o®7%%,

7 hea
BEA Tuxedo

Programming a BEA Tuxedo
Application Using COBOL

BEA Tuxedo Release 8.0
Documen t Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commerciad Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document i s subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebLogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Programming a BEA Tuxedo ATM| Application Using COBOL

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

1.

Introduction to BEA Tuxedo Programming

BEA Tuxedo Distributed Application Programmingccoceeveevnernesenieneas 1-1
CommuniCation ParadigmsScereiriire it 1-3
BEA TUXEUHO CHENES.ceeve ettt ettt s s e e e e e 1-4
BEA TUXEUO SEIVEIS......o ittt ettt ettt st st e e 1-6

BasiC SErver OPEratioN.........cocueveeuireeeirieisieeesiet e st e e 1-6

SEIVErS @S REQUESTES........ciuiiririrt ettt et s 1-8
BEA Tuxedo AP ATMI oottt e e e 1-9

Programming Environment

Updating the UBBCONFIG Configuration File............cccoevoevineninieccecnene 2-1
Setting Environment Variabl€S..........coviiriiri i e 2-5
Defining EQUIVAlent Data TYPES......covcuereeeerieerieierietirie et 2-8
Starting and Stopping the APPliCaLTIONcocevriiri e 29

Managing Typed Records

Overview Of TYPEd RECOIS.........curuieiriiirie it 31
Defining TYPEd RECOMS........coue ettt e s e e 3-6
Using aVIEW Typed RECOI.........coriiriiirieirieiirieese e 3-7
Setting Environment Variables for a VIEW Typed Record...........cc.eueeee. 3-8
Creating aView Description File.........coovviiniininenee e 3-8
Executing the VIEW COMPIIEr ..o e 312
Using an FML Typed RECOId.........cooeuireiiiieiirieiiniet e et 3-14
Setting Environment Variables for an FML Typed Record..................... 3-14
Creating aField Table File.......ccoociiiiniicce e 3-15

Programming a BEA Tuxedo Application Using COBOL iii

Initializing @ TYPed RECOI.........ceiieiirierieree e 3-17

Creating an FML Header File.........coviviiniincc e 3-20
Using an XML Typed RECOIcoeirieririerinenene et 321
4. Writing Clients
JOIiNING @N APPIICALTON........civeriie ittt 4-1
Using Features of the TPINFDEF-REC RECOI.........cooivenieenieeiecene e 4-3
ClHENE NAMING ..ot 4-4
Unsolicited Notification Handlingc.ccoeoeveeineee v 4-5
SYStEM ACCESS MOUE. ...ttt e s 4-7
Resource Manager ASSOCIBIIONc.vevriereeiereeie ettt 4-7
Client AUthENTICELION.c..e e s 4-8
Leaving the APPIICEIIONcueveiieeirie e ettt 4-9
BUIIAING CHIENES......o ittt s e e 4-9
SEE AISD ...ttt e bbb et ea e e 4-11
Client Process EXaMPIESc.ceiieiererrie sttt 4-11

5. Writing Servers

BEA Tuxedo System Controlling Programc..cccceveneeene e 5-1
System-supplied Server and SEIVICES.........cociereereee et 5-3
System-supplied Server: AUTHSVR() ..o 5-3
System-supplied Services: TPSVRINIT ROULINE..........cccvvvrimnierneires 5-4
System-supplied Services: TPSVRDONE ROULINE...........cccerrerernerniens 5-8
GuUIdelinesS fOr WItiNg SEIVEIS.......cocciiiieiece ettt e e 5-9
DEfiNING @ SEIVICE ...eciiectie ettt b 5-10
Terminating @ ServiCe ROULINE........ccvviiieiiiere e e 5-18
SENAING REPIIES.....cviiie e e s 5-18
INValidating DESCIIPLOISeeeviiereiere ettt 5-23
FOrwarding REQUESES.........couevire ettt sttt en e 5-24
Advertising and UnadvertiSing SErVICESccveireiriine s 5-27
AQVErISING SEIVICES.....coerictirictiiet ettt s s e e 5-28
UNAOVErTiSING SEIVICES.......ue ittt et e 5-29
Example: Dynamic Advertising and Unadvertising of a Service............. 5-29
BUIIAING SEIVEN'S ...ttt 5-30
SEE AISD ..ttt bbb e e 5-32

Programming a BEA Tuxedo Application Using COBOL

6. Writing Request/Response Clients and Servers

Overview of Request/Response COMMUNICALTION..........coceerieveneerenerenereeieene 6-1
Sending SyNChronOUS MESSAJES........c.uruieiritrirt st e 6-2
Example: Using the Same Record for Request and Reply Messages........ 6-4
Example: Sending a Synchronous Message with TPSIGRSTRT Set........ 6-6
Example: Sending a Synchronous Message with TPNOTRAN Set 6-7
Sending ASyNChrONOUS MESSAJEScveveruereriererie st s seese s sesseeees 6-10
Sending an AsynchronouS REQUESLecerviiriririiinic e 6-10
Getting an Asynchronous REPIYociviiiiiiiiric e 6-13
Setting and Getting Message Priofities ... s 6-14
Setting aMeSSAgE PriOrity ..ot e 6-14
Getting aMeSSage PrOMTYococveieeeeieetere ettt 6-16
7. Writing Conversational Clients and Servers
Overview of Conversational COMMUNICALTIONcoovevinievinierine e 7-1
JoiNiNg @ APPIICELION......c.ciueriieierie st 7-3
Establishing @ ConNECHiONccoiiriireiirierie e e 7-3
Sending and RECEIVING MESSAZESouvvriirrtrre et 7-5
SENAING MESSAESviuitiiereie ettt ettt e e 7-5
RECEIVING MESSATES......coeiviriieiitt ittt b s 7-6
ENdiNg 8 CONVErSALIONc.ooiiieiieeeieeeee ettt e 7-8
Example: Ending a Simple CONVErsation............coueeneeneeenieensren e 7-9
Example: Ending a Hierarchical Conversationccoeeveeeneeinecineenns 7-10
Executing a Disorderly DiSCONNECE..........ccovuerriereeeneee e 7-12
Building Conversational Clients and SErVErS.........ccooevrernenneseee e e 7-13
Understanding Conversational Communication Events...........cccccovveeeevevenene. 7-13
8. Writing Event-based Clients and Servers

OVENVIEW OF EVENES ...t e e e e 81
UNSOliCItEA EVENES......civeeieiiteiriee e e e 8-2
BrOKEred EVENES.....c.civieieieiitiirite ettt e 8-2
Defining the Unsolicited Message Handler ..o 8-5
Sending UNSOliCited MESSAgES.........ueeruieirerire sttt e e 8-6
Broadcasting Messages by Name.........coooieiiencin e 8-7
Broadcasting Messages by [dentifier ..o 8-8
Programming a BEA Tuxedo Application Using COBOL %

Vi

Checking for Unsolicited MESSAgESccoveiiiiiriciiin s 8-9

Getting Unsolicited MESSAOESc.civeverie it sttt st sttt er e nienens 8-10
SUDSCIIDING 0 EVENES ...ttt ettt 8-11
Unsubscribing from EVENES ..ottt 8-15
POSIING BVENTS ...ttt s b e s e e 8-15

Writing Global Transactions

What IsaGlobal TransaCtion?ceoeeireieneiese e e 9-1
Starting the TranSaCtiON........c..ev e 9-2
Terminating the TranSaCtiON........coveereee ettt 9-9
Committing the Current TranSaCtioN.........c.coeeveeereeere s 9-9
Aborting the Current TranSaCtion............cceoeerenenene e 9-12
Example: Committing a Transaction in Conversational Mode................ 9-13
Example: Testing for Participant Errors..........cccoeoeveencncncnecnenens 9-14
Implicitly Defining a Global Transaction...........ccvcvvenieinie s 9-16
Defining Global Transactions for an XA-Compliant Server Group................ 9-17
Testing Whether a Transaction Has Startedcoveveieveniincnc e 9-17
SE AISD ...ttt ettt ettt e bbb e e e e 9-19

10. Programming a Multithreaded and Multicontexted ATMI
Application

Support for Programming a Multithreaded/M ulticontexted ATMI Application....
10-2
Platform-specific Considerations for Multithreaded/Multicontexted

APPHICALIONS ..ottt et 10-2
Planning and Designing a M ultithreaded/Multicontexted ATMI Application 10-3
What Are Multithreading and MulticontexXting?ccccveevveernie s e 10-4

What 1S MUItIthreading?...........ooe i e 10-4
What 1S MUItiCONEXTING?......ccviieriieieietee e e e 10-6
Licensing a Multithreaded or Multicontexted Application 10-8
Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI
APPHICELION ..ottt 10-8
Advantages of a Multithreaded/M ulticontexted ATMI Application........ 10-9
Disadvantages of a Multithreaded/M ulticontexted ATMI Application.10-10
How Multithreading and Multicontexting Work ina Clientc.c.ceceveee. 10-11
SEAM-UP PRESE.... vttt e e 10-11

Programming a BEA Tuxedo Application Using COBOL

WWOIK PhESE ...ttt ettt ettt s ae s saaee s 10-13

ComPlEtion Phase...........ceieiierie et 10-16
How Multithreading and Multicontexting Work in an ATMI Server 10-17
SEAT-UP PRESE......eceiie et 10-18
WOPK PhaSE ..ot s e 10-18
ComPlEtion Phase..........cereirirre e e 10-21
Design Considerations for a Multithreaded and Multicontexted ATMI
APPHCALTON ..ottt e e et et et b 10-22
Environment REQUIFEMENES.........ccoveirieiriineise s 10-23
DeSigN REQUITEMENESoeeviiciire ettt s e 10-24
Isthe Task of Your Application Suitable for Multithreading and/or
MUITICONEEXEING? e eecveeteiet et ettt st et e er e er e 10-24
How Many Applications and Connections Do Y ou Want? 10-25
What Synchronization Issues Need to Be Addressed?..........ccccvvvenne 10-26
Will You Need to Port Your AppliCation?........cc.ccvvernennenecenece e 10-26
Which Threads Model 1SBest fOr YOU?........cceeienienneneee e 10-26
Interoperability Restrictions for Workstation Clients..........c.cccccevveenee 10-27
Implementing a Multithreaded/ Multicontexted ATMI Application............. 10-28
Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
APPHCALTON .ottt e e e et et et e 10-28
Prerequisites for a Multithreaded ATMI Application..........ccccoeoenevenee 10-29
Genera Multithreaded Programming Considerations.............cccvvveeee 10-29
Concurrency CONSIAEIALIONScviuererereeee et 10-30
Writing Code to Enable Multicontexting in an ATMI Clientcooe.... 10-31
CoNtext AITDULESovevieeieee e 10-32
Setting Up Multicontexting at Initialization.............cccovvviinincineens 10-33
Implementing Security for a Multicontexted ATMI Client 10-34
Synchronizing Threads Before an ATMI Client Termination................ 10-34
SWItChING CONEXEScuveviie e 10-35
Handling Unsolicited MESSAES........cocevierrie ittt 10-38
Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI
APPHCALTON. ...t 10-39

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server.
10-40
CoNtexXt AITDULEScveeie e 10-40
Coding Rules for a Multicontexted ATMI Serverccccoeeeveneeeeenenee, 10-41

Programming a BEA Tuxedo Application Using COBOL Vil

viii

Initializing and Terminating ATMI Serversand Server Threads........... 10-42

Programming an ATMI Server to Create Threads..........cccocvevveernnnns 10-42
Sample Code for Creating an Application Thread in a Multicontexted ATMI
S V<. USSP 10-43
Writing aMultithreaded ATMI ClIent ... 10-45
Coding Rules for aMultithreaded ATMI Client..........coocooviiviincnenn. 10-46
Initializing an ATMI Client to Multiple Contexts............covveereciniennnn 10-47
Context State Changesfor an ATMI Client Thread..........coccovevvnnene. 10-48
Getting Repliesin a Multithreaded Environment...........ccocceeveeneinenene 10-49
Using Environment Variables in a Multithreaded and/or Multicontexted
ENVITONMENToiiitiie et e seeens 10-50
Using Per-context Functions and Data Structuresin a Multithreaded ATMI
(@2 T | TSRS 10-52
Using Per-process Functions and Data Structures in a Multithreaded ATMI
(@2 T o TSP 10-55
Using Per-thread Functions and Data Structures in a Multithreaded ATMI
(@2 T | TSRS 10-56
Sample Code for aMultithreaded ATMI Client............coooevniiiicnenns 10-56
Writing aMultithreaded ATMI SEIVES ... 10-59
Compiling Code for a Multithreaded/M ulticontexted ATMI Application.... 10-59
Testing a Multithreaded/Multicontexted ATM 1 Applicationc.cceeeee. 10-60
Testing Recommendations for a Multithreaded/Multicontexted ATMI
APPHICELION ..ottt e 10-60

Troubleshooting a Multithreaded/M ulticontexted ATMI Application... 10-61
Error Handling for a Multithreaded/M ulticontexted ATMI Application10-62

11. Managing Errors

SYSEEM EFTOS .ottt ettt e e e et e 11-1
ADOIT EITOIS. ...ttt et s st st st ea e b enbeeae st s 11-3
BEA TuXedO SYSIEM EITOISc.ccuiiieieciireceirece e s e 11-3
Communication Handl@ EFTOrS.........cccccveieeecie ettt sreeraesre e 11-3

LiMIE EITOIS .ottt ettt st st sbeebae b e 11-4

INValid DESCIPLOr EITOFS.....cccviieteieeeieee et s 11-4
CoNVErsational EITOrS........ccuooui ettt st s et s 11-5
DUPliCate ODJECE EITON......c.oeeeeeeieseceire et s s 11-5
General Communication Call EITOrS........ccoccoveiieieiie et 11-6

Programming a BEA Tuxedo Application Using COBOL

TPESVCFAIL and TPESV CERR EITOrS......ccceieniieneienesie e 11-6

TPEBLOCK and TPGOTSIG EITOrS......cccooeevinieviirieinieieeeie e 11-6
INValid ATQUMENE EFTOS......cccieieierecie ettt ettt 11-7
NO ENIY EITOIS ... e 11-8
Operating SYyStEM EFTOISoovcuiiieiiietiiet e e 11-9
PEMISSION EITOIS ...ttt e ettt s s en e s e er e 11-9
PrOtOCOI EITOIS.....c.cveieeee ettt sttt e e e e e e e 11-9
QUEUING EFTON ...ttt s et e et b 11-10
Release Compatibility ErTOr........occiiiiniiiieieee e e 11-10
Resource Manager EITOrS..........cooui i 11-10
TIMEOUL EFTOFS.....cuiitiiiieeie st seee ettt sttt e ten e e e en s e ne e ene s 11-11
TraNSACtON EITOIScviiitiietiie sttt ettt 11-12
TYPEA RECOIT EFTOFS ...ttt sttt et e 11-12
APPHICALTON EFTOIS ...t s e 11-14
HENAIING EFTOS ..ottt e e st et st et s eb e ene e 11-14
Transaction CoNSIAEAtioNSc.couerrerre e 11-15
CommuNICation ELQUELTE...........cocirieiere e 11-15
TraNSACtON EITOIScuiieeiietiie sttt et et 11-16

Non-fatal Transaction ErTOrS...........cevevernennie ettt 11-17

Fatal Transaction EITOrS........ccoeeieine vttt 11-18

HeUristic DECISION EFTOrS......cociiiiierie et 11-19
Transaction TIMEOULS.........ccueuireriie et sttt 11-20

TPNOTRANt e e e 11-20

TPRETURN and TPFORWAR CallS.......ccoiiiiriinee e 11-21
EPLErM() FUNCHION.....citiict s 11-21
RESOUrCE MaNagEN'Scocoiieieie e e s 11-22
Sample TransaCtion SCENANOS.c.uevuverriereeee et 11-23

Called Servicein Same Transaction as Callefcccovvvvirenvininns 11-23

Called Servicein Different Transaction with AUTOTRAN Set............ 11-24

Called Service That Startsa New Explicit Transaction...........c.coeeeeee. 11-25
BEA TUXEDO System-supplied SUDFOULINES...........coovvreineine e 11-26
Cantral EVENE L OG- ... eieeiireetireetiriet ettt et s st s er e er e ene e 11-26

LOG NAIME......oiiiiiiie i e s e s 11-27

LOg ENtry FOrmMaLoooiiiicei e 11-27

WIiting t0 the EVENE LOG......ccccivieiirecriieteiere e 11-28

Programming a BEA Tuxedo Application Using COBOL iX

12. COBOL Language Bindings for the Workstation Component

UNIX BINAINGS... ettt s s s s e 12-1
Writing Client ProgramsS.........cooveeiriereniereniesenie et s 12-2
Building Client Programs............cocoeereenenenie s e 12-2
Setting Environment Variables............oooviiriniinecncenene e 12-3

Microsoft Windows BindiNgS..........cccveerririiinrine e s e 12-4
Writing Client ProgramsS...........coeeeieeereeenie et 12-4
Building Client Programs............ceoeereenenenie s e 12-5
Building ACCEPT/DISPLAY Cli€NtSccevieriiereereee et 12-6

Programming a BEA Tuxedo Application Using COBOL

About This Document

This document explains how to program BEA Tuxedo ATMI applications using the
COBOL language.

This document covers the following topics:

m Chapter 1, “Introduction to BEA Tuxedo Programming,” provides an overview
of the BEA Tuxedo programming, including information on distributed
application programming, clients, servers, and the BEA Tuxedo
Application-to-Transaction Monitoring (ATMI) interface.

m Chapter 2, “Programming Environment,” describes the BEA Tuxedo
programming environment, including information on configuring a BEA Tuxedo
system, setting environment variables, and starting and stopping applications.

m Chapter 3, “Managing Typed Records,” provides instructions on managing and
using typed records, including VIEW, FML, and XML records.

m Chapter 4, “Writing Clients,” provides instructions on writing and building BEA
Tuxedo client applications using the COBOL language. A client process
exampleis provided.

m Chapter 5, “Writing Servers,” provides instructions on writing and building BEA
Tuxedo servers using the COBOL language, including defining and advertising
services.

m Chapter 6, “Writing Request/Response Clients and Servers,” provides
instructions on writing request/response clients and servers, including
synchronous and asynchronous messaging, and setting message priorities.

m Chapter 7, “Writing Conversational Clients and Servers,” provides instructions
on writing conversational clients and servers, including joining an application,
establishing a connection, sending and receiving messages, and ending a
conversation.

Programming a BEA Tuxedo ATMI Application Using COBOL Xi

m Chapter 8, “Writing Event-based Clients and Servers,” providesinstructions on
writing event-based clients and servers, including handling unsolicited messages
and events.

m Chapter 9, “Writing Global Transactions,” provides instructions on writing
global transactions, including starting and terminating transactions.

m Chapter 10, “Programming a Multithreaded and Multicontexted ATMI
Application,” provides instructions on writing applications where asingle
process performs multiple tasks simultaneously. The chapter describes
programming techniques for multithreading (the inclusion of more than one unit
of execution in asingle process) and multicontexting (the ability of asingle
process to have more than one connection within adomain or connections to
more than one domain).

m Chapter 11, “Managing Errors,” providesinstructions on handling errors,
including both system and application errors.

m Chapter 12, “COBOL Language Bindings for the Workstation Component,”
provides information on COBOL language binding for UNIX and Microsoft
Windows platforms.

What You Need to Know

This document is intended for application devel opers who are interested in
programming applications using the COBOL languagein a BEA Tuxedo environment

This document assumes a familiarity with the BEA Tuxedo platform and COBOL
programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

Xii Programming a BEA Tuxedo ATMI Application Using COBOL

http://e-docs.bea.com

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable onthe BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA Tuxedo documents contain information that is relevant to using
the BEA Tuxedo /Q component and understanding how to implement message
gueueing applications in the BEA Tuxedo environment:

m cobcc(1) in BEA Tuxedo Command Reference
m BEA Tuxedo ATMI COBOL Function Reference

m tuxenv(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

Programming a BEA Tuxedo ATMI Application Using COBOL Xiii

Contact Us!

Y our feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

®m Your company name and company address

®m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xiv

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab I ndicates that you must presstwo or more keys simultaneously.

Programming a BEA Tuxedo ATMI Application Using COBOL

Convention

tem

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chrmod u+w *
\t ux\ dat a\ ap
.doc
tux. doc
Bl TMAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

Indicates optional itemsin asyntax line. The brackets themselves should
never be typed.

Example:
bui I dobj client [-v]
[-1 file-list]...

[-onane] [-f file-list]...

Programming a BEA Tuxedo ATMI Application Using COBOL

XV

XVi

Convention

Item

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 nane] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from acode example or from a syntax line.
The vertical dlipsisitself should never be typed.

Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

1 Introduction to BEA
Tuxedo Programming

Thistopic includes the following sections:

BEA Tuxedo Distributed Application Programming
Communication Paradigms

BEA Tuxedo Clients

BEA Tuxedo Servers

BEA Tuxedo API: ATMI

BEA Tuxedo Distributed Application
Programming

A distributed application consists of a set of software modules that reside on multiple
hardware systems, and that communicate with one another to accomplish the tasks
required of the application. For example, as shown in the following figure, a
distributed application for aremote online banking system includes software modul es
that run on a bank customer’s home computer, and a computer system at the bank on
which al bank account records are maintained.

Programming a BEA Tuxedo ATMI Application Using COBOL 1-1

1 introduction to BEA Tuxedo Programming

Figure1-1 Distributed Application Example - Online Banking System

Custamer fegquast Check Account Balance & £

4
System Hesponse: £ 28,76

Customer's Banks Computer on Which
Home Computsr Account Records Are Stored

Thetask of checking an account balance, for example, can be performed simply by
logging on and selecting an option from amenu. Behind the scenes, the local software
module communicates with the remote software modul e using special application
programming interface (API) routines.

The BEA Tuxedo distributed application programming environment providesthe AP
routines necessary to enable secure, reliable communication between the distributed
software modules. This APl isreferred to as the Application-to-Transaction Monitor
Interface (ATMI).

The ATMI enables you to:

m Send and receive messages between clients and servers, possibly across a
network of heterogeneous machines

m Establish and use client naming and security features
m Define and manage transactions in which data may be stored in several locations

m Generically open and close aresource manager such as a Database Management
System (DBMYS)

m Manage the flow of service requests and the availability of serversto process
them

1-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Communication Paradigms

Communication Paradigms

The following table describes the BEA Tuxedo ATMI communication paradigms
available to application devel opers.

Table 1-1 Communication Paradigms

Paradigm

Description

Request/response
communication

Reguest/response communication enables one software module
to send areguest to a second software module and wait for a
response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processing
continues while the requester waits for the response).

This mode is also referred to as client/server interaction. The

first software module assumes the role of the client; the second,
of the server.

Refer to “Writing Request/Response Clients and Servers’ on
page 6-1 for more information on this paradigm.

Conversational
communication

Conversational communication is similar to request/response
communication, except that multiple requests and/or responses
need to take place before the“ conversation” isterminated. With
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the client
and server.

Conversational communication is commonly used to buffer
portions of alengthy response from a server to aclient.

Refer to “Writing Conversational Clients and Servers’ on page
7-1 for more information on this paradigm.

Programming a BEA Tuxedo ATMI Application Using COBOL 1-3

1 introduction to BEA Tuxedo Programming

Paradigm Description

Application queue-based Application queue-based communication supports deferred or

communication time-independent communication, enabling a client and server
to communicate using an application queue. The BEA
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.
For example, application queue-based communication is useful
for enqueuing requests when a system goes offline for
maintenance, or for buffering communications if the client and
server systems are operating at different speeds.

Refer to Using the ATMI /Q Component for moreinformation on

the /Q facility.
Event-based Event-based communication allowsaclient or server to notify a
communication client when a specific situation (event) occurs.

Events are reported in one of two ways:

m Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

m Brokered events are unexpected situations or predictable
occurrenceswith unpredictabletimeframesthat arereported
by serversto clients indirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the BEA Tuxedo

EventBroker facility.

Refer to “Writing Event-based Clientsand Servers’ on page 8-1
for more information on this paradigm.

BEA Tuxedo Clients

A BEA Tuxedo ATMI client is a software module that collects a user request and
forwards it to a server that offers the requested service. Almost any software module
can become aBEA Tuxedo client by calling the ATMI client initialization routine and
“joining” the BEA Tuxedo application. The client can then exchangeinformation with
the server.

1-4 Programming a BEA Tuxedo ATMI Application Using COBOL

BEA Tuxedo Clients

Theclient callsthe ATMI termination routineto “leave’ the application and notify the
BEA Tuxedo system that it (the client) no longer needs to be tracked. Consequently,
BEA Tuxedo application resources are made available for other operations.

The operation of abasic client process can be summarized by the pseudo-code shown
in the following listing.

Listing1-1 Pseudo-codefor a Client

START PROGRAM

enroll as a client of the BEA TUXEDO appli cation
place initial client identification in data structure
performuntil end

get user input

pl ace user input in DATA-REC

send servi ce request

receive reply

pass reply to the user

end perform

| eave application

END PROGRAM

Most of the actions described in the above listing are implemented with ATMI calls.
Others—placing the user input in DATA- REC and passing the reply to the user—are
implemented with COBOL routines.

An ATMI client may send and receive any number of service requests before leaving
the application. Theclient may send theserequests asa series of request/response calls
or, if itisimportant to carry state information from one call to the next, by establishing
a connection to a conversational server. In both cases, the logic in the client program
issimilar, but different ATMI calls are required for these two approaches.

Beforeyou can execute an ATMI client, you must runthebui | dcl i ent - Ccommand
to compileit and link it with the BEA Tuxedo ATMI and required libraries. Refer to
“Writing Clients’ on page 4-1 for information on the bui | dcl i ent command.

Programming a BEA Tuxedo ATMI Application Using COBOL 1-5

1 introduction to BEA Tuxedo Programming

BEA Tuxedo Servers

A BEA Tuxedo ATMI server isaprocessthat provides one or more servicesto aclient.
A serviceisaspecific businesstask that a client may need to perform. Serversreceive
reguests from clients and dispatch them to the appropriate service subroutines.

Basic Server Operation

To build server processes, applications combine their service subroutines with a
controlling program provided by the BEA Tuxedo system. This system-supplied
controlling program isaset of predefined routines. It performs server initialization and
termination and places user input in data structures that can be used to receive and
dispatch incoming requests to service routines. All of this processing istransparent to
the application.

Thefollowing figure summarizes, in pseudo-code, theinteraction between aserver and
aservice subroutine.

1-6 Programming a BEA Tuxedo ATMI Application Using COBOL

BEA Tuxedo Servers

Figure1-2 Pseudo-codefor a Request/Response Server and a Service Subr outine

Provided by the BEA Tuxedo System

F——————— e
I START PROGRAM :
| enroll as a server in the BEA Tuxedo application |

I advertise services

| perform until end |

| check message queue for service request |

| dequeus request |

| dispatch request to service subrouting —_—
I

receive control back from subroutine 4 |
end perform |

e e e e f o St st ¥ o o f e’ Y A I i s’ '’ e’ s S s i s § s

I SERVICE SUBROUTINE + }
| receive control fram server |
I I
I I

process request
return contral to server

After initialization, an ATMI waits until arequest message is delivered to its message
gueue, dequeues the request, and dispatchesit to a service subroutine for processing.
If areply isrequired, the reply is considered part of request processing.

The conversational paradigm is somewhat different from request/response, as
illustrated by the pseudo-code in the following figure.

Programming a BEA Tuxedo ATMI Application Using COBOL 1-7

1

Introduction to BEA Tuxedo Programming

Figure 1-3 Pseudo-code for a Conver sational Service Subroutine

SERVER 4

CONYERSATICNAL SERVICE SUBROUTIMN E4—

receive contm | from a2 rer

perform whike true
eceive data fom cone sationzd client
pmocess Equest
==nd dais o conersstional client

end perorm

return contm| 1o S2ner

The BEA Tuxedo system-supplied controlling program contains the code needed to
enroll aprocess asan ATMI server, advertise services, and degueue requests. ATMI
calls are used in service subroutines that process requests. When you are ready to
compileand test your service subroutines, you must link edit them with the server and
generate an executable server. To do so, run the bui | dser ver - Ccommand.

Servers as Requesters

1-8

If aclient requests several services, or several iterations of the same service, a subset
of the services might be transferred to another server for execution. In this case, the
server assumes therole of aclient, or requester. Both clients and servers can be
reguesters; aclient, however, can only be a requester. This coding model is easily
accomplished using the BEA Tuxedo ATMI calls.

Note: A request/response server can also forward arequest to another server. Inthis
case, the server does not assumethe role of client (requester) because the reply
is expected by the original client, not by the server forwarding the request.

Programming a BEA Tuxedo ATMI Application Using COBOL

BEA Tuxedo API: ATMI

BEA Tuxedo API: ATMI

In addition to the COBOL code that expresses the logic of your application, you must
use the Application-to-Transaction Monitor Interface (ATMI), the interface between

your application and the BEA Tuxedo system.

The ATMI isareasonably compact set of calls used to open and close resources, begin
and end transactions, and support communication between clients and servers. The

following table summarizesthe ATMI calls. Each call isdescribed in the BEA Tuxedo
ATMI COBOL Function Reference.

Table 1-2 Using the ATMI Calls

For a Task
Related to. . .

Use ThisCOBOL
Function . ..

To...

For More
I nformation,
Refer to. ..

Client membership

TPI NI TI ALI ZE

Have aclient join an
application

TPTERM

Have aclient leave an
application

“Writing Clients” on
page 4-1

Multiple application
context management

TPGETCTXT(3chbl)

Retrieve an identifier for the
current threads context

TPSETCTXT(3cbl)

Set the current thread’ s context
in a multi contexted process

“Programming a
Multithreaded and
Multicontexted ATMI
Application” on page
10-1

Service entry and TPSVCSTART Get service information “Writing Servers’ on
return page 5-1

TPSVRINI T Initialize a server

TPSVRDONE Terminate a server

TPRETURN End a service routine

TPFORWAR Forward a request
Dynamic TPADVERTI SE Advertise a service name “Writing Servers’ on
advertisement page 5-1

TPUNADVERTI SE

Programming a BEA Tuxedo ATMI Application Using COBOL

Unadvertise a service name

1-9

1 introduction to BEA Tuxedo Programming

Table 1-2 Usingthe ATMI Calls

For a Task Use ThisCOBOL To... For More
Related to. . . Function . .. Information,
Refer to. ..
Message priority TPGPRI O Get the priority of the last “Writing Servers’ on
request page 5-1
TPSPRI O Set the priority of the next
request
Request/Response TPCALL Initiate a synchronous m “Writing Servers’
communications request/response to a service on page 5-1
TPACALL Initiate an asynchronous = “Writing
request (fanout) Request/Response
&q Clientsand
TPGETRPLY Receive an asynchronous Servers’ on page
response 61
TPCANCEL Cancel an asynchronous
request
Conversational TPCONNECT Begin a conversation with a “Writing
communications service Conversationa
Clients and Servers’
TPDI SCON Abnorma |y terminate a on page 7-1
conversation
TPSEND Send amessagein a
conversation
TPRECV Receive amessagein a

conversation

Reliable queuing

TPENQUEUE(3cbl)

Enqueue a message to a
message queue

TPDEQUEUE(3cbl)

Dequeue a message from a
message queue

1-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Using the ATMI /Q
Component

BEA Tuxedo API: ATMI

Table 1-2 Using the ATMI Calls

For a Task Use This COBOL To... For More
Related to. . . Function . .. I nformation,
Refer to. ..
Event-based TPNOTI FY Send an unsolicited messageto “Writing Event-based
communications aclient Clients and Servers’
on page 8-1
TPBROADCAST Send messages to several
clients
TPSETUNSCOL Set unsolicited message
call-back
TPCHKUNSOL Check the arrival of unsolicited
messages
TPGETUNSCOL Get an unsolicited message
TPPOST Post an event message
TPSUBSCRI BE Subscribe to event messages

TPUNSUBSCRI BE

Unsubscribe to event messages

Transaction TPBEG N Begin atransaction “Writing Global
management Transactions” on page
TPCOW T Commit the current transaction 9.1
TPABORT Roll back the current
transaction
TPGETLEV Check whether in transaction
mode
Resource management TPOPEN(3cbl) Open a resource manager m “Programming a
Multithreaded and
TPCLOSE(3chl) Close a resource manager M ulti contexted
ATMI
Application” on
page 10-1
m Setting Up a BEA
Tuxedo
Application

Programming a BEA Tuxedo ATMI Application Using COBOL 1-11

1 introduction to BEA Tuxedo Programming

Table 1-2 Usingthe ATMI Calls

For a Task Use This COBOL To... For More

Related to. .. Function . .. Information,
Refer to. ..

Security TPKEYOPEN(3chl) Open akey handle for digital Using Security in

signature generation, message
encryption, or message
decryption

TPKEYGETI NFO(3cbl)

Get information associated
with akey handle

TPKEYSETI NFO(3cbl)

Set optiona attributes
associated with akey handle

TPKEYCLOSE(3chl)

Close a key handle previously
opened using TPKEYCOPEN

CORBA Applications

1-12 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

2 Programming
Environment

Thistopic includes the following sections:

m Updating the UBBCONFIG Configuration File
m Setting Environment Variables

m Defining Equivalent Data Types

m Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an
application in the UBBCONFI G configuration file. To customize your programming
environment, you may need to create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelines:

m Copy and edit afile that aready exists. For example, the file ubbshmthat comes
with the bankapp sample application can provide a good starting point.

= Minimize complexity. For test purposes, set up your application as a shared
memory, single-processor system. Use regular operating system files for your
data

Programming a BEA Tuxedo ATMI Application Using COBOL 21

2 Programming Environment

m Make sure the | PCKEY parameter in the configuration file does not conflict with
any other parameters being used at your installation. Check with your BEA
Tuxedo application administrator, and refer to Setting Up a BEA Tuxedo
Application for more information.

m Setthe Ul Dand G D parameters so that you are the owner of the configuration.

m Review the documentation. The configuration fileis described in UBBCONFI G(5)
in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

The following table summarizes the UBBCONFI G configuration file parameters that
affect the programming environment. Parameters are listed by functional category.

Table2-1 Programming-related UBBCONFIG Parametersby Functional Category

Functional Par ameter Section Description

Category

Globd resource MAXSERVERS RESQURCES Specifies the maximum number of

limits serversin the configuration. When
setting this value, you need to
consider the MAX values for all
Servers.

MAXSERVI CES RESQURCES Specifies the maximum total number

of servicesin the configuration.

Data-dependent BUFTYPE ROUTI NG List of types and subtypes of data

routing records for which the specified

routing entry isvalid.

Link-level M NENCRYPTBI TS NETWORK Sets the minimum encryption level
encryption that a process accepts.
MAXENCRYPTBI TS NETWORK Sets the maximum encryption level

that a process accepts.

2-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Updating the UBBCONFIG Configuration File

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional Parameter

Category

Section

Description

Load balancing LDBAL

RESOURCES

Flag for specifying whether or not

load balancing is enabled. If enabled,
the BEA Tuxedo system attemptsto
balance requests across the network.

NETLQAD

MACHI NES

Numeric value that is added to the
load factor of servicesthat are remote
from the invoking client, providing a
biasfor choosing alocal server over a
remote server. Load balancing must
be enabled (that is, LDBAL must be
settoy).

LOGAD

SERVI CES

Relative load factor associated with a
service instance. The default is50.

Security AUTHSVC

RESOURCES

Specifies the name of an application
authentication service that isinvoked
by the system for each client joining
the system.

SECURI TY

RESOURCES

Specifies the type of application
security to be enforced.

Programming a BEA Tuxedo ATMI Application Using COBOL

2-3

2 Programming Environment

Table 2-1 Programming-related UBBCONFIG Parametersby Functional Category (Continued)

Functional Par ameter Section Description

Category

Conversational MAXCONV RESQURCES Sets the maximum number of
communication simultaneous conversations for a

single machine. Y ou can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in the SERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in the MACHI NES
section.

CONV SERVERS Specifies whether or not
conversational communication is
supported. If thisparameter isset to N
or unspecified, a TPCONNECT call to
aservicefalls.

M N MAX SERVERS Specifies the minimum and
maximum number of occurrences of
the server to be started by
t mboot (1) . If not specified, M N
defaultsto 1 and MAX defaultsto M N.
The sameparametersareavailablefor
use with request/response servers.
However, conversational servers are
automatically spawned as needed. So
if you set M N=1 and MAX=10, for
example, t mboot starts one server
initially. When a TPCONNECT call is
made to a service offered by that
server, the system starts a second
copy of aserver. Aseach copy is
called, anew oneis spawned, upto a
limit of 10.

2-4 Programming a BEA Tuxedo ATMI Application Using COBOL

Setting Environment Variables

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional
Category

Parameter

Section

Description

Transaction
management

AUTOTRAN

SERVI CES

Controls whether a serviceroutine is
placed in transaction mode. If you set
this parameter to Y, atransaction in
the service subroutineis
automatically started whenever a
request message is received from
another process.

Multithreaded
servers

MAXDI SPATCHTHREADS

SERVERS

Specifies the maximum number of
concurrently dispatched threads that
each server process may spawn.

M NDI SPATCHTHREADS

SERVERS

Specifies the number of server
dispatch threads started on initial
server boot.

See Also

Setting

Processes Reference

m Setting Up a BEA Tuxedo Application

Theconfiguration fileisan operating system text file. To make it usabl e by the system,
you must execute thet m oadcf (1) command to convert the file to a binary file.

m UBBCONFI @ 5) inthe File Formats, Data Descriptions, MIBs, and System

Environment Variables

Initially, the application administrator setsthe variablesthat define the environment in
which your application runs. These environment variables are set by assigning values
to the ENVFI LE parameter in the MACHI NES section of the UBBCONFI Gfile. (Refer to
Setting Up a BEA Tuxedo Application for more information.)

Programming a BEA Tuxedo ATMI Application Using COBOL 2-5

2 Programming Environment

Table 2-2 For the client and server routines in your application, you can update
existing environment variables or create new ones. The following table summarizes
the most commonly used environment variables. The variables are listed by
functional category.Programming-related Environment Variables

Function Environment Definesthe. .. Used by . ..
Variable

Globa TUXD R Location of the BEA BEA Tuxedo application
Tuxedo systembinary files. programs.

Configuration TUXCONFI G Location of the BEA BEA Tuxedo application
Tuxedo configuration file. programs.

Compiling ALTOCL Command that invokesthe builclient() -C and
COBOL compiler. Default bui | dserver() -C
iscobcc. commands.

ALTCFLAGS! Link edit flagstobepassed builclient() -C and
to the COBOL compiler. bui | dserver() -C
Link edit flagsare optional. commands.

COBOPT Arguments that you may builclient() -C and
want to use on the compile bui | dserver () -C
command line. commands.

COBCPY Directories that contain a builclient() -C and
set of the COBOL COPY bui | dserver () -C
files to be used by the commands.
compiler.

Data compression TMCMPPRFM Level of compression BEA Tuxedo application
between 1 and 9. programs that perform data

compression.

Load balancing TMNETLOAD Numericvaluethatisadded BEA Tuxedo application

totheload valuefor remote
queues, making the remote
queuesappear to havemore
work than they actually do.
Asaresult, even if load
balancing is enabled, local
requests are sent to local
gueues more often than to
remote queues.

programs that perform load
balancing.

2-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Setting Environment Variables

Function Environment Definesthe. .. Used by ...
Variable

Record management FI ELDTBLS or Comma-separated list of FM. and FM_32 record types
FI ELDTBLS32 field table filenames for and FML VI EWVs.

FM. and FM_32 typed
records, respectively.
Required only for FM.
VI EWtypes.

FLDTBLDI Ror Colon-separated list of FM. and FM_32 record types
FLDTBLDI R32 directories to be searched and FML VI EV&.

for thefield tablefilesfor

FM. and FML32,

respectively. For Windows

2000, a

semicolon-separated list is

used.

VI EWFI LES or Comma-separated list of VI EWand VI EWB2 record types.
VI EWFI LES32 allowablef ilenames for

VI EWand VI EVB2 typed

records, respectively.

VI EWDI R or Colon-separated list of VI EWand VI EWB2 record types.
VI EWDI R32 directories to be searched

for VI EWand VI EVB2

files, respectively. For

Windows 2000, a

semicolon-separated list is

used.

1. On aWindows 2000 system, the ALTCC and ALTCFLAGS environment variables are not appli-
cable and setting them will produce unexpected results. Y ou must compileyour application first
using aCOBOL compiler and then passthe resulting object file to thebui | dcl i ent or bui | d-
server command.

If operating in a UNIX environment, add $TUXDI R/ bi n to your environment PATH to
ensure that your application can locate the executables for the BEA Tuxedo system
commands. For more information on setting up the environment, refer to Setting Up a
BEA Tuxedo Application.

Programming a BEA Tuxedo ATMI Application Using COBOL 2-7

2 Programming Environment

See Also

m Setting Up a BEA Tuxedo Application

Defining Equivalent Data Types

Thefollowing table lists the C data types for which equivalent COBOL datatypes are
available.

Table 2-3 COBOL Equivalentsfor C Data Types

C DataType Equivalent COBOL Data Type

fl oat COwP- 1

doubl e COWP- 2

I ong S9(9) Cowp-51

short S9(4) cowp-5t

dec_t COBCOL COWP-3 packed decimal field

1. COWP- 5, provided for use with MicroFocus COBOL, alows the COBOL
integer fieldsto match the dataformat of the corresponding C fields. The datatype
for VSCOBQL | | is COVP.

For storage efficiency, COBOL supports packed decimals: two decimal digits packed
into each byte with the low-order half byte used to store the sign. The length of a
packed decimal may be 1 to 9 byteswith storage available for 1 to 17 digits, including
the sign.

Thedec_t fieldisdefinedin aVvi EW The size is specified astwo values separated by
acomma. Thefirst value indicates the total number of bytes occupied by the decimal
in COBOL. The second value indi cates the number of digitsto theright of the decimal
point in COBOL. Y ou can use the following formulato convert the dec_t fieldto a
COBOL declaration:

2-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Starting and Stopping the Application

dec_t(m n) => S9(2*m (n+1), n) COWP-3

For example, a size specification of 6,4 in the VI Ewindicates that there are 4 digitsto
the right of the decimal point and 7 digits to the left, and the last half byteis used to
store the sign. A COBOL application programmer represents thisas 9(7) V9(4) ,
where the V represents the decimal point between each value. Note that FM_ does not
support the dec_t type; if FM_.-dependent VI EV are used, then each field must be
mapped to a Ctype in the Vi Ewfile. For instance, a packed decimal can be mapped to
an FML string field, and then the mapping functions can be used to do the conversion
between formats.

Starting and Stopping the Application

See Also

To start the application, executethet nboot (1) command. The command getsthe IPC
resources required by the application, and starts administrative processes and
application servers.

To stop the application, execute the t nshut down(1) command. The command stops
the servers and rel eases the | PC resources used by the application, except any that
might be used by the resource manager, such as a database.

®m tnboot (1) andt mshut down(1) inthe BEA Tuxedo Command Reference

Programming a BEA Tuxedo ATMI Application Using COBOL 29

2 Programming Environment

2-10 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

3 Managing Typed
Records

Thistopic includes the following sections:
m Overview of Typed Records

m Defining Typed Records

m Using aVIEW Typed Record

m Using an FML Typed Record

m Using an XML Typed Record

Overview of Typed Records

In order to send data to another application program, the sending program first places

the datain arecord. BEA Tuxedo ATMI clients use typed recordsto send messages to
ATMI servers. The term “typed record” refersto apair of COBOL records: a data
record and an auxiliary type record. The data record is defined in static storage and
contains application data to be passed to another application program. An auxiliary
type record accompani es the data record. It specifiestheinterpretation and translation
rules of the data record to be used by the BEA Tuxedo system when passing the
information between heterogeneous systems. Typed records make up one of the
fundamental features of the distributed programming environment supported by the
BEA Tuxedo system.

Programming a BEA Tuxedo ATMI Application Using COBOL 31

3 Managing Typed Records

Why typed? In a distributed environment, an application may be installed on
heterogeneous systems that communi cate across multiple networks using different
protocols. Different types of records require different routines to initialize, send and
receive messages, and encode and decode data. Each record is designated as a specific
type so that the appropriate routines can be called automatically without programmer
intervention.

Thefollowing table lists the typed records supported by the BEA Tuxedo system and
indicates whether or not:

m Therecord is self-describing; in other words, the record data type and length can
be determined simply by (a) knowing the type and subtype, and (b) looking at
the data.

m Therecord requires a subtype.
m The system supports data-dependent routing for the typed record.
m The system supports encoding and decoding for the typed record.

If any routing routines are required, the application programmer must provide them as
part of the application.Recor ds

Table 3-1 Typed Buffers

Typed Record Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
CARRAY Undefined array of characters, any of No No No No

which can be LOW-VALUE. Thistyped
record isused to handl e the data opaguely,
asthe BEA Tuxedo system does not
interpret the semantics of the array.
Because a CARRAY is not self-describing,
the length must always be provided during
transmission. Encoding and decoding are
not supported for messages sent between
machines because the bytes are not
interpreted by the system.

3-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Overview of Typed Records

Table 3-1 Typed Buffers(Continued)

Typed Record

Description

Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing

FM_ (Field
Manipulation
Language)

Proprietary BEA Tuxedo system type of
self-describing record in which each data
field carriesits own identifier, an
occurrence number, and possibly alength
indicator. T record offers
data-independence and greater flexibility
The FML record uses 16 bits for field
identifiersand lengths of fields.

Refer to “Using an FML Typed Record”
on page 3-14 for more information.

Yes No Yes Yes

FM.32

Equivalentto FML but uses 32 bitsfor field
identifiersand lengths of fields, which
allowsfor larger and more fields and,
consequently, larger overall records.

However, the FM_ routines that are
available for manipulating the FM. typed
record in the C programming language are
not available in COBOL.The primary use
of FML32 in COBOL issimply to work
with C programs in which VI EV82 or
FM_32 typed records are used.

Refer to “Using an FML Typed Record”
on page 3-14 for more information.

Yes No Yes Yes

STRI NG

Array of characters that terminates with a
LOW-VALUE character. The BEA
Tuxedo system can convert data
automatically when datais exchanged by
machines with different character sets.

No No No No

Programming a BEA Tuxedo ATMI Application Using COBOL 3-3

3 Managing Typed Records

Table 3-1 Typed Buffers (Continued)

Typed Record Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
VI EW COBOL data structure defined by the No Yes Yes Yes

application. VI EWtypes must have
subtypes that designate individual data
structures. A view description file, in
which the fields and types that appear in
the data structure are defined, must be
availabletoclient and server processesthat
use a data structure described in aVl EW
typed record. Encoding and decoding are
performed automatically if the record is
passed between machines of different
types. Refer to “Using aVIEW Typed
Record” on page 3-7 for moreinformation.

VI EVB82 Equivalent to VI EWbut uses 32 bits for No Yes Yes Yes
length and count fields, which allows for
larger and more fields and, consequently,
larger overall records.
The primary use of VI EWB2 in COBOL is
simply to work with C programsin which
VI EVB2 or FM_32 typed records are used.
Refer to “Using a VIEW Typed Record”
on page 3-7 for more information.

X_COMVON Equivalent to VI EW but used for No Yes Yes Yes
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

3-4 Programming a BEA Tuxedo ATMI Application Using COBOL

Overview of Typed Records

Table 3-1 Typed Buffers(Continued)

Typed Record Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
XML An XML document that consists of: No No Yes No

m Text, inthe form of asequence of
encoded characters

m A description of thelogical structure
of thedocument and information about
that structure

The routing of an XML document can be
based on element content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if theencoding differsfrom the
native character sets (US-ASCII or
EBCDIC) used in the BEA Tuxedo
configuration files (UBBCONFI G(5) and
DMCONFI G(5)), the element and attribute
names are converted to US-ASCI| or
EBCDIC. Refer to “Using an XML Typed
Record” on page 3-21 for more
information.

X_OCTET Equivalent to CARRAY. No No No No

All record types are defined in afile called t nt ypesw. ¢ inthe $TUXDI R/ 1 i b
directory. Only record types defined int nt ypesw. ¢ are known to your client and
server programs. Y ou can edit thet nt ypesw. ¢ fileto add or remove record types. In
addition, you can use the BUFTYPE parameter (in UBBCONFI G) to restrict the typesand
subtypes that can be processed by a given service.

Thet nt ypesw. ¢ fileisused to build a shared object or dynamic link library. This
object is dynamically loaded by both BEA Tuxedo administrative servers, and
application clients and servers.

See Also

m “Using aVIEW Typed Record” on page 3-7

Programming a BEA Tuxedo ATMI Application Using COBOL 3-5

3 Managing Typed Records

m “Using an FML Typed Record” on page 3-14
m “Using an XML Typed Record” on page 3-21

m tuxtypes(5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

Defining Typed Records

The TPTYPE- REC COBOL structureis used whenever sending or receiving application
data.

Thefollowing table lists the TPTYPE- REC structurefields.

Field Description

REC- TYPE Specifies which record type the application wishes to send or
receive.

SUB- TYPE Specifies the subtype of the record type, if further classification

isrequired (asitis, for example, in aVl EWrecord).

LEN When datais being sent, specifiesthe number of bytesto be sent.
After asuccessful transfer, LEN contains the number of bytes
transferred. When datais being received, LENin TPTYPE- REC
specifies the number of bytes to be moved into the data record.
After asuccessful call, LEN containsthe number of bytes moved
into the datarecord. If the size of theincoming messageislarger
than the size specified in LEN, the dataistruncated, all data after
the LENIength isreached isdiscarded, and TPTYPE- STATUSis
set to TPTRUNCATE.

3-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Using a VIEW Typed Record

The following shows the TPTYPE data structure:

05 REC- TYPE PI C X(8).
88 X- OCTET VALUE “X_OCTET".
88 X- COWDN VALUE “X_COVMON' .
05 SUB- TYPE PI C X(16).
05 LEN PIC S9(9) COMVP-5.
88 NO- LENGTH VALUE 0.
05 TPTYPE- STATUS PI C S9(9) COVP-5.
88 TPTYPEOK VALUE 0.
88 TPTRUNCATE VALUE 1.

Using a VIEW Typed Record

There are two kinds of VI Ewtyped records. Thefirst, FM. VI EwWisa COBOL record
generated from an FM. record. The second is simply an independent COBOL record.

The reason for converting FM_ records into COBOL records and back again (and the
purpose of the FML VI Ewtyped records) isthat FML functions are not available in the
COBOL programming environment.

For more information on the FM_ typed record, refer to the BEA Tuxedo ATMI FML
Function Reference.

To use VI Ewtyped records, you must perform the following steps:
m Set the appropriate environment variables.
m Describe each structure in view description files.

m Compilethe view description files using vi ewc - C, the BEA Tuxedo view
compiler. By running this comand you will produce one or more COBOL COPY
files (one per view), each of which contains data description records. These
records can be used in the LI NKAGE section or the WORKI NG STORAGE section of
the DATA DI VI SI ON, according to the demands of the program.

Programming a BEA Tuxedo ATMI Application Using COBOL 3-7

3 Managing Typed Records

Setting Environment Variables for a VIEW Typed Record

To use aVl Ewtyped record in an application, you must set the following environment
variables.

Table 3-2 Environment Variablesfor a VIEW Typed Record

Environment Description

Variable

FI ELDTBLS or Comma-separated list of field table filenamesfor FML or FM_32

FI ELDTBLS32 typed records. Required only for FML VI EWtypes.

FLDTBLDI Ror Colon-separated list of directories to search for the field table

FLDTBLDI R32 files for FML and FML32 typed records. For Microsoft
Windows, use asemicolon-separated list. Required only for FML
VI EWtypes.

VI EWFI LES or Comma-separated list of allowable filenames for VI EWor

VI EWFI LES32 VI EWB2 description files.

VI EWDI Ror Colon-separated list of directories to search for VI EWor

VI EMDI R32 VI EWB2 files. For Microsoft Windows, use a

semicolon-separated list.

Creating a View Description File

To useaVl Ewtyped record, you must define the COBOL record in aview description
file. Theview description fileincludes, aview for each entry, aview that describesthe
characteristic COBOL procedure mapping and the potential FM. conversion pattern.
The name of the view corresponds to the name of the copy file that isincluded in
COBOL program.

Thefollowing format is used for each record in the view description file:

$ /* View structure */
VI EW vi ewnane
type chame fbname count flag si ze nul |

The following table describes the fields that must be specified in the view description
file for each COBOL record.

3-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Using a VIEW Typed Record

Table 3-3 View Description File Fields

Field

Description

type

Datatype of thefield. Canbe settoshort, | ong, f| oat,
doubl e, char,string,orcarray.

Chame

Name of the field as it appears in the COBOL record.

f bname

If you will be using the FM_-to-VI EWor VI EWto-FM.
conversion routines, thisfield must be included to indicate the
corresponding FML name. This field name must also appear in
the FML field table file. Thisfield is not required for
FML-independent VIEWS.

count

Number of timesfield occurs.

flag

Specifies any of the following optiona flag settings:

m P—change the interpretation of the LOW-VALUE vaue
S—one-way mapping from fielded record to structure
F—one-way mapping from structure to fielded record
N—zero-way mapping

C—generate additional field for associated count member
(ACM)

m L—hold number of bytes transferred for STRI NG and
CARRAY

size

For STRI NGand CARRAY record types, specifiesthe maximum
length of the value. Thisfield isignored for all other record

types.

Programming a BEA Tuxedo ATMI Application Using COBOL 39

3 Managing Typed Records

3-10

Table 3-3 View Description File Fields (Continued)

Field Description

nul | User-specified LOW-VALUE value, or minussign (-) to
indicate the default value for afield. LOW-VALUE values are
used in VI Ewtyped records to indicate empty COBOL record

members.

The default LOW-VALUE vauefor al numeric typesis0 (0.0
for dec_t). For character types, the default LOW-VALUE
vaueis‘\ 0’. For STRI NG and CARRAY types, the default

LOW-VALUE valueis“ ".

Constants used, by convention, as escape characters can aso be
used to specify aLOW-VALUE value. The view compiler
recognizes the following escape constants: \ ddd (whered is
an octal digit), \ 0, \ n,\t,\v,\r A\ f AN\ V7 Jand\ .

Y ou may enclose STRI NG, CARRAY, and LOW-VALUE
values in double or single quotes. The view compiler does not
accept unescaped quotes within a user-specified

LOW-VALUE value.

Y ou can also specify the keyword NONE inthe LOW-VALUE
field of aview member description, which meansthat thereis
no LOW-VALUE valuefor the member. The maximum size of
default values for string and character array membersis 2660
characters. For more information, refer to the BEA Tuxedo

ATMI FML Function Reference.

Y ou can include a comment line by prefixing it with the # or $ character. Lines

prefixed by a$ sign areincluded inthe . h file.

Thefollowing listing is an excerpt from an example view description file based on an
FM record. In this case, the f bnane field must be specified and match that which
appears in the corresponding field table file. Note that the CARRAY1 field includes an
occurrence count of 2 and sets the C flag to indicate that an additional count element
should be created. In addition, the L flag is set to establish alength element that
indicates the number of characters with which the application populates the CARRAY1

field.

Programming a BEA Tuxedo ATMI Application Using COBOL

Using a VIEW Typed Record

Listing3-1 View Description Filefor FML VIEW

$ /* View structure */

VI EW MyVI EW

#t ype chame fbname count flag si ze nul |
fl oat floatl FLOAT1 1 - - 0.0
doubl e doubl el DOUBLE1 1 - - 0.0
| ong ongl LONGL 1 - - 0
short short1l SHORT1 1 - - 0

i nt intl I NT1 1 - - 0
dec_t decl DEC1 1 - 9, 16 0
char char1 CHAR1 1 - - “\ o
string stringl STRINGL 1 - 20 “\ o
carray carrayl CARRAYl 2 CL 20 ‘\0

END

The following listing illustrates the same view description file for an independent
VI EW

Listing3-2 View Description Filefor an I ndependent View

$ /* View data structure */

VI EW MyVI EW

#type cnane fbname count flag si ze nul |
fl oat floatl - 1 - - -
doubl e doubl el - 1 - - -
| ong longl - 1 - - -
short shortl - 1 - - -
i nt intl - 1 - - -
dec_t decl - 1 - 9, 16 -
char charl - 1 - - -
string stringl - 1 - 20 -
carray carrayl - 2 CL 20 -

END

Note that the format is similar to the FM_-dependent view, except that thef bname and
nul | fieldsare not relevant and are ignored by the vi ewc compiler. Y ou must include
avalue (for example, a dash) as a placeholder in these fields.

Programming a BEA Tuxedo ATMI Application Using COBOL 311

3 Managing Typed Records

Executing the VIEW Compiler

To compile a Vi Ewtyped record, run thevi ewc - Ccommand, specifying the name of
the view description file as an argument. To specify an independent Vi EW use the - n
option. Y ou can optionally specify adirectory in which the resulting output file should
be written. By default, the output file is written to the current directory.

For example, for an FM_-dependent VI EW the compiler isinvoked as follows:
viewc -C nyview v

Note: TocompileaVl EWB2 typed record, run the vi enc32 - C command.
For an independent VI EW use the - n option on the command line, as follows:
viewc -C -n nyvi ew. v

The output of the vi ewc command includes:

m Oneor more COBOL COPY files; for example, MYVl EW chl

m Header file containing a structure definition that may be used by application
programs for C routines that share the same view

m Binary version of the source description file; for example, nyvi ew. V

Note: On case-insensitive platforms (for example, Microsoft Windows), the
extension used for the names of such filesisvv; for example, nyvi ew. vv.

Thefollowing listing provides an example of the COBOL COPY file created by vi ewc.

Listing 3-3 COBOL COPY File Example

* VI EWFI LE: " nyvi ew. v"
* VI EMNAME: " MYVI EW

05 FLOAT1 USAGE |'S COVP- 1.
05 DOUBLE1 USAGE |'S COVP- 2.
05 LONGL PI C S9(9) USAGE |'S COWP-5
05 SHORT1 Pl C S9(4) USAGE |'S COWP-5
05 FILLER Pl C X(02).
05 | NT1 PI C S9(9) USAGE |'S COWP-5
05 DECL.
07 DEC- EXP Pl C S9(4) USAGE |'S COWP-5
07 DEC- PCS Pl C S9(4) USAGE |'S COVP-5

3-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Using a VIEW Typed Record

07 DEC- NDGTS PIC S9(4) USAGE | S COWP-5.
* DEC- DGTS is the actual packed decimal val ue
07 DEC-DGTS PIC S9(1)V9(16) COWP-3.
07 FILLER PI C X(07).
05 CHARL PIC X(01).
05 STRINGL PI C X(20).
05 FILLER PI C X(01).

05 L- CARRAY1 COCCURS 2 TI MES PIC 9(4) USAGE | S COWP-5.
* LENGTH OF CARRAY1

05 C CARRAY1 PIC S9(4) USAGE | S COWP-5.
* COUNT OF CARRAY1

05 CARRAY1 OCCURS 2 TI MES PI C X(20).

05 FILLER PI C X(02).

COBOL cory filesfor views must be brought into client programs and service
subroutines with COPY statements.

In the previous example, the compiler includes FI LLER files so that the alignment of
fieldsin COBOL code matches the alignment in C code.

The format of the packed decimal value, DECL, is composed of five fields. Four
fields—DEC- EXP, DEC- POS, DEC- NDGTS, and FI LLER—are used only in C (they are
defined inthe dec_t type); they areincluded in the COBOL record for filler. Do not
use these fieldsin COBOL applications.

Thefifth field, DEC- DGTS, is used by the system to store the actual packed decimal
value. You should use this value within the COBOL program. ATMI calls operate on
the DEC- DGTS field to:

m Populate the field before the record is passed from a C program to a COBOL
program.

m Convert the field back to thedec_t type when passed from the COBOL
program to the C program.

The only restriction is that a COBOL program cannot directly pass arecord toaC
function outside of the ATMI interface because the decimal formatsin the COBOL
program and C function do not match.

Finally, note that the sample COBOL COPY fileincludes an L- CARRAY1 length field
that occurstwice, once for each occurrence of CARRAY1, and a C- CARRAY1 count field.

vi ewc creates a C version of the header file that you can use to mix C and COBOL
service and/or client programs.

Programming a BEA Tuxedo ATMI Application Using COBOL 3-13

3 Managing Typed Records

See Also

m “Using an FML Typed Record” on page 3-14
m “Using an XML Typed Record” on page 3-21

m viewc, viewc32(1) intheBEA Tuxedo Command Reference

Using an FML Typed Record

The FM interface was designed for use with the C language. For COBOL, routinesare
provided that allow you to convert areceived FM. record type to a COBOL record for
processing, and then convert the record back to FM_.

To use FM typed records, you must perform the following steps:
m Set the appropriate environment variables.

m Describe the potential fieldsin an FML field table.

m |nitialize the FM. record using FI NI T.

m Create an FM. header file and specify the header filein a#i ncl ude statement C
routines that share the same view in the application.

FM routines are used to manipulate typed records, including thosethat convert fielded
recordsto C structures and vice versa. By using these functions, you can access and

update data values without having to know how datais structured and stored. For more
information on FM_ routines, refer to the BEA Tuxedo ATMI FML Function Reference.

Setting Environment Variables for an FML Typed Record

To use an FM. typed record in an application program, you must set the following
environment variables.

3-14 Programming a BEA Tuxedo ATMI Application Using COBOL

Using an FML Typed Record

Table 3-4 FML Typed Record Environment Variables

Environment Description

Variable

FI ELDTBLS or Comma-separated list of field tablefilenamesfor FM. or FML32
FI ELDTBLS32 typed records, respectively.

FLDTBLDI Ror Colon-separated list of directories to search for the field table
FLDTBLDI R32 filesfor FML and FM_32, respectively. For Microsoft Windows,

use a semicolon-separated list.

Creating a Field Table File

Field tablefilesare always required when FM. recordsand/or FM_-dependent VI Evare
used. A field table file mapsthe logical name of afield in an FM. record to astring that
uniquely identifies the field.

The following format is used for the description of each field in the FM. field table:
$ /* FML structure */

*base val ue

name nunber type flags comrent s

Thefollowing table describesthefiel dsthat must be specified inthe FM field tablefile
for each FML field.

Programming a BEA Tuxedo ATMI Application Using COBOL 3-15

3 Managing Typed Records

Table 3-5 Field Table File Fields

Field Description

*base val ue Specifies a base for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The* base option allowsfield numbersto be reused. For
a 16-hit record, the base plus the relevant number must be
greater than or equal to 100 and less than 8191. Thisfieldis
optional.

Note: TheBEA Tuxedo system reservesfield numbers1-100
and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FM_; field numbers 101-33, 554, and 431, for
FML32.

nanme Identifier for the field. The value must be a string of up to 30
characters, consisting of alphanumeric and underscore
charactersonly.

rel - nunber Relative numeric vaue of the field. Thisvalueis added to the
current base, if specified, to caculate the field number.

type Type of thefield. Thisvalue can be any of thefollowing: char,
string,short,long,fl oat,doubl e,orcarray.

flag Reserved for future use. A dash (-) should be included as a
placehol der.

conment Optiona comment.

All fields are optional, and may be included more than once.

3-16 Programming a BEA Tuxedo ATMI Application Using COBOL

Using an FML Typed Record

The following example illustrates afield table file that may be used with the
FM_-dependent VI Ewexample.

Listing3-4 Field TableFilefor FML VIEW

nane nunber type fl ags comment s
FLOAT1 110 f1 oat - -
DOUBLE1 111 double - -

LONGL 112 | ong - -
SHORT1 113 short - -
I NT1 114 | ong - -
DEC1 115 string - -
CHARL 116 char - -
STRI NG1 117 string - -
CARRAY1 118 carray - -

Initializing a Typed Record

An FM typed record must be initialized using the FI NI T procedure. The TPINI T
procedure takes the specified FM_ record (preferably aligned on afull-word boundary)
and uses the value specified in the FM_- LENGTH field in the FMLI NFOrecord as the
length.

If TPNOCHANGE is set, then any FM_ record received by aprogram (rather than created
by the program) is initialized automatically. In this case, it is unnecessary to call
FINIT.

The following listing shows how to perform an initialization.

Listing3-5 FML/VIEW Conversion

WORKI NG- STORAGE SECTI ON.
*RECORD TYPE AND LENGTH
01 TPTYPE- REC.
COPY TPTYPE.
*STATUS COF CALL
01 TPSTATUS- REC.
COPY TPSTATUS.
* SERVI CE CALL FLAGS/ RECORD

Programming a BEA Tuxedo ATMI Application Using COBOL 3-17

3 Managing Typed Records

01 TPSVCDEF- REC.
CCPY TPSVCDEF.
* TPINIT FLAGS/ RECORD
01 TPI NFDEF- REC.
CCPY TPI NFDEF.
* FML CALL FLAGS/ RECORD
01 FM.- REC.
CCPY FM.I NFQO

*

*

* APPLI CATI ON FML RECORD - ALI GNED
01 MYFM..
05 FBFR-DTA OCCURS 100 TIMES PIC S9(9) USAGE | S COW-5.
* APPLI CATI ON VI EW RECORD
01 MyVI EW
CCPY MYVI EW

* MOVE DATA | NTO MyVI EW

* INITIALI ZE FM. RECORD

MOVE LENGTH OF MYFML TO FM.- LENGTH.

CALL "FINI T USING MYFM. FM.- REC.

IF NOT FOK
MOVE "FINIT Failed" TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

END- | F.

* Convert VIEWto FM. Record
SET FUPDATE TO TRUE.
MOVE " MYVI EW TO VI EWNAME.
CALL "FVSTOF" USI NG MYFML MYVI EW FML.- REC.
I'F NOT FOK
MOVE " FVSTOF Fail ed" TO LOGVSG TEXT
PERFORM DO USERLOG
PERFORM EXI T- PROGRAM
END- | F.

* CALL THE SERVI CE USI NG THE FM. RECORD
MOVE "FM." TO REC- TYPE I N TPTYPE- REC.
MOVE SPACES TO SUB- TYPE | N TPTYPE- REC.
MOVE LENGTH OF MYFML TO LEN.

CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
MYFML
TPTYPE- REC
MYFML

3-18 Programming a BEA Tuxedo ATMI Application Using COBOL

Using an FML Typed Record

TPSTATUS- REC.
I'F NOT TPCK
MOVE " TPCALL MYFM. Fail ed" TO LOGVSG TEXT
PERFCRM DO- USERLOG
PERFCRM EXI T- PROGRAM
END- | F.
* CONVERT THE FML RECORD BACK TO MyVI EW
CALL "FVFTOS' USING MYFML MyVI EW FM.- REC.
I'F NOT FOK
MOVE " FVFTOS Fai |l ed" TO LOGVSG TEXT
PERFCRM DO- USERLOG
PERFCRM EXI T- PROGRAM

END- | F.

In the preceding listing, the FVSTOF procedure converts an FM. record into a vl EW
record. The view isdefined by including the copy file generated by the view compiler.
The FML- REC record provides the VI EWNAME and the FM_- MODE transfer mode, which
can be set to FUPDATE, FQJQO N, FJO N, or FCONCAT. The actions associated with these
modes are the same as those described in Fupdat e, Fupdat e32(3fm), Foj oi n,
Foj 0oi n32(3fm), Foin, Fjoin32(3fm),andFconcat, Fconcat32(3fm).

The FVFTOS procedure convertsa Vvl EWrecord into an FM. record. The parameters are
the same as those for an FVSTCOF procedure but you do not need to set FM_- MODE. The
system copiesthefields from thefielded recordinto the structure, based on the element
descriptionsintheview. If thereisno corresponding element in the COBOL record for
afield in the fielded record, then the system ignoresthe field. If thereis no
corresponding field in the fielded record for an element specified in the COBOL
record, the system copies anull value into the element. The null value used can be
defined for each element in the view description.

To storemultiple occurrences of afieldinthe COBOL record, arecord element should
be defined with OCCURS. If the number of occurrences of thefield in the record is
smaller than the number of occurrences of the element, the extra element slots are
assigned null values. Alternatively, if the number of occurrences of the field in the
record is higher than the number of occurrences of the element, then the surplus
occurrences are ignored.

For FML32 and VI EV82, theFI NI T32, FVSTOF32, and FVFTOS32 procedures should be
used.

Upon successful completion, the system sets the FM_- STATUS to FOK. On error, the
system sets the FM_- STATUS to a non-zero value.

Programming a BEA Tuxedo ATMI Application Using COBOL 3-19

3 Managing Typed Records

Creating an FML Header File

In order to usean FM. typed record in client programsor service subroutines, you must
create an FML header file and specify it in the application #i ncl ude statements.

To create an FM_ header file from afield table file, use the mkf | dhdr (1) command.
For example, to create afile called nyvi ew. f I ds. h, enter the following command:

nkf | dhdr nyvi ew fl ds
For FM_32 typed records, use the nkf | dhdr 32 command.

Thefollowing listing shows the myvi ew. f | ds. h header file that is created by the
mkf | dhdr command.

Listing 3-6 myview.flds.h Header File

[* f nane fldid */

I T */

#define FLOAT1 ((FLDI D) 24686) /* nunber: 110 type: float */
#define DOUBLEl ((FLDI D) 32879) /* nunber: 111 type: double */
#define LONGL ((FLDI D) 8304) /* nunber: 112 type: |ong */
#define SHORT1 ((FLDI D)113) /* nunber: 113 type: short */
#define |NT1 ((FLDI D) 8306) /* nunber: 114 type: |ong */
#define DECL ((FLDI D) 41075) /* nunber: 115 type: string */
#define CHARL ((FLDI D) 16500) /* nunber: 116 type: char */
#define STRI NGL ((FLDI D)41077) /* nunber: 117 type: string */
#define CARRAY1 ((FLDI D) 49270) /* nunber: 118 type: carray */

Specify the new header file in the #i ncl ude statement of your application. Once the
header fileisincluded, you can refer to fields by their symbolic names.

See Also

m “UsingaVIEW Typed Record” on page 3-7
m “Using an XML Typed Record” on page 3-21

3-20 Programming a BEA Tuxedo ATMI Application Using COBOL

Using an XML Typed Record

m nkfldhdr, nkfldhdr32(1) inthe BEA Tuxedo Command Reference

Using an XML Typed Record

XXM records enable BEA Tuxedo applicationsto use XML for exchanging datawithin
and between applications. BEA Tuxedo applications can send and receive simple XML
records, and route those records to the appropriate servers. All logic for dealing with
XM documents, including parsing, residesin the application.

An XM document consists of:
m A sequence of characters that encode the text of a document

m A description of the logical structure of the document and information about that
structure

Formatting and filtering for Events processing (which are supported when a STRI NG
record type is used) are not supported for the XM_ record type. Therefore, the
_tnfilter and _tnfor mat pointersintherecord type switch for XM recordsare set
to LOW-VALUE.

The XM parser in the BEA Tuxedo system performs the following routines:
m Autodetection of character encodings

m Character code conversion

m Detection of element content and attribute values

m Datatype conversion

Data-dependent routing is supported for XM records. The routing of an XM document
can be based on element content, or on element type and an attribute value. The XML
parser determines the character encoding being used; if the encoding differs from the
native character sets (US-ASCII or EBCDIC) used in the BEA Tuxedo configuration
files (UBBCONFI G and DMCONFI G), the element and attribute names are converted to
US-ASCII or EBCDIC.

Attributes configured for routing must be included in an XML document. If an attribute
is configured as arouting criteria but it is not included in the XM document, routing
processing fails.

Programming a BEA Tuxedo ATMI Application Using COBOL 321

3 Managing Typed Records

The content of an element and the val ue of an attribute must conform to the syntax and
semantics required for arouting field value. The user must al so specify thetype of the
routing field value. XML supports only character data. If arange field is numeric, the

content or value of that field is converted to anumeric value during routing processing.

See Also

m “UsingaVIEW Typed Record” on page 3-7
m “Using an FML Typed Record” on page 3-14

3-22 Programming a BEA Tuxedo ATMI Application Using COBOL

Using an XML Typed Record

Programming a BEA Tuxedo ATMI Application Using COBOL 3-23

3 Managing Typed Records

3-24 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

4 Writing Clients

Thistopic includes the following sections:

Joining an Application

Using Features of the TPINFDEF-REC Record
Leaving the Application

Building Clients

Client Process Examples

Joining an Application

Beforean ATMI client can perform any service request, it must join the BEA Tuxedo
ATMI application, either explicitly or implicitly. Once the client has joined the
application, it can initiate requests and receive replies.

A client joins an application explicitly by calling TPI NI TI ALl ZE(3cbl) with the
following signature:

01

01
01

TPI NFDEF- REC.

COPY TPI NFDEF.

USER- DATA- REC PI C X(any-1ength).
TPSTATUS- REC.

COPY TPSTATUS.

CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC USER- DATA- REC TPSTATUS- REC.

A client joinsan application implicitly by issuing aservice request (or any ATMI call)
without first calling TPI NI TI ALI ZE. In thiscase, TPI NI TI ALI ZEiscalled by the BEA
Tuxedo system on behalf of the client with the SPACES parameter.The TPI NFDEF- REC

Programming a BEA Tuxedo ATMI Application Using COBOL 4-1

4 writing Clients

record is a special BEA Tuxedo system typed record used by a client program to pass
client identification and authentication information to the system when the client
attempts to join the application. It is defined in a COBOL COPY file, as follows:

05 USRNANE PI C X(30).
05 CLTNAME PI C X(30).
05 PASSWD PI C X(30).
05 GRPNANE PI C X(30).
05 NOTI FI CATI ON- FLAG PI C S9(9) COVP-5.
88 TPU-SI G VALUE 1.
88 TPU-DI P VALUE 2.
88 TPU- I GN VALUE 3.
05 ACCESS- FLAG Pl C S9(9) COMP-5.
88 TPSA- FASTPATH VALUE 1.
88 TPSA- PROTECTED VALUE 2.

05 DATALEN

PI C S9(9) COMP-5.

Thefollowing table lists the fields that are defined in a COBOL COPY file.

Table4-1 COBOL COPY FileFields

Field

Description

USRNANME

Name representing thecaller. Y ou may want to specify thevalue
returned by the UNIX command get ui d(2) within thisfield.
The value of USRNAME may contain up to MAXTI DENT
characters (which is defined as 30).

CLTNAME

Name of aclient for which the semantics are
application-defined. The value of CLTNAME may contain up to
MAXTI DENT characters (which is defined as 30).

PASSWD

Application password in unencrypted format that is used by
TPI NI TI ALI ZE for validation against the application
password stored in the TUXCONFI Gfile. PASSWD s a string of
up to MAXTI DENT characters.

GRPNAMVE

Resource manager group namewith which you want to associate
the client. The client can access an X A-compliant resource
manager as part of a global transaction. The GRPNAME can be a
value up to MAXTI DENT characters (which is defined as 30).
Currently, however, the GRPNAME must be passed as SPACES
specifying that the client is not associated with aresource
manager group and isin the default client group.

4-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Using Features of the TPINFDEF-REC Record

Field

Description

NOTI FI CATI ON- FLAG

Notification mechanism and system access mode to be used.
Refer to “Unsolicited Notification Handling” on page 4-5 for a
list of valid values.

ACCESS- FLAG System access mode used. Refer to “ System Access Mode” on
page 4-7 for alist of values.
DATALEN Length of the application-specific data that will be sent to the

authentication service. For native clients, itisnot encoded by the
system, but passed to the authentication service as provided by
the client. For workstation clients, client authentication is
handled by the system, and passed over the network in encrypted
form.

The USRNAME and CLTNAME fields are associated with the client process when
TPI NI TI ALI ZE iscalled. Both fields are used for both broadcast notification and the
retrieval of administrative statistics.

See Also

m TP NI Tl ALl ZE(3chl) in the BEA Tuxedo ATMI COBOL Function Reference

Using Features of the TPINFDEF-REC Record

The ATMI client must explicitly invoke TPI NI TI ALI ZE in order to take advantage of
the following features of the TPI NFDEF- REC record:

Client Naming

Unsolicited Notification Handling

System Access Mode

Resource Manager Association

Programming a BEA Tuxedo ATMI Application Using COBOL 4-3

4 writing Clients

m Client Authentication

Client Naming

When an ATMI client joins an application, the BEA Tuxedo system assigns a unique
client identifier to it. Theidentifier is passed to each service called by the client. It can
also be used for unsolicited notification.

Y ou can aso assign unique client and usernames of up to 30 characters each, by
passing them to TPI NI Tl ALI ZE viathe TPI NFDEF- REC record. The BEA Tuxedo
system establishes a unique identifier for each process by combining the client and
usernames associated with it, with the logical machine identifier (LMID) of the
machine on which the processisrunning. Y ou may choose a method for acquiring the
values for these fields.

Note: If aprocessisexecuting outside the administrative domain of the application
(that is, if it isrunning on aworkstation connected to the administrative
domain), the LMID of the machine used by the Workstation client to access
the application is assigned.

Once aunique identifier for a client processis created:
m Client authentication can be implemented.

m Unsolicited messages can be sent to a specific client or to groups of clientsvia
TPNOTI FY and TPBROADCAST.

m Detailed statistical information can be gathered viat madmi n(1) .

Refer to “Writing Event-based Clients and Servers” on page 8-1 for information on
sending and receiving unsolicited messages, and the BEA Tuxedo ATMI C Function
Reference for more information ont madmi n(1) .

The following figure shows how names might be associated with clients accessing an
application. In the example, the application usesthe cl t nane field to indicate ajob
function.

4-4 Programming a BEA Tuxedo ATMI Application Using COBOL

Using Features of the TPINFDEF-REC Record

Figure4-1 Client Naming

LMID: NODEL — LMID: NDDEI
ustname: john I ustname: jane
cliname: teller o diname: teller
ol
£
) O
NETWORK - - _
M] LMID: WODEZ2
g W ustname: janes
o) clthame: manager
D D
o e
s 2
physical connections
. logica connections

Unsolicited Notification Handling

Unsolicited notification refers to any communication with an ATMI client that is not
an expected response to a service request (or an error code). For example, an
administrator may broadcast amessage to indicate that the system will go downinfive
minutes.

A client can be notified of an unsolicited message in a number of ways. For example,
some operating systems might send asignal to the client and interrupt its current
processing. By default, the BEA Tuxedo system checks for unsolicited messages each
time an ATMI call isinvoked. This approach, referred to as dip-in, is advantageous
becauseit:

m Issupported on al platforms
m Does not interrupt the current processing

Assometimemay elapse between “dip-ins,” the application can call the TPCHKUNSCOL
call to check for any waiting unsolicited messages. Refer to “Writing Event-based
Clientsand Servers” on page 8-1 for more information on the TPCHKUNSCL call.

Programming a BEA Tuxedo ATMI Application Using COBOL 4-5

4 writing Clients

When aclient joins an application using TPI NI TI ALI ZE, it can control how to handle
unsolicited notification messagesby defining flags. For client notification, the possible
values for NOTI FI CATI ON- FLAG are defined in the following table.

Table 4-2 Client Notification Flagsin a TPINFDEF-REC Record

Flag

Description

TPU_SI G

Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. The
advantage of using this mode isimmediate notification. The
disadvantages include:

m The calling process must have the same Ul D as the sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

m TPU_SI Gisnot availableon al platforms (specifically, itis
not available on M S-DOS workstations).

If you specify this flag but do not meet the system or

environmental requirements, the flag is set to TPU_DI P and the

event islogged.

TPU_DI P (defaullt)

Select unsolicited notification by dip-in. In this case, the client

can specify the name of the message handling routine using the
TPSETUNSCL call, and check for waiting unsolicited messages
using the TPCHKUNSOL call.

TPU_THREAD

Select THREAD notification in a separate thread. Thisflag is
alowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support
multithreading, it isconsidered an invalid argument. Asaresult,
an error isreturned and TP- STATUS is set to TPEI NVAL.

TPU | GN

Ignore unsolicited notification.

Referto TPI NI TI ALI ZE(3cbl) inthe BEA Tuxedo ATMI COBOL Function Reference
for more information on the TPI NFDEF- REC flags.

4-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Using Features of the TPINFDEF-REC Record

System Access Mode

An application can access the BEA Tuxedo system through either of two modes:
protected or fastpath. The ATMI client can request amode when it joins an application
using TPI NI TI ALI ZE. To specify amode, a client passes one of the following values
in the ACCESS- FLAG field of the TPI NFDEF- REC record to TPI NI TI ALI ZE.

Table 4-3 System AccessFlagsin a TPINFDEF-REC Record

Mode Description

TPSA- PROTECTED Allows ATMI calls within an application to access the BEA
Tuxedo system internal tables via shared memory, but protects
shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overrides the value in
UBBCONFI G, exceptwhen NO_OVERRI DEisspecified. Refer to
Setting Up a BEA Tuxedo Application for more information on

UBBCONFI G,
TPSA- FASTPATH Allows ATMI calls within application code access to BEA
(default) Tuxedo system internal s via shared memory. Does not protect

shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overrides the value of
UBBCONFI Gexcept when NO_OVERRI DE is specified. Refer to
Setting Up a BEA Tuxedo Application for more information on
UBBCONFI G.

Resource Manager Association

An application administrator can configure groups for servers associated with a
resource manager, including servers that provide administrative processes for
coordinating transactions. Refer to Setting Up a BEA Tuxedo Application for
information on defining groups.

When joining the application, aclient can join a particular group by specifying the
name of that group in the gr pnane field of TPI NFDEF- REC.

Programming a BEA Tuxedo ATMI Application Using COBOL 4-7

4 writing Clients

Client Authentication

The BEA Tuxedo system provides security at incremental levels, including operating
system security, application password, user authentication, optional access control
lists, mandatory access control lists, and link-level encryption. Refer to Setting Up a
BEA Tuxedo Application for information on setting security levels.

The application password security level requiresevery client to provide an application
password when it joins the application. The administrator can set or change the
application password and must provide it to valid users.

If thislevel of security isused, BEA Tuxedo system-supplied client programs, such as
ud() , prompt for the application password. (Refer to Administering a BEA Tuxedo
Application at Run Time for more information on ud, wud(1).) Inturn,
application-specific client programs must include code for obtaining the password
from auser. The unencrypted password is placed in the TPI NFDEF- REC record and
evaluated when the client calls TPI NI TI ALI ZE to join the application.

Note: The password should not be displayed on the screen.

Y ou can use TPCHKAUTH(3chl) to determine:
m Whether the application requires any authentication

m If the application requires authentication, which of the following types of
authentication is needed:

e System authentication based on an application password

e Application authentication based on an application password and
user-specific information

Typically, aclient should call TPCHKAUTH before TPI NI TI ALI ZE to identify any
additional security information that must be provided during initialization.

Refer to Using Security in CORBA Applications for more information on security
programming techniques.

4-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Leaving the Application

Leaving the Application

Once al service requests have been issued and replies received, the ATMI client can
leave the application using TPTERM 3chbl) . The TPTERMcall signature is as follows:

01 TPSTATUS- REC.

COPY TPSTATUS.
CALL "TPTERM' USI NG TPSTATUS- REC.

Building Clients

To build an executable ATMI client, compile your application with the BEA Tuxedo
system libraries and all other referenced files using the bui | dcl i ent (1) command.
Include the - C option to indicate that you are compiling a COBOL program. Use the
following syntax for the bui | dcl i ent command:

buildclient -C filenane.cbl -o filenane -f filenanmes -I fil enanes

The following table describes the options to the bui | dcl i ent command.

Table 4-4 buildclient Options

ThisOption or Allows You to Specify . . .

Argument . ..

fil enane. cbl The COBOL application to be compiled.

-o filenane The executable output file. The default name for the output file
isa. out.

-f filenanes A list of filesthat are to be link edited before the BEA Tuxedo

system libraries are link edited. Y ou can specify - f more than
once on the command line, and you can include multiple
filenames for each occurrence of - f . If you specify a COBOL
programfile(fi | e. cbl),itiscompiled beforeitislinked. Y ou
can specify other object files(f i | e. 0) separately, or ingroups
inan archivefile(fil e. a).

Programming a BEA Tuxedo ATMI Application Using COBOL 4-9

4 writing Clients

This Option or Allows You to Specify . . .
Argument . ..
-1 filenanes A list of filesthat are to be link edited after the BEA Tuxedo

system libraries are link edited. Y ou can specify -1 more than
once on the command line, and you can include multiple
filenames for each occurrence of - | . If you specify a COBOL
programfile(f i | e. cbl),itiscompiled beforeitislinked. Y ou
can specify other object files(f i | e. 0) separately, or in groups
inan archivefile(fil e. a).

-r The resource manager has accessto libraries that should be link
edited with the executabl e server. The application administrator
is responsible for predefining all valid resource manager
information in the $TUXDI R/ updat aobj / RMfile using the
bui | dt ms('1) command. Only one resource manager can be
specified. Refer to Setting Up a BEA Tuxedo Application for
more information.

Note: TheBEA Tuxedo libraries are linked in automatically; you do not need to
specify any BEA Tuxedo libraries on the command line.

The order in which you specify the library filesto be link edited is significant: it
depends on the order in which functions are called in the code, and which libraries
contain references to those functions.

By default, the bui | dcl i ent command invokesthe UNIX cc command. Y ou can set
the ALTCC and ALTCFLAGS environment variables to specify an alternative compile
command, and to set flags for the compile and link-edit phases, respectively. By
default, ALTCCis set to cobcc. For more information, refer to “ Setting Environment
Variables’ on page 2-5.

Note: OnaWindows 2000 system, the ALTCC and ALTCFLAGS environment
variablesare not applicable; setting them will produce unexpected results. Y ou
must compile your application by first using a COBOL compiler, and then
passing the resulting object file to the bui | dcl i ent command. For example:

buildclient -C -0 audit -f audit.o

Thefollowing example command line compilesaCOBOL program calledaudi t . cbl
and generates an executabl e file named audi t .

buildclient -C —o audit —f audit.chbl

4-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Client Process Examples

See Also

m “Building Servers’ on page 5-32

®m buildclient(1) inthe BEA Tuxedo Command Reference

Client Process Examples

The following pseudo-code shows how atypical ATMI client process works from the
time at which it joins an application to the time at which it leaves the application.

Listing4-1 Typical Client Process Paradigm

Check | evel of security
CALL TPSETUNSCL to nane your handler routine for TPU-D P
get USRNAME, CLTNAME
pronpt for applicati on PASSWD
SET TPU-DI P TO TRUE.
CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC
USER- DATA- REC
TPSTATUS- REC
I F NOT TPOK
error processing

nmake service cal
receive the reply
check for unsolicited nessages

CALL "TPTERM' USI NG TPSTATUS- REC.
I'F NOT TPOK
error processing

EXI T PROGRAM

In this example, TPI NI TI ALI ZE takes three arguments:

Programming a BEA Tuxedo ATMI Application Using COBOL 4-11

4 writing Clients

® TPl NFDEF- REC, a structure defined in the COBOL CoPY file
m User data (USER- DATA- REC)
B TPSTATUS- REC, a status structure defined in the COBOL COPY file

Both TPI NI TI ALI ZE and TPTERMreturn [TPOK] in TP- STATUS | N TPSTATUS- REC
upon success. If either command encounters an error, the command fails and sets
TP- STATUS to a value that indicates the nature of the error. TPSTATUS- REC is defined
ina COBOL CorY file. Refer to “Managing Errors’ on page 11-1 for possible

TP- STATUS values. Refer to “Introduction to the COBOL Application-Transaction
Monitor Interface” in the BEA Tuxedo ATMI COBOL Function Reference for a
complete list of error codes that can be returned for each of the ATMI calls.

Thefollowing exampleillustrates how to usethe TPI NI TI ALI ZE and TPTERMroutines.
This example is borrowed from, bankapp, the sample banking application that is
provided with the BEA Tuxedo system.

Listing 4-2 Joining and L eaving an Application

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. FI GL- 3.

AUTHOR. TUXEDO DEVELOPMENT.
ENVI RONVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.

*

WCRKI NG STORAGE SECTI ON.

khkkhkhkhkkhkhhhhhhhhhhhhkhhhkhkhkhkhhkhkhdkkhhdkdhhdhhddhdrhdhkhdhkdkkx*x

* Tuxedo definitions

RS R R E RS S EE RS EEE RS EEEREEEEREESEEREREEEEEREEEEEREEEREEEEEE S
01 TPSTATUS- REC.

CCPY TPSTATUS.

*

01 TPI NFDEF- REC.
CCPY TPI NFDEF.

hkhkkhkhkkhkhhhkhhkhhhhhhhkhhhkhkhkhkhhkhkhdkdhdkkhhdkhhdhkhhhhhdhkhdhkdkkx*x

* Log nessages definitions
khkkhkkkhkhkhkhkhkhhhkhkhhhhkhkdhhkhhkhdhdhhkhhkddhrhrkhhdkrkrdhrhrkrrkdrxhhddxx

01 LOGVSG
05 FILLER Pl C X(10) VALUE "FIGl2-3 =>".
05 LOGMBG TEXT PI C X(50).

01 LOGVBG LEN Pl C S9(9) COMP-5.

*

01 USER- DATA-REC PIC X(75).

hkkhkkhkhkhkkhkhhkhkhhhhhhhkhhkhkhhkhkhkhkhhhkkhhdhkhhkdhkhdhhkhhdhhhkhhkdhkhkhkhkkkxx*xx*x

4-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Client Process Examples

PROCEDURE DI VI SI ON.
START- HERE.
MOVE LENGTH OF LOGVSG TO LOGMSG LEN.

R R S I R S S S S R S R R

* Now register the client with the system

R S I R S S R S O O R S
MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

MOVE SPACES TO PASSVD.

MOVE SPACES TO GRPNAME.

MOVE ZERO TO DATALEN.

SET TPU-DI P TO TRUE.

*

CALL "TPI NI TI ALI ZE* USI NG TPI NFDEF- REC
USER- DATA- REC
TPSTATUS- REC.
I'F NOT TPOK
MOVE "TPI NI TI ALI ZE FAI LED' TO LOGWSG- TEXT
PERFCRM DO- USERLOG
PERFCRM EXI T- PROGRAM

R S A S S S R S O S O S S I R O

* Application specific code
kkkhkkkhkkhkhhkkdhhhkhkhkhhhkhkhhkhhkhkdhhhhkhhrrdhhhkhddhxrhhrhrkdxxhkx*x

R S S S S S

*Leave Application
kkkhkkkhkhkhkhkkdhhhkhkhkhdhhkhkhhkhhkhkdhhhhhhrdhhkhkhddrxhrhhrhrkdxkxhkx*x
CALL "TPTERM' USI NG TPSTATUS- REC.
IF NOT TPOX

MOVE " TPTERM FAI LED' TO LOGVSG TEXT

PERFCORM DO- USERLCG.
EXI T- PROGRAM
STOP RUN.

R S R I S S S S O O S S S

* Log nessages to the userlog
khkkhkkkhkkhkhkhkhkkhhhkhkhkhhhkhkhhkhkhkhkdhrhhhhhhdhhhhddrxhrhhhrkdxkxhkx*x

DO- USERLCG.
CALL "USERLOG' USI NG LOGMSG
LOGVSG- LEN

TPSTATUS- REC.

The previous example shows the client process attempting to join the application with
acall to TPI NI TI ALI ZE. If an error is encountered, a message is written to the central
event log viaacall to USERLCG.

Programming a BEA Tuxedo ATMI Application Using COBOL 4-13

4 writing Clients

4-14 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

5 Writing Servers

Thistopic includes the following sections:

m BEA Tuxedo System Controlling Program
m System-supplied Server and Services

m Guidelines for Writing Servers

m Defining a Service

m Terminating a Service Routine

m Advertising and Unadvertising Services

m Building Servers

BEA Tuxedo System Controlling Program

To facilitate the development of ATMI servers, the BEA Tuxedo system provides a
predefined controlling program for server load modules. When you execute the

bui | dser ver - Ccommand, the controlling program isautomatically included as part
of the server.

Note: The controlling program that the system provides is a closed abstraction; you
cannot modify it.

In addition to joining and exiting from an application, the predefined controlling
program accomplishes the following tasks on behalf of the server.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-1

5 Writing Servers

m Executes the process ignoring any hangups (that is, it ignores the SI GHUP
signa).

m |nitiates the cleanup process on receipt of the standard operating system software
termination signal (SI GTERM. The server is shut down and must be rebooted if
needed again.

m Attachesto shared memory for bulletin board services.
m Creates a message queue for the process.

m Advertisestheinitial servicesto be offered by the server. Theinitial services are
either al the serviceslink edited with the predefined controlling program, or a
subset specified by the BEA Tuxedo system administrator in the configuration
file.

m Processes command-line arguments up to the double dash (- -), which indicates
the end of system-recognized arguments.

m Callstheroutine TPSVRI NI T to process any command-line arguments listed after
the double dash (- -) and optionally to open the resource manager. These
command-line arguments are used for application-specific initialization.

m Until ordered to halt, checks its request queue for service request messages.

m When a service request message arrives on the request queue, mai n() performs
the following tasks until ordered to halt:

e |If the-r optionisspecified, records the starting time of the service reguest.
¢ Updatesthe bulletin board to indicate that the server is BUSY.

e Dispatchesthe service; that is, calls the service subroutine.

m When the service returns from processing its input, mai n() performs the
following tasks until ordered to halt:

e |If the-r optionisspecified, records the ending time of the service reguest.
e Updates statistics.

¢ Updatesthe bulletin board to indicate that the server is| DLE; that is, that the
server is ready for work.

e Checksits queue for the next service reguest.

5-2 Programming a BEA Tuxedo ATMI Application Using COBOL

System-supplied Server and Services

m When the server isrequired to halt, calls TPSVRDONE to perform any required
shutdown operations.

Asindicated above, the mai n() routine handles all of the details associated with
joining and exiting from an application, managing records and transactions, and
handling communication.

Note: Because the system-supplied controlling program accomplishes the work of
joining and leaving the application, you should not include calls to the
TPI NI TI ALI ZE or TPTERMroutine in your code. If you do, the routine
encounters an error and returns TPEPROTOin TP- STATUS. For more
information on the TPI NI TI ALI ZE or TPTERMroutine, refer to “Writing
Clients’ on page 4-1.

System-supplied Server and Services

The controlling program provides one system-supplied ATMI server, AUTHSVR, and
two subroutines, TPSVRI NIl T and TPSVRDONE. The default versions of all three, which
are described in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions of TPSVRI NI T and TPSVRDONE,
remember that the default versions of these two routines call t x_open() and
tx_cl ose(), respectively. If you writeanew version of TPSVRI NI T that calls
t popen() rather thant x_open() , you should also write a new version of
TPSVRDONE that callst pcl ose() . In other words, both routinesin an
open/close pair must belong to the same set.

System-supplied Server: AUTHSVR()

Y ou can use the AUTHSVR(5) server to provide individua client authentication for an
application. The TPI NI TI ALI ZE routine callsthis server when the level of security for
the application is TPAPPAUTH, USER_AUTH, ACL, or MANDATORY_ACL.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-3

5 Writing Servers

The service in AUTHSVR looks in the USER- DATA- REC record for a user password (not
to be confused with the application password specified in the PASSWD field of the
TPI NFDEF- REC record). By default, the system takes the string in dat a and searches
for amatching string in the/ et ¢/ passwd file.

When called by a native-site client, TPI NI TI ALI ZE forwards the USER- DATA- REC
record as it isreceived. This means that if the application requires the password to be
encrypted, the client program must be coded accordingly.

When called by aWorkstation client, TPI NI TI ALI ZE encrypts the data before sending
it across the network.

System-supplied Services: TPSVRINIT Routine

When a server is booted, the BEA Tuxedo system controlling program calls
TPSVRI NI T(3cbl) during itsinitiaization phase, before handling any service
requests.

If an application does not provide a custom version of this routine within the server,
the system uses the default routine provided by the controlling program, which opens
the resource manager and logs an entry in the central event log indicating that the
server has successfully started. The central user log is an automatically generated file
to which processes can write messages by calling the USERLOG 3cbl) routine. Refer
to “Managing Errors’ on page 11-1 for more information on the central event log.

Y ou can use the TPSVRI NI T routine for any initialization processes that might be
required by an application, such as the following:

m Receiving command-line options
m Opening adatabase

The following sections provide code samples showing how these initialization tasks
are performed through callsto TPSVRI NI T. Although it is not illustrated in the
following examples, message exchanges can also be performed within this routine.
However, TPSVRI NI T failsif it returnswith asynchronousrepliespending. Inthiscase,
the replies are ignored by the BEA Tuxedo system, and the server exits gracefully.

You can aso use the TPSVRI NI T routine to start and compl ete transactions, as
described in “Managing Errors’ on page 11-1.

Use the following signature to call the TPSVRI NI T :routine

5-4 Programming a BEA Tuxedo ATMI Application Using COBOL

System-supplied Server and Services

LI NKAGE SECTI ON.
01 COVD- LI NE.

05 ARGC PIC 9(4) COWP-5.

05 ARGV.

10 ARGS PIC X OCCURS 0 TO 9999 DEPENDI NG ON ARGC.
01 TPSTATUS- REC.
COPY TPSTATUS.

PROCEDURE DI VI SI ON USI NG CVD- LI NE TPSTATUS- REC.
* User code
EXI T PROGRAM

Receiving Command-line Options

When a server is booted, its first task is to read the server options specified in the
configuration file. The options are passed through ARGC, which contains the number of
arguments, and ARGV, which contains the arguments separated by a single SPACE
character. The predefined controlling program then calls TPSVRI NI T.

The following code example shows how the TPSVRI NI T routine is used to receive
command-line options.

Listing5-1 Receiving Command-line Optionsin TPSVRINIT

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TPSVRI NI T.
ENVI RONVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOQURCE- COWPUTER. USL- 486.
OBJECT- COWUTER. USL- 486.

DATA DI VI SI ON.
WCRKI NG STORAGE SECTI ON.

LI NKAGE SECTI ON.

01 OVD-LINE.
05 ARGC PIC 9(4) COW-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDI NG ON ARGL.
01 SERVER- | NI T- STATUS.
COPY TPSTATUS.

*

PRCCEDURE DI VI SI ON USI NG CMD- LI NE SERVER- | NI T- STATUS.

R R R o S S Rk Sk S S S S S S S S O R R O R R S R O

* ARGC i ndicates the nunber of arguments and ARGV contains the

Programming a BEA Tuxedo ATMI Application Using COBOL 5-5

5 Writing Servers

* argunents separated by a single SPACE

khkkhkhkhkkhkhhhkhhhhkhhhkhhkhkhhkhkhkhkhhhkdhdhdhhdhkhdhhhdhhhhdhhdhhkhkdhkhkhkkxrkxrxx*

A- START.
*
I NSPECT the ARGV line and process argunents
I F argunents are invalid
SET TPEINVAL | N SERVER-I NI T- STATUS TO TRUE.
ELSE argunents are OK continue
SET TPOK | N SERVER- | NI T- STATUS TO TRUE.

EXI T PROGRAM

Opening a Resource Manager

The following example illustrates another common use of TPSVRI NI T: opening a
resource manager. The BEA Tuxedo system provides routines to open a resource
manager, TPOPEN(3chl) and TXOPEN(3cbl) . It also provides the complementary
routines, TPCLOSE(3cbl) and TXCLOSE(3chl) . Applications that use these routines
to open and close their resource managers are portable in this respect. They work by
accessing the resource manager instance-specific information that is available in the
configuration file.

These routine calls are optional and can be used in place of the resource manager
specific callsthat are sometimes part of the Data Manipulation Language (DML) if the
resource manager is a database. Note the use of the USERLOG(3cbl) routineto write
to the central event log.

Note: To create an initialization function that both receives command-line options
and opens a database, combine the following example with the previous
example.

Listing 5-2 Opening a Resource Manager in TPSVRINIT

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- | D. TPSVRINIT.
ENVI RONMENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. USL- 486.
OBJECT- COMPUTER. USL- 486.

DATA DI VI SI ON.

5-6 Programming a BEA Tuxedo ATMI Application Using COBOL

System-supplied Server and Services

WCRKI NG STORAGE SECTI ON.
01 TPSTATUS- REC.
COPY TPSTATUS.
01 LOGMBG Pl C X(50).
01 LOGMBG LEN PIC S9(9) COWP-5.

LI NKAGE SECTI ON.
01 CMD-LI NE.
05 ARGC PIC 9(4) COW-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDI NG ON ARGLC.
01 SERVER- | NI T- STATUS.
COPY TPSTATUS.

PROCEDURE DI VI SI ON USI NG CVD- LI NE SERVER- | NI T- STATUS.
A- START.
I NSPECT the ARGV line and process argunents
I F argunents are invalid
MOVE "I nvalid Arguments Passed" TO LOGVSG
PERFORM EXI T- NOW
ELSE argunments are OK continue

CALL " TPOPEN' USI NG TPSTATUS- REC.
I'F NOT TPOK
MOVE "TPOPEN Fail ed" TO LOGVEG
ELSE | F TPESYSTEM
MOVE "System /T error has occurred" TO LOGVBG
ELSE | F TPECS
MOVE "An Operating Systemerror has occurred" TO LOGVSG
ELSE | F TPEPROTO
MOVE " TPOPEN was called in an i nproper Context" TO LOGVSG
ELSE | F TPERVERR
MOVE "Resource manager Failed to Open" TO LOGVSG
PERFORM EXI T- NOW
SET TPOK I N SERVER-| NI T- STATUS TO TRUE.
EXI T PROGRAM
EXI T- NOW
SET TPEI NVAL I N SERVER- | NI T- STATUS TO TRUE
MOVE 50 LOGMVSG LEN.
CALL "USERLOG' USI NG LOGVSG
LOGVSG- LEN
TPSTATUS- REC.
EXI T PROGRAM

To guard against errorsthat may occur during initialization, TPSVRI NI T can be coded
to alow the server to exit gracefully before starting to process service requests.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-7

5 Writing Servers

System-supplied Services: TPSVRDONE Routine

The TPSVRDONE routine calls TPCLOSE to close the resource manager, similarly to the
way TPSVRI NI T calls TPOPEN to open it.

Use the following signature to call the TPSVRDONE routine:

01 TPSTATUS- REC.
CCPY TPSTATUS.
PROCEDURE DI VI SI ON.
* User code
EXIT PROGRAM

Thefollowing example illustrates how to use the TPSVRDONE routine to close a
resource manager and exit gracefully.

Listing 5-3 Closing a Resour ce Manager with TPSVRDONE

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TPSVRDONE.
ENVI RONMVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. USL- 486.
OBJECT- COMPUTER. USL- 486.

DATA DI VI SI ON.
WORKI NG- STORAGE SECTI ON.
01 TPSTATUS- REC.
COPY TPSTATUS.
01 LOGVSG PI C X(50).
01 LOGVSG LEN PI C S9(9) COWP-5.
01 SERVER- DONE- STATUS.
COPY TPSTATUS.
PROCEDURE DI VI SI ON.
A- START.
CALL "TPCLOSE" USI NG TPSTATUS- REC.
I'F NOT TPOK
MOVE " TPCLOSE Fail ed" TO LOGVBG
ELSE | F TPESYSTEM
MOVE "System /T error has occurred" TO LOGVSG
ELSE | F TPECS
MOVE "An (perating System error has occurred" TO LOGVSG
ELSE | F TPEPROTO
MOVE " TPCLOSE was cal |l ed in an inproper Context" TO LOGVBG
ELSE | F TPERVERR

5-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Guidelines for Writing Servers

MOVE " Resource manager Failed to Open" TO LOGVSG
PERFORM EXI T- NOW
SET TPOK I N SERVER- DONE- STATUS TO TRUE.
EXIT PROGRAM
EXI T- NOW
SET TPEI NVAL | N SERVER- DONE- STATUS TO TRUE
MOVE 50 LOGVSG- LEN.
CALL "USERLOG' USI NG LOGVEG
LOGVSG- LEN
TPSTATUS- REC.
EXIT PROGRAM

Guidelines for Writing Servers

Because the communication details are handled by the BEA Tuxedo system
controlling program, you can concentrate on the application service logic rather than
communication implementation. For compatibility with the system-supplied
controlling program, however, application services must adhere to certain
conventions. Theseconventions arereferred to, collectively, asthe servicetemplatefor
coding service routines. They are summarized in the following list.

m A request/response service can receive only onerequest at atime and can send
only onereply.

m When processing a request, a request/response service works only on that
request. It can accept another only after it has either sent areply to the requester
or forwarded the request to another service for additional processing.

m Service routines must terminate by calling either the TPRETURN or TPFORWAR
routine.

= When communicating with another server via TPACALL, the initiating service
must either wait for all outstanding replies or invalidate them with TPCANCEL
before calling TPRETURN or TPFORWAR.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-9

5 Writing Servers

Defining a Service

When writing a service routine, you must call the TPSVCSTART(3cbl) routine before
any others. Thisroutine is used to retrieve the service’ s parameters and data. Use the
following signature to call the TPSVCSTART routine

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPSVCSTART" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

The service information data structure is defined as TPSVCDEF in the COBOL coPY
file. It includes the following members:

05 COMM HANDLE PIC S9(9) CQOVP-5.

05 TPBLOCK- FLAG PIC S9(9) CQOVP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) CQOVP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.

05 TPREPLY- FLAG PIC S9(9) CQOVP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.

05 TPACK- FLAG Pl C S9(9) COMP-5 REDEFI NES TPREPLY- FLAG.
88 TPNOACK VALUE 0.
88 TPACK VALUE 1.

05 TPTI ME- FLAG PIC S9(9) CQOVP-5.
88 TPTI ME VALUE 0.
88 TPNOTI ME VALUE 1.

05 TPS| GRSTRT- FLAG PIC S9(9) CQOWP-5.
88 TPNOSI GRSTRT VALUE 0.
88 TPSI GRSTRT VALUE 1.

05 TPGETANY- FLAG PIC S9(9) CQOVP-5.
88 TPGETHANDLE VALUE 0.
88 TPGETANY VALUE 1.

05 TPSENDRECV- FLAG PIC S9(9) CQOVP-5.
88 TPSENDONLY VALUE 0.
88 TPRECVONLY VALUE 1.

05 TPNOCHANGE- FLAG PIC S9(9) CQOVP-5.

5-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Defining a Service

88 TPCHANGE

VALUE 0.

88 TPNOCHANGE VALUE 1.
05 TPSERVI CETYPE-FLAG PIC S9(9) COwW-5.

88 TPRECQRSP
88 TPCONV

*

05 APPKEY

VALUE 0.
VALUE 1.

Pl C S9(9) COMP-5.

05 CLIENTID OCCURS 4 TIMES PI C S9(9) COWP-5.

05 SERVI CE- NAME

Pl C X(15).

The following table describes the members of a TPSVCDEF data structure.

Table5-1 TPSVCDEF Data Structure

Field Description

COMM HANDLE Specifies, to the serviceroutine, the communi cation handle used
by the requesting process to invoke the service.

SETTI NGS Miscellaneous settings that control server characteristics. For

(TPBLOCK- FLAG
TPTRAN FLAG, etc.)

moreinformation on the settings, refer tothe BEA Tuxedo ATMI
COBOL Function Reference.

APPKEY

Reserved for use by the application. If application-specific
authentication is part of your design, the application-specific
authentication server, which is called at thetime aclient joins
the application, should return aclient authentication key, aswell
asasuccessor failureindication. The BEA Tuxedo system holds
the APPKEY on behalf of the client and passestheinformationto
subsequent service requestsin thisfield. By the time the
APPKEY is passed to the service, the client has already been
authenticated. However, the APPKEY field can be used within
the service to identify the user invoking the service or some
other parameters associated with the user.

CLI ENTI D

Identifier of the client that originates a request.

SERVI CE- NAVE

Name of the service routine used by the requesting process to
invoke the service.

For adescription of the TPTYPE- RECdatastructure, refer to “ Defining Typed Records”

on page 3-6.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-11

5 Writing Servers

Y ou must code the service in such away that when it accesses the request data to be
placed in DATA- REC, it expects the data to be in arecord of the type defined for the
service in the configuration file. Upon successful return, DATA- REC contains the data
received and LEN contains the actual number of bytes moved.

The following sample listing shows atypical service definition.

Listing 5-4 Typical Service Definition

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. BUYSR.

AUTHOR TUXEDO DEVELOPMENT.
ENVI RONMVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. USL- 486.
OBJECT- COWPUTER. USL- 486.

I NPUT- OUTPUT SECTI ON.

hkkhkkhkhkhkkhkhhkhkhhhhhhhkhhkhkhhkhkhkdkhhdkhhdhkhhkdhhdhdhhdhdhhdhkhhkdhkhkdkhkkkxx*xx*x

* Tuxedo definitions

RS R R R RS EEE RS SRR RS EEEREEEEREEEEEREESEEEREEEEEEEEEEEEEEEE S
01 TPSVCRET- REC.
COPY TPSVCRET.

01 TPTYPE- REC.
CCPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

hkkhkkhkhkkhkhhhkhhhhkhhhkhhkhkhhkhkhkkhhhkkhhdhhhkdhkhdhhkhdhdhhhkhhkdhkhkhkhkkkx**x*x

* Log nessage definitions
khkkhkkkhkhkhkhkhkhhhkhkhhkhhkhkhhkhkhhkddhkhhhhhddhrhhdhdrxhrhhhrrkdxhrhddx*k

01 LOGMSG
05 LOGVBG- TEXT Pl C X(50).
*
01 LOGVSG LEN PI C S9(9) COVP-5.

kkhkkhkhkkhkhhkhkhhhhkhhhkhhkhkhhkhkhkkhhkkhhkkhkhhkhhhhkhhkhhhkhhkhkhkhkhkkkxx*x*x

* User defined data records
IR SRR R RS EEE RS SR E RS EEE RS EEREEEEEREESEEEREEEEEEEEEEEEEEEE S

01 CUST-REC.
COPY CUST.

5-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Defining a Service

L1 NKAGE SECTI ON.

PROCEDURE DI VI SI ON.
*
START- BUYSR
MOVE LENGIH OF LOGVBG TO LOGVBG LEN.
OPEN fil es or DATABASE

R R I O Rk S S S R S

* Get the data that was sent by the client
khkkhkkkhkkhkhkhkhkhhhkhkhkhhhhkhhkhkhhkddhhhhhhhddhrhhhddrhrdhrhrhkdxxdhx*x*x
MOVE "Server Started" TO LOGVBG TEXT.
PERFORM DO- USERLCG,
MOVE LENGTH OF CUST- REC TO LEN I N TPTYPE- REC.
CALL " TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
CUST- REC
TPSTATUS- REC.
I F TPTRUNCATE
MOVE "I nput data exceeded CUST- REC | ength" TO LOGVEG TEXT
PERFORM DO USERLOG
PERFORM A-999- EXI T.
I F NOT TPOK
MOVE " TPSVCSTART Fail ed" TO LOGVEG TEXT
PERFORM DO USERLOG
PERFORM A-999- EXI T.
I F REC-TYPE NOT = "VI EW
MOVE " REC-TYPE in not VIEW TO LOGVEG TEXT
PERFORM DO USERLOG
PERFORM A-999- EXI T.
IF SUB-TYPE NOT = "cust"
MOVE "SUB-TYPE in not cust" TO LOGVBG TEXT
PERFORM DO USERLOG
PERFORM A-999- EXI T.

set consistency |level of the transaction

*****;c*;c*;c**
* Exit
R R I R S Rk S S S
A-999-EXIT.
MOVE "Exi ting" TO LOGVSG TEXT.
PERFORM DO- USERLOG
SET TPFAIL TO TRUE
COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY CUST- REC
TPSTATUS- REC BY TPSTATUS- REC.

khkkhkhhkhhkhhhkhkhkhkhkhkhkkhhkhkhdkhkhkhhdhhhhhhhhkhhhkhhkhkhkhkhkkhkkkx*x*x*

* Wite to userlog

Programming a BEA Tuxedo ATMI Application Using COBOL 5-13

5 Writing Servers

kkhkkhkhkkhkhhhkhhhhhhhkhhkhkhhkhkhkdkdhdkddddhdhhdhdhhdhdhhdhdhdkhkdkhkkxx*x*x

DO- USERLOG
CALL "USERLOG' USI NG LOGVSG
LOGVSG LEN
TPSTATUS- REC.

In the preceding exampl e, the request record on the client side was originally sent with
REC- TYPE set to VI EWand the SUB- TYPE set to cust . The BUYSR serviceis definedin
the configuration file as a service that knows about the Vi Ewtyped record. BUYSR
retrieves the data record by accessing the CUST- REC record. The consistency level of
the transaction is specified after this record is retrieved but before the first database
access is made. For more details on transaction consistency levels, refer to “Writing
Global Transactions’ on page 9-1.

Note: The TPGPR Oand TPSPRI Oroutines, used for getting and setting priorities,
respectively, are described in detail in “ Setting and Getting M essage
Priorities’ on page 6-16.

The example codein this section shows how aservice called PRI NTERteststhe priority
level of the request just received using the TPGPRI Oroutine. Then, based on the
priority level, the application routes the print job to the appropriate destination printer
RNAME.

Next, the contents of | NPUT- REC are sent to the printer. The application queries
TPSVCDEF- REC to determine whether areply is expected. If so, it returns the name of
the destination printer to the client. For more information on the TPRETURN routine,
refer to “ Terminating a Service Routine” on page 5-18.

Listing 5-5 Checkingthe Priority of a Received Request

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. PRI NTSR.
AUTHOR TUXEDO DEVELOPMENT.
ENVI RONVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. USL- 486.
OBJECT- COWPUTER. USL- 486.

I NPUT- OUTPUT SECTI ON.

hkkhkkhkhkhkkhkhhhkhhhhkhhhhhkhkhhkhkhkdkhhdkhhdhkhhkhhdhdhhdhdhhdhdhdkhkdkhkkkx**xx*x

5-14 Programming a BEA Tuxedo ATMI Application Using COBOL

Defining a Service

* Tuxedo definitions

(R R R E RS S SRR SRR R RS SRR SR EE RS E RS R EREEEEEEEEEEREEEERSESESEE]
01 TPSVCRET- REC.
CCPY TPSVCRET.

01 TPTYPE- REC.
CCPY TPTYPE.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

01 TPSVCDEF- REC.
CCPY TPSVCDEF.

01 TPPRI DEF- REC.
CCPY TPPRI DEF.

R R I R S R S Rk S S R S I

* Log nmessage definitions
khkkhkkkhkkhkhkhkhkhhhkhkhhkhhkhkhhkhhhkdhhhhhhhddhrhhhdrhxdhrhrhkdxxdhx*x*x

01 LOGMVBG
05 FI LLER Pl C S9(9) VALUE
" TP- STATUS=".
05 LOG TP- STATUS Pl C S9(9).
05 LOGMSG TEXT Pl C X(50) .

01 LOGVSG LEN PIC S9(9) COwWP-5.

R R I S Rk S R S O

* User defined data records

(R R R R RS S SR RS EEEE SRR RS R EE RS EEERE SR EREEEEEEEEEEREEEERESEESEES
01 | NPUT- REC PI C X(1000).
01 PRNAVE Pl C X(20).

L1 NKAGE SECTI ON.

PROCEDURE DI VI SI ON.
*
START- PRI NTSR.
MOVE LENGTH OF LOGVSG TO LOGMVSG LEN.
OPEN fil es or DATABASE

khkkhkhhkhhkhhhkhhkhkhkhkhkhkhkhhkhkhhkhhhkhhdhhhdhhhhhkhdhhkhkhkhkhkkkhkkkx*x*x*

* CGet the data that was sent by the client
(R R R E RS S SR RS EEE RS EE SRS R EEESEEE RS R EREEEEEEEEEEREEEEERSESESESES
MOVE ZERO t o TP- STATUS.
MOVE " Server Started" TO LOGVBG TEXT.
PERFORM DO- USERL CG.
MOVE LENGTH OF | NPUT- REC TO LEN.
CALL " TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
| NPUT- REC

Programming a BEA Tuxedo ATMI Application Using COBOL

5 Writing Servers

TPSTATUS- REC.
I'F NOT TPOK
MOVE " TPSVCSTART Fai |l ed" TO LOGVSG TEXT
PERFORM DO- USERLOG
SET TPFAIL TO TRUE.
PERFORM A- 999- EXI T.

Check other paraneters
CALL "TPGPRI O' USI NG TPPRI DEF- REC
TPSTATUS- REC.
I F NOT TPOK
MOVE " TPGPRI O Fai | ed" TO LOGVEG TEXT
PERFORM DO- USERLOG
SET TPFAIL TO TRUE.
PERFORM A- 999- EXI T.
IF PRIORITY < 20
MOVE "Bl GIOBS" TO RNAME
ELSE IF PRRORITY < 60
MOVE " MEDJCBS' TO RNAMVE
ELSE
MOVE " H GHSPEED' TO RNAME.
Print | NPUT- REC on RNAME printer
| F TPNOREPLY
MOVE SPACES TO REC- TYPE
MOVE 0 TO LEN
SET TPSUCCESS TO TRUE
PERFORM A-999-EXI T
| F TPREPLY
MOVE " STRING' TO REC- TYPE
MOVE LENGTH OF PRNAME TO LEN
SET TPSUCCESS TO TRUE
PERFORM A- 999- EXI T.
khkkhkkkhkhkhkhkhkhhhkhkhhhhkhkhhkhkhhkddhhhhhrddhhhdhdrhrhkhhrkrkdrxhrrhddx*k
* EXit
khkkhkkhkkhkhkhkhkdhhkhkhhhhkhkhhkhhkhkddhhhhhhddhhhkddrhrhhkhrkrkdrxhrhhkddx*k
A-999-EXIT.
MOVE "Exiting" TO LOGMSG TEXT.
PERFORM DO USERLCG,
SET TPSUCCESS TO TRUE.
COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC buTPTYPE- REC
DATA- REC BY PRNAME
TPSTATUS- REC BY TPSTATUS- REC.

kkhkkhkhkhkkhkhhhkhhhhkhhhkhhkhkhhkhkhkkhhkkkhhkhhhkhkhhhkhhkhhhkhhkhkhkhkhkkk**x*x

* Wite to userlog
khkkhkkkhkkhkhkhkhkhhhkhkhkhkhhkhkhhkhhhkddhhhhhrdhhkhkhdhdrhrhkhkhrrkdxhrhkddx*k

DO- USERL GG,

5-16 Programming a BEA Tuxedo ATMI Application Using COBOL

Defining a Service

MOVE TP- STATUS TO LOG TP- STATUS.
CALL "USERLOG' USI NG LOGMVSG
LOGVSG LEN
TPSTATUS- REC.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-17

5 Writing Servers

Terminating a Service Routine

TheTPRETURN(3cbl) , TPCANCEL (3cbl) ,and TPFORWAR(3cbl) routinesspecify that
a service routine has completed with one of the following actions:

m TPRETURN sends areply to the calling client.
m TPCANCEL cancelsthe current request.

m TPFORWAR forwards arequest to another service for further processing.

Sending Replies

The TPRETURN(3chl) and TPFORWAR(3cbl) callsare COBOL copy filesthat contain
EXI T statements to mark the end of a service routine and send a message to the
requester or forward the request to another service, respectively. Use the following
signature to call the TPRETURN routine:

01 TPSVCRET- REC.
COPY TPSVCRET.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
COPY User Data.
01 TPSTATUS- REC.
COPY TPSTATUS.
COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY DATA- REC
TPSTATUS- REC BY TPSTATUS- REC.

Note: You must use COPY here instead of CALL to ensure that the EXI T statement is
called properly, and the COBOL service routine returns control to the BEA
Tuxedo system.

Thefollowing listing provides the TPSVCRET- REC record signature:
05 TPRETURN- VAL PIC S9(9) COWP-5.

88 TPSUCCESS VALUE 0.
88 TPFAI L VALUE 1.

5-18 Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating a Service Routine

88 TPFAI L
05 APPL- CODE

VALUE 2.

PIC S9(9) COVP-5.

The following table describes the members of a TPSVCRET- REC data structure.

Table5-2 TPSVCRET-REC Data Structure Members

M ember

Description

TP- RETURN- VAL

Indicates whether or not the service has completed successfully
on an application-level. The valueis an integer that is
represented by a symbolic name. Vdid settings include:

m TPSUCCESS—the caling routine succeeded. Theroutine
stores the reply message in the caller’ srecord. If thereisa
reply message, itisin the caller’'s record.

m TPFAI L (default)—the service terminated unsuccessfully.
The routine reports an error message to the client process
waiting for the reply. In this case, the client’'s TPCALL or
TPGETRPLY routine call fails and the system setsthe
TP- STATUS variable to TPESVCFAI L to indicate an
application-defined failure. If areply message was
expected, it is availablein the caller’ s record.

m TPEXI T—the service terminated unsuccessfully. The
routinereportsan error messageto theclient processwaiting
for the reply, and exits.

For adescription of the effect that the value of thisargument has
on global transactions, refer to “Writing Globa Transactions’
on page 9-1.

APPLC- CODE

Returns an application-defined return code to the caller. The
client can access the value returned in APPLC- CCDE by
querying APPL- RETURN- CODE | N TPSTATUS- REC. The
routine returns this code regardl ess of success or failure.

Refer to “Defining a Service” on page 5-10 for adescription of the TPTYPE- REC

record.

The primary function of aservice routine isto process areguest and return areply to
aclient process. It is not necessary, however, for asingle serviceto do all the work
required to perform the requested function. A service can act as arequester and pass a
request call to another servicethe sameway aclient issuestheoriginal request: through
callsto TPCALL or TPACALL.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-19

5 Writing Servers

5-20

Note: The TPCALL and TPACALL routines are described in detail in “Writing
Request/Response Clients and Servers’ on page 6-1.

When TPRETURN is called, control always returnsto the controlling program. If a
service has sent requests with asynchronousreplies, it must receiveall expected replies
or invalidate them with TPCANCEL before returning control to the controlling program.
Otherwise, the outstanding replies are automatically dropped when they are received
by the BEA Tuxedo system controlling program, and an error is returned to the caller.

If the client invokes the service with TPCALL, after a successful call to TPRETURN, the
reply message is available in the O DATA- REC record. If TPACALL is used to send the
request, and TPRETURN returns successfully, the reply message is available in the
DATA- REC record of TPGETRPLY.

If areply is expected and TPRETURN encounters errors while processing its arguments,
it sendsaf ai | ed message to the calling process. The caller detects the error by
checking the value placed in TP- STATUS. In the case of failed messages, the system
setsthe TP- STATUS to TPESVCERR. This situation takes precedence over the value of
APPL- RETURN- CODE | N TPSTATUS- REC. If thistype of error occurs, no reply datais
returned, and both the contents and Iength of the caller’ s output record remain
unchanged.

If TPRETURN returns a message in arecord of an unknown type or arecord that is not
allowed by thecaller (that is, if the call is made with TPNOCHANGE), the system returns
TPECTYPE in TP- STATUS. In this case, application success or failure cannot be
determined, and the contents and length of the output record remain unchanged.

Thevalue returned in APPL- RETURN- CCDE | N TPSTATUS- REC s not relevant if the
TPRETURN routine is invoked and atimeout occurs for the call waiting for the reply.
Thissituation takes precedence over al othersin determining the value that isreturned
in TP- STATUS. Inthiscase, TP- STATUSisset to TPETI MEand thereply dataisnot sent,
leaving the contents and length of the caller’ sreply record unchanged. There are two
types of timeouts in the BEA Tuxedo system: blocking and transaction timeouts
(discussed in “Writing Global Transactions’ on page 9-1).

The example code in this section shows the TRANSFER service that is part of the XFER
server. Basically, the TRANSFER service makes synchronous calls to the W THDRAWAL
and DEPOSI T services. It alocates aseparate record for the reply message sinceit must
use the request record for the calls to both the W THDRAWAL and the DEPOSI T services.
If the call to W THDRAWAL fails, the service writes the message cannot wi t hdr awon

Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating a Service Routine

the status line of the form and sets TP- RETURN- VAL | N TPSVCRET- REC of the
TPRETURN routine to TPFAI L. If the call succeeds, the debit balance isretrieved from
the reply record.

Note: Inthefollowing example, the application moves the identifier for the
“destination account” (which isretrieved from the cr _i d variable) to the
zeroth occurrence of the ACCOUNT _| Dfieldinthet r ansf fielded record. This
move is necessary because this occurrence of thefield in an FM record isused
for data-dependent routing. Refer to Setting Up a BEA Tuxedo Application for
more information.

A similar scenario isfollowed for the call to DEPGSI T. On success, the service setsthe
TP- RETURN- VAL | N TPSVCRET- REC to TPSUCCESS, returning the pertinent account
information to the statusline.

Listing5-6 TPRETURN Routine

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TRANSFER
AUTHCOR. TUXEDO DEVELOPMENT.
ENVI RONMVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SOURCE- COVWPUTER. USL- 486.
OBJECT- COWUTER. USL- 486.

I NPUT- OUTPUT SECTI ON.

R R I S R S S O

* Tuxedo definitions

(R R R R RS SRR RS EEE RS SRR SRS R EE RS R RS R EREEEEEEEEEEREREERERESESESESES
01 TPSVCRET- REC.
COPY TPSVCRET.

01 TPTYPE- REC.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

R R I S S S R S R S R

* User defined data records
(R R R E RS SRR RS EEE RS SRR R RS R EE RS EEE RS R EREEEEEEEEEEREEERERSEESEES

Programming a BEA Tuxedo ATMI Application Using COBOL 5-21

5 Writing Servers

01 TRANS- REC.
COPY TRANS- AMOUNT.

LI NKACE SECTI ON.
PROCEDURE DI VI SI ON.

START- TRANSFER

kkhkkhkhkhkkhkhhkhkhhhhkhhhkhhkhkhhkhkhkdkdhdkdddhhkhhdhdhhdhdhdhdhkdkhkkkhkkxx*xx*x

* Get the data that was sent by the client
khkkhkkkhkhkhkhkhkhhhkhkhhkhhkhkhhkhhhkddhhhhhhdhhhkhddrxhrhhhrrddhrrhkddx*k
MOVE LENGTH OF TRANS- REC TO LEN.
CALL "TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
TRANS- REC
TPSTATUS- REC.
IF NOT TPOK
MOVE " Transacti on Encountered An Error" TO STATUS- LI NE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY TRANS- REC
TPSTATUS- REC BY TPSTATUS- REC.
ELSE
Check other paraneters
khkkhkkkhkhkhkhkhkhhhkhkhhhhkhkdhhkhhkddhhhhhhdhhhkhhdrhrhhkhrrkdhhrhhddx*k

* must have a valid debit and credit account nunber
RS R R R RS SRR RS SRR RS RS R RS EEREEEEEREESEEEREEEEEEEEEEEEEEEE S

CALL " FI ND- ACCOUNT- FUNCTI ON' USI NG TRANS- DEBI T- ACCOUNT | N TRANS- REC.

| F TRANS- DEBI T- ACCOUNT i s not valid
MOVE "lInvalid Debit Account Nunber"
TO STATUS- LI NE | N TRANS- REC
SET TPFAIL TO TRUE
CCPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

CALL " FI ND- ACCOUNT- FUNCTI ON' USI NG TRANS- CREDI T- ACCOUNT | N TRANS- REC.

| F TRANS- CREDI T- ACCQUNT is not valid
MOVE "Invalid Credit Account Nunber"
TO STATUS- LI NE | N TRANS- REC
SET TPFAIL TO TRUE
CCPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

kkhkkhkhkhkkhkhhkhkhhhhkhhhkhhkhkhhkhkhkkhhkkkhhkdhkhhkkhkhhhkhhhhhkhhkdhkhkkkhkkx**xx*x

* Check amount to transfer
RS R R R RS SRR RS SRR E RS EEEREEEEREEEEEREESEEEEEEEEEEEEEEE SRR EEE

I F TRANS- AMOUNT | N TRANS-REC < 0

5-22 Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating a Service Routine

MOVE "I nvalid Transfer Anmount Requested"
TO STATUS-LI NE | N TRANS- REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

R S I S S S S I O R S

* Make W thdrawal using another service
khkkhkkkhkkhkhkhhkhhhkhkhhhhhkhhkhhhkddxhhhhhhddhrhhhddrrxdhrhrhkdxxdhx*x*x
MOVE "W THDRAWAL" TO SERVI CE- NAMVE.
- set other TPCALL paraneters
CALL "TPCALL" USING .
I'F NOT TPOK
MOVE " Cannot wi t hdraw from debit account”
TO STATUS- LI NE | N TRANS- REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

R R I S S R S S S S R S R S

* Make Deposit using another service
kkkhkhkkhkkhkhkhhkhhhkhkhhhhhkhhkhkhhkddrhdhhhkhkddhrhhhdrxhxdhrhrhkdxxdrx*xx
MOVE " DEPCSI T" TO SERVI CE- NAME.
set other TPCALL paraneters
CALL "TPCALL" USI NG .
I'F NOT TPOK
MOVE " Cannot Deposit into credit account”
TO STATUS-LI NE | N TRANS- REC
SET TPFAI L TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

MOVE " Transfer conpl eted" TO STATUS-LINE | N TRANS- REC
. . . MOE all the data into TRANS- REC needed by the client
SET TPSUCCESS TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

Invalidating Descriptors

If aservice calling TPGETRPLY (described in detail in “Writing Request/Response

Clientsand Servers’ on page 6-1) failswith TPETI ME and decidesto cancel the reguest,
it caninvalidate the descriptor with acall to TPCANCEL(3cbl) . If areply subsequently
arrives, it is silently discarded.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-23

5 Writing Servers

TPCANCEL cannot be used for transaction replies (that is, for replies to requests made
without the TPNOTRAN flag set). Within atransaction, TPABORT(3cbl) doesthe same
job of invalidating the transaction call descriptor.

The following example shows how to invalidate areply after timing out.

Listing 5-7 Invalidating a Reply After Timing Out

. . . Set up paranmeters to TPACALL

SET TPNOTRAN TO TRUE.

CALL "TPACALL" USI NG TPSVCDEF- REC
TPTYPE- REC
DEBI T- REC
TPSTATUS- REC.

I F NOT TPOK

error processing

.CALL. "TPGETRPLY" USI NG TPSVCDEF- REC

TPTYPE- REC
DEBI T- REC
TPSTATUS- REC.
I'F NOT TPCOK
error processing
I F TPETI ME

CALL " TPCANCEL" TPSVCDEF- REC
TPSTATUS- REC.

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY DEBI T- REC
TPSTATUS- REC BY TPSTATUS- REC.

Forwarding Requests

The TPFORWAR(3cbl) routine allows aserviceto forward a request to another service
for further processing.

Use the following signature to call the TPFORWAR routine:

01 TPSVCDEF- REC.
CCPY TPSVCDEF.

5-24 Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating a Service Routine

01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
COPY User Data.
01 TPSTATUS- REC.
COPY TPSTATUS.
COPY TPFORWAR REPLACI NG TPSVCDEF- REC BY TPSVCDEF- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY DATA- REC
TPSTATUS- REC BY TPSTATUS- REC.

For descriptions of the TPSVCDEF- REC and TPTYPE- REC records, refer to “ Defining a
Service” on page 5-10.

The functionality of TPFORWAR differs from a service call: a service that forwards a

request does not expect areply. The responsibility for providing the reply is passed to
the service to which the request has been forwarded. Thelatter service sendsthe reply
to the processthat originated the request. It becomestheresponsibility of thelast server
in the forward chain to send the reply to the originating client by invoking TPRETURN.

The following figure shows one possible sequence of eventswhen arequest is
forwarded from one service to another. Here a client initiates arequest using the
TPCALL routine and the last service in the chain (SVC_C) provides areply using the
TPRETURN routine.

Figure5-1 Forwarding a Request

. TPCALL .TPFDRWA

TPRETURMN AR TEFORWAR

Service routines can forward requests at specified priorities in the same manner that
client processes send requests, by using the TPSPRI O routine.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-25

5 Writing Servers

When a process calls TPFORWAR, the system that supplied the controlling program
regains control, and the server processis free to do more work.

Note: If aserver processisacting asaclient and areply is expected, the server is not
allowed to request services from itself. If the only available instance of the
desired service is offered by the server process making the request, the call
fails, indicating that a recursive call cannot be made. However, if aservice
routine sendsarequest (to itself) with the TPNOREPLY communi cation flag set,
or if it forwards the request, the call does not fail because the service is not
waiting for itself.

Calling TPFORWAR can be used to indicate success up to that point in processing the
request. If no application errors have been detected, you can invoke TPFORWAR,
otherwise, you can call TPRETURN with TP- RETURN- VAL | N TPSVCRET- REC set to
TPFAI L.

Thefollowing exampleillustrates how the service sendsitsdatarecord to the DEPCSI T
service by calling TPFORWAR. If the new account is added successfully, the branch
record is updated to reflect the new account, and the data record is forwarded to the
DEPOSI T service. On failure, TPRETURNis called with TP- RETURN- VAL | N
TPSVCRET- REC set to TPFAI L and the failure is reported on the status line of the form.

Listing 5-8 How to Use TPFORWAR

hkkhkkhkhkhkkhkhhhkhhhhkhhhkhhkhkhhkhkhkdkdhdkdhdhhhdhddhdhhdhdhdhdhkdkhkrkkhkkxx*xx*x

* CGet the data that was sent by the client
RS R R E RS EEE RS SRR RS E SRR SR EREEEEREESEEEEEEEEEEEEEEEE SRR EEE
MOVE LENGTH OF TRANS- REC TO LEN.
CALL "TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
TRANS- REC
TPSTATUS- REC.
IF NOT TPCK
MOVE " Transacti on Encountered An Error" TO STATUS- LI NE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.
ELSE
Check other paraneters
IR SRR R RS EEE RS SRR RS EEE RS EEREEEEEREESEEEEREEEEEEEEEEEEEEEEEE

* | nsert new account record
RS R R R RS SRR RS SRR RS RS EREEEREEEEERESEEEREEEEREEEEEEEEEEEEEE

5-26 Programming a BEA Tuxedo ATMI Application Using COBOL

Advertising and Unadvertising Services

CALL " ADD- NEW ACCOUNT- FUNCTI ON' USI NG TRANS- ACCOUNT | N TRANS- REC.
I F Addi ng New Account Fail ed
MOVE " Account not added" TO STATUS-LINE I N TRANS- REC
SET TPFAI L TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.
(R R R E RS SRR RS EEE RS SRS R EEESEEER SR EREEEEEEEEEEREEEERSESESEES
* Forward record to the DEPCSIT service to add initial
* bal ance into account
(R R R R RS SRR RS EEE RS SRR EES R EE RS EEE RS R EREEEEEEEEEEREREEREESESESEES
MOVE " DEPCSI T" TO SERVI CE- NAME.
set other TPFORWAR par anet ers
CCPY TPFORWAR REPLACI NG
DATA- REC BY TRANS- REC.

Advertising and Unadvertising Services

When a server is booted, it advertises the servicesit offers based on the values
specified for the CLOPT parameter in the configuration file.

Note: The servicesthat a server may advertise are initialy defined when the
bui | dser ver command is executed. The - s option alows a
comma-separated list of servicesto be specified. It also alows you to specify
aroutine with a name that differs from that of the advertised servicethat isto
be called to process the service request. Refer to the bui | dserver (1) inthe
BEA Tuxedo Command Reference for more information.

The default specification callsfor the server to advertise all serviceswith which it was
built. Refer to the UBBCONFI G(5) or ser vopt s(5) referencepageintheFile Formats,
Data Descriptions, MIBs, and System Processes Reference for more information.

Because an advertised service uses a service table entry in the bulletin board, and can
therefore be resource-expensive, an application may boot its serversin such away that
only asubset of the services offered are available. To limit the services availablein an
application, define the CLOPT parameter, within the appropriate entry in the SERVERS
section of the configuration file, to include the desired services in acomma-separated
list following the - s option. The - s option also allows you to specify aroutine with a

Programming a BEA Tuxedo ATMI Application Using COBOL 5-27

5 Writing Servers

name other than that of the advertised service to be called to processthe request. Refer
totheser vopt s(5) referencepagein theFile Formats, Data Descriptions, MIBs, and
System Processes Reference for more information.

A BEA Tuxedo application administrator can use the adverti se and unadverti se
commands of t madni n(1) to control the services offered by servers. The
TPADVERTI SE and TPUNADVERTI SE routines enable you to dynamically control the
advertisement of a service in a request/response or conversational server. The service
to be advertised (or unadvertised) must be available within the same server as the
service making the request.

Advertising Services

Use the following signature to call the TPADVERTI SE(3cbl) routine:

01 SERVI CE- NAME PI C X(15).
01 PROGRAM NANME PI C X(32).
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL " TPADVERTI SE" USI NG SERVI CE- NAME PROGRAM NAME TPSTATUS- REC.

The following table describes the members of a TPADVERTI SE data structure.

Table5-3 TPADVERTISE Data Sructure Members

Member Description

SERVI CE- NAME Name of the service to be advertised. The service name must be
a character string of up to 15 characters. Nameslonger than 15
charactersaretruncated. The SPACES string isnot avalid value.
If it is specified, an error (TPEI NVAL) results.

PROGRAM NAME BEA Tuxedo system routinethat is called to perform a service.
Frequently, thisnameisthe sasmeasthe name of the service. The
SPACES dtring is not avalid value. If itis specified, an error
results.

5-28 Programming a BEA Tuxedo ATMI Application Using COBOL

Advertising and Unadvertising Services

Unadvertising Services

Example:
Service

The TPUNADVERTI SE(3cbl) routine removes the name of a service from the service
table of the bulletin board so that the service is no longer advertised.

Use the following signature for the TPUNADVERTI SE routine:
01 SERVI CE- NAME PI C X(15).
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPUNADVERTI SE" USI NG SERVI CE- NAME TPSTATUS- REC.

The TPUNADVERTI SE data structure contains one member, which is described in the
following table.

Table5-4 TPUNADVERTISE Data Structure Member

M ember Description

SERVI CE- NAMVE Name of the serviceto be advertised. The service name must be
acharacter string of up to 15 characters. Names longer than 15
charactersaretruncated. The SPACES stringisnotavalid value.
If it is specified, an error (TPEI NVAL) results.

Dynamic Advertising and Unadvertising of a

The following example shows how to use the TPADVERTI SE routine. In this example,
aserver called TLRis programmed to offer only the service called TLRI NI T when
booted. After someinitialization, TLRI NI T advertisestwo servicescalled DEPCSI T and
W THDRAW Both are performed by the TLRFUNCS routine, and both are built into the
TLR server.

After advertising DEPCSI T and W THDRAW TLRI NI T unadvertisesitself.

Programming a BEA Tuxedo ATMI Application Using COBOL 5-29

5 Writing Servers

Listing 5-9 Dynamic Advertising and Unadvertising

EIR Rk Ok kS S S S R R R S S S S S S S S O O O O R

* Advertise DEPOSIT service to be processed by
* routine TLRFUNCS
khkkhkkhkkhkhkhkhkhkhhkhkhhkhhkhkdhhhhhdhdhhhkhddrxhdhhkhrrkdxxdhkdrxd*k
MOVE " DEPCSI T TO SERVI CE- NAMVE
MOVE " TLRFUNCS" TO PROGRAM NAME
CALL "TPADVERTI SE" USI NG SERVI CE- NAVE
PROGRAM REC
TPSTATUS- REC
I'F NOT TPOK
error processing
khkkhkkkhkhkhkhkhkhhhkhkhhkhhkhkdhhhhhdhdhhkhhddrxhdhhrrkdxkxdhkhhxd*k
* Advertise W THDRAW service to be processed by
* the sane routine TLRFUNCS
khkkhkkhkhkhkhkhkhkhhkhkhhkhhkhkdhhhhhdhdhhkhhddrhrdhhkrrkdrxxdhkhhxd*k
MOVE "W THDRAW TO SERVI CE- NANME.
MOVE " TLRFUNCS" TO PROGRAM NANE.
CALL "TPADVERTI SE" USI NG SERVI CE- NAVE
PROGRAM REC
TPSTATUS- REC
I'F NOT TPOK
error processing
khkkhkkkhkkhkhkhkhkhhhkhkhhkhhkhkdhkhhhhdhdhhkhkhdhdrxhrdhhkrrkdxkxdhkhhxd*k

* Unadvertise TLRINIT service (yourself)
khkkhkkkhkhkhkhkhkhhhkhkhhkhhkhkdhkhkhhhdhdhhhkhkdhddrhdhhrrkdxhxhhhhxd*k
MOVE "TLRI NI T* TO SERVI CE- NAMVE.
CALL "TPUNADVERTI SE" USI NG SERVI CE- NAME
TPSTATUS- REC.
IF NOT TPOK
error processing

Building Servers

To build an executable ATMI server, compile your application service subroutines
with the BEA Tuxedo system server adaptor and all other referenced files using the
bui | dser ver (1) command with the - C option.

5-30 Programming a BEA Tuxedo ATMI Application Using COBOL

Building Servers

Note: The BEA Tuxedo server adaptor accepts messages, dispatches work, and
manages transactions (if transactions are enabl ed).

Use the following syntax for the bui | dser ver command:

bui l dserver -C -0 filenane -f filenanmes -|I filenanes -s -v

The following table describes the bui | dser ver command-line options:

Table 5-5 buildserver Command-line Options

ThisOption . ..

Allows You to Specify the. ..

-o fil enane

Name of the executable output file. The default is SERVER.

-f fil enanes

List of filesthat arelink edited before the BEA Tuxedo system
libraries. Y ou can specify the - f option more than once, and
multiple filenames for each occurrence of - f . If you specify a
COBOL programfile(fi | e. cbl), itiscompiled beforeitislinked.
Y ou can specify other object files(f i | e. 0) separately, or ingroups
inan archivefile(fil e. a).

-1 fil enanes

List of filesthat arelink edited after the BEA Tuxedo system
libraries. Y ou can specify the- | option more than once, and
multiple filenames for each occurrence of - | . If you specify a
COBOL programfile(fi | e. cbl), itiscompiled beforeitislinked.
Y ou can specify other object files(f i | e. 0) separately, oringroups
inan archivefile(fil e. a).

-rfil enanes

List of resourcemanager access librariesthat arelink edited withthe
executable server. The application administrator is responsible for
predefining all valid resource manager information in the

$TUXDI R/ updat aobj / RMfile using the bui | dt ms(1)
command. Y ou can specify only one resource manager. Refer to
Setting Up a BEA Tuxedo Application for more information.

-s[servi ce:]routine

Name of service or services offered by the server and the name of
the routine that performs each service. You can specify the- s
option more than once, and multiple servicesfor each occurrence of
- s. The server uses the specified service names to advertise its
servicesto clients.

Typically, you should assign the same name to both the service and
the routine that performsthat service. Alternatively, you can specify
any names. To assign names, use the following syntax:
service:routine.

Programming a BEA Tuxedo ATMI Application Using COBOL

5-31

5 Writing Servers

See Also

Note: TheBEA Tuxedo libraries are linked in automatically. Y ou do not need to
specify the BEA Tuxedo library names on the command line.

The order in which you specify the library filesto be link edited is significant: it
depends on the order in which routines are called and which libraries contain
references to those functions.

By default, thebui | dser ver command invokesthe UNIX cobcc command. Y ou can
specify an aternative compile command and set your own flags for the compile and
link-edit phases, however, by setting the ALTCC and ALTCFLAGS environment
variables, respectively. For more information, refer to “ Setting Environment
Variables’ on page 2-5.

Note: On aWindows 2000 system, the ALTCC and ALTCFLAGS environment
variables are not applicable and setting them will produce unexpected results.
Y ou must compile your application first using a COBOL compiler and then
pass the resulting object fileto the bui | dser ver command.

The following command processesthe acct . o application file and creates a server
called ACCT that contains two services: NEW ACCT, which callsthe OPEN_ACCT routine,
and CLOSE_ACCT, which calls a routine of the same name.

bui | dserver -C —o ACCT —f acct.o —s NEW ACCT: OPEN_ACCT —-s CLCSE_ACCT

m “Building Clients’ on page 4-10

®m buildclient (1) inthe BEA Tuxedo Command Reference

5-32 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

6 Writing
Request/Response
Clients and Servers

Thistopic includes the following sections:

Overview of Request/Response Communication
Sending Synchronous M essages

Sending Asynchronous M essages

Setting and Getting Message Priorities

Overview of Request/Response
Communication

In request/response communication mode, one software module sends a request to a
second software module and waits for aresponse. Because the first software module
performstherole of the client, and the second, the role of the server, this modeis also
referred to as client/server interaction. Many online banking tasks are programmed in
request/response mode. For example, arequest for an account balance is executed as

follows:

Programming a BEA Tuxedo ATMI Application Using COBOL

6 Writing Request/Response Clients and Servers

1. A customer (the client) sends arequest for an account balance to the Account
Record Storage System (the server).

2. TheAccount Record Storage System (the server) sends a reply to the customer
(the client), specifying the dollar amount in the designated account.

Figure6-1 Example of Request/Response Communication in Online Banking

,..

Custormer Fegquast Check Account Balance & £

4
System Sesporse: 26,76

Customer's Bank's Computer on Which
Home Compuier Account Records Are Stored

Once aclient process has joined an application, it can then send the request message
to a service subroutine for processing and receive areply message.

Sending Synchronous Messages

The TPCALL(3cbl) call sendsarequest to a service subroutine and synchronously
waits for areply. Use the following signature to call the TPCALL routine:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 | TPTYPE- REC.
COPY TPTYPE.
01 | DATA- REC.
COPY User Dat a.
01 OTPYTPE- REC.
COPY TPTYPE.
01 ODATA- REC.
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
| DATA- REC

6-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending Synchronous Messages

OTPTYPE- REC
ODATA- REC
TPSTATUS- REC.

For moreinformation on the TPSVCDEF datastructure, refer to“ Defining a Service” on
page 5-10. The | DATA- REC and | TPTYPE- REC structures define the request record.
The ODATA- REC and OTPTYPE- REC structures define the reply record. The

| TPTYPE- REC and OTPTYPE- REC data structures are similar to the TPTYPE- REC data
structure, as defined in “Defining a Service” on page 5-10.

TPCALL waits for the expected reply.

Note: Calling the TPCALL routineis logically the same as calling the TPACALL
routine, immediately followed by TPGETRPLY, as described in “Sending
Asynchronous Messages” on page 6-10.

The request carries the priority set by the system for the specified service
(SERVI CE- NAME) unless adifferent priority has been explicitly set by a call to the
TPSPRI Oroutine (described in “ Setting and Getting Message Priorities’ on page 6-14).

TPCALL returnsan integer. On failure, the value of TP- STATUS is set to a value that
reflects the type of error that occurred. For information on valid error codes, refer to
TPCALL(3chl) inthe BEA Tuxedo ATMI COBOL Function Reference.

Note: Communication calls may fail for avariety of reasons, many of which can be
corrected at the application level. Possible causes of failure include:
application defined errors (TPESVCFAI L), errors in processing return
arguments (TPESVCERR), typed record errors (TPEI TYPE, TPECTYPE), timeout
errors (TPETI ME), and protocol errors (TPEPROTO), among others. For a
detailed discussion of errors, refer to “Managing Errors” on page 11-1. For a
complete list of possible errors, refer to TPCALL(3cbl) in the BEA Tuxedo
ATMI COBOL Function Reference.

The BEA Tuxedo system automatically adjusts arecord used for receiving a message
if the recelved message is too large for the alocated record. Y ou should test for
whether or not the reply records have been resized.

To access the new size of the record, use the address returned in *LEN I N

OTPTYPE- REC. To determine whether areply record has changed in size, compare the
size of the reply record before the call to TPCALL with the value of LEN I N
OTPTYPE- REC after itsreturn. If LEN | N OTPTYPE- RECislarger than the original size,
the record has grown. If not, the record size has not changed.

Programming a BEA Tuxedo ATMI Application Using COBOL 6-3

6 Writing Request/Response Clients and Servers

Example: Using the Same Record for Request and Reply
Messages

6-4

The following exampl e shows how the client program makes a synchronous call using
the same record for both the request and reply messages. In this case, using the same
record is appropriate because the AUDV- REC message record has been set up to
accommodate both request and reply information. The following actions are taken in
this code:

1. Theservice queriesthe B_I Dfield, but does not overwrite it.

2. Theapplication initializes the BALANCE field to zero in preparation for the values
to be returned by the service.

3. The SERVI CE- NANME represents the service name requested. In this example, these
variables represent account andt el | er, respectively.

Listing 6-1 Using the Same Record for Request and Reply M essages

WCRKI NG STORAGE SECTI ON.

KRRk S S S R S S R S O R R

* Tuxedo definitions
RS R R R RS SRR SRR E RS EEEREEEEREESEEEREEEEEREEEEEREEEEEEEEEE S
01 TPTYPE- REC.
COPY TPTYPE.
*
01 TPSTATUS- REC.
COPY TPSTATUS.
*
01 TPSVCDEF- REC.
COPY TPSVCDEF.

khkkhkhkkhkhhhkhhhhhhhhhkhhhkhkhkhkhhkhkhddhhdkhhdkhhddhdhhhdhkhdhkdkkx*x

* Log nessages definitions
khkkhkkkhkkhkhkhkhkhhhkhkhhhhkhkdhhhhkdhdhdhhhhddrhkhhddrhrdhrhrhkdrxdhddxx

01 LOGMVBG
05 FILLER PIC X(6) VALUE "FIG =>".
05 LOGVEG TEXT Pl C X(50) .
01 LOGVBG LEN PIC S9(9) COVP-5.
*
01 USER- DATA- REC PI C X(75).

khkkhkhkkhkhhhkhhhhhhhhhkhhhkhkhkhkhhkhkhdkdhddhddhhdkhhdhkhhdhkhkdhkdkkx*x

* This VIEWrecord (audv) will be sent to the server
khkkhkkkhkhkhkhkhkhhhkhkhhhhkhkdhhkhhkddhdhhhhddrhkhhkhkrkhrdhrhkrrkdrxhhhdxkx

Programming a BEA Tuxedo ATMI Application Using COBOL

Sending Synchronous Messages

01 AUDV- REC.
CCPY AUDV.

*

R R I R O S Rk S R S R

PROCEDURE Di VI SI ON.
START- FI G
MOVE LENGTH OF LOGVSG TO LOGMVSG LEN.

R R S I R S S S S O O R R O

* Prepare the audv record
kkkhkkkhkkhkhkhkhkdhhhkhkhkhdhhkhkhhkhhhkdhhkhhhrrdhhrhhddrxhrhhrhrkdxkrkx*x
MOVE " BRANCH' TO B-1D I N AUDV- REC.
MOVE 0 TO BALANCE | N AUDV- REC.
MOVE LENGTH OF AUDV- REC TO LEN.
MOVE "VI EW TO REC- TYPE.
MOVE "audv" TO SUB- TYPE.
MOVE " SOVESERVI CE" TO SERVI CE- NAME.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
AUDV- REC
TPTYPE- REC
AUDV- REC
TPSTATUS- REC.
I F NOT TPOK
MOVE " Service Fail ed" TO LOGVBG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM
DI SPLAY BRANCH and BALANCE

If the reply islarger than ODATA- REC, then ODATA- REC contains as much of the
message asfitsin therecord. The remainder is discarded and TPCALL sets TP- STATUS
I N TPSTATUS- REC to TPTRUNCATE.

Programming a BEA Tuxedo ATMI Application Using COBOL 6-5

6 Writing Request/Response Clients and Servers

Example: Sending a Synchronous Message with
TPSIGRSTRT Set

Thefollowing example is based on the TRANSFER service, which is part of the XFER
server process of bankapp. (bankapp isasample ATMI application delivered with the
BEA Tuxedo system.) The example is based on a service that assumes the role of a
client when it callsthe W THDRAWAL and DEPOSI T services. The application setsthe
communication flag to TPSI GRSTRT in these service calls to give the transaction a
better chance of committing. The TPSI GRSTRT flag specifiesthe action to takeif there
isasignal interrupt. For more information on communication flags, refer to
TPCALL(3cbl) inthe BEA Tuxedo ATMI COBOL Function Reference.

Listing 6-2 Sending a Synchronous M essage with TPSIGRSTRT Set

WCRKI NG STORAGE SECTI ON.

EE R Sk S R R S O R R R

* Tuxedo definitions

RS R R R RS SRR SRR EE SR EEREEEEREEEEEREREEEEEREEEEEEEEEEEEEEEE S
01 TPTYPE- REC.
CCPY TPTYPE.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

01 TPSVCDEF- REC.
CCPY TPSVCDEF.

khkkhkhkhkkhkhhhkhhhhhkhhhhkhhhkhkhkhkhhkhkhddhdkhhdkhhdhhhhhdhkhdhkdkkx*x

* This VIEWrecord (audv) will be sent to the server
hkhkkhkhkkhkhhhkhhhhhhhhhkhhhkhkhkhkhhkhkhdkdhdkkhhdkhhdhhdhhdhdhkhdhkhkkx*x
01 AUDV- REC.
COPY AUDV.

*

hkkhkkhkhkkhkhhhkhhhhkhhhkhhkhkhhkhkhkkhhdkkhhdhkhhdhkhdhdhhdhkhhhkhhdhkhkdkhkkkx**xx*x

PROCEDURE DI VI SI ON.
START-FI G

khkkhkhkkhkhhhhhhhhhhhhkhhhkhkhkhkhhkhkhdkdhhdkhhdkhhdhkhhdhhhdhkhdhkhkkx*x

* Prepare the audv record for withdrawal
khkkhkkkhkkhkhkhkhkhhhkhkhhhhkhdhhhhkdhdhdhhkhhddhrhhhhrkrdhrhrrrkdrxdhdxx

MOVE "W THDRAWAL" TO SERVI CE- NAME.
SET TPSI GRSTRT TO TRUE.
PERFCORM DO- TPCALL.

6-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending Synchronous Messages

I F NOT TPCK
MOVE " Cannot wi t hdraw from debit account" TO LOGVEG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

MOVE " DEPCSI T" TO SERVI CE- NAME.

SET TPSI GRSTRT TO TRUE.

PERFORM DO- TPCALL.

I F NOT TPCK
MOVE " Cannot deposit into credit account"” TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

R S S R S S S S O S S R R O

* Performa TPCALL
IR R R R RS R SR RS EEE RS R EE RS EEREEEEEREEEEEREEEEEEEEEEEEE SRR TS
DO TPCALL.
MOVE LENGTH OF AUDV- REC TO LEN.
MOVE "VI EW TO REC- TYPE.
MOVE "audv" TO SUB- TYPE.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
AUDV- REC
TPTYPE- REC
AUDV- REC
TPSTATUS- REC.

Example: Sending a Synchronous Message with
TPNOTRAN Set

The following example illustrates a communication call that suppresses transaction
mode. The call is made to a service that is not affiliated with a resource manager; it
would be an error to allow the service to participate in the transaction. The application
prints an accounts receivable report, ACCRV, generated from information obtained from
a database named ACCOUNTS.

Programming a BEA Tuxedo ATMI Application Using COBOL 6-7

6 Writing Request/Response Clients and Servers

The service routine REPORT interprets the specified parameters and sends the byte
stream for the completed report as areply. The client uses TPCALL to send the byte
stream to a service called PRI NTER, which, in turn, sends the byte stream to a printer
that is conveniently close to the client. Thereply is printed. Finally, the PRI NTER
service notifies the client that the hard copy isready to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOTRAN or
TPNOREPLY"” on page 6-11 shows asimilar example using an asynchronous

message call.

Listing 6-3 Sending a Synchronous M essage with TPNOTRAN Set

WORKI NG- STORAGE SECTI ON.

kkhkkhkhkkhkhhhkhhhhhkhhhhkhhhkhkhkhkhhkhkhdkdhddhddhdhdhdhhdhkhdhkdxkx*x

* Tuxedo definitions
RS R R R RS SR RS SRR E RS EEEREEEEREREEEEREREEEEEEEEEEREEEEEEEE RS
01 | TPTYPE- REC.
COPY TPTYPE.
01 OTPTYPE- REC.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.
khkkhkhkkhkhhhhhhhhkhhhhkhhhkhkhkhkhhkhkhdkdhddhdkhhdkhhdhkhhdhkhdhkhkkx*x
01 REPORT- REQUEST PI C X(100) VALUE SPACES.
01 REPORT- QUTPUT PI C X(50000) VALUE SPACES.
kkhkkhkhkkhkhhhkhhhhkhhhkhhkhkhhkhkhkkhhhkkhhdhkhhkhkhdhhhdhdhhhkhhkdhkhkdhkhkkxx*x*x
PROCEDURE DI VI SI ON.
START- FI G

join application
start transaction

kkhkkhkhkkhkhhhkhhhhhhhhhkhhhkhkhkhkhhkhkhdkdhdkhhdhhdhhhhkhhdhhkhdhkhkhkkkkx*x

* Send report request to REPORT service
* Receive results into REPORT- OQUTPUT
khkkhkkkhkhkhkhkhkhhhkhkhhhhkhkhhkhhhkddhhhhhhdhhhkhddrhrhhhkhkrkdrxhrhkddxhkxx
MOVE " REPORT=accrcv DBNAME=accounts" TO REPORT- REQUEST.
MOVE " STRING' TO REC- TYPE | N | TYPE- REC.
MOVE 29 TO LEN I N | TYPE- REC.
MOVE " STRING' TO REC-TYPE I N O TYPE- REC.
MOVE 50000 TO LEN I N OTYPE- REC.

6-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending Synchronous Messages

MOVE " REPORT" TO SERVI CE- NAME.
SET TPTRAN TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- REQUEST
OTPTYPE- REC
REPORT- QUTPUT
TPSTATUS- REC.
I'F NOT TPOK
error processing
| F TPETRUNCATE
The report was truncated
error processing
khkkhkhkkhkkhkhkhkhkdhhhkhkhhhhkhkhhkhkhkhkdhhkhhhhhdhhhkhhddrhrdhhkrhkdrxxdhkhhxd*k

* Send REPORT- OUTPUT to PRI NTER service
khkkhkkkhkkhkhkhkhkhhhkhkhhhhkhkhhkhhkhkdhhhhhhhdhhhkhhkdrxhrdhrhkhkrkdxxdhkhhxd*k
MOVE " PRI NTER' TO SERVI CE- NAME.
SET TPNOTRAN TO TRUE.
MOVE " STRING' TO REC-TYPE IN | TTYPE- REC.
MOVE LEN I N OTYPE- REC TO LEN I N | TYPE- REC.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- QUTPUT
OTPTYPE- REC
REPORT- QUTPUT
TPSTATUS- REC.
I F NOT TPOK
error processing

term nate transaction
| eave application

Note: Inthe preceding example, thetermerror routine indicatesthat the
following tasks are performed: an error message is printed, the transaction is
aborted, the client leaves the application, and the program is exited.

This example a so shows how the TPNOCHANGE communication setting is used to

enforce strong record type checking by indicating that the reply message must be
returned in the sametype of record that was originally allocated. The strong type check
flag, TPNOCHANGE, forces the reply to be returned in arecord of type STRI NG.

Programming a BEA Tuxedo ATMI Application Using COBOL 6-9

6 Writing Request/Response Clients and Servers

A possiblereasonfor thischeck isto guard against errorsthat may occur in the REPORT
service subroutine, resulting in the use of areply record of an incorrect type. Another
reason is to prevent changes that are not made consistently across all areas of
dependency. For example, another programmer may have changed the REPORT service
to standardize all replies in another STRI NG format without modifying the client
process to reflect the change.

Sending Asynchronous Messages

This section explains how to:
m Send an asynchronous request using the TPACALL routine
m Get an asynchronous reply using the TPGETRPLY routine

Thetype of asynchronous processing discussed in this section is sometimes referred to
asfan-out parallelismbecauseit allowsaclient’ srequeststo be distributed (or “fanned
out”) simultaneously to several services for processing.

The other type of asynchronous processing supported by the BEA Tuxedo system is
pipeline parallelism in which the TPFORWAR routine is used to pass (or forward) a
process from one service to another. For a description of the TPFORWAR routine, refer
to “Writing Servers’ on page 5-1.

Sending an Asynchronous Request

TheTPACALL(3cbl) routine sendsarequest to a service and immediately returns. Use
the following signature to call the TPACALL routine:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPACALL" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

6-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending Asynchronous Messages

For more information on the TPSVCDEF and TPTYPE- REC data structures, refer to
“Defining a Service” on page 5-10.

The TPACALL routine sends a request message to the service named in the

SERVI CE- NAME and immediately returns from the call. Upon successful compl etion of
the call, the TPACALL routine returns an integer that serves asacommunication handle
used to access the correct reply for the relevant request. While TPACALL isin
transaction mode (as described in “Writing Global Transactions” on page 9-1) there
may not be any outstanding replies when the transaction commits; that is, within a
given transaction, for each request for which areply isexpected, acorresponding reply
must eventually be received.

If the value TPNOREPLY is set, the parameter signalsto TPACALL that areply is not
expected. When set, on success TPACALL returns avalue of 0 asthe reply descriptor.
If subsequently passed to the TPGETRPLY routine, this value becomesinvalid, this
value becomesinvalid. Guidelines for using this setting correctly when aprocessisin
transaction mode are discussed in “Writing Globa Transactions’ on page 9-1.

On error, TPACALL sets TP- STATUS to a value that reflects the nature of the error.
TPACALL returns many of the sameerror codesas TPCALL. The differencesbetweenthe
error codes for these functions are based on the fact that one call is synchronous and
the other, asynchronous. These errors are discussed at length in “Managing Errors’ on
page 11-1.

The following example shows how TPACALL uses the TPNOTRAN and TPNOREPLY
settings. This codeis similar to the code in “Example: Sending a Synchronous
Message with TPNOTRAN Set” on page 6-7. In this case, however, areply is not
expected from the PRI NTER service. By setting both TPNOTRAN and TPNCREPLY, the
client isindicating that no reply is expected and the PRI NTER service will not
participate in the current transaction. This situation is discussed more fully in
“Managing Errors” on page 11-1.

Listing 6-4 Sending an Asynchronous M essage with TPNOTRAN or
TPNOREPLY

WORKI NG- STORAGE SECTI ON.

R R I S S S R S O R S

* Tuxedo definitions

IR R R R RS RS E RS EEE RS EEEEEEEREESEEEREEEEREEEEEEEEEREEE SRR TS
01 | TPTYPE- REC.
COPY TPTYPE.
01 OTPTYPE- REC.

Programming a BEA Tuxedo ATMI Application Using COBOL 6-11

6 Writing Request/Response Clients and Servers

CCPY TPTYPE.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.
khkkhkkkhkkhkhkhkhkhhhkhkhhhhkhkdhhkhhkddhdhhhhddrhkhhhrkhrdkhrhkrrkdrxdhhx*x
01 REPORT- REQUEST Pl C X(100) VALUE SPACES.
01 REPCRT- QUTPUT Pl C X(50000) VALUE SPACES.
khkkhkkkhkkhkhkhkhkdhhhkhkhkhkhhkhkhhkhhhkddhhhhhrdhhhhdddrhrhhhrkrkdrxhrrhddx*k
PROCEDURE DI VI SI ON.
START-FI G

join application
start transaction

khkkhkhhkhkhkhhkhkhkhhkhkhkhkhkhkhkkhhdhkhhkhkhhhhhhhhdhhhhkhkhkhkhkkhkkdxrdkkdrkkd*x*

* Send report request to REPORT service
* Receive results into REPORT- QUTPUT
khkkhkkkkhkhkhkhkhkhhhkhhkhhhkdhhkhhkhkdhhkhhhhhddhhhkhdrdhhrhkhddrxhrhhhhxd*k
MOVE " REPCORT=accrcv DBNAME=accounts" TO REPORT- REQUEST.
MOVE "STRING' TO REC- TYPE I N | TPTYPE- REC.
MOVE 29 TO LEN I N | TPTYPE- REC.
MOVE "STRING' TO REC TYPE | N O TYPE- REC.
MOVE 50000 TO LEN I N GTPTYPE- REC.
MOVE "REPORT" TO SERVI CE- NAME.
SET TPTRAN TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPREPLY TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- REQUEST
OTPTYPE- REC
REPORT- OUTPUT
TPSTATUS- REC.
IF NOT TPOK
error processing
| F TPETRUNCATE
The report was truncated
error processing
R R R SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEREEEEEEESEEESES

* Send REPORT- QUTPUT to PRI NTER service

khkkhkhkkhkhhhkhhkhhkhhhhhkhhhkhkhkhkhhkhkhkhhdkkhhdhkhhdhkhhhkhhhhkhhhkhkhkkkk*x*x

MOVE " PRI NTER' TO SERVI CE- NAME.
SET TPNOTRAN TO TRUE.

6-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending Asynchronous Messages

SET TPNOREPLY TO TRUE.
MOVE " STRING' TO REC- TYPE I N | TPTYPE- REC.
MOVE LEN I N OTPTYPE- REC TO LEN I N | TPTYPE- REC.
CALL "TPACALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- OUTPUT
TPSTATUS- REC.
I'F NOT TPOK
error processing

conmit transaction
| eave application

Getting an Asynchronous Reply

A reply to aservice call can be received asynchronously by calling the
TPGETRPLY(3cbl) routine. The TPGETRPLY routine dequeues areply to a request
previously sent by TPACALL.

Use the following signature to call the TPGETRPLY routine:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPGETRPLY" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

For more information on the TPSVCDEF and TPTYPE- REC data structures, refer to
“Defining a Service” on page 5-10.

By default, the function waits for the arrival of the reply that correspondsto the value
referenced by the communication handle. During this waiting interval, a blocking
timeout may occur. A time-out occurs when TPGETRPLY failsand TP- STATUS is set to
TPETI ME (unless TPNOTI ME is set).

Programming a BEA Tuxedo ATMI Application Using COBOL 6-13

6 Writing Request/Response Clients and Servers

Setting and Getting Message Priorities

Two ATMI calls alow you to determine and set the priority of a message request:
TPSPRI (3cbl) and TPGPRI O(3chl) . The priority affects how soon the request is
dequeued by the server; servers dequeue requests with the highest priorities first.

This section describes:
m Setting a Message Priority
m Getting a Message Priority

Setting a Message Priority

The TPSPRI O(3cbl) routine enables you to set the priority of a message request.

The TPSPRI Oroutine affects the priority level of only one request: the next request to
be sent by TPCALL or TPACALL, or to be forwarded by a service subroutine.

Use the following signature to call the TPSPRI Oroutine:

01 TPPRI DEF- REC.
CCPY TPPRI DEF.
01 TPSTATUS- REC.
CCOPY TPSTATUS.
CALL "TPSPRI O' USI NG TPPRI DEF- REC TPSTATUS- REC.

Use the following signature for the TPPRI DEF- REC data structure.
05 PR ORI TY Pl C S9(9) COMWP-5.
05 PRI O FLAG PI C S9(9) COWP-5.

88 TPABSOLUTE VALUE 0.

88 TPRELATI VE VALUE 1.

The following table describes the arguments to the TPSPRI O routine.

6-14 Programming a BEA Tuxedo ATMI Application Using COBOL

Setting and Getting Message Priorities

Table6-1 TPSPRIO RoutineFieds

Field Description

PRI ORI TY Integer indicating a new priority value. The effect of this argument is
controlled by PRI O- FLAG If PRI O FLAGissetto 0, PRI ORI TY
specifies arelative value and the sign accompanying the vaue indicates
whether the current priority isincremented or decremented. Otherwise,
the value specified indicates an absol ute value and PRI ORI TY must be
set to avalue between 0 and 100. If you do not specify avalue within this
range, the system sets the value to 50.

PRI O FLAG I ndicates whether the value of PRI ORI TY istreated asarel ative value (0,
the default) or an absolute value (TPABSCLUTE).

The following sample codeis an excerpt from the TRANSFER service. In this example,
the TRANSFER service acts as a client by sending a synchronous reguest, via TPCALL,
to the W THDRAWAL service. TRANSFER also invokes TPSPRI Oto increase the priority
of its request message to W THDRAWAL , and to prevent the request from being queued
for the W THDRAWAL service (and later the DEPCSI T service) after waiting on the
TRANSFER queue.

Listing 6-5 Setting the Priority of a Request M essage

WCRKI NG STORAGE SECTI ON.

R S I R S S S S O O S S R O R O

* Tuxedo definitions
R R R R RS R SR RS EERE RS EEEEEEEREEEEEEREEEEREEEEEEEEEEEE SRR TS
01 TPTYPE- REC.
CCOPY TPTYPE.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

01 TPSVCDEF- REC.
CCPY TPSVCDEF.

01 TPPRI DEF- REC.
CCPY TPPRI DEF.

R S S R S S S S R S O S S R R O

01 DATA- REC PI C X(100) VALUE SPACES.

khkkhkhhkhhkhkhhkhhkhkhkhkhkhkhkhhkhkhdkdhhhkhhdhhhdhhhdhhkhdhhkhhkhkhkhkhkkhkkx*x*x*

PROCEDURE DI VI SI ON.

Programming a BEA Tuxedo ATMI Application Using COBOL 6-15

6 Writing Request/Response Clients and Servers

START-FI G
join application

MOVE 30 TO PRI ORI TY.
SET TPRELATI VE TO TRUE.
CALL "TPSPRI O' USI NG TPPRI DEF- REC TPSTATUS- REC
I F NOT TPOK
error processing
MOVE " CARRAY" TO REC- TYPE.
MOVE 100 TO LEN.
MOVE "W THDRAVWAL" TO SERVI CE- NAME.
SET TPTRAN TO TRUE .
SET TPBLOCK TO TRUE .
SET TPNOTI ME TO TRUE .
SET TPSI GRSTRT TO TRUE .
SET TPREPLY TO TRUE .
CALL "TPACALL" USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.
I F NOT TPOK
error processing

| eave application

Getting a Message Priority

The TPGPRI O(3cbl) routine enables you to get the priority of a message request.
Use the following signature to call the TPGPRI Oroutine:

01 TPPRI DEF- REC.
CCPY TPPRI DEF.
01 TPSTATUS- REC.
CCOPY TPSTATUS.
CALL "TPGPRI O' USI NG TPPRI DEF- REC TPSTATUS- REC.

A requester can call the TPGPRI Oroutine after invoking the TPCALL or TPACALL
routine to retrieve the priority of the request message. If arequester callsthe function
but no request is sent, the routine fails, setting TP- STATUS to TPENCENT. Upon
success, TPGPRI Osets TP- STATUS to TPOK and returns an integer value in the range of
1 to 100 (where the highest priority value is 100).

6-16 Programming a BEA Tuxedo ATMI Application Using COBOL

Setting and Getting Message Priorities

If apriority has not been explicitly set using the TPSPRI Oroutine, the system sets the

message priority to that of the service routine that handles the request. Within an

application, the priority of the request-handling service is assigned a default value of

50 unless a system administrator overrides this value.

Thefollowing exampl e shows how to determinethe priority of amessage that was sent

in an asynchronous call.

Listing 6-6 Determining the Priority of the Sent Request

WORKI NG- STORAGE SECTI ON.

R S I R S S R S O R O S

* Tuxedo definitions
IR R R R RS SR RS EEE RS EEE RS EEREEEEEEREEEEREEEEEEEEEREEE SRR TS
01 TPTYPE- REC- 1.
COPY TPTYPE.
01 TPTYPE- REC 2.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC 1.
COPY TPSVCDEF.
01 TPSVCDEF- REC 2.
COPY TPSVCDEF.

01 TPPRI DEF- REC 1.
COPY TPPRI DEF.
01 TPPRI DEF- REC 2.
COPY TPPRI DEF.
kkkhkkkkhkkhkhkhkhkkhhhkhkhkhhhhkhhkhhkhkdhhhhhrhdhhrhhddhxrhhrhrkdxkxhkx*x
01 DATA-REC 1 PIC X(100) VALUE SPACES.
01 DATA- REC- 2 PIC X(100) VALUE SPACES.
R R R R R R R R R EEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS
PRCCEDURE DI VI SI ON.
START-FI G

join application
popul at e DATA- REC1 and DATA- REC2 with send request

MOVE " CARRAY" TO REC- TYPE I N TYPE- REC- 1.

MOVE 100 TO LEN I N TYPE- REC- 1.

MOVE " SERVI CE1" TO SERVI CE- NAME | N TPSVCDEV- REC- 1.
SET TPTRAN TO TRUE | N TPSVCDEV- REC- 1.

SET TPBLOCK TO TRUE | N TPSVCDEV- REC- 1.

Programming a BEA Tuxedo ATMI Application Using COBOL

6-17

6 Writing Request/Response Clients and Servers

SET TPNOTI ME TO TRUE | N TPSVCDEV- REC- 1.
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 1.
SET TPREPLY TO TRUE | N TPSVCDEV- REC- 1.
CALL " TPACALL" USI NG TPSVCDEF- REC- 1
TPTYPE- REC- 1
DATA- REC- 1
TPSTATUS- REC.
I'F NOT TPOK
error processing
CALL "TPGPRI O' USI NG TPPRI DEF- REC-1 TPSTATUS- REC
I'F NOT TPOK
error processing
MOVE " CARRAY" TO REC-TYPE | N TYPE- REC- 2.
MOVE 100 TO LEN I N TYPE- REC- 2.
MOVE " SERVI CE2" TO SERVI CE- NAME | N TPSVCDEV- REC- 2.
SET TPTRAN TO TRUE | N TPSVCDEV- REC- 2.
SET TPBLOCK TO TRUE I N TPSVCDEV- REC- 2.
SET TPNOTI ME TO TRUE | N TPSVCDEV- REC 2.
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 2.
SET TPREPLY TO TRUE | N TPSVCDEV- REC- 2.
CALL " TPACALL" USI NG TPSVCDEF- REC- 2
TPTYPE- REC- 2
DATA- REC- 2
TPSTATUS- REC.
I'F NOT TPOK
error processing
CALL "TPGPRI O' USI NG TPPRI DEF- REC-2 TPSTATUS- REC
I'F NOT TPOK
error processing
IF PRRORITY I N TPSVCDEF- REC-1 >= PRIOCRITY | N TPSVCDEF- REC- 2
PERFORM DO- GETREPLY1
PERFORM DO- GETREPLY2
ELSE
PERFORM DO- GETREPLY2
PERFORM DO- GETREPLY1
END- | F.

| eave application
DO GETRPLY1.
SET TPGETHANDLE TO TRUE | N TPSVCDEV- REC 1.
SET TPCHANGE TO TRUE | N TPSVCDEV- REC 1.
SET TPBLOCK TO TRUE I N TPSVCDEV- REC- 1.
SET TPNOTI ME TO TRUE | N TPSVCDEV- REC- 1.
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 1.
CALL " TPGETRPLY" USI NG TPSVCDEF- REC- 1
TPTYPE- REC- 1
DATA- REC- 1
TPSTATUS- REC.
I'F NOT TPOK

6-18 Programming a BEA Tuxedo ATMI Application Using COBOL

Setting and Getting Message Priorities

error processing
DO GETRPLY2

SET TPGETHANDLE TO TRUE | N TPSVCDEV- REC- 2.
SET TPCHANGE TO TRUE | N TPSVCDEV- REC- 2.
SET TPBLOCK TO TRUE | N TPSVCDEV- REC- 2.
SET TPNOTI ME TO TRUE | N TPSVCDEV- REC- 2.
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 2.
CALL "TPGETRPLY" USI NG TPSVCDEF- REC- 2

TPTYPE- REC- 2

DATA- REC- 2

TPSTATUS- REC.
I F NOT TPCK

error processing

Programming a BEA Tuxedo ATMI Application Using COBOL 6-19

6 Writing Request/Response Clients and Servers

6-20 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

{ Writing Conversational
Clients and Servers

Thistopic includes the following sections:

m Overview of Conversational Communication
m Joining an Application

m Establishing a Connection

m Sending and Receiving M essages

m Ending a Conversation

m Building Conversational Clients and Servers

m Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between ATMI clients and servers. In
thisform of communication, avirtual connection is maintained between the client
(initiator) and server (subordinate) and each side maintainsinformation about the state
of the conversation. The connection remains active until an event occurs to terminate
it.

Programming a BEA Tuxedo ATMI Application Using COBOL 7-1

[Writing Conversational Clients and Servers

During conversational communication, a half-duplex connection is established
between the client and server. A half-duplex connection allows messagesto be sent in
only onedirection at any given time. Control of the connection can be passed back and
forth between the initiator and the subordinate. The process that has control can send
messages; the process that does not have control can only receive messages.

To understand how conversational communication worksin aBEA Tuxedo ATMI
application, consider the following example from an online banking application. In
this example, a bank customer requests checking account statements for the past two
months.

Figure7-1 Example of Conversational Communication in an Online Banking
Application

,..

1. Customer Request Send slatemenis £

for last 2 maonths "
4 2 System Resgonse: Here's the first stabement Iunl.anulh-u'r?l
A Customer Requast: Yes, send more - 13
4 4. System Response: Here's the statement for the second month il -
Customer Hesidence Account Records Storage System

located at the Bank Headguarters

1. The customer requests the checking account statements for the past two months.

2. The Account Records Storage System responds by sending the first month’s
checking account statement followed by a Mor e prompt for accessing the
remaining month’s statement.

3. The customer requests the second month’s account statement by selecting the
Mor e prompt.

Note: The Account Records Storage System must maintain state information so it
knows which account statement to return when the customer selectsthe Mor e
prompt.

4. The Account Records Storage System sends the remaining month’s account
statement.

As with request/response communication, the BEA Tuxedo system passes data using
typed records. The record types must be recognized by the application. For more
information on record types, refer to “Overview of Typed Records’ on page 3-1.

7-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Joining an Application

Conversational clients and servers have the following characteristics:
m Thelogical connection between them remains active until terminated.
= Any number of messages can be transmitted across a connection between them.

m Both clients and servers use the TPSEND and TPRECV routines to send and
receive datain conversations.

Conversational communication differs from request/response communication in the
following ways:

m A conversational client initiates arequest for service using TPCONNECT rather
than TPCALL or TPACALL.

m A conversational client sends a service request to a conversational server.

m The configuration file reserves part of the conversational server for addressing
conversational services.

m Conversational servers are prohibited from making calls using TPFORWAR.
Joining an Application

A conversational client must join an application viaacall to TPI NI TI ALI ZE before
attempting to establish a connection to a service. For more information, refer to
“Writing Clients’ on page 4-1.

Establishing a Connection

The TPCONNECT(3cbl) routine sets up aconversation:

Use the following signature to call the TPCONNECT routine.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

Programming a BEA Tuxedo ATMI Application Using COBOL 7-3

[Writing Conversational Clients and Servers

01 TPTYPE- REC.
CCPY TPTYPE.

01 DATA- REC.
COPY User Dat a.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL " TPCONNECT" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF- REC record, and to “ Defining Typed Records” on page 3-6 for more
information on the TPTYPE- REC record.

At the same time the connection is being established, data can be sent through the
DATA- REC with the length of the data specified by LEN | N TPTYPE- REC. The

REC- TYPE and SUB- TYPE of the data in DATA- REC must be types recognized by the
service being called. If no datais being sent, the value of REC- TYPE is SPACES, and
DATA- REC and LEN areignored.

The BEA Tuxedo system returns a communication handle, COMM HANDLE | N
TPSVCDEF- REC, when a connection is established with TPCONNECT or TPSVCSTART.
COMM HANDLE is used to identify subsequent message transmissions with a particular
conversation. A client or conversational service can participate in more than one
conversation simultaneously. The maximum number of simultaneous conversationsis
64.

Intheevent of afailure, TPCONNECT setsTP- STATUS to the appropriate error condition.
For alist of possible error codes, refer to TPCONNECT(3cbl) in the BEA Tuxedo ATMI
COBOL Function Reference.

The following example shows how to use the TPCONNECT routine.

Listing 7-1 Establishing a Conver sational Connection

* Prepare the record to send
MOVE "HELLO' TO DATA- REC.
MOVE 5 TO LEN
MOVE " STRI NG' TO REC TYPE.

*

SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.

7-4 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending and Receiving Messages

SET TPSI GRSTRT TO TRUE.
SET TPSENDONLY TO TRUE.

CALL " TPCONNECT" USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.

I F NOT TPOK

error processing ...
ELSE
COVW HANDLE is vali d.

Sending and Receiving Messages

Once the BEA Tuxedo system establishes a conversational connection,
communication between the initiator and subordinate is accomplished using send and
receive calls. The process with control of the connection can send messages using the
TPSEND(3chl) routine; the process without control can receive messages using the
TPRECV(3cbl) routine.

Note: Initialy, the originator (that is, the client) decides which process has control
using the TPSENDONLY or TPRECVONLY flag value of the TPCONNECT call.
TPSENDONLY specifiesthat control is being retained by the originator;
TPRECVONLY, that control is being passed to the called service.

Sending Messages

To send amessage, use the TPSEND(3cbl) routine with the following signature:

01 TPSVCDEF- REC.
COPY TPSVCDEF.

01 TPTYPE- REC.
COPY TPTYPE.

01 DATA- REC.
COPY User Data.

Programming a BEA Tuxedo ATMI Application Using COBOL 7-5

[Writing Conversational Clients and Servers

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL "TPSEND' USI NG TPSVCDEF- REC TPTYPE- REC USER- DATA- REC TPSTATUS- REC.

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF- REC record, and refer to “ Defining Typed Records” on page 3-6 for more
information on the TPTYPE- REC record.

In the event of afailure, the TPSEND routine sets TP- STATUS to the appropriate error
condition. For alist of possible error codes, refer to TPSEND(3cbl) inthe BEA Tuxedo
ATMI COBOL Function Reference.

Y ou are not required to pass control each time you issue the TPSEND routine. In some
applications, the process authorized to issue TPSEND calls can execute as many callsas
required by the current task before turning over control to the other process. In other
applications, however, the logic of the program may require the same process to
maintain control of the connection throughout the life of the conversation.

The following example shows how to invoke the TPSEND routine.

Listing 7-2 Sending Data in Conversational M ode

SET TPNOBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPRECVONLY TO TRUE.

CALL "TPSEND' USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.
I F NOT TPOK
error processing .

Receiving Messages

To receive data sent over an open connection, use the TPRECV(3cbl) routinewiththe
following signature:

7-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending and Receiving Messages

01 TPSVCDEF- REC.
COPY TPSVCDEF.

01 TPTYPE- REC.
COPY TPTYPE.

01 DATA- REC.
COPY User Data.

01 TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPRECV' USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF- REC record. Refer to “ Defining Typed Records’ on page 3-6 for more
information on the TPTYPE- REC record.

The following example shows how to use the TPRECV routine.

Listing 7-3 Receiving Data in Conver sation

SET TPNOCHANGE TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.

MOVE LENGITH OF DATA- REC TO LEN.

CALL "TPRECV' USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.
I F NOT TPOK
error processing .

Programming a BEA Tuxedo ATMI Application Using COBOL 7-7

[Writing Conversational Clients and Servers

Ending a Conversation

7-8

A connection can be taken down gracefully and a conversation ended normally
through:

m A successful call to TPRETURN in asimple conversation.

m A series of successful callsto TPRETURN in a complex conversation based on a
hierarchy of connections.

m Global transactions, as described in “Writing Global Transactions” on page 9-1.

Note: The TPRETURN routine is described in detail in “Writing Request/Response
Clients and Servers’ on page 6-1.

The following sections describe two scenarios for gracefully terminating
conversations that do not include global transactions in which the TPRETURN function
isused.

Thefirst example shows how to terminate a simple conversation between two
components. The second example illustrates a more complex scenario, with a
hierarchical set of conversations.

If you end a conversation with connections still open, the system returns an error. In
this case, either TPCOMM T or TPRETURN failsin a disorderly manner.

Programming a BEA Tuxedo ATMI Application Using COBOL

Ending a Conversation

Example: Ending a Simple Conversation

The following diagram shows a simple conversation between A and B that terminates
gracefully.

Figure7-2 Simple Conversation Terminating Gracefully

A B C
Call TPBEGIN (Bis RECVONLY on AB) (Cis RECVONLY in BC)
(& 1s SENDONLY on AB)

AB | Call TPSVCSTART
Call TPCONNECT Set TPSENDONLY
to TRUE
(B is SENDONLY on BC)
Call TPCONNECT Call TPSVCSTART
BC
Set TFRECVONLY —=| Call TPRECV
to TRUE
. Set TPSENDONLY
(413 RECVONLY on BA) o TRUE
(C1is SENDONLY on CB)
(B is SENDONLY on 4F)
CB
Call TPFRECV e~ | Copy TFRETURN
Cdl "TPRECV" -
Copy TPRETURN
Call "TPCOMMIT"
EVENTS EVENTS

The program flow is asfollows:

1. A setsup the connection by calling TPCONNECT with TPSENDONLY set, indicating
that process B is on the receiving end of the conversation.

2. A turns control of the connection over to B by calling TPSEND with TPRECVONLY
set, resulting in the generation of a TPEV_SENDONLY event.

Programming a BEA Tuxedo ATMI Application Using COBOL 7-9

[Writing Conversational Clients and Servers

3. Thenext call by B to TPRECV sets TP- STATUS to TPEEVENT, and returns
TPEV_SENDONLY in TPEVENT, indicating that control has passed to B.

4. B calls TPRETURN with TPRETURN- VAL | N TPSVCRET set to TPSUCCESS. This
call generates a TPEV_SVCSUCC event for A and gracefully brings down the
connection.

5. A callsTPRECV, learns of the event, and recognizes that the conversation has
been terminated. Data can be received on this call to TPRECV even if the event is
set to TPEV_SVCFAI L.

Note: Inthisexample, A can be either aclient or a server, but B must be a server.

Example: Ending a Hierarchical Conversation

Thefollowing diagram shows a hierarchical conversation that terminates gracefully.

7-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Ending a Conversation

Figure7-3 Connection Hierarchy

EVENTS EVENTS
A B C
Move SVCB
to SERVICE-NAME
Call TPCONNECT .
Call TPSVCSTART
Move SV CC
to SERVICE-NAME
Call TPCONNECT N Call TPSVCSTART
Call TPRECV
Call TPRECY Copy TPRETURY
Call "TPRECV" Copy TPRETURN

In the preceding example, service B isamember of aconversation that has initiated a
connection to a second service called C. In other words, there are two active
connections: A-to-B and B-to-C. If B isin control of both connections, acall to
TPRETURN has the following effect: the call fails, a TPEV_SVCERR event is posted on
all open connections, and the connections are closed in a disorderly manner.

In order to terminate both connections normally, an application must execute the
following sequence:

1. B cals TPSEND with the TPRECVONLY flag set on the connection to C, transferring
control of the B-to-C connection to C.

2. Ccalls TPRETURN with TPRETURN- VAL | N TPSVCRET set to TPSUCCESS,
TPFAI L, or TPEXI T, as appropriate.

3. B canthen call TPRETURN, posting an event (either TPEV_SVCSUCC or
TPEV_SVCFAI L) for A.

Programming a BEA Tuxedo ATMI Application Using COBOL 7-11

[Writing Conversational Clients and Servers

Note: Itislega for aconversationa serviceto makerequest/response callsif it needs
to do so to communicate with another service. Therefore, in the preceding
example, the callsfrom B to C may be executed using TPCALL or TPACALL
instead of TPCONNECT. Conversational servicesare not permitted to makecalls
to TPFORWAR.

Executing a Disorderly Disconnect

The only way in which adisorderly disconnect can be executed isthrough acall tothe
TPDI SCON(3cbl) routine (which isequivalent to “ pulling the plug” on aconnection).
This routine can be called only by the initiator of a conversation (that is, the client).

Note: Thisis not the preferred method for bringing down a conversation. To bring
down an application gracefully, the subordinate (the server) should call the
TPRETURN routine.

Use the following signature to call the TPDI SCON routine:

01 TPSVCDEF- REC.
CCPY TPSVCDEF.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL " TPDI SCON' USI NG TPSVCDEF- REC TPSTATUS- REC

The cOvM HANDLE argument specifies the communication handle returned by the
TPCONNECT routine when the connection is established.

The TPDI SCON routine generates a TPEV_DI SCONI MMevent for the service at the other
end of the connection, rendering the COVM HANDLE invalid. If atransaction isin
progress, the system aborts it and data may be lost.

If TPDI SCONis called from a service that was not the originator of the connection
identified by COM HANDLE, the routine fails with an error code of TPEBADDESC.

For alist and descriptions of all event and error codes, refer to TPDI SCON(3cbl) inthe
BEA Tuxedo ATMI COBOL Function Reference.

7-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Building Conversational Clients and Servers

Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:
m buildclient() asdescribedin“Building Clients” on page 4-10

m bui |l dserver () asdescribedin“Building Servers’ on page 5-32
For conversational and request/response services, you cannot:

m Build both in the same server

m Assign the same name to both

Understanding Conversational
Communication Events

TheBEA Tuxedo system recognizesfive eventsin conversational communication. All
five events can be posted for TPRECV; three can be posted for TPSEND.

The following table lists the events, the routines for which they are returned, and a
detailed description of each.

Table 7-1 Conversational Communication Events

Event Received By Description
TPEV_SENDONLY TPRECV Control of the connection has been passed; this process
can now call TPSEND.
TPEV_DI SCONI MM TPSEND, The connection has been torn down and no further
TPRECV, communication ispossible. The TPDI SCON routine posts
TPRETURN thisevent in the originator of the connection, and sends it

toall open connectionswhen TPRETURNiscalled, aslong
as connections to subordinate services remain open.
Connections are closed in adisorderly fashion. If a
transaction exists, it is aborted.

Programming a BEA Tuxedo ATMI Application Using COBOL 7-13

[Writing Conversational Clients and Servers

Table 7-1 Conversational Communication Events

Event Received By

Description

TPEV_SVCERR TPSEND

Received by the originator of the connection, usually
indicating that the subordinate program issued a
TPRETURN without having control of the connection.

TPRECV

Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN with
TPSUCCESS or TPFAI L and avalid data record, but an
error occurred that prevented the call from completing.

TPEV_SVCFAI L TPSEND

Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN without
having control of the connection, and TPRETURN was
called with TPFAI L or TPEXI T and no data.

TPRECV

Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(TPRETURN was called with TPFAI L or TPEXI T).

TPEV_SVCSUCC TPRECV

Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it called TPRETURN with TPSUCCESS.

7-14 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

8 Writing Event-based
Clients and Servers

Thistopic includes the following sections:

m Overview of Events

m Defining the Unsolicited Message Handler
m Sending Unsolicited Messages

m Checking for Unsolicited Messages

m Getting Unsolicited Messages

m Subscribing to Events

m Unsubscribing from Events

m Posting Events

Overview of Events

Event-based communication provides a method for a BEA Tuxedo system process to
be notified when a specific situation (event) occurs.

The BEA Tuxedo system supports two types of event-based communication:

m Unsolicited events

Programming a BEA Tuxedo ATMI Application Using COBOL 81

8 Writing Event-based Clients and Servers

m Brokered events

Unsolicited Events

Unsolicited eventsare messages used to communi cate with client programsthat are not
waiting for and/or expecting a message.

Brokered Events

8-2

Brokered events enable a client and a server to communicate transparently with one
another via an “anonymous’ broker that receives and distributes messages. Such
brokering is another client/server communication paradigm that is fundamental to the
BEA Tuxedo system.

The EventBroker is a BEA Tuxedo subsystem that receives and filters event posting
messages, and distributes them to subscribers. A poster isaBEA Tuxedo system
process that detects when a specific event has occurred and reports (posts) it to the
EventBroker. A subscriber isa BEA Tuxedo system process with a standing request
to be notified whenever a specific event has been posted.

The BEA Tuxedo system does not impose afixed ratio of service requestersto service
providers; an arbitrary number of posters can post a message for an arbitrary number
of subscribers. The posters simply post events, without knowing which processes
receive the information or how the information is handled. Subscribers are notified of
specified events, without knowing who posted the information. In this way, the
EventBroker provides complete location transparency.

Typically, EventBroker applications are designed to handle exception events. An
application designer must decide which eventsin the application constitute exception
events and need to be monitored. In a banking application, for example, it might be
useful to post an event whenever an unusually large amount of money is withdrawn,
but it would not be particularly useful to post an event for every withdrawal
transaction. In addition, not all users would need to subscribe to that event; perhaps
only the branch manager would need to be notified.

Programming a BEA Tuxedo ATMI Application Using COBOL

Overview of Events

Notification Actions

The EventBroker may be configured such that whenever an event is posted, the
EventBroker invokes one or more notification actions for clients and/or servers that
have subscribed. The following table lists the types of notification actions that the
EventBroker can take.

Table 8-1 EventBroker Notification Actions

Notification Action Description

Unsoalicited notification Clients may receive event notification messages in their
message unsolicited message handling routine, just asif they were sent by
the TPNOTI FY routine.

Service call Servers may receive event notification messages as input to
service routines, just as if they were sent by TPACALL.

Reliable queue Event notification messages may be stored in aBEA Tuxedo
system reliable queue, using TPDEQUEUE(3chbl) . Event
notification records are stored until requests for contents are
issued. A BEA Tuxedo system client or server process may call
TPDEQUEUE(3chl) to retrieve these natification records, or
alternately TMQFORWARD(5) may be configured to
automatically dispatch a BEA Tuxedo system service routine
that retrieves a notification record.

For moreinformation on /Q, see Using the ATMI /Q Component.

In addition, the application administrator may create an EVENT_M B(5) entry (by
using the BEA Tuxedo administrative API) that performs the following notification
actions:

m Invokes a system command

m Writes amessage to the system’s log file on disk

Note: Only the BEA Tuxedo application administrator is allowed to create an
EVENT_M B(5) entry.

For information on the EVENT_M B(5) , refer to the File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Programming a BEA Tuxedo ATMI Application Using COBOL 8-3

8 Writing Event-based Clients and Servers

EventBroker Servers

TMUSREVT isthe BEA Tuxedo system-supplied server that acts as an EventBroker for
user events. TMUSREVT processes event report message records, and then filters and
distributesthem. The BEA Tuxedo application administrator must boot one or more of
these servers to activate event brokering.

TMBYSEVT isthe BEA Tuxedo system-supplied server that acts as an EventBroker for
system-defined events. TMSYSEVT and TMUSREVT are similar, but separate servers are
provided to allow the application administrator the ability to have different replication
strategies for processing notifications of these two types of events. Refer to Setting Up
a BEA Tuxedo Application for additional information.

System-defined Events

The BEA Tuxedo system itself detects and posts certain predefined events related to
system warnings and failures. These tasks are performed by the EventBroker. For
exampl e, system-defined events include configuration changes, state changes,
connection failures, and machine partitioning. For a complete list of system-defined
events detected by the EventBroker, see EVENTS(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

System-defined events are defined in advance by the BEA Tuxedo system codeand do
not require posting. The name of a system-defined event, unlike that of an
application-defined event, always begins with adot (“.”). Names of
application-defined events may not begin with aleading dot.

Clients and servers can subscribe to system-defined events. These events, however,
should be used mainly by application administrators, not by every client in the
application.

When incorporating the EventBroker into your application, remember that it is not
intended to provide amechanism for high-volume distribution to many subscribers. Do
not attempt to post an event for every activity that occurs, and do not expect al clients
and serversto subscribe. If you overload the EventBroker, system performance may
be adversely affected and notifications may be dropped. To minimizethe possibility of
overload, the application administrator should carefully tunethe operating system IPC
resources, as explained in Installing the BEA Tuxedo System.

8-4 Programming a BEA Tuxedo ATMI Application Using COBOL

Defining the Unsolicited Message Handler

Programming Interface for the EventBroker

EventBroker programming interfaces are available for all BEA Tuxedo system server
and client processes, including Workstation, in both C and COBOL.

The programmer’sjob is to code the following sequence:
1. A client or server postsa record to an application-defined event name.

2. The posted record is transmitted to any number of processes that have subscribed
to the event.

Subscribers may be notified in avariety of ways (as discussed in “Notification
Actions”), and events may befiltered. Notification and filtering are configured through
the programming interface, aswell asthrough the BEA Tuxedo system administrative
API.

Defining the Unsolicited Message Handler

To define the unsolicited message handler, use the TPSETUNSCOL(3cbl) routine with
the following signature:

01 CURR-ROUTINE PIC S9(9) COWP-5.
01 PREV-ROUTINE PIC S9(9) COWP-5.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPSETUNSCL" USI NG CURR- RQUTI NE PREV- ROUTI NE TPSTATUS- REC.

TPSETUNSCL allows aclient to identify the routine that should be invoked when an
unsolicited message is received by the BEA Tuxedo system libraries. Before the first
call to TPSETUNSCL, any unsolicited messages received by the BEA Tuxedo system
libraries on behalf of the client arelogged and ignored. The method used by the system
for notification and detection is determined by the application default, which can be
overridden on aper-client basis. For moreinformation, refer to TPI NI TI ALI ZE(3cbl)
in the BEA Tuxedo ATMI COBOL Function Reference.

The CURR- ROUTI NE parameter identifies one of 16 predefined routines that provide
unsolicited message handling: eight C routines, t m di spl at ch1 through

_tm di spat ch8, and eight COBOL routines, TMDI SPATCH9 through TVDI SPATCH16.
(Alternatively, if you set CURR- ROUTI NE to a value of 0, any unsolicited messages

Programming a BEA Tuxedo ATMI Application Using COBOL 8-5

8 Writing Event-based Clients and Servers

received by the BEA Tuxedo system libraries on behalf of the client are logged and
ignored.) The C routines must conform to the parameter definition provided on
TPSETUNSOL(3chl) . When aCOBOL routine is used, TPGETUNSOL must be called to
receive the data.

The following sample code shows how to set an unsolicited routinein a COBOL
program.

Listing 8-1 Setting an Unsoalicited Routine

Call TPSETUNSCL - Set a COBOL unsolicited nmessage handl er
Routi ne TMDI SPATCHI wi || be call ed

E o I

MOVE 9 to CURR- ROUTI NE.
CALL "TPSETUNSOL" USI NG

CURR- ROUTI NE

PREV- ROUTI NE

TPSTATUS- REC.
I F NOT TPOK

Rout i ne TMDI SPATCHO wi || receive unsolicited nmessages
ELSE
Process error condition

Sending Unsolicited Messages

The BEA Tuxedo system allows unsolicited messages to be sent to client processes
without disturbing the processing of request/response calls or conversational
communications.

Unsolicited messages can be sent to client processes by name, using

TPBROADCAST(3chl), or by an identifier received with a previously processed
message, using TPNOTI FY(3cbl) . Messages sent via TPBROADCAST can originate
either ina service or in another client. Messages sent via TPNOTI FY can originate only
inaservice.

8-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Sending Unsolicited Messages

Broadcasting Messages by Name

The TPBROADCAST(3chl) routine allows a message to be sent to registered clients of
the application. It can be called by a service or another client. Registered clients are
those that have successfully made a call to TPI NI TI ALI ZE and have not yet made a
call to TPTERM

Use the following signature to call the TPBROADCAST routine:

01 TPBCTDEF- REC.
COPY TPBCTDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPBRQADCAST" USI NG TPBCTDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

The following table describes the members of the TPBCTDEF- REC data structure.

Table 8-2 TPBCTDEF-REC Data Structure Members

M ember Description

LM D Pointer to the logical machine identifier for the client. A vaue of
SPACES acts as awildcard, so that a message can be directed to
groups of clients.

USRNAVE Username of the client process, if one exists. A value of SPACES
acts asawildcard, so that a message can be directed to groups of
clients.

CLTNAME Client name of the client process, if one exists. A value of NULL
acts asawildcard, so that a message can be directed to groups of
clients.

Settings (such as Settings for the TPBROADCAST command. Refer to

TPBLOCK- FLAG) TPBRQADCAST(3cbl) inthe BEA Tuxedo ATMI COBOL

Function Reference for information on avail able settings.

Refer to “Defining a Service” on page 5-10 for a description of the TPTYPE- REC
record.

Programming a BEA Tuxedo ATMI Application Using COBOL 8-7

8 Writing Event-based Clients and Servers

Thefollowing example illustrates a call to TPBROADCAST for which all clients are
targeted. The message to be sent is contained in a STRI NG record.

Listing 8-2 Using TPBROADCAST

khkkhkhkkhkhhhkhhhhhkhhhhkhhhkhkhkhkhdkhkhdkdhhddddhhkdkhhkhrhdhkdkdkdx

* Prepare the record to broadcasted

khkkhkhkkhkhhhhhhhhhhhhkhhhkhkhkhkhhhkhdkhhdkdhdhhkdhhdrhdhhdkdx

MOVE "HELLO, WORLD' TO DATA- REC.
MOVE 11 TO LEN
MOVE " STRI NG' TO REC TYPE.

SET TPNOBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.

MOVE SPACES TO LM D.

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

CALL "TPBRQOADCAST" USI NG TPBCTDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.

I F NOT TPOK

error processing

Broadcasting Messages by Identifier

The TPNOTI FY(3cbl) routine is used to broadcast a message using an identifier
received with a previously processed message. It can be called only from a service.

Use the following signature to call the TPNOTI FY routine:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.

8-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Checking for Unsolicited Messages

CALL "TPNOTI FY" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

Refer to “Writing Global Transactions” on page 9-1 for information on the
TPSVCDEF- REC datastructure, and “ Defining a Service” on page 5-10 for adescription
of the TPTYPE- REC record.

Checking for Unsolicited Messages

To check for unsolicited messages while running the client in “dip-in” notification
mode, use the TPCHKUNSOL(3cbl) routine with the following signature:

01 M5G NUM PIC S9(9) COw-5.
01 TPSTATUS- REC.
COPY TPSTATUS
CALL "TPCHKUNSCL" USI NG MSG- NUM TPSTATUS- REC

If any messages are pending, the system invokes the unsolicited message handling
routine that was specified using TPSETUNSCL. Upon completion, the routine returns
either the number of unsolicited messages that were processed and sets TP- STATUS to
[TPK].

If you issue this routine when the client is running in SI GNAL-based, thread-based
notification mode, or isignoring unsolicited messages, the routine has no impact and
returns immediately.

The following example shows how to check for the arrival of an unsolicited message.

Listing8-3 Arrival of an Unsolicited Message

*

Check for unsolicited nessages

CALL " TPCHKUNSCL" USI NG MESS- NUM
TPSTATUS- REC.

I F TPOK
IF MESSSNUM IS = 0
No messages were processed by the
unsolicited routine
ELSE

Programming a BEA Tuxedo ATMI Application Using COBOL 8-9

8 Writing Event-based Clients and Servers

MESS- NUM nunber of messages were
processed by the unsolicited routine
END- | F
ELSE
process error
END- | F

Getting Unsolicited Messages

To get unsolicited messages, you must call the TPGETUNSOL (3cbl) routine. This
routine can be called, however, only from an unsolicited message handler. Use the
following signature to call the TPGETUNSOL routine:

01 TPTYPE- REC.
CCPY TPTYPE.
01 DATA- REC.
COPY User dat a.
01 TPSTATUS- REC.
CCPY TPSTATUS.
CALL "TPGETUNSOL" USI NG TPTYPE- REC DATA- REC TPSTATUS- REC.

Refer to “Defining a Service” on page 5-10 for adescription of the TPTYPE- REC
record.

The following example shows how to get an unsolicited message.

Listing 8-4 Getting an Unsolicited M essage

I DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TMDI SPATCHI.
ENVI RONVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COWPUTER. USL- 486.
OBJECT- COWUTER. USL- 486.
*
DATA Di VI SI ON.
WORKI NG- STORAGE SECTI ON.
*
01 TPTYPE- REC.
COPY TPTYPE.

8-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Subscribing to Events

*

01 TPSTATUS- REC.
CCPY TPSTATUS.

*

01 DATA-REC PI C X(1000) .

*

PRCCEDURE DI VI SI ON.

*

A-000.
*
MOVE " CARRAY" TO REC- TYPE.
MOVE 1000 TO LEN.
CALL "TPGETUNSCL" USI NG TPTYPE- REC
DATA- REC
TPSTATUS- REC.
IF NOT TPOK
error processing

Process nessage

DI SPLAY "TPGETUNSCL | S TPOK".
DI SPLAY " MESSAGE | S" DATA- REC.
DI SPLAY "LENGTH | S" LEN.

EXI T PROGRAM

Subscribing to Events

The TPSUBSCRI BE(3cbl) routine enables a BEA Tuxedo system ATMI client or
server to subscribe to an event.

A subscriber can benotified through an unsolicited notification message, aservicecall,
areliable queue, or other notification methods configured by the application
administrator. (For information about configuring alternative notification methods,
refer to Setting Up a BEA Tuxedo Application.)

Use the following signature to call the TPSUBSCRI BE routine:

01 TPEVTDEF- REC.
CCPY TPEVTDEF.

01 TPQUEDEF- REC.
CCPY TPQUEDEF.

Programming a BEA Tuxedo ATMI Application Using COBOL 811

8 Writing Event-based Clients and Servers

01 TPSTATUS- REC.
COPY TPSTATUS.

CALL “TPSUBSCRI BE" USI NG TPEVTDEF- REC TPQUEDEF- REC TPSTATUS- REC

The TPEVTDEF- REC data structure signature is as follows:

05 TPBLOCK- FLAG PIC S9(9) CQOVP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.

05 TPTRAN- FLAG Pl C S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.

05 TPREPLY- FLAG PIC S9(9) CQOVP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.

05 TPTI ME- FLAG Pl C S9(9) COMP-5.
88 TPTI ME VALUE 0.
88 TPNOTI ME VALUE 1.

05 TPSI GRSTRT-FLAG Pl C S9(9) COMP-5.
88 TPNOSI GRSTRT VALUE 0.
88 TPSI GRSTRT VALUE 1.

05 TPEV- METHOD- FLAG Pl C S9(9) COWP-5.
88 TPEVNOTI FY VALUE 0.
88 TPEVSERVI CE VALUE 1.
88 TPEVQUEUE VALUE 2.

05 TPEV- PERSI ST- FLAG PIC S9(9) COWP-5.
88 TPEVNOPERSI ST VALUE 0.

88 TPEVPERSI ST VALUE 1.
05 TPEV- TRAN- FLAG Pl C S9(9) COWP-5.
88 TPEVNOTRAN VALUE 0.
88 TPEVTRAN VALUE 1.
*
05 EVENT- COUNT Pl C S9(9) COMP-5.
05 SUBSCRI PTI ON- HANDLE Pl C S9(9) COMP- 5.
05 NAVE- 1 PI C X(31).
05 NAVE- 2 PI C X(31).
05 EVENT- NAME Pl C X(31).
05 EVENT- EXPR Pl C X(255).
05 EVENT- FI LTER PI C X(255).

The following table describes the members of the TPEVTDEF- REC data structure.

Member Description

EVENT- COUNT Event count.

SUBSCRI PTI ON- HANDLE Subscription handle.

8-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Subscribing to Events

M ember

Description

NAME- 1, NAME- 2

Name of queued spaces. If the subscriber sets TPEVQUEUE, then
event notifications are enqueued to the queue space named by
NAME- 1 and the queue named by NAME- 2.

EVENT- NAME

Event name.

EVENT- EXPR

Set of eventsto which to subscribe. Consists of anull-terminated
string of up to 255 characters containing a regular expression.
Regular expressions are of the form specified in

t psubscri be(3c) asdescribed in the Programming BEA
Tuxedo ATMI Applications Using C. For example, if

event expr issetto:

m "\\.. *" —thecalerissubscribing to all system-defined
events.

m "\\.SysServer.*" —thecalerissubscribing to al
system-defined eventsrelated to servers.

m "[A-Z].*" —thecadlerissubscribing to all user events
starting with A-Z.

m " *(ERR err).*" —thecallerissubscribing to all user
events containing either the substring ERR or the substring
err (for example, account _error and ERROR_STATE
events would both qualify).

Programming a BEA Tuxedo ATMI Application Using COBOL 8-13

8 Writing Event-based Clients and Servers

Member Description

EVENT- FI LTER String containing a Boolean filter rule that must be evaluated
successfully before the Event Broker posts the event. Upon
receiving an event to be posted, the Event Broker applies the
filter rule, if one exists, to the posted event’ s data. If the data
passes thefilter rule, the Event Broker invokes the notification
method specified; otherwise, the Event Broker ignores the
notification method. The caller can subscribe to the same event
multiple times with different filter rules.

By using the event filtering capability, subscribers can be more
discriminating about the events for which they are notified. For
example, aposter can post an event for withdrawal s greater than
$10,000.00, but a subscriber may want to specify a higher
threshold for being notified, such as $50,000.00. Or, a
subscriber may want to be notified of large withdrawals only if
made by customers with specified IDs.

Filter rules are specific to the typed records to which they are
applied. Refer to the TPSUBSCRI BE(3chl) reference pagein
the BEA Tuxedo ATMI COBOL Function Reference for further
information on filter rules.

SETTI NGS Miscellaneous settings that control the server characteristics.

(TPBLOCK- FLAG, For more information on the settings, refer to the BEA Tuxedo
TPTRAN- FLAG, and so ATMI COBOL Function Reference.

on)

Refer to Using the ATMI /Q Component for more information on the TPQUEDEF- REC
data structure.

Y ou can subscribe to both system- and application-defined events using the
TPSUBSCRI BE routine.

For purposes of subscriptions (and for M B updates), service routines executed in a
BEA Tuxedo system server process are considered to be trusted code.

Refer to TPSUBSCRI BE(3cbl) inthe BEA Tuxedo ATMI COBOL Function Reference
for more information on the routine.

8-14 Programming a BEA Tuxedo ATMI Application Using COBOL

Unsubscribing from Events

Unsubscribing from Events

The TPUNSUBSCRI BE(3cbl) routine enablesa BEA Tuxedo system ATMI client or
server to unsubscribe from an event.

Use the following signature to call the TPUNSUBSCRI BE routine:

01 TPEVTDEF- REC.
CCPY TPEVTDEF.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL “TPUNSUBSCRI BE" USI NG TPEVTDEF- REC TPSTATUS- REC

Refer to “ Subscribing to Events” on page 8-11 for a detailed description of the
TPEVTDEF- REC data structure, and to Using the ATMI /Q Component for more
information on the TPQUEDEF- REC data structure.

Posting Events

The TPPCGST(3cbl) routine enablesa BEA Tuxedo ATMI client or server to post an
event.

Use the following signature to call the TPPOST routine:

01 TPEVTDEF- REC.
CCPY TPEVTDEF.

01 TPTYPE- REC.
CCPY TPSTATUS.

01 TPDATA- REC.
CCOPY TPSTATUS.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL “TPPST” USI NG TPEVTDEF- REC TPTYPE- REC TPDATA- REC TPSTATUS- REC

Programming a BEA Tuxedo ATMI Application Using COBOL 8-15

8 Writing Event-based Clients and Servers

Refer to “ Subscribing to Events’ on page 8-11 for a detailed description of the
TPEVTDEF- REC data structure, and to “ Defining a Service” on page 5-10 for a
description of the TPTYPE- REC record.

8-16 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

O Writing Global
Transactions

Thistopic includes the following sections:

m What Isa Global Transaction?

m Starting the Transaction

m Terminating the Transaction

m Terminating the Transaction

m Implicitly Defining a Global Transaction

m Defining Global Transactions for an X A-Compliant Server Group

m Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction isamechanism that allows aset of programming tasks, potentially
using more than one resource manager and potentially executing on multiple servers,
to be treated as one logica unit.

Once a processisin transaction mode, any service requests made to servers may be
processed on behalf of the current transaction. The servicesthat are called and join the
transaction are referred to astransaction participants. The value returned by a
participant may affect the outcome of the transaction.

Programming a BEA Tuxedo ATMI Application Using COBOL 9-1

9 Writing Global Transactions

A global transaction may be composed of several |ocal transactions, each accessing the
same resource manager. The resource manager is responsible for performing
concurrency control and atomicity of updates. A given loca transaction may be either
successful or unsuccessful in completing its access; it cannot be partially successful.

A maximum of 16 server groups can participate in a single transaction.

The BEA Tuxedo system manages a global transaction in conjunction with the
participating resource managers and treats it as a specific sequence of operations that
is characterized by atomicity, consistency, isolation, and durability. In other words, a
global transaction isalogical unit of work in which:

m All portions either succeed or have no effect.

m Operations are performed that correctly transform resources from one consi stent
state to another.

m Intermediate results are not accessibl e to other transactions, although some
processes in a transaction may access the data associated with another process.

m Once asequence is complete, its results cannot be altered by any kind of failure.

The BEA Tuxedo system tracks the status of each global transaction and determines
whether it should be committed or rolled back.

Starting the Transaction

To start aglobal transaction, use the TPBEG N(3cbl) routine with the following
signature:

*

01 TPTRXDEF- REC.
CCPY TPTRXDEF.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL "TPBEG N' USI NG TPTRXDEF- REC TPSTATUS- REC.

9-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Starting the Transaction

The following table describes the TPTRXDEF- REC structure fields

Table9-1 TPTRXDEF Sructure Field

Field

Description

T-OUT

Specifies the amount of time, in seconds, a transaction can execute before
timing out. Y ou can set this value to the maximum number of seconds allowed
by the system, by specifying avalue of 0. In other words, you can set

ti meout tothe maximum value for an unsigned | ong as defined by the
system.

The use of 0 or an unrealistically large value for the T- QUT parameter delays
system detection and reporting of errors. The system uses the T- QUT
parameter to ensure that responses to service requests are sent within a
reasonabl etime, and to terminate transactionsthat encounter problems such as
network failures before executing a commit.

For atransaction in which a person is waiting for aresponse, you should set
this parameter to asmall value: if possible, less than 30 seconds.

In a production system, you should set T- OUT to avalue large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: Thevaueassigned tothe T- OUT parameter should be consistent with
that of the SCANUNI T parameter set by the BEA Tuxedo application
administrator in the configuration file. The SCANUNI T parameter
specifies the frequency with which the system checks, or scans, for
timed-out transactions and blocked callsin service requests. The
value of this parameter represents the interval of time between these
periodic scans, referred to as the scanning unit.

Y ou should set the T- OUT parameter to avaluethat is greater than the
scanning unit. If you set the T- QUT parameter to aval ue smaller than
the scanning unit, there will be adiscrepancy between the time at
which atransaction times out and the time at which this timeout is
discovered by the system. The default value for SCANUNI T is 10
seconds. Y ou may need to discussthe setting of the T- OUT parameter
with your application administrator to make surethe value you assign
to the T- OUT parameter is compatible with the values assigned to
your system parameters.

TRANI D

Transaction identifier.

Programming a BEA Tuxedo ATMI Application Using COBOL

9-3

9 Writing Global Transactions

Any process may call TPBEG N unless the process is already in transaction mode. If
TPBEG Nis caled in transaction mode, the call fails due to aprotocol error and

TP- STATUS is set to TPEPROTO. If the processisin transaction mode, thetransaction is
unaffected by the failure.

The following example provides a high-level view of how aglobal transaction is
defined.

Listing 9-1 Delineating a Transaction

MOVE O TO T- QUT.
CALL "TPBEGQ N' USI NG
TPTRXDEF- REC
TPSTATUS- REC.
I'F NOT TPCK

error processing

program st at enent s

CALL "TPCOW T" USI NG
TPTRXDEF- REC
TPSTATUS- REC.
I'F NOT TPCOK
error processing

The following example shows how an outstanding reply can cause an error.

Listing 9-2 Error - Starting a Transaction with an Outstanding Reply

MOVE " BUY" TO SERVI CE- NAME.

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPREPLY TO TRUE.

SET TPNOTI ME TO TRUE.

SET TPSI GRSTRT TO TRUE.

CALL " TPACALL" USI NG
TPSVCDEF- REC
TPTYPE- REC
BUY- REC

9-4 Programming a BEA Tuxedo ATMI Application Using COBOL

Starting the Transaction

I F

TPSTATUS- REC.
NOT TPOK
error processing

MOVE 0 TO T- QUT.
CALL "TPBEQ N' USI NG

I F

SET

TPTRXDEF- REC
TPSTATUS- REC.
NOT TPOK
error processing

ERRCR TP- STATUS is set to TPEPROTO

program statenents

TPBLCCK TO TRUE.
TPNOTRAN TO TRUE.
TPCHANCE TO TRUE.
TPNOTI ME TO TRUE.
TPSI GRSTRT TO TRUE.
TPGETANY TO TRUE.

CALL " TPCETRPLY" USI NG

I F

TPSVCDEF- REC
TPTYPE- REC
VK- AREA
TPSTATUS- REC.
NOT TPOK
error processing

If atransaction times out, acall to TPCOVMM T causes the transaction to be aborted. As
aresult, TPCOMM T fails and sets TP- STATUS to TPEABORT.

Thefollowing example shows how to test for atransaction timeout. Notethat the value
of T- OUT is set to 30 seconds.

Listing9-3 Testing for Transaction Timeout

MOVE 30 TO T- QUT.

CALL "TPBEG N' USI NG TPTRXDEF- REC TPSTATUS- REC.

IF NOT TPOXX
MOVE "Failed to BEA N a transaction" TO LOG REC- TEXT.
MOVE 29 to LOG REC-LEN
CALL "USERLOG' USI NG

LOG REC- TEXT

Programming a BEA Tuxedo ATMI Application Using COBOL 9-5

9 Writing Global Transactions

LOG REC- LEN
TPSTATUS- REC
CALL "TPTERM' USI NG
TPSTATUS- REC
PERFORM A- 999- EXI T.

comruni cati on CALL statenents
I'F TPETI ME
CALL "TPABORT" USI NG
TPTRXDEF- REC
TPSTATUS- REC
I'F NOT TPCOK
error processing
ELSE
CALL "TPCOW T" USI NG
TPTRXDEF- REC
TPSTATUS- REC

IF NOT TPOK
error processing

Note: When aprocess isin transaction mode and makes a communication call with
TPNOTRAN, it prohibits the called service from becoming a participant in the
current transaction. Whether the service reguest succeeds or fails has no
impact on the outcome of the transaction. The transaction can still timeout
while waiting for areply that is due from a service, whether it is part of the
transaction or not. Refer to “Managing Errors’ on page 11-1 for more
information on the effects of the TPNOTRAN flag.

The following example shows how to define a transaction.

Listing 9-4 Defining a Transaction

DATA Di VI SI ON.

WWORKI NG- STORACE SECTI ON.
*

01 TPTYPE-REC.

COPY TPTYPE.
*

01 TPSTATUS- REC.

COPY TPSTATUS.

*

01 TPI NFDEF- REC.

9-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Starting the Transaction

*

*

*

*

*

*

*

*

COPY TPI NFDEF.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

01 TPTRXDEF- REC.
COPY TPTRXDEF.

01 LOG REC Pl C X(30) VALUE " .

01 LOG REC- LEN PIC S9(9) COVP-5.

01 USR- DATA- REC Pl C X(16).

01 AUDV- REC.
05 AUDV- BRANCH- | D PI C S9(9) COMP-5.
05 AUDV- BALANCE Pl C S9(9) COMP-5.
05 AUDV- ERRVBG Pl C X(60).

PRCCEDURE DI VI SI ON.
A-000.

Get Command Line Options set Variables (Q BRANCH)
MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
CALL "TPINI TI ALI ZE" USI NG TPI NFDEF- REC
USR- DATA- REC
TPSTATUS- REC.
I'F NOT TPOK
MOVE "Failed to join application" TO LOG REC
MOVE 26 TO LOG REC- LEN
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN
TPSTATUS- REC
PERFORM A- 999- EXI T.
Start gl obal transaction
MOVE 30 TO T- QUT.
CALL "TPBEGQ N' USI NG TPTRXDEF- REC TPSTATUS- REC.
I'F NOT TPOK
MOVE 29 to LOG REC- LEN
MOVE "Failed to begin a transaction" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN
TPSTATUS- REC
PERFORM DO TPTERM
Set up record
MOVE Q BRANCH TO AUDV- BRANCH- | D.

Programming a BEA Tuxedo ATMI Application Using COBOL 9-7

9 Writing Global Transactions

MOVE ZEROS TO AUDV- BALANCE.
MOVE SPACES TO AUDV- ERRMSG.
* Set up TPCALL records
MOVE " GETBALANCE" TO SERVI CE- NAME.
MOVE "VI EW TO REC TYPE.
MOVE LENGTH OF AUDV- REC TO LEN.
SET TPBLOCK TO TRUE.
SET TPTRAN I N TPSVCDEF- REC TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPCHANGE TO TRUE.

CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
AUDV- REC
TPTYPE- REC
AUDV- REC
TPSTATUS- REC.
I'F NOT TPOK
MOVE 19 to LOG REC LEN
MOVE "Service call failed" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN
TPSTATUS- REC
PERFORM DO TPABORT
PERFORM DO- TPTERM
* Commit gl obal transaction
CALL "TPCOW T" USI NG TPTRXDEF- REC
TPSTATUS- REC
IF NOT TPOK
MOVE 16 to LOG REC- LEN
MOVE "Failed to commt" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN
TPSTATUS- REC
PERFORM DO TPTERM
* Show results only when transaction has conpl eted successfully
DI SPLAY " BRANCH=" Q BRANCH.
DI SPLAY " BALANCE=" AUDV- BALANCE.
PERFORM DO TPTERM
* Abort the transaction
DO TPABORT.
CALL " TPABORT" USI NG TPTRXDEF- REC
TPSTATUS- REC
I'F NOT TPOK
MOVE 26 to LOG REC- LEN
MOVE "Failed to abort transaction" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN

9-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating the Transaction

TPSTATUS- REC.
* Leave the application
DO TPTERM
CALL "TPTERM' USI NG TPSTATUS- REC.
I'F NOT TPOK
MOVE 27 to LOG REC- LEN
MOVE "Failed to | eave application" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN
TPSTATUS- REC.
EXIT PROGRAM

*

A-999-EXIT.

*

EXIT PROGRAM

Terminating the Transaction

To end aglobal transaction, call TPCOMM T(3cbl) to commit the current transaction,
or TPABORT(3chl) to abort the transaction and roll back all operations.

Note: If TPCALL, TPACALL, or TPCONNECT is called by a process that has explicitly
set TPNOTRAN, the operations performed by the called service do not become
part of the current transaction. In other words, when you call the TPABORT
routine, the operations performed by these services are not rolled back.

Committing the Current Transaction

The TPCOW T(3chl) routine commits the current transaction. When TPCOVMM T
returns successfully, all changes to resources as a result of the current transaction
become permanent.

Use the following signature to call the TPCOMM T routine:

*

01 TPTRXDEF- REC.
COPY TPTRXDEF.

Programming a BEA Tuxedo ATMI Application Using COBOL 9-9

9 Writing Global Transactions

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL "TPCOWM T" USI NG TPTRXDEF- REC TPSTATUS- REC.

Refer to “ Starting the Transaction” on page 9-2 for a description of the TPTRXDEF- REC
structure.

Prerequisites for a Transaction Commit

For TPCOWM T to succeed, the following conditions must be true:

m Thecalling process must be the same one that initiated the transaction with a
call to TPBEG N.

m Thecalling process must have no transactional replies (calls made without the
TPNOTRAN flag) outstanding.

m Thetransaction must not be in arollback-only state and must not be timed out.

If the first condition isfalse, the call fails and TP- STATUS is set to TPEPROTOQ,
indicating a protocol error. If the second or third condition is false, the call fails and
TP- STATUS is set to TPEABORT, indicating that the transaction has been rolled back. If
TPCOW T iscalled by theinitiator with outstanding transaction replies, the transaction
is aborted and those reply descriptors associated with the transaction become invalid.
If a participant calls TPCOMM T or TPABORT, the transaction is unaffected.

A transaction is placed in arollback-only state if any service cal returns TPFAI L or
indicates a service error. If TPCOW T iscalled for arollback-only transaction, the
routine cancels the transaction, returns -1, and sets TP- STATUS to TPEABORT. The
results are the sameif TPCOVM T iscalled for atransaction that has already timed out:
TPCOWM T returns-1 and sets TP- STATUS to TPEABORT. Refer to “Managing Errors”
on page 11-1 for more information on transaction errors.

Two-phase Commit Protocol

When the TPCOMM T routineis called, it initiates the two-phase commit protocol. This
protocol, as the name suggests, consists of two steps:

1. Each participating resource manager indicates areadiness to commit.

9-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating the Transaction

2. Theinitiator of the transaction gives permission to commit to each participating
resource manager.

The commit sequence beginswhen thetransaction initiator callsthe TPCOVWM T routine.
The BEA Tuxedo TM Sserver processin the designated coordinator group contactsthe
TMSin each participant group that isto perform thefirst phase of the commit protocol.
The TM S in each group then instructs the resource manager (RM) in that group to
commit using the XA protocol that is defined for communications between the
Transaction Managers and RMs. The RM writes, to stable storage, the states of the
transaction before and after the commit sequence, and indicates success or failure to
the TMS. The TMS then passes the response back to the coordinating TMS.

When the coordinating TM S has received a successindication from all groups, it logs
astatement to the effect that a transaction is being committed and sends second-phase
commit notificationsto all participant groups. The RM in each group then finalizesthe
transaction updates.

If the coordinator TM S is notified of a first-phase commit failure from any group, or
if it failsto receive areply from any group, it sendsarollback notification to each RM
and the RM sback out all transaction updates. TPCOW T then failsand sets TP- STATUS
to TPEABORT.

Selecting Criteria for a Successful Commit

When more than one group isinvolved in atransaction, you can specify which of two
criteria must be met for TPCOMM T to return successfully:

m When all participants haveindicated areadiness to commit (that is, when all
participants have reported that phase 1 of the two-phase commit has been logged
as complete and the coordinating TM S has written its decision to commit to
stable storage)

m When all participants have finished phase 2 of the two-phase commit

To specify one of these prerequisites, set the CMTRET parameter in the RESOURCES
section of the configuration file to one of the following values:

m LOGGED—to require completion of phase 1
m COVPLETE—to require completion of phase 2

By default, CMIRET is set to COMPLETE.

Programming a BEA Tuxedo ATMI Application Using COBOL o-11

9 Writing Global Transactions

Trade-offs Between Possible Commit Criteria

In most cases, when all participantsin aglobal transaction have logged successful
completion of phase 1, they do not fail to complete phase 2. By setting CMTRET to
LOGGED, you alow aslightly faster return of callsto TcOMM T, but you run the slight
risk that a participant may heuristically complete its part of the transaction in away
that is not consistent with the commit decision.

Whether it is prudent to accept the risk depends to alarge extent on the nature of your
application. If your application demands complete accuracy (for example, if you are
running afinancial application), you should probably wait until al participants fully
complete the two-phase commit process before returning. If your application is more
time-sensitive, you may prefer to have the application execute faster at the expense of
accuracy.

Aborting the Current Transaction

Usethe TPABORT(3chl) routinetoindicatean abnormal condition and explicitly abort
atransaction. Thisfunction invalidates the call descriptors of any outstanding
transactional replies. None of the changes produced by the transaction are applied to
the resource. Use the following signature to call the TPABORT routine:

*

01 TPTRXDEF- REC.
CCPY TPTRXDEF.

01 TPSTATUS- REC.
CCOPY TPSTATUS.

CALL " TPABORT" USI NG TPTRXDEF- REC TPSTATUS- REC.

Refer to“ Starting the Transaction” on page 9-2 for a description of the TPTRXDEF- REC
structure.

9-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating the Transaction

Example: Committing a Transaction in Conversational
Mode

The following figure illustrates a conversational connection hierarchy that includes a
global transaction.

Figure9-1 Connection Hierarchy in Transaction Mode

A B C
Cal TPREGIN {Bis RECVONLY on AF) {Cis RECVONLY in BC)
{4 is SENDONLY on AB)
AB | call TPSVCSTART
Cal TPCONNECT Set TPSENDONLY
to TRUE
{B is SENDONLY on BC)
Call TPCONNECT Cal TPSVCSTART
BC
Set TPRECVONLY —=| Call TPRECV
ta TRUE
. Set TPSENDONLY
{415 RECVONLY on BA) ta TRUE
{Cis SENDONLY on CE)
{B iz SENDONLY on AB)
CB
Call TPRECV e | Copy TPRETURN
Cal TPRECV
B Copy TPRETURN
Cal TPCOMMIT
EVENTES EVENTS

Programming a BEA Tuxedo ATMI Application Using COBOL

9-13

9 Writing Global Transactions

The connection hierarchy is created through the following process:

1. A client (processA) initiates aconnection in transaction mode by calling TPBEG N
and TPCONNECT.

2. Theclient calssubsidiary services, which are executed.

3. Aseach subordinate service completes, it sends a reply indicating success or
failure (TPEV_SVCSUCC or TPEV_SVCFAI L, respectively) back up through the
hierarchy to the process that initiated the transaction. In this example the process
that initiated the transaction is the client (process A). When a subordinate service
has completed sending replies (that is, when no more replies are outstanding), it
must call TPRETURN.

4. Theclient (process A) determines whether all subordinate services have returned
successfully.

e If so, the client commits the changes made by those services, by calling
TPCOW T, and completes the transaction.

e If not, the client calls TPABORT, since it knows that TPCOMM T could not be
successful.

Example: Testing for Participant Errors

In the following sample code, a client makes a synchronous call to the fictitious
REPORT service (line 24). Then the code checks for participant failures by testing for
errors that can be returned on a communication call (lines 30-42).

Listing 9-5 Testing for Participant Success or Failure

02 CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC

03 USR- DATA- REC

04 TPSTATUS- REC.

05 I'F NOT TPOK

06 error message,

07 EXI T PROGRAM .

08 MOVE 30 TO T- QUT.

09 CALL "TPBEG N' USI NG TPTRXDEF- REC TPSTATUS- REC.
10 IF NOT TPOK

11 error message,

9-14 Programming a BEA Tuxedo ATMI Application Using COBOL

Terminating the Transaction

12 PERFORM DO- TPTERM
13 * Set up record
14 MOVE " REPORT=accrcv DBNAME=account s" TP- RECORD.
15 MOVE 27 TO LEN.
16 MOVE " REPORTS" TO SERVI CE- NAMVE.
17 MOVE " STRI NG' TO REC- TYPE.
18 SET TPBLOCK TO TRUE.
19 SET TPTRAN | N TPSVCDEF- REC TO TRUE.
20 SET TPNOTI ME TO TRUE.
21 SET TPSI GRSTRT TO TRUE.
22 SET TPCHANGE TO TRUE.
*

23

24 CALL "TPCALL" USI NG TPSVCDEF- REC
25 TPTYPE- REC
26 TP- RECORD

27 TPTYPE- REC
28 TP- RECORD

29 TPSTATUS- REC.
30 IF TPOK

31 PERFORM DO- TPCOWM T
32 PERFORM DO- TPTERM

33 * Check return status

34 | F TPESVCERR

35 DI SPLAY "REPORT service's TPRETURN encountered problens"

36 ELSE | F TPESVCFAI L

37 DI SPLAY "REPORT service FAILED with return code=" APPL- RETURN- CODE
38 ELSE | F TPEOTYPE

39 DI SPLAY "REPORT service's reply is not of any known REC- TYPE"

41 PERFCRM DO TPABORT

42 PERFORM DO TPTERM

43 * Commit gl obal transaction

44 DO TPCOWM T.

45 CALL "TPCOW T" USI NG TPTRXDEF- REC

46 TPSTATUS- REC
47 IF NOT TPOK
48 error message

49 * Abort the transaction
50 DO TPABORT.
51 CALL " TPABORT" USI NG TPTRXDEF- REC

52 TPSTATUS- REC
53 IF NOT TPOK
54 error message

55 * Leave the application

56 DO TPTERM

57 CALL "TPTERM' USI NG TPSTATUS- REC.
58 I F NOT TPOK

59 error message

60 EXI T PROGRAM

Programming a BEA Tuxedo ATMI Application Using COBOL 9-15

9 Writing Global Transactions

Implicitly Defining a Global Transaction

An application can start a global transaction in either of two ways:

m Explicitly, by calling ATMI calls, as described in “ Starting the Transaction” on
page 9-2.

m Implicitly, from within a service routine

This section describes the second method.

Y ou can implicitly place a service routine in transaction mode by setting the system

parameter AUTOTRAN in the configuration file. If you set AUTOTRAN to Y, the system
automatically starts atransaction in the service subroutine when arequest is received
from another process.

When implicitly defining a transaction, observe the following rules:

m |f aprocess requests a service from another process when the calling processis
not in transaction mode and the AUTOTRAN system parameter is set to start a
transaction, the system initiates a transaction.

m |f aprocessthat is aready in transaction mode requests a service from another
process, the system’sfirst response is to determine whether or not the caller is
set to TPNOTRAN.

If not set to TPNOTRAN, then the system places the called process in transaction
mode through the “rule of propagation.” The system does not check the
AUTOTRAN parameter.

If TPTRN- FLAG | N TPSVCDEF- RECis set to TPNOTRAN, the services performed
by the called process are not included in the current transaction (that is, the
propagation rule is suppressed). The system checks the AUTOTRAN parameter.

e |If AUTOTRANIS set to N (or if it is not set), the system does not place the
called processin transaction mode.

9-16 Programming a BEA Tuxedo ATMI Application Using COBOL

Defining Global Transactions for an XA-Compliant Server Group

e |If AUTOTRAN IS Set to Y, the system places the called process in transaction
mode, but treatsit as a new transaction.

Note: Because a service can be placed in transaction mode automatically, itis
possible for aservice with the TPNOTRAN flag set to call servicesthat have the
AUTOTRAN parameter set. |f such a service requests another service, the
member of the serviceinformation structurereturns TPTRAN when queried. For
example, if the call is made with TPNOTRAN | TPNOREPLY, and the service
automatically starts atransaction when called, the information structureis set
to TPTRAN | TPNOREPLY.

Defining Global Transactions for an
XA-Compliant Server Group

Testing

Generally, the application programmer writes aservice that ispart of an X A-compliant
server group to perform some operation via the group’ s resource manager. In the
normal case, the service expects to perform all operations within atransaction. If, on
the other hand, the serviceis called with the communication setting of TPNOTRAN, you
may receive unexpected results when executing database operations.

Inorder to avoid unexpected behavior, design the application so that servicesin groups
associated with XA-compliant resource managers are aways called in transaction
mode or are always defined in the configuration file with AUTOTRAN set to Y. You
should also test the transaction level in the service code early.

Whether a Transaction Has Started

Itisimportant to know whether or not aprocessisin transaction modein order to avoid
and interpret certain error conditions. For example, it isan error for a process already
in transaction modeto call TPBEG N. When TPBEG Niscalled by such aprocess, it fals
and sets TP- STATUS to TPEPROTOto indicate that it was invoked while the caller was
already participating in a transaction. The transaction is not affected.

Programming a BEA Tuxedo ATMI Application Using COBOL 9-17

9 Writing Global Transactions

Y ou can design a service subroutine so that it tests whether it is in transaction mode
beforeinvoking TPBEG N. Y ou can test the transaction level by either of the following
methods:

m Querying the settings of the service information structure that is passed to the
service routine. The service isin transaction mode if the value is set to TPTRAN.

m Calling the TPGETLEV(3cbl) routine.
Use the following signature to call the TPGETLEV routine:

01 TPTRXLEV- REC.
CCPY TPTRXLEV.
01 TPSTATUS- REC.
CCOPY TPSTATUS.
CALL "TPGETLEV" USI NG TPTRXLEV- REC TPSTATUS- REC

TPGETLEV returns TP- NOT- | N- TRANif the caller is not in a transaction and
TP- | N- TRANf the caller is.

Thefollowing code sample showshow totest for transaction level using the TPGETLEV
routine (line 3). If the processis not already in transaction mode, the application starts
atransaction (line5). If TPBEG Nfails, amessage is returned to the statusline (line 9)
and APPL- CODE | N TPSVCRET- REC of TPRETURN s set to acode that can be retrieved
in APL- RETURN- CODE | N TPSTATUS- REC (lines 1 and 11).

Listing 9-6 Testing Transaction Level

.. Application defined codes
001 77 BEG FAI LED PI C S9(9) VALUE 3.

002 PRCCEDURE DI VI SI ON.

003 CALL "TPGETLEV' USI NG TPTRCLEV- REC
TPSTATUS- REC.
004 |F NOT TPCK
error processing EXIT PROGRAM

005 | F TP-NOT-I N TRAN

006 MOVE 30 TO T- QUT.

007 CALL "TPBEG N' USI NG
TPTRXDEF- REC
TPSTATUS- REC.

008 I F NOT TPOK

009 MOVE "Attenpt to TPBEGA N within service failed"
TO USER- MESSAGE.

9-18 Programming a BEA Tuxedo ATMI Application Using COBOL

Testing Whether a Transaction Has Started

See Also

010 SET TPFAIL TO TRUE

011 MOVE BEG FAI LED TO APPL- CCDE.

012 COPY TPRETURN REPLACI NG

013 DATA- REC BY USER- MESSACE.

If the AUTOTRAN parameter is set to Y, you do not need to call the TPBEG N, and
TPCOWM T or TPABORT transaction routines explicitly. Asaresult, you can avoid the
overhead of testing for transaction level. In addition, you can set the TRANTI VE
parameter to specify the time-out interval: the amount of time that may elapse after a
transaction for a service begins, and before it is rolled back if not completed.

For example, suppose you are revising the OPEN_ACCT service shown in the preceding
codelisting. Currently, OPEN_ACCT defines the transaction explicitly and then testsfor
itsexistence. To reduce the overhead introduced by thesetasks, you can eliminate them
from the code. Therefore, you need to require that whenever OPEN_ACCT iscalled, itis
called in transaction mode. To specify this requirement, enable the AUTOTRAN and
TRANTI ME system parametersin the configuration file.

m Description of the AUTOTRAN configuration parameter in the section “Implicitly
Defining a Global Transaction” on page 9-16 of Setting Up a BEA Tuxedo
Application.

m TRANTI ME configuration parameter in Setting Up a BEA Tuxedo Application.

Programming a BEA Tuxedo ATMI Application Using COBOL 9-19

9 Writing Global Transactions

9-20 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

10 Programming a

Multithreaded and
Multicontexted ATMI
Application

Thistopic includes the following sections:

m Support for Programming a Multithreaded/M ulticontexted ATMI Application
m Planning and Designing a Multithreaded/Multicontexted ATMI Application
= Implementing a Multithreaded/ Multicontexted ATMI Application

m Testing a Multithreaded/Multicontexted ATMI Application

Programming a BEA Tuxedo ATMI Application Using COBOL 10-1

10 Programming a Multithreaded and Multicontexted ATMI Application

Support for Programming a
Multithreaded/Multicontexted ATMI
Application

The BEA Tuxedo system supports only:
m Kerne-level threads packages (user-level threads packages are not supported)

m Multithreaded applications written in C (multithreaded COBOL applications are
not supported)

m Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions aswell as other types of
threads functions, we recommend using the POSIX threads functions, which make
your code easier to port to other platforms later.

To find out whether your platform supports a kernel-level threads package, C
functions, or POSIX functions, see the data sheet for your operating system in
Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo System.

Platform-specific Considerations for
Multithreaded/Multicontexted Applications

Many platformshaveidiosyncratic requirementsfor multithreaded and multicontexted
applications. Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo

System, lists these platform-specific requirements. To find out what is needed on your
platform, check the appropriate data sheet.

10-2 Programming a BEA Tuxedo ATMI Application Using COBOL

Planning and Designing a Multithreaded/Multicontexted ATMI Application

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

“Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI
Application” on page 10-8

= “How Multithreading and Multicontexting Work in a Client” on page 10-11
= “How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

Planning and Designing a
Multithreaded/Multicontexted ATMI
Application

Thistopic includes the following sections:
m What Are Multithreading and Multicontexting?

m Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI
Application

= How Multithreading and Multicontexting Work in a Client
m How Multithreading and Multicontexting Work in an ATMI Server

m Design Considerations for a Multithreaded and M ulticontexted ATMI
Application

Programming a BEA Tuxedo ATMI Application Using COBOL 10-3

10 Programming a Multithreaded and Multicontexted ATMI Application

What Are Multithreading and
Multicontexting?

The BEA Tuxedo system allows you to use asingle process to perform multiple tasks
simultaneously. The programming techniques for implementing this sort of process
usage are multithreading and multicontexting. This topic provides basic information
about these techniques:

= What Is Multithreading?

m What Is Multicontexting?

What Is Multithreading?

Multithreading is the inclusion of more than one unit of execution in asingle process.
In amultithreaded application, multiple simultaneous call s can be made from the same
process. For example, an individual processis not limited to one outstanding

tpcal | (3c).

In aserver, multithreading requires multicontexting except when application-created
threads are used in a singled-context server. The only way to create a multithreaded,
single-context application isto use application-created threads.

The BEA Tuxedo system supports multithreaded applicationswritten in C. It does not
support multithreaded COBOL applications.

The following diagram shows how a multithreaded client can issue callsto three
servers simultaneously.

10-4 Programming a BEA Tuxedo ATMI Application Using COBOL

What Are Multithreading and Multicontexting?

Figure10-1 Sample Multithreaded Process

SERVER A

CLIENT PROCESS

SERVER B

SERVER C

In amultithreaded application, multiple service-dispatched threads are available

in the same server, which means that fewer servers need to be started for that

application.

The following diagram shows how a server process can dispatch multiple
threads to different clients simultaneously.

Programming a BEA Tuxedo ATMI Application Using COBOL

10-5

10 Programming a Multithreaded and Multicontexted ATMI Application

Figure10-2 Multiple Service Threads Dispatched in One Server Process

THREAD 1

SERVER
THREAD 2 PROCESS
THREAD 3

What Is Multicontexting?

A context is an association to a domain. Multicontexting is the ability of asingle
process to have one of the following:

m More than one connection within a domain
m Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers,
multicontexting implies the use of multithreading, as well.

10-6 Programming a BEA Tuxedo ATMI Application Using COBOL

What Are Multithreading and Multicontexting?

For amore completelist of the characteristics of a context, see“ Context Attributes’ in
one of the following sections:

m “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

The BEA Tuxedo system supports multicontexted applications written in either C or
COBOL. Multithreaded applications, however, are supported only in C.

The following diagram shows how a multicontexted client process works within a
domain. Each arrow represents an outstanding call to a server.

Figure 10-3 Multicontexted Processin Two Domains

CLIENT PROCESS
Context 3

BEA Tuxedo Application A

BEA Tuxedo Application B

Programming a BEA Tuxedo ATMI Application Using COBOL 10-7

10 Programming a Multithreaded and Multicontexted ATMI Application

Licensing a Multithreaded or Multicontexted Application

For licensing purposes, each context is counted asone user. Additional licensesare not
reguired to accommodate multiple threads within one context. For example:

See Also

If a process has two contexts associated with Application A and one with
Application B, the BEA Tuxedo system counts atotal of three users (two in
Application A and onein Application B).

If a process has multiple threads accessing one application within the same
context, the system counts only one user.

“ Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI
Application” on page 10-8

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

Advantages and Disadvantages of a
Multithreaded/Multicontexted ATMI
Application

Multithreading and multicontexting are powerful tools for enhancing the performance
of BEA Tuxedo applications—given the appropriate circumstances. Before embarking
on aplan to use these techniques, however, it is important to understand potential
benefits and pitfalls.

10-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application

Advantages of a Multithreaded/Multicontexted ATMI
Application

Multithreaded and multicontexted ATMI applications offer the following advantages:

m Improved performance and concurrency

For certain applications, performance and concurrency can beimproved by using
multithreading and multicontexting together. In other applications, performance
can be unaffected or even degraded by using multithreading and multicontexting
together. How performance is affected depends on your application.

m Simplified coding of remote procedure calls and conversations

In some applications it is easier to code different remote procedure calls and
conversations in separate threads than to manage them from the same thread.

m Simultaneous access to multiple applications

Your BEA Tuxedo clients can be connected to more than one application at a
time.

m Reduced number of required servers

Because one server can dispatch multiple service threads, the number of servers
to start for your application is reduced. This capability for multiple dispatched
threadsis especially useful for conversational servers, which otherwise must be
dedicated to one client for the entire duration of a conversation.

For applications in which client threads are created by the Microsoft Internet
Information Server API or the Netscape Enterprise Server interface (that is, the
NSAPI), the use of multiple threads is essential if you want to obtain the full benefits
afforded by these tools. This may betrue of other tools, as well.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-9

10 Programming a Multithreaded and Multicontexted ATMI Application

Disadvantages of a Multithreaded/Multicontexted ATMI
Application

Multithreaded and multicontexted ATMI applications present the following
disadvantages:

m Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only
experienced programmers should undertake coding for these types of
applications.

m Difficulty of debugging

It is much harder to replicate an error in amultithreaded or multicontexted
application than it isto do so in asingle-threaded, single-contexted application.
Asaresult, it ismore difficult, in the former case, to identify and verify root
causes when errors occur.

m Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the
potentia to introduce new problems into an application.

m Difficulty of testing

Testing a multithreaded application is more difficult than testing a
single-threaded application because defects are often timing-related and more
difficult to reproduce.

m Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of
multithreading and multicontexting. Programmers need to:

e Remove static variables
e Replace any function callsthat are not thread-safe
e Replace any other code that is not thread-safe

Because the completed port must be tested and retested, the work required to
port a multithreaded and/or multicontexted application is substantial.

10-10 Programming a BEA Tuxedo ATMI Application Using COBOL

How Multithreading and Multicontexting Work in a Client

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

= “How Multithreading and Multicontexting Work in a Client” on page 10-11

= “How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17
m “Design Considerations for a Multithreaded and Multicontexted ATM|

Application” on page 10-22

How Multithreading and Multicontexting
Work in a Client

When amultithreaded and multicontexted applicationisactive, thelifecycle of aclient
can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Start-up Phase

In the start-up phase the following events occur:

m Some client threads join one or more BEA Tuxedo applications by calling
tpinit(3c).

m Other client threads share the contexts created by the first set of threads by
calling t pset ct xt (3c).

m Some client threads join multiple contexts.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-11

10 Programming a Multithreaded and Multicontexted ATMI Application

m Some client threads switch to an existing context.

Note: There may aso be threads that work independently of the BEA Tuxedo
system. We do not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in aBEA Tuxedo multicontexted application can have more than one
application association as long as the following rules are observed:

m All associations must be made to the same installation of the BEA Tuxedo
system.

m All application associations must be made from the same type of client. In other
words, one of the following must be true:

e All application associations must be made from native clients only.

e All application associations must be made from Workstation clients only.

To join multiple contexts, clients call thet pi ni t (3c) function with the
TPMULTI CONTEXTS flag set in the f | ags element of the TPI NFO data type.

Whent pi ni t () iscalled with the TPMULTI CONTEXTS flag set, a new application
associationiscreated and isdesignated the current association for thethread. The BEA
Tuxedo domain to which the new association is made is determined by the value of the
TUXCONFI G or WSENVFI LE/ WSNADDR environment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For acompletelist, see“Using
Per-context Functions and Data Structures in a Multithreaded ATMI Client” on page
10-52.) In such cases, the target context must be the current context. Although clients
can join more than one context, at any time, in any thread, only one context can bethe
current context.

Astask priorities shift within an application, requiring interactions with one BEA
Tuxedo domain rather than another, it is sometimes advantageous to reassign a thread
from one context to another.

10-12 Programming a BEA Tuxedo ATMI Application Using COBOL

How Multithreading and Multicontexting Work in a Client

In such situations, one client threads callst pget ct xt (3¢) and passes the handle that
isreturned (the value of which isthe current context) to a second client thread. The
second thread then associates itself with the current context by calling

t pset ct xt (3c) and specifying the handle it received fromt pget ct xt (3c) viathe
first thread.

Once the second thread is associated with the desired context, it is available to perform
tasks executed by ATMI functionsthat operate on a per-context basis. For details, see
“Using Per-context Functions and Data Structuresin a Multithreaded ATMI Client”
on page 10-52.

Work Phase

In this phase each thread performs atask. The following isalist of sample tasks:
m A thread issues areguest for aservice.

m A thread getsthe reply to a service request.

m A thread initiates and/or participates in a conversation.

m A thread begins, commits, or rolls back atransaction.

Service Requests

A thread sends arequest to a server by calling either t pcal | (3c) for a synchronous
request or t pacal | (3c) for an asynchronous request. If the request is sent with
tpcal I (), thenthereply is received without further action by any thread.

Replies to Service Requests

If an asynchronous request for a service has been sent witht pcal | (3c) , athread in
the same context (which may or may not be the same thread that sent the request) gets
thereply by calling t pget r pl y(3c) .

Programming a BEA Tuxedo ATMI Application Using COBOL 10-13

10 Programming a Multithreaded and Multicontexted ATMI Application

Transactions

If one thread starts a transaction, then all threads that share the context of that thread
also share the transaction.

Many threadsin a context may work on atransaction, but only onethread may commit
or abort it. The thread that commitsor abortsthe transaction can be any thread working
on the transaction; it is not necessarily the same thread that started the transaction.
Threaded applications are responsible for providing appropriate synchronization so
that the normal rules of transactions are followed. (For example, there can be no
outstanding RPC calls or conversations when atransaction is committed, and no stray
calsare allowed after atransaction has been committed or aborted.) A processmay be
part of at most one transaction for each of its application associations.

If one thread of an application callst pconmi t (3c) concurrently with an RPC or
conversational call in another thread of the application, the system acts asif the calls
were issued in some serial order. An application context may temporarily suspend
work on atransaction by calling t psuspend(3c) and then start another transaction
subject to the same restrictions that exist for single-threaded and single-context
programs.

Unsolicited Messages

For each context in amultithreaded or multicontexted application, you may choose one
of three methods for handling unsolicited messages.

A context may . .. By setting . . .
Ignore unsolicited messages TPU_I GN

Use dip-in notification TPU_DI P

Use dedicated thread notification. TPU_THREAD

(available only for C applications)

Thefollowing caveats apply:

m SIGNAL-based notification is not allowed in multithreaded or multicontexted
processes.

10-14 Programming a BEA Tuxedo ATMI Application Using COBOL

How Multithreading and Multicontexting Work in a Client

m If your application runs on a platform that supports multicontexting but not
multithreading, then you cannot use the TPU_THREAD unsolicited notification
method. Asaresult, you cannot receive immediate notification of events.

If receiving immediate notification of eventsisimportant to your application,
then you should carefully consider whether to use a multicontexted approach on
this platform.

m Dedicated thread notification is available only:
e For applications writtenin C

e On multithreaded platforms supported by the BEA Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate thread
to receive unsolicited messages and dispatch the unsolicited message handler. Only
one copy of the unsolicited message handler can run at any onetimein agiven context.

If t pi ni t (3c) iscaled on aplatform for which the BEA Tuxedo system does not
support threads, with parameters indicating that TPU_THREAD notification is being
requested on a platform that does not support threads, t pi ni t () returns- 1 and sets
t perr no to TPEI NVAL. If the UBBCONFI G(5) default NOTI FY option is set to THREAD
but threads are not available on a particular machine, the default behavior for that
machine is downgraded to DI PI N. The difference between these two behaviors allows
an administrator to specify a default for all machinesin a mixed configuration—a
configuration that includes some machinesthat support threads and some that do not—
but it does not alow aclient to explicitly request abehavior that isnot availableon its
machine.

If t pset unsol (3c)iscaled from athread that is not associated with a context, a
per-process default unsolicited message handler for all new t pi ni t (3c) contexts
created is established. A specific context may change the unsolicited message handler
for that context by calling t pset unsol () again when the context is active. The
per-process default unsolicited message handler may be changed by again calling

t pset unsol () inathread not currently associated with a context.

If aprocess has multiple associations with the same application, then each association
isassigned a different CLI ENTI D so that it is possible to send an unsolicited message
to a specific application association. If a process has multiple associations with the
same application, then any t pbr oadcast (3c) is sent separately to each of the
application associations that meet the broadcast criteria. When performing a dip-in
check for receiving unsolicited messages, an application checks for only those
messages sent to the current application association.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-15

10 Programming a Multithreaded and Multicontexted ATMI Application

In addition to the ATMI functions permitted in unsolicited message handlers, it is
permissible to call t pget ct xt (3¢) within an unsolicited message handler. This
functionality allows an unsolicited message handler to create another thread to perform
any more substantial ATMI work required within the same context.

Userlog Maintains Thread-specific Information

For each thread in each application, user | og(3c) records the following identifying
information:

process_| D.thread_I D. context _I D

Placeholders are printed in thet hr ead_I Dand cont ext _I Dfields of entriesfor
non-threaded platforms and single-contexted applications.

The TM_M B(5) supports thisfunctionality in the TA_ THREADI D and TA_CONTEXTI D
fieldsinthe T_ULOGclass.

Completion Phase

In this phase, when the client processis about to exit, on behalf of the current context
and al associated threads, athread ends its application association by calling

t pt erm(3c) . Like other ATMI functions, t pt er () operates on the current context.
It affects all threads for which the context is set to the terminated context, and
terminates any commonality of context among these threads.

A well-designed application normally waits for all work in a particular context to
complete beforeit callst pt er m() . Be surethat all threads are synchronized before
your application callst pt erm() .

10-16 Programming a BEA Tuxedo ATMI Application Using COBOL

How Multithreading and Multicontexting Work in an ATMI Server

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

m “Design Considerations for a Multithreaded and Multicontexted ATMI
Application” on page 10-22

“Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

“Writing a Multithreaded ATMI Client” on page 10-45
m “Synchronizing Threads Before an ATMI Client Termination” on page 10-34

How Multithreading and Multicontexting
Work in an ATMI Server

The events that occur in an ATMI server when a multithreaded and multicontexted
application is active can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Programming a BEA Tuxedo ATMI Application Using COBOL 10-17

10 Programming a Multithreaded and Multicontexted ATMI Application

Start-up Phase

What happens during the start-up phase depends on the value of the
M NDI SPATCHTHREADS and MAXDI SPATCHTHREADS parameters in the configuration
file.

If the value of And the value of Then...
M NDI SPATCHTHREADS MAXDI SPATCHTHREADS
is... is...

0 >1 1. TheBEA Tuxedo system creates a thread
dispatcher.

2. Thedispatcher callst psvrinit (3c) tojoin
the application.

>0 >1 1. The BEA Tuxedo system creates a thread

dispatcher.

2. Thedispatcher callst psvrinit (3c) tojoin
the application.

3. The BEA Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.

4. Each new system-created thread calls
tpsvrthrinit(3c) tojointheapplication.

Work Phase

In this phase, the following activities occur:

m Multiple client requests to one server are handled concurrently in multiple
contexts. The system allocates a separate thread for each request.

m |f necessary, additional threads (up to the number indicated by
MAXDI SPATCHTHREADS) are created.

m The system keeps statistics on server threads.

10-18 Programming a BEA Tuxedo ATMI Application Using COBOL

How Multithreading and Multicontexting Work in an ATMI Server

Server-dispatched Threads Are Used

In responseto clients’ requests for a service, the server dispatcher creates multiple
threads (up to a configurable maximum) in one server that can be assigned to various
client requests concurrently. A server cannot become a client by calling t pi ni t (3c) .

Each dispatched thread is associated with a separate context. This feature isuseful in
both conversational and RPC servers. It isespecially useful for conversational servers
which otherwise sit idle, waiting for the client side of a conversation while other
conversationa connections are waiting for service.

Thisfunctionality is controlled by the following parameters in the SERVERS section of
the UBBCONFI @ 5) file and the TM M B(5) .

UBBCONFIG Parameter MIB Parameter Default

M NDI SPATCHTHREADS TA_ M NDI SPATCHTHREADS 0

MAXDI SPATCHTHREADS TA_MAXDI SPATCHTHREADS 1

THREADSTACKSI ZE TA THREADSTACKSI ZE 0 (representing the
OS defaullt)

Each dispatched thread is created with the stack size specified by
THREADSTACKSI ZE (or TA_THREADSTACKSI ZE). If this parameter is not specified
or has avalue of 0, the operating system default is used. On afew operating
systems on which the default is too small to be used by the BEA Tuxedo system,
alarger default is used.

If the value of this parameter is not specified or is0, or if the operating system
does not support setting a THREADSTACKSI ZE, then the operating system default
is used.

M NDI SPATCHTHREADS (or TA_M NDI SPATCHTHREADS) must be less than or
equal to MAXDI SPATCHTHREADS (or TA_MAXDI SPATCHTHREADS).

If MAXDI SPATCHTHREADS (or TA_MAXDI SPATCHTHREADS) is 1, then the
dispatcher thread and the service function thread are the same thread.

If MAXDI SPATCHTHREADS (or TA_MAXDI SPATCHTHREADS) is greater than 1, any
separate thread used for dispatching other threads does not count toward the
limit of dispatched threads.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-19

10 Programming a Multithreaded and Multicontexted ATMI Application

m Initialy, the system boots M NDI SPATCHTHREADS (or
TA_M NDI SPATCHTHREADS) server threads.

m The system never boots more than MAXDI SPATCHTHREADS (or
TA_MAXDI SPATCHTHREADS) server threads.

Application-created Threads Are Used

Using your operating system functions, you may create additional threads within an
application server. Application-created threads may:

m Operateindependently of the BEA Tuxedo system

m Operatein the same context as an existing server dispatch thread

m Perform work on behalf of server dispatch contexts

Some restrictions govern what you can do if you create threads in your application.
m Servers may not become clients by calling t pi ni t (3c).

m Initially, application-created server threads are not associated with any server
dispatch context. An application-created server thread may call t pset ct xt (3c)
(and passit avalue returned by a previous call tot pget ct xt (3c) withina
server-dispatched thread) to associate itself with that server-dispatched context.

m An application-created server thread cannot call t pr et ur n(3c) or
t pf or war d(3c) . When an application-created server thread has finished its
work, it must call t pset ct xt (3c) with the context set to TPNULLCONTEXT
before the originally dispatched thread callst pret urn().

Bulletin Board Liaison Verifies Sanity of System Processes

TheBulletin Board Liaison (BBL) periodically checksservers. If aserver istaking too
long to execute aparticular service request, the BBL killsthat server. (If specified, the
BBL then restartsthe server.) If the BBL killsamulticontexted server, the other
service callsthat are currently being executed are also terminated as aresult of the
process being killed.

The BBL also sends a message to any process or thread that has been waiting longer
than its timeout value to receive a message. The blocking message receive call then
returns an error indicating a timeout.

10-20 Programming a BEA Tuxedo ATMI Application Using COBOL

How Multithreading and Multicontexting Work in an ATMI Server

System Keeps Statistics on Server Threads

For each server, the BEA Tuxedo system maintains statistics for the following
information:

m Maximum number of server-dispatched threads allowed

m Number of server-dispatched threads currently in use
(TA_CURDI SPATCHTHREADS)

m High-water mark of concurrent server-dispatched threads since the server was
booted (TA_HWDI SPATCHTHREADS)

m Number of server-dispatched threads historically started
(TA_NUMDI SPATCHTHREADS)

Userlog Maintains Thread-specific Information

For each thread in each application, user | og(3c) records the following identifying
information:

process_|ID.thread_I D.context_I D

Placeholders are printed in the t hr ead_I Dand cont ext _I D fields of entries for
non-threaded platforms and single-contexted applications.

The TM_M B(5) supportsthisfunctionality in the TA_ THREADI D and TA_CONTEXTI D
fieldsinthe T_ULOG class.

Completion Phase

When the application is shut down, t psvrt hr done(3c) andt psvrdone(3c) are
called to perform any termination processing that is necessary, such as closing a
resource manager.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-21

10 Programming a Multithreaded and Multicontexted ATMI Application

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

“Design Considerations for a Multithreaded and Multicontexted ATMI
Application” on page 10-22

“Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

“Writing a Multithreaded ATMI Server” on page 10-59

Design Considerations for a Multithreaded
and Multicontexted ATMI Application

Multithreaded and multicontexted ATMI applications are appropriate for some BEA
Tuxedo domains, but not all. To decidewhether to create such applications, you should
answer several basic questions about the following:

m Your development and run-time environments
m Design requirements for your application
m Type of threads model to use

m Interoperability restrictions for Workstation clients

10-22 Programming a BEA Tuxedo ATMI Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted ATMI Application

Environment Requirements

When considering the development of multithreaded and/or multi contexted
applications, examine the following aspects of your development and run-time
environments:

m Do you have an experienced team of programmers capable of writing and
debugging multithreaded and multicontexted programs that successfully manage
concurrency and synchronization?

m Arethe multithreading features of the BEA Tuxedo system supported on the
platform on which you are developing your application? These features are
supported only on platforms with an OS-provided threads package, providing an
appropriate level of functionality.

m Do the resource managers (RMs) used by your servers support multithreading?
If so, consider the following issues, aswell:

Do you need to set any parameters required by your RM to enable
multithreaded access by your servers? For example, if you use an Oracle
database with a multithreaded application, you must set the THREADS=t r ue
parameter as part of the OPENI NFOstring passed to Oracle. By doing so, you
make it possible for individual threads to operate as separate Oracle
associations.

Does your RM support a mixed mode of operation? A mixed-mode operation
isaform of access such that multiple threads in a process can map to one
RM association while other threads in the same process simultaneously map
to different RM associations. Within one process, for example, Threads A
and B map to RM Association X, while Thread C mapsto RM Association
Y.

Not al RM s support mixed-mode operation. Some require all threadsin a
given process to map to the same RM association. If you are designing an
application that will make use of transactional RM access within
application-created threads, make sure your RM supports mixed-mode
operation.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-23

10 Programming a Multithreaded and Multicontexted ATMI Application

Design Requirements

When designing a multithreaded and/or multicontexted application, you should
consider the following design questions:

m Isthetask performed by your application suitable for multithreading and/or
multicontexting?

m Do you want to connect to more than one BEA Tuxedo application? How many
connections to each target application do you want?

m What synchronization issues need to be addressed in your application?

= Will you need to port your application to another platform after you have put
your initial application into production?

Is the Task of Your Application Suitable for
Multithreading and/or Multicontexting?

Thefollowing table provides a list of questionsto help you decide whether your
application would be improved if it were multithreaded and/or multicontexted. This
list is not comprehensive; your individual requirementswill determine other factors
that should be considered.

For additional suggestions, we recommend that you consult a multithreaded and/or
multicontexted programming publication.

If the answer tothisquestion . .. IsYES, then you might consider
using. ..
Does your client need to connect to more than one application M ulticontexting.

without using the Domains feature?

Does your client perform the role of amultiplexer within your Multicontexting.
application? For example, have you designated one machine in your
application the “surrogate” for 100 other machines?

Does your client use multicontexting? Multithreading. By alocating one thread
per context, you can simplify your code.

10-24 Programming a BEA Tuxedo ATMI Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted ATMI Application

If the answer to this question . .. IsYES, then you might consider
using. ..

Does your client perform two or more tasks that can be executed Multithreading.
independently for along time such that the performance gains from

concurrent execution outweigh the costs and compl exities of threads

synchronization?

Do you want one server to process multiple concurrent requests? Multithreading. Assign avalue greater
than 1 to MAXDI SPATCHTHREADS. This
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessary to Not using multithreading.
synchronize them after each thread had performed only alittle work?

How Many Applications and Connections Do You Want?

Decide how many applications you want to access and the number of connectionsyou
want to make.

m |f you want connections to more than one application, then we recommend one
of the following:

e A single-threaded, multicontexted application
e A multithreaded, multicontexted application

m |f you want more than one connection to an application, then we recommend a
multithreaded, multicontexted application.

m If you want only one connection to one application, then we recommend one of
the following:

e Multithreaded, single-contexted clients
e Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-25

10 Programming a Multithreaded and Multicontexted ATMI Application

What Synchronization Issues Need to Be Addressed?

Thisissueisanimportant oneduring the design phase. It is, however, beyond the scope
of this documentation. Please refer to a publication about multithreaded and/or
multicontexted programming.

Will You Need to Port Your Application?

If you may need to port your application in the future, you should keep in mind that
different operating systems have different sets of functions. If you think you may want
to port your application after completing theinitia version of it on one platform,
remember to consider the amount of staff time that will be needed to revise the code
with adifferent set of functions.

Which Threads Model Is Best for You?

Various models for multithreaded programs are now being used, including the
following:

m Boss/worker model
m Siblings model
= Workflow model

We do not discuss threads modelsin this documentation. We recommend that you
research all available models and consider your design requirements carefully when
choosing a programming model for your application.

10-26 Programming a BEA Tuxedo ATMI Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted ATMI Application

Interoperability Restrictions for Workstation Clients

Interoperability between release 7.1 Workstation clients and applications based on
pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

m Theclient is neither multithreaded nor multicontexted.
m Theclient is multicontexted.
m Theclient is multithreaded and each thread is in adifferent context.

A BEA Tuxedo Release 7.1 Workstation client with multiple threads in a single
context cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

See Also

m “Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI
Application” on page 10-8

m “Preliminary Guidelinesfor Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-28

Programming a BEA Tuxedo ATMI Application Using COBOL 10-27

10 Programming a Multithreaded and Multicontexted ATMI Application

Implementing a Multithreaded/
Multicontexted ATMI Application

“Preliminary Guidelines for Programming a M ultithreaded/M ulticontexted ATMI
Application” on page 10-28

“Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

“Writing a Multithreaded ATMI Client” on page 10-45

“Writing a Multithreaded ATMI Server” on page 10-59

“Compiling Code for a M ultithreaded/Multicontexted ATMI Application” on
page 10-59

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted ATMI
Application

Before you start coding, make sure you have fulfilled or thought about the following:
m “Prerequisitesfor aMultithreaded ATMI Application” on page 10-29
m “General Multithreaded Programming Considerations” on page 10-29

m “Concurrency Considerations’ on page 10-30

10-28 Programming a BEA Tuxedo ATMI Application Using COBOL

Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI Appli-

Prerequisites for a Multithreaded ATMI Application

Make sure your environment meets the following prerequisites before starting your
devel opment project.

m Your operating system must provide a suitable threads package supported by the

BEA Tuxedo system.

The BEA Tuxedo system does not supply toolsfor creating threads, but it
supports various threads packages provided by different operating systems. To
create and synchronize threads, you must use the functions native to your
operating system. To find out which, if any, threads packages are supported by
your operating system, see Appendix A, “Platform Data Sheets,” in Installing
the BEA Tuxedo System.

If you are using multithreaded servers, the resource managers used by those
servers must support threads.

General Multithreaded Programming Considerations

Only experienced programmers should write multithreaded programs. In particular,
programmers should already be familiar with basic design issues specific to this task,
such as:

The need for concurrency control among multiple threads
The need to avoid the use of static variablesin most instances

Potential problems that may arise from the use of signalsin multithreaded
programs

Thesearejust afew of theissues, too numerousto list here, with which we assume any
programmer undertaking the writing of a multithreaded program is already familiar.
These issues are discussed in many commercially available books on the subject of
multithreaded programming.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-29

10 Programming a Multithreaded and Multicontexted ATMI Application

Concurrency Considerations

Multithreading enabl es different threads of an application to perform concurrent
operations on the same conversation. We do not recommend this approach, but the
BEA Tuxedo system does not forbid it. If different threads perform concurrent
operations on the same conversation, the system acts as if the concurrent calls were
issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency among
them by using mutexes or other concurrency-control functions. Here are three
examples of the need for concurrency control:

m When multithreaded threads are operating on the same context, the programmer
must ensure that functions are being executed in the required serial order. For
example, all RPC callsand conversations must be compiled before
t pcommi t (3c) canbecalled. If t pcommi t () iscalled from athread other than
the thread from which all these RPC or conversational calls are made, some
concurrency control is probably required in the application.

m Similarly, it ispermissibleto call t pacal | (3c) in onethread and
t pget r pl y(3c) inanother, but the application must either:

e Ensurethatt pacal | () iscalled beforet pgetrpl y(), or
¢ Manage the consequences if t pacal | () isnot called beforet pget rpl y()

m Multiple threads may operate on the same conversation but application
programmers must realize that if different threadsissuet psend(3c) at
approximately the same time, the system acts as though these t psend() calls
have been issued in an arbitrary order.

For most applications, the best strategy isto code all the operations for one
conversation in one thread. The second best strategy is to seriaize these
operations using concurrency control.

10-30 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting in an ATMI Client

See Also

“Design Considerations for a Multithreaded and Multicontexted ATM|
Application” on page 10-22

“Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

“Writing a Multithreaded ATMI Client” on page 10-45
“Writing a Multithreaded ATM1 Server” on page 10-59

Writing Code to Enable Multicontexting in
an ATMI Client

To enable multicontexting in a client, you must write code that:

Sets up multicontexting at initialization time

I mplements security

If multithreading is a so being used, synchronizes threads
Switches contexts

Handles unsolicited messages for each context

If your application uses transactions, you should also keep in mind the consequences
of multicontexting for transactions. For more information, see “Coding Rules for
Transactions in a Multithreaded/M ulticontexted ATMI Application” on page 10-39.

Note: Theinstructionsand sample code provided in thissection refer to the C library

functions provided by the BEA Tuxedo system. Equivalent COBOL library
functionsare also avail able; for details, seethe BEA Tuxedo COBOL Function
Reference.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-31

10 Programming a Multithreaded and Multicontexted ATMI Application

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thent pr et ur n(3c) ort pf orward(3c) fails.
The execution of athread exit does not automatically trigger acall to

t pset ct xt (3c) to change the context to TPNULLCONTEXT.

For al contexts in a process, the same buffer type switch must be used.

As with any other type of data structure, amultithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

e Both callsmay use the buffer
e Both callsmay free the buffer

e One cal may usethe buffer and one call may free the buffer

If you cal t pi ni t (3c) more than once, either to join multiple applications or to
make multiple connections to a single application, keep in mind that on each

t pi ni t () you must accommodate whatever security mechanisms have been
established.

10-32 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting in an ATMI Client

Setting Up Multicontexting at Initialization

When aclient is ready to join an application, specify t pi ni t (3c) with the
TPMULTI CONTEXTS flag set, as shown in the following sample code.

Listing10-1 Sample Code for a Client Joining a M ulticontexted Application

#i ncl ude <stdio. h>
#i ncl ude <atm . h>

TPINIT * t pi ni t buf ;
mai n()
{
tpinitbuf = tpalloc(TPINIT, NULL, TPI N TNEED(O));

t pi ni tbuf->flags = TPMJULTI CONTEXTS;

if (tpi ni t (tpinitbuf) == -1) {
ERROR_PROCESSI NG_CODE

A new application association is created and assigned to the BEA Tuxedo domain
specified in the TUXCONFI G or WBENVFI LE/ WBNADDR environment variable.

Note: Inany one process, either al callsto t pi ni t (3c) mustinclude the
TPMULTI CONTEXTSflag or elsenocall tot pi ni t () may includethisflag. The
only exception tothisruleisthat if all of aclient’ sapplication associations are
terminated by successful callstot pt er m(3c), then the processis restored to
astate in which the inclusion of the TPMULTI CONTEXTS flag in the next call to
tpinit() isoptional.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-33

10 Programming a Multithreaded and Multicontexted ATMI Application

Implementing Security for a Multicontexted ATMI Client

Each application association in the same process requires a separate security
validation. The nature of that validation depends on the type of security mechanisms
used in your application. In aBEA Tuxedo application you might, for example, use a
system-level password or an application password.

Asthe programmer of amulticontexted application, you are responsiblefor identifying
the type of security used in your application and implementing it for each application
association in aprocess.

Synchronizing Threads Before an ATMI Client
Termination

When you are ready to disconnect aclient from an application, invoket pt er nm(3c) .
Keep in mind, however, that in a multicontexted application t pt er () destroysthe
current context. All the threads operating on that context are affected. Asthe
application programmer, you must carefully coordinate the use of multiple threads to
make sure that t pt er n() is not called unexpectedly.

It isimportant to avoid caling t pt er m(3c) on acontext while other threads are still
working on that context. If such acall tot pt er () is made, the BEA Tuxedo system
places the other threads that had been associated with that context in a specia invalid
context state. When in theinvalid context state, most ATMI functions are disallowed.
A thread may exit from the invalid context state by calling t pset ct xt (3c) or

t pt er m() . Most well designed applications never have to deal with theinvalid context
state.

Note: TheBEA Tuxedo system does not support multithreading in COBOL
applications.

10-34 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting in an ATMI Client

Switching Contexts

Thefollowingisasummary of the coding stepsthat might be made by aclient that calls
services from two contexts.

1. Set the TUXCONFI Genvironment variable to the value required by fi r st app.

2. Jointhefirst application by calingt pi ni t (3c) with the TPMULTI CONTEXTS flag
Set.

3. Obtain ahandle to the current context by calling t pget ct xt (3c) .

4. Switch the value of the TUXCONFI G environment variable to the value required by
the secondapp context, by calling t uxput env() .

5. Join the second application by calling t pi ni t (3c) with the TPMULTI CONTEXTS
flag set.

6. Get ahandleto the current context by calling t pget ct xt (3c) .

7. Beginning with thef i r st app context, start toggling between contexts by calling
t pset ct xt (3c).

8. Call firstapp services.

9. Switch the client to the secondapp context (by calling t pset ct xt (3c)) and call
secondapp Services.

10. Switch theclient to thef i r st app context (by calling t pset ct xt (3c¢)) and call
firstapp services.

11. Terminatethefi r st app context by calling t pt er n{ 3c) .

12. Switch the client to the secondapp context (by calling t pset ct xt (3c)) and call
secondapp services.

13. Terminate the secondapp context by calling t pt er m(3c) .

The following sample code provides an exampl e of these steps.

Note: Inorder to simplify the sample, error checking code is not included.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-35

10 Programming a Multithreaded and Multicontexted ATMI Application

Listing 10-2 Sample Codefor Switching Contextsin a Client

#i ncl ude <stdi o. h>
#include "atm .h"/* BEA Tuxedo header file */

#if defined(__STDC) || defined(__cpl usplus)
mai n(i nt argc, char *argv[])

#el se

mai n(argc, argv)

int argc;

char *argv[];

#endi f

{

TPINIT * tpinitbuf;
TPCONTEXT_T firstapp_context|D, secondapp_contextl D
/* Assune that TUXCONFIGis initially set to /hone/firstapp/ TUXCONFI G/
/*
* Attach to the BEA Tuxedo systemin multicontext node.
*/
t pi ni t buf =t pal oc(TPINI'T, NULL, TPI Nl TNEED(O));
t pi ni t buf ->fl ags = TPMJULTI CONTEXTS;

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);
}
/*
* obtain a handle to the current context.
*/

t pget ct xt (&firstapp_context! D, 0);

/*
* Use tuxputenv to change the value of TUXCONFI G,
* so we now tpinit to another application.
*/

t uxput env (" TUXCONFI G=/ horre/ second_app/ TUXCONFI G') ;

/*

* tpinit to secondapp.

*/

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);

}

/*

10-36 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting in an ATMI Client

* Get a handle to the context of secondapp.
*/
t pget ct xt (&secondapp_context| D, 0);

/*

* Now you can alternate between the two contexts

* using tpsetctxt and the handl es you obtained from
* tpgetctxt. You begin with firstapp.

*/

tpsetctxt (firstapp_contextl D, 0);

/*

* You call services offered by firstapp and then switch
* to secondapp.

*/

t pset ct xt (secondapp_context|D, 0);

/*

* You call services offered by secondapp.
* Then you switch back to firstapp.

*/

tpsetctxt (firstapp_contextl D, 0);

/*

* You call services offered by firstapp. When you have
* finished, you term nate the context for firstapp.

*/

tpternm();

/*
* Then you switch back to secondapp.
*/

t pset ct xt (secondapp_context|D, 0);

/*

* You call services offered by secondapp. Wen you have
finished, you term nate the context for secondapp and
end your program

*/

tpterm();

return(0);

Programming a BEA Tuxedo ATMI Application Using COBOL 10-37

10 Programming a Multithreaded and Multicontexted ATMI Application

Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must set up
an unsolicited message handler or use the process handler default if you have set one

up.

If t pset unsol (3c) iscaled from athread that is not associated with a context, a
per-process default unsolicited message handler for al new t pi ni t (3c) contexts
created is established. A specific context may change the unsolicited message handl er
for that context by calling t pset unsol () again when the context isactive. The
per-process default unsolicited message handler may be changed by again calling

t pset unsol () in athread not currently associated with a context.

Set up the handler in the same way you set one up for a single-threaded or
single-contexted application. Seet pset unsol (3c) for details.

Youcanuset pget ct xt (3c) inanunsolicited message handler if youwant toidentify
the context in which you are currently working.

10-38 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting in an ATMI Client

Coding Rules for Transactions in a
Multithreaded/Multicontexted ATMI Application

See Also

The following consequences of using transactions should be kept in mind while you
are writing your application:

You can have only one transaction in any one context.
You can have a different transaction for each context.

All the threads associated with a given context at a given time share the same
transaction state (if any) of that context.

You must synchronize your threads so al conversations and RPC calls are
complete before you call t pconmi t (3c).

You can call t pcomni t (3c) from only one thread in any particular transaction.

“How Multithreading and Multicontexting Work in a Client” on page 10-11
“Writing a Multithreaded ATMI Client” on page 10-45

Programming a BEA Tuxedo ATMI Application Using COBOL 10-39

10 Programming a Multithreaded and Multicontexted ATMI Application

Writing Code to Enable Multicontexting and
Multithreading in an ATMI Server

This topic includes the following sections:

Coding Rules for aMulticontexted ATMI Server
Initializing and Terminating ATM| Servers and Server Threads
Programming an ATMI Server to Create Threads

Sample Code for Creating an Application Thread in a Multicontexted ATMI
Server

Note: Theinstructionsand samplecode provided in thissection refer tothe C library

functions provided by the BEA Tuxedo system. (See the BEA Tuxedo C
Function Referencefor details.) Equivalent COBOL routinesare not available
because multithreading (which isrequired to create amulticontexted server) is
not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thent pr et ur n(3c) ort pf orward(3c) fails.
The execution of athread exit does not automatically trigger acall to

t pset ct xt (3c) to change the context to TPNULLCONTEXT.

For all contextsin a process, the same buffer type switch must be used.

m Aswith any other type of data structure, a multithreaded application must

properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

e Both callsmay use the buffer.
e Both calls may free the buffer.

10-40 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server

e One call may use the buffer and one call may free the buffer.

Coding Rules for a Multicontexted ATMI Server

Keep in mind the following rules for coding multicontexted servers:

The BEA Tuxedo dispatcher on the server may dispatch the same service and/or
different services multiple times, creating a different dispatch context for each
service dispatched.

A server is prohibited from calling t pi ni t (3c) or otherwise acting as a client.
If aserver processcallst pinit (), tpinit() returns-1 and setst perr no(5)
to TPEPROTO. An application-created server thread may not make ATMI calls
before calling t pset ct xt (3c) .

Only a server-dispatched thread may call t pr et ur n(3c) or t pf orward(3c).

A server cannot executeat pret urn(3c) ort pf orwar d(3c) if any
application-created thread is still associated with any application context.
Therefore, before a server-dispatched thread callst pr et urn() , each
application-created thread associated with that context must call

t pset ct xt (3c) with the context set to either TPNULLCONTEXT or another valid
context.

If thisruleisviolated, thent pr et urn(3c) or t pf orward(3c) writes amessage
to the user log, indicates TPESVCERR to the caller, and returns control to the main
server dispatch loop. The threads that had been in the context where the invalid

t preturn() wasdoneare placed in an invalid context.

If there are outstanding ATMI calls, RPC calls, or conversations when
tpreturn(3c) ortpforward(3c) iscaled, tpreturn() ortpforward()
writes a message to the user log, indicates TPESVCERR to the caller, and returns
control to the main server dispatch loop.

A server-dispatched thread may not call t pset ct xt (3c) .

Unlike single-contexted servers, it is permissible for a multicontexted server
thread to call a service that is offered only by that same server process.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-41

10 Programming a Multithreaded and Multicontexted ATMI Application

Initializing and Terminating ATMI Servers and Server
Threads

To initialize and terminate your servers and server threads, you can use the default
functions provided by the BEA Tuxedo system or you can use your own.

Table 10-1 Default Functionsfor Initialization and Termination

To... Use the default function
Initialize a server tpsvrinit(3c)
Initialize a server thread tpsvrthrinit(3c)
Terminate a server t psvrdone(3c)
Terminate a server thread t psvrthrdone(3c)

Programming an ATMI Server to Create Threads

Y ou may create additional threads within an application server, although most
applications using multicontexted servers use only the dispatched server threads
created by the system. This section provides instructions for doing so.

Creating Threads

Y ou may create additional threads within an application server by using OS threads
functions. These new threads may operate independently of the BEA Tuxedo system,
or they may operate in the same context as one of the server-dispatched threads.

Assaociating Threads with a Context

Initially, application-created server threads are not associated with any
server-dispatched context. If called before being initialized, however, most ATMI
functions perform an implicit t pi ni t (3c) . Such callsintroduce problems because
servers are prohibited from calling t pi ni t () . (If aserver process callst pinit (),
t pi nit() returns-1 and setst perr no(5) to TPEPROTO.)

10-42 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server

Therefore, an application-created server thread must associate itself with an existing
context before calling any ATMI functions. To associate an application-created server
thread with an existing context, you must write code that implements the following
procedure.

1. Server-dispatched-thread A getsahandle to the current context by calling
t pget ct xt (3c) .

2. Server-dispatched-thread A passes the handle returned by t pget ct xt (3c) to
Application_thread B.

3. Application_thread B associatesitself with the current context by calling
t pset ct xt (3c) , specifying the handle received from
Server-dispatched-thread_A.

4. Application-created server threads cannot call t pr et ur n(3c) or
t pf or war d(3c) . Before the originally dispatched thread callst pret urn() or
t pf orwar d(), all application-created server threads that have been in that
context must switch to TPNULLCONTEXT or another valid context.

If thisruleis not observed, then t pf or war d(3c) ort pret urn(3c) failsand
indicates a service error to the caller.

Sample Code for Creating an Application Thread in a
Multicontexted ATMI Server

For those applications with a need to create an application thread in aserver, the
following code sample shows a multicontexted server in which a service creates
another thread to help perform its work. Operating system (OS) threads functions
differ from one OSto another. In this sample POSIX and ATMI functions are used.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-43

10 Programming a Multithreaded and Multicontexted ATMI Application

Notes: Inorder to simplify the sample, error checking codeis not included. Also, an
exampl e of amulticontexted server using only threads dispatched by the BEA
Tuxedo system is not included because such a server is coded in exactly the
same way as a single-contexted server, as long as thread-safe programming

practices are used.

Listing 10-3 Code Samplefor Creatinga Thread in a Multicontexted Server

#i ncl ude <pthread. h>
#i nclude <atm . h>

void *withdrawal thread(void *);
struct sdata {

TPCONTEXT T ctxt;
TPSVCI NFO *svcinfoptr;

H

voi d

TRANSFER(TPSVCI NFO *svci nf 0)

{
struct sdata transferdata;
pt hr ead_t wi t hdrawal t hr eadi d;
t pget ct xt (& ransf erdata. ctxt, 0);
transferdata. svci nfoptr = svcinfo;
pt hread_create(&t hdrawal t hreadi d, NULL, withdrawalthread,
tpcal | ("DEPCSI T, ...);
pt hread_j oi n(w t hdrawal t hreadi d, NULL);
t pret urn(TPSUCCESS, ...);

}

void *

wi t hdr awal t hr ead(voi d *arg)

{
t pset ct xt (arg->ctxt, 0);
t popen();
tpcal | ("W THDRAWAL", ...);
tpcl ose();
return(NULL) ;

}

& ransferdata);

10-44 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client

The previous exampl e accomplishes afundstransfer by invoking the DEPOSI T service
in the originally dispatched thread, and W THDRAWAL in an application-created thread.
Thisexampleisbased on the assumption that the resource manager being used alows
amixed model such that multiplethreads of aserver can be associated with aparticul ar
database connection without all threads of the server being associated with that
instance. Most resource managers, however, do not support such a model.

A simpler way to codethisexampleisto avoid the use of an application-created thread.
To obtain the same concurrency provided by thetwo callstot pcal | (3c) inthe
example, substitutetwo callstot pacal | (3c) andtwo callstot pget r pl y(3c) inthe
server-dispatched thread.

See Also

= “How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

Writing a Multithreaded ATMI Client

Thistopic includes the following sections:

m Coding Rules for a Multithreaded ATMI Client
m Initializing an ATMI Client to Multiple Contexts
m Getting Repliesin a Multithreaded Environment

m Using Environment Variables in a Multithreaded and/or M ulticontexted
Environment

m Using Per-context Functions and Data Structures in a Multithreaded ATMI
Client

m Using Per-process Functions and Data Structures in a Multithreaded ATMI
Client

m Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client

Programming a BEA Tuxedo ATMI Application Using COBOL 10-45

10 Programming a Multithreaded and Multicontexted ATMI Application

Sample Code for a Multithreaded ATMI Client

Note: TheBEA Tuxedo system does not support multithreaded COBOL

applications.

Coding Rules for a Multithreaded ATMI Client

Keep in mind the following rules for coding multithreaded clients:

Once aconversation has been started, any thread in the same process can work
on that conversation. Handles and call descriptors are portable within the same
context in the same process, but not between contexts or processes. Handles and
call descriptors can be used only in the application context in which they are
originally assigned.

Any thread operating in the same context within the same process can invoke
t pget r pl y(3c) toreceive aresponse to an earlier call to t pacal | (3c),
regardless of whether or not that thread originally called t pacal I ().

A transaction can be committed or aborted by only one thread, which may or
may not be the same thread that started it.

All RPC calsand all conversations must be completed before an attempt is
made to commit the transaction. If an application callst pcommi t (3c) while
RPC callsor conversations are outstanding, t pconmi t () aborts the transaction,
returns - 1, and setst perr no(5) to TPEABCRT.

Functions such ast pcal | (3c), tpacal | (3c), tpgetrply(3c),

t pconnect (3c), t psend(3c),tprecv(3c), andt pdi scon(3c) should not be
called in transaction mode unless you are sure that the transaction is not already
committing or aborting.

Two t pbegi n(3c) calls cannot be made simultaneously for the same context.
t pbegi n(3c) cannot be issued for a context that is already in transaction mode.

If you are using a client and you want to connect to more than one domain, you
must manually change the value of TUXCONFI G or WBNADDR before calling

t pi ni t (3c) . You must synchronize the setting of the environment variable and
thet pi ni t () cal if multiple threads may be performing such an action. All
application associations in a client must obey the following rules:

10-46 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client

e All associations must be made to the same release of the BEA Tuxedo
system.

e Either every application association in a particular client must be made asa
native client, or every application association must be made as a Workstation
client.

m To join an application, a multithreaded Workstation client must always call
t pi ni t (3c) with the TPMULTI CONTEXTS flag set, even if the client isrunning in
single-context mode.

Initializing an ATMI Client to Multiple Contexts

To have aclient join more than one context, issue acall to thet pi ni t (3c¢) function
with the TPMULTI CONTEXTS flag set inthef | ags element of the TPI NI T data
structure.

Inany one process, either al callstot pi ni t (3c) mustincludethe TPMULTI CONTEXTS
flagor nocall tot pi ni t () may includethisflag. The only exceptiontothisruleisthat
if al of aclient's application associations are terminated by successful calsto

t pt er m(3c) , then the processisrestored to a state in which the inclusion of the
TPMULTI CONTEXTS flag in the next call tot pi ni t () isoptional.

When't pi ni t (3c) isinvoked with the TPMULTI CONTEXTS flag set, anew application
association is created and is designated the current association. The BEA Tuxedo
domain to which the new association is made is determined by the value of the
TUXCONFI G or WBENVFI LE/ WSNADDR environment variable.

When aclient thread successfully executest pi ni t (3c¢) without the
TPMULTI CONTEXTS flag, all threads in the client are placed in the single-context state
(TPSI NGLECONTEXT).

Onfailure, t pi ni t (3c) leavesthe calling thread in its original context (that is, inthe
context state in which it was operating before the call to t pi nit ()).

Do not call t pt er m(3c) from agiven context if any of the threadsin that context are
till working. See thetablelabeled “Multicontext State Transitions’ on page 10-48 for
a description of the context states that result from calling t pt er n() under these and
other circumstances.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-47

10 Programming a Multithreaded and Multicontexted ATMI Application

Context State Changes for an ATMI Client Thread

In amulticontext application, calls to various functions result in context state changes
for the calling thread and any other threads that are active in the same context as the
caling process. The following diagram illustrates the context state changes that result
fromcallstot pi ni t (3c),t psetct xt (3c),andt ptern(3c).(Thet pget ct xt (3c)
function does not produce any context state changes.)

Figure 10-4 Multicontext State Transitions

t pi nit () without TPMULTI CONTEXTS t pi nit() with TPMULTI CONTEXTS
or or
implicit t pi ni t () invoked by ATMI function t psetctxt () to avalid context

/pt;n()

tpterm()
or
t psetctxt ()

tpterm)
or
t pset ct xt ()

tpterm)
(see Note)

t pi ni t () without
TPMULTI CONTEXTS

INVALID
CONTEXT

t psetctxt ()

Note: Whent pt erm(3c) iscalled by athread running in the multicontext state
(TPMULTI CONTEXTS), the calling thread is placed in the null context state
(TPNULLCONTEXT). All other threads associated with the terminated context
are switched to the invalid context state (TPI NVALI DCONTEXT).

10-48 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client

The following table lists all possible context state changes produced by calling
tpinit(3c),tpsetctxt(3c),andtptern(3c).

Table 10-2 Context Sate Changesfor a Client Thread

When this Then athread in thiscontext state resultsin . ..

function is - - .

executed . . . Null Context SingleContext ~ Multicontext Invalid
Context

t pi nit(3c) Single context Single context Error Error

without

TPMULTI CONTEXTS

t pi ni t (3c) with Multicontext Error Multicontext Error

TPMULTI CONTEXTS

t psetctxt(3c) to Null Error Null Null

TPNULLCONTEXT

t psetctxt (3c) to Error Single context Error Error

context 0

t psetctxt(3c) to Multicontext Error M ulticontext M ulticontext
context >0

Implicit Single context N/A N/A Error

t pi nit(3c)

tptern(3c) inthis Null Null Null Null

thread

tptern(3c) ina N/A Null Invalid N/A

different thread of this
context

Getting Replies in a Multithreaded Environment

t pget rpl y(3c) receives responses only to requests made viat pacal | (3c) .
Requests made with t pcal | (3c) are separate and cannot be retrieved with
t pget rpl y() regardless of the multithreading or multicontexting level.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-49

10 Programming a Multithreaded and Multicontexted ATMI Application

t pget r pl y(3c) operatesin only one context, which isthe context in whichiitis
called. Therefore, when you cal t pget rpl y() with the TPGETANY flag, only handles
generated in the same context are considered. Similarly, a handle generated in one
context may not be used in another context, but the handle may be used in any thread
operating within the same context.

When't pget r pl y(3c) iscaled in amultithreaded environment, the following
restrictions apply:

m |f athread callst pget rpl y(3c) for aspecific handle while another thread in
the same context is dready waiting int pget rpl y() for the same handle,
t pgetrpl y() returns- 1 and setst per r no to TPEPRCTO.

m |f athread callst pget rpl y(3c) for aspecific handle while another thread in
the same context is aready waiting int pget r pl y() with the TPGETANY flag,
the call returns - 1 and setst per rno(5) to TPEPROTO.

The same behavior occurs if athread callst pget r pl y(3c) with the TPGETANY
flag while another thread in the same context is already waiting int pget r pl y()
for a specific handle. These restrictions protect a thread that is waiting on a
specific handle from having its reply taken by athread waiting on any handle.

m At any giventime, only onethread in a particular context can wait in
t pget r pl y(3c) withthe TPGETANY flag set. If a second thread in the same
context invokest pget r pl y() with the TPGETANY flag while asimilar call is
outstanding, this second call returns - 1 and setst perr no(5) to TPEPROTO.

Using Environment Variables in a Multithreaded and/or
Multicontexted Environment

When a BEA Tuxedo application is run in an environment that is multicontexted
and/or multithreaded, the following considerations apply to the use of environment
variables:

m A processinitially inheritsits environment from the operating system
environment. On platforms that support environment variables, such variables
make up a per-process entity. Therefore, applications that depend on per-context
environment settings should use the t uxget env(3c) function instead of an OS
function.

10-50 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client

Note: Theenvironmentisinitially empty for those operating systemsthat do not
recognize an operating system environment.

m Many environment variables are read by the BEA Tuxedo system only once per
process or once per context and then cached within the BEA Tuxedo system.
Changes to such variables once cached in the process have no effect.

Cachingisdoneona... For environment variablessuch as. ..

Per-context basis TUXCONFI G

FI ELDTBLS and FI ELDTBLS32

FLDTBLD Rand FLDTBLDI R32

ULOGPFX

VI EMDI R and VI EMDI R32

VI EWFI LES and VI EWFI LES32

WENADDR

WEDEVI CE

WSEENV

Per-process basis TMIRACE

TUXDI R

ULOGDEBUG

m Thet uxput env(3c) function affects the environment for the entire process.

m When you cal the t uxr eadenv(3c) function, it reads afile containing
environment variables and adds them to the environment for the entire process.

m Thetuxget env(3c) function returnsthe current value of the requested
environment variable in the current context. Initially, all contexts have the same
environment, but the use of environment files specific to aparticular context can
cause different contexts to have different environment settings.

m If aclientintendsto initialize to more than one domain, the client must change
the value of the TUXCONFI G WBNADDR, or WSENVFI LE environment variable to

Programming a BEA Tuxedo ATMI Application Using COBOL 10-51

10 Programming a Multithreaded and Multicontexted ATMI Application

the proper value before each call tot pi ni t (3c) . If such an applicationis
multithreaded, a mutex or other application-defined concurrency control will
probably be needed to ensure that:

e Theappropriate environment variable is reset.

e Thecdl totpinit(3c) ismade without the environment variable being
reset by any other thread.

m When aclient initializes to the system, the WSENVFI LE and/or machine
environment file is read and affects the environment in that context only. The
previous environment for the process as a whole remains for that context to the
extent that it is not overridden within the environment file(s).

Using Per-context Functions and Data Structures in a
Multithreaded ATMI Client

Thefollowing ATMI functions affect only the application contexts in which they are
caled:

m tpabort(3c)

m tpacall (3c)

m tpadntal | (3c)
m tpbegi n(3c)

m tpbroadcast (3c)
m tpcall (3c)

m tpcancel (3c)

m t pchkaut h(3c)
m tpchkunsol (3c)
m tpclose(3c)

m tpcommit (3c)

m tpconnect (3c)
m t pdequeue(3c)

m tpdi scon(3c)

10-52 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client

t penqueue(3c)

t pf orwar d(3c)

t pget | ev(3c)

t pget rpl y(3c)

t pi ni t(3c)

t pnotify(3c)

t popen(3c)

t ppost (3c)

t precv(3c)

t presume(3c)

t preturn(3c)

t pscnt (3c)

t psend(3c)

t pservi ce(3c)

t pset unsol (3c)

t psubscri be(3c)

t psuspend(3c)

t pt er m(3c)

t psubscri be(3c)

t x_begi n(3c)

tx_cl ose(3c)
tx_commi t (3c)

tx_i nfo(3c)

t x_open(3c)
tx_rol | back(3c)
tx_set_conm t_return(3c)
tx_set_transaction_control (3c)
tx_set_transaction_tineout(3c)

userl og(3c)

Programming a BEA Tuxedo ATMI Application Using COBOL

10-53

10 Programming a Multithreaded and Multicontexted ATMI Application

Note: For t pbr oadcast (3c) , the broadcast message isidentified as having come
from a particular application association. For t pnoti f y(3c), thenotification
isidentified as having come from a particular application association. See
“Using Per-process Functions and Data Structuresin a Multithreaded Client”
for notes about t pi ni t (3c) .

If t pset unsol (3c) iscaled from athread that is not associated with a
context, a per-process default unsolicited message handler for al new

t pi ni t (3c) contexts created is established. A specific context may change
the unsolicited message handler for that context by calling t pset unsol ()
again when the context is active. The per-process default unsolicited message
handler may be changed by again calling t pset unsol () inathread not
currently associated with a context.

m The CLI ENTI D, client name, username, transaction 1D, and the contents of the
TPSVCI NFOdata structure may differ from context to context within the same
process.

m Asynchronous call handles and connection descriptors are valid in the contexts
in which they are created. The unsolicited notification type is specific
per-context. Although signal-based notification may not be used with multiple
contexts, each context may choose one of three options:

e Ignoring unsolicited messages
e Using dip-in notification
e Using dedicated thread notification

10-54 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client

Using Per-process Functions and Data Structures in a
Multithreaded ATMI Client

The following BEA Tuxedo functions affect the entire process in which they are
called:

t padvertise(3c)

tpal | oc(3c)

t pconver t (3c) —the requested structure is converted, although it is probably relevant
to only a subset of the process.

t pfree(3c)

t pi ni t (3c) —to the extent that the per-process TPMULTI CONTEXTS mode or
single-context mode is established. See also “Using Per-context Functions and Data
Structures in a Multithreaded ATMI Client” on page 10-52.

tpreall oc(3c)

t psvrdone(3c)

tpsvrinit(3c)

t pt ypes(3c)

t punadvertise(3c)

t uxget env(3c) —if the OS environment is per-process.
t uxput env(3c) —if the OS environment is per-process.
t uxr eadenv(3c) —if the OS environment is per-process.

Usi gnal (3c)

The determination of single-context mode, multicontext mode, or uninitialized mode
affects an entire process. The buffer type switch, the view cache, and environment
variable values are also per-process functions.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-55

10 Programming a Multithreaded and Multicontexted ATMI Application

Using Per-thread Functions and Data Structures in a
Multithreaded ATMI Client

Only the calling thread is affected by the following:

CATCH
tperrordetail (3c)

t pget ct xt (3c)

t pgpri o(3c)

t pset ct xt (3c)

t pspri o(3c)
tpstrerror(3c)
tpstrerrordetail (3c)
TRY(3c)

Uuni x_err (3c)

TheFerror, Ferror32(5),tperrno(5),tpurcode(5),andUuni x_err variables
are specific to each thread.

The identity of the current context is specific to each thread.

Sample Code for a Multithreaded ATMI Client

The following example shows a multithreaded client using ATMI calls. Threads
functions differ from one operating system to another. In this example, POSIX
functions are used.

Note: In order to simplify this example, error checking code has not been included.

Listing 10-4 Sample Codefor a Multithreaded Client

#i nclude <stdi o. h>
#i ncl ude <pthread. h>
#include <atm . h>

10-56 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Client

TPINT * t pi ni t buf;

i nt t i meout =60;

pt hread_t wi t hdr awal t hreadi d, stockt hreadi d;
TPCONTEXT_T ctxt;

void * stackthread(void *);

void * withdrawal thread(void *);

mai n()

{

tpinitbuf = tpalloc(TPINIT, NULL, TPI Nl TNEED(O));

/*

* This code will performa transfer, using separate threads for the
* wi thdrawal and deposit. It will also get the current

* price of BEA stock froma separate application, and cal cul ate how
* many shares the transferred anmount can buy.

*/

t pi ni tbuf->flags = TPMJULTI CONTEXTS;

/* Fill inthe rest of tpinitbuf. */
t pi nit(tpinitbuf);

t pget ct xt (&t xt, 0);

t pbegi n(ti neout, 0);

pt hread_create(&wit hdrawal t hreadi d, NULL, wi thdrawalthread, NULL);
tpcal | ("DEPOSIT", ...);

/* Wit for the withdrawal thread to conplete. */
pt hread_j oi n(wi t hdr awal t hreadi d, NULL);

tpcommi t (0);
tpterm);

/* Wit for the stock thread to conplete. */
pt hread_j oi n(st ockt hreadi d, NULL);

/* Print the results. */
printf("$99.2f has been transferred \
fromyour savings account to your checking account.\n", ...);

printf("At the current BEA stock price of $u8.3f, \

you could purchase % shares.\n", ...);
exit(0);
}

Programming a BEA Tuxedo ATMI Application Using COBOL

10-57

10 Programming a Multithreaded and Multicontexted ATMI Application

void *
st ockt hread(void *arg)

{

/* The other threads have now called tpinit(), so resetting TUXCONFI G can
* no | onger adversely affect them
*/

t uxput env (" TUXCONFI G=/ hone/ user s/ xyz/ st ockconf");

t pi ni t buf ->fl ags = TPMJULTI CONTEXTS;

/* Fill in the rest of tpinitbuf. */

t pi nit (tpinitbuf);

tpcal | (" GETSTOCKPRI CE", ...);

/* Save the stock price in a variable that can al so be accessed in main(). */
tpterm();

return(NULL);

void *
wi t hdr awal t hread(voi d *arg)

/* Create a separate thread to get stock prices froma different
* application.

*/
pt hr ead_cr eat e(&t ockt hreadi d, NULL, stockthread, NULL);
tpsetctxt(ctxt, 0);
tpcal | ("W THDRAVWAL", ...);
return(NULL);
}
See Also

= “How Multithreading and Multicontexting Work in a Client” on page 10-11

m “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-28

m “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

10-58 Programming a BEA Tuxedo ATMI Application Using COBOL

Writing a Multithreaded ATMI Server

Writing a Multithreaded ATMI Server

Multithreaded servers are amost always multicontexted, as well. For information
about writing a multithreaded server, see “Writing Code to Enable Multicontexting
and Multithreading in an ATMI Server” on page 10-40.

Compiling Code for a
Multithreaded/Multicontexted ATMI
Application

The programs provided by the BEA Tuxedo system for compiling or building
executables, such asbui | dserver (1) and bui | dcli ent (1), automatically include
any required compiler flags. If you usethesetools, then you do not need to set any flags
at compile time.

If, however, you compileyour . c filesinto . o files before doing afinal compilation,
you may need to set platform-specific compiler flags. Such flags must be set
consistently for all code linked into a single process.

If you are creating a multithreaded server, you must run the bui | dser ver (1)
command with the -t option. This option is mandatory for multithreaded servers; if
you do not specify it at build time and later try to boot the new server with a
configuration file in which the value of MAXDI SPATCHTHREADS is greater than 1, a
warning message isrecorded in the user log and the server reverts to single-threaded
operation.

Toidentify any operating system-specific compiler parametersthat are required when
you compile. ¢ filesinto. o filesin a multithreaded environment, run
bui I dcl i ent (1) or buil dserver (1) with the-v option set on atest file.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-59

10 Programming a Multithreaded and Multicontexted ATMI Application

See Also

m “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

m “Writing a Multithreaded ATMI Client” on page 10-45

Testing a Multithreaded/Multicontexted
ATMI Application

This topic includes the following sections:

m Testing Recommendations for a Multithreaded/M ulticontexted ATMI
Application

m Troubleshooting a Multithreaded/M ulticontexted ATMI Application

m Error Handling for a Multithreaded/M ulticontexted ATMI Application

Testing Recommendations for a
Multithreaded/Multicontexted ATMI Application

We recommend following these recommendations during testing of your
multithreaded and/or multicontexted code:

m Useamultiprocessor.
m Useamultithreaded debugger (if your operating system vendor offers one).

m Run stress tests to introduce a variety of timing conditions.

10-60 Programming a BEA Tuxedo ATMI Application Using COBOL

Testing a Multithreaded/Multicontexted ATMI Application

Troubleshooting a Multithreaded/Multicontexted ATMI
Application

When you need to investigate possible causes of errors, we recommend that you start
by checking whether and how the TPMULTI CONTEXTS flag has been set. Errors are
frequently introduced by failuresto set thisflag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If a process includes the TPMULTI CONTEXTS flag in a state for which thisflag is not
allowed (or omits TPMULTI CONTEXTS in a state that requiresit), then t pi ni t (3c)
returns - 1 and setst per r no to TPEPROTO.

Calls to tpinit() Without TPMULTICONTEXTS

When't pi ni t (3c) isinvoked without TPMULTI CONTEXTS, it behaves asit does when
called in a single-contexted application. When t pi ni t () has been invoked once,
subsequent t pi ni t () calswithout the TPMULTI CONTEXTS flag succeed without
further action. Thisistrueevenif the value of the TUXCONFI Gor WSNADDR environment
variable in the application has been changed. Calling t pi ni t () without the

TPMULTI CONTEXTS flag set is not alowed in multicontext mode.

If aclient hasnot joined an application andt pi ni t (3c) iscalledimplicitly (asaresult
of acall to another function that callst pi ni t ()), then the BEA Tuxedo system
interpretsthe action asacall to t pi ni t () without the TPMULTI CONTEXTS flag for
purposes of determining which flags may be used in subsequent callstot pi nit ().

For most ATMI functions, if afunction isinvoked by athread that is not associated
with acontext in a process already operating in multicontext mode, the ATMI function
fallswith t per r no(5) =TPEPROTO.

Programming a BEA Tuxedo ATMI Application Using COBOL 10-61

10 Programming a Multithreaded and Multicontexted ATMI Application

Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack size is
insufficient for use with the BEA Tuxedo system. Compaq Tru64 UNIX and
UnixWare are two operating systems for which this is known to be the case. If the
default thread stack size parameter is used, applications on these platforms dump core
when afunction with substantial stack usage requirementsiscalled by any thread other
than the main thread. Often the core file that is created does not give any obvious clues
to the fact that an insufficient stack size isthe cause of the problem.

When the BEA Tuxedo system is creating threads on its own, such as
server-dispatched threads or a client unsolicited message thread, it can adjust the
default stack size parameter on these platformsto a sufficient value. However, when
an application is creating threads on its own, the application must specify a sufficient
stack size. At aminimum, avalue of 128K should be used for any thread that will
access the BEA Tuxedo system.

On Compaq Tru64 UNIX and other systems on which POSIX threads are used, a
thread stack size is specified by invoking pt hr ead_at t r _set st acksi ze() before
caling pt hread_cr eat e() . On UnixWare, the thread stack size is specified as an
argumenttot hr_cr eat e() . Consult your operating system documentation for further
information on this subject.

Error Handling for a Multithreaded/Multicontexted ATMI
Application

Errors are reported in the user log. For each error, whether in single-context mode or
multicontext mode, the following information is recorded:

process_| D.thread_I D. context _I D

10-62 Programming a BEA Tuxedo ATMI Application Using COBOL

Testing a Multithreaded/Multicontexted ATMI Application

See Also

= “How Multithreading and Multicontexting Work in a Client” on page 10-11

= “How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

m “Preliminary Guidelinesfor Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-28

Programming a BEA Tuxedo ATMI Application Using COBOL 10-63

10 Programming a Multithreaded and Multicontexted ATMI Application

10-64 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

11

System

Managing Errors

Thistopic includes the following sections:
m System Errors

m Application Errors

m Handling Errors

m Transaction Considerations

m Central Event Log

Errors

The BEA Tuxedo system uses TP- STATUS | N TPSTATUS- REC to supply information
to aprocess when aroutine fails. All ATMI calls set TP- STATUS to avalue that

describes the nature of the error. When a call does not return toitscaller, asin the case
of TPRETURN or TPFORWAR, which are used to terminate a service routine, the only way
the system can communicate success or failure isthrough TP- STATUS in the requester.

APPL- RETURN- CODE i sused to communi cate user-defined conditionsonly. The system
sets the value of APPL- RETURN- CODE to the value of APPL- CODE | N TPSVCRET- REC
during TPRETURN. The system sets APPL- RETURN- CODE, regardless of the value of
APPL- RETURN- CODE | N TPSTATUS- REC during TPRETURN, unless an error is
encountered by TPRETURN or a transaction timeout occurs.

The codesreturned in TP- STATUS represent categoriesof errors, which arelisted in the
following table.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-1

11 Managing Errors

Table 11-1 TP-STATUSError Categories

Error Category

TP-STATUSValues

Abort

TPEABCRT?

BEA Tuxedo system®

TPESYSTEM

Communication handle

TPELI M T and TPEBADDESC

Conversational

TPEVENT

Duplicate operation

TPENMVATCH

General communication

TPESVCFAI L, TPESVCERR,
TPEBLOCK, and TPGOTSI G

Heuristic decision

TPEHAZARD? and TPEHEUR STI C2

Invalid argument® TPEI NVAL
MIB TPEM B

No entry TPENCENT
Operating system! TPECS
Permission TPEPERM
Protocol* TPEPROTO
Queueing TPEDI AGNOSTI C
Rel ease compatibility TPERELEASE
Resource manager TPERVERR
Timeout TPETI ME
Transaction TPETRANZ

Typed record mismatch

TPEI TYPE and TPECTYPE

1. Applicabletoall ATMI callsfor which failureisreported by theval-

uereturned in TP- STATUS.

Programming a BEA Tuxedo ATMI Application Using COBOL

Abort Errors

2. Refer to “Fatal Transaction Errors’ on page 11-18 for more
information on this error category.

Asfootnote 1 shows, four categories of errors are reported by TP- STATUS and are
applicableto all ATMI calls. The remaining categories are used only for specific
ATMI calls.The following sections describe some error categories in detail.

Abort Errors

For information on the errors that |ead to abort, refer to “ Fatal Transaction Errors’ on
page 11-18.

BEA Tuxedo System Errors

BEA Tuxedo system errors indicate problems at the system level, rather than at the
application level. When BEA Tuxedo system errors occur, the system writes messages
explaining the exact nature of the errors to the central event log, and returns
TPESYSTEMIN TP- STATUS. For moreinformation, refer to the “ Central Event Log” on
page 11-26. Because these errors occur in the system, rather than in the application,
you may need to consult the system administrator to correct them.

Communication Handle Errors

Communication handle errors occur as aresult of exceeding the maximum limit of
communication handles or referencing an invalid value. Asynchronous and
conversational calls return TPELI M T when the maximum number of outstanding
communication handles has been exceeded. TPEBADDESC s returned when an invalid
communication handle value is specified for an operation.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-3

11 Managing Errors

Communication handle errors occur only during asynchronous calls or conversational
calls. (Call descriptorsare not used for synchronous calls.) Asynchronous calls depend
on communication handles to associate replies with the corresponding requests.
Conversational send and receive routines depend on communication handlesto
identify the connection; thecall that initiates the connection depends on the availability
of acommunication handle.

Communication handle errors can be done by checking for specific errors at the
application level.

Limit Errors

The system alows up to 50 outstanding communication handles (replies) per context
(or BEA Tuxedo application association). Thislimit is enforced by the system; it
cannot be redefined by your application.

The limit for communication handles for simultaneous conversational connections is
more flexible than the limit for replies. The application administrator definesthe limit
in the configuration file. When the application is not running, the administrator can
modify the MAXCONV parameter in the RESOURCES section of the configuration file.
When the application is running, the administrator can modify the MACHI NES section
dynamically. Refer tot nconfi g, w ntonfig(1) inthe BEA Tuxedo Command
Reference for more information.

Invalid Descriptor Errors

A communication handle can become invalid and, if referenced, cause an error to be
returned to TP- STATUS in either of two situations:

m A communication handle is used to retrieve a message, which may be afailed
message (TPEBADDESC).

m An attempt is made to reuse a stale communication handle (TPEBADDESC).

A communication handle might become stale, for example, in the following
circumstances:

m When the application calls TPABORT or TPCOMM T and transaction replies (sent
without TPNOTRAN) remain to be retrieved.

11-4 Programming a BEA Tuxedo ATMI Application Using COBOL

Conversational Errors

m A transaction times out. When the timeout is reported by acall to TPGETRPLY,
no message is retrieved using the specified handle and the handle becomes stale.

Conversational Errors

When an unknown handle is specified for conversationa services, the TPSEND,
TPRECV, and TPDI SCON routines return TPEBADDESC.

When TPSEND and TPRECV fail with a TPEEVENT error after a conversational
connection is established, an event has occurred. Data may or may not be sent by
TPSEND, depending on the event. The system returns TPEEVENT in the TPEVENT
member of TPSTATUS- REC and the course of action is dictated by the particular event.

For a complete description of conversational events, refer to “Understanding
Conversational Communication Events” on page 7-13.

Duplicate Object Error

The TPEMATCH error codeis returned in TP- STATUS when an attempt is made to
perform an operation that results in a duplicate object. The following table lists the
routines that may return the TPEMATCH error code and the associated cause.

Routine Cause

TPADVERTI SE The svcnane specified is aready advertised for the server but
with afunction other than f unc. Although the function fails,
svchname remains advertised with its current function (that is,
f unc does not replace the current function name).

TPRESUME Thetrani d pointsto atransaction identifier that another
process has already resumed. In this case, the caller’s state with
respect to the transaction is not changed.

TPSUBSCRI BE The specified subscription information has already been listed
with the EventBroker.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-5

11 Managing Errors

For more information on these routines, refer to the BEA Tuxedo ATMI COBOL
Function Reference.

General Communication Call Errors

General communication call errors can occur during any communication calls,
regardless of whether those calls are synchronous or asynchronous. Any of the
following errors may be returned in TP- STATUS: TPESVCFAI L, TPESVCERR,
TPEBLOCK, or TPGOTSI G.

TPESVCFAIL and TPESVCERR Errors

If the reply portion of acommunication fails asaresult of acall to TPCALL or
TPGETRPLY, the system returns TPESVCERR or TPSEVCFAI L to TP- STATUS. The
system determines the error by the arguments that are passed to TPRETURN and the
processing that is performed by this call.

If TPRETURN encounters an error in processing or handling arguments, the system
returns an error to the original requester and sets TP- STATUS to TPESVCERR. The
receiver determines that an error has occurred by checking the value of TP- STATUS.
The system does not send the data from the TPRETURN call, and if the failure occurred
on TPGETRPLY, it renders the call handleinvalid.

If TPRETURN does not encounter the TPESVCERR error, then the value returned in

TP- RETURN- VAL determines the success or failure of the call. If the application
specifies TPFAI L in the TP- RETURN- VAL, the system returns TPESVCFAI L in

TP- STATUS and sends the data message to the caller. If TP- RETURN- VAL is set to
TPSUCCESS, the system returns successfully tothe caller, TP- STATUS isnot set, and the
caller receives the data.

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCK and TPGOTSI G error codes may be returned at the request or the reply
end of a message and, asaresult, can be returned for all communication calls.

11-6 Programming a BEA Tuxedo ATMI Application Using COBOL

Invalid Argument Errors

The system returns TPEBLOCK when a blocking condition exists and the process
sending arequest (synchronously or asynchronously) indicates, by setting
TPPNOBLOCK that it does not want to wait on a blocking condition. A blocking
condition can exist when arequest is being sent if, for example, all the system queues
arefull.

When TPCALL indicates a no blocking condition, only the sending part of the
communication is affected. If acall successfully sends a request, the system does not
return TPEBLOCK, regardless of any blocking situation that may exist while the call
waits for the reply.

The system returns TPEBLOCK for TPGETRPLY when acall is made TPNOBLOCK and a
blocking condition is encountered while TPGETRPLY is awaiting the reply. This may
occur, for example, if amessageis not currently available.

The TPGOTSI Gerror indicates an interruption of asystem call by asignal; thissituation
is not actually an error condition. If TPSI GRSTRT is set, the calls do not fail and the
system does not return the TPGOTSI Gerror code in TP- STATUS.

Invalid Argument Errors

Invalid argument errorsindicate that an invalid argument was passed to aroutine. Any
ATMI call that takes arguments can fail if you passit argumentsthat areinvalid. Inthe
case of acall that returnsto the caller, the call failsand causes TP- STATUS to be set to
TPEI NVAL. In the case of TPRETURN or TPFORWAR, the system sets TP- STATUS to
TPESVCERR for either the TPCALL or TPGETRPLY call that initiated the request and is
waiting for resultsto be returned.

Y ou can correct an invalid argument error at the application level by ensuring that you
pass only valid arguments to routines.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-7

11 Managing Errors

No Entry Errors

No entry errorsresult from alack of entries in the system tables or the data structure
used to identify record types. The meaning of the no entry type error, TPENOENT,
dependsonthecall that isreturning it. Thefollowing tableliststhe callsthat return this
error and describes various causes of error.

Table11-2 No Entry Errors

Call Cause

TPI NI TI ALI ZE The calling process cannot join the application because there is no
space left in the bulletin board to make an entry for it. Check with
the system administrator.

TPCALL Thecaling processreferencesaservicecaled SERVI CE- NAME | N

TPACALL TPSVCDEF- REC that is not known to the system since thereis no
entry for it in the bulletin board. On an application level, ensure that
you have referenced the service correctly; otherwise, check with the
system administrator.

TPCONNECT Thesystem cannot connect to the specified name because the service
named does not exist or it is not a conversational service.

TPGPRI O The calling process seeks a request priority when no request has

been made. Thisis an application-level error.

TPUNADVERTI SE

The system cannot unadvertise SERVI CE- NAME | N
TPSVCDEF- REC because the name is not currently advertised by
the calling process.

11-8 Programming a BEA Tuxedo ATMI Application Using COBOL

Operating System Errors

Operating System Errors

Operating system errors indicate that an operating system call hasfailed. The system
returns TPECS in TP- STATUS. On UNIX systems, the system returns a numeric value
identifying the failed system call in the global variable Uuni xerr. To resolve
operating system errors, you may need to consult your system administrator.

Permission Errors

If acalling process does not have the correct permissions to join the application, the
TPI NI TI ALI ZE cal fails, returning TPEPERMin TP- STATUS. Permissions are set in the
configuration file, outside of the application. If you encounter thiserror, check withthe
application administrator to make sure the necessary permissions are set in the
configuration file.

Protocol Errors

Protocol errors occur when an ATMI call isinvoked, either in thewrong order or using
an incorrect process. For example, a client may try to begin communicating with a
server before joining the application. Or TPCOVWM T may be called by atransaction
participant instead of the initiator.

Y ou can correct aprotocol error at the application level by enforcing the rules of order
and proper usage of ATMI calls.

To determine the cause of a protocol error, answer the following questions:
m Isthecall being made in the correct order?
m Isthe call being made by the correct process?

Protocol errors return the TPEPROTOValue in TP- STATUS.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-9

11 Managing Errors

Refer to “Introduction to the COBOL A pplication-Transaction Monitor Interface” in
the BEA Tuxedo ATMI COBOL Function Reference for more information.

Queuing Error

The TPENQUEUE(3cbl) or TPDEQUEUE(3chl) routine returns TPEDI AGNOSTI Cin
TP- STATUS if the enqueuing or dequeuing on a specified queue fails. The reason for
failure can be determined by the diagnostic returned viathect | record. For alist of
validct | flags, refer to TPENQUEUE(3cbl) or TPDEQUEUE(3chl) inthe BEA Tuxedo
ATMI COBOL Function Reference.

Release Compatibility Error

The BEA Tuxedo system returns TPERELEASE in TP- STATUS if a compatibility issue
exists between multiple releases of a BEA Tuxedo system participating in an
application domain.

For example, the TPERELEASE error may be returned if the TPACK flag is set when
issuing the TPNOTI FY(3cbl) routine (indicating that the caller blocks until an
acknowledgment message is received from the target client), but the target client is
using an earlier release of the BEA Tuxedo system that does not support the TPACK
acknowledgement protocol.

Resource Manager Errors

Resource manager errors can occur with callsto TPOPEN(3cbl) and TPCLOSE(3cbl),
inwhich case the system returnsthe value of TPERVERRIN TP- STATUS. Thiserror code
isreturned for TPOPEN when the resource manager failsto open correctly. Similarly,
this error code is returned for TPCLOSE when the resource manager failsto close

11-10 Programming a BEA Tuxedo ATMI Application Using COBOL

Timeout Errors

correctly. To maintain portability, the BEA Tuxedo system does not return a more
detailed explanation of thistype of failure. To determine the exact nature of aresource
manager error, you must interrogate the resource manager.

Timeout Errors

The BEA Tuxedo system supports timeout errors to establish alimit on the amount of
time that the application waits for a service request or transaction. The BEA Tuxedo
system supports two types of configurable timeout mechanisms: blocking and
transaction.

A blocking timeout specifies the maximum amount of time that an application waits
for areply to a service request. The application administrator defines the blocking
timeout for the system in the configuration file.

A transaction timeout defines the duration of atransaction, which may involve several
service requests. To define the transaction timeout for an application, pass the T- OUT
argument to TPBEG N.

The system may return timeout errors on communication calls for either blocking or
transaction timeouts, and on TPCOWM T for transaction timeouts only. In each case, if
aprocess isin transaction mode and the system returns TPETI ME on afailed call, a
transaction timeout has occurred.

By default, if aprocessis not in transaction mode, the system performs blocking
timeouts.

If aprocessisnot in transaction mode and a blocking timeout occurs on an
asynchronous call, the communication call that blocked fails, but the call descriptor is
still valid and may be used on areissued call. Other communication is not affected.

When atransaction timeout occurs, the communication handle to an asynchronous
transaction reply (specified without TPNOTRAN) becomes stale and may no longer be
referenced.

TPETI ME indicatesablocking timeout on acommunication call if thecall was not made
in transaction mode or if TPNOBLOCK was not set.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-11

11 Managing Errors

Note: If you set TPNOBLOCK, ablocking timeout cannot occur because the call returns
immediately if a blocking condition exists.

For additional information on handling timeout errors, refer to “ Transaction
Considerations’ on page 11-15.

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur, refer
to “Transaction Considerations’ on page 11-15.

Typed Record Errors

Typed record errors are returned when requests or replies to processes are sent in
records of an unknown type. The TPCALL and TPACALL calls return TPEI TYPE when a
request data record is sent to a service that does not recognize the type of the record.

Processes recognize record types that are identified in both the configuration file and
the BEA Tuxedo system librariesthat arelinked into the process. Theselibraries define
and initialize a data structure that identifies the typed recordsthat the process
recognizes. Y ou can tailor the library to each process, or an application can supply its
own copy of afile that defines the record types. An application can set up the record
type data structure (referred to asarecord type switch) on aprocess-specific basis. For
more information, see t uxt ypes(5) and t ypesw(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

The TPCALL and TPGETRPLY calls return TPEOTYPE when areply messageissentin a
record that is not recognized or not allowed by the caller. In the latter case, the record
typeisincluded in the type switch, but the type returned does not match the record that
was allocated to receive the reply and a change in record typeis not allowed by the

caller. The caller indicates this preference by setting TPNOCHANGE. In this case, strong
type checking isenforced; the system returns TPEOTYPE when it isviolated. By default,
weak type checking is used. In this case, arecord type other than the type originally

11-12 Programming a BEA Tuxedo ATMI Application Using COBOL

Typed Record Errors

allocated may be returned, as long as that type is recognized by the caller. The rules
for sending replies are that the reply record must be recognized by the caller and, if
strong type checking has been indicated, you must observe it.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-13

11 Managing Errors

Application Errors

Within an application, you can pass information about user-defined errorsto calling
programs using the r code argument of TPRETURN. Also, the system sets the val ue of
APPL- RETURN- CODE to the value of APPL- CODE | N TPSVCRET- REC during
TPRETURN. For more information about TPRETURN(3chbl), refer to the BEA Tuxedo
ATMI COBOL Function Reference.

Handling Errors

Y our application logic should test for error conditions for the calls that have return
values, and take appropriate action when an error occurs.

The following example shows a typical method of handling errors. The term
ATM CALL(3) isused in this example to represent ageneric ATMI call.

Listing 11-1 Handling Errors

CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC
USR- DATA- REC
TPSTATUS- REC.
I F NOT TPCK
error message, EXI T PROGRAM
CALL "TPBEG N' USI NG TPTRXDEF- REC
TPSTATUS- REC.
I F NOT TPCK
error nmessage, EXI T PROGRAM

Make atm calls
Check return val ues

I F TPEI NVAL
DI SPLAY "Invalid arguments were given."
| F TPEPROTO
DI SPLAY "A call was made in an inproper context."

11-14 Programming a BEA Tuxedo ATMI Application Using COBOL

Transaction Considerations

Include all error cases described in the ATM CALL(3)
reference page. Other return codes are not possible,
so there is no need to test them

conti nue

Thevaluesof TP- STATUS provide detail s about the nature of each problem and suggest
the level at which it can be corrected. If your application definesalist of error
conditions specific to your processing, the same can be said for the values of

APPL- RETURN- CODE | N TPSTATUS- REC.

Transaction Considerations

The following sections describe how various programming features work when used
in transaction mode. The first section providesrules of basic communication etiquette
that should be observed in code written for transaction mode.

Communication Etiquette

When writing code to be runintransaction mode, you must observe thefollowing rules
of basic communication etiquette:

m Processes that are participants in the same transaction must require replies for all
requests. To include a request that requires no reply, set TPACALL to TPNOTRAN
or TPNOREPLY.

m A service must retrieve al asynchronous transaction replies before calling
TPRETURN or TPFORWAR. This rule must be observed regardless of whether the
code is running in transaction mode.

m Theinitiator must retrieve all asynchronous transaction replies (made without
TPNOTRAN) before calling TPCOW T.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-15

11 Managing Errors

m Replies must be retrieved for asynchronous calls that expect replies from
non-participants of the transaction, that is, replies to requests made with
TPACALL in which the transaction, but not the reply, is suppressed.

m |f atransaction has not timed out but is marked “abort-only,” any further
communication should be performed with TPNOTRAN set so that the results of the
communication are preserved after the transaction is rolled back.

m [f atransaction hastimed out:

e Thehandle for the timed-out call becomes stale and any further reference to
it returns TPEBADDESC.

e Further callsto TPGETRPLY or TPRECV for any outstanding handles return a
global state of transaction timeout; the system sets TP- STATUS to TPETI ME.

e Asynchronous calls can be made with TPACALL set to TPNOREPLY,
TPNOBLOCK, or TPNOTRAN.

m Once atransaction has been marked “abort-only” for reasons other than timeout,
acal to TPGETRPLY returns whatever value represents the local state of the call;
that is, it returns either success or an error code that reflects the local condition.

m Once ahandleisused with TPGETRPLY to retrieve areply, or with TPSEND or
TPRECV to report an error condition, it becomes invalid and any further reference
to it returns TPEBADDESC. This rule is always observed, regardless of whether
the code is running in transaction mode.

m Onceatransaction is aborted, all outstanding transaction call handles (made
without TPNOTRAN) become stale, and any further references to them return
TPEBADDESC.

Transaction Errors

The following sections describe transaction-related errors.

11-16 Programming a BEA Tuxedo ATMI Application Using COBOL

Transaction Errors

Non-fatal Transaction Errors

When transaction errorsoccur, the systemreturns TPETRANIN TP- STATUS. The precise
meaning of such an error, however, depends on the call that is returning it. The
following table lists the calls that return transaction errors and describes possible

causes of them.

Table 11-3 Transaction Errors

Call

Cause

TPBEG N

Usually caused by atransient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

TPCANCEL

Returns TPETRAN when called from a transaction.

TPRESUME

The BEA Tuxedo system is unable to resume a global transaction
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be completed before the global transaction can be
resumed. The caller’s state with respect to the loca transaction is
unchanged.

TPCONNECT,
TPCALL, and
TPACALL

A call was made in transaction mode to a service that does not
support transactions. Some services belong to server groups that
access adatabase management system (DBMSS) that, in turn, support
transactions. Other services, however, do not bel ong to such groups.
In addition, some services that support transactions may require
interoperation with software that does not. For example, aservice
that prints aform may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participants in atransaction.

The grouping of servicesinto servers and server groupsis an
administrative task. In order to determine which services support
transactions, check with your application administrator.

Y ou can correct transaction-level errors at the application level by
enabling the setting TPSVCDEF- REF or by accessing the service
for which an error was returned outside of the transaction.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-17

11 Managing Errors

Fatal Transaction Errors

When afata transaction error occurs, the application should explicitly abort the
transaction by having the initiator call TPABORT. Therefore, it isimportant to
understand the errorsthat arefatal to transactions. Three conditions cause atransaction
tofail:

m Theinitiator or a participant in the transaction causes it to be marked
“abort-only” for one of the following reasons:

e TPRETURN encounters an error while processing its arguments; TP- STATUS is
set to TPESVCERR.

e The TP- RETURN- VAL to TPRETURN Was set to TPFAI L; TP- STATUS is set to
TPESVCFAI L.

e Thetypeof the reply record is not known or not allowed by the caller and, as
aresult, success or failure cannot be determined; TP- STATUS is set to
TPECTYPE.

m Thetransaction timesout; TP- STATUS is set to TPETI ME.

m TPCOW T is called by aparticipant rather than by the originator of atransaction;
TP- STATUS is set to TPEPROTO.

Theonly protocol error that isfatal to transactionsiscalling TPCOW T from thewrong
participant in atransaction. This error can be corrected in the application during the
development phase.

If TPCOW T is called after an initiator/participant failure or transaction timeout, the
resultisanimplicit abort error. Then, because the commit failed, the transaction should
be aborted.

If the system returns TPESVCERR, TPESVCFAI L, TPEOTYPE, or TPETI ME for any
communication call, the transaction should be aborted explicitly with a call to
TPABORT. Y ou heed not wait for outstanding communi cation handl es before explicitly
aborting the transaction. However, because these communication handles are
considered stale after the call is aborted, any attempt to access them after the
transaction is terminated returns TPEBADDESC.

Inthe case of TPESVCERR, TPESVCFAI L, and TPEOTYPE, communication calls continue
to be allowed as long as the transaction has not timed out. When these errors are
returned, the transaction is marked abort-only. To preserve the results of any further

11-18 Programming a BEA Tuxedo ATMI Application Using COBOL

Transaction Errors

work, you should call any communication functions with TPNOTRAN. By setting this
flag, you ensure that the work performed for the transaction marked “ abort-only” will
not be rolled back when the transaction is aborted.

When atransaction timeout occurs, communication can continue, but communication
requests cannot:

m Requirereplies
m Block
m Beperformed on behalf of the caler’s transaction

Therefore, to make asynchronous calls, you must set TPNCREPLY, TPNOBLOCK, or
TPNOTRAN.

Heuristic Decision Errors

The TPCOW T call may return TPEHAZARD or TPEHEURI STI C, depending on how
TP- COMWM T- CONTRQL iS Set.

If you set TP- COMM T- CONTROL to TP- CMT- LOGGED, the application obtains control
before the second phase of a two-phase commit is performed. In this case, the
application may not be aware of a heuristic decision that occurs during the second
phase.

TPEHAZARD or TPEHEURI STI C can be returned in a one-phase commit, however, if a
singleresource manager isinvolved in thetransaction and it returnsaheuristic decision
or a hazard indication during a one-phase commit.

If you set TP_COVM T_CONTROL to TP_CMT_COMPLETE, then the system returns
TPEHEURI STI Cif any resource manager reports a heuristic decision, and TPEHAZARD
if any resource manager reports a hazard. TPEHAZARD specifiesthat a participant failed
during the second phase of commit (or during a one-phase commit) and that it is not
known whether a transaction completed successfully.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-19

11 Managing Errors

Transaction Timeouts

As described in “ Transaction Errors’ on page 11-16, two types of timeouts can occur
in a BEA Tuxedo application: blocking and transaction. The following sections
describe how various programming features are affected by transaction timeouts.
Refer to “Transaction Errors” on page 11-16 for more information on timeouts.

TPCOMMIT Call

What is the state of atransaction if atimeout occurs after acall to TPCOW T?If the
transaction timed out and the system knows that it was aborted, the system reports
these events by setting TP- STATUS to TPEABORT. If the status of the transaction is
unknown, the system setsthe error code to TPETI ME.

When the state of atransaction isin doubt, you must query the resource manager. First,
verify whether or not any of the changesthat were part of the transaction were applied.
Then you can determine whether the transaction was committed or aborted.

TPNOTRAN

When a processis in transaction mode and makes a communication call with
TPNOTRAN, it prohibits the called service from becoming a participant in the current
transaction. Whether the service request succeeds or fails has no impact on the
outcome of the transaction. The transaction can still timeout while waiting for areply
that is due from a service, whether it is part of the transaction or not.

For additional information on using TPNOTRAN, refer to “TPRETURN and
TPFORWAR Calls’ on page 11-21.

11-20 Programming a BEA Tuxedo ATMI Application Using COBOL

tpterm() Function

TPRETURN and TPFORWAR Calls

If you call a process while running in transaction mode, TPRETURN and TPFORWAR
place the service portion of the transaction in a state that allowsiit to be either
committed or aborted when the transaction completes. Y ou can call a service several
times on behalf of the same transaction. The system does not fully commit or abort the
transaction until the initiator of the transaction calls TPCOVM T or TPABORT.

Neither TPRETURN nor TPFORWAR should be called until al outstanding handlesfor the
communication calls made within the service have been retrieved. If you call
TPRETURN with outstanding handles for which TP- RETURN- VAL is set to TPSUCCESS,
the system encounters a protocol error and returns TPESVCERR to the process waiting
on TPGETRPLY. If the process is in transaction mode, the system marks the caller as
“abort-only.” Even if the initiator of the transaction calls TPCOWM T, the system
implicitly aborts the transaction. If you call TPRETURN with outstanding handles for
which TP- RETURN- VAL is set to TPFAI L, the system returns TPESVCFAI L to the
process waiting on TPGETRPLY. The effect on the transaction is the same.

When you call TPRETURN while running in transaction mode, this function can affect
the result of the transaction by the processing errors that it encounters or that are
retrieved from the value placed in TP- RETURN- VAL by the application.

Y ou can use TPFORWAR to indicate that success has been achieved up to a particular
point in the processing of arequest. If no application errors have been detected, the
system invokes TPFORWAR, otherwise, the system invokes TPRETURN with TPFAI L. If
you call TPFORWAR improperly, the system considers the call a processing error and
returns a failed message to the requester.

tpterm() Function

Use the TPTERMcall to remove a client context from an application.

If the client context isin transaction mode, the call fails with TPEPROTOreturned in
TP- STATUS, and the client context remains part of the application and in transaction
mode.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-21

11 Managing Errors

When the call is successful, the client context is allowed no further communication or
participation in transactions because the current thread of execution isno longer part
of the application.

Resource Managers

When you use an ATMI call to define transactions, the BEA Tuxedo system executes
an internal call to pass any global transaction information to each resource manager
participating in the transaction. When you call TPCOVM T or TPABCORT, for exampl e, the
system makesinternal callsto direct each resource manager to commit or abort the
work it did on behalf of the caller’s global transaction.

When aglobal transaction has been initiated, either explicitly or implicitly, you should
not make explicit calls to the resource manager’s transaction calls in your application
code. Failureto follow this transaction rule causes indeterminate results. Y ou can use
the TPGETLEV call to determine whether aprocessis aready in aglobal transaction
before calling the resource manager’ s transaction call.

Some resource managers allow programmers to configure certain parameters (such as
thetransaction consistency level) by specifying optionsavailablein theinterfaceto the
resource managers themselves. Such options are made available in two forms:

m Resource manager-specific function calls that can be used by programmers of
distributed applications to configure options.

m Hard-coded options incorporated in the transaction interface supplied by the
provider of the resource manager.

Consult the documentation for your resource managers for additional information.

The method of setting options varies for each resource manager. In the BEA Tuxedo
System SQL resource manager, for example, theset transacti on statement isused
to negotiate specific options (consistency level and access mode) for a transaction that
has already been started by the BEA Tuxedo system.

11-22 Programming a BEA Tuxedo ATMI Application Using COBOL

Sample Transaction Scenarios

Sample Transaction Scenarios

The following sections provide some considerations for the following transaction
scenarios:

m Cadled Service in Same Transaction as Caller
m Called Servicein Different Transaction with AUTOTRAN Set

m Caled Service That Starts aNew Explicit Transaction

Called Service in Same Transaction as Caller

When acaller in transaction mode calls another service to participate in the current
transaction, the following facts apply:

m TPRETURN and TPFORWAR, when called by the participating service, place that
service's portion of the transaction in a state from which it can be either aborted
or committed by the initiator.

m The success or failure of the called process affects the current transaction. If any
fatal transaction errors are encountered by the participant, the current transaction
is marked “abort-only.”

m Whether or not the tasks performed by a successful participant are applied
depends on the fate of the transaction. In other words, if the transaction is
aborted, the work of al participantsis reversed.

m TPNOREPLY cannot be used when calling another serviceto participatein the
current transaction.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-23

11 Managing Errors

Called Service in Different Transaction with AUTOTRAN
Set

If you issue acommunication call with TPNOTRAN set and the called serviceis
configured such that a transaction automatically starts when the serviceis called, the
system places both the calling and called processes in transaction mode, but the two
constitute different transactions. In this situation, the following facts apply:

m TPRETURN playstheinitiator’s transaction role; it terminates the transaction in
the service in which the transaction was automatically started. Alternatively, if
the transaction is automatically started in a service that terminates with
TPFORWAR, the TPRETURN call issued in the last service in the forward chain
plays the initiator’s transaction role: it terminates the transaction. (For an
example, refer to the figure called “ Transaction Roles of TPFORWAR and
TPRETURN with AUTOTRAN" on page 11-25.)

m Becauseit isin transaction mode, TPRETURN is vulnerable to the failure of any
participant in the transaction, as well as to transaction timeouts. In this scenario,
the system is more likely to return a failed message.

m The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

m Thecaller’'s own transaction may timeout as the caller waitsfor areply.

m If noreply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

11-24 Programming a BEA Tuxedo ATMI Application Using COBOL

Sample Transaction Scenarios

Figure1l-1 Transaction Roles of TPFORWAR and TPRETURN with

AUTOTRAN
Transaction & Transaction B
tpcall () tprorwardl)
CLIEWNT - 4 SWVC B
with TPNOTEAN -
AUTOTEAN
Begins B
tpreturnd) | tprorwardi)

Terminates B

Called Service That Starts a New Explicit Transaction

If acommunication call is made with TPNOTRAN, and the called service is not
automatically placed in transaction mode by a configuration option, the service can
define multiple transactions using explicit callsto TPBEG N, TPCOVMM T, and TPABORT.
Asaresult, the transaction can be completed before a call isissued to TPRETURN.

In this situation, the following facts apply:

m TPRETURN plays no transaction role; that is, the role of TPRETURN is aways the
same, regardless of whether transactions are explicitly defined in the service
routine.

m TPRETURN can return any value in TP- RETURN- VAL, regardless of the outcome
of the transaction.

m Typicaly, the system returns processing errors, record type errors, or application
failure, and follows the normal rules for TPESVCFAI L, TPEI TYPE/TPEOTYPE, and
TPESVCERR.

m The state of the caller’stransaction is not affected by any failed messages or
application failures returned to the caller.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-25

11 Managing Errors

m Thecaller isvulnerable to the possibility that its own transaction may time out
asit waitsfor itsreply.

m If noreply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

BEA TUXEDO System-supplied Subroutines

Central

The BEA Tuxedo system-supplied subroutines, TPSVRI NI T and TPSVRDONE, must
follow certain rules when used in transactions.

The BEA Tuxedo system server calls TPSVRI NI T during initialization. Specificaly,
TPSVRI NI T is called after the calling process becomes a server but before it starts
handling service requests. If TPSVRI NI T performs any asynchronous communication,
all replies must be retrieved before the function returns; otherwise, the system ignores
all pending replies and the server exits. If TPSVRI NI T defines any transactions, they
must be completed with all asynchronous replies retrieved before the function returns;
otherwise, the system aborts the transaction and ignores all outstanding replies. In this
case, the server exits gracefully.

The BEA Tuxedo system server abstraction calls TPSVRDONE after it finishes
processing service requests but before it exits. At this point, the server’s services are
no longer advertised, but the server has not yet |ft the application. If TPSVRDONE
initiates communication, it must retrieve all outstanding replies before it returns;
otherwise, pending replies are ignored by the system and the server exits. If a
transaction is started within TPSVRDONE, it must be completed with all replies
retrieved; otherwise, the system aborts the transaction and ignores the replies. In this
case, too, the server exits.

Event Log

Thecentral eventlog isarecord of significant eventsin your BEA Tuxedo application.
M essages about these events are sent to thelog by your application clientsand services
viathe USERLOG(3chl) routine.

11-26 Programming a BEA Tuxedo ATMI Application Using COBOL

Central Event Log

Any analysis of the central event log must be provided by the application. Y ou should
establish strict guidelinesfor the eventsthat areto berecorded in the USERLOG(3chbl) .
Application debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows 2000 platform,
refer to Using BEA Tuxedo ATMI on Windows.

Log Name

The application administrator defines (in the configuration file) the absol ute pathname
that is used as the prefix of the name of the error message file on each machine. The
USERLOG(3chl) routine creates a date—in the form nmddyy, representing the month,
day, and year—and adds this date to the pathname prefix, forming the full filename of
the central event log. A new fileiscreated daily. Thus, if a process sends messages to
the central event log on succeeding days, the messages are written into different files.

Log Entry Format

Entriesin the log consist of the following components:
m Tag consisting of:
e Time of day (hhmrss)

e Machine name (for example, the name returned by the uname (1) command
on aUNIX system)

e Name, process ID, and thread ID (which is 0 on platforms that do not
support threads) of the thread calling USERLOE 3cbl)

e Context ID of thethread calling USERLOG(3cbl)

m Message text

The text of each message is preceded by the catalog name and number of that
message.

For exampl e, suppose that a security program executes the following call at
4: 22: 14pmon aUNIX machine called mach1 (as returned by the uname command):

Programming a BEA Tuxedo ATMI Application Using COBOL 11-27

11 Managing Errors

01 LOG REC PI C X(15) VALUE " UNKNOWN USER ".
01 LOGREC-LEN PIC S9(9) VALUES IS 13.
CALL "USERLOG' USI NG LOG REC LOGREC- LEN TPSTATUS- REC.

The resulting log entry appears as follows:
162214. machl! security.23451: UNKNOAN USER

In this example, the process ID for security is23451.

If the preceding message was generated by the BEA Tuxedo system (rather than by the
application), it might appear as follows:

162214. machl! security. 23451: COBAPI _CAT: 999: UNKNOMN USER

In this case, the message catal og nameis COBAPI _CAT and the message number is999.

If the message is sent to the central event log while the processis in transaction mode,
other components are added to the tag in the user log entry. These components consist
of theliteral string gt ri d followed by three long hexadecimal integers. The integers
uniquely identify the global transaction and make up what isreferred to as the global
transaction identifier, that is, thegt ri d. Thisidentifier is used mainly for
administrative purposes, but it also appearsin thetag that prefixesthe messagesinthe
central event log. If the system writes the message to the central event log in
transaction mode, the resulting log entry appears as follows:

162214. machl! security. 23451: gtrid x2 x24elb803 x239:
UNKNOWN USER

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

m Assign the error message you wish to write to the log to arecord and use the
record name as the argument to the call.

m Specify the literal text of the message within double quotes, as the argument to
the USERLOG 3cbl) call, as shown in the following example:

01 TPSTATUS- REC.
COPY TPSTATUS.

01 LOGVBG PI C X(50).

01 LOGVSG LEN PIC S9(9) COWP-5.

.CALL. "TPOPEN' USI NG TPSTSTUS- REC.

11-28 Programming a BEA Tuxedo ATMI Application Using COBOL

Central Event Log

IF NOT TPOK
MOVE "TPSVRI NI T: Cannot Open Data Base" TO LOGVBG
MOVE 43 LOGMSG LEN
CALL "USERLOG' USI NG LOGVBG
LOGVSG- LEN
TPSTATUS- REC.

In this example, the message is sent to the central event log if TPOPEN(3cbl) returns
-1.

Programming a BEA Tuxedo ATMI Application Using COBOL 11-29

11 Managing Errors

11-30 Programming a BEA Tuxedo ATMI Application Using COBOL

CHAPTER

12 COBOL Language

Bindings for the
Workstation
Component

Thistopic includes the following sections:
m UNIX Bindings
m Microsoft Windows Bindings

Refer to Using the BEA Tuxedo Wor kstation Component for more information on the
Workstation platform.

UNIX Bindings

The following sections describe how to write and build client programs, and set
appropriate environment variables when developing, in COBOL, a BEA Tuxedo
application on a UNIX platform.

Programming a BEA Tuxedo Application Using COBOL 12-1

12 cosoL Language Bindings for the Workstation Component

Writing Client Programs

Y ou can develop COBOL client programs for a UNIX platform in the same way that
you develop COBOL clientsin the BEA Tuxedo administrative domain. All ATMI
cals are available.

Building Client Programs

To compile and link-edit Workstation client programs, use the bui | dcl i ent (1)
command. If you are building a UNIX Workstation client on the native node, use the
- w option to have the client built using the Workstation libraries.

If you are building aclient on a native node, and both native and Workstation libraries
are present, the native libraries are used by default. In this case, specifying the - w
option ensures that the correct libraries for a Workstation client are used.

On aworkstation, where only the Workstation libraries are present, it is not necessary
to specify - w.

The following example shows how to use the bui | dcl i ent command on anative
node.

Listing 12-1 Example of Running buildclient on a UNIX Platform

ALTCC=cobcc ALTCFLAGS="-| /APPDI R/ i ncl ude"

COBCPY=$TUXDI R/ cobi ncl ude

COBOPT="-C ANS85 -C ALI G\N=8 -C NO BMCOW - C TRUNC=ANSI -C OSEXT=cbl "
export COBOPT COBCPY ALTCC ALTCFLAGS

buildclient -C-w -0 enpclient -f name.cbl -f "userlibl.a userlib2.a"

The - o option enables you to specify a name for your output file. Input files specified
with the - f option are linkedited before system libraries.

Asillustrated, the TUXDI R environment variable must be used to ensure that the

bui | dcl'i ent command can locate system libraries. Be sure that you have defined
TUXDI R. The CCenvironment variable defaultsto cc, but can be set to another compiler
through ALTCC.

12-2 Programming a BEA Tuxedo Application Using COBOL

UNIX Bindings

Setting Environment Variables

Workstation clients make use of several environment variables.

Thefollowing tableliststhe environment variablesthat are checked by TPI NI TI ALI ZE
when a Workstation client attempts to join an application.

Table 12-1 Environment Variables Checked by TPINITIALIZE on a UNIX

Platform

Environment

Variable

Description

WSENVFI LE

Name of afile containing environment variable settings to be
used in the client’ s environment.

WENADDR

Network address of the Workstation listener process through
which the client gains access to the application. Use the value
specified in the application configuration file for the
Workstation listener to be called. If the value begins with the
characters Ox, the system interpretsit asastring of hexadecimal
digits, otherwise, the system interprets it as ASCI| characters.

WSDEVI CE

Name of the device to be used to access the network. Not
required by all transport layer interfaces.

WSTYPE

Workstation type. Used by TPI NI TI ALI ZE when that call is
invoked by a Workstation client to negotiate encode/decode
responsibilities with the native site. If you do not specify
WBTYPE, the system performs encoding, even if WSTYPE is not
specified on the native site, either. Y ou must explicitly specify
the same WSTYPE value for both the native and Workstation
client sitesto ensure that the encode/decode feature isturned off.

WERPLYNAX

Maximum amount of core memory that the ATMI uses for
buffering application replies before dumping them to disk. Used
by TPI NI TI ALI ZE. The default system limit is 256,000 bytes.
Whether you should use WBRPL YMAX to set alower limit
depends on the amount of memory available on your machine.
Writing replies to disk causes a substantial reduction in
performance.

Programming a BEA Tuxedo Application Using COBOL 12-3

12 cosoL Language Bindings for the Workstation Component

Environment Description
Variable
WEFADDR The network address used by the Workstation client when

connecting to the Workstation listener or Workstation handler.
This variable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a Workstation client will
attempt to bind before making an outbound connection. This
address must be a TCP/IP address.

WEFRANGE Therange of TCP/IP portstowhich aWorkstation client process
attempts to bind before making an outbound connection. The
V\BFADDR parameter specifiesthe base address of therange. The
default is 1.

Other environment variables may be needed by Workstation COBOL clientson a
UNIX workstation, depending on which components of the BEA Tuxedo system are
being used.

Note: MicroFocus deliversLI BNSL. a as a shared object, which isrequired by
bui | dcli ent when linking a Workstation client. Because MicroFocus

COBOL does not support shared objectson UNIX 3.2, Workstation for UNIX
3.2 is not supported.

Microsoft Windows Bindings

The following sections describe how to write and build client programs, build
ACCEPT/DISPLAY clients, block network behavior, and restore the network
environment when developing, in COBOL, a BEA Tuxedo application for the
Microsoft Windows platform.

Writing Client Programs

All program-specific ATMI callsare available.

12-4 Programming a BEA Tuxedo Application Using COBOL

Microsoft Windows Bindings

Building Client Programs

To compile the COBOL source filesthat call the ATMI, you must use the COBOL
compiler with the LI TLI NK option. To linkedit the Workstation client object files, use
thebui I dcl i ent (1) command. Whilethe syntax of the command is straightforward,
the usage varies according to the compilation system used.

The following example shows how to use the bui | dcl i ent command.

Listing 12-2 Example of Running buildclient on a Windows Platform

COBCPY=C: \ TUXEDO COBI NC

COBDI R=C: \ COBOL\ LBR; C: \ COBOL\ EXEDLL

PATH=C:. \ COBOL\ EXEDLL; . ..

TUXDI R=C: \ t uxedo

LI B=C: \ NET\ TOOLKI T\ LI B; C: \ MSVC\ LI B; C: \ TUXEDO\ LI B; C: \ COBOL\ LI B
buildclient -C -0 EMP. EXE -f EMP -f "/NOD/ NO / NCE/ CO SE: 300" -1 W.I BSOCCK

For W ndows NT:
buildclient -C -0 EMP. EXE -f enpobj

The following table describes the bui | dcl i ent command options used in the
preceding example.

Table 12-2 buildclient Command Options for Windows Platform

Option Description

-0 nane Name of the executable file being created. The default is
client.exe.

-f firstfiles One or more object filesto be included before the BEA Tuxedo
libraries. You can usethe - f option to pass options to the
compiler or linker. To specify more than one filename, enter a
list of filesafter - f , using white space to separate filenames and
doubl e quotation marks around the list. Y ou can also specify
multiple filenames using multiple occurrences of the - f option
on the command line.

Programming a BEA Tuxedo Application Using COBOL 12-5

12 cosoL Language Bindings for the Workstation Component

Option Description

-1 libfiles Libraries to beincluded after the BEA Tuxedo libraries. To
specify more than onefilename, you must separate the namesby
white space and enclosethelist in quotation marks. Y ou can also
specify multiple filenames using multiple occurrences of the- |
option on the command line.

Building ACCEPT/DISPLAY Clients

The following example shows how to build an executable client for an
ACCEPT/ DI SPLAY application, such as CSI MPAPP.

Listing 12-3 Building ACCEPT/DISPLAY clients

a) conpile the COBOL nodul e and create a file. obj
cobol file.cbl onf(obj) litlink;

b) use the follow ng |ink statenent
i nk FI LE+cbl wi naf, ,,\
wcobat m +cobws+wt uxws+ \
| cobol +I cobol dwtcobw+cobf p87w+ \
w i bsock, FI LE. def /nod/ noe;

For Wndows NT the link statenent is:

cbllink -oEMP. exe EMP. 0obj '\
cobws.lib ncobatm .lib wtuxws32.lib \
libcmt.lib user32.1ib

12-6 Programming a BEA Tuxedo Application Using COBOL

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	1. Introduction to BEA Tuxedo Programming
	2. Programming Environment
	3. Managing Typed Records
	4. Writing Clients
	5. Writing Servers
	6. Writing Request/Response Clients and Servers
	7. Writing Conversational Clients and Servers
	8. Writing Event-based Clients and Servers
	9. Writing Global Transactions
	10. Programming a Multithreaded and Multicontexted ATMI Application
	11. Managing Errors
	12. COBOL Language Bindings for the Workstation Component
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to BEA Tuxedo Programming
	BEA Tuxedo Distributed Application Programming
	Figure 1�1 Distributed Application Example - Online Banking System

	Communication Paradigms
	Table 1�1 Communication Paradigms

	BEA Tuxedo Clients
	Listing 1-1 Pseudo-code for a Client

	BEA Tuxedo Servers
	Basic Server Operation
	Figure 1�2 Pseudo-code for a Request/Response Server and a Service Subroutine
	Figure 1�3 Pseudo-code for a Conversational Service Subroutine

	Servers as Requesters

	BEA Tuxedo API: ATMI
	Table 1�2 Using the ATMI Calls

	2 Programming Environment
	Updating the UBBCONFIG Configuration File
	Table 2�1 Programming-related UBBCONFIG Parameters by Functional Category�
	See Also

	Setting Environment Variables
	Table 2�2 For the client and server routines in your application, you can update existing environ...
	See Also

	Defining Equivalent Data Types
	Table 2�3 COBOL Equivalents for C Data Types

	Starting and Stopping the Application
	See Also

	3 Managing Typed Records
	Overview of Typed Records
	Table 3�1 Typed Buffers�
	See Also

	Defining Typed Records
	Using a VIEW Typed Record
	Setting Environment Variables for a VIEW Typed Record
	Table 3�2 Environment Variables for a VIEW Typed Record

	Creating a View Description File
	Table 3�3 View Description File Fields�
	Listing 3-1 View Description File for FML VIEW
	Listing 3-2 View Description File for an Independent View
	Executing the VIEW Compiler
	Listing 3-3 COBOL COPY File Example

	See Also
	Using an FML Typed Record
	Setting Environment Variables for an FML Typed Record
	Table 3�4 FML Typed Record Environment Variables

	Creating a Field Table File
	Table 3�5 Field Table File Fields
	Listing 3-4 Field Table File for FML VIEW

	Initializing a Typed Record
	Listing 3-5 FML/VIEW Conversion

	Creating an FML Header File
	Listing 3-6 myview.flds.h Header File
	/* fname fldid */ /* ----- ----- */ #define FLOAT1 ((FLDID)24686) /* number: 110 type: float */ #...

	See Also

	Using an XML Typed Record
	See Also

	4 Writing Clients
	Joining an Application
	Table 4�1 COBOL COPY File Fields
	See Also

	Using Features of the TPINFDEF-REC Record
	Client Naming
	Figure 4�1 Client Naming

	Unsolicited Notification Handling
	Table 4�2 Client Notification Flags in a TPINFDEF-REC Record

	System Access Mode
	Table 4�3 System Access Flags in a TPINFDEF-REC Record

	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	Table 4�4 buildclient Options
	See Also

	Client Process Examples
	Listing 4-1 Typical Client Process Paradigm
	Listing 4-2 Joining and Leaving an Application

	5 Writing Servers
	BEA Tuxedo System Controlling Program
	System-supplied Server and Services
	Notes: If you want to write your own versions of TPSVRINIT and TPSVRDONE, remember that the defau...
	System-supplied Server: AUTHSVR()
	System-supplied Services: TPSVRINIT Routine
	Receiving Command-line Options
	Listing 5-1 Receiving Command-line Options in TPSVRINIT

	Opening a Resource Manager
	Listing 5-2 Opening a Resource Manager in TPSVRINIT

	System-supplied Services: TPSVRDONE Routine
	Listing 5-3 Closing a Resource Manager with TPSVRDONE

	Guidelines for Writing Servers
	Defining a Service
	01 TPSVCDEF-REC. COPY TPSVCDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTA...
	Table 5�1 TPSVCDEF Data Structure
	Listing 5-4 Typical Service Definition
	Listing 5-5 Checking the Priority of a Received Request

	Terminating a Service Routine
	Sending Replies
	Table 5�2 TPSVCRET-REC Data Structure Members
	Listing 5-6 TPRETURN Routine
	IDENTIFICATION DIVISION. PROGRAM-ID. TRANSFER. AUTHOR. TUXEDO DEVELOPMENT. ENVIRONMENT DIVISION. ...

	Invalidating Descriptors
	Listing 5-7 Invalidating a Reply After Timing Out

	Forwarding Requests
	Figure 5�1 Forwarding a Request
	Listing 5-8 How to Use TPFORWAR
	. . . ** * Get the data that was sent by the ...

	Advertising and Unadvertising Services
	Advertising Services
	Table 5�3 TPADVERTISE Data Structure Members

	Unadvertising Services
	Table 5�4 TPUNADVERTISE Data Structure Member

	Example: Dynamic Advertising and Unadvertising of a Service
	Listing 5-9 Dynamic Advertising and Unadvertising

	Building Servers
	Table 5�5 buildserver Command-line Options
	See Also

	6 Writing Request/Response Clients and Servers
	Overview of Request/Response Communication
	1. A customer (the client) sends a request for an account balance to the Account Record Storage S...
	2. The Account Record Storage System (the server) sends a reply to the customer (the client), spe...
	Figure 6�1 Example of Request/Response Communication in Online Banking

	Sending Synchronous Messages
	Example: Using the Same Record for Request and Reply Messages
	1. The service queries the B_ID field, but does not overwrite it.
	2. The application initializes the BALANCE field to zero in preparation for the values to be retu...
	3. The SERVICE-NAME represents the service name requested. In this example, these variables repre...
	Listing 6-1 Using the Same Record for Request and Reply Messages

	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Listing 6-2 Sending a Synchronous Message with TPSIGRSTRT Set

	Example: Sending a Synchronous Message with TPNOTRAN Set
	Listing 6-3 Sending a Synchronous Message with TPNOTRAN Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Listing 6-4 Sending an Asynchronous Message with TPNOTRAN or TPNOREPLY

	Getting an Asynchronous Reply
	01 TPSVCDEF-REC. COPY TPSVCDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTA...

	Setting and Getting Message Priorities
	Setting a Message Priority
	Table 6�1 TPSPRIO Routine Fields
	Listing 6-5 Setting the Priority of a Request Message

	Getting a Message Priority
	Listing 6-6 Determining the Priority of the Sent Request

	7 Writing Conversational Clients and Servers
	Overview of Conversational Communication
	Figure 7�1 Example of Conversational Communication in an Online Banking Application
	1. The customer requests the checking account statements for the past two months.
	2. The Account Records Storage System responds by sending the first month’s checking account stat...
	3. The customer requests the second month’s account statement by selecting the More prompt.
	4. The Account Records Storage System sends the remaining month’s account statement.

	Joining an Application
	Establishing a Connection
	01 TPSVCDEF-REC. COPY TPSVCDEF.
	01 TPTYPE-REC. COPY TPTYPE.
	01 DATA-REC. COPY User Data.
	01 TPSTATUS-REC. COPY TPSTATUS.
	CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.
	Listing 7-1 Establishing a Conversational Connection

	Sending and Receiving Messages
	Sending Messages
	01 TPSVCDEF-REC. COPY TPSVCDEF.
	01 TPTYPE-REC. COPY TPTYPE.
	01 DATA-REC. COPY User Data.
	01 TPSTATUS-REC. COPY TPSTATUS.
	CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC USER-DATA-REC TPSTATUS-REC.
	Listing 7-2 Sending Data in Conversational Mode

	Receiving Messages
	Listing 7-3 Receiving Data in Conversation

	Ending a Conversation
	Example: Ending a Simple Conversation
	Figure 7�2 Simple Conversation Terminating Gracefully
	1. A sets up the connection by calling TPCONNECT with TPSENDONLY set, indicating that process B i...
	2. A turns control of the connection over to B by calling TPSEND with TPRECVONLY set, resulting i...
	3. The next call by B to TPRECV sets TP-STATUS to TPEEVENT, and returns TPEV_SENDONLY in TPEVENT,...
	4. B calls TPRETURN with TPRETURN-VAL IN TPSVCRET set to TPSUCCESS. This call generates a TPEV_SV...
	5. A calls TPRECV, learns of the event, and recognizes that the conversation has been terminated....

	Example: Ending a Hierarchical Conversation
	Figure 7�3 Connection Hierarchy
	1. B calls TPSEND with the TPRECVONLY flag set on the connection to C, transferring control of th...
	2. C calls TPRETURN with TPRETURN-VAL IN TPSVCRET set to TPSUCCESS, TPFAIL, or TPEXIT, as appropr...
	3. B can then call TPRETURN, posting an event (either TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events
	Table 7�1 Conversational Communication Events

	8 Writing Event-based Clients and Servers
	Overview of Events
	Unsolicited Events
	Brokered Events
	Notification Actions
	Table 8�1 EventBroker Notification Actions

	EventBroker Servers
	System-defined Events
	Programming Interface for the EventBroker
	1. A client or server posts a record to an application-defined event name.
	2. The posted record is transmitted to any number of processes that have subscribed to the event.

	Defining the Unsolicited Message Handler
	Listing 8-1 Setting an Unsolicited Routine

	Sending Unsolicited Messages
	Broadcasting Messages by Name
	01 TPBCTDEF-REC. COPY TPBCTDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTA...
	Table 8�2 TPBCTDEF-REC Data Structure Members
	Listing 8-2 Using TPBROADCAST

	Broadcasting Messages by Identifier
	01 TPSVCDEF-REC. COPY TPSVCDEF. 01 TPTYPE-REC. COPY TPTYPE. 01 DATA-REC. COPY User Data. 01 TPSTA...

	Checking for Unsolicited Messages
	Listing 8-3 Arrival of an Unsolicited Message

	Getting Unsolicited Messages
	Listing 8-4 Getting an Unsolicited Message

	Subscribing to Events
	Unsubscribing from Events
	Posting Events
	01 TPEVTDEF-REC. COPY TPEVTDEF.
	01 TPTYPE-REC. COPY TPSTATUS.
	01 TPDATA-REC. COPY TPSTATUS.
	01 TPSTATUS-REC. COPY TPSTATUS.
	CALL “TPPST” USING TPEVTDEF-REC TPTYPE-REC TPDATA-REC TPSTATUS-REC

	9 Writing Global Transactions
	What Is a Global Transaction?
	Starting the Transaction
	Table 9�1 TPTRXDEF Structure Field
	Listing 9-1 Delineating a Transaction
	Listing 9-2 Error - Starting a Transaction with an Outstanding Reply
	Listing 9-3 Testing for Transaction Timeout
	Listing 9-4 Defining a Transaction

	Terminating the Transaction
	Committing the Current Transaction
	Prerequisites for a Transaction Commit
	Two-phase Commit Protocol
	1. Each participating resource manager indicates a readiness to commit.
	2. The initiator of the transaction gives permission to commit to each participating resource man...
	Selecting Criteria for a Successful Commit
	Trade-offs Between Possible Commit Criteria

	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Figure 9�1 Connection Hierarchy in Transaction Mode
	1. A client (process A) initiates a connection in transaction mode by calling TPBEGIN and TPCONNECT.
	2. The client calls subsidiary services, which are executed.
	3. As each subordinate service completes, it sends a reply indicating success or failure (TPEV_SV...
	4. The client (process A) determines whether all subordinate services have returned successfully.

	Example: Testing for Participant Errors
	Listing 9-5 Testing for Participant Success or Failure
	01 . . . 02 CALL "TPINITIALIZE" USING TPINFDEF-REC 03 USR-DATA-REC 04 TPSTATUS-REC. 05 IF NOT TPO...

	Implicitly Defining a Global Transaction
	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	Listing 9-6 Testing Transaction Level
	See Also

	10 Programming a Multithreaded and Multicontexted ATMI Application
	Support for Programming a Multithreaded/Multicontexted ATMI Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications
	See Also

	Planning and Designing a Multithreaded/Multicontexted ATMI Application
	What Are Multithreading and Multicontexting?
	What Is Multithreading?
	Figure 10�1 Sample Multithreaded Process
	Figure 10�2 Multiple Service Threads Dispatched in One Server Process

	What Is Multicontexting?
	Figure 10�3 Multicontexted Process in Two Domains

	Licensing a Multithreaded or Multicontexted Application
	See Also

	Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application
	Advantages of a Multithreaded/Multicontexted ATMI Application
	Disadvantages of a Multithreaded/Multicontexted ATMI Application
	See Also

	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Client Threads Join Multiple Contexts
	Client Threads Switch to an Existing Context

	Work Phase
	Service Requests
	Replies to Service Requests
	Transactions
	Unsolicited Messages
	Userlog Maintains Thread-specific Information

	Completion Phase
	See Also

	How Multithreading and Multicontexting Work in an ATMI Server
	Start-up Phase
	Work Phase
	Server-dispatched Threads Are Used
	Application-created Threads Are Used
	Bulletin Board Liaison Verifies Sanity of System Processes
	System Keeps Statistics on Server Threads
	Userlog Maintains Thread-specific Information

	Completion Phase
	See Also

	Design Considerations for a Multithreaded and Multicontexted ATMI Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting?
	How Many Applications and Connections Do You Want?
	What Synchronization Issues Need to Be Addressed?
	Will You Need to Port Your Application?
	Which Threads Model Is Best for You?
	Interoperability Restrictions for Workstation Clients
	See Also

	Implementing a Multithreaded/ Multicontexted ATMI Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI Application
	Prerequisites for a Multithreaded ATMI Application
	General Multithreaded Programming Considerations
	Concurrency Considerations
	See Also

	Writing Code to Enable Multicontexting in an ATMI Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

	Implementing Security for a Multicontexted ATMI Client
	Synchronizing Threads Before an ATMI Client Termination
	Switching Contexts
	1. Set the TUXCONFIG environment variable to the value required by firstapp.
	2. Join the first application by calling tpinit(3c) with the TPMULTICONTEXTS flag set.
	3. Obtain a handle to the current context by calling tpgetctxt(3c).
	4. Switch the value of the TUXCONFIG environment variable to the value required by the secondapp ...
	5. Join the second application by calling tpinit(3c) with the TPMULTICONTEXTS flag set.
	6. Get a handle to the current context by calling tpgetctxt(3c).
	7. Beginning with the firstapp context, start toggling between contexts by calling tpsetctxt(3c).
	8. Call firstapp services.
	9. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp servi...
	10. Switch the client to the firstapp context (by calling tpsetctxt(3c)) and call firstapp services.
	11. Terminate the firstapp context by calling tpterm(3c).
	12. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp serv...
	13. Terminate the secondapp context by calling tpterm(3c).
	Listing 10-2 Sample Code for Switching Contexts in a Client
	#include <stdio.h> #include "atmi.h" /* BEA Tuxedo header file */ #if defined(__STDC__) || define...

	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI Application
	See Also

	Writing Code to Enable Multicontexting and Multithreading in an ATMI Server
	Context Attributes
	Coding Rules for a Multicontexted ATMI Server
	Initializing and Terminating ATMI Servers and Server Threads
	Table 10�1 Default Functions for Initialization and Termination

	Programming an ATMI Server to Create Threads
	Creating Threads
	Associating Threads with a Context
	1. Server-dispatched-thread_A gets a handle to the current context by calling tpgetctxt(3c).
	2. Server-dispatched-thread_A passes the handle returned by tpgetctxt(3c) to Application_thread_B.
	3. Application_thread_B associates itself with the current context by calling tpsetctxt(3c), spec...
	4. Application-created server threads cannot call tpreturn(3c) or tpforward(3c). Before the origi...

	Sample Code for Creating an Application Thread in a Multicontexted ATMI Server
	Notes: In order to simplify the sample, error checking code is not included. Also, an example of ...
	Listing 10-3 Code Sample for Creating a Thread in a Multicontexted Server
	#include <pthread.h> #include <atmi.h> void *withdrawalthread(void *); struct sdata { TPCONTEXT_T...

	See Also

	Writing a Multithreaded ATMI Client
	Coding Rules for a Multithreaded ATMI Client
	Initializing an ATMI Client to Multiple Contexts
	Context State Changes for an ATMI Client Thread
	Figure 10�4 Multicontext State Transitions
	Table 10�2 Context State Changes for a Client Thread

	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-process Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client
	Sample Code for a Multithreaded ATMI Client
	Listing 10-4 Sample Code for a Multithreaded Client
	#include <stdio.h> #include <pthread.h> #include <atmi.h> TPINIT * tpinitbuf; int timeout=60; pth...
	pthread_create(&stockthreadid, NULL, stockthread, NULL); tpsetctxt(ctxt, 0); tpcall("WITHDRAWAL",...

	See Also

	Writing a Multithreaded ATMI Server
	Compiling Code for a Multithreaded/Multicontexted ATMI Application
	See Also

	Testing a Multithreaded/Multicontexted ATMI Application
	Testing Recommendations for a Multithreaded/Multicontexted ATMI Application
	Troubleshooting a Multithreaded/Multicontexted ATMI Application
	Improper Use of the TPMULTICONTEXTS Flag to tpinit()
	Calls to tpinit() Without TPMULTICONTEXTS
	Insufficient Thread Stack Size

	Error Handling for a Multithreaded/Multicontexted ATMI Application
	See Also

	11 Managing Errors
	System Errors
	Table 11�1 TP-STATUS Error Categories

	Abort Errors
	BEA Tuxedo System Errors
	Communication Handle Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	No Entry Errors
	Table 11�2 No Entry Errors

	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Timeout Errors
	Transaction Errors
	Typed Record Errors
	Application Errors
	Handling Errors
	Listing 11-1 Handling Errors

	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Table 11�3 Transaction Errors

	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Timeouts
	TPCOMMIT Call
	TPNOTRAN
	TPRETURN and TPFORWAR Calls

	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Figure 11�1 Transaction Roles of TPFORWAR and TPRETURN with AUTOTRAN

	Called Service That Starts a New Explicit Transaction

	BEA TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	12 COBOL Language Bindings for the Workstation Component
	UNIX Bindings
	Writing Client Programs
	Building Client Programs
	Listing 12-1 Example of Running buildclient on a UNIX Platform
	ALTCC=cobcc ALTCFLAGS="-I /APPDIR/include" COBCPY=$TUXDIR/cobinclude COBOPT="-C ANS85 -C ALIGN=8 ...

	Setting Environment Variables
	Table 12�1 Environment Variables Checked by TPINITIALIZE on a UNIX Platform

	Microsoft Windows Bindings
	Writing Client Programs
	Building Client Programs
	Listing 12-2 Example of Running buildclient on a Windows Platform
	COBCPY=C:\TUXEDO\COBINC COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL PATH=C:\COBOL\EXEDLL;... TUXDIR=C:\tu...
	For Windows NT:
	buildclient -C -o EMP.EXE -f empobj
	Table 12�2 buildclient Command Options for Windows Platform

	Building ACCEPT/DISPLAY Clients
	Listing 12-3 Building ACCEPT/DISPLAY clients

