference

tpclose(3c)

tpclose(3c)

Name

Synopsis

Description

Return Values

Errors

See Also

t pcl ose() —Routine for closing a resource manager.

#i ncl ude <atni.h>
int tpclose(void)

t pcl ose() tears down the association between the caller and the resource manager
to which it islinked. Since resource managersdiffer in their cl ose semantics, the
specific information needed to close a particul ar resource manager isplaced in a
configuration file.

If aresource manager isalready closed (that is, t pcl ose() iscaled morethan once),
no action istaken and success is returned.

Inamultithreaded application, athread in the TP NVALI DCONTEXT stateis not allowed
toissueacall tot pcl ose() .

Upon failure, t pcl ose() returns-1 and setst per rno() to indicate the error
condition.

Upon failure, t pcl ose() fallsand setst perrno() to one of the following values:

[TPERMERR]
A resource manager failed to close correctly. More information concerning
the reason aresource manager failed to close can be obtained by interrogating
aresource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTC)
t pcl ose() wascalled in animproper context (for example, while the caller
isin transaction mode).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

t popen(3c)

ATMI C Function Reference 115

Section 3¢ - C Functions

tpcommit(3c)

116

Name

Synopsis

Description

t pcomi t () —Routine for committing current transaction.

#i nclude <atm . h>
int tpcommit(long flags)

t pcommi t () signifiesthe end of atransaction, using a two-phase commit protocol to
coordinate participants. t pcommi t () can be called only by the initiator of a
transaction. If any of the participants cannot commit the transaction (for example, they
cal t preturn() with TPFAI L), thentheentiretransaction isaborted andt pconmi t ()
fails. That is, all of the work involved in the transaction is undone. If al participants
agree to commit their portion of the transaction, then this decision is logged to stable
storage and all participants are asked to commit their work.

Depending on the setting of the TP_COVM T_CONTRCL characteristic (see

t pscnt (3c)), tpcomi t () can return successfully either after the commit decision
hasbeen logged or after the two-phase commit protocol has completed. If t pcommi t ()
returns after the commit decision has been logged but before the second phase has
completed (TP_CMT_LOGGED), then all participants have agreed to commit the work
they did on behalf of the transaction and should fulfill their promise to commit the
transaction during the second phase. However, becauset pcommni t () isreturning
before the second phase has completed, there is a hazard that one or more of the
participants can heuristically complete their portion of thetransaction (in amanner that
is not consistent with the commit decision) even though the function has returned
success.

If the TP_COVMM T_CONTRCL characteristic is set such that t pcommi t () returns after
the two-phase commit protocol has completed (TP_CMI_COVPLETE), then itsreturn
value reflects the exact status of the transaction (that is, whether the transaction
heuristically completed or not).

Note that if only a single resource manager is involved in a transaction, then a
one-phase commit is performed (that is, the resource manager is not asked whether or
not it can commit; it is simply told to commit). In this case, the TP_COMM T_CONTRCL
characteristic has no bearing and t pcommi t () will return heuristic outcomes if
present.

ATMI C Function Reference

tpcommit(3c)

Return Values

Errors

If t pconmi t () iscalled while call descriptors exist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated
with the caller’ s transaction are no longer valid. Call descriptors not associated with
the caller’s transaction remain valid.

t pcommi t () must be called after all connections associated with the caller’s
transaction are closed (otherwise TPEABORT is returned, the transaction is aborted and
these connections are disconnected in a disorderly fashion with a TPEV_DI SCONI MV
event). Connections opened beforet pbegi n() or with the TPNOTRAN flag (that is,
connections not in transaction mode) are not affected by callsto t pcommi t () or

t pabort ().

Currently, t pconmi t () 'ssoleargument, f | ags, isreserved for future use and must be
setto 0.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall totpcomit().

Upon failure, t pcommi t () returns -1 and setst per rno() to indicate the error
condition.

Upon failure, t pcommi t () setst perrno() to one of the following values:

[TPEI NVAL]
fl ags isnot equal to 0. The caller’ stransaction is not affected.

[TPETI ME]
The transaction timed out and the status of the transaction is unknown (that
is, it can have been either committed or aborted). Note that if the transaction
timed out and its status is known to be aborted, then TPEABORT is returned.

[TPEABCRT]
The transaction could not commit because either the work performed by the
initiator or by one or more of its participants could not commit. This error is
asoreturned if t pconmi t () iscalled with outstanding replies or open
conversational connections.

[TPEHEURI STI C]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have
been heuristically completed.

ATMI C Function Reference 17

Section 3¢ - C Functions

118

Notices

See Also

[TPEPROTO
t pcommi t () was called in an improper context (for example, by a
participant).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pconmi t (), and t pabort () to delineate a BEA Tuxedo
ATMI system transaction, it isimportant to remember that only the work done by a
resource manager that meetsthe XA interface (andislinked to the caller appropriately)
has transactional properties. All other operations performed in a transaction are not
affected by either t pconmi t () or t pabort (). Seebui | dserver (1) for detailson
linking resource managersthat meet the X A interfaceinto aserver such that operations
performed by that resource manager are part of a BEA Tuxedo ATMI system
transaction.

t pabort (3c), tpbegi n(3c),tpconnect(3c),tpgetlev(3c),tpreturn(3c),
tpscnt (3c)

ATMI C Function Reference

tpconnect(3c)

tpconnect(3c)

Name

Synopsis

Description

t pconnect () —Routine for establishing a conversational service connection.
#i ncl ude <atni. h>
int tpconnect(char *svc, char *data, long len, long flags)

t pconnect () alowsaprogram to set up ahalf-duplex connection to a conversational
service, svc. The name must be one of the conversationa service names posted by a
conversational server.

As part of setting up a connection, the caller can pass application-defined data to the
listening program. If the caller chooses to pass data, then dat a must point to a buffer
previously allocated by t pal | oc() . | en specifies how much of the buffer to send.
Note that if dat a points to a buffer of atype that does not require alength to be
specified, (for example, an FM fielded buffer), then | en isignored (and may be 0).
Also, dat a can be NULL inwhich casel en isignored (no application datais passed
to the conversationa service). The type and subtype of dat a must match one of the
types and subtypes recognized by svc. dat a and | en are passed to the conversational
serviceviathe TPSVC NFOstructure with which the serviceisinvoked; the service does
not haveto cal t precv() to get the data.

Thefollowingisalist of valid f 1 ags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then when svc is
invoked, it is not performed on behalf of the caller’ stransaction. Note that
svc may dtill be invoked in transaction mode but it will not be the same
transaction: asvc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
setsthisflag is still subject to the transaction timeout (and no other). If a
service failsthat was invoked with this flag, the caller’ s transaction is not
affected.

TPSENDONLY
The caller wantsthe connection to be set up initially such that it can only send
data and the called service can only receive data (that is, the caller initially
has control of the connection). Either TPSENDONLY or TPRECVONLY must be
specified.

ATMI C Function Reference 119

Section 3¢ - C Functions

Return Values

120

Errors

TPRECVONLY
The caller wants the connection to be set up initially such that it can only
receive data and the called service can only send data (that is, the service
being called initially has control of the connection). Either TPSENDONLY or
TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking
condition exists (for example, the data buffers through which the message is
sent are full). Note that this flag applies only to the send portion of
t pconnect () ; thefunction may block waiting for an acknowledgement from
the server. When TPNOBLOCK is hot specified and a blocking condition exists,
the caller blocks until the condition subsides or a blocking timeout or
transaction timeout occurs.

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted call is
reissued.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pconnect ().

Upon successful completion, t pconnect () returnsadescriptor that isused to refer to
the connection in subsequent calls. Otherwise it returns-1 and setst perr no() to
indicate the error condition.

Upon failure, t pconnect () setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, sve iSNULL, dat a is
non-NULL and does not point to a buffer allocated by t pal | oc(),
TPSENDONLY or TPRECVONLY was hot specified in f | ags, or f | ags are
otherwise invalid).

[TPENCENT]
Cannot initiate a connection to svc because it does not exist or is not a
conversational service.

ATMI C Function Reference

tpconnect(3c)

See Also

[TPEI TYPE]
The type and subtype of dat a is not one of the allowed types and subtypes
that svc accepts.

[TPELI M T]
The caller’ srequest was not sent because the maximum number of
outstanding connections has been reached.

[TPETRAN]
svc belongs to a program that does not support transactions and TPNOTRAN
was not set.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then atransaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK hor TPNOTI ME were
specified. If atransaction timeout occurred, then any attempts to send or
receive messages on any connections or to start a new connection will fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t pconnect () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

tpal | oc(3c),tpdi scon(3c),tprecv(3c),tpsend(3c),tpservice(3c)

ATMI C Function Reference 121

Section 3¢ - C Functions

tpconvert(3c)

122

Name

Synopsis

Description

t pconver t () —Converts structures to/from string representations.

#include <atm . h>
#i ncl ude <xa. h>

int tpconvert(char *strrep, char *binrep, |ong flags)

t pconvert () convertsthe string representation of interface structures (st rr ep) to or
from the binary representation (bi nr ep).

Both the direction of the conversion and the interface structure type are determined
fromthef | ags argument. To convert astructure from binary representation to string
representation, the programmer must set the TPTOSTRI NGhit in f | ags. To convert a
structure from string to binary the programmer must clear the bit. The following flags
are defined to indicate the particular structure type to be converted; only one may be
specified at atime:

TPCONVCLTI D
Convert CLI ENTI D (see at ni . h).

TPCONVTRANI D
Convert TPTRANI D (see at ni . h).

TPCONVXI D
Convert XI D (see xa. h).

For conversions from binary to string representation, st r r ep should be at least
TPCONVMVAXSTR characters in length.

Note that unequal string versions of TPTRANI D and XI D values may be considered
equal by the systemwhen accessing TM M B(5) classesthat allow thesevaluesaskey
fields (for example, T_TRANSACTI ON or T_ULOG). Therefore, string values for these
data types should not be fabricated or manipulated by application programs.

TM_M B(5) guarantees that only objects matching the global transaction identified by
the string are returned when one of these valuesis used as akey field.

A thread in amultithreaded application may issue acall tot pconvert () while
running in any context state, including TPl NVALI DCONTEXT.

ATMI C Function Reference

tpconvert(3c)

Return Values

Errors

Portability

See Also

Upon failure, t pconvert () returns-1and setst perrno() to indicate the error
condition.

Under the following conditions, t pconvert () faillsand setst per rno() to one of the
following values:

[TPEI NVAL]
Invalid arguments were specified. st rr ep or bi nrep isaNULL pointer, or
f 1 ags does not indicate exactly one structure type.

[TPECS]
An operating system error has occurred. A numeric value representing the
system call that failed is availablein Uuni xerr .

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento user | og(3c) .

Thisinterface is available only on BEA Tuxedo ATMI release 5.0 or later. This
interface is available on workstation platforms.

tpresunme(3c),tpservice(3c),tpsuspend(3c),tx_info(3c), TM M B(5)

ATMI C Function Reference 123

Section 3¢ - C Functions

tpcryptpw(3c)

Name

Synopsis

Description

Return Values

Errors

t pcr ypt pw() —Encrypts the application password in an administrative request.

#include <atm . h>
#incl ude <fm 32. h>

int tpcrypt pw FBFR32 *buf)

t pcrypt pw() is used to encrypt the application password stored in an administrative
request buffer prior to sending the request for servicing. Application passwords are
stored as string values using the FML 32 field identifier TA_ PASSWORD. Thisencryption
isnecessary to insure that clear text passwords are not compromised and that
appropriate propagation of the update can take place to al active application sites.
Additional system fields may be added to the callersbuffer and existing fields may be
modified to satisfy the request.

A thread in amultithreaded application may issue acall tot pcrypt pw() while
running in any context state, including TPl NVALI DCONTEXT.

Upon failure, t pcrypt pw() returns-1 and setst per rno() to indicate the error
condition.

Upon failure, t pcrypt pw() setst perrno() to one of the following values:

[TPEI NVAL]
Invalid arguments were specified. The buf valueis NULL, does not point to
aFML32typed buffer or appdir could not be determined from theinput buffer
or the environment.

[TPEPERM
The calling process did not have the appropriate permissions necessary to
perform the requested task.

[TPECS]
An operating system error has occurred. A numeric value representing the
system call that failed isavailablein Uuni xerr .

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to user | og(3c).

124 ATMI C Function Reference

tpcryptpw(3c)

Portability

Files

See Also

Thisinterface is available only on UNIX system sites running BEA Tuxedo ATMI
release 5.0 or later. Thisinterface is not available to Workstation clients.

${TUXDIR}/lib/libtnib.a,${TUXDIR}/1ib/libtmb.so.rel
M B(5), TM M B(5)
Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

ATMI C Function Reference 125

Section 3¢ - C Functions

tpdequeue(3c)

126

Name

Synopsis

Description

t pdequeue() —Routine to dequeue a message from a queue.

#i nclude <atm . h>
int tpdequeue(char *gspace, char *gnane, TPQCTL *ctl, char **data,
long *len, long flags)

t pdequeue() takesamessage for processing from the queue named by gnane inthe
gspace queue space.

By default, the message at the top of the queue is dequeued. The order of messages on
the queueisdefined when the queueis created. The application can request aparticular
message for dequeuing by specifying its message identifier or correlation identifier
usingthect | parameter. ct| flagscan aso be used to indicate that the application
wants to wait for amessage, in the case when amessage is not currently available. It
ispossibleto usethect! parameter to look at amessage without removing it from the
gueue or changing itsrelative position on the queue. See the section bel ow describing
this parameter.

dat a isthe address of a pointer to the buffer into which a message isread, and | en
pointsto the length of that message. *dat a must point to a buffer originally allocated
by t pal I oc() . If amessage islarger than the buffer passed to t pdequeue, the buffer
isincreased in size to accommodate the message. To determine whether a message
buffer changed in size, compare its (total) size beforet pdequeue() wasissued with
*1 en. If *I en islarger, then the buffer has grown; otherwise, the buffer has not
changed size. Note that *dat a may change for reasons other than the buffer's size
increased. If *I en is0 upon return, then the message dequeued has no data portion and
neither *dat a nor the buffer it points to were modified. Itisan error for *dat a or | en
tobeNULL.

The message is dequeued in transaction mode if the caller isin transaction mode and
the TPNOTRAN flag is not set. This has the effect that if t pdequeue() returns
successfully and the caller’s transaction is committed successfully, then the message
isremoved from the queue. If the caller’ stransaction is rolled back either explicitly or
asthe result of atransaction timeout or some communication error, then the message
will be left on the queue (that is, the removal of the message from the queue is aso
rolled back). It is not possible to enqueue and dequeue the same message within the
same transaction.

ATMI C Function Reference

tpdequeue(3c)

The message is not dequeued in transaction mode if either the caller isnot in
transaction mode, or the TPNOTRAN flag is set. When not in transaction mode, if a
communication error or atimeout occurs, the application will not know whether or not
the message was successfully dequeued and the message may be | ost.

Thefollowingisalist of vaid f 1 ags:

TPNOTRAN
If the caller isin transaction mode and thisflag is set, the message is not
dequeued within the caller’ stransaction. A caller in transaction modethat sets
thisflag is till subject to the transaction timeout (and no other) when
dequeuing the message. |f message dequeuing fails, the caller’ stransactionis
not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If thisflag is set
and a blocking condition exists such asthe internal buffers into which the
message istransferred are full, the call failsand t per r no() issetto
TPEBLOCK. If thisflag is set and a blocking condition exists because the target
gueueis opened exclusively by another application, the cal fails, t per r no()
is set to TPEDI AGNOSTI C, and the diagnostic field of the TPQCTL structureis
set to QVESHARE. In the latter case, the other application, which isbased on a
BEA product other than the BEA Tuxedo ATMI system, opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

When TPNOBLOCK is hot set and a bl ocking condition exists, the caller blocks
until the condition subsides or atimeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQMAI T option in f | ags (of the TPQCTL structure) is specified.

TPNOTI ME
Setting this flag signifies that the caller is willing to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPNOCHANGE
When thisflag is set, the type of the buffer pointed to by *dat a is not alowed
to change. By default, if abuffer isreceived that differsin type from the
buffer pointed to by *dat a, then *dat a’ sbuffer type changesto the received
buffer’ stype so long asthereceiver recognizestheincoming buffer type. That
is, the type and subtype of the dequeued message must match the type and
subtype of the buffer pointed to by *dat a.

ATMI C Function Reference 127

Section 3¢ - C Functions

128

Control
Parameter

TPSI GRSTRT
Setting thisflag indicatesthat any underlying system callsthat areinterrupted
by asignal should bereissued. When thisflag isnot set and asignal interrupts
asystem cdl, the call failsand setst per r no() to TPGOTSI G.

If t pdequeue() returns successfully, the application can retrieve additional
information about the message using the ct | data structure. The information may
include the message identifier for the dequeued message; a correlation identifier that
should accompany any reply or failure message so that the originator can correlate the
message with the original request; the quality of service the message was delivered
with, the quality of service any replies to the message should be delivered with; the
name of areply queueif areply isdesired; and the name of the failure queue on which
the application can queue information regarding failureto dequeue the message. These
are described below.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pdequeue() .

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with dequeuing the message. The f | ags element of TPQCTL is
used to indicate what other elements in the structure are valid.

Oninput tot pdequeue() , the following elements may be set in the TPQCTL structure:

I ong flags; /* indicates which of the val ues
* are set */
char nsgi d[32]; /* 1D of message to dequeue */
char corrid[32]; /* correlation identifier of
*

nmessage to dequeue */

Thefollowing isalist of valid bitsfor the f | ags parameter controlling input
information for t pdequeue() :

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSG D
Setting this flag requests that the message with the message identifier
specified by ct | —>nsgi d be dequeued. The message identifier may be
acquired by aprior call tot penqueue(3c) . Note that amessage identifier
changes if the message has moved from one queue to another. Note also that
the entire 32 bytes of the message identifier value are significant, so the value
specified by ct | —>nsgi d must be completely initialized (for example,
padded with NULL characters).

ATMI C Function Reference

tpdequeue(3c)

TPQCGETBYCORRI D
Setting this flag requests that the message with the correlation identifier
specified by ct | —>corri d be dequeued. The correlation identifier is
specified by the application when enqueuing the message with
t penqueue() . Notethat the entire 32 bytes of the correlation identifier value
are significant, so the value specified by ct | =>cor ri d must be completely
initialized (for example, padded with NULL characters).

TPQMI T
Setting this flag indicates that an error should not be returned if the queueis
empty. Instead, the process should wait until a message isavailable. If
TPQWAI T is set in conjunction with TPQGETBYMSG D or TPQGETBYCORRI D, it
indicatesthat an error should not be returned if no message with the specified
messageidentifier or correlationidentifier ispresent in the queue. Instead, the
process should wait until a message meeting the criteriais available. The
process is still subject to the caller’ s transaction timeout, or, when not in
transaction mode, the process is subject to the timeout specified on the
TMQUEUE process by the -t option.

If a message matching the desired criteriais not immediately available and
the configured action resources are exhausted, t pdequeue returns-1,

t perrno() issetto TPEDI AGNCSTI C, and the diagnostic field of the TPQCTL
structure is set to QVESYSTEM

Note that each t pdequeue() request specifying the TPQAAI T control
parameter requiresthat aqueue manager (TMQUEUE) action object beavailable
if amessage satisfying the condition isnot immediately available. If an action
object isnot available, thet pdequeue() request fails. The number of
available queue manager actions are specified when a queue space is created
or modified. When awaiting dequeue request completes, the associated
action object associated is made available for another request.

TPQPEEK
If thisflag is set, the specified message is read but is not removed from the
gueue. Thisflagimpliesthe TPNOTRANflag hasbeen set for thet pdequeue()
operation. That is, non-destructive dequeuing is non-transactional. Note that
it is not possibl e to read messages enqueued or dequeued within atransaction
before the transaction completes.

When athread is non-destructively dequeuing a message using TPQPEEK, the
message may not be seen by other non-blocking dequeuers for the brief time
the system is processing the non-destructive degueue request. This includes

ATMI C Function Reference 129

Section 3¢ - C Functions

dequeuers using specific selection criteria (such as message identifier and
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

On output from t pdequeue() , the following el ements may be set in the TPQCTL

structure:
I ong flags; /* indicates which of the val ues
* shoul d be set */
long priority; /* enqueue priority */
char nsgi d[32]; /* I D of nessage dequeued */
char corrid[32]; /* correlation identifier used to
* jdentify the nessage */
I ong delivery_qos; /* delivery quality of service */
I ong reply_qos; /* reply nessage quality of service */
char repl yqueue[16] ; /* queue nane for reply */
char failurequeue[16]; /* queue name for failure */
| ong di agnosti c; /* reason for failure */
| ong appkey; /* application authentication client
* key */
| ong urcode; /* user-return code */
CLIENTID cl tid; /* client identifier for originating

* client */

Thefollowingisalist of valid bits for the f | ags parameter controlling output
information from t pdequeue() . For any of these bits, if the flag bit isturned on when
t pdequeue() iscdled, the associated element in the structure is populated with the
value provided when the message was queued, and the bit remains set. If avalueisnot
available (that is, no value was provided when the message was queued) or the bit is
not set whent pdequeue() iscalled, t pdequeue() completeswith the flag turned off.

TPQPRI ORI TY
If thisflagisset, thecall tot pdequeue() issuccessful, and the message was
queued with an explicit priority, then the priority is stored in
ctl —>priority. Thepriority isin therange 1 to 100, inclusive, and the
higher the number, the higher the priority (that is, a message with a higher
number is dequeued before a message with alower number). For queues not
ordered by priority, the value is informational .

If no priority was explicitly specified when the message was queued and the
cal to t pdequeue() issuccessful, the priority for the message is 50.

130 ATMI C Function Reference

tpdequeue(3c)

TPQVSG D
If thisflag is set and the call tot pdequeue() is successful, the message
identifier isstored inct | —>nsgi d. The entire 32 bytes of the message
identifier value are significant.

TPQCORRI D
If thisflag is set, thecall tot pdequeue() issuccessful, and the message was
queued with acorrelation identifier, then the correlation identifier isstored in
ctl —>corri d. The entire 32 bytes of the correlation identifier value are
significant. Any BEA Tuxedo ATMI /Q provided reply to amessage hasthe
correlation identifier of the original request message.

TPQDELI VERYQOS
If thisflag is set, thecall tot pdequeue() issuccessful, and the message was

queued with adelivery quality of service, then the flag—

TPQQOSDEFAUL TPERSI ST, TPQQOSPERSI STENT, or

TPQQOSNONPERSI STENT—is stored inct | - >del i very_qos. If no delivery
quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

TPQREPLYQOS
If thisflag is set, thecall tot pdequeue() issuccessful, and the message was

queued with areply quality of service, then the flag—

TPQQOSDEFAUL TPERSI ST, TPQQOSPERSI STENT, or

TPQQOSNONPERSI STENT—isstoredinct | - >repl y_qos. If no reply quality
of servicewas explicitly specified when the message was queued, the default
delivery policy of thect | - >r epl yqueue queue dictates the delivery quality
of service for any reply.

Note that the default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of thereply queue
is modified between the time that the original message is enqueued and the
reply to the message is enqueued, the policy used isthe onein effect when the
reply isfinally enqueued.

TPQREPLYQ
If thisflag is set, thecall tot pdequeue() issuccessful, and the message was
queued with areply queue, then the name of the reply queueis stored in
ct| —>repl yqueue. Any reply to the message should go to the named reply
gueue within the same queue space as the request message.

ATMI C Function Reference 131

Section 3¢ - C Functions

Return Values

132

Errors

TPQFAI LUREQ
If thisflagisset, thecall tot pdequeue() issuccessful, and the message was
gueued with a failure queue, then the name of the failure queueis stored in
ctl —>f ai | ur equeue. Any failure message should go to the named failure
gueue within the same queue space as the request message.

Thefollowing remaining bits for thef | ags parameter are cleared (set to zero) when
t pdequeue() iscalled: TPQTOP, TPQBEFORENMSG D, TPQTI ME_ABS, TPQTI ME_REL,
TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE. These bits are valid
bits for the f | ags parameter controlling input information for t penqueue() .

If the call tot pdequeue() failed andt perrno() is set to TPEDI AGNOSTI C, avalue
indicating thereasonfor failureisreturnedinct | —>di agnosti c. The possible values
are defined below in the Diagnostics section.

Additionally on output, if the call tot pdequeue() issuccessful, ct | —>appkey is set
to the application authentication key, ct | —>cl ti d isset to theidentifier for the client
originating the request, and ct | —>ur code is set to the user-return code val ue that was
set when the message was enqueued.

If thect| parameter isNULL, theinput flags are considered to be TPNOFLAGS, and no
output information is made available to the application program.

Upon failure, t pdequeue() returns-1 and setst per rno() to indicate the error
condition.

Upon failure, t pdequeue() setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, gnanme isNULL, dat a does not
point to space allocated with t pal |1 oc() or fl ags areinvaid).

[TPENCENT]
Cannot access the gspace becauseit is not available (that is, the associated
TMQUEUE(5) server isnot available), or cannot start a global transaction due
to the lack of entriesin the Global Transaction Table (GTT).

[TPEOTYPE]
Either the type and subtype of the dequeued message are not known to the
caller; or, TPNOCHANGE was set in f | ags and the type and subtype of *dat a
do not match the type and subtype of the dequeued message. In either case,
*dat a, its contents, and *1 en are not changed. When the call is madein

ATMI C Function Reference

tpdequeue(3c)

Diagnostic

transaction mode and this error occurs, the transaction is marked abort-only,
and the message remains on the queue.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, atransaction timeout
occurred and the transaction is to be aborted; otherwise, a blocking timeout
occurred and neither TPNOBLOCK nor TPNOTI ME was specified. If a
transaction timeout occurred, any attempts to dequeue new messageswill fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC|
t pdequeue() was called improperly. There is no effect on the queue or the
transaction.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file. There is no effect on the queue.

[TPECS]
An operating system error has occurred. There is no effect on the queue.

[TPEDI AGNOSTI C]
Dequeuing amessage from the specified queue failed. The reason for failure
can be determined by the diagnostic value returned viact | structure.

The following diagnostic values are returned during the dequeuing of a message:

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
An invalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

[QVETRAN]

The call was not in transaction mode or was made with the TPNOTRAN flag set
and an error occurred trying to start a transaction in which to dequeue the

ATMI C Function Reference 133

Section 3¢ - C Functions

134

See Also

message. This diagnostic is not returned by queue managers from BEA
Tuxedo release 7.1 or later.

[QVEBADVEG D]
An invalid message identifier was specified for dequeuing.

[QVESYSTEM
A system error has occurred. The exact nature of the error iswritten to alog
file.

[QVECS]
An operating system error has occurred.

[QVEABORTED]
The operation was aborted. When executed within a global transaction, the

global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QVEPROT(]
A dequeue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENOVEG]
No message was available for dequeuing. Note that it is possible that the
message exists on the queue and another application process has read the
message from the queue. In this case, the message may be put back on the
queue if that other process rolls back the transaction.

[QVEI NUSE]
When dequeuing a message by message identifier or correlation identifier,
the specified messageis in use by another transaction. Otherwise, all
messages currently on the queue are in use by other transactions. This
diagnostic is not returned by queue managers from BEA Tuxedo release 7.1
or later.

[QVESHARE]
When dequeuing a message from a specified queue, the specified queueis
opened exclusively by another application. The other application is one based
on aBEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

gmadm n(1), tpalloc(3c),tpenqueue(3c), APPQ M B(5), TMQEUE(5)

ATMI C Function Reference

tpdiscon(3c)

tpdiscon(3c)

Name

Synopsis

Description

Return Values

Errors

t pdi scon() —Routine for taking down a conversational service connection.

#i ncl ude <atni.h>
int tpdiscon(int cd)

t pdi scon() immediately tears down the connection specified by cd and generates a
TPEV_DI SCONI MMevent on the other end of the connection.

t pdi scon() can be called only by the initiator of the conversation. t pdi scon()
cannot be called within a conversational service on the descriptor with which it was
invoked. Rather, a conversational service must uset pret ur n() to signify that it has
completed its part of the conversation. Similarly, even though a program
communicating with a conversational service can issuet pdi scon(), the preferred
way isto let the service tear down the connection in t pr et ur n() ; doing so ensures
correct results.

t pdi scon() causesthe connection to be torn down immediately (that is, abortive
rather than orderly). Any data that has not yet reached its destination may be lost.

t pdi scon() can beissued even when the program on the other end of the connection
is participating in the caller’ stransaction. In thiscase, the transaction must be aborted.
Also, the caller does not need to have control of the connection when t pdi scon() is
called.

Upon failure, t pdi scon() returns -1 and setst per rno() to indicate the error
condition.

Upon failure, t pdi scon() setst perrno() to one of the following values:

[TPEBADDESC]

cd isinvaid or is the descriptor with which a conversational service was
invoked.

[TPETI ME]
A timeout occurred. The descriptor is no longer valid.

[TPEPROTC)
t pdi scon() wascaled improperly.

ATMI C Function Reference 135

Section 3¢ - C Functions

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file. The descriptor is no longer valid.

[TPECS]
An operating system error has occurred. The descriptor isno longer valid.

See Also tpabort(3c),tpconmit(3c),tpconnect(3c),tprecv(3c),tpreturn(3c),
t psend(3c)

136 ATMI C Function Reference

tpenqueue(3c)

tpenqueue(3c)

Name

Synopsis

Description

t penqueue() —Routine to enqueue a message.

#i ncl ude <atni. h>
int tpenqueue(char *qspace, char *qgname, TPQCTL *ctl, char *data,
long len, long flags)

t penqueue() storesamessage on the queue named by gnane in the gspace queue
space. A queue space is acollection of queues, one of which must be gnane.

When the message is intended for a BEA Tuxedo ATMI system server, the gname
matches the name of a service provided by the server. The system provided server,
TMQFORWARD(5) , provides a default mechanism for dequeuing messages from the
gueue and forwarding them to serversthat provide a service matching the queue name.
If the originator expects areply, then the reply to the forwarded service request is
stored on the originator’s queue, unless otherwise specified. The originator will
dequeue the reply message at a subsequent time. Queues can also be used for areliable
message transfer mechanism between any pair of BEA Tuxedo ATMI system
processes (clients and/or servers). In this case, the queue name does not match a
service name but some agreed upon name for transferring the message.

If dat aisnon-NULL, it must point to abuffer previously allocated by t pal 1 oc() and
I en should specify the amount of datain the buffer that should be queued. Note that if
dat a points to abuffer of atype that does not require alength to be specified (for
example, an FM. fielded buffer), thenl en isignored. If dat aisNULL, | en isignored
and a message is queued with no data portion.

The message is queued at the priority defined for gspace unless overridden by a
previous call tot pspri o() .

If the caller iswithin atransaction and the TPNOTRAN flag is not set, the messageis
queued in transaction mode. This has the effect that if t penqueue() returns
successfully and the caller’ s transaction is committed successfully, then the message
is guaranteed to be avail able subsequent to the transaction completing. If the caller’s
transaction is rolled back either explicitly or as the result of a transaction timeout or
some communication error, then the message will be removed from the queue (that s,
the placing of the message on the queue is also rolled back). It is not possible to
engueue then dequeue the same message within the same transaction.

ATMI C Function Reference 137

Section 3¢ - C Functions

138

The message is not queued in transaction mode if either the caller is not in transaction
mode, or the TPNOTRAN flag is set. Oncet penqueue() returns successfully, the
submitted message is guaranteed to be in the queue. When not in transaction mode, if
acommunication error or atimeout occurs, the application will not know whether or
not the message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the application
viact | datastructure as described below; the default queue ordering is set when the
queue is created.

Thefollowingisalist of validf 1 ags:

TPNOTRAN
If the caller isin transaction mode and this flag is set, the message is not
queued within the caller’ s transaction. A caller in transaction mode that sets
thisflagisstill subject to thetransaction timeout (and no other) when queuing
the message. If message queuing fails, the caler’ stransaction is not affected.

TPNOBLOCK
The message is not enqueued if ablocking condition exists. If thisflag is set
and a blocking condition exists such as the internal buffersinto which the
message is transferred are full, the call failsand t per rno() issetto
TPEBLOCK. If thisflag is set and ablocking condition exists because the target
gueueisopened exclusively by another application, the call fails, t per rno()
is set to TPEDI AGNGSTI C, and the diagnostic field of the TPQCTL structureis
set to QVESHARE. |n the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo ATMI system, opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

When TPNOBLOCK is not set and a blocking condition exists, the caller blocks
until the condition subsides or atimeout occurs (either transaction or blocking
timeout). If atimeout occurs, the call failsand t per rno() isset to TPETI ME.

TPNOTI ME
Setting this flag signifies that the caller iswilling to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSI GRSTRT
If thisflag isset and asignal interrupts any underlying system calls, the
interrupted system call isreissued. If TPSI GRSTRT isnot set and asignal
interrupts a system call, t penqueue() failsandtperrno() issetto
TPGOTSI G.

ATMI C Function Reference

tpenqueue(3c)

Control
Parameter

Additiona information about queuing the message can be specified viact | data
structure. This information includes values to override the default queue ordering
placing the message at the top of the queue or before an enqueued message; an absolute
or relativetime after which aqueued messageis made avail able; an absolute or relative
time when amessage expires and isremoved from the queue; the quality of servicefor
delivering the message; the quality of service that any replies to the message should
use; acorrelation identifier that aidsin correlating areply or failure message with the
gueued message; the name of a queue to which a reply should be enqueued; and the
name of a queue to which any failure message should be enqueued.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall tot penqueue() .

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with enqueuing the message. Thef | ags element of TPQCTL is
used to indicate what other elementsin the structure are valid.

Oninputtot penqueue() , the following elements may be set in the TPQCTL structure:

long fl ags; /* indicates which of the val ues
* are set */
I ong deq_ti ne; /* absolute/relative for dequeuing */
long priority; /* enqueue priority */
long exp_tinme /* expiration time */
I ong delivery_gos /* delivery quality of service */
long reply_gos /* reply quality of service */
| ong urcode; /* user-return code */
char msgid[32]; /* 1 D of nmessage before which to queue
* request */
char corrid[32]; /* correlation identifier used to
* identify the nsg */
char replyqueue[16]; /* queue nane for reply nmessage */

char failurequeue[16]; /* queue nanme for failure nmessage */

Thefollowing isalist of valid bitsfor thef | ags parameter controlling input
information for t penqueue() :

TPNOFLAGS
No flags or values are set. No information is taken from the control structure.

TPQTOP
Setting this flag indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding

ATMI C Function Reference 139

Section 3¢ - C Functions

140

the queue ordering. TPQTOP and TPQBEFOREMSG D are mutually exclusive
flags.

TPQBEFCREMSG D

Setting this flag indicates that the queue ordering be overridden and the
message placed in the queue before the message identified by ct | —>nsgi d.
This request may not be granted depending on whether or not the queue was
configured to alow overriding the queue ordering. TPQTOP and
TPQBEFOREMSG D are mutually exclusive flags. Note that the entire 32 bytes
of the message identifier value are significant, so the value identified by

ct| —>msgi d must be completely initialized (for example, padded with
NULL characters).

TPQTI ME_ABS

If thisflag is set, the message is made avail able after the time specified by
ctl —>deq_ti ne. Thedeq_t i me isan absolute time value as generated by
time(2), nkti me(3C), or gp_nkti me(3c) (the number of seconds since
00:00:00 Universa Coordinated Time—UTC, January 1, 1970).

TPQTI ME_ABS and TPQTI ME_REL are mutually exclusive flags. The absolute
time is determined by the clock on the machine where the queue manager
process resides.

TPQTI ME_REL

If thisflag is set, the message is made avail able after atime relative to the
completion of the enqueuing operation. ct | —>deq_t i ne specifiesthe
number of secondsto delay after the enqueuing completes before the
submitted message should be available. TPQTI ME_ABS and TPQTI ME_REL are
mutually exclusive flags.

TPQPRI ORI TY

If thisflag is set, the priority at which the message should be enqueued is
storedinct | —>pri ority. The priority must be in therange 1 to 100,
inclusive. The higher the number, the higher the priority (that is, a message
with a higher number is dequeued before a message with alower number).
For queues not ordered by priority, thisvalue is informational .

If thisflag is not set, the priority for the message is 50 by default.

TPQCORRI D

If thisflag is set, the correlation identifier value specifiedinct | —>corri dis
available when a message is dequeued with t pdequeue() . Thisidentifier
accompaniesany reply or failure messagethat is queued so that an application

ATMI C Function Reference

tpenqueue(3c)

can correlate areply with aparticul ar request. Note that the entire 32 bytes of
the correlation identifier value are significant, so the value specified in

ctl —>corri d must be completely initialized (for example, padded with
NULL characters).

TPQREPLYQ
If thisflag is set, areply queue named in ct | —>r epl yqueue isassociated
with the queued message. Any reply to the message will be queued to the
named queue within the same queue space asthe request message. Thisstring
must be NULL terminated (maximum 15 charactersin length).

TPQFAI LUREQ
If thisflag is set, afailure queue named inthe ct | —>f ai | ur equeue is
associ ated with the queued message. If (1) the enqueued messageis processed
by TMQFORWARDY() , (2) TMQFORWARD was started with the - d option, and (3)
the service fails and returnsanon-NULL reply, afailure message consisting
of the reply and its associated t pur code is engqueued to the named queue
within the same queue space asthe original request message. Thisstring must
be NULL -terminated (maximum 15 charactersin length).

TPQDELI VERYQOS, TPQREPLYQOS
If the TPQDEL| VERYQQCS flag is set, the flags specified by
ctl->del i very_qgos control the quality of service for delivery of the
message. In this case, one of three mutually exclusive flags—
TPQQOUSDEFAULTPERSI ST, TPQQOSPERSI STENT, or
TPQQOSNONPERSI STENT—must be setinct | - >del i very_qos. If
TPQDELI VERYQOS is not set, the default delivery policy of the target queue
dictates the delivery quality of service for the message.

If the TPQREPLYQCS flag is set, the flags specified by ct | - >r epl y_qos
control the quality of servicefor any reply to the message. In this case, one of
three mutually exclusive flags—TPQQOSDEFAULTPERSI ST,

TPQQOSPERSI STENT, or TPQQOSNONPERSI STENT—must be set in
ctl->reply_qgos. The TPQREPLYQOS flag is used when areply is returned
from messages processed by TMQFORWARD. Applications not using
TMQFORWARD to invoke services may use the TPQREPLYQCS flag asa hint for
their own reply mechanism.

If TPQREPLYQCS is not set, the default delivery policy of the

ct | ->repl yqueue queue dictates the delivery quality of service for any
reply. Note that the default delivery policy is determined when thereply to a
message is enqueued. That is, if the default delivery policy of thereply queue

ATMI C Function Reference 141

Section 3¢ - C Functions

142

is modified between the time that the original message is enqueued and the
reply to the messageis enqueued, the policy used isthe onein effect when the
reply isfinally enqueued.

Thefollowing isthe list of valid flagsfor ct | - >del i very_gos and
ctl->reply_qos:

TPQQOSDEFAULTPERSI ST
This flag specifies that the message is to be delivered using the
default delivery policy specified on the target queue.

TPQQOSPERSI STENT
Thisflag specifies that the message isto be delivered in apersistent
manner using the disk-based delivery method. Setting this flag
overrides the default delivery policy specified on the target queue.

TPQQOSNONPERSI STENT
This flag specifies that the message isto be delivered in a
non-persistent manner using the memory-based delivery method.
Specifically, the message is queued in memory until it is dequeued.
Setting this flag overrides the default delivery policy specified on
the target queue. If the caller is transactional, non-persi stent
messages are enqueued within the caller’ s transaction, however,
non-persistent messages arelost if the system is shut down, crashes,
or the |PC shared memory for the queue space is removed.

TPQEXPTI ME_ABS

If thisflag is set, the message has an absol ute expiration time, which is the
absolute time when the message will be removed from the queue.
Theabsolute expiration timeisdetermined by the clock on the machinewhere
the queue manager process resides.

The absolute expiration timeis indicated by the value stored in
ctl->exp_tine. Thevalueof ctl->exp_tinme must be set to an absolute
time value generated by ti ne(2), mkti ne(3C), or gp_nkti me(3c) (the
number of seconds since 00:00:00 Universal Coordinated Time—UTC,
January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue
operation, the operation succeeds, but the message is not counted for the
purpose of calculating thresholds. If the expiration timeisbeforethe message
availability time, the messageis not available for dequeuing unless either the
availability or expiration timeis changed so that the avail ability timeisbefore
the expiration time. In addition, these messages are removed from the queue

ATMI C Function Reference

tpenqueue(3c)

at expiration time even if they were never available for dequeuing. If a
message expireswhileit iswithin atransaction, the expiration does not cause
the transaction to fail. Messages that expire while being enqueued or
dequeued within a transaction are removed from the queue when the
transaction ends. There is no notification that the message has expired.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusive flags. If none of these flagsis set, the default expiration time
associated with the target queue is applied to the message.

TPQEXPTI ME_REL
If thisflag is set, the message has a relative expiration time, which isthe
number of seconds after the message arrives at the queue that the message is
removed from the queue. The relative expiration timeisindicated by the
valuestored inct | - >exp_ti ne.

If the expiration time is before the message availability time, the messageis
not available for dequeuing unless either the availability or expiration timeis
changed so that the availability time isbefore the expiration time. In addition,
these messages are removed from the queue at expiration time even if they
were never available for dequeuing. The expiration of a message during a
transaction, does not cause the transaction to fail. M essages that expire while
being enqueued or dequeued within atransaction are removed from the queue
when the transaction ends. There is no acknowledgment that the message has
expired.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusive flags. If none of these flagsis set, the default expiration time
associated with the target queue is applied to the message.

TPQEXPTI ME_NONE
Setting this flag indicates that the message should not expire. Thisflag
overrides any default expiration policy associated with the target queue. A
message can be removed by dequeuing it or by deleting it viaan
administrative interface.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusive flags. If none of these flagsis set, the default expiration time
associated with the target queue is applied to the message.

Additionally, the ur code element of TPQCTL can be set with a user-return code. This
value will be returned to the application that dequeues the message.

ATMI C Function Reference 143

Section 3¢ - C Functions

Return Values

144

Errors

On output from t penqueue() , the following el ements may be set in the TPQCTL
structure:

I ong flags; /* indicates which of the values
* are set */
char msgi d[32]; /* 1D of enqueued nmessage */
| ong di agnosti c; /* indicates reason for failure */

Thefollowing isavalid bit for thef | ags parameter controlling output information
fromt penqueue() . If thisflag is turned on when t penqueue() iscalled, the/Q
server TMQUEUE(5) populates the associated element in the structure with a message
identifier. If thisflag isturned off when t penqueue() iscalled, TMQUEUE() does not
populate the associated element in the structure with a message identifier.

TPQVSG D
If thisflag is set and the call tot penqueue() issuccessful, the message
identifier is stored in ct | —>msgi d. The entire 32 bytes of the message
identifier value are significant, so the value stored inct | —>msgi d is
completely initialized (for example, padded with NULL characters). The
actual padding character used for initialization varies between releases of the
BEA Tuxedo ATMI /Q component.

The remaining members of the control structure are not used on input to
t penqueue() .

If the call tot penqueue() failed andt perrno() is set to TPEDI AGNOSTI C, avalue
indicating thereasonfor failureisreturnedinct | —>di agnosti c. The possible values
are defined below in the Diagnostics section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and no
output information is made available to the application program.

Upon failure, t penqueue() returns-1 and setst per rno() to indicate the error
condition. Otherwise, the message has been successfully queued when t penqueue()
returns.

Upon failure, t penqueue() setst perrno() to one of thefollowing values. (Unless
otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, gspace isSNULL, dat a does not
point to space allocated with t pal | oc(), or f | ags areinvalid).

ATMI C Function Reference

tpenqueue(3c)

Diagnostic

[TPENOENT]
Cannot access the gspace becauseit is not available (that is, the associated
TMQUEUE(5) server isnot available), or cannot start aglobal transaction due
to the lack of entriesin the Global Transaction Table (GTT).

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, atransaction timeout
occurred and the transaction is to be aborted; otherwise, a blocking timeout
occurred and neither TPNOBLOCK nor TPNOTI ME was specified. If a
transaction timeout occurred, any attempts to enqueue new messageswill fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t penqueue() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

[TPEDI AGNOSTI C]
Engueuing amessage on the specified queuefailed. Thereasonfor failurecan
be determined by the diagnostic returned viact | .

The following diagnostic values are returned during the enqueuing of a message:

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
An invalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

ATMI C Function Reference 145

Section 3¢ - C Functions

[QVETRAN]
The call wasnot in transaction mode or was made with the TPNOTRANflag set

and an error occurred trying to start a transaction in which to enqueue the
message. This diagnostic is not returned by queue managers from BEA
Tuxedo release 7.1 or later.

[QVEBADNMSG D)
An invalid message identifier was specified.

[QVESYSTEM
A system error occurred. The exact nature of the error iswritten to alog file.

[QVECS]
An operating system error occurred.

[QVEABORTED]
The operation was aborted. When executed within a global transaction, the

global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QVEPROT(]
An engqueue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENGSPACE]
Due to an insufficient resource, such as no space on the queue, the message
with itsrequired quality of service (persistent or non-persistent storage) was
not enqueued. QVENOSPACE isreturned when any of thefollowing configured
resourcesis exceeded: (1) theamount of disk (persistent) spaceallotted to the
gueue space, (2) the amount of memory (non-persistent) space allotted to the
gueue space, (3) the maximum number of simultaneously active transactions
allowed for the queue space, (4) the maximum number of messages that the
gueue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or (6)
the maximum number of authenticated users that may concurrently use the
Queuing Services component.

[QVERELEASE]
An attempt was made to enqueue a message to a queue manager that is from
aversion of the BEA Tuxedo system that does not support a newer feature.

146 ATMI C Function Reference

tpenqueue(3c)

[QVESHARE]
When enqueuing a message from a specified queue, the specified queueis
opened exclusively by another application. The other application isone based
on aBEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

See Also gmadmi n(1), gp_nktine(3c),tpacall (3c),tpalloc(3c),tpdequeue(3c),
tpinit(3c),tpsprio(3c),APPQ M B(5), TMFORWARD(5) , TMQUEUE(5)

ATMI C Function Reference 147

Section 3¢ - C Functions

tpenvelope(3c)

148

Name

Synopsis

Description

t penvel ope() —Accessesthedigita signatureand encryption information associated
with atyped message buffer.

#i nclude <atm . h>
int tpenvel ope(char *data, long len, int occurrence, TPKEY
*out putkey, long *status, char *timestanp, long fl ags)

t penvel ope() provides accessto the following types of digital signature and
encryption information associated with a typed message buffer:

m Digital-signature registration requests

A sending process explicitly registers adigita signature request for a message
buffer by calling t psi gn(), or implicitly registersadigital signature request for
amessage buffer by calling t pkey_open() with the TPKEY_AUTCSI GN flag
specified.

m Digita signatures

Just before the message buffer is sent, the public key software generates and
attaches a digital signature to the message buffer for each digital-signature
registration request; a digital signature enables a receiving processto verify the
signer (originator) of the message.

m Encryption registration requests

A sending process explicitly registers an encryption (seal) request for a message
buffer by calling t pseal (), or implicitly registers an encryption (seal) request
for amessage buffer by calling t pkey_open() with the TPKEY_AUTOENCRYPT
flag specified.

m Encryption envelopes

Just before the message buffer is sent, the public key software encrypts the
message content and attaches an encryption envelope to the message buffer for
each encryption registration request; an encryption envelope enables areceiving
process to decrypt the message.

Signature and encryption information is avail able to both sending and receiving
processes. In a sending process, digital signature and encryption information is
generally in a pending state, waiting until the message is sent. In areceiving process,

ATMI C Function Reference

tpenvelope(3c)

digital signatures have already been verified, and encryption and decryption have
already been performed. Failuresin decryption or signature verification might prevent
message delivery, in which case the receiving process never receives the message
buffer and therefore has no knowledge of the message buffer.

dat a must point to avalid typed message buffer either (1) previously allocated by a
processcallingt pal I oc() or (2) delivered by the system to areceiving process. If the
message buffer is self-describing, | en isignored (and may be 0). Otherwise, | en must
contain the length of datain dat a.

There may be multiple occurrences of digital-signature registration requests, digita
signatures, encryption registration requests, and encryption envelopes associated with
amessage buffer. The occurrences are stored in sequence, withthefirst item at the zero
position and subsequent items in consecutive positions. The occur r ence input
parameter indicateswhich itemisrequested. When thevalueof occur r ence isbeyond
the position of the last item, t penvel ope() failswith the TPENCENT error condition.
All items may be examined by calling t penvel ope() repeatedly until TPENCENT is
returned.

The handle to the key associated with a digital-signature registration request, digital
signature, encryption registration request, or encryption envelopeis returned via

out put key. The key handle returned is a separate copy of the original key opened by
calling t pkey_open() . Properties of the key, such as the PRI NCI PAL attribute
parameter, can be obtained by calling t pkey_geti nfo() . Itisthecaller's
responsibility to release key handle out put key by calling t pkey_cl ose() .

Note: If out put key iSNULL, no key handleis returned.

The st at us output parameter reports the state of the digital-signature registration
request, digital signature, encryption registration request, or encryption envelope. If
the value of the statusis not NULL, it is set to one of the following states:

TPSI GN_PENDI NG
A digital signature has been requested on behalf of the signer principal
associ ated with the corresponding private key, and will be generated when the
message buffer is transmitted from this process.

TPSI GN_OK
The digital signature has been verified.

TPSI GN_TAMPERED MESSAGE
The digital signature is not valid because the content of the message buffer
has been atered.

ATMI C Function Reference 149

Section 3¢ - C Functions

TPSI GN_TAMPERED CERT
The digital signature is not valid because the signer’ s digital certificate has
been altered.

TPSI GN_REVOKED _CERT
The digital signature is not valid because the signer’ s digital certificate has
been revoked.

TPSI GN_POSTDATED
Thedigital signature is not valid because its timestamp is too far into the
future.

TPSI GN_EXPI RED_CERT
The digital signature is not valid because the signer’ s digital certificate has
expired.

TPSI GN_EXPI RED
The digital signature is not valid because its timestamp is too old.

TPSI GN_UNKNOAN
The digital signature is not valid because the signer’ s digital certificate was
issued by an unknown Certification Authority (CA).

TPSEAL_PENDI NG
An encryption (seal) has been requested for the recipient principal associated
with the corresponding public key, and will be performed when the message
buffer is transmitted from this process.

TPSEAL_OK
The encryption envelopeis valid.

TPSEAL_TAMPERED CERT
Theencryption envelopeisnot valid because therecipient’ sdigital certificate
has been altered.

TPSEAL_REVOKED CERT
Theencryption envelopeisnot valid because therecipient’ sdigital certificate
has been revoked.

TPSEAL_EXPI RED_CERT
Theencryption envelopeisnot valid because therecipient’ sdigital certificate
has expired.

TPSEAL_UNKNOAN
Theencryption envelopeisnot valid because therecipient’ sdigital certificate
was issued by an unknown CA.

150 ATMI C Function Reference

tpenvelope(3c)

Return Values

Errors

See Also

Thet i mest anp output parameter containsthe digital signature’ stimestamp according
to the loca clock on the machine where the digital signature was generated. The
integrity of this valueis protected by the associated digital signature. The memory
location indicated by ti nest anp is set to the NULL-terminated signature timein
format YYYYMVDDHHMVSS, where YYYY=year, Mv=month, DD=day, HH=hour,
MVEminute, and SS=second. t i mest anp may be NULL, in which case no valueis
returned. Encryption seals do not contain timestamps, and the memory location
indicated by t i mest anp is unchanged.

Thef 1 ags parameter may be set to one of the following values:

m TPKEY_REMOVE-Theitem at position occurr ence isremoved (that is, itisno
longer associated with the buffer). Output parameters out put key, st at us, and
ti mest anp related to the item are captured before the item is removed. Items at
subseguent positions are shifted down by one, so there are never any gaps in the
numbering of occurrence.

m TPKEY_REMOVEALL-AIl items associated with the message buffer are removed.
The output parameters out put key, st at us, and t i mest anp are not returned.

m TPKEY_VER FY-All digital signatures associated with the message buffer are
reverified. The status of a signature may change after reverification. For
example, if amessage buffer has been modified by areceiving process, the
status of the originator’s signature changes from TPSI GN_X to
TPSI GN_TAMPERED MESSAGE.

Onfailure, thisfunction returns- 1 and setst per r no() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the value of dat a isNULL or
the value assigned to f | ags is unrecognized.

[TPENCENT]
Thisoccurr ence does not exist.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

t pkey_cl ose(3c),tpkey_getinfo(3c),tpkey_open(3c),tpseal (3c),
t psi gn(3c)

ATMI C Function Reference 151

Section 3¢ - C Functions

tperrordetail(3c)

Name

Synopsis

Description

Return Values

t perrordetail () —Gets additional detail about an error generated from the last
BEA Tuxedo ATMI system call.

#i nclude <atm . h>
int tperrordetail (long flags)

tperrordetail () returns additional detail related to an error produced by the last
BEA Tuxedo ATMI system routine called in the current thread. t per r or det ai | ()
returns a numeric value that is also represented by a symbolic name. If the last BEA
Tuxedo ATMI system routine called in the current thread did not produce an error, then
tperrordetail () will return zero. Therefore, t perror det ai | () should be called
after an error has been indicated; that is, when t perr no() has been set.

Currently f | ags isreserved for future use and must be set to 0.

A thread in amultithreaded application may issue acall tot perrordetail () while
running in any context state, including TPl NVALI DCONTEXT.

Uponfailure, t perrordetail () returnsa- 1 and setst perr no() toindicatetheerror
condition.

These are the symbolic names and meaning for each numeric value that
tperrordetail () may return. The order in which these are listed is not significant
and does not imply precedence.

TPED_CLI ENTDI SCONNECTED
A Jolt client is disconnected currently. The TPACK flagisused in a
t pnoti fy() call and thetarget of t pnoti fy() isacurrently disconnected
Jolt client. Whent pnoti fy() fails, asubsequent call tot perrordetail ()
with no intermediate ATMI calls will return TPED _CLI ENTDI SCONNECTED.

TPED_DECRYPTI ON_FAI LURE
A process receiving an encrypted message cannot decrypt the message. This
error most likely occurs because the process does not have accessto the
private key required to decrypt the message.

When acall fails due to this error, a subsequent call tot per ror det ai | ()
with no intermediate ATMI calls will return TPED_DECRYPTI ON_FAI LURE.

152 ATMI C Function Reference

tperrordetail(3c)

TPED_DOVAI NUNREACHABLE

A domain is unreachable. Specifically, adomain configured to satisfy a
request that alocal domain cannot service was not reachable when arequest
was made. After the request failure, a subsequent call tot perr or det ai | ()
with no intermediate ATMI callswill return TPED DONVAI NUNREACHABLE.

The following table indicates the corresponding values returned by
tperrno() whencallstotpcal I (),tpgetrply(),ortprecv() fall
because of an unreachable domain. The error detail returned by a subseguent
call tot perrordetail () is TPED_DOVAI NUNREACHABLE.

ATMI Call tperrno Error Detail

tpcal | TPESVCERR TPED_DOVAI NUNREACHABL E

tpgetrply TPESVCERR TPED_DOVAI NUNREACHABL E

t precv TPEEVENT TPED_DOVAI NUNREACHABL E
TPEV_SVCERR

Note that the TPED_DOMAI NUNREACHABLE feature appliesto BEA Tuxedo
Domains only. It does not apply to other domains products such as Connect
OSl| TP Domains and Connect SNA Domains.

TPED_| NVALI D_CERTI FI CATE

A process receiving a digitally signed message cannot verify the digital
signature because the associated digital certificateisinvalid. This error most
likely occurs because the digital certificate has expired, the digital certificate
was issued by an unknown Certification Authority (CA), or the digital
certificate has been atered.

When acall fails due to this error, a subsequent call to t per r or det ai | ()
with no intermediate ATMI callswill return TPED | NVALI D_CERTI FI CATE.

TPED_| NVALI D_SI GNATURE

A process receiving a digitally signed message cannot verify the digital
signature because the signatureis invalid. This error most likely occurs
because the message has been atered, the timestamp for the digital signature
istoo old, or the timestamp for the digital signatureistoo far into the future.

When acall fails due to this error, a subsequent call to t per r or det ai | ()
with no intermediate ATMI callswill return TPED | NVALI D_SI GNATURE.

ATMI C Function Reference 153

Section 3¢ - C Functions

154

Errors

See Also

TPED_| NVALI DCONTEXT
A thread isblocked in an ATMI call when another thread terminates its
context. Specifically, any thread blocked in an ATMI call when another
thread terminates its context will return from the ATMI call with afailure
return; t per rno() isset to TPESYSTEM A subsequent call to
tperrordetail () with nointermediate ATMI callswill return
TPED_| NVALI DCONTEXT.

TPED_| NVALI D_XA TRANSACTI ON
An attempt was made to start atransaction but the NO_XA flag was turned on
in this domain.

TPED_NOCLI ENT
No client exists. The TPACK flagisused inat pnoti f y() call but thereisno
target for t pnoti fy() . Whent pnoti fy() fails, t perrno() issetto
TPENCENT. A subsequent call tot per ror det ai | () with no intermediate
ATMI calls will return TPED_NOCLI ENT.

TPED_NOUNSOLHANDLER
A client does not have an unsolicited handler set. The TPACK flagisusedina
t pnoti fy() call and thetarget of thet pnoti fy() isinaBEA Tuxedo
ATMI session, but it has not set an unsolicited notification handler. When
t pnoti fy() fails, t perrno() issetto TPENOENT. A subsequent call to
tperrordetail () with nointermediate ATMI callswill return
TPED_NOUNSOLHANDLER.

TPED_SVCTI MEQUT
A server was terminated due to a service timeout. The service timeout is
controlled by the value of SVCTI MEQUT in the UBBCONFI G file or
TA_SVCTI MEOUT in T_SERVER and T_SERVI CE classesinthe TM_ M B. When
acall fails dueto this error, a subsequent call tot per r or det ai | () withno
intermediate ATMI callswill return TPED_SVCTI MEQUT.

TPED_TERM
A Workstation client has been disconnected from the application. When acall
fails dueto thiserror, a subsequent call to t perr or det ai | () with no
intermediate ATMI callswill return TPED_TERM

Upon failure, t perror det ai | () setst perrno() to one of the following values:

TPEI NVAL
f I ags not set to zero

Introduction to the C Language Application-to-Transaction Monitor Interface,
tpstrerrordetail (3c),tperrno(5)

ATMI C Function Reference

tpexport(3c)

tpexport(3c)

Name

Synopsis

Description

t pexpor t () —Converts a typed message buffer into an exportable,
machine-independent string representation, that includes digital signatures and
encryption envelopes.

#i ncl ude <atni. h>
int tpexport(char *ibuf, long ilen, char *ostr, long *ol en,
long fl ags)

t pexport () convertsatyped message buffer into an externalized representation. An
externalized representation is amessage buffer that does not include any BEA Tuxedo
ATMI header information that is normally added to a message buffer just before the
buffer is transmitted.

The externalized representation may be transmitted between processes, machines, or
BEA Tuxedo ATMI applications via any communication mechanism. It may be
archived on permanent storage, and remains valid after a system shutdown and reboot.

An externalized representation includes:

m Any digital signatures associated withi buf . They are verified later when the
buffer isimported.

m Any encryption envelopes associated with i buf . The buffer content remains
protected by encryption. Only specified recipients with accessto avalid private
key for decryption may later import the buffer.

i buf must point to avalid typed message buffer either (1) previously allocated by a
processcalingt pal | oc() or (2) delivered by the system to areceiving process.i | en
specifies how much of i buf to export. Note that if i buf pointsto abuffer type for
which alength need not be specified (for example, an FM_ fielded buffer), theni | en
isignored (and may be 0).

ost r isapointer to the output area that will hold an externalized representation of the
buffer’s content and associated properties. If TPEX_STRI NGissetinf | ags, then the
externalized format will beastring type. Otherwise, the output length is determined by
*ol en and may contain embedded NULL bytes.

On input, *ol en specifies the maximum storage size available at ost r . On output
*ol en is set to the actual number of byteswritten to ost r (including aterminating
NULL character if TPEX_STRINGissetinfl ags).

ATMI C Function Reference 155

Section 3¢ - C Functions

Return Values

Errors

See Also

Thef | ags argument may be set to TPEX_STRI NG if string format (base 64 encoded)
is desired for the output buffer. Otherwise, the output will be binary.

On failure, thisfunction returns -1 and setst per r no() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the value of i buf isSNULL or
thevalueof f | ags is not set correctly.

[TPEPERM
Permission failure. The cryptographic service provider was not ableto access
aprivate key necessary to produce a digital signature.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

[TPELI M T]
Insufficient output storage was provided. *ol en is set to the necessary
amount of space.

t pi mport (3c)

156 ATMI C Function Reference

tpforward(3c)

tpforward(3c)

Name

Synopsis

Description

t pf or war d() —Routine for forwarding a service request to another service routine.

#i ncl ude <atni. h>
voi d tpforward(char *svc, char *data, long len, long flags)

t pf or war d() alowsaserviceroutineto forward aclient’ srequest to another service
routinefor further processing. t pf or war d() actsliket preturn() inthatitisthelast
call madein aserviceroutine. Liket pret urn(),t pf orward() should becalled from
within the service routine dispatched to ensure correct return of control to the BEA
Tuxedo ATMI system dispatcher. t pf or war d() cannot be called from within a
conversational service.

Thisfunction forwards arequest to the service named by svc using data pointed to by
dat a. The service name must not begin with adot. A service routine forwarding a
request receives no reply. After the request is forwarded, the service routine returnsto
the communication manager dispatcher and the server isfree to do other work. Note
that because no reply is expected from a forwarded request, the request may be
forwarded without error to any service routinein the same executable as the service
that forwarded the request.

If the serviceroutineisin transaction mode, t pf or war d() putsthe caller’s portion of
the transaction in a state where it may be completed when the originator of the
transaction issues either t pconmi t () or t pabort (). If atransaction was explicitly
started with t pbegi n() whilein aservice routine, the transaction must be ended with
either t pcommi t () or t pabort () before calling t pf orwar d() . Thus, all servicesin
a“forward chain” are either al started in transaction mode or none are.

The last server in aforward chain sends a reply back to the originator of the request
using t preturn() . Inessence, t pf orwar d() transfersto another server the
responsibility of sending areply back to the awaiting requester.

t pf or war d() should be called after receiving all replies expected from service
requests initiated by the service routine. Any outstanding replies which are not
received will automatically be dropped by the communication manager dispatcher
upon receipt. In addition, the descriptors for those replies become invalid and the
request is not forwarded to svc.

ATMI C Function Reference 157

Section 3¢ - C Functions

Return Values

158

Errors

dat a pointsto the data portion of areply to besent. If dat aisnon-NULL, it must point
toabuffer previously obtained by acall tot pal | oc() . If thisisthe same buffer passed
to the service routine upon itsinvocation, then its disposition is up to the BEA Tuxedo
ATMI system dispatcher; the service routine writer does not have to worry about
whether it is freed or not. In fact, any attempt by the user to free this buffer will fail.
However, if the buffer passed to t pf or war d() isnot the same one with which the
service isinvoked, then t pf or war d() will free that buffer. | en specifies the amount
of the data buffer to be sent. If dat a pointsto a buffer which does not require alength
to be specified, (for example, an FML fielded buffer), then | en isignored (and can be
0). If dat a isSNULL, then| en isignored and arequest with zero length datais sent.

Thef | ags argument is reserved for future use and should be set to 0 (zero).

A service routine does not return any valueto its caller, the communication manager
dispatcher. Thus, t pf orwar d() isdeclared asavoid. Seet preturn(3c) for amore
extensive discussion.

If any errors occur either in the handling of the parameters passed to the function or in
itsprocessing, a“failed” messageis sent back to theoriginal requester (unlessno reply
isto be sent). The existence of outstanding replies or subordinate connections, or the
caller’ stransaction being marked abort-only, qualify asfailures which generate failed

messages.

If either SVCTI MEQUT in the UBBCONFI Gfile or TA_SVCTI MEQUT inthe TM M Bis
non-zero, the event, TPEV_SVCERRIs returned when a service timeout occurs.

Failed messages are detected by the requester with the TPESVCERR error indication.
When such an error occurs, the caller’s datais not sent. Also, this error causes the
caller’s current transaction to be marked abort-only.

If atransaction timeout occurs either whilein the service routine or while forwarding
the request, the requester waiting for areply with either t pcal | (), or t pget rpl y()
will get a TPETI ME error return. Also, the waiting requester will not receive any data.
Service routines, however, are expected to terminate using either t pr et urn() or

t pf orwar d() . A conversational serviceroutinemust uset pr et ur n() , and cannot use
t pforward() .

If aservice routinereturnswithout using either t pret urn() ort pf orward() (thatis,
it usesthe C languager et ur n statement or simply “falls out of the function”) or if

t pf orwar d() iscaled from a conversational server, the server will print awarning
message in alog file and return a service error to the original requester. All open
connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replieswill be marked stale. If the server was in transaction mode at the

ATMI C Function Reference

tpforward(3c)

time of failure, the transaction is marked abort-only. Note also that if either
tpreturn() ortpforward() areused outside of a service routine (for example, in
clients,orint psvrinit() ortpsvrdone()), thentheseroutinessimply return having
no effect.

See Also tpall oc(3c),tpconnect(3c),tpreturn(3c),tpservice(3c),
tpstrerrordetail (3c)

ATMI C Function Reference 159

Section 3¢ - C Functions

tpfree(3c)

Name

Synopsis

Description

Return Values

160

Usage

See Also

t pf r ee() —Routine for freeing atyped buffer.

#i nclude <atm . h>
voi d tpfree(char *ptr)

Theargument tot pf ree() isapointer to abuffer previously obtained by either
tpal l oc() ortpreall oc().Ifptr isNULL, noactionoccurs. Undefined resultswill
occur if pt r does not point to atyped buffer (or if it points to space previously freed
witht pfree()). Insideserviceroutines, t pf ree() returnsand does not freethebuffer
if ptr pointsto the buffer passed into a service routine.

Some buffer types require state information or associated data to be removed as part
of freeing abuffer. t pf r ee() removes any of these associations (in acommunication
manager-specific manner) before a buffer is freed.

Oncet pfree() returns, pt r should not be passed as an argument to any BEA Tuxedo
ATMI system routine or used in any other manner.

A thread in amultithreaded application may issueacall tot pf r ee() whilerunningin
any context state, including TPl NVALI DCONTEXT.

When freeing an FM_32 buffer using t pf r ee() , the routine recursively frees all
embedded buffersto prevent memory leaks. In order to preserve the embedded buffers,
you should assign the associated pointer to NULL beforeissuing thet pf r ee()
command. As stated above, if ptr isNULL, no action occurs.

t pf ree() doesnot return any valuetoitscaller. Thus, it is declared as a void.

This function should not be used in concert with mal 1 oc(), real 1 oc(), orfree()
inthe C library (for example, a buffer allocated with t pal I oc() should not be freed
withfree()).

Introduction to the C Language Application-to-Transaction Monitor Interface,
tpal l oc(3c),tprealloc(3c)

ATMI C Function Reference

tpgetadmkey(3c)

tpgetadmkey(3c)

Name

Synopsis

Description

Return Values

Errors

Portability

See Also

t pget adnkey() —Gets administrative authentication key.

#i ncl ude <atni. h>
| ong tpgetadnkey(TPI NI T *t pi nf0)

t pget adnkey() isavailable for application use by an application specific
authentication server. It returns an application security key suitable for assignment to
the indicated user for the purpose of administrative authentication. This routine must
be called with aclient name (that is, t pi nf o—>cl t nanme) of either t psysadn() or

t psysop() ; otherwise, avalid administrative key will not be returned.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall tot pget adnkey() .

Upon success, t pget adnkey() returns a non-0 value with the high-order bit
(0x80000000) set; otherwise it returns 0. Zero may be returned if t pi nf o isSNULL,
t pi nf o—>cl t nanme isnott psysadn() ort psysop(),orlastly if theeffectiveuser ID
is not the configured application administrator for thissite.

A zero return value is the only indication that a valid administrative key was not
assigned.

Thisinterfaceisavailable only on UNIX system sitesrunning BEA Tuxedo release 5.0
or later.

t paddusr (1), t pusradd(1),tpinit(3c),AUTHSVR(5)
Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

ATMI C Function Reference 161

Section 3¢ - C Functions

tpgetctxt(3c)

Name

Synopsis

Description

Return Values

t pget ct xt () —Retrieves a context identifier for the current application association.

#i nclude <atm . h>
int tpgetctxt(TPCONTEXT_T *context, long flags)

t pget ct xt () retrievesanidentifier that representsthe current application context and
places that identifier in cont ext . This function operates on a per-thread basisin a
multithreaded environment, and on a per-process basisin anon-threaded environment.

Typically, athread:
1. Calstpinit()
2. Callstpgetctxt()

3. Handlesthevalue of cont ext as follows:

e Inamultithreaded application—passes the value of cont ext to another
thread in the same process so the other thread can call t pset ct xt () .

e Inasingle-threaded or multithreaded application—saves this context
identifier for itself so it can switch back to the indicated context later.

The second argument, f | ags, is not currently used and must be set to 0.

t pget ct xt () may be called in single-context applications as well as in multicontext
applications.

A thread in amultithreaded application may issue acall tot pget ct xt () while
running in any context state, including TPl NVALI DCONTEXT.

Upon successful completion, t pget ct xt () returns a non-negative value. Context is
set to the current context 1D, which may be represented by any of the following:

m A context ID greater than 0, indicating a context in a multicontexted application.

m TPSI NGLECONTEXT, indicating that the current thread has successfully executed
t pi ni t () without the TPMULTI CONTEXTS flag, or that the current thread was
just created in a process that has successfully executed t pi ni t () without the
TPMULTI CONTEXTS flag. The value of TPSI NGLECONTEXT is 0.

162 ATMI C Function Reference

tpgetctxt(3c)

Errors

See Also

m TPNULLCONTEXT, indicating that the current thread is not associated with a
context.

m TPl NVALI DCONTEXT, indicating that the current thread isin the invalid context
state. If athread in a multicontexted client issuesacall to t pt er n() while other
threads in the same context are still working, the working threads are placed in
the TPI NVALI DCONTEXT context. The value of TPl NVALI DCONTEXT is -1.

A thread in the TPI NVALI DCONTEXT state is prohibited from issuing calls to most
ATMI functions. For a complete list of functions that may and may not be
called, see the Introduction to the C Language Application-to-Transaction
Monitor Interface.

For details about the TPI NVALI DCONTEXT context state, seet pt er m(3c) .

Uponfailure, t pget ct xt () returnsavalueof -1 and setst per r no toindicatetheerror
condition.

Upon failure, t pget ct xt () setst perr no to one of the following values:

[TPEI NVAL]
Invalid arguments have been given. For example, the value of cont ext is
NULL or thevalue of f | ags isnot 0.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error has
been written to alog file.

[TPECS]
An operating system error has occurred.

Introduction to the C Language A pplication-to-Transaction Monitor Interface,
tpsetctxt(3c),tpternm(3c)

ATMI C Function Reference 163

Section 3¢ - C Functions

tpgetlev(3c)

Name

Synopsis

Description

Return Values

164

Errors

Notices

See Also

t pget | ev() —Routine for checking if atransaction isin progress.

#include <atm . h>
int tpgetlev()

t pget | ev() returnsto the caller the current transaction level. Currently, the only
levels defined are 0 and 1.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pget | ev() .

Upon successful completion, t pget | ev() returnseither a0 to indicate that no
transaction isin progress, or 1 to indicate that a transaction is in progress;

Upon failure, t pget | ev() returns-1 and setst per r no() toindicatethe error
condition.

Upon failure, t pget | ev() setst perrno() to one of the following values:

[TPEPROTO|
t pget | ev() wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pconmi t () andt pabort () to delineate a BEA Tuxedo
ATMI system transaction, it isimportant to remember that only the work done by a
resource manager that meetsthe X A interface (andislinked to the caller appropriately)
has transactional properties. All other operations performed in a transaction are not
affected by either t pconmi t () or t pabort (). Seebui | dserver (1) for detailson
linking resource managersthat meet the X A interfaceinto aserver such that operations
performed by that resource manager are part of a BEA Tuxedo ATMI system
transaction.

t pabort (3c), tpbegin(3c),tpconm t(3c),tpscnt(3c)

ATMI C Function Reference

tpgetrply(3c)

tpgetrply(3c)

Name

Synopsis

Description

t pget r pl y() —Routine for getting a reply from aprevious request.

#i ncl ude <atni. h>
int tpgetrply(int *cd, char **data, |long *len, long flags)

t pget rpl y() returns areply from a previously sent request. This function’sfirst
argument, cd, pointsto a call descriptor returned by t pacal | () . By default, the
function waits until the reply matching *cd arrives or atimeout occurs.

dat a must be the address of a pointer to abuffer previously alocated by t pal | oc()
and | en should point to along that t pget r pl y() setsto the amount of data
successfully received. Upon successful return, *dat a pointsto abuffer containing the
reply and *1 en contains the size of the data. FML and FML 32 buffers often assume a
minimum size of 4096 bytes; if the reply islarger than 4096, the size of the buffer is
increased to a size large enough to accommodate the data being returned. Asof release
6.4, the default allocation for buffersis 1024 bytes. Also, historical information is
maintained on recently used buffers, allowing abuffer of optimal sizeto be reused as
areturn buffer.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive abuffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address amost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) areply buffer changed in size, compareitstotal size beforet pget r pl y()
was issued with *I en. See the “Introduction to the C Language
Application-to-Transaction Monitor Interface” for more information about buffer
management.

If*1 en isO, thenthereply hasno data portion and neither *dat a nor the buffer it points
to were modified.

Itisan error for *dat a or | en to be NULL.

Within any particular context of amultithreaded program:

ATMI C Function Reference 165

Section 3¢ - C Functions

166

m Callstot pget rpl y(TPGETANY) andt pgetrpl y() for a specific handle cannot
be issued concurrently.

m Multiplecallstot pget r pl y(TPGETANY) cannot be issued concurrently.

Any t pget rpl y() cal that would, if issued, cause aviolation of either of these
restrictions, returns-1 and setst per r no to TPEPROTO.

It isacceptableto issue:
m Concurrent callstot pget rpl y() for different handles.

m A cal totpgetrpl y(TPGETANY) inasingle context concurrently with acall to
t pgetrpl y(), with or without TPGETANY, in a different context.

Thefollowingisalist of validf | ags:

TPGETANY
Thisflag signifiesthat t pget r pl y() should ignore the descriptor pointed to
by cd, return any reply available and set cd to point to the call descriptor for
the reply returned. If no replies exist, t pget r pl y() by default will wait for
oneto arrive.

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed
to by *dat a, then *dat a’s buffer type changes to the received buffer’s type
so long asthe receiver recognizestheincoming buffer type. When thisflag is
set, the type of the buffer pointed to by *dat a is not allowed to change. That
is, the type and subtype of the received buffer must match the type and
subtype of the buffer pointed to by *dat a.

TPNOBLOCK
t pgetrpl y() does not wait for the reply to arrive. If the reply isavailable,
thent pget r pl y() getsthereply and returns. When thisflag is not specified
and areply is not available, the caller blocks until the reply arrives or a
timeout occurs (either transaction or blocking timeout).

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely for its reply
and wantsto be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isreissued.

ATMI C Function Reference

tpgetrply(3c)

Return Values

Errors

Except as noted below, *cd is no longer valid after itsreply isreceived.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall totpget rply().

Upon successful return fromt pget r pl y() or upon return wheret perrno() issetto
TPESVCFAI L, t pur code() contains an application defined value that was sent as part
of tpreturn().

Upon failure, t pget rpl y() returns-1and setst perrno() to indicate the error
condition.

Upon failure, t pgetrpl y() setst perrno() asindicated below. Note that if
TPGETANY is not set, then *cd isinvalidated unless otherwise stated. If TPGETANY is
set, then cd points to the descriptor for the reply on which the failure occurred; if an
error occurred before areply could be retrieved, then cd pointsto 0. Also, the failure
does not affect the caller’ s transaction, if one exists, unless otherwise stated. If acall
failswith aparticular t perr no() vaue, asubsequent call tot perrordetail () with
no intermediate ATMI calls, may provide more detailed information about the
generated error. Refer to thet perr or det ai | (3c) reference page for more
information.

[TPEI NVAL]
Invalid argumentswere given (for example, cd, dat a, *data orl enisNULL
or f | ags areinvalid). If cd isnon-NULL, then it is still valid after this error
and the reply remains outstanding.

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or,
TPNOCHANGE was set in f | ags and the type and subtype of *dat a do not
match the type and subtype of the reply sent by the service. Regardless,
neither *dat a, its contents nor *| en are changed. If the reply wasto be
received on behalf of the caller’s current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPEBADDESC]
cd pointsto an invalid descriptor.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK hor TPNOTI ME were
specified. In either case, neither *dat a, its contents nor *I en are changed.

ATMI C Function Reference 167

Section 3¢ - C Functions

168

*cd remainsvalid unlessthecaller isin transaction mode (and TPGETANY was
not set). If atransaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is arequest
that does not block, expects no reply and is not sent on behalf of thecaler’'s
transaction (that is, t pacal | () with TPNOTRAN, TPNOBLOCK and TPNOREPLY
Set).

[TPESVCFAI L]

The service routine sending the caller’ sreply called t pret urn() with
TPFAI L. Thisisan application-level failure. The contents of the service's
reply, if one was sent, is available in the buffer pointed to by *dat a. If the
service request was made on behalf of the caller’s transaction, then the
transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the
transaction is aborted are callsto t pacal | () with TPNOREPLY, TPNOTRAN,
and TPNOBLOCK set.

[TPESVCERR]

A service routine encountered an error either int pret urn() or

t pf orwar d() (for example, bad arguments were passed). No reply datais
returned when this error occurs (that is, neither *dat a, its contents nor *1 en
are changed). If the service request was made on behalf of the caller’'s
transaction, then the transaction is marked abort-only. Note that regardless of
whether the transaction hastimed out, the only valid communications before
the transaction is aborted are callsto t pacal | () with TPNOREPLY,
TPNOTRAN, and TPNOBLOCK set. If either SVCTI MEQUT in the UBBCONFI Gfile
or TA_SVCTI MEQUT in the TM_M B isnon-zero, TPESVCERR is returned when
a service timeout occurs.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified. *cd remains
valid.

[TPGOTSI G

A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC]

t pgetrpl y() wascalled improperly.

[TPESYSTEM

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

ATMI C Function Reference

tpgetrply(3c)

[TPECS]
An operating system error has occurred. If a message queue on aremote
location isfilled, TPECS may possibly be returned.

See Also tpacall (3c),tpalloc(3c),tpcancel (3c),tperrordetail (3c),
tprealloc(3c),tpreturn(3c),tpstrerrordetail (3c),tptypes(3c)

ATMI C Function Reference 169

Section 3¢ - C Functions

tpgprio(3c)

Name

Synopsis

Description

Return Values

170

Errors

t pgpri o() —Routine for getting a service request priority.

#include <atm . h>
int tpgprio(void)

t pgpri o() returnsthe priority for the last request sent or received by the current
thread in its curent context. Priorities can range from 1 to 100, inclusive, with 100
being the highest priority. t pgpri o() may be called aftert pcal | () ortpacal | (),
(alsot penqueue(), ort pdequeue() , assuming the queued management facility is
installed), and the priority returned is for the request sent. Also, t pgpri o() may be
called within aserviceroutineto find out at what priority theinvoked service was sent.
t pgpri o() may be called any number of timesand will return the same value until the
next request is sent.

In amultithreaded application t pgpri o() operates on a per-thread basis.

Because the conversation primitives are not associated with priorities, issuing

t psend() ortprecv() hasno affect on the priority returned by t pgpri o() . Also,
thereisno priority associated with aconversational serviceroutineunlessat pcal | ()
or t pacal | () isdone within that service.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pgprio().

Upon success, t pgpri o() returns arequest’s priority;

Upon failure, t pgpri o() returns-1 and setst perrno() to indicate the error
condition.

Upon failure, t pgpri o() setst per rno to one of the following values:

[TPENCENT]
t pgpri o() wascalled and no requests (viat pcal | () ortpacal | ()) have
been sent, or it is called within aconversational service for which no requests
have been sent.

[TPEPROTC)
t pgpri o() wascalled improperly.

ATMI C Function Reference

tpgprio(3c)

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

writtento alog file.

[TPECS]
An operating system error has occurred.

See Also tpacall (3c),tpcal | (3c),tpdequeue(3c),tpenqueue(3c),tpservice(3c),
tpsprio(3c)

ATMI C Function Reference 171

Section 3¢ - C Functions

tpimport(3c)

Name

Synopsis

Description

Return Values

t pi nport () —Converts an externalized representation of a message buffer into a
typed message buffer.

#i nclude <atm . h>
int tpinmport(char *istr, long ilen, char **obuf, |long *ol en,
I ong flags)

t pi nport () convertsan externalized representation of a message buffer into atyped
message buffer. An externalized representation is a message buffer that does not
include any BEA Tuxedo ATMI header information that is normally added to a
message buffer just before the buffer is transmitted. A process converts a typed
message buffer into an externalized representation by calling thet pexport ()
function.

Any digital signatures associated with i st r are verified when the buffer isimported,
and are available for examination after importing viat penvel ope() .

If thei str buffer representation is encrypted, the importing process must have access
to avalid private key for decryption. Decryption is performed automatically during the
importing process.

If TPEX_STRI NGisnot setinfl ags, theni | en contains the length of the binary data
containedini str.Ifil enisO,i str isassumedto point to aNULL-terminated string,
and the TPEX_STRI NGflag isinferred.

*obuf must point to avalid typed message buffer either (1) previously allocated by a
processcallingt pal I oc() or (2) delivered by the system to areceiving process. The
buffer will be reallocated as necessary to accommodate the result, and its buffer type
or subtype may change.

*ol en is set to the amount of valid data contained in the output buffer. If ol en is
NULL on input, it isignored.

Thef | ags argument should be set to TPEX_STRI NGif the input externalized
representation isin string format (base 64 encoded). Otherwise, theinput isin binary
format of lengthi I en.

On failure, thisfunction returns -1 and setst per r no() toindicate the error condition.

172 ATMI C Function Reference

tpimport(3c)

Errors [TPEI NVAL]
Invalid arguments were given. For example, thevalue of i str isNULL or
thef | ags parameter is not set correctly.

[TPEPERM
Permission failure. The cryptographic service provider was not able to access
aprivate key necessary for decryption.

[TPEPROTO|
A protocol failure occurred. The failure involves an invalid data format in
i str or adigita signaturethat failed verification.

[TPESYSTEM
An error occurred. Consult the system error log file for more details.

See Also tpenvel ope(3c),tpexport (3c)

ATMI C Function Reference 173

Section 3¢ - C Functions

tpinit(3c)

174

Name

Synopsis

Description

t pi ni t () —Joins an application.

#include <atm . h>
int tpinit(TPINIT *tpinfo)

tpinit() alowsaclienttojoina BEA Tuxedo ATMI system application. Before a
client can use any of the BEA Tuxedo ATMI system communication or transaction
routines, it must first join aBEA Tuxedo ATMI system application.

t pi ni t () hastwo modes of operation: single-context mode and multicontext mode,
which will be discussed in detail below. Because calling t pi ni t () isoptiona when
in single-context mode, a single-context client may also join an application by calling
many ATMI routines (for example, t pcal | ()), which transparently call t pi ni t ()
with t pi nf o setto NULL. A client may want to call t pi ni t () directly so that it can
set the parameters described below. In addition, t pi ni t () must be used when
multicontext mode is required, when application authentication is required (see the
description of the SECUR TY keyword in UBBCONFI &(5)), or when the application
wishes to supply its own buffer type switch (seet ypesw(5)). After t pi nit ()
successfully returns, the client can initiate service requests and define transactions.

In single-context mode, if t pi ni t () iscaled morethan once (that is, if itiscalled
after the client has already joined the application), no action istaken and successis
returned.

In amultithreaded client, athread in the TPI NVALI DCONTEXT state is not allowed to
issueacall tot pi nit (). Tojoin aBEA Tuxedo ATMI application, a multithreaded
Workstation client must always call t pi ni t () with the TPMULTI CONTEXTS flag set,
even if theclient is running in single-context mode.

Note: TheTPMULTI CONTEXTS modeof t pi ni t will continueto work properly when
the TMNOTHREADS environment variableis set toyes. Setting thisenvironment
variableto yes turns off multithreaded processing for applications that do not
use threads.

ATMI C Function Reference

tpinit(3c)

Description of the TPINFO Structure

t pi ni t () 'sargument, t pi nf o, isapointer to atyped buffer of type TPI NI T and a
NULL subtype. TPI NI T isabuffer typethat ist ypedef ed intheat mi . h header file.
The buffer must be allocated viat pal | oc() prior to calling t pi ni t () . The buffer
should be freed using t pf r ee() after callingt pi nit (). The TPI NI T typed buffer
structure includes the following members:

char usr nane[MAXTI DENT+2] ;
char cl t name[MAXTI DENT+2] ;
char passwd[MAXTI DENT+2] ;
char gr pname[MAXTI DENT+2] ;
|l ong fl ags;

|l ong dat al en;

| ong dat a;

The values of usr nane, cl t nane, gr pnane, and passwd are all NULL-terminated
strings. usr nanme isaname representing the caler. cl t nane is aclient name whose
semantics are application defined. Thevaluesyscl i ent isreserved by the system for
thecl t nane field. The usr name and cl t nane fields are associated with the client at
t pi ni t () timeand are used for both broadcast notification and administrative
statistics retrieval. They should not have more characters than MAXTI DENT, which is
defined as 30. passwd is an application password in unencrypted format that is used
for validation against the application password. Thepasswd islimited to 30 characters.
gr pname is used to associate the client with aresource manager group name. If

gr pnane is set to a 0-length string, then the client is not associated with aresource
manager and isin the default client group. The value of gr pname must be the NUL L
string (0-length string) for Workstation clients. Note that gr pnane is not related to
ACL GROUPS.

Single-context Mode Versus Multicontext Mode

t pi ni t () hastwo modes of operation: single-context mode and multicontext mode.
In single-context mode, a process may join at most one application at any onetime.
Multiple application threads may access this application. Single-context modeis
specified by calling t pi ni t () withaNULL parameter or by calling it without
specifying the TPMULTI CONTEXTS flag inthe f | ags field of the TPI NI T structure.
Single-context mode is also specified whent pi ni t () iscaled implicitly by another
ATMI function. The context state for a process operating in single-context mode is
TPSI NGLECONTEXT.

Note: The TPMULTI CONTEXTSmode of t pi ni t will continueto work properly when
the TMNOTHREADS environment variableis set to“ yes”.

ATMI C Function Reference 175

Section 3¢ - C Functions

In single-context mode, if t pi ni t () iscaled morethan once (that is, if itiscalled
after the client has already joined the application), no action istaken and successis
returned.

Multicontext mode is entered by calling t pi ni t () with the TPMULTI CONTEXTS flag
setinthef | ags field of the TPI NI T structure. In multicontext mode, each call to
t pi nit () resultsin the creation of a separate application association.

An application association is a context that associates a process and a BEA Tuxedo
ATMI application. A client may have associations with multiple BEA Tuxedo ATMI
applications, and may also have multiple associations with the same application. All
of aclient’ sassociations must be made to applications running the same release of the
BEA Tuxedo ATMI system, and either all associations must be native clients or all
associations must be Workstation clients.

For native clients, the val ue of the TUXCONFI G environment variableisused to identify
the application to which the new association will be made. For Workstation clients, the
value of the WBNADDR or WSENVFI LE environment variable is used to identify the
application to which the new association will be made. The context for the current
thread is set to the new association.

In multicontext mode, the application can get a handle for the current context by
calingt pget ct xt () and pass that handle as a parameter to t pset ct xt (), thus
setting the context in which a particular thread or process will operate.

Mixing single-context mode and multicontext mode is not alowed. Once an
application has chosen one of these modes, calling t pi ni t () inthe other modeis not
allowed unlesst pt er n() isfirst called for all application associations.

TPINFO Structure Field Descriptions

176

In addition to controlling multicontext and single-context modes, the setting of f | ags
is used to indicate both the client-specific notification mechanism and the mode of
system access. These two settings may override the application default. If these
settings cannot override the application default, t pi ni t () printsawarninginalog
file, ignores the setting, and restores the application default setting in the f | ags field
upon return fromt pi ni t () . For client notification, the possible valuesfor f | ags are
asfollows:

TPU SI G
Select unsalicited notification by signals. This flag should be used only with
single-threaded, single-contexted applications; it cannot be used when the
TPMULTI CONTEXTS flag is set.

ATMI C Function Reference

tpinit(3c)

TPU DI P
Select unsolicited notification by dip-in.

TPU_THREAD
Select THREAD notification in a separate thread managed by the BEA Tuxedo
ATMI system. Thisflag is allowed only on platforms that support
multithreading. If TPU_THREAD is specified on a platform that does not
support multithreading, it is considered an invalid argument and will resultin
an error return with t per rno() set to TPEI NVAL.

TPU | GN
Ignore unsolicited notification.

Only one of the above flags can be used at atime. If the client does not select a
notification method viathe flags field, then the application default method will be set
in the flags field upon return fromt pi ni t () .

For setting the mode of system access, the possible valuesfor f | ags are as follows:

TPSA_FASTPATH
Set system access to fastpath.

TPSA_PROTECTED
Set system access to protected.

Only one of the above flags can be used at atime. If the client does not select a
notification method or a system access mode viathe flags field, then the application
default method(s) will be setin thef | ags field upon return fromt pi ni t () . See
UBBCONFI @ 5) for details on both client notification methods and system access
modes.

If your application uses multithreading and/or multicontexting, you must set the
following flag:

TPMULTI CONTEXTS
See description in “ Single-context Mode V ersus Multicontext Mode.”

dat al en isthe length of the application-specific datathat follows. The buffer type
switch entry for the TPI NI T typed buffer setsthis field based on the total size passed
in for the typed buffer (the application data size is the total size less the size of the
TPI NI T structureitself plus the size of the data placehol der asdefined in the structure).
dat a isaplace holder for variable length data that is forwarded to an
application-defined authentication service. It is alwaysthe last element of this
structure.

ATMI C Function Reference 177

Section 3¢ - C Functions

Return Values

178

Errors

A macro, TPI NI TNEED, is available to determine the size TPI NI T buffer necessary to
accommodate a particular desired application specific data length. For example, if 8
bytes of application-specific data are desired, TPI NI TNEED(8) will return the required
TPI NI T buffer size.

A NULL valuefor t pi nf o is alowed for applications not making use of the
authentication feature of the BEA Tuxedo ATMI system. Clientsusing a NULL
argument will get: defaults of 0-length strings for usr name, cl t name and passwd; no
flags set; and no application data.

Upon failure, t pi ni t () leavesthe calling processin itsoriginal context, returns- 1,
and setst per r no to indicate the error condition. Also, t pur code() issettothevaue
returned by the AUTHSVR(5) server.

Upon failure, t pi ni t () setstperrno() to one of the following values:

[TPEI NVAL]
Invalid arguments were specified. t pi nf o isnon-NULL and does not point
to atyped buffer of type TPI NI T.

[TPENCENT]
The client cannot join the application because of space limitations.

[TPEPERM
The client cannot join the application because it does not have permission to
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, failure
to pass application-specific authentication, or use of restricted names.
t pur code() may be set by an application-specific authentication server to
explain why the client cannot join the application.

[TPEPROTC]
t pi ni t () hasbeen called improperly. For example: (&) thecaller isaserver;
(b) the TPMULTI CONTEXTS flag has been specified in single-context mode; or
(c) the TPMULTI CONTEXTS flag has not been specified in multicontext mode.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

ATMI C Function Reference

tpinit(3c)

Interoperability

Portability

Environment
Variables

t pchkaut h() and anon-NULL value for the TPI NI T typed buffer argument of
t pi ni t () areavailable only on sites running release 4.2 or later.

Theinterfaces described int pi ni t (3c) are supported on UNIX system, Windows,
and MS-DOS operating systems. However, signal-based notification is not supported
on 16-bit Windows or MS-DOS platforms. If it is selected at t pi ni t () time, then a
userl og() messageisgenerated and the method is automatically set to dip-in.

TUXCONFI G
Used within t pi ni t () when invoked by a native client. It indicates the
application to which the client should connect. Note that this environment
variableisreferenced only whent pi ni t () iscaled. Subsequent calls make
use of the application context.

WBENVFI LE
Used within t pi ni t () when invoked by a Workstation client. It indicates a
file containing environment variable settings that should be setinthecaller’'s
environment. See conpi | ati on(5) for details on environment variable
settings necessary for Workstation clients. Notethat thisfileisprocessed only
when t pi ni t () iscalled and not before.

WENADDR
Usedwithint pi ni t () wheninvoked by aWorkstation client. Itindicatesthe
network addresses of theworkstation listener that isto be contacted for access
to the application. Thisvariable is required for Workstation clientsand is
ignored for native clients.

TCP/IP addresses may be specified in the following forms:
/1 host . name: port _nunber
[/ #. #.#. # port_nunber

In the first format, the domain finds an address for host nane using the local
name resolution facilities (usually DNS). host nane must be the local
machine, and thelocal name resol ution facilities must unambiguously resolve
host nane to the address of the local machine.

In the second format, the string #. #. #. # isin dotted-decimal format. In
dotted-decimal format, each # should be a number from O to 255. This
dotted-decimal number represents the IP address of the local machine.

In both of the above formats, port _nunber isthe TCP port number at which
the domain process will listen for incoming requests. port _nunber can
either be a number between 0 and 65535 or aname. If port _numnber isa

ATMI C Function Reference 179

Section 3¢ - C Functions

name, then it must be found in the network services database on your local
machine.

The address can al so be specified in hexadecimal format when preceded by
the characters 0x. Each character after theinitial 0x is a number between 0

and 9 or aletter between A and F (case insensitive). The hexadecimal format
isuseful for arbitrary binary network addresses such as1PX/SPX or TCP/IP.

The address can also be specified as an arbitrary string. The value should be
the same as that specified for the NLSADDR parameter in the NETWORK section
of the configuration file.

More than one address can be specified if desired by specifying a
comma-separated list of pathnamesfor WENADDR. Addresses aretried in order
until a connection is established. Any member of an addresslist can be
specified as a parenthesized grouping of pipe-separated network addresses.
For example:

WSNADDR=(// mL. acre. com 3050| // n2. acne. com 3050), // nB. acre. com 3050

For usersrunning under Windows, the address string looks like the following:

set WBNADDR=(//nil. acne. com 3050”| // n2. acrme. com 3050), // nB. acme. com 3050

180

Because the pipe symbol (|) isconsidered a special character in Windows, it
must be preceded by a carat (~)—an escape character in the Windows
environment—when it is specified on the command line. However, if
WSNADDR is defined in an envfile, the BEA Tuxedo ATMI system getsthe
values defined by WSNADDR through thet uxget env(3c) function. In this
context, the pipe symbol (|) isnot considered a special character, so you do
not need to escape it with acarat ().

The BEA Tuxedo ATMI system randomly selects one of the parenthesized
addresses. This strategy distributes the load randomly across a set of listener
processes. Addresses aretried in order until aconnection is established. Use
the value specified in the application configuration file for the workstation
listener to be called. If thevalue beginswith the charactersox, itisinterpreted
asastring of hex-digits; otherwise, it isinterpreted as ASCI| characters.

WSFADDR

Used withint pi ni t () wheninvoked by aWorkstation client. It specifiesthe
network address used by the Workstation client when connecting to the
workstation listener or workstation handler. This variable, along with the
WSFRANGE variable, determines the range of TCP/IP ports to which a

ATMI C Function Reference

tpinit(3c)

Workstation client will attempt to bind before making an outbound
connection. This address must be a TCP/IP address. The port portion of the
TCP/IP address represents the base address from which a range of TCP/IP
ports can be bound by the Workstation client. The WSFRANGE variable
specifies the size of the range. For example, if this addressis

/I mymachi ne. bea. com 30000 and WBFRANGE is 200, then all native
processes attempting to make outbound connections from this LM Dwill bind
aport on nynmachi ne. bea. combetween 30000 and 30200. If not set, this
variable defaults to the empty string, which implies the operating system
chooses alocal port randomly.

VBFRANGE
Usedwithint pi ni t () wheninvoked by aWorkstation client. It specifiesthe
range of TCP/IP ports to which a Workstation client process will attempt to
bind before making an outbound connection. The WSFADDR parameter
specifies the base address of the range. For example, if the WSFADDR
parameter is set to / / nynmachi ne. bea. com 30000 and WSFRANGE is set to
200, then all native processes attempting to make outbound connections from
this LM Dwill bind a port on mymachi ne. bea. combetween 30000 and
30200. Thevalid rangeis 1-65535. The default is 1.

WSDEVI CE
Usedwithint pi ni t () wheninvoked by aWorkstation client. Itindicatesthe
device name to be used to access the network. This variable is used by
Workstation clientsand ignored for native clients. Note that certain supported
transport level network interfaces do not require adevice name; for example,
sockets and NetBIOS. Workstation clients supported by such interfaces need
not specify WSDEVI CE.

WBTYPE
Used within t pi ni t () when invoked by a Workstation client to negotiate
encode/decode responsibilities with the native site. Thisvariableis optiona
for Workstation clients and ignored for native clients.

VBRPL YMAX
Used by t pi ni t () to set the maximum amount of core memory that should
be used for buffering application replies before they are dumped to file. The
default for this parameter 256,000 bytes. For more information, see the
programming documentation for your instantiation.

TMM NENCRYPTBI TS
Used to establish the minimum level of encryption required to connect to the
BEA Tuxedo ATMI system. “0” means no encryption, while “56” and “ 128"
specify the encryption key length (in bits). Thelink-level encryption value of

ATMI C Function Reference 181

Section 3¢ - C Functions

182

Warning

See Also

40 bitsis also provided for backward compatibility. If this minimum level of
encryption cannot be met, link establishment will fail. The default is“0".

TMVAXENCRYPTBI TS
Used to negotiate the level of encryption up to thislevel when connecting to
the BEA Tuxedo ATMI system. “0” means no encryption, while “56" and
“128" specify the encryption length (in bits). Thelink-level encryption value
of 40 hitsisalso provided for backward compatibility. The default is*128.”

Signal-based notification is not allowed in multicontext mode. In addition, signal
restrictions may prevent the system from using signal-based notification even though
it hasbeen selected by aclient. When this happens, the system generates alog message
that it is switching notification for the selected client to dip-in and the client is notified
then and thereafter via dip-in notification. (See the description of the NOTI FY
parameter in the RESOURCES section of UBBCONFI G(5) for a detailed discussion of
notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification
is always consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator.

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator isidentified as part of the configuration for
the application.

If signal-based notification is selected for a client, then certain ATMI calls may fail,
returning TPGOTSI G due to receipt of an unsolicited message if TPSI GRSTRT is hot
specified.

Introduction to the C Language Application-to-Transaction Monitor Interface,
t pgetctxt (3c),tpsetctxt(3c),tpterm 3c)

ATMI C Function Reference

tpkey close(3c)

tpkey close(3c)

Name

Synopsis

Description

Return Values

Errors

See Also

t pkey_cl ose() —Closes apreviously opened key handle.

#i ncl ude <atni. h>
int tpkey_cl ose(TPKEY hKey, |ong flags)

t pkey_cl ose() releasesapreviously opened key handle and all resources associated
with it. Any sensitive information, such as the principal’s private key, is erased from
memory.

Key handles can be opened in one of two ways:
m By an explicit call tot pkey_open()
m Asoutput fromt penvel ope()

It isthe application’s responsibility to release key resources by calling

t pkey_cl ose() . Once aprocess closes a key, the process can no longer use the key
handle to register a message buffer for digital signature or encryption. If the process
opened the key using t pkey_open() with the TPKEY_AUTOSI GN or
TPKEY_AUTOENCRYPT flag specified, the key handle no longer appliesto future
communication operations after the key is closed.

Even though akey is closed, however, the key handle continues to be valid for any
associ ated signature or encryption request registered before the key was closed. When
the last buffer associated with a closed key is freed or overwritten, resources
attributable to the key are released.

Thef 1 ags argument isreserved for future use and must be set to 0.
Onfailure, thisfunction returns-1 and setst per r no() toindicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the value of hKey isnot avalid
key.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

t penvel ope(3c),tpkey_getinfo(3c),tpkey_open(3c),tpkey_setinfo(3c)

ATMI C Function Reference 183

Section 3¢ - C Functions

tpkey getinfo(3c)

184

Name

Synopsis

Description

t pkey_get i nf o() —Gets information associated with a key handle.

#i nclude <atm . h>
int tpkey_getinfo(TPKEY hKey, char *attribute_name, void *val ue,
I ong *val ue_l en, long flags)

t pkey_get i nfo() reportsinformation about akey handle. A key handlerepresentsa
specific principal’s key and the information associated with it.

Thekey under examination isidentified by the hkey input parameter. The attribute for
which information is desired is identified by the at t ri but e_nane input parameter.
Some attributes are specific to a cryptographic service provider, but thefollowing core
set of attributes should be supported by all providers.

Attribute Value

PRI NCI PAL The name identifying the principal associated with the key (key
handle), represented as aNUL L -terminated character string.

PKENCRYPT_ALG An ASN.1 Distinguished Encoding Rules (DER) object identifier of
the public key algorithm used by the key for public key encryption.

The object identifier for RSA isidentified in the following table,
“Mapping of Algorithm Object Identifiersto Algorithms.”

PKENCRYPT_BI TS Thekey length of the public key dgorithm (RSA modulus size). The
value must be within the range of 512 to 2048 bits, inclusive.

SI GNATURE_ALG An ASN.1 DER object identifier of the digital signature algorithm
used by the key for digital signature.

Theobject identifiersfor RSA and DSA areidentified in thefollowing
table, “Mapping of Algorithm Object Identifiersto Algorithms.”

SI GNATURE_BI TS Thekey length of the digital signature algorithm (RSA modulus size).
The value must be within the range of 512 to 2048 bits, inclusive.

ATMI C Function Reference

tpkey_getinfo(3c¢)

Attribute Value

ENCRYPT_ALG An ASN.1DER object identifier of the symmetric key algorithm used
by the key for bulk data encryption.
The object identifiers for DES, 3DES, and RC2 are identified in the
following table, “Mapping of Algorithm Object Identifiers to
Algorithms.”

ENCRYPT_BI TS The key length of the symmetric key agorithm. The value must be
within the range of 40 to 128 bits, inclusive.

When an algorithm with afixed key length is setin ENCRYPT_ALG,
the ENCRYPT_BI TSvaueisautomatically set tothefixed key length.
For example, if ENCRYPT_ALGis set to DES, the ENCRYPT_BI TS
valueisautomatically set to 56.

DI GEST_ALG AnASN.1DER object identifier of the message digest algorithm used
by the key for digital signature.

The object identifiers for MD5 and SHA-1 are identified in the
following table, “Mapping of Algorithm Object Identifiers to

Algorithms.”
PROVI DER The name of the cryptographic service provider.
VERSI ON The version number of the cryptographic service provider’ s software.

The ASN.1 DER agorithm object identifiers supported by the default public key
implementation are givenin Table 11.

Table 11 Mapping of Algorithm Object I dentifiersto Algorithms

ASN.1DER Algorithm Object Identifier Algorithm
{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05 } VD5
{ 0x06, 0x05, 0x2b, Ox0e, 0x03, 0x02, Ox1a} SHA1

{ 0x06, 0x09, Ox2a, 0x86, 0x48, 0x86, Oxf7, Ox0d, 0x01, 0x01, 0x01 } RSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, OxOc } DSA
{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x07 } DES
{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x03, 0x07 } 3DES

ATMI C Function Reference 185

Section 3¢ - C Functions

Table 11 M apping of Algorithm Object Identifiersto Algorithms

ASN.1 DER Algorithm Object Identifier Algorithm

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x03, 0x02 } RC2

The information associated with the specified at t ri but e_nane parameter will be
stored in the memory location indicated by val ue. The maximum amount of data that
can be stored at thislocation is specified by the caller inval ue_l en.

After t pkey_getinfo() completes, val ue_l en is set to the size of the data actually
returned (including aterminating NULL value for string values). If the number of
bytes that need to be returned exceedsval ue_| en, t pkey_get i nf o() fails(withthe
TPELI M T error code) and setsval ue_l en to the required amount of space.

Thef | ags argument is reserved for future use and must be set to 0.
Return Values On failure, this function returns-1 and setst per r no() to indicate the error condition.

Errors [TPEI NVAL]
Invalid arguments were given. For example, hKey isnot avalid key.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

[TPELI M T]
Insufficient space was provided to hold the requested attribute vaue.

[TPENCENT]
The reguested attribute is not associated with this key.

See Also tpkey_cl ose(3c),tpkey_open(3c),tpkey_setinfo(3c)

186 ATMI C Function Reference

tpkey _open(3c)

tpkey open(3c)

Name

Synopsis

Description

t pkey_open() —Opens akey handle for digital signature generation, message
encryption, or message decryption.

#i ncl ude <atni. h>
int tpkey_open(TPKEY *hKey, char *principal_nane, char *|ocation,
char *identity_proof, long proof _Ien, long flags)

t pkey_open() makes akey handle available to the calling process. A key handle
represents a specific principa’s key and the information associated with it.

A key may be used for one or more of the following purposes:

m Generating adigital signature, which protects a typed message buffer’s content
and proves that a specific principal originated the message. (A principal may be
aperson or aprocess.) Thistype of key isa private key and isavailable only to
the key’s owner.

Calling t pkey_open() with the principal’s name and either the
TPKEY_SI GNATURE or TPKEY_AUTOSI GN flag returns a handle to the principal’s
private key and digital certificate.

m Verifying adigital signature, which proves that a typed message buffer’s content
remains unaltered and that a specific principal originated the message.

Signature verification does not require acall tot pkey_open() ; the verifying
process uses the public key specified in the digital certificate accompanying the
digitally signed message to verify the signature.

m Encrypting a message buffer destined for a specific principal. Thistype of key is
available to any process with accessto the principal’s public key and digital
certificate.

Calling t pkey_open() with the principal’s name and either the TPKEY_ENCRYPT
or TPKEY_AUTOENCRYPT flag returns a handle to the principal’s public key via
the principal’s digita certificate.

m Decrypting a message buffer intended for a specific principal. Thistype of key is
aprivate key and is available only to the key’s owner.

Calling t pkey_open() with the principal’s name and the TPKEY_DECRYPT flag
returns a handle to the principal’s private key and digital certificate.

ATMI C Function Reference 187

Section 3¢ - C Functions

188

Thekey handlereturned by t pkey_open() isstored in *hKey, the value of which
cannot be NULL.

Thepri nci pal _nane input parameter specifiesthe key owner’sidentity. If the value
of princi pal _name isaNULL pointer or an empty string, adefault identity is
assumed. The default identity may be based on the current login session, the current
operating system account, or another attribute such as alocal hardware device.

Thefile location of akey may be passed into the | ocat i on parameter. If the
underlying key management provider does not require alocation parameter, the value
of this parameter may be NULL.

To authenticate theidentity of pri nci pal _nane, proof material such asapassword or
pass phrase may be required. If required, the proof material should be referenced by
i dentity_proof . Otherwise, the value of this parameter may be NULL.

The length of the proof material (in bytes) is specified by pr oof _I en. If proof _I en
isO,identity_proof isassumedto beaNULL-terminated character string.

Thetype of key accessrequired for akey’ smode of operationisspecified by thef | ags
parameter:

TPKEY_SI GNATURE:
This private key is available to generate digital signatures.

TPKEY_AUTCSI GN:
Whenever this process transmits a message buffer, the public key software
usesthe signer’s private key to generate adigital signature and then attaches
the digital signature to the buffer. TPKEY_SI GNATURE isimplied.

TPKEY_ENCRYPT:
This public key isavailable to identify the recipient of an encrypted message.

TPKEY_AUTCENCRYPT:
Whenever this process transmits a message buffer, the public key software
encrypts the message content, uses the recipient’s public key to generate an
encryption envelope, and then attaches the encryption envel ope to the buffer.
TPKEY_ENCRYPT isimplied.

TPKEY_DECRYPT:
This private key is available for decryption.

ATMI C Function Reference

tpkey _open(3c)

Return Values

Errors

See Also

Any combination of one or more of these flag valuesis allowed. If akey is used only
for encryption (TPKEY_ENCRYPT), i denti ty_pr oof isnot required and may be set to
NULL.

Upon successful completion, *hKey is set to avauethat representsthiskey, for use by
other functionssuch ast psi gn() and t pseal ().

Onfailure, thisfunction returns-1 and setst per r no() toindicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the value of hkey isSNULL or
thef | ags parameter is not set correctly.

[TPEPERM
Permission failure. The cryptographic service provider was not able to access
aprivate key for this principal, given the proof information and current
environment.

[TPESYSTEM
A system error occurred. Consult the systems error log file for details.

t pkey_cl ose(3c),tpkey_getinfo(3c),tpkey_setinfo(3c)

ATMI C Function Reference 189

Section 3¢ - C Functions

tpkey setinfo(3c)

Name

Synopsis

Description

Return Values

Errors

See Also

t pkey_set i nf o() —Sets optional attribute parameters associated with a key handle.

#i nclude <atm . h>
int tpkey_setinfo(TPKEY hKey, char *attribute_name, void *val ue,
I ong value_len, long flags)

t pkey_set i nfo() setsanoptional attribute parameter for akey handle. A key handle
represents a specific principal’s key and the information associated with it.

The key for which information isto be modified is identified by the hkey input
parameter. The attribute for which information isto be modified isidentified by the
attribut e_name input parameter. Some attributes may be specific to a certain
cryptographic service provider, but the core set of attributes presented on the

t pkey_get i nfo(3c) reference page should be supported by all providers.

Theinformation to be associated with theat t ri but e_name parameter isstored in the
memory location indicated by val ue. If the data content of val ue is self-describing,
val ue_| en isignored (and may be 0). Otherwise, val ue_| en must contain the length
of datainval ue.

Thef | ags argument is reserved for future use and must be set to 0.
On failure, thisfunction returns -1 and setst per r no() toindicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, hKey isnot avalid key or
attri but e_nane refersto aread-only value.

[TPELI M T]
Theval ue provided istoo large.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

[TPENOENT]
The reguested attribute is not recognized by the key’s cryptographic service
provider.

t pkey_cl ose(3c),tpkey_getinfo(3c),tpkey_open(3c)

190 ATMI C Function Reference

tpnotify(3c)

tpnotify(3c)

Name

Synopsis

Description

t pnot i f y() —Routine for sending notification by client identifier.

#i ncl ude <atni. h>
int tpnotify(CLIENTID *clientid, char *data, |Iong len, long flags)

tpnotify() alowsaclient or server to send an unsolicited message to an individual
client.

clientidisapointer to aclient identifier saved from the TPSVCI NFO structure of a
previous or current service invocation, or passed to a client via some other
communications mechanism (for example, retrieved via the administration interface).

The data portion of the request is pointed to by dat a, abuffer previously allocated by
tpal l oc() .1 en specifies how much of dat a to send. Note that if dat a pointsto a
buffer type that does not require alength to be specified, (for example, an FM. fielded
buffer) then | en isignored (and may be 0). Also, dat a may be NULL in which case
I en isignored.

Upon successful return fromt pnoti f y() , the message has been delivered to the
system for forwarding to the identified client. If the TPACK flag was set, a successful
return means the message has been received by the client. Furthermore, if the client has
registered an unsolicited message handler, the handler will have been called.

Thefollowingisalist of vaid f 1 ags:

TPACK
The request is sent and the caller blocks until an acknowledgement message
is received from the target client.

TPNOBLOCK
The request is not sent if a blocking condition exists in sending the
notification (for example, the internal buffersinto which the messageis
transferred are full).

TPNOTI VE

Thisflag signifiesthat the caller iswilling to block indefinitely and wantsto
be immune to blocking timeouts. Transaction timeouts may still occur.

ATMI C Function Reference 191

Section 3¢ - C Functions

Return Values

Errors

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isreissued.

Unlessthe TPACK flagisset, t pnot i f y() doesnot wait for the message to be
delivered to the client.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pnotify().

Upon failure, t pnot i f y() returns-1 and setst per r no() toindicatethe error
condition. If acal failswith aparticular t per rno() value, asubsequent call to
tperrordetail (), with nointermediate ATMI calls, may provide more detailed
information about the generated error. Refer to thet per r or det ai | (3c) reference
page for more information.

Upon failure, t pnot i f y() setst perrno() to one of the following values:

[TPEI NVAL]
Invalid arguments were given (for example, invalid flags).

[TPENCENT]
Thetarget client does not exist or does not have an unsolicited handler set and
the TPACK flag is set.

[TPETI ME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME were
specified, or TPACK was set but no acknowledgment was received and
TPNOTI ME was not specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSI G
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTO|
t pnoti fy() wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

192 ATMI C Function Reference

tpnotify(3c)

[TPERELEASE]
When the TPACK is set and the target isa client from a prior rel ease of BEA

Tuxedo that does not support the acknowledgment protocol.

See Also Introduction to the C Language Application-to-Transaction Monitor Interface,
tpal |l oc(3c),tpbroadcast (3c),tpchkunsol (3c),tperrordetail (3c),
tpinit(3c),tpsetunsol (3c),tpstrerrordetail (3c),tpternm3c)

ATMI C Function Reference 193

Section 3¢ - C Functions

tpopen(3c)

Name

Synopsis

Description

Return Values

194

Errors

See Also

t popen() —Routine for opening aresource manager.

#include <atm . h>
int tpopen(void)

t popen() opens the resource manager to which the caller is linked. At most one
resource manager can be linked to the caller. Thisfunction is used in place of resource
manager-specific open() callsand allowsaserviceroutineto be free of callsthat may
hinder portability. Since resource managers differ in their initialization semantics, the
specific information needed to open a particular resource manager isplaced in a
configuration file.

If aresource manager is already open (that is, t popen() iscalled more than once), no
action is taken and success is returned.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot popen() .

Upon failure, t popen() returns-1and setst per rno() toindicate the error condition.
Upon failure, t popen() setstperrno() to one of the following values:

[TPERMERR]
A resource manager failed to open correctly. More information concerning
thereason aresource manager failed to open can be obtained by interrogating
aresource manager in its own specific manner. Note that any callsto
determine the exact nature of the error hinder portability.

[TPEPROTC]
t popen() wascalledinanimproper context (for example, by aclient that has
not joined a BEA Tuxedo system server group).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

t pcl ose(3c)

ATMI C Function Reference

tppost(3c)

tppost(3c)

Name

Synopsis

Description

t ppost () —Posts an event.

#i ncl ude <atni. h>
int tppost(char *eventname, char *data, long len, |long flags)

The caller usest ppost () to post an event and any accompanying data. The event is
named by event nanme anddat a, if not NULL, pointsto the data. The posted event and
its data are dispatched by the BEA Tuxedo ATMI EventBroker to all subscribers
whose subscriptions successfully evaluate against event name and whose optional
filter rules successfully evaluate against dat a.

event name isaNULL-terminated string of at most 31 characters. event nane’sfirst
character cannot beadot (“.”) as this character isreserved asthe starting character for
all events defined by the BEA Tuxedo ATMI system itself.

If dat aisnon-NULL, it must point to abuffer previously allocated by t pal 1 oc() and
I en should specify the amount of data in the buffer that should be posted with the
event. Note that if dat a pointsto abuffer of atypethat does not require alength to be
specified (for example, an FML fielded buffer), then| en isignored. If dat aisNULL,
I en isignored and the event is posted with no data.

When t ppost () is used within atransaction, the transaction boundary can be
extended to include those servers and/or stabl e-storage message queues notified by the
EventBroker. When atransactiona postingis made, some of the recipients of the event
posting are notified on behalf of the poster’ s transaction (for example, servers and
gueues), while some are not (for example, clients).

If the poster is within a transaction and the TPNOTRAN flag is not set, the posted event
goesto the EventBroker in transaction mode such that it dispatches the event as part of
the poster’ stransaction. The broker dispatchestransactional event notificationsonly to
those service routine and stable-storage queue subscriptions that used the TPEVTRAN
bit setting inthect | —>f | ags parameter passed to t psubscri be() . Client
notifications, and those service routine and stable-storage queue subscriptions that did
not use the TPEVTRAN bit setting in thect | —>f | ags parameter passed to

t psubscri be() , aredso dispatched by the EventBroker but not as part of the posting
process’ s transaction.

ATMI C Function Reference 195

Section 3¢ - C Functions

196

If the poster is outside atransaction, t ppost () isaone-way post with no
acknowledgement when the service associated with the event fails. This occurs even
when TPEVTRAN is set for that event (using the ct | —>f | ags parameter passed to

t psubscri be()). If theposter isin atransaction, thent ppost () returns TPESVCFAI L
when the associated service failsin the event.

Thefollowingisalist of validf 1 ags:

TPNOTRAN
If the caller isin transaction mode and this flag is set, then the event posting
isnot made on behalf of the caller’ s transaction. A caller in transaction mode
that setsthisflagisstill subject to the transaction timeout (and no other) when
posting events. If the event posting fails, the caller’ stransaction is not
affected.

TPNOREPLY
Informst ppost () not to wait for the EventBroker to process all
subscriptions for event nane before returning. When TPNOREPLY is set,
t pur code() is set to zero regardless of whether t ppost () returns
successfully or not. When the caller isin transaction mode, this setting cannot
be used unless TPNOTRAN is al SO set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such acondition
occurs, the call failsandt per r no() isset to TPEBLOCK. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isreissued. When TPSI GRSTRT is not specified and a signal interruptsa
system call, then t ppost () failsandt perrno() issetto TPGOTSI G.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot ppost () .

ATMI C Function Reference

tppost(3c)

Return Values

Errors

Upon successful return fromt ppost (), t pur code() contains the number of event
notifications dispatched by the EventBroker on behalf of event name (that is, postings
for those subscriptions whose event expression eval uated successfully against

event name and whose filter rule evaluated successfully against dat a). Upon return
wheret perrno() issetto TPESVCFAI L, t pur code() containsthe number of
non-transactional event notifications dispatched by the EventBroker on behalf of
event nane.

Upon failure, t ppost () returns-1 setst per rno() toindicate the error condition.

Upon failure, t ppost () setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, event nane iSNULL).

[TPENCENT]
Cannot access the BEA Tuxedo User EventBroker.

[TPETRAN]
The caller isin transaction mode, TPNOTRAN was hot set and t ppost ()
contacted an EventBroker that does not support transaction propagation (that
is, TMUSREVT(5) isnot running in aBEA Tuxedo ATMI system group that
supports transactions).

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then atransaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTI VE were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPESVCFAI L]
The EventBroker encountered an error posting atransactional event to either
aservice routine or to a stable storage queue on behalf of the caller's
transaction. The caller’s current transaction is marked abort-only. When this
error isreturned, t pur code() containsthenumber of non-transactional event
notifications dispatched by the EventBroker on behalf of event nane;
transactional postings are not counted since their effectswill be aborted upon
completion of the transaction. Note that so long as the transaction has not
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller’ s transaction
will be aborted upon transaction completion (that is, for subsequent

ATMI C Function Reference 197

Section 3¢ - C Functions

198

See Also

communication to have any lasting effect, it should be done with TPNOTRAN
Set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t ppost () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

t psubscri be(3c),tpunsubscribe(3c), EVENTS(5), TMBYSEVT(5),
TMUSREVT(5)

ATMI C Function Reference

tprealloc(3c)

tprealloc(3c)

Name

Synopsis

Description

Return Values

Errors

t pr eal | oc() —Routine to change the size of atyped buffer.

#i ncl ude <atni. h>
char * tprealloc(char *ptr, long size)

t pr eal | oc() changesthesize of thebuffer pointed to by pt r tosi ze bytesand returns
apointer to the new (possibly moved) buffer. Similar tot pal | oc() , the size of the
buffer will be at least as large asthe larger of si ze and df | t si ze, where df | tsi ze
isthe default buffer size specifiedint nt ype_sw. If the larger of thetwoislessthan or
equal to zero, then the buffer is unchanged and NULL isreturned. A buffer’s type
remains the same after it is reallocated. After this function returns successfully, the
returned pointer should be used to reference the buffer; pt r should no longer be used.
The buffer’s contents will not change up to the lesser of the new and old sizes.

Some buffer types require initialization before they can be used. t pr eal | oc()
reinitializes a buffer (in a communication manager-specific manner) after itis
reallocated and beforeit is returned. Thus, the buffer returned to the caller is ready for
use.

A thread in amultithreaded application may issue acall tot preal | oc() while
running in any context state, including TPl NVALI DCONTEXT.

Upon successful completion, t preal | oc() returns a pointer to a buffer of the
appropriate type aligned on a long word.

Upon failure, t preal | oc() returnsNULL and setst perrno() to indicate the error
condition.

If the reinitialization function fails, t pr eal | oc() fails, returning NULL and the
contents of the buffer pointed to by pt r may not bevalid. Upon failure, t preal | oc()
setst per rno() to one of the following values:

[TPEI NVAL]
Invalid arguments were given (for example, pt r does not point to a buffer
originally allocated by t pal | oc()).

[TPEPROTC)
tpreal | oc() was called improperly.

ATMI C Function Reference 199

Section 3¢ - C Functions

200

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to alog file.

[TPECS]
An operating system error has occurred.

Usage If buffer reinitialization fails, t preal | oc() failsreturning NULL and the contents of
the buffer pointed to by pt r may not be valid. This function should not be used in
concert withmal 1 oc(),real l oc() orfree() intheClibrary (for example, abuffer
allocated with t preal | oc() should not be freed with free()).

See Also tpalloc(3c),tpfree(3c),tptypes(3c)

ATMI C Function Reference

tprecv(3c)

tprecv(3c)

Name

Synopsis

Description

t pr ecv() —Routinefor receiving a message in a conversational connection.

#i ncl ude <atni. h>
int tprecv(int cd, char **data, long *len, long flags, long \
*revent)

t precv() isused to receive data sent across an open connection from another
program. t precv() 'sfirst argument, cd, specifies on which open connection to
recelve data. cd isadescriptor returned from either t pconnect () or the TPSVCI NFO
parameter to the service. The second argument, dat a, isthe address of a pointer to a
buffer previously allocated by t pal | oc() .

dat a must be the address of a pointer to abuffer previously alocated by t pal | oc()
and | en should point to along that t precv() setsto the amount of data successfully
received. Upon successful return, *dat a pointsto a buffer containing the reply and
*| en containsthe size of the buffer. FML and FML32 buffers often assume a minimum
size of 4096 bytes; if the reply islarger than 4096 bytes, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used sent. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive abuffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address amost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) areply buffer changed in size, compareitstotal size beforet precv() was
issued with *I en. See “Introduction to the C Language A pplication-to-Transaction
Monitor Interface” for more information about buffer management.

If *1 en is 0, then no data was received and neither * dat a nor the buffer it pointsto
were modified. It isan error for dat a, *dat a or | en to be NULL.

tprecv() can beissued only by the program that does not have control of the
connection.

Thefollowingisalist of vaid f 1 ags:

ATMI C Function Reference 201

Section 3¢ - C Functions

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed
to by *dat a, then *dat a’s buffer type changes to the received buffer’s type
so long asthe receiver recognizestheincoming buffer type. When thisflagis
set, the type of the buffer pointed to by *dat a is not allowed to change. That
is, the type and subtype of the received buffer must match the type and
subtype of the buffer pointed to by *dat a.

TPNOBLOCK
t precv() doesnot wait for datato arrive. If datais aready available to
receive, thent precv() getsthe dataand returns. When this flag is not
specified and no datais available to receive, the caller blocks until data
arrives.

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSI GRSTRT
If asigna interrupts the underlying receive system cal, then the call is
reissued.

If an event existsfor the descriptor, cd, thent precv() will return settingt per r no()
to TPEEVENT. The event type is returned in r event . Data can be received along with
the TPEV_SVCSUCC, TPEV_SVCFAI L, and TPEV_SENDONLY events. Valid events for

t precv() areasfollows:

TPEV_DI SCONI MM
Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has either issued an immediate disconnect on
the connection viat pdi scon(), oritissuedt preturn(),tpconmt() or
t pabor t () with the connection still open. This event is aso returned to the
originator or subordinate when a connection is broken dueto a
communications error (for example, a server, machine, or network failure).
Because this is an immediate disconnection notification (that is, abortive
rather than orderly), datain transit may be lost. If the two programs were
participating in the same transaction, then the transaction is marked
abort-only. The descriptor used for the connection is no longer valid.

TPEV_SENDONLY
The program on the other end of the connection has relinquished control of
the connection. The recipient of this event is allowed to send data but cannot
receive any data until it relinquishes control.

202 ATMI C Function Reference

tprecv(3c)

Return Values

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation hasissued t pret urn() . t preturn()
encountered an error that precluded the service from returning successfully.
For example, bad arguments may have been passed to t pr et ur n() or
t pr et ur n() may havebeen called whilethe service had open connectionsto
other subordinates. Due to the nature of this event, any application defined
dataor return code are not available. The connection has been torn down and
isno longer avalid descriptor. If this event occurred as part of thecd
recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCFAI L
Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it called t pret ur n()
with TPFAI L or TPEXI T). If the subordinate service wasin control of this
connection when t pret ur n() was caled, then it can pass an application
defined return value and a typed buffer back to the originator of the
connection. Aspart of ending the serviceroutine, the server hastorn down the
connection. Thus, cd isno longer avalid descriptor. If this event occurred as
part of the recipient’ s transaction, then the transaction is marked abort-only.

TPEV_SVCSUCC
Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
successfully as defined by the application (that is, it called t pr et ur n() with
TPSUCCESS). As part of ending the service routine, the server has torn down
the connection. Thus, cd isno longer avalid descriptor. If therecipientisin
transaction mode, then it can either commit (if it isalso the initiator) or abort
the transaction causing the work done by the server (if aso in transaction
mode) to either commit or abort.

Inamultithreaded application, athread in the TP NVALI DCONTEXT stateis not allowed
toissueacall totprecv().

Upon return from t pr ecv() wherer event isset to either TPEV_SVCSUCC or
TPEV_SVCFAI L, thet pur code global contains an application defined value that was
sent aspart of tpreturn().

ATMI C Function Reference 203

Section 3¢ - C Functions

204

Errors

Uponfailure, t precv() returns-1and setst per r no() toindicatethe error condition.
If acall failswith aparticulart per r no value, asubsequent call tot perrordetail (),
with no intermediate ATMI calls, may provide more detailed information about the
generated error. Refer tothet perror det ai | (3c) reference page for more
information.

Upon failure, t precv() setst perr no to one of the following values:

[TPEI NVAL]
Invalid arguments were given (for example, datais not the address of a
pointer to a buffer allocated by t pal | oc() or f | ags areinvalid).

[TPEOTYPE]
Either the type and subtype of theincoming buffer are not known to thecaller,
or TPNOCHANGE was set in f | ags and the type and subtype of *dat a do not
match the type and subtype of the incoming buffer. Regardless, neither
*dat a, its contents nor *1 en are changed. If the conversation is part of the
caller’ scurrent transaction, then the transaction is marked abort-only because
the incoming buffer is discarded.

[TPEBADDESC]
cd isinvalid.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME were
specified. In either case, neither *dat a nor its contents are changed. If a
transaction timeout occurred, then any attempts to send or receive messages
on any connections or to start a new connection will fail with TPETI ME until
the transaction has been aborted.

[TPEEVENT]
An event occurred and its typeis available in revent. Thereis arelationship
between the [TPETI ME] and the [TPEEVENT] return codes. Whilein
transaction mode, if thereceiving side of aconversationisblockedont pr ecv
and the sending side callst pabor t (), then the receiving side gets a return
code of [TPEVENT] with an event of TPEV_DI SCONI MM However, if the
sending side callst pabort () beforethereceiving sidecallst precv(), then
thetransaction may have already been removed from the GTT, which causes
t precv() tofail with the [TPETI ME] code.

ATMI C Function Reference

tprecv(3c)

Usage

See Also

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTQ|
t precv() was caledin animproper context (for example, the connection
was established such that the calling program can only send data).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

A server can pass an application defined return value and typed buffer when calling
tpreturn(). Thereturn valueisavailable in the global variablet pur code and the
buffer is availablein dat a.

tpal |l oc(3c),tpconnect(3c),tpdi scon(3c),tperrordetail (3c),
tpsend(3c),tpservice(3c),tpstrerrordetail (3c)

ATMI C Function Reference 205

Section 3¢ - C Functions

tpresume(3c)

Name

Synopsis

Description

Return Value

206

Errors

t pr esunme() —Resumes a global transaction.

#i nclude <atm . h>
int tpresune(TPTRANID *tranid, |ong flags)

t presunme() isused to resumework on behalf of apreviously suspended transaction.
Once the caller resumes work on atransaction, it must either suspend it with
t psuspend() , or complete it with one of t pconmi t () ortpabort () at alater time.

The caller must ensure that its linked resource managers have been opened (via
t popen()) before it can resume work on any transaction.

t presunme() placesthe caller in transaction mode on behalf of the global transaction
identifier pointed to by t r ani d. Itisan error for t r ani d to be NULL.

Currently, f 1 ags arereserved for future use and must be set to 0.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot presume().

t presunme() returns-1on error and setst per r no() toindicate the error condition.
Under the following conditions, t pr esune() failsand setst perrno() to:

[TPEI NVAL]
Either t r ani d isaNULL pointer, it points to a non-existent transaction
identifier (including previously completed or timed-out transactions), or it
pointsto atransaction identifier that the caller is not allowed to resume. The
caller’s state with respect to the transaction is not changed.

[TPEMATCH]
t rani d pointsto atransaction identifier that another process has already
resumed. The caller’s state with respect to the transaction is not changed.

[TPETRAN]
The BEA Tuxedo system is unable to resume the global transaction because
the caller is currently participating in work outside any global transaction
with one or more resource managers. All such work must be completed before
aglobal transaction can be resumed. The caller’s state with respect to the
local transaction is unchanged.

ATMI C Function Reference

tpresume(3c)

Notes

See Also

[TPEPROTO]
t presune() was called in an improper context (for example, the caller is
already intransaction mode). Thecaller’ s state with respect to the transaction
is not changed.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

XA-compliant resource managers must be successfully opened to be included in the
global transaction. (Seet popen(3c) for details.)

A process resuming a suspended transaction must reside on the same logical machine
(LMID) asthe process that suspended the transaction. For a Workstation client, the
workstation handler (WSH) to which it is connected must reside on the same logical
machine as the handler for the Workstation client that suspended the transaction.

t pabort (3c),tpconmt(3c),tpopen(3c),tpsuspend(3c)

ATMI C Function Reference 207

Section 3¢ - C Functions

tpreturn(3c)

208

Name

Synopsis

Description

t pr et ur n() —Returns from a BEA Tuxedo ATMI system service routine.

void tpreturn(int rval, long rcode, char *data, long len, long \
flags)

t preturn() indicatesthat a service routine has completed. t pr et ur n() actslikea
r et ur n statement in the C language (that is, whent pret urn() iscalled, the service
routine returns to the BEA Tuxedo ATMI system dispatcher). It is recommended that
t preturn() becaled from within the service routine dispatched to ensure correct
return of control to the BEA Tuxedo ATMI system dispatcher.

tpreturn() isused to send a service' sreply message. If the program receiving the
reply iswaiting in either t pcal 1 (), t pgetrply(), ortprecv(), then after a
successful call tot preturn(), thereply isavailable in the receiver’s buffer.

For conversational services, t pret ur n() also tears down the connection. That is, the
service routine cannot cal t pdi scon() directly. To ensure correct results, the
program that connected to the conversational service should not call t pdi scon();
rather, it should wait for notification that the conversational service has completed
(that is, it should wait for one of the events, like TPEV_SVCSUCC or TPEV_SVCFAI L,
sent by t preturn()).

If the service routine was in transaction mode, t pr et ur n() placesthe service's
portion of the transaction in a state from which it may be either committed or rolled
back when the transaction is completed. A service may be invoked multiple times as
part of the sametransaction soitisnot necessarily fully committed or rolled back until
either t pconmi t () ort pabort () iscalled by the originator of the transaction.

t preturn() should be called after receiving all replies expected from servicerequests
initiated by the service routine. Otherwise, depending on the nature of the service,
either aTPESVCERR status or aTPEV_SVCERR event will bereturned to the program that
initiated communi cation with the service routine. Any outstanding replies that are not
received will automatically be dropped by the communication manager. In addition,
the descriptors for those replies become invalid.

ATMI C Function Reference

tpreturn(3c)

t pret urn() should be called after closing al connections initiated by the service.
Otherwise, depending on the nature of the service, either a TPESVCERR Or a
TPEV_SVCERRevent will bereturned to the program that initiated communication with
the service routine. Also, an immediate disconnect event (that is, TPEV_DI SCONI MV) is
sent over al open connections to subordinates.

Since a conversational service has only one open connection which it did not initiate,
the communication manager knows over which descriptor data (and any event) should
be sent. For this reason, a descriptor isnot passed to t pret urn() .

The following is a description of the argumentsfor t preturn() . rval canbesetto
one of the following:

TPSUCCESS
The service hasterminated successfully. If datais present, thenit will be sent
(barring any failures processing the return). If the caller isin transaction
mode, thent pr et urn() placesthe caller’s portion of the transaction in a
state such that it can be committed when the transaction ultimately commits.
Note that acall tot pr et urn() does not necessarily finalize an entire
transaction. Also, even though the caller indicates success, if there are any
outstanding replies or open connections, if any work done within the service
caused its transaction to be marked rollback-only, then afailed messageis
sent (that is, the recipient of the reply receives a TPESVCERR indication or a
TPEV_SVCERR event). Note that if atransaction becomes rollback-only while
in the service routine for any reason, thenrval should be set to TPFAI L. If
TPSUCCESS is specified for a conversational service, a TPEV_SVCSUCC event
is generated.

TPFAI L
The service hasterminated unsuccessfully from an application standpoint. An
error will be reported to the program receiving the reply. That is, the call to
get the reply will fail and the recipient receives aTPSVCFAI L indication or a
TPEV_SVCFAI L event. If the caller isin transaction mode, then t pr et ur n()
marks the transaction as rollback-only (note that the transaction may already
be marked rollback-only). Barring any failuresin processing the return, the
caller's datais sent, if present. Onereason for not sending the caller’ s dataiis
that a transaction timeout has occurred. In this case, the program waiting for
the reply will receive an error of TPETI ME. If TPFAI L is specified for a
conversational service, a TPEV_SVCFAI L event is generated.

ATMI C Function Reference 209

Section 3¢ - C Functions

210

TPEXI T
This value behaves the same as TPFAI L with respect to completing the
service, but when TPEXI T is returned, the server exits after the transaction is
rolled back and the reply is sent back to the requester.
When specified for a multithreaded process, TPEXI T indicates that an entire
process (not only asingle thread within that process) will be killed.
If the server is restartable, then the server isrestarted automatically.

If rval isnot set to one of these three values, then it defaults to TPFAI L.

An application defined return code, r code, may be sent to the program receiving the
service reply. This codeis sent regardless of the setting of r val aslong asareply can
be successfully sent (that is, aslong asthe receiving call returns success or
TPESVCFAI L). In addition, for conversational services, thiscode can be sent only if the
serviceroutine has control of the connection whenit issuest pr et ur n() . The value of
r code isavailable in the receiver in the variable, t pur code() .

dat a pointsto the data portion of areply to besent. If dat aisnon-NULL, it must point
toabuffer previously obtained by acall tot pal | oc() . If thisisthe same buffer passed
to the service routine upon itsinvocation, then its disposition is up to the BEA Tuxedo
ATMI system dispatcher; the service routine writer does not have to worry about
whether it is freed or not. In fact, any attempt by the user to free this buffer will fail.
However, if the buffer passed to t pr et urn() is not the same one with which the
serviceisinvoked, thent pr et urn() freesthat buffer. Although the main buffer is
freed, any buffers referenced by embedded fields within that buffer are not freed. | en
specifiesthe amount of the data buffer to be sent. If dat a pointsto a buffer which does
not require alength to be specified, (for example, an FML fielded buffer), thenl en is
ignored (and can be 0).

If dat aisNULL, then! en isignored. Inthiscase, if areply isexpected by the program
that invoked the service, then areply is sent with no data. If no reply is expected, then
t preturn() freesdat a as necessary and returns sending no reply.

Currently, f 1 ags isreserved for future use and must be set to O (if set to anon-zero
value, the recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR
event).

If the service is conversational, there are two cases where the caller’ s return code and
the data portion are not transmitted:

m |f the connection has aready been torn down when the call is made (that is, the
caller has received TPEV_DI SCONI MM on the connection), then this call simply
ends the service routine and rolls back the current transaction, if one exists.

ATMI C Function Reference

tpreturn(3c)

Return Values

Errors

See Also

m If the caller does not have control of the connection, either TPEV_SVCFAI L or
TPEV_SVCERR s sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data s transmitted;
however, if the originator receives the TPEV_SVCFAI L event, the return codeis
available in the originator'st pur code() variable.

A serviceroutine doesnot return any valueto itscaller, the BEA Tuxedo ATMI system
dispatcher; thus, it is declared asavoi d. Service routines, however, are expected to
terminate using either t pr et ur n() ort pf orwar d() . A conversational serviceroutine
must uset pr et ur n() , and cannot use't pf or war d() . If aservice routine returns
without using either t pret urn() or t pf orwar d() (thatis, it usesthe C language

r et ur n statement or just simply “falls out of the function”) or t pf or war d() iscaled
from a conversational server, the server will print a warning message in the log and
return a service error to the service requester. In addition, all open connectionsto
subordinates will be disconnected immediately, and any outstanding asynchronous
replieswill be dropped. If the server wasin transaction mode at the time of failure, the
transaction is marked rollback-only. Note also that if either t pret urn() or

t pf or war d() are used outside of aservice routine (for example, in clients, or in
tpsvrinit() ortpsvrdone()), then these routines simply return having no effect.

Sincet pret ur n() endsthe service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function’s caller. Such errors
causet per rno() to be set to TPESVCERRfor a program receiving the service's
outcomeviaeithert pcal | () ort pgetr pl y(),and causethe event, TPEV_SVCERR, to
be sent over the conversation to a program using t psend() ort precv().

If either SVCTI MEQUT in the UBBCONFI Gfile or TA_SVCTI MEQUT inthe TM M Bis
non-zero, the event TPEV_SVCERR is returned when a service timeout occurs.

tperrordetail () andtpstrerrordetail () canbeused to get additiona
information about an error produced by the last BEA Tuxedo ATMI system routine
called in the current thread. If an error occurred, t per r or det ai | () returnsanumeric
valuethat can beused asan argumenttotrstrerrordetail () to retrievethetext of
the error detail.

tpal l oc(3c),tpcall (3c),tpconnect(3c),tpforward(3c),tprecv(3c),
tpsend(3c), tpservice(3c)

ATMI C Function Reference 211

Section 3¢ - C Functions

tpscmt(3c)

212

Name

Synopsis

Description

t pscnt () —Routine for setting whent pconmi t () should return.

#i nclude <atm . h>
int tpscmt(long flags)

t pscnt () setsthe TP_COWM T_CONTROL characteristic to the value specified in
f1ags. The TP_COWM T_CONTROL characteristic affectstheway t pconmi t () behaves
with respect to returning control to itscaller. A program can call t pscnt () regardless
of whether it isin transaction mode or not. Note that if the caller is participating in a
transaction that another program must commit, thenitscall tot pscnt () does not
affect that transaction. Rather, it affects subseguent transactions that the caller will
commit.

In most cases, atransaction is committed only when a BEA Tuxedo ATMI system
thread of control callst pconmi t () . There is one exception: when aserviceis
dispatched in transaction mode because the AUTOTRAN variable in the * SERVI CES
section of the UBBCONFI Gfileis enabled, then the transaction completes upon calling
tpreturn().Iftpforward() iscaled, thenthetransaction will be completed by the
server ultimately calling t pr et ur n() . Thus, the setting of the TP_COVM T_CONTROL
characteristic in the service that callst pr et ur n() determineswhentpconmit ()
returns control within aserver. If t pconmi t () returnsaheuristic error code, the server
will write amessage to alog file.

When aclient joinsaBEA Tuxedo ATMI system application, theinitia setting for this
characteristic comes from a configuration file. (See the CMIRET variable in the
RESOURCES section of UBBCONFI G(5))

Thefollowing are the valid settings for f | ags:

TP_CMI_LOGGED

Thisflagindicatesthat t pcommi t () should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. Thissetting allowsfor faster response
tothecaler of t pconmi t () athough thereisarisk that atransaction
participant might decide to heuristically complete (that is, abort) itswork due
totiming delayswaiting for the second phase to complete. If thisoccurs, there
isnoway toindicate thissituationto the caller sincet pconmmi t () hasalready
returned (although the BEA Tuxedo ATMI system writes amessage to alog

ATMI C Function Reference

tpscmt(3c)

Return Values

Errors

Notices

file when a resource manager takes a heuristic decision). Under normal
conditions, participants that promise to commit during the first phase will do
so during the second phase. Typically, problems caused by network or site
failures are the sources for heuristic decisions being made during the second
phase.

TP_CMTI_COVPLETE
Thisflag indicates that t pconmi t (3¢) should return after the two-phase
commit protocol has finished completely. This setting allowsfor
t pcommi t () toreturn an indication that a heuristic decision occurred during
the second phase of commit.

In amultithreaded application, athread in the TP NVALI DCONTEXT stateis not allowed
toissueacall totpscnt ().

Upon success, t pscnt () returns the previous value of the TP_COW T_CONTROL
characteristic.

Upon failure, t pscnt () returns-1and setst perrno() toindicate the error condition.
Upon failure, t pscnt () setst per rno to one of the following values:

[TPEI NVAL]
f1 ags isnot one of TP_CMI_LOGGED or TP_CMI_CQOVPLETE.

[TPEPROTC)
tpscnt () was caled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pconmi t () andt pabort () to delineate a BEA Tuxedo
ATMI system transaction, it is important to remember that only the work done by a
resource manager that meetsthe X A interface (and islinked to the caller appropriately)
has transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () ortpabort (). Seebuil dserver (1) for detailson

ATMI C Function Reference 213

Section 3¢ - C Functions

linking resource managersthat meet the X A interfaceinto aserver such that operations
performed by that resource manager are part of a BEA Tuxedo ATMI system
transaction.

See Also tpabort(3c),tpbegin(3c),tpconmit(3c),tpgetlev(3c)

214 ATMI C Function Reference

tpseal(3c)

tpseal(3c)

Name

Synopsis

Description

Return Values

Errors

See Also

t pseal () —Marks atyped message buffer for encryption.

#i ncl ude <atni. h>
int tpseal (char *data, TPKEY hKey, |ong fl ags)

t pseal () marks, or registers, amessage buffer for encryption. The principal who
owns hKey can decrypt this buffer and access its content. A buffer may be sealed for
more than one recipient principa by making several callstot pseal ().

dat a must point to avalid typed message buffer either (1) previously allocated by a
process calling t pal | oc() or (2) delivered by the system to areceiving process. The
content of the buffer may be modified after t pseal () isinvoked.

When the message buffer pointed to by dat a istransmitted from a process, the public
key software encrypts the message content and attaches an encryption envel ope to the
message buffer for each encryption registration request. An encryption envelope
enables areceiving process to decrypt the message.

Thefl ags argument isreserved for future use and must be set to 0.
Onfailure, thisfunction returns-1 and setst per r no() toindicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, hKey is not avalid key for
encrypting or dat a isNULL.

[TPESYSTEM
An error has occurred. Consult the system error log file for details.

t pkey_cl ose(3c),t pkey_open(3c)

ATMI C Function Reference 215

Section 3¢ - C Functions

tpsend(3c)

216

Name

Synopsis

Description

t psend() —Routine for sending a message in a conversational connection.

#i nclude <atm . h>
int tpsend(int cd, char *data, long len, long flags, long *revent)

t psend() is used to send data across an open connection to another program. The
caller must have control of the connection. t psend() 'sfirst argument, cd, specifies
the open connection over which datais sent. cd isadescriptor returned from either
t pconnect () or the TPSVCI NFO parameter passed to a conversational service.

The second argument, dat a, must point to a buffer previously allocated by

t pal | oc() .1 en specifies how much of the buffer to send. Note that if dat a pointsto
abuffer of atypethat does not require a length to be specified (for example, an FM
fielded buffer), then| en isignored (and may be0). Also, dat a can be NULL inwhich
case | en isignored (no application data is sent—this might be done, for instance, to
grant control of the connection without transmitting any data). The type and subtype
of dat a must match one of the types and subtypes recognized by the other end of the
connection.

Thefollowingisalist of validf 1 ags:

TPRECVONLY
Thisflag signifiesthat, after the caller’s datais sent, the caller gives up
control of the connection (that is, the caller can not issue any moret psend()
calls). When the receiver on the other end of the connection receivesthe data
sent by t psend() , it will also receive an event (TPEV_SENDONLY) indicating
that it has control of the connection (and can not issue more any t pr ecv()
cals).

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for
example, theinternal buffersinto which the message is transferred are full).
When TPNOBLOCK is not specified and a blocking condition exists, the caller
blocks until the condition subsides or atimeout occurs (either transaction or
blocking timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

ATMI C Function Reference

tpsend(3c)

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isreissued.

If an event exists for the descriptor, cd, thent psend() will fail without sending the
caller'sdata. The event typeisreturned inr event . Valid eventsfor t psend() areas
follows:

TPEV_DI SCONI MV
Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has issued an immediate disconnect on the
connection viat pdi scon(), oritissuedt preturn(),tpconmt () or
t pabort () with the connection still open. This event is also returned to the
originator or subordinate when a connection is broken dueto a
communications error (for example, aserver, machine, or network failure).

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation hasissued t pr et ur n() without having
control of the conversation. In addition, t pret urn() hasbeenissuedina
manner different from that described for TPEV_SVCFAI L below. This event
can be caused by an ACL permissions violation; that is, the originator does
not have permission to connect to the receiving process. This event is not
returned at thetimethet pconnect () isissued, but isreturned with the first
tpsend() (following at pconnect () with flag TPSENDONLY) or t pr ecv()
(following at pconnect () withflag TPRECVONLY). A system event and alog
message are al so generated.

TPEV_SVCFAI L
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation hasissued t pr et ur n() without having
control of the conversation. In addition, t pr et ur n() wasissued with the
rval setto TPFAIL or TPEXI T and dat a to NULL.

Because each of these events indicates an immediate disconnection notification (that
is, abortive rather than orderly), datain transit may be lost. The descriptor used for the
connection is no longer valid. If the two programs were participating in the same
transaction, then the transaction has been marked abort-only.

If the value of either SVCTI MEQUT in the UBBCONFI Gfile or TA_SVCTI MEQUT in the
TM_M B is non-zero, TPESVCERR is returned when a service timeout occurs.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall totpsend().

ATMI C Function Reference 217

Section 3¢ - C Functions

Return Values

218

Errors

Upon return from t psend() whererevent is set to either TPEV_SVCSUCC or
TPEV_SVCFAI L, thet pur code() global contains an application-defined value that
was sent as part of t pret urn(). Thefunction t psend() returns-1 on error and sets
t per rno() toindicatethe error condition. Also, if an event exists and no errors were
encountered, t psend() returns-1andt perrno() isset to[TPEEVENT] .

Upon failure, t psend() setstperrno() to one of the following values:

[TPEI NVAL]
Invalid arguments were given (for example, dat a does not point to a buffer
allocated by t pal | oc() orfl ags areinvalid).

[TPEBADDESC]
cd isinvalid.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. In either case, no changesaremadeto *dat a, itscontentsnor *I en.
If atransaction timeout occurred, then any attempts to send or receive
messages on any connections or to start a new connection will fail with
TPETI ME until the transaction has been aborted.

[TPEEVENT]
An event occurred. dat a is not sent when thiserror occurs. The event typeis
returned inr event .

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC|
t psend() was called in an improper context (for example, the connection
was established such that the calling program can only receive data).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

ATMI C Function Reference

tpsend(3c)

[TPECS]
An operating system error has occurred.

See Also tpall oc(3c),tpconnect(3c),tpdiscon(3c),tprecv(3c),tpservice(3c)

ATMI C Function Reference 219

Section 3¢ - C Functions

tpservice(3c)

220

Name

Synopsis

Description

t pservi ce() —Template for service routines.

#i nclude <atm . h> /* Cinterface */

voi d tpservice(TPSVC NFO *svcinfo) /* C++ interface - must have
* C linkage */

extern “C’ void tpservice(TPSVCI NFO *svci nf 0)

t pservi ce() isthetemplate for writing service routines. This template is used for
services that receive requestsviat pcal | (), t pacal | () ort pf orwar d() routinesas
well as by services that communicate viat pconnect (), t psend() andt precv()
routines.

Serviceroutines processing requests made viaeither t pcal | () ortpacal | () receive
at most oneincoming message (in thedat a element of svci nf o) and send at most one
reply (upon exiting the service routine with t pret urn()).

Conversational services, on the other hand, areinvoked by connection requestswith at
most one incoming message along with a means of referring to the open connection.
When a conversational serviceroutineisinvoked, either the connecting program or the
conversational service may send and receive data as defined by the application. The
connection is half-duplex in nature meaning that one side controls the conversation
(that is, it sends data) until it explicitly gives up control to the other side of the
connection.

Concerning transactions, service routines can participate in at most one transaction if
invoked in transaction mode. As far as the service routine writer is concerned, the
transaction ends upon returning from the service routine. If the service routine is not
invoked in transaction mode, then the service routine may originate as many
transactions as it wants using t pbegi n() , t pconmi t (), and t pabor t () . Note that

t preturn() isnot used to complete atransaction. Thus, it isan error to call

t pr et urn() with an outstanding transaction that originated within the service routine.

Service routines are invoked with one argument: svci nf o, a pointer to a service
information structure. This structure includes the following members:

char nane[32] ;
char *dat a;

| ong | en;

| ong flags;
int cd;

ATMI C Function Reference

tpservice(3c)

|l ong appkey;
CLI ENTI D cltid;

nane is populated with the service name that the requester used to invoke the service.

The setting of f | ags upon entrance to a service routine indicates attributes which the
service routine may want to note. The following are the possible valuesfor f | ags:

TPCONV
A connection request for a conversation has been accepted and the descriptor
for the conversation isavailablein cd. If not set, then thisisa
request/response service and cd is not valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
The caller isnot expecting areply. Thisoption will not be set if TPCONV is set.

TPSENDONLY
The service isinvoked such that it can only send data across the connection
and the program on the other end of the connection can only receive data. This
flag ismutually exclusive with TPRECVONLY and may be set only when
TPCONV is also set.

TPRECVONLY
The serviceisinvoked such that it can only receive data from the connection
and the program on the other end of the connection can only send data. This
flag ismutually exclusive with TPSENDONLY and may be set only when
TPCONV is also set.

dat a pointsto the data portion of arequest message and | en is the length of the data.
The buffer pointed to by dat a was allocated by t pal | oc() in the communication
manager. Thisbuffer may be grown by theuser witht pr eal | oc() ; however, it cannot
be freed by the user. It is recommended that this buffer be the one passed to either
tpreturn() ortpforward() whentheservice ends. If adifferent buffer ispassed to
those routines, then that buffer isfreed by them. Note that the buffer pointed to by dat a
will be overwritten by the next service request even if this buffer is not passed to
tpreturn() ortpforward().datamay be NULL if no data accompanied the
request. In this case, | en will be 0.

When TPCONV issetinf | ags, cd is the connection descriptor that can be used with
tpsend() andt precv() tocommunicate with the program that initiated the
conversation.

ATMI C Function Reference 221

Section 3¢ - C Functions

Return Values

222

Errors

See Also

appkey issettothe application key assigned to the requesting client by the application
defined authentication service. This key value is passed along with any and all service
reguests made while within thisinvocation of the serviceroutine. appkey will have a
value of -1 for originating clients that do not pass through the application
authentication service.

cltidistheunique client identifier for the originating client associated with this
service request. The definition of this structure is made available to the application in
atmi . h solely so that client identifiers may be passed between application servers if
necessary. Therefore, the semantics of the fields defined below are not documented
and applications should not manipul ate the contents of CLI ENTI D structures. Doing so
will invalidate the structures. The CLI ENTI D structure includes the following member:

| ong clientdatal4];

Notethat for C++, the service function must have C linkage. Thisis done by declaring
the function as ‘extern “C.””

A service routine does not return any value to its caller, the communication manager
dispatcher; thus, it is declared as a void. Service routines, however, are expected to
terminateusing eithert pr et urn() ort pf or war d() . A conversational serviceroutine
must use't pr et ur n() , and cannot use't pf or war d() . If a service routine returns
without using either t pret urn() ort pf orward() (thatis, it usesthe C language

r et ur n statement or just simply “falls out of the function”) or t pf or war d() iscalled
from a conversational server, the server will print awarning messagein alog file and
return a service error to the originator or requester. All open connectionsto
subordinates will be disconnected immediately, and any outstanding asynchronous
replieswill be marked stale. If the server was in transaction mode at thetime of failure,
the transaction is marked abort-only. Note also that if either t pret urn() or

t pf orwar d() areused outside of a service routine (for example, in clients, or in
tpsvrinit() ortpsvrdone()), then these routines simply return having no effect.

Sincet pr et ur n() endstheserviceroutine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function’s caller. Such errors
causet perrno() to be set to TPESVCERR for a program receiving the service's
outcomeviaeithert pcal | () ort pget rpl y(), and causetheevent, TPEV_SVCERR, to
be sent over the conversation to a program using t psend() or t precv() .

tpal | oc(3c), tpbegin(3c),tpcall(3c),tpconnect(3c),tpforward(3c),
tpreturn(3c),servopts(5)

ATMI C Function Reference

tpsetctxt(3c)

tpsetctxt(3c)

Name

Synopsis

Description

Return Values

Errors

t pset ct xt () —Sets a context identifier for the current application association.

#i ncl ude <atni. h>
int tpsetctxt(TPCONTEXT_T context, |ong flags)

t pset ct xt () definesthe context in which the current thread operates. This function
operates on a per-thread basis in a multithreaded environment, and on a per-process
basisin a non-threaded environment.

Subsequent BEA Tuxedo ATMI calls made in this thread reference the application
indicated by context. The context should have been provided by aprevious call to
t pget ct xt () in one of the threads of the same process. If the value of cont ext is
TPNULLCONTEXT, then the current thread is disassociated from any BEA Tuxedo
ATMI context.

Y ou can put an individual thread in a process operating in multicontext mode into the
TPNULLCONTEXT state by issuing the following call:

t pset ct xt (TPNULLCONTEXT, 0)
TPI NVALI DCONTEXT is not avalid input value for cont ext .

A thread in the TPI NVALI DCONTEXT state is prohibited from issuing calls to most
ATMI functions. (For acompletelist of the functions that may and may not be called,
see “ Introduction to the C Language A pplication-to- Transaction Monitor Interface.”.)
Therefore, you may sometimes need to move athread out of the TPI NVALI DCONTEXT
state. Todo so, call t pset ct xt () with context set to TPNULLCONTEXT or another valid
context. (It isalso alowableto call thet pt er n() function to exit from the

TPI NVALI DCONTEXT state.)

The second argument, f | ags, is hot currently used and must be set to 0.

A thread in amultithreaded application may issue acall tot pset ct xt () while
running in any context state, including TPl NVALI DCONTEXT.

Upon successful completion, t pset ct xt () returns anon-negative value.

Upon failure, it leavesthe calling processinits original context, returnsavalue of -1,
and setst per r no to indicate the error condition.

Upon failure, t pset ct xt () setst perr no to one of the following values:

ATMI C Function Reference 223

Section 3¢ - C Functions

[TPE! NVAL]
Invalid arguments have been given. For example, f | ags has been set to a
value other than 0 or the context is TPI NVALI DCONTEXT.

[TPENCENT]
Thevalue of cont ext isnot avalid context.

[TPEPROTC)
t pset ct xt () hasbeen called in animproper context. For example: (a) it has
been called in a server-dispatched thread; (b) it has been called in a process
that hasnot called t pi ni t () ; (c) it hasbeen called in aprocessthat hascalled
t pi ni t () without specifying the TPMULTI CONTEXTS flag; or (d) it has been
called from more than one thread in a process where the TMNOTHREADS
environment variable has been turned on.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error has
been written to alog file.

[TPECS]
An operating system error has occurred.

See Also Introduction to the C Language A pplication-to-Transaction Monitor Interface,
t pget ct xt (3c)

224 ATMI C Function Reference

tpsetunsol(3c)

tpsetunsol(3c)

Name

Synopsis

Description

t pset unsol () —Sets the method for handling unsolicited messages.

#i ncl ude <atni. h>
void (*tpsetunsol (void (_TMDLLENTRY *)(*disp) (char *data, |ong
len, long flags))) (char *data, long len, long flags)

t pset unsol () alowsaclient to identify the routine that should be invoked when an
unsolicited messageisreceived by the BEA Tuxedo ATMI system libraries. Beforethe
first call tot pset unsol (), any unsolicited messages received by the BEA Tuxedo
ATMI system libraries on behalf of the client are logged and ignored. A call to

t pset unsol () withaNULL function pointer has the same effect. The method used
by the system for notification and detection is determined by the application default,
which can be overridden on a per-client basis (seet pi ni t (3c)).

The function pointer passed on the call to t pset unsol () must conform to the
parameter definition given. dat a pointsto the typed buffer received and | en isthe
length of the data. f | ags are currently unused. dat a can be NULL if no data
accompanied the notification. dat a may be of abuffer type/subtype that is not known
by the client, in which case the message data is unintelligible.

dat a cannot be freed by application code. However, the system freesit and invalidates
the data area following return.

Processing within the application’ s unsolicited message handling routine is restricted
to the following BEA Tuxedo ATMI functions: t pal 1 oc(), tpfree(),
tpgetctxt(),tpgetlev(),tprealloc(),andtptypes().

Note that in a multithreaded programming environment, it is possible for an
unsolicited message handling routineto call t pget ct xt () , create another thread, have
that thread call t pset ct xt () to the appropriate context, and have the new thread use
the full set of ATMI functionsthat are available to clients.

Ift pset unsol () iscalled from athread that isnot currently associated with acontext,
this establishes a per-process default unsolicited message handler for al new

t pi ni t () contexts created. It has no effect on contexts already associated with the
system. A specific context may change this default unsolicited message handler by
calling t pset unsol () again when the context is active. The per-process default
unsolicited message handler may be changed by again callingt pset unsol () ina
thread not currently associated with a context.

ATMI C Function Reference 225

Section 3¢ - C Functions

Return Values

226

Errors

Portability

See Also

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pset unsol ().

Upon success, t pset unsol () returnsthe previous setting for the unsolicited message
handling routine. (NULL is a successful return indicating that no message handling
function had been set previously.)

Upon failure, it returns TPUNSOLERR and setst per r no() to indicate the error
condition.

Upon failure, t pset unsol () setst perrno() to one of thefollowing vaues:

[TPEPROTO|
t psetunsol () has been called in an improper context. For example, it has
been called from within a server.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

Theinterfaces described int pnoti f y(3c) are supported on native site UNIX-based
and Windows processors. In addition, the routinest pbr oadcast () and

t pchkunsol (), aswell asthe functiont pset unsol (), are supported on UNIX and
MS-DOS workstation processors.

tpinit(3c),tpterm3c)

ATMI C Function Reference

tpsign(3c)

tpsign(3c)

Name

Synopsis

Description

Return Values

Errors

See Also

t psi gn() —Marks a typed message buffer for digital signature.

#i ncl ude <atni. h>
int tpsign(char *data, TPKEY hKey, |ong fl ags)

t psi gn() marks, or registers, amessage buffer for digital signature on behalf of the
principal associated with hKey.

dat a must point to avalid typed message buffer either (1) previously allocated by a
process calling t pal | oc() or (2) delivered by the system to areceiving process. The
content of the buffer may be modified after t psi gn() isinvoked.

When the buffer pointed to by dat a istransmitted from a process, the public key
software generates and attaches a digital signature to the message buffer for each
digital-signature registration request. A digital signature enablesareceiving processto
verify the signer (originator) of the message.

Thefl ags argument isreserved for future use and must be set to 0.
Onfailure, thisfunction returns-1 and setst per r no() toindicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, hKey is not avalid key for
signing or the value of dat a isSNULL.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

t pkey_cl ose(3c),t pkey_open(3c)

ATMI C Function Reference 227

Section 3¢ - C Functions

tpsprio(3c)

Name

Synopsis

Description

Return Values

228

Errors

t pspri o() —Sets the service request priority.

#i nclude <atm . h>
int tpsprio(prio, flags)

t pspri o() setsthepriority for the next request sent or forwarded by the current thread
in the current context. The priority set affects only the next request sent. Priority can
also be set for messages enqueued or dequeued by t penqueue() or t pdequeue(), if
the queued message facility isinstalled. By default, the setting of pri o increments or
decrementsaservice's default priority up to amaximum of 100 or down to aminimum
of 1, depending on itssign, where 100 isthe highest priority. The default priority for a
request is determined by the service to which the request is being sent. This default
may be specified administratively (see UBBCONFI G 5)), or take the system default of
50. t psprio() hasno effect on messages sent viat pconnect () ort psend() .

A lower priority message does not remain enqueued forever because every tenth
messageisretrieved on a“firstin, first out” (FIFO) basis. Response time should not be
aconcern of the lower priority interface or service.

In amultithreaded application t pspri o() operates on a per-thread basis.
Thefollowingisalist of valid flags:

TPABSOLUTE
The priority of the next request should be sent out at the absol ute value of
pri o. The absolute value of pri o must bewithin the range 1 and 100,
inclusive, with 100 being the highest priority. Any value outside of thisrange
causes adefault value to be used.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot psprio().

Upon failure, t pspri o() returns-1 and setst perrno() to indicate the error
condition.

Upon failure, t psprio() setst perrno() to one of the following values:

[TPEI NVAL]
f1ags areinvalid.

ATMI C Function Reference

tpsprio(3c)

[TPEPROTC)
tpsprio() wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

See Also tpacal | (3c),tpcal | (3c),t pdequeue(3c),t penqueue(3c),t pgpri o(3c)

ATMI C Function Reference 229

Section 3¢ - C Functions

tpstrerror(3c)

Name

Synopsis

Description

Return Values

Errors

Example

See Also

t pstrerror () —Gets error message string for aBEA Tuxedo ATMI system error.

#include <atm . h>
char *
tpstrerror(int err)

tpstrerror() isusedtoretrievethetext of an error messagefromLl BTUX_CAT.err
isthe error code set int per r no() when aBEA Tuxedo ATMI system function call
returnsa-1 or other failure value.

Y ou can use the pointer returned by t pstrerror () asan argumentto userl og() or
the UNIX functionf printf ().

A thread in amultithreaded application may issueacall tot pstrerror () while
running in any context state, including TPl NVALI DCONTEXT.

Upon success, t pstrerror () returnsapointer to astring that contains the error
message text.

If err isaninvalid error code, t pstrerror () returnsaNULL.
Upon failure, t pstrerror () returnsaNULL but does not set t perrno() .

#include <atm . h>

char *p;

if (tpbegin(10,0) == -1) {
p = tpstrerror(tperrno);
userlog(“%”, p);
(voi d)t pabort (0);
(void)tptern();
exit(1);

}

userlog(3c),Fstrerror, Fstrerror32(3fm)

230 ATMI C Function Reference

tpstrerrordetail(3c)

tpstrerrordetail(3c)

Name

Synopsis

Description

Return Values

Errors

Example

tpstrerrordetail () —Gets error detail message string for aBEA Tuxedo ATMI
system error.

#i ncl ude <atni. h>
char * tpstrerrordetail (int err, long flags)

tpstrerrordetail () isused toretrieve thetext of an error detail of aBEA Tuxedo
ATMI system error. er r isthevauereturned by t perrordetail ().

The user can use the pointer returned by t pstrerrordetail () asan argument to
userl og() or the UNIX functionfprintf ().

Currently f 1 ags isreserved for future use and must be set to 0.

A thread in amultithreaded application may issueacall tot pstrerrordetail ()
while running in any context state, including TPI NVALI DCONTEXT.

Upon success, the function returns a pointer to a string that contains the error detail
message text.

Upon failure (that is, if err isaninvalid error code), t pstrerrordetail () returnsa
NULL.

Upon failure, t pstrerrordetail () returnsaNULL but does not set t per rno() .

#i ncl ude <atm . h> .

int ret;
char *p;
if (tpbegin(10,0) == -1) {
ret = tperrordetail (0);
if (ret ==-1) {
(void) fprintf(stderr, “tperrordetail () failed!'\n");
(void) fprintf(stderr, “tperrno = %, %\n”,
tperrno, tpstrerror(tperrno));
}

ATMI C Function Reference 231

Section 3¢ - C Functions

else if (ret !=0) {
(void) fprintf(stderr, “errordetail:%\n",
tpstrerrordetail (ret, 0));

}

See Also Introduction to the C Language A pplication-to-Transaction Monitor Interface,
tperrordetail (3c),tpstrerror(3c),userlog(3c),tperrno(5)

232 ATMI C Function Reference

tpsubscribe(3c)

tpsubscribe(3c)

Name

Synopsis

Description

t psubscri be() —Subscribesto an event.

#i ncl ude <atni. h>
I ong tpsubscribe(char *eventexpr, char *filter, TPEVCTL *ctl, |ong
fl ags)

The caller usest psubscri be() to subscribeto an event or set of events named by
event expr . Subscriptions are maintained by the BEA Tuxedo ATMI EventBroker,
TMUSREVT(5) , and are used to notify subscribers when events are posted via

t ppost () . Each subscription specifies a notification method which can take one of
three forms: client notification, service calls, or message enqueuing to stable-storage
gueues. Notification methods are determined by the subscriber’ s process type and the
arguments passed to t psubscri be() .

The event or set of events being subscribed to is named by event expr , a
NUL L -terminated string of at most 255 characters containing aregular expression. For
example, if event expr is“\ e\ e. . *”, the caller issubscribing to all system-generated
events; if event expr is“\ e\ e. SysServer. *”, the caller is subscribing to al
system-generated eventsrelated to servers. If event expr is“[A-Z] . *”, thecaleris
subscribing to all user events starting with A-Z; if event expr is“. *(ERR| err).*",
the caller is subscribing to all user events containing either the substring ERR or the
substring er r in the event name. Events called account _err or and ERROR_STATE,
for example, would both qualify. For more information on regular expressions, see
“Regular Expressions’ on page 237.

If present, fil ter isastring containing a Boolean filter rule that must be eval uated
successfully before the EventBroker posts the event. Upon receiving an event to be
posted, the EventBroker appliesthefilter rule, if one exists, to the posted event’ s data.
If the data passes the filter rule, the EventBroker invokes the notification method;
otherwise, the broker does not invoke the associated notification method. The caller
can subscribe to the same event multiple timeswith different filter rules.

Filter rules are specific to the typed buffersto which they are applied. For FML and
view buffers, thefilter ruleisastring that can be passed to each’ s Boolean expression
compiler (see Fbool co(3fml) and Fvbool co(3fml), respectively) and evaluated
against the posted buffer (see Fbool ev(3fml) and Fvbool ev(3fml), respectively). For
STRI NG buffers, the filter rule is aregular expression. All other buffer types require

ATMI C Function Reference 233

Section 3¢ - C Functions

234

customized filter evaluators (see buf f er (3c) and t ypesw(5) for details on adding
customized filter evaluators). fi | t er isaNULL-terminated string of at most 255
characters.

If the subscriber isaBEA Tuxedo ATMI system client processand ct | iSNULL, then
the EventBroker sends an unsolicited message to the subscriber when the event to
which it subscribed is posted. That is, when an event name is posted that eval uates
successfully against event expr , the EventBroker tests the posted data against the
filter rule associated with event expr . If the data passes thefilter rule or if thereisno
filter rule for the event, then the subscriber receives an unsolicited notification along
with any data posted with the event. In order to receive unsolicited notifications, the
client must register (viat pset unsol ()) an unsolicited message handling routine. If a
BEA Tuxedo ATMI system server process callst psubscri be() withaNULL ct|
parameter, then t psubscri be() falls settingt per rno() to TPEPROTO.

Clients receiving event notification via unsolicited messages should remove their
subscriptions from the EventBroker’ slist of active subscriptions before exiting (see

t punsubscri be(3c) for details). Using t punsubscri be() 'swildcard handle, -1,
clients can conveniently remove all of their “non-persistent” subscriptions which
include those associated with the unsolicited notification method (see the description
of TPEVPERSI ST bel ow for subscriptions and their associated notification methods that
persist after a process exits). If a client exits without removing its hon-persi stent
subscriptions, then the EventBroker will remove them when it detectsthat theclient is
no longer accessible.

If the subscriber (regardless of processtype) wants event notifications to go to service
routines or to stable-storage queues, then the ct | parameter must point to avalid
TPEVCTL structure. This structure contains the following elements:

| ong flags;
char namel[32] ;
char name2[32] ;
TPQCTL qctl;

Thefollowingisalist of valid bitsfor thect | —>f | ags element controlling optionsfor
event subscriptions:

TPEVSERVI CE
Setting this flag indicates that the subscriber wants event notifications to be
sent to the BEA Tuxedo ATMI system service routine named in
ctl —>namel. That is, when an event name is posted that evaluates
successfully against event expr , the EventBroker tests the posted data
against the filter rule associated with event expr . If the data passesthe filter

ATMI C Function Reference

tpsubscribe(3c)

rule or if thereis no filter rule for the event, then a service request is sent to
ct | —>nanmel along with any data posted with the event. The service namein
ct| —>nanel can be any valid BEA Tuxedo ATMI system service name and
it may or may not be active at the time the subscription is made. Service
routines invoked by the EventBroker should return with no reply data. That
is, they should call t pret urn() withaNULL dataargument. Any data
passed to t pr et ur n() will be dropped. TPEVSERVI CE and TPEVQUEUE are
mutually exclusive flags.

If TPEVTRANIsasosetinct | —>f | ags, thenif the processcalling t ppost ()
isin transaction mode, the EventBroker calls the subscribed service routine
such that it will be part of the poster’ s transaction. Both the EventBroker,
TMUSREVT(5) , and the subscribed service routine must belong to server
groups that support transactions (see UBBCONFI G(5) for details). If
TPEVTRANisnot set inct | —>f | ags, then the EventBroker callsthe
subscribed service routine such that it will not be part of the poster’s
transaction.

TPEVQUEUE
Setting this flag indicates that the subscriber wants event notifications to be
enqueued to the queue space named in ct | —>nanel and the queue named in
ct | —>name2. That is, when an event name is posted that evaluates
successfully against event expr , the EventBroker tests the posted data
against the filter rule associated with event expr . If the data passes the filter
ruleor if thereisnofilter rulefor the event, then the EventBroker enqueues a
message to the queue space named in ct | —>name 1 and the queue named in
ct | —>nanme2 aong with any data posted with the event. The queue spaceand
gueue name can be any valid BEA Tuxedo ATMI system queue space and
gueue name, either of which may or may not exist at the time the subscription
is made.

ctl —>gct | can contain options further directing the EventBroker’'s
enqueuing of the posted event. If no options are specified, then

ctl —>qct 1. f1 ags should be set to TPNOFLAGS. Otherwise, options can be
set as described in the “Control Parameter” subsection of t penqueue(3c)
(specifically, seethe section describing the valid list of flags controlling input
information for t penqueue(3c)). TPEVSERVI CE and TPEVQUEUE are
mutually exclusive flags.

If TPEVTRANIsasosetinct | —>f | ags, thenif the processcalling t ppost ()
isin transaction mode, the EventBroker enqueues the posted event and its

ATMI C Function Reference 235

Section 3¢ - C Functions

236

data such that it will be part of the poster’s transaction. The EventBroker,
TMUSREVT(5) , must belong to a server group that supports transactions (see
UBBCONFI G(5) for details). If TPEVTRANIsnot setinct | —>f | ags, then the
EventBroker enqueues the posted event and its data such that it will not be
part of the poster’ s transaction.

TPEVTRAN
Setting this flag indicates that the subscriber wants the event notification for
this subscription to be included in the poster’ stransaction, if oneexists. If the
poster is not atransaction, then atransaction is started for this event
notification. If thisflag is not set, then any events posted for this subscription
will not be done on behalf of any transaction in which the poster is
participating. Thisflag can be used with either TPEVSERVI CE or TPEVQUEUE.

TPEVPERSI ST
By default, the BEA Tuxedo EventBroker deletes subscriptions when the
resourceto which it is posting is not available (for example, the EventBroker
cannot access a service routine and/or a queue space/queue hame associ ated
with an event subscription). Setting this flag indicates that the subscriber
wants this subscription to persist across such errors (usually because the
resource will become available again in the future). When this flag is not
used, the EventBroker will remove this subscription if it encounters an error
accessing either the service name or queue space/queue name designated in
this subscription.

If thisflagis used with TPEVTRAN and the resource isnot available at the time
of event notification, then the EventBroker will return to the poster such that
itstransaction must be aborted. That is, even though the subscription remains
intact, the resource’ s unavailability will cause the poster’ s transaction to fail.

If the EventBroker’s list of active subscriptions aready contains a subscription that
matches the one being requested by t psubscri be() , then the function fails setting
t per rno() to TPEMATCH. For a subscription to match an existing one, both
eventexpr and filter must match those of asubscription already in the
EventBroker’s active list of subscriptions. In addition, depending on the notification
method, other criteria are used to determine matches.

If the subscriber isaBEA Tuxedo ATMI system client processandct | isNULL (such
that the caller receives unsolicited notifications when events are posted), then its
system-defined client identifier (known asaCLI ENTI D) isalso used to detect matches.
That is, t psubscri be() failsif event expr,filter, andthecaller'sCLI ENTI D
match those of a subscription aready known to the EventBroker.

ATMI C Function Reference

tpsubscribe(3c)

Regular
Expressions

If the caller has set ct | —>f | ags to TPEVSERVI CE, then t psubscri be() failsif
event expr, fil ter,andthe service name setin ct | —>nanel match those of a
subscription aready known to the EventBroker.

For subscriptions to stable-storage queues, the queue space, queue name, and
correlation identifier are used, in addition to event expr andfil ter, when
determining matches. The correlation identifier can be used to differentiate among
severa subscriptions for the same event expression and filter rule, destined for the
samequeue. Thus, if thecaller hasset ct | —>f | ags to TPEVQUEUE, and TPQCOCRI Dis
notsetinct!l—>qgct!l.fl ags, thent psubscribe() falsif eventexpr,fil ter,the
gueue space name set in ct | —>nane1, and the queue name set in ct | —>name2 match
those of a subscription (which also does not have a correlation identifier specified)
already known to the EventBroker. Further, if TPQCOORI Disset in

ctl —>qctl . fl ags,thent psubscri be() falsifeventexpr,filter,ctl —>namel,
ctl —>name2,and ct| —>qgct | . corri d match those of a subscription (which hasthe
same correlation identifier specified) already known to the EventBroker.

Thefollowingisalist of valid f | ags for t psubscri be():

TPNOBLOCK
The subscriptionisnot madeif ablocking condition exists. If such acondition
occurs, thecall failsandt per rno() isset to TPEBLOCK. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wantsto
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isreissued. When TPSI GRSTRT is not specified and asignal interrupts a
system call, thent psubscri be() fallsandtperrno() issetto TPGOTSI G

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall tot psubscri be().

The regular expressions described in Table 12 are much like those used in the UNIX
system editor, ed(1). The alternation operator, (]), has been added a ong with some
other practical things. In general, however, there should be few surprises.

ATMI C Function Reference 237

Section 3¢ - C Functions

Regular expressions (RES) are constructed by applying any of the following
production rules one or more times.

Table 12 Regular Expressions

Rule

Matching Text

character

Itself (character isany ASCII character except the special ones mentioned below).

\ character

Itself except asfollows:
= \\—newline
\\t—tab
\\b—backspace
\\r—carriage return
\\f—formfeed

\ speci al -character

Itsunspecial self. The specia charactersare.* + 2 | () [{ and \\.
—Any character except the end-of-line character (usually newline or NULL).
~—Beginning of the line.
$—End-of-line character.

[cl ass] any character in the class denoted by a sequence of characters and/or ranges. A
rangeis given by the construct character-character. For example, the character
class, [azA-Z0-9], will match any alphameric character or “_". To beincluded in
the class, ahyphen, “-”, must be escaped (preceded by a“\\") or appear first or last
inthe class. A litera “]” must be escaped or appear first in the class. A literal “/”
must be escaped if it appearsfirst in the class.

[» class] Any character in the complement of the class with respect to the ASCII character
set, excluding the end-of-line character.

RE RE The sequence. (catenation)

RE | RE Either the left RE or the right RE. (left to right alternation)

RE * Zero or more occurrences of RE.

RE + One or more occurrences of RE.

RE ? Zero or one occurrences of RE.

RE{ n} n occurrences of RE. n must be between 0 and 255, inclusive.

238 ATMI C Function Reference

tpsubscribe(3c)

Table 12 Regular Expressions (Continued)

Rule M atching Text

RE{ m n} m through n occurrences of RE, inclusive. A missing mistaken to be zero. A
missing n denotes mor more occurrences of RE.

(RE) Explicit precedence/grouping.

(RE) $n Thetext matching RE is copied into the nth user buffer. n may be 0 through 9. User

buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

Return Values

Errors

There are three level s of precedence. In order of decreasing binding strength they are:
m catenation closure (*,+ ?2,{...})
m catenation

m alternation (])
Asindicated above, parentheses are used to give explicit precedence.

Upon successful completion, t psubscri be() returns ahandle that can be used to
remove this subscription from the EventBroker’ s list of active subscriptions. The
subscriber or any other processis allowed to use the returned handle to delete this
subscription.

Upon failure, t psubscri be() returns-1 and setst perrno() to indicate the error
condition.

Uponfailure, t psubscri be() setst perrno() tooneof thefollowing values. (Unless
otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, event expr iSNULL).

[TPENCENT]
Cannot access the BEA Tuxedo EventBroker.

[TPELI M T]
The subscription failed because the EventBroker’s maximum number of
subscriptions has been reached.

ATMI C Function Reference 239

Section 3¢ - C Functions

240

See Also

[TPEMATCH]
The subscription failed because it matched one aready listed with the
EventBroker.

[TPEPERM
Theclient is not attached ast psysadmand the subscription action is either a
service call or the enqueuing of a message.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTI ME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTO)|
t psubscri be() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

buf f er (3c), t penqueue(3c), t ppost (3c),t psetunsol (3c),

t punsubscri be(3c), Fbool co, Fbool co32, Fvbool co, Fvbool co32(3fm),
Fbool ev, Fbool ev32, Fvbool ev, Fvbool ev32(3fm), EVENTS(5),
EVENT_M B(5) , TMSYSEVT(5) , TMUSREVT(5) , t uxtypes(5),typesw5),
UBBCONFI G(5)

ATMI C Function Reference

tpsuspend(3c)

tpsuspend(3c)

Name

Synopsis

Description

t psuspend() —Suspends a global transaction.

#i ncl ude <atni. h>
int tpsuspend(TPTRANID *tranid, |ong flags)

t psuspend() isused to suspend the transaction active in the caller’ s process. A
transaction begun with t pbegi n() may be suspended with t psuspend() . Either the
suspending process or another process may uset presunme() toresumework on a
suspended transaction. When t psuspend() returns, the caller isno longer in
transaction mode. However, while atransaction is suspended, all resources associated
with that transaction (such as database | ocks) remain active. Like an active transaction,
a suspended transaction is susceptible to the transaction timeout value that was
assigned when the transaction first began.

For the transaction to be resumed in another process, the caller of t psuspend() must
have been the initiator of the transaction by explicitly calling t pbegi n() .

t psuspend() may aso be called by a process other than the originator of the
transaction (for example, a server that receives arequest in transaction mode). In the
latter case, only the caller of t psuspend() may call t presume() to resume that
transaction. This case is allowed so that a process can temporarily suspend a
transaction to begin and do some work in another transaction before compl eting the
original transaction (for example, to run atransaction to log a failure before rolling
back the original transaction).

t psuspend() returnsin the space pointed to by t r ani d the transaction identifier
being suspended. The caller isresponsible for allocating the space to whicht rani d
points. It isan error for t r ani d to be NULL.

To ensure success, the caller must have completed all outstanding transactional
communication with servers before issuing t psuspend() . That is, the caller must
have received all replies for requests sent with t pacal | () that were associated with
the caller’ s transaction. Also, the caller must have closed all connections with
conversational servicesassociated withthecaller’ stransaction (thatis, t pr ecv() must
have returned the TPEV_SVCSUCC event). If either rule is not followed, then

t psuspend() fails, the caller’s current transaction is not suspended and all
transactional communi cation descriptors remain valid. Communication descriptors not
associated with the caller’s transaction remain valid regardl ess of the outcome of

t psuspend() .

ATMI C Function Reference 241

Section 3¢ - C Functions

Return Value

Errors

See Also

Currently, f 1 ags arereserved for future use and must be set to 0.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot psuspend() .

t psuspend() returns-1on error and setst per rno() to indicate the error condition.
Under the following conditions, t psuspend() failsand setst perrno() to:

[TPEI NVAL]
tranidisaNULL pointer or f I ags isnot 0. The caller’s state with respect
to the transaction is not changed.

[TPEABORT]
The caller’ s active transaction has been aborted. All communication
descriptors associated with the transaction are no longer valid.

[TPEPROTC]
t psuspend() wascaled in animproper context (for example, the caller is
not in transaction mode). The caller’ s state with respect to the transaction is
not changed.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

t pacal | (3c), t pbegi n(3c),tprecv(3c),tpresune(3c)

242 ATMI C Function Reference

tpsvrdone(3c)

tpsvrdone(3c)

Name

Synopsis

Description

Usage

See Also

t psvrdone() —Terminates a BEA Tuxedo ATMI system server.

#i ncl ude <atni. h>
voi d tpsvrdone(void)

The BEA Tuxedo ATMI system server abstraction callst psvrdone() after it has
finished processing service requests but before it exits. When this routine is invoked,
the server isstill part of the system but its own services have been unadvertised. Thus,
BEA Tuxedo ATMI system communication can be performed and transactions can be
defined in thisroutine. However, if t psvr done() returns with open connections,
asynchronous replies pending or while still in transaction mode, the BEA Tuxedo
ATMI system will close its connections, ignore any pending replies, and abort the
transaction before the server exits.

If aserver isshut down by theinvocation of t nshut down -y, services are suspended
and the ability to perform communication or to begin transactionsint psvr done() is
limited.

If an application does not provide this routine in a server, then the default version
provided by the BEA Tuxedo ATMI system is called instead. If a server has been
defined asasingle-threaded server, the default t psvr done() callst psvrthrdone(),
and the default version of t psvrt hr done() calst x_cl ose() . If aserver hasbeen
defined as a multithreaded server, t psvrt hr done() iscalled in each server dispatch
thread, but isnot called from t psvr done() . Regardless of whether the server is
multithreaded, the default t psvr done() callsuserl og to indicate that the server is
about to exit.

When calledint psvrdone(), thet pret urn() andt pf orward() functionssimply
return with no effect.

tpsvrthrdone(3c),tpsvrthrinit(3c),servopts(5)

ATMI C Function Reference 243

Section 3¢ - C Functions

tpsvrinit(3c)

Name

Synopsis

Description

Return Values

244

Usage

t psvri ni t () —Initializes a BEA Tuxedo system server.

#i nclude <atm . h>
int tpsvrinit(int argc, char **argv)

The BEA Tuxedo ATMI system server abstraction callst psvrini t () duringits
initialization. Thisroutineis called after the thread of control has become a server but
before it handles any service requests; thus, BEA Tuxedo ATMI system
communication may be performed and transactions may be defined in this routine.
However, if t psvrini t () returnswith either open connections or asynchronous
replies pending, or while still in transaction mode, the BEA Tuxedo ATMI system
closes the connections, ignores any pending replies, and aborts the transaction before
the server exits.

If an application does not provide thisroutine in a server, then the default version
provided by the BEA Tuxedo ATMI systemis called instead.

If aserver has been defined as asingle-threaded server, thedefaultt psvrinit () cals
tpsvrthrinit(),andthedefault versionof t psvrthrinit() calstx_open().lfa
server has been defined as a multithreaded server, t psvrt hrinit () iscalledin each
server dispatch thread, but isnot called fromt psvri ni t () . Regardless of whether the
server is single-threaded or multithreaded, the default version of t psvrinit () calls
user | og() toindicate that the server started successfully.

Application-specific options can be passed into a server and processed in
tpsvrinit() (seeservopts(5)). The options are passed through ar gc and ar gv.
Sinceget opt () isusedinaBEA Tuxedo ATMI system server abstraction, opt ar g() ,
optind(),andopterr () may beusedto control option parsing and error detectionin
tpsvrinit().

If an error occursint psvrinit (), the application can cause the server to exit
gracefully (and not take any service requests) by returning -1. The application itself
should not call exi t () .

A negative return value causes the server to exit gracefully.

When used outside a service routine (for example, in clients, int psvrinit (), orin
t psvrdone()), thet preturn() andtpforward() functions simply return with no
effect.

ATMI C Function Reference

tpsvrinit(3c)

See Also tpopen(3c),tpsvrdone(3c),tpsvrthrinit(3c),servopts(5)
get opt (3) in a C language reference manual

ATMI C Function Reference 245

Section 3¢ - C Functions

tpsvrthrdone(3c)

246

Name

Synopsis

Description

Usage

See Also

t psvrt hr done() —Terminates aBEA Tuxedo ATMI server thread.

#i nclude <atm . h>
voi d tpsvrthrdone(voi d)

The BEA Tuxedo ATMI server abstraction callst psvr t hr done() during the
termination of each thread that has been started to handle dispatched service requests.
In other words, even if athread isterminated before it has handled a request, the

t psvrdone() function iscalled. When thisroutineis called, the thread of contral is
till part of the BEA Tuxedo ATMI server, but the thread has finished processing al
service requests. Thus, BEA Tuxedo ATMI communication may be performed and
transactions may bedefined in thisroutine. However, if t psvrt hr done() returnswith
either open connections or asynchronous replies pending, or while still in transaction
mode, the BEA Tuxedo ATMI system closes the connections, ignores any pending
replies, and aborts the transaction before the server dispatch thread exits.

If an application does not provide thisroutine in a server, then the default version of
t psvrt hr done() provided by the BEA Tuxedo ATMI system iscalled instead. The
default version of t psvrt hrdone() calstx_cl ose() .

t psvrt hr done() iscalled even in single-threaded servers. In a single-threaded
server, t psvr t hr done() is called from the default version of t psvrdone().Ina
server with the potential for multiple dispatch threads, t psvr done() does not call
tpsvrthrdone().

When caled from t psvrt hrdone(),thetpreturn() andt pforward() functions
simply return with no effect.

t pforward(3c),tpreturn(3c),tpsvrdone(3c),tpsvrthrinit(3c),
tx_cl ose(3c),servopts(5)

ATMI C Function Reference

tpsvrthrinit(3c)

tpsvrthrinit(3c)

Name

Synopsis

Description

Return Values

Usage

tpsvrthrinit()—InitializesaBEA Tuxedo ATMI server thread.

#i ncl ude <atni. h>
int tpsvrthrinit(int argc, char **argv)

The BEA Tuxedo ATMI server abstraction callst psvrt hrini t () during the
initialization of each thread that handles dispatched service requests. Thisroutine is
called after the thread of control has become part of the BEA Tuxedo ATMI server but
before the thread handles any service requests. Thus, BEA Tuxedo ATMI
communication may be performed and transactions may be defined in this routine.
However, if t psvrthrinit () returnswith either open connections or asynchronous
replies pending, or while still in transaction mode, the BEA Tuxedo ATMI system
closes the connections, ignores any pending replies, and aborts the transaction before
the server dispatch thread exits.

If an application does not provide this routine in a server, then the default version of
tpsvrthrinit() provided by the BEA Tuxedo ATMI system is called instead. The
default version of t psvrthrinit () callstx_open().

tpsvrthrinit() iscaled evenin single-threaded servers. In asingle-threaded
server, t psvrthrini t () iscaled fromthe default version of t psvrinit().Ilna
server with the potential for multiple dispatch threads, t psvri nit () does not call
tpsvrthrinit().

Application-specific options can be passed into a server and processed in
tpsvrthrinit().For moreinformation about options, seeser vopt s(5) . The
optionsarepassed ar gc andar gv. Becauseget opt () isusedinaBEA Tuxedo ATMI
server abstraction, opt ar g() , opti nd(),andopt err () may beusedto control option
parsing and error detectionintpsvrthrinit().

If an error occursintpsvrthrinit (), the application can cause the server dispatch
thread to exit gracefully (and not take any service requests) by returning -1. The
application should not call exi t () or any operating system thread exit function.

A negative return value will cause the server dispatch thread to exit gracefully.

When used outside a service routine (for example, when used in aclient or in
tpsvrinit(),tpsvrdone(),tpsvrthrinit(),ortpsvrthrdone()),the
tpreturn() andtpforward() functionssimply return with no effect.

ATMI C Function Reference 247

Section 3¢ - C Functions

See Also tpforward(3c),tpreturn(3c),tpsvrthrdone(3c),tpsvrthrinit(3c),
t x_open(3c), servopt s(5)

get opt (3) in a C language reference manual

248 ATMI C Function Reference

tpterm(3c¢)

tpterm(3c)

Name

Synopsis

Description

t pt er m() —L eaves an application.

#i ncl ude <atni.h>
int tpterm(void)

tptern() removesaclient from aBEA Tuxedo ATMI system application. If the
client isin transaction mode, then the transaction is rolled back. When t pt er n{()
returns successfully, the caller can no longer perform BEA Tuxedo ATMI client
operations. Any outstanding conversations are immediately disconnected.

Ift pt er () iscalled morethan once (that is, if it is called after the caller has aready
left the application), no action is taken and success is returned.

Multithreading and Multicontexting Issues

In good programming practice, all threads but one should either exit or switch context
before the single remaining thread issuesacall to t pt er n() . If thisis not done, then
the remaining threads are put in a TPI NVALI DCONTEXT context. A description of the

semantics of this context follows.

When invoked by one thread in a context with which multiple threads are associated,
tpterm():

m Operateson all threads in a context, but not on all contexts in a process

m Executesimmediately, even if other threadsin the same process are till
associated with that context

Any thread blocked in an ATMI call when another thread terminates its context will
return from the ATMI call with afailure return; t per rno() isset to TPESYSTEM In
addition, if t perrordet ai | () isinvoked after such afailure return, it returns
TPED_| NVALI DCONTEXT.

In asingle-context application, whenever asinglethread callst pt er () , the context
state for all threadsis set to TPNULLCONTEXT.

In a multicontexted application, however, when t pt er () isinvoked by one thread,
all other threadsin the same context are placed in a state such that if they subsequently
call most ATMI functions, those functions will, instead, return failure with t per r no

ATMI C Function Reference 249

Section 3¢ - C Functions

Return Values

250

Errors

set to TPEPROTO. Lists of the functions that are allowed and disallowed in such an
invalid context state are provided in “Introduction to the C Language
Application-to-Transaction Monitor Interface” on page 7. If athread in theinvalid
context state (TPI NVALI DCONTEXT) callsthet pget ct xt () function, t pget ct xt ()
sets the context parameter to TPI NVALI DCONTEXT.

A thread may exit from the TPI NVALI DCONTEXT state by calling one of the following:
m tpsetctxt() withthe TPNULLCONTEXT context or another valid context
m tpterm)

It isforbidden to call t pset ct xt () with acontext of TPI NVALI DCONTEXT; doing so
resultsin failure with t per r no set to TPEPROTO. When athread invokes ATMI
functions other than t pset unsol () that do not require the caller to be associated with
an application, these functions behave as if they were invoked in the NULL context.
Client applications using unsolicited thread notification should explicitly call

t pt erm() to terminate the unsolicited notification thread.

After invoking t pt er () , athread is placed in the TPNULLCONTEXT context. Most
ATMI functions invoked by athread in the TPNULLCONTEXT context perform an
implicit t pi ni t () . Whether or not the call tot pi ni t () succeeds depends on the
usual determining factors, unrelated to context-specific or thread-specific issues.

A thread in amultithreaded application may issueacall tot pt er n() whilerunningin
any context state, including TPl NVALI DCONTEXT.

Upon success in a single-context application, all threads in the application’s current
context are placed in the TPNULLCONTEXT state.

Upon success in a multicontexted application, the calling thread is placed in the
TPNULLCONTEXT state and all other threads in the same context as the calling thread
are placed in the TPI NVALI DCONTEXT state. The user may change the context state of
the latter threads by running t pset ct xt () with thecont ext argument set to
TPNULLCONTEXT or another valid context.

Uponfailure, t pt er () leavesthe calling processin itsoriginal context state, returns
-1, and setst per rno() toindicate the error condition.

Upon failure, t pt er () setstperrno() to one of the following values:

[TPEPROTC|
t pt erm() was called in an improper context (for example, the callerisa
server).

ATMI C Function Reference

tpterm(3c¢)

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

See Also tpinit(3c),tpgetctxt(3c),tpsetctxt(3c),tpsetunsol(3c)

ATMI C Function Reference 251

Section 3¢ - C Functions

tptypes(3c)

Name

Synopsis

Description

Return Values

252

Errors

See Also

t pt ypes() —Routine to determine information about a typed buffer.

#i nclude <atm . h>
l ong tptypes(char *ptr, char *type, char *subtype)

t pt ypes() takesasitsfirst argument a pointer to a data buffer and returns the type
and subtype of that buffer in its second and third arguments, respectively. pt r must
point to a buffer gotten fromt pal | oc() . If t ype and subt ype are non-NULL, then
the function popul ates the character arraysto which they point with the names of the
buffer’ s type and subtype, respectively. If the names are of their maximum length (8
fort ype, 16 for subt ype), the character array is not NUL L-terminated. If no subtype
exists, then the array pointed to by subt ype will contain aNULL string.

Note that only thefirst eight bytes of t ype and thefirst 16 bytes of subt ype are
populated.

A thread in a multithreaded application may issueacall tot pt ypes() while running
in any context state, including TPI NVALI DCONTEXT.

Upon success, t pt ypes() returns the size of the buffer;
Upon failure, it returns-1 and setst perr no() to indicate the error condition.
Upon failure, t pt ypes() setstperrno() to one of the following values:

[TPEI NVAL]
Invalid arguments were given (for example, pt r does not point to a buffer
gotten from\ % t pal | oc()).

[TPEPROTC)
t pt ypes() wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

tpal l oc(3c),tpfree(3c),tprealloc(3c)

ATMI C Function Reference

tpunadvertise(3c)

tpunadvertise(3c)

Name

Synopsis

Description

Return Values

Errors

t punadverti se() —Routine for unadvertising a service name.

#i ncl ude <atni. h>
int tpunadvertise(char *svcnane)

t punadvertise() alowsaserverto unadvertise aservicethat it offers. By default, a
server’s services are advertised when it is booted and they are unadvertised wheniitis
shut down.

All servers belonging to a Multiple Server, Single Queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of all servers sharing an MSSQ set.

t punadvertise() removessvcnane asan advertised servicefor the server (or the set
of servers sharing the caller’s MSSQ set). svcnane cannot be NULL or the NULL
string (*”). Also, svenane should be 15 characters or |ess. (See the * SERVICES
section of UBBCONFI G(5)). Longer names will be accepted and truncated to 15
characters. Care should be taken such that truncated names do not match other service
names.

Upon failure, t punadver ti se() returns-1 and setst perrno() to indicate the error
condition.

Upon failure, t punadverti se() setst perrno() to one of the following values:

[TPEI NVAL]
svcnanme iSNULL or the NULL string (“").

[TPENCENT]
svcnane is not currently advertised by the server.

[TPEPROTC|
t punadvertise() wascaledin an improper context (for example, by a
client).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

ATMI C Function Reference 253

Section 3¢ - C Functions

[TPECS]
An operating system error has occurred.

See Also tpadvertise(3c)

254 ATMI C Function Reference

tpunsubscribe(3c)

tpunsubscribe(3c)

Name

Synopsis

Description

t punsubscri be() —Unsubscribesto an event.

#i ncl ude <atni. h>
int tpunsubscribe(long subscription, long flags)

The caller usest punsubscri be() toremove an event subscription or a set of event
subscriptions from the BEA Tuxedo EventBroker’slist of active subscriptions.
subscri pti on isan event subscription handle returned by t psubscri be() . Setting
subscri pti ontothewildcard value, -1, directst punsubscri be() to unsubscribeto
all non-persistent subscriptions previously made by the calling process. Non-persi stent
subscriptions are those made without the TPEVPERSI ST bit settinginthect | —=>f | ags
parameter of t psubscri be() . Persistent subscriptions can be deleted only by using
the handle returned by t psubscri be() .

Note that the -1 handle removes only those subscriptions made by the calling process
and not any made by previous instantiations of the caller (for example, a server that
dies and restarts cannot use the wildcard to unsubscribe to any subscriptions made by
the origind server).

Thefollowingisalist of vaid f 1 ags:

TPNOBLOCK
The subscription is not removed if ablocking condition exists. If such a
condition occurs, the call failsand t per r no() isset to TPEBLOCK. When
TPNOBLOCK is not specified and ablocking condition exists, the caller blocks
until the condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wantsto
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isreissued. When TPSI GRSTRT is not specified and asignal interrupts a
system call, then t punsubscri be() failsandt perrno() issetto
TPGOTSI G.

ATMI C Function Reference 255

Section 3¢ - C Functions

Return Values

256

Errors

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot punsubscri be() .

Upon completion of t punsubscri be(), t purcode() containsthe number of
subscriptions deleted (zero or greater) from the EventBroker’'s list of active
subscriptions. t pur code() may contain anumber greater than 1 only when the
wildcard handle, -1, is used. Also, t pur code() may contain a number greater than O
even whent punsubscri be() completes unsuccessfully (that is, when the wildcard
handle is used, the EventBroker may have successfully removed some subscriptions
before it encountered an error deleting others).

Upon failure, t punsubscri be() returns-1 and setst per rno() to indicate the error
condition.

Upon failure, t punsubscri be() setst perrno() to one of the following values.
(Unless otherwise noted, failure does not affect the caller’ stransaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for example, subscri pti onisaninvalid
subscription handl€).

[TPENCENT]
Cannot access the BEA Tuxedo EventBroker.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTI ME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTO]
t punsubscri be() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

ATMI C Function Reference

tpunsubscribe(3c)

[TPECS]
An operating system error has occurred.

See Also tppost (3c),tpsubscri be(3c), EVENTS(5), EVENT_M B(5), TMSYSEVT(5),
TMUSREVT(5)

ATMI C Function Reference 257

Section 3¢ - C Functions

TRY(3¢)

Name TRY()—Exception-returning interface.
Synopsis #i ncl ude <texc. h>

TRY

try_bl ock

[CATCH(exception_nane) handl er_bl ock]
[CATCH _ALL handl er _bl ock]

ENDTRY

TRY

try_bl ock

FI NALLY
finally_block
ENDTRY

RAl SE(excepti on_nane)
RERAI SE

/* declare exception */
EXCEPTI ON excepti on_narne;

/* initialize address (application) exception */
EXCEPTI ON_I NI T(EXCEPTI ON except i on_nane)

/* intialize status exception (map status to exception */
exc_set_stat us(EXCEPTI ON *excepti on_name, |ong status)

/* map status exception to status */
exc_get_stat us(EXCEPTI ON *excepti on_nane, |ong *status)

/* conpare exceptions */
exc_mat ches(EXCEPTI ON *el, EXCEPTI ON *e2)

/* print error to stderr */
voi d exc_report (EXCEPTI ON *excepti on)

Description The TRY/CATCH interface provides a mechanism to handle exceptions without the use
of status variables (for example, er r no or status variables passed back from an RPC
operation). These macros are defined int exc. h and this header is automatically
included in any header files generated by ti dI (1) .

258 ATMI C Function Reference

TRY(3¢)

The TRY try_bl ock isablock of C or C++ declarations and statements in which an
exception may be raised (code that is not associated with raising an exception should
be placed beforeor after thet ry_bl ock). Each TRY/ENDTRY pair constitutesa* scope,”
with respect to exceptions (not unlike C scoping), or aregion of code over which
exceptions are caught. These scopes can be properly nested. When an exception is
raised, an error is reported to the application by searching the active scopesfor actions
written to handle (“absorb”) an exception (CATCH or CATCH_ALL clauses) or complete
the scopes (FI NALLY clauses). If ascope doesnot handle an exception, the scopeistorn
down with the exception raised at the next higher level (unwinding the stack of
exception scopes). Execution resumesat the point after which the exception ishandled;
thereisno provision for resuming execution at the point of error. If theexceptionis not
handled by any scope, the program is terminated (a message is written to the log via
userl og(3c) and abort (3) iscaled).

Zero or more occurrences of CATCH (except i on_nane) handl er _bl ock may be
provided. Each handl er _bl ock isablock of C or C++ declarations and statementsin
whichtheassociated exception (except i on_nane) isprocessed (normally, actionsare
specified for recovery from the failure). If an exception is raised by a statement in
try_bl ock, then the first CATCH clause that matches the exception is executed.

Within a CATCH or CATCH_ALL handl er _bl ock, the current exception can be
referenced by the EXCEPTI ONpointer TH S_CATCH (for example, for logic based on or
printing the exception value).

If theexception is not handled by one of the CATCH clauses, thenthe CATCH_ALL clause
is executed. By default, no further action istaken for an exception that ishandled by a
CATCHoOr CATCH_ALL clause. If no CATCH_ALL clause exists, then the exception is
raised at thet ry_bl ock at the next higher level, assuming that thetry_bl ock is
nested within another t ry_bl ock. If an ANSI C compiler is used, register and
automatic variables that are used in the handler blocks should be declared with the
vol at i | e attribute (asistrue of any blocksthat useset j np/ | ongj np). Also notethat
output parameters and return values from the functions that can generate an exception
are indeterminate.

Within a CATCH or CATCH_ALL handl er _bl ock, the current exception can be
propagated to the next higher level (the exception is“reraised”) using the RERAI SE
statement. The RERAI SE statement must appear lexically within the scope of a

handl er _bl ock (that is, not within afunction called by the handl er _bl ock). Any
exception that is caught but not fully handled should be reraised. In many cases, a
CATCH_ALL handler should reraise the exception because the handler is not written to
handle every exception. The application should also be written such that an exception

ATMI C Function Reference 259

Section 3¢ - C Functions

260

israised to the proper scope such that the handler blocks take the appropriate actions
and modify the appropriate state (for example, if an exception occurs while opening a
file, the handler function for that level should not try to close the unopened file).

An exception can be raised from anywhere by using the RAI SE(except i on_nane)
statement. This statement causes the exception to start propagating at the current
try_bl ock and will bereraised until it ishandled.

TheFI NALLY clause can be used to specify an epilogue block of code that is executed
after thet ry_bl ock, whether or not an exception israised. If an exceptionisraisedin
thetry_bl ock, itisreraised after thefi nal | y_bl ock isexecuted. Thisclause can be
used to avoid replicating epilogue code twice, oncein a CATCH_ALL clause, and again
after the ENDTRY. Itisnormally used to execute cleanup activities, restoring invariants
(for exampl e, shared data, |ocks) asthe scopes are unwound, whether or not exceptions
areraised (that is, on both normal and abnormal exits from the block). Note (in the
“Synopsis’ section) that aFl NALLY clause cannot be used with a CATCHor CATCH_ALL
clause for thesamet ry_bl ock; usenestedt ry_bl ocks.

The ENDTRY statement must be used to complete the TRY block, sinceit contains code
that must be executed to make sure that exceptions are handled and the context is
cleaned up. A try_bl ock, handl er _bl ock, or fi nal | y_bl ock must not contain a
r et ur n, non-local jump, or any other means of leaving the block such that the ENDTRY
isnot reached (for example, got o(), break(), conti nue(), ! ongj mp()).

Thisinterfaceis provided to handle exceptions from RPC operations. However, thisis
agenericinterfacethat can be used for any application. An exception is declared to be
of type EXCEPTI ON. (Thisisacomplex datatype; don’t try to useit like alonginteger.)
Therearetwotypes of exceptions. They are declared in the same manner but initialized
differently.

One type of exception is used to propagate status val ues associated with operating
system signals and exceptions raised by the RPC run-time primitives. For each status
value, an exception has been predefined (for example, exceptionr pc_x_no_menory
isdefined for statusr pc_s_no_menor y); theseare declared inthetrpcsts.h header file.
While not necessary (sincethe status exceptions are predefined), a status exception can
be declared by the application and initialized with the exc_set _st at us() macro
which takes a pointer to the EXCEPTI ON to be initialized, and the status value. The
status value associated with a st at us exception can be retrieved using the

exc_get _status() macro. It takes a pointer to the EXCEPTI ONand a pointer to the
variablein which the status value is to be returned; the value of themacro isQif itisa
st at us exception, and -1 otherwise.

ATMI C Function Reference

TRY(3c)

The second type of exception is used to define application exceptions. It isinitialized
by calling the EXCEPTI ON_I NI T() macro. Theaddress of the exceptionisstored asthe
value within the addr ess exception. Note that thisvalue isvalid only within asingle
address space and will changeif the exception isan automatic variable. For thisreason,
an addr ess exception should be declared as a static or externa variable, not an
automatic or register variable. The exc_get _st at us() macro will evaluateto -1 for
an addr ess exception. Using the exc_set _st at us() macro on this exception will
makeit ast at us exception.

The exc_mat ches macro can be used to compare two exceptions. To compare equal,
the exceptions must both be the same type and have the same vaue (for example, the
same status value for st at us exceptions, or the same addresses for addr ess
exceptions). This comparison is used for the CATCH clause, described above.

When status exceptions are raised, acommon part of handling the exception might be
to print out the status val ue, or better yet, astring indicating what statusvalue occurred.
If the string is to be printed to the standard error output, then the function
exc_report () canbecalled with apointer tothest at us exception to print the string
in one operation.

CATCH_ALL

{
exc_report(TH S_CATCH);

}
ENDTRY

If something else isto be done with the string (for example, printing the error to the
user log), exc_get _status() can beused on TH S_CATCH to get the status value
(remember that THI S_CATCH is already a pointer to an EXCEPTI ON, hot an

EXCEPTI ON), and dce_er ror _i ng_t ext () can be used to get the string value
associ ated with the status value.

CATCH_ALL
{

unsigned | ong status_to_convert;
unsi gned char error_text[200];
int status;

exc_get_status(TH S_CATCH, status_t o_convert);
dce_error_ing_text(status_to_convert, error_text, status);
userl og(“%s”, (char *)error_text);

}
ENDTRY

ATMI C Function Reference 261

Section 3¢ - C Functions

Note: A thread in amultithreaded application may invoke the TRY/CATCH interface
while running in any context state, including TPl NVALI DCONTEXT.

Whento Use The status of RPC operations can be determined portably by defining status variables

Exceptionand for each operation ([conm st at us] and [f aul t _st at us] parameters are defined via

Status Returns the Attribute Configuration File). The status-returning interface isthe only interface
provided in the X/OPEN RPC specification. Thef aul t _st at us attribute indicates
that errors occurring on the server due to incorrectly specified parameter values,
resource constraints, or coding errors be reported by an additional status argument or
return value. Similarly, the conm st at us attributeindicates that RPC
communications failures be reported by an additional status argument or return value.
Using status values works well for fine-grained error handling (on a per-call basis)
with recovery specified for each possible error on each call, and where it is necessary
to retry from the point of failure. The disadvantageisthat it is not transparent whether
or not thecall isloca or remote. Theremote call has additional status parameters, or a
status return value instead of being avoid return. Thus, the application must have
procedure declarations adjusted between local and distributed code.

For application portability from an OSF/DCE environment, the TRY/CATCH
exception-returning interface is also provided. Thisinterface may not be provided in
all environments. However, it has the advantage that procedure declarations need not
be adjusted between local and distributed code, maintaining existing interfaces. The
checking for errors can be simplified such that each procedure call does not have
specific failure checking or recovery code. If an error isnot handled at some level, then
the program exits with a system error message such that the error is detected and can
be corrected (omissions become more obvious). Exceptions work better for
coarse-grained exception handling.

Built-in The exceptions shown in Table 13 are “built-in” to the use of this exception interface.
Exceptions Thefirst TRY clause sets up asigna handler to catch the signalslist below if they are
not currently ignored or caught; the other exceptions are defined only for DCE
program portability.

Table 13 Built-in Exceptions

Exception Description

exc_e_SI GBUS An unhandled SI GBUS signal occurred.
exc_e_S| GEMI An unhandled SI GEMT signal occurred.
exc_e_S| GFPE An unhandled SI GFPE signal occurred.

262 ATMI C Function Reference

TRY(3c)

Table 13 Built-in Exceptions (Continued)

Exception Description

exc_e_SIdLL An unhandled SI Gl LL signal occurred.
exc_e_Sldor An unhandled SI G OT signal occurred.
exc_e_SI GPI PE An unhandled SI GPI PE signal occurred.
exc_e_S| GSEGV An unhandled SI GSEGV signal occurred.
exc_e_SI GSYS An unhandled SI GSYS signal occurred.
exc_e_SI| GTRAP An unhandled SI GTRAP signal occurred.
exc_e_S| GXCPU An unhandled SI GXCPU signal occurred.
exc_e_S|I GXFSz An unhandled SI GXFSZ signal occurred.

pt hread_e_badpar am

pthread_e_defer_q_full

pt hread_e_exi st ence

pthread_e_in_use

pt hread_e_nost acknmem

pt hread_e_nost ack

pthread_e_signal _qg_full

pt hread_e_st ackovf

pt hread_e_uni np

pthread_e_use_error

exc_e_decovf

exc_e_exquot a

exc_e fltdiv

exc_e fltovf

exc_e fltund

ATMI C Function Reference 263

Section 3¢ - C Functions

Table 13 Built-in Exceptions (Continued)

Exception

Description

exc_e SIALL

An unhandled SI Gl LL signal occurred.

exc_e _SIAOr

An unhandled SI G OT signal occurred.

exc_e_SI GPI PE

An unhandled SI GPI PE signal occurred.

exc_e_SI GSEGV

An unhandled SI GSEGV signal occurred.

exc_e_SI G5YS

An unhandled SI GSYS signal occurred.

exc_e_S| GTRAP

An unhandled SI GTRAP signal occurred.

exc_e_SI GXCPU

An unhandled SI GXCPU signal occurred.

exc_e_S|I GXFSzZ

An unhandled SI GXFSZ signal occurred.

pt hread_e_badpar am

pthread_e_defer_q_full

pt hread_e_exi st ence

pthread_e_in_use

pt hread_e_nost acknmem

pt hread_e_nost ack

pthread_e_signal _qg_full

pt hread_e_st ackovf

pt hread_e_uni np

pthread_e_use_error

exc_e_decovf

exc_e_exquot a

exc_e fltdiv

exc_e fltovf

exc_e fltund

264 ATMI C Function Reference

TRY(3c)

Table 13 Built-in Exceptions (Continued)

Exception Description

exc_e_illaddr

exc_e_insfnem

exc_e_intdiv

exc_e_intovf

exc_e_nopriv

exc_e_privinst

exc_e_resaddr

exc_e_resoper

exc_e_subrng

exc_e_uni ni texc

These same exception codes are also defined with the“_e” at the end of the name (for
example, exc_e_SI GBUS isalso defined asexc_SI GBUS_e). Equivaent status codes
are defined with similar names but the“_e_" ischangedto“_s_" (for example,
exc_e_SI GBUS isequivalent to the exc_s_SI GBUS status code).

Caveats In OSF/DCE, the header file isnamed exc_handl i ng. h; the BEA Tuxedo ATMI
system header fileist exc. h. Itisnot possiblefor the same sourcefileto use both DCE
and BEA Tuxedo ATMI system exception handling. Further, within a program, the
handling of signal exceptions can only be done by either DCE or the BEA Tuxedo
ATMI system, not both. See Programming BEA Tuxedo ATMI Applications Using
TXRPC for a discussion of integrating BEA Tuxedo ATMI System/TxRPC stubs and
OSF/DCE stubsin a single program.

When linking a program using this interface, $TUXDI R/ | i b/ 1 i bt r pc. a must be
included.

Examples Thefollowing isan example C source file that uses exceptions:
#i ncl ude <texc. h>

EXCEPTI ON badopen_e; /* decl are exception for bad open() */

ATMI C Function Reference 265

Section 3¢ - C Functions

doit (char *fil enane)

{
EXCEPTI ON_I NI T(badopen_g) ; /* initialize exception */
TRY get_and_update_data(fil enane); /* do the operation */
CATCH(badopen_e) /* exception - open() failed */
fprintf(stderr, “Cannot open %s\en”, fil enane);
CATCH_ALL /* handl e other errors */
/* handl e rpc service not available, ... */
exc_report (TH S_CATCH)
ENDTRY
}
/*
* Open output file
* Get the renpte data item
* Wite out to file
*

/
get _and_updat e_dat a(char *fil enane)

FI LE *fp;

if ((fp == fopen(filenane)) == NULL) /* open output file */
RAI SE(badopen_e) ; /* raise exception */

TRY

/* in this block, file is opened successfully -
* use associated FINALLY to close file

*/

| ong dat a;

/*
* Execute RPC call - exceptions are raised to the calling
* function, doit()
*/

data = renote_get _data();
fprintf(fp, “%d\en”, data);
FI NALLY
/* \Whet her or not exceptions are raised, close the file */
fcl ose(fp);
ENDTRY

SeeAlso tidl(1),userlog(3c)
abort (2) inaUNIX system reference manual

Programming BEA Tuxedo ATMI Applications Using TXRPC

266 ATMI C Function Reference

tuxgetenv(3c)

tuxgetenv(3c)

Name

Synopsis

Description

Return Values

Portability

See Also

t uxget env() —Returns value for environment name.

#i ncl ude <atni. h>
char *tuxgetenv(char *nane)

t uxget env() searchesthe environment list for a string of the form nane=val ue and,
if the string is present, returns apointer to the val ue in the current environment.
Otherwise, it returnsa NULL pointer.

Thisfunction provides a portable interface to environment variables across the
different platforms on which the BEA Tuxedo ATMI system is supported, including
those platformsthat do not normally have environment variables.

Note that t uxget env is case-sensitive.

A thread in amultithreaded application may issue acall tot uxget env() while
running in any context state, including TPl NVALI DCONTEXT.

If apointer to the string exists, t uxget env() returnsthat pointer. If apointer does not
exist, t uxget env() returnsaNULL pointer.

On M S Windows, thisfunction overcomestheinability to share environment variables
between an application and a Dynamic Link Library. The BEA Tuxedo ATMI
Workstation DLL maintains an environment copy for each application that is attached
to it. This associated environment and context information is destroyed when

t pt er m() iscalled fromaWindowsapplication. Theval ue of an environment variable
could be changed after the application program callst pt er n() .

It is recommended that uppercase variable names be used for the DOS, Windows,
0S/2, and NetWare environments. (t uxr eadenv() convertsall environment variable
names to uppercase.)

tuxput env(3c),tuxreadenv(3c)

ATMI C Function Reference 267

Section 3¢ - C Functions

tuxputenv(3c)

Name

Synopsis

Description

Return Values

268

Portability

See Also

t uxput env() —Changes or adds a value to the environment.

#i nclude <atm . h>
int tuxputenv(char *string)

stri ng pointsto astring of the form “name=value.” t uxput env() makesthe value
of the environment variable name equal to value by atering an existing variable or
creating anew one. In either case, the string pointed to by st ri ng becomes part of the
environment.

This function provides a portable interface to environment variables across the
different platforms on which the BEA Tuxedo ATMI system is supported, including
those platforms that do not normally have environment variables.

Note that t uxput env() is case-sensitive.

A thread in amultithreaded application may issue acall tot uxput env() while
running in any context state, including TPl NVALI DCONTEXT.

If t uxput env() cannot obtain enough space, vianal | oc(), for an expanded
environment, it returns a non-zero integer. Otherwise, it returns zero.

On M S Windows, thisfunction overcomestheinability to share environment variables
between an application and aDynamic Link Library. The BEA Tuxedo ATMI system
Workstation DLL maintains an environment copy for each application that is attached
toit. This associated environment and context information is destroyed when

t pt erm() iscalled from aWindowsapplication. Thevalue of an environment variable
could be changed after the application program callst pt er n() .

We recommend using uppercase variable names for the DOS, Windows, and OS/2,
environments. (t uxr eadenv() convertsal environment variable namesto
uppercase.)

t uxget env(3c), tuxreadenv(3c)

ATMI C Function Reference

tuxreadenv(3c)

tuxreadenv(3c)

Name

Synopsis

Description

t uxr eadenv() —Adds variables to the environment from afile.

#i ncl ude <atni. h>
int tuxreadenv(char *file, char *|abel)

t uxr eadenv() reads afile containing environment variables and adds them to the
environment, independent of platform. These variables are available using
t uxget env() and can bereset usingt uxput env()

The format of the environment file is as follows:

m Any leading space or tab character on alineisignored and is not considered in
the following points.

m Lines containing variables to be put into the environment are of the form:
vari abl e=val ue
or
set vari abl e=val ue

wherevar i abl e must begin with an aphabetic or underscore character and
contain only alphanumeric or underscore characters, and val ue may contain any
character except newline.

m Withintheval ue, strings of the form ${env} are expanded using variables
already in the environment (forward referencing is not supported and if avaue
is not set, the variableis replaced with the empty string). Backslash (\) may be
used to escape the dollar sign and itself. All other shell quoting and escape
mechanisms are ignored and the expanded val ue is placed into the environment.

m Lines beginning with slash (/), pound sign (#), semicolon (;), or exclamation
point (!) are treated as comments and ignored. Lines beginning with other
characters besides these comment characters, a left square bracket, or an
aphabetic or underscore character are reserved for future use; their useis
undefined.

ATMI C Function Reference 269

Section 3¢ - C Functions

m Thefileis partitioned into sections by lines beginning with left square bracket
(D), which acts asalabel. The label will be silently truncated if longer than 31
characters. The format of alabel is:

[1 abel]

wherel abel followsthe samerulesforvari abl e above (lineswith invalid
| abel valuesareignored).

m Variablelines between the top of the file and the first label are put into the
environment for all labels (thisisthe global section). Other variables are put into
the environment only if the label matches the label specified for the application.
A label of [] will indicate the global section.

If fileisNULL, then adefault filenameis used. The fixed filenames are as foll ows:

DCS, W ndows, OS2, NT: C \ TUXEDO TUXEDO ENV

MAC: TUXEDO.ENV in the system preferences directory
NETWARE: SYS: SYSTEM TUXEDO. ENV

PCSI X: [usr/tuxedo/ TUXEDO. ENV or /var/opt/tuxedo/ TUXEDO. ENV

If I abel isNULL, then only variablesin the global section are put into the
environment. For other valuesof | abel , theglobal section variablesplusany variables
in a section matching the abel are put into the environment.

An error messageis printed to the user | og() if thereisamemory failure, if a
non-NULL filename does not exist, or if anon-NULL label does not exist.

A thread in amultithreaded application may issue acall tot uxr eadenv() while
running in any context state, including TPl NVALI DCONTEXT.

Example Thefollowingisan example environment file.

TUXDI R=/ usr/t uxedo

[appli cationl]

this is a comment

/* this is a comment */
#this is a conment

//this is a comrent

FI ELDTBLS=appl_flds

FLDTBLDI R=/ usr/ appl/ udat aobj
[appli cation2]

FI ELDTBLS=app2_fl ds

FLDTBLDI R=/ usr/ app2/ udat aobj

270 ATMI C Function Reference

tuxreadenv(3c)

Return Values If t uxr eadenv() cannot obtain enough space, viamal | oc() , for an expanded
environment, or if it cannot open and read afile with anon-NULL name, it returns a
non-zero integer. Otherwise, t uxr eadenv() returns zero.

Portability Inthe DOS, Windows, OS/2, and NetWare environments, t uxr eadenv() convertsall
environment variable names to uppercase.

See Also tuxgetenv(3c),tuxput env(3c)

ATMI C Function Reference 271

Section 3¢ - C Functions

tx_begin(3c)

Name

Synopsis

Description

Optional Set-up

Return Value

272

Errors

t x_begi n() —Beginsaglobal transaction.

#i ncl ude <tx. h>
int tx_begin(void)

t x_begi n() is used to place the calling thread of control in transaction mode. The
calling thread must first ensure that itslinked resource managers have been opened (via
t x_open()) before it can start transactions. t x_begi n() fails (returning
[TX_PROTOCOL_ERRCR)) if the caller isalready in transaction mode or t x_open() has
not been called.

Once in transaction mode, the calling thread must call t x_conmi t () or

tx_rol | back() to completeitscurrent transaction. There are certain cases related to
transaction chaining wheret x_begi n() doesnot heedto be called explicitly to start a
transaction. Seet x_conmit () andt x_rol | back() for details.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_begin() .

tx_set_transaction_ti meout ()
Upon successful completion, t x_begi n() returns TX_OK, a non-negative return value.

Under the following conditions, t x_begi n() failsand returns one of these negative
values:

[TX_ouTs! DE]
The transaction manager is unable to start aglobal transaction because the
calling thread of control is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be started. The caller’ s state with
respect to the local transaction is unchanged.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caleris
already in transaction mode). The caller’s state with respect to transaction
mode is unchanged.

ATMI C Function Reference

tx_begin(3c)

[TX_ERROR]
Either the transaction manager or one or more of the resource managers
encountered atransient error trying to start anew transaction. When thiserror
isreturned, the caller is not in transaction mode. The exact nature of the error
iswrittento alog file.

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. When thiserror isreturned, thecaller is not
in transaction mode. The exact nature of the error is written to alog file.

See Also tx_commit(3c),tx_open(3c),tx_rollback(3c),
tx_set_transaction_timeout(3c)

Warnings ~ XA-compliant resource managers must be successfully opened to be included in the
global transaction. (Seet x_open(3c) for details.) Both the X/Open TX interface and
the X-Windows system define the type XID. It is not possible to use both X-Windows
callsand TX callsin the samefile.

ATMI C Function Reference 273

Section 3¢ - C Functions

tx_close(3c)

Name

Synopsis

Description

Return Value

274

Errors

t x_cl ose() —Closes a set of resource managers.

#i ncl ude <tx. h>
int tx_cl ose(void)

tx_cl ose() closes aset of resource managersin a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

tx_cl ose() closesall resource managers to which the caller islinked. Thisfunction
isused in place of resource-manager-specific “close” callsand allows an application
program to be free of calls which may hinder portability. Since resource managers
differ in their termination semantics, the specific information needed to “close” a
particular resource manager must be published by each resource manager.

t x_cl ose() should be called when an application thread of control no longer wishes
to participate in global transactions. t x_cl ose() fails (returning
[TX_PROTOCOL_ERROR)) if the caller isin transaction mode. That is, no resource
managers are closed even though some may not be participating in the current
transaction.

Whent x_cl ose() returns success (TX_OK), all resource managers linked to the
calling thread are closed.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_cl ose() .

Upon successful completion, t x_cl ose() returns TX_OK, a non-negative return value.

Under the following conditions, t x_cl ose() failsand returns one of these negative
values:

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller isin
transaction mode). No resource managers are closed.

ATMI C Function Reference

tx_close(3c)

[TX_ERROR]
Either the transaction manager or one or more of the resource managers
encountered atransient error. The exact nature of the error iswritten to alog
file. All resource managers that could be closed are closed.

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswrittento a
logfile.

See Also tx_open(3c)

Warnings Both the X/Open TX interface and the X-Windows system define thetype XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

ATMI C Function Reference 275

Section 3¢ - C Functions

tx_commit(3c)

Name

Synopsis

Description

Optional Set-up

Return Value

276

Errors

t x_conmi t () —Commits a global transaction.

#i ncl ude <tx. h>
int tx_commt(void)

t x_conmi t () isusedto committhework of thetransaction activeinthecaller’ sthread
of control.

If thetransacti on_control characteristic (see

tx_set _transaction_control (3c))isTX_UNCHAI NED, then whent x_commi t ()
returns, the caller isno longer in transaction mode. However, if the

transacti on_control characteristicis TX_CHAI NED, then whent x_conmi t ()
returns, the caller remains in transaction mode on behalf of anew transaction (see the
Return Value and Errors sections below).

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_commit ().

W tx_set_commit_return()
B tx_set_transaction_control ()

B tx_set_transaction_tineout ()

Upon successful completion, t x_conmi t () returns TX_OK, a hon-negative return
value.

Under the following conditions, t x_commi t () failsand returns one of these negative
values:

[TX_NO BEG N]
The current transaction committed successfully; however, anew transaction
could not be started and the caller is no longer in transaction mode. This
return value may occur only whenthet r ansacti on_contr ol characteristic
iS TX_CHAI NED.

[TX_ROLLBACK]
The current transaction could not commit and has been rolled back. In
addition, if thet r ansacti on_cont rol characteristicis TX_CHAI NED, anew
transaction is started.

ATMI C Function Reference

tx_commit(3c)

[TX_ROLLBACK_NO BEG N]
Thetransaction could not commit and hasbeenrolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whenthetr ansacti on_cont r ol
characteristic is TX_CHAI NED.

[TX_M XED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if thetr ansacti on_contr ol
characteristic is TX_CHAI NED, a new transaction is started.

[TX_M XED_NO BEG N]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
whenthetransacti on_control characteristicis TX CHAI NED.

[TX_HAZARD]
Dueto afailure, some of thework done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristicis TX_CHAI NED, a new transaction is
started.

[TX_HAZARD_NO BEG N|
Dueto afailure, some of thework done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whenthetr ansacti on_contr ol
characteristic is TX_CHAI NED.

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller is not
in transaction mode). The caller’ s state with respect to transaction modeis not
changed.

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswrittento a
log file. The caller’s state with respect to the transaction is unknown.

ATMI C Function Reference 277

Section 3¢ - C Functions

See Also tx_begin(3c),tx_set_commit_return(3c),
tx_set_transaction_control (3c),tx_set_transaction_timeout(3c)

Warnings ~ Both the X/Open TX interface and the X-Windows system define the type XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

278 ATMI C Function Reference

tx_info(3c¢)

tx_info(3c)

Name

Synopsis

Description

Return Value

Errors

t x_i nf o() —Returns global transaction information.

#i ncl ude <tx.h>
int tx_info(TXI NFO *i nfo)

tx_i nfo() returnsglobal transaction information in the structure pointed to by i nf o.
In addition, this function returns a value indicating whether the caller is currently in
transaction mode or not. If i nf o isnon-NULL, thent x_i nf o() populatesaTXI NFO
structure pointed to by i nf o with global transaction information. The TXI NFOstructure
contains the following elements:

Xl D Xi d;

COW T_RETURN when_return;
TRANSACTI ON_CONTROL transacti on_control;
TRANSACTI ON_TI MEQUT transaction_ti neout;
TRANSACTI ON_STATE transacti on_stat e;

If t x_i nf o() iscalledintransaction mode, then xi d will be populated with a current
transaction branch identifier and t ransact i on_st at e will contain the state of the
current transaction. If the caller is not in transaction mode, xi d will be populated with
the NULL XID (seethet x. h file for details). In addition, regardless of whether the
caller isin transaction mode, when_ret urn, transacti on_control , and
transaction_ti meout contain the current settings of theconmit _return and
transaction_control characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when the
next transaction is started. Thus, it may not reflect the timeout value for the caller’s
current global transaction since callsmadetot x_set _transacti on_ti meout ()
after the current transaction was begun may have changed its value.

If i nf oisNULL, no TXI NFO structure is returned.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacal totx_i nfo().

If the caller isin transaction mode, then 1 isreturned. If the caller is not in transaction
mode, then O is returned.

Under the following conditions, t x_i nf o() failsand returns one of these negative
values:

ATMI C Function Reference 279

Section 3¢ - C Functions

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caler has
not yet called t x_open()).

[TX_FAI L]
The transaction manager encountered afatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

See Also tx_open(3c),tx_set_conmmt_return(3c),
tx_set_transacti on_control (3c),tx_set_transaction_timeout(3c)

Warnings ~ Within the same global transaction, subsequent callstot x_i nf o() are guaranteed to
provide an X1D with the same gt r i d component, but not necessarily the same bqual
component. Both the X/Open TX interface and the X-Windows system define thetype
XID. It isnot possible to use both X-Windows callsand TX callsin the samefile.

280 ATMI C Function Reference

tx_open(3c)

tx_open(3c)

Name

Synopsis

Description

Return Value

Errors

t x_open() —Opens a set of resource managers.

#i ncl ude <tx.h>
int tx_open(void)

t x_open() opens aset of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transacti on-manager-specific manner and pass thisinformation to the resource
managers linked to the caller.

t x_open() attemptsto open all resource managers that have been linked with the
application. Thisfunction is used in place of resource-manager-specific “open” calls
and allows an application program to be free of calls which may hinder portability.
Since resource managers differ in their initialization semantics, the specific
information needed to “ open” aparticul ar resource manager must be published by each
resource manager.

If t x_open() returns TX_ERROR, then no resource managers are open. If t x_open()
returns TX_OK, some or al of the resource managers have been opened. Resource
managersthat are not open will return resource-manager-specific errorswhen accessed
by the application. t x_open() must successfully return before a thread of control
participatesin global transactions.

Oncet x_open() returns success, subsequent callstot x_open() (beforean
intervening call tot x_cl ose()) are alowed. However, such subsequent calls will
return success, and the TM will not attempt to reopen any RMs.

In amultithreaded application, athread in the TP NVALI DCONTEXT stateis not allowed
toissueacall totx_open().

Upon successful completion, t x_open() returns TX_OK, a hon-negative return value.

Under the following conditions, t x_open() failsand returns one of these negative
values:

[TX_ERROR]
Either the transaction manager or one or more of the resource managers
encountered a transient error. No resource managers are open. The exact
nature of the error iswritten to alog file.

ATMI C Function Reference 281

Section 3¢ - C Functions

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered afatal error. TX_FAI L isreturned if t pi ni t () isnot caled
before the call to t x_open in asecure application (SECURITY APP_PW).
The nature of the error is such that the transaction manager and/or one or
more of the resource managers can no longer perform work on behalf of the
application. The exact nature of the error iswrittento alog file.

See Also tx_cl ose(3c)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

282 ATMI C Function Reference

tx_rollback(3c)

tx_rollback(3c)

Name

Synopsis

Description

Optional Set-up

Return Value

Errors

tx_rol | back() —Rollsback aglobal transaction.

#i ncl ude <tx.h>
int tx_rollback(void)

tx_rol | back() isused to roll back the work of the transaction active in the caller's
thread of control.

If thetransaction_control characteristic (see

tx_set_transaction_control (3c)) isSTX_UNCHAI NED, then when

tx_rol | back() returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristicis TX_CHAI NED, then whent x_r ol | back()
returns, the caller remainsin transaction mode on behalf of a new transaction (see the
Return Value and Errors sections below).

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacall totx_rol | back().

B tx_set_transaction_control ()

B tx_set_transaction_timeout()

Upon successful completion, t x_r ol | back() returns TX_OK, a non-negative return
value.

Under the following conditions, t x_r ol | back() failsand returns one of these
negative values:

[TX_NO BEG N]
The current transaction rolled back; however, a new transaction could not be
started and the caller is no longer in transaction mode. Thisreturn value may
occur only whenthet ransacti on_control characteristic is TX_CHAI NED.

[TX_M XED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if thetr ansacti on_contr ol
characteristic is TX_CHAI NED, a new transaction is started.

ATMI C Function Reference 283

Section 3¢ - C Functions

[TX_M XED_NO BEG N|
The work done on behalf of the transaction was partially committed and
partialy rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
whenthet ransacti on_control characteristic is TX_CHAI NED.

[TX_HAZARD]
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transacti on_control characteristicis TX_CHAI NED, a new transaction is
started.

[TX_HAZARD NO BEG N]
Dueto afailure, some of thework done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when thet ransacti on_control
characteristic is TX_CHAI NED.

[TX_CowMm TTED]
The work done on behalf of the transaction was heuristically committed. In
addition, if thet r ansacti on_cont rol characteristicis TX_CHAI NED, anew
transaction is started.

[TX_COwM TTED_NO BEG N|
The work done on behalf of the transaction was heuristically committed. In
addition, a new transaction could not be started and the caller isno longer in
transaction mode. This return value can occur only when the
transacti on_control characteristicis TX_CHAI NED.

[TX_PROTOOOL_ERROR]
The function was called in animproper context (for example, the caller is not
in transaction mode).

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswrittento a
log file. The caller’ s state with respect to the transaction is unknown.

See Also tx_begin(3c),tx_set_transaction_control (3c),
tx_set _transaction_ti meout (3c)

284 ATMI C Function Reference

tx_rollback(3c)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

ATMI C Function Reference 285

Section 3¢ - C Functions

tx_set_commit_return(3c)

Name

Synopsis

Description

Return Value

tx_set_commit _return()—Setsthecomit return characteristic.

#i ncl ude <tx. h>
int tx_set_commit_return(COVW T_RETURN when_r et urn)

tx_set_commit_return() setsthecomit _return characteristic to the value
specified inwhen_r et ur n. This characteristic affectstheway t x_comni t () behaves
with respect to returning control toitscaller. t x_set _commit _return() may be
called regardless of whether its caller isin transaction mode. This setting remainsin
effect until changed by a subsequent call tot x_set _conmit _return().

Theinitia setting for this characteristic is TX_COvVM T_COVPLETED.
Thefollowing are the valid settings for when_r et ur n:

TX_COWM T_DECI S| ON_LOGGED
Thisflagindicatesthat t x_conmmi t () should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. Thissetting allowsfor faster response
tothecaller of t x_commi t () . However, thereisarisk that atransaction will
have a heuristic outcome, in which case the caller will not find out about this
situation viareturn codes from t x_conmi t () . Under normal conditions,
participants that promise to commit during the first phase will do so during
the second phase. In certain unusual circumstances however (for example,
long-lasting network or node failures), phase 2 completion may not be
possible and heuristic results may occur.

TX_COWM T_COVPLETED
Thisflag indicatesthat t x_commi t () should return after the two-phase
commit protocol has finished completely. This setting allows the caller of
t x_conmi t () to seereturn codes that indicate that a transaction had or may
have had heuristic results.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall totx_set _commit_return().

Upon successful completion, t x_set _conmi t _ret urn() returns TX_OK, a
non-negative return value.

286 ATMI C Function Reference

tx_set_commit_return(3c)

Errors

See Also

Warnings

Under the following conditions, t x_set _commi t _ret urn() doesnot changethe
setting of the commi t _r et ur n characteristic and returns one of these negative values:

[TX_EI NVAL]
when_r et ur n isnot one of TX_COVMM T_DECI S| ON_LOGGED or
TX_COW T_COWPLETED

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open()).

[TX_FAI L]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

tx_commt(3c),tx_info(3c),tx_open(3c)

Both the X/Open TX interface and the X-Windows system define thetype XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

ATMI C Function Reference 287

Section 3¢ - C Functions

tx_set_transaction_control(3c)

Name

Synopsis

Description

Return Value

Errors

tx_set_transaction_control () —Setsthetransacti on_control
characteristic.

#i ncl ude <tx. h>
int tx_set_transaction_control (TRANSACTI ON_ CONTRCL control)

tx_set_transaction_control () setsthetransacti on_control characteristicto
thevalue specifiedin cont r ol . This characteristic determineswhether t x_commi t ()
andtx_rol | back() start anew transaction before returning to their caller.

tx_set _transaction_control () may be called regardless of whether the
application program isin transaction mode. This setting remainsin effect until changed
by a subsequent call tot x_set _transacti on_control ().

Theinitia setting for this characteristic is TX_UNCHAI NED.
Thefollowing are the valid settings for contr ol :

TX_UNCHAI NED
Thisflagindicatesthat t x_conmmi t () andt x_r ol | back() should not start a
new transaction before returning to their caller. The caller must issue
t x_begi n() to start anew transaction.

TX_CHAI NED
Thisflag indicatesthat t x_commi t () and tx_r ol | back() should start a
new transaction before returning to their caller.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_set transacti on_control ().

Upon successful completion, t x_set _t ransaction_control () returns TX_OK, a
non-negative return value.

Under thefollowing conditions, t x_set _t ransacti on_cont rol () doesnot change
the setting of thet r ansacti on_cont r ol characteristic and returns one of these
negative values:

[TX_EI NVAL]
control isnot oneof TX_UNCHAI NED or TX_CHAI NED.

288 ATMI C Function Reference

tx_set_transaction_control(3c)

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open()).

[TX_FAI L]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

See Also tx_begi n(3c),tx_conmit(3c),tx_info(3c),tx_open(3c),tx_rollback(3c)

Warnings ~ Both the X/Open TX interface and the X-Windows system define thetype XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

ATMI C Function Reference 289

Section 3¢ - C Functions

tx_set transaction_timeout(3c)

Name

Synopsis

Description

Return Value

290

Errors

tx_set_transaction_timeout () —Setsthetransacti on_ti meout
characteristic.

#i ncl ude <tx. h>
int tx_set_transaction_timeout (TRANSACTI ON _TI MEOUT ti neout)

tx_set_transaction_timeout () setsthetransacti on_ti meout characteristicto
the value specified inti nmeout . This value specifies the time period in which the
transaction must complete before becoming susceptibleto transaction timeout; that is,
the interval between the AP callingt x_begi n() andtx_conmmi t () or

tx_rol | back().tx_set_transaction_timeout() may be called regardless of
whether itscaller isin transaction modeor not. If t x_set _transacti on_ti meout ()
iscalledintransaction mode, thenew t i meout value does not take effect until the next
transaction.

Theinitia t ransacti on_ti meout valueis 0 (no timeout).

ti meout specifies the number of seconds allowed before the transaction becomes
susceptibleto transaction timeout. It may be set to any value up to the maximum value
for al ong as defined by the system. A ti meout value of zero disables the timeout
feature.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_set transaction_tinmeout().

Upon successful completion, t x_set _transaction_ti meout () returns TX_OK, a
non-negative return value.

Under thefollowing conditions, t x_set _t ransacti on_t i meout () doesnot change
the setting of thet r ansacti on_ti nmeout characteristic and returns one of these
negative values:

[TX_EI NVAL]
The timeout value specified isinvalid.

[TX_PROTOCOL_ERROR]
The function was called improperly. For example, it was called before the
caller calledt x_open() .

ATMI C Function Reference

tx_set_transaction_timeout(3c)

[TX_FAIL]
The transaction manager encountered an error. The nature of the error is such
that the transaction manager can no longer perform work on behalf of the
application. The exact nature of the error is written to alog file.

See Also tx_begi n(3c),tx_conmmit(3c),tx_info(3c),tx_open(3c),tx_rollback(3c)

Warnings Both the X/Open TX interface and the X-Windows system define thetype XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

ATMI C Function Reference 291

Section 3¢ - C Functions

userlog(3c)

292

Name

Synopsis

Description

user | og() —Writes a message to the BEA Tuxedo ATMI system central event log.

#include “userlog. h”
extern char *proc_nang;

int userlog (format [,arg] . . .)
char *format;

user | og() acceptsapri ntf (3S) styleformat specification, with afixed output file—
the BEA Tuxedo ATMI system central event log.

The central event log is an ordinary UNIX file whose pathname is composed as
follows: If the shell variable ULOGPFX is set, its value is used as the prefix for the
filename. If ULOGPFX is not set, ULOGis used. The prefix is determined the first time
user | og() iscalled. Eachtimeuser| og() iscalled the dateis determined, and the
month, day, and year are concatenated to the prefix as mudyy to set the name for the
file. Thefirst time aprocess writesto the user log, it first writes an additional message
indicating the associated BEA Tuxedo ATMI system version.

The message is then appended to the file. With this scheme, processes that call
user | og() on successive days will write into different files.

M essages are appended to the log file with atag made up of thetime (hhmmss), system
name, process name, and process | D, thread ID, and context 1D of the calling process.
Thetag is terminated with acolon (:). The name of the processis taken from the
pathname of the external variable pr oc_nane. If proc_nane hasvalue NULL, the
printed name is set to ?pr oc.

BEA Tuxedo ATMI system-generated error messagesin thelog file are prefixed by a
unique identification string of the form:

<cat al og>: nunber >:

This string gives the name of the internationalized catalog containing the message
string, plus the message number. By convention, BEA Tuxedo ATMI
system-generated error messages are used only once, so the string uniquely identifies
alocation in the source code.

If thelast character of thef or mat specificationisnot anewline character, user | og()
appends one.

ATMI C Function Reference

userlog(3c)

Portability

Examples

Errors

If the first character of the shell variable ULOGDEBUGIs 1 or y, the message sent to
userl og() isalso written to the standard error of the calling process, using the
fprintf (3S) function.

userl og() isused by the BEA Tuxedo ATMI system to record avariety of events.

Theuser| og mechanism is entirely independent of any database transaction logging
mechanism.

A thread in amultithreaded application may issue acall touser | og() whilerunning
in any context state, including TPI NVALI DCONTEXT.

Theuser | og() interfaceis supported on UNIX and MS-DOS operating systems. The
system name produced as part of thelog messageisnot available on MS-DOS systems,
therefore, the value PC is used as the system name for MS-DOS systems.

If the variable ULOGPFX is set to/ appl i cati on/ | ogs/ | og and if the first call to
userl og() occurred on 9/7/90, the log file created is named
/application/l ogs/| og. 090790. If the call:

user| og(“ UNKNOWN USER ' %' (U D=%l)”", usrname, U D);

is made at 4:22:14pm on the UNIX system file named ni by the sec program, whose
process-id is 23431, and the variable usr name contains the string “sxx”, and the
variable Ul D contains the integer 123, the following line appearsin the log file:

162214. ml! sec. 23431: UNKNOAN USER ' sxx’ (Ul D=123)

If the message is sent to the central event log while the processisin transaction mode,
the user log entry has additional components in the tag. These components consist of
theliteral gt ri d followed by three| ong hexadecimal integers. Theintegers uniquely
identify the global transaction and make up what isreferred to asthe global transaction
identifier. Thisidentifier isused mainly for administrative purposes, but it does make
an appearance in the tag that prefixes the messagesin the central event log. If the
foregoing message iswritten to the central event log in transaction mode, the resulting
log entry will look like this:

162214. 1 ogsys! security.23431: gtrid x2 x24e1b803 x239: UNKNOAN USER
"sxx' (Ul D=123)

If the shell variable ULOGDEBUG has avalue of y, thelog messageis also written to the
standard error of the program named security.

userl og() hangsif themessage senttoitislarger than BUFSI Z asdefinedinst di o. h

ATMI C Function Reference 293

Section 3¢ - C Functions

Diagnostics user 1 og() returnsthe number of characters output, or a negative vaue if an output
error was encountered. Output errors include the inability to open, or write to the
current log file. Inability to write to the standard error, when ULOGDEBUG s Set, is hot
considered an error.

Notices It isrecommended that applications' use of user| og() messages be limited to
messages that can be used to help debug application errors; flooding the log with
incidental information can make it hard to spot actual errors.

See Also printf(3S)inaUNIX system reference manual

294 ATMI C Function Reference

Usignal(3c)

Usignal(3c)

Name

Synopsis

Description

Usi gnal () —Signal handling in aBEA Tuxedo ATMI system environment.
#i ncl ude “Usignal .h”

UDEFERSI GS()
UENSURESI GS()
UGDEFERLEVEL ()
URESUMESI GS()
USDEFERLEVEL (| evel)

int (*Usignal (sig,func)()
int sig;

int (*func)();

void Usiginit()

Many of the facilities provided by the BEA Tuxedo ATMI system software require
concurrent access to data structures in shared memory. Processes accessing the shared
data structuresrun in user mode, and are thus interruptable by signals sent to them. In
order to ensure the consistency of the shared data structures, it is important that the
operations which access them not be interrupted by the receipt of certain UNIX
signals. The functions described in this section provide protection against the most
common signals, and are used internally by much of the BEA Tuxedo ATMI system
code. Additionally, they are available to applicationsto prevent the untimely arrival of
asignal.

Theideabehind the BEA Tuxedo ATMI system signal handling packageisthat signals
should be deferrable whilein critical code sections. To thisend, signals are not
immediately processed when received. Instead, a BEA Tuxedo ATMI system routine
first catches the sent signal. If it is safe to process the signal, the specified action for
the signal istaken. If it is not safe to processthe signal when it arrives, the arriva is
noted, but the processing is deferred until the user indicates that the critical section of
code has been terminated.

We recommend against any use of signals in multithreaded programs, athough the
software does not prevent such usage. If signals are used, however, athread in a
multithreaded application may issueacall to Usi gnal () whilerunning inany context
state, including TPl NVALI DCONTEXT.

ATMI C Function Reference 295

Section 3¢ - C Functions

Catching
Signals

Deferring and

296

Restoring
Signals

Notices

User code that uses callsr mopen() ort pi ni t () should catch signalsthrough the use
of theUsi gnal () function. Usi gnal () behaveslikethe UNIX si gnal () systemcall,
except that Usi gnal () first arrangesfor the signal to be caught by an internal routine
before dispatching the user routine.

The callsdescribed in this section need only be used if application code wishesto defer
signals. In general, these routines are called automatically by BEA Tuxedo ATMI
system routines to protect themselves from untimely signal arrival.

Before deferring or restoring signals, the mechanism must be initialized. Thisis done
automatically for BEA Tuxedo ATMI system clientswhen they call t pi ni t () andfor
BEA Tuxedo ATMI system servers. It is also done the first time that the application
calls Usi gnal () . It can be done explicitly by calling Usi gi ni t () .

The UDEFERSI GS() macro should be used when entering a section of critical code.
After UDEFERSI GS() iscalled, signas are held in a pending state. The

URESUMESI GS() macro should beinvoked when thecritical sectionisexited. Notethat
signal deferrals stack. The stack isimplemented viaa counter which isinitialy set to
zero. When signals are deferred by a call to UDEFERSI GS() , the counter is
incremented. When signals are resumed, by a call to URESUMESI GS(), the counter is
decremented. If asignal arrives while the counter is non-zero, the processing of the
signal isdeferred. If the counter is zero when the signal arrives, the signal isprocessed
immediately. If signal resumption causes the counter to be become zero (that is, prior
totheresumption it had value 1), any signalsthat arrived during the deferral period are
processed. In general, each call to UDEFERSI GS() should have a counterpart call to
URESUMVESI GS() .

UDEFERSI GS incrementsthe deferral counter, but returnsthe val ue of the counter prior
to its incrementation. The macro UENSURESI GS() may be used to explicitly set the
deferral counter to zero (and thusforce the processing of deferred signals), in case the
user wishes to protect against unmatching UDEFERSI GS() and URESUVESI GS() .

Thefunction UGDEFERLEVEL () returnsthe current setting of the deferral counter. The
macro USDEFERLEVEL (level) alows the setting of a specific deferral level.
UGDEFERLEVEL() and USDEFERLEVEL () are useful to set the counter appropriately in
set j np/ | ongj np situations where a set of deferrals/resumes are bypassed. The idea
isto save the value of the counter whenset j np() iscalled, viaacall to
UGDEFERLEVEI (), and to restoreit viaacall to USDEFERLEVel () when the

I ongj nmp() isperformed.

Usi gnal providessignal deferral for thefollowing signals: SI GHUP,SI G NT, S| GQUI T,
SI GALRM SI GTERM, Sl GUSR1, and SI GUSR2. Handling requests for al other signal
numbers are passed directly to si gnaL() by Usi gnal () . Signals may be deferred for

ATMI C Function Reference

Usignal(3c)

Files

See Also

aconsiderable time. For thisreason, during signal deferral, individua signal arrivals
are counted. When it is safe to process asignal that may have arrived many times, the
signal’s processing routine is iteratively called to process each arrival of the signal.
Before each call the default action for the signal is instantiated. The ideais to handle
the deferred occurrences of the signal asif they happened in quick succession in safe
code.

In general, usersshould not mix callstosi gnaL() andUsi gnalL() forthesamesignal.
The recommended procedure isto go through Usi gnal (), so that it is always aware
of the state of the signal. Sometimesit may be necessary, such aswhen an application
wants to use alarms within BEA Tuxedo ATMI system services. To do this,

Usi gi ni T() should be called to initialize the signal deferring mechanism. Then

si gnaL() can be called to override the mechanism for the desired signal. To restore
the deferring mechanism for the signal, it isnecessary to call Usi gnaL() for thesignal
with SI G_I G\, and then again with the desired signal-handling function.

The shell variable U MVEDSI GS can be used to override the deferral of signals. If the
value of this variable begins with the letter y asin:

U MVEDSI GS=y

signals are not intercepted (and thus not deferred) by the Usi gnal () code. In such a
case, acal to Usi gnal () ispassed immediately to si gnalL() .

Usi gnal isnot available under DOS operating systems.
Usi gnal . h

si gnal (2) inaUNIX system reference manual

ATMI C Function Reference 297

Section 3¢ - C Functions

Uunix_err(3c)

298

Name

Synopsis

Description

Examples

Uuni x_err () —Printsa UNIX system call error.
#i ncl ude UWuni x. h

voi d Uuni x_err(s)
char *s;

When a BEA Tuxedo ATMI system function callsa UNIX system call that detectsan
error, an error isreturned. Theexternal integer Uuni xer r () issettoavalue (asdefined
in Uuni x. h) that identifies the system call that returned the error. In addition, the
system call setser rno() toavalue (asdefined iner r no. h) that tells why the system
cal failed.

The Uuni x_err () function is provided to produce a message on the standard error
output, describing thelast system call error encountered during acall to aBEA Tuxedo
ATMI system function. It takes one argument, a string. The function prints the
argument string, then acolon and ablank, followed by the name of the system call that
failed, the reason for failure, and a newline. To be of most use, the argument string
should include the name of the program that incurred the error. The system call error
number is taken from the external variable Uuni xer r (), the reason is taken from
errno() . Both variables are set when errors occur. They are not cleared when
non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings:
extern char *Uuni xmsg[];

isprovided; Uuni xerr () canbe used asan index into this table to get the name of the
system call that failed (without the newline).

A thread in amultithreaded application may issue acall to Uuni x_er r () while
running in any context state, including TPl NVALI DCONTEXT.

#i ncl ude Uuni x. h
extern int Uunixerr, errno;

if((fd=open(“nyfile”, 3, 0660)) == -1)

ATMI C Function Reference

Uunix_err(3c)

{

Uuni xerr = UOPEN;
Uuni x_err(“myprog”);
exit(1);

}

ATMI C Function Reference 299

Section 3¢ - C Functions

300 ATMI C Function Reference

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	Section 3c - C Functions

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions
	Section 3c - C Functions
	Table�1 BEA Tuxedo ATMI C Functions�
	Introduction to the C Language Application-to-Transaction Monitor Interface
	Description
	Communication Paradigms
	BEA Tuxedo ATMI System Request/ Response Paradigm for Client/Server
	BEA Tuxedo ATMI System Conversational Paradigm for Client/Server
	Message Delivery
	Message Sequencing
	Queued Message Model
	ATMI Transactions
	TX Transactions
	Chained and Unchained Transactions
	Transaction Characteristics
	Error Handling
	Timeouts
	Dynamic Service Advertisements
	Buffer Management
	Buffer Type Switch
	Unsolicited Notification
	Single or Multiple Application Contexts per Process
	Table�2 Per-Process Context Modes

	Context State Changes for a Client Thread
	Multicontext State Transitions
	Table�3 Context State Changes for a Client Thread

	Support for Threads Programming
	C Language ATMI Return Codes and Other Definitions
	/* * The following definitions must be included in atmi.h */ /* Flags to service routines */ #def...
	C Language TX Return Codes and Other Definitions

	#define TX_H_VERSION 0 /* current version of this * header file */ /* * Transaction identifier */...
	ATMI State Transitions
	Table�4 Available Functions�
	Table�5 Thread Initialization States�
	Table�6 Resource Management States�
	Table�7 Transaction State of Application Association�
	Table�8 Asynchronous Request Descriptor States�
	Table�9 Connection Request Descriptor States�

	TX State Transitions
	Table�10 TX Function States and Transitions�

	See Also

	AEMsetblockinghook(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEPROTO]

	Portability
	Notices

	AEOaddtypesw(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPESYSTEM]

	Portability
	Notices
	Examples
	#include <os2.h> #include <atmi.h> #include <tmtypes.h> int FAR PASCAL Nfinit(char FAR *, long); ...
	; EXAMPLE.DEF file NAME EXAMPLE DESCRIPTION 'EXAMPLE for OS/2' EXETYPE OS/2 EXPORTS Nfinit Nfrein...
	See Also

	AEPisblocked(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	Portability
	Comments
	See Also

	AEWsetunsol(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPESYSTEM]
	[TPEOS]

	Portability
	Notices
	See Also

	buffer(3c)
	Name
	Synopsis
	int /* Initialize a new data buffer */ _tminitbuf(char *ptr, long len) int /* Reinitialize a real...
	Description
	Routine Specifics
	_tminitbuf
	_tmreinitbuf
	_tmuninitbuf
	_tmpresend
	_tmpostsend
	_tmpostrecv
	_tmencdec
	_tmroute
	_tmfilter
	_tmformat
	_tmpresend2
	[TMPARENT]
	[TMUSEIPTR]
	[TMUSEOPTR]

	See Also

	catgets(3c)
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	catopen, catclose(3c)
	Name
	Synopsis
	Description
	Diagnostics
	See Also

	decimal(3c)
	Name
	Synopsis
	#include “decimal.h”
	int lddecimal(cp, len, np) /* load a decimal */ char*cp; /* input: location of compacted format */
	int len; /* input: length of compacted format */ dec_t*np; /* output: location of dec_t format */
	void stdecimal(np, cp, len) /* store a decimal */ dec_t*np; /* input: location of dec_t format */...
	int deccmp(n1, n2) /* compare two decimal numbers */ dec_t*n1; /* input: number to be compared */...
	int dectoasc(np, cp, len, right) /* convert dec_t to ascii */ dec_t*np; /* input: number to be co...
	int deccvasc(cp, len, np) /* convert ascii to dec_t */ char*cp; /* input: number to be converted ...
	int dectoint(np, ip) /* convert int to dec_t */ dec_t*np; /* input: number to be converted */ int...
	int deccvint(in, np) /* convert dec_t to int */ int in; /* input: number to be converted */ dec_t...
	int dectolong(np, lngp) /* convert dec_t to long */ dec_t*np; /* input: number to be converted */...
	int deccvlong(lng, np) /* convert long to dec_t */ longlng; /* input: number to be converted */ d...
	int dectodbl(np, dblp) /* convert dec_t to double */ dec_t*np; /* input: number to be converted *...
	int deccvdbl(dbl, np) /* convert double to dec_t */ double *dbl; /* input: number to be converted...
	int dectoflt(np, fltp) /* convert dec_t to float */ dec_t*np; /* input: number to be converted */...
	int deccvflt(flt, np) /* convert float to dec_t */ double *flt; /* input: number to be converted ...
	int decadd(*n1, *n2, *n3) /* add two decimal numbers */ dec_t*n1; /* input: addend */ dec_t*n2; /...
	int decsub(*n1, *n2, *n3) /* subtract two decimal numbers */ dec_t*n1; /* input: minuend */ dec_t...
	int decmul(*n1, *n2, *n3) /* multiply two decimal numbers */ dec_t*n1; /* input: multiplicand */ ...
	int decdiv(*n1, *n2, *n3) /* divide two decimal numbers */ dec_t*n1; /* input: dividend */ dec_t*...
	Description
	Native Decimal Representation
	Return Value

	gp_mktime(3c)
	Name
	Synopsis
	Description
	Example
	Notices
	Portability
	std and dst
	offset
	start/time,end/time
	Jn
	n

	Mm.n.d

	See Also

	nl_langinfo(3c)
	Name
	Synopsis
	Description
	Diagnostics
	Notices
	See Also

	rpc_sm_allocate, rpc_ss_allocate(3c)
	Name
	Synopsis
	Description
	rpc_s_ok

	Return Values
	See Also

	rpc_sm_client_free, rpc_ss_client_free(3c)
	Name
	Synopsis
	#include <rpc/rpc.h> void rpc_sm_client_free (idl_void_p_t node_to_free, unsigned32 *status) void...
	Description
	rpc_s_ok

	Return Values
	See Also

	rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c)
	Name
	Synopsis
	Description
	rpc_s_ok

	Return Values
	See Also

	rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c)
	Name
	Synopsis
	Description
	rpc_s_ok
	rpc_s_no_memory
	rpc_x_no_memory

	Return Values
	See Also

	rpc_sm_free, rpc_ss_free(3c)
	Name
	Synopsis
	Description
	rpc_s_ok

	Return Values
	See Also

	rpc_sm_set_client_alloc_free, rpc_ss_set_client_alloc_free(3c)
	Name
	Synopsis
	Description
	rpc_s_ok
	rpc_s_no_memory
	rpc_x_no_memory

	Return Values
	See Also

	rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c)
	Name
	Synopsis
	Description
	rpc_s_ok
	rpc_s_no_memory
	rpc_x_no_memory

	Return Values
	See Also

	setlocale(3c)
	Name
	Synopsis
	Description
	Files
	Note
	See Also

	strerror(3c)
	Name
	Synopsis
	Description
	See Also

	strftime(3c)
	Name
	Synopsis
	Description
	Selecting the Output Language
	Time Zone
	Examples
	Files
	See Also

	tpabort(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPEHEURISTIC]
	[TPEHAZARD]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Notices
	See Also

	tpacall(3c)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPNOREPLY
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEITYPE]
	[TPELIMIT]
	[TPETRAN]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpadmcall(3c)
	Name
	Synopsis
	Description
	Mode 1: Unbooted, Unconfigured Application:
	Mode 2: Unbooted, Configured Application:
	Mode 3: Booted Application, Unattached Process:
	Mode 4: Booted Application, Attached Process:

	Environment Variables
	TUXCONFIG

	Notices
	Return Values
	Errors
	[TPEINVAL]
	[TPEMIB]
	[TPEPROTO]
	[TPERELEASE]
	[TPEOS]
	[TPESYSTEM]

	Interoperability
	Portability
	Files
	See Also

	tpadvertise(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPELIMIT]
	[TPEMATCH]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpalloc(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Usage
	See Also

	tpbegin(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPETRAN]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Notices
	See Also

	tpbroadcast(3c)
	Name
	Synopsis
	Description
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Portability
	Usage
	See Also

	tpcall(3c)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPNOCHANGE
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEITYPE]
	[TPEOTYPE]
	[TPETRAN]
	[TPETIME]
	[TPESVCFAIL]
	[TPESVCERR]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpcancel(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEBADDESC]
	[TPETRAN]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpchkauth(3c)
	Name
	Synopsis
	Description
	Return Values
	TPNOAUTH
	TPSYSAUTH
	TPAPPAUTH

	Errors
	[TPESYSTEM]
	[TPEOS]

	Interoperability
	Portability
	See Also

	tpchkunsol(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Portability
	See Also

	tpclose(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPERMERR]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpcommit(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPETIME]
	[TPEABORT]
	[TPEHEURISTIC]
	[TPEHAZARD]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Notices
	See Also

	tpconnect(3c)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPSENDONLY
	TPRECVONLY
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEITYPE]
	[TPELIMIT]
	[TPETRAN]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpconvert(3c)
	Name
	Synopsis
	Description
	TPCONVCLTID
	TPCONVTRANID
	TPCONVXID

	Return Values
	Errors
	[TPEINVAL]
	[TPEOS]
	[TPESYSTEM]

	Portability
	See Also

	tpcryptpw(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPEPERM]
	[TPEOS]
	[TPESYSTEM]

	Portability
	Files
	See Also

	tpdequeue(3c)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPNOCHANGE
	TPSIGRSTRT

	Control Parameter
	TPNOFLAGS
	TPQGETBYMSGID
	TPQGETBYCORRID
	TPQWAIT
	TPQPEEK
	TPQPRIORITY
	TPQMSGID
	TPQCORRID
	TPQDELIVERYQOS
	TPQREPLYQOS
	TPQREPLYQ
	TPQFAILUREQ

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEOTYPE]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]
	[TPEDIAGNOSTIC]

	Diagnostic
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOMSG]
	[QMEINUSE]
	[QMESHARE]

	See Also

	tpdiscon(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEBADDESC]
	[TPETIME]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpenqueue(3c)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Control Parameter
	TPNOFLAGS
	TPQTOP
	TPQBEFOREMSGID
	TPQTIME_ABS
	TPQTIME_REL
	TPQPRIORITY
	TPQCORRID
	TPQREPLYQ
	TPQFAILUREQ
	TPQDELIVERYQOS, TPQREPLYQOS
	TPQQOSDEFAULTPERSIST
	TPQQOSPERSISTENT
	TPQQOSNONPERSISTENT

	TPQEXPTIME_ABS
	TPQEXPTIME_REL
	TPQEXPTIME_NONE
	TPQMSGID

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]
	[TPEDIAGNOSTIC]

	Diagnostic
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOSPACE]
	[QMERELEASE]
	[QMESHARE]

	See Also

	tpenvelope(3c)
	Name
	Synopsis
	Description
	TPSIGN_PENDING
	TPSIGN_OK
	TPSIGN_TAMPERED_MESSAGE
	TPSIGN_TAMPERED_CERT
	TPSIGN_REVOKED_CERT
	TPSIGN_POSTDATED
	TPSIGN_EXPIRED_CERT
	TPSIGN_EXPIRED
	TPSIGN_UNKNOWN
	TPSEAL_PENDING
	TPSEAL_OK
	TPSEAL_TAMPERED_CERT
	TPSEAL_REVOKED_CERT
	TPSEAL_EXPIRED_CERT
	TPSEAL_UNKNOWN

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPESYSTEM]

	See Also

	tperrordetail(3c)
	Name
	Synopsis
	Description
	Return Values
	TPED_CLIENTDISCONNECTED
	TPED_DECRYPTION_FAILURE
	TPED_DOMAINUNREACHABLE
	TPED_INVALID_CERTIFICATE
	TPED_INVALID_SIGNATURE
	TPED_INVALIDCONTEXT
	TPED_INVALID_XA_TRANSACTION
	TPED_NOCLIENT
	TPED_NOUNSOLHANDLER
	TPED_SVCTIMEOUT
	TPED_TERM

	Errors
	TPEINVAL

	See Also

	tpexport(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPEPERM]
	[TPESYSTEM]
	[TPELIMIT]

	See Also

	tpforward(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	See Also

	tpfree(3c)
	Name
	Synopsis
	Description
	Return Values
	Usage
	See Also

	tpgetadmkey(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	Portability
	See Also

	tpgetctxt(3c)
	Name
	Synopsis
	Description
	1. Calls tpinit()
	2. Calls tpgetctxt()
	3. Handles the value of context as follows:

	Return Values
	Errors
	[TPEINVAL]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpgetlev(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Notices
	See Also

	tpgetrply(3c)
	Name
	Synopsis
	Description
	TPGETANY
	TPNOCHANGE
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPEOTYPE]
	[TPEBADDESC]
	[TPETIME]
	[TPESVCFAIL]
	[TPESVCERR]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpgprio(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPENOENT]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpimport(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPEPERM]
	[TPEPROTO]
	[TPESYSTEM]

	See Also

	tpinit(3c)
	Name
	Synopsis
	Description
	Description of the TPINFO Structure
	Single-context Mode Versus Multicontext Mode
	TPINFO Structure Field Descriptions
	TPU_SIG
	TPU_DIP
	TPU_THREAD
	TPU_IGN
	TPSA_FASTPATH
	TPSA_PROTECTED
	TPMULTICONTEXTS
	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEPERM]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Interoperability
	Portability
	Environment Variables
	TUXCONFIG
	WSENVFILE
	WSNADDR

	WSNADDR=(//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050
	set WSNADDR=(//m1.acme.com:3050^|//m2.acme.com:3050),//m3.acme.com:3050
	WSFADDR
	WSFRANGE
	WSDEVICE
	WSTYPE
	WSRPLYMAX
	TMMINENCRYPTBITS
	TMMAXENCRYPTBITS
	Warning
	See Also

	tpkey_close(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPESYSTEM]

	See Also

	tpkey_getinfo(3c)
	Name
	Synopsis
	Description
	Table�11 Mapping of Algorithm Object Identifiers to Algorithms

	Return Values
	Errors
	[TPEINVAL]
	[TPESYSTEM]
	[TPELIMIT]
	[TPENOENT]

	See Also

	tpkey_open(3c)
	Name
	Synopsis
	Description
	TPKEY_SIGNATURE:
	TPKEY_AUTOSIGN:
	TPKEY_ENCRYPT:
	TPKEY_AUTOENCRYPT:
	TPKEY_DECRYPT:

	Return Values
	Errors
	[TPEINVAL]
	[TPEPERM]
	[TPESYSTEM]

	See Also

	tpkey_setinfo(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPELIMIT]
	[TPESYSTEM]
	[TPENOENT]

	See Also

	tpnotify(3c)
	Name
	Synopsis
	Description
	TPACK
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]
	[TPERELEASE]

	See Also

	tpopen(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPERMERR]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tppost(3c)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPNOREPLY
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPETRAN]
	[TPETIME]
	[TPESVCFAIL]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tprealloc(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Usage
	See Also

	tprecv(3c)
	Name
	Synopsis
	Description
	TPNOCHANGE
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT
	TPEV_DISCONIMM
	TPEV_SENDONLY
	TPEV_SVCERR
	TPEV_SVCFAIL
	TPEV_SVCSUCC

	Return Values
	Errors
	[TPEINVAL]
	[TPEOTYPE]
	[TPEBADDESC]
	[TPETIME]
	[TPEEVENT]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Usage
	See Also

	tpresume(3c)
	Name
	Synopsis
	Description
	Return Value
	Errors
	[TPEINVAL]
	[TPEMATCH]
	[TPETRAN]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Notes
	See Also

	tpreturn(3c)
	Name
	Synopsis
	Description
	TPSUCCESS
	TPFAIL
	TPEXIT

	Return Values
	Errors
	See Also

	tpscmt(3c)
	Name
	Synopsis
	Description
	TP_CMT_LOGGED
	TP_CMT_COMPLETE

	Return Values
	Errors
	[TPEINVAL]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Notices
	See Also

	tpseal(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPESYSTEM]

	See Also

	tpsend(3c)
	Name
	Synopsis
	Description
	TPRECVONLY
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT
	TPEV_DISCONIMM
	TPEV_SVCERR
	TPEV_SVCFAIL

	Return Values
	Errors
	[TPEINVAL]
	[TPEBADDESC]
	[TPETIME]
	[TPEEVENT]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpservice(3c)
	Name
	Synopsis
	Description
	TPCONV
	TPTRAN
	TPNOREPLY
	TPSENDONLY
	TPRECVONLY

	Return Values
	Errors
	See Also

	tpsetctxt(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpsetunsol(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	Portability
	See Also

	tpsign(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPESYSTEM]

	See Also

	tpsprio(3c)
	Name
	Synopsis
	Description
	TPABSOLUTE

	Return Values
	Errors
	[TPEINVAL]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpstrerror(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	Example
	See Also

	tpstrerrordetail(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	Example
	See Also

	tpsubscribe(3c)
	Name
	Synopsis
	Description
	TPEVSERVICE
	TPEVQUEUE
	TPEVTRAN
	TPEVPERSIST
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Regular Expressions
	Table�12 Regular Expressions�

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPELIMIT]
	[TPEMATCH]
	[TPEPERM]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpsuspend(3c)
	Name
	Synopsis
	Description
	Return Value
	Errors
	[TPEINVAL]
	[TPEABORT]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpsvrdone(3c)
	Name
	Synopsis
	Description
	Usage
	See Also

	tpsvrinit(3c)
	Name
	Synopsis
	Description
	Return Values
	Usage
	See Also

	tpsvrthrdone(3c)
	Name
	Synopsis
	Description
	Usage
	See Also

	tpsvrthrinit(3c)
	Name
	Synopsis
	Description
	Return Values
	Usage
	See Also

	tpterm(3c)
	Name
	Synopsis
	Description
	Multithreading and Multicontexting Issues
	Return Values
	Errors
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tptypes(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpunadvertise(3c)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	tpunsubscribe(3c)
	Name
	Synopsis
	Description
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]

	See Also

	TRY(3c)
	Name
	Synopsis
	Description
	When to Use Exception and Status Returns
	Built-in Exceptions
	Table�13 Built-in Exceptions�

	Caveats
	Examples
	#include <texc.h> EXCEPTION badopen_e; /* declare exception for bad open() */ doit(char *filename...
	See Also

	tuxgetenv(3c)
	Name
	Synopsis
	Description
	Return Values
	Portability
	See Also

	tuxputenv(3c)
	Name
	Synopsis
	Description
	Return Values
	Portability
	See Also

	tuxreadenv(3c)
	Name
	Synopsis
	Description
	Example
	Return Values
	Portability
	See Also

	tx_begin(3c)
	Name
	Synopsis
	Description
	Optional Set-up
	Return Value
	Errors
	[TX_OUTSIDE]
	[TX_PROTOCOL_ERROR]
	[TX_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_close(3c)
	Name
	Synopsis
	Description
	Return Value
	Errors
	[TX_PROTOCOL_ERROR]
	[TX_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_commit(3c)
	Name
	Synopsis
	Description
	Optional Set-up
	Return Value
	Errors
	[TX_NO_BEGIN]
	[TX_ROLLBACK]
	[TX_ROLLBACK_NO_BEGIN]
	[TX_MIXED]
	[TX_MIXED_NO_BEGIN]
	[TX_HAZARD]
	[TX_HAZARD_NO_BEGIN]
	[TX_PROTOCOL_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_info(3c)
	Name
	Synopsis
	Description
	Return Value
	Errors
	[TX_PROTOCOL_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_open(3c)
	Name
	Synopsis
	Description
	Return Value
	Errors
	[TX_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_rollback(3c)
	Name
	Synopsis
	Description
	Optional Set-up
	Return Value
	Errors
	[TX_NO_BEGIN]
	[TX_MIXED]
	[TX_MIXED_NO_BEGIN]
	[TX_HAZARD]
	[TX_HAZARD_NO_BEGIN]
	[TX_COMMITTED]
	[TX_COMMITTED_NO_BEGIN]
	[TX_PROTOCOL_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_set_commit_return(3c)
	Name
	Synopsis
	Description
	TX_COMMIT_DECISION_LOGGED
	TX_COMMIT_COMPLETED

	Return Value
	Errors
	[TX_EINVAL]
	[TX_PROTOCOL_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_set_transaction_control(3c)
	Name
	Synopsis
	Description
	TX_UNCHAINED

	Return Value
	Errors
	[TX_EINVAL]
	[TX_PROTOCOL_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	tx_set_transaction_timeout(3c)
	Name
	Synopsis
	Description
	Return Value
	Errors
	[TX_EINVAL]
	[TX_PROTOCOL_ERROR]
	[TX_FAIL]

	See Also
	Warnings

	userlog(3c)
	Name
	Synopsis
	Description
	Portability
	Examples
	Errors
	Diagnostics
	Notices
	See Also

	Usignal(3c)
	Name
	Synopsis
	Description
	Catching Signals
	Deferring and Restoring Signals
	Notices
	Files
	See Also

	Uunix_err(3c)
	Name
	Synopsis
	Description
	Examples

