”,
-4
Py

o®%%,

o
¥
h ila

BEA Tuxedo

Programming a BEA Tuxedo
Application Using FML

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Programming a BEA Tuxedo Application Using FML

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

CHAPTER

Contents

About This Document

1.

Introduction to FML Programming

WHEL 1S FIML 2.ttt s e et e et b 1-1
How Does FML Fit into the BEA Tuxedo System?.........ccocoveoeeiiinieeescneene 1-2
BEA Tuxedo TYped BUFfErS..... ..o 1-3
FML TermMiNOIOgYcoveieeeeuirteieeie ettt et see e e se e 1-3

FML and VIEWS Features
Dividing Recordsinto Fields: Data Structures Versus Fielded Buffers............ 2-1
Using Structures to Divide Recordsinto Fields.........cocooviveiviiieevieiecienns 2-2
Using Fielded Buffersto Divide Recordsinto Fields.........ccccoeveceecieenenee. 2-3
How Fielded Buffers Are Implemented with FMLccocoviiiiiiniiiinee 2-4
FIML FEAIUIES ...ttt e s e st s s 2-5
What [saFielded BUFfEr?.........ocooiiiiiecc e 2-6
SUPPOIED FIEIA TYPES...c.eieie ettt st e e e e b s 2-7
TYPEINt INVIBEWS.. ..t e e 2-8
TypedeC tINVIEWS ... et e e 2-8
Field Name-to-ldentifier Mappings........cooceereriereee e 29
Run Time: Field Table FileS.......coiiiieieee e 29
Compile Time: Header FileS ..ot 2-10
Fielded BUFfer INAEXES......cccceiierireeriectereet ettt s et e e e 2-11
Multiple Occurrence Fieldsin a Fielded BUffer.........coocoeiiiececinincece s 2-11
Boolean Expressions and Fielded BUffers.........cooveinininie e 2-12
VIEWS FELUES.......ooiiiiictiitie et s s e 2-12
Multiple Occurrence Fieldsin VIEWS.......cccoo e 2-15
Error Handling for FML FUNCLIONS.........ccociiiiiiiieeeee e e 2-15
Programming a BEA Tuxedo Application Using FML iii

3. Setting Up Your Environment for FML and VIEWS

Environment Requirements for FML and VIEWS.........ccooooiiiiiinicieiee 31
FIML DireCtory SETUCLUE........cueieeieeie e eeee ettt et s e e 3-2
Environment Variables Used by FML and VIEWS.........cccooiiiiiicniee 3-3

4. Defining and Using Fields

Preparing to Use FML and VIEWS........cooii e 4-1
Defining Fields for FML and VIEWS..........ooii e e 4-2
Defining Field Names and [dentifierscoeceee e 4-2
Creating Field Table Fil€Soovouie e 4-3
Field Table EXaMPIE.....coo i e s 4-5
Mapping Field Namesto Field IDS ..o 4-5
SEE AISD ...ttt s 4-6
Loading Field TableS.......cciiieieeeeeeeee e e 4-6
SBE ASD ..ottt ettt et et bbb bbb e b e 4-7
Converting Field Tablesto Header Files........ccooiiiiiieiieee e 4-7
Examples of Converting Field Tablesto Header Files...........ccccooeeeeiniene. 4-8
Overriding Environment Variablesto Run mkfldhdr............cccccoeveieee. 4-9
Mapping Fieldsto C Structures and COBOL ReCords..........ccooeeveveereeuenenennee 4-10
What 1Sthe VIEWS FaCillity?ccooiiiieeeeeceee et 4-10
SUrUCLUIE OFf VIEWS ..ottt e 4-11
Creating VIAWFITES ...t sttt s e e 4-11
Creating View DESCIIPLIONS.......ccoieirireie ettt s e 4-12
Specifying flag Optionsin aView Description.........ccccueveereveseesicienennes 4-14
Using NUll ValuesSiN VIEWS.........ccooviiie et 4-17
CompPiliNg VIEWTFITES.....cue i 4-19
Using Header Files Compiled With VIEWC ..o i 4-20
Using COBOL COPY Files Created by the View Compiler..........ccocveerenene 4-21
Displaying Viewfile Information After Compilationccccooveeeiicniinennnne 4-22

5. Field Manipulation Functions

ADOUL ThiS SECLION ...ttt st et e 5-2
FML and VIEWS: 16-bit and 32-bit Interfaces..........ccccooeievvivecceveececeee, 5-2
Definitions of the FML Function Parameters...........cccooveiveeecveneceee s 5-4
Field Identifier Mapping FUNCLIONS..........ccouriinirieincn e e e 55

iv Programming a BEA Tuxedo Application Using FML

= 0 0= TSSO 5-6
FIANO. ..ttt et st sr e e sre e 5-6
[0 11 TSP RRRUPN 5-7
Y P et e e et et nn e 5-8
L 1017 Ko (1o OO RRSTRS 5-8
Buffer Allocation and InitialiZation...........cccceeeeeviiieieice e e 5-9
FIEIAEA. ... et et sr et e e n 5-10
FNEEAEA ...ttt et e e e 5-10
FVNEEAEM ...ttt st e e n 5-11
T T SRR 5-12
FAIOC ..t e e et e r et sae e n 5-12
L (== TSRS 5-13
FSIZEOT . e e et e e n 5-14
FUNUSEA ...ttt ettt st st sn et sr et ere e ne s 5-15
FUSE ..ottt ettt s r e n e er e aaeereenae s 5-15
FTEAIIOC....cue i et st et e e 5-16
Functionsfor Moving Fielded BUFfers........c.coooeiiiieeiiiieesiececeece e 5-17
FIMOVE. ..o e e s ne e 5-17
Y ettt e e r et e a e e a b e enne s 5-19
Field Access and Modification FUNCLIONS.........cccovivieiiiiieevee e 5-20
0 [0 TSRS 5-20
FADPENG ...t e e nn e 5-22
@ 0o TSRS 5-23
o 1] 0 TSP RUOUSPR 5-25
B e e et n 5-26
[0 L= I PSRRI 5-27
[0 (= 1 PSRRI 5-27
L T SRR 5-28
L T | = TSRS 5-30
L 17 [0 oSSR 5-31
01 SRS 5-32
[0 1=: = o To TSRS 5-33
FOELIBSE ... e et e 5-34
1 S PSSUPPI 5-35

Programming a BEA Tuxedo Application Using FML %

FFOCCUL ...t ettt e e e et e e se et seenne e e e 5-37
PSS .. et b e et e et e e e e e 5-38
FVals and FVall ... e s 5-39
Buffer Update FUNCLIONScouiiiie et 5-40
FFCONCAL ...t ettt st et e 5-40
FOIN e e e s 5-41
FOJOIN. ..ttt ettt e e et e e et ne e e s enea 5-41
O O ettt ettt e ettt ee e b et ee e et e e e eneenean 5-42
FIOI O CPIY - ettt ettt ettt et ea e e e et es e e st e e e eneenean 5-43
FUDTBEEttt ettt b e et 5-44
VIBEWS FUNCLIONS. ...ttt et s e neenean 5-45
FUTEOS. et st e 5-45
FUSEOT ..t st et 5-46
FUNUIL ..t et et 5-47
FUSINIT . e et eb et b e e e eneas 5-48
PV 0Pttt e e e e nn e e 5-48
FUSEIINIT ... et et e 5-49
CONVErSION FUNCLIONS.......ciuiiiiciieiie ettt e e e 5-50
CRAAU ... e e e e e e e s 5-50
(O o o o TSRS 5-52
O o = TSROSO 5-53
(1o T = 1 oo TS 5-54
102 11 0T PSSRSO 5-55
CFFINAOCC ...ttt e e 5-56
CONVENTING SEINGS.... .ot e st st s r e e e re e e e e e e s 5-57
LY POV . e e st 5-57
CONVErSION RUIES.....c..ii ittt et 5-59
INAEXING FUNCLIONScviecee ettt s e e 5-62
FIAXUSEA ...ttt e et e e e e 5-62
FINOEX .ttt et et b e st re e e e 5-63
FESEINOBX ..ttt ettt e e 5-63
FUNTNOAEX ...ttt ettt e et e e e e 5-64
Example of Sending a Fielded Buffer Without an Indexccceeuee.e. 5-64
[NPUL/OULPUL FUNCLIONS........coieiieeie ettt en e et s s 5-65

Vi Programming a BEA Tuxedo Application Using FML

FCNKSUM ..ottt et 5-66
Fprint @and FEPrint ... e e 5-66
FEXEIEAA......ccviee ettt e 5-67
Boolean Expressions of Fielded BUFfers..........cccoe e 5-68
Definitions of Boolean EXPreSSiONS.........cccereriereeeseerieie e eses e s eeesee s 5-69
Field NamMeS @Nd TYPESueeeeeieeie ettt st e 5-71
SEINIGS. ottt ettt ettt et ete e et e s e et e e e e e e et e e seeereesteeraesaeeraenteeaeennenean 5-72
CONSLANES ...t e e s sr e 5-72
How a Boolean Expression |s Converted for Evaluation.............cccceovenennene 5-72
Description of Boolean Primary EXPreSsionS..........ccoeveerereeneeeisnenieseseeseenes 5-73
Description of Boolean EXpression Operators........coooeeeeeerierieseeseereenes 5-74
Unary Operators Used in Boolean EXPressions.........ccoeevereeeeseereenenens 5-74
Multiplicative Operators Used in Boolean EXpressions...........c.cceceveeeeee 5-75
Additive Operators Used in Boolean EXpressions..........coevevereiienenneas 5-76
Equality and Match Operators Used in Boolean Expressions.................. 5-76
Relational Operators Used in Boolean EXPressions..........ocoeveeeeveenenn 5-77
Exclusive OR Operator Used in Boolean EXpressions.........c.ccccceeeveenenne 5-77
Logical AND Operator Used in Boolean EXpressions..........c.ccoceeeeveeneene 5-77
Logical OR Operator Used in Boolean EXPressions..........c.cveveereeeeeen. 5-78
Sample Boolean EXPreSSiONSccccveriierereereeie et 5-78
B0O0I€AN FUNCLIONS......ccoiiiiieieee et e 5-79
Fboolco and FVBOOICO..........covieieeeee e 5-79
FhoOlpr and FVDOOIP ...t s e 5-80
Fboolev and Ffloatev, Fvboolev and Fvfloatevccoveeneeiniceiienne. 5-81
VIEW Conversion to and from Target Format............ccccoceeveevieieeiecreeie e 5-83
Fvstot, FVftos and FCOUESEL...........c.cerreriieiieree e 5-83
FML and VIEWS Examples
VIBEWS EXAMPIES.....coieeiiiieee ettt st e e s e e 6-1
SAMPIE VIBWFITE .. e 6-2
Sample Feld Table. .. .o e e 6-3
Sample Header File Produced by VIEWCccoeiiiiiiiineie e 6-3
Sample Header File Produced by mkfldhdrccocoooiiiiiiiienicee 6-4
Sample COBOL COPY Filecoiiiiiieee et e 6-5

Programming a BEA Tuxedo Application Using FML Vii

Example of VIEWS N bankappcccccoee e 6-8
SEE AISD ...ttt e e 6-9
FML Examples in Dankapp........coeuerereieeinre e 6-9

A. FML Error Messages

Viii Programming a BEA Tuxedo Application Using FML

About This Document

This document explains how to use Field Manipulation Language (FML) functionsin
the BEA Tuxedo ATMI environment. FML is a set of C language functions for
defining and manipulating storage structures called fielded buffers, that contain
attribute-value pairsin fields.

This document covers the following topics:

Chapter 1, “Introduction to FML Programming,” provides an overview of FML
programming.

Chapter 2, “FML and VIEWS Features,” describes FML and VIEWS features.
(VIEWS alows you to map fielded buffersto C structures or COBOL records.)

Chapter 3, “Setting Up Your Environment for FML and VIEWS,” provides
instructions on how to set up your environment for FML and VIEWS.

Chapter 4, “Defining and Using Fields,” provides information on defining fields
and mapping fields to C structures or COBOL records.

Chapter 5, “Field Manipulation Functions,” provides instructions on using the
individual field manipulation functions.

Chapter 6, “FML and VIEWS Examples,” provides FML and VIEWS examples.

Appendix A, “FML Error Messages,” providesalist of error codes and
messages.

Programming BEA Tuxedo ATMI Applications Using FML iX

What You Need to Know

Thisdocument isfor programmerswho need to learn how to use FML functionsin the
context of ATMI applications. Asaprogrammer using FML, you might be working on
BEA Tuxedo data entry programs, or other programs requiring interprocess

communication of fielded data. This document a so provides information for users of
applicationsthat make use of FM L with regard to setting up the environment correctly.

To make full use of this document, you should be familiar with the following:

m TheUNIX system environment—we assume, for example, that you do not need
adefinition of ashell command or an environment variable, and that you
understand what is meant by a UNIX system file or the concept of running a
process in the background.

m TheC or COBOL programming language—the functions and macros that make
up FML are intended to be incorporated in C language programs, so we assume
you have previously spent some time developing C programs. If you are using
VIEWS in COBOL (that is, COBOL records), then little, if any, C language
knowledge is needed.

m TheBEA Tuxedo system—we assume, even if you have not yet worked on a
BEA Tuxedo application, that you at least have an understanding of what the
BEA Tuxedo system isintended to do, and that you have read about the
application development environment in Programming a BEA Tuxedo ATMI
Application Using C or Programming a BEA Tuxedo ATMI Application Using
COBOL.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at http://e-docs.bea.com.

X Programming BEA Tuxedo ATMI Applications Using FML

http://e-docs.bea.com

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavail able on the BEA Tuxedo documentation Home
page on the e-docs Web site (and a so on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA Tuxedo documents contain information that is relevant to using
the FML and understanding how to implement applications using FML in the BEA
Tuxedo environment:

m BEA Tuxedo ATMI FML Function Reference

m Inthe File Formats, Data Descriptions, MIBs, and System Processes Reference
see the following entries for the purpose specified.

e conpi | ati on(5) —for instructions on compiling application programs
e field_tabl es(5)—foradescription of FML field tables

e view il e(5)—foradescription of the structure of VIEW description files

Programming BEA Tuxedo ATMI Applications Using FML Xi

Contact Us!

Y our feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
m Your hame, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Programming BEA Tuxedo ATMI Applications Using FML

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chmod u+w *
\'t ux\ dat a\ ap
.doc
tux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:
bui l dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Programming BEA Tuxedo ATMI Applications Using FML Xiii

Xiv

Convention

Item

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Programming BEA Tuxedo ATMI Applications Using FML

CHAPTER

1 Introduction to FML
Programming

Thistopic includes the following sections:

m What IsFML?

m How Does FML Fit into the BEA Tuxedo System?
m BEA Tuxedo Typed Buffers

m FML Terminology

What Is FML?

Field Manipulation Language, or FML, isaset of C language functionsfor defining
and manipulating storage structures called fielded buffers, that contain attribute-value
pairsinfields. The attributeisthe field’ sidentifier, and the associated val ue represents
the field' s data content.

Programming a BEA Tuxedo Application Using FML 1-1

1

Introduction to FML Programming

Fielded buffers provide an excellent structure for communicating parameterized data
between cooperating processes, by providing named access to a set of related fields.
Programs that need to communicate with other processes can use the FML softwareto
provide accessto fieldswithout concerning themselveswith the structuresthat contain
them.

FML also provides afacility called VIEWS that allows you to map fielded buffersto
C structures or COBOL records, and vice-versa. The VIEWSfacility letsyou perform
lengthy manipulations of datain structures rather than in fielded buffers; applications
run faster if dataistransferred to structuresfor manipulation. Thusthe VIEWSfacility
allowsthe dataindependence of fielded buffersto be combined with the efficiency and
simplicity of classic record structures.

Two interfaces are available for FML and the VIEWS facility:

m FML and VIEWS accommodate 16-bit field identifiers, field lengths, field
occurrences, and record lengths.

m FML32and VIEW32 accommodate 32-bit field identifiers, field lengths, field
occurrences, and record lengths. The type definitions, header files, function
names, and command names used in this interface include a“ 32" suffix.

How Does FML Fit into the BEA Tuxedo
System?

1-2

Withinthe BEA Tuxedo system, FML functions are used to manipulate fielded buffers
in the context of ATMI applications.

Data entry programs written for the core portion of the BEA Tuxedo system use FML
functions; these programs use fielded buffersto forward user data entered at aterminal
to other processes. If youwrite ATMI applicationsthat receiveinput in fielded buffers
from data entry programs, you will need to use FML functions.

Evenif you chooseto develop your own applications programs for handling user input
and output or if programs are written to pass messages between processes, you may
till decide to use FML to deal with fielded buffers passed between these programs.

Programming a BEA Tuxedo Application Using FML

BEA Tuxedo Typed Buffers

BEA Tuxedo Typed Buffers

Typed buffersisafeature of the BEA Tuxedo system that grew out of the FML idea
of afielded buffer. Two of the standard buffer types delivered with the BEA Tuxedo
system are FML typed buffersand VIEW typed buffers. One difference between the
two isthat BEA Tuxedo VIEW buffers can betotally unrelated to an FML fielded
buffer.

In this text we show how a VIEW is a structured version of an FML record. In other
documents, such as Programming a BEA Tuxedo Application Using C, we present
VIEW as one of several available BEA Tuxedo buffer types.

FML Terminology

Field Identifier
Afieldidentifier (f 1 di d) isatagfor anindividual dataiteminan FML record
or fielded buffer. The field identifier consists of the name of the field (a
number) and the type of datain the field.

Fielded Buffer
A fielded buffer isadata structure in which each dataitem isaccompanied by
anidentifying tag (afield identifier) that includes the type of the dataand a
field number.

Field Types
FML fields and fielded buffers are typed. They can be any of the standard C
language types: short, 1 ong, float, doubl e, and char. The following
types are also supported: st ri ng (a series of characters ending with a null
character), car r ay (acharacter array), pt r (apointer to abuffer), FM.32 (an
embedded FML 32 buffer), and Vi EW82 (an embedded VIEW32 buffer). The
ptr, FM.32, and VI EWB2 types are only supported for the FML32 interface.
The corresponding typesin COBOL are COVP- 5, COVP- 1, COMP- 2 and PI C
X. A C packed decimal typeis also supported in VIEWS for integration with
COBOL COWP- 3.

Programming a BEA Tuxedo Application Using FML 1-3

1 Introduction to FML Programming

VIEWS
VIEWS is afacility of the Field Manipulation L anguage that allows the
exchange of data between fielded buffers and C structures or COBOL
records, by specifying mappings of fields to members of structures/records.
If extensive manipulations of fielded buffer information are to be done,
transferring the datato structures will improve performance. Informationina
fielded buffer can be extracted from the fields in the buffer and placed in a
structure using VIEWS functions, manipulated, and the updated values
returned to the buffer, again using VIEWS functions. VIEWS can aso be
used independently of FML, particularly in support of COBOL records.

1-4 Programming a BEA Tuxedo Application Using FML

CHAPTER

2 FML and VIEWS
Features

Thistopic includes the following sections:

m Dividing Recordsinto Fields: Data Structures Versus Fielded Buffers
m How Fielded Buffers Are Implemented with FML

m FML Fesatures

m VIEWS Features

m Error Handling for FML Functions

Dividing Records into Fields: Data
Structures Versus Fielded Buffers

Except under unusua conditions where a data record is a complete and indivisible
entity, you need to be able to break records into fields to be able to use or change the
information the record contains. In an ATMI environment, records can be divided into
fields through either of the following:

m Clanguage data structures or COBOL records
m Fielded buffers

Programming a BEA Tuxedo Application Using FML 2-1

2

FML and VIEWS Features

Using Structures to Divide Records into Fields

2-2

One common way of subdividing records iswith a structure that divides a contiguous
area of storage into fields. The fields are given names for identification; the kind of
data carried in each field is shown by a data type declaration.

For example, if adataitemin aC language program isto contain information about an
employee' s identification number, name, address, and gender, it could be set up with
a structure such as the following:

struct S {
| ong enpi d;
char nane[20];
char addr[40];
char gender;

}
Here the data type of the field named enpi d is declared to be along integer, name and

addr are declared to be character arrays of 20 and 40 characters respectively, and
gender isdeclared to be a single character, presumably with arange of mor f .

If, inyour C program, the variablep pointsto astructure of type struct S, thereferences
p—>enpi d, p—>nane, p—>addr and p—>gender can be used to address the fields.

The COBOL COPY file for the same data structure would be as follows (the
application would supply the 01 line):

05 EMPID PI C S9(9) USAGE | S COVP-5.
05 NAMVE Pl C X(20).
05 ADDR Pl C X(40).
05 GENDER PIC X(01).
05 FILLER PI C X(03).

If, in your COBOL program, the 01 line is named MYREC, the references EMPI D | N
MYREC, NAME | N MYREC, ADDR | N MYREC, and GENDER | N MYREC can be used to
access thefields.

Programming a BEA Tuxedo Application Using FML

Dividing Records into Fields: Data Structures Versus Fielded Buffers

Although this method of representing data is widely used and is often appropriate, it
has two mgjor potential disadvantages:

m Any time the data structure is changed, all programs using the structure have to
be recompiled.

m The size of the structure and the offsets of the component fields are all fixed,
which often results in wasted space, since (a) not al fields always contain a
value, and (b) fields tend to be sized to hold the largest likely entry.

Using Fielded Buffers to Divide Records into Fields

Fielded buffers provide an alternative method for subdividing a record into fields.

A fielded buffer is a data structure that provides associative access to the fields of a
record; that is, the name of afield is associated with an identifier that includesthe
storage location as well asthe datatype of the field.

The main advantage of the fielded buffer is dataindependence. Fiel ds can be added to
the buffer, deleted from it, or changed in length without forcing programs that
reference the fields to be recompiled. To achieve this data independence, fields are:

m Referenced by an identifier rather than the fixed offset prescribed by record
structures.

m Accessed only through function calls.

Fielded buffers can be used throughout the ATMI environment as the standard method
of representing data sent between cooperating processes.

Programming a BEA Tuxedo Application Using FML 2-3

2

FML and VIEWS Features

How Fielded Buffers Are Implemented with

FML

2-4

Fielded buffers are created, updated, accessed, input, and output via Field
Manipulation Language (FML). FML provides:

m A convenient and standard discipline for creating and manipulating fielded
buffers.

m Dataindependence to programs that make use of fielded buffers.

FML isimplemented asalibrary of functions and macros that can be called from C
programs. It provides a separate set of functions for:

m Creating, updating, accessing, and manipulating fielded buffers.

m Converting data from one type to another upon input to (or output from) a
fielded buffer structure.

m Transferring data between fielded buffers and C structures or COBOL records.

Thelast set of functions|listed above constitutesthe FML VIEWS software. VIEWSis
aset of functionsthat exchange data between FML fielded buffers and structuresin C
or COBOL language application programs. When a program receives afielded buffer
from another process, the program has the choice of:

m Operating on the buffer data directly in the buffer using FML function calls (this
isnot availablein COBOL).

m Transferring the data from the fielded buffer to a structure using VIEWS
functions, and then operating on the data in the structure using normal C or
COBOL statements.

If you need to perform lengthy manipulations on buffer data, the performance of your
program can be improved by transferring fielded buffer data to structures or records,

and operating on the data using normal C or COBOL statements. Then you can put the
data back into afielded buffer (again using VIEWS functions), and send the buffer off
to another process.

Programming a BEA Tuxedo Application Using FML

FML Features

Before you can use VIEWS, you must set up your program such that it can recognize
the format of incoming fielded buffer data. Y ou can do this setup task by using a set of
view descriptions kept in a cache on your system.

A view description is created and stored in a source viewfile. The view description
maps fields in fielded buffers to membersin C structures or COBOL records. The
source view descriptions are compiled, and can then be used to map data transferred
between fielded buffers and C structures or COBOL records in a program.

By keeping view descriptions cached in a central file, you can increase the data
independence of your programs; you only need to change the view description(s) and
recompile them to effect changes in data format throughout an application that uses
VIEWS.

FML Features

Thistopic includes the following sections:

m What IsaFielded Buffer?

m Supported Field Types

m Field Name-to-ldentifier Mappings

m Fielded Buffer Indexes

m Multiple Occurrence Fieldsin a Fielded Buffer

m Boolean Expressions and Fielded Buffers

Programming a BEA Tuxedo Application Using FML 2-5

2 FMLand VIEWS Features

What Is a Fielded Buffer?

A fielded buffer is a data structure that provides associative access to the fields of a
record.

Eachfield in an FML fielded buffer is labeled with an integer that combines
information about the data type of the accompanying field with a unique identifying
number. Thelabel iscalled thefield identifier, or f | di d. For variable-length items, the
f1di d isfollowed by alength indicator.

A buffer can berepresented asa sequenceof f | di d/datapairs, withf I di d/length/data
triples for variable-length items, as shown in the following diagram.

Figure2-1 Fielded Buffer

fldid | data | fldid

en | data | fldid | data

In the header file that isincluded (with #i ncl ude) whenever FML functions are used
(fm . horfm 32.h), field identifiers are defined (with t ypedef) as FLDI D (or

FLDI D32 for FML 32), field valuelengthsasFLDLEN (FLDLEN32 for FM L32), andfield
occurrence numbers as FLDOCC (FLDOCC32 for FML 32).

2-6 Programming a BEA Tuxedo Application Using FML

Supported Field Types

Supported Field Types

The supported field typesareshort , | ong, f1 oat , doubl e, character, stri ng,
carray (character array), pt r (pointer to a buffer), FM.32 (an embedded FML 32
buffer), and vi EM82 (an embedded VIEW32 buffer). Thept r, FML32, and VI EVW82
types are supported only for the FML32 interface. These types are included as
#def i ne statementsinfm . h (or f M 32. h), as shown in the following listing.

Listing 2-1 Definitionsof FML Field Typesin fml.h and fml32.h

#defi ne FLD SHORT 0 /* short int */

#defi ne FLD _LONG 1 /* long int */

#defi ne FLD CHAR 2 /* character */

#defi ne FLD FLOAT 3 /* single-precision float */
#defi ne FLD DOUBLE 4 /* doubl e-precision float */
#defi ne FLD_STRI NG 5 /* string - null term nated */
#defi ne FLD CARRAY 6 /* character array */

#defi ne FLD PTR 9 /* pointer to a buffer */
#defi ne FLD FM.32 10 /* enbedded FML32 buffer */
#defi ne FLD VI EVB2 11 /* enbedded VI EWB2 buffer */

FLD_STRI NGand FLD_CARRAY are both arrays, but differ in the following way:

m A FLD STRI NGisavariable-length array of non-NULL charactersterminated by
aNULL.

m A FLD CARRAY isaVvariable-length array of bytes, any of which may be NULL.

Functions that add or change afield have a FLDLEN argument that must be filled in
when you are dealing with FLD_CARRAY fields. The size of astring or carray islimited
to 65,535 charactersin FML, and 2 billion bytesfor FML32.

Itisnot agood ideato store unsigned data types in fielded buffers. Y ou should either
convert all unsigned short datato long or cast the data into the proper unsigned data
type whenever you retrieve data from fielded buffers (using the FML conversion
functions).

Programming a BEA Tuxedo Application Using FML 2-7

2 FMLand VIEWS Features

Most FML functions do not perform type checking; they expect that the value you
updateor retrieve from afielded buffer matchesits native type. For example, if abuffer
field isdefined to be aFLD_LONG, you should always pass the address of along value.
The FML conversion functions convert data from a user specified type to the native
field type (and from the field type to a user specified type) in addition to placing the
datain (or retrieving the data from) the fielded buffer.

The FLD_PTRfield type makes it possible to embed pointers to application datain an
FML32 buffer. Applications can add, change, access, and delete pointers to data
buffers. The buffer pointed to by aFLD PTRfield must be alocated using the

t pal | oc(3c) cal. The FLD_PTRfield typeis supported only in FML32.

The FLD_FM 32 field type makes it possible to store an entire record asasingle field
inan FML 32 buffer. Likewise, the FLD_VI EWB2 field type allows an entire C structure
to be stored as asingle field in an FML 32 buffer. The FLD_FM_32 and FLD_VI EWB2
field types are supported only in FML32.

Type int in VIEWS

In addition to the data types supported by most FML functions, VIEWS indirectly
supportstypei nt insourceview descriptions. When the view description iscompiled,
the view compiler automatically converts any i nt typesto either short or long types,
depending on your machine. For more information, refer to “VIEWS Features’ on
page 2-12.

Type dec_t in VIEWS

VIEWSa so supportsthedec_t packed decimal typein sourceview descriptions. This
datatype is useful for transferring VIEW structuresto COBOL programs. InaC
program using the dec_t type, the field must be initialized and accessed using the
functionsdescribedindeci mal (3c) inthe BEA Tuxedo C Function Reference. Within
the COBOL program, the field can be accessed directly using a packed decimal
(covp- 3) definition. Because FML does not support adec_t field, thisfieldis
automatically converted to the data type of the corresponding FML field in the fielded
buffer (for example, a string field) when converting from a VIEW to FML.

2-8 Programming a BEA Tuxedo Application Using FML

Field Name-to-Identifier Mappings

Field Name-to-Identifier Mappings

In the BEA Tuxedo system, fields are usually referred to by their field identifier

(f1 di d), aninteger. (Refer to “ Defining Field Names and I dentifiers” on page 4-2 for
adetailed description of field identifiers.) Thisallowsyou to referencefieldsin a
program without using the field name, which may change.

Identifiers are assigned (mapped) to field names through one of the following:
m Field table files (which are ordinary UNIX files)
m Clanguage header (#i ncl ude) files

A typical application might use one, or both of the above methodsto map field
identifiersto field names.

Inorder for FML to accessthe datain fiel ded records, there must be someway for FML
to access the field name/identifier mappings. FML getsthisinformation in one of two

ways:
m At runtime, through UNIX field table files, and FML mapping functions
m At compiletime, through C header files

Field name/identifier mapping is not availablein COBOL.

Run Time: Field Table Files

Field name/identifier mappings can be made available to FML programs at run time
through field table files. It is the responsihility of the programmer to set two
environment variablesthat tell FML where the field name/identifier mapping table
files are located.

The environment variable FLDTBLDI R contains alist of directories where field tables
can be found. The environment variable FI ELDTBLS containsalist of thefilesin the
table directories that are to be used. For FML 32, the environment variable names are
FLDTBLDI R32 and FI ELDTBLS32.

Programming a BEA Tuxedo Application Using FML 2-9

2

FML and VIEWS Features

Within application programs, the FML function FI di d() providesfor arun-time
trandation of afield nametoitsfield identifier. Fnane() trandatesafield identifier to
itsfield name (seeFl di d(3f M) and Fname(3f m)). (Thefunction namesfor FML 32
areFl di d32 and Fnane32.) The first invocation of either function causes space in
memory to bedynamically allocated for thefield tables and the tablesto beloaded into
the address space of the process. The space can be recovered when the tables are no
longer needed. (Refer to “Loading Field Tables’ on page 4-6 for more information.)

This method should be used when field name/identifier mappings arelikely to change
throughout the life of the application. Thistopicis coveredin more detail in“ Defining
and Using Fields’ on page 4-1.

Compile Time: Header Files

2-10

Use nkf | dhdr () (or mkf 1 dhdr 32()) to make header files out of field table files.
These header files areincluded (with #i ncl ude) in C programs, and provide another
way to map field namesto field identifiers: at compile time. For more information on
nkf | dhdr, nkfl dhdr32(1), refer to BEA Tuxedo Command Reference.

Using field header files, the C preprocessor converts all field name referencesto field
identifiers at compile time; thus, you do not need to use the FI di d() or Fname()
functions as you would with the field table files described in the previous section.

If you always know the field names needed by your program, you can save some data
space by including your field table header files (with #i ncl ude). The space saving
allows your program to get to the task at hand more quickly.

Because this method resolves mappings at compile time, however, it should not be
used if the field name/identifier mappingsin the application are likely to change. For
more information, see “Defining and Using Fields” on page 4-1.

Programming a BEA Tuxedo Application Using FML

Fielded Buffer Indexes

Fielded Buffer Indexes

When afielded buffer has many fields, access is expedited in FML by the use of an
internal index. The user is normally unaware of the existence of this index.

Fielded buffer indexes do, however, take up space in memory and on disk. When you
store afielded buffer on disk, or transmit afielded buffer between processes or
between computers, you can save disk space and/or transmittal timeby first discarding
the index.

The Funi ndex() function enables you to discard the index. When the fielded buffer
isread from disk (or received from a sending process), the index can be explicitly
reconstructed with the Fi ndex() function.

Note that these space savings do not apply to memory. The Funi ndex() function does
not recover in-core memory used by the index of afielded buffer.

For more information, refer to Funi ndex, Funi ndex32(3fm) or Fi ndex,
Fi ndex32(3fnl) inthe BEA Tuxedo ATMI FML Function Reference.

Multiple Occurrence Fields in a Fielded
Buffer

Any field in afielded buffer can occur more than once. Many FML functions take an
argument that specifies which occurrence of afield isto beretrieved or modified. If a
field occurs more than once, the first occurrence is numbered 0, and additional
occurrences are numbered sequentially. The set of all occurrences makes up alogical
sequence, but no overhead is associated with the occurrence number (that is, it is not
stored in the fielded buffer).

If another occurrence of afield isadded, it isadded at the end of the set and isreferred
to asthe next highest occurrence. When an occurrence other than the highest is deleted,
all higher occurrences of the field are shifted down by one (for example, occurrence 6
becomes occurrence 5, 5 becomes 4, and so on).

Programming a BEA Tuxedo Application Using FML 2-11

2 FMLand VIEWS Features

Boolean Expressions and Fielded Buffers

The next action taken by an application program isfrequently determined by the value
of one or more fields in afielded buffer received (by the application) from another
source, such asauser’ sterminal or a database record. FML provides severa functions
that create boolean expressions on fielded buffers or VIEWSs and determine whether a
given buffer or VIEW meets the criteria specified by the expression.

Once you create a Boolean expression, it is compiled into an evaluation tree. The
evaluation tree is then used to determine whether afielded buffer or VIEW matches
the specified Boolean conditions.

For instance, a program may read a data record into a fielded buffer (Buffer A), and
apply aBoolean expression to the buffer. If Buffer A meetsthe conditions specified by
the Bool ean expression, then an FML function isused to update another buffer, Buffer
B, with data from Buffer A.

VIEWS Features

The VIEWS facility isparticularly useful when aprogram does alot of processing on
the datain afielded buffer, either after the program has received the buffer or before
the program sends the buffer to another program.

Under such conditions, you may improve processing efficiency by using VIEWS
functions to transfer fielded buffer data from the buffer to a C structure before you
manipulate it. Processing efficiency isimproved because C functions require less
processing time than FML functions for manipulating fields in a buffer. When you
finish processing the datain the C structure, you can transfer that data back to the
fielded buffer before sending it to another program.

The VIEWS facility has the following features:

m You can create sour ce vi ew descri pti ons that specify C structure-to-fielded
buffer mappings or COBOL record-to-fielded buffer mappings, and make
possible the transfer of data between structures and buffers.

2-12 Programming a BEA Tuxedo Application Using FML

VIEWS Features

Thevi ewc or vi ewc32 view compiler is used to generate obj ect vi ew
descri ptions (stored in binary files) that are interpreted by your application
programs at run time. The compiler also generates header files that can be used
in C programs to define the structures used in view descriptions, and optionally
generates COPY filesthat can be used in COBOL programs to define the
records used in the view descriptions. For more information about these view
compilers, seevi ewc, vi ewc32(1) inthe BEA Tuxedo Command Reference.

A view disassembler is provided to translate object view descriptionsinto
readable form (that is, back into source view descriptions). The output of the
disassembler can be re-input to the view compiler.

Datatransfers from C structures or COBOL recordsto fielded buffers can be
done in any one of four modes: FUPDATE, FJO N, FQJO N, or FCONCAT. These
modes are similar to the ones supported by the following FML functions:
Fupdat e, Fupdate32(3fm),Fjoin, Fjoin32(3fm),Fojoin,

Foj 0i n32(3fnl), and Fconcat, Fconcat32(3fni).

At run time object view descriptions are read into a viewfile cache on demand,
and remain there until the cache is full. When the cache is full and an object
view description that is not in the cache is needed, the least recently accessed
object view description is removed from the cache to make room for the new
one.

All types supported by FML can be used in view descriptions with the exception
of FLD_PTR, FLD FM.32, and FLD VI EWB2. In addition, integer and packed
decimal are supported.

When transferring data between fielded buffers and structures, the source datais
automatically converted to the type of the destination data; for instance, if a
string field is mapped to an integer member, the string is converted to an integer
using Ft ypcvt () automatically. For more information, refer to Ft ypcvt,

Ft ypcvt 32(3f mi) inthe BEA Tuxedo ATMI FML Function Reference.

Multiple field occurrences are supported.
User-specified and default null values in view descriptions are supported.

Functions are available for compiling and eval uating Boolean expressions
against application datain aVIEW.

Programming a BEA Tuxedo Application Using FML 2-13

2 FMLand VIEWS Features

A source viewfile is an ordinary text file that contains one or more source view
descriptions. Source viewfiles are used as input to a view compiler—vi ewc or

vi ewc32—which compiles the source view descriptions and stores them in object
viewfiles. For moreinformation on the view compiler, refer to vi ewc, vi ewc32(1)
in the BEA Tuxedo Command Reference.

The view compiler also creates C header files for object viewfiles. These header files
can be included in application programs to define the structures used in object view
descriptions.

Theview compiler optionally creates COBOL COPY filesfor object viewfiles. These
COPY files can be included in COPY programs to define the record formats used in
object view descriptions.

Null values are used to indicate empty membersin astructure, and can be specified by
the user for each structure member in aviewfile. If the user does not specify a null
value for amember, default null values are used.

Note that a structure member containing the null value for that member is not
transferred during a structure-to-fielded buffer transfer.

It isalso possible to inhibit the transfer of data between a C or COBOL structure
member and afield in afielded buffer, even though a mapping exists between them.
Thisis specified in the source viewfile.

The FML VIEWS functions are Fvst of (), Fvftos(), Fvnul | (), Fvopt (),
Fvselinit(),andFvsinit().For COBOL, the VIEWSfacility providestwo
procedures: FVSTOF and FVFTOS. Upon calling any view function, the named object
viewfile, if found, is loaded into the viewfile cache automatically. Each file specified
in the environment variable Vi EWFI LES is searched in order (see " Setting Up Y our
Environment for FML and VIEWS" on page 3-1). The first object viewfile with the
specified nameisloaded. Subsequent object viewfiles with the same name, if any, are
ignored. For more information on the FML VIEWS functions, refer to BEA Tuxedo
ATMI FML Function Reference.

Note that arrays of structures, pointers, unions, and typedefs are not supported in
VIEWS.

2-14 Programming a BEA Tuxedo Application Using FML

Error Handling for FML Functions

Multiple Occurrence Fields in VIEWS

Because VIEWS is concerned with moving fields between fielded buffersand C
structures or COBOL records, it must deal with the possibility of multiple occurrence
fields in the buffer.

To storemultiple occurrences of afield in astructure, amember isdeclared asan array
in C or with the OCCURS clause in COBOL; each occurrence of afield occupies one
element of the array. The size of the array reflects the maximum number of field
occurrences in the buffer.

When transferring data from fielded buffersto C structures or COBOL records, if the
number of elementsin thereceiving array is greater than the number of occurrencesin
the fielded buffer, the extra elements are assigned the (default or user-specified) null
value. If the number of occurrencesinthe buffer isgreater than the number of elements
in the array, the extra occurrencesin the buffer are ignored.

When dataistransferred from C structures or COBOL recordsto fielded buffers, array
members with the value equal to the (default or user-specified) null values areignored.

Error Handling for FML Functions

When an FML function detects an error, one of the following valuesis returned:
m NULL isreturned for functions that return a pointer.

m BADFLDI Disreturned for functions that return a FLDI D.

m -1isreturned for al others.

All FML function call returns should be checked against the appropriate value above
to detect errors.

In all error cases, the external integer Fer r or is set to the error number as defined in
fm . h.Ferror32issettothe error number for FML32 asdefined in f m 32. h.

Programming a BEA Tuxedo Application Using FML 2-15

2

FML and VIEWS Features

2-16

TheF_error () (or F_error32()) functionis provided to produce a message on the
standard error output. It takes one parameter, a string. It prints the argument string,
appended with a colon and a blank, and then prints an error message, followed by a
newline character. The error message displayed is the one defined for the error number
currently in Fer r or , which is set when errors occur.

To be of most use, the argument string tothe F_er r or () (or F_er ror 32()) function
should include the name of the program that incurred the error. RefertoF_error,
F_error32(3fnl) inthe BEA Tuxedo ATMI FML Function Reference.

Fstrerror, Fstrerror32(3fm) canbe used to retrieve thetext of an error
message from a message catalog; it returns a pointer that can be used as an argument
touserl og(3c),ortoF error() orF_error32().

For adescription of the error codes produced by an FML function, seethe entry for that
function in the BEA Tuxedo ATMI FML Function Reference.

Programming a BEA Tuxedo Application Using FML

CHAPTER

3 Setting Up Your

Environment for FML
and VIEWS

Thistopic includes the following sections:

m Environment Requirementsfor FML and VIEWS
m FML Directory Structure

m Environment Variables Used by FML and VIEWS

Environment Requirements for FML and
VIEWS

Before you can begin to work with FML fielded buffers, or to use the VIEWS
functionsthat move fields between structures and fielded buffers, you must set up your
environment to accommaodate these methods by setting the necessary environment
variables. This section provides instructions for doing so.

Programming a BEA Tuxedo Application Using FML 31

3 Setting Up Your Environment for FML and VIEWS

FML Directory Structure

The FML software delivered with the BEA Tuxedo system resides in a subtree of the
local file system. Several FML modules depend on the subtree structure described
here. We assume that you have set the TUXDI R environment variable to the full path
name of the directory in which the BEA Tuxedo ATMI Server isinstalled.

The BEA Tuxedo installation directory contains the following subdirectories:
®m i ncl ude—contains header files needed by writers of C application code.

m cobi ncl ude—contains COPY files needed by writers of COBOL application
code. (This directory is named cobi ncl u for operating systems with an 8.3 file
name limitation.)

® bi n—contains the executable commands of FML.

m | i b—contains subroutine packages of FML. When compiling a program that
uses FML functions, you should include $TUXDI R/ 1'i b/ i bf i . suf fi x and
$TUXDI R/ 1 i b/ 1 i bgp. suf fi x onthe C compiler command lineto resolve
external references. | i bf m 32. suf fi x containsthe FML32 and VIEW32
functions. (The suffix is. a for POSIX operating systems without shared objects,
.so.r el ease for use of shared objects, . | i b for Windows; it is part of the BEA
Tuxedo system DLL for platforms that use dynamic link libraries.)

C applicationsin which FML is used must include the following header files in the
order shown:

#i ncl ude <stdio. h>
#include “fm.h"”

Thefilef m . horfm 32. h containsdefinitionsfor structures, symbolic constants, and
macros used by the FML software.

3-2 Programming a BEA Tuxedo Application Using FML

Environment Variables Used by FML and VIEWS

Environment Variables Used by FML and

VIEWS

Severa environment variables are used by FML and VIEWS.

The following variable is used in FML to search for system-supplied files:

TUXDI R—this variable should be set to the topmost node of the installed
BEA Tuxedo system software including FML.

The following variables are used throughout FML to access field tablefiles:

FI ELDTBLS—this variable should contain a comma-separated list of field
table files for the application. Files given as full path names are used asiis;
fileslisted as relative path names are searched for through the list of
directories specified by the FLDTBLDI R variable. FI ELDTBLS32 is used for
FM_32. If FI ELDTBLS is not set, then the single file namef 1 d. t bl isused.
(FLDTBLDI Rstill applies; see below.)

FLDTBLDI R—this variable specifies a colon-separated list of directories to be
used to find field table files with relative filenames. Its usage is similar to the
PATH environment variable. If FLDTBLDI Ris not set or is null, then its value
is taken to be the current directory. FLDTBLDI R32 is used for FM_32.

For details, see “ Defining and Using Fields’ on page 4-1.

VIEWS functions use the same environment variables used by FML (namely,
FLDTBLDI Rand FI ELDTBLS) plus two other environment variables:

VI EWFI LES—this variable should contain a comma-separated list of object
viewfiles for the application. Files given asfull path names are used asiis;
fileslisted as relative path names are searched for through the list of
directories specified by the Vi EWDI R variable (see the following list item).
VI EWFI LES32 is used for VI EVB2.

VI EWDI R—this variabl e specifies a colon-separated list of directoriesto be
used to find view object files with relative filenames. It is set and used in the
same way that the PATH environment variable is set and used. If VI EWDI Ris
not set or isnull, then its value is assumed to be the current directory.

VI EWDI R32 is used for VI EWB2.

Programming a BEA Tuxedo Application Using FML 3-3

3 Setting Up Your Environment for FML and VIEWS

34 Programming a BEA Tuxedo Application Using FML

CHAPTER

4 Defining and Using
Fields

Thistopic includes the following sections:

m Preparing to Use FML and VIEWS

m Defining Fildsfor FML and VIEWS

m Mapping Fieldsto C Structures and COBOL Records

Preparing to Use FML and VIEWS

Before you can begin to work with FML fielded buffers, or to use the VIEWS
functions that move fields between structures and fielded buffers, you must:

m Definefields.

m Make field definitions available to application programs (through field table files
and mapping functions at run time, or through C header files at compile time).

m Compile source view descriptions into object view descriptions, and generate
corresponding C header filesand COBOL COPY files.

These tasks and related activities are described here.

Programming a BEA Tuxedo Application Using FML 4-1

4 Defining and Using Fields

Defining Fields for FML and VIEWS

This topic includes the following sections:
m Defining Field Names and | dentifiers

m Creating Field Table Files

m Mapping Field Namesto Field IDs

m Loading Field Tables

m Converting Field Tables to Header Files

Defining Field Names and Identifiers

A field identifier (fi el di d) is defined (with t ypedef) asaFLDI D (FLDI D32 for
FML32), and is composed of two parts: afield type and afield number. The number
uniquely identifies the field.

A field number must fall in one of the following ranges:
m For FML: between 1 and 8191, inclusive
m For FML32: between 1 and 33,554,431, inclusive

Field number 0 and the corresponding field identifier O are reserved to indicate a bad
field identifier (BADFLDI D). When FML is used with other software that also uses
fields, additional restrictions may be imposed on field numbers.

The BEA Tuxedo system conforms to the following conventions for field numbers.

FML Field Numbers FML32Field Numbers

Reserved Available Reserved Available

1-100 101-8191 1-10,000, 10,001-30,000,000
30,000,001-33,554,431

4-2 Programming a BEA Tuxedo Application Using FML

Creating Field Table Files

Applications should avoid using thereserved field numbers, althoughthe BEA Tuxedo
system does not strictly enforce applications from using them.

The mappings between field identifiers and field names are contained in either field
tablefiles or field header files. If you are using field table files you must convert field
name references in C programs with the mapping functions described | ater in this
section. Field header files allow the C preprocessor (cpp(1) in UNIX reference
manuals) to resolve name-to-field ID mappings when a program is compiled.

The functions and programs that access field tables use the environment variables
FLDTBLDI Rand FI ELDTBLS to specify the source directories and field table files,
respectively, that are to be used. (FLDTBLDI R32 and FI ELDTBLS32 are used for the
same purpose with FML32.) Y ou should set these environment variables as described
in “Setting Up Y our Environment for FML and VIEWS’ on page 3-1.

The use of multiple field tables allows you to establish separate directories and/or files
for separate groups of fields. Note that field names and field numbers should be unique
across all field tables, since such tables are capable of being converted into C header
files, and field numbersthat occur more than once may cause unpredictable results.

Creating Field Table Files

Field table files are created using a standard text editor, such asvi . They have the
following format:

m Blank lines and lines beginning with # are ignored.

m Lines beginning with adollar sign ($) areignored by the mapping functions but
are passed through (without the $) to header files generated by mkf | dhdr . (Refer
to nkfl dhdr, nkfl dhdr32(1) inthe BEA Tuxedo Command Reference.) The
ability to have lines ignored by the mapping functionsis useful, for example,
when an application passes C comments, what strings, and so on, to the
generated C header file.

Note: In COBOL applications, however, such lines are not passed through to the
COBOL copy files.

Programming a BEA Tuxedo Application Using FML 4-3

4 Defining and Using Fields

4-4

m Linesbeginning with the string * base contain a base for offsetting subsequent
field numbers. This optional feature provides an easy way to group and
renumber sets of related fields.

m All other lines should have the form:

nane rel - nunber type flag conmment

where:

name isthe identifier for the field. It should not exceed the C preprocessor
identifier restrictions (that is, it should contain only alphanumeric characters
and the underscore character). Internally, the nameis truncated to 30
characters, so names must be unique within the first 30 characters.

rel - nunber isthe relative numeric value of the field. It is added to the
current base, if *base is specified, to obtain the field number of thefield.

t ype isthetype of the field. It is specified as one of the following: char,
string,short,long,fl oat, doubl e,carray, ptr,fnl 32,0rvi en3d2.

Thef | ag field isreserved for future use; use adash (-) in thisfield.

comment isan optional field that can be used for clarifying information.

Note that these entries must be separated by white space (blanks or tabs).

Programming a BEA Tuxedo Application Using FML

Mapping Field Names to Field IDs

Field Table Example

The following is an example field table in which the base shifts from 500 to 700. The
first field in each group will be numbered 501 and 701, respectively.

Listing4-1 System Field TableFile

following are fields for EMPLOYEE service
enployee ID fields are based at 500

*pase 500

#nane rel - nunber type fl ags comrent

H---- e eeiaaaaoa —— - mmmmm e e mmm -
EMPNANVE 1 string - enp nane
EMPI D 2 | ong - enp id
EMPJOB 3 char - j ob type
SRVCDAY 4 carray - service date
*pbase 700

all address fields are nowrelative to 700

EMPADDR 1 string - street address
EMPCI TY 2 string - city
EMPSTATE 3 string - state

EMPZI P 4 | ong - zi p code

Mapping Field Names to Field IDs

Run-time mapping isdone by the FI di d() and Fname() functions, which consult the
set of field table files specified by the FLDTBLDI R and FI ELDTBLS environment
variables. (If FML32 is being used, the FI di d32() and Fname32() functions
reference the FLDTBLDI R32 and FI ELDTBLS32 environment variables.)

FI di d mapsitsargument, afield name, to afi el di d, as shown in the following code:
char *nane;

extern FLDID Fldid();

FLDID i d;

id = Fl di d(nane):

Programming a BEA Tuxedo Application Using FML 4-5

4 Defining and Using Fields

Fnane doesthe reverse trandation by mapping its argument, afi el di d, to afield
name, as shown in the following code:

extern char *Fnane();
nane = Fnane(id);

| dentifier-to-name mapping israrely used; it israre that one has afield identifier and
wants to know the corresponding name. One situation in which the field
identifier-to-field name mapping can be used isin a buffer print routine designed to
display, in an intelligible form, the contents of afielded buffer.

See Also

m Fldid, FIdid32(3fm) inthe BEA Tuxedo ATMI FML Function Reference

m Fnane, Fname32(3fm) inthe BEA Tuxedo ATMI FML Function Reference

Loading Field Tables

Upon thefirst cal, FI di d() loads the field table files and performs the required
search. Thereafter, the files are kept loaded. FI di d() returnsthe field identifier
corresponding to its argument on success, and returns BADFLDI D on failure, with
Fer r or setto FBADNAME. (If FML32 isbeing used, Fer r or 32 is set, instead.)

Torecover the data space used by the field tables |oaded by FI di d() , you may unload
all of thefiles by calling the Fnni d_unl oad() function.

Thefunction Fnanme() actsinafashion similar to Fl di d(), but it provides amapping
from afield identifier to afield name. It uses the same environment variable scheme

for determining the field tables to be loaded, but constructs a separate set of mapping
tables. On success, Fnane() returnsa pointer to acharacter string containing the name
corresponding to the f | di d argument. On failure, Fnane() returns NULL.

Note: The pointer isvalid only aslong as the table remains loaded.

4-6 Programming a BEA Tuxedo Application Using FML

Converting Field Tables to Header Files

Aswith FI di d(), failureincludes either the inability to find or open afield table
(FFTOPEN), bad field table syntax (FFTSYNTAX), or a ho-hit condition within the field
tables (FBADFLD). Thetable space used by the mapping tables created by Fname() may
be recovered by acall to the Fi dnm unl oad() function.

Both mapping functions and other FML functions that use run-time mapping require
Fl ELDTBLS and FLDTBLDI R to be set properly. Otherwise, defaults are used. (For the
default values of these environment variables, see“ Setting Up Y our Environment for
FML and VIEWS’ on page 3-1.)

See Also

m Fldid, FIdid32(3fm) inthe BEA Tuxedo ATMI FML Function Reference

® Fnmid_unl oad, Fnmid_unl oad32(3fm) inthe BEA Tuxedo ATMI FML
Function Reference

m Fnane, Fnane32(3fm) inthe BEA Tuxedo ATMI FML Function Reference

® Fi dnm unl oad, Fi dnm unl oad32(3fm) inthe BEA Tuxedo ATMI FML
Function Reference

Converting Field Tables to Header Files

Thenkf | dhdr (or nkf | dhdr 32) command converts afield table, as described earlier,
into aheader file suitable for processing by the C compiler. Each line of the generated
header fileis of the following form:

#define fnanme fieldid

where f nane isthe name of thefield, and fi el di d isitsfield-ID. Thefield-1D has
both the field type and field number encoded in it. The field number is an absolute
number, that is, base plusr el - nunber . The resulting file is suitable for inclusion in
a C program.

It is not necessary to use the header file if the run-time mapping functions are used as
described in “Mapping Fields to C Structures and COBOL Records’ on page 4-10.

Programming a BEA Tuxedo Application Using FML 4-7

4 Defining and Using Fields

Theadvantage of compile-time mapping of namesto identifiersisspeed and adecrease
of data space requirements. The disadvantage is that changes made to field
name/identifier mappings after, for instance, a service routine has been compiled, are
not propagated to the service routine. (Under such circumstances, the service routine
uses the mappings it has already compiled.)

nkf | dhdr trandateseach field table specified inthe FI ELDTBLS environment variable
to a corresponding header file, the name of which is formed by adding a. h suffix to

the field tablename. Theresulting files are created, by default, in the current directory.
If you want your header files to be created in another directory, you may specify that
directory with the - d option on the nkf | dhdr command line. For more information,
refer to nkf | dhdr, nkfl dhdr 32(1) inthe BEA Tuxedo Command Reference.

Examples of Converting Field Tables to Header Files

Example 1

Example 2

Examples 1 and 2 show how to set your environment variables and run the

nkf | dhdr (1) command so that three field table files—${ FLDTBLDI R}/ maskf t bl ,
${ FLDTBLDI R}/ DBf t bl , and ${ FLDTBLDI R} / ni scf t bl —are processed, and three
include files—maskf t bl . h, DBf t bl . h and ni scf t bl . h—are generated in the
current directory. For more information, refer to mkf | dhdr, nkf | dhdr 32(1) inthe
BEA Tuxedo Command Reference.

FLDTBLDI R=/ proj ect/fldtbls

FI ELDTBLS=nmaskft bl , DBf t bl , m scfthl
export FLDTBLDI R FI ELDTBLS

nkf | dhdr

FLDTBLDI R32=/ proj ect/fl dtbls

FI ELDTBLS32=nmaskft bl , DBf t bl , m scfthl
export FLDTBLDI R32 FI ELDTBLS32

nkf | dhdr 32

4-8 Programming a BEA Tuxedo Application Using FML

Converting Field Tables to Header Files

Example 3

Example 3 is the same as Example 1 with one exception: the output files—
maskf t bl . h, DBf t bl . h and ni scft bl . h—are generated in the directory indicated
by ${ FLDTBLDI R} .

FLDTBLDI R=/ proj ect/fl dtbls

FI ELDTBLS=maskftbl, DBf tbl , m scftb
export FLDTBLDI R FI ELDTBLS
nkf | dhdr - d${FLDTBLDI R}

nkf | dhdr - d${ FLDTBLDI R}

Overriding Environment Variables to Run mkfldhdr

Y ou may override the environment variables (or avoid setting them) when using
nkf | dhdr by specifying, on the command line, the names of the field tablesto be
converted.

This method does not apply to run-time mapping functions, however. When run-time
mapping functions are being used, FLDTBLDI Ris assumed to be the current directory
and FI ELDTBLS is assumed to be the list of parameters that the user specified on the
command line. For example, the command:

nkf | dhdr nyfiel ds

convertsthefield tablefilecalled nyf i el ds to afield header file called nyfi el ds. h,
and putsthe new file in the current directory.

For moreinformation, refer to nkf | dhdr, nkfl dhdr32(1) inthe BEA Tuxedo
Command Reference.

Programming a BEA Tuxedo Application Using FML 4-9

4 Defining and Using Fields

Mapping Fields to C Structures and COBOL

Records

This topic includes the following sections:

What Isthe VIEWS Facility?

Creating Viewfiles

Creating View Descriptions

Compiling Viewfiles

Using Header Files Compiled with viewc

Using COBOL COPY Files Created by the View Compiler

Displaying Viewfile Information After Compilation

What Is the VIEWS Facility?

FML VIEWS is a mechanism that enables the exchange of data between fielded
buffers and C structures or COBOL records. Thisfacility is provided becauseit is
usually more efficient to perform lengthy manipulations on C structures with C
functionsthan on fielded bufferswith FML functions. VIEWS aso providesaway for
aCOBOL program to send and receive messages with a C program that handles FML
fielded records.

This section explains how to use VIEWS to provide fielded buffer/structure mappings.

4-10 Programming a BEA Tuxedo Application Using FML

Creating Viewfiles

Structure of VIEWS

The following diagram shows the various components of VIEWS and how they relate
to one another.

Figure4-1 Componentsof the VIEWS Facility

viewfile.v
contained in
input to
view
description(s) viewc
input to
produces produces
viewdis viewfile.V viewfile.h
structured COBO!—
record COPY file

description

Creating Viewfiles

Source viewfiles are standard text files (created through any standard text editor, such
asvi) that contain one or more source view descriptions (the actual field-to-structure

mappings).

The view compiler produces (among other things) object viewfiles containing the
compiled object view descriptions. These object viewfiles can beused, in turn, asinput
to the view disassembler (vi ewdi s or vi ewdi s32), which translates the object view
descriptions back into their source format (for verification or editing). For more
information, refer tovi ewdi s, vi ewdi s32(1) in the BEA Tuxedo Command
Reference.

Y ou can create and edit source view descriptions, and edit the output of vi ewdi s. You
cannot read compiled view descriptions (which are in binary format) directly.

Programming a BEA Tuxedo Application Using FML 4-11

4 Defining and Using Fields

Besidesview descriptions, viewfiles may contain comment lines, beginning with # or
$. Blank linesand lines beginning with # areignored by the view compiler, whilelines
beginning with $ are passed by the view compiler to any header files generated. This
convention lets you pass C comments, what strings, and so on, to C header files
produced by the view compiler.

Note: This convention isnot observed for COBOL; lines beginning with $ are not
passed through to the COBOL copy files.

Creating View Descriptions

Each source view description in a source viewfile consists of three parts:

m A line beginning with the keyword Vi Ew(never with a 32 suffix), followed by
the name of the view description. This name may be composed of alphanumeric
characters, including an underscore. Although vi ewc accepts names of up to 33
characters, the practical limit in most casesis 16 characters, sincethisisthe
maximum length for a subtype accepted by t pal | oc(3c) .

m A list of member descriptions.
m A line beginning with the keyword END.

Thefirst line of each view description must begin with the keyword vi Ew followed by
the name of the view description. A member description (or mapping entry) isaline

with information about amember in the C structure or COBOL record. A linewith the
keyword END must be the last line in a view description.

4-12 Programming a BEA Tuxedo Application Using FML

Creating View Descriptions

The following listing shows the general structure of a source view description.

Listing 4-2 Source View Description

VI EW vnarne

type cname f bname count flag size nul |
S, - - -

END

In the previous listing:

vnane isthe name of the view description, and should be avalid C identifier
name, sinceit is also used as the name of a C structure. Underscores are mapped
automatically to dashesin the COBOL COPY file.

t ype isthe type of the member, and is specified as one of the following: i nt ,
short, | ong, char,fl oat, doubl e, string, carray, or dec_t . If the value of
type is“-", the default—the value of f bname—is used.

cnane istheidentifier for the structure member, and should be avalid C
identifier name, since it is the name of a C structure member. Underscores are
mapped automatically to dashesin the COBOL COPY file.

f bnane isthe name of the field in the fielded buffer. This name must appear in a
field tablefile.

count isthe number of elements to be allocated (that is, the maximum number
of occurrencesto be stored for this member). The value of count must be less
than or equal to 65,535 for FML, and less than or equal to 2,147,483,647 for
FML32.

fl ag isacomma-separated list of optionsor “- " (which meansthat no options
are set). For details, see “ Specifying flag Optionsin a View Description” on
page 4-14.

si ze isthe size of the member if thetypeisstring, carray, or dec_t . For
other types, “- " should be specified; the view compiler computes the size.

Programming a BEA Tuxedo Application Using FML 4-13

4 Defining and Using Fields

e Forstringorcarray, thevalue of si ze must be less than or equal to
65,535 for FML and less than or equal to 2,147,483,647 for FML32.

e Forthedec_t type, the vaue of si ze must be two humbers separated by a
comma. The first number represents the number of bytes in the decimal
value; it must be greater than 0 and |ess than 10. The second number
represents the number of decimal placesto the right of the decimal point; it
must be greater than 0 and | ess than twice the number of bytes minus one.

nul | isthe user-specified null value or “- " to indicate the default null value for
that field. For details, see “Using Null Valuesin VIEWS’ on page 4-17.

Specifying flag Options in a View Description

The following options can be specified asthef | ag element of a member description
in aview description.

c

This option requests the generation of a structure member called the associated
count member (ACM), in addition to the structure member described in the
member description.

When datais being transferred from a fielded buffer to a structure, each ACM in
the structure is set to the number of occurrences transferred to the associated
structure member.

e A vaueof 0inan ACM indicates that no fields were transferred to the
associ ated structure member

e A positive vaue indicates the number of fields actually transferred to the
structure member array.

e A negative value indicates that there were more fields in the buffer than
could be transferred to the structure member array. (The absolute value of the
ACM equalsthe number of fields not transferred to the structure).

During atransfer of data from a structure member array to afielded buffer, the
ACM is used to indicate the number of array elements that should be transferred.
For example, if the ACM of amember is set to N, then the first N non-null
fields aretransferred to the fielded buffer. If N is greater than the dimension of
the array, it then defaults to the dimension of the array. In either event, after the

4-14 Programming a BEA Tuxedo Application Using FML

Creating View Descriptions

transfer takes place, the ACM is set to the actual number of array members
transferred to the fielded buffer.

The type of an ACM in the C header fileis declared to be short for FML and
I ong for FML32, and its name is generated as C_cname, where cnane isthe
cname entry for which the ACM is declared. For example, an ACM for a
member named par t s is declared asfollows:

short C parts;

For aCOBOL COPY file, the name is generated as G- cname and the typeis
declared asfollows:

e For FML: PI C S9(4) USAGE COVP-5
e For FML32: PIC S9(9) USAGE COWP-5

Note: Itis possiblefor the generated ACM name to conflict with structure
members with names that begin with a C_ prefix. Such conflicts are
reported by the view compiler, and are considered fatal errors by the
compiler. For example, the name C_par t s for a structure member
conflicts with the name of an ACM generated for the member part s.

Specifies one-way mapping from structure or record to fielded buffer. The
mapping of a member with this option is effective only when transferring data
from structuresto fielded buffers. This option isignored if the - n command-line
option is specified.

Thisoption is used only for member descriptions of typecarr ay or stri ng to
indicate the number of bytes transferred for these possibly variable length fields.
If astring orcarray field isaways used as afixed length data item, then this
option provides no benefit.

The L option generates an associated length member (ALM) for a structure
member of typecar ray or stri ng. When transferring data from afielded buffer
to astructure, the ALM is set to the length of the corresponding transferred
fields. If the length of afield in the fielded buffer exceeds the space alocated in
the mapped structure member, only the allocated number of bytesis transferred.
The corresponding ALM is set to the size of the fielded buffer item. Therefore, if
the ALM is greater than the dimension of the structure member array, the fielded
buffer information is truncated on transfer.

Programming a BEA Tuxedo Application Using FML 4-15

4 Defining and Using Fields

When datais being transferred from a structure member to afield in afielded
buffer, the ALM is used to indicate the number of bytes to transfer to the fielded
buffer, if itisacarray typefield. For strings, the ALM isignored on transfer,
but is set afterwards to the number of bytes transferred. Note that because

carr ay fields may be of zero length, an ALM of 0 indicates that a zero-length
field should be transferred to the fielded buffer, unless the value in the associated
structure member isthe null value.

An ALM is defined in the C header file as an unsigned short for FML and an
unsigned long for FML 32, and has a generated name of L_cnane, where cname
isthe name of the structure for which the ALM is declared.

If the number of occurrences of the member for which the ALM isdeclared is 1
(or defaultsto 1), then the ALM isdeclared as:

unsi gned short L_cnane;

whereas if the number of occurrencesis greater than 1, say N, the ALM is
declared as:

unsi gned short L_cnane[N ;

and isreferred to asan ALM Array. In this case, each element in the ALM array
refersto a corresponding occurrence of the structure member (or field). For the
COBOL COP¥ file, thetypeisdeclared to be Pl C 9(4) USAGE COWP-5 for
FML and PI C 9(9) USAGE COwP-5 for FML32, and its name is generated as
L- cnanme. The COBOL OCCURS clauseis used to define multiple occurrences if
the member occurs multiple times.

Note: Itispossiblefor the generated ALM name to conflict with structure
members with names that begin with an L_ prefix. Such conflicts are
reported by the view compiler, and are considered fatal errors by the
compiler. For example, the name L_part s for a structure member
conflicts with the name of an ALM generated for the member part s.

N
Specifies zero-way mapping; no fielded buffer is mapped to the structure. This
option can be used to allocate fillersin C structures or COBOL records. Itis
ignored if the - n command-line option is specified.

P

This option can be used to affect what VIEWS interprets as a null value for
string and carray type structure members. If this option isnot used, a

4-16 Programming a BEA Tuxedo Application Using FML

Creating View Descriptions

structure member is null if its value is equa to the user-specified null value
(without considering any trailing null characters).

If this option is set, however, amember isnull if itsvalueis equal to the
user-specified null value with the last character propagated to full length
(without considering any trailing null character).

A member whose value is null is not transferred to the destination buffer when
datais transferred from the C structure or COBOL record to the fielded buffer.
For exampl e, a structure member TEST is of type car ray[25] and a
user-specified null value “abcde” isestablished for it. If the P option is not set,
TEST is considered null if the first five charactersare a, b, ¢, d, and e,
respectively. If the P option is set, TEST is null if the first four characters are a,
b, c, and d, respectively, and the rest of the car r ay contains the character “e”
(that is, 21 e’s).

Thisoptionisignored if the - n command-line option is specified.

Specifies one-way mapping from fielded buffer to structure or record. The
mapping of a member with this option is effective only when transferring data
from fielded buffers to structures. This option isignored if the - n command line
option is specified.

Using Null Values in VIEWS

Null values are used in VIEWS to indicate empty C structure or COBOL record
members. Default null values are provided; you may also define your own.

The default null value for all numeric typesiso (0. 0 for dec_t); for char types, itis

“\0"; andfor stri ng and carray types, itis“ “.

Escape convention constants can also be used to specify anull value. The view
compiler recognizes the following escape constants: \ ddd (where d is an octal digit),
VO, A\, VL, Vv, A N, VNV and

String, carray, and char null values may be enclosed in double or single quotes.
Unescaped quotes within a user-defined null value are not accepted by the view
compiler.

Programming a BEA Tuxedo Application Using FML 4-17

4 Defining and Using Fields

Alternatively, an element is null if its valueis the same as the null value for that
element, except in the following cases:

m If the P option is set for the structure member, and the structure member is of
string or carray type; see the preceding section for details on the P option

flag.

m If amember isof typestri ng, its value must be the same string as the null
value.

m If amember isof type carr ay, and the null valueis of length N, then the first N
charactersin the car r ay must be the same as the null value.

Y ou can aso specify the keyword “NONE” in the null field of aview member
description, which meansthere is no null value for the member.

The maximum size of default values for st ri ng and character array (car r ay)
membersis 2660 characters.

Note: Notethat for st ri ng members, which usualy end witha“\ 0”, a “\ 0” isnot
required as the last character of a user-defined null value.

4-18 Programming a BEA Tuxedo Application Using FML

Compiling Viewfiles

Compiling Viewfiles

vi ewc isaview compiler program for FML and vi ewc32 isused for FML 32. It takes
a source viewfile and produces an object viewfile, which isinterpreted at run timeto
effect the actual mapping of data. At run time, a C compiler must be available for

vi ewc. The command line looks like the following:

viewc [-n] [-d viewdir] [-C] viewfile [viewfile . . .]

wherevi ewf i | e isthe name of asource viewfile containing source view descriptions.
Y ou may specify one or more vi ewf i | es on the command line.

If the - C option is specified, then one COBOL COPY fileis created for each VIEW
defined inthevi ewf i | e. These copy files are created in the current directory.

The - n option can be used when compiling aview description file for a C structure or
COBOL record that does not map to an FM_ buffer.

By default, all viewsinvi ewf i | e are compiled and two or more files are created: an
object viewfile (suffixed with “.v"), and a header file (suffixed with “.h") for each
viewfile. For an illustration of the VIEWS components, see the diagram titled
“Components of the VIEWS Facility” on page 4-11.

The name of the object viewfileis viewfile.v. It is created in the current directory. The
- d option can be used to specify an alternate directory. Header files are created in the
current directory.

Note: For those operating systems that are not case-sensitive, such as Windows, the
object viewfileisgiven a. vv suffix.

For more information, refer to vi ewc, vi ewc32(1) inthe BEA Tuxedo Command
Reference.

Programming a BEA Tuxedo Application Using FML 4-19

4 Defining and Using Fields

Using Header Files Compiled with viewc

4-20

Y ou can use header files created by the view compiler (vi ewc) in any C application
programsto declareaC structure described by views. For example, the following view

description:

VI EW t est

#TYPE CNAME FBNANME COUNT
i nt enpi d EMPI D 1

f 1 oat sal ary EMPPAY 1

| ong phone EMPPHONE 4
string nane EMPNAVE 1
END

produces a C header file that looks like this:

struct test {

| ong enpi d; /*
fl oat sal ary; | *
| ong phone[4] ; /*
char nane[32] ; /*

}s

FLAG SI ZE NULL
- - -1
- - 0
- - 0
- 32 "NO NAME"
nul I =-1 */
nul 1 =0. 000000 */
nul | =0 */

nul | =" NO NAME" */

For more information, refer to vi ewc, vi ewec32(1) inthe BEA Tuxedo Command

Reference.

Programming a BEA Tuxedo Application Using FML

Using COBOL COPY Files Created by the View Compiler

Using COBOL COPY Files Created by the View
Compiler

COBOL COPY files created by the view compiler with the - C option can be used in
any COBOL application programsto declare COBOL records described by views. For
example, the COBOL COPY file for the previous view description looks like the
following in thefile TEST. cbl :

* VI EWFI LE: "test. V"

* VI EWNAME: "test”

05 EMPI D PIC S9(9) USAGE |'S COVP-5.
05 SALARY USAGE | S COVP- 1.

05 PHONE OCCURS 4 TIMES PIC S9(9) USAGE |'S COVP-5.
05 NAME PIC X(32).

Note that the COPY filename is automatically converted to uppercase by the view
compiler. The COPY fileisincluded in a COBOL program as follows:

01 MYREC COPY TEST.

For a more complete description of the output in the resulting COPY files, see
Programming a BEA Tuxedo Application Using COBOL.

Programming a BEA Tuxedo Application Using FML 4-21

4 Defining and Using Fields

Displaying Viewfile Information After
Compilation

Theview disassembler, vi ewdi s, disassembles an object viewfile produced by the
view compiler and displaysview information in source viewfile format. In addition, it
displaysthe offsets of structure membersin the associated structure.

Theability to view theinformation in thistype of format isuseful for verifying that an
object view description is correct.

To run the view disassembler, enter the following command:
viewdi s objviewile .

By default, obj vi ewfi | e in the current directory is disassembled. If thisfileis not
found in the current directory, an error message is displayed. Y ou can specify one or
more view object files on the command line.

The output of vi ewdi s l0oks similar to the original source view description. It can be
edited and re-input to vi ewc. The order of the lines in the output of vi ewdi s may be
different from the order of the lines in the original source view description, but this
differenceisirrelevant in determining whether the object file is correct.

For more information, refer to vi ewdi s, vi ewdi s32(1) inthe BEA Tuxedo
Command Reference.

4-22 Programming a BEA Tuxedo Application Using FML

CHAPTER

5

Field Manipulation
Functions

Thistopic includes the following sections:

m About This Section

m FML and VIEWS: 16-bit and 32-bit Interfaces
m Definitions of the FML Function Parameters
m Field Identifier Mapping Functions

m Buffer Allocation and Initialization

m Functionsfor Moving Fielded Buffers

m Field Access and Modification Functions

m Buffer Update Functions

m VIEWS Functions

m Conversion Functions

m Converting Strings

m Indexing Functions

m |nput/Output Functions

m Boolean Expressions of Fielded Buffers

m Boolean Functions

m VIEW Conversion to and from Target Format

Programming a BEA Tuxedo Application Using FML

5-1

5

Field Manipulation Functions

About This Section

This section describes all FML and VIEWS functions except the run-time mapping
functions described in “Defining and Using Fields’ on page 4-1.

FML functions are not directly available for COBOL programs. A procedure called
FI NI T isavailable to initialize arecord for receiving FML data, and the FvSTOF and
FVFTGS procedures are available to convert a COBOL record into an FML buffer, and
vice-versa. For detailed descriptions of these procedures, see Programming a BEA
Tuxedo Application Using COBOL. The COBOL interfaceis not described further
here.

FML and VIEWS: 16-bit and 32-bit Interfaces

5-2

There are two variants of FML. The original FML interface is based on 16-bit values
for the length of fields and contains information identifying fields (hence FML16).
FML16 islimited to 8191 unique fields, individual field lengths of up to 64K bytes,
and atotal fielded buffer size of 64K. The definitions, types, and function prototypes
for thisinterfaceareinf m . h which must beincluded in an application program using
the FML16 interface; and functions livein -1 fni .

A second interface, FML 32, uses 32-bit values for the field lengths and identifiers. It
allowsfor about 30 million fields, and field and buffer lengths of about 2 billion bytes.
The definitions, types, and function prototypes for FML32 arein f mi 32. h; functions
residein - | f m 32. All definitions, types, and function names for FML32 havea* 32"
suffix (for example, MAXFBLEN32, FBFR32, FLDI D32, FLDLEN32, F_OvHD32, Fchg32,
and error code Fer r or 32). Also the environment variables are suffixed with “ 32" (for
example, FLDTBLDI R32, FI ELDTBLS32, VI EWFI LES32, and VI EWDI R32). For FML32,
afielded buffer pointer is of type “FBFR32 *”, afield length has the type FLDLEN32,
and the number of occurrences of afield has the type FLDOCC32. The default required
alignment for FML 32 buffersis 4-byte alignment.

FML 16 applications that are written correctly can easily be changed to use the FML 32
interface. All variables used in the calls to the FML functions must use the proper
typedefs (FLDI D, FLDLEN, and FLDOCC). Any call tot pal | oc(3c) for an FML typed

Programming a BEA Tuxedo Application Using FML

FML and VIEWS: 16-bit and 32-bit Interfaces

buffer should use the FMLTYPE definition instead of “FML”. The application source
code can be changed to use the 32-bit functions simply by changing the include of
fm . htoinclusion of f ni 32. h followed by f ni 1632. h. Thefm 1632. h contains
macros that convert all of the 16-bit type definitions to 32-bit type definitions, and
16-bit functions and macros to 32-bit functions and macros.

Functionsare also provided to convert an FM L 32 fielded buffer into an FML 16 fielded
buffer, and vice-versa:

#include “fm . h”

#include “fm 32. h”

int

F32t 016(FBFR *dest, FBFR32 *src)

int

F16t 032(FBFR32 *dest, FBFR *src)

F32t 016 converts a 32-bit FML buffer to a 16-bit FML buffer. It does this by
converting the buffer on afield-by-field basis and then creating the index for the
fielded buffer. A field is converted by generating a FLDID from a FLDID32, and
copying the field value (and field length for string and carray fields).

dest and src are pointersto the destination and source fielded buffers, respectively.
The source buffer is not changed.

Thesefunctions canfail for lack of space; they can bere-issued after enough additional
space to complete the operation has been allocated. F16t 032 converts a 16-bit FML
buffer to a 32-bit FML buffer. It livesin thef m 32 library or shared object and sets
Ferror 32 onerror. F32t 016 livesinthef ni library or shared object and setsFer r or
on error. Note that both f i . h and f m 32. h must be included to use these functions;
fm 1632. h may not be included in the same file.

Thefield types for embedded buffers (FLD_PTR, FLD_FM_32 and FLD VI EWB2) are
supported only for FML32. Buffers containing FLD_PTR, FLD_FM_32, or FLD VI EW82
fields cause F32t 016 to fail with an FBADFLDerror. Thereisno impact when F16t 032
is called for these functions.

Note: For the remainder of this section, we describe only the 16-bit functions,
without specifying the equivalent FML32 and VIEW32 functions.

Programming a BEA Tuxedo Application Using FML 5-3

5 Field Manipulation Functions

Definitions of the FML Function Parameters

To simplify the specification of parameters for FML functions, a convention has been
adopted for the sequence of those parameters. FML parameters appear in the following
sequence.

1

For functionsthat require apointer to afiel ded buffer (FBFR), thisparameter isfirst.
If afunction takes two-fielded buffer pointers (such as the transfer functions), the
destination buffer comes first, followed by the source buffer. A fielded buffer
pointer must point to an areathat is aligned on a short boundary (or an error is
returned with Fer r or set to FALI GNERR) and the area must be a fielded buffer (or
an error is returned with Fer r or set to FNOTFLD).

For I/O functions, a pointer to a stream follows the fielded buffer pointer.

For functions that need one, afield identifier (type FLDI D) appears next (in the
case of Fnext , it isapointer to afield identifier).

For functions that need afield occurrence (type FLDOCC), this parameter comes
next. (For Fnext , it isapointer to an occurrence number.)

In functionsin which afield value is passed to or from the function, a pointer to
the beginning of the field value is given next. (It is defined as a character pointer
but may be cast from any other pointer type.)

When afield value is passed to a function that contains a character array
(carray) field, you must specify its length as the next parameter (type FLDLEN).
For functions that retrieve afield value, a pointer to the length of the retrieval
buffer must be passed to the function and this length parameter is set to the length
of the value retrieved.

A few functions require specia parameters and differ from the preceding
conventions. These specia parameters appear after the above parameters. They
are discussed in the descriptions of individual functions.

5-4 Programming a BEA Tuxedo Application Using FML

Field Identifier Mapping Functions

8. Thefollowing NULL values are defined for the various field types:
e O forshort and! ong
e 0.0forfloat anddoubl e

e \0Oforstring (1byteinlength)

A zero-length string for car r ay

Field Identifier Mapping Functions

Fidid

Severa functions allow a programmer to query field tables or field identifiers for
information about fields during program execution.

FI di d returnsthe field identifier for a given valid field name and loads the field
name/field ID mapping tables from the field table files, if they do not already exist.

FLDI D
FI di d(char *nane)

Herenane isavalid field name.

The space used by the mapping tables in memory can be freed using the
Fnm d_unl oad, Fnmid_unl oad32(3fm) function. Note that these tables are
separate from the tables loaded and used by the Fnane function.

For more information, refer to Fl di d, FI di d32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-5

5 Field Manipulation Functions

Fname

Fldno

Fnane returns the field name for a given valid field identifier and loads the field
I D/name mapping tables from the field tablefiles, if they do not already exist.

char *
Fnanme(FLDI D fi el di d)

Herefi el di d isavalid field identifier.

The space used by the mapping tablesin memory can be freed using the

Fnmi d_unl oad, Fnni d_unl oad32(3fm) function. Note that these tables are
separate from the tables |oaded and used by the FI di d function. (Refer to the BEA
Tuxedo ATMI FML Function Reference for more information.)

For more information, refer to Fnane, Fnanme32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Fl dno extracts the field number from a given field identifier.

FLDOCC
Fl dno(FLDI D fi el di d)

Herefi el di d isavalid field identifier.

For more information, refer to Fl dno, FI dno32(3f m) inthe BEA Tuxedo ATMI
FML Function Reference.

5-6 Programming a BEA Tuxedo Application Using FML

Field Identifier Mapping Functions

Fldtype

FI dt ype extractsthe field type (an integer, asdefined in f m . h) from agiven field
identifier.

int
Fl dtype(FLDI D fiel did)

Herefi el di d isavalid field identifier.

The following table shows the possible values returned by FI dt ype and their
meanings.

Table5-1 Field Types Returned by Fldtype

Return Value Meaning
0 Short integer
1 Long integer
2 Character
3 Single-precision float
4 Double-precision float
5 Null-terminated string
6 Character array
9 Pointer
10 Embedded FML 32 buffer
11 Embedded VIEW32 buffer

For more information, refer to Fl dt ype, Fl dt ype32(3f ni) in the BEA Tuxedo
ATMI FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-7

5 Field Manipulation Functions

Ftype

Ft ype returns a pointer to a string containing the name of the type of afield given a
field identifier.

char *
Ftype(FLDI D fi el di d)

Herefi el di d isavalid field identifier. For example, the following code returns a
pointer to one of the following strings: shor t, 1 ong, char, f| oat , doubl e, stri ng,
carray, FLD PTR, FLD FM.32, or FLD VI EW82.

char *typenane
typenane = Ftype(fieldid);

For more information, refer to Ft ype, Ftype32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Fmkfldid

As part of an application generator, or to reconstruct afield identifier, it might be
useful to make afield identifier from atype specification and an available field
number. Frkf | di d providesthis functionality.

FLDI D
Frkfldid(int type, FLD D num

Here:

m typeisavadidtype. (Specifically, it is an integer; see “Fldtype” on page 5-7 for
details.)

m numisafield number. (It should be an unused field number to avoid confusion
with existing fields.)

For more information, refer to Frrkf | di d, Fnkfl di d32(3fnl) inthe BEA Tuxedo
ATMI FML Function Reference.

5-8 Programming a BEA Tuxedo Application Using FML

Buffer Allocation and Initialization

Buffer Allocation and Initialization

The functions described in this section are provided for writing stand-alone FML
programs. If you are using the BEA Tuxedo ATMI functions, keep in mind that for
tasks such as allocating and freeing message buffers, you must call ATMI functions
such ast pal | oc(3c),tpreal | oc(3c),andtpfree(3c),instead of FML functions
suchasFal | oc, Falloc32(3fm),Frealloc, Frealloc32(3fm),andFfree,
Ffree32(3fm).

Most FML functionsrequire apointer to afielded buffer asan argument. Thet ypedef
FBFRis available for declaring such pointers, as shown in the following example:

FBFR *f bfr;

In this section, the variable f bf r refersto a pointer to a fielded buffer. Never attempt
to declare fielded buffers themselves; declare only pointersto fielded buffers.

When a server receives arequest that contains an FML buffer, it allocates space for
that FML buffer and for any embedded views or buffersreferenced by FLD_PTRfields.
A pointer to the new FML buffer is passed to the user-written code. Once the server
processing is complete, al buffers allocated when the message was received must be
destroyed. The BEA Tuxedo system checksthe FML buffer and all subsidiary buffers,
and deletes any buffersto which it finds references. As a programmer writing server
code, you should be aware of the following situations:

m If you add, change, or update aview or pointer field so that it references a buffer
allocated by the server, the newly allocated buffer is deleted during the cleanup
triggered when thet pret ur n(3c) ort pf or war d(3c) functionis called.

m If you change, update, or delete afield so that a buffer is no longer referenced by
the FML buffer, the user-written code must free that buffer explicitly, using the
t pf ree(3c) function. If the buffer is not explicitly freed, the server process
leaks memory.

m |n some cases, the user-written code can allocate and return another buffer,
rather than simply call t pr et ur n(3c) . If thisis done, the FML buffer passed to
tpreturn() isfreed, but any buffersreferenced by FLD PTRor FLD VI EW82
fields are not freed.

Programming a BEA Tuxedo Application Using FML 5-9

5 Field Manipulation Functions

The functions used to reserve space for fielded buffers are explained in the following
text, but first we describe a function that can be used to determine whether a given
buffer is, in fact, afielded buffer.

Fielded

Fi el ded (or Fi el ded32) is used to test whether the specified buffer isfielded.

int
Fi el ded(FBFR *f bfr)

Fi el ded32 isused with 32-bit FML.

Fi el ded returnstrue (1) if the buffer is fielded. It returns false (0) if the buffer is not
fielded but does not set Ferror .

For more information, refer to Fi el ded, Fi el ded32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

Fneeded

The amount of memory to allocate for a fielded buffer depends on the maximum
number of fields the buffer will contain and the total amount of space needed for all
thefield values. The function Fneeded can be used to determine the amount of space
(inbytes) needed for afielded buffer; it takesthe number of fields and the space needed
for al field values (in bytes) as arguments.

| ong
Fneeded(FLDOCC F, FLDLEN V)

Here:
m Fisthe number of fields.

m Visthe space, in bytes, for field values.

5-10 Programming a BEA Tuxedo Application Using FML

Buffer Allocation and Initialization

Fvneeded

The space needed for field valuesis computed by estimating the amount of space that
isrequired by each field value if stored in standard structures (for example, al ong is
stored asal ong and needs four bytes). For variable length fiel ds, estimate the average
amount of space needed for the field. The space cal culated by Fneeded includes a
fixed overhead for each field; it adds that to the space needed for the field values.

Once you obtain the estimate of space from Fneeded, you can allocate the desired
number of bytes using nal | oc(3) and set up a pointer to the allocated memory space.
For example, the following code allocates space for afielded buffer large enough to
contain 25 fields and 300 bytes of values.

#define NF 25

#define NV 300
extern char *nmall oc;

i f((fbfr = (FBFR *)mal | oc(Fneeded(NF, NV))) == NULL)
F error("pgmnane"); /* no space to allocate buffer */

However, this allocated memory spaceis not yet afielded buffer. Fi ni t must be used
to initializeit.

For more information, refer to Fneeded, Fneeded32(3f ni) in the BEA Tuxedo
ATMI FML Function Reference.

The Fvneeded function determines the amount of space (in bytes) needed for avi Ew
buffer. The function takes a pointer to the name of the VI Ewas an argument.

| ong
Fvneeded(char *subtype)

The Fvneeded function returns the size of the Vi Ewin number of bytes.

For more information, refer to Fvneeded, Fvneeded32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

Programming a BEA Tuxedo Application Using FML 51

5 Field Manipulation Functions

Finit
TheFi ni t function initializes an allocated memory space as afielded buffer.
i nt
Finit(FBFR *fbfr, FLDLEN buflen)
Here:
m fbfr isapointer to an uninitialized fielded buffer.
m bufl en isthelength of the buffer, in bytes.
A call toFi ni t toinitialize the memory space alocated in the previous example looks
like the following code:
Finit(fbfr, Fneeded(NF, NV));
Now f bf r pointsto an initialized, empty fielded buffer. Up to Fneeded(NF, NV)
bytes minus a small amount (F_OvHD as defined inf mi . h) are available in the buffer
to hold fields.
Note: Thenumbersusedinthemal | oc(3) call (asdescribed in the previous section)
and Fi ni t call must be the same.
For more information, refertoFi nit, Finit32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.
Falloc

Callsto Fneeded, nal | oc(3) and Fi ni t may be replaced by asinglecall to Fal | oc,
which allocates the desired amount of space and initializes the buffer.

FBFR *
Fal | oc(FLDOCC F, FLDLEN V)

Here:
m Fisthe number of fields.

m Visthe spacefor field values, in bytes.

5-12 Programming a BEA Tuxedo Application Using FML

Buffer Allocation and Initialization

Ffree

A call to Fal | oc that provides the same functionality created by the callsto Fneeded,
mal | oc(), and Fi ni t described in the previous three sections, must be written as
follows:

extern FBFR *Fal |l oc;

if((fbfr = Falloc(NF, NV)) == NULL)
F error(“pgmnane”); /* couldn't allocate buffer */
Storage allocated with Fal | oc (or Fneeded, nal | oc(3), and Fi ni t) should be freed

with Ffree. (SeeFfree, Ffree32(3fni) inthe BEA Tuxedo ATMI FML Function
Reference.)

For moreinformation, refer to Fal | oc, Fal | oc32(3f m) inthe BEA Tuxedo ATMI
FML Function Reference.

Ff r ee isused to free memory space allocated as afielded buffer. Ff r ee32 does not
free the memory areareferenced by a pointer ina FLD_PTRfield.

int

Ffree(FBFR *fbfr)

Heref bf r isapointer to afielded buffer. Consider the following example:
#include <fni.h>

i f(Ffree(fbfr) < 0)
F error("pgmnane"); /* not fielded buffer */

Ff r ee ispreferableto f r ee(3), because Ff r ee invalidates afielded buffer, whereas
free(3) does not. It is necessary to invalidate fielded buffers because nal | oc(3)
re-uses memory that has been freed without clearing it. Thus, if f r ee(3) is used,

mal | oc can return a piece of memory that looks like a valid fielded buffer, but is not.

Space for afielded buffer may also be reserved directly. The buffer must begin on a
short boundary. You must alocate at least F_OvHD bytes (defined in f mi . h) for the
buffer; if you do not, Fi ni t returns an error.

Thefollowing codeisanal ogousto the preceding exampl e but Fneeded cannot be used
to size the static buffer because it is not a macro:

Programming a BEA Tuxedo Application Using FML 5-13

5 Field Manipulation Functions

/* the first Iine aligns the buffer */
static short buffer[500/sizeof (short)];
FBFR *f bf r=(FBFR *) buffer;

Finit(fbfr, 500);

Be careful not to enter code such as the following:
FBFR badf bfr;

Fini t (&badfbfr, Fneeded(NF, NV)):

This code iswrong: the structure for FBFRis not defined in the user header files. Asa
result, a compilation error will be produced.

For more information, refer to Ff ree, Ffree32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Fsizeof

Fsi zeof returnsthe size of afielded buffer in bytes.

| ong
Fsi zeof (FBFR *fbfr)

Heref bf r isapointer to afielded buffer. Inthefollowing code, for example, Fsi zeof
returnsthe same number that Fneeded returned when the fielded buffer wasoriginally
allocated:

| ong bytes;
.byie.s = Fsi zeof (fbfr);

For more information, refer to Fsi zeof , Fsi zeof 32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

5-14 Programming a BEA Tuxedo Application Using FML

Buffer Allocation and Initialization

Funused

Fused

Funused may be used to determine how much spaceisavailable in afielded buffer for
additional data.

| ong
Funused(FBFR *f bfr)

Heref bf r isapointer to afielded buffer. Consider the following example:
| ong unused,;
;Jnijséd = Funused(fbfr);

Note that Funused does not indicate the location, in the buffer, of the unused bytes;
only the number of unused bytes is specified.

For more information, refer to Funused, Funused32(3f ni) inthe BEA Tuxedo
ATMI FML Function Reference.

Fused may be used to determine how much spaceis used in afielded buffer for data
and overhead.

| ong
Fused(FBFR *f bfr)

Heref bf r isapointer to afielded buffer. Consider the following example:
| ong used,;
used = Fused(fbfr):

Note that Fused does not indicate the location, in the buffer, of the used bytes; only
the number of used bytesis specified.

For more information, refer to Fused, Fused32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-15

5 Field Manipulation Functions

Frealloc

This function enables you to change the size of a buffer for which you have allocated
space by calling Fal | oc.

If you have allocated space with t pal | oc(3c), you must call t preal | oc(3c) to
reallocate that space. Being ableto resize the buffer can be useful if, for example, a
buffer runs out of space while anew field value is being added. Simply by calling
Freal | oc you can increase the size of the buffer. In other situations you may want to
cal Freal | oc to decrease the size of the buffer.

FBFR *
Freal |l oc(FBFR *fbfr, FLDOCC nf, FLDLEN nv)

Here:

m fbfr isapointer to afielded buffer.

m nf isthe new number of fields or O.

m nv isthe new space for field values, in bytes.
Consider the following example:

FBFR *newf bfr;

if((newf bfr = Frealloc(fbfr, NF+5, NV+300)) == NULL)

F error(“pgmnane”); /* couldn't re-all ocate space */
el se

fbfr = newfbfr; /* assign new pointer to old */

In this case, the application needed to remember the number of fields and the number
of value space bytes previously allocated. Note that the argumentsto Fr eal | oc (as
with its counterpart r eal | oc(3)) are absolute values, not increments. This example
does not work if it is necessary to re-allocate space several times.

The following example shows a second way of incrementing the all ocated space:

/* define the increment size when buffer out of space */
#define I NCR 400
FBFR *newf bfr;

if((newf bfr = Frealloc(fbfr, 0, Fsizeof(fbfr)+I NCR)) == NULL)

F error (“pgm nane”); /* couldn't re-allocate space */
el se

fbfr = newfbfr; /* assign new pointer to old */

5-16 Programming a BEA Tuxedo Application Using FML

Functions for Moving Fielded Buffers

Y ou do not need to know the number of fields or the value space size with which the
buffer waslast initialized. Thus, the easiest way to increasethe sizeisto usethe current
size plus the increment as the value space. The previous example can be executed as
many times as needed without remembering past executions or values. Y ou do not
need to call Fi ni t after calling Freal | oc.

If theamount of additional spacerequested inthecall to Fr eal | oc iscontiguousto the
old buffer, newf bf r and f bf r in the previous examples are the same. However,
defensive programming dictates that you should declare newf bf r as a safeguard in
case either anew value or NULL isreturned. If Fr eal | oc fails, do not usef bf r again.

Note: The buffer size can be decreased only to the number of bytes currently being
used in the buffer.

For more information, refer to Freal | oc, Freal | oc32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

Functions for Moving Fielded Buffers

Fmove

The only restriction on thelocation of fielded buffersis that they must bealigned on a
short boundary. Otherwise, fielded buffers are position-independent and may be
moved around freely in memory.

If src pointsto afielded buffer and dest points to an area of storage big enough to
hold it, then the following code might be used to move the fielded buffer:

FBFR *src;
char *dest;

mencpy(dest, src, Fsizeof(src));

The function nencpy, one of the C run-time memory management functions, moves
the number of bytesindicated by its third argument from the area pointed to by its
second argument to the area pointed to by itsfirst argument.

Programming a BEA Tuxedo Application Using FML 5-17

5 Field Manipulation Functions

While mencpy may be used to copy afielded buffer, the destination copy of the buffer
looks just like the source copy. In particular, for example, the destination copy hasthe
same number of unused bytes as the source buffer.

Fnove acts like mencpy, but does not need an explicit length (which is computed).

i nt
Frove(char *dest, FBFR *src)

Here:
m dest isapointer to the destination buffer.
m src isapointer to the source fielded buffer.

In the following code, for example, Fnove checks that the source buffer isindeed a
fielded buffer, but does not modify the source buffer in any way.

FBFR *src;
char *dest;

i f(Fnove(dest,src) < 0)
F error("pgmnane");

The destination buffer need not be afielded buffer (that is, it need not have been
allocated using Fal | oc), but it must be aligned on ashor t boundary (4-byte
alignment for FML 32). Thus, Frove provides an alternative to Fcpy when you want
to copy afielded buffer to a non-fielded buffer. Fnove does not, however, check to
make sure there is enough room in the destination buffer to receive the source buffer.

For values of type FLD_PTR, Fnove32 transfers the buffer pointer. The application
programmer must manage the reall ocation and freeing of buffers when the associated
pointer ismoved. The buffer pointedto by aFLD_PTR field must be allocated using the
t pal | oc(3c) call.

For more information, refer to Fnove, Fnove32(3f m) inthe BEA Tuxedo ATMI
FML Function Reference.

5-18 Programming a BEA Tuxedo Application Using FML

Functions for Moving Fielded Buffers

Fcpy

Fcpy is used to overwrite one fielded buffer with another.

int
Fcpy(FBFR *dest, FBFR *src)

Here:
m dest isapointer to the destination fielded buffer.
m src isapointer to the source fielded buffer.

Fcpy preservestheoverall buffer length of the overwritten fiel ded buffer and therefore
isuseful for expanding or reducing the size of afielded buffer. Consider the following
example:

FBFR *src, *dest;

i f(Fcpy(dest, src) < 0)
F error (“pgmnane”);

Unlike Frove, where dest could point to an uninitialized area, Fcpy expects dest to
point to an initialized fielded buffer (allocated using Fal | oc). Fcpy also verifies that
dest is big enough to accommodate the data from the source buffer.

Note: Y ou cannot reduce the size of afielded buffer below the amount of space
needed for currently held data.

Aswith Frove, the source buffer is not modified by Fcpy.

For values of type FLD_PTR, Fcpy32 copies the buffer pointer. The application
programmer must manage the reallocation and freeing of buffers when the associated
pointer iscopied. The buffer pointed to by aFLD_PTRfield must be allocated using the
tpal | oc(3c) call.

For more information, refer to Fcpy, Fcpy32(3fm) inthe BEA Tuxedo ATMI FML
Function Reference.

Programming a BEA Tuxedo Application Using FML 5-19

5 Field Manipulation Functions

Field Access and Modification Functions

This section discusses how to update and access fielded buffers using the field types
of the fields without doing any conversions. For alist of the functionsthat allow you
to convert data from one type to ancther upon transfer to or from afielded buffer, see
“Conversion Functions’ on page 5-50.

Fadd

The Fadd function adds a new field value to the fielded buffer.

int
Fadd(FBFR *fbfr, FLD D fieldid, char *value, FLDLEN | en)

Here:
m fbfr isapointer to afielded buffer.
m fieldidisafieldidentifier.

m val ue isapointer to anew value. Itstypeis shown aschar *, but when it is
used, itstype must be the same type as the value to be added (see below).

m | en isthelength of the valueif itstypeis FLD_CARRAY.

If no occurrence of the field exists in the buffer, then thefield is added. If one or more
occurrences of the field already exist, then the value is added as a new occurrence of
the field, and is assigned an occurrence number 1 greater than the current highest
occurrence. (To add a specific occurrence, Fchg must be used.)

Fadd, likeall other functionsthat take or return afield value, expectsapointer to afield
value, never the value itself.

If the field type is such that the field length isfixed (short, | ong, char, f1 oat, or
doubl e) or can be determined (st ri ng), the field length need not be given (itis
ignored). If thefield typeisa character array, the length must be specified; the length
is defined as type FLDLEN. The following code, for example, gets the field identifier
for the desired field and adds the field value to the buffer.

5-20 Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

FLDI D fieldid, Fldid;
FBFR *f bfr;

fieldid = Fldid("fieldname");
if(Fadd(fbfr, fieldid, "new value", (FLDLEN9) < 0)
F error("pgmnane");

It isassumed (by default) that the native type of thefield isacharacter array so that the
length of the value must be passed to the function. If the value being added is not a
character array, the type of val ue must reflect the type of the value to which it points.
The following code, for example, adds along field value.

long Ival;

I val = 123456789;
if(Fadd(fbfr, fieldid, & val, (FLDLEN)O) < 0)
F error("pgmnane");

For character array fields, null fields may be indicated by alength of 0. For string
fields, thenull string may be stored since the NUL L terminating byteisactually stored
as part of the field value: a string consisting of only the NULL terminating byte is
considered to have a length of 1. For all other types (fixed length types), you may
choose some special valuethat isinterpreted by the applicationasaNULL, but thesize
of the value is taken from its field type (for example, alength of 4 for al ong),
regardless of what value is actually passed. Passing aNULL value address resultsin
an error (FEI NVAL).

For pointer fields, Fadd32 storesthe pointer value. The buffer pointedto by aFLD PTR
field must be alocated using the t pal 1 oc(3c) call. For embedded FML 32 buffers,
Fadd32 storesthe entire FLD_FM_32 field value, except for the index.

For embedded VIEW32 buffers, Fadd32 stores a pointer to a structure of type

FVI EWFLD, which contains vflags (aflagsfield, currently unused and set to 0), vnane
(acharacter array containing the view name), and dat a (a pointer to the view data
stored as a C structure). The application provides the vname and dat a to Fadd32. The
FVI EWFLD structure is as follows:

typedef struct {

TMB2U vfl ags; /* flags - currently unused */

char vnane[FVI EWNAMVESI ZE+1]; /* name of view */

char *dat a; /* pointer to view structure */
} FVI EWFLD;

For more information, refer to Fadd, Fadd32(3f m) inthe BEA Tuxedo ATMI FML
Function Reference.

Programming a BEA Tuxedo Application Using FML 5-21

5 Field Manipulation Functions

Fappend

The Fappend function appends a new field value to the fielded buffer.

i nt
Fappend(FBFR *fbfr, FLDI D fieldid, char *value, FLDLEN |en)

Here:
m fbfr isapointer to afielded buffer.
m fieldidisafieldidentifier.

m val ue isapointer to anew value. Itstypeis shown aschar *, but whenitis
used, itstype must be the same type as the value to be appended (see below).

m | en isthelength of the valueif itstypeis FLD CARRAY.

Fappend appendsanew occurrence of thefieldf i el di d withavaluelocated at val ue
to the fielded buffer and puts the buffer into append mode. Append mode provides
optimized buffer construction for large buffers constructed of many rows of acommon
set of fields.

A buffer that is in append modeis restricted as to what operations may be performed
on the buffer. Only calls to the following FML routines are allowed in append mode:
Fappend, Fi ndex, Funi ndex, Ff r ee, Fused, Funused and Fsi zeof . CallstoFi ndex
or Funi ndex end append mode.

The following example shows the construction, using Fappend, of a 500-row buffer
with 5 fields per row:

for (i=0; i 500 ;i++) {

if ((Fappend(fbfr, LONGFLD1, & vall[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, LONGFLD2, & val2[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, STRFLD1, &stril[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, STRFLD2, &str2[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, LONGLD3, & val 3[i], (FLDLEN)O) < 0)) {
F _error("pgm nane");

br eak;

}
}
Fi ndex(fbfr, 0);

Fappend, like all other functions that take or return afield value, expects a pointer to
afield value, never the value itself.

5-22 Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

Fchg

If the field type is such that the field length isfixed (shor t , 1 ong, char, f1 oat , or
doubl e) or can be determined (st ri ng), the field length need not be given (it is
ignored). If the field type is a character array, the length must be specified; the length
is defined astype FLDLEN.

It isassumed (by default) that the native type of thefield isacharacter array so that the
length of the value must be passed to the function. If the value being appended is not
acharacter array, the type of val ue must reflect the type of the value it pointsto.

For character array fields, null fields may be indicated by alength of 0. For string
fields, thenull string may be stored since the NUL L terminating byteisactually stored
as part of thefield value: a string consisting of only the NULL terminating byte is
considered to have a length of 1. For all other types (fixed-length types), you may
choose some special valuethat isinterpreted by the applicationasaNULL, but thesize
of the value is taken from its field type (for example, the length of 4 for al ong),
regardless of what value is actually passed. Passing aNULL value addressresultsin
an error (FEI NVAL).

For more information, refer to Fappend, Fappend32(3f ni) in the BEA Tuxedo
ATMI FML Function Reference.

Fchg changes the value of afield in the buffer.

int
Fchg(FBFR *fbfr, FLDID fiel did, FLDOCC oc, char *val ue, FLDLEN | en)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisafieldidentifier.

m oc isthe occurrence number of the field.

m val ue isapointer to anew value. Itstypeis shown aschar *, but whenitis
used, its type must be the same type as the value to be added (see “ Fadd” on
page 5-20).

m | en isthelength of the valueif itstypeis FLD_CARRAY.

Programming a BEA Tuxedo Application Using FML 5-23

5

Field Manipulation Functions

5-24

For exampl e, the following code changes afield of type car r ay to anew vaue stored
inval ue:

FBFR *fbfr;

FLDI D fieldid;
FLDOCC oc;
FLDLEN 1| en;
char val ue[50] ;

strcpy(val ue, "new val ue");

flen = strlen(val ue);

if(Fchg(fbfr, fieldid, oc, value, len) < 0)
F error("pgmnane");

If oc is-1, then thefield value is added as a new occurrence to the buffer. If oc is0O or
greater and the field is found, then the field value is modified to the new value
specified. If oc isO or greater and the field is not found, then NULL occurrences are
added to the buffer until the value can be added as the specified occurrence. For
example, changing field occurrence 3 for afield that does not exist on a buffer causes
three NUL L occurrencesto be added (occurrences 0, 1 and 2), followed by occurrence
3 with the specified field value. Null values consist of the NULL string “\ 0” (1 bytein
length) for string and character values, 0 for long and short fields, 0. 0 for float and
double values, and a zero-length string for a character array.

The new or modified valueiscontained inval ue. If itisacharacter array, itslength is
giveninl en (I en isignored for other field types). If the value pointer is NULL and
the field is found, then the field is deleted. If the field occurrence to be deleted is not
found, it is considered an error (FNOTPRES).

For pointer fields, Fchg32 storesthe pointer value. The buffer pointedtoby aFLD PTR
field must be allocated using the t pal | oc(3c) call. For embedded FML32 buffers,
Fchg32 storesthe entire FLD _FM_32 field value, except the index. For embedded
VIEW32 buffers, Fchg32 stores a pointer to a structure of type FVI EWFLD, that
containsvf | ags (aflagsfield, currently unused and set to 0), vnane (acharacter array
containing the view name), and dat a (a pointer to the view data stored asa C
structure). The application providesthe vname and dat a to Fchg32.The FVI EWFLD
structure is as follows:

typedef struct {

TMB2U vf | ags; /* flags - currently unused */

char vname[FVI EWNAMVESI ZE+1]; /* nanme of view */

char *dat a; /* pointer to view structure */
} FVI EWFLD,

Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

Fcmp

The buffer must have enough room to contain the modified or added field value, or an
error isreturned (FNOSPACE).

For more information, refer to Fchg, Fchg32(3f m) inthe BEA Tuxedo ATMI FML
Function Reference.

Fcrp compares the field identifiers and field values of two fielded buffers.

int
Fcmp(FBFR *fbfr1, FBFR *fbfr2)

Heref bf r 1 and f bf r 2 are pointers to fielded buffers.

The function returns a 0 if the buffers are identical; it returnsa- 1 on any of the
following conditions:

m Thefieldidofafbfri fieldislessthanthefield ID of the corresponding field
of f bfr 2.

m Thevaueof afbfr 1 field isless than the value of the corresponding field of
fbfr2.

m fbfriisshorter thanfbfr2.

The following criteria are used to determine whether pointers and embedded buffers
are equal:

m For pointer fields, two pointer fields are considered equal if the pointer values
(addresses) are equal.

m For embedded FML 32 buffers, two fields are considered equal if dl field
occurrences and values are equal .

m For embedded VIEW32 buffers, two fields are considered equal if the view
names are the same, and if all structure member occurrences and values are

equal.

Fcnp returns a1 if the opposite of any of these conditions is true. For example, Fcnp
returns 1 if thefield ID of af bf r 2 field is less than the field ID of the corresponding
field of fbfr 1.

Programming a BEA Tuxedo Application Using FML 5-25

5 Field Manipulation Functions

For more information, refer to Fcnp, Fenp32(3fm) in the BEA Tuxedo ATMI FML
Function Reference.

Fdel

The Fdel function deletes the specified field occurrence.

int
Fdel (FBFR *fbfr, FLD D fieldid, FLDOCC oc)

Here:

m fbfr isapointer to afielded buffer.
m fieldidisafieldidentifier.

m oc isthe occurrence number.

For example, the following code deletes the first occurrence of thefield indicated by
the specified field identifier:

FLDOCC occurrence;
occurrence=0;
if(Fdel (fbfr, fieldid, occurrence) < 0)

F error("pgmnane");

If the specified field does not exist, the function returns - 1 and Fer r or isset to
FNOTPRES.

For pointer fields, Fdel 32 deletesthe FLD_PTRfield occurrence without changing the
referenced buffer or freeing the pointer. The data buffer istreated as an opaque pointer.

For more information, refer to Fdel , Fdel 32(3fm) inthe BEA Tuxedo ATMI FML
Function Reference.

5-26 Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

Fdelall

Fdelete

Fdel al | deletesall occurrences of the specified field from the buffer.

int
Fdelal | (FBFR *fbfr, FLDI D fieldid)

Here:

m fbfr isapointer to afielded buffer.
m fieldidisafieldidentifier.
Consider the following example:

if(Fdelall (fbfr, fieldid) < 0)
F error("pgmnane"); /* field not present */

If the field is not found, the function returns - 1 and Fer r or is set to FNOTPRES.

For pointer fields, Fdel al | 32 deletesthe FLD_PTRfield occurrence without changing
the referenced buffer or freeing the pointer. The data buffer istreated as an opaque
pointer.

For more information, refer to Fdel al |, Fdel al | 32(3f ni) in the BEA Tuxedo
ATMI FML Function Reference.

Fdel et e deletes all occurrences of al fields listed in the array of field identifiers,
fieldid[].

int
Fdel ete(FBFR *fbfr, FLDI D *fieldid)

Here:
m fbfr isapointer to afielded buffer.

m fieldidisapointerto thelist of field identifiersto be deleted.

Programming a BEA Tuxedo Application Using FML 5-27

5 Field Manipulation Functions

The update is done directly to the fielded buffer. The array of field identifiers does not
need to be in any specific order, but the last entry in the array must be field identifier
0 (BADFLDI D). Consider the following example:

#include "fldtbl.h"
FBFR *dest ;
FLDI D fi el did[20];

fieldid[0] = A /* fieldid for field A */
fieldid[1] = D /* fieldid for field D */
fieldidf 2] = BADFLDI D; /* sentinel value */

i f(Fdel ete(dest, fieldid) < 0)
F error ("pgmnane");

If the destination buffer hasfields A, B, C, and D, this example resultsin a buffer that
contains only occurrences of fields B and C.

Fdel et e provides a more efficient way of deleting several fields from a buffer than
using several Fdel al | calls.

For pointer fields, Fdel et e deletesthe FLD_PTRfield occurrence without changing the
referenced buffer or freeing the pointer. The data buffer istreated as an opaque pointer.

For more information, refer to Fdel ete, Fdel et e32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

Ffind

Ffi nd finds the value of the specified field occurrence in the buffer.

char *
Ffind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *| en)

Here:

m fbfr isapointer to afielded buffer.
m fieldidisafieldidentifier.

m oc isthe occurrence number.

m | en isthelength of the value found.

5-28 Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

In the previous declaration the return value to Ff i nd is shown as a character pointer
datatype (char * in C). The actud type of the pointer returned is the same as the type
of the value to which it points.

The following code provides an example of how thisfunction is used:

#i ncl ude "fldthbl.h"
FBFR *f bfr;
FLDLEN | en;
char* Ffind, *val ue;

if((value=Ffind(fbfr,ZIP,0, & en)) == NULL)
F error("pgmnane");

If thefield isfound, its length isreturned in| en (if | en isNULL, the length is not
returned), and its location is returned as the value of the function. If the field is not
found, NULL isreturned, and Ferr or is Set to FNOTPRES.

Ff i nd isuseful for gaining “read-only” accessto afield. The value returned by Ff i nd
should not be used to modify the buffer. Field values should be modified only by the
Fadd or Fchg function. This function does not check for occurrences of the specified
field in embedded buffers.

The value returned by Ff i nd isvalid only so long as the buffer remains unmodified.
The valueis guaranteed to be aligned on a short boundary but may not be aligned on a
long or double boundary, even if the field isof that type. (Seethe conversion functions
described | ater in this document for aligned values.) On processors that require proper
alignment of variables, referencing the value when not aligned properly causes a
system error, as shown in the following example:

long *I11,12;
FLDLEN | engt h;
char *Ffind;

if((l1=(long *)Find(fbfr, zZIP, 0, & ength)) == NULL)
F error("pgm nane");

el se
12 = *11;

This code should be re-written as follows:
if((l1l==(long *)Ffind(fbfr, ZIP, 0, & ength)) == NULL)
F error("pgmnane");

el se
mencpy(& 2,11, sizeof (long));

Programming a BEA Tuxedo Application Using FML 5-29

5 Field Manipulation Functions

For more information, refer to Ff i nd, Ffi nd32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Ffindlast

Thisfunction findsthelast occurrence of afield in afielded buffer and returns a pointer
to the field, as well as the occurrence number and length of the field occurrence.

char *
Ffindl ast (FBFR *fbfr, FLDI D fieldid, FLDOCC *oc, FLDLEN *| en)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisafieldidentifier.

m oc isapointer to the occurrence number of the last field occurrence found.
m | en isapointer to the length of the value found.

In the previous declaration the return value to Ff i ndl ast isshown as a character
pointer datatype (char * in C). The actua type of the pointer returned isthe same as
the type of the value to which it points.

Ffi ndl ast actslikeFfi nd, except that you do not specify afield occurrence. Instead,
both the occurrence number and the value of the last field occurrence are returned.
However, if you specify NULL as the value of the occurrence when calling the
function, the occurrence number is not returned. This function does not check for
occurrences of the specified field in embedded buffers.

Thevalue returned by Ff i ndl ast isvalid only aslong as the buffer remains
unchanged.

For moreinformation, refer to Ff i ndl ast, Ffi ndl ast 32(3fnl) inthe BEA Tuxedo
ATMI FML Function Reference.

5-30 Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

Ffindocc

Ff i ndocc looks at occurrences of the specified field on the buffer and returns the
occurrence number of the first field occurrence that matches the user-specified field
value.

FLDOCC
Ffindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN | en;)

Here:
m fbfr isapointer to afielded buffer.
m fieldidisafiedidentifier.

m val ue isapointer to anew value. Itstypeis shown aschar *, but when it is
used, its type must be the same type as the value to be added (see “ Fadd” on
page 5-20).

m | en isthelength of the valueif typecar r ay.
For exampl e, the following code sets oc to the occurrence for the specified zip code:

#i nclude "fldtbl.h"
FBFR *f bfr;

FLDQOCC oc;

| ong zi pval ue;

zi pval ue = 123456;
i f((oc=Ffindocc(fbfr,zl P, &ipvalue, 0)) < 0)
F _error("pgm nane");

Regular expressions are supported for string fields. For example, the following code
sets oc to the occurrence of NAME that starts with “J":

#i ncl ude "fldthbl.h"
FBFR *f bfr;

FLDQOCC oc;

char *nane;

name = "J.*"

if ((oc = Ffindocc(fbfr, NAME, nanme, 1)) < 0)
F error("pgm nane");

Programming a BEA Tuxedo Application Using FML 5-31

5 Field Manipulation Functions

Fget

int

Note: To enable pattern matching on strings, the fourth argument to Ff i ndocc must
be non-zero. If it is zero, a simple string compare is performed. If the field
valueis not found, - 1 isreturned.

For upward compatibility, a circumflex (*) prefix and dollar sign ($) suffix are
implicitly added to the regular expression. Thus the previous exampleis actually
interpreted as“~(J. *) $”. Theregular expression must match the entire string valuein
thefield.

For more information, refer to Ff i ndocc, Ffindocc32(3fnl) inthe BEA Tuxedo
ATMI FML Function Reference.

Use Fget to retrieve afield from afielded buffer when the value is to be modified.

Fget (FBFR *fbfr, FLD D fieldid, FLDOCC oc, char *loc, FLDLEN *naxl en)

5-32

Here:

m fbfr isapointer to afielded buffer.

m fieldidisafieldidentifier.

m oc isthe occurrence number.

m | oc isapointer to a buffer to copy the field value into.

m maxl en isapointer to the length of the source buffer on calling the function, and
apointer to the length of the field on return.

Thecaller provides Fget with a pointer to aprivate buffer, aswell asthe length of the
buffer. If max! en is specified as NULL, then it is assumed that the destination buffer
islarge enough to accommodate the field value, and its length is not returned.

Fget returnsan error if the desired field is not in the buffer (FNOTPRES), or if the
destination buffer istoo small (FNOSPACE). For example, the following code gets the
zip code, assuming it is stored as a character array or string:

FLDLEN | en;
char val ue[100];

Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

Fgetalloc

| en=si zeof (val ue) ;
if(Fget(fbfr, zZIP, 0, value, & en) < 0)
F error("pgmnane");
If the zip code is stored as al ong, it can be retrieved by the following code:

FLDLEN | en;
| ong val ue;

len = sizeof (val ue);
if(Fget(fbfr, zZIP, 0, value, & en) < 0)
F error ("pgmnane");

For more information, refer to Fget, Fget 32(3f m) inthe BEA Tuxedo ATMI FML
Function Reference.

LikeFget , Fget al | oc finds and makes a copy of abuffer field, but it acquires space
for thefield viaacall to mal | oc(3).

char *
Fgetal | oc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *extralen)

Here:

m fbfr isapointer to afielded buffer.
m fieldidisafiedidentifier.

m oc istheoccurrence number.

m extral en isapointer to the additional length to be acquired on calling the
function, and a pointer to the actual length acquired on return.

In the declaration above thereturn valueto Fget al | oc isshown asacharacter pointer
datatype (char * in C). The actud type of the pointer returned is the same as the type
of the value to which it points.

On success, Fget al | oc returns avalid pointer to the copy of the properly aligned
buffer field; on error it returnsNULL. If mal | oc(3) fails, Fget al | oc returnsan error
and Fer r or issetto FMALLOC.

Programming a BEA Tuxedo Application Using FML 5-33

5 Field Manipulation Functions

Fgetlast

i nt
Fget | ast (FBFR

Thelast parameter to Fget al | oc specifies an extraamount of space to be acquired if,
for instance, the value obtained is to be expanded before re-insertion into the fielded
buffer. On success, thelength of the all ocated buffer isreturnedinext r al en. Consider
the following example:

FLDLEN extral en;

FBFR *fi el dbfr

char *Fgetall oc;

extralen = 0;

if (fieldbfr = (FBFR *)Fgetalloc(fbfr, ZIP, 0, &extralen) == NULL)
F error ("pgmnane");

It isthe responsibility of the caller to f r ee space acquired by Fget al | oc.

For moreinformation, refer to Fget al | oc, Fget al | 0c32(3f nl) inthe BEA Tuxedo
ATMI FML Function Reference.

Fget | ast isused to retrieve the last occurrence of afield from afielded buffer when
the value isto be modified.

*fbfr, FLDID fieldid, FLDOCC *oc, char *|oc, FLDLEN *max| en)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisafieldidentifier.

m oc isapointer to the occurrence number of the last field occurrence.
m | oc isapointer to a buffer to copy the field value into.

m maxl en isapointer to the length of the source buffer on calling the function, and
apointer to the length of the field on return.

5-34 Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

The caller provides Fget | ast with a pointer to a private buffer, as well as the length
of the buffer. Fget | ast acts like Fget , except that you do not specify afield
occurrence. Instead, both the occurrence number and the value of the last field
occurrence are returned. However, if you specify NULL for occ on calling the
function, the occurrence number is not returned.

For more information, refer to Fget | ast, Fget | ast 32(3f m) in the BEA Tuxedo
ATMI FML Function Reference.

Fnext

Fnext findsthe next field in the buffer after the specified field occurrence.

int
Fnext (FBFR *fbfr, FLDI D *fieldid, FLDOCC *oc, char *value, FLDLEN *Ien)

Here:

f bf r isapointer to afielded buffer.

m fieldidisapointerto afieldidentifier.

m oc isapointer to the occurrence number.

m val ue isapointer of the same type as the value contained in the next field.
m | enisapointer to the length of *val ue.

Afiel di d of FI RSTFLDI D should be specified to get the first field in a buffer; the
field identifier and occurrence number of thefirst field occurrence are returned in the
corresponding parameters. If thefieldisnot NUL L, itsvalueis copied into the memory
location addressed by the val ue pointer.

Thel en parameter is used to determine whether val ue has enough space allocated to
contain the field value. If the amount of spaceisinsufficient, Ferr or isset to
FNOSPACE. Thelength of the valueisreturned in thel en parameter. If the value of the
field is non-null, then the | en parameter is also assumed to contain the length of the
currently allocated space for val ue.

Programming a BEA Tuxedo Application Using FML 5-35

5

Field Manipulation Functions

5-36

When thefield to be retrieved is an embedded VIEW32 buffer, the val ue parameter
points to an FVI EWFLD structure. The Fnext function populates the vnane and dat a
fieldsin the structure. The Fvi EWFLD structure is as follows:

typedef struct {

TMB2U vf | ags; /* flags - currently unused */

char vname[FVI EWNAMVESI ZE+1]; /* nanme of view */

char *dat a; /* pointer to view structure */
} FVI EWFLD,

If thefield valueisNULL, then the val ue and | engt h parameters are not changed.

If no morefields are found, Fnext returns 0 (end of buffer) and fi el di d,
occurrence, and val ue are left unchanged.

If the val ue parameter isnot NULL, thel engt h parameter is also assumed to be
non-NULL.

Thefollowing example reads al field occurrences in the buffer:

FLDI D fieldid;
FLDOCC occurrence;
char *val ue[100] ;
FLDLEN | en;

for(fieldid=FIRSTFLD D, | en=si zeof (val ue);
Fnext (fbfr, & i el di d, &ccurrence, val ue, & en) > 0;
| en=si zeof (val ue)) {
/* code for each field occurrence */

}

For more information, refer to Fnext, Fnext 32(3f m) inthe BEA Tuxedo ATMI
FML Function Reference.

Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

Fnum

Foccur

Fnumreturns the number of fields contained in the specified buffer, or - 1 on error.

FLDOCC
Fnun(FBFR *f bfr)

Heref bf r isapointer to afielded buffer. The following code, for example, printsthe
number of fieldsin the specified buffer:
if((cnt=Fnum(fbfr)) < 0)
F error("pgm nane");
el se
fprintf(stdout,"% fields in buffer\n",cnt);

Each FLD FM_32 and FLD VI EWB2 field is counted as a single field, regardless of the
number of fieldsit contains.

For more information, refer to Fnum FnunB2(3f m) inthe BEA Tuxedo ATMI FML
Function Reference.

Foccur returns the number of occurrences for the specified field in the buffer:

FLDOCC
Foccur (FBFR *fbfr, FLDID fi el did)

Here:
m fbfr isapointer to afielded buffer.
m fieldidisafiedidentifier.

Occurrences of afield within an embedded FML 32 buffer are not counted.

Programming a BEA Tuxedo Application Using FML 5-37

5 Field Manipulation Functions

Zeroisreturned if thefield does not occur inthe buffer and - 1 isreturned on error. For
example, the following code prints the number of occurrences of the field z1 P in the
specified buffer:

FLDOCC cnt;

i f((cnt=Foccur(fbfr,ZIP)) < 0)

F error("pgm nane");

el se

fprintf(stdout,"Field ZI P occurs % tines in buffer\n",cnt);

For more information, refer to Foccur, Foccur 32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Fpres
Fpr es returnstrue (1) if the specified field occurrence exists. Otherwise, it returns
false (0).

i nt
Fpres(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

Here:

m fbfr isapointer to afielded buffer.
m fieldidisafieldidentifier.

m oc isthe occurrence number.

For example, thefollowing code returnstrueif thefield zI P existsin the fielded buffer
referenced by f bf r :

Fpres(fbfr, ZI P, 0)
Fpr es doesnot check for occurrences of the specified field within an embedded buffer.

For more information, refer to Fpres, Fpres32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

5-38 Programming a BEA Tuxedo Application Using FML

Field Access and Modification Functions

Fvals and Fvall

Fval s workslike Ffi nd for st ri ng values but guarantees that a pointer to avalueis
returned. Fval | workslikeFfi nd for | ong and shor t values, but returns the actual
value of thefield asal ong, instead of asa pointer to the value.

char*
Fval s(FBFR *fbfr, FLDI D fi el di d, FLDOCC oc)

char*
Fval | (FBFR *fbfr, FLDI D fi el di d, FLDOCC oc)

In both functions:

m fbfr isapointer to afielded buffer.
m fieldidisafiedidentifier.

m oc isthe occurrence number.

For Fval s, if the specified field occurrenceis not found, the NULL string, \ 0, is
returned. This function is useful for passing the value of afield to another function
without checking thereturn value. Thisfunctionisvalid only for fieldsof typest ri ng;
the NULL string is automatically returned for other field types (that is, no conversion
is done).

For Fval | , if the specified field occurrence is not found, then 0O is returned. This
function is useful for passing the value of afield to another function without checking
the return value. Thisfunction isvalid only for fields of typel ong andshort; Ois
automatically returned for other field types (that is, no conversion is done).

For more information, refer to Fval s, Fval s32(3fm) and Fval |,
Fval | 32(3f m) inthe BEA Tuxedo ATMI FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-39

5 Field Manipulation Functions

Buffer Update Functions

Thefunctionslisted in this section access and update entire fielded buffers, rather than
individual fields in the buffers. These functions use, at most, three parameters:

m dest isapointer to adestination fielded buffer.
m src isapointer to a source fielded buffer.

m fieldidisafieldidentifier or an array of field identifiers.

Fconcat

Fconcat adds fields from the source buffer to the fields that already exist in the
destination buffer.

i nt

Fconcat (FBFR *dest, FBFR *src)

Occurrences in the destination buffer are maintained (that is, they are retained and not
modified) and new occurrences from the source buffer are added with greater

occurrence numbers than any existing occurrences for each field. Thefields are
maintained in field identifier order.

Consider the following example:
FBFR *src, *dest;

i f(Fconcat (dest,src) < 0)
F error("pgmnane");

If dest hasfields A, B, and two occurrences of C, and sr ¢ hasfieldsA, C, and D, the
resulting dest hastwo occurrences of field A (destination field A and sourcefield A),
field B, three occurrences of field C (two from dest and thethird from sr ¢), and field
D.

This operation failsif thereis not enough space for the new fields (FNOSPACE); in this
case, the destination buffer remains unchanged.

For more information, refer to Fconcat, Fconcat 32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

5-40 Programming a BEA Tuxedo Application Using FML

Buffer Update Functions

Fjoin

Fojoin

Fj oi n isused to join two fielded buffers based on matching field ID/occurrence.

int

Fj oi n(FBFR *dest, FBFR *src)

For fields that match on field ID/occurrence, the field value is updated in the
destination buffer with the val ue from the source buffer. Fieldsin the destination buffer
that have no corresponding field | D/occurrence in the source buffer are deleted. Fields
in the source buffer that have no corresponding field |D/occurrence in the destination
buffer are not added to the destination buffer. Thus

i f(F oin(dest,src) < 0)
F error("pgmnane");

Using the input buffersin the previous example resultsin a destination buffer that has
source field value A and source field value C. This function may fail due to lack of
spaceif the new values are larger than the old (FNOSPACE); in this case, the destination
buffer will have been modified. However, if this happens, the destination buffer may
bereallocated using Fr eal | oc and the Fj oi n function repeated (even if the
destination buffer has been partially updated, repeating the function gives the correct
results).

If joining buffersresults in the removal of apointer field (FLD_PTR), the memory area
referenced by the pointer is not modified or freed.

For more information, refer to Fj oi n, Fj oi n32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Foj oi nissimilar toFj oi n, but it does not delete fields from the destination buffer that
have no corresponding field | D/occurrence in the source buffer.

int

Foj oi n(FBFR *dest, FBFR *src)

Note that fields in the source buffer for which there are no corresponding field

ID/occurrence pairs in the destination buffer are not added to the destination buffer.
Consider the following example:

Programming a BEA Tuxedo Application Using FML 5-41

5 Field Manipulation Functions

Fproj

5-42

i f(Fojoin(dest,src) < 0)
F error("pgm nane");

Using the input buffers from the previous example, dest containsthe source field
value A, the destination field value B, the source field value C, and the second
destination field value C. As with Fj oi n, this function can fail for lack of space
(FNOSPACE) and can bereissued again after more space has been allocated to complete
the operation.

If joining buffersresultsin the removal of apointer field (FLD_PTR), the memory area
referenced by the pointer is not modified or freed.

For more information, refer to Foj oi n, Foj oi n32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Fpr oj isused to update a buffer in place so that only the desired fields are kept. (The
result, in other words, isa projection on specified fields.) If updating buffersresultsin
theremoval of apointer field (FLD_PTR), the memory areareferenced by the pointer is
not modified or freed.

i nt

Fproj (FBFR *fbfr, FLDID *fieldid)

These fields are specified in an array of field identifiers passed to the function. The
update is performed directly in the fielded buffer. Consider the following example:

#include "fldtbl.h"
FBFR *fbfr;
FLDI D fi el did[20];

fieldid0] = A /* fieldidfor field A */
fieldid[1] = D, /* fieldid for field D */
fieldidf 2] = BADFLDI D; /* sentinel value */

if(Fproj(fbfr, fieldid) < 0)
F _error("pgm nane");

Programming a BEA Tuxedo Application Using FML

Buffer Update Functions

Fprojcpy

If thebuffer hasfields A, B, C, and D, the example resultsin abuffer that contains only
occurrences of fields A and D. Note that the entriesin the array of field identifiers do
not need to be in any specific order, but the last value in the array of field identifiers
must be field identifier O (BADFLDI D).

For more information, refer to Fproj, Fproj 32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Fpr oj cpy issimilar to Fpr oj but the desired fields are placed in a destination buffer.
If updating buffersresultsin the removal of a pointer field (FLD_PTR), the memory
areareferenced by the pointer is not modified or freed.

int

Fproj cpy(FBFR *dest, FBFR *src, FLDI D *fieldid)

Any fieldsin the destination buffer are first deleted and the results of the projection on

the source buffer are copied into the destination buffer. Using the above example, the
following code places the results of the projection in the destination buffer:

i f(Fprojcpy(dest, src, fieldid) < 0)
F error("pgm nane");

The entriesin the array of field identifiers may be rearranged; if the entriesare not in
numeric order, the field identifier array is sorted.

For more information, refer to Fpr oj cpy, Fproj cpy32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-43

5 Field Manipulation Functions

Fupdate

Fupdat e updates the destination buffer with the field valuesin the source buffer.

int

Fupdat e(FBFR *dest, FBFR *src)

For fieldsthat match on field ID/occurrence, the field value is updated in the
destination buffer with the value in the source buffer (like Fj oi n). Fields on the
destination buffer that have no corresponding field on the source buffer are left
untouched (like Foj oi n). Fields on the source buffer that have no corresponding field
on the destination buffer are added to the destination buffer (like Fconcat). Consider
the following example:

i f (Fupdat e(dest, src) < 0)
F error("pgmnane");

If the src buffer hasfields A, C, and D, and thedest buffer hasfields A, B, and two
occurrences of C, the updated destination buffer contains: the sourcefield value A, the
destination field value B, the source field value C, the second destination field value

C, and the source field value D.

For pointers, Fupdat e32 storesthe pointer value. The buffer pointed to by aFLD PTR
field must be allocated using the t pal | oc(3c) call. For embedded FML32 buffers,
Fupdat e32 storesthe entire FLD_FM_32 field value, except the index. For embedded
VIEW32 buffers, Fupdat e32 stores a pointer to a structure of type FVI EWFLD, that
containsvf | ags (aflagsfield, currently unused and set to 0), vnane (acharacter array
containing the view name), and dat a (a pointer to the view data stored asa C
structure). The application providesthe vname and dat a to Fupdat e32. The

FVI EWFLD structureis as follows:

typedef struct {

TMB2U vf | ags; /* flags - currently unused */

char vname[FVI EWNAMVESI ZE+1]; /* nanme of view */

char *dat a; /* pointer to view structure */
} FVI EWFLD,

For more information, refer to Fupdat e, Fupdat e32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

5-44 Programming a BEA Tuxedo Application Using FML

VIEWS Functions

VIEWS Functions

Fvftos

Thisfunction transfersdatafrom afielded buffer to aC structure using aspecified view
description.

int
Fvftos(FBFR *fbfr, char *cstruct, char *view

Here:

m fbfr isapointer to afielded buffer.

m cstruct isapointer to astructure.

m vi ewisapointer to aview name string.

If the named view is not found, Fvf t os returns- 1, and Ferr or is set to FBADVI EW

When datais being transferred from afielded buffer to a C structure, the following
rules apply:

m If afield in the fielded buffer is not mapped to a C structure member, the field is
ignored.

m If afieldisnot in the fielded buffer, but appears in the view description and is
mapped to a structure member, the corresponding null value is copied into the
member.

m If afield in the fielded buffer contains data of type st ri ng or carr ay,
characters are copied into the structure up to the size of the mapped structure
member (that is, source values that are too long are truncated). If the source
value is shorter than the mapped structure member, the remainder of the member
value is padded with null (0) characters. String values are always terminated
with anull character (even if this means truncating the value).

m |If the number of occurrences of afield in the buffer is equa to the number of
mapped structure members, then the fielded datais copied into the C structure.

m |If the number of occurrences of afield in the buffer is greater than the number of
mapped structure members, then the fielded dataisignored.

Programming a BEA Tuxedo Application Using FML 5-45

5 Field Manipulation Functions

m |If the number of occurrences of afield in the buffer isless than the number of
mapped structure members, then the extra members are assigned the
corresponding null value.

For example, the following code putsst ri ngl into cust . acti on[0] and abc into
cust . bug[0] . All other membersin the cust structure should contain null values.

#i ncl ude <stdio. h>
#include "fm . h"
#include "custdb.flds. h"
#i ncl ude "custdb. h"
struct custdb cust;

FBFR *fbfr;

fbfr = Fall oc(800, 1000);

Fvinit((char *)&cust, "custdb"); /* initialize cust */
str = "stringl";

Fadd(f bfr, ACTI ON, str, (FLDLEN) 8) ;

str = "abc";

Fadd(f bfr, BUG CURS, str, (FLDLEN) 4) ;
Fvftos(fbfr,(char *)&cust,"custdb");

View cust db isdefined in “VIEWS Examples’ on page 6-1in“FML and VIEWS
Examples’ on page 6-1.

For more information, refer to Fvft os, Fvftos32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Fvstof

Thisfunction transfersdatafrom aC structureto afielded buffer using aspecified view
description.

int
Fvst of (FBFR *fbfr, char *cstruct, int node, char *view)

Here:
m fbfr isapointer to afielded buffer.
m cstruct isapointer to astructure.

m node isone of the following: FUPDATE, FJO N, FQIQO N, or FCONCAT.

5-46 Programming a BEA Tuxedo Application Using FML

VIEWS Functions

Fvnull

m vi ewisapointer to aview name string.

The transfer process obeys the rules listed under the FML function corresponding to
the node parameter: Fupdat e, Fj oi n, Foj oi n, or Fconcat .

If the named view is not found, Fvst of returns- 1, and Ferr or isset to FBADVI EW

Note: Null values are not transferred from a structure member to a fielded buffer.
That is, during a structure-to-field transfer, if a structure member contains the
(default or user-specified) null value defined for that member, the member is
ignored.

For moreinformation, refer to Fvf t os, Fvftos32(3f) inthe BEA Tuxedo ATMI
FML Function Reference.

Fvnul | isused to determine whether an occurrence in a C structure contains the null
value for that field.

int
Fvnul | (char *cstruct, char *cname, FLDOCC oc, char *view)

Here:

m cstruct isapointer to astructure.

®m cnane isapointer to the name of a structure member.
m oc istheindex to aparticular element.

m vi ewisapointer to aview name string.

Fvnul | returns:

m 1 if anoccurrenceis null

m 0 if an occurrenceis not null

m -1 if anerror occurred

For moreinformation, refer to Fvnul |, Fvnul | 32(3f m) in the BEA Tuxedo ATMI
FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-47

5 Field Manipulation Functions

Fvsinit

This function initializes all elementsin a C structure to their appropriate null value.

i nt
Fvsinit(char *cstruct, char *view

Here:
m cstruct isapointer to astructure.
m vi ewisapointer to aview name string.

For more information, refer to Fvsi nit, Fvsinit32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

Fvopt

This function allows users to change flag options at run time.

i nt
Fvopt (char *cname, int option, char *view)

Here:

m cnane isthe name of a structure member.

m option isone of the options listed bel ow.

m vi ewisapointer to aview name string.

Thefollowing list describes possible values for the opt i on parameter.

F_FTCS
Allows one-way mapping from fielded buffersto C structures. Similar to the
S option in view descriptions.

F_STOF
Allows one-way mapping from C structures to fielded buffers. Similar to the
F option in view descriptions.

F_BOTH
Allows two-way mapping between C structures and fielded buffers.

5-48 Programming a BEA Tuxedo Application Using FML

VIEWS Functions

Fvselinit

F_OFF
Turns off mapping of the specified member. Similar to the N option in view
descriptions.

Note that changes to view descriptions are not permanent. They are guaranteed only
until another view description is accessed.

For more information, refer to Fvopt, Fvopt 32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Thisfunction initializes an individual member of a C structure to its appropriate null
value. It setsthe ACM of the element to 0, if the Cflag is used in the view file; it sets
the ALMsto thelength of the associated null value, if theL flagisusedintheview file.

int
Fvselinit(char *cstruct, char *cnane, char *view)

Here:

m cstruct isapointer to astructure.

®m cnane isapointer to the name of a structure member.
m vi ewisapointer to aview name string.

For moreinformation, referto Fvsel i nit, Fvselinit32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-49

5 Field Manipulation Functions

Conversion Functions

CFadd

FML providesaset of routinesthat perform data conversion upon reading or writing a
fielded buffer.

Generally, the functions behave like their non-conversion counterparts, except that
they provide conversion from a user type to the native field type when writing to a
buffer, and from the native type to a user type when reading from a buffer.

The native type of afield isthe type specified for it initsfield table entry and encoded
initsfield identifier. (The only exception to thisruleis CFf i ndocc, which, although
it is aread operation, converts from the user-specified type to the native type before
caling Ffi ndocc.) The function names are the same as their non-conversion FML
counterparts except that they include a“C” prefix.

Thefollowing field types are not supported for conversion functions: pointers
(FLD_PTR), embedded FML 32 buffers (FLD_FM_32), and embedded VIEW 32 buffers
(FLD_w1 EVB2). If one of these field types is encountered during the execution of an
FML 32 conversion function, Fer ror is set to FEBADOP.

The CFadd function adds a user-supplied item to a buffer creating anew field
occurrence within the buffer.

int
CFadd(FBFR *fbfr, FLDI D fieldid, char *value, FLDLEN |l en, int type)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisthefieldidentifier of thefield to be added.
m val ue isapointer to the value to be added.

m | en isthelength of the value, if of typecarray.

m type isthetype of thevalue.

5-50 Programming a BEA Tuxedo Application Using FML

Conversion Functions

Before the field addition, the dataitem is converted from a user-supplied type to the
type specified in the field table as the fielded buffer storage type of the field. If the
sourcetypeisFLD CARRAY (character array), the length argument should be set to the
length of the array. Consider the following example:

i f(CFadd(fbfr, zZI P,"12345", (FLDLEN) 0, FLD_STRI NG) < 0)
F error("pgmnane");

If the zI P (zip code) field were stored in afielded buffer asalong integer, the function
would convert “12345” to along integer representation, before adding it to the fielded
buffer pointed to by f bf r (note that the field value length is given as 0 since the
function can determine it; the length is needed only for type FLD_CARRAY). The
following code puts the same value into the fielded buffer, but does so by presenting it
asalong, instead of asastring:

I ong zipval;
zi pval = 12345;
i f (CFadd(fbfr, ZI P, &i pval , (FLDLEN) 0, FLD_LONG) < 0)

F error("pgmnane");

Note that the value must first be put into a variable, since C does not permit the
construct & 123451 . CFadd returns 1 on success, and - 1 on error, in which case
Ferror isset appropriately.

For more information, refer to CFadd, CFadd32(3fmi) inthe BEA Tuxedo ATMI
FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-51

5 Field Manipulation Functions

CFchg

Thefunction CFchg actslike CFadd, except that it changes the value of afield (after
conversion of the supplied value).

int
CFchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len, int type)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisthefieldidentifier of the field to be changed.
m oc isthe occurrence number of the field to be changed.
m val ue isapointer to the value to be added.

m | en isthelength of the value, if of typecarray.

m type isthetype of thevaue.

For example, the following code changes the first occurrence (occurrence 0) of field
ZI P to the specified value, doing any needed conversion:

FLDOCC occurrence;
I ong zipval;

zi pval = 12345;

occurrence = 0;

i f(CFchg(fbfr, Zl P, occurrence, &i pval , (FLDLEN) O, FLD LONG < 0)
F error("pgmnane");

If the specified occurrence is not found, then null occurrences are added to pad the
buffer with multiple occurrences until the value can be added as the specified
occurrence.

For more information, refer to CFchg, CFchg32(3f m) inthe BEA Tuxedo ATMI
FML Function Reference.

5-52 Programming a BEA Tuxedo Application Using FML

Conversion Functions

CFget

CFget isthe conversion analog of Fget . The differenceis that it copies a converted
value to the user-supplied buffer.

int
CrFget (FBFR *fbfr, FLDI D fieldid, FLDOCC oc, char *buf, FLDLEN *len, int type)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisthefield identifier of thefield to beretrieved.
m oc isthe occurrence number of the field.

m buf isapointer to the post-conversion buffer.

m | en isthelength of the value, if of typecarr ay.

m type isthetype of the value.

Using the previous example, the following code gets the value that was just stored in
the buffer (regardless of which format is being used) and converts it back to along
integer:

FLDLEN | en;

i e;1=.si zeof (zipval);

i f(CFget (fbfr, ZI P,occurrence, &i pval , & en, FLD LONG < 0)

F error ("pgm nane");

If the length pointer isNULL, then the length of the value retrieved and converted is
not returned.

For more information, refer to CFget, CFget 32(3fmi) inthe BEA Tuxedo ATMI
FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-53

5 Field Manipulation Functions

CFgetalloc

CFget al | oc islike Fget al | oc; you are responsible for freeing the space alocated
with mal | oc for the returned (converted) value with f r ee.

char *
CFgetal l oc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, int type, FLDLEN *extral en)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisthefieldidentifier of thefield to be converted.
m oc isthe occurrence number of thefield.

m type isthetypeto which the value is converted.

m extral en on calling the function is a pointer to the extra allocation amount; on
return, it isa pointer to the size of the total alocated area.

In the declaration above, the return value to CFget al | oc is shown as a character
pointer datatype (char * in C). The actua type of the pointer returned isthe same as
the type of the value to which it points.

Thepreviously stored value can beretrieved into space alocated automatically for you
by the following code:

char *val ue;
FLDLEN extr a;

extra = 25;
i f((value=CFgetalloc(fbfr,zI P,0, FLD LONG &xtra)) == NULL)
F error("pgm nane");

Thevaueext r a inthefunction call indicatesthat the function should allocate an extra
25 bytes over the amount of space sufficient for the retrieved value. The total amount
of space allocated isreturned in this variable.

For more information, refer to CFget al | oc, CFget al | oc32(3fm) inthe BEA
Tuxedo ATMI FML Function Reference.

5-54 Programming a BEA Tuxedo Application Using FML

Conversion Functions

CFfind

char *CFfind;
FLDLEN | en;
I ong *val ue;

CFf i nd returns a pointer to a converted value of the desired field.

char *
CHf i nd(FBFR *fbfr, FLDI D fieldid, FLDOCC oc, FLDLEN len, int type)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisthefield identifier of thefield to be retrieved.
m oc isthe occurrence number of the field.

m | en isthelength of the post-conversion value.

m type isthetypeto which thevalueisconverted.

In the previous declaration the return value to CFf i nd is shown as a character pointer
datatype (char * in C). The actud type of the pointer returned is the same as the type
of the value to which it points.

LikeFf i nd, this pointer should be considered “readonly.” For example, thefollowing
code returnsa pointer to al ong containing the value of the first occurrence of the zI P
field:

i.f.((;/al ue=(long *)CFfind(fbfr, ZI P,occurrence, & en, FLD LONG)) == NULL)
F error("pgm nane");

If thelength pointer isNULL, then thelength of the value found isnot returned. Unlike
Ff i nd, the value returned is guaranteed to be properly aligned for the corresponding
user-specified type.

Note: The duration of the validity of the pointer returned by CFf i nd is guaranteed
only until the next buffer operation, even if it is non-destructive, since the
converted value isretained in asingle private buffer. This differs from the
value returned by Ff i nd, which is guaranteed until the next modification of
the buffer.

Programming a BEA Tuxedo Application Using FML 5-55

5 Field Manipulation Functions

For more information, refer to CFf i nd, CFfi nd32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

CFfindocc

CFf i ndocc looks at occurrences of the specified field on the buffer and returns the
occurrence number of the first field occurrence that matches the user-specified field
value after it has been converted to the type of the field identifier.

FLDOCC
CFf i ndocc(FBFR *fbfr, FLDI D fieldid, char *value, FLDLEN |len, int type)

Here:

m fbfr isapointer to afielded buffer.

m fieldidisthefieldidentifier of thefield to be retrieved.
m val ue isapointer to the unconverted matching value.

m | en isthe length of the unconverted matching value.

m type isthetype of the unconverted matching value.

For example, the following code converts the string to the type of fi el did zI P
(possibly al ong) and sets oc to the occurrence for the specified zip code:

#include "fldtbl.h"
FBFR *fbfr;

FLDOCC oc;

char zipval ue[20];

strcpy(zi pval ue, "123456") ;
i f((oc=CFfindocc(fbfr,zlP,zipvalue, 0, FLD STRING) < 0)
F error("pgmnane");

If the field value is not found, - 1 is returned.
Note: Because CFf i ndocc converts the user-specified value to the native field type
before examining the field values, regular expressions work only when the

user-specified type and the native field type are both FLD_STRI NG. Thus,
CFf i ndocc has no utility with regular expressions.

5-56 Programming a BEA Tuxedo Application Using FML

Converting Strings

For moreinformation, refer to CFf i ndocc, CFfi ndocc32(3f m) inthe BEA Tuxedo
ATMI FML Function Reference.

Converting Strings

Thefollowing set of functions is provided to handlethe case of conversionto and from
auser type of FLD_STRI NG.

m Fadds, Fadds32(3fm)
m Fchgs, Fchgs32(3fm)
m Ffinds, Ffinds32(3fm)
m Fgets, Fgets32(3fm)
B Fgetsa, Fgetsa32(3fm)

These functions call their non-string-function counterparts, providing at ype of
FLD_STRI NG, and al en of 0. Note that the duration of the validity of the pointer
returned by Ff i nds isthe same as that described for CFf i nd.

For descriptions of these functions, see the BEA Tuxedo ATMI FML Function
Reference.

Ftypcvt

The functions CFadd, CFchg, CFget , CFget al | oc, and CFf i nd use the function

Ft ypcvt to perform the appropriate dataconversion. TheFt ypcvt 32 functionfailsfor
the FLD_PTR, FLD_FM_32, and FLD_VI EW82 field types. The synopsis of Ft ypcvt
usage is asfollows (it does not follow the parameter order conventions).

char *
Ft ypcvt (FLDLEN *tol en, int totype, char *fronval, int frontype, FLDLEN fronien)

Here:
m tol enisapointer to the length of the converted value.

m totype isthetypeto which to convert.

Programming a BEA Tuxedo Application Using FML 5-57

5 Field Manipulation Functions

m fromval isapointer tothe value from which to convert.
m frontype isthetype from which to convert.
m fromn en isthelength of the from value if the from typeis FLD_CARRAY.

Ftypcvt convertsfrom thevaue*fromval , which hastypef r ont ype, and length
from en if front ype istype FLD_CARRAY (otherwise f r onl en isinferred from
front ype), to avalue of typet ot ype. Ft ypcvt returnsa pointer to the converted
value, and sets*t ol en to the converted length, upon success. Upon failure, Ft ypcvt
returns NUL L. Consider the following example, in which the CFchg function is used:

CFchg(fbfr,fieldid, oc,val ue, |l en,type)

FBFR *fbfr; /* fielded buffer */

FLDI D fi el did; /* field to be changed */

FLDOCC oc; /* occurrence of field to be changed */

char *val ue; /* |l ocation of new value */

FLDLEN | en; /* length of new value */

int type; /* type of new value */

{
char *convl oc; /* location of post-conversion value */
FLDLEN convl en; /* length of post-conversion value */

extern char *Ftypcvt;

/* convert value to fielded buffer type */
i f((convloc = Ftypcvt(&convl en, FLDTYPE(fi el di d), val ue, type,len)) == NULL)
return(-1);

i f(Fchg(fbfr,fieldid, oc,convloc,convlen) < 0)
return(-1);
return(l);

}

The user may call Ft ypcvt directly to do field value conversion without adding or
modifying afielded buffer.

For more information, refer to Ft ypcvt, Ftypcvt32(3fm) inthe BEA Tuxedo
ATMI FML Function Reference.

5-58 Programming a BEA Tuxedo Application Using FML

Converting Strings

Conversion Rules

In the following list of conversion rules, ol dval represents a pointer to the data item
being converted, and newval , a pointer to the post-conversion value.

When both types are identical, * newval isidentical to * ol dval .

When both types are numeric, that is, if they arel ong, short, f1 oat , or

doubl e, the conversion is done by the C assignment operator, with proper type
casting. For example, ashor t isconvertedto afl oat through the following
code:

*((float *)newal) = *((short *) oldval)

When anumeric is being converted to a string, an appropriate spri nt f isused.
For example, ashort isconverted to ast ri ng through the following code:

sprintf(newal,b"%",*((short *)oldval))

When astring is being converted to a numeric, the appropriate function (for
example, at of , at ol) is used, with the result assigned to a typecasted receiving
location, as shown in the following example:

*((float *)newal) = atof(oldval)

When atypechar isbeing converted to any numeric type, or when anumeric
typeis being converted to a char, the char isconsidered to be a“ shorter
short.” For example, to convert achar toafl oat , use the method shown in
the following code:

*((float *)newal) = *((char *)oldval)
To convert ashort to achar, use the method shown in the next example:

*((char *)newal) = *((short *)oldval)

A char isconverted to ast ri ng by appending aNULL character. In this
regard, achar isnot a“shorter short.” If it were, assignment would be done by
converting it to ashor t , and then converting the short toastring via
sprintf.Inthe samesense, astring isconverted to achar by assigning the
first character of the st ri ng to the character.

The carr ay typeisused to store an arbitrary sequence of bytes. In this sense, it
can encode any user datatype. Nevertheless, the following conversions are
specified for carr ay types:

Programming a BEA Tuxedo Application Using FML 5-59

5 Field Manipulation Functions

e A carray isconverted to astri ng by appending the NULL byteto the
carray. Inthissense, acarray can beusedto storeastri ng, lessthe
overhead of the trailing NULL. (This approach does not always save space,
since fields are aligned on short boundaries within a fielded buffer.) A
string isconvertedtoacar ray by removing its terminating NULL byte.

e Whenacarray isconverted to any numeric, it isfirst converted to a
string, and thest ri ng isthen converted to a numeric. Likewise, a numeric
isconverted to acar r ay, by first being converted to ast r i ng, and then the
stringisconvertedtoacarray.

e A carray isconverted to achar by assigning the first character of the array
tothechar. Likewise, achar isconvertedto acarray by assigning it asthe
first byte of the array, and setting the length of the array to 1.

Note that acarr ay of length 1 and achar have the following differences:

e A char hasonly the overhead of itsassociated fi el di d, whileacarr ay
contains alength code, in addition to the associated f i el di d.

e A carray isconverted to anumeric by first becoming astri ng, and then
undergoing an at oi call; achar becomes a numeric by typecasting. For
example, achar with value ASCII ‘1’ (decimal 49) convertsto ashort of
value 49; acarr ay of length 1, with the single bytean ASCII ‘1’ converts to
ashort of value 1. Likewiseachar ‘a (decimal 97) convertsto ashort of
value 97; thecarray ‘@ convertsto ashort of valueO (sinceat oi (“a")
produces a 0 result).

m When converting to or from adec_t type, the associated conversion function as
described in deci nal (3) isused (_gp_deccvasc, _gp_deccvdbl ,
_gp_deccvflt, gp_deccvint, gp_deccvl ong, gp_dectoasc,
_gp_dectodbl ,_gp_dectoflt,_gp_dectoi nt, and_gp_dect ol ong).

The following table summarizes the conversion rules presented in this section.

Table5-2 Summary of Conversion Rules

srctype dest type

- char short | ong float double string carray dec_t
char - cast cast cast cast st[0]=c array[0O]=c d
short cast - cast cast cast sprintf sprintf d

5-60 Programming a BEA Tuxedo Application Using FML

Converting Strings

Table5-2 Summary of Conversion Rules

srctype dest type

| ong cast cast - cast cast sprintf sprintf d
f 1 oat cast cast cast - cast sprintf sprintf d
doubl e cast cast cast cast - sprintf sprintf d
string c=st[0] at oi at ol at of at of - drop O d
carray c=array[atoi at ol at of at of add 0 - d

0]
dec_t d d d d d d d -

The following table defines the entries listed in the previous table.

Table 5-3 Meaningsof Entriesin the Summary of Conversion Rules

Entry M eaning

- src and dest are the same type; no conversion required
cast Conversion done using C assignment with type casting
sprintf Conversion doneusing spri nt f function

at oi Conversion done using at oi function

at of Conversion done using at of function

at ol Conversion done using at ol function

add 0 Conversion done by concatenating NULL byte

drop O Conversion done by dropping terminating NULL byte
c=array[0] Character set to first byte of array

array[0] =c First byte of array is set to character

c=st[0] Character set to first byte of string

st[0] =c First byte of string setto c

Programming a BEA Tuxedo Application Using FML 5-61

5 Field Manipulation Functions

Table 5-3 Meanings of Entriesin the Summary of Conversion Rules

Entry M eaning

d deci mal (3c) conversion function

Indexing Functions

When afielded buffer isinitialized by Fi ni t or Fal I oc, anindex is automatically set
up. Thisindex isused to expedite fielded buffer accesses and istransparent to you. As
fields are added to or deleted from the fielded buffer, the index is automatically
updated.

However, when storing afielded buffer on along-term storage device, or when
transferring it between cooperating processes, it may be desirable to save space by
eliminating its index and regenerating it upon receipt. The functions described in this
section may be used to perform such index manipulations.

Fidxused

This function returns the amount of space used by the index of a buffer.

| ong
Fi dxused(FBFR *f bfr)

Heref bf r isapointer to afielded buffer.

Y ou can use this function to determine the size of the index of a buffer, and whether
significant time or space can be saved by deleting the index.

For more information, refer to Fi dxused, Fi dxused32(3fnl) inthe BEA Tuxedo
ATMI FML Function Reference.

5-62 Programming a BEA Tuxedo Application Using FML

Indexing Functions

Findex

The function Fi ndex may be used at any time to index an unindexed fielded buffer.

int
Fi ndex(FBFR *fbfr. FLDOCC i ntvl)

Here:
m fbfr isapointer to afielded buffer.
m intvl istheindexinginterval.

The second argument to Fi ndex specifies the indexing interval for the buffer. If Ois
specified, thevalue FSTDXI NT (defined inf ni . h) isused. Theuser may ensurethat all
fields are indexed by specifying an interval of 1.

Note that more space may be made available in an existing buffer for user data by
increasing the indexing interval, and reindexing the buffer. This represents a
spaceltime trade-off, however, since reducing the number of index elements (by
increasing the index interval), means, in general, that searches for fields will take
longer. Most operations attempt to drop the entire index if they run out of space before
returning a “no space” error.

For more information, refer to Fi ndex, Fi ndex32(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Frstrindex

This function can be used instead of Fi ndex for casesin which the fielded buffer has
not been altered since its index was removed.

int
Frstrindex(FBFR *fbfr, FLDOCC num dx)

Here:
m fbfr isapointer to afielded buffer.

®m nuni dx isthe value returned by the Funi ndex function.

Programming a BEA Tuxedo Application Using FML 5-63

5 Field Manipulation Functions

For more information, refer to Frstri ndex, Frstrindex32(3fn) inthe BEA
Tuxedo ATMI FML Function Reference.

Funindex

Funi ndex discardstheindex of afielded buffer and returnsthe number of index entries
the buffer had before the index was stripped.

FLDOCC
Funi ndex(FBFR *f bfr)

Heref bf r isapointer to afielded buffer.

For more information, refer to Funi ndex, Funi ndex32(3fnl) inthe BEA Tuxedo
ATMI FML Function Reference.

Example of Sending a Fielded Buffer Without an Index

To transmit a fielded buffer without itsindex, complete a procedure such as the
following:

1. Removetheindex:
save = Funi ndex(fbfr);

2. Get the number of bytesto send (that is, the number of significant bytes from the
beginning of the buffer):

numto_send = Fused(fbfr);
3. Send the buffer without the index:

transmt (fbfr, numto_send);
4. Restore the index to the buffer:

Frstrindex(fbfr, save);

Theindex may be regenerated on the receiving side by the following statement:

Fi ndex(fbfr);

5-64 Programming a BEA Tuxedo Application Using FML

Input/Output Functions

Note that the receiving process cannot call Fr st ri ndex becauseit did not remove the
index itself, and the index was not sent with the file.

Note: The space used in memory by the index isnot freed by calling Funi ndex. The
Funi ndex function only saves space on disk or when sending a buffer to
another process. Of course, you are always free to send a fielded buffer and its
index to another process and avoid using these functions.

Input/Output Functions

The functions described in this section support input and output of fielded buffersto
standard 1/0 or to file streams.

Fread and Fwrite

The I/O functions Fr ead and Fwr i t e work with the standard 1/O library:

int Fread(FBFR *fbfr, FILE *iop)
int Fwite(FBFR *fbfr, FILE *iop)

The stream to which—or from which—I/O isdirected isdetermined by aFI LE pointer
argument. This argument must be set up using the normal standard 1/O library
functions.

A fielded buffer may be written into a standard /O stream with the function Fwri t e,
asfollows:

if (Fwite(fbfr, iop) < 0)
F error("pgm nane");

A buffer written with Fwr i t e may be read with Fr ead, as follows.

if(Fread(fbfr, iop) < 0)
F error("pgmnane");

Although the contents of the fielded buffer pointed to by f bf r are replaced by the
fielded buffer read in, the capacity of the fielded buffer (that is, the size of the buffer)
remains unchanged.

Programming a BEA Tuxedo Application Using FML 5-65

5 Field Manipulation Functions

Fwr i t e discards the buffer index, writing only as much of the fielded buffer as has
been used (as returned by Fused).

Fr ead restorestheindex of abuffer by calling Fi ndex. The buffer isindexed with the
same indexing interval with which it was written by Fwr i t e. Fr ead32 ignores the
FLD PTRfield type.

For more information, refer to Fread, Fread32(3fm) and Fwite,
Fw it e32(3fn) inthe BEA Tuxedo ATMI FML Function Reference.

Fchksum

A checksum may be calculated for verifying I/O, asfollows:
| ong chk;
chk = Fchksum(fbfr):

The user isresponsible for calling Fchksum writing the checksum value out, along
with the fielded buffer, and checking it on input. Fwr i t e does not write the checksum
automatically. For pointer fields (FLD_PTR) , the name of the pointer field in the
checksum calculation (rather than the pointer or the data referenced by the pointer) is
included.

For more information, refer to Fchksum FchksunB82(3f m) in the BEA Tuxedo
ATMI FML Function Reference.

Fprint and Ffprint

The Fpri nt function prints afielded buffer on the standard output in text format.
Fprint (FBFR *fbfr)
Heref bf r isapointer to afielded buffer.

Ffprint issimilartoFpri nt, except that it sends text to aspecified output stream, as
in the following line:

Ffprint(FBFR *fbfr, FILE *iop)

Here:

5-66 Programming a BEA Tuxedo Application Using FML

Input/Output Functions

Fextread

m fbfr isapointer to afielded buffer.
m i op isapointer of type FI LE to the output stream.

Each of these print functions prints, for each field occurrence, the field name and the
field value, separated by atab and followed by anew line. Fname is used to determine
the field name. If the field name cannot be determined, then thefield identifier is
printed. Non-printable charactersin the field valuesfor strings and character arraysare
represented by a backslash followed by their two-character hexadecimal value.
Backslashes occurring in the text are escaped with an extra backslash. A blank lineis
printed following the output of the printed buffer.

For values of type FLD_PTR, Fpri nt 32 printsthefield name or field identifier and the
pointer value in hexadecimal. Although this function prints pointer information, the
Fextr ead32 function ignoresthe FLD_PTRfield type.

For values of type FLD_FM_32, Fpr i nt 32 recursively prints the FML 32 buffer, with
leading tabs added for each level of nesting. For values of type FLD VI EWB2, this
function printsthe VIEW32 field name and structure member name/value pairs.

For moreinformation, refer to Fpri nt, Fprint 32(3f m) inthe BEA Tuxedo ATMI
FML Function Reference.

Fext r ead may be used to construct afielded buffer from its printed format, that is,
from the output of Fpri nt (hexadecimal values output by Fpri nt are interpreted

properly).

int
Fextread(FBFR *fbfr, FILE *iop)

Programming a BEA Tuxedo Application Using FML 5-67

5 Field Manipulation Functions

Fext r ead accepts an optional flag preceding the field name/field identifier
specification in the output of Fpri nt, as shown in the following table.

Table 5-4 Fextread Flags

Flag Indicates

+ Field should be changed in the buffer

- Field should be deleted from the buffer

= One field should be assigned to another

Comment line; ignored

If no flag is specified, the default action is to Fadd the field to the buffer.

Field values may be extended across lines by beginning each overflow line with atab
(whichislater discarded). A single blank line signals the end of the buffer; successive
blank linesyield anull buffer. For embedded buffers (FLD_FM_32 and FLD_ VI EVB2),
Fext r ead generates nested FML 32 buffers and VIEW32 fields, respectively.

Fext read32 ignoresthe FLD PTRfield type.

If an error hasoccurred, - 1 isreturned, and Fer r or isset accordingly. If the end of the
fileisreached before ablank line, Ferr or isset to FSYNTAX.

For more information, refer to Fext r ead, Fextread32(3fn) inthe BEA Tuxedo
ATMI FML Function Reference.

Boolean Expressions of Fielded Buffers

This topic includes the following sections:

m Definitions of Boolean Expressions

m Field Names and Types

m How aBoolean Expression Is Converted for Evaluation

m Description of Boolean Primary Expressions

5-68 Programming a BEA Tuxedo Application Using FML

Definitions of Boolean Expressions

This section describes the functions available for evaluating Boolean expressionsin
which the “variables’ arethe values of fieldsin afielded buffer or aVIEW. Functions
described in this section allow you to:

m Compile a Boolean expression into a compact form suitable for evaluation

m Evaluate a Boolean expression against afielded buffer or a VIEW, returning a
true or false answer

m Print acompiled Boolean expression

A function is provided that compiles the expression into a compact form suitable for
efficient evaluation. A second function eval uates the compiled form against a fielded
buffer to produce a true or false answer.

Definitions of Boolean Expressions

This section describes, in detail, the expressions accepted by the Boolean compilation
function, and explains how each expression is evaluated.

The following standard C language operators are not supported:

m Shift operators: << and >>

m Bitwise“or” and “and” operators: | | and &&

m Conditional operator: ?

m Prefix and postfix incrementation and decrementation operators: ++ and --
m Address and indirection operators: & and *

m Assignment operator: =

m Comma operator: ,

Thefollowing table shows the Backus-Naur Form definitions of the accepted Boolean
EXpressions.

Programming a BEA Tuxedo Application Using FML 5-69

5 Field Manipulation Functions

Table 5-5 BNF Boolean Expression Definitions

Expression Definition

<boolean> <boolean> | | <logical and>| <logical and>
<logica and> <logica and> & & <xor expr>| <xor expr>
<xor expr> <xor expr> " <equality expr>| <equality expr>

<equality expr>

<equality expr> <eq op> <relational expr>| <relational expr>

<eqg op>

== 1=| %%]| %

<relational expr>

<relational expr> <rel op> <additive expr>| <additive expr>

<rel op>

<| <=| >=]| >|

<additive expr>

<additive expr> <add op> <multiplicative expr>| <multiplicative expr>

<add op>

+| -

<multiplicative expr>

<multiplicative expr> <mult op> <unary expr>| <unary expr>

<mult op> 11| %
<unary expr> <unary op> <primary expr>| <primary expr>
<unary op> -~

<primary expr>

(<boolean>) | <unsigned constant>| <field ref>

<unsigned constant>

<unsigned number> | <string>

<unsigned number>

<unsigned float> | <unsigned int>

<string>

' <character> { <character>. . .}’

<field ref>

<field name> | <field name>[<field occurrence>]

<field occurrence>

<unsigned int>| <meta>

<meta>

?

The following sections describe Boolean expressions in greater detail .

5-70 Programming a BEA Tuxedo Application Using FML

Field Names and Types

Field Names and Types

The only variables allowed in Boolean expressions are field references. There are
several restrictions on field names. Names are made up of letters and digits; the first
character must be a letter. The underscore (_) counts as aletter; it is useful for
improving the readability of long variable names. Up to 30 characters are significant.
There are no reserved words.

For afielded buffer evaluation, any field that is referenced in a Boolean expression
must exist in afield table. Thisimplies that the FLDTBLDI Rand FI ELDTBLS
environment variables are set, asdescribed in “ Setting Up Y our Environment for FML
and VIEWS’ on page 3-1 before using the Boolean compilation function. The field
types used in Booleans are those allowed for FML fields: short, 1 ong, f | oat,
doubl e, char, string, and car r ay. Along with the field name, the field typeis kept
in the field table. Thus, the field type can always be determined.

For aVIEW evaluation, any field that is referenced in a Bool ean expression must exist
as a C structure element name, not the associated fielded buffer name, in the VIEW.
Thisimpliesthat the vi EWDI Rand VI EWFI LES environment variables are set, as
described in “ Setting Up Y our Environment for FML and VIEWS’ on page 3-1 before
using the Boolean compilation function. The field types used in Booleans are those
allowed for FML VIEWS: short, | ong, f | oat ,doubl e, char,stri ng, carr ay, plus
i nt anddec_t . Along with thefield name, thefield typeiskept in the view definition.
Thus, the field type can always be determined.

Programming a BEA Tuxedo Application Using FML 5-71

5 Field Manipulation Functions

Strings

Constants

A string isa group of characterswithin single quotes. The ASCII code for acharacter
may be substituted for the character via an escape sequence. An escape sequencetakes
the form of a backslash followed by exactly two hexadecimal digits. This convention
differs from the C language convention of using a hexadecimal escape sequence that

starts with \ x.

Asan example, consider ‘ hel | o’ and* hel 1\\ 6f ' . They are equivaent strings
because the hexadecimal code for an ‘o’ is6f .

Octal escape sequences and escape sequences such as\ n are not supported.

Numeric integer and floating point constants are accepted, asin C. (Octal and
hexadecimal constants are not recognized.) Integer constants are treated as! ongs and
floating point constants are treated asdoubl es. (Decimal constantsfor thedec_t type
are not supported.)

How a Boolean Expression Is Converted for
Evaluation

To evaluate a Boolean expression, the Boolean compiler performs the following
conversions:

m It convertsshort andint valuestol ongs.
m |tconvertsfl oat and deci mal vauesto doubl es.
m It converts charactersto st ri ngs.

m To compare a hon-quoted string within a field to a numeric, it converts the string
to anumeric value.

5-72 Programming a BEA Tuxedo Application Using FML

Description of Boolean Primary Expressions

m Tocompareaconstant (thatis, aquoted) string to a numeric, it converts the
numeric to a string, and does alexical comparison.

m Tocompareal ong and adoubl e, it convertsthel ong to adoubl e.

Description of Boolean Primary Expressions

Boolean expressions are built from primary expressions, which can be any of the
following:

m field name—afield name

m field nane[constant]—afield name and a constant subscript
m field nane[?] —afield name and the‘?’ subscript

® const ant —aconstant

m (expressi on)—an expression in parentheses

A field name or afield name followed by a subscript is a primary expression. The
subscript indicates which occurrence of the field is being referenced. The subscript
may be either an integer constant, or ? indicating any occurrence; the subscript cannot
be an expression. If the field name is not subscripted, field occurrence O is assumed.

If afield name reference appears without an arithmetic, unary, equality, or relational
operator, then itsvalue is the long integer value 1 if the field exists and O if the field
does not exist. This may be used to test the existence of afield in the fielded buffer
regardless of field type. (Note that there isno * indirection operator.)

A constant is a primary expression. Itstype may bel ong, doubl e, or carr ay, as
discussed in the conversion section.

A parenthesized expression isa primary expression for which the type and value are
identical to those of the unadorned expression. Parentheses may be used to change the
precedence of operators, which is discussed in the next section.

Programming a BEA Tuxedo Application Using FML 5-73

5 Field Manipulation Functions

Description of Boolean Expression Operators

Thefollowing table lists the Boolean expression operators in descending order of

precedence.

Table 5-6 Boolean Expression Operators

Type

Operators

Unary

4l -

Multiplicative

*1,%

Additive

+, -

Relationa

<,> <=, >z ==, I=

Equality and matching

==, 1=, %%, 1%

Exclusive OR

AN

Logical AND

&&

Logical OR

The operators classified as the same operator type have equal precedence. The
following sections discuss each operator type in detail. Asin C, you can override the
precedence of operators by using parentheses.

Unary Operators Used in Boolean Expressions

The following unary operators are recognized:

m Unary plus operator: +

= Unary minus operaor: -

m Theone's complement operator: ~

m Logical not operator: !

5-74 Programming a BEA Tuxedo Application Using FML

Description of Boolean Primary Expressions

Expressions in which unary operators are used group right-to-left:

expressi on
expressi on

+ expression
I expression

The unary plusoperator has no effect on the operand; it is recognized and ignored. The
result of the unary minus operator is the negative of its operand. The usua arithmetic
conversions are performed. Unsigned entities do not exist in FML and thus cause no
problems with this operator.

The result of the logical negation operator is 1 if the value of its operand is0, and O if
the value of its operand is hon-zero. The type of the result is| ong.

The result of the one's complement operator is the one’ s complement of its operand.
The type of theresult is| ong.

Multiplicative Operators Used in Boolean Expressions

The multiplicative operators—*, / , and %—group left-to-right. The usual arithmetic
conversions are performed:

expression * expression
expression / expression
expressi on % expression

The binary * operator indicates multiplication. The* operator is associative and
expressions with several multiplications at the same level may be rearranged by the
compiler.

Thebinary / operator indicates division. When positive integers are divided,
truncation istoward 0, but the form of truncation is machine-dependent if either
operand is negative.

Thebinary %operator yields the remainder from thedivision of the first expression by
the second. The usual arithmetic conversions are performed. The operands must not be
fl oat or doubl e.

Programming a BEA Tuxedo Application Using FML 5-75

5 Field Manipulation Functions

Additive Operators Used in Boolean Expressions

Theadditive operators+ and - group left-to-right. The usual arithmetic conversionsare
performed:

expressi on + expression
expr essi on - expression

Theresult of the + operator isthe sum of the operands. The + operator is associative
and expressions with several additions at the same level may be rearranged by the
compiler. The operands must not both best ri ngs; if oneisastri ng, itisconverted
to the arithmetic type of the other.

Theresult of the - operator isthe difference of the operands. The usual arithmetic
conversions are performed. The operands must not both be st ri ngs; if oneisa
stri ng, it isconverted to the arithmetic type of the other.

Equality and Match Operators Used in Boolean
Expressions

These operators group | eft-to-right:

expr essi on == expressi on
expressi on ! = expression
expr essi on %% expressi on
expressi on ! % expression

The == (equal to) and the! = (not equal to) operatorsyield 0 if the specified relationis
falseand 1if itistrue. Thetype of theresultisl ong. The usua arithmetic conversions
are performed.

The 98o0perator takes, as its second expression, aregular expression against which it
matchesits first expression. The second expression (the regular expression) must bea
quoted string. Thefirst expression may be an FML field name or a quoted string. This
operator yieldsa 1 if thefirst expressionisfully matched by the second expression (the
regular expression). The operator yieldsa 0 in al other cases.

The! %operator isthe not regular expression match operator. It takes exactly the same
operands as the %®o0operator, but yields exactly the opposite results. The relationship
between 9®6and ! %is analogous to the relationship between == and ! =.

5-76 Programming a BEA Tuxedo Application Using FML

Description of Boolean Primary Expressions

The regular expressions allowed are described on thet psubscri be(3c) reference
page in the BEA Tuxedo C Function Reference.

Relational Operators Used in Boolean Expressions

These operators group |eft-to-right:

expressi on < expression
expressi on > expression
expressi on <= expression
expressi on >= expression

The operators < (less than), > (greater than), <= (lessthan or equal to) and >= (greater
than or equal to) all yield O if the specified relation isfalseand 1 if it istrue. Thetype
of theresult is| ong. The usual arithmetic conversions are performed.

Exclusive OR Operator Used in Boolean Expressions

The~ operator groups left-to-right:
expression M expression

It returns the bitwise exclusive OR function of the operands. The result is dways a
| ong.

Logical AND Operator Used in Boolean Expressions

expressi on && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero;
otherwise, it returns 0. The && operator guarantees | eft-to-right evaluation. However,
it is not guaranteed that the second operand is not evaluated if the first operand is0;
thisisdifferent from the C language. The operands need not have the sametype. The
result isalways al ong.

Programming a BEA Tuxedo Application Using FML 5-77

5 Field Manipulation Functions

Logical OR Operator Used in Boolean Expressions

The| | operator groups left-to-right:
expression || expression

It returns 1 if either of itsoperandsis non-zero; otherwise, it returnso. The| | operator
guarantees left-to-right evaluation. However, it is not guaranteed that the second
operand is not evaluated if the first operand is non-zero; this is different from the C
language. The operands need not have the same type, and the result isaways al ong.

Sample Boolean Expressions

Thefollowing field table defines the fields used for the sample Boolean expressions:

EMPI D 200 carray

SEX 201 char
AGE 202 short
DEPT 203 | ong
SALARY 204 fl oat
NAVE 205 string

Boolean expressions always eval uate to either true or false. The following exampleis
trueif both of the following conditions are true:

m Field occurrence 2 of EMPI D exists and begins with the characters “ 123.”
m Theagefield (occurrence 0) appears and is less than 32.
"EMPID[2] W6’ 123.*" && ACGE < 32"

Thisexample usesaconstant integer as asubscript to EMPI D. In thefollowing example,
the ? subscript is used, instead:

"PETS[?] == 'dog’"

This expression istrue if PETS exists and any occurrence of it contains the characters
3 dogl! .

5-78 Programming a BEA Tuxedo Application Using FML

Boolean Functions

Boolean Functions

The following sections describe the various functions that take Bool ean expressions as
arguments.

Fboolco and Fvboolco

Fbool co compiles aBoolean expression for FML and returns a pointer to an
evaluation tree:

char *
Fbool co(char *expression)

Here* expr essi on isapointer to an expression to be compiled. This function fails if
any of thefollowing field typesisused: FLD_PTR, FLD _FM_32, or FLD VI EW82. If one
of these field typesis encountered, Ferr or is set to FEBADOP.

Fvbool co compiles a Boolean expression for a VIEW and returns a pointer to an
evaluation tree:

char *
Fvbool co(char *expression, char *vi ewnane)

Here* expr essi on isapointer to an expression to be compiled, and * vi ewnanme isa
pointer to the view name for which the fields are evaluated.

Space is alocated using nal | oc(3) to hold the evaluation tree. For example, the
following code compiles a Boolean expression that checks whether the FI RSTNAVE
field isin the buffer, whether it begins with *J and ends with ‘n’ (such as“John” or
“Joan”), and whether the SEX field isequal to ‘M’.

#i ncl ude "<stdi o. h>"
#i ncl ude "fm.h"
extern char *Fbool co;
char *tree;

if((tree=Fbool co("FI RSTNAME %6’ J.*n’ && SEX == "M ")) == NULL)
F error("pgm nane");

Programming a BEA Tuxedo Application Using FML 5-79

5 Field Manipulation Functions

Thefirst and second characters of the tree array form the least significant byte and the
most significant byte, respectively, of an unsigned 16-bit quantity that givesthelength,
in bytes, of the entirearray. Thisvalueisuseful for copying or otherwise manipulating
the array.

Because the evaluation tree produced by Fbool co is used by the Boolean functions
described in the following sections, it is not necessary to recompile the expression
constantly.

Usethef r ee(3) function to free the space allocated to an evaluation tree when the
Boolean expression will no longer be used. Compiling many Boolean expressions
without freeing the evaluation tree when it is no longer needed may cause a program
to run out of data space.

For more information, refer to Fbool co, Fbool co32, Fvbool co,
Fvbool co32(3f m) inthe BEA Tuxedo ATMI FML Function Reference.

Fboolpr and Fvboolpr

Fbool pr prints a compiled expression to the specified file stream. The expression is
fully parenthesized, asit was parsed (as indicated by the evaluation tree).

voi d
Fbool pr(char *tree, FILE *iop)

Here:
m *treeisapointer to aBoolean tree previously compiled by Fbool co.
m *iop isapointer of typeFI LE to an output file stream.

Fvbool pr prints acompiled expression to the specified file stream.

voi d
Fvbool pr(char *tree, FILE *iop, char *vi ewnane)

Here:
m *treeisapointer to aBoolean tree previously compiled by Fvbool co.
m *iop isapointer of type FI LE to an output file stream.

m *vi ewnane isthe name of the view whose fields are used.

5-80 Programming a BEA Tuxedo Application Using FML

Boolean Functions

Thisfunction is useful for debugging.
Executing Fbool pr on the expression compiled above produces the following results:
(((FIRSTNAME[O]) 986 (' J.*n")) && ((SEX[0]) == ("M)))

For more information, refer to Fbool pr, Fbool pr32, Fvbool pr,
Fvbool pr32(3fm) inthe BEA Tuxedo ATMI FML Function Reference.

Fboolev and Ffloatev, Fvboolev and Fvfloatev

These functions evaluate a fielded buffer against a Boolean expression.

int Fbool ev(FBFR *fbfr,char *tree)
doubl e Ffl oatev(FBFR *fbfr,char *tree)

Here:

m fbfr isthefielded buffer referenced by an evaluation tree produced by
Fbool co.

m tree isapointer to an evaluation tree that references the fielded buffer pointed
toby fbfr.

The VIEW equivalents are as follows:

int
Fvbool ev(FBFR *fbfr, char *tree, char *vi ewnane)

doubl e
Fvfl oat ev(FBFR *fbfr,char *tree, char *vi ewnane)

Programming a BEA Tuxedo Application Using FML 5-81

5 Field Manipulation Functions

Fbool ev returnstrue (1) if the fielded buffer matchesthe Boolean conditions specified
in the evaluation tree. This function does not change either the fielded buffer or the
evaluation tree. Using the evaluation tree compiled above, the following code prints
“Buffer selected”:

#i ncl ude <stdio. h>
#include "fm . h"
#include "fldtbl.h"
FBFR *fbfr;

Fchg(f bfr, FI RSTNAME, O, " John", 0);
Fchg(fbfr, SEX, 0,"M', 0);
i f(Fbool ev(fbfr,tree) > 0)
fprintf(stderr,"Buffer selected\n");
el se
fprintf(stderr,"Buffer not selected\n");

Ffl oat ev and Ff | oat ev32 are Smilar to Fbool ev, but return the value of the
expression as adoubl e. For example, the following code prints“6.6":

#i ncl ude <stdio. h>
#include "fm . h"
FBFR *fbfr;

mai n() {
char *Fbool co;
char *tree;
doubl e Ffl oatev;

if (tree=Fbool co("3.3+3.3")) {
printf("%f", Ffloatev(fbfr,tree));
}

}

If Fbool ev isused instead of Ff | oat ev in the previous example, a1 is printed.

For more information, refer to Fbool ev, Fbool ev32, Fvbool ev,
Fvbool ev32(3fm) and Ff |l oatev, Ffloatev32, Fvfloatev,
Fvfl oat ev32(3fm) inthe BEA Tuxedo ATMI FML Function Reference.

5-82 Programming a BEA Tuxedo Application Using FML

VIEW Conversion to and from Target Format

VIEW Conversion to and from Target Format

A VIEW can be converted to and from atarget record format. The default target format
isthat of IBM System/370 COBOL records.

Fvstot, Fvftos and Fcodeset

The following functions convert targets:

| ong
Fvstot (char *cstruct, char *trecord, long treclen, char *vi ewnane)

| ong
Fvttos(char *cstruct, char *trecord, char *viewnane)

int
Fcodeset (char *transl ati on_table)

The Fvst ot function transfers data from a C structure to atarget record type. The
Fvt t os function transfers data from atarget record to a C structure.t record isa
pointer tothetarget record. cst r uct isapointertoaC structure. vi ewnane isapointer
to the name of a compiled view description. The VI EWDI R and VI EWFI LES
environment variables are used to find the directory and file containing the compiled
view description.

To convert an FML buffer to atarget record, complete the following procedure.
1. Cal Fvftos to convert the FML buffer to a C structure.

2. Cdl Fvst ot to convert to atarget record.

To convert atarget record to an FML buffer, complete the following procedure.
1. Cal Fvtt os to convert to a C structure.

2. Cadll Fvst of to convert the structure to an FML buffer.

The default target is that of IBM/370 COBOL records. The default data conversionis
done as shown in the following table.

Programming a BEA Tuxedo Application Using FML 5-83

5

Field Manipulation Functions

5-84

Table 5-7 Data Conversion from a Sructureto a Record

Struct Record

f1 oat COowP- 1

doubl e COwP- 2

| ong S9(9) cowp

short S9(4) COwP

i nt S9(9) COWPorS9(4) COWP
dec_t(m n) S9(2*m (n+1)) V9(n) COWP- 3
ASCII char EBCDIC char

ASCll string EBCDIC string

carray Character array

No filler bytesare provided between fieldsin an IBM/370 record. The COBOL SYNC
clause should not be specified for any data itemsthat are a part of the structure
corresponding to the view. An integer field is converted to either a four-byte or
two-byte integer, depending on the size of integers on the machine on which the
conversion is done. A string field in the view must be terminated with anull when
converting to and from the IBM/370 format. The datain acarr ay field is passed
unchanged; no datatrandlation is performed.

Packed decimals exist in the IBM/370 environment as two decimal digits packed into
one byte with the low-order half byte used to store the sign. The length of a packed
decimal may be 1 to 16 bytes with storage available for 1 to 31 digits and asign.
Packed decimals are supported in C structures using the dec_t field type. Thedec_t
field has adefined size consisting of two numbers separated by a comma. The number
to the left of the commais the total number of bytes occupied by the decimal. The
number to the right is the number of digitsto the right of the decimal point. The
following formulais used for conversion:

dec_t(m n) <=> S9(2*m (n+1))V9(n) COWP-3

Programming a BEA Tuxedo Application Using FML

VIEW Conversion to and from Target Format

Decimal values may be converted to and from other data types (such asi nt , | ong,
string, doubl e, and f | oat) using the functions described in deci mal (3c).

Seethe Fvst of , Fvstof 32(3f nl) for adescription of the default character
conversion of ASCII to EBCDIC, and vice-versa.

An alternate character translation table can be used at run time by calling Fcodeset .
Thetransl ati on_t abl e must point to 512 bytes of binary data. The first 256 bytes
of data areinterpreted as the ASCII-to-EBCDIC trandlation table. The second 256
bytes of data are interpreted as the EBCDIC-to-ASCI| table. Any data after the 512th
byte isignored. If the pointer isNULL, the default trandlation is used.

For more information, refer to Fvst ot, Fvttos(3fm) inthe BEA Tuxedo ATMI
FML Function Reference.

Programming a BEA Tuxedo Application Using FML 5-85

5 Field Manipulation Functions

5-86 Programming a BEA Tuxedo Application Using FML

CHAPTER

6 FML and VIEWS
Examples

Thistopic includes the following sections:
m VIEWS Examples

m FML Examplesin bankapp

VIEWS Examples

The VIEWS examples provided in this section are unrelated to the example FML
program that appears later in this section.

Programming a BEA Tuxedo Application Using FML 6-1

6 FMLand VIEWS Examples

Sample Viewfile

Thefollowing listing is a sample of a viewfile containing a source view description,
cust db.

Listing 6-1 Sample Viewfile

BEGQ NNI NG OF VI EWFI LE

VI EW cust db

/* This is a comment */

/* This is another comment */

#TYPE CNAME FBNAME COUNT FLAG SIZE NULL

carray bug BUG_CURS 4 - 12 "no bugs"

| ong custid CUSTI D 2 - - -1

short super SUPER NUM 1 - - 999

| ong youi d I D 1 - - -1

f 1 oat t ape TAPE_SENT 1 - - -.001

char ch CHR 1 - - "o"

string action ACTI ON 4 - 20 "no action"
END

#END OF VI EWFI LE

6-2 Programming a BEA Tuxedo Application Using FML

VIEWS Examples

Sample Field Table

Thefollowing listing isasample of afield table needed to compile the view in the last

section.

Listing 6-2 SampleField Table

nane nunber
CUSTI D 2048
VERS|I ON_RUN 2055
1D 2056
CHR 2057
TAPE_SENT 2058
SUPER_NUM 2066
ACTI ON 2074
BUG_CURS 2085

type
| ong
string
| ong
char
fl oat
short
string
carray

fl ags coment s

Sample Header File Produced by viewc

Thefollowing listing showsa header file produced by the view compiler. Assume that
the viewfile in the earlier section was used asinput to vi ewc.

Listing 6-3 Sample Header File Produced by viewc

struct custdb {

char
| ong
short
| ong
fl oat
char
char

b

bug[4] [12];
custid[2];
super;

youi d;

t ape;

ch;
action[4][20];

/*
/*
/*
/*
/*
/*
/*

nul | =" no bugs"
null =1
nul | =999

null =1

nul | =-0. 001000
nul | =" 0"
nul |l ="no action"

*/
*/
*/
*/

*/

Programming a BEA Tuxedo Application Using FML

6-3

6 FMLand VIEWS Examples

Sample Header File Produced by mkfldhdr

Thefollowing listing showsaheader file produced from afield tablefile by nkf | dhdr .
Assume that afield table file containing the definitions of the fields shown in the
previous examples was used as input to nkf | dhdr .

Listing 6-4 Sample Header File Produced by mkfldhdr (1)

/* custdb.flds.h as generated by nkfldhdr froma field table: */
/* f name fldid */
A */

#define ACTION
#define BUG CURS

FLDI D) 43034) /* nunber: 2074 type: string */
FLDI D)51237) /* nunber: 2085 type: carray */
#define CUSTID FLDI D) 10240) /* nunber: 2048 type: long */
#define SUPER _NUM FLDI D) 2066) /* nunber: 2066 type: short */
#def i ne TAPE_SENT ((FLDI D)26634) [/* nunber: 2058 type: float */
#define VERSION RUN ((FLDI D)43015) /* nunber: 2055 type: string */
#define 1D ((FLDID)10248) /* nunber: 2056 type: long */
#define CHR ((FLDI D)18441) /* number: 2057 type: char */

~ e~~~
~ e~~~

6-4 Programming a BEA Tuxedo Application Using FML

VIEWS Examples

Sample COBOL COPY File

Thefollowing listing showsthe COBOL COPY file, CUSTDB. cbl , produced by vi ewc
with the - C option.

Listing 6-5 Sample COBOL COPY File

* VI EWFI LE: "t.v"
* VI EWNAMVE: " cust db”

05 BUG OCCURS 4 Tl MES PIC X(12).
* NULL="no bugs"

05 CUSTID OCCURS 2 TI MES PIC S9(9) USAGE IS COW-5.
* NULL=-1

05 SUPER PIC S9(4) USAGE IS COW-5.
* NULL=999

05 FILLER PI C X(02).

05 YQUI D PIC S9(9) USAGE IS COW-5.
* NULL=-1

05 TAPE USAGE | S COW-1.
* NULL=- 0. 001000

05 CH PIC X(01).
* NULL=" 0’

05 ACTI ON OCCURS 4 TI MES PI C X(20).
* NULL="no action"

05 FI LLER PI C X(03).

For asample COBOL program that includesa COBOL COPY fileproduced by vi ewc
- C, see Programming a BEA Tuxedo Application Using COBOL.

Sample VIEWS Program

The following program is an example of the use of VIEWS to map a structure to a
fielded buffer. The environment variables discussedin “ Setting Up Y our Environment
for FML and VIEWS’ on page 3-1 must be properly set for this program to work.

Information on compiling FML programs can be found on the conpi | ati on(5)
reference page in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Programming a BEA Tuxedo Application Using FML 6-5

6 FMLand VIEWS Examples

Listing 6-6 Sample VIEWS Program

/* sanpl e VIEWS program */
#i ncl ude stdio. h>
#include "fm .h"

#i ncl ude "custdb.flds.h" /* field header file shown in */
/* “Sanpl e Header File Produced by view” listing */
#i ncl ude "custdb. h" /* C structure header file produced by */

/* viewc shown in “Sanple Field Table” listing */
#define NF 800

#define NV 400

extern Ferror;

mai n()

/* decl are needed program variables and FM. functions */
FBFR *fbfr,*Fal | oc();
void F_ error();
char *str, *cstruct, buff[100];
struct custdb cust;

/* allocate a fielded buffer */
if ((fbfr = Falloc(NF, NV)) == NULL) {
F_error ("sanpl e. progrant');

exit(1);
}
/* initialize str pointer to point to buff */
/* copy string values into buff, and */

/* Fadd val ues into sone of the fields in fbfr */

str = &buff;

strcpy(str, "13579");

if (Fadd(fbfr, ACTION, str, (FLDLEN)6) < 0)
F_error("Fadd");

strcpy(str,"act11");

if (Fadd(fbfr, ACTION, str, (FLDLEN)6) < 0)
F_error("Fadd");

strcpy(str,"This is a one test.");

i f (Fadd(fbfr, BUG CURS, str, (FLDLEN) 19) < 0)
F_error("Fadd");

strcpy(str,"This is a two test.");

i f (Fadd(fbfr, BUG CURS, str, (FLDLEN) 19) < 0)
F_error("Fadd");

strcpy(str,"This is a three test.");

i f (Fadd(fbfr, BUG CURS, str, (FLDLEN) 21) < 0)
F_error("Fadd");

/* Print out the current contents of the fbfr */

6-6 Programming a BEA Tuxedo Application Using FML

VIEWS Examples

prin
/* Put v

cust
cust
cust
cust.
str =
strnc
str =
strnc
str =
strnc
str =
strnc
str =
strcp
str =
strcp
str =
strcp
str =
strcp
cust.ch
cstruct

/* Upda
/* usin

if (Fvs

}

/* Note
/* data
/*

if (Fvf

b

/* prin
/* the

tf("fielded buffer before:\n"); Fprint(fbfr)

alues in the C structure */

.tape = 12345

.super = 999;
.youid = 80;
custid[0] = -1; cust.custid[1l] = 75;
cust. bug[0][0];
py(str,"no bugsl12345",12);

cust. bug[1][0];
py(str,"yesbugs01234",12);

cust. bug[2][0];
py(str,"no bugsights", 12);

cust. bug[3][0];
py(str,"no bugsysabc", 12);

cust.action[0][0];
y(str, "yesaction");

cust.action[1][0];
y(str,"no action");

cust.action[2][0];
y(str,"222action");

cust.action[3][0];
y(str,"no action");

='0;

= (char *)&cust;

te the fbfr with the values in the C structure */
g the custdb view description. */

tof (fbfr, cstruct, FUPDATE, "custdb") < 0) {
F_error("custdb");
Ffree(fbfr);
exit(1);

that the followi ng would transfer */
fromfbfr to cstruct */

tos(fbfr,cstruct,"custdb") < 0) {
F_error("custdb");
Ffree(fbfr);
exit(1);

t out the values in the C structure and */
val ues in the fbfr */

Programming a BEA Tuxedo Application Using FML

6-7

6

FML and VIEWS Examples

pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri
pri

ntf("cstruct contains:\en");
ntf("action=:%:\n", cust.action[0][0]);
ntf("action=:%:\n", cust.action[1][0]);
ntf("action=:%:\n", cust.action[2][0]);
ntf("action=:%:\n", cust.action[3][0]);
ntf("custid=% d\n", cust.custid[0]);
ntf("custid=% d\n", cust.custid[1]);

ntf ("youi d=% d\ n", cust. youi d);
ntf("tape=%\n", cust.tape);
ntf("super=%l\n", cust.super);
ntf("bug=:% 12s:\n", cust. bug[0][0]);
ntf("bug=:% 12s:\n", cust. bug[1][0]);
ntf("bug=:% 12s:\n", cust. bug[2][0]);
ntf("bug=:% 12s:\en", cust. bug[3][0]);
ntf("ch=:%:\n\n", cust.ch);

printf("fielded buffer after:\n");
Fprint(fbfr);
Ffree(fbfr);

exi

t(0);

Example of VIEWS in bankapp

6-8

bankapp isasample application distributed with the BEA Tuxedo system. It includes
two filesin which a VIEWS structure is used. The structure in the example is one that
does not map to an FML buffer, so FML functions are not used to get datainto or out
of the structure members.

$TUXDI R apps/ bankapp/ audi t . ¢ isaclient program that uses command-line
options to determine how to set up a service reguest in a Vi Ewtyped buffer.

The code in the server $TUXDI R/ apps/ bankapp/ BAL. ec accepts the service request
and shows the fields from avi Ewbuffer being used to formulate ESQL statements.

Programming a BEA Tuxedo Application Using FML

FML Examples in bankapp

See Also

m view, view32(1) inthe BEA Tuxedo Command Reference

m nkfldhdr, nkfldhdr32(1) inthe BEA Tuxedo Command Reference

FML Examples in bankapp

bankapp isasample application distributed with the BEA Tuxedo system. The servers

ACCT. ec
BTADD. ec
TLR. ec

show FML functions being used to manipulate datain FML typed buffersthat have
been passed to the servers from bankcl t , the bankapp client.

Note that in these serversthe ATMI functionst pal | oc(3c) andt preal | oc(3c) —
rather than the FML functionsFal | oc, Fal | 0c32(3fm) and Freal | oc,
Fr eal | oc32(3f m) —are used to alocate message buffers.

Programming a BEA Tuxedo Application Using FML 6-9

6 FMLand VIEWS Examples

6-10 Programming a BEA Tuxedo Application Using FML

CHAPTER

A

FML Error Messages

Thefollowing table liststhe error codes, numbers, and messages that you might see if
an error occurs during the execution of an FML program.

Table A-1 FML Error Codes and Messages

Error Code # Error Message

FALI GN 1 Fielded buffer not aligned
FNOTFLD 2 Buffer not fielded

FNOSPACE 3 No space in fielded buffer
FNOTPRES 4 Field not present

FBADFLD 5 Unknown field number or type
FTYPERR 6 Illegal field type

FEUNI X 7 UNIX system call error
FBADNAME 8 Unknown field name

FMALLOC 9 mal | oc failed

FSYNTAX 10 Bad syntax in Boolean expression
FFTOPEN 11 Cannot find or open field table
FFTSYNTAX 12 Syntax error in field table

FEI NVAL 13 Invalid argument to function
FBADTBL 14 Destructive concurrent access to field table
FBADVI EW 15 Cannot find or get view

Programming a BEA Tuxedo Application Using FML

A-1

A

FML Error Messages

A-2

Table A-1 FML Error Codes and M essages (Continued)

Error Code # Error Message
FVESYNTAX 16 Syntax error in viewfile
FVFOPEN 17 Cannot find or open viewfile
FBADACM 18 ACM contains negative value
FNOCNAME 19 cnane not found

FEBADCP 20 Invalid field type

Programming a BEA Tuxedo Application Using FML

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to FML Programming
	What Is FML?
	How Does FML Fit into the BEA Tuxedo System?
	BEA Tuxedo Typed Buffers
	FML Terminology
	Field Identifier
	Fielded Buffer
	Field Types
	VIEWS

	2 FML and VIEWS Features
	Dividing Records into Fields: Data Structures Versus Fielded Buffers
	Using Structures to Divide Records into Fields
	Using Fielded Buffers to Divide Records into Fields

	How Fielded Buffers Are Implemented with FML
	FML Features
	What Is a Fielded Buffer?
	Figure 2�1 Fielded Buffer

	Supported Field Types
	Listing 2-1 Definitions of FML Field Types in fml.h and fml32.h
	Type int in VIEWS
	Type dec_t in VIEWS

	Field Name-to-Identifier Mappings
	Run Time: Field Table Files
	Compile Time: Header Files

	Fielded Buffer Indexes
	Multiple Occurrence Fields in a Fielded Buffer

	Boolean Expressions and Fielded Buffers
	VIEWS Features
	Multiple Occurrence Fields in VIEWS

	Error Handling for FML Functions

	3 Setting Up Your Environment for FML and VIEWS
	Environment Requirements for FML and VIEWS
	FML Directory Structure
	Environment Variables Used by FML and VIEWS

	4 Defining and Using Fields
	Preparing to Use FML and VIEWS
	Defining Fields for FML and VIEWS
	Defining Field Names and Identifiers
	Creating Field Table Files
	Field Table Example
	Listing 4-1 System Field Table File
	# following are fields for EMPLOYEE service # employee ID fields are based at 500 *base 500 #name...

	Mapping Field Names to Field IDs
	See Also

	Loading Field Tables
	See Also

	Converting Field Tables to Header Files
	Examples of Converting Field Tables to Header Files
	Example 1
	Example 2
	Example 3

	Overriding Environment Variables to Run mkfldhdr
	Mapping Fields to C Structures and COBOL Records

	What Is the VIEWS Facility?
	Structure of VIEWS
	Figure 4�1 Components of the VIEWS Facility

	Creating Viewfiles
	Creating View Descriptions
	Listing 4-2 Source View Description
	Specifying flag Options in a View Description
	C
	F
	L
	N
	P
	S

	Using Null Values in VIEWS

	Compiling Viewfiles
	Using Header Files Compiled with viewc
	Using COBOL COPY Files Created by the View Compiler
	Displaying Viewfile Information After Compilation

	5 Field Manipulation Functions
	About This Section
	FML and VIEWS: 16-bit and 32-bit Interfaces
	Definitions of the FML Function Parameters
	1. For functions that require a pointer to a fielded buffer (FBFR), this parameter is first. If a...
	2. For I/O functions, a pointer to a stream follows the fielded buffer pointer.
	3. For functions that need one, a field identifier (type FLDID) appears next (in the case of Fnex...
	4. For functions that need a field occurrence (type FLDOCC), this parameter comes next. (For Fnex...
	5. In functions in which a field value is passed to or from the function, a pointer to the beginn...
	6. When a field value is passed to a function that contains a character array (carray) field, you...
	7. A few functions require special parameters and differ from the preceding conventions. These sp...
	8. The following NULL values are defined for the various field types:

	Field Identifier Mapping Functions
	Fldid
	Fname
	Fldno
	Fldtype
	Table 5�1 Field Types Returned by Fldtype

	Ftype
	Fmkfldid

	Buffer Allocation and Initialization
	Fielded
	Fneeded
	Fvneeded
	Finit
	Falloc
	Ffree
	Fsizeof
	Funused
	Fused
	Frealloc

	Functions for Moving Fielded Buffers
	Fmove
	Fcpy

	Field Access and Modification Functions
	Fadd
	Fappend
	Fchg
	Fcmp
	Fdel
	Fdelall
	Fdelete
	Ffind
	Ffindlast
	Ffindocc
	Fget
	int Fget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *loc, FLDLEN *maxlen)

	Fgetalloc
	Fgetlast
	int Fgetlast(FBFR *fbfr, FLDID fieldid, FLDOCC *oc, char *loc, FLDLEN *maxlen)

	Fnext
	int Fnext(FBFR *fbfr, FLDID *fieldid, FLDOCC *oc, char *value, FLDLEN *len)

	Fnum
	Foccur
	Fpres
	Fvals and Fvall

	Buffer Update Functions
	Fconcat
	Fjoin
	Fojoin
	Fproj
	Fprojcpy
	Fupdate

	VIEWS Functions
	Fvftos
	Fvstof
	Fvnull
	Fvsinit
	Fvopt
	F_FTOS
	F_STOF
	F_BOTH
	F_OFF

	Fvselinit

	Conversion Functions
	CFadd
	CFchg
	int CFchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len, int type)

	CFget
	int CFget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *buf, FLDLEN *len, int type)

	CFgetalloc
	char * CFgetalloc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, int type, FLDLEN *extralen)

	CFfind
	char *CFfind; FLDLEN len; long *value; . . . if((value=(long *)CFfind(fbfr,ZIP,occurrence,&len,FL...

	CFfindocc
	FLDOCC CFfindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int type)

	Converting Strings
	Ftypcvt
	char * Ftypcvt(FLDLEN *tolen, int totype, char *fromval, int fromtype, FLDLEN fromlen)
	CFchg(fbfr,fieldid,oc,value,len,type) FBFR *fbfr; /* fielded buffer */ FLDID fieldid; /* field to...

	Conversion Rules
	Table 5�2 Summary of Conversion Rules
	Table 5�3 Meanings of Entries in the Summary of Conversion Rules

	Indexing Functions
	Fidxused
	Findex
	Frstrindex
	Funindex
	Example of Sending a Fielded Buffer Without an Index
	1. Remove the index:
	2. Get the number of bytes to send (that is, the number of significant bytes from the beginning o...
	3. Send the buffer without the index:
	4. Restore the index to the buffer:

	Input/Output Functions
	Fread and Fwrite
	Fchksum
	Fprint and Ffprint
	Fextread
	Table 5�4 Fextread Flags

	Boolean Expressions of Fielded Buffers
	Definitions of Boolean Expressions
	Table 5�5 BNF Boolean Expression Definitions

	Field Names and Types
	Strings
	Constants

	How a Boolean Expression Is Converted for Evaluation
	Description of Boolean Primary Expressions
	Description of Boolean Expression Operators
	Table 5�6 Boolean Expression Operators

	Unary Operators Used in Boolean Expressions
	Multiplicative Operators Used in Boolean Expressions
	Additive Operators Used in Boolean Expressions
	Equality and Match Operators Used in Boolean Expressions
	Relational Operators Used in Boolean Expressions
	Exclusive OR Operator Used in Boolean Expressions
	Logical AND Operator Used in Boolean Expressions
	Logical OR Operator Used in Boolean Expressions
	Sample Boolean Expressions
	Boolean Functions
	Fboolco and Fvboolco
	Fboolpr and Fvboolpr
	Fboolev and Ffloatev, Fvboolev and Fvfloatev

	VIEW Conversion to and from Target Format
	Fvstot, Fvftos and Fcodeset
	1. Call Fvftos to convert the FML buffer to a C structure.
	2. Call Fvstot to convert to a target record.
	1. Call Fvttos to convert to a C structure.
	2. Call Fvstof to convert the structure to an FML buffer.
	Table 5�7 Data Conversion from a Structure to a Record

	6 FML and VIEWS Examples
	VIEWS Examples
	Sample Viewfile
	Listing 6-1 Sample Viewfile
	# BEGINNING OF VIEWFILE VIEW custdb # /* This is a comment */ # /* This is another comment */ #TY...

	Sample Field Table
	Listing 6-2 Sample Field Table
	Sample Header File Produced by viewc
	Listing 6-3 Sample Header File Produced by viewc

	Sample Header File Produced by mkfldhdr
	Listing 6-4 Sample Header File Produced by mkfldhdr(1)
	/* custdb.flds.h as generated by mkfldhdr from a field table: */ /* fname fldid */ /* ----- -----...

	Sample COBOL COPY File
	Listing 6-5 Sample COBOL COPY File
	* VIEWFILE: "t.v" * VIEWNAME: "custdb" 05 BUG OCCURS 4 TIMES PIC X(12). * NULL="no bugs" 05 CUSTI...

	Sample VIEWS Program
	Listing 6-6 Sample VIEWS Program
	/* sample VIEWS program */ #include stdio.h> #include "fml.h" #include "custdb.flds.h" /* field h...

	Example of VIEWS in bankapp
	See Also
	FML Examples in bankapp

	A FML Error Messages
	Table A�1 FML Error Codes and Messages�

