o®7%%,

» F
; #
Iy e a

BEA Tuxedo

Programming a BEA Tuxedo
Application Using TXRPC

BEA Tuxedo Release 8.0
Documen t Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commerciad Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document i s subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS"' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebL ogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebLogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Programming a BEA Tuxedo Application Using TXRPC

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

1.

Introducing TXxRPC
WHEE IS TXRPC?........oooveeeeeeeeeeeeee e eee e eeeees s ses s ses s eee s sess s eeesnens 1-1
Using the Interface Definition Language (IDL)
REFEIEINCES ...ttt ettt s e e e e et se e ere b seenne s 2-1
Using uuidgen to Create an IDL Template.........ccoeererrerne s 2-2
Changes in the LanQUAGE.cccuruererie e eeeneie e seee et e e seese e see s eeeneeneeneas 2-4
Changes Based on the TXRPC SpPeCifiCation.........c.cocveeeriniinesenineeee e 2-4
Enhancementsto the LanNQUAGE..........ccvveerieeerieeirieere e 2-5
Enhancements that May Limit Portabilityccocooevne v 2-6
UNSUPPOITEH FEALUIES.c.oecvieceireceire ettt e s e e e e 2-7
Using tidl, the IDL COMPIEN........ooiireieireieirieieriee e e e 2-8
Writing RPC Client and Server Programs

Handling REMOLENESS.coue ittt e e e e 31
Handling Status and EXCeption RELUINS.........ccoeireeiireineeneene e 3-2
Using Stub SUPPOrt FUNCHIONS.........oueiriiie ittt 3-3
USIiNg RPC HEAEr FIlES..... ..ot 35
POrtability Of COAEoiveuiieii et e 3-6
Interacting With ATMI ..o e e e 3-10
INtEracting With TX ..o e e e 311

Building RPC Client and Server Programs

Prerequisite KNOWIEAGE.c.ooviviriieireieire et 4-1
BUIlding @ RPC SEIVEN ..ottt s s e e 4-2

Programming a BEA Tuxedo Application Using TxRPC iii

iv

Building an RPC ClLIENLc.ovieiiiiiiieene st 4-3

Building a Windows Workstation RPC Clientc.cooeeneeeneiene e 4-3
L LT o ST 4-4
Interoperating With DCE/RPC............oiiiiiiiine e 4-5
BEA Tuxedo Reguester to DCE Service viaBEA Tuxedo Gateway 4-5
Setting the DCE LOgIiN CONLEXEcuvrureirieeireire e 4-7
Using DCE Binding HandIES ..o 4-7
Authenticated RPC ..o 4-8
TrANSBCLIONScviecviiectereet ettt s 4-9
DCE Requester to BEA Tuxedo Service Using BEA Tuxedo Gateway 4-9
BEA Tuxedo Reguester to DCE Service Using DCE-only.........c.ccccvveee 4-11
DCE Requester to BEA Tuxedo Service Using BEA Tuxedo-only......... 4-12
Building Mixed DCE/RPC and BEA Tuxedo TXRPC Clients and Servers....
4-12

Running the Application

Prerequisite KNOWIEAGE.........ccccirciiieie e 5-1
Configuring the APPIICELION........c.ciirie et 5-2
Booting and Shutting Down the AppliCationccoeoeneeiricineineieceeenee 5-2
Administering the APPlICALIONcoeviieireire e 5-3
Using Dynamic Service AQVErtiSEMENtccoceverenniene et 5-3

. A Sample Application

APPENIX CONLENES ..ottt sttt e e et e s ene e A-1
PrErEQUISITES. ...ttt e e s e e A-1
Building the rpcsimp APPlICAION..........oviiiiii e A-2
Step 1: Create an Application DIrECLOrYcceveerevnernenere e A-2
Step 2: Set Environment Variables.........c.coveiniiniinecnecec e A-2
StEP 3: CoPY FIlES .o A-3
StEP 4: LiStthe FilES. .o e A-3
IDL Input File—simp.idl......ccccoooiiiiniiincin e A-4

The Client Source Code—Client.C.........cooerrirnereenece s A-4

The Server Source COUE—SEIVEN.C.....covuerreerriereeie e seeireeieneeees A-6
MaKefile—rPCSIMPLMK ..o A-7

The Configuration File—ubbconfig..........cccooveiieinnineineneeneee A-8

Programming a BEA Tuxedo Application Using TXRPC

Step 5: Modify the Configurationccocoveeeeenrnece e A-9

Step 6: Build the APPIICEHION.........covive e A-10
Step 7: Load the Configurationcccovee e neciineeineeneeeseeseienieiens A-10
Step 8: Boot the Configuration...........c.ccoevee e e A-10
Step 9: RUNTE CHENE ..o e e A-10
Step 10: Monitor the RPC SEIVES ..o A-11
Step 11: Shut Down the Configurationccoeeveiveincineeneeneiens A-12
Step 12: Clean Up the Created FIleS ... A-13

B. A DCE-Gateway Application

APPENTIX CONLENEScoeieeieeee ettt et e e e e B-1
PrErEOUISITESoeivi ettt e e e bbb bbb B-2
What |sthe DCE-Gateway ApPliCation?cccveerernerne s B-2
Installing, Configuring, and Running the rpcsimp Applicationcc.ccceee... B-3
Step 1: Create an Application DITeCLOrYcoovveineineine e B-3
Step 2: Set Y our ENVIFONMENE ..o B-3
Step 3: Copy the FIES ... e B-4
StEP 4: LISt tRE FlES....cueiieeee e B-4
IDL ACF File—SimpdCe.aCfcoovieenieencinecine e B-5

Binding Function—dcebind.C.......ccoooeiieiniiniinc B-6

Entry Point VeCtor—dCeERV.Cccooririri et B-7

DCE Manager—aCEMQI.C...c.uevivereeiereeiereere st ereneerene et eresieresiesesieneee e B-8

DCE SErVer - CESEIVEL.C....ooveeveeeree ettt ettt e e B-10
MaKefile—rPCSIMPMK ..o e B-12

Step 5: Modify the Configurationccveeeienene e B-14
Step 6: Build the APPliCaLION.........covi i e B-14
Step 7: Load the Configuration ..o B-14
Step 8: ConfiguriNg DCE ... e B-15
Step 9: Boot the Configuration..............ccveeieeenenee e B-16
Step 10: RUNthe CHENE ..o e B-16
Step 11: Shut Down the Configuration ... B-16
Step 12: Clean Up the Created FIles ... B-16

Programming a BEA Tuxedo Application Using TxRPC v

Vi Programming a BEA Tuxedo Application Using TXRPC

About This Document

This document explains how to program and use the TxRPC feature to implement
remote procedure calls (RPC) in the BEA Tuxedo environment.

This document covers the following topics:

Chapter 1, “Introducing TXRPC,” provides an introduction to the TxRPC feature.

Chapter 2, “Using the Interface Definition Language (IDL),” provides guidelines
for using Interface Definition Language (IDL) to develop TXRPC applications.

Chapter 3, “Writing RPC Client and Server Programs,” provides instructions on
developing programs that provide procedure calls transparently between a client
in one address space and a server in another address space.

Chapter 4, “Building RPC Client and Server Programs,” provides instructions on
building RPC client and server programs, using C++, and ensuring
interoperation with DCE/RPC.

Chapter 5, “Running the Application,” provides instructions on configuring,
booting, and shutting down a TXxRPC application. This section also describes
how to dynamically advertise services.

Appendix A, “A Sample Application,” provides a sample client-server
application using TXRPC.

Appendix B, “A DCE-Gateway Application,” provides a sample client-server
application using an OSF/DCE server and a gateway so that the BEA Tuxedo
ATMI client can communicate with the server using explicit binding and
authenticated RPCs.

Programming a BEA Tuxedo ATMI Application Using TXRPC Vii

What You Need to Know

This document is intended for the following audiences:

m administrators who are interested in configuring and managing TxRPC
applicationsin a BEA Tuxedo environment

m application developers who are interested in programming TxRPC applications
in a BEA Tuxedo environment

This document assumes a familiarity with the BEA Tuxedo platform and either C or
COBOL programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

viii

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Programming a BEA Tuxedo ATMI Application Using TXRPC

http://e-docs.bea.com

Related Information

The following BEA Tuxedo documents contain information that is relevant to using
the BEA Tuxedo TXRPC component and understanding how to implement TXRPC
applicationsin the BEA Tuxedo environment:

m BEA Tuxedo Command Reference
m BEA Tuxedo ATMI C Function Reference

For information on external documentation relating to the Interface Definition
Language (IDL), see Referencesin Chapter 2, “Using the Interface Definition
Language (IDL).”

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

Programming a BEA Tuxedo ATMI Application Using TXRPC iX

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, datatypes, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

fl oat

nonospace
bol df ace
t ext

I dentifies significant wordsin code.
Example:
void commt ()

nonospace
italic
t ext

Identifies variablesin code.
Example:
String expr

Programming a BEA Tuxedo ATMI Application Using TXRPC

Convention

Item

UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:

LPT1

SIGNON

OR
{1} Indicates a set of choicesin asyntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Programming a BEA Tuxedo ATMI Application Using TXRPC

Xi

Xii Programming a BEA Tuxedo ATMI Application Using TXRPC

CHAPTER

1 Introducing TXRPC

Thistopic includes the following section:

m What Is TXRPC?

What Is TXRPC?

The TXRPC feature allows programmers to use a remote procedure call (RPC)
interface, such that aclient process can call aremotefunction (that is, aremote service)
in another process using a local function call. The application writer must specify the
operations (that is, procedures) and data types that are used as parameters to those
operations via an Interface Definition Language (IDL). Operations are grouped
together in an interface. An IDL compiler is used to generate substitute procedures
called stubs which alow the operation to be remote. An important concept to
understand from the beginning isthat there are two fundamental levels of naming: the
interface has aname and within an interface, one or more operationsare named. At run
time, the interface is made available, which means that any of the operationsin the
interface can be called; an individual operation within an interface cannot be made
available (if you need this, define the operation in its own interface).

The following illustrates how an RPC is made to look like alocal procedure call.

Programming a BEA Tuxedo Application Using TxRPC 1-1

1

Introducing TxRPC

1-2

Figure1l-1 RPC Communication

Apparent

App Client Data Path App Client
Code ¢ » Code

Client Stub Server Stub
BEA Tuxedo BEA Tuxedo
Runtime Runtime

Input parameters T

Return and output parameters

Actual Data Path

The client application code calls one of the operations (functions) defined in the IDL
file. Instead of calling the actual function, which resides on the server side, the client
stubiscalled. Theclient stub isgenerated by the IDL compiler based on the IDL input
file, which defines the data types and operations. For each operation, the input
parameters, return type, and output parameters are defined. The client stub takes the
input parameters and converts them into a single buffer of data, sends the data to the
server and waits for aresponse, and unpacks the buffer of data sent back from the
server (thereturn value and output parameters). The communi cation between the client
and server processes, whether intra-machine or inter-machine is handled by the BEA
Tuxedo ATMI run time.

On the server side, the run time calls the server stub for the interface, also generated
by the IDL compiler. This stub unpacks the data buffer that contains the input
parameters, in some cases it alocates space needed for output parameters of the
operation, callsthe operation and waits for it to return, packs the return value and
output parametersinto a buffer and sends the response back to the client.

From the application perspective, it appearsthat asimplelocal procedurecall is done.
The stubsand the run time hide the calling of aremote procedurein anon-local address
space (process).

Programming a BEA Tuxedo Application Using TXRPC

What Is TxRPC?

The steps for building an application using remote procedure callsis very similar to
building one without these calls. Most of the time will be spent writing the application
code for the client and the server (where the rea application work is done). The BEA
Tuxedo ATMI run time frees the application programmer from worrying about
communications, translation of the data from the format used on the client machine to
the format used on the server machine, and so forth. TXRPC may also be used to
communicate between servers.

In addition to the steps needed for building a monolithic application, it is necessary to
completely define the interface between the client and server. As stated earlier, the
interface contains the definition of data types and operations used for the remote
procedure calls. Normally, the name of thefile containing the definitionhasan“. i dI ”
suffix; using this convention makes the file type self-documenting.

Every interface must have its own unique identifier. This Universal Unique I dentifier
(UUID) consists of 128-bitsthat uniquely identify the interface among all interfaces.
Thejob of generatingaUUID isdone for the application programmer by the uui dgen
program. By running theuui dgen programwiththe-i option, it generatesan interface
template that contains a new UUID. Refer to Appendix A, “A Sample Application,”
for a complete example (including code) for the development of a simple RPC
application; the first step illustrates how to run the uui dgen command and the
resulting output. More information about other options of this command are given in
the uui dgen(1) manua page.

The UUID isused at run time to ensure that the client stub matches the server stub on
thereceiving side. That is, the UUID is sent from the client to the server for validation
by the BEA Tuxedo ATMI run time, transparent to the application programmer.

Besides matching on the UUID, each interface also has a version number associated
with it. The version consists of amajor and minor number. If aversion number is not
specified as part of the interface definition, it defaultsto 0.0. Thus, there may be
multiple versions of the same interface available. The client requests a particul ar
version of an interface by invoking the RPC in the stub generated from a particular
interface version. Different versions imply that data types or operation parameters or
returns have changed, or operations have been added to or deleted from the interface.
Thus, the client and server UUID’ sand versions must match for asuccessful RPC. The
application programmer must ensure that versions of the interface that have the same
version numbers do provide the same (or a compatible) interface.

Oncethetemplate DL isgenerated by uui dgen, the application program must provide
adefinition of all data types and operations in the interface. The language looks very
much like the declarative parts of C or C++ (without the procedural statements). Data

Programming a BEA Tuxedo Application Using TxRPC 1-3

1

Introducing TxRPC

1-4

types are declared viat ypedef statements, and the operations are declared via

function prototypes. Additiona information isprovided via IDL attributes. Attributes
appear in the language within square brackets, for example, [in]. These provide

information about such things as pointer types (for example, whether or not a pointer
can be NULL at run time), about parameters (for example, whether a parameter isfor
input, output, or both), and much more. The IDL language and the associated compiler
are discussed further in “Using the Interface Definition Language (IDL)” on page 2-1.

Inadditiontothe IDL file, an optional Attribute Configuration File (ACF) may also be
provided to give additiona attributes of the interface. Most important is the definition
of statusvariablesinthe operations for returning the status of each RPC operation. The
use of status variables will be discussed further in “Writing RPC Client and Server
Programs” on page 3-1. Attributesin the ACF file do not affect the communications
between the client and server (as do attributesin the IDL fil€), but generally have an
impact on the interface between the application code and the generated stubs.

When using the BEA Tuxedo ATMI run time, the management of the binding
(connection) between the client and server is done transparently. Thereis no
information provided by the client or server application code to manage the
client/server binding. (In contrast, when using the OSF DCE run time, considerable
effort by the programmer must be given to binding management. BEA Tuxedo ATMI
runtime does not support the OSF DCE run time functions and ignores binding
attributesin IDL and ACF files.)

The IDL and optional ACF files are compiled using the IDL compiler. The compiler
first generates a header file that contains all of the type definitions and function
prototypes for the operations defined in the IDL file. This header file can be included
in application code that makes RPC calls defined in the interface. If theinput files are
file.idl andfile.acf,thenthedefault header file nameisfi/ e. h. The compiler
generates stub code for both the client and server (for example, fil e_cst ub. c and
fil e_sstub. c). These stub files were described earlier and contain the data
packaging and communicationsfor the RPC. By default, the IDL compiler invokesthe
C compiler to generate client and server stub object files (for example, fi l e_cst ub. o
and fi I e_sst ub. 0) and the stub source files are removed. There are various IDL
compiler optionsto request, limit generation of, and keep source and object files, and
change the output filenames and directories. Seetheti dl (1) reference page for
further details.

Programming a BEA Tuxedo Application Using TXRPC

What Is TxRPC?

After completing the interface definition, the major portion of work is writing the
application code. The client code will call the operations defined in the interface, and
the server code must implement the operations (note that a server can also act asa
client by calling an RPC). Further considerations regarding writing the application are
discussed in “Using the Interface Definition Language (IDL)” on page 2-1.

When the application code is completed, it'stime to compile and link it together with
the BEA Tuxedo ATMI run time. Two programs are provided to simplify this process:
bui | dser ver for the server, and bui | dcl i ent for the client. These programs
compile any source files and link the object and library files with the BEA Tuxedo
ATMI run timeto produce the executable files. These programs allow for alternate
compilers and compilation options to be specified. See the bui | dser ver (1) and

bui I dcl i ent (1) reference pages for further details.

The complete process for building aserver and client are shown in Figure 1-2 and
Figure 1-3. More details about building client and server programs on different
platforms are provided in “Building RPC Client and Server Programs” on page 4-1.

Figure 1-2 Building an RPC Server

Step 1
sirmp.idl
. Bea Tuxedo
simp_sstub.o :
L4 runtirmne
simp.acf tidl
Step 2 simp.h buildserer server
Server.c libtrpc

Figure 1-2 illustrates the following steps in the process for building a server:

1. Run uui dgen to generate a skeleton IDL file (si np. i dI) with auul D. Edit the
template IDL file to define the interface between the client and server using the
interface definition language.

2. Runthe DL compiler (ti dl) usingsi np. i dl and optional si np. acf to
generate the interface header file and the server stub object file.

Programming a BEA Tuxedo Application Using TxRPC 1-5

1 Introducing TXRPC

3. After writing the server application code (ser ver . c), run bui | dserver to
compileit and link it with the server stub, BEA Tuxedo ATMI run time, and
TXRPC run time to generate an executabl e server.

Figure 1-3 Building an RPC Client

simp.id|
. tub Bea Tuxedo
simp_sstub.o runtime
simp.acf 0
Step 4 simp.h .- client

Step 5
libtrpc

client.c

The preceding figure illustrates the process for building a client.

4. UsingthelDL file created in Step 1, run the IDL compiler (ti dl) to generate the
interface header file and the client stub object file.

5. After writing the client application code (cl i ent . c), run bui | dcl i ent to
compileit and link it with the client stub, BEA Tuxedo ATMI run time, and
TXRPC run time to generate an executable client.

After building the application client and server, the application can be configured and
booted, and the client run. Thisisdiscussed in “ Running the Application” on page 5-1.

1-6 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

2 Using the Interface
Definition Language
(IDL)

Thistopic includes the following sections:

m Using uuidgen to Create an IDL Template
m Changesin the Language

m Changes Based on the TXRPC Specification
m Enhancementsto the Language

m Unsupported Features

m Using tidl, the IDL Compiler

References

BEA Tuxedo TXRPC supports the IDL grammar and associated functiondity as
described in Chapter 3 (“Interface Definition Language”) of DCE: REMOTE
PROCEDURE CALL (Doc Code: P312 ISBN 1-872630-95-2). This book is available
from the following.

Programming a BEA Tuxedo Application Using TxRPC 2-1

2 Using the Interface Definition Language (IDL)

X/OPEN Company Ltd (Publications)
P O Box 109

Penn

High Wycombe

Bucks HP10 8NP

United Kingdom

Tel: +44 (0) 494 813844
Fax: +44 (0) 494 814989

The X/OPEN document is the ultimate authority on the language and rules adhered to
for the BEA Tuxedo product inan ATMI environment. Note that the X/OPEN TxRPC
IDL-only interface is supported (parts of the document concerning the DCE binding
and run time do not apply). The X/OPEN document is based on the OSF DCE
AES/RPC document. There are several books containing tutorials and programmer’s
guidesthat can be used, although most will not contain the latest features. The
programmer’ s guide available from OSF is OSF DCE Application Development
Guide, published by Prentice-Hall (Englewood Cliffs, New Jersey, 07632).

The X/OPEN Preliminary Specification for TXRPC Communication Application
Programming Interface is also available from X/OPEN (see above). TXRPC adds
transaction support for RPCs to the original X/OPEN RPC interface.

Using uuidgen to Create an IDL Template

A Universa Unique ldentifier (UUID) is used to uniquely identify an interface. The
uui dgen command is used to generate UUIDs. The output might look something like
the following:

$ uuidgen -i > sinp.idl

$ cat sinp.idl

[uui d(816A4780- A76B- 110F- 9B3F- 930269220000)]
i nterface | NTERFACE

{

}

Thistemplate isthen used to create the IDL input file for the application (adding type
definitions, constants, and operations).

2-2 Programming a BEA Tuxedo Application Using TXRPC

Using uuidgen to Create an IDL Template

If boththe ATMI and DCE uui dgen(1) commands are available, the DCE command
can and should be used to generate the templ ate (the DCE version will most likely have
a machine-specific approach to getting the node address, as described bel ow).

The ATMI uui dgen command issimilar to the DCE command with the exception that
the - s option (which generatesa UUID string asan initialized C structure), and the - t
option (which translates an ol d style UUID string to the new format) are not supported.
See the uui dgen(1) reference page for details of the interface.

Theuui dgen command requires a48-bit node addressasdescribed in 1 SO/IEC 8802-3
(ANSI/IEEE 802.3). Thereis no platform-independent way to determine this value,
and it may not be available at all on some machines (aworkstation, for example). The
following approach is used for the ATMI uui dgen command:

m |f the NADDR environment variable is set to a value of the form
num num num num num numwhere numis between 0 and 255, inclusive, it is
taken to be an Internet-style address and converted to a 48-bit node address. This
allows conformance with the use of the 8802-3 node address. It also allows users
who do not have access to this address to use another value, most likely the
Internet address (which is not the same as the 8802-3 address). If the Internet
address is used, the last num numshould be 0.0 (because Internet addresses are
only 32-bit addresses).

m If the NADDR environment variable is not set and if the WEBNADDR environment
variable is set to avalue of the form Oxnnnnnnnnnnnnnnnn it istaken to be a
hexadecimal network address, as used in Workstation. Again note that thisis not
the 8802-3 address, and the last 16 bits will be treated as zeros.

m | neither the NADDR nor the WBNADDR environment variable is set (and if not
Windows), the uname for the machine is used to look up the machine entry in
/ et c/ host s to get the Internet-style address.

m |f thefirst three choices are not available, awarning is printed and
00.00.00.00.00.00 is used. Thisis not desirable because it reduces the chance of
generating a unique UUID.

Programming a BEA Tuxedo Application Using TxRPC 2-3

2 Using the Interface Definition Language (IDL)

Changes in the Language

The IDL compiler recognizesthe DL grammar and generates stub functions based on
the input. The grammar and its semantics are fully described in both the X/OPEN and
OSF/DCE references listed earlier in this chapter. The grammar will be recognizedin
its entirety with some changes as described in the following sections.

Changes Based on the TXRPC Specification

The following are changesto the base X/OPEN RPC specification that are defined by
the X/OPEN TxRPC specification:

m Themost important enhancement from the TXRPC specification is the addition
of the[transacti on_optional] and[transacti on_mandat ory] attributes
in the interface and operation attributesin the IDL file.
[transaction_optional] indicatesthat if the RPC is donewhilein a
transaction, the remote service is done as part of the transaction. The
[transaction_mandat ory] attribute requires that the RPC be done within a
transaction. Without these attributes, the remote serviceis not part of any
transaction of which the client may be part.

m Binding types and attributes are not required by X/OPEN TxRPC IDL-only. The
binding attributes are [handl e] , [endpoi nt], [aut o_handl €],
[inplicit_handle],and[explicit_handl e].They are recognized by
tidl (1) but not supported (these attributes are ignored). Also the handl e_t
type is not treated specidly (it is transmitted as any other defined typeis
transmitted, without treatment as a handle).

m Pipesare not required by X/OPEN TxRPC IDL-only. ti dI supports pipes only
in[1ocal] mode; that is, they can be specified for header file, but not stub,
generation.

m The[idenpotent], [maybe],and[broadcast] attributesare not required by
X/OPEN TxXRPC IDL-only. They areignored by ti dI (1) .

2-4 Programming a BEA Tuxedo Application Using TXRPC

Enhancements to the Language

Enhancements to the Language

The following are enhancementsto the X/OPEN RPC specification. In most cases, the
language has been enhanced to more closely follow the C language, simplifying the
porting of existing interfaces (converting from ANSI C to IDL prototypes).

In the X/OPEN specification, character constants and character strings are
limited to the portable set, that is space (0x20) throught i | de (0x7€). Other
characters in the character set (0x01 through 0xff) are allowed, asin OSF DCE
RPC.

Asin C, the following operators are treated as punctuators.
[|] && ? | & _ == 1= = << > <=>= <>+ - %! ~

This means that white space need not follow or precede identifiers or numbers if
preceded or followed by one of these tokens. (The IDL specification reguires
white space, asina = b + 3, instead of alowing a=b+3.) This also seemsto
be the behavior of the OSF DCE IDL compiler.

The published X/OPEN specification restricts field and parameter names from
matching type names. This restriction effectively puts al namesin asingle name
space. This restriction does not match C, C++, or the OSF IDL compiler, and is
not enforced.

The X/OPEN specification does not allow anonymous enumerations as
parameter or function results and does not allow anonymous structures or unions
as the targets of pointers. Each of these is alowed by the OSF DCE IDL
compiler. These restrictions are not enforced; in each case, a name, based on the
interface name and version, is generated for use during marshalling.

Enumeration values (constants) may be used in integer constant expressions (as
in C). This also seemsto be the behavior of the DCE IDL compiler.

Ascurrently defined in the X/OPEN RPC specification, the grammar does not
allow for apointer in front of an operation declaration, for example:
I ong *op(void);

nor doesit allow for structure or union returns. While this could be considered
correct (everything could be hidden in a defined type), the DCE IDL compiler
and, of course, C compiler allow amuch richer operation return. The supported
grammar will be the following:

Programming a BEA Tuxedo Application Using TxRPC 2-5

2 Using the Interface Definition Language (IDL)

[operation_attributes] <type_spec> <decl arator>

where <dec! ar at or> must contain a<functi on_decl arator>. (If a
<function_decl ar at or> does not exist, then avariableis declared, which
resultsin an error.) Declaring an array of operations or an operation returning an
array (both allowed by this grammar) will be detected and flagged as an error.

The <ACS t ype_decl ar at i on> takes <ACS naned_t ype> values, just asthe
IDL <type_decl ar ati on> takesalist of declarators. This seems to be the
behavior of the DCE IDL compiler.

Fielded buffers created and manipulated with the Field Manipulation Language
(FML) are anintegral part of many BEA Tuxedo ATMI applications. Fielded
buffers are supported as a new base typeinthe IDL. They areindicated by the
keywords FBFR for 16-bit buffers and FBFR32 for 32-bit buffers and must always
be defined as a pointer (for example, FBFR * or FBFR32 *). A fielded buffer
cannot be defined as the base type in at ypedef . They can be used in structure
fields and as parameters. They can be used as the base type in an array or pointer
(either full or reference pointer). However, conformant and varying arrays of
fielded buffers are not supported.

There are several restrictions in the OSF IDL compiler that are not documented
in the AES or X/OPEN RPC specification. These are enforced in the BEA
Tuxedo IDL compiler:

e A transmitted type used in [t ransni t _as()] cannot have the
[represent _as] attribute.

e A union arm may not be or contain a[r ef | pointer.

e If aconformant and/or varying array appears in astructure, the array size
attribute variable may not be a pointer (that is, it must be a non-pointer,
integer element within the structure).

Enhancements that May Limit Portability

2-6

There are four additional BEA Tuxedo ATMI enhancements to the X/OPEN RPC
specification that, while making the specification more C-like, are not supported in the
OSF DCE IDL compiler and thus havethe effect of limiting portability of thelDL file:

m String concatenation is supported (asin ANSI C). That is:

const char *str = “abc” “def”;

Programming a BEA Tuxedo Application Using TXRPC

Unsupported Features

is treated the same as
const char *str = “abcdef”;
Escaped newlines are allowed in string constants. That is:

const char *str = “abc\
def”;

is treated the same as

const char *str = “abcdef”;

Enumeration values may also be used in union cases and are treated as integers
(that is, automatic conversion is provided asin C).

The restriction that the type of each <uni on_case_I abel > must be that
specified by the <swi t ch_t ype_spec> will not be enforced. Instead, the type
will be coerced as is done with case statements in a C switch statement.

Unsupported Features

The following seven features are not supported intheti dI compiler:

The migration attributes[v1_struct],[v1l_enuni,[vl_string],and
[vl_array] arerecognized but not supported (these appear in the OSF IDL
specification but not the X/OPEN specification).

Function pointers (defined in the OSF/DCE document) are supported only in
[1 ocal] mode (asin OSF/DCE).

An exact match is required on interface version minor between the client and the
server (the X/OPEN RPC specification allows for the server version minor to be
greater than or equal to the version minor specified by the client).

On machines with 32-bit longs, integer literal values are limited to -2**31 to
2**31. This means that unsigned long integer values in the range 2**31+1 to
2**32-1 are not supported. This also seems to be the behavior of the DCE IDL
compiler.

Context handles are supported only in[| ocal] mode. Interfaces cannot be
written that use context handles to maintain state across operations.

Programming a BEA Tuxedo Application Using TxRPC 2-7

2 Using the Interface Definition Language (IDL)

The[out - of -1i ne] ACS attributeisignored. Thisfeatureis not defined in a
way that will support interoperation between different implementations (e.g.,
with the OSF IDL compiler).

The[heap] ACS attributeisignored.

Using tidl, the IDL Compiler

The interface for the IDL compiler is not specified in any X/OPEN specification.

For DCE application portability, the BEA Tuxedo ATMI IDL compiler has asimilar
interface to the DCE IDL compiler, with the following exceptions:

The command nameisti dl instead of i dl so an application can easily
reference either when both appear in the same environment.

The - bug option, which generates buggy behavior for interoperability with
earlier versions of the software, has no effect. The - no_bug option also has no
effect.

The - space_opt option, which optimizes the code for space, isignored. Space
is aways optimized.

A new option, - use_const , is supported. - use_const generates ANSI C

const statementsinstead of #def i ne statements for constant definitions. This
gets around an annoying problem where a constant defined in the IDL file
collides with another name in the file using a C-preprocessor definition, but is
properly in another name space when defined as a C constant. Use of this feature
will limit portability of the IDL file.

By default, /1i b/ cpp, /usr/ccs/ i b/ cpp,or/usr/libl/cpp (whicheveris
found first) is the command used to preprocess the input IDL and ACF files.

By default, theIDL compiler takesaninput IDL fileand generatesthe client and server
stub object files. The - keep c¢_sour ce option generates only the C source files, and
the-keep al | option keeps both the C source and object files. The sample RPC
application, listed in Appendix A, “A Sample Application,” uses the - keep obj ect
option to generate the object files.

2-8 Programming a BEA Tuxedo Application Using TXRPC

Using tidl, the IDL Compiler

By default, at most 50 errorsareprinted by t i dl . If youwant to seethem all (and have
more than 50 errors), usethe-error all option. The error output is printed to the
stderr.

Seetidl (1) inthe BEA Tuxedo Command Reference for details on the many other
options that are available.

Programming a BEA Tuxedo Application Using TxRPC 29

2 Using the Interface Definition Language (IDL)

2-10 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

3 Writing RPC Client and
Server Programs

Thistopic includes the following sections:

Note: Sample client and server source files are provided in Appendix A, “A Sample

Handling Remoteness

Handling Status and Exception Returns
Using Stub Support Functions

Using RPC Header Files

Portability of Code

Interacting with ATMI

Interacting with TX

Application.”

Handling Remoteness

The goal of TXRPC isto provide procedure calls transparently between aclient in one
address space and a server in another address space, potentially on different machines.
However, because the client and server are not in the same address space, there are

some things to remember:

Programming a BEA Tuxedo Application Using TxRPC

3 Writing RPC Client and Server Programs

m Becausethe client and server are in different address spaces, potentially on
different machines, memory is not assumed to be shared. Program state (for
exampl e, open file descriptors) and global variables are not shared between the
client and server. Any state information required must be passed from the client
to the server and then back to the client for subsequent calls.

m Thedivision of labor between the client and server has some advantages, such as
providing more modularity of the software and the ability to do the work near
the resources required to do the work. However, it may also mean more
complexity in dealing with issues related to distributed processing, such as
communication problems, independent unavailability of either the client or
server, and so forth. Errors resulting from the increased complexity may reguire
different handling from those in an interface designed for local procedure calls.
The handling of errorsinvolved in communications and/or the remote processis
covered in the next topic.

Handling Status and Exception Returns

In the X/OPEN RPC specification, non-application errors are returned via status
parameters or a status return. A f aul t _st at us valueis returned if thereis an RPC
server failure and aconm st at us valueis returned if there is acommunications
failure. Status returns are specified by defining an operation return value or an [out]
parameter of typeerror_status_t inthe DL file, and declaring the same operation
or parameter to havethe[f aul t _st at us] and/or [conm st at us] attribute in the
ACFfile.

For example, an operation defined in an IDL fileas:

error_status_t op([in,out]long *parml, [out]error_status_t *commstat);
with adefinition in the corresponding ACF file as:
[fault _status] op([comm status]comstat);

returns an error from the server via the operation return, and an error in
communications via the second parameter. Its usein the client code could be as
follows:

if (op(&parml, &conmmstat) !=0 || commstat !=0) /* handle error */

3-2 Programming a BEA Tuxedo Application Using TXRPC

Using Stub Support Functions

The advantage of using status returnsisthat the error can be handled immediately at
the point of failure for fine-grained error recovery.

The disadvantage of using status returns is that the remote function has additional
parameters that the local version of the function does not have. Additionally,
fine-grained error recovery can be tedious and error prone (for example, some cases
may be missing).

DCE defines a second mechanism called exception handling. It is similar to C++
exception handling.

The application delimitsablock of C or C++ codein which an exception may be raised
with the TRY, CATCH, CATCH_ALL, and ENDTRY statements. TRY indicates the beginning
of the block. CATCH is used to indicate an exception-handling block for a specific
exception, and CATCH_ALL is used to handle any exceptions for which thereis not a
CATCH statement. ENDTRY ends the block. TRY blocks are nested such that if an
exception cannot be handled at alower level, the exception can be raised to a higher
level block using the RERAI SE statement. If an exceptionisraised out of any exception
handling block, the program writes a message to the log and exits. Details of the
exception handling macros and an example are described in TRY(3c) in the BEA
Tuxedo C Function Reference.

In addition to exceptions generated by the communications and server for an RPC call,
exceptionsare also generated for lower level exceptions, specifically operating system
signals. These exceptions are documented within TRY(3c) in the BEA Tuxedo C
Function Reference.

Using Stub Support Functions

There are alarge number of run-time support functions (over 100) defined in the
X/OPEN RPC specification. These functions need not al be supported in an X/OPEN
TxXRPC IDL-only environment. Most of these functions relate to binding and
management which are done transparently for ATMI clients and servers.

One area that affects application portability isthe management of memory allocated
for stub input and output parametersand return val ues. The Stub Memory Management
routines are supported in TXRPC run time with the exception of the two routines to
handle threads. The status-returning functions include:

Programming a BEA Tuxedo Application Using TxRPC 3-3

3 Writing RPC Client and Server Programs

m rpc_smallocate

m rpc_smclient_free

m rpc_smdisabl e_allocate

m rpc_smenable_allocate

m rpc_smfree

m rpc_smset_client_alloc_free

m rpc_smset_server_alloc_free

m rpc_smswap_client_alloc_free

The equivalent exception-returning functions include;
m rpc_ss_allocate

B rpc_ss_client_free

m rpc_ss_disable_allocate

m rpc_ss_enable_allocate

m rpc_ss free

B rpc_ss_set_client_alloc_free

B rpc_ss_set_server_alloc_free

B rpc_ss_swap_client_alloc_free

Refer to BEA Tuxedo C Function Reference for more information on these functions.

Therun-time functions are contained in | i bt r pc; building RPC clients and serversis
discussed in the next topic.

Thefollowing are afew tips regarding memory management:

m When an ATMI client calls aclient stub, it usesnal | oc and f r ee by default. All
space will be freed on return from the client stub except space allocated for
[out] pointers (including implicit [out] pointersin the return value of the
operation). To make freeing of [out] pointers easier, call
rpc_ss_enabl e_al | ocate(), andsetal | oc/free torpc_ss_al | oc()/
rpc_ss_free() before calling the RPC by calling
rpc_ss_set_client_alloc_free(). Thenrpc_ss_di sabl e_al | ocat e() can

3-4 Programming a BEA Tuxedo Application Using TXRPC

Using RPC Header Files

be used to free all of the allocated memory. For example, to simplify freeing
space returned from a client stub the following could be used:

rpc_ss_set_client_alloc_free(rpc_ss_allocate, rpc_ss_free);
ptr = remote_call _returns_pointer();
/* use returned pointer here */

rpc_ss_disable_allocate(); /* this frees ptr */

m When an ATMI server stub is executed that calls an application operation,
memory allocation using r pc_ss_al | ocat e is always enabled in the server
stub. The[enabl e_al | ocat e] attribute in the ACF file has no effect. All
memory will be freed in the server before returning the response to the client. (In
DCE, memory allocation is enabled only if [pt r] fields or parameters exist, or
the programmer explicitly specifies[enabl e_al | ocate] .)

m When aserver stub calls an application operation which in turn callsaclient
stub (that is, when a server acts as a client by calling an RPC), the
rpc_ss_set _client_alloc_free() function must be called to set up
allocation such that any space allocated will be freed when the operation returns.
Thisisdone by calling:

rpc_ss_set_client_alloc_free(rpc_ss_allocate, rpc_ss_free);

m When callingrpc_ss_al | ocat e() or rpc_sm al | ocat e(), remember to cast
the output to match the data type of the pointer being set. For example:

long *ptr;
ptr = (long *)rpc_ss_all ocate(sizeof (1ong));

Using RPC Header Files

To ensure that stubs from both DCE/RPC and TXRPC can be compiled in the same
environment, different header filenames are used in the TXRPC implementation. This
should not affect the application programmer sincethese header files are automatically
included in the interface header file generated by the IDL compiler. However, an
application program may wish to view these headers to see how atype or function is
defined. The new header filenames are listed here:

Programming a BEA Tuxedo Application Using TxRPC 3-5

3 Writing RPC Client and Server Programs

m dce/ nbase. h, dce/ nbase. i dl —renamedr pc/ t base. h andr pc/ t base. i dl .
Contain the declarations for pre-declared typeserror _status_t,
I SO LATI N 1,1SO MULTI _LI NGUAL, and | SO_UCS.

m dce/idl base. h—renamedr pc/ ti dl base. h. Containsthe IDL base types, as
defined in the specification (for example, i dl _bool ean, i dl _| ong_i nt), and
the function prototypes for the stub functions.

m dce/ pt hread_exc. h—renamedr pc/t exc. h. Contains the TRY/ CATCH
exception handling macros.

m dce/ rpcsts. h—renamedrpc/ trpcsts. h. Contains the exception and status
value definitions for the RPC interface.

These header files are located in $TUXDI R/ i ncl ude/ r pc. The TXRPC IDL compiler
will look in $TUXDI R/ i ncl ude by default asthe “system IDL directory.”

Portability of Code

The output from the IDL compiler is generated in away to allow it to be compiled in
alarge number of environments (see the next chapter for adiscussion of compilation).
However, there are some constructs that don’t work in various environments. The
following are afew known problems:

When compiling with Classic (non-ANSI) C, “pointersto arrays’ are not allowed. For

example:
typedef |ong array[10][10];
func()

{

array t1i;

array *t2;

t2 = &1, /* & ignored, invalid assignment */
func2(&1); /* & ignored */

Thiswill makeit difficult to pass “pointersto arrays’ to operations as parametersin a
portable fashion.

3-6 Programming a BEA Tuxedo Application Using TXRPC

Portability of Code

When using an array of strings where the string attribute is applied to a multi-byte
structure, the results will not be as desired if the compiler pads the structure. Thisis
not the normal case (most compilers do not pad a structure that contains only character
fields), but at least one occurrenceis known to exist.

Constant values are, by default, implemented by generating a#def i ne for each
constant. This means that names used for constants should not be used for any other
namesinthel|DL fileor any imported IDL files. A TXRPC-specific option onthet i dl
compiler, - use_const , may be used to get around this problem in an ANSI C
environment. This option will cause const declarations instead of #def i ne
definitionsto be generated. The constant valueswill be declared in theclient and server
stubs, and any other source file including the header file will simply get ext er n
const declarations. Note that this has the restriction that the client and server stubs
may not be compiled into the same executable file (or duplicate definition errors will
occur).

There are several restrictionsin the C++ environment:

m Do not use the same name for at ypedef and astructure or union tag, unlessthe
t ypedef name matchesthestruct or uni on name.

struct t1 {
| ong s1;
H
typedef struct tl1 tl1; /* ok */
typedef long t1; /* error */

m Do not hide a structure or union tag declaration inside another structure or union
declaration and then reference it outside.

struct t1 {
struct t2 {
long s2;
} sl
P}ty
typedef struct t3 {
struct t2 s3; /* t2 undefined error */
}ot3;

m Some compiler warnings may be generated. These include the following:
e Warnings that automatic variables are declared but not used.

e Warnings that a variable is used before being set when referenced in
si zeof () asinthefollowing case:

Programming a BEA Tuxedo Application Using TxRPC 3-7

3 Writing RPC Client and Server Programs

| ong *ptr;
ptr = (long *)mall oc(sizeof (*ptr) * 4);

When coding the client and server application software, you should use the data types
generated by the IDL compiler, asdefined inrpc/ti dl base. h (listed as Emitted
Macro in the following table). For instance, if you use al ong instead of

i dl _I ong_i nt, then the datatype may be 32 bits on some platforms and 64 bits on
others; i dl _I ong_i nt will be 32 bitson all platforms. Table 3-1 lists the generated
data types.

Table 3-1 Generated Data Types

IDL Type Size Emitted Macro C Type

boolean 8 bits i dl _bool ean unsigned char

char 8 bits i dl _char unsigned char

byte 8 bits idl _byte unsigned char

small 8 hits id _small _int char

short 16 bits idl _short_int short

long 32 bits idl_long_int Machines with 32-bit long: | ong
Machines with 64-bit long: i nt

hyper 64 bits i dl _hyper_int Machines with 32-bit long:

Big Endian

struct

{
I ong hi gh;
unsigned | ong | ow;

}

Little Endian

struct

{
unsigned | ong | ow;
I ong hi gh;
}
Machines with 64-bit long:

| ong

3-8 Programming a BEA Tuxedo Application Using TXRPC

Portability of Code

Table 3-1 Generated Data Types

IDL Type Size Emitted Macro C Type
unsigned 8 bits idl _usmall_int unsigned char
small
unsigned 16 hits idl _ushort _int short
short
unsigned 32 bits i dl _ul ong_int Machines with 32-bit long: | ong
long Machines with 64-bit long: i nt
unsigned 64 bits i dl _uhyper_int M achines with 32-bit long:
hyper Big Endian
struct
{
unsi gned | ong hi gh;
unsi gned | ong | ow;
}
Little Endian
struct
{
unsi gned | ong | ow;
unsi gned | ong hi gh;
}
M achines with 64-bit long:
unsi gned | ong
float 32 bits idl _short _fl oat fl oat
double 64 bits idl _long_float doubl e
void * pointer idl _void_p_t void *
handle_t pointer handl e_t handl e_t

Asin C, there are severa classes of identifiersin the IDL. Names within each class

(that is, scope or name space) must be unique:

m Constant, t ypedef , operation, and enumeration member names are in one name

space.

m Structure, union, and enumeration tags are in another name space.

Programming a BEA Tuxedo Application Using TxRPC 39

3 Writing RPC Client and Server Programs

m Structure and union member names at the same level must be unique within the
structure or union in which they are defined.

m Parameter names within the operation prototype in which they are defined must
be unique.

Note that an anonymous structure or union (without a tag and not defined as part of a
t ypedef) cannot be used for an operation return or a parameter.

Interacting with ATMI

The TXRPC executabl es use the BEA Tuxedo system to do the RPC communications.
Other BEA Tuxedo interfaces and communi cations mechanisms can be used within
the same clients and servers that are using the RPC calls. Thus, it ispossibleto have a
single client making Request/Response calls (for example t pcal | (3c),

t pacal | (3c),andt pget r pl y(3c)), making conversational calls (t pconnect (3c),
t psend(3c), tprecv(3c), andt pdi scon(3c)), and accessing the stable queue

(t penqueue(3c) andt pdequeue(3c)). Whenaclient makesthefirst call tothe BEA
Tuxedo software, either an RPC call, any of these other communications calls, or any
other ATMI call (such asacall for buffer alocation or unsolicited notification), the
client automatically joinsthe application. However, if the application isrunning with
security turned on or if the client must run as part of a particular resource manager
group, then t pi ni t (3c) must be called explicitly to join the application. Refer to

t pi ni t (3c) inthe BEA Tuxedo C Function Referencefor further details, and alist of
optionsthat can be explicitly set. When an application completeswork using the BEA
Tuxedo system, t pt er m(3¢c) should be called explicitly to leave the application and
free up any associated resources. If thisis not done for native (non-Workstation)
clients, the monitor detectsthis, printsawarningintheuser| og(3c) , and freesup the
resources. In the case of Workstation clients, the resources may not be freed up and
eventually the Workstation Listener or Handler will run out of resourcesto accept new
clients.

Aswith clients, servers can use any of the communication paradigms in the role of
client. However, aserver cannot provide (advertise) both conversational services and
RPC serviceswithin the same server; asdescribed later, an RPC server must be marked
asnon-conversational. Although it ispossibleto mix ATMI request/response and RPC
serviceswithinthe same server, thisisnot recommended. Onefurther restriction isthat
RPC operations cannot call t pr et urn(3c) ort pf orwar d(3c) . Instead, RPC

3-10 Programming a BEA Tuxedo Application Using TXRPC

Interacting with TX

operations must return as they would if called locally. Any attempt to call
tpreturn(3c) ort pforward(3c) froman RPC operation will be intercepted and an
error will be returned to the client (exception r pc_x_f aul t _unspec or status
rpc_s_faul t _unspec).

Two functions available to servers but not to clientsare t psvri ni t (3c) and

t psvr done(3c) , which are called when the server starts up and when it is shut down.
Since the server must call t x_open(3c) before receiving any TXRPC operation
requests, t psvri ni t () isagood placeto cdl it. The default t psvri ni t () function
already callst x_open() .

Interacting with TX

The TX functions provide an interface for transaction demarcation. t x_begi n(3c)
andt x_comit (3c) ortx_rol | back(3c) encapsulate any work, including
communications, within atransaction. Other primitives are provided to set transaction
timeout, declare the transaction as chained or unchained, and retrieve transaction
information. These are discussed in detail in the XOPEN TX Specification, and
reviewed in the XYOPEN TxRPC Specification. The X/OPEN TxRPC Specification
indicates the interactions between TX and RPC. These are summarized as follows:

m Aninterface or an operation can havethe[transacti on_optional] attribute
which indicates that if the RPC is called within atransaction, the work donein
the called operation will be part of the transaction.

m Aninterface or an operation can havethe[t ransact i on_mandat ory] attribute
which indicates that the RPC must be called within atransaction or the
txrpc_x_not _in_transacti on exception is returned.

m If neither of these attributesis specified, then the work in the called operation is
not part of any transaction that may be active in the caler.

m |f aTXRPC operationis called in the server and t x_open(3c) has not been
called, at xr pc_x_no_t x_open_done exception isreturned to the caller.

m TxRPCallowst x_rol | back(3c) to be caled from an operation to mark the
transaction as rollback-only, such that any work performed on behalf of the
transaction will be ultimately rolled back. It isrecommended in this case that the

Programming a BEA Tuxedo Application Using TXRPC ~ 3-11

3 Writing RPC Client and Server Programs

application also return an application-level error to the caller indicating that the
transaction will be rolled back.

Other changes or restrictions for the IDL defined by the TXRPC specification have
been described earlier in the discussion about the IDL itself.

3-12 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

4 Building RPC Client
and Server Programs

Thistopic includes the following sections:

Prerequisite Knowledge

Building an RPC Server

Building an RPC Client

Building a Windows Workstation RPC Client
Using C++

Interoperating with DCE/RPC

Prerequisite Knowledge

The TXRPC programmer should be familiar with the C compilation system and
building BEA Tuxedo ATMI clients and servers. Information on building BEA

Tuxedo ATMI clients and serversis provided in the Programming a BEA Tuxedo
Application Using C, Programming a BEA Tuxedo Application Using COBOL, and
Programming a BEA Tuxedo Application Using FML. Building Workstation clientsis

provided in Using the BEA Tuxedo Workstation Component.

Programming a BEA Tuxedo Application Using TxRPC

4

Building RPC Client and Server Programs

Building an RPC Server

4-2

RPC servers are built and configured in much that same way that ATMI
Request/Response servers are. In fact, the service name space for RPC and
Request/Response serversis the same. However, the names advertised for RPC
services are different. For Request/Response servers, a service name is mapped to a
procedure. For RPC servers, aservice name is mapped to an IDL interface name. The
RPC service advertised will be <i nt er f ace>v<maj or>_<mi nor>, where

<i nt er face> isthe interface name, and <naj or > and <m nor > are the major and
minor numbers of the version, as specified (or defaulted to 0.0) in the interface
definition. Because the service nameis limited to 15 characters, this limits the length
of the interface name to 13 characters minus the number of digits in the major and
minor version numbers. This also implies that an exact match is used on major AND
minor version numbers because of the way name serving is done in the BEA Tuxedo
system. Note that the interface, and not individual operations, are advertised (similar
to DCE/RPC). The server stub automatically takes care of calling the correct operation
within the interface.

RPC serversarebuilt usingthebui | dser ver (1) command. Werecommend using the
- s option to specify the service (interface) names at compilation time. The server can
then be booted using the - A option to get the services automatically advertised. This
approach is used in the sample application, as shown in Appendix A, “A Sample
Application.”

Thebui | dserver (1) command automatically linksin the BEA Tuxedo libraries.
However, the RPC run time must belinked in explicitly. Thisisdone by specifying the
-f -1trpc option after any application fileson thebui | dserver line. Normally, the
output of thet i dl (1) commandisaserver stub object file. Thiscan be passed directly
to the bui | dser ver command. Note that the server stub and the application source,
object, and library files implementing the operations should be specified ahead of the
run-time library, a'so using the - f option. See the makefiler pcsi np. nk, in
Appendix A, “A Sample Application,” for an example.

Programming a BEA Tuxedo Application Using TXRPC

Building an RPC Client

Building an RPC Client

A native RPC client is built using the bui | dcl i ent (1) command. This command
automatically linksin the BEA Tuxedo libraries. However, the RPC run time must be
linked in explicitly. Thisis done by specifying the-f -1tr pc option after any
application files on the bui | dcl i ent command line. Generally, the output of the
tidl (1) command isaclient stub object file. This can be passed directly to the

bui | dcl i ent command. Note that the client stub and the application source, object,
and library files executing the remote procedure calls should be specified ahead of the
run-time library, also using the - f option. For an example, see the makefile

rpcsi np. mk in Appendix A, “A Sample Application.”

TobuildaUNIX Workstation client, simply add the- woptiontothebui | dcl i ent (1)
command line so that the Workstation libraries are linked in instead of the native
libraries.

Building a Windows Workstation RPC Client

Compilation of the client stub for Windows requiresthe - D_TM W N definition as a
compilation option. This ensures that the correct function prototypes for the TXRPC
and BEA Tuxedo ATMI run time functions are used. While the client stub sourceis
the same, it must be compiled specially to handle the fact that the text and data
segments for the DLL will be different from the code calling it. The header file and
stub are automatically generated to allow for the declarations to be changed easily,
using C preprocessor definitions. The definition _TMF (for “far”) appears before all
pointersin the header fileand _TMF is automatically defined as“_f ar” if _TM WNis
defined.

In most cases, using standard libraries, thebui | dcl i ent (1) command can be used to
link the client. The library to be used iswt rpc. I i b.

The sample also shows how to create a Dynamic Link Library (DLL) using the client
stub. This usage will be very popular when used with a visual application builder that
requiresDLL use (where the application code cannot be statically linked in). Windows
functions are traditionally declared to have the _pascal calling convention. The

Programming a BEA Tuxedo Application Using TxRPC 4-3

4

Building RPC Client and Server Programs

header file and stub are automatically generated to allow for the declarationsto be
changed easily, using C preprocessor definitions. _TMX (for “eXport”) appears before
all declared functions. By default, this definition is defined to nothing. When
compiling astub for inclusioninaDLL, _TMX should be definedto _far _pascal .
Also, the filesto be included in the DLL must be compiled with the large memory
model. Because using _pascal automatically converts the function names to
uppercaseinthelibrary, itisagood ideato run with the- port case optionturned on,
which does additional validation to see if two declared names differ only in case.

A complete example of buildingaWindowsDLL isshownin Appendix A, “A Sample
Application.”

Note: A compilation error may occur if aTXRPC client includes wi ndows. h, dueto
aduplicateuui d_t definition. It will be necessary for the application to either
not include wi ndows. h (becauseit isincluded aready) or to includeit within
adifferent file in the application.

Using C++

Clients and servers can be built using C or C++, interchangeably. The header filesand
generated stub source files are defined in such away that all Stub Support functions
and generated operations allow for complete interoperability between C++ and C.
They are declared with C linkage, that is, as extern “C,” so that name mangling is
turned off.

The stub object files can be built using C++ by specifying CC - ¢ for the-cc_cnd
optionof ti dI (1) . The cCcommand can be used to compile and link client and server
programs by setting and exporting the CC environment variable before running

bui | dcli ent (1) and bui | dserver (1) . For example:

tidl -cc_cmd “CC -c” -keep all t.idl

CC=CC bui | dserver -0 server -s tvl 0 -f “-1. t_sstub.o server.c -ltrpc”
In the Windows environment, C++ compilationisnormally accomplished viaaflag on
the compilation command line or a configuration option rather than a different
command name. Use the appropriate options to get C++ compilation.

4-4 Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

Interoperating with DCE/RPC

The BEA Tuxedo TxRPC compiler uses the same IDL interface as OSF/DCE but the
generated stubsdo not use the same protocol. Thus, aBEA Tuxedo TXRPC stub cannot
directly communicate with a stub generated by the DCE IDL compiler.

However, it is possible to have the following interoperations between DCE/RPC and
BEA Tuxedo TxRPC:

m Client side stubs from both DCE and BEA Tuxedo TxRPC can be called from
the same program (either client or server).

m A BEA Tuxedo ATMI server stub can call application code that callsa DCE
client stub (as well as a BEA Tuxedo TxRPC client stub).

m A DCE server (manager) can call application code that calls aBEA Tuxedo
TXRPC client stub.

The following sections show possible interactions between BEA Tuxedo TXRPC and
OSF/DCE. In each case, the originator of the request is called the requester. Thisterm
isused instead of “client” because the requester could, in fact, be a DCE or BEA
Tuxedo ATMI service making a request of another service. The terms “client” and
“server” refer to the client and server stubs generated by the IDL compilers (either
DCEi dl (1) or BEA Tuxedoti dl (1)); theseterms are used for consistency with the
DCE and TXRPC terminology. Finally, the term “application service” is used for the
application code that implements the procedure that is being called remotely (itis
generally transparent whether the invoking software is the server stub generated by
DCE or BEA Tuxedo).

BEA Tuxedo Requester to DCE Service via BEA Tuxedo
Gateway

Figure4-1 BEA Tuxedo Requester to DCE Service via BEA Tuxedo Gateway

T T - T DCE |) DCE |Application
Regquester | Client Server Client Server Service

Programming a BEA Tuxedo Application Using TxRPC 4-5

4 Building RPC Client and Server Programs

Thefirst approach uses a“gateway” such that the BEA Tuxedo ATMI client stub
invokesa BEA Tuxedo ATMI server stub, via TXRPC, that has a DCE client stub
linked in (instead of the application services) that invokes the DCE services, viaDCE
RPC. The advantage to this approach is that it is not necessary to have DCE on the
client platform. In fact, the set of machines running BEA Tuxedo and the set of
machines running DCE could be digjoint except for one machine where al such
gateways are running. This also provides a migration path with the ability to move
services between BEA Tuxedo and DCE. A sample application that implements this
approach is described in Appendix B, “A DCE-Gateway Application.”

In this configuration, the requester is built as anormal BEA Tuxedo ATMI client or
server. Similarly, the server is built as anormal DCE server. The additional step isto
build the gateway process which acts asa BEA Tuxedo ATMI server using a TXRPC
server stub and a DCE client using a DCE/RPC client stub.

The process of running the two IDL compilers and linking the resultant files is
simplified with the use of the bl ds_dce(1) command, which builds a BEA Tuxedo
ATMI server with DCE linked in.

Theusage for bl ds_dce isasfollows

bl ds_dce [-0 output_file] [-i idl_options] [-f firstfiles] [-| lastfile] \

[idl_file .

]

The command takes asinput one or more IDL files so that the gateway can handle one
or moreinterfaces. For each one of thesefiles, t i dI isrunto generate aserver stub and
i dl isrunto generate aclient stub.

This command knows about various DCE environments and provides the necessary
compilation flagsand DCE librariesfor compilation and linking. If you are developing
in anew environment, it may be necessary to modify the command to add the options
and libraries for your environment.

This command compilesthe source filesin such away (with -DTMDCEGWdefined) that
memory allocation is always done using r pc_ss_al | ocat e(3c) and
rpc_ss_free(3c), as described in the BEA Tuxedo C Function Reference. This
ensures that memory is freed on return from the BEA Tuxedo ATMI server. The use
of -DTMDCEGWal so includes DCE header filesinstead of BEA Tuxedo TxRPC header
files.

The IDL output object files are compiled, optionally with specified application files
(using the-f and -1 options), to generate a BEA Tuxedo ATMI server using

bui | dser ver (1) . The name of the executable server can be specified with the -o
option.

4-6 Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

When running this configuration, the DCE server would be started first in the
background, then the BEA Tuxedo configuration including the DCE gateway would
be booted, and then the requester would be run. Note that the DCE gateway is
single-threaded so you will need to configure and boot as many gateway serversasyou
want concurrently executing services.

There are several optional things to consider when building this gateway.

Setting the DCE Login Context

First, asaDCE client, it isnormal that the process runs as some DCE principal. There
are two approaches to getting alogin context. One approach isto “log in” to DCE. In
some environments, this occurs simply by virtue of logging into the operating system.
In many environments, it requires running dce_|I ogi n. If the BEA Tuxedo ATMI
server is booted on the local machine, then it is possible to run dce_l ogi n, then run
t mboot (1) and the booted server will inherit the login context. If the server isto be
booted on aremote machine which isdone indirectly viat 1 i sten(1), itisnecessary
to run dce_| ogi n before starting t 1 i st en. In each of these cases, al servers booted
in the session will be run by the same principal. The other drawback to this approach
is that the credentials will eventually expire.

The other alternative isto have the process set up and maintain its own login context.
Thetpsvrinit (3c) function provided for the server can set up the context and then
start athread that will refresh the login context before it expires. Sample code to do
thisis provided in $TUXDI R/ | i b/ dceser ver . c; it must be compiled with the
-DTPSVRI NI T option to generateasimplet psvri ni t () function. (It can also beused
asthemai n() for aDCE server, asdescribed in the following section.) Thiscodeis
described in further detail in Appendix B, “A DCE-Gateway Application.”

Using DCE Binding Handles

BEA Tuxedo TxXRPC does not support binding handles. When sending an RPC from
the requester’ s client stub to the server stub within the gateway, the BEA Tuxedo
system handles al of the name resolution and choosing the server, doing load
balancing between available servers. However, when going from the gateway to the
DCE server, it is possible to use DCE binding. If thisis done, it is recommended that
two versions of the IDL file be used in the same directory or that two different
directories be used to build the requester, and the gateway and server. The former
approach of using two different filenames is shown in the example with the IDL file
linked to asecond name. Intheinitial IDL file, no binding handles or binding attributes

Programming a BEA Tuxedo Application Using TxRPC 4-7

4

Building RPC Client and Server Programs

are specified. With the second IDL file, which is used to generate the gateway and
DCE server, thereisan associated ACF fil e that specifies[explicit_handl€] such that a
binding handle is inserted as the first parameter of the operation. From the BEA
Tuxedo server stub in the gateway, aNULL handlewill be generated (because handles
aren’t supported). That meansthat somewhere between the BEA Tuxedo ATMI server
stub and the DCE client stub in the gateway, avalid binding handle must be generated.

This can be done by making use of the manager entry point vector. By default, the IDL
compiler definesastructure with afunction pointer prototype for each operationin the
interface, and defines and initializes a structure variable with default function names
based on the operation names. The structure is defined as:

<I NTERF>_v<maj or>_<ni nor>_epVv_t </ NTERF>_v<maj or>_<ni nor>_s_epv

where</ NTERF> istheinterfacenameand <maj or>_<ni nor > istheinterfaceversion.
Thisvariableisdereferenced when calling the server stub functions. The IDL compiler
option, - no_mepv, inhibits the definition and initialization of thisvariable, allowing
the application to provideit in cases where there is a conflict or differencein function
names and operation names. In the case where an application wantsto provide explicit
or implicit binding instead of automatic binding, the - no_mepv option can be
specified, and the application can provide astructure definition that pointsto functions
taking the same parameters as the operations but different (or static) names. The
functions can then create avalid binding handle that is passed, either explicitly or
implicitly, to the DCE/RPC client stub functions (using the actual operation names).

Thisisshown inthe examplein Appendix B, “ A DCE-Gateway Application.” Thefile
dcebi nd. ¢ generates the binding handle, and the entry point vector and associated
functions are shownin dceepv. c.

Notethat to specify the- no_nmepv option when usingthebl ds_dce, the-i -no_mepv
option must be specified so that the option is passed through to the IDL compiler. This
is shown in the makefile, r pcsi np. mk, in Appendix B, “ A DCE-Gateway
Application.”

Authenticated RPC

48

Now that we have alogin context and ahandle, it is possible to use authenticated RPC
calls. Aspart of setting up the binding handle, it isa so possible to annotate the binding
handlefor authentication by calling r pc_bi ndi ng_set _aut h_i nf o(), asdescribed in
the BEA Tuxedo C Function Reference. Thisis shown as part of generating the binding
handlein dcebi nd. c in Appendix B, “A DCE-Gateway Application.” This setsup
the authentication (and potentially encryption) between the gateway and the DCE

Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

Transactions

server. If the requester isa BEA Tuxedo ATMI server, then it is guaranteed to be
running asthe BEA Tuxedo administrator. For more information about authentication
for BEA Tuxedo clients, see Administering the BEA Tuxedo System.

OSF/DCE does not support transactions. That means that if the gateway isrunning in
agroup with aresource manager and the RPC comes into the BEA Tuxedo ATMI
client stub in transaction mode, the transaction will not car r ay to the DCE server.
There is not much you can do to solve this; just be aware of it.

DCE Requester to BEA Tuxedo Service Using BEA Tuxedo

Gateway

Figure4-2 DCE Requester to BEA Tuxedo Service Using BEA Tuxedo Gateway

DCE DCE || DCE IT - IT Application
Regquester | Client Server Client Server Service

In the preceding figure, the DCE requester uses a DCE client stub to invoke a DCE
service which calls the BEA Tuxedo ATMI client stub (instead of the application
services), which invokes the BEA Tuxedo ATMI service (via TXRPC). Note that in
this configuration, the client has complete control over the DCE binding and
authentication. The fact that the application programmer builds the middle server
means that the application a so controls the binding of the DCE server to BEA Tuxedo
ATMI service. Thisapproach would be used in the case where the DCE requester does
not want to directly link in and call the BEA Tuxedo system.

Themai n() for the DCE server should be based on the code provided in
$TUXDI R/ 1 i b/ dceserver . c. If you aready have your own template for the mai n()
of a DCE server, there are afew things that may need to be added or modified.

First, t pi ni t (3c) should be called to join the ATMI application. If application
security isconfigured, then additional information may be needed inthe TPI NI T buffer
such as the username and application password. Prior to exiting, t pt er m(3¢) should
be called to cleanly terminate participation in the ATMI application. If you look at
dceserver. ¢, youwill seethat by compiling it with -DTCLI ENT, code isincluded that
calstpinit andt pt er m The code that sets up the TPI NI T buffer must be modified

Programming a BEA Tuxedo Application Using TxRPC 4-9

4

Building RPC Client and Server Programs

appropriately for your application. To provide more information with respect to
administration, it might be helpful to indicate that the client isa DCE client in either
the user or client name (the exampl e sets the client nameto DCECLI ENT). This
information shows up when printing client information from the administration
interface.

Second, sincethe BEA Tuxedo ATMI system softwareisnot thread-safe, the threading
level passedtorpc_server_| i sten must be set to 1. Inthe sasmple dceser ver. c,
the threading level is set to 1 if compiled with -DTCLI ENT and to the default,
rpc_c_listen_max_cal | s_def aul t, otherwise. (For moreinformation, refer to the
BEA Tuxedo C Function Reference.)

In thisconfiguration, the requester is built asanormal DCE client or server. Similarly,
the server is built as anormal BEA Tuxedo ATMI server. The additional step isto
build the gateway process, which actsasaBEA Tuxedo ATMI client using a TXRPC
client stub, and a DCE server, using a DCE/RPC server stub.

The process of running the two IDL compilers and linking the resultant filesis
simplified with the use of the bl dc_dce(1) command which builds a BEA Tuxedo
ATMI client with DCE linked in.

Theusage for bl dc_dce isasfollows:

bl dc_dce [-0 output_file] [-W [-i idl_options] [-f firstfiles] \
-]

4-10

lastfiles] [idl_file .

The command takes asinput one or more IDL files so that the gateway can handle one
or moreinterfaces. For each one of thesefiles, ti dl isrunto generateaclient stub and
i dl isrunto generate a server stub.

This command knows about various DCE environments and provides the necessary
compilation flags and DCE libraries. If you are developing in a new environment, it
may be necessary to modify the command to add the options and libraries for your
environment. The source is compiled in such away (with -DTMDCEGWdefined) that
memory allocationisalwaysdoneusing r pc_ss_al l ocate andrpc_ss_free
(described in the BEA Tuxedo C Function Reference) to ensure that memory is freed
on return. The use of -DTMDCEGWal so includes DCE header files instead of BEA
Tuxedo TXRPC header files.

The IDL output object files are compiled, optionally with specified application files
(using the-f and -I options), to generate a BEA Tuxedo ATMI client using

bui | dcli ent (1) . Note that one of the files included should be the equivalent of the
dceser ver . o, compiled with the -DTCLI ENT option.

Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

The name of the executable client can be specified with the -o option.

When running this configuration, the BEA Tuxedo ATMI configuration must be
booted before starting the DCE server so that it can join the BEA Tuxedo ATMI
application before listening for DCE requests.

BEA Tuxedo Requester to DCE Service Using DCE-only

Figure 4-3 BEA Tuxedo Requester to DCE Service Using DCE-only

T DCE || DCE |Application
Requester | Client Server Service

This approach assumes that the DCE environment is directly available to the client
(this can be arestriction or disadvantage in some configurations). The client program
has direct control over the DCE binding and authentication. Note that thisis
presumably amixed environment in which the requester iseither aBEA Tuxedo ATMI
servicethat calls DCE services, or aBEA Tuxedo client (or server) that callsboth BEA
Tuxedo and DCE services.

When compiling BEA Tuxedo TxRPC code that will be used mixed with DCE code,
the code must be compiled such that DCE header files are used instead of the TXRPC
header files. Thisis done by defining -DTVDCE at compilation time, both for client and
server stub files and for your application code. If you are generating object files from
tidl (1), youmust add the-cc_opt - DTMDCE option to the command line. The
aternativeisto generate c_sour ce fromthe IDL compiler and pass this C source (not
object files) to bl dc_dce or bl ds_dce asin the following examples:

tidl -keep c_source -server none t.id
idl -keep c_source -server none dce.idl
bl dc_dce -0 output _file -f client.c -f t_cstub.c -f dce_cstub.c

or
bl ds_dce -0 output _file -s service -f server.c -f t_cstub.c -f dce_cstub.c

In this example, we are not building a gateway processso . i dl files cannot be
specified to the bui | d commands. Also note that the bl ds_dce command cannot
figure out the service name associated with the server so it must be supplied on the
command line using the -s option.

Programming a BEA Tuxedo Application Using TXRPC ~ 4-11

4 Building RPC Client and Server Programs

DCE Requester to BEA Tuxedo Service Using BEA
Tuxedo-only

Figure4-4 DCE Reguester to BEA Tuxedo Service Using BEA Tuxedo-only

DCE T Ll T | Appli cati on|
Requester | Client Server Service

Inthisfinal case, the DCE requester calls the BEA Tuxedo client stub directly.

Again, -DTMDCE must be used at compilation time, both for client and server stub files
and for your application code. In this case the requester must beaBEA Tuxedo ATMI
client:

tidl -keep c_source -client none t.idl
bl dc_dce -0 output_file -f -DTCLIENT -f dceserver.c -f t_cstub.c

Notethat dceser ver . ¢ should call t pi nit (3c) tojoin the application and
t pt erm(3c) to leave the application, as was discussed earlier.

Building Mixed DCE/RPC and BEA Tuxedo TXRPC Clients
and Servers

This section summarizes the rules to follow if you are compiling amixed client or
server without using the bl dc_dce(1) or bl ds_dce(1) commands:

= When compiling the generated client and server stubs, and compiling the client
and server application software that includes the header file generated by
tidl (1), TMDCE must be defined (for example, - DTMDCE=1). This causes some
DCE header filesto be used instead of the BEA Tuxedo TXRPC header files.
Also, some versions of DCE have a DCE compilation shell that adds the proper
directories for the DCE header files and ensures the proper DCE definitions for
the local environment. This shell should be used instead of directly using the C
compiler. The DCE/RPC compiler and TMDCE definition can be specified using
the -cc_cnd optiononti dl . For example:

tidl -cc_cnd “/opt/dce/bin/cc -c -DTMDCE=1" sinp.idl

or

4-12 Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

tidl -keep c_source sinp.idl
/opt/dce/ bin/cc -DIMDCE=1 -c -1. -1$TUXDI Rinclude sinp_cstub.c
/opt/dce/bin/cc -DIMDCE=1 -c¢ -1. -1$TUXDI R/include client.c

On a system without such a compiler shell, it might look like the following:

cc <DCE options> -DTMDCE=1 -c -1. -1$(TUXDIR/include \
-1 /usr/include/dce sinp_cstub.c

Refer to the DCE/RPC documentation for your environment.

m If the server makesan RPC call, thenset _client _al l oc_free() should be
called to set theuse of rpc_ss_al | ocat e() andrpc_ss_free(), asdescribed
earlier. (For more information, refer to the BEA Tuxedo C Function Reference.)

m When linking the executable, use - | dr pc instead of - | t r pc to get a version of
the BEA Tuxedo TxRPC runtime that is compatible with DCE/RPC. For
example:

buildclient -o client -f client.o -f sinp_cstub.o -f dce_cstub.o \
-f-1drpc -f-ldce -f-Ipthreads -f-lc_r

or

CC=/opt/dce/bin/cc buildclient -d “ “ -f client.o -f sinp_cstub.o \
-f dce_cstub.o -f -ldrpc -o client

Assume that si np_cst ub. o was generated by ti dl (1) and dce_cst ub. o was
generated by i dI . The first example shows building the client without a DCE
compiler shell; in this case, the DCE library (- | dce), threads library

(-1 pt hr eads), and re-entrant C library (-1 c_r) must be explicitly specified.
The second exampl e shows the use of a DCE compiler shell which transparently
includes the necessary libraries. In some environments, the libraries included by
bui | dserver and bui | dcl i ent for networking and XDR will conflict with the
libraries included by the DCE compiler shell (there may be re-entrant versions of
these libraries). In this case, the bui | dserver (1) and bui | dcl i ent (1)
libraries may be modified using the - d option. If alink problem occurs, trying
using-d “ “ toleave out the networking and XDR libraries, as shown in the
example above. If thelink still fails, try running the command without the - d
option and with the - v option to determine the libraries that are used by default;
then use the - d option to specify a subset of the libraries if there is more than
one. The correct combination of libraries is environment-dependent because the
networking, XDR, and DCE libraries vary from one environment to another.

Note: Mixing DCE and BEA Tuxedo TxRPC stubs is not currently supported on
Windows.

Programming a BEA Tuxedo Application Using TXRPC ~ 4-13

4 Building RPC Client and Server Programs

4-14 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

5 Running the
Application

Thistopic includes the following sections:

m Prerequisite Knowledge

m Configuring the Application

m Booting and Shutting Down the Application
m Administering the Application

m Using Dynamic Service Advertisement

Prerequisite Knowledge

The BEA Tuxedo ATMI system administrator modifying the configuration to add
RPC servers should be familiar with creating an ASCII configuration file (the format
is described in UBBCONFI G(5)), and loading the binary configuration using

t m oadcf (1) . These activities are described in Administering the BEA Tuxedo
System.

Programming a BEA Tuxedo Application Using TxRPC 5-1

5

Running the Application

Configuring the Application

When configuring an RPC server, it is configured the same as a Request/Response
server. Oneentry is needed in the SERVERS page for each RPC server or group of RPC
servers. (MAX can be set to avalue greater than one to configure multiple RPC servers
with one entry.) An RQADDR can optionally be specified so that multiple instances of
an RPC server share the same request queue (multiple servers, single queue
configuration). The CONV parameter must be not specified or must be set to N (for
example, CONV=N). See the sample configuration filein Appendix A, “A Sample
Application.”

If aserver will be part of atransaction, then it must be in agroup on amachinethat has
a TLOGDEVI CE. The GROUPS entry must be configured with a TMSNAME and an
OPENI NFO string that are used to access the associated resource manager.

Itisoptional to specify SERVI CES entries. If specified, the service name must be the
name described in the previous chapter, based on the interface name and version
number. This entry is needed only if you want to give a specific load, priority, or
transaction time that is different than the defaults. It can also be used to turn on the
AUTOTRAN feature, which ensures that a transaction is automatically started for the
serviceif theincoming request isnot in transaction mode. Do not use the service entry
to specify buffer types BUFTYPE since the only buffer type handled is CARRAY. Also,
do not specify ROUTI NG because routing is not supported for RPC requests.

Thet m oadcf (1) command isused to load the ASCII configuration fileinto abinary
TUXCONFI Gfile before the application is booted.

Note that entries for RPC servers can be added to a booted application using the
t mconf i g command, asdescribed int nconfig, wtnconfig(1) inthe BEA Tuxedo
Command Reference.

Booting and Shutting Down the Application

5-2

When the configuration has been modified, boot the application using t mboot (1) .
Theapplication is shut down using t nshut down(1) . Seethe examplein Appendix A,
“A Sample Application.”

Programming a BEA Tuxedo Application Using TXRPC

Administering the Application

The RPC servers are booted and shut down in the same way that Request/Response
servers are. They can be booted or shut down as part of the entire configuration with
the - y option, as part of a group with the - g option, as part of alogical machine with
the-1 option, or by server name with the - s option.

Administering the Application

RPC servers appear as Request/Response servers in the administration interfaces. As
mentioned above, t ntonf i g can be used for dynamic reconfiguration of RPC servers
and services, asdescribed int nconfig, wtnconfig(1) inthe BEA Tuxedo
Command Reference. Thet madni n(1) command can be used to monitor RPC servers.
The RPC server name and associated run-time information (for example, services or
operations run, load, and so forth) can be printed using thet madni n pri nt server
command. The RPC services (interfaces) that are available can be printed using

pri nt servi ce. For samplesof theoutput, seethe examplein Appendix A, “A Sample
Application.”

Using Dynamic Service Advertisement

RPC services can be dynamically controlled in the same way that Request/Response
services can be controlled. Remember that the service nameis not the operation name,
but the interface name and version number, as described earlier. Generally, the service
name is specified at the time that bui | dserver (1) isrunusing the - s option and
automatically advertised when the server is booted with the - A option. Service
(interface) names can be dynamically advertised either from t madni n using the adv
command or from within the server using thet padverti se(3c) function. Service
(interface) names can be dynamically unadvertised either from t madni n using the
unadv command or from within the server using thet punadverti se(3c) function.
Service names can also be temporarily suspended and unsuspended (resumed) from
t madmi n(1) . Note that unadvertising or suspending a service name makes all
operations defined in the associated interface unavailable.

Programming a BEA Tuxedo Application Using TxRPC 5-3

5 Running the Application

5-4 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

A A Sample Application

Thistopic includes the following sections:
m Appendix Contents
m Prerequisites

m Building the rpcsimp Application

Appendix Contents

This appendix contains a description of aone-client, one-server application called
rpcsi np that uses TXRPC. The source files for this interactive application are
distributed with the BEA Tuxedo ATMI software, except they are not included in the
RTK binary delivery.

Prerequisites

Before you can run this sample application, the BEA Tuxedo software must be
installed so that the files and commands referred to in this chapter are available.

Programming a BEA Tuxedo Application Using TxRPC A-1

A A Sample Application

Building the rpcsimp Application

rpcsi np isavery basic BEA Tuxedo ATMI application that uses TXRPC. It has one
application client and one server. The client calls the remote procedure cals
(operations) t o_upper () andt o_I ower (), which areimplemented in the server. The
operationt o_upper () convertsastring from lowercase to uppercase and returnsit to
the client, whilet o_I ower () converts astring from uppercase to lowercase and
returnsit to the client. When each procedure call returns, the client displays the string
output on the user’ s screen.

What followsis a procedure to build and run the example.

Step 1: Create an Application Directory

Make adirectory for r pcsi nmp and cd to it:

nmkdi r rpcsi npdir
cd rpcsinpdir

Note: Thisis suggested so you will be able to see clearly ther pcsi np filesyou
have at the start and the additional files you create along the way. Use the
standard shell (/ bi n/ sh) or the Korn shell; do not use the C shell (csh).

Step 2: Set Environment Variables

Set and export the necessary environment variables:

TUXDI R=<pat hname of the BEA Tuxedo System root directory>
TUXCONFI G=<pat hnanme of your present worki ng directory> TUXCONFI G
PATH=$PATH: $TUXDI R/ bi n

SVR4, Uni xware

LD LI BRARY_PATH=$LD LI BRARY_PATH $TUXDI R/ li b

HPUX

SHLI B_PATH=$LD LI BRARY_PATH. $TUXDIR/li b

RS6000

LI BPATH=$LD LI BRARY_PATH: $STUXDIR/ li b

export TUXDI R TUXCONFI G PATH LD LI BRARY_PATH SHLI B_PATH LI BPATH

A-2 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Note: You need TUXDI R and PATH to be able to accessfilesin the BEA Tuxedo
ATMI directory structure and to execute BEA Tuxedo ATMI commands.
Y ou need to set TUXCONFI Gto be ableto load the configuration file. It may
also be necessary to set an environment variable (for example,
LD_LI BRARY_PATH) if shared objects are being used.

Step 3: Copy files

Copy ther pcsi np filesto the application directory:
cp $TUXDI R/ apps/rpcsinp/ * .

You will be editing some of the files and making them executable, so it is best to
begin with a copy of the files rather than the originals delivered with the
software.

Step 4: List the Files

List thefiles:

$1s
client.c
rpcsi np. nk
server.c
sinp.idl
ubbconfig
wel i ent . def
wsi mpdl | . def
$

Note: Thislist doesnot include files that are used in the DCE-Gateway example
described in Appendix B, “A DCE-Gateway Application.”

The files that make up the application are described in the following sections.

Programming a BEA Tuxedo Application Using TxRPC A-3

A A Sample Application

IDL Input File—simp.idl

Listing A-1 simp.idl

[uui d(C996A680- 9FC2- 110F- 9AEF- 930269370000), version(1.0)]

i nterface changecase

/* change a string to upper case */
void to_upper([in, out, string] char *str)

/* change a string to | ower case */
void to_lower([in, out, string] char *str)

}

Thisfile defines a single interface, changecase version 1.0, with two operations,

t o_upper andt o_| ower . Each of the operations takes a NUL L-terminated character
string, that is both an input and output parameter. Because no ACF file is provided,
status variables are not used and the client program must be able to handle exceptions.
Each operation hasavoid returnindicating that no return valueisgenerated. si np. i dl
is used to generate the stub functions (see below).

The Client Source Code—client.c

A-4

Listing A-2 client.c

#include <stdi o. h>
#i nclude "sinp.h"
#include "atm . h"

mai n(argc, argv)
int argc;
char **argv;

{
idl _char str[100];
unsi gned char error_text[100];
int status;

if (argc > 1) {/* use conmand line argument if it exists */
(void) strncpy(str, argv[1l], 100)

Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

str[99] = "'\0";
}
el se
(void) strcpy(str, "Hello, world");

TRY
t o_upper(str);
(void) fprintf(stdout, "to_upper returns: %\n", str);
to_l ower(str);
(void) fprintf(stdout, "to_lower returns: %\n", str);
/* control flow continues after ENDTRY */
CATCH_ALL
exc_report (THI S_CATCH); /* print to stderr */
(void) tpterm();
exit(1);
ENDTRY

(void) tpterm);
exit(0);

The header, si np. h, which isgenerated by the IDL compiler based onsi np. i dl , has
the function prototypes for the two operations. The si np. h header aso includesthe
header files for the RPC run-time functions (none appear in this example) and
exception handling. Theat mi . h header fileisincluded becauset pt er n{ 3c) iscalled.
If an argument is provided on the command line, then it is used for the conversion to
uppercase and lowercase (the default being “hel | o wor | d”). Exception handling is
used to catch any errors. For example, exceptions are generated for unavailable
servers, memory allocation failures, communication failures, and so forth. The TRY
block encapsulates the two remote procedure calls. If an error occurs, the execution
will jump to the CATCH_ALL block which convertsthe exception (THI S_CATCH) into a
string, printsit to the standard error output using exc_r epor t , and exits. Note that in
both the abnormal and normal execution, ti dl (1) iscalled to leave the application
gracefully. If thisisnot done, awarning is printed in theuser | og(3c) for
non-Workstation clients, and resources are tied up (until the connection times out, for
Workstation clients).

Programming a BEA Tuxedo Application Using TxRPC A-5

A A Sample Application

The Server Source Code—server.c

Listing A-3 server.c

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i nclude "tx. h"

#i nclude "sinp.h"

i nt

tpsvrinit(argc, argv)
int argc;

char **argv;

if (tx_open() !'= TX_OK)
(void) userlog("tx_open failed");
return(-1);

(void) userlog("tpsvrinit() succeeds.");
return(l);

}

voi d

t o_upper(str)

idl _char *str;

i dl _char *p;
for (p=str; *p !'="\0"; p++)
*p = toupper((int)*p);
return;
}
voi d

to_|l ower(str)
idl_char *str;

i dl _char *p;

for (p=str; *p !="\0"; p++)
*p = tolower((int)*p);

return,

}

Aswithclient. c, thisfileincludes si np. h.

A-6 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

It asoincludest x. h becauset x_open(3c) iscaled (asrequired by the X/OPEN
TXRPC specification, even if no resource manager is accessed). A t psvri ni t (3c)
function is provided to ensurethat t x_open() iscaled once at boot time. On failure,
- 1 isreturned and the server fails to boot. This is done automatically, so you may not
need to supply it.

The two operation functions are provided to do the application work, in this case,
converting to upper and lower case.

Makefile—rpcsimp.mk

Listing A-4 rpcsimp.mk

CC=cc

CFLAGS=

TI DL=$(TUXDI R) / bi n/ ti dI
LI BTRPC=-1tr pc

all: client server

Tuxedo client
client: sinp.h sinp_cstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDI R)/bi n/buildclient \
-oclient -fclient.c -fsinp_cstub.o -f$(LI BTRPC)

Tuxedo server
server: sinp.h sinp_sstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDI R)/bi n/buil dserver \
-oserver -s changecasevl_0 -fserver.c -fsinp_sstub.o \
- f $(LI BTRPC)

sinp_cstub. o sinp_sstub.o sinp.h: sinp.idl
$(TIDL) -cc_cnd "$(CC) $(CFLAGS) -c" sinp.idl
#
TH S PART OF THE FI LE DEALI NG W TH THE DCE GATEWAY IS OW TTED
#

Cl eanup
cl ean::

rm-f *. o server $(ALL2) ULOG * TUXCONFI G

rm-f stderr stdout *stub.c *.h sinpdce.idl gwinit.c
cl obber: clean

Programming a BEA Tuxedo Application Using TxRPC A-7

A A Sample Application

The makef i | e builds the executable client and server programs.

The part of the makef i | e dealing with the DCE Gateway (described in Appendix B,
“A DCE-Gateway Application,” is omitted from the figure.

Theclient is dependent on the si np. h header file and the client stub object file.
bui | dcl i ent isexecuted to create the output client executable, usingtheclient. c
source file, the client stub object file, and the - I t r pc RPC run-time library.

The server is dependent on the si np. h header file and the server stub object file.
bui | dser ver isan output server executable, using the ser ver . ¢ sourcefile, the
server stub object file, and the -1 t r pc RPC run-time library.

The client and server stub object filesand the si np. h header file are al created by
running theti di compiler on the IDL input file.

The cl ean target removes any filesthat are created while building or running the
application.

The Configuration File—ubbconfig

Thefollowing is asample ASCII configuration file. The machine name, TUXCONFI G,
TUXDI R, and APPDI R must be set based on your configuration.

Listing A-5 ubbconfig

* RESQURCES

| PCKEY 187345
MODEL SHM
MASTER SI TE1
PERM 0660

* MACH NES

<UNANME> LM D=SI TE1
TUXCONFI G=" < TUXCONFI G>"
TUXDI R=" < TUXDI R>"
APPDI R=" <APPDI R>"

MAXWSCLI ENTS=10

* GROUPS

GROUP1 LM D=SI TE1 GRPNC=1
* SERVERS

server SRVGRP=GRCOUP1 SRVI D=1

#WBL SRVGRP=GROUP1 SRVI D=2 RESTART=Y GRACE=0

CLOPT="-A -- -n <address> -x 10 -m1 -M 10 -d <device>"
#

A-8 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Tuxedo-t o- DCE Gat eway

#si npgw SRVCRP=GROUP1 SRVI D=2
* SERVI CES

* ROUTI NG

The lines for MAXWSCLI ENTS and WL would be uncommented and are used for a
Workstation configuration. Theliteral net addr for the Workstation listener must be
set as described in WEL(5) in the BEA Tuxedo File Formats and Data Descriptions
Reference.

Step 5: Modify the Configuration

Edit the ASCII ubbconf i g configuration fileto provide location-specific information
(for example, your own directory pathnames and machine name), as described in the
next step. The text to bereplaced is enclosed in angle brackets. Y ou need to substitute
the full pathname for TUXDI R, TUXCONFI G, and APPDI R, and the name of the machine
on which you are running. The following isasummary of the required values.

TUXDI R
The full pathname of the root directory of the BEA Tuxedo software, as set
above.

TUXCONFI G
The full pathname of the binary configuration file, as set above.

APPDI R
The full pathname of the directory in which your application will run.

UNAME
The machine name of the machine on which your application will run; thisis
the output of the UNIX command unane - n.

For a Workstation configuration, the MAXWSCLI ENTS and WAL lines must be
uncommented and the <addr ess> must be set for the Workstation Listener. (See
V&L (5) for further details.)

Programming a BEA Tuxedo Application Using TxRPC A-9

A A Sample Application

Step 6: Build the Application

Build the client and server programs by running the following:

make -f rpcsinp. nk TUXDI R=$TUXDI R

Step 7: Load the Configuration

Load the binary TUXCONFI G configuration file by running the following:

t ml oadcf -y ubbconfig

Step 8: Boot the Configuration

Boot the application by running the following:
t nboot -y

Step 9: Run the Client

1. Thenative client program can be run by optionally specifying a string to be
converted first to uppercase, and then to lowercase, as shown in the following:

$ client HelLl O

to_upper returns: HELLO
to_|l ower returns: hello
$

2. When running on a Workstation, set the WSNADDR environment variable to match
the address specified for the WSL program. The Windows client can be run by
executing:

>win wel i ent

Note: Thedynamic link library may be used in a separately developed
application such as avisual builder.

A-10 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Step 10: Monitor the RPC Server

Y ou can monitor the RPC server using t madni n(1). In thefollowing example, psr and
psc are used to view theinformation for the ser ver program. Note that the length of
the RPC service name causes it to be truncated in terse mode (indicated by the “+");
verbose mode can be used to get the full name.

Programming a BEA Tuxedo Application Using TXRPC ~ A-11

A A Sample Application

Listing A-6 tmadmin psr and psc Output

$ tmadnin

> psr

a.out Nane Queue Nane G p Nanme | D RgDone Load Done Current Service
BBL 587345 SI TEL1 0 0 0 (IDLE)

server 00001. 00001 GROUP1 1 2 100 (IDLE)

> psc

Service Nane Routine Name a.out Nane Grp Nane | D Mchine # Done Status

ADJUNCTBB ADJUNCTBB BBL SITEL 0 SI TEL 0 AVAIL
ADJUNCTADM N ADJUNCTADM N BBL SITEL 0 SI TEL 0 AVAIL
changecasev+ changecasev+ server GROUP1 1 SI TEL 2 AVAI L

> verbose
Ver bose now on.

> psc -g GROUP1

Servi ce Nane:
Servi ce Type:
Rout i ne Nane:
Narre:
Queue Nare:
Process 1D:
Goup ID:
Load:
Priority:
Current Tranti ne:
Request s Done:
Current status:

a. out

Current
Current

> quit

changecasevl_0

USER

changecasevl_0

/ hore/ sdf / trpc/ rpcsi np/ server
00001. 00001

8602, Machine ID SITELl
GROUP1, Server ID 1

50

50

30

2

AVAI LABLE

Step 11: Shut Down the Configuration

Shut down the application by running the following:

t mshut down -y

A-12

Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Step 12: Clean Up the Created Files

Clean up the created files by running the following:

make -f rpcsinp.nk cl ean

Programming a BEA Tuxedo Application Using TXRPC ~ A-13

A A Sample Application

A-14 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

B A DCE-Gateway
Application

Thistopic includes the following sections:
m Appendix Contents

m Prerequisites

m What Isthe DCE-Gateway Application?

m Installing, Configuring, and Running the rpcsimp Application

Appendix Contents

Thisappendix buildsonther cpsi np application describedin Appendix A, “A Sample
Application.” The server is changed to be an OSF/DCE server and a gateway is used
so that the BEA Tuxedo ATMI client can communicate with the server using explicit
binding and authenticated RPCs. The sourcefiles for thisinteractive application are
distributed with the BEA Tuxedo ATMI software development kit.

Programming a BEA Tuxedo Application Using TxRPC B-1

B A DCE-Gateway Application

Prerequisites

Thistopic requires knowledge about DCE, and a DCE tutorial is beyond the scope of
this document. For further reading, try Guide to Writing DCE Applications by John
Shirley, et. al., published by O’ Reilly and Associates, Inc.

What Is the DCE-Gateway Application?

Thisapplicationisan extension to ther pcsi np application. As before, the client calls
the remote procedure calls (operations) t o_upper () and t o_I ower ().

In this case, the RPC goes from the BEA Tuxedo ATMI client to the DCE Gateway
process that forwards the request to a DCE server. To make this example more
realistic, the communications from the Gateway processto the DCE server useexplicit
binding instead of automatic binding and an authenticated RPC.

What followsisa procedure to build and run the example. The client can run on any

platform described in Appendix A, “A Sample Application.” Thereisno differencein
building or running the client and it will not be described further in this chapter. The
gateway and DCE server must run on a POSIX platform that also has DCE software

installed on it. This chapter will not discuss installation or compilation of the clients

on the Workstation platforms.

The sample programs work on platforms that conform to OSF/DCE software
standards.

B-2 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

Installing, Configuring, and Running the
rpcsimp Application

The following steps provide you with the instructions for installing, configuring, and
running the sample application.

Step 1: Create an Application Directory

Make adirectory for r pcsi np and cd toit:

nkdir rpcsanpdir
cd rpcsanpdir

Note: Thisissuggested so you will be ableto seeclearly ther pcsi np filesyou have
at the start and the additional filesyou create along the way. Use the standard
shell (/ bi n/ sh) or the Korn shell; do not use the C shell (csh).

Step 2: Set Your Environment

Set and export the necessary environment variables:

TUXDI R=<pat hnanme of the BEA Tuxedo root directory>

TUXCONFI G=<pat hnane of your present working directory>/tuxconfig
PATH=$PATH: $TUXDI R/ bi n

SVR4, Uni xware

LD_LI BRARY_PATH=$LD_LI BRARY_PATH: $TUXDIR/ | i b

HPUX

SHLI B_PATH=$LD_LI| BRARY_PATH: $TUXDI R/l i b

RS6000

LI BPATH=$LD_L| BRARY_PATH: $TUXDI R/l i b

export TUXDI R TUXCONFI G PATH LD_LI BRARY_PATH SHLI B_PATH LI BPATH

Programming a BEA Tuxedo Application Using TxRPC B-3

B A DCE-Gateway Application

Y ou need TUXDI Rand PATH to be able to access filesin the BEA Tuxedo ATMI
directory structure and to execute BEA Tuxedo ATMI commands. Y ou need to set
TUXCONFI Gto be ableto load the configuration file. It may also be necessary to set an
environment variable (for example, LD_LI BRARY_PATH) if shared objects are being
used.

Step 3: Copy the Files

Copy ther pcsi np filesto the application directory:
cp $TUXDI R/ apps/ rpcsi np/ * .

Y ou will be editing some of the filesand making them executable, soit isbest to begin
with a copy of thefiles rather than with the originals delivered with the software.

Step 4: List the Files

List thefiles:

$1s
client.c
dcebind. c
dceepv. c
dcengr.c
dceserver.c
rpcsi mp. mk
sinp.idl

si npdce. acf
ubbconfig
$

(Somefiles that are not referenced in this section are omitted.)

Thefiles that make up the application are described in the following sections. The
client.c,sinmp.idl,andubbconfig filesdescribed in Appendix A, “A Sample
Application,” are not discussed further.

B-4 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

IDL ACF File—simpdce.acf

ListingB-1 simpdce.acf

[explicit_handl e]interface changecase

{
}

Thesinp.idl fileused inthe earlier example will be used to build the gateway and
the DCE server. However, since it is being compiled by both the DCE and BEA
Tuxedo IDL compilers, two different versions of the si np. h header file are being
generated with the same name. Additionally, we wish to use an ACF filein this
example so that we can specify explicit binding for the server, but not for the client.
The recommended approach isto link the IDL file to a second filename within the
same directory, using one for TXRPC without binding and one for DCE/RPC with an
explicit handle. In this case, si np. i dl isrenamed si npdce. i dl and the associated
ACFfileissi npdce. acf . The makefile creates si npdce. i dl and when the IDL
compiler isexecuted, it also will find si npdce. acf . Note that the ACF fileis used
simply to indicate that al operationsin theinterface will use explicit handles. Because
the operations are defined in the IDL file without [handle] parameters as the first
parameter, one will be added automatically to the function prototype and to the stub
function calls.

Programming a BEA Tuxedo Application Using TxRPC B-5

B A DCE-Gateway Application

Binding Function—dcebind.c

In theinterest of space, the source code for dcebi nd. c isnotincluded here but can be
found in $TUXDI R/ apps/ r pcsi np.

Thisfile has afunction, dobi nd(), that does the following three things:

It gets a binding handle for the DCE server with the desired interface
specification and gets the associated endpoint for afully resolved handle.

It does some authentication of the server by getting the principa name for the
server and checking the Security registry to seeif the principal is amember of a
specified group.

It also annotates the binding handle so that an authenticated RPC is done. The
protection level is packet level integrity (mutual authentication on every call
with a packet checksum) using DCE private key authentication and DCE

PA C-based authorization.

The following things need to be modified in dcebi nd. c:

<HOST> needs to be changed to the name of the host machine where the DCE
server will berun. Thisis part of the service name that is put into the directory
and follows the convention that the service name ends with _host . You may
choose to get rid of the suffix entirely (if you do, the same change needs to be
made in dceser ver . c).

<SERVER_PRI NCI PAL_GROUP> must be changed to the group associated with the
DCE principa running the server. It is used as part of the mutual authentication.

The server principal group must be created by running r gy_edi t as

cel | _admi n, the server principal must be created, an account must be added for
the principal with the group, and a key table must be created for the server. You
must a so create a principal and account for yourself to run the client. An
example script to create these DCE entities is shown in Step 8: Configuring
DCE.

B-6 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

Entry Point Vector—dceepv.c

Listing B-2 dceepv.c

#i ncl ude <sinpdce.h> /* header generated by |IDL conpiler */
#i ncl ude <dce/rpcexc.h> /* RAI SE macro */

static void nmyto_upper (rpc_binding_handle_t hdl, idl_char *str);
static void nyto_l ower(rpc_binding_handle_t hdl, idl_char *str);

/*

* A manager entry point vector is defined so that we can generate
* a valid DCE binding handle to go to the DCE server.

* Note that the input handle to entry point functions will always
* be NULL since Tuxedo TxRPC doesn't support handl es.

*/

/* Manager entry point vector with two operations */
changecase_v1_0_epv_t changecase_v1l 0_s_epv = {

nyt o_upper,

nyt o_| ower

}
i nt dobi nd(rpc_bi ndi ng_handl e_t *hdl);

voi d
nyt o_upper (rpc_bi ndi ng_handl e_t hdl, idl_char *str)
{

r pc_bi ndi ng_handl e_t handl e;

i f (dobind(&handle) 0) { /* get binding handle for server */
userlog("binding failed");
RAI SE(r pc_x_i nval i d_bi ndi ng) ;

t o_upper (handl e, str); /* call DCE client stub */

}

voi d
nyt o_| ower (rpc_bi ndi ng_handl e_t hdl, idl_char *str)

r pc_bi ndi ng_handl e_t handl e;

i f (dobind(&handle) 0) { /* get binding handle for server */
userlog("binding failed");
RAI SE(r pc_x_i nval i d_bi ndi ng) ;

}

to_l ower (handl e, str); /* call DCE client stub */

Programming a BEA Tuxedo Application Using TxRPC B-7

B A DCE-Gateway Application

dceepv. ¢ contains the manager entry point vector used in the gateway. It iscalled by
the BEA Tuxedo ATMI server stub and callsthe DCE client stub. Thedatatypefor the
structureisdefined in si npdce. h, whichisincludedindceepv. ¢, anditisinitialized
with the local functions myt o_upper () and nyt o_| ower () . Each of these functions
simply calls dobi nd() to get the binding handle that has been annotated for
authenticated RPC and calls the associated client stub function.

DCE Manager—dcemgr.c

#i
#i
#i
#i

#i
#i
#i
#i

ncl ude <std

Listing B-3 dcemgr.c

0. h>

ncl ude <ctype. h>
ncl ude "sinpdce. h" /* header generated by IDL conpiler */

ncl ude <dce/

ncl ude <dce/

rpcexc. h> /* RAISE macro */

dce_error.h> /* required to call dce_error_ing_text */

ncl ude <dce/ binding.h> /* binding to registry */
ncl ude <dce/ pgo. h> /* registry i/f */
ncl ude <dce/seci dmap. h> /* translate gl obal nane -> princ name */

voi d
checkaut h(r pc_bi ndi ng_handl e_t handl e)

{

B-8

int error_stat;

static unsigned char error_string[dce_c_error_string_len];

sec_id_pac_t *pac; /* client pac */

unsi gned_char_t *server_principal _name; /* requested server principal */

unsi gned32
unsi gned32
unsi gned32

protection_| evel ; /* protection level */
aut hn_svc; /* authentication service */
authz_svc; /* authorization service */

sec_rgy_handle_t rgy_handl e;
error_status_t status;

/*

* Check the authentication paraneters that the client

* sel ected
*/

for this call.

rpc_bi ndi ng_i ng_aut h_cl i ent (

handl e, /* input handle */
(rpc_authz_handle_t *)&pac, /* returned client pac */
&server_princi pal _nane, /* returned requested server princ */
&protection_| evel, /* returned protection level */
&aut hn_svc, /* returned authentication service */
&aut hz_svc, /* returned authorization service */
&st atus) ;
if (status !'= rpc_s_ok) {

Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

dce_error_ing_text(status, error_string, &error_stat);
fprintf(stderr, "% %\n", "ing_auth_client failed",
error_string);
RAI SE(r pc_x_i nval i d_bi ndi ng) ;
return;
}
/*
* Make sure that the caller has specified the required
* level of protection, authentication, and authorization.

*/
if (protection_level !=rpc_c_protect_|evel _pkt_integ ||
authn_svc !'= rpc_c_authn_dce_secret ||
authz_svc !'= rpc_c_authz_dce) {
fprintf(stderr, "not authorized");
RAl SE(rpc_x_i nval i d_bi ndi ng) ;
return;
}
return;
}
voi d

t o_upper (rpc_binding_handl e_t handle, idl _char *str)
idl _char *p;
checkaut h(handl e) ;

/* Any ACL or reference nonitor checking could be done here */

/* Convert to upper case */

for (p:str; *p!zl\ol; p++)
*p = toupper((int)*p);
return;
}
voi d

to_l ower (rpc_binding_handle_t handle, idl _char *str)
idl _char *p;
checkaut h(handl e) ;
/* Any ACL or reference nonitor checking could be done here */

/* Convert to |l ower case */

for (p:str; *p!zl\ol; p++)
*p = tol ower ((int)*p);
return;

Programming a BEA Tuxedo Application Using TxRPC B-9

B A DCE-Gateway Application

dcemgr . ¢ has the manager code for the DCE server. Thecheckaut h() functionisa
utility function to check the authentication of the client (level of protection,
authentication, and authorization). Each of the operations, t o_upper andt o_| ower ,
calsthis function to validate the client and then does the operation itself. In an
application using access contral lists, the ACL checking would be done after the
authentication checking and before the work of the operation.

DCE Server - dceserver.c

In the interest of space, the source code for dceser ver . ¢ isnot included here. There
are several modifications needed for thisfile based on your environment:

B <HOST> needsto be changed to the name of the host machine where the DCE
server will berun. Thisis part of the service name that is put into the directory
and follows the convention that the service names ends with _host. You may
choose to get rid of the suffix entirely (if you do, the same change needs to be
made in dcebi nd. c).

m <D RECTORY> needsto be set to the full pathname of the directory where you
will create the server key table. The key table is created by executing the
following:

rogy_edit
ktadd -p SERVER PRI NCI PAL -pw PASSWORD -f SERVER KEYTAB
q

where SERVER_PRI NCI PAL isthe DCE principal under which the server will be run,
PASSWORDI s the password associated with the principal, and SERVER_KEYTABIs the
name of the server key table.

<PRI NCI PAL> must be changed to the name of the DCE principal under which the
server will berun.

The ANNOTAT! ON can be changed to an annotation to be stored in the directory entry
for the server.

dceser ver . ¢ isactually used twice in the application: once asthe mai n() for the
DCE server and again (linked to gwi ni t . ¢ and compiled with -DTPSVRI NI T in the
makefile) asthet psvrinit () for the DCE gateway.

B-10 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

When compiled without extra macro definitions, this file generates amai n() (with
ar gc and ar gv command-line options) for a DCE server that does the following:

m Registersitsinterfaces
m Createsits server binding information and endpoints

m Establishesits DCE login context for the server principal using information in
the server key table

m Registersits authentication information

m Getsitsbindings and registers the information in the endpoint map

m Exports the binding information to the directory name space

m Optionally, adds its name to a group in the name space

m Listensfor requests

m Cleansup after rpc_server_I i sten returns

The program could be modified to look at and use its command_line options.

When compiled with -DTCLI ENT, thisfile generatesa mai n() asabove but calls

t pi ni t () tojoin the BEA Tuxedo ATMI application as aclient, and callst pt er m()
before exiting. This would be used for a DCE gateway for calls coming from DCE to
BEA Tuxedo (such that the processis a DCE server and a BEA Tuxedo ATMI client).

When compiled with -DTPSVRI NI T, thisfile generates at psvri ni t () (withar gc and
ar gv server command-line options) for aBEA Tuxedo server that doesthe following:

m Establishesits DCE login for the principal using the information in the server
key table

m Registersits authentication information
m Cdlstx_open to open any resource managers associated with the server
The program could be modified to look at and use its command-line options.

In each of these cases, the login context is established by calling

est abli sh_i dentity, which gets the network identity for the server, uses the
server’s secret key from the key table file to unseal the identity, and sets the login
context for the process. Two threads are started: one to refresh the login context just
before it expires, and a second thread to periodically change the server’s secret key.

Programming a BEA Tuxedo Application Using TXRPC ~ B-11

B A DCE-Gateway Application

Makefile—rpcsimp.mk

Listing B-4 rpcsimp.mk

CC=cc
CFLAGS=
TIDL=$(TUXDI R) / bi n/ ti dI
LI BTRPC=-1trpc
all: client server
Tuxedo client
client: sinp.h sinp_cstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDI R)/bin/buildclient -oclient \
-fclient.c -fsinp_cstub.o -f$(LI BTRPC)
#
OM T Tuxedo server
#

Tuxedo Gateway exanpl e

Uses Tuxedo client above plus a gateway server and a DCE server

#

#

Al pha FLAGS/ LI BS

#DCECFLAGS=- D_SHARED LI BRARI ES - Dal pha - D _REENTRANT -w -1. \
-1/usr/include/dce -1$(TUXD R)/incl ude

#DCELI BS=-1dce -Ipthreads -lc_r -lmach -Im

#

#

HPUX FLAGS/ LI BS

#DCECFLAGS=- Aa - D_HPUX_SOURCE - D_REENTRANT -1. \
-1/usr/include/reentrant -1${TUXDI R}/incl ude

#DCELI BS=-W, - Bi medi ate -W,-Bnonfatal -ldce -lc_r -Im

#

| DL=i dI

ALL2=cl i ent sinpgw dceserver
all2: $(ALL2)

TUXEDO-t o- DCE Gat eway
sinmpdce.idl: sinp.idl
rm-f sinpdce.idl
In sinp.idl sinpdce.idl

gwinit.c: dceserver.c

rm-f gwinit.c
In dceserver.c gwinit.c

B-12 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

gwinit.o: gwinit.c
$(CO -c $(DCECFLAGS) -DIPSVRINIT gwinit.c

dceepv. 0: dceepv.c sinpdce. h
$(CC) -c $(DCECFLAGS) dceepv.c

dcebi nd. o: dcebind. ¢ sinpdce. h
$(CCO) -c $(DCECFLAGS) dcebind.c

simpgw. sinpdce.idl gwinit.o dcebind.o dceepv.o
bl ds_dce -i -no_mepv -o sinpgw -f -g -f gwinit.o -f \
dcebind. o -f dceepv.o sinpdce.idl

DCE server
si npdce_sstub. o sinpdce. h: sinpdce.idl
$(IDL) -client none -keep object sinpdce.idl

dceserver.o: dceserver.c sinpdce.h
$(CC) -c $(DCECFLAGS) dceserver.c

dcengr.o: dcengr.c sinpdce. h
$(CCO) -c $(DCECFLAGS) dcenyr.c

dceserver: sinpdce_sstub.o dceserver.o dcengr.o
$(CO dceserver.o sinpdce_sstub.o dcengr.o -o dceserver \
$(DCELI BS)

Cl eanup
cl ean::
rm-f *.o0 server $(ALL2) ULOG * TUXCONFI G
rm-f stderr stdout *stub.c *.h sinpdce.idl gwinit.c

cl obber: clean

The makef i | e buildsthe executable client, gateway, and DCE server programs.

Before building the software, r pcsi np. mk must be modified to set the correct options
and libraries for building the DCE server. As sent out, the makefile contains the proper
settings for several platforms. Based on the platform that you are using, uncomment
(delete the pound sign) in front of the correct pair of DCECFLAGS and DCELI BS
variables, or add your own definitions for a different platform.

Briefly reviewing the makefile, theclient isbuilt in the samefashionasin Appendix A,
“A Sample Application.” The DCE gateway isbuilt by passing si npdce. i dl to

bl ds_dce, which builds aBEA Tuxedo ATMI server that acts as a gateway to DCE.
Alsoincluded aregwi ni t. o (aversion of dceserver. ¢ compiled with

-DTPSVRI NI T), dobi nd. o (to get the binding handle for the DCE server), and

Programming a BEA Tuxedo Application Using TXRPC ~ B-13

B A DCE-Gateway Application

dceepv. o (the manager entry point vector). Notethat -i - no_nepv is specified so
that the IDL compiler does not generate its own manager entry point vector. The DCE
server is built compiling si npdce. i dI with the DCE IDL compiler, and including
dceserver. o anddcengr. o.

Step 5: Modify the Configuration

1. Modify the ASCII ubbconfi g configuration file as described in Appendix A, “A
Sample Application.” (This step is mandatory.)

2. Inthe SERVERS section, comment out the ser ver line by putting a pound sign (#)
at the beginning of theline. (Do not comment out the dceser ver line.)

Step 6: Build the Application
1. Before building the software, you must modify r pcsi np. mk to set the correct
options and libraries for building the DCE server, as described above.

2. Build the client and server programs by running the following:
make -f rpcsinmp. nk TUXDI R=$TUXDIR al | 2

Step 7: Load the Configuration

Load the binary TUXCONFI G configuration file by running the following:

t ml oadcf -y ubbconfig

B-14 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

Step 8: Configuring DCE

To set up DCE entities for running this example, as described earlier, you must
customize (for your environment) identifiersin all capital letters.

m If you already have a DCE principal for yourself, you do not need to create
MYGROUP, MYPRI NCI PAL, or the associated account.

m Thisexample assumesthat thecel | _adnmi n password isthe default - dce. (You
can change this password as necessary.)

m The SERVER PRI NCI PAL must be the same as the BEA Tuxedo administrator
identifier, because the server must be booted as the BEA Tuxedo administrator
and the server must be able to read the server key table.

Listing B-5 DCE Configuration

dce_login cell_adnmin -dce-

rogy_edit

dorei n group

add SERVER PRI NCl PAL_GROUP

add MYGROUP

domai n princi pal

add SERVER PRI NCl PAL

add MYPRI NCI PAL

dorai n account

add SERVER PRI NCl PAL -g SERVER PRI NCl PAL_GROUP -0 none -pw \
SERVERPASSWORD - np - dce-

add MYPRINCI PAL -g MYGROUP -0 none -pw MYPASSWORD -np -dce-

ktadd -p SERVER PRI NCl PAL - pw SERVERPASSWORD -f SERVER KEYTAB

VVVVVYVYVYV®HH

q
chown SERVER_ PRI NCI PAL SERVER KEYTAB
chnmod 0600 SERVER_KEYTAB

€®“HV VYV

Programming a BEA Tuxedo Application Using TXRPC ~ B-15

B A DCE-Gateway Application

Step 9: Boot the Configuration

1. Loginas SERVER PRI NCI PAL (the owner of the server key table).

2. Start the DCE server by running the following:
dceserver &

Themessage Ser ver ready isdisplayed just before the DCE server starts
listening for requests.

3. Boot the BEA Tuxedo ATMI application by running the following:
t nboot -y

Step 10: Run the Client

The client program can be run by optionally specifying a string to be converted, first
to uppercase, and then to lowercase:

$ client HeLl O

to_upper returns: HELLO

to_|l ower returns: hello
$

Step 11: Shut Down the Configuration

1. Shut down the application by running the following:

t mshut down -y

2. Stop the DCE server.

Step 12: Clean Up the Created Files

Clean up the created files by running the following:

make -f rpcsinp. nk cl ean

B-16 Programming a BEA Tuxedo Application Using TXRPC

	Copyright
	Contents
	1 Introducing TxRPC
	What Is TxRPC?

	2 Using the Interface Definition Language (IDL)
	References
	Using uuidgen to Create an IDL Template
	Changes in the Language
	Changes Based on the TxRPC Specification
	Enhancements to the Language
	Enhancements that May Limit Portability

	Unsupported Features
	Using tidl, the IDL Compiler

	3 Writing RPC Client and Server Programs
	Handling Remoteness
	Handling Status and Exception Returns
	Using Stub Support Functions
	Using RPC Header Files
	Portability of Code
	Interacting with ATMI
	Interacting with TX

	4 Building RPC Client and Server Programs
	Prerequisite Knowledge
	Building an RPC Server
	Building an RPC Client
	Building a Windows Workstation RPC Client
	Using C++
	Interoperating with DCE/RPC
	BEA Tuxedo Requester to DCE Service via BEA Tuxedo Gateway
	Setting the DCE Login Context
	Using DCE Binding Handles
	Authenticated RPC
	Transactions

	DCE Requester to BEA Tuxedo Service Using BEA Tuxedo Gateway
	BEA Tuxedo Requester to DCE Service Using DCE-only
	DCE Requester to BEA Tuxedo Service Using BEA Tuxedo-only
	Building Mixed DCE/RPC and BEA Tuxedo TxRPC Clients and Servers

	5 Running the Application
	Prerequisite Knowledge
	Configuring the Application
	Booting and Shutting Down the Application
	Administering the Application
	Using Dynamic Service Advertisement

	A A Sample Application
	Appendix Contents
	Prerequisites
	Building the rpcsimp Application
	Step 1: Create an Application Directory
	Step 2: Set Environment Variables
	Step 3: Copy files
	Step 4: List the Files
	IDL Input File—simp.idl
	The Client Source Code—client.c
	The Server Source Code—server.c
	Makefile—rpcsimp.mk
	The Configuration File—ubbconfig

	Step 5: Modify the Configuration
	Step 6: Build the Application
	Step 7: Load the Configuration
	Step 8: Boot the Configuration
	Step 9: Run the Client
	Step 10: Monitor the RPC Server
	Step 11: Shut Down the Configuration
	Step 12: Clean Up the Created Files

	B A DCE-Gateway Application
	Appendix Contents
	Prerequisites
	What Is the DCE-Gateway Application?
	Installing, Configuring, and Running the rpcsimp Application
	Step 1: Create an Application Directory
	Step 2: Set Your Environment
	Step 3: Copy the Files
	Step 4: List the Files
	IDL ACF File—simpdce.acf
	Binding Function—dcebind.c
	Entry Point Vector—dceepv.c
	DCE Manager—dcemgr.c
	DCE Server - dceserver.c
	Makefile—rpcsimp.mk

	Step 5: Modify the Configuration
	Step 6: Build the Application
	Step 7: Load the Configuration
	Step 8: Configuring DCE
	Step 9: Boot the Configuration
	Step 10: Run the Client
	Step 11: Shut Down the Configuration
	Step 12: Clean Up the Created Files

