o®%%,

7 hea
BEA Tuxedo

Programming a BEA Tuxedo
ATMI Application Using C

BEA Tuxedo Release 8.0
Document Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, ORMAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA elLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Programming a BEA Tuxedo ATMI Application Using C

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

1.

Introduction to BEA Tuxedo Programming
BEA Tuxedo Distributed Application Programming.........cccceeeeeerereresenenene 1-1
Communication ParadigMSceeveiireieseseeseeeee e se et 1-3
BEA TUXEUO ClIENES......ccveieerceeesirreee e 1-4
BEA TUXEUO SEIVENS. ...ttt sttt sttt s e et e 1-6
BasiC SErVer OPEratioN.......ccccvcceeeieiereereseeseeseeeee e sre e eaesaeeeneeseenens 1-6
SErVErS @S REQUESTEIS.ueeriieeeiie e ree e seeseese e e e e e s ee e enneeneenee s 1-8
BEA TUXedo APLI ATMI ot 19
Programming Environment

Updating the UBBCONFIG Configuration File..........ccceovvririencenesesesieeenns 2-1
Setting Environment Variables..... ..o 2-5
Including the Required Header Files..........ccoirinince e 2-8
Starting and Stopping the AppliCationcccceeevevirerere e 2-8

Managing Typed Buffers

Overview of Typed BUFfErS. ... e 3-2
Allocating a TYPed BUFfEr.......ccco i 3-6
Putting Datain aBUFfer........cccvveeiececc e 39
Resizing a Typed BUFFEr ... s 311
Checking for BUFfer TYPE ...ovviiriee et 314
Freeing a Typed BUFFEr ..ot 3-15
Using aVIEW Typed BUFfer ... 3-16

Setting Environment Variables for aVIEW Typed Buffer........cccceeu.ee. 317

Creating aView DesCription Fil€........ccoovvevireeneeeceecesce e 3-18

Programming a BEA Tuxedo ATMI Application Using C iii

Executing the VIEW COMPILENcoecieeeceeerecere e 321

Using an FML Typed BUFFErcooieee s 3-22
Setting Environment Variables for an FML Typed Buffer 3-23
Creating aField Table@ File....ocovvvieiicee e 3-23
Creating an FML Header File.........ccccooeiiniiiiieee e 3-25

Using an XML Typed BUFFErccceeeieceese e 3-26

CUuStoOMIZING A BUFTEN ... e 3-28
Defining Your OwWn BUFfer TYPES.......cooeiiiiiere e 3-30
D= = X @X0] 1Y/ £= o o H PSPPSR 3-39

4. Writing Clients

JOiNING @M APPHICALION.......ceieeeiieeeetere e 4-1

Using Features of the TPINIT Typed BUFfer.......ccooeeveceinece e 4-4
L@ o1 1= 1 o 4-4
Unsolicited Notification Handlingccccoeveieineninenin e 4-6
SYStEM ACCESS MOUE......uecverieeeiiesie st ee sttt ene s 4-7
Resource Manager ASSOCIAONccccveeereeeeeese e e see e s re e nes 4-8
Client AUhENLICALTON. ..o e e 4-8

Leaving the APPlICALIONccvverereee e 4-9

BUITAING ClIENES......cceceeciee e s e ere e 4-10
S S £ o TSRS 4-11

Client Process EXAMPIESccuereiereiieiesese s see s e see e s esessessessesesse e e sseseses 4-12

5. Writing Servers

BEA TUuXed0o SyStEM MEIN() ..ccceeeerierrerieriiriesienieseeseeseeesesseeseses e ssesreseeseesaeses 51
System-supplied Server and SErVICES........coc i 5-3
System-supplied Server: AUTHSVR() coovovvivereseeseeeee s senee e 5-4
System-supplied Services: tpsvrinit() FUNCHON.........ccooiiirineieieeeeeen 5-4
System-supplied Services: tpsvrdone() FUNCLIONcooevireiicieniniene 5-7
GuIdelines fOr WIItiNG SEIVENS.......ccveeeeieeiese st esesee et snens 59
DEfiNING 8 SEIVICE ...t e 5-10
Example: Checking the BUuffer TYPe......cocciererenineneneree e 5-13
Example: Checking the Priority of the Service Requestccccoeeveenens 5-15
Terminating a Service ROULINE..........coi i 5-17
SENdiNg REPIIES.......oouiiiii e 5-17

Programming a BEA Tuxedo ATMI Application Using C

INvalidating DESCIIPLOIS.......ccveeeerereereese s et e nen 5-24

FOrwarding REQUESES.ooureririeere ettt st 5-25
Advertising and UnadvertiSing SErVICES.......covvvvrerireeseeseseeesesesesesee s 5-29
AQVETISING SEIVICESeeiveciiiesiesie et s et s ne e sre st ereneen 5-30
UNaOdVErtiSING SEIVICES.coiiierietire ettt 5-30
Example: Dynamic Advertising and Unadvertising of a Service............. 5-31
BUITAING SEIVEIS.....oeeiee et et e 5-32
S 1o TSR 5-33
USiNg @CH+ COMPILEN ..ot 5-34
Declaring Service FUNCLIONSccoiiiiiiireeeee e 5-34
Using Constructors and DESLIUCLONS.........coeivereriereenieie e 5-35

Writing Request/Response Clients and Servers

Overview of Request/Response CommuniCation...........cceevvvervreresereseeseeneens 6-1
Sending SyNChronOUS MESSAgES.........coueeeireeirierere ettt s 6-2
Example: Using the Same Buffer for Regquest and Reply Messages.......... 6-5
Example: Testing for Change in Size of Reply Bufferccccoevvvvvienns 6-6
Example: Sending a Synchronous Message with TPSIGRSTRT Set........ 6-7
Example: Sending a Synchronous Message with TPNOTRAN Set 6-8
Example: Sending a Synchronous Message with TPNOCHANGE Set 6-9
Sending ASyNChronOUS MESSAgEScoueieeerieierireee et 6-11
Sending an ASynChronoUS REQUESEccvevereereeriene e seeseeesee e seeneeneenens 6-11
Getting an AsynchronOUS REPIYccvvvvevvereerieereee e 6-15
Setting and Getting Message PrioritieS ... veienenereerecee e 6-16
Setting aMeSSAgE Priofity.....cccvieeeresiereereeesese s e e ne e 6-16
Getting aMeSSage Priorityccceevereiererereeieeese e ne e 6-18

Writing Conversational Clients and Servers

Overview of Conversational COmMMUNICALTION..........ccceeereerererierenesere e 7-1
N ol aThaTo Tz A AN o] o] [Tox- (o] o 7-3
Establishing @ CONNECHIONccccieriiiierie ettt s 7-3
Sending and RECEIVING MESSAgESccuerveieriinieie ettt s 7-5

SENAING MESSAGESc.vereeeiniereeeeieseeer e e ste e ste e e se e e see e e e eneenes 7-5

RECEIVING MESSAgES ... cveieeterieie ettt sttt s 7-7
ENdiNg & CONVEISAiONccuiieiiiireiie ettt st 7-9

Programming a BEA Tuxedo ATMI Application Using C %

Vi

Example: Ending a Simple Conversation............ceovveveneneeseereenesseenennnns 7-10

Example: Ending a Hierarchical Conversationccccoeveervenenenienennens 7-11
Executing a Disorderly DiSCONNECE.......ccceeeereeeniesieseeseie e eee e 7-12
Building Conversational Clients and SErVers.........ccoovveveveneveereneeeeeeseeenns 7-13
Understanding Conversational Communication Events...........c.ccccooeveevenene. 7-13

Writing Event-based Clients and Servers

OVEIVIEW Of EVENES ..ottt e sbe e 81
UNSOlICITEA BVENLS. ..ot e 8-2
BroKered EVENEScoiiiiiirierieeee ettt s 8-2

Defining the Unsolicited Message Handlerccovvvevvvveneveevcneecece e 85

Sending UnSOliCited MESSAgEScooerueererieeiere ettt st sae e 8-6
Broadcasting Messages by NamMe.........covevveeve s 8-6
Broadcasting Messages by 1dentifier........cccoeoveevie v, 8-8

Checking for UnsoliCited MESSAgEScccvererereirierie et 8-8

SUDSCHDING 10 EVENES ... snen 89

Unsubscribing from EVENEScvvviecc e 8-12

POSEING EVENLS ..ottt e e ebe s 8-13

Example of Event SUDSCIHIPLIONcc.cveirererese e 8-15

Writing Global Transactions

What Isa Global TransaCtion?ccocoeiieeineniene e 9-1
Starting the TranSaCtiON. ..o 9-3
Suspending and Resuming a TranSaCtioNcccvverereereeereereeeeesseseseseeseens 9-8
SUSPENING 8 TraNSACION.......eveeeieiie et e 9-9
ReSUMING @ TraNSaCHIONccoviieieieieee e e 9-9
Example: Suspending and Resuming a Transactionccccveeeereeieecennnns 9-10
Terminating the TranSaCtioN...........cooie i 9-11
Committing the Current TranSaCtioN..........cocceoverierereene e 9-11
Aborting the Current TranSaCtion..........cccevevererenesereeseeesesreere e e 9-14
Example: Committing a Transaction in Conversational Mode................ 9-14
Example: Testing for Participant Errors..........ccccoeeeevneniene e 9-16
Implicitly Defining a Globa TranSaction...........cccvvvereveveneeerse e sese s 9-17
Implicitly Defining a Transaction in a Service Routine...........ccccceceeeenns 9-17
Defining Global Transactions for an XA-Compliant Server Group................ 9-19

Programming a BEA Tuxedo ATMI Application Using C

10. Programming a Multithreaded and Multicontexted ATMI

Application
Support for Programming a Multithreaded/M ulticontexted ATMI Application.....
10-2
Platform-specific Considerations for Multithreaded/M ulticontexted
PN o] o 1= 4o <SSR 10-2
Planning and Designing a Multithreaded/Multicontexted ATMI Application 10-3
What Are Multithreading and Multicontexting?..........ccccceeevereeinieseesesenens 10-4
What IS MUItithreading?.........coevveieeeiesecese e 10-4
What 1S MUItiCONTEXTING?......eoieeieireeeie e 10-6
Licensing a Multithreaded or Multicontexted Application.........c.c......... 10-8
Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI
WY o] o 1= (o] o SRS 10-8
Advantages of a Multithreaded/Multicontexted ATMI Application........ 10-9
Disadvantages of a Multithreaded/Multicontexted ATMI Application. 10-10
How Multithreading and Multicontexting Work in aClient..........cc.ccocvvuee.. 10-11
SEArt-UP PhaSE. ...t e e 10-11
WOTK PhESE ...t 10-13
ComPIEtion PhESE........cceieeeiceeee st e 10-16
How Multithreading and Multicontexting Work in an ATMI Server 10-17
StArt-UP PhaSe......cceceececicese s 10-18
WOTK PhESE ... 10-18
ComPlEtion PESE.........coeieeeceeeeee e e 10-21
Design Considerations for a Multithreaded and Multicontexted ATMI
FaY o] o] T Tor= 1 o] [R 10-22
Environment REQUIFEMENES.......cc.eieiereeeerereece e s eeenens 10-23
DeSign REQUIFEMENEScouiiierie et sie et 10-24
Isthe Task of Your Application Suitable for Multithreading and/or
MUItICONEEXTING? ...ttt 10-24
How Many Applications and Connections Do You Want?................... 10-25
What Synchronization Issues Need to Be Addressed?.........ccceeenenene 10-26
Will You Need to Port Your AppliCation?........ccceeveereevenecennenenenene 10-26
Which Threads Model 1SBest for YOU?........ccceeveveeeereneereneneseseseeneens 10-26

Programming a BEA Tuxedo ATMI Application Using C Vii

viii

Interoperability Restrictions for Workstation Clients...........ccoceevvvenene. 10-27

Implementing a Multithreaded/ Multicontexted ATMI Application............. 10-28
Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI
WY o] o 1= 1 o] o 1 10-28
Prerequisites for a Multithreaded ATMI Applicationccccceveeveveenene. 10-29
General Multithreaded Programming Considerations...........cccceeeeeenene 10-29
Concurrency CONSIAErationscuveverererereeieresseeeeese e e seseesreees 10-30
Writing Code to Enable Multicontexting in an ATMI Clientccceeee.. 10-31
Context ALIIDULES ..o e 10-32
Setting Up Multicontexting at Initialization...........cccceeeveeenceeienienenennnns 10-33
Implementing Security for a Multicontexted ATMI Client 10-34
Synchronizing Threads Before an ATMI Client Termination 10-34
SWItChING CONEXES.....ecvereereiiesieeeieeesese et e e s e e e e sresre e enens 10-35
Handling Unsolicited MESSAgESccccveririere i 10-38
Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI
APPIICALTON ... 10-39
Writing Code to Enable Multicontexting and Multithreading in an ATMI Server
10-40
Context ALIIDULES ..o e 10-40
Coding Rules for aMulticontexted ATMI Server........c.ccoeveeeieicnccnnene 10-41
Initializing and Terminating ATMI Servers and Server Threads........... 10-42
Programming an ATMI Server to Create Threads.........c.ccooeveevvienienenne 10-42
Sample Code for Creating an Application Thread in a Multicontexted ATMI
SEIVET .ottt e e sr e e sre e 10-43
Writing aMultithreaded ATMI ClIentcccooveinninnienne e 10-45
Coding Rules for aMultithreaded ATMI Client..........cccoooevineinicncnnene 10-46
Initializing an ATMI Client to Multiple Contexts............cocooveeerrceeene. 10-47
Context State Changes for an ATMI Client Thread.........ccocooveverieennee. 10-48
Getting Repliesin a Multithreaded Environment.............occoceveeenccnnene 10-49
Using Environment Variablesin a Multithreaded and/or Multicontexted
ENVIFONMENE ...t e s 10-50
Using Per-context Functions and Data Structures in a Multithreaded ATMI
L= 0| 10-52
Using Per-process Functions and Data Structures in a Multithreaded ATMI
ClIEME ..t 10-55

Using Per-thread Functions and Data Structures in a Multithreaded ATMI

Programming a BEA Tuxedo ATMI Application Using C

11.

Sample Code for aMultithreaded ATMI Clientcccooeeeincncienne 10-56
Writing a Multithreaded ATMI SEIVET........ccovveveveceeeseee e eeeeens 10-59
Compiling Code for a Multithreaded/M ulticontexted ATMI Application.... 10-59
Testing a Multithreaded/Multicontexted ATMI Application...........cccceeeee 10-60

Testing Recommendations for a Multithreaded/Multicontexted ATMI

FaY o] o] Tor= o] o PSSR 10-60

Troubleshooting a Multithreaded/Multicontexted ATMI Application .. 10-61
Error Handling for a Multithreaded/Multicontexted ATMI Application10-62

Managing Errors

TS I (] £ RS 11-1
YN o] B 5 o (=S 11-3
BEA TUXEUO SyStEM EITOrS......ccvieieerieieseereereeeere st es 11-4
Call DESCIIPLON EFTOIS....ccuiceieieeeisiesiesiesteieseseeieseesesseeessesnssresseseeseessessesesneenens 11-4

[T 01 A o= SRS 11-4

INValid DESCIIPLON EFTOIS......cvieeeeeseeeeetieeeeesrestese st e e e enneens 11-5
CoNVErsational EITOIS.........coviiiiiieieee st 11-5
Duplicate ODJECE EITOroeiieeieee ettt s 11-6
General Communication Call EFTOrS........covirireiineienenesesesse e 11-6

TPESVCFAIL and TPESVCERR EITOrS......ccccovveiriienienenienesiesesieseeienens 11-7

TPEBLOCK and TPGOTSIG EITOrS......ccocivinierieieriniesienesiesesiesesseseesesens 11-7
INValid ArQUMENE EFTOIS.....cviececeeececeee ettt nre e enense s 11-8
IMIEB EETTOX ...ttt e et 11-8
NO ENEIY EITOIS ..t e 11-9
Operating SYStEM EITOIScviiiecere e ses et se e e ene s sre e enens 11-10
PErMISSION EFTOIS ...ttt 11-10
ProtOCOl EFTOIS.....ccveeieieceeectieie st et et te et e e s te s steeaeesreentesneeneesneennas 11-10
QUEUING EFTOT ... ettt st e e e e s sreseesneneenrennens 11-11
Release CompatibDility EFTOrcccvveeeveeece s e s 11-11
ReSOUrCe Manager EFTOrS.........covieiiieiie et 11-12
TIMEOUL EFTOFS...cviiiitieitiiieie sttt 11-12
TraNSACtION ETOS.....cuiiiieiiiiiieiresies ettt 11-13
TypPed BUFfEr BITOIS ... e 11-14
PN o] o] Tor= Lo =i o £SO 11-15

Programming a BEA Tuxedo ATMI Application Using C iX

[P2 1010 1] g0 = 11-15

Transaction CONSIAEIAtiONScouereeriereeeere et 11-19
CommuNiCation ELIQUELLE..........cceiuereeeeecece e 11-19
TraNSACHION EITOISooveiiiereeicnesie e 11-21
Non-fatal TranSaCtion EFTOrS.........coeierereneriereesieee e 11-21
Fatal TransaCtion ErTOrS.......ccviierrneeie s 11-22
HeuriStic DECISION EFTOrS......ccciiiiiiiieee ettt e 11-23
TranSaCtion TIMEOULScooiiiiiiireie et eneeas 11-24
Effect on the tpcommit() FUNCLIONcccevveveirecce e 11-24
Effect onthe TPNOTRAN Flag......ccccveivniiieeieeseesee e 11-25
tpreturn() and tpforward() FUNCLIONS..........cocviriniieeeeeee e 11-25
EPLEM() FUNCLION ... e 11-26
RESOUICE MANAOENS.ceeeteeiesieete ettt bbb s 11-26
Sample Transaction SCENAIOS.......cocuiuirireieriereee ettt eeneas 11-27
Called Servicein Same Transaction as Callercccovvnreevinennenennn. 11-27
Called Service in Different Transaction with AUTOTRAN Set............ 11-28
Called Service That Starts a New Explicit Transactionccceeeeee. 11-29
BEA TUXEDO System-supplied SUBroUtings..........cccccvvveveveereeneeeseneenns 11-30
CaNtral EVENE LOG.cueeereereeriesiiniesie et e st sttt e sbe s enen 11-31
LOG NBIME....cieee et 11-31
LOg ENLrY FOMMELoooeieeeeeieeeee ettt 11-31
Writing tO the EVENE LOQ.......couieeeeierenieserie et 11-32
Debugging Application PrOCESSES..........oerrerierererie e 11-33
Debugging Application Processes on UNIX Platforms..........cccvvveeeee. 11-33
Debugging Application Processes on Windows 2000 Platforms........... 11-35
Comprehensive EXAMPIE......cooiiiieeeeereee e 11-36

Programming a BEA Tuxedo ATMI Application Using C

About This Document

This document explains how to program BEA Tuxedo ATMI applicationsusing the C
language.

This document covers the following topics:

m Chapter 1, “Introduction to BEA Tuxedo Programming,” provides an overview
of the BEA Tuxedo programming, including information on distributed
application programming, clients, servers, and the BEA Tuxedo
Application-to-Transaction Monitoring (ATMI) interface.

m Chapter 2, “Programming Environment,” describes the BEA Tuxedo
programming environment, including information on configuring a BEA Tuxedo
system, setting environment variables, and starting and stopping applications.

m Chapter 3, “Managing Typed Buffers,” provides instructions on managing and
using typed buffers, including VIEW, FML, and XML buffers.

m Chapter 4, “Writing Clients,” provides instructions on writing and building BEA
Tuxedo client applications using the C language. A client process exampleis
provided.

m Chapter 5, “Writing Servers,” provides instructions on writing and building BEA
Tuxedo servers using the C language, including defining and advertising
services.

m Chapter 6, “Writing Request/Response Clients and Servers,” provides
instructions on writing request/response clients and servers, including
synchronous and asynchronous messaging, and setting message priorities.

m Chapter 7, “Writing Conversational Clients and Servers,” provides instructions
on writing conversational clients and servers, including joining an application,
establishing a connection, sending and receiving messages, and ending a
conversation.

Programming a BEA Tuxedo ATMI Application Using C Xi

m Chapter 8, “Writing Event-based Clients and Servers,” providesinstructionson
writing event-based clients and servers, including handling unsolicited messages
and events.

m Chapter 9, “Writing Global Transactions,” provides instructions on writing
global transactions, including starting and terminating transactions.

m Chapter 10, “Programming a Multithreaded and Multicontexted ATMI
Application,” providesinstructions on writing applications where asingle
process performs multiple tasks simultaneously. The chapter describes
programming techniques for multithreading (the inclusion of more than one unit
of execution in asingle process) and multicontexting (the ability of asingle
process to have more than one connection within adomain or connections to
more than one domain).

m Chapter 11, “Managing Errors,” provides instructions on managing errors,
including both system and application errors.

What You Need to Know

This document isintended for application devel opers who are interested in
programming applications using the C language in a BEA Tuxedo environment

This document assumes a familiarity with the BEA Tuxedo platform and C
programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at http://e-docs.bea.com.

Xii Programming a BEA Tuxedo ATMI Application Using C

http://e-docs.bea.com

How to Print the Document

Y ou can print acopy of this document from aWeb browser, onefileat atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA Tuxedo documents contain information that is relevant to using
the BEA Tuxedo /Q component and understanding how to implement message
queueing applicationsin the BEA Tuxedo environment:

m BEA Tuxedo ATMI C Function Reference

m conpil ation(5) andtuxenv(5) inFile Formats, Data Descriptions, MIBs,
and System Processes Reference

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

Programming a BEA Tuxedo ATMI Application Using C Xiii

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
®m Your name, e-mail address, phone number, and fax number

®m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneoudly.

italics Indicates emphasis or book titles.

Xiv Programming a BEA Tuxedo ATMI Application Using C

Convention

Item

nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void nmain () the pointer psz
chrmod u+w *
\ t ux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace Example:
t ext . .
void commit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin asyntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin asyntax line. The brackets themselves should
never be typed.

Example:

buil dobjclient [-v] [-0 name] [-f file-list]...
[-] file-list]...

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Programming a BEA Tuxedo ATMI Application Using C XV

XVi

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 nane | [-f file-list]...

[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsisitself should never be typed.

Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

1 Introduction to BEA
Tuxedo Programming

This topic includes the following sections:

BEA Tuxedo Distributed Application Programming
Communication Paradigms

BEA Tuxedo Clients

BEA Tuxedo Servers

BEA Tuxedo API: ATMI

BEA Tuxedo Distributed Application
Programming

A distributed application consists of aset of software modules that reside on multiple
hardware systems, and that communicate with one another to accomplish the tasks
required of the application. For example, as shown in the following figure, a
distributed application for aremote online banking system includes software modules
that run on abank customer’ s home computer, and a computer system at the bank on
which all bank account records are maintained.

Programming a BEA Tuxedo ATMI Application Using C 1-1

1

Introduction to BEA Tuxedo Programming

1-2

Figure1l-1 Distributed Application Example - Online Banking System

Customer's
Home Computer Account Records Are Stored

Custsvner Regquast Check Account Balamnce £

4
Syatem Hegponse: § 2076

Bank's Computeron Which

The task of checking an account balance, for example, can be performed simply by
logging on and selecting an option from a menu. Behind the scenes, thelocal software
modul e communi cates with the remote software modul e using specia application
programming interface (API) functions.

The BEA Tuxedo distributed application programming environment providesthe API
functions necessary to enable secure, reliable communication between the distributed
software modules. This AP is referred to as the A pplication-to-Transaction Monitor
Interface (ATMI).

The ATMI enables you to:

Send and receive messages between clients and servers, possibly across a
network of heterogeneous machines

Establish and use client naming and security features
Define and manage transactions in which data may be stored in several locations

Generically open and close a resource manager such as a Database Management
System (DBMS)

Manage the flow of service requests and the availability of serversto process
them

Programming a BEA Tuxedo ATMI Application Using C

Communication Paradigms

Communication Paradigms

The following table describes the BEA Tuxedo ATMI communication paradigms
available to application developers.

Table 1-1 Communication Paradigms

Paradigm

Description

Request/response
communication

Request/response communication enabl es one software module
to send arequest to a second software module and wait for a
response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processing
continues while the requester waits for the response).

This modeis also referred to as client/server interaction. The
first software module assumes the role of the client; the second,
of the server.

Refer to “Writing Request/Response Clients and Servers’ on
page 6-1 for more information on this paradigm.

Conversational
communication

Conversational communication is similar to request/response
communication, except that multiple requests and/or responses
need to take place before the “ conversation” isterminated. With
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the client
and server.

Conversational communication is commonly used to buffer
portions of alengthy response from a server to a client.

Refer to “Writing Conversational Clients and Servers’ on page
7-1 for more information on this paradigm.

Programming a BEA Tuxedo ATMI Application Using C 1-3

1 introduction to BEA Tuxedo Programming

Paradigm Description

Application queue-based Application queue-based communication supports deferred or

communication time-independent communication, enabling a client and server
to communicate using an application queue. The BEA
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is useful
for enqueuing requests when a system goes offline for
maintenance, or for buffering communications if the client and
server systems are operating at different speeds.

Refer to Using the ATMI /Q Component for moreinformation on

the /Q facility.
Event-based Event-based communication allows aclient or server to notify a
communication client when a specific situation (event) occurs.

Events are reported in one of two ways:

m Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

m Brokered events are unexpected situations or predictable
occurrenceswith unpredictable timeframesthat are reported
by serversto clientsindirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the BEA Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clients and Servers’ on page 8-1
for more information on this paradigm.

BEA Tuxedo Clients

A BEA Tuxedo ATMI client is a software module that collects a user request and
forwards it to a server that offers the requested service. Almost any software module
can becomeaBEA Tuxedo client by calling the ATMI client initialization routine and

“joining” the BEA Tuxedo application. The client can then allocate message buffers
and exchange information with the server.

1-4 Programming a BEA Tuxedo ATMI Application Using C

BEA Tuxedo Clients

Theclient calsthe ATMI termination routineto “leave’ the application and notify the
BEA Tuxedo system that it (the client) no longer needs to be tracked. Consequently,
BEA Tuxedo application resources are made available for other operations.

The operation of abasic client process can be summarized by the pseudo-code shown
in the following listing.

Listing 1-1 Pseudo-code for a Request/Response Client

mai n()

allocate a TPINIT buffer
place initial client identification in buffer
enroll as a client of the BEA Tuxedo application
al |l ocate buffer
do while true {

pl ace user input in buffer

send service request

receive reply

pass reply to the user }
| eave application

Most of the actions described in the above listing are implemented with ATMI
functions. Others—placing the user input in abuffer and passing the reply to the user—
are implemented with C language functions.

During the “allocate buffer” phase, the client program allocates amemory area, called
atyped buffer, from the BEA Tuxedo run-time system. A typed buffer issimply a
memory buffer with an associated format, for example, a C structure.

An ATMI client may send and receive any number of service requests before leaving
the application. The client may send these requests as a series of request/response calls
or, if itisimportant to carry stateinformation from one call to the next, by establishing
aconnection to aconversational server. In both cases, the logic in the client program
issimilar, but different ATMI functions are required for these two approaches.

Before you can execute an ATMI client, you must run thebui | dcl i ent command to
compileit and link it with the BEA Tuxedo ATMI and required libraries. Refer to
“Writing Clients” on page 4-1 for information on the bui | dcl i ent command.

Programming a BEA Tuxedo ATMI Application Using C 1-5

1 introduction to BEA Tuxedo Programming

BEA Tuxedo Servers

A BEA Tuxedo ATMI server isaprocessthat providesoneor more servicestoaclient.
A serviceisaspecific businesstask that a client may need to perform. Serversreceive
requests from clients and dispatch them to the appropriate service subroutines.

Basic Server Operation

To build server processes, applications combine their service subroutines with a

mai n() process provided by the BEA Tuxedo system. This system-supplied mai n()
isaset of predefined functions. It performs server initialization and termination and
allocates buffersthat can be used to receive and dispatch incoming requeststo service
routines. All of this processing is transparent to the application.

Thefollowing figure summarizes, in pseudo-code, theinteraction between aserver and
a service subroutine.

1-6 Programming a BEA Tuxedo ATMI Application Using C

BEA Tuxedo Servers

Figurel1l-2 Pseudo-codefor a Request/Response Server and a Service Subroutine

Provided by the BEA Tuxedo System

|r START PROGRAM :

| enroll as a server in the BEA Tuxedo application |

I advertise services |

| perform until end

| check message queue for service request |
dequeue request |

: dispatch request to service subrouting b

I

receive control back from subroutine 4
end perform |

e e ¥ Mo et ¥ o f Come ¥ St st ¥ s f e’ ¥ et I s s, f ' ¥ e ¥ S s s, s s N S ¥ s

I SERVICE SUBROUTINE + i
| receive control from server |
I I
I I

process reguest
return control to server

After initialization, an ATMI server alocates abuffer, waits until arequest messageis
delivered to its message queue, dequeues the request, and dispatches it to a service
subroutine for processing. If areply isrequired, thereply is considered part of request
processing.

The conversational paradigm is somewhat different from request/response, as
illustrated by the pseudo-code in the following figure.

Programming a BEA Tuxedo ATMI Application Using C 1-7

1 introduction to BEA Tuxedo Programming

Figure 1-3 Pseudo-code for a Conversational Service Subroutine

SERVER 4

COMNVERSATIOMNAL SERWISE SUERDZU TIN E4—

rEceivwe contml from =2 ner

perorm whik tue
Eceivwe deta form conwe reational client
process Equest
=and dais © conersationzal client

end parorm

meturn contml o s=ner.

The BEA Tuxedo system-supplied mai n() process containsthe code needed to enroll
aprocess as an ATMI server, advertise services, allocate buffers, and degueue
requests. ATMI functions are used in service subroutines that process requests. When
you are ready to compile and test your service subroutines, you must link edit them
with the server nai n() and generate an executable server. To do so, run the

bui | dser ver command.

Servers as Requesters

If aclient requests several services, or severa iterations of the same service, a subset
of the services might be transferred to another server for execution. In this case, the
server assumes the role of aclient, or requester. Both clients and servers can be
requesters; aclient, however, can only be arequester. This coding model is easily
accomplished using the BEA Tuxedo ATMI functions.

Note: A request/response server can also forward arequest to another server. Inthis

case, the server does not assume therole of client (requester) because thereply
is expected by the original client, not by the server forwarding the request.

1-8 Programming a BEA Tuxedo ATMI Application Using C

BEA Tuxedo API;: ATMI

BEA Tuxedo API: ATMI

In addition to the C code that expresses the logic of your application, you must use the
Application-to-Transaction Monitor Interface (ATMI), the interface between your
application and the BEA Tuxedo system. The ATMI functions are C language
functions that resemble operating system calls. They implement communication
among application modules running under the control of the BEA Tuxedo system
transaction monitor, including all the associated resources you need.

The ATMI isareasonably compact set of functions used to open and close resources,
begin and end transactions, allocate and free buffers, and support communication
between clients and servers. The following table summarizes the ATMI functions.
Each function is described in the BEA Tuxedo ATMI C Function Reference.

Table 1-2 Using the ATMI Function

For a Task UseThisC Function... To... For More
Related to. . . Information,
Refer to. ..
Buffer management tpal | oc() Create a message buffer “Managing Typed Buffers’
on page 3-1
tpreal | oc() Resize a message buffer
tptypes() Get a message type and
subtype
tpfree() Free a message buffer
Client membership t pchkaut h() Check whether “Writing Clients’ on page
authenticationisrequired 4-1
tpinit() Join an application
tpterm() Leave an application
Multiple application t pget ct xt (3c) Retrieve an identifier for “Programming a
context management the current thread's context Multithreaded and
Multicontexted ATMI
t pset ct xt (3C) Set the current thread's App“cation” on page 10-1
context in amulti contexted
process

Programming a BEA Tuxedo ATMI Application Using C 1-9

1 introduction to BEA Tuxedo Programming

Table 1-2 Usingthe ATMI Function

For a Task
Related to . . .

UseThisC Function...

To...

For More
Infor mation,
Refer to. ..

Service entry and
return

tpsvrinit()

Initialize a server

t psvrdone()

Terminate a server

tpsvrthrinit()

Initialize an individual
server thread

tpsvrthrdone()

Termination code for an
individual server thread

tpreturn()

End a service function

t pforward()

Forward arequest

“Writing Servers’ on
page 5-1
“Programming a
Multithreaded and
Multicontexted ATMI
Application” on page
10-1

Dynamic t padvertise() Advertise a service name “Writing Servers’ on page
advertisement 51
t punadvertise() Unadvertise a service name
Message priority tpgprio() Get the priority of thelast ~ “Writing Servers’ on page
request 51
tpsprio() Set the priority of the next
request
Request/response tpcall () Initiate a synchronous m “Writing Servers’ on
communications request/response to a page 5-1
service m “Writing
tpacal | () Initiate an asynchronous Request/Response

1-10

request

tpgetrply()

Receive an asynchronous

response

t pcancel ()

Cancel an asynchronous
request

Programming a BEA Tuxedo ATMI Application Using C

Clientsand Servers’ on
page 6-1

BEA Tuxedo API;: ATMI

Table 1-2 Using the ATMI Function

For a Task
Related to . . .

UseThisC Function...

To...

For More
Information,
Refer to. ..

Conversational
communication

t pconnect ()

Beginaconversationwitha
service

“Writing Conversational
Clients and Servers’ on

page 7-1

t pdi scon() Abnormally terminate a
conversation
t psend() Send amessagein a
conversation
tprecv() Receive amessagein a
conversation
Reliable queuing t penqueue(3c) Enqueue a message to a Using the ATMI /Q
message queue Component
t pdequeue(3c) Dequeue amessage from a
message queue
Event-based tpnotify() Send an unsolicited “Writing Event-based

communications

message to a client

t pbr oadcast ()

Send messages to several
clients

t psetunsol ()

Set unsolicited message
call-back

t pchkunsol ()

Check the arrival of
unsolicited messages

t ppost ()

Post an event message

t psubscri be()

Subscribe to event
messages

t punsubscri be()

Programming a BEA Tuxedo ATMI Application Using C

Unsubscribe to event
messages

Clients and Servers’ on
page 8-1

1-11

1 introduction to BEA Tuxedo Programming

Table 1-2 Usingthe ATMI Function

For a Task UseThisC Function... To... For More
Related to. . . Infor mation,
Refer to. ..
Transaction t pbegi n() Begin atransaction “Writing Global
management Transactions” on page 9-1
t pcommi t () Commit the current
transaction
t pabort () Roll back the current
transaction
t pgetlev() Check whether in
transaction mode
t psuspend() Suspend the current
transaction
t presume() Resume a transaction
Resource t popen(3c) Open aresource manager Setting Up a BEA Tuxedo
management Application

t pcl ose(3c)

Close a resource manager

1-12 Programming a BEA Tuxedo ATMI Application Using C

BEA Tuxedo API;: ATMI

Table 1-2 Using the ATMI Function

For a Task UseThisC Function... To... For More
Related to . . . Information,
Refer to. ..
Security t pkey_open(3c) Open akey handle for Using Security in CORBA

digital signature
generation, message
encryption, or message
decryption

Applications

t pkey_geti nfo(3c)

Get information associated
with akey handle

t pkey_seti nfo(3c)

Set optional attributes
associated with akey
handle

t pkey_cl ose(3c)

Close apreviously opened
handle

t psi gn(3c)

Mark atyped message
buffer for generation of a
digital signature

t pseal (3c)

Mark atyped message
buffer for generation of an
encryption envelope

t penvel ope(3c)

Accessthedigital signature

and recipient information
associated with atyped
message buffer

t pexport (3c)

Convert atyped message
buffer into an exportable,
machine-independent
(externalized) string
representation

t pi nport (3c)

Convert an externalized
string representation back

into a typed message buffer

Programming a BEA Tuxedo ATMI Application Using C

1-13

1 introduction to BEA Tuxedo Programming

1-14 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

2 Programming
Environment

This topic includes the following sections:

Updating the UBBCONFIG Configuration File
Setting Environment Variables

Including the Required Header Files

Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an
application in the UBBCONFI G configuration file. To customize your programming
environment, you may need to create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelines:

Copy and edit afile that already exists. For example, the file ubbshmthat comes
with the bankapp sample application can provide a good starting point.

Minimize complexity. For test purposes, set up your application as a shared
memory, single-processor system. Use regular operating system files for your
data.

Programming a BEA Tuxedo ATMI Application Using C 2-1

2 Programming Environment

m Make surethe | PCKEY parameter in the configuration file does not conflict with
any other parameters being used at your installation. Check with your BEA
Tuxedo application administrator, and refer to Setting Up a BEA Tuxedo
Application for more information.

m Setthe Ul Dand G D parameters so that you are the owner of the configuration.

m Review the documentation. The configuration file is described in UBBCONFI G(5)
in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

The following table summarizes the UBBCONFI G configuration file parameters that
affect the programming environment. Parameters are listed by functional category.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category

Functional Parameter Section Description

Category

Global resource MAXSERVERS RESOURCES Specifies the maximum number of
limits serversin the configuration. When

setting this value, you need to
consider the MAX values for all
Servers.

MAXSERVI CES RESOURCES Specifies the maximum total number
of servicesin the configuration.

Data-dependent BUFTYPE ROUTI NG List of types and subtypes of data
routing buffers for which the specified
routing entry isvalid.

Link-level M NENCRYPTBI TS NETWORK Sets the minimum encryption level
encryption that a process accepts.

MAXENCRYPTBI TS NETWORK Sets the maximum encryption level
that a process accepts.

2-2 Programming a BEA Tuxedo ATMI Application Using C

Updating the UBBCONFIG Configuration File

Table 2-1 Programming-related UBBCONFI G Parameters by Functional Category (Continued)

Functional Par ameter

Category

Section

Description

Load balancing LDBAL

RESOURCES

Flag for specifying whether or not

load balancing is enabled. If enabled,
the BEA Tuxedo system attempts to
bal ance requests across the network.

NETLOAD

MACHI NES

Numeric value that is added to the
load factor of servicesthat are remote
from the invoking client, providing a
biasfor choosing alocal server over a
remote server. Load balancing must
be enabled (that is, LDBAL must be
setto).

LOAD

SERVI CES

Relative load factor associated with a
service instance. The default is 50.

Security AUTHSVC

RESOURCES

Specifies the name of an application
authentication service that isinvoked
by the system for each client joining
the system.

SECURI TY

RESOURCES

Specifies the type of application
security to be enforced.

Programming a BEA Tuxedo ATMI Application Using C

2-3

2 Programming Environment

Table 2-1 Programming-related UBBCONFIG Parameters by Functional Category (Continued)

Functional Parameter Section Description

Category

Conversational MAXCONV RESOURCES Sets the maximum number of
communication simultaneous conversations for a

single machine. Y ou can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in the SERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in the MACHI NES
section.

CONV SERVERS Specifies whether or not
conversational communication is
supported. If thisparameterisset toN
or unspecified, at pconnect () call
to aservicefals.

M N MAX SERVERS Specifies the minimum and
maximum number of occurrences of
the server to be started by
t mboot (1) . If not specified, M N
defaultsto 1 and MAX defaultstoM N.
Thesameparametersareavailablefor
use with request/response servers.
However, conversationa servers are
automatically spawned as needed. So
if youset M N=1 and MAX=10, for
example, t mboot starts one server
initialy. Whenat pconnect () cal
is madeto a service offered by that
server, the system starts a second
copy of aserver. Aseach copy is
caled, anew oneis spawned, upto a
limit of 10.

2-4 Programming a BEA Tuxedo ATMI Application Using C

Setting Environment Variables

Table 2-1 Programming-related UBBCONFI G Parameters by Functional Category (Continued)

Functional
Category

Parameter

Section

Description

Transaction
management

AUTOTRAN

SERVI CES

Controls whether a serviceroutineis
placed in transaction mode. If you set
this parameter to Y, atransaction in
the service subroutine is
automatically started whenever a
request message is received from
another process.

Multithreaded
servers

MAXDI SPATCHTHREADS

SERVERS

Specifies the maximum number of
concurrently dispatched threads that
each server process may spawn.

M NDI SPATCHTHREADS

SERVERS

Specifies the number of server
dispatch threads started on initial
server boot.

See Also

The configuration fileisan operating system text file. To makeit usable by the system,
you must execute thet m oadcf (1) command to convert the file to abinary file.

m Setting Up a BEA Tuxedo Application

®m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System

Processes Reference

Setting Environment Variables

Initially, the application administrator setsthe variablesthat definethe environment in
which your application runs. These environment variables are set by assigning values
to the ENVFI LE parameter in the MACHI NES section of the UBBCONFI Gfile. (Refer to
Setting Up a BEA Tuxedo Application for more information.)

Programming a BEA Tuxedo ATMI Application Using C 2-5

2 Programming Environment

For the client and server routinesin your application, you can update
existing environment variables or create new ones. The following table summarizes
the most commonly used environment variables. The variables are listed by

functional category.

Table 2-2 Programming-related Environment Variables by Functional Category

Functional Environment Definesthe. .. Used by ...
Category Variable
Global TUXDI R Location of the BEA BEA Tuxedo application
Tuxedo system binary files. programs.
Configuration TUXCONFI G Location of the BEA BEA Tuxedo application
Tuxedo configuration file. programs.
Compilation CC Command that invokesthe bui | dcl i ent (1) and
C compiler. Defaultiscc. bui | dserver (1) commands.
CFLAGS Link edit flagstobepassed bui | dcl i ent (1) and
totheC compiler. Link edit bui | dserver (1) commands.
flags are optiona.
Data compression TMCVPPRFM Level of compression BEA Tuxedo application
(between 1 and 9). programs that perform data
compression.
Load balancing TMNETLCAD Numericvauethatisadded BEA Tuxedo application

totheload value for remote
gueues, making the remote
queues appear to havemore
work than they actually do.
Asaresult, even if load
balancing is enabled, local
requests are sent to local
gueues more often than to
remote queues.

2-6 Programming a BEA Tuxedo ATMI Application Using C

programs that perform load
balancing.

Setting Environment Variables

Table 2-2 Programming-related Environment Variables by Functional Category (Continued)

Functional Environment Definesthe. .. Used by ...

Category Variable

Buffer management FI ELDTBLS or Comma-separated list of FM. and FM_32 typed buffers
FI ELDTBLS32 field table filenames for and FML VI EV6

FM_ and FM_32 typed
buffers, respectively.
Required only for FM. and
VI EWtypes.

FLDTBLDI Ror Colon-separated list of FM. and FM_32 typed buffers
FLDTBLDI R32 directories to be searched and FML VI EV8

for the field table files for

FM. and FM_32,

respectively. For Windows

2000, a

semicolon-separated list is

used.

VI EWFI LES or Comma-separated list of VI Ewand VI EVB2 typed
VI EWFI LES32 dlowablef ilenames for buffers

VI EWand VI EVB2 typed

buffers, respectively.

VI EWDI Ror Colon-separated list of VI Ewand VI EVB2 typed
VI EVDI R32 directories to be searched buffers

for VI EWand VI EWB2

files, respectively. For

Windows 2000, a

semicolon-separated list is

used.

If operating in a UNIX environment, add $TUXDI R/ bi n to your environment PATH to
ensure that your application can locate the executables for the BEA Tuxedo system
commands. For more information on setting up the environment, refer to Setting Up a
BEA Tuxedo Application.

Programming a BEA Tuxedo ATMI Application Using C 2-7

2 Programming Environment

See Also

m Setting Up a BEA Tuxedo Application

Including the Required Header Files

The following table summarizes the header files that may need to be specified within
the application programs, using the#i ncl ude statement, in order to interface properly
with the BEA Tuxedo system.

Table 2-3 Required Header Files

For ... You must include. ..

All BEA Tuxedo at mi . h header file supplied by the BEA Tuxedo system
application programs

Application programs m Header file generated from the corresponding field table
with FML typed buffers files

m fnl. h header file supplied by the BEA Tuxedo system

Applicationprogramwith Header file generated from the corresponding view description
VIEW typed buffers files

Starting and Stopping the Application

To start the application, executethet nboot (1) command. The command getsthe IPC
resources required by the application, and starts administrative processes and
application servers.

To stop the application, execute thet nshut down(1) command. The command stops
the servers and releases the | PC resources used by the application, except any that
might be used by the resource manager, such as a database.

2-8 Programming a BEA Tuxedo ATMI Application Using C

Starting and Stopping the Application

See Also

®m tnboot (1) andt nshut down(1) inthe BEA Tuxedo Command Reference

Programming a BEA Tuxedo ATMI Application Using C 2-9

2 Programming Environment

2-10 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

3 Managing Typed
Buffers

This topic includes the following sections:
m Overview of Typed Buffers

m Allocating a Typed Buffer

m Putting Datain a Buffer

m Resizing a Typed Buffer

m Checking for Buffer Type

m Freeing a Typed Buffer

m Using aVIEW Typed Buffer

m Using an FML Typed Buffer

m Using an XML Typed Buffer

m Customizing a Buffer

Programming a BEA Tuxedo ATMI Application Using C

3 Managing Typed Buffers

Overview of Typed Buffers

32

Before a message can be sent from one process to another, a buffer must be allocated
for the message data. BEA Tuxedo ATMI clients use typed buffers to send messages
to ATMI servers. A typed buffer isamemory area with a category (type) and
optionally a subcategory (subtype) associated with it. Typed buffers make up one of
the fundamental features of the distributed programming environment supported by
the BEA Tuxedo system.

Why typed? In adistributed environment, an application may be installed on
heterogeneous systems that communicate across multiple networks using different
protocols. Different types of buffers require different routinesto initialize, send and
recei ve messages, and encode and decode data. Each buffersis designated asa specific
type so that the appropriate routines can be called automatically without programmer
intervention.

The following table lists the typed buffers supported by the BEA Tuxedo system and
indicates whether or not:

m The buffer is self-describing; in other words, the buffer data type and length can
be determined simply by (a) knowing the type and subtype, and (b) looking at
the data.

m The buffer requires a subtype.
m The system supports data-dependent routing for the typed buffer.
m The system supports encoding and decoding for the typed buffer.

Programming a BEA Tuxedo ATMI Application Using C

Overview of Typed Buffers

If any routing functions are required, the application programmer must provide them

as part of the application.

Table 3-1 Typed Buffers

Typed Buffer

Description

Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing

CARRAY

Undefined array of characters, any of
which can be NULL. Thistyped buffer is
used to handle the data opaquely, asthe
BEA Tuxedo system does not interpret the
semantics of the array. Because a CARRAY
is not self-describing, the length must
aways be provided during transmission.
Encoding and decoding are not supported
for messages sent between machines
becausethe bytesare not interpreted by the
system.

No No No No

FM. (Field
Manipulation
Language)

Proprietary BEA Tuxedo system type of
self-describing buffer in which each data
field carriesits own identifier, an
occurrence humber, and possibly alength
indicator. Because all datamanipulationis
done via FML function calls rather than
native C statements, the FML buffer offers
data-independence and greater flexibility
at the expense of some processing
overhead.

The FML buffer uses 16 bitsfor field
identifiers and lengths of fields.

Refer to “Using an FML Typed Buffer” on
page 3-22 for more information.

Yes No Yes Yes

FM.32

Equivalent to FML but uses 32 bitsfor field
identifiers and lengths of fields, which
alowsfor larger and more fields and,
consequently, larger overall buffers.

Refer to “Using an FML Typed Buffer” on
page 3-22 for more information.

Yes No Yes Yes

Programming a BEA Tuxedo ATMI Application Using C 3-3

3 Managing Typed Buffers

Table 3-1 Typed Buffers (Continued)

Typed Buffer Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
STRI NG Array of charactersthat terminateswitha Yes No No No

NULL character. The STRI NG buffer is
self-describing, so the BEA Tuxedo
system can convert data automatically
when datais exchanged by machines with
different character sets.

VI EW C structure defined by the application. No Yes Yes Yes
VI EWtypes must have subtypes that
designate individual data structures. A
view description file, in which the fields
and types that appear in the data structure
aredefined, must be availableto client and
server processes that use a data structure
described in a VI EWtyped buffer.
Encoding and decoding are performed
automatically if the buffer is passed
between machinesof different types. Refer
to“Using aVIEW Typed Buffer” on page
3-16 for more information.

VI EVB82 Equivalent to VI EWbut uses 32 bits for No Yes Yes Yes
length and count fields, which allows for
larger and more fields and, consequently,
larger overall buffers.

Refer to“UsingaVIEW Typed Buffer” on
page 3-16 for more information.

X C TYPE Equivalent to VI EW No Yes Yes Yes

X_COMVON Equivalent to VI EW but used for No Yes Yes Yes
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

34 Programming a BEA Tuxedo ATMI Application Using C

Overview of Typed Buffers

Table 3-1 Typed Buffers (Continued)

Typed Buffer

Description

Self-
Describing

Subtype Data- Encoding/
Dependent Decoding
Routing

XML

An XML document that consists of:

m Text, in the form of a sequence of
encoded characters

m A description of the logical structure
of thedocument and information about
that structure

The routing of an XML document can be
based on element content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if theencoding differsfromthe
native character sets (US-ASCII or
EBCDIC) used in the BEA Tuxedo
configuration files (UBBCONFI G(5) and
DMCONFI @(5)), the element and attribute
names are converted to US-ASCII or
EBCDIC. Refer to “Using an XML Typed
Buffer” on page 3-26 for more
information.

No

No Yes No

X_OCTET

Equivalent to CARRAY.

No

No No No

See Also

All buffer typesaredefinedinafilecaledt nt ypesw. c inthe $STUXDI R/ | i b directory.
Only buffer types defined in t nt ypesw. ¢ are known to your client and server
programs. Y ou can edit thet nt ypesw. ¢ fileto add or remove buffer types. In
addition, you can use the BUFTYPE parameter (in UBBCONFI G) to restrict the types and
subtypes that can be processed by a given service.

Thet nt ypesw. ¢ fileis used to build a shared object or dynamic link library. This
object is dynamically loaded by both BEA Tuxedo administrative servers, and

application clients and servers.

m “Using aVIEW Typed Buffer” on page 3-16

Programming a BEA Tuxedo ATMI Application Using C 35

3 Managing Typed Buffers

m “Using an FML Typed Buffer” on page 3-22
m “Using an XML Typed Buffer” on page 3-26

m tuxtypes(5) intheFile Formats, Data Descriptions, MIBs, and System
Processes Reference

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

Allocating a Typed Buffer

Initially, no buffers are associated with aclient process. Before amessage can be sent,
aclient process must allocate a buffer of a supported typeto carry amessage. A typed
buffer is allocated using thet pal | oc(3c) function, asfollows:

char*
tpal l oc(char *type, char *subtype, |ong size)

The following table describes the argumentsto the t pal | oc() function.

Table 3-2 tpalloc() Function Arguments

Argument Description

type Pointer to avalid typed buffer.

subt ype Pointer to the name of a subtype being specified (in the view
description file) for aVl EW VI EWB2, or X_COMMVON typed
buffer.

Inthe caseswhereasubt ype isnot relevant, assign the NULL
value to this argument.

3-6 Programming a BEA Tuxedo ATMI Application Using C

Allocating a Typed Buffer

Argument Description

si ze Size of the buffer.

The BEA Tuxedo system automatically associates a default
buffer size with all typed buffers except CARRAY, X_OCTET,
and XML, which require that you specify a size, so that the end
of the buffer can be identified.

For al typed buffers other than CARRAY, X_OCTET, and XM_,, if
you specify avalue of zero, the BEA Tuxedo system uses the
default associated with that typed buffer. If you specify asize,
the BEA Tuxedo system assignsthe larger of the following two
values: the specified size or the default size associated with that
typed buffer.

The default size for all typed buffers other than STRI NG,
CARRAY, X_OCTET, and XM is 1024 bytes. The default sizefor
STRI NGtyped buffersis512 bytes. Thereisno default value for
CARRAY, X_OCTET, and XM_; for these typed buffers you must
specify asize value greater than zero. If you do not specify a
size, the argument defaultsto 0. As aresult, thet pal | oc()
function returns aNULL pointer and setst per r no to

TPEI NVAL.

The VI EW VI EW82, X_C_TYPE, and X_COMMON typed buffers require the subt ype
argument, as shown in the following example.

Listing 3-1 Allocating a VIEW Typed Buffer

struct aud *audv; /* pointer to aud view structure */

audv = (struct aud *) tpalloc("VIEW, "aud", sizeof(struct aud));

The following example shows how to allocate an FML typed buffer. Note that avalue
of NULL isassigned to the subt ype argument.

Programming a BEA Tuxedo ATMI Application Using C 3-7

3 Managing Typed Buffers

Listing 3-2 Allocating an FML Typed Buffer

FBFR *fbfr; /* pointer to an FM. buffer structure */

fbfr = (FBFR *)tpal | oc("FM", NULL, Fneeded(f, v))

The following example shows how to allocate a CARRAY typed buffer, which requires
that asi ze value be specified.

Listing 3-3 Allocatinga CARRAY Typed Buffer

char *cptr;

I ong casi ze;

casi ze = 1024;

cptr = tpalloc("CARRAY", NULL, casize);

Upon success, thet pal | oc() function returnsa pointer of type char . For types other
than STRI NGand CARRAY, you should cast the pointer to the proper C structure or FML
pointer.

If thet pal | oc() function encounters an error, it returnsthe NULL pointer. The
following list provides examples of error conditions:

m Failureto specify asi ze value for a CARRAY, X_OCTET, or XM typed buffer
m Failureto specify at ype (or subt ype in the case of VI EW

m Specifying at ype that is not known to the system

m Failureto join the application before attempting allocation

For acomplete list of error codes and explanations of them, refer tot pal | oc(3c) in
the BEA Tuxedo ATMI C Function Reference.

The following listing shows how to allocate a STRI NG typed buffer. In this example,
the associated default size is used as the value of the si ze argument tot pal | oc() .

3-8 Programming a BEA Tuxedo ATMI Application Using C

Putting Data in a Buffer

See Also

Listing 3-4 Allocating a STRING Buffer

char *cptr;

cptr = tpalloc("STRING', NULL, 0);

m “Putting Datain a Buffer” on page 3-9
m “Resizing a Typed Buffer” on page 3-11
m tpall oc(3c) inthe BEA Tuxedo ATMI C Function Reference

Putting Data in a Buffer

Once you have allocated a buffer, you can put datain it.

In the following example, avi Ewtyped buffer called aud is created with three
members (fields). The three membersare b_i d, the branch identifier taken from the
command line (if provided); bal ance, used to return the requested balance; and

er msg, used to return a message to the status line for the user. When audi t isused to
reguest a specific branch balance, the value of the b_i d member is set to the branch
identifier to which the request is being sent, and the bal ance and er nsg membersare
set to zero and the NULL string, respectively.

Programming a BEA Tuxedo ATMI Application Using C 39

3 Managing Typed Buffers

Listing 3-5 Putting Data in a M essage Buffer - Example 1

audv = (struct aud *)tpalloc("VIEW, "aud", sizeof(struct aud));
/* Prepare aud structure */
audv->b_id = g_branchid;

audv- >bal ance = 0.0;
(voi d)strcpy(audv->ernsg, "");

When audi t isused to query the total bank balance, the total balance at each siteis
obtained by acall tothe BAL server. Torunaquery on each site, arepresentative branch
identifier is specified. Representative branch identifiers are stored in an array named
sitelist[].Hence theaud structureis set up as shown in the following example.

Listing 3-6 Placing Data in a M essage Buffer - Example 2

/* Prepare aud structure */

audv->b_id = sitelist[i];/* routing done on this field */
audv- >bal ance = 0.0;
(voi d)strcpy(audv->ernsg, "");

The process of putting datainto a STRI NG buffer isillustrated in the “Resizing a
Buffer” on page 3-12 listing.

See Also

m “Allocating a Typed Buffer” on page 3-6
m “Resizing a Typed Buffer” on page 3-11

m tpalloc(3c) inthe BEA Tuxedo ATMI C Function Reference

3-10 Programming a BEA Tuxedo ATMI Application Using C

Resizing a Typed Buffer

Resizing a Typed Buffer

Y ou can change the size of abuffer allocated with t pal | oc() by using the
t preal | oc(3c) function asfollows:

char*
tprealloc(char *ptr, long size)

The following table describes the argumentsto the t preal | oc() function.

Table 3-3 tprealloc() Function Arguments

Argument Description

ptr Pointer to the buffer that isto beresized. This pointer must have
been allocated originally by acall tot pal | oc() . If it wasnat,
thecall failsandt per r no(5) issetto TPEI NVAL to signify
that invalid arguments have been passed to the function.

si ze Long integer specifying the new size of the buffer.

The pointer returned by t preal | oc() pointsto abuffer of the same type as the
original buffer. Y ou must use the returned pointer to reference the resized buffer
because the location of the buffer may have changed.

When you call thet pr eal | oc() function to increase the size of the buffer, the BEA
Tuxedo system makes new space available to the buffer. When you call the

tpreal I oc() functionto make a buffer smaller, the system does not actually resize
the buffer; instead, it renders the space beyond the specified size unusable. The actual
content of the typed buffer remains unchanged. If you want to free up unused space, it
is recommended that you copy the data into a buffer of the desired size and then free
the larger buffer.

Onerror, thet preal | oc() function returnsthe NULL pointer and setst per r no toan
appropriate value. Refer to t pal | oc(3c) inthe BEA Tuxedo ATMI C Function
Reference for information on error codes.

Warning: If thetpreall oc() function returnsthe NULL pointer, the contents of
the buffer passed to it may have been altered and may be no longer valid.

Programming a BEA Tuxedo ATMI Application UsingC 3-11

3 Managing Typed Buffers

The following example shows how to reallocate space for a STRI NG buffer.

Listing 3-7 Resizing a Buffer

#i ncl ude <stdi o. h>
#include “atm . h”

char instr[100]; /* string to capture stdin input strings */
long sllen, s2len; /* string 1 and string 2 |lengths */
char *slptr, *s2ptr; /* string 1 and string 2 pointers */
mai n()
(void)gets(instr); /* get line fromstdin */
sllen = (long)strlen(instr)+1; /* determne its length */
join application

if ((slptr = tpalloc(“STRING, NULL, sillen)) == NULL) {

fprintf(stderr, “tpalloc failed for echo of: %\n”, instr)
| eave application
exit(1l);

}
(void)strcpy(slptr, instr)
make conmuni cation call with buffer pointed to by slptr

(void)gets(instr); /* get another line fromstdin */
s2len = (long)strlen(instr)+1; /* determine its length */
if ((s2ptr = tprealloc(slptr, s2len)) == NULL) {
fprintf(stderr, “tprealloc failed for echo of: %\n”, instr);
free slptr's buffer
| eave application
exit(1l)

}
(void)strcpy(s2ptr, instr);

make communi cation call with buffer pointed to by s2ptr

The following example (an expanded version of the previous example) shows how to
check for occurrences of all possible error codes.

3-12 Programming a BEA Tuxedo ATMI Application Using C

Resizing a Typed Buffer

Listing3-8 Error Checking for tprealloc()

if ((s2ptr=tprealloc(slptr, s2len)) == NULL)
switch(tperrno) {
case TPElI NVAL
fprintf(stderr, "given invalid arguments\n");
fprintf(stderr, "will do tpalloc instead\n");
tpfree(siptr);
if ((s2ptr=tpalloc("STRING', NULL, s2len)) == NULL) {

fprintf(stderr, "tpalloc failed for echo of: %\n", instr);
| eave application

exit(1l);

}

br eak;

case TPEPROTO
fprintf(stderr, "tried to tprealloc before tpinit;\n");
fprintf(stderr, "programerror; contact product support\n")
| eave application
exit(1l);
case TPESYSTEM
fprintf(stderr,
"BEA Tuxedo error occurred; consult today' s userlog file\n");
| eave application
exit(1l);
case TPECS
fprintf(stderr, "Operating Systemerror %l
occurred\n", Uuni xerr);
| eave application
exit(1l);
defaul t:
fprintf(stderr,
"Error fromtpalloc: %\n", tpstrerror(tperrno))
br eak;

See Also

m “Allocating a Typed Buffer” on page 3-6
m “Putting Datain a Buffer” on page 3-9
m tprealloc(3c) inthe BEA Tuxedo ATMI C Function Reference

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-13

3 Managing Typed Buffers

Checking for Buffer Type

Thet pt ypes(3c) functionreturnsthetype and subtype (if one exists) of abuffer. The
t pt ypes() function signatureis asfollows:

| ong
tptypes(char *ptr, char *type, char *subtype)

The following table describes the arguments to the t pt ypes() function.

Table 3-4 tptypes() Function Arguments

Argument Description

ptr Pointer to a data buffer. This pointer must have been originally
alocatedby acall tot pal | oc() ort preal | oc(),itmay not
be NULL, and it must be cast as a character type; otherwise, the
t pt ypes() function reports an invalid argument error.

type Pointer to the type of the data buffer. t ype is of character type.

subt ype Pointer to the subtype of the databuffer, if oneexists. subt ype
is of character type. For all types other than VI EWVI EWB2,
X_C _TYPE, and X_COWMON, upon return the subt ype
parameter points to a character array containing the NULL
string.

Upon success, thet pt ypes() function returns the length of the buffer in the form of
along integer.

Inthe event of an error, t pt ypes() returnsavalueof - 1 and setst per rno(5) tothe
appropriate error code. For alist of these error codes, refer to the “ Introduction to the
C Language Application-to-Transaction Monitor Interface,” and t pal | oc(3c) inthe
BEA Tuxedo ATMI C Function Reference.

Y ou can usethe size valuereturned by t pt ypes() upon successto determine whether
the default buffer size is large enough to hold your data, as shown in the following
example.

3-14 Programming a BEA Tuxedo ATMI Application Using C

Freeing a Typed Buffer

Listing 3-9 Getting Buffer Size

iptr
ilen

= (FBFR *)tpal | oc("FM.", NULL, 0);
= tptypes(iptr, NULL, NULL);
i.f.(i.len < nydat asi ze)

i ptr=tprealloc(iptr, nydatasize);

See Also

m “Allocating a Typed Buffer” on page 3-6
m tptypes(3c) inthe BEA Tuxedo ATMI C Function Reference

Freeing a Typed Buffer

Thet pf ree(3c) function freesabuffer allocated by t pal | oc() or reallocated by
tpreal l oc(). Thetpfree() function signatureis asfollows:

voi d
tpfree(char *ptr)

Thet pf ree() function takes only one argument, pt r , which is described in the
following table.

Table 3-5 tpfree() Function Argument

Argument Description

ptr Pointer to a data buffer. This pointer must have been alocated
originally by acall tot pal | oc() ortpreal |l oc(), it may
not be NULL, and it must be cast as a character type; otherwise,
the function returns without freeing anything or reporting an
error condition.

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-15

3 Managing Typed Buffers

When freeing an FM_32 buffer using t pf r ee() , the routine recursively frees all
embedded buffersto prevent memory leaks. In order to preserve the embedded buffers,
you should assign the associated pointer to NULL beforeissuing thet pf ree()
routine. When ptr is NULL, no action occurs.

The following example shows how to use thet pf r ee() function to free a buffer.

Listing 3-10 Freeing a Buffer

struct aud *audv; /* pointer to aud view structure */
audv = (struct aud *)tpalloc("VIEW, "aud", sizeof(struct aud));

"[pfr.ee((char *)audv) ;

See Also

m “Allocating a Typed Buffer” on page 3-6
m “Resizing a Typed Buffer” on page 3-11
m tpfree(3c) inthe BEA Tuxedo ATMI C Function Reference

Using a VIEW Typed Buffer

There are two kinds of Vi Ewtyped buffers. The first, FML. VI Ew isa C structure
generated from an FML buffer. The second is simply an independent C structure.

The reason for converting FM. buffersinto C structures and back again (and the
purpose of the FML VI Ewtyped buffers) is that while FM. buffers provide
data-independence and convenience, they incur processing overhead because they
must be manipulated using FM. function calls. C structures, while not providing
flexibility, offer the performance required for lengthy manipulations of buffer data. If
you need to perform a significant amount of data manipulation, you can improve

3-16 Programming a BEA Tuxedo ATMI Application Using C

Using a VIEW Typed Buffer

performance by transferring fielded buffer datato C structures, operating on the data
using normal C functions, and then converting the data back to the FML buffer for
storage or message transmission.

For moreinformation onthe FM_ typed buffer and FM_ file conversion, refer to the BEA
Tuxedo ATMI FML Function Reference.

To use VI Ewtyped buffers, you must perform the following steps:
m Set the appropriate environment variables.
m Describe each structure in view description files.

m Compilethe view description files using vi ewc, the BEA Tuxedo view
compiler. Specify the resulting header filein the #i ncl ude statement for your
application program.

Setting Environment Variables for a VIEW Typed Buffer

To use aVlI Ewtyped buffer in an application, you must set the following environment
variables.

Table 3-6 Environment Variablesfor a VIEW Typed Buffer

Environment Description

Variable

FI ELDTBLS or Commea-separated list of field tablefilenamesfor FML or FM_32

FI ELDTBLS32 typed buffers. Required only for FML VI EWtypes.

FLDTBLDI Ror Colon-separated list of directoriesto search for the field table

FLDTBLDI R32 filesfor FML and FM_32 typed buffers. For Microsoft Windows,
use a semicolon-separated list. Required only for FML VI EW
types.

VI EWFI LES or Comma-separated list of alowable filenames for VI Ewor

VI EWFI LES32 VI EVWB2 description files.

VI EWDI Ror Colon-separated list of directories to search for VI EWor

VI EVDI R32 VI EWB2 files. For Microsoft Windows, use a

semicolon-separated list.

Programming a BEA Tuxedo ATMI Application UsingC 3-17

3 Managing Typed Buffers

Creating a View Description File

To use a VI Ewtyped buffer, you must define the C record in a view description file.
The view description file includes, aview for each entry, aview that describes the
characteristic C structure mapping and the potential FML conversion pattern. The name
of the view corresponds to the name of the C language structure.

The following format is used for each structure in the view description file:

$ /* View structure */
VI EW vi ewnane
type cnane f bname count flag si ze nul |

The following table describes the fields that must be specified in the view description
file for each C structure.

Table 3-7 View Description File Fields

Field Description

type Datatype of thefield. Canbesettoshort, | ong, fl oat,
doubl e, char,string,orcarray.

cname Name of thefield as it appearsin the C structure.

f bname If you will be using the FM_-to-VI EWor VI EWto-FM.

conversion functions, thisfield must beincluded to indicatethe
corresponding FML name. This field name must also appear in
the FML field tablefile. Thisfield is not required for
FML-independent VIEWS.

count Number of timesfield occurs.

flag Specifies any of the following optional flag settings:
P—change the interpretation of the NULL value
S—one-way mapping from fielded buffer to structure
F—one-way mapping from structure to fielded buffer
N—zero-way mapping

C—generate additional field for associated count member
(ACM)

m L—hold number of bytestransferred for STRI NG and
CARRAY

3-18 Programming a BEA Tuxedo ATMI Application Using C

Using a VIEW Typed Buffer

Table 3-7 View Description File Fields (Continued)

Field Description

si ze For STRI NGand CARRAY buffer types, specifiesthe maximum
length of the value. Thisfield isignored for al other buffer
types.

nul | User-specified NULL value, or minus sign (-) to indicate the

default value for afield. NULL values are used in VI EWtyped
buffers to indicate empty C structure members.

The default NULL value for al numeric typesis0 (0.0 for
dec_t). For character types, the default NULL valueis‘\ 0’.
For STRI NGand CARRAY types, thedefault NULL valueis* ”.

Constants used, by convention, as escape characterscan also be
used to specify aNULL vaue. The view compiler recognizes
the following escape constants: \ ddd (whered isan octal
digit), \ 0,\ n,\t ,\v,\r ,\f VNV, V7 Jand\ .

You may enclose STRI NG, CARRAY, and char NULL values
in double or single quotes. The view compiler does not accept
unescaped quotes within a user-specified NULL value.

Y ou can a so specify the keyword NONE inthe NULL field of
aview member description, which meansthat thereis no
NULL value for the member. The maximum size of default
values for string and character array membersis 2660
characters. For more information, refer to the BEA Tuxedo
ATMI FML Function Reference.

Y ou can include a comment line by prefixing it with the # or $ character. Lines
prefixed by a$ sign areincluded in the . h file.

Thefollowing listing is an excerpt from an example view description file based on an
FM buffer. In this case, the f bnanme field must be specified and match that which
appears in the corresponding field table file. Note that the CARRAY1 field includes an
occurrence count of 2 and sets the C flag to indicate that an additional count element
should be created. In addition, the L flag is set to establish alength element that
indicates the number of characters with which the application popul ates the CARRAY1

field.

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-19

3 Managing Typed Buffers

Listing 3-11 View Description Filefor FML VIEW

$/* View structure */

VI EW MyVI EW

#t ype cnane f bname count flag si ze nul |
fl oat floatl FLOAT1 1 - - 0.0
doubl e doubl el DOUBLE1 1 - - 0.0
| ong I ongl LONGL 1 - - 0
short shortl SHORT1 1 - - 0
int intl I NT1 1 - - 0
dec_t decl DEC1 1 - 9,16 0
char char 1 CHAR1 1 - - "\ O’
string stringl STRI NGL 1 - 20 "\ O
carray carrayl CARRAY1 2 CL 20 "\ O

END

The following listing illustrates the same view description file for an independent
VI EW

Listing 3-12 View Description Filefor an Independent View

$ /* View data structure */

VI EW MyVI EW

#t ype cnane fbnane count flag si ze nul |
fl oat floatl - 1 - - -
doubl e doubl el - 1 - - -
| ong | ongl - 1 - - -
short shortl - 1 - - -
int intl - 1 - - -
dec_t decl - 1 - 9,16 -
char char1 - 1 - - -
string stringl - 1 - 20 -
carray carrayl - 2 CL 20 -

END

Note that the format is similar to the FM_-dependent view, except that thef bnanme and
nul | fieldsare not relevant and areignored by thevi ewc compiler. Y ou must include
avalue (for example, a dash) as aplaceholder in these fields.

3-20 Programming a BEA Tuxedo ATMI Application Using C

Using a VIEW Typed Buffer

Executing the VIEW Compiler

To compile aVvi Ewtyped buffer, run thevi ewc command, specifying the name of the
view description file as an argument. To specify an independent Vi Ew usethe - n
option. Y ou can optionally specify adirectory in which the resulting output file should
be written. By default, the output file is written to the current directory.

For example, for an FM_-dependent VI EW the compiler isinvoked as follows:
Vi ewc myvi ew. v

Note: To compileawvi EVB82 typed buffer, run the vi ewc32 command.

For an independent VI EW use the - n option on the command line, as follows:
viewc -n nmyvi ew. v

The output of the vi ewc command includes:

m Oneor more COBOL COPY files; for example, MyVI EW cbl

m Header file containing a structure definition that may be used by application
programs

m Binary version of the source description file; for example, nyvi ew. vV

Note: On case-insensitive platforms (for example, Microsoft Windows), the
extension used for the names of such filesisvv; for example, nyvi ew. vv.

The following listing provides an example of the header file created by vi ewc.

Listing 3-13 Header File Created Using the VIEW Compiler

struct MyVI EW{
fl oat float1;
doubl e doubl el;

| ong | ongl;

short short 1;

i nt intl;

dec_t decl;

char char1;

char stringl[20];

unsi gned short L_carrayl[2]; /* length array of carrayl */
short C carrayl; /* count of carrayl */

Programming a BEA Tuxedo ATMI Application UsingC 3-21

3 Managing Typed Buffers

char carrayl[2] [20];
|

The same header fileis created for FML-dependent and independent VIEWS.

In order to use aVvi Ewtyped buffer in client programs or service subroutines, you must
specify the header file in the application #i ncl ude statements.

See Also

m “Using an FML Typed Buffer” on page 3-22
m “Using an XML Typed Buffer” on page 3-26

B viewc, view32(1) inthe BEA Tuxedo Command Reference

Using an FML Typed Buffer

To use FM. typed buffers, you must perform the following steps:

m Set the appropriate environment variables.
m Describe the potentia fieldsin an FML field table.

m Create an FM. header file and specify the header filein a#i ncl ude statement in
the application.

FM functions are used to manipulate typed buffers, including those that convert
fielded buffersto C structures and vice versa. By using these functions, you can access
and update data values without having to know how datais structured and stored. For
more information on FM_ functions, refer to the BEA Tuxedo ATMI FML Function
Reference.

3-22 Programming a BEA Tuxedo ATMI Application Using C

Using an FML Typed Buffer

Setting Environment Variables for an FML Typed Buffer

To use an FM. typed buffer in an application program, you must set the following
environment variables.

Table 3-8 FML Typed Buffer Environment Variables

Environment Description

Variable

FI ELDTBLS or Commea-separated list of field tablefilenamesfor FML or FM_32
FI ELDTBLS32 typed buffers, respectively.

FLDTBLDI Ror Colon-separated list of directoriesto search for the field table
FLDTBLDI R32 filesfor FML and FM_32, respectively. For Microsoft Windows,

use a semicolon-separated list.

Creating a Field Table File

Field tablefilesare alwaysrequired when FM_ buffers and/or FM_-dependent VI Ens are
used. A field table file mapsthelogical name of afield in an FM_ buffer to astring that
uniquely identifies the field.

The following format is used for the description of each field in the FML field table:
$ /* FML structure */
*base val ue

nane nunber type flags comrent s

Thefollowing table describesthefieldsthat must be specified inthe FM_ field tablefile
for each FML field.

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-23

3 Managing Typed Buffers

Table 3-9 Field TableFile Fields

Field

Description

*base val ue

Specifies abase for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The* base option allowsfield numbersto bereused. For
a16-bit buffer, the base plusthe relevant number must be greater
than or equal to 100 and lessthan 8191. Thisfield is optional.

Note: The BEA Tuxedo system reservesfield numbers 1-100
and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FM_; field numbers 101-33, 554, and 431, for
FML32

nane

Identifier for the field. The value must be a string of up to 30
characters, consisting of alphanumeric and underscore
characters only.

r el - nunber

Relative numeric value of thefield. Thisvalueis added to the
current base, if specified, to calculate the field number.

type

Type of thefield. Thisvalue can be any of thefollowing: char ,
string,short,long,fl oat,doubl e,orcarray.

flag

Reserved for future use. A dash (-) should be included as a
placeholder.

comment

Optional comment.

All fields are optional, and may be included more than once.

3-24 Programming a BEA Tuxedo ATMI Application Using C

Using an FML Typed Buffer

The following example illustrates afield table file that may be used with the
FM.-dependent VI Ewexample.

Listing 3-14 Field TableFilefor FML VIEW

nane nunber type fl ags coment s
FLOAT1 110 fl oat - -
DOUBLE1 111 doubl e - -

LONGL 112 | ong - -
SHORT1 113 short - -
I NT1 114 | ong - -
DEC1 115 string - -
CHARL 116 char - -
STRI NGL 117 string - -
CARRAY1 118 carray - -

Creating an FML Header File

/*
/*

#def i ne
#def i ne
#defi ne

f nanme

In order to usean FM_ typed buffer in client programs or service subroutines, you must
create an FM_ header file and specify it in the application #i ncl ude statements.

To create an FM_ header file from afield table file, use the nkf | dhdr (1) command.
For example, to create afile called myvi ew. f | ds. h, enter the following command:

nkf | dhdr nyvi ew. flds
For FM_32 typed buffers, use the nkf I dhdr 32 command.

The following listing shows the nyvi ew. f | ds. h header file that is created by the
mkf | dhdr command.

Listing 3-15 myview.flds.h Header File

fldid */
_____ * [

FLOAT1 ((FLDI D) 24686) [* nunber: 110 type: float */
DOUBLE1 ((FLDI D) 32879) /* nunber: 111 type: double */
LONGL

((FLDI D) 8304) /* nunber: 112 type: long */

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-25

3 Managing Typed Buffers

#def i ne SHORT1 ((FLDI D) 113) /* nunber: 113 type: short */

#define |INT1 ((FLDI D) 8306) /* number: 114 type: |long */

#define DECL ((FLDI D) 41075) /* number: 115 type: string */

#defi ne CHARL ((FLDI D) 16500) /* nunber: 116 type: char */

#define STRI NGL ((FLDI D) 41077) /* number: 117 type: string */

#define CARRAY1 ((FLDI D) 49270) /* number: 118 type: carray */
Specify the new header filein the #i ncl ude statement of your application. Once the
header fileisincluded, you can refer to fields by their symbolic names.

See Also

m “UsingaVIEW Typed Buffer” on page 3-16
m “Using an XML Typed Buffer” on page 3-26

m nkfldhdr, nkfldhdr32(1) inthe BEA Tuxedo Command Reference

Using an XML Typed Buffer

3-26

XXM buffersenable BEA Tuxedo applicationsto use XML for exchanging datawithin

and between applications. BEA Tuxedo applications can send and receive simple XML
buffers, and route those buffers to the appropriate servers. All logic for dealing with
XM documents, including parsing, resides in the application.

An XM document consists of :
m A sequence of characters that encode the text of a document

m A description of thelogical structure of the document and information about that
structure

The programming model for the XML buffer typeissimilar to that for the CARRAY buffer
type: you must specify the length of the buffer with thet pal | oc() function. The
maximum supported size of an XM. document is 4 GB.

Programming a BEA Tuxedo ATMI Application Using C

Using an XML Typed Buffer

See Also

Formatting and filtering for Events processing (which are supported when a STRI NG
buffer typeis used) are not supported for the XM buffer type. Therefore, the
_tnfilter and _t nf or mat function pointersinthe buffer type switch for Xm_ buffers
areset to NULL.

The XML parser in the BEA Tuxedo system performs the following functions:
m Autodetection of character encodings

m Character code conversion

m Detection of element content and attribute values

m Datatype conversion

Data-dependent routing is supported for XML buffers. The routing of an XM_ document
can be based on element content, or on element type and an attribute value. The XvL
parser determines the character encoding being used; if the encoding differs from the
native character sets (US-ASCII or EBCDIC) used in the BEA Tuxedo configuration
files (UBBCONFI G and DMCONFI G), the element and attribute names are converted to
US-ASCII or EBCDIC.

Attributes configured for routing must be included in an XML document. If an attribute
is configured as arouting criteria but it is not included in the XM_ document, routing
processing fails.

The content of an element and the value of an attribute must conform to the syntax and
semanticsrequired for arouting field value. The user must also specify the type of the
routing field value. XML supports only character data. If arangefield is numeric, the

content or value of that field isconverted to anumeric val ue during routing processing.

m “UsingaVIEW Typed Buffer” on page 3-16
m “Using an FML Typed Buffer” on page 3-22

Programming a BEA Tuxedo ATMI Application UsingC 3-27

3 Managing Typed Buffers

Customizing a Buffer

You may find that the buffer types supplied by the BEA Tuxedo system do not meet
your needs. For exampl e, perhaps your application uses adatastructure that isnot flat,
but has pointersto other datastructures, such asaparsetreefor an SQL database query.
To accommodate unique application requirements, the BEA Tuxedo System supports
customized buffers.

To customize a buffer, you need to identify the following characteristics.

Table 3-10 Custom Buffer Type Characteristics

Characteristic Description

Buffer type Name of the buffer type, specified by a string of up to eight
characters.

Buffer subtype Name of the buffer subtype, specified by a string of up to 16

characters. The system uses a subtype to identify different
processing requirements for buffers of a given type. When the
wildcard character (*) is specified as the subtype value, all
buffers of agiven type can be processed using the same generic
routine. Any buffersfor which a subtype is defined must appear
beforethewildcard in thelist, in order to be processed correctly.

Default size Minimum size of the associated buffer typethat can be alocated
or reallocated. For buffer types that have a value greater than
zero and that are sized appropriately, you can specify a buffer
size of zero when allocating or reallocating a buffer to use this
default size.

The following table defines the list of routines that you may need to specify for each
buffer type. If a particular routine is not applicable, you can simply provide a NULL
pointer; the BEA Tuxedo system uses default processing, as necessary.

3-28 Programming a BEA Tuxedo ATMI Application Using C

Customizing a Buffer

Table 3-11 Custom Buffer Type Routines

Routine

Description

Buffer initialization

Initializes a newly allocated typed buffer.

Buffer reinitialization

Reinitializes atyped buffer. Thisroutineis called after a buffer
has been reallocated (that is, assigned a new size).

Buffer uninitialization

Uninitializes atyped buffer. Thisroutine is called just before a
typed buffer is freed.

Buffer presend

Prepares the typed buffer for sending. Thisroutineis called
before atyped buffer is sent as a message to another client or
server. It returns the length of the data to be transmitted.

Buffer postsend

Returns the typed buffer to its original state. Thisroutineis
called after the message is sent.

Buffer postreceive

Prepares the typed buffer once it has been received by the
application. It returns the length of the application data.

Encode/decode

Performs all the encoding and decoding necessary for the buffer
type. A request to encode or decode is passed to the routine,
aongwithinput and output buffersand lengths. Theformat used
for encoding is determined by the application and, as with the
other routines, it may be dependent on the buffer type.

Routing

Specifies the routing information. Thisroutine is called with a
typed buffer, the length of the data for that buffer, alogical
routing name configured by an administrator, and a target
service. Based on this information, the application must select
the server group to which the message should be sent or indicate
that the message is not needed.

Filter

Specifiesfilter information. Thisroutineis called to evaluate an
expression against atyped buffer and to return amatch if it finds
one. If the typed buffer is VI EWor FM_, the FM. Boolean
expressionsare used. Thisroutineis used by the EventBroker to
evaluate matches for events.

Format

Specifies a printable string for a typed buffer.

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-29

3 Managing Typed Buffers

Defining Your Own Buffer Types

The application programmer is responsible for the code that manipul ates buffers,
which allocates and frees space, and sends and receives messages. For applicationsin
which the default buffer types do not meet the needs of the application, other buffer
types can be defined, and new routines can be written and then incorporated into the
buffer type switch.

To define other buffer types, complete the following steps:
1. Code any switch element routines that may be required.

2. Add your new types and the names of your buffer management modules to
tmtypesw

3. Build anew shared object or aDLL. The shared object or DLL must contain your
updated buffer type switch and associated functions.

4. Install your new shared object or DLL so that all servers, clients, and executables
provided by the BEA Tuxedo system are |oaded dynamically at run time.

If your application is using static libraries and you are providing a customized buffer
type switch, then you must build a custom server to link in your new type switch. For
details, see bui | dwsh (1), TMQUEUE (5), or TMQFORWARD (5).

The rest of the sectionsin thistopic addressthe stepslisted in the preceding procedure
to define a new buffer type in a shared-object or DLL environment. First, however,
let’ slook at the buffer switch that is delivered with the BEA Tuxedo system software.
The following listing shows the switch delivered with the system.

Listing 3-16 Default Buffer Type Switch

#i ncl ude <stdio. h>
#i ncl ude <tntypes. h>

/* Initialization of the buffer type switch */

static struct tntype_swt tmtypesw] = {
{

“ CARRAY" , /* type */

/* subtype */

0 /* dfltsize */

}

{

3-30 Programming a BEA Tuxedo ATMI Application Using C

Customizing a Buffer

“STRI NG',
512,

NULL,

NULL,

NULL,
_strpresend
NULL,

NULL,
_strencdec
NULL,

NULL,

NULL

H

{

“FM",
1024,
_finit,
_freinit,
_funinit,
_fpresend
_fpostsend,
_fpostrecv,
_fencdec,
_froute,
_ffilter,
_fformat

.

“FM.32",
1024,
_finit32,
_freinit32
_funinit32
_fpresend32
_fpostsend32
_fpostrecv32,
_fencdec32
_froute32
_ffilter32
_fformt 32
H

{

"VI EW ,

1024,

_vinit,

/*

type */

[*subtype */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

df I tsize */
i nitbuf */
reinitbuf */
uni ni t buf */
presend */
postsend */
postrecv */
encdec */
route */
filter */
format */

type */
subtype */
df I tsize */
i nitbuf */
reinitbuf */
uni ni t buf */
presend */

/| *postsend */

/*
/*

postrecv */
encdec */

/*route */

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

filter */
format */

type */
subtype */
df I tsize */
i nitbuf */
reinitbuf */
uni ni t buf */
presend */
postsend */
postrecv */
encdec */
route */
filter */
format */

type */
subtype */
df I tsize */
i nitbuf */

Programming a BEA Tuxedo ATMI Application UsingC 3-31

3 Managing Typed Buffers

_vreinit, /* reinitbuf */
NULL, [* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vfornmat /* format */

}

{

"VI EVB2", /* type */

ok /* subtype */
1024, [* dfltsize */
_vinit32, /* initbuf */
_vreinit32, /* reinitbuf */
NULL, [* uninitbuf */
_vpresend32, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec32, /* encdec */
_vroute32, /* route */
_vfilter32, /* filter */
_vfornat 32 /* format */

I

{

" X_OCTET", [* type */

"y /* subtype */
0, [* dfltsize */
}

{
x0Ty P E ", [* type */
e /* subtype */
1024, [* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, [* filter */
_vfornmat /* format */

Iy

{

X, 0,0, M, M,"0 N, /* type */
mxn /* subtype */
1024, [* dfltsize */

3-32 Programming a BEA Tuxedo ATMI Application Using C

Customizing a Buffer

_vinit,
_vreinit,
NULL,
_vpresend
NULL,
NULL,
_vencdec,
_vroute,
_vfilter,
_vformt
H

{

XM,
e

0,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
_Xroute,
NULL,
NULL

H

L,

}

h

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

i nitbuf */
reinitbuf */
uni ni t buf */
presend */
postsend */
postrecv */
encdec */
route */
filter */
format */

type */

subtype */

df I tsize */

_xinit - not available */
_xreinit - not available */
_Xuninit - not available */
_xpresend - not avail able */
_xpostsend - not available */
_Xxpostrecv - not available */
_xencdec - not available */
_xroute */

filter - not available */
format - not available */

For a better understanding of the preceding listing, consider the declaration of the
buffer type structure that is shown in the following listing.

Listing 3-17 Buffer Type Structure

/* The following definitions are in $TUXDI R/incl ude/tntypes.h */

#def i ne TMI'YPELEN
#def i ne TMSTYPELEN

struct tmype_ swt {

char type[TMI'YPELEN] ;

8
16

/* type of buffer */

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-33

3 Managing Typed Buffers

char subtype[TMSTYPELEN]; /* sub-type of buffer */

I ong dfltsize; /* default size of buffer */

/* buffer initialization function pointer */

int (_TMDLLENTRY *initbuf) _((char _TMFAR *, long));

/* buffer re-initialization function pointer */

int (_TMDLLENTRY *reinitbuf) _((char _TM FAR *, long));

/* buffer un-initialization function pointer */

int (_TMDLLENTRY *uninitbuf) _((char _TM FAR *, long));

/* pre-send buffer manipulation func pointer */

Il ong (_TMDLLENTRY *presend) ((char _TM FAR *, long, |ong));

/* post-send buffer manipul ation func pointer */

voi d (_TMDLLENTRY *postsend) _((char _TM FAR *, long, long));

/* post-receive buffer manipul ation func pointer*/

I ong (_TMDLLENTRY *postrecv) _((char _TM FAR *, long, long));

/* encode/ decode function pointer */

Il ong (_TMDLLENTRY *encdec) _((int, char _TM FAR *, |ong,
char _TM FAR *, long));

/* routing function pointer */

int (_TMDLLENTRY *route) ((char _TM FAR *, char _TM FAR *,
char _TM FAR *, long, char _TM FAR *));

/* buffer filtering function pointer */

int (_TMDLLENTRY *filter) _((char _TM FAR *, long, char _TM FAR *,
long));

/* buffer formatting function pointer */

int (_TMDLLENTRY *format) _((char _TM FAR *, long, char _TM FAR *,
char _TM FAR *, long));

/* this space reserved for future expansion */

void (_TMDLLENTRY *reserved[10]) _((void));

Thelisting for the default buffer type switch shows the initialization of the buffer type
switch. The nine default buffer types are shown, followed by afield for naming a
subtype. Except for the Vi Ew(and equivalently X_C_TYPE and X_COVMON) type,
subtypeisNULL. The subtype for Vi Ewisgivenas‘‘*”, which meansthat the default
VI Ewtype puts no constraints on subtypes; all subtypes of type VI Eware processed in
the same manner.

The next field gives the default (minimum) size of the buffer. For the CARRAY (and
equivalently X_OCTET) typethisis given as 0, which means that the routine that uses a
CARRAY buffer type must t pal | oc() enough space for the expected CARRAY.

For the other types, the BEA Tuxedo system allocates (with at pal | oc() cal) the
space shown inthe df | t si ze field of the entry (unless the size argument of
t pal | oc() specifiesalarger size).

3-34 Programming a BEA Tuxedo ATMI Application Using C

Customizing a Buffer

The remaining eight fields of entriesin the buffer type switch contain the names of
switch element routines. These routines are described in the buf f er (3c) pageinthe
BEA Tuxedo C Function Reference. The name of aroutine provides a clue to the
purpose of the routine. For example, _f pr esend on the FM. type is a pointer to a
routine that manipulates the buffer before sending it. If no presend manipulation is
needed, a NULL pointer may be specified. NULL means no special handling is
required; the default action should be taken. See buf f er (3c) for details.

Itisparticularly important that you noticethe NULL entry at the end of the switch. Any
changes that are made must always leave the NULL entry at the end of the array.

Coding Switch Element Routines

Presumably an application that is defining new buffer typesis doing so because of a
special processing need. For example, let’ sassumethe application hasarecurring need
to compress data before sending a buffer to the next process. The application could
write a presend routine. The declaration for the presend routine is shown in the
following listing.

Listing 3-18 Semantics of the Presend Switch Element

| ong
presend(ptr, dlen, ndlen)
char *ptr;

| ong dl en, mdl en;

m ptr isapointer to the application data buffer.
m dl en isthelength of the data as passed into the routine.
m ndl en isthe size of the buffer in which the data resides.

The data compression that takes place within your presend routineisthe responsibility
of the system programmer for your application.

On completion the routine should return the new, hopefully shorter length of the data
to be sent (in the same buffer), or a- 1 to indicate failure.

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-35

3 Managing Typed Buffers

The name given to your version of the presend routine can be any identifier accepted
by the C compiler. For example, suppose we hameit _nypr esend.

If you use our _nypr esend compression routine, you will probably also need a
corresponding _nypost r ecv routine to decompress the data at the receiving end.
Follow the template shown in the buf f er (3c) entry in the BEA Tuxedo C Function
Reference.

Adding a New Buffer Type to tm_typesw

After the new switch element routines have been written and successfully compiled,
the new buffer type must be added to the buffer type switch. To do this task, we
recommend making a copy of $TUXDI R/ | i b/ t mt ypesw. ¢ (the source code for the
default buffer type switch). Give your copy a name with a. ¢ suffix, such as

nmyt ypesw. c. Add the new type to your copy. The name of the type can beup to 8
charactersin length. Subtype can be null (") or astring of up to 16 characters. Enter
the names of your new switch element routinesin the appropriate locations, including
the ext er n declarations. The following listing provides an example.

Listing 3-19 Adding a New Typeto the Buffer Switch

#i ncl ude <stdio. h>
#i ncl ude <tntypes. h>

/* Custom zed the buffer type switch */

static struct tmype swt tmtypesw] = {
{

" SOUND", /* type */

o /* subtype */

50000, [* dfltsize */
snd_init, [* initbuf */

snd_init, [* reinitbuf */

NULL, /* uninitbuf */
snd_cnprs, /[* presend */

snd_uncnpr s,
snd_uncnprs
}

{
"FM",

1024,

/* postsend */
/* postrecv */

/* type */
[* subtype */
[* dfltsize */

3-36 Programming a BEA Tuxedo ATMI Application Using C

Customizing a Buffer

_finit,
_freinit,
_funinit,
_fpresend,

_fpostsend,
_fpostrecv,

_fencdec,
_froute,
_ffilter,
_fformat

b

/* initbuf */
/* reinitbuf */
/* uninitbuf */
/* presend */
/* postsend */
/* postrecv */
/* encdec */

/* route */

/* filter */

/* format */

In the previous listing, we added a new type: SOUND. We also removed the entries for
VI EW X_OCTET, X_COMMON, and X_C_TYPE, to demonstrate that you can remove any
entries that are not needed in the default switch. Note that the array still ends with the
NULL entry.

An alternative to defining a new buffer type isto redefine an existing type. Suppose,
for the sake of argument, that the data compression for which you defined the buffer
type MYTYPE was performed on strings. Y ou could substitute your new switch element
routines, _nypr esend and _nypost r ecv, for thetwo _df I t bl en routinesin type
STRI NG,

Compiling and Linking Your New tm_typesw

To simplify installation, the buffer type switch is stored in a shared object.

Note: On some platformsthe term “shared library” is used instead of “shared
object.” On the Windows 2000 platform a“dynamic link library” is used
instead of a“ shared object.” For the purposes of this discussion, however, the
functionality implied by all three termsis equivalent, so we use only one term.

This section describes how to make all BEA Tuxedo processes in your application
aware of the modified buffer type switch. These processes include application servers
and clients, aswell as servers and utilities provided by the BEA Tuxedo system.

Programming a BEA Tuxedo ATMI Application UsingC 3-37

3 Managing Typed Buffers

1. Copy and modify $TUXDI R/ 1 i b/ t nt ypesw. ¢, as described in “Adding a New
Buffer Typetotm_typesw” onpage 3-36. If additional functionsare required, store
themin either t mt ypesw. ¢ or a separate C sourcefile.

2. Compilet nt ypesw. ¢ with the flags required for shared objects.
3. Link together al object filesto produce a shared object.

4. Copy libbuft. so. 71 from the current directory to adirectory in which it will
be visible to applications, and processed before the default shared object supplied
by the BEA Tuxedo system. We recommend using one of the following
directories; $APPDI R, $TUXDI R/ | i b, or $TUXDI R/ bi n (on a Windows 2000
platform).

Different platforms assign different names to the buffer type switch shared object, to
conform to operating system conventions.

Table 3-12 OS-specific Namesfor the Buffer Type Switch Shared Object

On ThisPlatform... The Name of the Buffer Type Switch
Shared Object Is. ..

UNIX System l'i bbuft.so.71

(most SVR4)

HP-UX |'i bbuft. sl

Sun OS l'i bbuft.so.71

Windows (16-hit) wbuft.dl |

Windows (32-hit) wouf t 32. dl |

0S/2 (16-hit) obuft. dl |

0S/2 (32-hit) obuft.dl |

Please refer to the software devel opment documentation for your platform for
instructions on building a shared object library.

Asan alternative, itispossibleto statically link anew buffer type switchin every client
and server process, but doing so is more error-prone and not as efficient as building a
shared object library.

3-38 Programming a BEA Tuxedo ATMI Application Using C

Customizing a Buffer

Compiling and Linking Your New tm_typesw for a 16-bit Windows Platform

If you have modified t nt ypesw. ¢ on a Windows platform, as described in
“Compiling and Linking Y our New tm_typesw” on page 3-37, then you can use the
commands shown in the following sample code listing to make the modified buffer
type switch available to your application.

Listing 3-20 Sample Code in Microsoft Visual C++

CL -AL -I..\e\|sysinclu -I..\e\|include -Aw -@swx -Zp -D TMWN

-D TMDLL -Od -¢ TMIYPESW C

LINK /CO /ALI G\: 16 TMIYPESW OBJ, WBUFT. DLL, NUL, WIUXWS / SE: 250 / NOD
/ NCE LI BW LDLLCEW WBUFT. DEF

RC /30 /T / K WBUFT. DLL

Data Conversion

The purpose of the TYPE parameter in the MACHI NES section of the configuration file
isto group together machines that have the same form of data representation (and use
the same compiler) so that data conversion is done on messages going between
machines of different TYPESs. For the default buffer types, data conversion between
unlike machinesis transparent to the user (and to the administrator and programmer,
for that matter).

If your application defines new buffer typesfor messagesthat move between machines
with different data representation schemes, you must also write new encode/decode
routines to be incorporated into the buffer type switch. When writing your own data
conversion routines, keep the following guidelines in mind:

m You should use the semantics of the _t nencdec routine shown on the
buf f er (3c) pageinthe BEA Tuxedo ATMI C Function Reference; that is, you
should code your routine so that it uses the same arguments and returns the same
values on success or failure asthe _t nencdec routine. When defining new
buffer types, follow the procedure provided in “ Defining Your Own Buffer
Types” on page 3-30 for building servers with services that will use your new
buffer type.

Programming a BEA Tuxedo ATMI Application UsingC ~ 3-39

3 Managing Typed Buffers

The encode/decode routines are called only when the BEA Tuxedo system determines
that datais being sent between two machines that are not of the same TYPE.

3-40 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

4 Writing Clients

This topic includes the following sections:

m Joining an Application

m Using Features of the TPINIT Typed Buffer
m | eaving the Application

m Building Clients

m Client Process Examples
Joining an Application

Before an ATMI client can perform any service request, it must join the BEA Tuxedo
ATMI application, either explicitly or implicitly. Once the client has joined the
application, it can initiate requests and receive replies.

A client joins an application explicitly by calling thet pi ni t (3c) function with the
following signature;

i nt

tpinit (TPINIT *tpinfo)

A client joins an application implicitly by issuing a service request (or any ATMI
function) without first calling the t pi ni t () function. In this case, thet pi ni t ()
function is called by the BEA Tuxedo system on behalf of the client with thet pi nf o
argument set to NULL. Thet pi nf o argument pointsto atyped buffer withaTPINI T

typeand NULL subtype. TheTPI NI T typed buffer isdefined intheat mi . h header file
and includes the following information:

Programming a BEA Tuxedo ATMI Application Using C 4-1

4 Writing Clients

char
char
char
char
| ong
| ong
| ong

usr nane[MAXTI DENT+2] ;
cl t name[MAXTI DENT+2] ;
passwd[MAXTI DENT+2] ;
gr pname[MAXTI DENT+2] ;
fl ags;

dat al en;

dat a;

The following table summarizesthe TPI NI T data structure fields.

Table4-1 TPINIT Data Sructure Fields

Field Description

usr nane Name representing the client; used for both broadcast

notification and administrative statistics retrieval. The client
assignsavaueto usr nane during the call tothet pi nit ()
function. The valueis a string of up to MAXTI DENT characters
(which defaults to 30 and is configurable by the administrator),
and must be terminated by NULL.

cl tname Client name with application-defined semantics: a 30-character

NULL-terminated string used for both broadcast notification
and administrative statisticsretrieval. The client assignsavaue
tocl t nane during the call tothet pi ni t () function. The
valueisastring of up to MAXTI DENT characters (which defaults
to 30 and is configurable by the administrator), and must be
terminated by NULL.

Note Thevaluesyscl i ent isreserved for thecl t nanme
field.

passwd Application password in unencrypted format. Used for user

authentication. The value is a string of up to 30 characters.

gr pnamne Associates client with resource manager group. If settoa

0O-length string, the client is not associated with aresource
manager and isin the default client group. The value of

gr pnane must bethe NULL string (O-length string) for
Workstation clients. Refer to Using the ATMI Workstation
Component for more information on Workstation clients.

4-2 Programming a BEA Tuxedo ATMI Application Using C

Joining an Application

Field Description

flags Indicates both the client-specific notification mechanism and the
mode of system access. Controls both multicontext and
single-context modes. Refer to “Unsolicited Notification
Handling” on page4-6 or t pi ni t () inthe BEA Tuxedo ATMI
C Function Reference for more information on flags.

dat al en Length of the application-specific data. The buffer type switch
entry for the TPI NI T typed buffer setsthisfield based on the
total size passed in for the typed buffer. The size of the
application dataisthe total sizelessthesizeof the TPI NI T
structureitself plusthe size of the data placeholder asdefinedin
the structure.

dat a Placeholder for variable length data that is forwarded to an
application-defined authentication service.

Before it can join the application, the client program must call t pal | oc() to allocate
the TPI NI T buffer. Thefollowing example showshow to allocatea TPl NI T buffer that
will be used to pass eight bytes of application-specific dat a tothet pi ni t () function.

Listing4-1 Allocatinga TPINIT Typed Buffer

TPINIT *t pi nfo;

if ((tpinfo = (TPINIT *)tpalloc("TPINIT", (char *)NULL,
TPI NI TNEED(8))) == (TPINIT *)NULL){
Error Routine

Refer tot pi ni t () inthe BEA Tuxedo ATMI C Function Reference for more
information on the TPI NI T typed buffer.

Programming a BEA Tuxedo ATMI Application Using C 4-3

4 Writing Clients

See Also

m tpinit(3c) inthe BEA Tuxedo ATMI C Function Reference

Using Features of the TPINIT Typed Buffer

The ATMI client must explicitly invokethet pi ni t () function in order to take
advantage of the following features of the TPI NI T typed buffer:

Client Naming

Unsolicited Notification Handling
System Access Mode

Resource Manager Association

Client Authentication

Client Naming

4-4

When an ATMI client joins an application, the BEA Tuxedo system assigns a unique
client identifier toit. Theidentifier is passed to each service called by the client. It can

also be used for unsolicited notification.

Y ou can also assign unique client and usernames of up to 30 characters each, by
passing them to thet pi ni t () function viathet pi nf o buffer argument. The BEA

Tuxedo system establishes auniqueidentifier for each process by combining the client

and usernames associated with it, with the logical machine identifier (LMID) of the

machine on which the processisrunning. Y ou may choose amethod for acquiring the

values for these fields.

Programming a BEA Tuxedo ATMI Application Using C

Using Features of the TPINIT Typed Buffer

Note: If aprocessis executing outside the administrative domain of the application
(that is, if it is running on a workstation connected to the administrative
domain), the LMID of the machine used by the Workstation client to access
the application is assigned.

Once aunique identifier for aclient processis created:
m Client authentication can be implemented.

m Unsolicited messages can be sent to a specific client or to groups of clientsvia
tpnotify() andt pbroadcast ().

m Detailed statistical information can be gathered viat madmi n(1) .

Refer to “Writing Event-based Clients and Servers’ on page 8-1 for information on
sending and receiving unsolicited messages, and the BEA Tuxedo ATMI C Function
Reference for more information ont madmi n(1) .

The following figure shows how names might be associated with clients accessing an
application. In the example, the application usesthe cl t name field to indicate ajob
function.

Figure4-1 Client Naming

LIID: MNODEL — LMID: T:]ODE]_
usrname: john W ustname: jane
cltname: teller a diname: teller
Il
!
NETWORK — - .
M] LMID: NODE2
3 N usmame: jane
o cltname: manager
L D
G z
8 2
physical connections
logical connections

Programming a BEA Tuxedo ATMI Application Using C 4-5

4 Writing Clients

Unsolicited Notification Handling

4-6

Unsolicited naotification refers to any communication with an ATMI client that is not
an expected response to a service request (or an error code). For example, an
administrator may broadcast amessage to indicate that the system will go down infive
minutes.

A client can be notified of an unsolicited message in a number of ways. For example,
some operating systems might send a signal to the client and interrupt its current
processing. By default, the BEA Tuxedo system checksfor unsolicited messages each
time an ATMI function is invoked. This approach, referred to asdip-in, is
advantageous because it:

m |Issupported on al platforms
m Does not interrupt the current processing

As some time may elapse between “dip-ins,” the application can call the

t pchkunsol () function to check for any waiting unsolicited messages. Refer to
“Writing Event-based Clients and Servers’ on page 8-1 for more information on the
t pchkunsol () function.

When aclient joins an application using thet pi ni t () function, it can control how to
handl e unsolicited notification messages by defining flags. For client notification, the
possible valuesfor f | ags are defined in the following table.

Programming a BEA Tuxedo ATMI Application Using C

Using Features of the TPINIT Typed Buffer

Table 4-2 Client Notification Flagsin a TPINIT Typed Buffer

Flag Description

TPU_SI G Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. The
advantage of using this mode isimmediate notification. The
disadvantages include:

m Thecalling process must have the same Ul D asthe sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

m TPU_SI Gisnotavailableonall platforms (specificaly, itis
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, theflagisset to TPU_DI P and the
event is logged.

TPU_DI P (default) Select unsolicited notification by dip-in. In this case, the client
can specify the name of the message handling function using the
t pset unsol () function, and check for waiting unsolicited
messages using thet pchkunsol () function.

TPU_THREAD Select THREAD notification in a separate thread. Thisflagis
alowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support
multithreading, it is considered an invalid argument. Asaresult,
anerrorisreturned and t per r no(5) issetto TPEI NVAL.

TPU_I GN Ignore unsolicited notification.

Refer tot pi ni t (3c) inthe BEA Tuxedo ATMI C Function Reference for more
information on the TPI NI T typed buffer flags.

System Access Mode

An application can access the BEA Tuxedo system through either of two modes:
protected or fastpath. The ATMI client can request amode when it joins an application
using thet pi ni t () function. To specify amode, a client passes one of the following
valuesinthef | ags field of the TPI NI T buffer to thet pi ni t () function.

Programming a BEA Tuxedo ATMI Application Using C 4-7

4 Writing Clients

Table 4-3 System AccessFlagsin a TPINIT Typed Buffer

Mode Description

Prot ect ed Allows ATMI calls within an application to access the BEA
Tuxedo system internal tables via shared memory, but protects
shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overridesthe valuein
UBBCONFI G, except when NO_OVERRI DE isspecified. Refer to
Setting Up a BEA Tuxedo Application for more information on
UBBCONFI G

Fast pat h (default) Allows ATMI calls within application code access to BEA
Tuxedo system internals via shared memory. Does not protect
shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overrides the value of
UBBCONFI Gexcept when NO_OVERRI DE is specified. Refer to
Setting Up a BEA Tuxedo Application for more information on
UBBCONFI G.

Resource Manager Association

An application administrator can configure groups for servers associated with a
resource manager, including servers that provide administrative processes for
coordinating transactions. Refer to Setting Up a BEA Tuxedo Application for
information on defining groups.

When joining the application, a client can join a particular group by specifying the
name of that group in the gr pnane field of the TPI NI T buffer.

Client Authentication

The BEA Tuxedo system provides security at incremental levels, including operating
system security, application password, user authentication, optional access control
lists, mandatory access control lists, and link-level encryption. Refer to Setting Up a
BEA Tuxedo Application for information on setting security levels.

4-8 Programming a BEA Tuxedo ATMI Application Using C

Leaving the Application

The application password security level requires every client to provide an application
password when it joins the application. The administrator can set or change the
application password and must provideit to valid users.

If thislevel of security isused, BEA Tuxedo system-supplied client programs, such as
ud() , prompt for the application password. (Refer to Administering a BEA Tuxedo
Application at Run Time for more information on ud, wud(1).) Inturn,
application-specific client programs must include code for obtaining the password
from auser. The unencrypted password is placed in the TPI NI T buffer and evaluated
when the client callst pi ni t () tojoin the application.

Note: The password should not be displayed on the screen.

You can usethet pchkaut h(3c) function to determine:
m Whether the application requires any authentication

m |f the application requires authentication, which of the following types of
authentication is needed:

e System authentication based on an application password

e Application authentication based on an application password and
user-specific information

Typically, aclient should call thet pchkaut h() function beforet pi ni t () toidentify
any additional security information that must be provided during initialization.

Refer to Using Security in CORBA Applications for more information on security
programming techniques.

Leaving the Application

Once all service requests have been issued and replies received, the ATMI client can
leavethe application usingthet pt er m(3c) function. Thet pt er () functiontakesno
arguments, and returns an integer value that is equal to -1 on error.

Programming a BEA Tuxedo ATMI Application Using C 4-9

4 Writing Clients

Building Clients

To build an executable ATMI client, compile your application with the BEA Tuxedo
system libraries and all other referenced files using the bui | dcl i ent (1) command.
Use the following syntax for the bui | dcl i ent command:

buildclient filenane.c -o filenane -f filenanes -| filenanes

The following table describes the options to the bui | dcl i ent command.

Table 4-4 buildclient Options

This Option or
Argument . ..

Allows You to Specify . . .

filenane.c

The C application to be compiled.

-o fil enane

The executable output file. The default name for the output file
isa. out .

-f filenanes

A list of filesthat areto be link edited before the BEA Tuxedo
system libraries are link edited. Y ou can specify - f more than
once on the command line, and you can include multiple
filenamesfor each occurrenceof - f . If you specify aC program
file(fil e. c),itiscompiled beforeitislinked. Y ou can specify
other object files (fi | e. 0) separately, or in groupsin an
archivefile(fil e. a).

-1 filenanes

A list of filesthat are to be link edited after the BEA Tuxedo
system libraries are link edited. Y ou can specify - | more than
once on the command line, and you can include multiple
filenamesfor each occurrenceof - | . If you specify aC program
file(fil e. c),itiscompiled beforeitislinked. Y ou can specify
other object files (fi | e. 0) separately, or in groupsin an
archivefile(fi l e. a).

4-10 Programming a BEA Tuxedo ATMI Application Using C

Building Clients

See Also

This Option or Allows You to Specify . ..
Argument . ..
-r The resource manager has accessto libraries that should be link

edited with the executable server. The application administrator
isresponsible for predefining all valid resource manager
information in the $TUXDI R/ updat aobj / RMfile using the
bui | dt ms(1) command. Only one resource manager can be
specified. Refer to Setting Up a BEA Tuxedo Application for
more information.

Note: The BEA Tuxedo libraries are linked in automatically; you do not need to
specify any BEA Tuxedo libraries on the command line.

The order in which you specify the library filesto be link edited is significant: it
depends on the order in which functions are called in the code, and which libraries
contain references to those functions.

By default, thebui | dcl i ent command invokesthe UNIX cc command. Y ou can set
the CC and CFLAGS environment variables to specify an alternative compile command,
and to set flags for the compile and link-edit phases, respectively. For more
information, refer to “ Setting Environment Variables’ on page 2-5.

buildclient -C -0 audit -f audit.o

The following example command line compiles a C program called audi t . ¢ and
generates an executable file named audi t .

buildclient —o audit —f audit.c

m “Building Servers’ on page 5-32

®m buildclient (1) inthe BEA Tuxedo Command Reference

Programming a BEA Tuxedo ATMI Application UsingC 4-11

4 Writing Clients

Client Process Examples

The following pseudo-code shows how atypical ATMI client process works from the
time at which it joins an application to the time at which it leaves the application.

Listing4-2 Typical Client Process Paradigm

mai n()

{

check | evel of security

call tpsetunsol () to nane your handler for TPU DI P
get usrnane, cltnanme

pronpt for application password

allocate a TPINI T buffer

pl ace values into TPINIT buffer structure nmenbers

if (tpinit((TPINIT *) tpinfo) == -1){
error routine;
}

al l ocate a message buffer
whi |l e user input exists {
pl ace user input in the buffer
make a service cal
receive the reply
check for unsolicited nessages

}

free buffers

if (tpterm() == -1){
error routine;
}

Onerror, - 1 isreturned and the application setsthe external global variable, t per r no,
to avaluethat indicates the nature of the error. t perrno isdefinedintheat nmi . h
header file and documented int per r no(5) inthe File Formats, Data Descriptions,
MIBs, and System Processes Reference. Programmerstypically assign an error codeto
this global variable that reflects the type of error encountered. Thereisadiscussion of
the values of t per rno in“ System Errors’ on page 11-1. See “Introduction to the C

4-12 Programming a BEA Tuxedo ATMI Application Using C

Client Process Examples

Language Application-to-Transaction Monitor Interface” in the BEA Tuxedo ATMI C
Function Reference for a complete list of error codes that can be returned for each of
the ATMI functions.

Thefollowing exampleillustrates how to usethet pi nit () andt pt er () functions.
This example is borrowed from, bankapp, the sample banking application that is
provided with the BEA Tuxedo system.

Listing 4-3 Joining and Leaving an Application

#
#
#
#
#
#
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<stdi 0. h> /* UNIX */

<string. h> /[* UNI X */

<fm.h> /* BEA Tuxedo System */
<atm . h> /* BEA Tuxedo System */
<Uuni x. h> /* BEA Tuxedo System */
<userl og. h> /* BEA Tuxedo System */
"bank. h" /* BANKI NG #defines */
"aud. h" /* BANKI NG vi ew defines */

mai n(argc, argv)

int argc;

char *argv[];

{

if.(strrchr(argv[O],'/’) I'= NULL)
proc_nanme = strrchr(argv[0],’ /") +1;

el se

proc_nanme = argv[O0];

);.Join application */
if (tpinit((TPINIT *) NULL) == -1) {
(void)userlog("%: failed to join application\n", proc_nane);

exit(1);

/* Leave application */

if (tpterm() == -1) {

(void)userlog("%: failed to | eave application\n", proc_namne);
exit(1);

}

Programming a BEA Tuxedo ATMI Application UsingC ~ 4-13

4 Writing Clients

The previous exampl e shows the client process attempting to join the application with
acal tot pi nit (). If the process encountersan error (that is, if thereturn codeis-1),
the process writes a descriptive message to the central event log viaacall to

user | og() , which takes arguments similar to thepri nt f () C program statement.
Refer touser | og(3c) inthe BEA Tuxedo ATMI C Function Reference for more
information.

Similarly, whent pt er () iscalled, if an error is encountered, the process writes a
descriptive message to the central event log.

4-14 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

5 Writing Servers

This topic includes the following sections:

m BEA Tuxedo System main()

m System-supplied Server and Services

m Guidelines for Writing Servers

m Defining a Service

m Example: Checking the Buffer Type

m Example: Checking the Priority of the Service Request
m Terminating a Service Routine

m Advertising and Unadvertising Services

m Building ServersUsing a C++ Compiler

BEA Tuxedo System main()

To facilitate the development of ATMI servers, the BEA Tuxedo system provides a

predefined mai n() routine for server load modules. When you execute the
bui | dser ver command, the mai n() routineis automatically included as part of the
server.

Note: Thenmai n() routine that the system providesis a closed abstraction; you
cannot modify it.

Programming a BEA Tuxedo ATMI Application Using C 51

5 Writing Servers

In addition to joining and exiting from an application, the predefined mai n() routine
accomplishes the following tasks on behalf of the server.

Executes the process ignoring any hangups (that is, it ignores the SI GHUP
signal).

Initiates the cleanup process on receipt of the standard operating system software
termination signal (SI GTERM). The server is shut down and must be rebooted if
needed again.

Attaches to shared memory for bulletin board services.
Creates a message queue for the process.

Advertisestheinitial servicesto be offered by the server. Theinitia services are
either all the serviceslink edited with the predefined mai n() , or a subset
specified by the BEA Tuxedo system administrator in the configuration file.

Processes command-line arguments up to the double dash (- -), which indicates
the end of system-recognized arguments.

Callsthefunctiont psvrini t () to processany command-line arguments listed
after the double dash (- -) and optionally to open the resource manager. These
command-line arguments are used for application-specific initialization.

Until ordered to halt, checks its request queue for service request messages.

When a service request message arrives on the request queue, nai n() performs
the following tasks until ordered to halt:

e |If the-r option is specified, records the starting time of the service request.
e Updates the bulletin board to indicate that the server is BUSY.

e Allocates a buffer for the request message and dispatches the service; that is,
calls the service subroutine.

When the service returns from processing itsinput, mai n() performsthe
following tasks until ordered to halt:

e |If the-r option is specified, records the ending time of the service request.
e Updates statistics.

e Updates the bulletin board to indicate that the server is| DLE; that is, that the
server isready for work.

5-2 Programming a BEA Tuxedo ATMI Application Using C

System-supplied Server and Services

e Checksits queue for the next service request.

m When the server isrequired to halt, callst psvrdone() to perform any required
shutdown operations.

Asindicated above, the mai n() routine handles all of the details associated with
joining and exiting from an application, managing buffers and transactions, and
handling communication.

Note: Because the system-supplied mai n() accomplishes the work of joining and
leaving the application, you should not include callsto thet pi ni t () or
t pt er m() function inyour code. If you do, the function encounters an error
and returns TPEPROTOINt per r no. For moreinformation onthet pi nit () or
t pt er m() function, refer to “Writing Clients’ on page 4-1.

System-supplied Server and Services

Themai n() routine provides one system-supplied ATMI server, AUTHSVR, and two
subroutines, t psvrinit () andt psvrdone() . Thedefault versionsof all three, which
are described in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions of t psvrinit () andt psvrdone(),
remember that the default versions of these two routines call t x_open() and
t x_cl ose(), respectively. If you write anew version of t psvri ni t () that
calst popen() rather thant x_open() , you should also write a new version
of t psvrdone() that callst pcl ose() . In other words, both functionsin an
open/close pair must belong to the same set.

In addition to the subroutines described in thistopic, the system provides two
subroutines called t psvrt hrinit (3c) andt psvrthrdone(3c). For more
information, refer to “Programming a Multithreaded and Multicontexted
ATMI Application” on page 10-1.

Programming a BEA Tuxedo ATMI Application Using C 5-3

5 Writing Servers

System-supplied Server: AUTHSVR()

Y ou can use the AUTHSVR(5) server to provide individual client authentication for an
application. Thet pi ni t () function callsthis server when thelevel of security for the
application is TPAPPAUTH.

The service in AUTHSVR looks in the dat a field of the TPI NI T buffer for auser
password (not to be confused with the application password specified in the passwd
field of the TPI NI T buffer). By default, the system takes the string in dat a and
searches for amatching string inthe/ et ¢/ passwd file.

When called by anative-siteclient, t pi ni t () forwardsthedat a field asitisreceived.
This means that if the application requires the password to be encrypted, the client
program must be coded accordingly.

When called by a Workstation client, t pi ni t () encrypts the data before sending it
across the network.

System-supplied Services: tpsvrinit() Function

When a server is booted, the BEA Tuxedo system mai n() callst psvri nit(3c)
during its initialization phase, before handling any service requests.

If an application does not provide a custom version of this function within the server,
the system uses the default function provided by mai n() , which opens the resource
manager and logs an entry in the central event log indicating that the server has
successfully started. The central user log is an automatically generated file to which
processes can write messages by calling theuser | og(3c) function. Refer to
“Managing Errors’ on page 11-1 for more information on the central event log.

You canusethet psvrinit () function for any initialization processes that might be
required by an application, such as the following:

m Receiving command-line options
m Opening adatabase

The following sections provide code samples showing how these initialization tasks
are performed through callstot psvri ni t () . Although it is not illustrated in the
following examples, message exchanges can also be performed within this routine.

5-4 Programming a BEA Tuxedo ATMI Application Using C

System-supplied Server and Services

However, t psvrinit () failsif it returns with asynchronous replies pending. In this
case, thereplies are ignored by the BEA Tuxedo system, and the server exits
gracefully.

You can also usethet psvrinit () function to start and complete transactions, as
described in “Managing Errors’ on page 11-1.

Use the following signature to call thet psvri ni t () function:

i nt
tpsvrinit(int argc, char **argv)

Receiving Command-line Options

When a server is booted, itsfirst task isto read the server options specified in the
configuration file up to the point that it receives an EOF indication. To do so, the server
callsthe get opt (3) UNIX function. The presence of adouble dash (- -) onthe
command line causes the get opt () function to return an EOF. The get opt function
placesthe ar gv index of the next argument to be processed in the external variable
opt i nd. The predefined mai n() thencallst psvrinit().

The following code example shows how thet psvri ni t () functionisusedtoreceive
command-line options.

Listing5-1 Receiving Command-line Optionsin tpsvrinit()

tpsvrinit(argc, argv)

int argc;

char **argv;

{ .
int c;
extern char *optarg;
extern int optind;

Wnile((c = getopt(argc, argv, "f:x:")) !'= EOF)
switch(c){

Programming a BEA Tuxedo ATMI Application Using C 55

5 Writing Servers

When mai n() callstpsvrinit (), itpicksup any arguments that follow the double
dash (- -) on the command line. In the example above, optionsf and x each takes an
argument, as indicated by the colon. opt ar g points to the beginning of the option
argument. The switch statement logic is omitted.

Opening a Resource Manager

5-6

The following example illustrates another common use of t psvri ni t () : opening a
resource manager. The BEA Tuxedo system provides functions to open aresource
manager, t popen(3c) andt x_open(3c). It aso providesthe complementary
functions, t pcl ose(3c) andt x_cl ose(3c) . Applicationsthat use these functionsto
open and close their resource managers are portable in this respect. They work by
accessing the resource manager instance-specific information that is available in the
configuration file.

Note: If writingamultithreaded server, you must usethet psvrt hri ni t () function
to open a resource manager, as described in “ Programming a Multithreaded
and Multicontexted ATMI Application” on page 10-1.

These function calls are optional and can be used in place of the resource manager
specific callsthat are sometimes part of the Data Manipulation Language (DML) if the
resource manager is adatabase. Notethe use of theuser | og(3c) function to writeto
the central event log.

Note: To create aninitiaization function that both receives command-line options

and opens a database, combine the following example with the previous
example.

Listing5-2 Opening a Resource Manager in tpsvrinit()

tpsvrinit()

/* Open dat abase */

if (tpopen() == -1) {

Programming a BEA Tuxedo ATMI Application Using C

System-supplied Server and Services

(void)userlog("tpsvrinit: failed to open database: ");
switch (tperrno) {
case TPESYSTEM
(voi d)userl og("Systemerror\n");
br eak;
case TPECS:
(void)userlog("Unix error %\ n", Uuni xerr);
br eak;
case TPEPROTO
(void)userlog("Called in inproper context\n");
br eak;
case TPERMERR
(void)userlog("RM failure\n");
br eak;

return(-1); /* causes the server to exit */

return(0);

}

To guard against errors that may occur during initialization, t psvri ni t () canbe
coded to allow the server to exit gracefully before starting to process service requests.

System-supplied Services: tpsvrdone() Function

Thet psvrdone() function callst pcl ose() to close the resource manager, similarly
totheway t psvrinit() calstpopen() toopenit.

Note: If writing a multithreaded server, you must usethet psvrt hr done()
command to open a resource manager, as described in “ Programming a
Multithreaded and Multicontexted ATMI Application” on page 10-1.

Use the following signature to call thet psvr done() function:

voi d
tpsvrdone() /* Server termnation routine */

Thet psvrdone() function requires no arguments.

Programming a BEA Tuxedo ATMI Application Using C 5-7

5 Writing Servers

If an application does not define aclosing routinefor t psvr done() , the BEA Tuxedo
system calls the default routine supplied by mai n() . Thisroutine callst x_cl ose()
and user | og() to close the resource manager and write to the central event log,
respectively. The message sent to the log indicates that the server is about to exit.

t psvrdone() iscalled after the server has finished processing service requests but
beforeit exits. Becausethe server isstill part of the system, further communication and
transactions can take place within the routine, as long as certain rules are followed.
These rules are covered in “Managing Errors’ on page 11-1.

The following example illustrates how to use thet psvr done() function to close a
resource manager and exit gracefully.

Listing 5-3 Closing a Resource Manager with tpsvrdone()

voi d
t psvrdone()

/* O ose the database */
if(tpclose() == -1)
(void)userl og("tpsvrdone: failed to close database: ");
switch (tperrno) {
case TPESYSTEM
(voi d)userl og("BEA TUXEDO error\n");
br eak;
case TPECS:
(void)userlog("Unix error %\ n", Uuni xerr);
br eak;
case TPEPROTO
(void)userlog("Called in inmproper context\n");
br eak;
case TPERMERR:
(void)userlog("RM failure\n");
br eak;
}

return;

}

return;

5-8 Programming a BEA Tuxedo ATMI Application Using C

Guidelines for Writing Servers

Guidelines for Writing Servers

Because the communication details are handled by the BEA Tuxedo system mai n()
routine, you can concentrate on the application service logic rather than
communication implementation. For compatibility with the system-supplied mai n() ,
however, application services must adhere to certain conventions. These conventions
arereferred to, collectively, as the service template for coding service routines. They
are summarized in the following list. Refer to thet pser vi ce(3c) reference pagein
the BEA Tuxedo ATMI C Function Reference for more information on these
conventions.

m A request/response service can receive only one request at atime and can send
only onereply.

m When processing arequest, a request/response service works only on that
request. It can accept another only after it has either sent areply to the requester
or forwarded the request to another service for additional processing.

m Serviceroutines must terminate by calling either thet pret urn() or
t pf orwar d() function. These functions behave similarly to the C language
r et ur n statement except that after they finish executing, control returnsto the
BEA Tuxedo system’smai n() instead of the calling function.

m When communicating with another server viat pacal | (), theinitiating service
must either wait for all outstanding replies or invalidate them with t pcancel ()
beforecalling t pret urn() ort pforward().

m Serviceroutines are invoked with one argument, svci nf o, which is a pointer to
a service information structure (TPSVCI NFO).

Programming a BEA Tuxedo ATMI Application Using C 5-9

5 Writing Servers

Defining a Service

Y ou must define every service routine as a function that receives one argument
consisting of apointer to a TPSVCI NFOstructure. The TPSVCI NFO structure is defined
inthe at m . h header file and includes the following information:

char nane[32] ;
| ong flags;
char *dat a;

| ong | en;

int cd;

int appkey;

CLIENTID cltid;

The following table summarizes the TPSVCI NFO data structure.

Table5-1 TPSVCINFO Data Structure

Field Description

nane Specifies, to the service routine, the name used by the requesting
process to invoke the service.

fl ags Notifiesthe serviceif it isin transaction mode or if the caler is
expecting areply. The various ways in which a service can be
placed in transaction mode are discussed in “Writing Global
Transactions’ on page 9-1.

The TPTRAN flag indicates that the serviceisin transaction
mode. When a serviceisinvoked through acall tot pcal | ()
ortpacal | () withthef| ags parameter set to TPNOTRAN,
the service cannot participate in the current transaction.
However, it is still possible for the service to be executed in
transaction mode. That is, even when the caller setsthe
TPNOTRAN communication flag, itispossiblefor TPTRANto be
setinsvci nf o- >f | ags. For an example of such asituation,
refer to “Writing Global Transactions’ on page 9-1.

Thef | ags member issetto TPNOREPLY if the serviceiscalled
by t pacal | () withthe TPNOREPLY communication flag set.
If acalled serviceis part of the same transaction as the calling
process, it must return areply to the caller.

5-10 Programming a BEA Tuxedo ATMI Application Using C

Defining a Service

Field

Description

data

Pointer to abuffer that wasprevioudly allocated by t pal | oc()
within the mai n() . Thisbuffer is used to receive request
messages. However, it is recommended that you also use this
buffer to send back reply messages or forward request messages.

I en

Contains the length of the request data that is in the buffer
referenced by the dat a field.

cd

For conversational communication, specifies the connection
descriptor.

appkey

Reserved for use by the application. If application-specific
authentication is part of your design, the application-specific
authentication server, which is called when aclient joins the
application, should return a client authentication key as well as
an indication of success or failure. The BEA Tuxedo system
holds the appkey on behalf of the client and passes the
information to subsequent service requestsin thisfield. By the
timethe appkey is passed to a service, the client has already
been authenticated. However, the appkey field can be used
within aservicetoidentify the user invoking the service or some
other parameters associated with the user.

If thisfield is not used, the system assigns it a default value of
-1.

cltid

Structure of type CLI ENTI D used by the system to carry the
identification of the client. Y ou should not modify this structure.

When the dat a field in the TPSVCI NFO structure is being accessed by a process, the
following buffer types must agree:

m Type of the request buffer passed by the calling process

m Type of the corresponding buffer code defined within the called service

m Type of the associated buffer type defined for the called service in the

configuration file

The following example illustrates atypical service definition. This code is borrowed
from the ABAL (account balance) service routine that is part of the banking application
provided with the BEA Tuxedo software. ABAL is part of the BAL server.

Programming a BEA Tuxedo ATMI Application UsingC 5-11

5 Writing Servers

Listing5-4 Typical Service Definition

#i ncl ude <stdio. h> /* UNI X */

#i ncl ude <atm . h> /* BEA Tuxedo System */

#i ncl ude <sql code. h> /* BEA Tuxedo System */

#i ncl ude "bank.flds.h" /* bankdb fields */

#i ncl ude "aud. h" /* BANKI NG vi ew defines */

EXEC SQ. begin decl are section;
static long branch_id; /* branch id */
static float bal; /* bal ance */
EXEC SQ. end decl are section;
/*
* Service to find sumof the account bal ances at a SITE
*
/
voi d
#i fdef __ _STDC _
ABAL(TPSVCI NFO *transhb)
#el se
ABAL (transb)

TPSVCI NFO *transb;
#endi f

{

struct aud *transv; /* view of decoded nessage */
/* Set pointer to TPSVCINFO data buffer */

transv = (struct aud *)transb->data;

set the consistency |evel of the transaction

/* Get branch id from nessage, do query */

EXEC SQ. decl are acur cursor for
sel ect SUM BALANCE) from ACCOUNT;

EXEC SQ. open acur; /* open */
EXEC SQ. fetch acur into :bal; /* fetch */
if (SQCODE != SQAL_OK) { /* nothing found */

(void)strcpy (transv->ernsg, "abal failedin sql aggregation");
EXEC SQ. cl ose acur;
tpreturn(TPFAIL, 0, transb->data, sizeof(struct aud), 0);

EXEC SQ. cl ose acur;

5-12 Programming a BEA Tuxedo ATMI Application Using C

Defining a Service

Example:

transv->bal ance = bal ;
tpreturn (TPSUCCESS, 0, transb->data, sizeof(struct aud), 0);

In the preceding example, the application allocates a request buffer on the client side
by acal tot pal | oc() withthet ype parameter set to VI Ewand the subt ype set to
aud. The ABAL service is defined as supporting the VI Ewtyped buffer. The BUFTYPE
parameter is not specified for ABAL and defaultsto ALL. The ABAL service allocates a
buffer of the type VI Ewand assignsthe dat a member of the TPSVCI NFO structure that
was passed to the ABAL subroutine to the buffer pointer. The ABAL server retrievesthe
appropriate data buffer by accessing the corresponding dat a member, asillustrated in
the preceding example.

Note: After the buffer isretrieved, but before the first attempt is made to access the
database, the service must specify the consistency level of the transaction.
Refer to “Writing Global Transactions’ on page 9-1 for more details on
transaction consistency levels.

Checking the Buffer Type

The code example in this section shows how a service can access the data buffer
defined in the TPSVCI NFO structure to determine its type by using thet pt ypes()
function. (This processisdescribed in “ Checking for Buffer Type” on page 3-14.) The
service also checks the maximum size of the buffer to determine whether or not to
reallocate space for the buffer.

This exampleis derived from the ABAL service that is part of the banking application
provided with the BEA Tuxedo software. It shows how the service iswritten to accept
arequest either asan aud VI Ewor an FM. buffer. If its attempt to determine the
message type fails, the service returns a string with an error message plus an
appropriate return code; otherwise it executes the segment of code that is appropriate
for the buffer type. For more information onthet pr et ur n() function, refer to
“Terminating a Service Routing” on page 5-17.

Programming a BEA Tuxedo ATMI Application UsingC ~ 5-13

5 Writing Servers

Listing5-5 Checking for Buffer Type

#define TMIYPERR 1 /* return code indicating tptypes failed */
#define INVALMIY 2 /* return code indicating invalid nessage type */

voi d
ABAL(transb)

TPSVCI NFO *transb;

{

struct aud *transv; /* view nessage */

FBFR *transf; /* fielded buffer nmessage */

int repc; [/* tpgetrply return code */

char typ[TMI'YPELEN+1], subtyp[TMSTYPELEN+1]; /* type, subtype of message */
char *retstr; [/* return string if tptypes fails */

/* find out what type of buffer sent */
if (tptypes((char *)transbh->data, typ, subtyp) == -1) {
retstr=tpall oc("STRING', NULL, 100);
(void)sprintf(retstr,
"Message garbl ed; tptypes cannot tell what type nessage\n");
tpreturn(TPFAIL, TMIYPERR, retstr, 100, 0);
}
/* Deternine nethod of processing service request based on type */
if (stremp(typ, "FM") == 0) {
transf = (FBFR *)transb->dat a;
code to do abal service for fielded buffer
tpreturn succeeds and sends FML buffer in reply

}

else if (strcemp(typ, "VIEW) == 0 && strcnp(subtyp, "aud") == 0) {
transv = (struct aud *)transb->data;

code to do abal service for aud struct

tpreturn succeeds and sends aud view buffer in reply

}

el se {
retstr=tpall oc("STRING', NULL, 100);
(void)sprintf(retstr,
"Message garbled; is neither FM. buffer nor aud viewn");
tpreturn(TPFAI L, | NVALMIY, retstr, 100, 0);

5-14 Programming a BEA Tuxedo ATMI Application Using C

Defining a Service

Example:

#i ncl ude <std
#include "atm

Checking the Priority of the Service Request

Note: Thetpgprio() andtpsprio() functions, used for getting and setting
priorities, respectively, aredescribed in detail in“ Setting and Getting M essage
Priorities’ on page 6-16.

The example codein this section shows how aservice called PRI NTERteststhe priority
level of the request just received using thet pgpri o() function. Then, based on the
priority level, the application routes the print job to the appropriate destination printer
and pipes the contents of pbuf —>dat a to that printer.

The application queriespbuf —>f | ags to determine whether areply isexpected. If so,
it returns the name of the destination printer to the client. For more information on the
t preturn() function, refer to “ Terminating a Service Routine” on page 5-17.

Listing5-6 Checkingthe Priority of a Received Request

0. h>
. h"

char *roundrobin();

PRI NTER(pbuf)

TPSVCI NFO *pbuf ; /* print buffer */

{

char prnane[20], ocnd[30]; /* printer nane, output conmand */
long rlen; /[* return buffer length */

int prio;
FI LE *I p_pi pe

/* priority of request */
/* pipe file pointer */

pri o=t pgprio();
if (prio <= 20)
(void)strcpy(prnane, "bigjobs"); /* send low priority (verbose)

else if (prio

jobs to big conp. center
| aser printer where operator
sorts output and puts it
inabin */

<= 60)

(voi d)strcpy(prnane, roundrobin()); /* assign printer on a

rotating basis to one of
many |ocal small |aser printers

Programming a BEA Tuxedo ATMI Application UsingC ~ 5-15

5 Writing Servers

wher e output can be picked
up i medi atel y; roundrobin() cycles
through list of printers */
el se
(voi d)strcpy(prnane, "hi speed");
/* assign job to high-speed | aser

printer; reserved for those who

need verbose output on a daily,

frequent basis */

(void)sprintf(ocnd, "lp -d%", prnane); /* output Ip(l) comand */

| p_pi pe = popen(ocmd, "wW'); /* create pipe to command */
(void)fprintf(lp_pipe, "%", pbuf->data); /* print output there */
(voi d) pcl ose(l p_pi pe); /* cl ose pipe */

if ((pbuf->flags & TPNOREPLY))
t preturn(TPSUCCESS, 0, NULL, 0, 0);
rlen = strlen(prname) + 1
pbuf ->data = tpreal |l oc(pbuf->data, rlen); /* ensure enough space for nane */
(voi d)strcpy(pbuf->data, prnane);
tpreturn(TPSUCCESS, 0, pbuf->data, rlen, 0);

char *
roundr obi n()

{

static char *printers[] = {"printerl", "printer2", "printer3", "printer4"};
static int p = 0;

if (p>23)
p=0;
return(printers[p++]);

}

5-16 Programming a BEA Tuxedo ATMI Application Using C

Terminating a Service Routine

Terminating a Service Routine

Thetpreturn(3c),tpcancel (3c), andt pf orwar d(3c) functions specify that a
service routine has completed with one of the following actions:

m tpreturn() sendsareply tothecalling client.
m tpcancel () cancelsthe current request.

m tpforward() forwardsarequest to another service for further processing.

Sending Replies

Thet pret urn(3c) function marksthe end of the service routine and sends a message
to the requester. Use the following signature to call thet pr et urn() function:

void
tpreturn(int rval, int rcode, char *data, long len, long flags)

The following table describes the argumentsto the t pr et ur n() function.

Programming a BEA Tuxedo ATMI Application UsingC 5-17

5 Writing Servers

5-18

Table 5-2 tpreturn() Function Arguments

Argument Description

rval Indicates whether or not the service has completed successfully
on an application-level. The valueisan integer that is
represented by a symbolic name. Valid settings include:

m TPSUCCESS—thecalling function succeeded. Thefunction
stores the reply message in the caller’ s buffer. If thereisa
reply message, it isin the caler’ s buffer.

m TPFAI L (default)—the service terminated unsuccessfully.
The function reports an error message to the client process
waiting for thereply. Inthiscase, theclient’st pcal | () or
t pgetrpl y() function call fails and the system sets the
t per rno(5) variableto TPESVCFAI L toindicate an
application-defined failure. If areply message was
expected, it isavailablein the caller’s buffer.

m TPEXI T—the service terminated unsuccessfully. The
function reports an error message to the client process
waiting for the reply, and exits.

For adescription of the effect that the val ue of thisargument has

on global transactions, refer to “Writing Global Transactions’

on page 9-1.

r code Returns an application-defined return code to the caller. The
client can accessthe value returned in r code by querying the
t pur code(5) global variable. The function returns this code
regardless of success or failure.

Programming a BEA Tuxedo ATMI Application Using C

Terminating a Service Routine

Argument

Description

data

Pointer to the reply messagethat isreturned to the client process.
The message buffer must have been all ocated previously by
tpall oc().

If you use the same buffer that was passed to the servicein the
SVCI NFOstructure, you need not be concerned with buffer
alocation or disposition because both are handled by the
system-supplied mai n() . You cannot free this buffer using the
t pf ree() command; any attempt to do so quietly fails. You
can resize the buffer using thet preal | oc() function.

If you use another buffer (that is, a buffer other than the one
passed to the service routine) to return the message, it is your
responsibility to allocateit. The system frees the buffer
automatically when the application callsthet pr et ur n()
function.

If no reply message needsto bereturned, set thisargument to the
NULL pointer.

Note: If noreply is expected by the client (that is, if
TPNOREPLY was set), thet pr et ur n() function
ignoresthedat a and | en arguments and returns
control tomai n() .

I en

Length of thereply buffer. The application accesses the value of
this argument through the ol en parameter of thet pcal | ()
function or the | en parameter of thet pget r pl y() function.

Acting as the client, the process can use this returned value to
determine whether the reply buffer has grown.

If areply is expected by the client and thereis no datain the

reply buffer (that is, if the dat a argument is set to the NULL
pointer), the function sends a reply with zero length, without

modifying the client’ s buffer.

The system ignores the value of this argument if the dat a
argument is not specified.

flag

Currently not used.

Programming a BEA Tuxedo ATMI Application UsingC ~ 5-19

5 Writing Servers

The primary function of a service routine is to process arequest and return areply to
aclient process. It is not necessary, however, for asingle serviceto do all the work
required to perform the requested function. A service can act as arequester and pass a
request call to another servicethe sameway aclient issuestheoriginal request: through
callstotpcal I () ortpacall ().

Note: Thetpcal | () andtpacal | () functionsare described in detail in “Writing
Request/Response Clients and Servers’ on page 6-1.

Whent preturn() iscalled, control aways returnsto mai n() . If a service has sent
requests with asynchronous replies, it must receive all expected replies or invalidate
them with t pcancel () beforereturning control to mai n() . Otherwise, the
outstanding replies are automatically dropped when they are received by the BEA
Tuxedo system nai n() , and an error is returned to the caller.

If theclientinvokesthe servicewitht pcal | (), after asuccessful call tot pret urn(),
the reply message is available in the buffer referenced by *odat a. If t pacal | () is
used to send the request, and t pr et ur n() returns successfully, the reply messageis
availableinthet pget rpl y() buffer that is referenced by *dat a.

If areply isexpected and t pr et ur n() encounters errors while processing its
arguments, it sends af ai | ed message to the calling process. The caller detects the
error by checking the value placed in t per r no. In the case of failed messages, the
system setst per r no to TPESVCERR. This situation takes precedence over the value of
thet pur code global variable. If thistype of error occurs, no reply dataisreturned, and
both the contents and length of the caller’s output buffer remain unchanged.

If t preturn() returnsamessagein abuffer of an unknown type or a buffer that is not
allowed by the caller (that is, if the call ismade with f | ags set to TPNOCHANGE), the
system returns TPECTYPE in t per r no(5) . In this case, application success or failure
cannot be determined, and the contents and length of the output buffer remain
unchanged.

The value returned in thet pur code(5) global variableis not relevant if the

t preturn() functionisinvoked and atimeout occursfor the call waiting for thereply.
Thissituation takes precedence over al othersin determining the valuethat isreturned
int perrno(5).Inthiscase t perrno(5) issetto TPETI Me and the reply datais not
sent, leaving the contents and length of the caller’ s reply buffer unchanged. There are
two types of timeouts in the BEA Tuxedo system: blocking and transaction timeouts
(discussed in “Writing Global Transactions’ on page 9-1).

5-20 Programming a BEA Tuxedo ATMI Application Using C

Terminating a Service Routine

The example codein this section shows the TRANSFER service that is part of the XFER
server. Basically, the TRANSFER service makes synchronous calls to the W THDRAWAL
and DEPOSI T services. It allocates a separate buffer for the reply message since it must
use the request buffer for the calls to both the W THDRAWAL and the DEPQSI T services.
If the call to W THDRAWAL fails, the service writes the message cannot wi t hdr awon
the status line of the form, frees the reply buffer, and setsther val argument of the

t preturn() functionto TPFAI L. If the call succeeds, the debit balance is retrieved
from the reply buffer.

Note: Inthe following example, the application moves the identifier for the
“destination account” (which isretrieved from thecr _i d variable) to the
zeroth occurrence of the ACCOUNT | Dfieldinthet r ansf fielded buffer. This
moveis necessary because thisoccurrence of thefield in an FM buffer isused
for data-dependent routing. Refer to Setting Up a BEA Tuxedo Application for
more information.

A similar scenario is followed for the call to DEPCSI T. On success, the service frees
thereply buffer that was allocated in the service routine and setsther val argument to
TPSUCCESS, returning the pertinent account information to the status line.

Listing 5-7 tpreturn() Function

#i ncl ude <stdio. h> /* UNIX */

#i ncl ude <string. h> /[* UNI X */

#include "fm . h" /* BEA Tuxedo System */
#i nclude "atm . h" /* BEA Tuxedo System */
#i ncl ude "Usysflds. h" /* BEA Tuxedo System */
#i ncl ude "userl og. h" /* BEA Tuxedo System */
#i ncl ude "bank. h" /* BANKI NG #defines */
#i ncl ude "bank.flds.h" /* bankdb fields */

/*

* Service to transfer an anmbunt froma debit account to a credit

* account
*/

voi d

#ifdef _ STDC
TRANSFER(TPSVCI NFO *t r ansb)

#el se

Programming a BEA Tuxedo ATMI Application UsingC 5-21

5 Writing Servers

TRANSFER(t r ansb)
TPSVCI NFO *transb;

#endi f

{
FBFR *transf; /* fielded buffer of decoded nessage */
long db_id, cr_id; /* fromto account id's */
float db_bal, cr_bal; /* fromto account bal ances */
float tant; /* anpunt of the transfer */
FBFR *reqf b; /* fielded buffer for request nessage*/
int reqlen; /* length of fielded buffer */
char t_ants[BALSTR]; /* string for transfer anount */

char db_ant s[BALSTR]; /* string for debit account bal ance */
char cr_amts[BALSTR]; [/* string for credit account bal ance */

/* Set pointr to TPSVCI NFO data buffer */
transf = (FBFR *)transb->data;

/* Get debit (db_id) and credit (cr_id) account |IDs */

/* must have valid debit account nunmber */

if (((db_id = Fvall(transf, ACCOUNT_ID, 0)) < MNACCT) || (db_id > MAXACCT)) {
(void) Fchg(transf, STATLIN, O,"Invalid debit account nunber", (FLDLEN)O);
tpreturn(TPFAIL, O, transbh->data, OL, 0);

/* must have valid credit account nunber */

if ((cr_id = Fvall(transf, ACCOUNT_ID, 1)) < MNACCT || cr_id > MAXACCT) {
(voi d) Fchg(transf, STATLIN, O,"Invalid credit account nunber", (FLDLEN)O);
tpreturn(TPFAIL, O, transbh->data, OL, 0);

/* get anpbunt to be withdrawn */

if (Fget(transf, SAMOUNT, O, t_anmts, < 0) 0 || strcnp(t_ants,"") == 0) {
(void) Fchg(transf, STATLIN, O, "lnvalid anount", (FLDLEN)O);
tpreturn(TPFAIL, O, transbh->data, OL, 0);

}

(void)sscanf(t_ants,"%",tant);

/* must have valid anmpunt to transfer */
if (tanmt = 0.0)
(voi d) Fchg(transf, STATLIN, O,
"Transfer amount nmust be greater than $0.00", (FLDLEN) 0);
tpreturn(TPFAIL, O, transb->data, OL, 0);

/* make wi thdraw request buffer */

if ((regfb = (FBFR *)tpal |l oc("FM.", NULL, transb->len)) == (FBFR *)NULL) ({
(void)userlog("tpalloc failed in transfer\n");
(voi d) Fchg(transf, STATLIN, O,

5-22 Programming a BEA Tuxedo ATMI Application Using C

Terminating a Service Routine

"unable to allocate request buffer", (FLDLEN)O);
tpreturn(TPFAIL, O, transb->data, OL, 0);

reql en = Fsi zeof (reqfb);

/* put IDin request buffer */
(voi d) Fchg(reqgf b, ACCOUNT_I D, 0, (char *)&db_id, (FLDLEN)O);

/* put ampunt in request buffer */
(voi d) Fchg(reqgf b, SAMOUNT, 0,t _ants, (FLDLEN)O);

/* increase the priority of withdraw call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of withdramn");

if (tpcall ("WTHDRAWAL", (char *)reqfb, 0, (char **)&r eqfb,
(long *)&reql en, TPSI GRSTRT) == -1) {
(void) Fchg(transf, STATLIN, O,
"Cannot withdraw fromdebit account”, (FLDLEN)O);
tpfree((char *)reqfb);
tpreturn(TPFAIL, O,transbh->data, OL, 0);
}

/* get "debit" balance fromreturn buffer */

(void)strcpy(db_ants, Fval s((FBFR *)reqfb, SBALANCE, 0));
voi d) sscanf(db_ants, "% ", db_bal) ;
if ((db_ants == NULL) || (db_bal < 0.0)) {
(void) Fchg(transf, STATLIN, O,
"illegal debit account bal ance", (FLDLEN)O);
tpfree((char *)reqfb);
tpreturn(TPFAIL, O, transb->data, OL, 0);
}

/* put deposit account IDin request buffer */
(voi d) Fchg(reqgf b, ACCOUNT_I D, O, (char *)&cr_id, (FLDLEN)O);

/* put transfer amount in request buffer */
(voi d) Fchg(reqgf b, SAMOUNT, 0,t _ants, (FLDLEN)O);

/* Up the priority of deposit call */
if (tpsprio(PRIOCRITY, OL) == -1)
(void)userl og("Unable to increase priority of deposit\n");

/* Do a tpcall to deposit to second account */
if (tpcall ("DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
(long *) & eqglen, TPSIGRSTRT) == -1) {
(voi d) Fchg(transf, STATLIN, O,
"Cannot deposit into credit account", (FLDLEN)O);

Programming a BEA Tuxedo ATMI Application Using C

5-23

5 Writing Servers

tpfree((char *)reqfb);
tpreturn(TPFAIL, O,transbh->data, OL, 0);

/* get "credit" balance fromreturn buffer */

(void)strcpy(cr_anms, Fval s((FBFR *)reqfb, SBALANCE, 0));
(void)sscanf(cr_ants,"% ", &r _bal);
if ((cr_amts == NULL) || (cr_bal 0.0)) {
(voi d) Fchg(transf, STATLIN, O,
"I'l'l egal credit account bal ance", (FLDLEN)O);
tpreturn(TPFAIL, O, transb->data, OL, 0);

/* set buffer for successful return */

(voi d) Fchg(transf, FORMNAM 0, "CTRANSFER', (FLDLEN)O);

(voi d) Fchg(transf, SAMOUNT, 0, Fval s(reqfb, SAMOUNT, 0), (FLDLEN)O);
(voi d) Fchg(transf, STATLIN, O, "", (FLDLEN)O);

(voi d) Fchg(transf, SBALANCE, 0, db_ants, (FLDLEN)O);

(voi d) Fchg(transf, SBALANCE, 1, cr_ants, (FLDLEN)O);

tpfree((char *)reqfb);

t preturn(TPSUCCESS, O,transb->data, OL, 0);

Invalidating Descriptors

If aservicecallingt pget rpl y() (described in detail in “Writing Request/Response
Clientsand Servers’ on page 6-1) failswith TPETI ME and decidesto cancel therequest,
it can invalidate the descriptor with acall tot pcancel (3c) . If areply subsequently
arrives, it is silently discarded.

Use the following signature to call thet pcancel () function:

voi d
tpcancel (i nt cd)

The cd (call descriptor) argument identifies the process you want to cancel.

t pcancel () cannot beused for transaction replies (that is, for repliesto requests made
without the TPNOTRANflag set). Within atransaction, t pabor t (3c) doesthe samejob
of invalidating the transaction call descriptor.

The following example shows how to invalidate areply after timing out.

5-24 Programming a BEA Tuxedo ATMI Application Using C

Terminating a Service Routine

Listing 5-8 Invalidating a Reply After Timing Out

int cdl;

if ((cdl=tpacall (sname, (char *)audv, sizeof(struct aud),
TPNOTRAN)) == -1) {

}
if (tpgetrply(cdl, (char **)&audv, &udrl, 0) == -1) {
if (tperrno == TPETIME) {
t pcancel (cdl);

.

t preturn(TPSUCCESS, 0, NULL, OL, 0);

Forwarding Requests

Thet pf orwar d(3c) function allowsaserviceto forward arequest to another service
for further processing.

Use the following signature to call thet pf or war d() function:

voi d
t pforward(char *svc, char *data, long len, long flags)

The following table describes the argumentsto the t pr et ur n() function.

Table 5-3 tpreturn() Function Arguments

Argument Description

svce Character pointer to the name of the serviceto which therequest
isto be forwarded.

Programming a BEA Tuxedo ATMI Application UsingC ~ 5-25

5 Writing Servers

5-26

Argument

Description

data

Pointer to the reply message that is returned to the client process.
The message buffer must have been allocated previously by
tpal I oc().

If you use the same buffer that was passed to the servicein the
SVCI NFOstructure, you need not be concerned with buffer
allocation or disposition because both are handled by the
system-supplied mai n() . Y ou cannot free this buffer using the
t pf ree() command; any attempt to do so quietly fails. You
can resize the buffer using thet pr eal | oc() function.

If you use another buffer (that is, abuffer other than the one that
is passed to the service routine) to return the message, it is your
responsibility to allocate it. The system frees the buffer
automatically when the application callsthet pr et ur n()
function.

If no reply message needsto be returned, set thisargument tothe
NULL pointer.

Note: If no reply is expected by the client (that is, if
TPNOREPLY was set), thet pr et ur n() function
ignoresthedat a and | en arguments and returns
control to mai n() .

| en

Length of thereply buffer. The application accesses the val ue of
this argument through the ol en parameter of thet pcal | ()
function or the | en parameter of thet pget r pl y() function.

Acting as the client, the process can use this returned value to
determine whether the reply buffer has grown.

If areply is expected by the client and there isno datain the
reply buffer (that is, if the dat a argument is set to the NULL
pointer), the function sends a reply with zero length, without
modifying the client’s buffer.

The system ignores the value of this argument if thedat a
argument is not specified.

flag

Currently not used.

The functionality of t pf or war d() differsfrom aservice call: a service that forwards
arequest does not expect areply. The responsibility for providing the reply is passed
to the service to which the request has been forwarded. The latter service sends the

Programming a BEA Tuxedo ATMI Application Using C

Terminating a Service Routine

reply to the processthat originated the request. It becomesthe responsibility of thelast
server in the forward chain to send the reply to the originating client by invoking
tpreturn().

The following figure shows one possible sequence of events when arequest is
forwarded from one service to another. Here a client initiates a request using the
tpcal I () functionandthelast serviceinthe chain (SVC_C) providesareply using the
t preturn() function.

Figure5-1 Forwarding a Request

tpcall() tpforward|

CLIENT

Lpreturn(| aaalke tpforwardi()

Service routines can forward requests at specified priorities in the same manner that
client processes send requests, by using thet pspri o() function.

When aprocesscallst pf or war d() , the system-supplied mai n() regainscontrol, and
the server process is free to do more work.

Note: If aserver processisacting asaclient and areply is expected, the server is not
allowed to request services from itself. If the only available instance of the
desired service is offered by the server process making the request, the call
fails, indicating that arecursive call cannot be made. However, if aservice
routine sendsarequest (to itself) with the TPNOREPL Y communication flag set,
or if it forwards the request, the call does not fail because the service is not
waiting for itself.

Programming a BEA Tuxedo ATMI Application UsingC 5-27

5 Writing Servers

Callingt pf or war d() can beused toindicate success up to that point in processing the
request. If no application errors have been detected, you can invoket pf orwar d(),
otherwise, you can call t pret urn() withrval setto TPFAI L.

Thefollowing exampleis borrowed from the OPEN_ACCT serviceroutine whichis part
of the ACCT server. Thisexampleillustrates how the service sendsits data buffer to the
DEPOSI T service by calling t pf or war d() . The code shows how to test the SQLCODE
to determine whether the account insertion is successful. If the new account is added
successfully, the branch record is updated to reflect the new account, and the data
buffer is forwarded to the DEPCSI T service. On failure, t pret urn() iscaled with
rval setto TPFAI L and the failure is reported on the status line of the form.

Listing 59 tpforward() Function

/* set pointer to TPSVCINFO data buffer */
transf = (FBFR *)transb->dat a;

/* Insert new account record into ACCOUNT*/
account _id = ++l ast_acct; /* get new account nunber */
tlr_bal = 0.0; /* tenporary bal ance of 0 */
EXEC SQL insert into ACCOUNT (ACCOUNT_I D, BRANCH_ | D, BALANCE,
ACCT_TYPE, LAST_NAME, FIRST_NAME, M D IN T, ADDRESS, PHONE) val ues
(:account_id, :branch_id, :tlr_bal, :acct_type, :last_nane,
:first_name, :md_init, :address, :phone);
if (SQLCODE != SQL_OK) { /[* Failure to insert */
(voi d) Fchg(transf, STATLIN, O,
"Cannot update ACCOUNT", (FLDLEN)O);
tpreturn(TPFAIL, O, transb->data, OL, 0);

}

/* Update branch record with new LAST_ACCT */

EXEC SQL update BRANCH set LAST_ACCT = :last_acct where BRANCH ID = : branch_id;
if (SQLCODE != SQL_OK) { /* Failure to update */

(voi d) Fchg(transf, STATLIN, O,
"Cannot update BRANCH', (FLDLEN)O);
tpreturn(TPFAIL, O, transb->data, OL, 0);

/* up the priority of the deposit call */
if (tpsprio(PRIOCRITY, OL) == -1)
(void)userlog("Unable to increase priority of deposit\n");
/* tpforward same buffer to deposit service to add initial balance */
t pf orwar d(" DEPCSI T", transb->data, OL, 0);

5-28 Programming a BEA Tuxedo ATMI Application Using C

Advertising and Unadvertising Services

Advertising and Unadvertising Services

When a server is booted, it advertises the servicesit offers based on the values
specified for the CLOPT parameter in the configuration file.

Note: The servicesthat a server may advertise areinitially defined when the
bui | dser ver command is executed. The - s option allows a
comma-separated list of servicesto be specified. It also allows you to specify
afunction with anamethat differsfrom that of the advertised servicethat isto
be called to process the service request. Refer to the bui | dser ver (1) inthe
BEA Tuxedo Command Reference for more information.

The default specification callsfor the server to advertise all serviceswith which it was
built. Refer to the UBBCONFI G(5) or ser vopt s(5) reference pageintheFile Formats,
Data Descriptions, MIBs, and System Processes Reference for more information.

Because an advertised service uses a service table entry in the bulletin board, and can
therefore be resource-expensive, an application may boot its serversin such away that
only asubset of the services offered are available. To limit the servicesavailablein an
application, define the CLOPT parameter, within the appropriate entry in the SERVERS
section of the configuration file, to include the desired servicesin a comma-separated
list following the - s option. The - s option also alows you to specify afunction with
aname other than that of the advertised service to be called to process the request.
Refer to the ser vopt s(5) reference pagein the File Formats, Data Descriptions,
MIBs, and System Processes Reference for more information.

A BEA Tuxedo application administrator can usethe adverti se and unadverti se
commands of t madni n(1) to control the services offered by servers. The

t padvertise() andt punadverti se() functionsenableyoutodynamically control
the advertisement of a service in arequest/response or conversational server. The
service to be advertised (or unadvertised) must be available within the same server as
the service making the request.

Programming a BEA Tuxedo ATMI Application UsingC ~ 5-29

5 Writing Servers

Advertising Services

Use the following signature to call thet padverti se(3c) function:

int
t padvertise(char *svcname, void *func)

The following table describes the arguments to the t padverti se() function.

Table 5-4 tpadvertise() Function Arguments

Argument Description

svcname Pointer to the name of the service to be advertised. The service
name must be a character string of up to 15 characters. Names
longer than 15 characters are truncated. The NULL string is not
avalid value. If it is specified, an error (TPEI NVAL) results.

func Pointer to the address of a BEA Tuxedo system function that is
called to perform a service. Frequently, this nameisthe same as
the name of the service. The NULL stringisnot avalid value. If
it is specified, an error results.

Unadvertising Services

Thet punadverti se(3c) function removes the name of aservice from the service
table of the bulletin board so that the service is no longer advertised.

Use the following signature for thet punadverti se() function:

t punadverti se(char *svcnane)
char *svcnane;

Thet punadverti se() function contains one argument, which is described in the
following table.

5-30 Programming a BEA Tuxedo ATMI Application Using C

Advertising and Unadvertising Services

Table 5-5 tpunadvertise() Function Arguments

Argument Description

svcnane Pointer to the name of the service to be advertised. The service
name must be a character string of up to 15 characters. Names
longer than 15 characters are truncated. The NULL string is not
avalidvaue. If it is specified, an error (TPElI NVAL) results.

Example: Dynamic Advertising and Unadvertising of a

Service

The following example shows how to usethet padver ti se() function. In this
example, aserver called TLRis programmed to offer only the servicecalled TLR INI T
when booted. After some initialization, TLR_| NI T advertises two services called
DEPOSI T and W THDRAW Both are performed by thet | r _f uncs function, and both are
built into the TLR server.

After advertising DEPCSI T and W THDRAW TLR_I NI T unadvertisesitself.

Listing 5-10 Dynamic Advertising and Unadvertising

extern void tlr_funcs()

if (tpadvertise("DEPOSIT", (tlr_funcs)(TPSVCINFO *)) == -1)
check for errors;

if (tpadvertise("WTHDRAW, (tlr_funcs)(TPSVCINFO *)) == -1)
check for errors;

if (tpunadvertise("TLRINT") == -1)

check for errors;
t preturn(TPSUCCESS, 0, transh->data, OL, 0);

Programming a BEA Tuxedo ATMI Application UsingC 5-31

5 Writing Servers

Building Servers

To build an executable ATMI server, compile your application service subroutines
with the BEA Tuxedo system server adaptor and all other referenced files using the
bui | dserver (1) command.

Note: The BEA Tuxedo server adaptor accepts messages, dispatches work, and

manages transactions (if transactions are enabled).

Use the following syntax for the bui | dser ver command:

bui | dserver

-o filenane -f filenanes -1 filenanes -s -v

The following table describes the bui | dser ver command-line options;

Table 5-6 buildserver Command-line Options

ThisOption . ..

Allows Y ou to Specify the. ..

-o filenanme

Name of the executable output file. The defaultisa. out .

-f filenames

List of filesthat are link edited before the BEA Tuxedo system
libraries. Y ou can specify the - f option more than once, and
multiple filenames for each occurrence of - f . If you specify aC
program file(fi | e. c), it iscompiled beforeitislinked. You can
specify other object files(f i | e. 0) separately, or in groupsin an
archivefile(fil e. a).

-1 filenames

List of filesthat are link edited after the BEA Tuxedo system
libraries. Y ou can specify the - | option more than once, and
multiple filenames for each occurrence of - | . If you specify aC
program file(fi | e. c), it iscompiled beforeit islinked. You can
specify other object files(f i | e. 0) separately, or in groupsin an
archivefile(fil e. a).

-rfil enames

List of resource manager accesslibrariesthat arelink edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the

$TUXDI R/ updat aobj / RMfileusing thebui | dt ns(1)
command. Y ou can specify only one resource manager. Refer to
Setting Up a BEA Tuxedo Application for more information.

5-32 Programming a BEA Tuxedo ATMI Application Using C

Building Servers

Table 5-6 buildserver Command-line Options

ThisOption . ..

Allows You to Specify the. ..

-s[servi ce:]functi on Name of service or services offered by the server and the name of

the function that performs each service. Y ou can specify the - s
option more than once, and multiple services for each occurrence of
- s. The server uses the specified service names to advertiseits
servicesto clients.

Typicaly, you should assigh the same name to both the service and
the function that performs that service. Alternatively, you can
specify any names. To assign names, use the following syntax:
servi ce:function

Specifies that the server is coded in a thread-safe manner and may
be booted as multithreaded if specified as such in the configuration
file.

See Also

Note: The BEA Tuxedo libraries are linked in automatically. Y ou do not need to
specify the BEA Tuxedo library names on the command line.

The order in which you specify the library filesto be link edited is significant: it
depends on the order in which functions are called and which libraries contain
references to those functions.

By default, the bui | dser ver command invokes the UNIX cc command. Y ou can
specify an alternative compile command and set your own flags for the compile and
link-edit phases, however, by setting the CC and CFLAGS environment variables,
respectively. For moreinformation, refer to “ Setting Environment Variables’ on page
2-5.

The following command processes the acct . o application file and creates a server
called ACCT that contains two services. NEW ACCT, which calls the OPEN_ACCT
function, and CLOSE_ACCT, which calls a function of the same name.

bui |l dserver —o ACCT —f acct.o —s NEW ACCT: OPEN_ACCT -s CLOSE_ACCT

m “Building Clients’ on page 4-10

Programming a BEA Tuxedo ATMI Application UsingC ~ 5-33

5 Writing Servers

®m buildclient(1) inthe BEA Tuxedo Command Reference
Using a C++ Compiler

There are basically two differences between using a C++ compiler and aC compiler to
develop application ATMI servers:

m Different declarations of the service function

m Different use of constructors and destructors

Declaring Service Functions

When declaring aservice function for aC++ compiler, you must declareit to have“ C”
linkage using ext ern “ C’. Specify the function prototype as follows:

#i fdef __cplusplus

extern "C'

#endi f

MYSERVI CE(TPSVCI NFO *t psvci nf 0)

By declaring the name of your service with “C” linkage, you ensure that the C++
compiler will not modify the name. Many C++ compilers change the function nameto
include type information for the parameters and function return.

This declaration also alows you to:

m Link both C and C++ serviceroutinesinto asingle server without indicating the
type of each routine.

m Use dynamic service advertisement, which requires accessing the symbol table
of the executable to find the function name.

5-34 Programming a BEA Tuxedo ATMI Application Using C

Using a C++ Compiler

Using Constructors and Destructors

C++ constructors are called to initialize class objects when those objects are created,
and destructors are invoked when class objects are destroyed. For automatic (that is,
local, non-static) variables that contain constructors and destructors, the constructor is
called when the variable comes into scope and the destructor is called when the
variable goes out of scope. However, when you call thet pr et urn() ort pf orwar d()
function, the compiler performs a non-local goto (using | ongj np(3)) such that
destructors for automatic variables are not called. To avoid this problem, write the
application so that you call t pret urn() ort pf orward() from the service routine
directly (instead of from any functions that are called from the service routine). In
addition, one of the following should be true:

m The service routine should not have any automatic variables with destructors
(they should be declared and used in afunction called by the service routine).

m Automatic variables should be declared and used in a nested scope (contained
within curly brackets{}) in such away that the scope ends before calling the
tpreturn() ortpforward() function.

In other words, you should define the application so that there are no automatic
variables with destructors in scope in the current function or on the stack when the
tpreturn() ortpforward() functioniscalled.

For proper handling of global and static variables that contain constructors and
destructors, many C++ compilers require that you compile mai n() using the C++
compiler.

Note: Special processing isincluded in the mai n() routine to ensure that any
constructors are executed when the program starts and any destructors are
executed when the program exits.

Because mai n() is provided by the BEA Tuxedo system, you do not compileit
directly. To ensurethat the fileis compiled using C++, you must use the C++ compiler
withthebui | dser ver command. By default, thebui | dser ver commandinvokesthe
UNIX cc command. Y ou can specify that thebui | dser ver command invokethe C++
compiler, instead, by setting the CC environment variable to the full path name for the
C++ compiler. Also, you can set flags for any options that you want to include on the
C++ command line by setting the CFLAGS environment variable. For more

information, refer to “ Setting Environment Variables’ on page 2-5.

Programming a BEA Tuxedo ATMI Application UsingC ~ 5-35

5 Writing Servers

5-36 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

O Writing
Request/Response
Clients and Servers

This topic includes the following sections:

Overview of Request/Response Communication
Sending Synchronous M essages

Sending Asynchronous Messages

Setting and Getting Message Priorities

Overview of Request/Response
Communication

In request/response communication mode, one software module sends arequest to a
second software module and waits for a response. Because the first software module
performs the role of the client, and the second, the role of the server, thismodeis also
referred to as client/server interaction. Many online banking tasks are programmed in
reguest/response mode. For example, arequest for an account balance is executed as

follows:

Programming a BEA Tuxedo ATMI Application Using C

6 Writing Request/Response Clients and Servers

1. A customer (the client) sends arequest for an account balance to the Account
Record Storage System (the server).

2. The Account Record Storage System (the server) sends areply to the customer
(the client), specifying the dollar amount in the designated account.

Figure6-1 Example of Request/Response Communication in Online Banking

,..

Custormer Fegquast Check Account Balance & £

4
System Sesporse: 26,76

Customer's Bank's Computer on Which
Home Compuier Account Records Are Stored

Onceaclient process hasjoined an application, alocated abuffer, and placed arequest
for input into that buffer, it can then send the request message to a service subroutine
for processing and receive areply message.

Sending Synchronous Messages

Thetpcal | (3c) function sends arequest to a service subroutine and synchronously
waits for areply. Use the following signature to call thet pcal | () function:

int

tpcal |l (char *svc, char *idata, long ilen, char **odata, |ong *ol en,
long flags)

The following table describes the argumentsto thet pcal | () function.

Table 6-1 tpcall() Function Arguments

Argument Description

svce Pointer to the name of the service offered by your application.

6-2 Programming a BEA Tuxedo ATMI Application Using C

Sending Synchronous Messages

Argument Description

i dat a Pointer that contains the address of the data portion of the request. The
pointer must reference atyped buffer that was allocated by aprior call to
tpal | oc() . Notethat thet ype (and optionally the subt ype) of
i dat a must matchthet ype (and optionally thesubt ype) expected by
the service routine. If the types do not match, the system setst per r no
to TPEI TYPE and the function call fails.

If the request requires no data, set i dat a to the NULL pointer. This
setting means that the parameter can beignored. If no datais being sent
with the request, you do not need to allocate a buffer for i dat a.

ilen Length of the request datain the buffer referenced by i dat a. If the
buffer is a self-defining type, that is, an FML, FML32, VI EW VI EV\B2,
X_COMMON, X_C_TYPE, or STRI NGbuffer, you can set thisargument to
zero to indicate that the argument should be ignored.

*odat a Addressof apointer to the output buffer that receivesthereply. Y ou must
dlocate the output buffer using thet pal | oc() function. If the reply
message contains no data, upon successful return fromt pcal | (), the
system sets* ol en to zero, and the pointer and the contents of the output
buffer remain unchanged.

Y ou can use the same buffer for both the request and reply messages. If
you do, you must set *odat a to the address of the pointer returned when
you alocate the input buffer. It isan error for this parameter to point to

NULL.

ol en Pointer to the length of the reply data. It is an error for this parameter to
point to NULL.

flags Flag options. Y ou can OR a series of flags together. If you set thisvalue

to zero, the communication is conducted in the default manner. For alist
of valid flags and the defaults, refer tot pcal | (3c) inthe BEA Tuxedo
ATMI C Function Reference.

t pcal | () waitsfor the expected reply.

Note: Callingthet pcal I () functionislogically thesameascalling thet pacal I ()
function immediately followed by t pget r pl y() , as described in “ Sending
Asynchronous Messages” on page 6-11.

Programming a BEA Tuxedo ATMI Application Using C 6-3

6 Writing Request/Response Clients and Servers

6-4

The request carriesthe priority set by the system for the specified service (svc) unless
adifferent priority has been explicitly set by acall tothet pspri o() function
(described in “ Setting and Getting Message Priorities” on page 6-16).

tpcal I () returnsaninteger. On failure, the value of thisinteger is-1 and the value of
t perrno(5) isset to avalue that reflects the type of error that occurred. For
information on valid error codes, refer tot pcal | (3c¢) inthe BEA Tuxedo ATMI C
Function Reference.

Note: Communication calls may fail for avariety of reasons, many of which can be
corrected at the application level. Possible causes of failure include:
application defined errors (TPESVCFAI L), errors in processing return
arguments (TPESVCERR), typed buffer errors (TPEI TYPE, TPEOT YPE), timeout
errors (TPETI ME), and protocol errors (TPEPROTO), among others. For a
detailed discussion of errors, refer to “Managing Errors’ on page 11-1. For a
completelist of possibleerrors, refer tot pcal | (3c¢) inthe BEA Tuxedo ATMI
C Function Reference.

The BEA Tuxedo system automatically adjusts a buffer used for receiving a message
if the received message istoo large for the allocated buffer. Y ou should test for
whether or not the reply buffers have been resized.

To accessthe new size of the buffer, use the address returned in the *ol en parameter.
To determine whether areply buffer has changed in size, compare the size of thereply
buffer beforethecall tot pcal | () withthevalueof * ol en after itsreturn. If *ol enis
larger than the original size, the buffer has grown. If not, the buffer size has not
changed.

Y ou should reference the output buffer by the value returned in odat a after the call
because the output buffer may change for reasons other than an increasein buffer size.
Y ou do not need to verify the size of request buffers because the request datais not
adjusted once it has been allocated.

Note: If you use the same buffer for the request and reply message, and the pointer
to the reply buffer has changed because the system adjusted the size of the
buffer, then the input buffer pointer no longer references avalid address.

Programming a BEA Tuxedo ATMI Application Using C

Sending Synchronous Messages

Example: Using the Same Buffer for Request and Reply

Messages

Thefollowing exampl e showshow theclient program, audi t . ¢, makesasynchronous

call using the same buffer for both the request and reply messages. In this case, using
the same buffer is appropriate because the *audv message buffer has been set up to

accommodate both request and reply information. The following actions are taken in
this code:

1. Theservice queriestheb_i d field, but does not overwrite it.

2. Theapplicationinitializesthe bal and er nsg fieldsto zero and the NULL string,
respectively, in preparation for the values to be returned by the service.

3. Thesvc_nane and hdr _t ype variables represent the service name and the
balance type requested, respectively. In this example, these variables represent

account andtel | er, respectively.

Listing 6-1 Using the Same Buffer for Request and Reply M essages

/* Create buffer and set data pointer */

audv =

(struct aud *)tpalloc("VIEW, "aud", sizeof(struct aud));

/* Prepare aud structure */

audv->b_id = q_branchid;
audv- >bal ance = 0.0;
(void)strcpy(audv->ernmsg, "");

/* Do tpcall */

if (tpcall (svc_nane, (char *)audv, sizeof (struct aud),

}

el se

(char **)&audv, (long *)&audrl,0)== -1){

(void)fprintf (stderr, "% service failed\n %: %\n",

svc_name, svc_nane, audv->ernsg);
retc = -1;

(void)printf ("Branch %d % balance is $% 2f\n",

Programming a BEA Tuxedo ATMI Application Using C

6-5

6 Writing Request/Response Clients and Servers

audv->b_id, hdr_type, audv->bal ance);

Example: Testing for Change in Size of Reply Buffer

Thefollowing code provides ageneric example of how an application test for achange
in buffer size after acall tot pcal | () . Inthisexample, the input and output buffers
must remain equal in size.

Listing 6-2 Testing for Changein Size of the Reply Buffer

char *svc, *idata, *odata;
long ilen, olen, bef_len, aft_len;

if (idata = tpalloc("STRING', NULL, 0) == NULL)
error

if (odata = tpalloc("STRING', NULL, 0) == NULL)
error

pl ace string value into idata buffer

ilen = olen = strlen(idata)+1;

bef I en = ol en;

if (tpcall(svc, idata, ilen, &odata, &olen, flags) == -1)
error

aft _len = olen;

if (aft_len > bef_len){ /* nessage buffer has grown */

if (idata = tprealloc(idata, olen) == NULL)
error

6-6 Programming a BEA Tuxedo ATMI Application Using C

Sending Synchronous Messages

Example: Sending a Synchronous Message with
TPSIGRSTRT Set

The following example is based on the TRANSFER service, which is part of the XFER
server process of bankapp. (bankapp isasample ATMI application delivered with the
BEA Tuxedo system.) The TRANSFER service assumestherole of aclient whenit calls
the W THDRAWAL and DEPOSI T services. The application sets the communication flag
to TPSI GRSTRT in these service calls to give the transaction a better chance of
committing. The TPSI GRSTRT flag specifies the action to take if thereis a signal
interrupt. For more information on communication flags, refer tot pcal | (3c) inthe
BEA Tuxedo ATMI C Function Reference.

Listing 6-3 Sending a Synchronous M essage with TPSIGRSTRT Set

/* Do a tpcall to withdraw from first account */

if (tpcall ("WTHDRAWAL", (char *)reqfb, 0, (char **)& eqfb,
(long *)é&reql en, TPSI GRSTRT) == -1) {
(voi d) Fchg(transf, STATLIN, O,
"Cannot withdraw from debit account", (FLDLEN)O);
tpfree((char *)reqfb);

/* Do a tpcall to deposit to second account */

if (tpcall ("DEPCSIT", (char *)reqfb, 0, (char **)&reqfb,
(long *)&reqlen, TPSI GRSTRT) == -1) {
(voi d) Fchg(transf, STATLIN, O,
"Cannot deposit into credit account", (FLDLEN)O);
tpfree((char *)reqfb);

Programming a BEA Tuxedo ATMI Application Using C 6-7

6 Writing Request/Response Clients and Servers

Example: Sending a Synchronous Message with
TPNOTRAN Set

The following example illustrates a communication call that suppresses transaction
mode. The call is made to a service that is not affiliated with aresource manager; it
would be an error to allow the service to participate in the transaction. The application
prints an accounts receivable report, accr cv, generated from information obtained
from a database named account s.

The service routine REPORT interprets the specified parameters and sends the byte
stream for the completed report asareply. The client usest pcal | () to send the byte
stream to a service called PRI NTER, which, in turn, sends the byte stream to a printer
that is conveniently close to the client. Thereply is printed. Finally, the PRI NTER
service notifies the client that the hard copy is ready to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOREPLY |
TPNOTRAN" on page 6-13 shows asimilar example using an asynchronous

message call.

Listing 6-4 Sending a Synchronous M essage with TPNOTRAN Set

#i ncl ude <stdio. h>
#i nclude "atm . h"

mai n()

char *rbuf; /* report buffer */

long rllen, r2len, r3len; /* buffer lengths of send, 1st reply,
and 2nd reply buffers for report */

join application

if (rbuf = tpalloc("STRING', NULL, 0) == NULL) /* allocate space
for report */

| eave application and exit program
(voi d)strcpy(rbuf,

" REPORT=accr cv DBNAME=accounts"); /* send parnms of report */
rllen = strlen(rbuf)+1; /* length of request */

start transaction

6-8 Programming a BEA Tuxedo ATMI Application Using C

Sending Synchronous Messages

if (tpcall ("REPORT", rbuf, rllen, &rbuf,
& 2len, 0) == -1) /* get report print stream*/
error routine

if (tpcall ("PRINTER', rbuf, r2len, &rbuf,
& 3l en, TPNOTRAN) == -1) /* send report to printer */
error routine

(void)printf("Report sent to % printer\n",
rbuf); /* indicate which printer */

term nate transaction
free buffer
| eave application

Note: Inthe preceding example, thetermerror routi ne indicatesthat the
following tasks are performed: an error message is printed, the transaction is
aborted, allocated buffers are freed, the client leaves the application, and the
program is exited.

Example: Sending a Synchronous Message with
TPNOCHANGE Set

The following example shows how the TPNOCHANGE communication flag is used to
enforce strong buffer type checking by indicating that the reply message must be
returned in the same type of buffer that was originally allocated. This example refers
to a service routine called REPORT. (The REPORT service is aso shown in “Example:
Sending a Synchronous Message with TPNOTRAN Set” on page 6-8.)

In thisexample, the client receivesthe reply in avi Ewtyped buffer calledr vi ewl and
printstheelementsinpri nt f () statements. The strong type check flag, TPNOCHANGE,
forces the reply to be returned in a buffer of type VI Ewand of subtyper vi ewd.

A possiblereason for thischeck isto guard against errorsthat may occur inthe REPORT
service subroutine, resulting in the use of areply buffer of an incorrect type. Another
reason is to prevent changes that are not made consistently across all areas of
dependency. For example, another programmer may have changed the REPORT service
to standardize all repliesin another vi Ewformat without modifying the client process
to reflect the change.

Programming a BEA Tuxedo ATMI Application Using C 6-9

6 Writing Request/Response Clients and Servers

Listing 6-5 Sending a Synchronous M essage with TPNOCHANGE Set

#i ncl ude <stdio. h>
#i nclude "atm . h"
#i ncl ude "rviewl. h"

mai n(argc, argv)
int argc;
char * argv[];

char *rbuf; /* report buffer */

struct rviewl *rrbuf; /* report reply buffer */

long rlen, rrlen; /* buffer lengths of send and reply
buffers for report */

if (tpinit((TPINIT *) tpinfo) == -1)

fprintf(stderr, "%: failed to join application\n", argv[O0]);

if (rbuf = tpalloc("STRING', NULL, 0) == NULL) { /* allocate space
for report */

tptern();

exit(1l);

}

/* allocate space for return buffer */
if (rrbuf = (struct rviewl *)tpalloc("VIEW, "rviewl",
sizeof (struct rviewl)) \ == NULL{

t pfree(rbuf);
tptern();
exit(1l);

}
(void)strcpy(rbuf, "REPORT=accrcv DBNAME=accounts FORMAT=rvi ewl");
rlen = strlen(rbuf)+1; /* length of request */
/* get report in rviewl struct */
if (tpcall ("REPORT", rbuf, rlen, (char **)&rbuf, &rlen,

TPNOCHANGE) == -1) {
fprintf(stderr, "accounts receivable report failed in service
call\n");

if (tperrno == TPEOTYPE)
fprintf(stderr, "report returned has wong view type\n");

t pfree(rbuf);

tpfree(rrbuf);

tptern();

exit(1l);
}
(void)printf("Total accounts receivable %d\n", rrbuf->total);
(void)printf("Largest three outstandi ng % 20s %6d\ n", rrbuf->nanel,
rrbuf->ant1l);
(void)printf("%20s %%d\n", rrbuf->name2, rrbuf->ant2);

6-10 Programming a BEA Tuxedo ATMI Application Using C

Sending Asynchronous Messages

(void)printf("% 20s %%d\n", rrbuf->nane3, rrbuf->ant3);
t pfree(rbuf)

tpfree(rrbuf);

tptern();

}

Sending Asynchronous Messages

This section explains how to:
m Send an asynchronous request using thet pacal | () function
m Get an asynchronous reply using thet pget r pl y() function

Thetype of asynchronous processing discussed in this section is sometimes referred to
asfan-out parallelismbecauseit allowsaclient’ srequeststo bedistributed (or “fanned
out”) simultaneously to several services for processing.

The other type of asynchronous processing supported by the BEA Tuxedo systemis
pipeline parallelism inwhich thet pf or war d() functionisused to pass (or forward) a
process from one service to another. For a description of thet pf or war d() function,
refer to “Writing Servers’ on page 5-1.

Sending an Asynchronous Request

Thet pacal | (3c) function sends arequest to a service and immediately returns. Use
the following signature to call thet pacal I () function:

i nt
tpacal | (char *svc, char *data, long len, |long flags)

The following table describes the argumentsto the t pacal | () function.

Programming a BEA Tuxedo ATMI Application UsingC 6-11

6 Writing Request/Response Clients and Servers

Table 6-2 tpacall() Function Arguments

Argument Description
svce Pointer to the name of the service offered by your application.
dat a Pointer that contains the address of the data portion of the request. The

pointer must reference atyped buffer that was allocated by aprior cal to
t pal | oc() . Notethat thet ype (and optionally the subt ype) of

i dat a must matchthet ype (and optionally thesubt ype) expected by
the service routine. If the types do not match, the system setst per r no
to TPEI TYPE and the function call fails.

If therequest requiresno data, set dat a tothe NULL pointer. Thissetting
means that the parameter can be ignored. If no datais being sent with the
request, you do not need to alocate a buffer for dat a.

I en Length of the request datain the buffer referenced by dat a. If the buffer
is aself-defining type, that is, an FM_, FML32, VI EW VI EVB2,
X_COMMON, X_C_TYPE, or STRI NGhuffer, you can set thisargument to
zero, indicating that the argument should be ignored.

flags Flag options. You can list agroup of flags by using the logical OR
operator. If you set thisvalueto zero, the communication is conducted in
the default manner. For alist of valid flags and defaullts, refer to
t pacal | (3c) inthe BEA Tuxedo ATMI C Function Reference.

Thet pacal | () function sends a request message to the service named in the svc
parameter and immediately returns from the call. Upon successful completion of the
cal, thet pacal I () function returns an integer that serves as a descriptor used to
access the correct reply for the relevant request. Whilet pacal | () isintransaction
mode (as described in “Writing Global Transactions’ on page 9-1) there may not be
any outstanding replies when the transaction commits; that is, within agiven
transaction, for each request for which areply is expected, a corresponding reply must
eventually be received.

If the value TPNOREPLY is assigned to the f | ags parameter, the parameter signals to
tpacal | () that areply isnot expected. When thisflag is set, on successt pacal | ()
returnsavalue of 0 asthereply descriptor. If subsequently passed tothet pget r pl y()
function, this value becomes invalid. Guidelines for using this flag value correctly
when aprocessisin transaction mode are discussed in “Writing Global Transactions”
on page 9-1.

6-12 Programming a BEA Tuxedo ATMI Application Using C

Sending Asynchronous Messages

Onerror,t pacal | () returns- 1 and setst per r no(5) toavaluethat reflectsthe nature
of the error. t pacal | () returns many of the same error codesast pcal | (). The
differences between the error codes for these functions are based on the fact that one
call is synchronous and the other, asynchronous. These errors are discussed at length
in “Managing Errors’ on page 11-1.

Example: Sending an Asynchronous Message with TPNOTRAN | TPNOREPLY

The following example shows how t pacal | () usesthe TPNOTRAN and TPNOREPLY
flags. This codeis similar to the code in “Example: Sending a Synchronous Message
with TPNOTRAN Set” on page 6-8. In thiscase, however, areply isnot expected from
the PRI NTER service. By setting both TPNOTRAN and TPNOREPLY flags, the client is
indicating that no reply is expected and the PRI NTER service will not participate in the
current transaction. This situation is discussed more fully in “Managing Errors’ on
page 11-1.

Listing 6-6 Sending an Asynchronous M essage with TPNOREPLY |
TPNOTRAN

#i ncl ude <stdio. h>
#include "atm . h'

mai n()

char *rbuf; /* report buffer */

long rlen, rrlen; /* buffer lengths of send, reply buffers for
report */

join application

if (rbuf = tpalloc("STRING', NULL, 0) == NULL) /* allocate space
for report */
error

(void)strcpy(rbuf, "REPORT=accrcv DBNAME=accounts");/* send parns
of report */

rlen = strlen(rbuf)+1; /* length of request */

start transaction

if (tpcall ("REPORT", rbuf, rlen, &buf, &rlen, 0)
== -1) /* get report print stream */

Programming a BEA Tuxedo ATMI Application UsingC 6-13

6 Writing Request/Response Clients and Servers

error
if (tpacall ("PRINTER', rbuf, rrlen, TPNOTRAN TPNOREPLY)
== -1) /* send report to printer */
error

conmt transaction
free buffer
| eave application

}

Example: Sending Asynchronous Requests

The following example shows a series of asynchronous calls that make up the total
bank balance query. Because the banking application datais distributed among several
database sites, an SQL query needs to be executed against each one. The application
performs these queries by selecting one branch identifier per database site, and calling
the ABAL or TBAL service for each site. The branch identifier is not used in the actual
SQL query, but it enables the BEA Tuxedo system to route each request to the proper
site. In the following code, the f or loop invokest pacal | () once for each site.

Listing 6-7 Sending Asynchronous Requests

audv- >bal ance = 0.0;
(voi d)strcpy(audv->ermsg, "");

for (i=0; i<NSITE;, i++) {
/* Prepare aud structure */
audv->b_id = sitelist[i]; /* routing done on this field */
/* Do tpacall */

if ((cd[i]=tpacall(snane, (char *)audv, sizeof(struct aud), 0))
== -1) {
(void)fprintf (stderr
"U%s: Y% service request failed for site rep %d\n",
pgmane, snane, sitelist[i]);
tpfree((char *)audv);
return(-1);

Programming a BEA Tuxedo ATMI Application Using C

Sending Asynchronous Messages

Getting an Asynchronous Reply

A reply to aservice call can be received asynchronously by calling the
t pget rpl y(3c) function. Thet pget rpl y() function dequeues areply to arequest
previously sent by t pacal | ().

Use the following signature to call thet pget r pl y() function:

i nt
tpgetrply(int *cd, char **data, long *len, long flags)

The following table describes the argumentsto the t pget r pl y() function.

Table 6-3 tpgetrply() Function Arguments

Argument Description
cd Pointer to the call descriptor returned by thet pacal | () function.
*dat a Addressof apointer to the output buffer that receivesthereply. Y ou must

dlocate the output buffer using thet pal | oc() function. If the reply
message contains no data, upon successful return fromt pcal | (), the
system sets * dat a to zero. The pointer and the contents of the output
buffer remain unchanged.

Y ou can use the same buffer for both the request and reply messages. If
you do, then you must set odat a to the address of the pointer returned
when you allocated the input buffer. It is an error for this parameter to
point to NULL.

I en Pointer to the length of the reply data. It is an error for this parameter to
point to NULL.

flags Flag options. Y ou can list agroup of flags using the logical OR operator.
If you set this value to zero, the communication is conducted in the
default manner. For alist of valid flags and defaults, refer to
t pcal | (3c)) inthe BEA Tuxedo ATMI C Function Reference.

Programming a BEA Tuxedo ATMI Application UsingC 6-15

6 Writing Request/Response Clients and Servers

By default, the function waits for the arrival of the reply that correspondsto the value
referenced by the cd parameter. During this waiting interval, a blocking timeout may
occur. A time-out occurswhent pget r pl y() failsandt perrno(5) issetto TPETI ME
(unlessthef | ags parameter is set to TPNOTI MVE).

Setting and Getting Message Priorities

Two ATMI functionsallow you to determine and set the priority of amessage request:
t psprio(3c) andt pgprio(3c). Thepriority affects how soon the request is
dequeued by the server; servers dequeue requests with the highest prioritiesfirst.

This section describes:
m Setting a Message Priority
m Getting a Message Priority

Setting a Message Priority

Thet pspri o(3c) function enables you to set the priority of a message request.

Thet pspri o() function affectsthe priority level of only onerequest: the next request
tobesent by t pcal | () ortpacal | (), or to be forwarded by a service subroutine.

Use the following signature to call thet pspri o() function:

int
tpsprio(int prio, long flags);

The following table describes the argumentsto thet pspri o() function.

6-16 Programming a BEA Tuxedo ATMI Application Using C

Setting and Getting Message Priorities

Table 6-4 tpsprio() Function Arguments

Argument Description

prio Integer indicating a new priority value. The effect of thisargument is
controlled by thef | ags parameter. If f | ags issetto O, pri o specifies
arelative value and the sign accompanying the value indicates whether
the current priority isincremented or decremented. Otherwise, the value
specified indicates an absolute value and pr i o must be set to avalue
between 0 and 100. If you do not specify avalue within this range, the
system sets the value to 50.

flags Flag indicating whether the value of pr i o istreated as arelative value
(O, the default) or an absolute value (TPABSOLUTE).

The following sample code is an excerpt from the TRANSFER service. In this example,
the TRANSFER service actsasaclient by sending asynchronousrequest, viat pcal | (),
tothe W THDRAWAL service. TRANSFER also invokest pspri o() toincreasethepriority
of its request message to W THDRAWAL, and to prevent the request from being queued
for the W THDRAWAL service (and later the DEPCSI T service) after waiting on the
TRANSFER queue.

Listing 6-8 Setting the Priority of a Request M essage

/* increase the priority of withdraw call */
if (tpsprio(PRIOCRITY, OL) == -1)
(void)userlog("Unable to increase priority of withdramn");

if (tpcall ("WTHDRAWAL", (char *)reqfb,0, (char **)&reqfb, (long *)
\

& eql en, TPSI GRSTRT) == -1) {
(void) Fchg(transf, STATLIN, 0, "Cannot withdraw from debit
account", \
(FLDLEN) 0) ;
tpfree((char *)reqfb);
tpreturn(TPFAIL, O,transb->data, OL, 0);

Programming a BEA Tuxedo ATMI Application UsingC 6-17

6 Writing Request/Response Clients and Servers

Getting a Message Priority

Thet pgpri o(3c) function enables you to get the priority of a message request.

Use the following signature to call thet pgpri o() function:

int

tpgprio();

A requester can call thet pgpri o() function after invoking thet pcal | () or

t pacal | () functionto retrievethe priority of the request message. If arequester calls
the function but no request is sent, the function fails, returning - 1 and setting

t per rno(5) to TPENCENT. Upon success, t pgpri o() returns an integer value in the
range of 1 to 100 (where the highest priority valueis 100).

If apriority has not been explicitly set using thet pspri o() function, the system sets
the message priority to that of the service routine that handles the request. Within an

application, the priority of the request-handling service is assigned a default value of

50 unless a system administrator overrides this value.

Thefollowing exampl e shows how to determine the priority of amessage that was sent
in an asynchronous call.

Listing 6-9 Determining the Priority of a Request After It IsSent

#i ncl ude <stdi o. h>
#include "atm . h"

main ()

int cdl, cd2; /* call descriptors */

int prl, pr2; /* priorities to two calls */
char *bufl, *buf2; /* buffers */

| ong buf 1l en, buf 2l en; /* buffer lengths */

join application

if (bufl=tpalloc("FM", NULL, 0) == NULL)
error

if (buf2=tpalloc("FM", NULL, 0) == NULL)
error

popul ate FML buffers with send request

6-18 Programming a BEA Tuxedo ATMI Application Using C

Setting and Getting Message Priorities

if ((cdl
error
if ((prl
error
if ((cd2
error

if ((pr2
error

if (prl >=

calls */

el se {

if

if

tpacal | ("servicel", bufl, 0, 0)) == -1)

tpgprio()) == -1)

tpacal | ("service2", buf2, 0, 0)) == -1)

tpgprio()) == -1)\

pr2) { /* base the order of tpgetrplys on priority of

(tpgetrply(&dl, &bufl, &bufllen, 0) ==

error

(tpgetrply(&d2, &buf2, &buf2len, 0) == -

error

(tpgetrply(&d2, &buf2, &buf2len, 0) ==

error

(tpgetrply(&dl, &bufl, &bufllen, 0) == -

error

Programming a BEA Tuxedo ATMI Application Using C

6-19

6 Writing Request/Response Clients and Servers

6-20 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

[Writing Conversational
Clients and Servers

This topic includes the following sections:

m Overview of Conversational Communication
m Joining an Application

m Establishing a Connection

m Sending and Receiving Messages

m Ending a Conversation

m Building Conversationa Clients and Servers

m Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication isthe BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between ATMI clientsand servers. In
this form of communication, avirtual connection is maintained between the client
(initiator) and server (subordinate) and each side maintainsinformation about the state
of the conversation. The connection remains active until an event occurs to terminate
it.

Programming a BEA Tuxedo ATMI Application Using C 7-1

7 Writing Conversational Clients and Servers

During conversational communication, a half-duplex connection is established
between the client and server. A half-duplex connection allows messagesto be sent in
only onedirection at any given time. Control of the connection can be passed back and
forth between theinitiator and the subordinate. The process that has control can send
messages,; the process that does not have control can only receive messages.

To understand how conversational communication worksin a BEA Tuxedo ATMI
application, consider the following example from an online banking application. In
this example, abank customer requests checking account statements for the past two
months.

Figure7-1 Example of Conversational Communication in an Online Banking
Application

'..

1. Customer Reques?: Send siatemenis =

for iast 2 months -
4 2 System Regponse Here's the first sfabement want anudﬂ.ﬂ'?l
a Custormer Requast: Yes, send more - e
4 4. System Resporse: Here's the statement for the second maonth o N
Customer Residence Account Records Storage Systemn

located at the Bank Headguarters

1. The customer requests the checking account statements for the past two months.

2. The Account Records Storage System responds by sending the first month’s
checking account statement followed by a Mor e prompt for accessing the
remaining month’s statement.

3. The customer requests the second month’s account statement by selecting the
Mor e prompt.

Note: The Account Records Storage System must maintain state information so it
knows which account statement to return when the customer selects the Mor e

prompt.

4. The Account Records Storage System sends the remaining month’s account
statement.

As with request/response communication, the BEA Tuxedo system passes data using
typed buffers. The buffer types must be recognized by the application. For more
information on buffer types, refer to “Overview of Typed Buffers’ on page 3-2.

7-2 Programming a BEA Tuxedo ATMI Application Using C

Joining an Application

Conversational clients and servers have the following characteristics:
m Thelogica connection between them remains active until terminated.
m Any number of messages can be transmitted across a connection between them.

m Both clientsand servers usethet psend() andt precv() routinesto send and
receive datain conversations.

Conversational communication differs from request/response communication in the
following ways:

m A conversationa client initiates arequest for service using t pconnect () rather
thant pcal I () ortpacal | ().

m A conversational client sends a service request to a conversational server.

m The configuration file reserves part of the conversational server for addressing
conversational services.

m Conversational servers are prohibited from making callsusing t pf or war d() .
Joining an Application

A conversational client must join an application viaacall tot pi ni t () before
attempting to establish a connection to a service. For more information, refer to
“Writing Clients’ on page 4-1.

Establishing a Connection

Thet pconnect (3c) function sets up a conversation:;
Use the following signature to call thet pconnect () function.

i nt
t pconnect (char *nane, char *data, long |len, long flags)

Programming a BEA Tuxedo ATMI Application Using C 7-3

7 Writing Conversational Clients and Servers

The following table describes the arguments to the t pconnect () function.

Table 7-1 tpconnect() Function Arguments

Argument Description

nane Character pointer to aconversational servicename. If you do not
specify nane as a pointer to a conversational service, the call
failswithavalueof - 1 and t per r no is set to the error code
TPENOENT.

dat a Pointer to a data buffer. When establishing the connection, you
can send data simultaneously by setting the dat a argument to
point to a buffer previously allocated by t pal | oc() . The
t ype and subt ype of the buffer must be types recognized by
theservicebeing called. Y ou can set thevalueof dat atoNULL
to specify that no dataisto be sent.

The conversational service being called receives the dat a and
| en pointers viathe TPSVCI NFOdata structure passed to it by
mai n() when the serviceisinvoked. (A request/response
servicereceivesthedat a and | en pointersin the same way.)
For moreinformation onthe TPSVCl NFOdatastructure, refer to
“Defining a Service” on page 5-10.

I en Length of the data buffer. If the buffer is self-defining (for
example, an FML buffer), you can set| en to 0.

flag Specifies the flag settings. For acomplete list of valid flag
settings, refertot pconnect (3c) inthe BEA Tuxedo ATMI C
Function Reference.

The system notifiesthe called service through the flag members
of the TPSVCI NFOstructure.

The BEA Tuxedo system returns a connection descriptor (cd) when a connection is
established with t pconnect () . Thecd is used to identify subsequent message
transmissions with a particular conversation. A client or conversational service can
participate in more than one conversation simultaneoudy. The maximum number of
simultaneous conversationsis 64.

Inthe event of afailure, thet pconnect () function returns avalue of - 1 and sets
t per r no to the appropriate error condition. For alist of possible error codes, refer to
t pconnect (3c) inthe BEA Tuxedo ATMI C Function Reference.

7-4 Programming a BEA Tuxedo ATMI Application Using C

Sending and Receiving Messages

The following example shows how to use thet pconnect () function.

Listing 7-1 Establishing a Conversational Connection

#include atm . h

#def i ne FAI L -1
int cdil; /* Connection Descriptor */
mai n()
if ((cd = tpconnect (“AUDI TC', NULL, O, TPSENDONLY)) == -1) {

error routine

}
}

Sending and Receiving Messages

Once the BEA Tuxedo system establishes a conversational connection,
communication between the initiator and subordinate is accomplished using send and
receive calls. The process with control of the connection can send messages using the
t psend(3c) function; the process without control can receive messages using the

t precv(3c) function.

Note: Initially, the originator (that is, the client) decides which process has control
using the TPSENDONLY or TPRECVONLY flag value of thet pconnect () call.
TPSENDONLY specifies that control is being retained by the originator;
TPRECVONLY, that control is being passed to the called service.

Sending Messages

To send amessage, usethet psend(3c) function with the following signature:

i nt
tpsend(int cd, char *data, long len, long flags, |long *revent)

The following table describes the argumentsto thet psend() function.

Programming a BEA Tuxedo ATMI Application Using C 7-5

7 Writing Conversational Clients and Servers

7-6

Table 7-2 tpsend() Function Arguments

Argument

Description

cd

Specifies the connection descriptor returned by the
t pconnect () functionidentifying the connection over which
the dataiis sent.

dat a

Pointer to a data buffer. When establishing the connection, you
can send data simultaneously by setting the dat a argument to
point to a buffer previously alocated by t pal | oc() . The

t ype and subt ype of the buffer must be types recognized by
theservicebeing called. Y ou can set thevalue of dat atoNULL
to specify that no dataisto be sent.

The conversational service being called receives the dat a and
| en pointers viathe TPSVCI NFOdata structure passed to it by
mai n() when the serviceisinvoked. (A request/response
server receivesthedat a and| en pointersinthe sameway.) For
more information on the TPSVCl NFO data structure, refer to
“Defining a Service” on page 5-10.

| en

Length of the data buffer. If the buffer is self-defining (for
example, an FML buffer), you can set| en to 0. If you do not
specify avalue for dat a, this argument isignored.

revent

Pointer to event value set when an error is encountered (that is,
whent perrno(5) issetto TPEEVENT). For alist of valid
event values, refer tot psend(3c) inthe BEA Tuxedo ATMI C
Function Reference.

flag

Specifies the flag settings. For alist of valid flag settings, refer
tot psend(3c) inthe BEA Tuxedo ATMI C Function
Reference.

Inthe event of afailure, thet psend() function returns avalue of - 1 and sets

t per rno(5) totheappropriate error condition. For alist of possible error codes, refer
tot psend(3c) inthe BEA Tuxedo ATMI C Function Reference.

You are not required to pass control each time you issuethet psend() function. In
some applications, the processauthorized toissuet psend() callscan execute asmany
callsasrequired by the current task before turning over control to the other process. In
other applications, however, the logic of the program may require the same process to
maintain control of the connection throughout the life of the conversation.

Programming a BEA Tuxedo ATMI Application Using C

Sending and Receiving Messages

The following example shows how to invoke thet psend() function.

Listing 7-2 Sending Data in Conver sational Mode

if (tpsend(cd,!line, 0, TPRECVONLY, revent) == -1) {
(void)userlog(“%: tpsend failed tperrno %",
argv[0], tperrno);
(voi d)tpabort(0);
(void)tpterm();
exit(1);

Receiving Messages

To receive data sent over an open connection, usethet precv(3c) function with the
following signature:

i nt
tprecv(int cd, char **data, long *len, long flags, |ong *revent)

The following table describes the argumentsto the t precv() function.

Argument Description

cd Specifies the connection descriptor. If a subordinate program
issues the call, the cd argument should be set to the value
specified in the TPSVCI NFOstructure for the program. If the
originator programissuesthecall, thecd argument should be set
to the value returned by thet pconnect () function.

Programming a BEA Tuxedo ATMI Application Using C 7-7

7 Writing Conversational Clients and Servers

Argument

Description

data

Pointer to a data buffer. The dat a argument must point to a
buffer previoudly alocated by t pal | oc() . Thet ype and
subt ype of the buffer must be types recognized by the service
being called. Thisvalue cannot be NULL; if it is, the call fails
andt perrno(5) issetto TPEI NVAL.

The conversational service being called receives the dat a and
| en pointers viathe TPSVCI NFOdata structure passed to it by
mai n() when the serviceisinvoked. (A request/response
servicereceivesthe dat a and | en pointersin the same way.)
For moreinformation onthe TPSVCl NFOdatastructure, refer to
“Defining a Service” on page 5-10.

| en

Length of the data buffer. If the buffer is self-defining (for
example, an FML buffer), you can set | en to 0. Thisvalue
cannot be NULL; if itis, thecall failsandt perr no(5) isset
to TPEI NVAL.

revent

Pointer to event value set when an error is encountered (that is,
whent per r no issetto TPEEVENT). Refertot precv(3c) in
the BEA Tuxedo ATMI C Function Reference for alist of valid
event values.

flag

Specifies the flag settings. Refer tot precv(3c) inthe BEA
Tuxedo ATMI C Function Reference for alist of valid flags.

Upon success, the * dat a argument points to the data received and | en contains the
size of the buffer. If | en is greater than the total size of the buffer before the call to

t precv(), thebuffer size haschanged and | en indicatesthe new size. A value of O for
the | en argument indicates that no data was received.

The following example shows how to use thet precv() function.

Listing 7-3 Receiving Data in Conver sation

if (tprecv(cd,line,|en, TPNOCHANGE, revent) != -1) {

(void)userlog(“%: tprecv failed tperrno %d revent %d”,
argv[0], tperrno, revent);
(void)tpabort(0);
(void)tpterm();

7-8 Programming a BEA Tuxedo ATMI Application Using C

Ending a Conversation

exit(l);

Ending a Conversation

A connection can be taken down gracefully and a conversation ended normally
through:

m A successful call tot pret urn() inasimple conversation.

m A seriesof successful callstot pret urn() inacomplex conversation based on
ahierarchy of connections.

m Global transactions, as described in “Writing Global Transactions’ on page 9-1.

Note: Thet preturn() functionisdescribedin detail in“Writing Request/Response
Clients and Servers’ on page 6-1.

The following sections describe two scenarios for gracefully terminating
conversations that do not include global transactions in which thet pr et ur n()
function is used.

The first example shows how to terminate a simple conversation between two
components. The second exampleillustrates a more complex scenario, with a
hierarchical set of conversations.

If you end a conversation with connections still open, the system returns an error. In
this case, either t pconmi t () ort preturn() failsinadisorderly manner.

Programming a BEA Tuxedo ATMI Application Using C 7-9

7 Writing Conversational Clients and Servers

Example: Ending a Simple Conversation

Thefollowing diagram shows a simple conversation between A and B that terminates
gracefully.

Figure7-2 Simple Conversation Terminated Gracefully

A EVENTS

svelitpevemnio)

frongnally a RECONLY comnnection®f
cdl=tpconnectsvcl,. TPSENDCONLY),

TPEV SENDOMNLY

tpsend(cdl,data., TPRECVONLY); tprecw{tpsvoinfo->od, &buffer, . drevent),

f*ch dto a SENDONLY tion*f
tprecw{cdl, &buffer, . frevent); TEEV SVOSUco rhangenio & ronnecton

tpreturn(TP UCCESS buffer,)

The program flow is as follows:

1. A setsup the connection by calling t pconnect () with the TPSENDONLY flag set,
indicating that process B is on the receiving end of the conversation.

2. A turns control of the connection over to B by calling t psend() with the
TPRECVONLY flag set, resulting in the generation of a TPEV_SENDONLY event.

3. Thenextcall by Btotprecv() returnsavalue of -1, setst perrno(5) to
TPEEVENT, and returns TPEV_SENDONLY in ther event argument, indicating that
control has passed to B.

4. Bcallstpreturn() withrval setto TPSUCCESS. This call generates a
TPEV_Svcsucc event for A and gracefully brings down the connection.

5. Acdlstprecv(), learns of the event, and recognizes that the conversation has
been terminated. Data can be received on thiscall tot precv() evenif the event
isset to TPEV_SVCFAI L.

Note: Inthisexample, A can be either aclient or aserver, but B must be a server.

7-10 Programming a BEA Tuxedo ATMI Application Using C

Ending a Conversation

Example: Ending a Hierarchical Conversation

The following diagram shows a hierarchical conversation that terminates gracefully.

Figure7-3 Connection Hierarchy

EVENTS EVENTS

A B c

cdl=tpconnect!"svcB", TPRECVOMLY); . .
P (2 sveBtpaveinfn) svcCitpsveintn)

cdl=tpconnect"sveC", TPSENDONLUY],
tpsend(cdl, dats, TPRECWVONLY),

TPEV_SENDONLY

tprecwitpeveinfo=cd, . &revent),
tpreturn TPSUCCES S, buffer, 3,
TPEV_SWIsUCC

tprecw(cd, &huffer, . &revent),
tpreturn(TPEUCCESS buffer,),

TFPEWV_Z[MCIUCC

tprecv(cd, &buffer, . Erevent);

In the preceding example, service B isamember of aconversation that hasinitiated a
connection to a second service called C. In other words, there are two active
connections: A-to-B and B-to-C. If B isin control of both connections, acall to

t preturn() hasthefollowing effect: the call fails, aTPEV_SVCERR event is posted on
all open connections, and the connections are closed in a disorderly manner.

In order to terminate both connections normally, an application must execute the
following sequence:

1. Bcdlstpsend() withthe TPRECVONLY flag set on the connectionto C,
transferring control of the B-to-C connection to C.

2. Ccalstpreturn() withrval setto TPSUCCESS, TPFAI L, or TPEXI T, as
appropriate.

Programming a BEA Tuxedo ATMI Application UsingC 7-11

7 Writing Conversational Clients and Servers

3. Bcanthencall t preturn(), posting an event (either TPEV_SVCSUCC or
TPEV_SVCFAI L) for A.

Note: Itislegal for aconversational serviceto makerequest/response callsif it needs
to do so to communicate with another service. Therefore, in the preceding
example, the calls from B to C may be executed using t pcal | () or
t pacal | () instead of t pconnect () . Conversational services are not
permitted to make callstot pf orward() .

Executing a Disorderly Disconnect

The only way in which adisorderly disconnect can be executed isthrough acall to the
t pdi scon(3c) function (which isequivalent to “pulling the plug” on a connection).
This function can be called only by theinitiator of aconversation (that is, the client).

Note: Thisisnot the preferred method for bringing down a conversation. To bring
down an application gracefully, the subordinate (the server) should call the
t preturn() function.

Use the following signature to call thet pdi scon() function:
int
t pdi scon(int cd)

The cd argument specifies the connection descriptor returned by thet pconnect ()
function when the connection is established.

Thet pdi scon() function generates a TPEV_DI SCONI MMevent for the service at the
other end of the connection, rendering thecd invalid. If atransactionisin progress, the
system aborts it and data may be lost.

If t pdi scon() iscalled from aservice that was not the originator of the connection
identified by cd, the function fails with an error code of TPEBADDESC.

For alist and descriptions of all event and error codes, refer to t pdi scon(3c) inthe
BEA Tuxedo ATMI C Function Reference.

7-12 Programming a BEA Tuxedo ATMI Application Using C

Building Conversational Clients and Servers

Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:
®m Dbuildclient() asdescribedin “Building Clients’ on page 4-10

m Dbui | dserver () asdescribedin “Building Servers’ on page 5-32
For conversational and request/response services, you cannot:

m Build both in the same server

m Assign the same name to both

Understanding Conversational
Communication Events

The BEA Tuxedo system recogni zesfive eventsin conversational communication. All
five events can be posted for t pr ecv() ; three can be posted for t psend() .

The following table lists the events, the functions for which they are returned, and a
detailed description of each.

Table 7-3 Conversational Communication Events

Event Received By Description
TPEV_SENDONLY tprecv() Control of the connection has been passed; this process
cannow cal t psend() .
TPEV_DI SCONI MMt psend(), The connection has been torn down and no further
t precv(), communication is possible. Thet pdi scon() function
tpreturn() posts this event in the originator of the connection, and

sendsit to all open connectionswhent pret urn() is
called, aslong as connections to subordinate services
remain open. Connections are closed in a disorderly
fashion. If atransaction exists, it is aborted.

Programming a BEA Tuxedo ATMI Application UsingC ~ 7-13

7 Writing Conversational Clients and Servers

Table 7-3 Conversational Communication Events

Event

Received By

Description

TPEV_SVCERR t psend()

Received by the originator of the connection, usually
indicating that the subordinate program issued a
t pr et ur n() without having control of the connection.

tprecv()

Received by the originator of the connection, indicating
that the subordinate programissued at pr et ur n() with
TPSUCCESS or TPFAI L and avalid data buffer, but an
error occurred that prevented the call from completing.

TPEV_SVCFAI L t psend()

Received by the originator of the connection, indicating
that the subordinate programissued at pr et ur n()
without having control of the connection, and

t preturn() wascalledwith TPFAI L or TPEXI T and
no data.

tprecv()

Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(t preturn() wascaledwith TPFAI L or TPEXI T).

TPEV_SVCSUCC tprecv()

Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
itcalledt pret urn() with TPSUCCESS.

7-14

Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

8 Writing Event-based
Clients and Servers

This topic includes the following sections:

m Overview of Events

m Defining the Unsolicited Message Handler
m Sending Unsolicited Messages

m Checking for Unsolicited Messages

m Subscribing to Events

m Unsubscribing from Events

m Posting Events

m Example of Event Subscription

Overview of Events

Event-based communication provides a method for a BEA Tuxedo system process to
be notified when a specific situation (event) occurs.

The BEA Tuxedo system supports two types of event-based communication:

m Unsolicited events

Programming a BEA Tuxedo ATMI Application Using C 81

8 Writing Event-based Clients and Servers

m Brokered events

Unsolicited Events

Unsolicited events are messages used to communicate with client programsthat are not
waiting for and/or expecting a message.

Brokered Events

8-2

Brokered events enable a client and a server to communicate transparently with one
another viaan “anonymous’ broker that receives and distributes messages. Such
brokering is another client/server communication paradigm that is fundamental to the
BEA Tuxedo system.

The EventBroker is a BEA Tuxedo subsystem that receives and filters event posting
messages, and distributes them to subscribers. A poster isa BEA Tuxedo system
process that detects when a specific event has occurred and reports (posts) it to the
EventBroker. A subscriber isaBEA Tuxedo system process with a standing request
to be notified whenever a specific event has been posted.

The BEA Tuxedo system does not impose afixed ratio of service requestersto service
providers; an arbitrary number of posters can post a message buffer for an arbitrary
number of subscribers. The posters simply post events, without knowing which
processes receive the information or how the information is handled. Subscribers are
notified of specified events, without knowing who posted theinformation. In thisway,
the EventBroker provides complete location transparency.

Typically, EventBroker applications are designed to handle exception events. An
application designer must decide which events in the application constitute exception
events and need to be monitored. In a banking application, for example, it might be
useful to post an event whenever an unusually large amount of money is withdrawn,
but it would not be particularly useful to post an event for every withdrawal
transaction. In addition, not all users would need to subscribe to that event; perhaps
only the branch manager would need to be notified.

Programming a BEA Tuxedo ATMI Application Using C

Overview of Events

Notification Actions

The EventBroker may be configured such that whenever an event is posted, the
EventBroker invokes one or more notification actions for clients and/or servers that
have subscribed. The following table lists the types of natification actions that the
EventBroker can take.

Table 8-1 EventBroker Notification Actions

Notification Action Description

Unsolicited notification Clients may receive event notification messagesin their
message unsolicited message handling routine, just asif they were sent by
thet pnoti fy() function.

Service call Servers may receive event notification messages as input to
service routines, just asif they were sent by thet pacal | ()
function.

Reliable queue Event notification messages may be stored in a BEA Tuxedo

system reliable queue, using thet penqueue(3c) function.
Event notification buffers are stored until requests for buffer
contents are issued. A BEA Tuxedo system client or server
process may call thet pdequeue(3c) function to retrieve
these notification buffers, or alternately TMQFORWARD(5) may
be configured to automatically dispatch a BEA Tuxedo system
service routine that retrieves a notification buffer.

For moreinformation on/Q, see Using the ATMI /Q Component.

In addition, the application administrator may create an EVENT_M B(5) entry (by
using the BEA Tuxedo administrative API) that performs the following natification
actions:

m |nvokes a system command

m Writes a message to the system’slog file on disk

Note: Only the BEA Tuxedo application administrator is allowed to create an
EVENT_M B(5) entry.

For information on the EVENT_M B(5) , refer to the File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Programming a BEA Tuxedo ATMI Application Using C 8-3

8 Writing Event-based Clients and Servers

EventBroker Servers

TMUSREVT isthe BEA Tuxedo system-supplied server that acts as an EventBroker for
user events. TMUSREVT processes event report message buffers, and then filters and
distributesthem. The BEA Tuxedo application administrator must boot one or more of
these serversto activate event brokering.

TMBYSEVT isthe BEA Tuxedo system-supplied server that acts as an EventBroker for
system-defined events. TMSYSEVT and TMUSREVT are similar, but separate servers are
provided to allow the application administrator the ability to have different replication
strategiesfor processing notifications of these two types of events. Refer to Setting Up
a BEA Tuxedo Application for additional information.

System-defined Events

The BEA Tuxedo system itself detects and posts certain predefined events related to
system warnings and failures. These tasks are performed by the EventBroker. For
example, system-defined events include configuration changes, state changes,
connection failures, and machine partitioning. For acomplete list of system-defined
events detected by the EventBroker, see EVENTS(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

System-defined events are defined in advance by the BEA Tuxedo system code and do
not require posting. The name of a system-defined event, unlike that of an
application-defined event, always beginswith adot (“.”). Names of
application-defined events may not begin with aleading dot.

Clients and servers can subscribe to system-defined events. These events, however,
should be used mainly by application administrators, not by every client in the
application.

When incorporating the EventBroker into your application, remember that it is not
intended to provide amechanism for high-volumedistribution to many subscribers. Do
not attempt to post an event for every activity that occurs, and do not expect all clients
and serversto subscribe. If you overload the EventBroker, system performance may
be adversely affected and notifications may be dropped. To minimize the possibility of
overload, the application administrator should carefully tune the operating system |PC
resources, as explained in Installing the BEA Tuxedo System.

8-4 Programming a BEA Tuxedo ATMI Application Using C

Defining the Unsolicited Message Handler

Programming Interface for the EventBroker

EventBroker programming interfaces are available for all BEA Tuxedo system server
and client processes, including Workstation, in both C and COBOL.

The programmer’ sjob is to code the following sequence:
1. A client or server posts a buffer to an application-defined event name.

2. The posted buffer is transmitted to any number of processes that have subscribed
to the event.

Subscribers may be notified in avariety of ways (as discussed in “Notification
Actions”), and events may befiltered. Notification and filtering are configured through
the programming interface, aswell asthrough the BEA Tuxedo system administrative
API.

Defining the Unsolicited Message Handler

Todefinethe unsolicited message handler function, usethet pset unsol (3c) function
with the following signature;

i nt

t pset unsol (*nyf unc)

The following table describes the single argument that can be passed to the
t pset unsol () function.

Table 8-2 tpsetunsol() Function Argument

Argument Description
nyfunc Pointer to a function that conforms to the prototype of a call-back
function. In order to conform, the function must accept the following
three parameters:
m dat a—pointsto the typed buffer that contains the unsolicited
message

m | en—length of the buffer
m fl ags—currently not used

Programming a BEA Tuxedo ATMI Application Using C 8-5

8 Writing Event-based Clients and Servers

When a client receives an unsolicited notification, the system dispatches the call-back
function with the message. To minimize task disruption, you should code the
unsolicited message handler function to perform only minimal processing tasks, so it
can return quickly to the waiting process.

Sending Unsolicited Messages

The BEA Tuxedo system allows unsolicited messages to be sent to client processes
without disturbing the processing of request/response calls or conversational
communications.

Unsolicited messages can be sent to client processes by name, using

t pbr oadcast (3c) , or by anidentifier received with a previously processed message,
usingt pnot i fy(3c). Messages sent viat pbr oadcast () canoriginate eitherin a
service or in another client. Messages sent viat pnoti fy() canoriginate only ina
service.

Broadcasting Messages by Name

Thet pbr oadcast (3c) function allows a message to be sent to registered clients of
the application. It can be called by a service or another client. Registered clients are
those that have successfully made acall tot pi ni t () and have not yet made a call to

tpterm).
Use the following signature to call thet pbr oadcast () function:
int
t pbroadcast (char *Im d, char *usrnane, char *cltname, char *data, long len, |ong

flags)

The following table describes the arguments to the t pbr oadcast () function.

8-6 Programming a BEA Tuxedo ATMI Application Using C

Sending Unsolicited Messages

Table 8-3 tpbroadcast() Function Arguments

Argument Description

Imd Pointer to the logical machine identifier for the client. A value of
NULL actsasawildcard, sothat amessage can bedirected to groups
of clients.

usrname Pointer to the username of the client process, if one exists. A value

of NULL acts asawildcard, so that a message can be directed to
groups of clients.

cl t nanme Pointer to the client name of the client process, if oneexists. A value
of NULL acts asawildcard, so that a message can be directed to
groups of clients.

dat a Pointer to the content of a message.

I en Size of the message buffer. If dat a points to a self-defining buffer
type, for example, FM_, then| en can be set to 0.

fl ags Flag options. Refer tot pbr oadcast (3c) inthe BEA Tuxedo
ATMI C Function Reference for information on available flags.

The following example illustrates acall tot pbr oadcast () for which all clientsare
targeted. The message to be sent is contained in a STRI NG buffer.

Listing 81 Using tpbroadcast()

char *strbuf;

if ((strbuf = tpalloc("STRING', NULL, 0)) == NULL) {
error routine

}

(void) strcpy(strbuf, "hello, world");

if (tpbroadcast (NULL, NULL, NULL, strbuf, 0, TPSIGRSTRT) == -1)
error routine

Programming a BEA Tuxedo ATMI Application Using C 8-7

8 Writing Event-based Clients and Servers

Broadcasting Messages by Identifier

Thet pnoti fy(3c) functionis used to broadcast a message using an identifier
received with a previously processed message. It can be called only from a service.

Use the following signature to call thet pnot i f y() function:

int
tpnoti fy(CLIENTID *clientid, char *data, long len, |long flags)

The following table describes the argumentsto thet pnoti fy() function.

Table 8-4 tpnotify() Function Arguments

Argument Description

clientid Pointer to a CLI ENTI D structure that is saved from the TPSVCI NFO
structure that accompanied the request to this service.

dat a Pointer to the content of the message.

I en Size of the message buffer. If dat a pointsto a self-defining buffer type,

for example, FM_, then | en can be set to 0.

flags Flag options. Refer tot pnot i f y(3c) inthe BEA Tuxedo ATMI C
Function Reference for information on available flags.

Checking for Unsolicited Messages

8-8

To check for unsolicited messages while running the client in “dip-in” notification
mode, usethet pchkunsol (3c) function with the following signature:

int

t pchkunsol ()

The function takes no arguments.

If any messages are pending, the system invokes the unsolicited message handling
function that was specified usingt pset unsol () . Upon completion, the function
returns either the number of unsolicited messages that were processed or - 1 on error.

Programming a BEA Tuxedo ATMI Application Using C

Subscribing to Events

If you issue this function when the client isrunning in SI GNAL -based, thread-based
notification mode, or isignoring unsolicited messages, the function has no impact and
returns immediately.

Subscribing to Events

Thet psubscri be(3c) functionenablesaBEA Tuxedo system ATMI client or server
to subscribe to an event.

A subscriber can be notified through an unsolicited notification message, aservicecall,
areliable queue, or other notification methods configured by the application
administrator. (For information about configuring alternative notification methods,
refer to Setting Up a BEA Tuxedo Application.)

Use the following signature to call thet psubscri be() function:

| ong handl e

t psubscri be (char *eventexpr,

char *filter, TPEVCTL *ctl, long flags)

The following table describes the argumentsto thet psubscri be() function.

Table 8-5 tpsubscribe() Function Arguments

Argument

Description

event expr

Pointer to a set of one or more events to which a process can subscribe.
Consists of aNULL-terminated string of up to 255 characters containing
aregular expression. Regular expressions are of the form specified in

t psubscri be(3c), asdescribed in the BEA Tuxedo ATMI C Function
Reference). For example, if event expr isset to:

m "\\.. *"—thecalerissubscribing to al system-defined events.

m "\\.SysServer.*"—thecalerissubscribing to all
system-defined events related to servers.

m "[AZ].*"—thecalerissubscribingtoall user eventsstartingwith
any uppercase letter between A and Z.

m " *(ERR|err).*"—thecalerissubscribing to all user events
with names that contain either er r or ERR, such asthe
account _error and ERROR_STATE events, respectively.

Programming a BEA Tuxedo ATMI Application Using C 8-9

8 Writing Event-based Clients and Servers

Argument Description

filter Pointer to a string containing a Boolean filter rule that must be evaluated
successfully before the EventBroker posts the event. Upon receiving an
event to be posted, the EventBroker appliesthefilter rule, if one exists, to
the posted event’ s data. If the data passes the filter rule, the EventBroker
invokes the notification method specified; otherwise, the EventBroker
ignores the natification method. The caller can subscribe to the same
event multiple times with different filter rules.

By using the event-filtering capability, subscribers can discriminate
among the events about which they are notified. For example, a poster
can post an event for withdrawal s greater than $10,000, but a subscriber
may want to specify a higher threshold for being notified, such as
$50,000. Or, a subscriber may want to be notified of large withdrawals
made by specific customers.

Filter rules are specific to the typed buffersto which they are applied. For
moreinformation onfilter rules, refertot psubscri be(3c) intheBEA
Tuxedo ATMI C Function Reference.

ctl Pointer to aflag for controlling how a subscriber is notified of an event.
Valid values include:

m NULL—sends unsolicited messages. Refer to “Notification via
Unsolicited Message” on page 8-11 for more information.

m Pointer to avalid TPEVCTL structure—sends information based on
the TPEVCTL structure. Refer to “Noatification via Service Call or
Reliable Queue” on page 8-11 for more information.

flags Flag options. For more information on available flag options, refer to
t psubscri be(3c) inthe BEA Tuxedo ATMI C Function Reference.

Y ou can subscribe to both system- and application-defined events using the
t psubscri be() function.

For purposes of subscriptions (and for M B updates), service routines executed in a
BEA Tuxedo system server process are considered to be trusted code.

8-10 Programming a BEA Tuxedo ATMI Application Using C

Subscribing to Events

Notification via Unsolicited Message

If asubscriber isaBEA Tuxedo system client processand ct | isNULL, when the
event to which the client has subscribed is posted, the EventBroker sends an
unsolicited message to the subscriber as follows. When an event name is posted that
evaluates successfully against event expr , the EventBroker tests the posted data
against the associated filter rule. If the data passesthe filter rule (or if thereisno filter
rule for the event), then the subscriber receives an unsolicited notification along with
any data posted with the event.

In order to receive unsolicited notifications, the client must register an unsolicited
message handling routine using thet pset unsol () function.

ATMI clients receiving event notification via unsolicited messages should remove
their subscriptions from the EventBroker list of active subscriptions before exiting.
Thisisdone using thet punsubscri be() function.

Notification via Service Call or Reliable Queue

Event notification via service call enablesyou to program actions that can betakenin
response to specific conditionsin your application without human intervention. Event
notification viareliable queue ensures that event datais not lost. It also provides the
subscriber the flexibility of retrieving the event data at any time.

If the subscriber (either aclient or a server process) wants event notifications sent to
service routines or to stable-storage queues, thenthect | parameter of
t psubscri be() must point to avalid TPEVCTL structure.

The TPEVCTL structure contains the following elements:
| ong fl ags;
char nanel[32];

char nane2[32];
TPQCTL qctl;

Programming a BEA Tuxedo ATMI Application UsingC 8-11

8 Writing Event-based Clients and Servers

The following table summarizes the TPEVCTL typed buffer data structure.

Table8-6 TPEVCTL Typed Buffer Format

Field Description

flags Flag options. For more information on flags, refer to
t psubscri be(3c) inthe BEA Tuxedo ATMI C Function
Reference.

nanel Character string of 32 characters or fewer.

nanme2 Character string of 32 characters or fewer.

qct | TPQCTL structure. For more information, refer to
t psubscri be(3c) inthe BEA Tuxedo ATMI C Function
Reference.

Unsubscribing from Events

Thet punsubscri be(3c) function enablesaBEA Tuxedo system ATMI client or
server to unsubscribe from an event.

Use the following signature to call thet punsubscri be() function:

int
t punsubscribe (long subscription, |long flags)

The following table describes the arguments to the t punsubscri be() function.

Table 8-7 tpunsubscribe() Function Arguments

Argument Description

subscription Subscription handlereturned by acall tot psubscri be().

flags Flag options. For more information on available flag options, refer to
t punsubscri be(3c) inthe BEA Tuxedo ATMI C Function Reference.

8-12 Programming a BEA Tuxedo ATMI Application Using C

Posting Events

Posting Events

Thet ppost (3c) function enablesa BEA Tuxedo ATMI client or server to post an
event.

Use the following signature to call thet ppost () function:
t ppost (char *eventnane, char *data, long len, |long flags)

The following table describes the argumentsto the t ppost () function.

Table 8-8 tppost() Function Arguments

Argument Description

event name Pointer to an event name containing up to 31 charactersplusNULL. The
first character cannot beadot (“.”) because the dot isreserved asthefirst
character in names of BEA Tuxedo system-defined events. When
defining event names, keep in mind that subscribers can use wildcard
capabilities to subscribe to multiple events with a single function call.
Using the same prefix for a category of related event names can be

helpful.
data Pointer to a buffer previously allocated using thet pal | oc() function.
I en Size of databuffer that should be posted with the event. If dat a pointsto

abuffer of atype that does not require alength to be specified (for
example, an FML fielded buffer) or if you setit to NULL, thel en
argument isignored and the event is posted with no data.

fl ags Flag options. For more information on available flag options, refer to
t ppost (3c) inthe BEA Tuxedo ATMI C Function Reference.

Thefollowing exampleillustrates an event posting taken from the BEA Tuxedo system
sample application bankapp. Thisexampleis part of the W THDRAWAL service. One of
the functions of the w THDRAWAL service is checking for withdrawals greater than
$10,000 and posting an event called BANK_TLR_W THDRAWAL .

Programming a BEA Tuxedo ATMI Application UsingC ~ 8-13

8 Writing Event-based Clients and Servers

Listing 8-2 Posting an Event with tppost()

}* Event logic related */
static float evt_thresh = 10000.00 ; /* default for event threshold */
static char ensg[200] ; /* used by event posting logic */

/* Post a BANK TLR W THDRAWAL event ? */
if (ant < evt_thresh) {
/* no event to post */
t preturn(TPSUCCESS, O,transb->data , OL, 0);

}

/* prepare to post the event */

if ((Fchg (transf, EVENT_NAME, O, "BANK TLR W THDRAWAL", (FLDLEN)O) == -1) ||

(Fchg (transf, EVENT_TIME, O, gettine(), (FLDLEN)O) == -1) ||

(Fchg (transf, AMOUNT, 0, (char *)&ant, (FLDLEN)O) == -1)) {
(void)sprintf (ensg, "Fchg failed for event fields: %",
Fstrerror(Ferror))

}

/* post the event */
else if (tppost ("BANK _TLR W THDRAWAL", /* event nane */
(char *)transf, /* data */
oL, /* len */
TPNOTRAN | TPSI GRSTRT) == -1) {
/* 1f event broker is not reachable, ignore the error */
if (tperrno != TPENOENT)
(void)sprintf (ensg, "tppost failed: %", tpstrerror (tperrno));

This example simply posts the event to the EventBroker to indicate a noteworthy
occurrence in the application. Subscription to the event by interested clients, who can
then take action as required, is done independently.

8-14 Programming a BEA Tuxedo ATMI Application Using C

Example of Event Subscription

Example of Event Subscription

The following example illustrates a portion of abankapp application server that
subscribesto BANK_TLR . * events, whichincludesthe BANK_TLR_ W THDRAWAL event
shown in the previous example, as well as any other event names beginning with
BANK_TLR_. When amatching event is posted, the application notifies the subscriber
viaacall to a service named WATCHDOG.

Listing 8-3 Subscribing to an Event with tpsubscribe()

/* Event Subscription handles */
static long sub_ev_largeant = OL ;

/* Preset default for option 'w - watchdog threshold */
(void)strcpy (ant_expr, "AMOUNT > 10000.00") ;

/*
* Subscribe to the events generated
* when a "large" anmpbunt is transacted.
*/
evctl.flags = TPEVSERVI CE ;
(void)strcpy (evctl.nanel, "WATCHDOG') ;
/* Subscribe */
sub_ev_| argeant = tpsubscribe ("BANK_TLR .*", ant _expr, &vctl, TPSI GRSTRT) ;
if (sub_ev_largeant == -1L) {
(void)userlog ("ERROR: tpsubscribe for event BANK TLR .* failed: %",
tpstrerror(tperrno)) ;

return -1 ;
}
{
/* Unsubscribe to the subscri bed events */
i f (tpunsubscribe (sub_ev_largeant, TPSICGRSTRT) == -1)

Programming a BEA Tuxedo ATMI Application UsingC ~ 8-15

8 Writing Event-based Clients and Servers

(void)userl og ("ERROR tpunsubscribe to event BANK TLR .* failed: %",
tpstrerror(tperrno)) ;
return ;
}
/*
* Service called when a BANK_TLR .* event is posted.
*/
voi d
#if defined(__STDC) || defined(__cpl uspl us)
WATCHDOG(TPSVCI NFO *t r ansb)
#el se
WATCHDOG(t r ansb)
TPSVCI NFO *transb;
#endi f
{
FBFR *transf; /* fielded buffer of decoded nessage */
/* Set pointr to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;
/* Print the log entry to stdout */
(void)fprintf (stdout, "9%20s|%8s|%8l d| %40. 2f\ n",
Fval s (transf, EVENT_NAME, O0),
Fval s (transf, EVENT_TIMg O0),
Fvall (transf, ACCOUNT_ID, 0),
*((float *)CFfind (transf, AMOUNT, 0O, NULL, FLD FLOAT)));
/* No data should be returned by the event subscriber’'s svc routine */
t preturn(TPSUCCESS, 0, NULL, OL, 0);

}

8-16 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

O Writing Global
Transactions

This topic includes the following sections:

What Is a Global Transaction?

Starting the Transaction

Suspending and Resuming a Transaction

Terminating the Transaction

Implicitly Defining a Global Transaction

Defining Global Transactions for an XA-Compliant Server Group

Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction isamechanism that allowsaset of programming tasks, potentially
using more than one resource manager and potentially executing on multiple servers,
to be treated as one logical unit.

Once a process is in transaction mode, any service requests made to servers may be
processed on behalf of the current transaction. The servicesthat are called and join the
transaction are referred to as transaction participants. The value returned by a
participant may affect the outcome of the transaction.

Programming a BEA Tuxedo ATMI Application Using C 9-1

9 Writing Global Transactions

9-2

A global transaction may be composed of several local transactions, each accessing the
same resource manager. The resource manager is responsible for performing
concurrency control and atomicity of updates. A given local transaction may be either
successful or unsuccessful in completing its access; it cannot be partially successful.

A maximum of 16 server groups can participate in a single transaction.

The BEA Tuxedo system manages a global transaction in conjunction with the
participating resource managers and treats it as a specific sequence of operations that
is characterized by atomicity, consistency, isolation, and durability. In other words, a
global transactionis alogical unit of work in which:

m All portions either succeed or have no effect.

m Operations are performed that correctly transform resources from one consistent
state to another.

m Intermediate results are not accessible to other transactions, although some
processes in a transaction may access the data associated with another process.

m Once a sequence is complete, its results cannot be altered by any kind of failure.

The BEA Tuxedo system tracks the status of each global transaction and determines
whether it should be committed or rolled back.

Note: If atransactionincludescallstot pcal | (), tpacall (), ortpconnect () for
which thef | ags parameter is explicitly set to TPNOTRAN, the operations
performed by the called service do not become part of that transaction. In this
case, the calling process does not invite the called service to be aparticipant in
the current transaction. As aresult, services performed by the called process
are not affected by the outcome of the current transaction. If TPNOTRAN i S set
for acall that isdirected to aservicein an X A-compliant server group, the call
may be executed outside of transaction mode or in a separate transaction,
depending on how the serviceis configured and coded. For more information,
refer to “Implicitly Defining a Global Transaction” on page 9-17.

Programming a BEA Tuxedo ATMI Application Using C

Starting the Transaction

Starting the Transaction

To start aglobal transaction, use thet pbegi n(3c) function with the following
signature:

i nt
t pbegi n(unsi gned | ong tinmeout, |ong flags)

Programming a BEA Tuxedo ATMI Application Using C 9-3

9 Writing Global Transactions

The following table describes the arguments to the t pbegi n() function

Table 9-1 tpbegin() Function Arguments

Field

Description

ti meout

Specifies the amount of time, in seconds, a transaction can execute before
timing out. Y ou can set thisvalue to the maximum number of secondsallowed
by the system, by specifying avalue of 0. In other words, you can set

ti meout tothe maximum value for an unsigned | ong as defined by the
system.

The use of 0 or an unredlistically large value for thet i meout parameter
delays system detection and reporting of errors. The system usesthet i meout
parameter to ensure that responses to service requests are sent within a
reasonabletime, and to terminate transactionsthat encounter problems such as
network failures before executing a commit.

For atransaction in which a person is waiting for aresponse, you should set
this parameter to asmall value: if possible, less than 30 seconds.

In a production system, you should set t i meout to avalue large enough to

accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: Thevaueassignedtothet i neout parameter should be consistent
with that of the SCANUNI T parameter set by the BEA Tuxedo
application administrator in the configuration file. The SCANUNI T
parameter specifies the frequency with which the system checks, or
scans, for timed-out transactions and blocked callsin service
requests. The value of this parameter represents the interval of time
between these periodic scans, referred to as the scanning unit.

Youshouldsetthet i meout parameter to avaluethat isgreater than
the scanning unit. If you set thet i meout parameter to avalue
smaller than the scanning unit, there will be a discrepancy between
the time at which a transaction times out and the time at which this
timeout is discovered by the system. The default value for

SCANUNI T is 10 seconds. Y ou may need to discuss the setting of the
ti meout parameter with your application administrator to make
surethevalueyou assignto thet i neout parameter is compatible
with the values assigned to your system parameters.

fl ags

Currently undefined; must be set to 0.

9-4 Programming a BEA Tuxedo ATMI Application Using C

Starting the Transaction

Any process may call t pbegi n() unlessthe processisalready in transaction mode or
iswaiting for outstanding replies. If t pbegi n() iscalled in transaction mode, the call
fails due to aprotocol error and t per r no(5) isset to TPEPROTO. If the processisin
transaction mode, the transaction is unaffected by the failure.

The following example provides a high-level view of how aglobal transactionis
defined.

Listing 9-1 Defining a Global Transaction - High-level View

if (tpbegin(tinmeout,flags) == -1)
error routine
program st atenents

i f (tpcommit(flags) == -1)
error routine

The following example provides a more detailed view of how to define a transaction.
This exampleis excerpted from audi t . ¢, aclient program included in bankapp, the
sample banking application delivered with the BEA Tuxedo system.

Listing 9-2 Defining a Global Transaction - Detailed View

#i ncl ude <stdio. h> /* UNIX */

#i ncl ude <string. h> [* UNI X */

#i ncl ude <atm . h> /* BEA Tuxedo System */

#i ncl ude <Uuni x. h> /* BEA Tuxedo System */

#i ncl ude <userl og. h> /* BEA Tuxedo System */

#i ncl ude "bank. h" /* BANKI NG #defines */

#i ncl ude "aud. h" /* BANKI NG vi ew defines */

#define INVI O /* account inquiry */

#define ACCT 1 /* account inquiry */

#define TELL 2 /* teller inquiry */

static int sumbal _((char *, char *));

static long sitelist[NSITE] = Sl TEREP; /* list of machines to audit */
stati ¢ char pgmame[STATLEN] ; /* program nane = argv[0] */
static char result_str[STATLEN]; /* string to hold results of query */

Programming a BEA Tuxedo ATMI Application Using C 9-5

9 Writing Global Transactions

mai n(argc, argv)
int argc;
char *argv[];

int aud_type=I NVI; /* audit type -- invalid unless specified */
int clarg; /* command line arg index fromoptind */
int c; /* Option character */

int cflgs=0; /* Commit flags, currently unused */

int afl gs=0; /* Abort flags, currently unused */

i nt nbl =0; /* count of branch list entries */

char svc_nanme[NAVELEN] ; /* service nane */

char hdr_type[NAVELEN] ; /* heading to appear on output */

int retc; /* return value of sumbal () */

struct aud *audv; /* pointer to audit buf struct */

int audrl =0; /* audit return length */

| ong q_branchi d; /* branch_id to query */

/* Get Command Line Options and Set Variables */

/* Join application */

if (tpinit((TPINIT *) NULL) == -1) {
(void)userlog("%: failed to join application\n", pgmane);
exit(1l);

}

/* Start global transaction */

if (tpbegin(30, 0) == -1)
(void)userlog("%: failed to begin transacti on\n", pgmane);
(void)tptern();

exit(1l);
}
if (nbl == 0) { /* no branch id specified so do a global sum*/
retc = sumbal (svc_nane, hdr_type); /* sum bal routine not shown */
} else {

/* Create buffer and set data pointer */

if ((audv = (struct aud *)tpalloc("VIEW, "aud", sizeof(struct aud)))
== (struct aud *)NULL) {
(void)userlog("audit: unable to allocate space for VIEWnN");
exit(1);

}

/* Prepare aud structure */

9-6 Programming a BEA Tuxedo ATMI Application Using C

Starting the Transaction

audv->b_id = g_branchid;
audv- >bal ance = 0.0;
audv->ernsg[0] = '\0";

/* Do tpcall */

if (tpcall(svc_nane, (char *)audv, sizeof (struct aud),
(char **)audv, (long *)audrl,0) == -1){
(void)fprintf (stderr,"% service failed\n%: 9%\n",
svc_nanme, svc_nane, audv->ernsg);

retc = -1;
el se {
(void)sprintf(result_str,"Branch %d % balance is $% 2f\n",
audv->b_id, hdr_type, audv->bal ance);
}
tpfree((char *)audv);
}
/* Commit global transaction */
if (retc <0) /* sum bal failed so abort */
(void) tpabort(aflgs);
el se {
if (tpcommit(cflgs) == -1) {

(void)userlog("%: failed to commit transaction\n", pgmane);

(void)tptern();
exit(1);

/*print out results only when transaction has conmtted successful | y*/
(void)printf("9%",result_str);

}

/* Leave application */

if (tpterm() == -1) {
(void)userlog("%: failed to | eave application\n", pgmane);
exit(1);

If atransaction times out, acall tot pcommi t () causes the transaction to be aborted.
Asaresult, t pconmi t () failsand setst perrno(5) to TPEABORT.

Thefollowing example shows how to test for atransaction timeout. Note that thevalue
of ti meout isset to 30 seconds.

Programming a BEA Tuxedo ATMI Application Using C 9-7

9 Writing Global Transactions

Listing 9-3 Testing for Transaction Timeout

if (tpbegin(30, 0) == -1) {
(void)userlog("%: failed to begin transaction\n", argv[O0]);
tpterm();
exit(1l);

}

conmmuni cation calls

if'(iperrno == TPETI ME) {
if (tpabort(0) == -1) {
check for errors;

else if (tpcommit(0) == -1){
check for errors;
}

Note: When aprocessisin transaction mode and makes a communication call with
f1 ags set to TPNOTRAN, it prohibits the called service from becoming a
participant in the current transaction. Whether the service request succeeds or
fails has no impact on the outcome of the transaction. The transaction can till
timeout while waiting for areply that is due from a service, whether it is part
of the transaction or not. Refer to “Managing Errors’ on page 11-1 for more
information on the effects of the TPNOTRAN flag.

Suspending and Resuming a Transaction

At times, it may be desirable to temporarily remove a process from an incomplete
transaction and allow it to initiate a different transaction by calling t pbegi n() or
t presume() . For example, suppose a server wants to log a request to the database
central event log, but does not want the logging activity to be rolled back if the
transaction aborts.

The BEA Tuxedo system provides two functions that allow aclient or server to
suspend and resume a transaction in such situations: t psuspend(3c) and
t presume(3c) . Using these functions, a process can:

9-8 Programming a BEA Tuxedo ATMI Application Using C

Suspending and Resuming a Transaction

1. Temporarily suspend the current transaction by calling t psuspend() .

2. Start a separate transaction. (In the preceding example, the server writes an entry
to the event log.)

3. Commit the transaction started in step 2.

4. Resumethe original transaction by callingt pr esunme() .

Suspending a Transaction

Usethet psuspend(3c) function to suspend the current transaction. Use the
following signature to call thet psuspend() function:

i nt
t psuspend(TPTRANID *t i d, | ong fl ags)

The following table describes the argumentsto the t psuspend() function.

Table 9-2 tpsuspend() Function Arguments

Field Description
*t_id Pointer to the transaction identifier.
fl ags Currently not used. Reserved for future use.

Y ou cannot suspend a transaction with outstanding asynchronous events. When a
transaction is suspended, all modifications previously performed are preserved in a
pending state until the transaction is committed, aborted, or timed out.

Resuming a Transaction

To resumethe current transaction, usethet pr esune(3c) functionwith thefollowing
signature.

i nt
tpresume(TPTRANID *t _id, |l ong fl ags)

Programming a BEA Tuxedo ATMI Application Using C 9-9

9 Writing Global Transactions

The following table describes the argumentsto the t pr esunme() function:

Table 9-3 tpresume() Function Arguments

Field Description
*t_id Pointer to the transaction identifier.
flags Currently not used. Reserved for future use.

It is possible to resume a transaction from a process other than the one that suspended
it, subject to certain restrictions. For alist of these restrictions, refer to
t psuspend(3c) andt presunme(3c) inthe BEA Tuxedo ATMI C Function Reference.

Example: Suspending and Resuming a Transaction

The following example shows how to suspend one transaction, start and commit a
second transaction, and resume the initial transaction. For the sake of simplicity, error
checking code has been omitted.

Listing 9-4 Suspending and Resuming a Transaction

DEBI T(SVCI NFO *s)

{
TPTRANID t;
t psuspend(& , TPNOFLAGS); [/* suspend invoking transaction*/
t pbegi n(30, TPNOFLAGS); /* begin separate transaction */
Performwork in the separate transaction.
t pconmi t (TPNOFLAGS) ; /* commit separate transaction */
t presune(& , TPNOFLAGS) ; /* resune invoki ng transaction*/
tpreturn(. . .);

}

9-10 Programming a BEA Tuxedo ATMI Application Using C

Terminating the Transaction

Terminating the Transaction

To end aglobal transaction, call t pcormmi t (3c¢) to commit the current transaction, or
t pabort (3c) to abort the transaction and roll back all operations.

Note: Iftpcall(),tpacall(),ortpconnect() iscaledby aprocessthat has
explicitly set thef | ags argument to TPNOTRAN, the operations performed by
the called service do not become part of the current transaction. In other words,
when you call thet pabort () function, the operations performed by these
services are not rolled back.

Committing the Current Transaction

Thet pcommi t (3¢) function commits the current transaction. When t pconmi t ()
returns successfully, all changes to resources as a result of the current transaction
become permanent.

Use the following signature to call thet pcommi t () function:

i nt
tpconmi t (1 ong fl ags)

Although thef | ags argument is not used currently, you must set it to zero to ensure
compatibility with future rel eases.

Prerequisites for a Transaction Commit

Fort pconmi t () to succeed, the following conditions must be true:

m The calling process must be the same one that initiated the transaction with a
call tot pbegi n().

m The calling process must have no transactional replies (calls made without the
TPNOTRAN flag) outstanding.

m Thetransaction must not be in arollback-only state and must not be timed out.

Programming a BEA Tuxedo ATMI Application UsingC 9-11

9 Writing Global Transactions

If the first condition is false, the call failsand t perrno(5) is set to TPEPROTO,
indicating a protocol error. If the second or third condition isfalse, the call failsand
t perrno() issetto TPEABORT, indicating that the transaction has been rolled back. If
t pcommi t () iscalled by the initiator with outstanding transaction replies, the
transaction is aborted and those reply descriptors associated with the transaction
becomeinvalid. If aparticipant callst pcommi t () ort pabort (), thetransactionis
unaffected.

A transaction is placed in arollback-only state if any service call returns TPFAI L or
indicates aservice error. If t pcommi t () iscalled for arollback-only transaction, the
function cancels the transaction, returns -1, and setst per r no(5) to TPEABORT. The
results are the sameif t pcommi t () iscalled for atransaction that has already timed
out: t pconmi t () returns-1and setst perrno() to TPEABORT. Refer to “Managing
Errors’ on page 11-1 for more information on transaction errors.

Two-phase Commit Protocol

9-12

When thet pconmi t () function is called, it initiates the two-phase commit protocol.
This protocol, as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. Theinitiator of the transaction gives permission to commit to each participating
resource manager.

The commit sequence begins when the transaction initiator callsthet pcommi t ()
function. The BEA Tuxedo TMS server process in the designated coordinator group
contacts the TM S in each participant group that isto perform the first phase of the
commit protocol. The TM Sin each group then instructs the resource manager (RM) in
that group to commit using the XA protocol that is defined for communications
between the Transaction Managers and RMs. The RM writes, to stable storage, the
states of the transaction before and after the commit sequence, and indicates success
or failure to the TMS. The TMS then passes the response back to the coordinating
TMS.

When the coordinating TM S has received a success indication from all groups, it logs
astatement to the effect that a transaction is being committed and sends second-phase
commit notificationsto all participant groups. The RM in each group then finalizesthe
transaction updates.

Programming a BEA Tuxedo ATMI Application Using C

Terminating the Transaction

If the coordinator TM S is natified of a first-phase commit failure from any group, or
if it fallsto receive areply from any group, it sendsarollback notification to each RM
and the RMs back out all transaction updates. t pconmi t () then fails and sets

t perrno(5) to TPEABORT.

Selecting Criteria for a Successful Commit

When more than one group isinvolved in atransaction, you can specify which of two
criteriamust be met for t pcommi t () to return successfully:

m When dl participants have indicated a readiness to commit (that is, when all
participants have reported that phase 1 of the two-phase commit has been logged
as complete and the coordinating TM S has written its decision to commit to
stable storage)

m When dl participants have finished phase 2 of the two-phase commit

To specify one of these prerequisites, set the CMTRET parameter in the RESOURCES
section of the configuration file to one of the following values:

m LOGGED—to require completion of phase 1
m COVPLETE—to require completion of phase 2
By default, CMIRET is set to COVPLETE.

If you later want to override the setting in the configuration file, you can do so by
calingthet pscnt () functionwithitsf | ags argument set to either TP_CMI_LOGGED
or TP_CMI_COMPLETE.

Trade-offs Between Possible Commit Criteria

In most cases, when all participantsin aglobal transaction have logged successful
completion of phase 1, they do not fail to complete phase 2. By setting CMTRET to
LOGGED, you alow adightly faster return of callstot pconmi t (), but you run the
slight risk that a participant may heuristically complete its part of the transactionin a
way that is not consistent with the commit decision.

Whether it is prudent to accept the risk dependsto alarge extent on the nature of your
application. If your application demands complete accuracy (for example, if you are
running afinancial application), you should probably wait until all participants fully

Programming a BEA Tuxedo ATMI Application UsingC ~ 9-13

9 Writing Global Transactions

compl ete the two-phase commit process before returning. If your application is more
time-sensitive, you may prefer to have the application execute faster at the expense of
accuracy.

Aborting the Current Transaction

Example:
Mode

Usethet pabort (3c) function to indicate an abnormal condition and explicitly abort
atransaction. This function invalidates the call descriptors of any outstanding
transactional replies. None of the changes produced by the transaction are applied to
the resource. Use the following signature to call thet pabort () function:

i nt

t pabort (1 ong fl ags)

Although the f | ags argument is not used currently, you must set it to zero to ensure
compatibility with future rel eases.

Committing a Transaction in Conversational

The following figureillustrates a conversational connection hierarchy that includes a
global transaction.

9-14 Programming a BEA Tuxedo ATMI Application Using C

Terminating the Transaction

Figure9-1 Connection Hierarchy in Transaction Mode

EVENTS EVENTS

A

cd= tpbegin(30, 0);
cdl=tpconnect"svcB", TPRECVONLYY,

TPEV_3[

B C

sveBtpaveinfn) svcCitpsveintn)

cdl=tpconnect"sveC", TPSENDONLUY],
tpsend(cdl, dats, TPRECWVONLY),

TPEV_SENDONLY

TPEWV_SV(IUCC

tprecw(cd, &huffer, . &revent),
tpreturn(TPEUCCESS buffer,),
CEUCC

tprecv(cd, &buffer, . Erevent);

tprecwitpeveinfo=cd, . &revent),

tpreturn TPSUCCES S, buffer, 3,

The connection hierarchy is created through the following process:

1. A client (process A) initiates a connection in transaction mode by calling
t pbegi n() andt pconnect ().

2. Theclient call

3. Aseach subordinate service completes, it sends areply indicating success or
failure (TPEV_SVCSUCC or TPEV_SVCFAI L, respectively) back up through the

ssubsidiary services, which are executed.

hierarchy to the process that initiated the transaction. In this example the process
that initiated the transaction is the client (process A). When a subordinate service
has completed sending replies (that is, when no more replies are outstanding), it

must call t preturn() .

4. Theclient (process A) determines whether all subordinate services have returned

successfully.

e |f so, the client commits the changes made by those services, by calling

t pconmi t (), and compl etes the transaction.

Programming a BEA Tuxedo ATMI Application Using C

9-15

9 Writing Global Transactions

e If not, theclient callst pabort (), sinceit knowsthat t pconmi t () could not
be successful.

Example: Testing for Participant Errors

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

9-16

In the following sample code, a client makes a synchronous call to the fictitious
REPORT service (line 18). Then the code checks for participant failures by testing for
errors that can be returned on a communication call (lines 19-34).

Listing 9-5 Testing for Participant Successor Failure

#i ncl ude <stdio. h>
#include "atm . h"

mai n()

char *sbuf, *rbuf;
long slen, rlen;
if (tpinit((TPINIT *) NULL) == -1)
error nmessage, exit program
if (tpbegin(30, 0) == -1)
error nessage, tpterm exit program
if ((sbuf=tpalloc("STRING', NULL, 100)) == NULL)
error nmessage, tpabort, tpterm exit program
if ((rbuf=tpalloc("STRING', NULL, 2000)) == NULL)
error nessage, tpfree sbuf, tpabort, tpterm exit program
(void)strcpy(sbuf, "REPORT=accrcv DBNAME=accounts");
sl en=strl en(sbuf);
if (tpcall ("REPORT", sbuf, slen, &buf, &len, 0) == -1) {
switch(tperrno) {
case TPESVCERR
fprintf(stderr,
"REPORT service's tpreturn encountered problens\n");
br eak;
case TPESVCFAI L:
fprintf(stderr,
"REPORT service TPFAILED with return code of %\ n", tpurcode);
br eak;
case TPEOTYPE:
fprintf(stderr,
"REPORT service's reply is not of any known data type\n");
br eak;
defaul t:

Programming a BEA Tuxedo ATMI Application Using C

Implicitly Defining a Global Transaction

033 fprintf(stderr,

034 "REPORT service failed with error %\ n", tperrno);
035 br eak;

036 }

037 if (tpabort(0) == -1){

038 check for errors;

039 }

040 }

041 el se

042 if (tpcommt(0) == -1)

043 fprintf(stderr, "Transaction failed at conmt time\n");

044 t pfree(rbuf);
045 t pf ree(sbuf);
046 tpterm));

047 exit(0);

048 }

Implicitly Defining a Global Transaction

An application can start aglobal transaction in either of two ways:

m Explicitly, by calling ATMI functions, as described in “ Starting the Transaction”
on page 9-3.

m |Implicitly, from within a service routine

This section describes the second method.

Implicitly Defining a Transaction in a Service Routine

Y ou can implicitly place a service routine in transaction mode by setting the system
parameter AUTOTRAN in the configuration file. If you set AUTOTRAN tO Y, the system
automatically starts a transaction in the service subroutine when arequest is received
from another process.

When implicitly defining atransaction, observe the following rules:

Programming a BEA Tuxedo ATMI Application UsingC ~ 9-17

9 Writing Global Transactions

m |f aprocess requests a service from another process when the calling processis
not in transaction mode and the AUTOTRAN system parameter is set to start a
transaction, the system initiates a transaction.

m |f aprocessthat isaready in transaction mode requests a service from another
process, the system'’s first response is to determine whether or not the caller has
itsf | ags parameter set to TPNOTRAN.

If thefl ags argument is not set to TPNOTRAN, then the system places the called
process in transaction mode through the “rule of propagation.” The system does
not check the AUTOTRAN parameter.

If thefl ags argument is set to TPNOTRAN, the services performed by the called
process are not included in the current transaction (that is, the propagation ruleis
suppressed). The system checks the AUTOTRAN parameter.

e |If AUTOTRANISSet to N (or if it isnot set), the system does not place the
called process in transaction mode.

e |f AUTOTRANIS set to Y, the system places the called process in transaction
mode, but treats it as a new transaction.

Note: Because a service can be placed in transaction mode automatically, it is
possible for aservice with the TPNOTRAN flag set to call servicesthat have the
AUTOTRAN parameter set. If such a service requests another service, thef | ags
member of the serviceinformation structure returns TPTRANwhen queried. For
example, if the call is made with the communication f | ags member set to
TPNOTRAN | TPNOREPLY, and the service automatically starts a transaction
when called, thef | ags member of the information structure is set to TPTRAN
| TPNOREPLY.

9-18 Programming a BEA Tuxedo ATMI Application Using C

Defining Global Transactions for an XA-Compliant Server Group

Defining Global Transactions for an
XA-Compliant Server Group

Testing

Generally, the application programmer writesaservicethat is part of an X A-compliant
server group to perform some operation via the group’s resource manager. In the
normal case, the service expects to perform all operations within a transaction. If, on
the other hand, the serviceis called with the communication f | ags set to TPNOTRAN,
you may receive unexpected results when executing database operations.

In order to avoid unexpected behavior, design the application so that servicesin groups
associated with XA-compliant resource managers are always called in transaction
mode or are always defined in the configuration file with AUTOTRAN set to Y. You
should also test the transaction level in the service code early.

Whether a Transaction Has Started

When a process in transaction mode requests a service from another process, the latter
process becomes part of the transaction, unless specifically instructed not to join it.

Itisimportant to know whether or not aprocessisin transaction modein order to avoid
and interpret certain error conditions. For example, it is an error for a process already
in transaction modeto call t pbegi n() . Whent pbegi n() iscalled by such aprocess,
it failsand setst perrno(5) to TPEPROTOt0 indicate that it was invoked while the
caller was aready participating in atransaction. The transaction is not affected.

Y ou can design a service subroutine so that it tests whether it isin transaction mode
before invoking t pbegi n() . You can test the transaction level by either of the
following methods:

m Querying thef | ags field of the service information structure that is passed to
the service routine. The serviceisin transaction modeif the valueis set to
TPTRAN.

m Cdlingthet pget | ev(3c) function.

Programming a BEA Tuxedo ATMI Application UsingC ~ 9-19

9 Writing Global Transactions

Use the following signature to call thet pget | ev() function:
int
tpgetlev() [/* Get current transaction level */

Thet pget | ev() function requires no arguments. It returns O if the callerisnotina
transaction, and 1 if it is.

Thefollowing code sample isavariation of the OPEN_ACCT service that shows how to
test for transaction level using thet pget | ev() function (line 12). If the processis not
already in transaction mode, the application startsatransaction (line 14). If t pbegi n()
fails, amessage is returned to the status line (line 16) and ther code argument of

t preturn() issettoacodethat can beretrieved in the global variablet pur code(5)
(lines 1 and 17).

Listing 9-6 Testing Transaction Level

001 #define BEGFAI L 3 /* tpurcode setting for return if tpbegin fails */

002 void
003 OPEN_ACCT(transhb)

004 TPSVCI NFO *transb;

005 {
... other declarations ...
006 FBFR *transf; /* fielded buffer of decoded nessage */
007 int dotran; /* checks whet her service tpbegin/tpconmt/tpaborts */

008 /* set pointer to TPSVCI NFO data buffer */
009 transf = (FBFR *)transb->dat a;
010 /* Test if transaction exists; initiate if no, check if yes */

011 dotran = 0;
012 if (tpgetlev() == 0) {

013 dotran = 1;

014 if (tpbegin(30, 0) ==-1) {

015 Fchg(transf, STATLIN, O,

016 "Attempt to tpbegin within service routine failed\n");
017 tpreturn(TPFAI L, BEGFAIL, transb->data, 0, 0);

018

019 }

9-20 Programming a BEA Tuxedo ATMI Application Using C

Testing Whether a Transaction Has Started

If the AUTOTRAN parameter is set to Y, you do not need to call thet pbegi n() , and
tpconmi t () ortpabort () transaction functionsexplicitly. Asaresult, you canavoid
the overhead of testing for transaction level. In addition, you can set the TRANTI VE
parameter to specify the time-out interval: the amount of time that may elapse after a
transaction for a service begins, and beforeit isrolled back if not completed.

For example, suppose you are revising the OPEN_ACCT service shown in the preceding
codelisting. Currently, OPEN_ACCT definesthe transaction explicitly and then testsfor
itsexistence (seelines 7 and 10-19). To reduce the overhead introduced by thesetasks,
you can eliminate them from the code. Therefore, you need to require that whenever
OPEN_ACCT is called, it is called in transaction mode. To specify this requirement,
enable the AUTOTRAN and TRANTI ME system parameters in the configuration file.

See Also

m Description of the AUTOTRAN configuration parameter in the section “Implicitly
Defining a Global Transaction” on page 9-17 of Setting Up a BEA Tuxedo
Application.

m TRANTI ME configuration parameter in Setting Up a BEA Tuxedo Application.

Programming a BEA Tuxedo ATMI Application UsingC 9-21

9 Writing Global Transactions

9-22 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

10

Programming a
Multithreaded and

Multicontexted ATMI
Application

This topic includes the following sections:

m Support for Programming a Multithreaded/Multicontexted ATMI Application
m Planning and Designing a Multithreaded/Multicontexted ATMI Application
m |mplementing a Multithreaded/ Multicontexted ATMI Application

m Testing a Multithreaded/M ulticontexted ATMI Application

Programming a BEA Tuxedo ATMI Application UsingC 10-1

10 Programming a Multithreaded and Multicontexted ATMI Application

Support for Programming a
Multithreaded/Multicontexted ATMI
Application

The BEA Tuxedo system supports only:
m Kerne-level threads packages (user-level threads packages are not supported)

m Multithreaded applications written in C (multithreaded COBOL applications are
not supported)

m Multicontexted applications written in either C or COBOL

If your operating system supports POSI X threads functions as well as other types of
threads functions, we recommend using the POSI X threads functions, which make
your code easier to port to other platformslater.

To find out whether your platform supports a kernel-level threads package, C
functions, or POSIX functions, see the data sheet for your operating systemin
Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo System.

Platform-specific Considerations for
Multithreaded/Multicontexted Applications
Many platforms haveidiosyncratic requirementsfor multithreaded and multicontexted
applications. Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo

System, lists these platform-specific requirements. To find out what is needed on your
platform, check the appropriate data sheet.

10-2 Programming a BEA Tuxedo ATMI Application Using C

Planning and Designing a Multithreaded/Multicontexted ATMI Application

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

“ Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI
Application” on page 10-8

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

Planning and Designing a
Multithreaded/Multicontexted ATMI
Application

This topic includes the following sections:
m What Are Multithreading and Multicontexting?

m Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI
Application

m How Multithreading and Multicontexting Work in a Client
m How Multithreading and Multicontexting Work in an ATMI Server

m Design Considerations for a Multithreaded and Multicontexted ATMI
Application

Programming a BEA Tuxedo ATMI Application UsingC ~ 10-3

10 Programming a Multithreaded and Multicontexted ATMI Application

What Are Multithreading and
Multicontexting?

The BEA Tuxedo system allows you to use asingle process to perform multiple tasks
simultaneously. The programming techniques for implementing this sort of process
usage are multithreading and multicontexting. This topic provides basic information
about these techniques:

m What Is Multithreading?

m What Is Multicontexting?

What Is Multithreading?

Multithreading is the inclusion of more than one unit of execution in asingle process.
In amultithreaded application, multiple simultaneous call s can be made from the same
process. For example, an individual processis not limited to one outstanding

tpcall ().

In a server, multithreading requires multicontexting except when application-created
threads are used in a singled-context server. The only way to create a multithreaded,
single-context application is to use application-created threads.

The BEA Tuxedo system supports multithreaded applicationswritten in C. It does not
support multithreaded COBOL applications.

The following diagram shows how a multithreaded client can issue callsto three
servers simultaneoudly.

10-4 Programming a BEA Tuxedo ATMI Application Using C

What Are Multithreading and Multicontexting?

Figure10-1 Sample Multithreaded Process

SERVER A SERVER B

CLIENT PROCESS

SERVER C

In amultithreaded application, multiple service-dispatched threads are available
in the same server, which means that fewer servers need to be started for that

application.

The following diagram shows how a server process can dispatch multiple
threads to different clients simultaneously.

Programming a BEA Tuxedo ATMI Application UsingC 10-5

10 Programming a Multithreaded and Multicontexted ATMI Application

Figure10-2 Multiple Service Threads Dispatched in One Server Process

THREAD 1

SERVER
THREAD 2 PROCESS
THREAD 3

What Is Multicontexting?

10-6

A context is an association to a domain. Multicontexting is the ability of asingle
process to have one of the following:

m More than one connection within adomain
m Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers,
multicontexting implies the use of multithreading, as well.

Programming a BEA Tuxedo ATMI Application Using C

What Are Multithreading and Multicontexting?

For amore complete list of the characteristics of acontext, see“Context Attributes’ in
one of the following sections:

m “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

The BEA Tuxedo system supports multicontexted applications written in either C or
COBOL. Multithreaded applications, however, are supported only in C.

The following diagram shows how a multicontexted client process works within a
domain. Each arrow represents an outstanding call to a server.

Figure10-3 Multicontexted Processin Two Domains

CLIENT PROCESS
Context 3

BEA Tuxedo Application B

Programming a BEA Tuxedo ATMI Application UsingC 10-7

10 Programming a Multithreaded and Multicontexted ATMI Application

Licensing a Multithreaded or Multicontexted Application

For licensing purposes, each context is counted as one user. Additional licensesare not
required to accommodate multiple threads within one context. For example:

See Also

If a process has two contexts associated with Application A and one with
Application B, the BEA Tuxedo system counts atotal of three users (two in
Application A and onein Application B).

If a process has multiple threads accessing one application within the same
context, the system counts only one user.

“ Advantages and Disadvantages of a Multithreaded/M ulticontexted ATMI
Application” on page 10-8

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

Advantages and Disadvantages of a
Multithreaded/Multicontexted ATMI
Application

Multithreading and multicontexting are powerful tools for enhancing the performance
of BEA Tuxedo applications—given the appropriate circumstances. Before embarking
on aplan to use these techniques, however, it isimportant to understand potential
benefits and pitfalls.

10-8 Programming a BEA Tuxedo ATMI Application Using C

Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application

Advantages of a Multithreaded/Multicontexted ATMI
Application

Multithreaded and multicontexted ATMI applications offer the following advantages:

m |mproved performance and concurrency

For certain applications, performance and concurrency can be improved by using
multithreading and multicontexting together. In other applications, performance
can be unaffected or even degraded by using multithreading and multicontexting
together. How performance is affected depends on your application.

m Simplified coding of remote procedure calls and conversations

In some applicationsit is easier to code different remote procedure calls and
conversations in separate threads than to manage them from the same thread.

m Simultaneous access to multiple applications

Your BEA Tuxedo clients can be connected to more than one application at a
time.

m Reduced number of required servers

Because one server can dispatch multiple service threads, the number of servers
to start for your application is reduced. This capability for multiple dispatched
threadsis especially useful for conversational servers, which otherwise must be
dedicated to one client for the entire duration of a conversation.

For applications in which client threads are created by the Microsoft Internet
Information Server API or the Netscape Enterprise Server interface (that is, the
NSAPI), the use of multiple threads is essential if you want to obtain the full benefits
afforded by these tools. This may be true of other tools, aswell.

Programming a BEA Tuxedo ATMI Application UsingC ~ 10-9

10 Programming a Multithreaded and Multicontexted ATMI Application

Disadvantages of a Multithreaded/Multicontexted ATMI
Application

Multithreaded and multicontexted ATMI applications present the following
disadvantages:

m Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only
experienced programmers should undertake coding for these types of
applications.

m Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted
application than it is to do so in asingle-threaded, single-contexted application.
Asaresult, it ismore difficult, in the former case, to identify and verify root
causes when errors occur.

m Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the
potential to introduce new problems into an application.

m Difficulty of testing

Testing a multithreaded application is more difficult than testing a
single-threaded application because defects are often timing-related and more
difficult to reproduce.

m Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of
multithreading and multicontexting. Programmers need to:

e Remove static variables
e Replace any function calls that are not thread-safe
e Replace any other code that is not thread-safe

Because the completed port must be tested and retested, the work required to
port a multithreaded and/or multicontexted application is substantial.

10-10 Programming a BEA Tuxedo ATMI Application Using C

How Multithreading and Multicontexting Work in a Client

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

“Design Considerations for a Multithreaded and Multicontexted ATMI
Application” on page 10-22

How Multithreading and Multicontexting
Work in a Client

When amultithreaded and multicontexted application isactive, thelifecycleof aclient
can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Start-up Phase

In the start-up phase the following events occur:

m Some client threads join one or more BEA Tuxedo applications by calling
tpinit().

m Other client threads share the contexts created by the first set of threads by
calingt pset ct xt (3c).

m Some client threads join multiple contexts.

Programming a BEA Tuxedo ATMI Application UsingC 10-11

10 Programming a Multithreaded and Multicontexted ATMI Application

m Some client threads switch to an existing context.

Note: There may also be threads that work independently of the BEA Tuxedo
system. We do not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in a BEA Tuxedo multicontexted application can have more than one
application association as long as the following rules are observed:

m All associations must be made to the same installation of the BEA Tuxedo
system.

m All application associations must be made from the same type of client. In other
words, one of the following must be true:

e All application associations must be made from native clients only.

e All application associations must be made from Workstation clients only.

To join multiple contexts, clients call thet pi ni t () function with the
TPMULTI CONTEXTS flag set in thef | ags element of the TPI NFO data type.

When t pi ni t () iscalled with the TPMULTI CONTEXTS flag set, a new application
associationiscreated and is designated the current association for the thread. The BEA
Tuxedo domain to which the new association is made is determined by the val ue of the
TUXCONFI G or WSENVFI LE/ WBNADDR environment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For acompletelist, see“Using
Per-context Functions and Data Structures in a Multithreaded ATMI Client” on page
10-52.) In such cases, the target context must be the current context. Although clients
can join more than one context, at any time, in any thread, only one context can be the
current context.

Astask priorities shift within an application, requiring interactions with one BEA
Tuxedo domain rather than another, it is sometimes advantageous to reassign a thread
from one context to another.

10-12 Programming a BEA Tuxedo ATMI Application Using C

How Multithreading and Multicontexting Work in a Client

In such situations, one client threads callst pget ct xt (3¢) and passes the handle that
isreturned (the value of which isthe current context) to a second client thread. The
second thread then associates itself with the current context by calling

t pset ct xt (3c) and specifying the handleit received fromt pget ct xt (3c) viathe
first thread.

Once the second thread is associated with the desired context, it isavailable to perform
tasks executed by ATMI functionsthat operate on a per-context basis. For details, see
“Using Per-context Functions and Data Structures in a Multithreaded ATMI Client”
on page 10-52.

Work Phase

In this phase each thread performs atask. Thefollowing isalist of sample tasks:
m A thread issues arequest for aservice.

m A thread getsthe reply to a service request.

m A thread initiates and/or participates in a conversation.

m A thread begins, commits, or rolls back atransaction.

Service Requests

A thread sends arequest to a server by calling either t pcal | () for a synchronous
request or t pacal | () for an asynchronous request. If the request is sent with
t pcal | (), then thereply isreceived without further action by any thread.

Replies to Service Requests

If an asynchronous request for a service has been sent witht pcal | (), athread in the
same context (which may or may not be the same thread that sent the request) getsthe

reply by calling t pget rpl y() .

Programming a BEA Tuxedo ATMI Application UsingC 10-13

10 Programming a Multithreaded and Multicontexted ATMI Application

Transactions

If one thread starts a transaction, then all threads that share the context of that thread
also share the transaction.

Many threadsin a context may work on atransaction, but only one thread may commit
or abort it. Thethread that commits or abortsthe transaction can be any thread working
on the transaction; it is hot necessarily the same thread that started the transaction.
Threaded applications are responsible for providing appropriate synchronization so
that the normal rules of transactions are followed. (For example, there can be no
outstanding RPC calls or conversations when atransaction is committed, and no stray
callsare allowed after atransaction has been committed or aborted.) A process may be
part of at most one transaction for each of its application associations.

If one thread of an application callst pcomi t () concurrently with an RPC or
conversational call in another thread of the application, the system acts as if the calls
were issued in some serial order. An application context may temporarily suspend
work on atransaction by calling t psuspend() and then start another transaction
subject to the same restrictions that exist for single-threaded and single-context
programs.

Unsolicited Messages

For each context in amultithreaded or multicontexted application, you may choose one
of three methods for handling unsolicited messages.

A context may . .. By setting . . .
Ignore unsolicited messages TPU_I GN

Use dip-in notification TPU_ DI P

Use dedicated thread notification. TPU_THREAD

(available only for C applications)

The following caveats apply:

m SIGNAL-based natification is not allowed in multithreaded or multicontexted
JprOCesses.

10-14 Programming a BEA Tuxedo ATMI Application Using C

How Multithreading and Multicontexting Work in a Client

m |f your application runs on a platform that supports multicontexting but not
multithreading, then you cannot use the TPU_THREAD unsolicited notification
method. As aresult, you cannot receive immediate notification of events.

If receiving immediate notification of eventsisimportant to your application,
then you should carefully consider whether to use a multicontexted approach on
this platform.

m Dedicated thread notification is available only:
e For applications writtenin C

e On multithreaded platforms supported by the BEA Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate thread
to receive unsolicited messages and dispatch the unsolicited message handler. Only
one copy of the unsolicited message handler can run at any onetimein agiven context.

If t pi ni t () iscaled on aplatform for which the BEA Tuxedo system does not
support threads, with parametersindicating that TPU_THREAD notification is being
reguested on a platform that does not support threads, t pi ni t () returns- 1 and sets
t per rno to TPEI NVAL. If the UBBCONFI G 5) default NOTI FY option is set to THREAD
but threads are not available on a particular machine, the default behavior for that
machine is downgraded to DI PI N. The difference between these two behaviors allows
an administrator to specify adefault for all machines in a mixed configuration—a
configuration that includes some machinesthat support threads and some that do not—
but it does not allow aclient to explicitly request abehavior that is not available onits
machine.

If t pset unsol () iscalled from athread that is not associated with a context, a
per-process default unsolicited message handler for all new t pi ni t () contexts
created isestablished. A specific context may change the unsolicited message handler
for that context by calling t pset unsol () again when the context is active. The
per-process default unsolicited message handler may be changed by again calling

t pset unsol () inathread not currently associated with a context.

If aprocess has multiple associations with the same application, then each association
isassigned a different CLI ENTI D so that it is possible to send an unsolicited message
to a specific application association. If a process has multiple associations with the
same application, then any t pbr oadcast () is sent separately to each of the
application associations that meet the broadcast criteria. When performing a dip-in
check for receiving unsolicited messages, an application checks for only those
messages sent to the current application association.

Programming a BEA Tuxedo ATMI Application UsingC 10-15

10 Programming a Multithreaded and Multicontexted ATMI Application

In addition to the ATMI functions permitted in unsolicited message handlers, itis
permissibleto call t pget ct xt (3¢) within an unsolicited message handler. This
functionality allowsan unsolicited message handl er to create another thread to perform
any more substantial ATMI work required within the same context.

Userlog Maintains Thread-specific Information

For each thread in each application, user | og(3c) records the following identifying
information:

process_ID.thread I D.context _|ID

Placeholders are printed in thet hr ead_1 D and cont ext _I Dfields of entriesfor
non-threaded platforms and single-contexted applications.

The TM_M B(5) supports this functionality inthe TA_ THREADI D and TA_CONTEXTI D
fieldsinthe T_ULOGclass.

Completion Phase

In this phase, when the client processis about to exit, on behalf of the current context
and all associated threads, a thread ends its application association by calling

t pterm() . Like other ATMI functions, t pt er n() operates on the current context. It
affectsall threadsfor which the context is set to the terminated context, and terminates
any commonality of context among these threads.

A well-designed application normally waits for all work in a particular context to
complete beforeit callst pt er () . Be sure that all threads are synchronized before
your application callst ptern() .

10-16 Programming a BEA Tuxedo ATMI Application Using C

How Multithreading and Multicontexting Work in an ATMI Server

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

m “Design Considerations for a Multithreaded and Multicontexted ATMI
Application” on page 10-22

“Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31
m “Writing a Multithreaded ATMI Client” on page 10-45

“Synchronizing Threads Before an ATMI Client Termination” on page 10-34

How Multithreading and Multicontexting
Work in an ATMI Server

The events that occur in an ATMI server when a multithreaded and multicontexted
application is active can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Programming a BEA Tuxedo ATMI Application UsingC 10-17

10 Programming a Multithreaded and Multicontexted ATMI Application

Start-up Phase

What happens during the start-up phase depends on the value of the
M NDI SPATCHTHREADS and MAXDI SPATCHTHREADS parameters in the configuration

file.
If the value of And the value of Then ...
M NDI SPATCHTHREADS MAXDI SPATCHTHREADS
is... is...
0 >1 1. The BEA Tuxedo system creates a thread
dispatcher.
2. Thedispatcher calst psvrinit () tojointhe
application.
>0 >1 1. TheBEA Tuxedo system creates a thread
dispatcher.
2. Thedispatcher callst psvrinit () tojointhe
application.
3. The BEA Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.
4. Each new system-created thread calls
tpsvrthrinit(3c) tojointheapplication.
Work Phase

In this phase, the following activities occur:

m Multiple client requests to one server are handled concurrently in multiple
contexts. The system allocates a separate thread for each request.

m |f necessary, additional threads (up to the number indicated by
MAXDI SPATCHTHREADS) are created.

m The system keeps statistics on server threads.

10-18 Programming a BEA Tuxedo ATMI Application Using C

How Multithreading and Multicontexting Work in an ATMI Server

Server-dispatched Threads Are Used

In response to clients’ requests for a service, the server dispatcher creates multiple
threads (up to a configurable maximum) in one server that can be assigned to various
client requests concurrently. A server cannot become aclient by callingt pi nit ().

Each dispatched thread is associated with a separate context. This featureis useful in
both conversational and RPC servers. It isespecialy useful for conversational servers
which otherwise sit idle, waiting for the client side of a conversation while other
conversational connections are waiting for service.

Thisfunctionality is controlled by the following parameters in the SERVERS section of
the UBBCONFI G(5) fileand the TM_M B(5).

UBBCONFIG Parameter MIB Parameter Default

M NDI SPATCHTHREADS TA_M NDI SPATCHTHREADS 0

MAXDI SPATCHTHREADS TA_MAXDI SPATCHTHREADS 1

THREADSTACKSI ZE TA_THREADSTACKSI ZE 0 (representing the
OS default)

m Each dispatched thread is created with the stack size specified by
THREADSTACKSI ZE (or TA_THREADSTACKSI ZE). If this parameter is not specified
or has avalue of 0, the operating system default is used. On afew operating
systems on which the default is too small to be used by the BEA Tuxedo system,
alarger default is used.

m |f the value of this parameter is not specified or is O, or if the operating system
does not support setting a THREADSTACKSI ZE, then the operating system default
isused.

® M NDI SPATCHTHREADS (or TA_M NDI SPATCHTHREADS) must be less than or
equal to MAXDI SPATCHTHREADS (or TA_MAXDI SPATCHTHREADS).

m |f MAXDI SPATCHTHREADS (Or TA_MAXDI SPATCHTHREADS) is 1, then the
dispatcher thread and the service function thread are the same thread.

m |f MAXDI SPATCHTHREADS (Or TA_MAXDI SPATCHTHREADS) is greater than 1, any
separate thread used for dispatching other threads does not count toward the
limit of dispatched threads.

Programming a BEA Tuxedo ATMI Application UsingC 10-19

10 Programming a Multithreaded and Multicontexted ATMI Application

m |nitialy, the system boots M NDI SPATCHTHREADS (or
TA_M NDI SPATCHTHREADS) server threads.

m The system never boots more than MAXDI SPATCHTHREADS (or
TA_MAXDI SPATCHTHREADS) server threads.

Application-created Threads Are Used

Using your operating system functions, you may create additional threads within an
application server. Application-created threads may:

m Operate independently of the BEA Tuxedo system

m Operate in the same context as an existing server dispatch thread

m Perform work on behalf of server dispatch contexts

Some restrictions govern what you can do if you create threads in your application.
m Servers may not become clients by calling t pi ni t ().

m |nitially, application-created server threads are not associated with any server
dispatch context. An application-created server thread may call t pset ct xt (3c)
(and passit avalue returned by aprevious call tot pget ct xt (3c) withina
server-dispatched thread) to associate itself with that server-dispatched context.

m An application-created server thread cannot call t pret urn() ort pforward().
When an application-created server thread has finished its work, it must call
t pset ct xt (3c) with the context set to TPNULLCONTEXT before the originally
dispatched thread callst pret urn().

Bulletin Board Liaison Verifies Sanity of System Processes

TheBulletin Board Liaison (BBL) periodically checks servers. If aserver istaking too
long to execute a particular service request, the BBL killsthat server. (If specified, the
BBL then restarts the server.) If the BBL kills a multicontexted server, the other
service callsthat are currently being executed are also terminated as a result of the
process being killed.

The BBL also sends a message to any process or thread that has been waiting longer
than its timeout value to receive a message. The blocking message receive call then
returns an error indicating a timeout.

10-20 Programming a BEA Tuxedo ATMI Application Using C

How Multithreading and Multicontexting Work in an ATMI Server

System Keeps Statistics on Server Threads

For each server, the BEA Tuxedo system maintains statistics for the following

information:

m Maximum number of server-dispatched threads allowed

m Number of server-dispatched threads currently in use
(TA_CURDI SPATCHTHREADS)

m High-water mark of concurrent server-dispatched threads since the server was
booted (TA_HWDI SPATCHTHREADS)

m Number of server-dispatched threads historically started

(TA_NUMDI SPATCHTHREADS)

Userlog Maintains Thread-specific Information

For each thread in each application, user | og(3c) records the following identifying
information:

process_|ID.thread_I D. context_ID

Placeholders are printed in thet hr ead_I Dand cont ext _I D fields of entries for
non-threaded platforms and single-contexted applications.

The TM_M B(5) supports this functionality inthe TA_ THREADI D and TA_CONTEXTI D
fidldsinthe T_ULOGCclass.

Completion Phase

When the application is shut down, t psvrt hr done(3c) andt psvr done(3c) are
called to perform any termination processing that is necessary, such as closing a
resource manager.

Programming a BEA Tuxedo ATMI Application UsingC 10-21

10 Programming a Multithreaded and Multicontexted ATMI Application

See Also

m “What Are Multithreading and Multicontexting?’ on page 10-4

m “Design Considerations for a Multithreaded and Multicontexted ATMI
Application” on page 10-22

“Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

“Writing a Multithreaded ATMI Server” on page 10-59

Design Considerations for a Multithreaded
and Multicontexted ATMI Application

Multithreaded and multicontexted ATMI applications are appropriate for some BEA
Tuxedo domains, but not all. To decide whether to create such applications, you should
answer several basic questions about the following:

m Your development and run-time environments
m Design requirements for your application
m Type of threads model to use

m Interoperability restrictions for Workstation clients

10-22 Programming a BEA Tuxedo ATMI Application Using C

Design Considerations for a Multithreaded and Multicontexted ATMI Application

Environment Requirements

When considering the development of multithreaded and/or multicontexted
applications, examine the following aspects of your development and run-time
environments:

m Do you have an experienced team of programmers capable of writing and
debugging multithreaded and multicontexted programs that successfully manage
concurrency and synchronization?

m Arethe multithreading features of the BEA Tuxedo system supported on the
platform on which you are developing your application? These features are
supported only on platforms with an OS-provided threads package, providing an
appropriate level of functionality.

m Do the resource managers (RMs) used by your servers support multithreading?
If so, consider the following issues, aswell:

Do you need to set any parameters required by your RM to enable
multithreaded access by your servers? For example, if you use an Oracle
database with a multithreaded application, you must set the THREADS=t r ue
parameter as part of the OPENI NFO string passed to Oracle. By doing so, you
make it possible for individual threadsto operate as separate Oracle
associations.

Does your RM support a mixed mode of operation? A mixed-mode operation
isaform of access such that multiple threads in a process can map to one
RM association while other threads in the same process simultaneously map
to different RM associations. Within one process, for example, Threads A
and B map to RM Association X, while Thread C mapsto RM Association
Y.

Not all RMs support mixed-mode operation. Some require all threadsin a
given process to map to the same RM association. If you are designing an
application that will make use of transactional RM access within
application-created threads, make sure your RM supports mixed-mode
operation.

Programming a BEA Tuxedo ATMI Application UsingC 10-23

10 Programming a Multithreaded and Multicontexted ATMI Application

Design Requirements

When designing a multithreaded and/or multicontexted application, you should
consider the following design questions:

m |sthetask performed by your application suitable for multithreading and/or
multicontexting?

m Do you want to connect to more than one BEA Tuxedo application? How many
connections to each target application do you want?

m What synchronization issues need to be addressed in your application?

= Will you need to port your application to another platform after you have put
your initial application into production?

Is the Task of Your Application Suitable for
Multithreading and/or Multicontexting?

The following table provides alist of questions to help you decide whether your
application would be improved if it were multithreaded and/or multicontexted. This
list is not comprehensive; your individual requirements will determine other factors
that should be considered.

For additional suggestions, we recommend that you consult a multithreaded and/or
multicontexted programming publication.

If the answer to thisquestion . .. IsYES, then you might consider
using. ..
Doesyour client need to connect to more than one application Multi contexting.

without using the Domains feature?

Doesyour client perform the role of a multiplexer within your Multi contexting.
application? For example, have you designated one machine in your
application the “ surrogate” for 100 other machines?

Does your client use multicontexting? Multithreading. By allocating one thread
per context, you can simplify your code.

10-24 Programming a BEA Tuxedo ATMI Application Using C

Design Considerations for a Multithreaded and Multicontexted ATMI Application

If the answer to thisquestion . . . ISYES, then you might consider
using. ..

Doesyour client perform two or more tasks that can be executed Multithreading.
independently for along time such that the performance gains from

concurrent execution outweigh the costs and complexities of threads

synchronization?

Do you want one server to process multiple concurrent requests? Multithreading. Assign avalue greater
than 1 to MAXDI SPATCHTHREADS. This
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessary to Not using multithreading.
synchronize them after each thread had performed only alittle work?

How Many Applications and Connections Do You Want?

Decide how many applications you want to access and the number of connectionsyou
want to make.

m |f you want connections to more than one application, then we recommend one
of the following:

e A single-threaded, multicontexted application
e A multithreaded, multicontexted application

m |f you want more than one connection to an application, then we recommend a
multithreaded, multicontexted application.

m |f you want only one connection to one application, then we recommend one of
the following:

e Multithreaded, single-contexted clients
e Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Programming a BEA Tuxedo ATMI Application UsingC 10-25

10 Programming a Multithreaded and Multicontexted ATMI Application

What Synchronization Issues Need to Be Addressed?

Thisissueisanimportant one during the design phase. It is, however, beyond the scope
of this documentation. Please refer to a publication about multithreaded and/or
multicontexted programming.

Will You Need to Port Your Application?

If you may need to port your application in the future, you should keep in mind that
different operating systems have different sets of functions. If you think you may want
to port your application after completing theinitia version of it on one platform,
remember to consider the amount of staff time that will be needed to revise the code
with a different set of functions.

Which Threads Model Is Best for You?

Various models for multithreaded programs are now being used, including the
following:

m Boss/worker model
m Siblings model
= Workflow model

We do not discuss threads model s in this documentation. We recommend that you
research all available models and consider your design requirements carefully when
choosing a programming model for your application.

10-26 Programming a BEA Tuxedo ATMI Application Using C

Design Considerations for a Multithreaded and Multicontexted ATMI Application

Interoperability Restrictions for Workstation Clients

Interoperability between release 7.1 Workstation clients and applications based on
pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

m Theclient is neither multithreaded nor multicontexted.
m Theclient is multicontexted.
m Theclient is multithreaded and each thread isin a different context.

A BEA Tuxedo Release 7.1 Workstation client with multiple threadsin asingle
context cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

See Also

m “Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI
Application” on page 10-8

m “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-28

Programming a BEA Tuxedo ATMI Application UsingC 10-27

10 Programming a Multithreaded and Multicontexted ATMI Application

Implementing a Multithreaded/
Multicontexted ATMI Application

“Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-28

“Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

“Writing a Multithreaded ATMI Client” on page 10-45

“Writing a Multithreaded ATMI Server” on page 10-59

“Compiling Code for a Multithreaded/M ulticontexted ATMI Application” on
page 10-59

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted ATMI
Application

Before you start coding, make sure you have fulfilled or thought about the following:
m “Prerequisites for a Multithreaded ATMI Application” on page 10-29
m “Genera Multithreaded Programming Considerations’ on page 10-29

m “Concurrency Considerations’ on page 10-30

10-28 Programming a BEA Tuxedo ATMI Application Using C

Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI Appli-

Prerequisites for a Multithreaded ATMI Application

Make sure your environment meets the following prerequisites before starting your
development project.

m Your operating system must provide a suitable threads package supported by the

BEA Tuxedo system.

The BEA Tuxedo system does not supply tools for creating threads, but it
supports various threads packages provided by different operating systems. To
create and synchronize threads, you must use the functions native to your
operating system. To find out which, if any, threads packages are supported by
your operating system, see Appendix A, “Platform Data Sheets,” in Installing
the BEA Tuxedo System.

If you are using multithreaded servers, the resource managers used by those
servers must support threads.

General Multithreaded Programming Considerations

Only experienced programmers should write multithreaded programs. In particular,
programmers should already be familiar with basic design issues specific to this task,
such as:

The need for concurrency control among multiple threads
The need to avoid the use of static variables in most instances

Potential problems that may arise from the use of signals in multithreaded
programs

Thesearejust afew of theissues, too numerousto list here, with which we assume any
programmer undertaking the writing of a multithreaded program is already familiar.
These issues are discussed in many commercially available books on the subject of
multithreaded programming.

Programming a BEA Tuxedo ATMI Application UsingC 10-29

10 Programming a Multithreaded and Multicontexted ATMI Application

Concurrency Considerations

Multithreading enables different threads of an application to perform concurrent
operations on the same conversation. We do not recommend this approach, but the
BEA Tuxedo system does not forbid it. If different threads perform concurrent
operations on the same conversation, the system acts asif the concurrent calls were
issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency among
them by using mutexes or other concurrency-control functions. Here are three
exampl es of the need for concurrency control:

m When multithreaded threads are operating on the same context, the programmer
must ensure that functions are being executed in the required serial order. For
example, all RPC calls and conversations must be compiled beforet pconmmi t ()
can becalled. If t pcommi t () is called from athread other than the thread from
which all these RPC or conversational calls are made, some concurrency control
is probably required in the application.

m Similarly, itis permissibleto call t pacal | () inonethread and t pget rpl y() in
another, but the application must either:

e Ensurethat t pacal | () iscalled beforet pget rply(), or
e Manage the consequencesif t pacal | () isnot called beforet pget r pl y()

m Multiple threads may operate on the same conversation but application
programmers must realize that if different threadsissuet psend() at
approximately the same time, the system acts as though theset psend() calls
have been issued in an arbitrary order.

For most applications, the best strategy isto code al the operations for one
conversation in one thread. The second best strategy is to serialize these
operations using concurrency control.

10-30 Programming a BEA Tuxedo ATMI Application Using C

Writing Code to Enable Multicontexting in an ATMI Client

See Also

“Design Considerations for a Multithreaded and Multicontexted ATMI
Application” on page 10-22

“Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

“Writing a Multithreaded ATMI Client” on page 10-45
“Writing a Multithreaded ATMI Server” on page 10-59

Writing Code to Enable Multicontexting in
an ATMI Client

To enable multicontexting in a client, you must write code that:

Sets up multicontexting at initialization time

Implements security

If multithreading is also being used, synchronizes threads
Switches contexts

Handles unsolicited messages for each context

If your application uses transactions, you should a so keep in mind the consequences
of multicontexting for transactions. For more information, see “ Coding Rules for
Transactions in a Multithreaded/M ulticontexted ATMI Application” on page 10-39.

Note: Theinstructionsand sample code provided in this section refer to the Clibrary

functions provided by the BEA Tuxedo system. Equivalent COBOL library
functions are also available; for details, see the BEA Tuxedo COBOL Function
Reference.

Programming a BEA Tuxedo ATMI Application UsingC 10-31

10 Programming a Multithreaded and Multicontexted ATMI Application

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thent pr et urn() ort pf orward() fails. The
execution of athread exit does not automatically trigger acall to

t pset ct xt (3c) to change the context to TPNULLCONTEXT.

For all contextsin a process, the same buffer type switch must be used.

Aswith any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

e Both calls may use the buffer
e Both calls may free the buffer

e Onecall may use the buffer and one call may free the buffer

If you call t pi ni t () more than once, either to join multiple applications or to
make multiple connections to a single application, keep in mind that on each

t pi ni t () you must accommodate whatever security mechanisms have been
established.

10-32 Programming a BEA Tuxedo ATMI Application Using C

Writing Code to Enable Multicontexting in an ATMI Client

Setting Up Multicontexting at Initialization

When aclient isready to join an application, specify t pi ni t () withthe
TPMULTI CONTEXTS flag set, as shown in the following sample code.

Listing 10-1 Sample Code for a Client Joining a M ulticontexted Application

#i ncl ude <stdio. h>
#i ncl ude <atm . h>

TPINNT * t pi ni t buf;
mai n()
{
tpinitbuf = tpalloc(TPINIT, NULL, TPI NI TNEED(O));

t pi ni tbuf->fl ags = TPMULTI CONTEXTS;

if (tpihit (tpinitbuf) == -1) {
ERROR_PROCESSI NG_CODE

A new application association is created and assigned to the BEA Tuxedo domain
specified in the TUXCONFI G or WSENVFI LE/ WSNADDR environment variable.

Note: Inany one process, either al callstot pi ni t () mustincludethe
TPMULTI CONTEXTS flag or elsenocall tot pi ni t () may includethisflag. The
only exceptionto thisruleisthat if all of aclient’ sapplication associations are
terminated by successful callstot pt er n() , then the processis restored to a
state in which the inclusion of the TPMULTI CONTEXTS flag in the next call to
tpinit() isoptional.

Programming a BEA Tuxedo ATMI Application UsingC 10-33

10 Programming a Multithreaded and Multicontexted ATMI Application

Implementing Security for a Multicontexted ATMI Client

Each application association in the same process requires a separate security
validation. The nature of that validation depends on the type of security mechanisms
used in your application. In a BEA Tuxedo application you might, for example, use a
system-level password or an application password.

Asthe programmer of amulticontexted application, you areresponsiblefor identifying
the type of security used in your application and implementing it for each application
association in a process.

Synchronizing Threads Before an ATMI Client
Termination

When you are ready to disconnect a client from an application, invoket pt er n() .
Keep in mind, however, that in a multicontexted applicationt pt er () destroysthe
current context. All the threads operating on that context are affected. Asthe
application programmer, you must carefully coordinate the use of multiple threadsto
make surethat t pt er m() isnot called unexpectedly.

It isimportant to avoid calling t pt er m() on a context while other threads are till
working on that context. If such acall tot pt er () ismade, the BEA Tuxedo system
places the other threads that had been associated with that context in a special invalid
context state. When in the invalid context state, most ATMI functions are disall owed.
A thread may exit from the invalid context state by calling t pset ct xt (3c) or

t pt er m() . Most well designed applications never haveto deal with theinvalid context
state.

Note: The BEA Tuxedo system does not support multithreading in COBOL
applications.

10-34 Programming a BEA Tuxedo ATMI Application Using C

Writing Code to Enable Multicontexting in an ATMI Client

Switching Contexts

Thefollowing isasummary of the coding stepsthat might be made by aclient that calls
services from two contexts.

1. Set the TUXCONFI G environment variable to the value required by f i r st app.

2. Jointhefirst application by calling t pi ni t () with the TPMULTI CONTEXTS flag
Set.

3. Obtain ahandle to the current context by calling t pget ct xt (3c) .

4. Switch the value of the TUXCONFI G environment variable to the value required by
the secondapp context, by calling t uxput env() .

5. Join the second application by calling t pi ni t () with the TPMULTI CONTEXTS
flag set.

6. Get ahandle to the current context by callingt pget ct xt (3c) .

7. Beginning with thefi r st app context, start toggling between contexts by calling
t pset ct xt (3c).

8. Call firstapp services.

9. Switch the client to the secondapp context (by calling t pset ct xt (3c)) and call
secondapp Services.

10. Switch the client to thef i r st app context (by calling t pset ct xt (3c)) and call
firstapp services.

11. Terminatethefi r st app context by calling t pt er () .

12. Switch the client to the secondapp context (by calling t pset ct xt (3c)) and call
secondapp Services.

13. Terminate the secondapp context by callingt ptern() .

The following sample code provides an exampl e of these steps.

Note: In order to simplify the sample, error checking code is not included.

Programming a BEA Tuxedo ATMI Application UsingC 10-35

10 Programming a Multithreaded and Multicontexted ATMI Application

Listing 10-2 Sample Code for Switching Contextsin a Client

#i ncl ude <stdio. h>
#include "atm .h"/* BEA Tuxedo header file */

#if defined(__STDC) || defined(__cpl uspl us)
mai n(int argc, char *argv[])

#el se

mai n(argc, argv)

int argc;

char *argv[];

#endi f

{

TRPINIT * tpinitbuf;
TPCONTEXT_T firstapp_contextl D, secondapp_contextl|D;
/* Assume that TUXCONFIGis initially set to /hone/firstapp/ TUXCONFI G/
/*

* Attach to the BEA Tuxedo systemin multicontext npde.

*

/

tpinitbuf=tpalloc(TPINIT, NULL, TPIN TNEED(O));
t pi ni tbuf->flags = TPMULTI CONTEXTS;

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);
}
/*
* (btain a handle to the current context.
*/

t pget ct xt (&f i rstapp_context! D, 0);

/*
* Use tuxputenv to change the val ue of TUXCONFI G
* so we now tpinit to another application.
*/

t uxput env (" TUXCONFI G=/ hone/ second_app/ TUXCONFI G') ;

/*

* tpinit to secondapp.

*/

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);

}

/*

10-36 Programming a BEA Tuxedo ATMI Application Using C

Writing Code to Enable Multicontexting in an ATMI Client

* Get a handle to the context of secondapp.
*/
t pget ct xt (&econdapp_context| D, 0);

/-k

* Now you can alternate between the two contexts

* using tpsetctxt and the handl es you obtained from
* tpgetctxt. You begin with firstapp.

*/

tpsetctxt(firstapp_contextlD, 0);

/*

* You call services offered by firstapp and then switch
* to secondapp.

*/

t pset ct xt (secondapp_context| D, 0);

/*

* You call services offered by secondapp.
* Then you switch back to firstapp.

*/

tpsetctxt(firstapp_contextl D, 0);

/*

* You call services offered by firstapp. Wen you have
* finished, you terminate the context for firstapp.

*/

tpterm();

/*
* Then you switch back to secondapp.
*/

t pset ct xt (secondapp_context| D, 0);

/*

* You call services offered by secondapp. Wen you have
finished, you term nate the context for secondapp and
end your program

*/

tpterm();

return(0);

Programming a BEA Tuxedo ATMI Application UsingC 10-37

10 Programming a Multithreaded and Multicontexted ATMI Application

Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must set up
an unsolicited message handler or use the process handler default if you have set one

up.

If t pset unsol () iscaled from athread that is not associated with a context, a
per-process default unsolicited message handler for al new t pi ni t () contexts
created is established. A specific context may change the unsolicited message handler
for that context by calling t pset unsol () again when the context is active. The
per-process default unsolicited message handler may be changed by again calling

t pset unsol () inathread not currently associated with a context.

Set up the handler in the same way you set one up for a single-threaded or
single-contexted application. Seet pset unsol () for details.

Youcanuset pget ct xt (3c) inanunsolicited message handler if you want to identify
the context in which you are currently working.

10-38 Programming a BEA Tuxedo ATMI Application Using C

Writing Code to Enable Multicontexting in an ATMI Client

Coding Rules for Transactions in a
Multithreaded/Multicontexted ATMI Application

See Also

The following consequences of using transactions should be kept in mind while you
arewriting your application:

You can have only one transaction in any one context.
You can have a different transaction for each context.

All the threads associated with a given context at a given time share the same
transaction state (if any) of that context.

You must synchronize your threads so all conversations and RPC calls are
complete before you call t pcommi t ().

You can call t pconmi t () from only one thread in any particular transaction.

“How Multithreading and Multicontexting Work in a Client” on page 10-11
“Writing a Multithreaded ATMI Client” on page 10-45

Programming a BEA Tuxedo ATMI Application UsingC 10-39

10 Programming a Multithreaded and Multicontexted ATMI Application

Writing Code to Enable Multicontexting and
Multithreading in an ATMI Server

This topic includes the following sections:

Coding Rules for a Multicontexted ATMI Server
Initializing and Terminating ATMI Servers and Server Threads
Programming an ATMI Server to Create Threads

Sample Code for Creating an Application Thread in a Multicontexted ATMI
Server

Note: Theinstructionsand sample code provided in this section refer tothe Clibrary

functions provided by the BEA Tuxedo system. (See the BEA Tuxedo C
Function Referencefor details.) Equivalent COBOL routinesare not available
because multithreading (which isrequired to create amulticontexted server) is
not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thent pret urn() ort pf orward() fails. The
execution of athread exit does not automatically trigger acall to

t pset ct xt (3c) to change the context to TPNULLCONTEXT.

For all contextsin a process, the same buffer type switch must be used.

Aswith any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true;

e Both calls may use the buffer.
e Both calls may free the buffer.

10-40 Programming a BEA Tuxedo ATMI Application Using C

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server

e Onecall may usethe buffer and one call may free the buffer.

Coding Rules for a Multicontexted ATMI Server

Keep in mind the following rules for coding multicontexted servers:

The BEA Tuxedo dispatcher on the server may dispatch the same service and/or
different services multiple times, creating a different dispatch context for each
service dispatched.

A server is prohibited from calling t pi ni t () or otherwise acting asaclient. If a
server process callst pinit (), tpinit() returns-1 and setst per rno(5) to
TPEPROTO. An application-created server thread may not make ATMI calls
before calling t pset ct xt (3c) .

Only a server-dispatched thread may call t pret urn() ort pf orward() .

A server cannot execute at pret urn() ort pforward() if any
application-created thread is still associated with any application context.
Therefore, before a server-dispatched thread callst pr et ur n() , each
application-created thread associated with that context must call

t pset ct xt (3c) with the context set to either TPNULLCONTEXT or another valid
context.

If thisruleisviolated, thent pret urn() ort pf orwar d() writesamessage to
the user log, indicates TPESVCERR to the caller, and returns control to the main
server dispatch loop. The threads that had been in the context where the invalid
t preturn() wasdoneare placed in aninvalid context.

If there are outstanding ATMI calls, RPC calls, or conversations when
tpreturn() ortpforward() iscalled,tpreturn() ortpforward() writesa
message to the user log, indicates TPESVCERR to the caller, and returns control to
the main server dispatch loop.

A server-dispatched thread may not call t pset ct xt (3c) .

Unlike single-contexted servers, it is permissible for a multicontexted server
thread to call a servicethat is offered only by that same server process.

Programming a BEA Tuxedo ATMI Application UsingC 10-41

10 Programming a Multithreaded and Multicontexted ATMI Application

Initializing and Terminating ATMI Servers and Server
Threads

Toinitialize and terminate your servers and server threads, you can use the default
functions provided by the BEA Tuxedo system or you can use your own.

Table 10-1 Default Functionsfor Initialization and Termination

To... Use the default function
Initialize a server tpsvrinit(3c)
Initialize a server thread tpsvrthrinit(3c)
Terminate a server t psvrdone(3c)
Terminate a server thread t psvrthrdone(3c)

Programming an ATMI Server to Create Threads

Y ou may create additional threads within an application server, although most
applications using multicontexted servers use only the dispatched server threads
created by the system. This section provides instructions for doing so.

Creating Threads

Y ou may create additional threads within an application server by using OS threads
functions. These new threads may operate independently of the BEA Tuxedo system,
or they may operate in the same context as one of the server-dispatched threads.

Associating Threads with a Context

Initially, application-created server threads are not associated with any
server-dispatched context. If called before being initialized, however, most ATMI
functions perform an implicit t pi ni t () . Such callsintroduce problems because
servers are prohibited from calling t pi ni t () . (If aserver processcallst pi nit(),
tpinit() returns-1and setst perrno(5) to TPEPROTQ.)

10-42 Programming a BEA Tuxedo ATMI Application Using C

Writing Code to Enable Multicontexting and Multithreading in an ATMI Server

Therefore, an application-created server thread must associate itself with an existing
context before calling any ATMI functions. To associate an application-created server
thread with an existing context, you must write code that implements the following
procedure.

1. Server-dispatched-thread A gets a handle to the current context by calling
t pget ct xt (3c) .

2. Server-dispatched-thread A passes the handle returned by t pget ct xt (3c) to
Application_thread B.

3. Application_thread B associates itself with the current context by calling
t pset ct xt (3c) , specifying the handle received from
Server-dispatched-thread A.

4. Application-created server threads cannot call t pret urn() ort pf orward() .
Before the originally dispatched thread callst pr et urn() ort pf orward(), al
application-created server threads that have been in that context must switch to
TPNULLCONTEXT or another valid context.

If thisruleis not observed, thent pf orward() ortpreturn() failsand
indicates a service error to the caler.

Sample Code for Creating an Application Thread in a
Multicontexted ATMI Server

For those applications with a need to create an application thread in a server, the
following code sample shows a multicontexted server in which a service creates
another thread to help perform its work. Operating system (OS) threads functions
differ from one OS to another. In this sample POSIX and ATMI functions are used.

Programming a BEA Tuxedo ATMI Application UsingC 10-43

10 Programming a Multithreaded and Multicontexted ATMI Application

Notes: In order to simplify the sample, error checking code is not included. Also, an

example of amulticontexted server using only threads dispatched by the BEA
Tuxedo systemis not included because such a server is coded in exactly the
same way as a single-contexted server, as long as thread-safe programming

practices are used.

Listing 10-3 Code Samplefor Creating a Thread in a Multicontexted Server

#i ncl ude <pthread. h>
#i nclude <atm . h>

void *withdrawal thread(void *);

struct sdata {
TPCONTEXT_T ctxt;

TPSVCI NFO *svcinfoptr;
|
voi d
TRANSFER(TPSVCI NFO *svci nf 0)
{
struct sdata transferdata;
pt hread_t wi t hdrawal t hr eadi d;
t pgetctxt (& ransferdata.ctxt, 0);
transferdata. svci nfoptr = svcinfo;
pt hread_create(&withdrawal t hreadi d, NULL, withdrawalthread,
tpcal |l ("DEPCSIT", ...);
pt hread_j oi n(wi t hdrawal t hreadi d, NULL);
t preturn(TPSUCCESS, ...);
}
void *
wi t hdrawal t hread(void *arg)
{
t psetctxt (arg->ctxt, 0);
t popen() ;
tpcal | ("W THDRAWAL", ...);
tpcl ose();
return(NULL) ;
}

& ransferdata);

10-44 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Client

The previous exampl e accomplishes afundstransfer by invoking the DEPCSI T service
in the originally dispatched thread, and W THDRAWAL in an application-created thread.
This exampleisbased on the assumption that the resource manager being used allows
amixed model such that multiplethreads of aserver can be associated with aparticular
database connection without all threads of the server being associated with that
instance. M ost resource managers, however, do not support such a model.

A simpler way to code thisexampleisto avoid the use of an application-created thread.
To obtain the same concurrency provided by thetwo callstot pcal | () intheexample,
substitute two callstot pacal | () andtwo callstot pgetrply() inthe
server-dispatched thread.

See Also

m “How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

Writing a Multithreaded ATMI Client

This topic includes the following sections:

m Coding Rulesfor a Multithreaded ATMI Client
m |nitializing an ATMI Client to Multiple Contexts
m Getting Repliesin a Multithreaded Environment

m Using Environment Variables in a Multithreaded and/or Multicontexted
Environment

m Using Per-context Functions and Data Structures in a Multithreaded ATMI
Client

m Using Per-process Functions and Data Structures in a Multithreaded ATMI
Client

m Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client

Programming a BEA Tuxedo ATMI Application UsingC 10-45

10 Programming a Multithreaded and Multicontexted ATMI Application

Sample Code for a Multithreaded ATMI Client

Note: The BEA Tuxedo system does not support multithreaded COBOL

applications.

Coding Rules for a Multithreaded ATMI Client

Keep in mind the following rules for coding multithreaded clients:

Once a conversation has been started, any thread in the same process can work
on that conversation. Handles and call descriptors are portable within the same
context in the same process, but not between contexts or processes. Handles and
call descriptors can be used only in the application context in which they are
originally assigned.

Any thread operating in the same context within the same process can invoke
t pget rpl y() toreceive aresponse to an earlier call tot pacal | (), regardless
of whether or not that thread originally called t pacal I () .

A transaction can be committed or aborted by only one thread, which may or
may not be the same thread that started it.

All RPC callsand al conversations must be completed before an attempt is
made to commit the transaction. If an application callst pcomni t () while RPC
calls or conversations are outstanding, t pconmi t () aborts the transaction,
returns- 1, and setst per r no(5) to TPEABORT.

Functionssuch ast pcal | (), tpacal | (),tpgetrply(),tpconnect(),
tpsend(),tprecv(),andt pdi scon() should not be called in transaction
mode unless you are sure that the transaction is not already committing or
aborting.

Two t pbegi n() calls cannot be made simultaneously for the same context.
t pbegi n() cannot be issued for a context that is aready in transaction mode.

If you are using a client and you want to connect to more than one domain, you
must manually change the value of TUXCONFI G or WBNADDR before calling

t pi ni t (). You must synchronize the setting of the environment variable and the
tpi nit () cal if multiple threads may be performing such an action. All
application associations in a client must obey the following rules:

10-46 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Client

e All associations must be made to the same release of the BEA Tuxedo
system.

e Either every application association in a particular client must be made as a
native client, or every application association must be made as a Workstation
client.

m Tojoin an application, a multithreaded Workstation client must always call
t pi ni t () with the TPMULTI CONTEXTS flag set, even if the client isrunning in
single-context mode.

Initializing an ATMI Client to Multiple Contexts

To haveaclient join morethan one context, issueacall tothet pi ni t () functionwith
the TPMULTI CONTEXTS flag set in the f | ags element of the TPI NI T data structure.

In any one process, either all callstot pi ni t () must include the TPMULTI CONTEXTS
flagor nocall tot pi ni t () may includethisflag. Theonly exceptiontothisruleisthat
if all of aclient’s application associations are terminated by successful callsto

t pt er m() , then the process is restored to a state in which the inclusion of the
TPMULTI CONTEXTS flag in the next call to t pi ni t () isoptional.

Whent pi ni t () isinvoked with the TPMULTI CONTEXTS flag set, a new application
association is created and is designated the current association. The BEA Tuxedo
domain to which the new association is made is determined by the value of the
TUXCONFI G or WSENVFI LE/ WBNADDR environment variable.

When aclient thread successfully executest pi ni t () without the TPMULTI CONTEXTS
flag, all threadsin the client are placed in the single-context state (TPSI NGLECONTEXT).

Onfailure, t pi ni t () leavesthe calling thread initsoriginal context (that is, in the
context state in which it was operating before the call to t pi nit ()).

Donot call t pt er n{) fromagiven context if any of thethreadsin that context are till
working. See the table labeled “ Multicontext State Transitions’ on page 10-48 for a
description of the context states that result from calling t pt er n() under these and
other circumstances.

Programming a BEA Tuxedo ATMI Application UsingC 10-47

10 Programming a Multithreaded and Multicontexted ATMI Application

Context State Changes for an ATMI Client Thread

In amulticontext application, callsto various functionsresult in context state changes
for the calling thread and any other threads that are active in the same context as the
calling process. The following diagram illustrates the context state changes that result
fromcallstotpinit(),tpsetctxt(3c),andtptern().(Thetpgetctxt(3c)
function does not produce any context state changes.)

Figure 10-4 Multicontext State Transitions

tpi ni t () without TPMULTI CONTEXTS tpi ni t () with TPMULTI CONTEXTS
or or
implicit t pi nit () invoked by ATMI function t psetct xt () to avalid context

/pt:n{)

tpterm))
or
t psetctxt ()

tpterm)
or
tpsetctxt ()

tpterm))
(see Note)

t pi ni t() without
TPMULTI CONTEXTS

INVALID
CONTEXT

tpsetctxt()

Note: Whent ptern() iscaled by athread running in the multicontext state
(TPMULTI CONTEXTS), the calling thread is placed in the null context state
(TPNULLCONTEXT). All other threads associated with the terminated context
are switched to the invalid context state (TPI NVALI DCONTEXT).

10-48 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Client

The following table lists all possible context state changes produced by calling

tpinit(),tpsetctxt(3c),andtptern().

Table 10-2 Context Sate Changesfor a Client Thread

When this Then athread in this context stateresultsin . . .

function is . - -

executed . . . Null Context Single Context ~ Multicontext Invalid
Context

t pi ni t () without Single context Single context Error Error

TPMULTI CONTEXTS

tpinit() with Multicontext Error Multicontext Error

TPMULTI CONTEXTS

tpsetctxt(3c) to Null Error Null Null

TPNULLCONTEXT

tpsetctxt(3c) to Error Single context Error Error

context 0

tpsetctxt(3c) to Multicontext Error Multicontext Multicontext

context > 0

Implicitt pi nit() Single context N/A N/A Error

tpterm) inthis Null Null Null Null

thread

tpterm() ina N/A Null Invaid N/A

different thread of this

context

Getting Replies in a Multithreaded Environment

t pget rpl y() receives responses only to requests made viat pacal | () . Requests
made with t pcal | () are separate and cannot be retrieved with t pget r pl y()
regardless of the multithreading or multicontexting level.

Programming a BEA Tuxedo ATMI Application UsingC 10-49

10 Programming a Multithreaded and Multicontexted ATMI Application

t pget rpl y() operatesin only one context, which isthe context in which it is called.
Therefore, when you call t pget r pl y() with the TPGETANY flag, only handles
generated in the same context are considered. Similarly, a handle generated in one
context may not be used in another context, but the handle may be used in any thread
operating within the same context.

When t pget r pl y() iscaledinamultithreaded environment, the following
restrictions apply:

m |f athread callst pget rpl y() for aspecific handle while another thread in the
same context is already waiting int pget r pl y() for the same handle,
t pget rpl y() returns- 1 and setst per r no to TPEPROTO.

m |f athread callst pget r pl y() for a specific handle while another thread in the
same context is already waiting int pget r pl y() with the TPGETANY flag, the
call returns - 1 and setst perr no(5) to TPEPROTO.

The same behavior occurs if athread callst pget r pl y() with the TPGETANY
flag while another thread in the same context is already waiting int pget r pl y()
for a specific handle. These restrictions protect a thread that iswaiting on a
specific handle from having its reply taken by athread waiting on any handle.

m At any given time, only onethread in a particular context can wait in
t pgetrpl y() withthe TPGETANY flag set. If a second thread in the same context
invokest pget r pl y() with the TPGETANY flag while asimilar call is
outstanding, this second call returns - 1 and setst per r no(5) to TPEPROTO.

Using Environment Variables in a Multithreaded and/or
Multicontexted Environment

When a BEA Tuxedo application isrunin an environment that is multicontexted
and/or multithreaded, the following considerations apply to the use of environment
variables:

m A processinitially inherits its environment from the operating system
environment. On platforms that support environment variables, such variables
make up a per-process entity. Therefore, applications that depend on per-context
environment settings should use the t uxget env(3c) function instead of an OS
function.

10-50 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Client

Note: Theenvironment isinitially empty for those operating systems that do not
recognize an operating system environment.

m Many environment variables are read by the BEA Tuxedo system only once per
process or once per context and then cached within the BEA Tuxedo system.
Changes to such variables once cached in the process have no effect.

Cachingisdoneona... For environment variablessuch as. . .

Per-context basis TUXCONFI G

FI ELDTBLS and FI ELDTBLS32

FLDTBLDI Rand FLDTBLDI R32

ULOGPFX

VI EMDI Rand VI EVDI R32

VI EWFI LES and VI EWFI LES32

WENADDR

WSDEVI CE

WEENV

Per-process basis TMIRACE

TUXDI R

UL OGDEBUG

m Thet uxput env(3c) function affects the environment for the entire process.

m Whenyou call thet uxr eadenv(3c) function, it reads afile containing
environment variables and adds them to the environment for the entire process.

m Thetuxget env(3c) function returnsthe current value of the requested
environment variable in the current context. Initially, all contexts have the same
environment, but the use of environment files specific to a particular context can
cause different contexts to have different environment settings.

m |f aclient intendsto initialize to more than one domain, the client must change
the value of the TUXCONFI G WSNADDR, or WSENVFI LE environment variable to

Programming a BEA Tuxedo ATMI Application UsingC 10-51

10 Programming a Multithreaded and Multicontexted ATMI Application

the proper value before each call to t pi ni t () . If such an applicationis
multithreaded, a mutex or other application-defined concurrency control will
probably be needed to ensure that:

e The appropriate environment variable is reset.

e Thecal totpinit() is madewithout the environment variable being reset
by any other thread.

m When aclient initializes to the system, the WSENVFI LE and/or machine
environment file is read and affects the environment in that context only. The
previous environment for the process as awhole remains for that context to the
extent that it is not overridden within the environment file(s).

Using Per-context Functions and Data Structures in a
Multithreaded ATMI Client

The following ATMI functions affect only the application contexts in which they are
caled:

B tpabort()

m tpacall ()

® tpadntal |l (3c)
® tpbegin()

m tpbroadcast ()
m tpcall()

m tpcancel ()

® tpchkaut h()

m tpchkunsol ()
m tpcl ose(3c)

B tpcommt()

m tpconnect()

m t pdequeue(3c)
m tpdiscon()

10-52 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Client

t penqueue(3c)

t pforward()

t pgetlev()

tpgetrply()

tpinit()

tpnotify()

t popen(3c)

t ppost ()

tprecv()

t presune()

tpreturn()

t pscnt (3c)

t psend()

t pservi ce(3c)

t psetunsol ()

t psubscri be()

t psuspend()

tpterm))

t punsubscri be()

t x_begi n(3c)

tx_cl ose(3c)
tx_conmmit(3c)

tx_i nfo(3c)

t x_open(3c)

tx_roll back(3c)
tx_set_commit_return(3c)
tx_set_transaction_control (3c)
tx_set _transaction_ti nmeout (3c)

user | og(3c)

Programming a BEA Tuxedo ATMI Application UsingC 10-53

10 Programming a Multithreaded and Multicontexted ATMI Application

Note: Fort pbroadcast (), thebroadcast messageisidentified as having comefrom
aparticular application association. For t pnot i f y(3c) , the notificationis
identified as having come from a particul ar application association. See
“Using Per-process Functions and Data Structuresin a Multithreaded Client”
for notes about t pi nit ().

If t pset unsol () iscalled from athread that is not associated with a context,
a per-process default unsolicited message handler for al new t pi ni t ()
contexts created is established. A specific context may change the unsolicited
message handler for that context by calling t pset unsol () again when the
context is active. The per-process default unsolicited message handler may be
changed by again calling t pset unsol () inathread not currently associated
with a context.

m The CLI ENTI D, client name, username, transaction ID, and the contents of the
TPSVCI NFO data structure may differ from context to context within the same
process.

m Asynchronous call handles and connection descriptors are valid in the contexts
in which they are created. The unsolicited notification type is specific
per-context. Although signal-based notification may not be used with multiple
contexts, each context may choose one of three options:

e Ignoring unsolicited messages
e Using dip-in notification

e Using dedicated thread notification

10-54 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Client

Using Per-process Functions and Data Structures in a
Multithreaded ATMI Client

The following BEA Tuxedo functions affect the entire process in which they are

called:

m tpadvertise()

m tpalloc()

® tpconvert (3c) —therequested structure is converted, although it is probably relevant
to only a subset of the process.

m tpfree()

Bt pi ni t () —to the extent that the per-process TPMULTI CONTEXTS mode or
single-context mode is established. See also “Using Per-context Functions and Data
Structures in a Multithreaded ATMI Client” on page 10-52.

m tprealloc()

® tpsvrdone()

m tpsvrinit()

® tptypes()

B tpunadvertise()

® tuxget env(3c)—if the OS environment is per-process.

® tuxput env(3c) —if the OS environment is per-process.

® tuxr eadenv(3c) —if the OS environment is per-process.

m Usignal (3c)

The determination of single-context mode, multicontext mode, or uninitialized mode
affects an entire process. The buffer type switch, the view cache, and environment
variable values are al so per-process functions.

Programming a BEA Tuxedo ATMI Application UsingC 10-55

10 Programming a Multithreaded and Multicontexted ATMI Application

Using Per-thread Functions and Data Structures in a
Multithreaded ATMI Client

Only the calling thread is affected by the following:

CATCH
tperrordetail (3c)

t pget ct xt (3c)
tpgprio()

t pset ct xt (3c)
tpsprio()
tpstrerror(3c)
tpstrerrordetail (3c)
TRY(3¢c)

Uuni x_err(3c)

TheFerror, Ferror32(5),tperrno(5),tpurcode(5),andUuni x_err variables
are specific to each thread.

Theidentity of the current context is specific to each thread.

Sample Code for a Multithreaded ATMI Client

The following example shows a multithreaded client using ATMI calls. Threads
functions differ from one operating system to another. In this example, POSIX
functions are used.

Note: Inorder to simplify this example, error checking code has not been included.

Listing 10-4 Sample Codefor a Multithreaded Client

#i ncl ude <stdio. h>
#i ncl ude <pthread. h>
#i ncl ude <atm . h>

10-56 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Client

TPINNT * t pi ni t buf;

i nt ti meout =60;

pt hread_t wi t hdrawal t hr eadi d, st ockt hreadi d;
TPCONTEXT_T ct xt;

void * stackthread(void *);

void * withdrawal thread(void *);

mai n()

{
tpinitbuf = tpalloc(TPINIT, NULL, TPI NI TNEED(O));
/*

*

This code will performa transfer, using separate threads for the
* withdrawal and deposit. It will also get the current

* price of BEA stock froma separate application, and cal cul ate how
* many shares the transferred anount can buy.

*/

t pi ni tbuf ->fl ags = TPMJLTI CONTEXTS;

[* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);

t pget ct xt (&ctxt, 0);

t pbegi n(ti meout, 0);

pt hread_create(&wi thdrawal t hreadi d, NULL, wi thdrawalthread, NULL);
tpcal | ("DEPCSI T, ...);

/* Wait for the withdrawal thread to conplete. */
pt hread_j oi n(w t hdr awal t hr eadi d, NULL);

t pcommi t (0);
tpterm));

/* Wait for the stock thread to conplete. */
pt hread_j oi n(st ockt hreadi d, NULL);

/* Print the results. */
printf("$9.2f has been transferred \
fromyour savings account to your checking account.\n", ...);

printf("At the current BEA stock price of $8.3f, \

you coul d purchase % shares.\n", ...);
exit(0);
}

Programming a BEA Tuxedo ATMI Application UsingC 10-57

10 Programming a Multithreaded and Multicontexted ATMI Application

void *
st ockt hread(voi d *arg)

{

/* The other threads have now called tpinit(), so resetting TUXCONFI G can
* no | onger adversely affect them
*/

t uxput env (" TUXCONFI G=/ hone/ user s/ xyz/ st ockconf") ;
t pi ni tbuf->flags = TPMJULTI CONTEXTS;

/* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);
tpcal | (" GETSTOCKPRI CE", ...);
/* Save the stock price in a variable that can al so be accessed in main(). */
tpterm));
return(NULL);
}
void *
wi t hdrawal t hread(voi d *arg)
{

/* Create a separate thread to get stock prices froma different
* application.

*/
pt hread_cr eat e(&st ockt hreadi d, NULL, stockthread, NULL);
t psetctxt (ctxt, 0);
tpcal | ("W THDRAWAL", ...);
return(NULL);
}
See Also

m “How Multithreading and Multicontexting Work in a Client” on page 10-11

m “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-28

m “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

10-58 Programming a BEA Tuxedo ATMI Application Using C

Writing a Multithreaded ATMI Server

Writing a Multithreaded ATMI Server

Multithreaded servers are almost always multicontexted, as well. For information
about writing a multithreaded server, see “Writing Code to Enable Multicontexting
and Multithreading in an ATMI Server” on page 10-40.

Compiling Code for a
Multithreaded/Multicontexted ATMI
Application

The programs provided by the BEA Tuxedo system for compiling or building
executables, such asbui | dserver (1) andbui | dcl i ent (1), automatically include
any required compiler flags. If you usethesetools, then you do not need to set any flags
at compiletime.

If, however, you compile your . c filesinto . o files before doing afinal compilation,
you may need to set platform-specific compiler flags. Such flags must be set
consistently for al code linked into a single process.

If you are creating a multithreaded server, you must run the bui | dser ver (1)
command with the -t option. This option is mandatory for multithreaded servers; if
you do not specify it at build time and later try to boot the new server with a
configuration file in which the value of MAXDI SPATCHTHREADS is greater than 1, a
warning message is recorded in the user log and the server reverts to single-threaded
operation.

Toidentify any operating system-specific compiler parameters that are required when
you compile. c filesinto . o filesin amultithreaded environment, run
bui | dclient (1) or buil dserver (1) withthe-v option set on atest file.

Programming a BEA Tuxedo ATMI Application UsingC 10-59

10 Programming a Multithreaded and Multicontexted ATMI Application

See Also

m “Writing Code to Enable Multicontexting in an ATMI Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in an ATMI
Server” on page 10-40

m “Writing a Multithreaded ATMI Client” on page 10-45

Testing a Multithreaded/Multicontexted
ATMI Application

This topic includes the following sections:

m Testing Recommendations for a Multithreaded/Multicontexted ATMI
Application

m Troubleshooting a Multithreaded/M ulticontexted ATMI Application
m Error Handling for a Multithreaded/Multicontexted ATMI Application

Testing Recommendations for a
Multithreaded/Multicontexted ATMI Application

We recommend following these recommendations during testing of your
multithreaded and/or multicontexted code:

m Use amultiprocessor.
m Use amultithreaded debugger (if your operating system vendor offers one).

m Run stresstests to introduce a variety of timing conditions.

10-60 Programming a BEA Tuxedo ATMI Application Using C

Testing a Multithreaded/Multicontexted ATMI Application

Troubleshooting a Multithreaded/Multicontexted ATMI
Application

When you need to investigate possible causes of errors, we recommend that you start
by checking whether and how the TPMULTI CONTEXTS flag has been set. Errors are
frequently introduced by failuresto set thisflag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If a processincludes the TPMULTI CONTEXTS flag in a state for which thisflag is not
allowed (or omits TPMULTI CONTEXTS in astate that requiresit), thent pi ni t () returns
-1 and setst per r no to TPEPROTO.

Calls to tpinit() Without TPMULTICONTEXTS

Whent pi ni t () isinvoked without TPMULTI CONTEXTS, it behaves as it does when
called in a single-contexted application. Whent pi ni t () has been invoked once,
subsequent t pi ni t () callswithout the TPMULTI CONTEXTS flag succeed without
further action. Thisistrueevenif the value of the TUXCONFI G or WENADDR environment
variable in the application has been changed. Calling t pi ni t () without the

TPMULTI CONTEXTS flag set is not allowed in multicontext mode.

If aclient has not joined an application and t pi ni t () iscalled implicitly (asaresult
of acall to another function that callst pi ni t ()), then the BEA Tuxedo system
interprets the action asacall tot pi ni t () without the TPMULTI CONTEXTS flag for
purposes of determining which flags may be used in subsequent callstot pinit ().

For most ATMI functions, if afunction isinvoked by athread that is not associated
with acontext in aprocess aready operating in multicontext mode, the ATMI function
failswitht perrno(5) =TPEPROTO.

Programming a BEA Tuxedo ATMI Application UsingC 10-61

10 Programming a Multithreaded and Multicontexted ATMI Application

Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack sizeis
insufficient for use with the BEA Tuxedo system. Compaq Tru64 UNIX and
UnixWare are two operating systems for which thisis known to be the case. If the
default thread stack size parameter is used, applications on these platforms dump core
when afunction with substantial stack usage requirementsiscalled by any thread other
than the main thread. Often the corefilethat is created does not give any obvious clues
to the fact that an insufficient stack size isthe cause of the problem.

When the BEA Tuxedo system is creating threads on its own, such as
server-dispatched threads or a client unsolicited message thread, it can adjust the
default stack size parameter on these platforms to a sufficient value. However, when
an application is creating threads on its own, the application must specify a sufficient
stack size. At aminimum, avalue of 128K should be used for any thread that will
access the BEA Tuxedo system.

On Compag Tru64 UNIX and other systems on which POSI X threads are used, a
thread stack sizeis specified by invoking pt hread_attr _set st acksi ze() before
caling pt hr ead_cr eat e() . On UnixWare, the thread stack size is specified as an
argumenttot hr _cr eat e() . Consult your operating system documentation for further
information on this subject.

Error Handling for a Multithreaded/Multicontexted ATMI
Application

Errors are reported in the user log. For each error, whether in single-context mode or
multicontext mode, the following information is recorded:

process_|ID.thread_I D. context _ID

10-62 Programming a BEA Tuxedo ATMI Application Using C

Testing a Multithreaded/Multicontexted ATMI Application

See Also

m “How Multithreading and Multicontexting Work in a Client” on page 10-11

m “How Multithreading and Multicontexting Work in an ATMI Server” on page
10-17

m “Preliminary Guidelines for Programming a Multithreaded/M ulticontexted ATMI
Application” on page 10-28

Programming a BEA Tuxedo ATMI Application UsingC 10-63

10 Programming a Multithreaded and Multicontexted ATMI Application

10-64 Programming a BEA Tuxedo ATMI Application Using C

CHAPTER

11

System

Managing Errors

This topic includes the following sections:
m System Errors

m Application Errors

m Handling Errors

m Transaction Considerations

m Central Event Log

m Debugging Application Processes

m Comprehensive Example

Errors

The BEA Tuxedo system usesthet per rno(5) variable to supply information to a
process when a function fails. All ATMI functions that normally return an integer or
pointer return - 1 or NULL, respectively, on error and set t per rno() to avaluethat
describes the nature of the error. When afunction does not returnto itscaller, asinthe
caseof tpreturn() ortpforward(), which are used to terminate a service routine,
the only way the system can communicate success or failure is through the variable

t perrno() intherequester.

Programming a BEA Tuxedo ATMI Application Using C 111

11 Managing Errors

Thetperrordetail (3c) andtpstrerrordetail (3c) functions can be used to
obtain additional detail about an error in the most recent BEA Tuxedo system call on
the current thread. t per ror det ai | () returnsaninteger (with an associated symbolic
name) which isthen used asan argumenttot pstrerrordetail () toretrievea
pointer to astring that contains the error message. The pointer can then be used as an
argument touser | og(3c) orfprintf().Foralist of the symbolic namesthat can be
returned, refer tot perr or det ai | (3c) inthe BEA Tuxedo ATMI C Function
Reference.

t pur code(5) isused to communicate user-defined conditions only. The system sets
thevalueof t pur code tothevalueof ther code argument of t pr et ur n() . Thesystem
setst pur code, regardless of the value of ther val argument of t pret urn(), unless
an error isencountered by t pr et ur n() or atransaction timeout occurs.

The codesreturned int per r no(5) represent categories of errors, which arelisted in
the following table.

Table 11-1 tperrno Error Categories

Error Category tperrno Values

Abort TPEABORT?

BEA Tuxedo Q/Steml TPESYSTEM

Call descriptor TPELI M T and TPEBADDESC
Conversational TPEVENT

Duplicate operation TPEMATCH

General communication TPESVCFAI L, TPESVCERR,

TPEBLOCK, and TPGOTSI G

Heuristic decision TPEHAZARD? and TPEHEUR! STI C2
Invalid argument! TPEI NVAL

MIB TPEM B

No entry TPENCENT

Operating system® TPEOS

11-2 Programming a BEA Tuxedo ATMI Application Using C

Abort Errors

Error Category tperrno Values
Permission TPEPERM

Protocolt TPEPROTO

Queueing TPEDI AGNCSTI C

Release compatibility TPERELEASE

Resource manager TPERMERR

Timeout TPETI ME

Transaction TPETRANZ

Typed buffer mismatch TPEI TYPE and TPEOTYPE

1. Applicableto all ATMI functionsfor which failureisreported by the
valuereturnedint perrno(5).

2. Refer to “Fata Transaction Errors’ on page 11-22 for more
information on this error category.

Asfootnote 1 shows, four categories of errors are reported by t per r no(5) and are
applicableto all ATMI functions. The remaining categories are used only for specific
ATMI functions.The following sections describe some error categories in detail.

Abort Errors

For information on the errors that |ead to abort, refer to “ Fatal Transaction Errors’ on
page 11-22.

Programming a BEA Tuxedo ATMI Application UsingC ~ 11-3

11 Managing Errors

BEA Tuxedo System Errors

BEA Tuxedo system errorsindicate problems at the system level, rather than at the
application level. When BEA Tuxedo system errors occur, the system writes messages
explaining the exact nature of the errors to the central event log, and returns
TPESYSTEMint per rno(5) . For more information, refer to the “ Central Event Log”
on page 11-31. Becausethese errors occur in the system, rather than in the application,
you may need to consult the system administrator to correct them.

Call Descriptor Errors

Call descriptor errors occur as a result of exceeding the maximum limit of call
descriptors or referencing an invalid value. Asynchronous and conversational calls
return TPELI M T when the maximum number of outstanding call descriptors has been
exceeded. TPEBADDESC is returned when an invalid call descriptor value is specified
for an operation.

Call descriptor errors occur only during asynchronous calls or conversational calls.
(Call descriptors are not used for synchronous calls.) Asynchronous calls depend on
call descriptors to associate replies with the corresponding requests. Conversational
send and receive functions depend on call descriptorsto identify the connection; the
call that initiates the connection depends on the availability of acall descriptor.

Troubleshooting of call descriptor errors can be done by checking for specific errors at
the application level.

Limit Errors

The system allows up to 50 outstanding call descriptors (replies) per context (or BEA
Tuxedo application association). Thislimit is enforced by the system; it cannot be
redefined by your application.

11-4 Programming a BEA Tuxedo ATMI Application Using C

Conversational Errors

The limit for call descriptors for simultaneous conversational connectionsis more
flexible than the limit for replies. The application administrator definesthelimit inthe
configuration file. When the application is not running, the administrator can modify
the MAXCONV parameter in the RESOURCES section of the configuration file. When the
application is running, the administrator can modify the MACHI NES section
dynamically. Refer tot nconfig, wt ntonfig(1) inthe BEA Tuxedo Command
Reference for more information.

Invalid Descriptor Errors

A call descriptor can become invalid and, if referenced, cause an error to be returned
tot perrno(5) in either of two situations:

m A call descriptor is used to retrieve a message, which may be afailed message
(TPEBADDESC).

m Anattempt is made to reuse a stale call descriptor (TPEBADDESC).
A call descriptor might become stale, for example, in the following circumstances:

m When the application callst pabort () ort pcomni t () and transaction replies
(sent without the TPNOTRAN flag) remain to be retrieved.

m A transaction times out. When the timeout is reported by acall tot pget rpl y(),
no message is retrieved using the specified descriptor and the descriptor
becomes stale.

Conversational Errors

When an unknown descriptor is specified for conversational services, thet psend(),
tprecv(),andt pdi scon() functions return TPEBADDESC.

Whent psend() andt precv() fail with aTPEEVENT error after a conversational
connection is established, an event has occurred. Data may or may not be sent by
t psend() , depending on the event. The system returns TPEEVENT in ther event
parameter passed to the function call and the course of action is dictated by the
particular event.

Programming a BEA Tuxedo ATMI Application Using C 11-5

11 Managing Errors

For a complete description of conversational events, refer to “ Understanding
Conversational Communication Events’ on page 7-13.

Duplicate Object Error

The TPEMATCH error code is returned int per r no(5) when an attempt is made to
perform an operation that results in a duplicate object. The following table lists the
functions that may return the TPEMATCH error code and the associated cause

Function Cause

t padvertise Thesvcnane specified is aready advertised for the server but
with afunction other than f unc. Although the function fails,
svcname remains advertised with its current function (that is,
f unc does not replace the current function name).

t presumne Thet r ani d pointsto atransaction identifier that another
process has aready resumed. In this case, the caller’ s state with
respect to the transaction is not changed.

t psubscri be The specified subscription information has aready been listed
with the EventBroker.

For more information on these functions, refer to the BEA Tuxedo ATMI C Function
Reference

General Communication Call Errors

General communication call errors can occur during any communication calls,
regardless of whether those calls are synchronous or asynchronous. Any of the
following errors may be returned int per r no(5) : TPESVCFAI L, TPESVCERR,
TPEBLQOCK, or TPGOTSI G

11-6 Programming a BEA Tuxedo ATMI Application Using C

General Communication Call Errors

TPESVCFAIL and TPESVCERR Errors

If the reply portion of acommunication failsasaresult of acall tot pcal I () or

t pget rpl y() , the system returns TPESVCERR or TPSEVCFAI L tot perrno(5) . The
system determines the error by the argumentsthat are passed to t pr et ur n() and the
processing that is performed by this function.

If t preturn() encountersan error in processing or handling arguments, the system
returns an error to the original requester and setst per r no(5) to TPESVCERR. The
receiver determines that an error has occurred by checking the value of t per r no() .
The system does not send the datafrom the t pr et ur n() function, and if the failure
occurred ont pget r pl y() , it rendersthe call descriptor invalid.

If t preturn() does not encounter the TPESVCERR error, then the value returned in
rval determinesthe success or failure of the call. If the application specifies TPFAI L
intherval parameter, the system returns TPESVCFAI L int per r no(5) and sendsthe
datamessagetothecaller. If r val issetto TPSUCCESS, the system returns successfully
tothecaller, t perrno() isnot set, and the caller receives the data.

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCK and TPGOTSI Gerror codes may be returned at the request or the reply
end of amessage and, as aresult, can be returned for all communication calls.

The system returns TPEBLOCK when a blocking condition exists and the process
sending a request (synchronously or asynchronously) indicates, by setting itsf | ags
parameter to TPPNOBLOCK, that it does not want to wait on a blocking condition. A
blocking condition can exist when arequest isbeing sent if, for example, all the system
queues are full.

Whent pcal I () indicates ano blocking condition, only the sending part of the
communication is affected. If a call successfully sends a request, the system does not
return TPEBLOCK, regardless of any blocking situation that may exist while the call
waits for the reply.

The system returns TPEBLOCK for t pget rpl y() when acall ismadewithf| ags set
to TPNOBLOCK and a blocking condition is encountered while t pget r pl y() is
awaiting the reply. This may occur, for example, if amessage is not currently
available.

Programming a BEA Tuxedo ATMI Application Using C 1n-7

11 Managing Errors

The TPGOTSI Gerror indicates aninterruption of asystem call by asignal; thissituation
isnot actually an error condition. If thef | ags parameter for the communication
functionsis set to TPSI GRSTRT, the calls do not fail and the system does not return the
TPGOTSI Gerror codeint perrno(5).

Invalid Argument Errors

Invalid argument errorsindicate that an invalid argument was passed to a function.
Any ATMI function that takes arguments can fail if you pass it arguments that are
invalid. In the case of afunction that returnsto the caller, the function fails and causes
t per rno(5) tobesetto TPEI NVAL. Inthecaseof t pret urn() ort pforward(),the
system setst perrno() to TPESVCERR for either thet pcal | () or t pgetrpl y()
function that initiated the request and is waiting for resultsto be returned.

Y ou can correct aninvalid argument error at the application level by ensuring that you
pass only valid arguments to functions.

MIB Error

Thet padncal | (3c) function returns TPEM Bint per rno(5) inthe event an
administrative request fails. out buf isupdated and returned to the caller with FML32
fieldsindicating the cause of the error. For more information on the cause of the error,
refertoM B(5) and TM M B(5) inFile Formats, Data Descriptions, MIBs, and System
Processes Reference.

11-8 Programming a BEA Tuxedo ATMI Application Using C

No Entry Errors

No Entry Errors

No entry errors result from alack of entries in the system tables or the data structure
used to identify buffer types. The meaning of the no entry type error, TPENCENT,
depends on the function that is returning it. The following table lists the functions that
return this error and describes various causes of error.

Table 11-2 No Entry Errors

Function

Cause

tpal | oc()

The system does not know about the type of buffer requested. For a
buffer type and/or subtype to be known, there must be an entry for it
in atype switch data structure that is defined in the BEA Tuxedo
system libraries. Refer to t uxt ypes(5) andt ypesw(5) inthe
File Formats, Data Descriptions, MIBs, and System Processes
Reference for more information.

On an application level, ensure that you have referenced a known
type; otherwise, check with the system administrator.

tpinit()

The calling process cannot join the application because there is no
space left in the bulletin board to make an entry for it. Check with
the system administrator.

tpcall ()
tpacal | ()

The calling process references a service called that is not known to
the system since there is no entry for it in the bulletin board. On an
application level, ensure that you have referenced the service
correctly; otherwise, check with the system administrator.

t pconnect ()

The system cannot connect to the specified name becausethe service
named does not exist or it is not a conversational service.

tpgprio()

The calling process seeks a request priority when no request has
been made. Thisis an application-level error.

t punadvertise()

The system cannot unadvertise the service name because the name
is not currently advertised by the calling process.

t penqueue(3c)
t pdequeue(3c)

The system cannot access the queue space because the associated
TMQUEUE(5) server is not available. Refer to the File Formats,
Data Descriptions, MIBs, and System Processes Reference for more
information.

Programming a BEA Tuxedo ATMI Application UsingC ~ 11-9

11 Managing Errors

Function Cause
t ppost () The system cannot access the BEA Tuxedo system Event Broker.
t psubscri be() Refer to “Writing Event-based Clients and Servers’ on page 8-1 for

t punsubscribe() moreinformation.

Operating System Errors

Operating system errors indicate that an operating system call has failed. The system
returns TPECS int per r no(5) . On UNIX systems, the system returns anumeric value
identifying the failed system call in the global variable Uuni xerr. To resolve
operating system errors, you may need to consult your system administrator.

Permission Errors

If acalling process does not have the correct permissions to join the application, the
t pi ni t () call fails, returning TPEPERMIiNt per r no(5) . Permissions are set in the
configurationfile, outside of the application. If you encounter thiserror, check withthe
application administrator to make sure the necessary permissions are set in the
configuration file.

Protocol Errors

Protocol errors occur when an ATMI function isinvoked, either in the wrong order or
using anincorrect process. For example, aclient may try to begin communicating with
aserver beforejoining the application. Or t pconmi t () may be called by atransaction
participant instead of the initiator.

11-10 Programming a BEA Tuxedo ATMI Application Using C

Queuing Error

Y ou can correct aprotocol error at the application level by enforcing the rules of order
and proper usage of ATMI calls.

To determine the cause of aprotocol error, answer the following questions:
m |sthecall being made in the correct order?

m |sthecall being made by the correct process?

Protocol errorsreturn the TPEPROTOValueint perrno(5) .

Refer to“Introduction to the C A pplication-Transaction Monitor Interface” inthe BEA
Tuxedo ATMI C Function Reference for more information.

Queuing Error

Thet penqueue(3c) ort pdequeue(3c) function returns TPEDI AGNOSTI Cin

t per rno(5) if the enqueuing or dequeuing on a specified queuefails. The reason for
failure can be determined by the diagnostic returned viathe ct | buffer. For alist of
validct | flags, refertot penqueue(3c) ort pdequeue(3c) inthe BEA Tuxedo ATMI
C Function Reference

Release Compatibility Error

The BEA Tuxedo system returns TPERELEASE int per r no(5) if acompatibility issue
exists between multiple releases of a BEA Tuxedo system participating in an
application domain.

For example, the TPERELEASE error may be returned if the TPACK flag is set when
issuing thet pnot i f y(3c) function (indicating that the caller blocks until an
acknowledgment message is received from the target client), but the target client is
using an earlier release of the BEA Tuxedo system that does not support the TPACK
acknowledgement protocol.

Programming a BEA Tuxedo ATMI Application UsingC 11-11

11 Managing Errors

Resource Manager Errors

Resource manager errors can occur with callstot popen(3c) andt pcl ose(3c),in
which case the system returns the value of TPERVERR Nt per r no(5) . Thiserror code
isreturned for t popen() when theresource manager failsto open correctly. Similarly,
this error code is returned for t pcl ose() when the resource manager failsto close
correctly. To maintain portability, the BEA Tuxedo system does not return amore
detailed explanation of thistype of failure. To determine the exact nature of aresource
manager error, you must interrogate the resource manager.

Timeout Errors

The BEA Tuxedo system supports timeout errorsto establish alimit on the amount of
time that the application waits for a service request or transaction. The BEA Tuxedo
system supports two types of configurable timeout mechanisms: blocking and
transaction.

A blocking timeout specifies the maximum amount of time that an application waits
for areply to a service request. The application administrator defines the blocking
timeout for the system in the configuration file.

A transaction timeout defines the duration of atransaction, which may involve several
service reguests. To define the transaction timeout for an application, pass the
ti meout argument tot pbegi n() .

The system may return timeout errors on communication calls for either blocking or
transaction timeouts, and ont pconmmi t () for transaction timeouts only. In each case,
if aprocessisin transaction mode and the system returns TPETI ME on afailed call, a
transaction timeout has occurred.

By default, if a processis not in transaction mode, the system performs blocking
timeouts. When you set thef | ags parameter of a communication call to TPNOTI ME,
the flag setting applies to blocking timeouts only. If aprocessisin transaction mode,
blocking timeouts are not performed and the TPNOTI Me flag setting is not relevant.

11-12 Programming a BEA Tuxedo ATMI Application Using C

Transaction Errors

If aprocessisnot in transaction mode and a blocking timeout occurs on an
asynchronous call, the communication call that blocked fails, but the call descriptor is
still valid and may be used on areissued call. Other communication is not affected.

When a transaction timeout occurs, the call descriptor to an asynchronous transaction
reply (specified without the TPNOTRAN flag) becomes stale and may no longer be
referenced.

TPETI ME indi cates abl ocking timeout on acommunication call if the call wasnot made
in transaction mode or if thef | ags parameter was not set to TPNOBLOCK.

Note: If you set the TPNOBLOCK flag, a blocking timeout cannot occur because the
call returnsimmediately if a blocking condition exists.

For additional information on handling timeout errors, refer to “ Transaction
Considerations’” on page 11-19.

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur, refer
to “Transaction Considerations’ on page 11-19.

Programming a BEA Tuxedo ATMI Application UsingC 11-13

11 Managing Errors

Typed Buffer Errors

Typed buffer errors are returned when requests or replies to processes are sent in

buffersof an unknowntype. Thet pcal I (), tpacal | (),andt pconnect () functions
return TPEI TYPE when arequest data buffer is sent to a service that does not recognize
the type of the buffer.

Processes recognize buffer types that are identified in both the configuration file and
the BEA Tuxedo system librariesthat arelinked into the process. Theselibrariesdefine
and initialize a data structure that identifies the typed buffers that the process
recognizes. Y ou can tailor the library to each process, or an application can supply its
own copy of afile that defines the buffer types. An application can set up the buffer
type data structure (referred to as abuffer type switch) on a process-specific basis. For
more information, seet uxt ypes(5) andt ypesw(5) inthe File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Thetpcal | (), tpgetrply(),tpdequeue(3c),andt precv() functionsreturn
TPEOTYPE when areply message is sent in a buffer that is not recognized or not
allowed by the caller. In the latter case, the buffer typeisincluded in the type switch,
but the type returned does not match the type that was allocated to receive the reply
and a change in buffer typeis not allowed by the caller. The caller indicatesthis
preference by setting f | ags to TPNOCHANGE. |n this case, strong type checking is
enforced; the system returns TPEOTYPE when it is violated. By default, weak type
checkingisused. Inthiscase, abuffer type other than thetype originally allocated may
be returned, as long as that type is recognized by the caller. The rules for sending
replies are that the reply buffer must be recognized by the caller and, if strong type
checking has been indicated, you must observeit.

11-14 Programming a BEA Tuxedo ATMI Application Using C

Application Errors

Application Errors

Within an application, you can pass information about user-defined errorsto calling
programs using ther code argument of t pr et ur n() . Also, the system sets the value
of t pur code to the value of ther code argument of t pr et urn() . For more
information about t pr et ur n(3c) ort pur code(5), refer to the BEA Tuxedo ATMI C
Function Reference and the File Formats, Data Descriptions, MIBs, and System
Processes Reference, respectively.

Handling Errors

Y our application logic should test for error conditions for the calls that have return
values, and take appropriate action when an error occurs. Specifically, you should:

m Test to determine whether a- 1 or NULL value has been returned (depending on
the function call).

m |nvoke code that contains a switch statement that tests for specific val ues of
t per rno(5) and performs the appropriate application logic.

The ATMI supports three functions, t pstrerrordetail (3c),tpstrerror(3c),
andFstrerror, Fstrerror32(3fm), for retrieving the text of an error message
from the message catal ogsfor the BEA Tuxedo system and FML. Thefunctionsreturn
pointers to the appropriate error messages. Y our program can use a pointer to direct
the referenced text to user | og(3c) or to another destination. For details, refer to
tpstrerrordetail (3c) andt pstrerror(3c) intheBEATuxedo ATMI C Function
Reference, and Fstrerror, Fstrerror32(3fm) inthe BEA Tuxedo ATMI FML
Function Reference.

The following example shows a typical method of handling errors. The at mi cal | ()
functioninthisexamplerepresentsageneric ATMI call. Notethe code after the switch
statement (line 21): it shows how t pur code can be used to interpret an
application-defined return code.

Programming a BEA Tuxedo ATMI Application UsingC 11-15

11 Managing Errors

Listing 11-1 Handling Errors

001 #i ncl ude <stdio. h>
002 #i nclude "atm . h"

003

004 mai n()

005

006 {

007 int rtnval;

008

009 if (tpinit((TPINIT *) NULL) == -1)
010 error nessage, exit program
011 if (tpbegin(30, 0) == -1)

012 error nmessage, tpterm exit program
013

014 al |l ocate any buffers,
015 make atm calls
016 check return val ue

017

018 rtnval = atmicall();

019

020 if (rtnval == -1) {

021 switch(tperrno) {

022 case TPEI NVAL:

023 fprintf(stderr, "Invalid argunents were given to
atmcall\n");

024 fprintf(stderr, "e.g., service name was null or flags
wrong\n");

025 br eak;

026 case ...:

027 fprintf(stderr, ". . .");

028 br eak;

029

030 Include all error cases described inthe atmcall (3) reference

031 page.

032 O her return codes are not possible, so there should be no

033 default within the switch statenent.

034

035 if (tpabort(0) == -1) {

036 char *p;

037 fprintf(stderr, "abort was attenpted but failed\n");
038 p = tpstrerror(tperrno);

039 userlog("%", p);

040 }

041 }

042 el se

043 if (tpcommit(0) == -1)

044 fprintf(stderr, "REPORT programfailed at commit time\n");

11-16 Programming a BEA Tuxedo ATMI Application Using C

Handling Errors

045

046 The foll owi ng code fragment shows how an application-specific
047 return code can be exani ned

048

049

050 .

051 ret = tpcall ("servicenane", (char*)sendbuf, 0, (char
**) & cvbuf, & cvlen, \

052 (long)0);

053 .

054

055 .

056 (void) fprintf(stdout, "Returned tpurcode is: %\n",
t pur code) ;

057

058

059 free all buffers

060 tpterm();

061 exit(0);

062

Thevalues of t perrno(5) provide details about the nature of each problem and
suggest the level at which it can be corrected. If your application definesalist of error
conditions specific to your processing, the same can be said for the values of

t pur code.

The following example shows how to usethet pstrerrordetail (3c) functionto
obtain additional detail when an error is encountered.

Listing 11-2 Handling ErrorsUsing tpstrerrordetail ()

001 #include <stdio. h>

002 #include <string. h>

003 #i nclude <atm .h>/* BEA Tuxedo Header File */
004 #define LOOP_I TER 100

005 #if defined(__STDC_) || defined(__cplusplus)
006 mai n(int argc, char *argv[])

007 #el se

008 mai n(argc, argv)

009 int argc;

010 char *argv[];

011 #endif

012 {

Programming a BEA Tuxedo ATMI Application UsingC 11-17

11 Managing Errors

013 char *sendbuf, *rcvbuf;

014 I ong sendl en, rcvlen;

015 int ret;

016 int i;

017 if(argec '= 2) {

018 (void) fprintf(stderr, "Usage: sinpcl string\n");
019 exit(1l);

020 }

021 /* Attach to BEA Tuxedo Systemas a Client Process */
022 if (tpinit((TPINIT *) NULL) == -1)

023 (void) fprintf(stderr, "Tpinit failed\n");

024 exit(1);

025

026 sendl en = strlen(argv[1]);

027

028 /* Allocate STRING buffers for the request and the reply */
029

030 i f((sendbuf = (char *) tpalloc("STRING', NULL, sendlen+1))
== NULL) {

031 (void) fprintf(stderr,"Error allocating send
buffer\n");

032 tpterm);

033 exit(1);

034 }

035

036 if((rcvbuf = (char *) tpalloc("STRING', NULL, sendl en+l)) ==
NULL) {

037 (void) fprintf(stderr,"Error allocating receive
buffer\n");

038 t pfree(sendbuf);

039 tpterm();

040 exit(1);

041 }

042

043 for(i=0; i<LOOP_ITER, i++) {

044 (void) strcpy(sendbuf, argv[1]);

045

046 /* Request the service TOUPPER, waiting for a reply */
047 ret = tpcall ("TOUPPER', (char *)sendbuf, 0, (char

**) & cvbuf, &cvlen, (long)0);

048

049 if(ret == -1) {

050 (void) fprintf(stderr, "Can’t send request to service
TOUPPER n");

051 (void) fprintf(stderr, "Tperrno = %, %\n", tperrno,
tpstrerror(tperrno));

052

053 ret = tperrordetail (0);

054 if(ret ==-1) {

11-18 Programming a BEA Tuxedo ATMI Application Using C

Transaction Considerations

055 (void) fprintf(stderr, "tperrodetail ()
failed!'\n");

056 (void) fprintf(stderr, "Tperrno = %, %\n",
tperrno, tpstrerror(tperrno));

057 }

058 else if (ret '=0) {

059 (void) fprintf(stderr, "errordetail:%\n",
060 tpstrerrordetail (ret, 0));
061 }

062 t pfree(sendbuf);

063 t pfree(rcvbuf);

064 tpterm));

065 exit(l);

066 }

067 (void) fprintf(stdout, "Returned string is: %\n", rcvbuf);
068 }

069

070 /* Free Buffers & Detach from System T */
071 t pf ree(sendbuf) ;

072 t pfree(rcvbuf);

073 tpterm);

074 return(0);

Transaction Considerations

The following sections describe how various programming features work when used
in transaction mode. The first section provides rules of basic communication etiquette
that should be observed in code written for transaction mode.

Communication Etiquette

When writing codeto be runin transaction mode, you must observethe following rules
of basic communication etiquette:

Programming a BEA Tuxedo ATMI Application UsingC 11-19

11 Managing Errors

m Processes that are participants in the same transaction must require replies for all
requests. To include a request that requires no reply, set thef | ags parameter of
tpacal | () to TPNOTRAN or TPNOREPLY.

m A service must retrieve all asynchronous transaction replies before calling
tpreturn() ortpforward().Thisrule must be observed regardless of whether
the code is running in transaction mode.

m Theinitiator must retrieve all asynchronous transaction replies (made without
the TPNOTRAN flag) before calling t pconmi t () .

m Replies must be retrieved for asynchronous calls that expect replies from
non-participants of the transaction, that is, replies to requests made with
t pacal | () inwhich the transaction, but not the reply, is suppressed.

m |f atransaction has not timed out but is marked “abort-only,” any further
communication should be performed with the TPNOTRAN flag set so that the
results of the communication are preserved after the transaction is rolled back.

m If atransaction hastimed out:

e The descriptor for the timed-out call becomes stale and any further reference
to it returns TPEBADDESC.

e Further callstot pgetrpl y() ortprecv() for any outstanding descriptors
return aglobal state of transaction timeout; the system setst per rno(5) to
TPETI ME.

e Asynchronous calls can be made with the f | ags parameter of t pacal | () set
to TPNOREPLY, TPNOBLOCK, or TPNOTRAN.

m Once atransaction has been marked “abort-only” for reasons other than timeout,
acall tot pgetrply() returns whatever value represents the local state of the
call; that is, it returns either success or an error code that reflects the local
condition.

m Onceadescriptor isused with t pget r pl y() toretrieve areply, or with
tpsend() ortprecv() toreport an error condition, it becomesinvalid and any
further reference to it returns TPEBADDESC. Thisrule is always observed,
regardless of whether the code is running in transaction mode.

m Onceatransaction is aborted, all outstanding transaction call descriptors (made
without the TPNOTRAN flag) become stale, and any further references to them
return TPEBADDESC.

11-20 Programming a BEA Tuxedo ATMI Application Using C

Transaction Errors

Transaction Errors

The following sections describe transaction-related errors.

Non-fatal Transaction Errors

When transaction errors occur, the system returns TPETRAN Nt per rno(5) . The
precise meaning of such an error, however, depends on the function that isreturning it.
The following table lists the functions that return transaction errors and describes
possible causes of them.

Table 11-3 Transaction Errors

Function

Cause

t pbegi n()

Usually caused by atransient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

t pcancel ()

The function was called for atransaction reply after arequest was
made without the TPNOTRAN flag.

tpresune()

The BEA Tuxedo system is unable to resume a global transaction
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be compl eted before the global transaction can be
resumed. The caller’s state with respect to the local transaction is
unchanged.

Programming a BEA Tuxedo ATMI Application UsingC 11-21

11 Managing Errors

Function Cause

t pconnect (), A call was made in transaction mode to a service that does not

t ppost (), support transactions. Some services belong to server groups that
tpcall (), and access adatabase management system (DBMS) that, in turn, support
tpacal | () transactions. Other services, however, do not bel ong to such groups.

In addition, some services that support transactions may require
interoperation with software that does not. For example, a service
that prints aform may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participants in a transaction.

The grouping of servicesinto servers and server groupsis an
administrative task. In order to determine which services support
transactions, check with your application administrator.

Y ou can correct transaction-level errors at the application level by
enabling the TPNOTRAN flag or by accessing the service for which
an error was returned outside of the transaction.

Fatal Transaction Errors

When afatal transaction error occurs, the application should explicitly abort the
transaction by having theinitiator call t pabort () . Therefore, it isimportant to
understand the errorsthat arefatal to transactions. Three conditions cause atransaction
tofail:

m Theinitiator or a participant in the transaction causesiit to be marked
“abort-only” for one of the following reasons:

e tpreturn() encountersan error while processing its arguments;
t per rno(5) issetto TPESVCERR.

e Therval argumenttot preturn() wassetto TPFAIL; t perrno(5) issetto
TPESVCFAI L.

e Thetype or subt ype of the reply buffer is not known or not allowed by the
caller and, as aresult, success or failure cannot be determined; t per r no(5)
is set to TPEOTYPE.

m Thetransaction times out; t per rno(5) isset to TPETI ME.

11-22 Programming a BEA Tuxedo ATMI Application Using C

Transaction Errors

Heuristic

m tpconmit () iscaled by aparticipant rather than by the originator of a
transaction; t per r no(5) isset to TPEPROTO.

The only protocol error that isfatal to transactionsiscalling t pconmi t () from the
wrong participant in atransaction. Thiserror can be corrected in the application during
the development phase.

Ift pconmi t () iscalled after an initiator/participant failure or transaction timeout, the
resultisanimplicit abort error. Then, because the commit failed, the transaction shoul d
be aborted.

If the system returns TPESVCERR, TPESVCFAI L, TPEOTYPE, or TPETI ME for any
communication call, the transaction should be aborted explicitly with acall to

t pabort () . You need not wait for outstanding call descriptors before explicitly
aborting the transaction. However, because these descriptors are considered stale after
the call isaborted, any attempt to accessthem after the transaction isterminated returns
TPEBADDESC.

Inthe case of TPESVCERR, TPESVCFAI L, and TPEOT YPE, communication calls continue
to be allowed as long as the transaction has not timed out. When these errors are
returned, the transaction is marked abort-only. To preserve the results of any further
work, you should call any communication functions with thef | ags parameter set to
TPNOTRAN. By setting thisflag, you ensure that the work performed for the transaction
marked “abort-only” will not be rolled back when the transaction is aborted.

When atransaction timeout occurs, communication can continue, but communication
requests cannot:

m Requirereplies
m Block
m Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you must set thef | ags parameter to
TPNOREPLY, TPNOBLCOCK, Or TPNOTRAN.

Decision Errors

Thet pcomi t () function may return TPEHAZARD or TPEHEURI STI C, depending on
how TP_COVM T_CONTRCL iS Set.

Programming a BEA Tuxedo ATMI Application UsingC 11-23

11 Managing Errors

If you set TP_COVM T_CONTROL to TP_CMI_LOGGED, the application obtains control
before the second phase of a two-phase commit is performed. In this case, the
application may not be aware of a heuristic decision that occurs during the second
phase.

TPEHAZARD or TPEHEURI STI C can be returned in a one-phase commit, however, if a
singleresource manager isinvolved in thetransaction and it returnsaheuristic decision
or a hazard indication during a one-phase commit.

If you set TP_COVM T_CONTROL to TP_CMI_COVPLETE, then the system returns
TPEHEURI STI Cif any resource manager reports a heuristic decision, and TPEHAZARD
if any resource manager reports a hazard. TPEHAZARD specifiesthat a participant failed
during the second phase of commit (or during a one-phase commit) and that it is not
known whether a transaction completed successfully.

Transaction Timeouts

Asdescribed in “Transaction Errors’ on page 11-21, two types of timeouts can occur
in a BEA Tuxedo application: blocking and transaction. The following sections
describe how various programming features are affected by transaction timeouts.
Refer to “ Transaction Errors’ on page 11-21 for more information on timeouts.

Effect on the tpcommit() Function

What isthe state of atransaction if atimeout occurs after acall tot pconmi t () ?1f the
transaction timed out and the system knows that it was aborted, the system reports
these events by setting t per r no(5) to TPEABORT. If the status of the transaction is
unknown, the system sets the error code to TPETI ME.

When the state of atransaction isin doubt, you must query the resource manager. First,
verify whether or not any of the changes that were part of the transaction were applied.
Then you can determine whether the transaction was committed or aborted.

11-24 Programming a BEA Tuxedo ATMI Application Using C

tpreturn() and tpforward() Functions

Effect on the TPNOTRAN Flag

When aprocessis in transaction mode and makes a communication call with f | ags
set to TPNOTRAN, it prohibits the called service from becoming a participant in the
current transaction. Whether the service request succeeds or fails has no impact on the
outcome of the transaction. The transaction can still timeout while waiting for areply
that is due from a service, whether it is part of the transaction or not.

For additional information on using the TPNOTRAN flag, refer to “tpreturn() and
tpforward() Functions’ on page 11-25.

tpreturn() and tpforward() Functions

If you call aprocesswhile running in transaction mode, t pr et ur n() and

t pf orwar d() placethe service portion of the transaction in a state that allowsit to be
either committed or aborted when the transaction completes. Y ou can call aservice
several times on behalf of the same transaction. The system does not fully commit or
abort the transaction until the initiator of the transaction callst pconmi t () or

t pabort ().

Neither t pret urn() nor t pf orwar d() should be called until all outstanding
descriptors for the communication calls made within the service have been retrieved.
If you call t pret urn() with outstanding descriptorsfor whichrval issetto
TPSUCCESS, the system encounters a protocol error and returns TPESVCERR to the
process waiting ont pget r pl y() . If the processisin transaction mode, the system
marks the caller as “abort-only.” Even if the initiator of the transaction calls

t pconmi t (), the system implicitly aborts the transaction. If you call t pr et ur n()
with outstanding descriptors for which r val isset to TPFAI L, the system returns
TPESVCFAI L to the process waiting ont pget r pl y() . The effect on thetransactionis
the same.

Whenyoucall t pr et ur n() whilerunning intransaction mode, thisfunction can affect
the result of the transaction by the processing errors that it encounters or that are
retrieved from the value placed in r val by the application.

Programming a BEA Tuxedo ATMI Application UsingC 11-25

11 Managing Errors

Youcanuset pf orwar d() toindicatethat success hasbeen achieved up to aparticul ar
point in the processing of arequest. If no application errors have been detected, the
system invokest pf or war d() ; otherwise, the system invokest pr et ur n() with
TPFAI L. If you cal t pf orwar d() improperly, the system considersthe call a
processing error and returns a failed message to the requester.

tpterm() Function

Usethet pt er m() function to remove aclient context from an application.

If the client context isin transaction mode, the call fails with TPEPROTO returned in
t per rno(5) , and the client context remains part of the application and in transaction
mode.

When the call is successful, the client context is allowed no further communication or
participation in transactions because the current thread of execution is no longer part
of the application.

Resource Managers

When you use an ATMI function to define transactions, the BEA Tuxedo system
executes an internal call to pass any global transaction information to each resource
manager participating in the transaction. When you call t pcommi t () ort pabort (),
for example, the system makesinternal callsto direct each resource manager to
commit or abort the work it did on behalf of the caller’s global transaction.

When aglobal transaction hasbeeninitiated, either explicitly or implicitly, you should
not make explicit calls to the resource manager’ s transaction functions in your
application code. Failure to follow this transaction rule causes indeterminate results.
You can usethet pget | ev() function to determine whether a processisalready in a
global transaction before calling the resource manager’ s transaction function.

11-26 Programming a BEA Tuxedo ATMI Application Using C

Sample Transaction Scenarios

Some resource managers allow programmers to configure certain parameters (such as
thetransaction consistency level) by specifying optionsavailableintheinterfacetothe
resource managers themselves. Such options are made available in two forms:

m Resource manager-specific function calls that can be used by programmers of
distributed applications to configure options.

m Hard-coded options incorporated in the transaction interface supplied by the
provider of the resource manager.

Consult the documentation for your resource managers for additional information.

The method of setting options varies for each resource manager. In the BEA Tuxedo
System SQL resource manager, for example, theset transacti on statement isused
to negotiate specific options (consistency level and access mode) for atransaction that
has already been started by the BEA Tuxedo system.

Sample Transaction Scenarios

The following sections provide some considerations for the following transaction
scenarios:

m Called Service in Same Transaction as Caller
m Cdled Service in Different Transaction with AUTOTRAN Set
m Cadled Service That Starts a New Explicit Transaction

Called Service in Same Transaction as Caller

When acaller in transaction mode calls another service to participate in the current
transaction, the following facts apply:

m tpreturn() andt pforward(),when called by the participating service, place
that service's portion of the transaction in a state from which it can be either
aborted or committed by the initiator.

Programming a BEA Tuxedo ATMI Application UsingC 11-27

11 Managing Errors

m The success or failure of the called process affects the current transaction. If any
fatal transaction errors are encountered by the participant, the current transaction
is marked “abort-only.”

m Whether or not the tasks performed by a successful participant are applied
depends on the fate of the transaction. In other words, if the transaction is
aborted, the work of all participantsis reversed.

m The TPNOREPLY flag cannot be used when calling another service to participate
in the current transaction.

Called Service in Different Transaction with AUTOTRAN
Set

If you issue acommunication call with the TPNOTRAN flag set and the called serviceis
configured such that a transaction automatically starts when the service is called, the
system places both the calling and called processes in transaction mode, but the two
congtitute different transactions. In this situation, the following facts apply:

m tpreturn() playstheinitiator’stransaction role: it terminates the transaction in
the service in which the transaction was automatically started. Alternatively, if
the transaction is automatically started in a service that terminates with
t pf orwar d(), thet preturn() call issuedinthelast servicein the forward
chain plays theinitiator’s transaction role: it terminates the transaction. (For an
example, refer to the figure called “ Transaction Roles of tpforward() and
tpreturn() with AUTOTRAN" on page 11-29.)

m Becauseitisintransaction mode, t pr et ur n() isvulnerableto the failure of any
participant in the transaction, as well as to transaction timeouts. In this scenario,
the system is more likely to return a failed message.

m The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

m The caller’s own transaction may timeout as the caller waits for areply.

m If noreply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

11-28 Programming a BEA Tuxedo ATMI Application Using C

Sample Transaction Scenarios

Figure11-1 Transaction Rolesof tpforward() and tpreturn() with AUTOTRAN

Transaction A Tranzaction B
tpoalli) tprorward()
CLIENT . ; SVC B
with TPMOTEAM -
AUTOTEAN
Beginz B
tpreturni) _ tpforward(]

Tertninates B

Called Service That Starts a New Explicit Transaction

If acommunication call is made with TPNOTRAN, and the called serviceis not
automatically placed in transaction mode by a configuration option, the service can
define multiple transactions using explicit callsto t pbegi n(), t pcommi t (), and

t pabort () . Asaresult, the transaction can be completed before a call isissued to
tpreturn().

In this situation, the following facts apply:

m tpreturn() playsnotransactionrole; that is, theroleof t pret urn() isaways
the same, regardless of whether transactions are explicitly defined in the service
routine.

m tpreturn() canreturnany valueinrval , regardless of the outcome of the
transaction.

m Typically, the system returns processing errors, buffer type errors, or application
failure, and follows the normal rules for TPESVCFAI L, TPEI TYPE/TPEOTYPE, and
TPESVCERR.

m The state of the caller’stransaction is not affected by any failed messages or
application failures returned to the caller.

Programming a BEA Tuxedo ATMI Application UsingC 11-29

11 Managing Errors

m Thecaller isvulnerable to the possibility that its own transaction may time out
asit waitsfor itsreply.

m If noreply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

BEA TUXEDO System-supplied Subroutines

The BEA Tuxedo system-supplied subroutines, t psvrinit (), t psvrdone()
tpsvrthrinit(3c),andtpsvrthrdone(3c), mustfollow certain rules when used
in transactions.

Note: tpsvrthrinit(3c) andtpsvrthrdone(3c) can be specified for
multithreaded applications only. t psvrinit () andt psvrdone() canbe
specified for both threaded and non-threaded applications.

The BEA Tuxedo system server callst psvrinit () ortpsvrthrinit(3c) during
initialization. Specifically, t psvrinit () ortpsvrthrinit(3c) iscalled after the
calling process becomes a server but before it starts handling service requests. If
tpsvrinit() ortpsvrthrinit(3c) performsany asynchronouscommunication, all
replies must be retrieved before the function returns; otherwise, the system ignores all
pending replies and the server exits. If t psvrinit () ortpsvrthrinit(3c) defines
any transactions, they must be completed with all asynchronous replies retrieved
before the function returns; otherwise, the system aborts the transaction and ignores all
outstanding replies. In this case, the server exits gracefully.

The BEA Tuxedo system server abstraction callst psvr done() or

t psvrt hrdone(3c) after it finishes processing service requests but beforeit exits. At
this point, the server’s services are no longer advertised, but the server has not yet left
the application. If t psvrdone() ort psvrt hr done(3c) initiatescommunication, it
must retrieve al outstanding replies before it returns; otherwise, pending replies are
ignored by the system and the server exits. If atransaction is started within

t psvrdone() ortpsvrthrdone(3c), it must becompleted with all repliesretrieved;
otherwise, the system aborts the transaction and ignores the replies. In this case, too,
the server exits.

11-30 Programming a BEA Tuxedo ATMI Application Using C

Central Event Log

Central Event Log

Thecentral event logisarecord of significant eventsin your BEA Tuxedo application.
M essages about these eventsare sent to thelog by your application clientsand services
viatheuser| og(3c) function.

Any analysis of the central event log must be provided by the application. Y ou should
establish strict guidelines for the events that are to be recorded in the user | og(3c) .
Application debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows 2000 platform,
refer to Using BEA Tuxedo ATMI on Windows.

Log Name

The application administrator defines (in the configuration file) the absol ute pathname
that is used as the prefix of the name of the user | og(3c) error message file on each
machine. Theuser | og(3c) function creates a date—in the form rmddyy,
representing the month, day, and year—and adds this date to the pathname prefix,
forming the full filename of the central event log. A new fileis created daily. Thus, if
aprocess sends messages to the central event log on succeeding days, the messagesare
written into different files.

Log Entry Format

Entriesin the log consist of the following components:
m Tag consisting of:
e Timeof day (hhnmss)

e Machine name (for example, the name returned by the uname (1) command
on aUNIX system)

e Name, process ID, and thread ID (which is 0 on platforms that do not
support threads) of the thread calling user | og(3c)

Programming a BEA Tuxedo ATMI Application UsingC 11-31

11 Managing Errors

e Context ID of thethread calling user | og(3c)

m Message text
The text of each message is preceded by the catalog name and number of that
message.

m Optiona argumentsin pri nt f (3S) format

For exampl e, suppose that a security program executes the following call at
4: 22: 14pmon a UNIX machine called mach1 (as returned by the uname command):

user | og("Unknown User "%’ \n", usrnm;

The resulting log entry appears as follows:

162214. machl! security. 23451: Unknown User ’abc’

In thisexample, the process ID for security is 23451, and the variable usr nmcontains
the value abc.

If the preceding message was generated by the BEA Tuxedo system (rather than by the
application), it might appear as follows:

162214. machl! security. 23451: LI BSEC CAT: 999: Unknown User 'abc’
In this case, the message catalog nameisLI BSEC_CAT and the message number iS999.

If the message is sent to the central event log while the processis in transaction mode,
other components are added to the tag in the user log entry. These components consist
of the literal string gt ri d followed by three long hexadecimal integers. The integers
uniquely identify the global transaction and make up what is referred to as the global
transaction identifier, that is, the gt ri d. Thisidentifier is used mainly for
administrative purposes, but it also appearsin the tag that prefixes the messagesin the
central event log. If the system writes the message to the central event log in
transaction mode, the resulting log entry appears as follows:

162214. machl! security. 23451: gtrid x2 x24e1lb803 x239:
Unknown User ' abc’

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

11-32 Programming a BEA Tuxedo ATMI Application Using C

Debugging Application Processes

m Assign the error message you wish to write to the log to avariable of type char
* and use the variable name as the argument to the call.

m Specify the literal text of the message within double quotes, as the argument to
theuser | og(3c) call, as shown in the following example:

/* Open the database to be accessed by the transactions.*/
if(tpopen() == -1) {

userlog("tpsvrinit: Cannot open database %,
tpstrerror(tperrno)");

return(-1);
}

In this example, the messageis sent to the central event log if t popen(3c) returns- 1.

Theuser| og(3c) signatureis similar to that of the UNIX System pri nt f (3S)
function. The format portion of both functions can contain literal strings and/or
conversion specifications for a variable number of arguments.

Debugging Application Processes

Although you can use user | og(3c) statements to debug application software, itis
sometimes necessary to use a debugger command for more complex problem solving.

The following sections describe how to debug an application on UNIX and Windows
2000 platforms.

Debugging Application Processes on UNIX Platforms

The standard UNIX system debugging command isdbx (1). For complete information
about thistool, refer to dbx (1) in aUNIX system reference manual. If you usethe- g
option to compile client processes, you can debug those processes using the procedures
described on the dbx(1) reference page.

Programming a BEA Tuxedo ATMI Application UsingC 11-33

11 Managing Errors

To run the dbx command, enter the following:

dbx client
To execute a client process:
1. Set any desired breakpointsin the code.
2. Enter the dbx command.

3. Atthedbx prompt (*), type the r un subcommand (r) and any options you want
to pass to the client program’s mai n() .

The task of debugging server programs is more complicated. Normally a server is
started using thet mboot command, which startsthe server on the correct machinewith
the correct options. When using dbx, it isnecessary to run aserver directly rather than
through the t mboot command. To run a server directly, enter ther (short for r un)
subcommand after the prompt displayed by the dbx command.

The BEA Tuxedot nboot (1) command passes undocumented command-line options
to the server’s predefined mai n() . To run a server directly, you must pass these
options, manualy, to ther subcommand. To find out which options need to be
specified, runt nboot withthe-nand-d 1 options. The- n option instructst mboot
not to execute aboot; - d 1 instructsit to display level 1 debugging statements. By
default, the- d 1 option returnsinformation about all processes. If you want
information about only one process, you can specify your request accordingly with
additional options. For more information, refer to the BEA Tuxedo Command
Reference.

Theoutput of t mboot -n -d 1 includesalist of the command-line options passed by
t mboot tothe server’smai n(), as shown in the following example:

exec server -g 1 -i 1 -u sfmax -U /tuxdir/appdir/ULOG -mO0 -A

Once you have the list of required command-line options, you are ready to run the
server program directly, with ther subcommand of dbx(1). The following command
lineisan example:

*r -g 1 -i 1 -usfmax -U /tuxdir/appdir/ULOG-mO0 -A

Y ou may not use dbx(1) to run a server that is already running as part of the
configuration. If you try to do so, the server exits gracefully, indicating a duplicate
server in the central event log.

11-34 Programming a BEA Tuxedo ATMI Application Using C

Debugging Application Processes

Debugging Application Processes on Windows 2000
Platforms

On aWindows 2000 platform, a graphical debugger is provided as part of the
Microsoft Visual C++ environment. For completeinformation about thistool, refer to
the Microsoft Visual C++ reference manual.

To invoke the Microsoft Visual C++ debugger, enter thest art command as follows:
start nsdev -p process_ID

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5.0,
enter the st art command as follows:

start nsdev -p process_id

To invoke the debugger and automatically enter a process, specify the process name
and arguments on the st art command line, as follows:

start nsdev fil enanme argunent

For example, to invoke the debugger and enter the si npcl . exe process with the
Convert Thi sStri ng argument, enter the following command:

start nsdev sinpcl.exe ConvertThisString

When a user-mode exception occurs, you are prompted to invoke the default system
debugger to examine the location of the program failure and the state of the registers,
stacks, and so on. By default, Dr. Wat son isused in the Windows 2000 environment
uses as the default debugger for user-mode exception failures, while the kernel
debugger is used in the Win32 SDK environment.

To modify the default debugger used by the Windows 2000 system for user-mode
exception failures, perform the following steps:

1. Runregedit orregedt 32.

2. Within the HKEY_LOCAL_MACHI NE subtree, navigate to
\ SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\ AeDebug

3. Double-click on the Debugger key to advance into the registry string editor.

4. Modify the existing string to specify the debugger of your choice.

Programming a BEA Tuxedo ATMI Application UsingC 11-35

11 Managing Errors

For exampl e, to request the debugger supplied with the Microsoft Visual C++
environment, enter the following command:

nsdev.exe -p %d -e %d

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5.0,
enter the following command:

nsvc.exe -p %d -e %d

Comprehensive Example

Transaction integrity, message communication, and resource access are the major
requirements of an Online-Transaction-Processing (OLTP) application.

This section provides a code sample that illustrates the ATMI transaction, buffer
management, and communi cation routines operating together with SQL statements
that access aresource manager. The example is borrowed from the ACCT server that is
part of the BEA Tuxedo banking application (bankapp) and illustrates the
CLOSE_ACCT service.

The example shows how theset transacti on statement (line 49) is used to set the
consistency level and access mode of the transaction before the first SQL statement
that accesses the database. (When read/write access is specified, the consistency level
defaults to high consistency.) The SQL query determines the amount to be withdrawn
in order to close the account based on the value of the ACCOUNT _I D (lines 50-58).

t pal | oc() alocatesabuffer for the request message to the W THDRAWAL service, and
the ACCOUNT_I Dand theamount to bewithdrawn are placed in the buffer (lines62-74).
Next, arequest is sent to the W THDRAWAL serviceviaat pcal | () cal (line79). An
SQL del et e statement then updates the database by removing the account in question
(line 86).

If al is successful, the buffer allocated in the service is freed (line 98) and the
TPSVCI NFOdata buffer that was sent to the serviceisupdated to indicate the successful
completion of the transaction (line 99). Then, if the service was the initiator, the
transaction is automatically committed. t pr et ur n() returns TPSUCCESS, along with

11-36 Programming a BEA Tuxedo ATMI Application Using C

Comprehensive Example

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

024
025
026

027

the updated buffer, to the client process that requested the closing of the account.
Finally, the successful completion of the requested serviceisreported on the statusline
of the form.

After each function call, success or failure is determined. If afailure occurs, the buffer
allocated in the serviceisfreed, any transaction begun in the serviceis aborted, and the
TPSVCI NFO buffer is updated to show the cause of failure (lines 80-83). Finaly,

t preturn() returns TPFAI L and the message in the updated buffer is reported on the
status line of the form.

Note: When specifying the consistency level of aglobal transaction in a service
routine, take care to define the level in the same way for al service routines
that may participate in the same transaction.

Listing 11-3 ACCT Server

#i ncl ude <stdio. h> [* UNI X */

#i ncl ude <string. h> /* UNILX */

#include <fm . h> /* BEA Tuxedo System */
#i ncl ude <atm . h> /* BEA Tuxedo System */
#i ncl ude <Usysfl ds. h> /* BEA Tuxedo System */
#i ncl ude <sql code. h> /* BEA Tuxedo System */
#i ncl ude <userl og. h> /* BEA Tuxedo System */
#i ncl ude "bank. h" /* BANKI NG #defines */
#i ncl ude "bank. flds. h" /* bankdb fields */

#i nclude "event.flds. h" /* event fields */

EXEC SQ. begin decl are section;

static | ong account _id; /* account id */

static long branch_id; /* branch id */

static float bal, tlr_bal; /* BALANCE */

static char acct_type; /* account type*/

static char last_nanme[20], first_nane[20]; /* last name, first name */
static char md_init; /* mddle initial */

static char address[60]; /* address */

static char phone[14]; /* tel ephone */

static long | ast_acct; /* last account branch gave */

EXEC SQ. end decl are section;

static FBFR *reqfb; /* fielded buffer for request nessage */
static long reqlen; /* length of request buffer */
static char amts[BALSTR]; /* string representation of float */

code for OPEN _ACCT service

Programming a BEA Tuxedo ATMI Application UsingC 11-37

11 Managing Errors

028 /*

029 * Service to close an account
030 */

031 voi d

032 #ifdef __ STDC
033 LOSE_ACCT(TPSVCI NFO *transb)

034 #el se

035 CLOSE_ACCT(transb)
036 TPSVCI NFO *transb;

037 #endif

038 {

039 FBFR *transf; /* fielded buffer of decoded nmessage */
040 /* set pointer to TPSVCI NFO data buffer */

041 transf = (FBFR *)transb->data;

042 /* nmust have valid account nunber */

043 if (((account_id = Fvall (transf, ACCOUNT_ID, 0)) < M NACCT) ||

044 (account _id > MAXACCT)) {

045 (voi d)Fchg(transf, STATLIN, 0, "lnvalid account nunber", (FLDLEN)O);
046 tpreturn(TPFAIL, O, transb->data, OL, 0);

047 }

048 /* Set transaction |evel */

049 EXEC SQL set transaction read wite;

050 /* Retrieve AMOUNT to be del eted */

051 EXEC SQ. declare ccur cursor for

052 sel ect BALANCE from ACCOUNT where ACCOUNT I D = :account _id;

053 EXEC SQ. open ccur;

054 EXEC SQ. fetch ccur into :bal;

055 if (SQCODE != SQ_OK) { /* nothing found */

056 (void) Fchg(transf, STATLIN, 0O, getstr("account", SQ_LCODE), (FLDLEN)O);
057 EXEC SQ. cl ose ccur;

058 tpreturn(TPFAIL, O, transb->data, OL, 0);

059

060 /* Do final w thdrawal */

061 /* make wi thdraw request buffer */

062 if ((reqfb = (FBFR *)tpalloc("FM", NULL, transb->len)) == (FBFR *)NULL) {
063 (void)userlog("tpalloc failed in close_acct\n");

064 (void) Fchg(transf, STATLIN, O,

065 "Unable to allocate request buffer", (FLDLEN)O);

11-38 Programming a BEA Tuxedo ATMI Application Using C

Comprehensive Example

066
067
068
069

070
071

072
073
074

075
076
077

078
079
080
081
082
083
084

085

086
087
088
089
090
091
092
093

094
095
096
097
098
099
100

tpreturn(TPFAIL, 0, transb->data, OL, 0);

regl en = Fsi zeof (reqfb);
(void)Finit(reqfb,reqlen);

/* put IDin request buffer */
(voi d) Fchg(reqgf b, ACCOUNT_I D, 0, (char *)&account _id, (FLDLEN)O);

/* put ampbunt into request buffer */
(void)sprintf(ants,"% 2f", bal);
(voi d) Fchg(regf b, SAMOUNT, 0, ants, (FLDLEN)O);

/* increase the priority of this w thdraw */
if (tpsprio(PRICRITY, OL) == -1)
(void)userl og("Unable to increase priority of withdraw');

/* tpcall to withdraw service to renove renai ni ng bal ance */

if (tpcall ("WTHDRAWAL", (char *)reqgfb, OL, (char **)&reqfb,

(long *)&reql en, TPSI GRSTRT) == -1) {

(voi d) Fchg(transf, STATLIN, O,"Cannot make w thdrawal ", (FLDLEN)O);
tpfree((char *)reqfb);

tpreturn(TPFAIL, O,transb->data, OL, 0);

}

/* Del ete account record */

EXEC SQ. del ete from ACCOUNT where current of ccur;
if (SQLCODE != SQL_OK) { /[* Failure to delete */
(voi d) Fchg(transf, STATLIN, O,"Cannot close account”, (FLDLEN)O);
EXEC SQ. cl ose ccur;
tpfree((char *)reqfb);
tpreturn(TPFAIL, O, transb->data, OL, 0);

}
EXEC SQ. cl ose ccur;

/* prepare buffer for successful return */

(voi d) Fchg(transf, SBALANCE, 0, Fval s(reqfb, SAMOUNT, 0), (FLDLEN)O);
(voi d) Fchg(transf, FORMNAM 0, "CCLCSE', (FLDLEN)O);

(void) Fchg(transf, STATLIN, 0, " ", (FLDLEN)O);

tpfree((char *)reqfb);

t preturn(TPSUCCESS, 0, transbh->data, OL, 0);

Programming a BEA Tuxedo ATMI Application UsingC 11-39

11 Managing Errors

11-40 Programming a BEA Tuxedo ATMI Application Using C

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	1. Introduction to BEA Tuxedo Programming
	2. Programming Environment
	3. Managing Typed Buffers
	4. Writing Clients
	5. Writing Servers
	6. Writing Request/Response Clients and Servers
	7. Writing Conversational Clients and Servers
	8. Writing Event-based Clients and Servers
	9. Writing Global Transactions
	10. Programming a Multithreaded and Multicontexted ATMI Application
	11. Managing Errors
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to BEA Tuxedo Programming
	BEA Tuxedo Distributed Application Programming
	Figure 1�1 Distributed Application Example - Online Banking System

	Communication Paradigms
	Table 1�1 Communication Paradigms

	BEA Tuxedo Clients
	Listing 1-1 Pseudo-code for a Request/Response Client

	BEA Tuxedo Servers
	Basic Server Operation
	Figure 1�2 Pseudo-code for a Request/Response Server and a Service Subroutine
	Figure 1�3 Pseudo-code for a Conversational Service Subroutine

	Servers as Requesters

	BEA Tuxedo API: ATMI
	Table 1�2 Using the ATMI Function

	2 Programming Environment
	Updating the UBBCONFIG Configuration File
	Table 2�1 Programming-related UBBCONFIG Parameters by Functional Category�
	See Also

	Setting Environment Variables
	Table 2�2 Programming-related Environment Variables by Functional Category�
	See Also

	Including the Required Header Files
	Table 2�3 Required Header Files

	Starting and Stopping the Application
	See Also

	3 Managing Typed Buffers
	Overview of Typed Buffers
	Table 3�1 Typed Buffers�
	See Also

	Allocating a Typed Buffer
	Table 3�2 tpalloc() Function Arguments
	Listing 3-1 Allocating a VIEW Typed Buffer
	Listing 3-2 Allocating an FML Typed Buffer
	Listing 3-3 Allocating a CARRAY Typed Buffer
	Listing 3-4 Allocating a STRING Buffer
	See Also

	Putting Data in a Buffer
	Listing 3-5 Putting Data in a Message Buffer - Example 1
	Listing 3-6 Placing Data in a Message Buffer - Example 2
	See Also

	Resizing a Typed Buffer
	Table 3�3 tprealloc() Function Arguments
	Listing 3-7 Resizing a Buffer
	Listing 3-8 Error Checking for tprealloc()
	See Also

	Checking for Buffer Type
	Table 3�4 tptypes() Function Arguments
	Listing 3-9 Getting Buffer Size
	See Also

	Freeing a Typed Buffer
	Table 3�5 tpfree() Function Argument
	Listing 3-10 Freeing a Buffer
	See Also

	Using a VIEW Typed Buffer
	Setting Environment Variables for a VIEW Typed Buffer
	Table 3�6 Environment Variables for a VIEW Typed Buffer

	Creating a View Description File
	Table 3�7 View Description File Fields�
	Listing 3-11 View Description File for FML VIEW
	Listing 3-12 View Description File for an Independent View
	Executing the VIEW Compiler
	Listing 3-13 Header File Created Using the VIEW Compiler

	See Also
	Using an FML Typed Buffer
	Setting Environment Variables for an FML Typed Buffer
	Table 3�8 FML Typed Buffer Environment Variables

	Creating a Field Table File
	Table 3�9 Field Table File Fields
	Listing 3-14 Field Table File for FML VIEW

	Creating an FML Header File
	Listing 3-15 myview.flds.h Header File
	/* fname fldid */ /* ----- ----- */ #define FLOAT1 ((FLDID)24686) /* number: 110 type: float */ #...

	See Also

	Using an XML Typed Buffer
	See Also

	Customizing a Buffer
	Table 3�10 Custom Buffer Type Characteristics
	Table 3�11 Custom Buffer Type Routines
	Defining Your Own Buffer Types
	1. Code any switch element routines that may be required.
	2. Add your new types and the names of your buffer management modules to tm_typesw.
	3. Build a new shared object or a DLL. The shared object or DLL must contain your updated buffer ...
	4. Install your new shared object or DLL so that all servers, clients, and executables provided b...
	Listing 3-16 Default Buffer Type Switch
	#include <stdio.h> #include <tmtypes.h> /* Initialization of the buffer type switch */ static str...
	Listing 3-17 Buffer Type Structure

	/* The following definitions are in $TUXDIR/include/tmtypes.h */
	#define TMTYPELEN 8 #define TMSTYPELEN 16 struct tmtype_sw_t { char type[TMTYPELEN]; /* type of b...
	Coding Switch Element Routines
	Listing 3-18 Semantics of the Presend Switch Element

	Adding a New Buffer Type to tm_typesw
	Listing 3-19 Adding a New Type to the Buffer Switch
	#include <stdio.h> #include <tmtypes.h> /* Customized the buffer type switch */ static struct tmt...

	Compiling and Linking Your New tm_typesw
	1. Copy and modify $TUXDIR/lib/tmtypesw.c, as described in “Adding a New Buffer Type to tm_typesw...
	2. Compile tmtypesw.c with the flags required for shared objects.
	3. Link together all object files to produce a shared object.
	4. Copy libbuft.so.71 from the current directory to a directory in which it will be visible to ap...
	Table 3�12 OS-specific Names for the Buffer Type Switch Shared Object

	Compiling and Linking Your New tm_typesw for a 16-bit Windows Platform
	Listing 3-20 Sample Code in Microsoft Visual C++
	CL -AL -I..\e\|sysinclu -I..\e\|include -Aw -G2swx -Zp -D_TM_WIN -D_TMDLL -Od -c TMTYPESW.C LINK ...

	Data Conversion

	4 Writing Clients
	Joining an Application
	Table 4�1 TPINIT Data Structure Fields
	Listing 4-1 Allocating a TPINIT Typed Buffer
	See Also

	Using Features of the TPINIT Typed Buffer
	Client Naming
	Figure 4�1 Client Naming

	Unsolicited Notification Handling
	Table 4�2 Client Notification Flags in a TPINIT Typed Buffer

	System Access Mode
	Table 4�3 System Access Flags in a TPINIT Typed Buffer

	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	Table 4�4 buildclient Options
	See Also

	Client Process Examples
	Listing 4-2 Typical Client Process Paradigm
	Listing 4-3 Joining and Leaving an Application

	5 Writing Servers
	BEA Tuxedo System main()
	System-supplied Server and Services
	Notes: If you want to write your own versions of tpsvrinit() and tpsvrdone(), remember that the d...
	System-supplied Server: AUTHSVR()
	System-supplied Services: tpsvrinit() Function
	Receiving Command-line Options
	Listing 5-1 Receiving Command-line Options in tpsvrinit()

	Opening a Resource Manager
	Listing 5-2 Opening a Resource Manager in tpsvrinit()

	System-supplied Services: tpsvrdone() Function
	Listing 5-3 Closing a Resource Manager with tpsvrdone()
	void tpsvrdone() { /* Close the database */ if(tpclose() == -1) (void)userlog("tpsvrdone: failed ...

	Guidelines for Writing Servers
	Defining a Service
	Table 5�1 TPSVCINFO Data Structure
	Listing 5-4 Typical Service Definition
	Example: Checking the Buffer Type
	Listing 5-5 Checking for Buffer Type
	#define TMTYPERR 1 /* return code indicating tptypes failed */ #define INVALMTY 2 /* return code ...

	Example: Checking the Priority of the Service Request
	Listing 5-6 Checking the Priority of a Received Request
	#include <stdio.h> #include "atmi.h" char *roundrobin(); PRINTER(pbuf) TPSVCINFO *pbuf; /* print ...

	Terminating a Service Routine
	Sending Replies
	Table 5�2 tpreturn() Function Arguments
	Listing 5-7 tpreturn() Function
	#include <stdio.h> /* UNIX */ #include <string.h> /* UNIX */ #include "fml.h" /* BEA Tuxedo Syste...

	Invalidating Descriptors
	Listing 5-8 Invalidating a Reply After Timing Out

	Forwarding Requests
	Table 5�3 tpreturn() Function Arguments
	Figure 5�1 Forwarding a Request
	Listing 5-9 tpforward() Function
	... /* set pointer to TPSVCINFO data buffer */ transf = (FBFR *)transb->data; ... /* Insert new a...

	Advertising and Unadvertising Services
	Advertising Services
	Table 5�4 tpadvertise() Function Arguments

	Unadvertising Services
	Table 5�5 tpunadvertise() Function Arguments

	Example: Dynamic Advertising and Unadvertising of a Service
	Listing 5-10 Dynamic Advertising and Unadvertising

	Building Servers
	Table 5�6 buildserver Command-line Options
	See Also

	Using a C++ Compiler
	Declaring Service Functions
	Using Constructors and Destructors

	6 Writing Request/Response Clients and Servers
	Overview of Request/Response Communication
	1. A customer (the client) sends a request for an account balance to the Account Record Storage S...
	2. The Account Record Storage System (the server) sends a reply to the customer (the client), spe...
	Figure 6�1 Example of Request/Response Communication in Online Banking

	Sending Synchronous Messages
	Table 6�1 tpcall() Function Arguments
	Example: Using the Same Buffer for Request and Reply Messages
	1. The service queries the b_id field, but does not overwrite it.
	2. The application initializes the bal and ermsg fields to zero and the NULL string, respectively...
	3. The svc_name and hdr_type variables represent the service name and the balance type requested,...
	Listing 6-1 Using the Same Buffer for Request and Reply Messages

	Example: Testing for Change in Size of Reply Buffer
	Listing 6-2 Testing for Change in Size of the Reply Buffer

	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Listing 6-3 Sending a Synchronous Message with TPSIGRSTRT Set

	Example: Sending a Synchronous Message with TPNOTRAN Set
	Listing 6-4 Sending a Synchronous Message with TPNOTRAN Set

	Example: Sending a Synchronous Message with TPNOCHANGE Set
	Listing 6-5 Sending a Synchronous Message with TPNOCHANGE Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Table 6�2 tpacall() Function Arguments
	Example: Sending an Asynchronous Message with TPNOTRAN | TPNOREPLY
	Listing 6-6 Sending an Asynchronous Message with TPNOREPLY | TPNOTRAN

	Example: Sending Asynchronous Requests
	Listing 6-7 Sending Asynchronous Requests

	Getting an Asynchronous Reply
	Table 6�3 tpgetrply() Function Arguments

	Setting and Getting Message Priorities
	Setting a Message Priority
	Table 6�4 tpsprio() Function Arguments
	Listing 6-8 Setting the Priority of a Request Message

	Getting a Message Priority
	Listing 6-9 Determining the Priority of a Request After It Is Sent

	7 Writing Conversational Clients and Servers
	Overview of Conversational Communication
	Figure 7�1 Example of Conversational Communication in an Online Banking Application
	1. The customer requests the checking account statements for the past two months.
	2. The Account Records Storage System responds by sending the first month’s checking account stat...
	3. The customer requests the second month’s account statement by selecting the More prompt.
	4. The Account Records Storage System sends the remaining month’s account statement.

	Joining an Application
	Establishing a Connection
	Table 7�1 tpconnect() Function Arguments
	Listing 7-1 Establishing a Conversational Connection

	Sending and Receiving Messages
	Sending Messages
	Table 7�2 tpsend() Function Arguments
	Listing 7-2 Sending Data in Conversational Mode

	Receiving Messages
	Listing 7-3 Receiving Data in Conversation

	Ending a Conversation
	Example: Ending a Simple Conversation
	Figure 7�2 Simple Conversation Terminated Gracefully
	1. A sets up the connection by calling tpconnect() with the TPSENDONLY flag set, indicating that ...
	2. A turns control of the connection over to B by calling tpsend() with the TPRECVONLY flag set, ...
	3. The next call by B to tprecv() returns a value of -1, sets tperrno(5) to TPEEVENT, and returns...
	4. B calls tpreturn() with rval set to TPSUCCESS. This call generates a TPEV_SVCSUCC event for A ...
	5. A calls tprecv(), learns of the event, and recognizes that the conversation has been terminate...

	Example: Ending a Hierarchical Conversation
	Figure 7�3 Connection Hierarchy
	1. B calls tpsend() with the TPRECVONLY flag set on the connection to C, transferring control of ...
	2. C calls tpreturn() with rval set to TPSUCCESS, TPFAIL, or TPEXIT, as appropriate.
	3. B can then call tpreturn(), posting an event (either TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events
	Table 7�3 Conversational Communication Events

	8 Writing Event-based Clients and Servers
	Overview of Events
	Unsolicited Events
	Brokered Events
	Notification Actions
	Table 8�1 EventBroker Notification Actions

	EventBroker Servers
	System-defined Events
	Programming Interface for the EventBroker
	1. A client or server posts a buffer to an application-defined event name.
	2. The posted buffer is transmitted to any number of processes that have subscribed to the event.

	Defining the Unsolicited Message Handler
	Table 8�2 tpsetunsol() Function Argument

	Sending Unsolicited Messages
	Broadcasting Messages by Name
	int tpbroadcast(char *lmid, char *usrname, char *cltname, char *data, long len, long flags)
	Table 8�3 tpbroadcast() Function Arguments
	Listing 8-1 Using tpbroadcast()

	Broadcasting Messages by Identifier
	Table 8�4 tpnotify() Function Arguments

	Checking for Unsolicited Messages
	Subscribing to Events
	long handle tpsubscribe (char *eventexpr, char *filter, TPEVCTL *ctl, long flags)
	Table 8�5 tpsubscribe() Function Arguments

	Notification via Unsolicited Message
	Notification via Service Call or Reliable Queue
	Table 8�6 TPEVCTL Typed Buffer Format

	Unsubscribing from Events
	Table 8�7 tpunsubscribe() Function Arguments

	Posting Events
	Table 8�8 tppost() Function Arguments
	Listing 8-2 Posting an Event with tppost()
	. . . /* Event logic related */ static float evt_thresh = 10000.00 ; /* default for event thresho...

	Example of Event Subscription
	Listing 8-3 Subscribing to an Event with tpsubscribe()
	. . . /* Event Subscription handles */ static long sub_ev_largeamt = 0L ; . . . /* Preset default...

	9 Writing Global Transactions
	What Is a Global Transaction?
	Starting the Transaction
	Table 9�1 tpbegin() Function Arguments
	Listing 9-1 Defining a Global Transaction - High-level View
	Listing 9-2 Defining a Global Transaction - Detailed View
	#include <stdio.h> /* UNIX */ #include <string.h> /* UNIX */ #include <atmi.h> /* BEA Tuxedo Syst...
	Listing 9-3 Testing for Transaction Timeout

	Suspending and Resuming a Transaction
	1. Temporarily suspend the current transaction by calling tpsuspend().
	2. Start a separate transaction. (In the preceding example, the server writes an entry to the eve...
	3. Commit the transaction started in step 2.
	4. Resume the original transaction by calling tpresume().
	Suspending a Transaction
	Table 9�2 tpsuspend() Function Arguments

	Resuming a Transaction
	Table 9�3 tpresume() Function Arguments

	Example: Suspending and Resuming a Transaction
	Listing 9-4 Suspending and Resuming a Transaction

	Terminating the Transaction
	Committing the Current Transaction
	Prerequisites for a Transaction Commit
	Two-phase Commit Protocol
	1. Each participating resource manager indicates a readiness to commit.
	2. The initiator of the transaction gives permission to commit to each participating resource man...
	Selecting Criteria for a Successful Commit
	Trade-offs Between Possible Commit Criteria

	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Figure 9�1 Connection Hierarchy in Transaction Mode
	1. A client (process A) initiates a connection in transaction mode by calling tpbegin() and tpcon...
	2. The client calls subsidiary services, which are executed.
	3. As each subordinate service completes, it sends a reply indicating success or failure (TPEV_SV...
	4. The client (process A) determines whether all subordinate services have returned successfully.

	Example: Testing for Participant Errors
	Listing 9-5 Testing for Participant Success or Failure
	001 #include <stdio.h> 002 #include "atmi.h" 003 004 main() 005 { 006 char *sbuf, *rbuf; 007 long...

	Implicitly Defining a Global Transaction
	Implicitly Defining a Transaction in a Service Routine

	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	Listing 9-6 Testing Transaction Level
	001 #define BEGFAIL 3 /* tpurcode setting for return if tpbegin fails */ 002 void 003 OPEN_ACCT(t...
	See Also

	10 Programming a Multithreaded and Multicontexted ATMI Application
	Support for Programming a Multithreaded/Multicontexted ATMI Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications
	See Also

	Planning and Designing a Multithreaded/Multicontexted ATMI Application
	What Are Multithreading and Multicontexting?
	What Is Multithreading?
	Figure 10�1 Sample Multithreaded Process
	Figure 10�2 Multiple Service Threads Dispatched in One Server Process

	What Is Multicontexting?
	Figure 10�3 Multicontexted Process in Two Domains

	Licensing a Multithreaded or Multicontexted Application
	See Also

	Advantages and Disadvantages of a Multithreaded/Multicontexted ATMI Application
	Advantages of a Multithreaded/Multicontexted ATMI Application
	Disadvantages of a Multithreaded/Multicontexted ATMI Application
	See Also

	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Client Threads Join Multiple Contexts
	Client Threads Switch to an Existing Context

	Work Phase
	Service Requests
	Replies to Service Requests
	Transactions
	Unsolicited Messages
	Userlog Maintains Thread-specific Information

	Completion Phase
	See Also

	How Multithreading and Multicontexting Work in an ATMI Server
	Start-up Phase
	Work Phase
	Server-dispatched Threads Are Used
	Application-created Threads Are Used
	Bulletin Board Liaison Verifies Sanity of System Processes
	System Keeps Statistics on Server Threads
	Userlog Maintains Thread-specific Information

	Completion Phase
	See Also

	Design Considerations for a Multithreaded and Multicontexted ATMI Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting?
	How Many Applications and Connections Do You Want?
	What Synchronization Issues Need to Be Addressed?
	Will You Need to Port Your Application?
	Which Threads Model Is Best for You?
	Interoperability Restrictions for Workstation Clients
	See Also

	Implementing a Multithreaded/ Multicontexted ATMI Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted ATMI Application
	Prerequisites for a Multithreaded ATMI Application
	General Multithreaded Programming Considerations
	Concurrency Considerations
	See Also

	Writing Code to Enable Multicontexting in an ATMI Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

	Implementing Security for a Multicontexted ATMI Client
	Synchronizing Threads Before an ATMI Client Termination
	Switching Contexts
	1. Set the TUXCONFIG environment variable to the value required by firstapp.
	2. Join the first application by calling tpinit() with the TPMULTICONTEXTS flag set.
	3. Obtain a handle to the current context by calling tpgetctxt(3c).
	4. Switch the value of the TUXCONFIG environment variable to the value required by the secondapp ...
	5. Join the second application by calling tpinit() with the TPMULTICONTEXTS flag set.
	6. Get a handle to the current context by calling tpgetctxt(3c).
	7. Beginning with the firstapp context, start toggling between contexts by calling tpsetctxt(3c).
	8. Call firstapp services.
	9. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp servi...
	10. Switch the client to the firstapp context (by calling tpsetctxt(3c)) and call firstapp services.
	11. Terminate the firstapp context by calling tpterm().
	12. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call secondapp serv...
	13. Terminate the secondapp context by calling tpterm().
	Listing 10-2 Sample Code for Switching Contexts in a Client
	#include <stdio.h> #include "atmi.h" /* BEA Tuxedo header file */ #if defined(__STDC__) || define...

	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted ATMI Application
	See Also

	Writing Code to Enable Multicontexting and Multithreading in an ATMI Server
	Context Attributes
	Coding Rules for a Multicontexted ATMI Server
	Initializing and Terminating ATMI Servers and Server Threads
	Table 10�1 Default Functions for Initialization and Termination

	Programming an ATMI Server to Create Threads
	Creating Threads
	Associating Threads with a Context
	1. Server-dispatched-thread_A gets a handle to the current context by calling tpgetctxt(3c).
	2. Server-dispatched-thread_A passes the handle returned by tpgetctxt(3c) to Application_thread_B.
	3. Application_thread_B associates itself with the current context by calling tpsetctxt(3c), spec...
	4. Application-created server threads cannot call tpreturn() or tpforward(). Before the originall...

	Sample Code for Creating an Application Thread in a Multicontexted ATMI Server
	Notes: In order to simplify the sample, error checking code is not included. Also, an example of ...
	Listing 10-3 Code Sample for Creating a Thread in a Multicontexted Server
	#include <pthread.h> #include <atmi.h> void *withdrawalthread(void *); struct sdata { TPCONTEXT_T...

	See Also

	Writing a Multithreaded ATMI Client
	Coding Rules for a Multithreaded ATMI Client
	Initializing an ATMI Client to Multiple Contexts
	Context State Changes for an ATMI Client Thread
	Figure 10�4 Multicontext State Transitions
	Table 10�2 Context State Changes for a Client Thread

	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-process Functions and Data Structures in a Multithreaded ATMI Client
	Using Per-thread Functions and Data Structures in a Multithreaded ATMI Client
	Sample Code for a Multithreaded ATMI Client
	Listing 10-4 Sample Code for a Multithreaded Client
	#include <stdio.h> #include <pthread.h> #include <atmi.h> TPINIT * tpinitbuf; int timeout=60; pth...
	pthread_create(&stockthreadid, NULL, stockthread, NULL); tpsetctxt(ctxt, 0); tpcall("WITHDRAWAL",...

	See Also

	Writing a Multithreaded ATMI Server
	Compiling Code for a Multithreaded/Multicontexted ATMI Application
	See Also

	Testing a Multithreaded/Multicontexted ATMI Application
	Testing Recommendations for a Multithreaded/Multicontexted ATMI Application
	Troubleshooting a Multithreaded/Multicontexted ATMI Application
	Improper Use of the TPMULTICONTEXTS Flag to tpinit()
	Calls to tpinit() Without TPMULTICONTEXTS
	Insufficient Thread Stack Size

	Error Handling for a Multithreaded/Multicontexted ATMI Application
	See Also

	11 Managing Errors
	System Errors
	Table 11�1 tperrno Error Categories

	Abort Errors
	BEA Tuxedo System Errors
	Call Descriptor Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	MIB Error
	No Entry Errors
	Table 11�2 No Entry Errors

	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Timeout Errors
	Transaction Errors
	Typed Buffer Errors
	Application Errors
	Handling Errors
	Listing 11-1 Handling Errors
	Listing 11-2 Handling Errors Using tpstrerrordetail()

	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Table 11�3 Transaction Errors

	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Timeouts
	Effect on the tpcommit() Function
	Effect on the TPNOTRAN Flag

	tpreturn() and tpforward() Functions
	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Figure 11�1 Transaction Roles of tpforward() and tpreturn() with AUTOTRAN

	Called Service That Starts a New Explicit Transaction

	BEA TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	Debugging Application Processes
	Debugging Application Processes on UNIX Platforms
	1. Set any desired breakpoints in the code.
	2. Enter the dbx command.
	3. At the dbx prompt (*), type the run subcommand (r) and any options you want to pass to the cli...

	Debugging Application Processes on Windows 2000 Platforms
	1. Run regedit or regedt32.
	2. Within the HKEY_LOCAL_MACHINE subtree, navigate to \SOFTWARE\Microsoft\Windows\CurrentVersion\...
	3. Double-click on the Debugger key to advance into the registry string editor.
	4. Modify the existing string to specify the debugger of your choice.

	Comprehensive Example
	Listing 11-3 ACCT Server
	001 #include <stdio.h> /* UNIX */ 002 #include <string.h> /* UNIX */ 003 #include <fml.h> /* BEA ...

