BEA Tuxedo

Using the CORBA
Notification Service

BEA Tuxedo 8.0
Document Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any el ectronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, ORMAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA elLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using the CORBA Notification Service

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y 0U NEed t0 KNMOWccecieieiie ettt X
E-0OCSWED SHB.. .ttt et e re e re s reeseesaean X
HOW tO Print the DOCUMENEccceuiieiiiriierieresiesisieses et s X
Related INfOrmation..........ccceiiiececc e e Xi
Lo g1 = ox A1 1S S Xi
Documentation CONVENLIONSc.oivrveriererieie ettt ettt s Xii
1. Overview
110 [F oo o SRS 1-1
FUNCLIONEl OVEIVIEW ...t st 1-2
Product COMPONENLSccviieiereeeereeeeeereetese e srestesaesse e seessesseseeeeneeseesenseeneas 1-4
2. CORBA Notification Service API Reference

(110 [F o 1o o SRS 2-1
QUAIILY Of SEIVICE....cuiieiceiciieesteeeee e srenen 2-2
Obtaining the Channel Factorycocccorerinini e 2-3
USING TraNSACIONS.coeiuerierieiiesiesie sttt ebe e ae et s seesbeee e 2-4
Structured Event Fields, Types, and Filters.........ccoovvevvvecevvceceescence e 2-5
DEeSIgNING EVENES......coiiiiiitiie ettt 2-7
Creating FML Field Table Filesfor EVents.........ccooveveieiennicecciene e 2-8
Interoperability with BEA Tuxedo Applications........ccccceevevvercereseenennns 2-10
Parameters Used When Creating SUbSCriptions..........ccoccveveneneneeiinenes 2-12
BEA SiImple EVENES AP ... e 2-17
TOBJ_SimpleEvents::Channel Interface........ccccevvveevnerievevennseseseennns 2-18
Channel i SUDSCIDE......cceeiecieee e s s 2-20
Channel:;UNSUDSCIDE........ccoiie e e 2-22

Using the CORBA Notification Service iii

iv

Channel::push_structured event.........cccocevereeereseceeseeee s 2-23

ChannEl i eXISIS ... e 2-24
TOBJ_SimpleEvents::Channel Factory Interface........cccoovvveveevcecnnnn, 2-25
Channel_Factory::find_channélcccccooeverevencecreeee e 2-26
CosNOtIfication SEVICE APooi it 2-27
Overview of Supported CosNotification Service Classes........ccccevevvevenne 2-27
Detailed Descriptions of CosNotification Service Classesoceveeenens 2-31
CosNotifyFilter::Filter::add_constraints.........c.cccoceeereneveseeneeceniene 2-32
CosNotifyFilter::Flter::destroy......c.ocoovivvierereceere e 2-34
CosNotifyFilter::FilterFactory::create filter........cccoooniininicniencnnne 2-35
CosNotifyChannel Admin:: StructuredProxyPushSupplier::
connect_structured _PuS_CONSUMEYcccorureerireerereeenenienaens 2-37
CosNotifyChannel Admin:: StructuredProxyPushSupplier::set_qos.. 2-39
CosNotifyChannel Admin:: StructuredProxyPushSupplier::add filter
2-41

CosNotifyChannel Admin:: StructuredProxyPushSupplier::get_filter2-43

CosNotifyChannel Admin:: StructuredProxyPushSupplier::
disconnect_structured push_SUPPIIENccceeevveeereriererereseeens 2-44

CosNotifyChannel Admin:: StructuredProxyPushSupplier::MyType 2-45
CosNotifyChannel Admin:: StructuredProxyPushConsumer::

connect_structured _push_ SUPPLier.......cocoeevereieie e 2-46
CosNotifyChannel Admin:: StructuredProxyPushConsumer::

PUSh_SEFUCEUred_EVENLcoveieeiieiireeeerieeeeeree s 2-47
CosNotifyChannel Admin:: StructuredProxyPushConsumer::

disconnect_structured_push_CONSUMEYcccoeeerereerereniennens 2-49

CosNotifyChannel Admin:: StructuredProxyPushConsumer::MyType....
2-50

CosNotifyChannel Admin::ConsumerAdmin::
obtain_notification_push_SUPPlEr........ccccooervirncneieneienenennne 2-51

CosNotifyChannel Admin::ConsumerAdmin::get_proxy_supplier... 2-53

CosNotifyChannel Admin::SupplierAdmin::

obtain_notification_push_CONSUMEYccccerereiererieereeieenenaens 2-55
CosNotifyChannel Admin::EventChannel::

ConsumerAdmin default_consumer_admincccccevereeenne 2-58
CosNotifyChannel Admin::EventChannel::

ConsumerAdmin default_supplier_admin...........cccccoceevnninnnne 2-59

Using the CORBA Noatification Service

CosNotifyChannel Admin::EventChannel::default_filter factory 2-60
CosNotifyChannel Admin::EventChannel Factory::get_event_channe

2-62
CosNotifyComm::StructuredPushConsumer::push_structured_event......

2-64

CosNotifyComm::StructuredPushConsumer::
disconnect_structured_push_CONSUMEYcccccverererereenienienes 2-65
CosNotifyComm:: StructuredPushConsumer::Offer_change............ 2-66
EXCeption MiNOr COOES.........ccierverieeereeeereseeestese st eeneenen 2-66
3. Using the BEA Simple Events API

DevelOPMENE PrOCESSccviiieiiiieeieree ettt sttt 31
DESIGNING EVENES.......eiiiiiiiieie et e st st eense e nneeneas 32
Step 1: Writing an Application to Post EVENES........ccccceeeereeereenesese e seeseeeenes 3-2
Getting the Event Channel ... 3-3
Creating and POSING EVENEScccvvereieiesee e 3-4
Step 2: Writing an Application to Subscribeto Events.........ccocovvevececcenecnnnne 3-6
Implementing the CosNotifyComm::StructuredPushConsumer Interface. 3-7
Getting the Event Chann€lcccoeveeneccece e 3-10
Creating a Callback ODJECEccccvveieereecee e 311
Creating @ SUDSCIIPLIONccuciiiiiee et e 312
Step 3: Compiling and Running Natification Service Applications............... 3-17
Generating the Client Stub and Skeleton Files........cccoevvvvevevenvveniineennns 3-17
Building and Running AppliCations...........ccoeuerineneienieeeeirescese s 3-18

4. Using the CosNotification Service API

DeVElOPMENT PrOCESSccviiieiereeiereeseeseeeeeteseeaesteste s aesteseeseen e see e enaeseeessesneas 4-1
DESIgNING EVENES.......couiiiiiieie ettt s 4-2
Step 1: Writing an Application to PoSt EVENES........cccooeeereneriene e 4-2
Getting the Event Chann€lcccveveeereccce e 4-3
Creating and POStiNG EVENEScooiiiriiiiiee e 4-4
Step 2: Writing an Application to Subscribe to Events..........ocooveeccienenenne 4-7

Implementing the CosNotifyComm::StructuredPushConsumer Interface. 4-8
Getting the Event Channel, ConsumerAdmin Object, and Filter Factory

Using the CORBA Notification Service %

Creating @ SUDSCIIPLIONc.vecveiereeee e re s 4-16

Step 3: Compiling and Running Notification Service Applications................ 4-19
Generating the Client Stub and Skeleton Files.........ccccoovveevvvercecccennn, 4-20
Compiling and Linking the Application Code.........cccceevvevvrericeeecnnne, 4-21

5. Building the Introductory Sample Application

OVEIVIBIW ..ttt sttt sttt sttt b e s b e e bbbt b e bt e nbenenbe e 51
Building and Running the Introductory Sample Application...........cccceevvevneene. 5-4
Verifying the Settings of the Environment Variables............cccccoveeninenn. 55
Copying the Files for the Introductory Sample Application into a Work
1 (= (o Y2 5-6
Changing the Protection Attribute on the Files for the Introductory Sample
N o] o 107 1 o] o [5-10
Setting Up the ENVIFONMENTooveiiiiiieeee e 5-11
Building the Introductory Sample Applicationccocccevveveerecencesecennnn 5-11
Starting the Introductory Sample Application..........ccccoevveevvvereeeecicennnn, 5-12
Using the Introductory Sample Application..........ccccooevereiereieenenieniennens 5-13
Shutting Down the System and Cleaning Up the Directory.................... 5-15

6. Building the Advanced Sample Application

OVEIVIBI ..ttt ettt ettt bt ae bt bbb e e e st e e e be et eneeseebesaesbesbenbesaens 6-1
Building and Running the Advanced Sample Application..........c.ccccceeereriennene 6-6
Verifying the Settings of the Environment Variables........cccccccveevvvrevrnnnen. 6-7
Copying the Files for the Advanced Sample Application into a Work
D1 £= w0 Y OSSR 6-9
Changing the Protection Attribute on the Files for the Advanced Sample
APPIICALTON ...t 6-13
Setting Up the ENVIFONMENTcccecveieieecesecc e 6-14
Building the Advanced Sample Application.........ccceoierienenenenieneeneeens 6-14
Starting the Advanced Sample Applicationccccooveerineneieneeneene 6-15
Using the Advanced Sample AppliCation..........cccceevvieverererereeresieneeneens 6-17
Shutting Down the System and Cleaning Up the Directory..................... 6-20
7. CORBA Notification Service Administration
INEFOTUCTION ...t 22
Configuring the Notification SErviCecovevvreeeereie e 22

Using the CORBA Noatification Service

Configuring Data FiItErS.......ccocviiiiice e 23

Setting the HOSt @Nd POt ..o e 25
Creating aTranSaCtioN LOQcoviereerieiesiereeee e se st se e eneene s 27
Creating EVENt QUEUES.........cviuerieriereesieeeesiseesestesesse e ste e see e eese e enesnesnesressesns 27
Determining Space Parameters for Transient and Persistent Subscriptions 28
Creating a Device on Disk for the Queue Space...........ccoeevvvervveerivreceennn, 31
Configuring @ QUEUE SPACE........ccuruereruirierieriesiesiesie e see e see e 31
Creating the QUEBUEScueue ettt st 32
Setting |PC Parameters on Microsoft Windowsccccceeeeeveeeeneseneeneene 34
Creating the UBBCONFIG File and the TUXCONFIG File.......cccooveeieeininenae 37
Managing the NOotifiCation SErVICe.........c.coiriiiii e e 43
Synchronizing DataDaSesSccuecveeerereere e 44
Purging the System of Dead SUDSCHPLIONS.......cceoeeerieeeeere e a4
Monitoring Queue ULIliZationccoovireiennieeeeese e 45
Purging the Queues of Unwanted EVENES...........ccoevveveneveenineeieeeseseseneens 46
Managing the Error QUELE...........courieieeeeiere et e esre e 46
Notification Service Administration Utility and Commands............ccceeveeeenne. 47
NESAAMIN ULHITY ..o s 47
L1520 [0 011 o OSSR 48
NESAAMIN COMMEANGS........uiieiiiieeee ettt s 49
Using the ntsadmin ULHITYccooveveririeie e 52
NOEIFICALION SEIVEIS......eiiitiierie ettt st 54
TIMINT S bbb bbb 55
TMNTSFWD _T ot e en 56
TMNTSFWD_P...ciitteerete ettt 57
Index

Using the CORBA Notification Service Vii

Viii Using the CORBA Noatification Service

About This Document

This document describes using the CORBA Notification Servicein the BEA Tuxedo®
product. This document defines concepts associated with using the Notification
Service and describes the development process for CORBA applications. In addition,
instructions for building and running the Notification sample applications and
descriptions of the Notification Service application programming interface (API) and
administrative tasks and tools are included in this document.

This document includes the following topics:

4 Chapter 1, “Overview,” provides a basic description of the Notification Service
and its components.

¢ Chapter 2, “CORBA Noatification Service APl Reference,” describes the
application programming interfaces supported by the Notification Service
software.

¢ Chapter 3, “Using the BEA Simple Events API,” describes how to develop
Notification Service applications using the BEA Simple Events API in C++ and
Java.

4 Chapter 4, “Using the CosNatification Service API,” describes how to develop
Notification Service applications using the CosNoatification APl in C++ and
Java.

¢ Chapter 5, “Building the Introductory Sample Application,” provides an
overview of the Introductory sample application and describes how to build and
run it.

¢ Chapter 6, “Building the Advanced Sample Application,” provides an overview
of the Advanced sample application and describes how to build and run it.

4 Chapter 7, “CORBA Natification Service Administration,” describesthe
administrative tasks and tools provided with the Notification Service software.

Using the CORBA Notification Service iX

What You Need to Know

This document isintended for system administrators and programmers who design,
develop, configure, and manage Notification Service applications.

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefileat atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

X Using the CORBA Noatification Service

How to Print the Document

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, seethe BEA Tuxedo CORBA Bibliography
in the BEA Tuxedo online documentation.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
m Your hame, e-mail address, phone humber, and fax number

®m Your company name and company address

®m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Using the CORBA Notification Service Xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneoudly.

italics Indicates emphasis or book titles.

nonospace Indicates code samples, commands and their options, data structures and

t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:

#i nclude <iostreamh> void main () the pointer psz
chnod u+w *

\'t ux\ dat a\ ap

. doc

t ux. doc

Bl TMVAP

fl oat

nonospace Identifies significant words in code.

bol df ace Example:
t ext . .

void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .

String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:

LPT1

SIGNON

OR

Xii Using the CORBA Noatification Service

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin asyntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin asyntax line. The brackets themselves should
never be typed.

Example:

buil dobjclient [-v] [-0 nanme] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name] [-f file-list]...
[-] file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsisitself should never be typed.

Using the CORBA Notification Service Xiii

Xiv Using the CORBA Noatification Service

CHAPTER

1 overview

This topic includes the following sections:
m Introduction
m Functional Overview

m Product Components

Introduction

The Notification Service provides an event service for the BEA Tuxedo CORBA
environment. It is not meant to be a standalone product, but rather alayered product
on BEA Tuxedo.

The Notification Service offers similar capabilities to those of the BEA Tuxedo
EventBroker, but with a programming model and interface that is natural for CORBA
users. A side effect of this approach is that the majority of the CORBA-based
Notification Service is not supported sinceit is either incompatible with, or provides
capabilities well beyond that of the BEA Tuxedo EventBroker.

The Notification Serviceis a BEA Tuxedo subsystem that receives event posting
messages, filtersthem, and distributes them to subscribers. A poster isa BEA Tuxedo
CORBA application that detects when an event of interest has occurred and reports
(posts) it to the Notification Service. A subscriber isa BEA Tuxedo CORBA
application that requests that some notification action be taken when an event of
interest is posted.

Using the CORBA Notification Service 1-1

1 overview

The concept of an “anonymous” service—the Notification Service—that receives and
distributes messages provides another client-server communication paradigm to BEA
Tuxedo CORBA environment. Instead of a one-to-one relationship between a
requester and a provider, an arbitrary number of posters can post a message for an
arbitrary number of subscribers. The posters simply post events, without knowing who
receivestheinformation or what isdone about it. The subscribers can receive whatever
information they areinterested in from the Notification Service, without knowing who
posted it, and subscribers can be notified and take action in a variety of ways.

Typically, Notification Service applications are designed to handle exception events.
The application designer has to decide what eventsin the application need to be
monitored. In a banking application, for example, an event might be posted for an
unusually large withdrawal transaction; but it would not be particularly useful to post
an event for every withdrawal transaction. And not all users would need to subscribe
to that event; perhaps just the branch manager, would need to be notified.

The programming model for the Notification Service is based on the CORBA
programming model. There are two sets of interfaces: oneisaminimal subset of the
CORBA-based Notification Service interface (referred to in this document as the
CosNatification Service interface), and the other isthe BEA Simple Eventsinterface
(aBEA proprietary interface) designed to be easy to use. Both interfaces pass standard,
structured events, as defined by the CORBA -based Notification Service specification.

The two interfaces are compatible with each other; that is, events posted using the
CosNoatification Service interface can be subscribed to by the BEA Simple Events
interface and vice versa.

Functional Overview

The Notification Service system comprises three basic components (see Figure 1-1):

m The event poster, or supplier.

The supplier is the producer of events. It creates events and posts them to the
Notification Service.

m The Notification Service, also known as the event channel.

The Notification Service processes events.

1-2 Using the CORBA Noatification Service

Functional Overview

m The event subscriber, or consumer.

The consumer is the recipient of the events. It connects to the Natification
Service and subscribes to some set of events.

When the Notification Service receives an event that matches a consumer’s
subscription, it attemptsto deliver the event to that consumer. There can be many
suppliers and consumers. Logically, there is only one Notification Service, even
though the Notification Service can be replicated.

Figure1-1 Notification Service Model

Subscribe Event

Notification Subscriber
Service ’

According to the CORBA-based Notification Service specification, event posters
always use the push model. Thus, event posters push eventsto the Notification Service
by invoking an operation. The Notification Service takes responsihility for filtering
and delivering the event. There is no direct association between event posters and
event subscribers. At any point in time there may be zero, one, or many event posters
or event subscribers.

Event
Poster .‘ push

Also, according to the CORBA-based Notification Service specification, subscribers
can select one of two event delivery models, push or pull. Only the push model is
supported in thisrelease of BEA Tuxedo. Thus, the Notification Service pushes events
to the consumer by invoking an operation on the consumer. Depending on the Quality
of Service (QoS) of the matching subscription, the event might be stored durably,
pending delivery to the consumer.

Using the CORBA Notification Service 1-3

1 overview

Product Components

The BEA Tuxedo CORBA Noatification Service supports the following:
m A BEA Simple Events application programming interface (API) for ease-of-use.
m A minimal set of operations defined by the CosNatification Service API.

m Two Qualities of Service (QoS) for subscriptions: transient and persistent.

For transient subscriptions, the Notification Service makes only one attempt to
deliver the event to a subscriber. If that attempt fails, the event is discarded and
if the Notification Service determines that the subscriber is shutdown or
otherwise not available, the subscription is cancelled.

For persistent subscriptions, if the first delivery attempt fails, the Notification
Service holds the event and keeps attempting to deliver the subscription until the
configurable retry limit is reached. After the retry limit is reached, the
Notification Service moves the event to an error queue, whereit is held for
disposition by the system administrator. The system administrator either removes
the event from the error queue, which in effect discards it, or moves it back to
the pending queue so that further attempts to deliver it can be made.

m Using the UBBCONFI Gfile for initial configuration of the system, event queues,
and server processes.

m Using the BEA Tuxedo style FML field tables. Through the use of FML field
tables, the Notification Service can support:

e Event datafiltering between event posters and event subscribers.

e Interoperability with BEA Tuxedo EventBroker such that events posted by
the Natification Service can be consumed by the Tuxedo EventBroker and
viceversa

m Using the following BEA Tuxedo Notification Service serversto process events:
e TMNTS
e TMNTSFWD_P
e TMNTSFWD_T

m Using the following BEA Tuxedo system servers to process events:

1-4 Using the CORBA Noatification Service

Product Components

e TMSYSEVT
e TMUSREVT
e TMQUEUE
e TMQFORWARD

Using the BEA Tuxedo nt sadmi n administrative utility to manage event queues.

Using the BEA Tuxedo gmadni n administrative utility to configure and manage
event queues.

Using the BEA Tuxedo t madni n administrative utility to configure and manage
transaction logs.

Using the CORBA Notification Service 1-5

1 overview

1-6 Using the CORBA Noatification Service

CHAPTER

2 CORBA Notification
Service APl Reference

This topic includes the following sections:
m [ntroduction

m BEA Simple Events AP

m CosNotification Service AP

Introduction

The BEA Tuxedo CORBA Notification Service supports two application
programming interfaces. Oneis based on the CORBA-based Notification Service as
defined by the CORBAser vices: Common Object Services Specification. Thisinterface
isreferred to in this document as the CosNotification Service interface. The other
interface, called the BEA Simple Eventsinterface, isa BEA proprietary interface
designed as an easier to use alternative.

Both interfaces pass structured events as defined by the CORBA-based Notification
Service specification and are compatible with each other; that is, events posted using
the CosNotification Service interface can be subscribed to by the BEA Simple Events
interface and vice versa

Before using the Notification Service APIs, consider the following topics:

m Quality of Service

Using the CORBA Notification Service 2-1

2

CORBA Notification Service API Reference

m Obtaining the Channel Factory

m Using Transactions

m Structured Event Fields, Types, and Filters
m Creating FML Field Table Filesfor Events

m |nteroperability with BEA Tuxedo Applications

Quality of Service

To determine the persistence of the subscription and whether or not events delivery is
retried following afailed delivery, subscribers specify a Quality of Service (Qo0S).
There are two Quality of Service settings: persistent and transient Quality of Service
(Q0S). The QoS is a property of the subscription.

Persistent Subscriptions

2-2

Persistent subscriptions provide strong guarantees about event delivery and the
permanence of the subscription. Persistent subscriptions do comewith acost, however,
asthey consume more system resources (for example, disk space, CPU cycles, and so
on), and require more administration (such as managing queues and detecting dead
subscribers).

Persistent subscriptions exhibit the following properties:

m The subscription isin effect until an unsubscribe operation is performed. This
means that a subscriber application can be shut down and its subscription can
still be active. In this case, events are stored for the subscriber and, when the
subscriber restarts, are delivered to the subscriber without it having to recreate
the subscription.

m |f an event cannot be delivered, event delivery isretried until the administrative
retry limit is exceeded.When the event retry limit has been exceeded, the event
is moved from the pending queue to an error queue. An administrator can move
events from the error queue back to the pending queue, where delivery attempts
will restart.

Using the CORBA Noatification Service

Introduction

m |f an event is successfully delivered to a subscriber, but the Notification Service
for some reason does not receive the “successful delivery” return message, the
Notification Service may deliver the same event more than once.

Transient Subscriptions

Transient subscriptions provide the best performance with the least overhead and
exhibit the following properties:

m One attempt is made to deliver the event to each matching subscription. If that
attempt fails, the event islost.

The subscriptionisin effect until afailed event delivery is detected. On detection of a
failed delivery, the subscription is terminated. Normally, the Natification Service, for
performance reasons, does not check whether it successfully delivered an event to a
transient subscriber. However, occasionally, when the Notification Service deliversan
event to atransient subscriber, it checks whether or not the event was successfully
delivered. If it was not successfully delivered and the CORBA: : TRANSI ENT exception
is not returned, the Notification Service assumes that the subscription has gone away
and cancels the subscription. If the Notification Service receives the

CORBA: : TRANSI ENT exception when an attempt to deliver fails, it assumes that the
subscriber is busy and discards the event, but it does not cancel the subscription.

The automatic cancellation of dead transient subscriptions provides a cleanup
mechanism for transi ent subscribersthat forget to unsubscribe. Note, however, that the
Notification Service checksfor successful delivery thefirst timeit sendsan eventto a
subscriber, but does not perform it again until five minutes have elapsed and it delivers
another event. Therefore, theinterval between checksis at least five minutes, but will
belonger if thereis no event to deliver when five minutes have elapsed. The minimum
interval of five minutesis fixed and cannot be changed. Therefore, event delivery
failureisnot necessarily detected on thefirst failed delivery attempt. It isonly detected
when the Notification Service checks.

Obtaining the Channel Factory

The Channel Factory is used by event poster applications and subscriber applications
to find the event channel. The event channel is then used to post events and to
subscribe, or create subscriptions, and unsubscribe, or cancel subscriptions.

Using the CORBA Notification Service 2-3

2

CORBA Notification Service API Reference

Notification Service applications use the Bootstrap object to obtain an object reference
to the event channel factory. Thisis done by using the

Tobj _Boot strap: :resol ve_initial _references operation. The Bootstrap
object supports two service IDs for Notification Service applications,

Not i fi cati onServi ce and Tobj _Si npl eEvent sServi ce. The

Noti fi cati onServi ce object isused in applications that use the CosNatification
Service API. TheTobj _Si npl eEvent sSer vi ce object isused in applicationsthat use
the BEA SimpleEvents API.

ServicelD

Object Type

Noti fi cati onService CosNot i f yChannel Adni n: : Event Channel Fact ory

Tobj _Si npl eEvent sServi ce Tobj _Si npl eEvent s: : Channel Factory

Note: Release 8.0 of BEA Tuxedo CORBA continues to include the BEA client
environmental objects provided in previous releases of BEA WebL ogic
Enterprise for use with the Tuxedo 8.0 CORBA clients. BEA Tuxedo 8.0
clients should continue to use these environmental objects to resolve initial
references bootstrapping, security and transaction objects. In release 8.0 of
BEA Tuxedo CORBA, support has been added for using the OMG
Interoperable Naming Service (INS) to resolveinitial referencesto
bootstrapping, security, and transaction objects. For information on INS, see
the CORBA Programming Reference.

Using Transactions

2-4

The behavior regarding transactions is the same for the BEA SimpleEvents APl and
the CosNotification Service API. The only operation that supports transactional
behavior is push_st ruct ur ed_event , which is supported by the

CosNot i f yChannel Admi n: : Struct ur edPr oxyPushConsumer and

Tobj _Si npl eEvent s: : Channel interfaces. All other operations can be used in the
context of atransaction, but work the same regardless of whether they are executed in
atransaction or not.

The behavior when posting an event is tied to the QoS of the subscription. If an event
isposted in the context of atransaction, and the event delivery QoS of the subscription
is persistent, the delivery will be affected by the outcome of the transaction; that is, if

Using the CORBA Noatification Service

Introduction

the transaction is committed, the Notification Service attempts to deliver the event to
subscribersasit normally would. If thetransactionisrolled back, then the Notification
Service does not attempt to deliver the event.

If an event is posted in the context of atransaction, and the event delivery QoS of the
subscriber’ s subscription is transient, one attempt will be made to deliver the event,
regardless of the transaction outcome. That is, the transaction has no effect on whether
the event is delivered or not, and one attempt will be made to deliver the event.

Note: Thereisno transaction context associated with event delivery. However, inthe
case of persistent subscriptions, once the poster’ s transaction commits, the
Notification Service guarantees that the event will be delivered to the
subscriber or put on the error queue to await administrative action.

Structured Event Fields, Types, and Filters

All eventsthat are either pushed by postersto the Notification Service, or delivered to
subscribers, are COS Structured Events; that is, they conform to the definition of
Structured Events as specified by the CORBA -based Notification Service—a service
which extendsthe CORBA services Event Service (see Figure 2-1). If theeventsareto
be filtered based on content (versus filtering on domain and type), or if the events are
going to be subscribed to by BEA Tuxedo applications, then additional restrictions
apply. Therestrictions apply to datatypes and filtering based on event content. These
restrictions are explained below.

Using the CORBA Notification Service 2-5

2

CORBA Notification Service API Reference

2-6

Figure2-1 Structured Event

domain_name

type_name Fixed Header
Event Header — event_name
priority 1-100 Variable Header
name value
name value .
—— Filterable Body
Event Body — Fields
name value
remainder_of_body Remaining Body

m The Fixed Header section consists of three fields that can be used when you

create structured events: fixed_header.event_type.domain_name and
fixed_header.event_type.type name, and fixed _header.event_type.event_name.
When an event is posted all three of the these fields are passed in the
Notification Service. However, when subscriptions are created, only the first two
fields, domain_name and type _name, are used to filter events. These fields are
defined in the subscription as regular expressions. The event_name field cannot
be used in subscriptions.

The Variable Header consists of asingle name/value (NV) pair, namely Priority.
Priority can take avalue in the range 1-100 (versus arange of —32767 to 32767
as specified in CORBA Noatification Service specification). Priority is used
internally to the system to prioritize the processing of events. The highest
priority is 100. There is no guarantee that higher priority eventswill, in fact, be
given priority over lower priority events. The support provided for the Variable
Header differs from that specified in the CORBA Natification Service
specification in two ways: first, thereis asingle field supported (Priority) versus
the five fields listed in the specification; and second, user-defined fields are
supported, but no action is taken in response to their content. The user-defined
fields are merely passed through.

The Filterable Body consists of zero or more NV pairs. The values in these pairs
are limited to the following types: any, | ong, unsi gned | ong, short,

unsi gned short, octet, char, fl oat, doubl e, stri ng, bool ean, voi d, and
nul | . Thesefields can be used in filter expressions.

Using the CORBA Noatification Service

Introduction

m The Remaining Body consists of asingle ANY. The valueis limited to the
following types: any, | ong, unsi gned | ong, short, unsi gned short, Octet,
char, fl oat, doubl e, st ri ng, bool ean, voi d, and nul | . Thisfield cannot be
used in afilter expression.

Designing Events

The design of eventsisbasic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service as well. Therefore, careful
planning should be done to ensure that your Notification Service will be ableto handle
your needs now and allow for future growth.

The Notification Service supports five levels of event design: (1) domain name, (2)
type name, (3) priority, (4) filterable data, and (5) remainder of body. When designing
an event, you must specify adomain name and atype name; priority and filterable data
are optional. The domain name you choose can relate to your business. Hospitals, for
example, arein the health care business, so for aNotification Service application for a
hospital you might choose “HEALTHCARE” as a domain name. Y ou might want to
categorize the events by the type of insurance provider, so you may choose“HMO” or
“UNINSURED” asthe type name. Y ou may want to further define the events by the
entity responsible for payment, so you might choose to use the filterable data to
identify the entity as“billing” for a specific “HMO_Account” or a specific or
“Patient_Account.” Listing 2-1 shows an example of thistype of event design.

Listing 2-1 Event Design

domai n_nane = “HEALTHCARE”
type_nane = “HMOD
#Fi | terabl e data nane/val ue pairs.

filterabl e_data.name = “billing”
filterabl e_data.val ue = 4498
filterabl e_data.name = “patient_account”

filterabl e_data.value = 37621

Using the CORBA Notification Service 2-7

2

CORBA Notification Service API Reference

Obvioudly, the more specific and precise you arein designing the events that you want
your Notification Service application to post and receive, the fewer will be the events
the Natification Service will have to process. This has a direct impact on system
resources and configuration requirements. Therefore, alot of thought should be given
to event design.

Creating FML Field Table Files for Events

2-8

Y ou must create Field Manipulation Language (FML) field tablefiles for events only
if one of the following capabilitiesis required; otherwise FML tables are not required.

m Event datafiltering (in addition to domain and type fields) between BEA Tuxedo
event posters and subscribers

m Interoperability between the BEA Tuxedo Notification Service and the BEA
Tuxedo EventBroker

A structured event’sf i | t er abl e_dat a field containsalist of name/value (NV) pairs.
An event’sdataistypically stored in thislist. The field namesin the FML field table
files must match the name in the structured event. The field type can be any alowable
FML type (I ong, short, doubl e, fl oat , char, string) except carray. Thevalue
in the structured event must be the same type as defined in the field table. Table 2-1
showsthe CORBA Any Types supported by BEA Tuxedo, and which ones can be used
for datafiltering and BEA Tuxedo interoperability.

Table 2-1 Supported CORBA Any Types

CORBA Any Supported for Data Filtering and Tuxedo I nteroperability
Types

short Yes
| ong Yes
unsi gned No
short

unsi gned No
| ong

fl oat Yes

Using the CORBA Noatification Service

Introduction

Table 2-1 Supported CORBA Any Types (Continued)

CORBA Any Supported for Data Filtering and Tuxedo Interoper ability
Types

doubl e Yes
char Yes
bool ean No
octet No
string Yes
voi d No
nul | No
any No

Listing 2-2 shows an example of an FML field tablefile. The *base 2000 is the base
number for the fields. Thefirst entry hasafield name of bi | I i ng, afield number of 1
relative to the base, and afield type of | ong.

Using the CORBA Notification Service 2-9

2

CORBA Notification Service API Reference

Listing 2-2 DataFiltering FML Field TableFile

*pbase 2000

#Fi el d Nane Field # Field Type Fl ags Conment s
Hewmmmmemeae | meeeene ememmmmess eememe mmmemea-
billing 1 | ong - -

st ock_nane 2 string - -
price_per_share 3 doubl e - -
nunber _of _shares 5 | ong - -

The following guidelines and restrictions apply to BEA Tuxedo FML field table files:
m The FML filename cannot exceed 15 charactersin length.

m Because BEA Tuxedo uses FML32, the base number plus the field number is
restricted to be between 101 and 33,554,431, inclusive.

m When FML isused with other software that also uses fields, additional
restrictions may be imposed on field numbers.

For information on how to create and configure FML field tablefiles, see
fiel d_t abl es inthe BEA Tuxedo Command Reference and the Programming BEA
Tuxedo ATMI Applications Using FML.

Interoperability with BEA Tuxedo Applications

2-10

Applicationsthat usethe BEA Tuxedo CORBA Notification Service areinteroperable
with BEA Tuxedo applicationsthat use the BEA Tuxedo EventBroker. An application
using the BEA Tuxedo Noatification Service can post eventsthat are delivered to BEA
Tuxedo EventBroker subscribers, and can receive events that have been posted by
BEA Tuxedo EventBroker.

To achieve this interoperability, it is necessary to understand the mapping between
CosNotification Structured Events and the BEA Tuxedo FML buffer so that the
contents of the FML field tables can be coordinated by BEA Tuxedo. There are two
cases to consider: posting events that are to be received by BEA Tuxedo applications
viaBEA Tuxedo EventBroker; and receiving events that have been posted to the
Notification Service Event Channel by BEA Tuxedo applications.

Using the CORBA Noatification Service

Introduction

Posting Events

For a BEA Tuxedo application to subscribe to events posted by a BEA Tuxedo
application, you must understand how a BEA Tuxedo structured event is mapped to
FML 32 and the event name at posting time. The mapping is as follows:

m The domain_name and type_name are assembled into a string in the form
domai n_nane. t ype_name to form the event name. Thisisthe event name
(eventname parameter) used on thet ppost operation.

m Each namelvalue (NV) pair in the Filterable Body and the variable header
portion of the structured event is mapped to an FML32 field of the same name if
thefield isalso defined in FML. If you set the domain to “ TMEVT”, then the
event name eguals the type name.

Receiving Events

BEA Tuxedo system events and user events can be received by BEA Tuxedo
applications. System events are generated by the BEA Tuxedo system—not by
applications. User events are generated by BEA Tuxedo applications. For alisting of
System events see EVENTS in the BEA Tuxedo Command Reference. System eventsand
user events are mapped in CosNotification Structured Events as follows:

Structured Event Fields

Value

domai n_nane

Always set to “ TVMEVT”

type_nane Empty string
event _nane Empty string
Variable Header (Priority) Empty sequence

Filterable Body Fields

Same as FML field name

Note: Filterable body fields consist of nhame/value pair,
where the name portion is the same asthe FML

field name.

Remainder of Body

Always set to void

Using the CORBA Notification Service — 2-11

2

CORBA Notification Service API Reference

The BEA Tuxedo system detects and posts certain predefined eventsrelated to system
warnings and failures. For example, system-generated events report on configuration
changes, state changes, connection failures, and machine partitioning.

In order for aBEA Tuxedo application to receive events posted by a BEA Tuxedo
application, it is necessary to understand how aFML buffer containing aBEA Tuxedo
event is used to fabricate a BEA Tuxedo structured event. It is also necessary to know
how the domai n_nare andt ype_nane arerelated to the BEA Tuxedo event name.
There are two cases to consider: system events and user events.

Note that BEA Tuxedo uses aleading dot (".") in the event name to distinguish
system-generated events from application-defined events. An example of a system
event is. SysNet wor kDr opped. An example of auser event isevent sdr opped. TO
subscribe to these events, the Notification Service subscriber application must define
the subscription as follows:

m System event

domain_name =" TMEVT”
type_name=". SysNet wor kDr opped”

m User event

domain_name =" TMEVT”
type_name="event sdr opped”

When the events are received, the Notification Service subscriber application
parses each event as follows:

domain_name=" TMEVT”"

type_name=""

event_name=""

variable_header=empty
Filterable_data=(content of the FML buffer)

Parameters Used When Creating Subscriptions

2-12

When you create subscriptions, you can specify the following parameters. These
parameters support the BEA Simple Events APl and the CosNotification Service API.

Using the CORBA Noatification Service

Introduction

subscri pti on_nane

Specifies a name that identifies the subscription to the Notification Service
and the subscriber. Applications should use names that are meaningful to a
system administrator since thisis the primary way that an administrator
associates an application with asubscription and the eventsthat are delivered
to the subscriber via the subscription. This parameter is optiona (that is, an
empty string can be passed in). More than one subscription can use the same
name.

Thesubscri pti on_name must not exceed 128 charactersin length.

domai n_type

Same parameter as the domai n_t ype field in the Fixed Header portion of a
structured event, as defined by the CORBA -based Notification Service
specification. Thisfield isastring that is used to identify a particular vertical
industry domain in which the event type is defined, for example,
“Telecommunications’, “Finance”, and “Health Care”. Because this
parameter is aregular expression, you can also useit to set domain patterns
on which to filter. For example, to subscribe to all domains that begin with
the letter F, set the domain to“ F. * . For information on how to construct
regular expressions, see ther econp command in the BEA Tuxedo ATMI C
Function Reference.

type_name

data_fi

Same parameter asthet ype_nane field in the Fixed Header portion of a
structure event, as defined in the CORBA-based Notification Service
specification. It isastring that categorizes the type of event, uniquely within
the domain, for example, Comm_alarm, StockQuote, and VitalSigns.
Because this parameter isaregular expression, you can also useit to set event
type patterns on which to filter. For example, to subscribe to all event types
that begin with the letter F, you would set thetypeto“ F. *” . For information
on how to construct regular expressions, seether econp command in the BEA
Tuxedo ATMI C Function Reference.

Iter

Specifies the values of the fields of filterable data and variable headers on
which you want to filter. For example, a subscription to news stories may
have adomain of “News’, atype of “Sports’, and adata filter of “Scores >
20".

This parameter defines the data that the subscription must match in Boolean
expressions. The following data types are supported: short, | ong, char,

Using the CORBA Notification Service ~ 2-13

2

CORBA Notification Service API Reference

fl oat, doubl e, and st ri ng. Table 2-2 lists the Boolean expression

operators that are supported.

Table 2-2 Boolean Expression Operators

Expression

Operators

unary

.0~

multiplicative

* 1, %

additive

+ -

relationa

<,> <=, >z == I=

equality and matching

==, 1=, %%, 1%

exclusive OR

AN

logical AND &&

logica OR II

To use datafiltering, you must set up an FML table, includefiltersin the subscription,
filter the data, and post the event. Listing 2-3 shows an example of these tasks.

2-14 Using the CORBA Notification Service

Introduction

Listing 2-3 Data Filtering Requirements

//Setting up the FML Tabl e

Field table file.

*base 2000

*Fi el d Nanme Field # Field Type FI ags Coment s

St ockNarre 1 string - -
Pri cePer Shar e 2 doubl e - -
Custonerld 3 | ong - -
Cust onmer Nanme 4 string - -

/] Subscription data filtering.

1) "Nunber Of Shares > 100 && Nunber Of Shares < 1000"
2) "Custonerld == 3241234"

3) "PricePerShare > 125. 00"

4) "StockNane == 'BEAS "
5) "CustonerName %6’ .*Jones.*’" // CustomerNane contains "Jones"
6) "StockNane == ' BEAS && PricePerShare > 150. 00"

/1 Posting the event.
/] C++
CosNotification::StructuredEvent ev;

ev.filterabl e_data[O0].name = CORBA: : string_dup("StockNane");
ev.filterabl e_data[0].val ue <<= "BEAS";

ev.filterabl e_datal1].name = CORBA: : string_dup("PricePerShare");
ev.filterabl e_data[1].val ue <<= CORBA:: Doubl e(175. 00);
ev.filterabl e_datal2].name = CORBA: :string_dup("Custonerld");
ev.filterabl e_data[?2].value <<= CORBA:: Long(1234567);

ev.filterabl e_data[3].name = CORBA: : string_dup("Customer Nane");

ev.filterabl e_data[3].value <<= "Jane Jones";

/1 Java
StructuredEvent ev;

ev.filterable_data[0].nanme = "StockNane";
ev.filterabl e _data[O0].value.insert_string("BEAS");
ev.filterabl e_data[1].name = "PricePerShare";
ev.filterabl e_data[1].value.insert_doubl e(175.00);
ev.filterable_data[?2].name = "Custonerld";
ev.filterabl e _data[?2].value.insert_|long(1234567);
ev.filterabl e_data[3].name = "CustonerNane";

ev.filterabl e _data[3].value.insert_string("Jane Jones");

Using the CORBA Notification Service ~ 2-15

2 CORBA Notification Service API Reference

For more information about filter grammar, see “Creating FML Field Table
Filesfor Events’ on page 2-8 and the section “ Boolean Expression of fielded
Buffers” in Programming BEA Tuxedo ATMI Applications Using FML.

push_consuner

Identifies the callback object that will be used by the Notification Service to
deliver a structured event. Subscriber applications must implement the
CosNotifyComm:: StructuredPushConsumer interface so that the Notification
Service can call it to deliver events.

Note: Y ou can useeither transient or persistent object referencesfor the callback

objects. Both QoS and application run times should be taken into
consideration when deciding which type of object reference to use. For
information to assist you in deciding which type of object referenceto use,
refer to Table 2-3.

Table 2-3 When to Use Transient Ver sus Persistent Object Referencesfor Joint Client/Servers

If the subscription ...

Then ...

Will have atransient QoS
and will start and shut
down once.

Y ou should use atransient object reference. It this case, BEA Systems, Inc.
recommends the subscriber application unsubscribe on shutdown so as to release
system resources, however, thisis not a requirement.

Will have a persistent QoS
and will start and shut
down once.

Y ou should use atransient object reference.

Will have a persistent Qos
and will start and shut
down multiple times.

Y ou must use a persistent object reference and store the host and port so the same
host and port is used each time the subscriber shuts down and restarts. In this case,
use of the bhidirectional 11OP feature is not recommended.

Note: If ajoint client/server is used, it must be remote (outside the BEA Tuxedo
domain) because persistent object references are not supported inside the
domain.

Will have atransient QoS
and will start and shut
down multiple times.

You can use apersistent object reference; however, BEA Systems, Inc. does not
recommend this configuration unless you can guarantee that no events for this
subscriber will be posted while the subscriber is shut down.

qos (quality of service)

Specifies the desired quality of service of the subscription. It can take one of
two values: transient or persistent.

2-16 Using the CORBA Notification Service

BEA Simple Events API

For transient subscriptions, the Notification Service makes only one attempt
to deliver the event to asubscriber. If that attempt fails, the event isdiscarded
and, if the Notification Service does not receive the CORBA: : TRANSI ENT
exception, it concludes that the subscriber is shutdown or otherwise not
available and cancelsthe subscription. If the Notification Servicereceivesthe
CORBA: : TRANSI ENT exception when an attempt to deliver fails, it assumes
that the subscriber is busy and discards the event, but it does not cancel the
subscription.

For persistent subscriptions, if thefirst delivery attempt fails, the Notification
Service holds the event in the pending queue and keeps attempting to deliver
the subscription until the configurable retry limit is reached. When the retry
limit is reached, the Notification Service moves the event on an error queue
where it is held for disposition by the system administrator. The system
administrator either removes the event from the error queue, which in effect
discardsit, or movesit back to the pending queue so that further attemptsto
deliver it can be made.

Note: For persistent subscriptions, the Notification Service always does a
two-way invoke on callback objects to deliver events. If ajoint
client/server does not activate a callback object (the event receiver) before
it callsor b- >r un and then the Notification Serviceinvokes on the callback
object, as far as the POA is concerned, the callback object does not exist.
In this case CORBA: : OBJECT_NOT_EXI ST exception isreturned. If the
Notification Service receivesaCORBA: : OBJECT_NOT_EXI ST exception, it
dropsthe subscription and the event; otherwise, the subscriptionisretained
and the event isretried.

BEA Simple Events API

Simplicity and ease-of-use are the defining characteristics of the BEA Simple Events
application programming interface (API). Its capabilities are similar to those of the
BEA Tuxedo EventBroker.

The BEA Simple Events API consists of the following interfaces (see Figure 2-2):
B Tobj _Si npl eEvents: : Channel
® Tobj _Si npl eEvents: : Channel Factory

Using the CORBA Notification Service ~ 2-17

2 CORBA Notification Service API Reference

m CosNotifyConmm : Struct uredPushConsuner

Figure2-2 BEA Simple EventsInterfaces

Channel
Factory
Interface

Channel
Interface

Implemented in the
Subscriber’s Callback

Push
Consumer
Class

The Tobj _Si npl eEvent s: : Channel and the

Tobj _Si npl eEvent s: : Channel Fact ory interfaces are implemented by the

Notification Service and are described below.

The CosNot i f yConm : St ruct ur edPushConsurrer interface isimplemented by the

subscribers. For adescription of thisinterface, see

“CosNotifyComm::StructuredPushConsumer::push_structured_event” on page 2-64.

Note: The CosNotification Service classes referred to in this section are fully
described in the CosNotification Service IDL files, which are located in the

t uxdi r/i ncl ude directory.

Note:
exception is raised.

If you use class operations that are not supported, the CORBA: : NO_| MPLEMENT

TOBJ_SimpleEvents::.Channel Interface

The Channel interface is used:

m By subscribers to subscribe and unsubscribe to events and to determineif a

subscription exists

m By postersto post events to the Notification Service

2-18 Using the CORBA Notification Service

BEA Simple Events API

This interface provides these operations:

e subscribe()

e unsubscri be()

e exists()

e push_structured_event()

The CORBA IDL for thisinterface:

nodul e Tobj _Si npl eEvent s

{

t ypedef
typedef string Regul ar Expressi on;
typedef string FilterExpression;

| ong Subscri ptionl D,

const Subscri pti onType TRANSI ENT_SUBSCRI PTI ON = O;
const Subscri pti onType PERSI STENT_SUBSCRI PTI ON = 1;

i nterface Channel

voi d push_structured_event (

CosNotification::StructuredEvent event);

Subscriptionl D subscri be (

n

5D 3 3 3535

string subscri pti on_nane,
Regul ar Expr essi on domai n,

Regul ar Expr essi on type,

Fi | t er Expression data_filter,

CosNotification:: QSProperties gos,
CosNot i fyConm : Struct ur edPushConsuner push_consuner);

bool ean exists(in SubscriptionlDid);

};
}s

voi d unsubscribe(in SubscriptionlD id);

These operations are described in the following section.

Using the CORBA Notification Service ~ 2-19

2 CORBA Notification Service API Reference

Channel::subscribe

CORBA IDL

Parameters

Exceptions

Description

Subscri ptionl D subscribe (

in string subscri pti on_nane,
in Regul ar Expr essi on domai n,

in Regul ar Expr essi on type,

in Fi | t er Expression data_filter,

/1 The filter expression nust |length 1 and the nanme nust
/1 be TRANSI ENT_SUBSCRI PTI ON or PERSI STENT_SUBSCRI PTI ON.
in CosNotification:: QSProperties gos,

in CosNot i f yComm : St ruct ur edPushConsuner push_consumner

)

For adescription of the parameters supported by this operation, see “ Parameters Used
When Creating Subscriptions” on page 2-12.

CORBA: : BAD_PARAM
Indicates one of the following problems:
Tobj Events::SUB_I NVALI D_FI LTER EXPRESSI ON
Tobj _Event s:: SUB_UNSUPPORTED_QOS_VALUE

CORBA: : IMP_LIMT
Indicates one of the following problems:
Tobj _Events:: SUB_DOVAI N BEG NS W TH_SYSEV
Tobj _Events:: SUB_EMPTY_DOVAI N
Tobj _Events::SUB EMPTY_TYPE
Tobj _Events:: SUB_DOVAI N_AND TYPE_TOO LONG
Tobj _Events::SUB FI LTER TOO LONG
Tobj _Events:: SUB NAME TO LONG
Tobj _Events:: TRANSI ENT_ONLY_CONFI GURATI ON

CORBA: : | NV_OBJREF
Indicates the following problem:
Tobj _Events:: SUB_N L_CALLBACK REF

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Use this operation to subscribe to events. This operation is called by a subscriber
application on the Notification Service to create a subscription to a particular event.
The subscription name, domain name, type name, datafilter, quality of service, and the
object reference of the subscriber’ s callback object are passed in. The callback object
implements the CosNotifyComm:: StructuredPushConsumer IDL interface.

Note: For subscribers that shut down and restart, you must write the
subscri pti on_i d to persistent storage.

2-20 Using the CORBA Notification Service

BEA Simple Events API

Return Value

Examples

To use datafiltering or subscribe to BEA Tuxedo system events or events posted by a
BEA Tuxedo application, see the sections “Creating FML Field Table Filesfor
Events’ on page 2-8 and “ Interoperability with BEA Tuxedo Applications’ on

page 2-10.

Returns a unique subscription identifier. The effect of this operation is not
instantaneous. There can be a delay between returning from this operation and the
actual start of event delivery. The length of the delay period may be significant
depending onyour configuration. For moreinformation on factorsimpacting thisdelay
period, see “ Synchronizing Databases’ on page 7-44.

Note:

Note:

Notification Service applications that start and shut down only once can use
thesubscription_i d todetermineif their subscription has been cancelled
automatically or by the system administrator.

Code examples shown here are abbreviated. For compl ete code examples, see
“Creating a Subscription” on page 3-12.

C++ code example:

subscription_id = channel - >subscri be(

subscri pti on_nane,

"News", // donmmin
“Sports”, Il type

" /1 No data filter.
qos,

news_consumer.in()

);

Java code example:

int subscription_id = channel . subscri be(

subscri pti on_nane,
"News", // donmmin
“Sports”, Il type

" /1 no data filter
qos,

news_consumer _i npl

);

Using the CORBA Notification Service 2-21

2 CORBA Notification Service API Reference

Channel::unsubscribe

CORBA IDL

Parameter

Exceptions

Description

Examples

voi d unsubscribe(in SubscriptioniDid);

subscription_id
The subscription identifier.

CORBA: : BAD_PARAM
Indicates the following problem:
Tobj Events:: | NVALI D_SUBSCRI PTI ON_|I D

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Used to unsubscribe. Subscriber applications use this operation to terminate
subscriptions. On return from this operation, no further events can be delivered. There
is one input parameter: Subscri pti onl D, which you got when you subscribed.

Note: Thisoperation is not instantaneous. After returning from this operation, a
subscriber may continue to receive events for a period of time. The period of
time may be significant depending on your configuration. For more
information on factors impacting this period of time, see “ Synchronizing
Databases’ on page 7-44.

C++ code example:

channel - >unsubscri be(subscription_id);

Java code example:

channel . unsubscri be(subscription_id);

2-22 Using the CORBA Notification Service

BEA Simple Events API

Channel::push_structured_event

CORBA IDL

Parameter

Exceptions

Description

Examples

voi d push_structured_event (
in CosNotification::StructuredEvent notification

)

notification
This parameter contains the structured event as defined by the
CosNoatification Service specification.

CORBA | MP_LIMT
Indicates one of the following problems with the subscription:
Tobj _Event s: : POST_UNSUPPORTED_VALUE | N_ANY
Tobj _Event s: : POST_UNSUPPORTED PRI ORI TY_VALUE
Tobj _Event s: : POST_DOVAI N_CONTAI NS_SEPARATOR
Tobj _Event s: : POST_TYPE_CONTAI NS_SEPARATOR
Tobj _Event s: : POST_SYSTEM EVENTS_UNSUPPORTED
Tobj _Event s: : POST_EMPTY_DOMVAI N
Tobj Events:: POST_EMPTY_TYPE
Tobj _Event s: : POST_DOVAI N_AND_TYPE_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes’ on page 2-66.

Used by the poster application to post an event to the Notification Service.

Note: This operation has transactional behavior when used in the context of a
transaction. For more information, see the section “Using Transactions’ on

page 2-4.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events’ on page 3-4.

C++ code example:

channel - >push_structured_event(notification);

Java code example:

channel . push_structured_event(notification);

Using the CORBA Notification Service ~ 2-23

2

CORBA Notification Service API Reference

Channel::exists

CORBA IDL

Parameter

Exceptions

Description

Return Value

2-24

Examples

bool ean exists(in SubscriptionlD subscription_id);

subscription_id
The subscription identifier.

CORBA: : BAD_PARAM
Indicates the following problem:
Tobj _Events: : | NVALI D_SUBSCRI PTI ON_I D

If thesubscri ption_i d isfor asubscription created using the
CosNatification Service API, this exception is always returned.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Used by subscriber applicationsto determineif a subscription exists. Since the system
administrator can delete subscriptions manually and the Notification Service can

del ete transient subscriptions automatically, asubscriber application might want to use
this operation so that it can recreate the subscription, if necessary. The

subscri pti on_i d used in this operation is the same one that you got when you
subscribed.

Returns Boolean True of the subscription exists and Falseif it does not.
C++ code example:

i f channel ->exi sts (subscription_id) {

/] The subscription is still valid.
} else {
/1 The subscription no | onger exists.

}

Java code example:

i f channel . exists (subscription_id) {

/1 The subscription is still valid.
} else {
/1 The subscription no | onger exists.

Using the CORBA Noatification Service

BEA Simple Events API

TOBJ_SimpleEvents::.ChannelFactory Interface

TheChannel Fact ory interfaceisused to find event channels. Thisinterface provides
asingle operation: f i nd_channel .

The CORBA IDL for this interface:

nodul e Tobj _Si npl eEvent s

{
typedef 1ong Channel | D;

i nterface Channel Factory

Channel find_channel (

in Channel I D channel _id // Mist be DEFAULT_CHANNEL

)
b

b

Using the CORBA Notification Service ~ 2-25

2 CORBA Notification Service API Reference

Channel_Factory::find_channel

CORBA IDL

Parameter

Exceptions

Description

Return Value

Examples

Channel find_channel (
in Channell D channel _id);

In this release of BEA Tuxedo, there can only be one event channel; therefore, the
Channel | Dthat is passed in must be set to

Tobj _Si npl eEvent s: : DEFAULT_CHANNEL (for C++) or

Tobj _Si npl eEvent s. DEFAULT_CHANNEL. Val ue (for Java).

CORBA: : BAD_PARAM
Indicates the following problem:
Tobj _Events:: | NVALI D CHANNEL I D

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Used by poster applications and subscriber applications. Thisoperationisused to find
the event channel so that it can be used by the poster to post events and by the
subscriber to subscribe and unsubscribe to events.

Returns the default event channel’s object reference.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel” on page 3-3.

C++ code example:

channel _factory->find_channel (
Tobj _Si npl eEvent s: : DEFAULT_CHANNEL) ;

Java code example:

channel _factory. find_channel (DEFAULT_CHANNEL. val ue) ;

2-26 Using the CORBA Notification Service

CosNotification Service API

CosNotification Service API

This section contains a discussion of the operations defined by the CosNatification
Servicethat areimplemented by the BEA Tuxedo CORBA Notification Service. These
operations are only a subset of the complete set of operations. This subset isa
functionally complete API that can be used asan alternativeto the BEA Simple Events
API.

This APl ismore complex thenthe BEA Simple Events API. There aretwo reasonsfor
this. First, the CosNotification Service APl ismore complex. Second, the BEA Tuxedo
implementation of the CosNotification Service API places additional restrictions on
the operations that are supported. Because this complexity offers no advantagesin
terms of performance or flexibility, BEA Systems, Inc. recommends that you use the
BEA Simple Events APl whenever possible.

The CosNotification API isprovided for those who require that astandard API be used
whenever possible for purposes of portability. In regard to functionality, this API
provides no benefits beyond those offered by the Simple Events API. Applicationsthat
are developed using this API will be mostly, but not completely, portable. The reason
for thisisthat not enough of the CosNotification Service API is supported to facilitate
portability. For example, the filtering grammar required by the CORBA-based
Notification Service is based on the COS Trader grammar. Since BEA Tuxedo does
not support this grammar, but supports an alternative grammar based on the BEA
Tuxedo EventBroker grammar, any application that requires filtering will not be
portable. The sameistruefor QoS, that is, the CosNatification Service API does not
support the CORBA-based Notification Service standard qualities of service, but it
does support alternative qualities of service.

Overview of Supported CosNotification Service Classes

Figure 2-3 shows the CosNotification Service classes implemented, in full or in part,
in this release of BEA Tuxedo and their relationships.

Using the CORBA Notification Service ~ 2-27

2

CORBA Notification Service API Reference

2-28

Figure2-3 Implemented CosNotification Service Classes

Event
Channel
Factory Class

i “Impiemented in the i
| Subscriber’s Callback !
Channel ! i
Class / "\ ~~—TTTTTTTTTee——llll !

Push
Consumer
Class

Filter
Factory
Class

Supplier
Admin Class

Consumer
Admin Class

Proxy Push
Consumer
Class

Proxy Push
Supplier
Class

The operations supported by each class are summarized below. For more detailed
descriptions, see “Detailed Descriptions of CosNatification Service Classes’ on
page 2-31.

m CosNotifyChannel Admin::EventChannel Factory Class

This classis used by the event poster and subscriber applications. It supports the
get _channel _f act or y operation which is used to get the channel factory when
posting, subscribing, and unsubscribing to events.

m CosNotifyChannel Admin::EventChannel Class

This classis used by event poster and subscriber applications. It supports three
operations:

e defaul t _consumer _adni n—used by event subscriber applicationsto get
the consumer admin object.

e defaul t _supplier_adni n—used by event poster applications to get the
supplier admin object.

Using the CORBA Noatification Service

CosNotification Service API

e default_filter_factory—used by event subscriber applications to get
the filter factory object.

CosNotifyChannel Admin::SupplierAdmin Class

This classis used by event poster applications. It supports the

obt ai n_notification_push_consuner operation. Poster applications use this
operation to create proxy push consumer objects which in turn are used to post
events to the Notification Service.

CosNotifyChannel Admin:: StructuredProxyPushConsumer Class

This classis used by event poster applications. It supports the following
operations:

e connect_structured_push_suppl i er—used by event poster applications
to connect the proxy push supplier to the Notification Service event channel.

e push_structured_event —used by event poster applications to post the
event to the Notification Service event channel.

e disconnect_structured_push_consunmer —used by event poster
applications to disconnect the proxy push supplier from the Notification
Service event channel.

CosNotifyFilter::FilterFactory Class

This classis used by event subscriber applicationsto create afilter object. It
supportsthecreate_fil t er operation. Thefilter object provides al data
filtering including domain, type, and filterable data.

CosNotifyFilter::Filter Class

This classis used by event subscriber applications. It supports the following
operations:

e add_contraints operation—used to set the filter’s domain, type, and data
filter.

e dest r oy operation—used to destroy the filter object.

CosNotifyChannel Admin::ConsumerAdmin Class

This classis used by event subscriber applications. It supports the following
operations:

Using the CORBA Notification Service ~ 2-29

2

CORBA Notification Service API Reference

2-30

obt ai n_notification_push_suppli er—used by event subscriber
applications to create proxy push supplier objects which in turn are used to
deliver events to the subscriber’s callback object.

get _proxy_suppl i er —used by event subscriber applicationsto retrieve the
object reference for the proxy push supplier object. This operation is only
used when the subscriber application shuts down then restarts and cancels the
subscription. This is because subscribers need to discard the object reference
from the first run and get it back again for the next run. Subscribers cannot
reuse object references from one run to the next.

m CosNotifyChannel Admin:: StructuredProxyPushSupplier Class

This classis used by event subscriber applications. It supports the following
operations:

connect _st ruct ur ed_push_consumer —used by event subscriber
applications to connect the subscriber to the proxy push supplier.

set _gos—used by event subscriber applications to set the quality of service
for subscriptions.

add_fi |t er —used by event subscriber applications to add the filter object
to the subscription.

get _filter—used by event subscriber applications when performing
unsubscribe operations to get the filter associated with the subscription. This
operation is only used when the subscriber application shuts down then
restarts.

di sconnect _structured_push_suppl i er—used by event subscriber
applications to unsubscribe.

m CosNotifyComm::StructuredPushConsumer

Thisinterface isimplemented by event subscriber applications. It supports the
push_structured_event operation. The Notification Serviceinvokesthis
operation to deliver events to the subscriber.

Using the CORBA Noatification Service

CosNotification Service API

Detailed Descriptions of CosNotification Service Classes

This section describes the CosNotification Service classes that this release of BEA
Tuxedo implements. These classes are fully described in the CosNotification Service
IDL files, which are located in thet uxdi r/ i ncl ude directory.

Note: If you use class operationsthat are not supported, the CORBA: : NO_| MPLEMENT
exception israised.

CosNotifyFilter::Filter Class

This classis used by event subscriber applications. The OMG IDL for thisclassisas
follows:

Modul e CosNotifyFilter
{

interface Filter {
ConstraintlnfoSeq add_constraints (
i n Constraint ExpSeq constraint)
rai ses (InvalidConstraint);

voi d destroy();

};
}; //CosNotifyFilter

Using the CORBA Notification Service 2-31

2 CORBA Notification Service API Reference

CosNotifyFilter::Filter::add_constraints

Synopsis Setsthe domain, type, and datafilter parameters on the filter object.

OMGIDL ConstraintlnfoSeq add_constraints (
in Constraint ExpSeq constraint)
rai ses (lnvalidConstraint);

Exceptions CosNoti fyFilter::InvalidConstraint
Never raised.

CORBA: : BAD_PARAM
Indicates the following problem:
Tobj _Events: : SUB_| NVALI D_FI LTER_EXPRESSI ON.

CORBA IMP_LIMT
Indicates one of the following problems:
Tobj _Notification::SUB_ADD CONS_ON_TI MED OQUT_FI LTER
Tobj Notification::SUB_MILTI PLE CALLS TO ADD CONS
Tobj _Notification::SUB_MJLTI PLE_CONSTRAI NTS_I N LI ST
Tobj Notification::SUB_MILTI PLE_TYPES | N _CONSTRAI NT
Tobj Notification:: SUB_SYSTEM EVENTS UNSUPPORTED
Tobj _Events:: SUB_DOVAI N BEG NS W TH_SYSEV
Tobj Events::SUB EMPTY_DOVAI N
Tobj _Events:: SUB_EMPTY_TYPE
Tobj _Events:: SUB_FI LTER_TOO _LONG

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used when subscribing. This operation is used in subscriber applicationsto define the
kind of event to which you want to subscribe. Y ou set the domain, type, and datafilter
parameters on the filter object. For adescription of these parameters, see “ Parameters
Used When Creating Subscriptions” on page 2-12.

Note: TheBEA Tuxedoimplementation of theadd_const r ai nt s operation (1) can
only be called once, (2) must be called before the filter is added to the proxy
object, and (3) must consist of only a single constraint that has a single event

type.
Return Value Returnsan enpty | i st, which we recommend that the caller ignores.

Examples Note: Code examplesshown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

2-32 Using the CORBA Notification Service

CosNotification Service API

C++ code example:

/] set the filtering paraneters
/1 (domain = "News", type, and no data filter)
CosNotifyFilter:: Constrai nt ExpSeq constraints;
constraints.length(1);
constraints[0].event_types.length(1);
constraints[0].event_types[0].donai n_nane =
CORBA: : string_dup("News");
constraints[0].event _types[O0].type_nane =
CORBA: : string_dup (“Sports”);

/1 no data filter
constraints[0].constraint_expr = CORBA::string_dup("");
CosNotifyFilter::ConstraintlnfoSeq_var
add_constraints_results = // ignore this returned val ue

filter->add constraints(constraints);

Java code example:

/] set the filtering paraneters

[/ (domain = "News", type, and no data filter).
Constrai nt Exp constraints[] = new Constrai nt Exp[1];
constrai nts[0] = new Constraint Exp();
constraints[0].event_types = new Event Type[1];
constraints[0].event _types[0] = new Event Type();
constrai nts[0].event_types[0].donai n_nane = "News";
constraints[0].event_types[0].type_name = “Sports”;

constraints[0].constraint_expr = ; /] No data filter.
Constraintinfo add_constraints_results[] =

filter.add constraints(constraints); //lgnore this return val ue.

Using the CORBA Notification Service

2-33

2 CORBA Notification Service API Reference

CosNotifyFilter::Filter::destroy

Synopsis
OMG IDL

Exceptions

Description

Destroys the filter object.
voi d destroy();

CORBA: : BAD_PARAM
Indicates the following problem:
Tobj _Events: : SUB_| NVALI D_FI LTER_EXPRESSI ON.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Used when unsubscribing. This operation is used in subscriber applicationsto destroy
the target filter object.

Note: Do not destroy the filter object until you are ready to cancel the corresponding
subscription.

CosNotifyFilter::FilterFactory Class

This classis used by event subscriber applications. The OMG IDL for thisclassisas
follows:

Modul e CosNotifyFilter
{
interface FilterFactory {
Filter create filter (
in string constraint_granmmar)
rai ses (lnvalidGanmmar);
destroy();

}: 1/ CosNotifyFilter

2-34 Using the CORBA Notification Service

CosNotification Service API

CosNotifyFilter::FilterFactory::create_filter

Synopsis

OMG IDL

Exceptions

Description

Return Value

Examples

Determines which events are delivered to a subscription.

Filter create filter (
in string constraint_gramar)
rai ses (InvalidG anmar);

CosNotifyFilter::InvalidG amar
Indicatesthe const r ai nt _gr anmar isnot supported.

Used in the subscriber application to create a new filter object. Thisfilter is used to
determine which events are delivered to a subscription. The subscriber must set up the
filter and add it to the proxy within five minutes; otherwise, thefilter will be destroyed.
The filter grammar must be set to Tobj _Not i fi cati on: : Constrai nt _gr ammar ;
otherwise, thel nval i dG ammar exception is raised.

Returns the new filter’ s object reference.

Note: Code examples shown here are abbreviated. For compl ete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

filter_factory->create filter(
Tobj _Noti ficati on:: CONSTRAI NT_GRAMVAR
)

Java code example:
filter _factory.create filter(CONSTRAI NT_GRAMWAR. val ue) ;

Using the CORBA Notification Service 2-35

2

CORBA Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

2-36

This classis used by event subscriber applications. The OMG IDL for thisclassisas
follows:

Modul e CosNot i f yChannel Admi n
{
interface StructuredProxyPushSupplier
Pr oxySuppl i er,
CosNot i f yComm : St ruct ur edPushSupplier {

voi d connect _structured_push_consuner (
in CosNotifyComm : StructuredPushConsumer push_consurmer)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Adm n: : TypeError);

/1 The followi ng operations are inherited.
voi d set_qos(in QoSProperties qgos)

rai ses (UnsupportedQS);
FilterID add_filter (in Filter new filter);
Filter get filter(in FilterIDfilter)

rai ses (FilterNotFound);
voi d di sconnect _structured_push_supplier();
readonly attribute ProxyType M/ Type;

b
}; 1/ CosNotifyChannel Adm n

Using the CORBA Noatification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
connect_structured_push_consumer

Synopsis
OMG IDL

Exceptions

Description

Completes a subscription.

voi d connect _structured_push_consuner (
in CosNotifyComm : StructuredPushConsuner push_consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Admi n: : TypeError);

CosEvent Channel Admi n: : TypeError
Never raised.

CORBA: : | NV_OREF
Tobj _Events::SUB N L_CALLBACK REF

CORBA: : IMP_LIMT
Indicates one of the following problems:
Tobj _Event s: : SUB_DOVAI N_AND_TYPE_TOO LONG
Tobj _Events:: SUB_NAME TO LONG
Tobj _Event s: : TRANSI ENT_ONLY_CONFI GURATI ON
Tobj _Notification:: SUBSCRI PTI ON_DOESNT_EXI ST.

CORBA: : OBJECT_NOT_EXI ST
The proxy does not exist.

CosEvent Channel Adni n: : Al readyConnect ed
Indicates that the connect _st ruct ur ed_push_consumer operation has
already been invoked.

Note: For exception definitions and corresponding minor codes, see “Exception
Minor Codes’ on page 2-66.

Use this operation when subscribing. This operation is used in subscriber applications
to subscribe to events. The push_consumer parameter identifies the subscriber’s
callback object.

Oncetheconnect _struct ured_push_consuner has been called, the Notification
Servicewill proceed to send eventsto the subscriber by invoking the callback object’s
push_st ruct ured_event operation. If theconnect _struct ured_push_consuner
has already been called, the Al r eadyConnect ed exception is raised.

Note: Youmust call set _qos andadd_filter beforecalling
connect _structured_push_consuner.

Using the CORBA Notification Service ~ 2-37

2 CORBA Notification Service API Reference

Examples Note: Code examplesshown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.
C++ code example:

subscri pti on->connect _structured_push_consuner (
news_consumer.in()
)

Java code example:

subscri ption. connect _structured_push_consuner (
news_consuner _i npl

)

2-38 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos

Synopsis
OMG IDL

Exceptions

Description

Examples

Sets the QoS for the subscription.

voi d set_qgos(in QoSProperties qos)
rai ses (UnsupportedQsS);

Unsupport edQS
Never raised.

ORBA: : IMP_LIMT
Indicates one of the following problems:
Tobj _Notification::SUB_ MITIPLE CALLS TO SET_QCS
Tobj _Notification::SUB_CANT_SET_QOS AFTER_CONNECT
Tobj _Notification:: SUBSCRI PTI ON_DOESNT_EXI ST
Tobj _Notification:: SUB_UNSUPPORTED QOS_VALUE

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes’ on page 2-66.

Used when subscribing. Thisoperationisused in subscriber applicationsto set the QoS
for the subscription. It takes as an input parameter a sequence of nhame-value pairs
which encapsul ates quality-of-service property settings that the subscriber is
reguesting.

There are two components of the QoS: the subscription type and the subscription
name. The subscription typeis set by constructing a name-value pair where the name
iSTobj _Notification:: SUBSCRI PTI ON_TYPE and the valueis either

Tobj _Noti fication:: PERSI STENT_SUBSCRI PTI ON, or

Tobj _Notification:: TRANSI ENT_SUBSCRI PTI ON. For more information and
additional usage details, see “ Quality of Service” on page 2-2.

The subscription name is set by constructing a name-value pair, where the nameis
Tobj _Noti fication:: SUBSCRI PTI ON_NAME, and the value is a user-defined string.

For more information on this parameter, see “ Parameters Used When Creating
Subscriptions’ on page 2-12.

Note: Code examples shown here are abbreviated. For compl ete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

CosNotification:: QSProperties qos;
gos. length(2);

Using the CORBA Notification Service ~ 2-39

2 CORBA Notification Service API Reference

qos[0] . nane =

CORBA: : string_dup(Tobj Notification:: SUBSCRI PTI ON_NAME) ;
gos[0] . val ue <<= “MySubsription”;
qgos[1] . nanme =

CORBA: : string_dup(Tobj Notification:: SUBSCRI PTI ON_TYPE) ;
gos[1] . val ue <<=

Tobj _Notification:: TRANSI ENT_SUBSCRI PTI ON;

subscri pti on->set _gos(qos);
Java code example:

Property qos[] = new Property[2];

qos[0] = new Property();

gos[0] . nane = SUBSCRI PTI ON_NAME. val ue;

gos[0] . val ue = orb.create_any();

qos[0] .val ue.insert_string(“M/Subsription”);

gos[1] = new Property();

gos[1] . nane = SUBSCRI PTI ON_TYPE. val ue;

qos[1] .value = orb.create_any();

gos[1] . val ue. i nsert_short (TRANSI ENT_SUBSCRI PTI ON. val ue) ;

subscri ption. set_qgos(qos);

2-40 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter

Synopsis
OMG IDL

Exceptions

Description

Return Value

Setsthe filter object on the subscriber’s callback object.

add _filter(
in Filter newfilter
)

CORBA: : IMP_LIMT
Indicates one of the following problems:
Tobj _Notification::SUB_MILTIPLE_CALLS TO SET_FI LTER
Tobj _Notification::SUB_ADD FI LTER AFTER CONNECT
Tobj _Notification::SUB N L_FILTER REF
Tobj _Notification:: SUB_NO CUSTOM FI LTERS

CORBA: : OBJECT_NOT_EXI ST
Indicates that the subscription does not exist.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes’ on page 2-66.

Used when subscribing. This operation is used in subscriber applications to set the
filter object to the subscriber’s callback object. If the application using this operation
will be shut down and restarted, thef i | t er _i d should bewritten to persistent storage.

Note: Thisoperation: (1) cannot be called after the subscriber callback object is
connected (see connect _struct ured_push_consuner above), (2) cannot
be called more than once, and (3) when it is called, the filter constraint
expression must aready be present in the filter (see
CosNotifyFilter::Filter add_constraints).

Note: Only filters created by the event channel’s default filter factory can be added.

Returns a filter_id.

Using the CORBA Notification Service ~ 2-41

2 CORBA Notification Service API Reference

Examples Note: Code examplesshown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

CosNotifyFilter::FilterID filter_id =
subscription->add_filter(filter.in());

Java code example:

int filter_id = subscription.add_filter(filter);

2-42 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter

Synopsis

OMG IDL

Exceptions

Description

Restrictions

Return Value

Examples

Getsan object referenceto thefilter currently associated with the subscriber’ s callback
object.

Filter get filter(in FilterIDfilter)
rai ses (FilterNot Found);

CosNot i f yChannel Admi n:: Fi |l t er Not Found
The filter could not be found.

Used when a restartable subscriber wants to unsubscribe. This operation isused in
subscriber applicationsto get an object referenceto thefilter currently associated with
the subscriber’s callback object. TheFi | t er | Dthat is passed in must be valid for the
subscriber’ s StructuredProxyPushSupplier object. If theFi | t er | Disnot valid for any
proxy object associated with the event channel, then aFi | t er Not Found exception is
thrown. The operation is only used by subscribers that shut down and restart.

The following usage restrictions and guidelines apply to this operation:

a. Filter object references that are returned from this operation cannot be used in
comparison operations.

b. Filter object references returned by this operation can be used by the
CosNotifyFilter::Filter::destroy operationsbut are of little use since
they cannot be modified or added to proxy objects.

Returns afilter object reference to the filter currently associated with the subscriber’s
callback object.

C++ code example:

CosNotify::Filter_var filter =
subscription->get filter(filter_id());

Java code example:

Filter filter = subscription.get filter(filter_id());

Using the CORBA Notification Service ~ 2-43

2 CORBA Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushSupplier::
disconnect_structured_push_supplier

Synopsis
OMG IDL

Exceptions

Description

Examples

Used to unsubscribe.
voi d di sconnect _structured_push_supplier();

CORBA: : OBJECT_NOT_EXI ST
Indicates that the subscription to be disconnected does not exist.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Used by subscriber applications when unsubscribing. This operation isused in
subscriber applicationsto terminate a connection between the Notification Serviceand
the subscriber’s callback object.

Note: This operation does not stop event delivery instantaneously. After returning
from this operation, a subscriber may continue to receive events for a period
of time.

C++ code example:
subscri ption->di sconnect _structured_push_supplier();

Java code example:

subscri ption. di sconnect _structured_push_supplier();

2-44 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType

Synopsis Always returns CosNot i f yChannel Admi n: : PUSH_STRUCTURED proxy.
OMGIDL readonly attribute ProxyType MyType

Description Always returns CosNot i f yChannel Adni n: : PUSH_STRUCTURED proxy.

CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

This classis used by event posting applications. The OMG IDL for thisclassisas
follows:

Modul e CosNot i f yChannel Adni n
{
interface StructuredProxyPushConsuner
Pr oxyConsurer,
CosNot i f yConm : St ruct uredPushConsuner {

voi d connect _structured_push_supplier (
in CosNotifyComm : StructuredPushSupplier push_supplier)
rai ses(CosEvent Channel Adni n: : Al readyConnect ed) ;
/1 The followi ng operations are inherited.
readonly attribute MyType;
voi d push_structured_event (
in CosNotification:: StructuredEvent notification)
rai ses(CosEvent Conm : Di sconnected);
voi d di sconnect _structured_push_consuner();
b
\\ St ruct ur edPr oxyPushConsuner

b

Using the CORBA Notification Service ~ 2-45

2 CORBA Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
connect_structured_push_supplier

Synopsis
OMG IDL

Exception

Description

Examples

Prepares the Notification Service to receive an event.
voi d connect _structured_push_supplier (
in CosNotifyComm : StructuredPushSupplier push_supplier)
rai ses(CosEvent Channel Adm n: : Al readyConnect ed) ;

CosEvent Channel Admi n: : Al readyConnect ed
Never raised.

Used by poster applications when posting events. Y ou must call this operation to
prepare the Notification Service to receive an event and you must passin aNIL when
you use this operation. The sequence of usageis as follows:

1. Make aproxy.

2. Usethis operation to connect to the Notification Service and passin aNIL.
3. Post events.

4. Before exiting the poster program, disconnect.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events’ on page 4-4.

C++ code example:

proxy_push_consuner - >connect _struct ured_push_suppli er(
CosNoti fyComm : StructuredPushSupplier:: _nil()

)i
Java code example:

proxy_push_consuner. connect _structured_push_supplier(null);

2-46 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
push_structured_event

Synopsis

OMG IDL

Exceptions

Descriptions

Posts events to the event channel.

voi d push_structured_event (
in CosNotification::StructuredEvent notification)
rai ses(CosEvent Conm : Di sconnected);

CosEvent Comm : Di sconnect ed
Never raised.

CORBA: : IMP_LIMT
Indicates one of the following problems:
Tobj _Event s: : POST_UNSUPPORTED VALUE | N_ANY
Tobj _Events:: POST_UNSUPPORTED PRI ORI TY_VALUE
Tobj _Event s: : POST_DOVAI N_CONTAI NS_SEPARATOR
Tobj _Event s: : POST_TYPE_CONTAI NS_SEPARATOR
Tobj Events:: POST_SYSTEM EVENTS UNSUPPORTED
Tobj _Event s: : POST_EMPTY_DOMVAI N
Tobj Events:: POST_EMPTY_TYPE
Tobj _Events:: POST_DOVAI N AND TYPE TOO LONG

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes’ on page 2-66.

Used when posting events. This operation is used in poster applications to post events
to the event channel.

Note: This operation differs from the standard CORBA definition in the following
ways:

a. The Priority in the variable header section of the event, if specified, must be
shor t valuein therange of 1 to 100.

b. If event filterable datafiltering (versusfiltering on domain and type only) is
required, or if events areto be received by a BEA Tuxedo subscriber, then
additional restrictionsapply. See“ Structured Event Fields, Types, and Filters”
on page 2-5 and “Interoperability with BEA Tuxedo Applications’ on

page 2-10.

Note: This operation has transactional behavior when used in the context of a
transaction. For more information, see “Using Transactions’ on page 2-4.

Using the CORBA Notification Service 2-47

2 CORBA Notification Service API Reference

Examples Note: Code examplesshown here are abbreviated. For complete code examples, see
“Creating and Posting Events’ on page 4-4.

C++ code example:
proxy_push_consuner - >push_structured_event (notification);
Java code example:

proxy_push_consuner. push_structured_event (notification);

2-48 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::StructuredProxyPushConsumer::
disconnect_structured_push_consumer

Synopsis
OMG IDL

Descriptions

Examples

Stops posting events.
voi d di sconnect _structured_push_consuner ();

Used when posting events. Thisoperation isused by poster applicationsto stop posting
events. It takes no input parameters and returns no values. The recommended usage
sequenceis asfollows:

1. Makeaproxy.
2. Connect and disconnect on every run of the poster application.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events’ on page 4-4.

C++ code example:

proxy_push_consuner - >di sconnect _structured_push_consuner ();

Java code example:

proxy_push_consuner. di sconnect _structured_push_consumner();

Using the CORBA Notification Service ~ 2-49

2 CORBA Notification Service API Reference

CosNotifyChannelAdmin::StructuredProxyPushConsumer::MyType

Synopsis Always returns CosNot i f yChannel Amdni n: : PUSH_STRUCTURED proxy.
OMGIDL readonly attribute ProxyType M/Type

Description Alwaysreturns CosNot i f yChannel Andmi n: : PUSH_STRUCTURED proxy.

CosNotifyChannelAdmin::ConsumerAdmin Class

This classis used by event subscriber applications. The OMG IDL for thisclassisas
follows:

Mbdul e CosNot i f yChannel Adm n
{

interface Consuner Admn :

CosNoti fication:: QSAdm n,

CosNot i fyConm : Noti f ySubscri be,
CosNotifyFilter::FilterAdm n,
CosEvent Channel Admi n: : Consuner Admi n {

ProxySupplier obtain_notification_push_supplier (
in CientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi nm t Exceeded)

ProxySuppli er get_proxy_supplier (

in ProxylD proxy_id)
rai ses (ProxyNot Found);

}
}; /1 CosNotifyChannel Adm n

2-50 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::ConsumerAdmin::
obtain_notification_push_supplier

Synopsis
OMG IDL

Exceptions

Description

Return Value

Examples

Creates proxy push supplier objects.

ProxySuppl i er obtain_notification_push_supplier (
in ClientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded)

CosNot i f yChannel Adm n: : Adm nLi m t Exceeded
Never raised.

CORBA: : IMP_LIMT
Indicates the following problem:
Tobj Notification:: SUB_UNSUPPORTED CLI ENT_TYPE

Used when subscribing. This operation is used in subscriber applicationsto create
proxy push supplier objects. Only structured events are supported (that is, ANY_EVENT
and SEQUENCE_EVENT d i ent Types are not supported). Therefore, thed i ent Type
input parameter must be set to CosNot i f yComm : STRUCTURED_EVENT. If you shut
down and restart the subscriber and subscription survives more than one run of your
program, the Pr oxy| D returned by this operation should be durably stored. The
subscriber must narrow the proxy supplier to

CosNot i f yChannel Adni n: : St ruct ur edPr oxyPushSuppl i er. All required
operations must be completed in five minutes.

Note: Notification Service applications that start and shut down only once can use
theproxy_i d to determineif their subscription has been cancelled
automatically or by the system administrator.

This operation returns the new proxy’s object reference. The new proxy_i d isaso
returned through the pr oxy_i d out parameter.

Note: Code examples shown here are abbreviated. For compl ete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

CosNot i f yChannel Admi n: : ProxySupplier_var generic_proxy =
consuner _adm n->obtain_notification_push_supplier(
CosNot i f yChannel Adm n: : STRUCTURED EVENT,
proxy_id
)

Using the CORBA Notification Service ~ 2-51

2 CORBA Notification Service API Reference

CosNot i f yChannel Adm n: : Struct ur edProxyPushSuppli er_var proxy =
CosNot i f yChannel Adm n: : Struct ur edProxyPushSupplier:: _narrow
generic_proxy.in ()

)
Java code example:

Pr oxySuppl i er generic_proxy =
consuner _adm n.obtain_notification_push_supplier(
Cl i ent Type. STRUCTURED_EVENT,
proxy_id
)

Struct ur edPr oxyPushSuppl i er proxy =
St ruct ur edPr oxyPushSuppl i er Hel per. narr ow(
generi c_proxy

);

2-52 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier

Synopsis Returns the proxy push supplier object created using the consumer admin object
obt ai n_notification_push_supplier operation.

OMG IDL ProxySuppl i er get _proxy_supplier (
in ProxylD proxy_id)
rai ses (ProxyNot Found);

Exceptions CosNot i f yChannel Adni n: : Pr oxyNot Found
Indicates that the Pr oxy| D could not be found.

Descriptions Used when unsubscribing. This operation is used in subscriber applications to return
the proxy push supplier object created using the consumer admin object
obt ai n_notification_push_supplier operation. The Pr oxyl Dinput parameter
uniquely identifiesthe proxy object. Callers should be aware that the proxy object can
be destroyed either due to an error in delivering atransient subscription or through an
nt sadni n administrative command. When a proxy object is destroyed, the Pr oxy| D
associated with it isinvalidated. If the Proxyl Disinvalid, aPr oxyNot Found
exception is raised. The subscriber must narrow the proxy supplier to
CosNot i f yChannel Admi n: : Struct ur edPr oxyPushSuppl i er.

Return Value Returnsthe object reference for the existing proxy.
Examples C++ code example:

CosNot i f yChannel Adm n: : ProxySuppl i er _var generic_proxy =
m_consuner _adm n->get _proxy_supplier(
m subscri ption_i nfo. news_proxy_id()

);

CosNot i f yChannel Admi n:: St ruct uredPr oxyPushSuppl i er _var proxy =
CosNot i f yChannel Admi n: : Struct ur edProxyPushSuppl i er:: _narrow
generi c_proxy.in()
)
Java code example:
ProxySuppl i er generic_subscription =
m _consuner _admi n. get _proxy_supplier(

m subscri ption_i nfo. news_proxy_i d()

)

St ruct ur edPr oxyPushSuppl i er subscription =
Struct ur edPr oxyPushSuppl i er Hel per. narr ow(
generi c_proxy);

Using the CORBA Notification Service ~ 2-53

2 CORBA Notification Service API Reference

CosNotifyChannelAdmin::SupplierAdmin Class

Thisclassis used by event poster applications. The OMG IDL for thisclassis as
follows:

Modul e CosNot i f yChannel Admi n
{
interface SupplierAdmn :
CosNot i fication:: QSAdm n,
CosNot i f yConm : Not i f yPubl i sh,
CosNotifyFilter::FilterAdm n,
CosEvent Channel Admi n: : Suppl i er Adm n {

ProxyConsuner obtain_notification_push_consuner (
in CientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded);

}
}; //SupplierAdnin

2-54 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::SupplierAdmin::
obtain_notification_push_consumer

Synopsis
OMG IDL

Exceptions

Description

Return Value

Examples

Creates proxy push consumer objects.

ProxyConsuner obtain_notification_push_consuner (
in dientType ctype,
out Proxyl D proxy_id)
rai ses (Adm nLi m t Exceeded);

CosNot i f yChannel Adm n: : Adm nLi m t Exceeded
Never raised.

CORBA: : IMP_LIMT
Indicates the following problem:
Tobj Notification:: SUB_UNSUPPORTED CLI ENT_TYPE

Used when posting events. Thisoperation isused in poster applicationsto create proxy
push consumer objects. d i ent Type must be set to

“ CosNot i f yChannel Adni n: : STRUCTURED_EVENT” . The Pr oxyl D returned should
be ignored. The Proxy Consumer must be narrowed the proxy supplier to

CosNot i f yChannel Admi n: : Struct ur edPr oxyPushConsuner .

Note: Notification Service applications that start and shut down only once can use
theproxy_i d to determineif their subscription has been cancelled
automatically or by the system administrator.

This operation returns the new proxy’s object reference. The new pr oxy_i d isaso
returned through the pr oxy_i d out parameter.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events’ on page 4-4.

C++ code example:

CosNot i f yChannel Admi n: : ProxyConsuner _var generi c_proxy_consumer =
suppl i er _adm n->obtain_notification_push_consuner (
CosNot i f yChannel Adm n: : STRUCTURED EVENT,
proxy_id
)

CosNot i f yChannel Admi n:: St ruct ur edPr oxyPushConsuner _var
proxy_push_consuner =
CosNot i f yChannel Admi n: : St ruct ur edPr oxyPushConsuner: : _narrow
generi c_proxy_consuner

);

Using the CORBA Notification Service ~ 2-55

2 CORBA Notification Service API Reference

Java code example:

suppl i er _adm n.obtai n_notification_push_consuner (
G i ent Type. STRUCTURED EVENT, proxy_id);

2-56 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannel Class

This classis used by event poster applications. The OMG IDL for thisclassisas
follows:

Mbdul e CosNot i f yChannel Adni n
{
i nterface Event Channel
CosNot i fication:: QSAdm n,
CosNot i fication::Adm nProperti esAdmni n,
CosEvent Channel Admi n: : Event Channel {

readonly attribute Consunmer Adm n defaul t _consuner_adm n;
readonly attribute SupplierAdm n default_supplier_adm n;
readonly attribute CosNotifyFilter::FilterFactory

default _filter_factory;

}; }/CosNoti f yChannel Adm n

Using the CORBA Notification Service ~ 2-57

2 CORBA Notification Service API Reference

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_consumer_admin

Synopsis
OMG IDL

Description

Return Value

Examples

Gets the ConsumerAdmin object.
readonly attribute Consumer Adm n defaul t _consuner_adni n;

Used when subscribing and unsubscribing. This operation is used in subscriber
applications to get the ConsumerAdmin object.

Returns the object reference to the ConsumerAdmin object.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel, ConsumerAdmin Object, and Filter Factory
Object” on page 4-12.

C++ code example:

channel - >def aul t _consuner _adni n() ;

Java code example:

Note: channel . def aul t _consuner _admi n();

2-58 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_supplier_admin

Synopsis
OMG IDL

Description

Return Value

Examples

Gets the SupplierAdmin object.
readonly attribute SupplierAdm n default_supplier_adm n;

Used when posting events. This operation is used in event poster applicationsto get
the SupplierAdmin object.

SupplierAdmin object reference.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events’ on page 4-4.

C++ code example:
channel - >defaul t _supplier_adm n();
Java code example:

channel . defaul t _supplier_adm n();

Using the CORBA Notification Service ~ 2-59

2 CORBA Notification Service API Reference

CosNotifyChannelAdmin::EventChannel::default_filter_factory

Synopsis
OMG IDL

Description

Return Value

Examples

Gets the default FilterFactory object.

readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory

Used when subscribing. This operation is used in subscriber applications to get the
default FilterFactory object.

Default FilterFactory object reference.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel, ConsumerAdmin Object, and Filter Factory
Object” on page 4-12.

C++ code example:

channel - >default_filter_factory();

Java code example:

channel . default _filter_factory();

2-60 Using the CORBA Notification Service

CosNotification Service API

CosNotifyChannelAdmin::EventChannelFactory Class

This classis used by event poster applications. The OMG IDL for thisclassisas
follows:

Mbdul e CosNot i f yChannel Adni n
{

i nterface Event Channel Factory {
Event Channel get_event_channel (in ChannellDid)
rai ses (Channel Not Found);

b
}; 1/ CosNotifyChannel Adm n

Using the CORBA Notification Service ~ 2-61

2 CORBA Notification Service API Reference

CosNotifyChannelAdmin::EventChannelFactory::get_event_channel

Synopsis
OMG IDL

Exceptions

Description

Return Value

Examples

Getsthe Event Channel object.

Event Channel get_event_channel (in ChannellDid)
rai ses (Channel Not Found) ;

CosNot i f yChannel Admi n: : Channel Not Found
Indicates the channel cannot be found.

Used when subscribing, unsubscribing, and posting events. This operation is used in
applications to get the Event Channel object. When subscribing, the EventChannel
object is used to get the filter factory object and the ConsumerAdmin object. When
unsubscribing, the EventChannel object is used to get the ConsumerAdmin
object.When posting an event, the EventChannel object is used to get the
SupplierAdmin object. The Channel | D parameter that is passed in must be set to
Tobj _Notification:: DEFAULT_CHANNEL; otherwise, the Channel Not Found
exception is raised.

Returns the default event channel’s object reference.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel” on page 4-3 and “ Getting the Event Channel,
ConsumerAdmin Object, and Filter Factory Object” on page 4-12.

C++ code example:

channel _factory->get_event channel (
Tobj _Notification:: DEFAULT _CHANNEL);

Java code example:

channel _factory. get_event_channel (DEFAULT_CHANNEL. val ue);

2-62 Using the CORBA Notification Service

CosNotification Service API

CosNotifyComm::StructuredPushConsumer Interface

Thisinterface is used by event subscriber applications for event delivery. Y ou must
implement this interface so that the Notification Service can invoke on it to deliver
events to subscribers. It has three methods which you have to implement.

The OMG IDL for thisclassis as follows:

Modul e CosNoti f yComm

{
interface StructuredPushConsurmer : NotifyPublish {

voi d push_structured_event(
in CosNotification::StructuredEvent event)
rai ses(CosEvent Conm : Di sconnect ed) ;
voi d di sconnect _structured_push_consumner:
/1 The followi ng operations are inherited.
voi d of fer_change(
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);
b
}; //CosNotifyComm

Using the CORBA Notification Service 2-63

2 CORBA Notification Service API Reference

CosNotifyComm::StructuredPushConsumer::push_structured_event

Synopsis
OMG IDL

Exceptions

Description

Examples

Delivers a structured event.

voi d push_structured_event (
in CosNotification::StructuredEvent event)
rai ses(CosEvent Conm : Di sconnect ed) ;

CosEvent Conm : Disconnected
The subscriber should never raise this exception.

Used when subscribing. This operation isimplemented by the subscriber’ s callback
object and isinvoked by the Natification Service each time a structured event is
delivered. Thisoperation containsasingleinput parameter, which isastructured event.

Note: Thisoperation will not be called in atransaction. Also, when this operationis
called, it must return quickly because the Notification Service might not start
delivering events to other subscribers until this operation returns.

Note: Code examples shown here are abbreviated. For complete code examples, see
“Implementing the CosNotifyComm:: StructuredPushConsumer | nterface” on

page 4-8.
C++ code example:

virtual void push_structured_event (
const CosNotification::StructuredEvent& notification);

/1 Process the event.

}
Java code example:

public void push_structured_event(StructuredEvent notification)

{

/1l Process the event.

}

2-64 Using the CORBA Notification Service

CosNotification Service API

CosNotifyComm::StructuredPushConsumer::
disconnect_structured_push_consumer

Synopsis Never invoked.

OMGIDL void disconnect _structured_push_consuner;

Description This operation is never invoked. The subscriber application must provide a
stubbed-out version of this operation.

Examples C++ code example:

virtual void push_structured_event (
const CosNotification::StructuredEvent& notification);
{

t hrow new CORBA: : NO_| MPLEMENT() ;
}

Java code example:

public void di sconnect_structured_push_consurer ()
{
t hrow new CORBA: : NO_| MPLEMENT() ;

}

Using the CORBA Notification Service 2-65

2 CORBA Notification Service API Reference

CosNotifyComm::StructuredPushConsumer::Offer_change

Synopsis
OMG IDL

Exceptions

Description

Examples

Never invoked.

voi d of fer_change(
in CosNotification::Event TypeSeq added,
in CosNotification::Event TypeSeq renoved)
rai ses (InvalidEvent Type);

CosNot i fyComm : | nval i dEvent Type
The subscriber should never raise this exception.

This operation is never invoked. The subscriber application must provide a
stubbed-out version of this operation.

C++ code example:

virtual void offer_change(
const CosNotification::Event TypeSeq& added,
const CosNotification::Event TypeSeq& renoved)

{
t hr ow CORBA: : NO | MPLEMENT() ;

}

Java code example:

public void offer_change(Event Type[] added, EventType[] renoved)

{
t hrow new NO_| MPLEMENT() ;

}

Exception Minor Codes

This section provides information about the Notification Service exception symbols
and minor codes. The minor codes arein the Tobj _Events.idl and

Tobj _Notification.idl files. Thesefilesarelocated inthet uxdir\incl ude
directory (for Microsoft Windows systems) and t uxdi r /i ncl ude directory (for
UNIX systems).

Table 2-4 and Table 2-5 list the exception symbols and corresponding minor codes for
the Tobj_Events and Tobj_Notification exceptions respectively. CORBA system
events have aminor code field and those minor codes are a so defined in these tables.

2-66 Using the CORBA Notification Service

CosNotification Service API

Note: The exception symbols are organized within the tables by the higher-level
exceptions (CORBA: : | MP_LI M T, CORBA: : CORBA: : BAD_PARAM,
CORBA: : BAD_| NV_ORDER, CORBA: : | N\V_OBHJREF, and
CORBA: : OBJECT_NOT_EXI ST) and listed in aphabetical order.

Table 2-4 Tobj_Events Exception Minor Codes

Exception Symbols Definitions Minor Codes
(Hexadecimal)

CORBA: : | MP_LIM T Exceptions

Tobj _Events:: When posting an event, the user 5455580D

POST_DOVAI N_AND_TYPE_TOO LONG
This exception is raised by:

Tobj _Si npl eEvent s: : Channel : :
push_structured_event

CosNot i f yChannel Adm n: :

St ruct ur edPr oxyPushConsuner: :

push_structured_event

specified adomain name and type
name whose combined length was
greater than 31 characters.

Tobj _Events::
POST_DOVAI N_CONTAI NS_SEPARATOR

This exception israised by:

Tobj _Si npl eEvent s: : Channel : :
push_structured_event

CosNot i f yChannel Adm n: :

St ruct ur edPr oxyPushConsuner : :

push_structured_event

When posting an event, the user 54555802
specified a domain name that
containedthe" . " character.

Tobj _Events:: POST_EMPTY_DOMAI N
This exception is raised by:

Tobj _Si npl eEvent s: : Channel : :
push_structured_event

CosNot i f yChannel Adm n: :

St ruct ur edPr oxyPushConsuner: :

push_structured_event

When posting an event, the user 5455580B
specified an empty domain hame.

Using the CORBA Notification Service ~ 2-67

2

CORBA Notification Service API Reference

Table 2-4 Tobj_ Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Events:: POST_EMPTY_TYPE When posting an event, the user 5455580C
This exception is raised by: specified an empty type name.
m Tobj _Si npl eEvents:: Channel : :
push_structured_event
m CosNoti fyChannel Admi n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: When posting an event, theusertried 54555804
POST_SYSTEM _EVENTS_UNSUPPORTED to post aBEA Tuxedo system event;
This exception is raised by: that is, the domain name is
m Tobj _Si npl eEvents: : Channel : : ’ TNEVT apd the type name starts
push_structured_event withthe". " character.
m CosNoti f yChannel Adm n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: When posting an event, the user 54555803
POST_TYPE_CONTAI NS_SEPARATOR specified atype name that contained
This exception is raised by: the” . ™ character.
m Tobj _Sinpl eEvents: : Channel ::
push_structured_event
m CosNoti fyChannel Admi n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: When posting an event, the user 54555801

POST_UNSUPPORTED PRI ORI TY_VALUE
Thisisexceptionisraised by:

m Tobj _Sinpl eEvents::

Channel : : push_structured_event
CosNot i f yChannel Admi n: :

St ruct ur edPr oxyPushConsuner : :
push_structured_event

2-68 Using the CORBA Notification Service

addeda" Priority" fieldinthe
variable header. However, the user
did not set thefield'svalueto a
"short" intherange of 1-100.

CosNotification Service API

Table 2-4 Tobj_ Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Events:: When posting an event, theuser put 54555800
POST_UNSUPPORTED_VALUE | N_ANY an unsupported type (for example, a
This exception is raised by: structure, union, sequence, etc.) into
= Tobj Sinpl eEvents: : one of _the"any§' |nthestructured_
Channel : : push_structured_event everr:t f'elq&']l;ll—higgdw?po';ed t]}{g%'s
m CosNoti fyChannel Admi n: : |nt§var| € : ersvaueliea,
. thefilterabledata'svaluefield, or the
St ruct ur edPr oxyPushConsuner : : ind f bodv field
push_structured_event remainder_of_body field.
Tobj _Events:: When subscribing, theuser specified 54555809
SUB_DOMAI N_AND TYPE_TOO LONG adomain name and type name
This exception is raised by: whose combined length is greater
m Tobj _Sinpl eEvents:: Channel :: than 255 characters.
subscri be
m CosNoti f yChannel Admi n: :
St ruct ur edPr oxyPushSupplier::
connect _structured_push_consuner
Tobj _Events:: When subscribing, theuser specified 54555805
SUB_DOMAI N_BEG NS_W TH_SYSEV adomain name that begins with the
This exception israised by: "." character.
m Tobj _Si npl eEvents: : Channel ::
subscri be
m CosNotifyFilter::Filter::
add_constraints
Tobj _Events:: SUB_EMPTY_DOVAI N The user specified an empty domain 54555807

This exception israised by:

m Tobj _Sinpl eEvents:: Channel ::
subscri be

m CosNotifyFilter::Filter::
add_constraints

name when subscribing.

Using the CORBA Notification Service

2-69

2 CORBA Notification Service API Reference

Table 2-4 Tobj_ Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Events:: SUB_EMPTY_TYPE The user specified an empty type 54555808
This exception is raised by: name when subscribing.
m Tobj _Si npl eEvents:: Channel : :
subscri be
m CosNotifyFilter::Filter::
add_constraints
Tobj _Events:: SUB_FI LTER TOO LONG The user specified a data filter 5455580A
This exception is raised by: expression longer than 255
m Tobj _Si npl eEvents:: Channel : : characters.
subscri be
m CosNotifyFilter::Filter::
add_constraints
Tobj _Event s:: SUB_NAME_TO_LONG When subscribing, the user specified 5455580E
This exception is raised by: asubscription name longer than 127
m Tobj _Si npl eEvents:: Channel :: characters.
push_structured_event
m CosNoti fyChannel Admi n: :
St ruct ur edPr oxyPushConsuner : :
push_structured_event
Tobj _Events:: The user tried to create apersistent 54555806

TRANSI ENT_ONLY_CONFI GURATI ON

This exception israised by:

m Tobj _Si npl eEvents:: Channel : :
subscri be

m CosNoti f yChannel Adm n: :
St ruct ur edPr oxyPushSupplier::

connect _structured_push_consuner

subscription, but the system was
configured to support transient
subscriptions only.

CORBA: : BAD_PARAM Except i ons

2-70 Using the CORBA Notification Service

CosNotification Service API

Table 2-4 Tobj_ Events Exception Minor Codes (Continued)

Exception Symbols

Definitions

Minor Codes

(Hexadecimal)

Tobj _Event s: : | NVALI D_CHANNEL_I D When looking up the channel using 54555813
This exception is raised by: the Simple Events AP, the user
m Tobj _Si npl eEvent s: : Channel Fact ory §peuﬂedanmvaMc_hannel ID, that
- find channel is, achannel ID that is not
- Tobj _Si npl eEvent s: :
DEFAULT_CHANNEL.
Tobj _Events:: When unsubscribing using the 54555812
I NVALI D_SUBSCRI PTI ON_I D Simple Events API, the user
This exception is raised by: specified aninvalid subscription ID,
m Tobj _Sinpl eEvents:: Channel :: that is, z-mon.-emstent o_rq
unsubscri be CosNotification subscription ID.
m CosNotif yChannel Adni n: : When looking up a subscription
Consurmer Adni n: : get _pr oxy using the CosNotification Service
suppl i er B B API, the user specified an invalid
s Tobj Sinpl eEvents: : subscription ID, that is, a
Channel - - exists non-existent or aSimple Events AP
subscription 1D.
When calingtheexi st s operation
using the BEA Simple Events API,
the user passed in a CosNoatification
subscri ption_id.
Tobj _Events:: When subscribing, theuser specified 54555810

SUB_| NVALI D _FI LTER_EXPRESSI ON

This exception is raised by:

m Tobj _Sinpl eEvents:: Channel ::
subscri be

m CosNotifyFilter::Filter::
add_constraints

an invalid datafilter expression.
This either means that thereisa
syntax error in the expression or that
one of the field namesin the
expressionisnot defined asan FML
field.

Check that you have correctly
created FML field tablesthat contain
al fields that you want to datafilter
on, and check that the UBBCONFI G
fileisproperly configured so that the
field table files can be found.

Using the CORBA Notification Service

2-71

2

CORBA Notification Service API Reference

Table 2-4 Tobj_ Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Events:: 54555811

SUB_UNSUPPORTED_QOS_VALUE

This exception israised by:

m Tobj _Si npl eEvents:: Channel : :
subscri be

m CosNoti f yChannel Adm n: :
Struct uredProxyPushSupplier::
set_qgos

2-72 Using the CORBA Notification Service

When subscribing, the user specified an invalid subscription
quality of service.

For the Simple Events API, this means that the quality of
service specified did not meet one of the following
requirements:

The sequence must be of length one.

The name must be Tobj _Si npl eEvent s: :
SUBSCRI PTI ON_TYPE.

The value must be either Tobj _Si npl eEvent s: :
TRANSI ENT_SUBSCRI PTI ONor

Tobj _Si npl eEvents: :

PERS| STENT_SUBSCRI PTI ON.

For the CosNotification Service API, this means that the
quality of service specified did not meet one of thefollowing
requirements:

The quality of service must contain a name/value pair
wherethe nameisTobj _Notification::
SUBSCRI PTI ON_TYPE and the valueis

Tobj _Notification::

TRANSI ENT_SUBSCRI PTI ONor

Tobj _Notification::

PERSI STENT_SUBSCRI PTI ON.

The quality of service may contain a name/val ue pair
where the nameis

Tobj Notification:: SUBSCRI PTI ON_NAME
and the value is a string containing the subscription’s
administrative name.

CosNotification Service API

Table 2-4 Tobj_ Events Exception Minor Codes (Continued)

Exception Symbols

Definitions Minor Codes
(Hexadecimal)

CORBA: : | N\V_OBHJREF

Tobj _Events::

SUB_NI L_CALLBACK_REF

This exception is raised by:

m Tobj _Sinpl eEvents:: Channel ::
subscri be

m CosNoti fyChannel Adm n:
Struct uredPr oxyPushSuppI ier::

connect _structured_push_consurer

When subscribing, theuser specified 54555830
aNIL object reference for the

callback object which receives

events.

Table 2-5 Tobj_Notification Exception Minor Codes

Exception Symbols

Definitions Minor Codes
(Hexadecimal)

CORBA: : | MP_LIM T Exceptions

Tobj _Notification::

SUB_ADD CONS_ON_TI MED_OUT_FI LTER

This exception is raised by:

m CosNotifyFilter::Filter::
add_constraints

A CosNotification subscriber waited 54555858
more than five minutes after creating

afilter tocal add_constraints

onthefilter. Thismeansthat thefilter

has been destroyed (timed out) and

the subscriber must create a new

filter.

Tobj _Notification::

SUB_ADD_CONS_TO ADDED_FI LTER

This exception is raised by:

m CosNotifyFilter::Filter::
add_constraints

A CosNotification subscriber called ~ 5455585E
add_constrai nt s onafilter that
had already been added to a proxy.

Using the CORBA Notification Service ~ 2-73

2 CORBA Notification Service API Reference

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)

Tobj _Notification:: After creating afilter and calling 5455585D

SUB_ADDED_TI MED_QUT_FI LTER "add_congtraints’ oniit, a

This exception is raised by: CosNotification subscriber waited

. . more than five minutesto call
m CosNoti f yChannel Adm n: : . .
St ruct ur edPr oxyPushSupplier:: add_fi I.ter toaddtheﬁlt_er tothe
add filter proxy. This means that the filter has
- been destroyed (timed out) and that
the subscriber must create a new

filter.

Tobj _Notification:: A CosNotification subscriber called 54555852
SUB_ADD FI LTER AFTER CONNECT add_fil t er after connectingtothe
This exception israised by: proxy.
m CosNoti f yChannel Adm n: :

St ruct ur edPr oxyPushSupplier::

add_filter
Tobj _Notification:: A CosNotification subscriber called 54555856
SUB_CANT_SET_QOS_AFTER_CONNECT set _qos after connecting to the
This exception israised by: proxy.
m CosNotifyChannel Admin:: Structured

Pr oxyPushSuppl i er:: set_qos
Tobj _Notification:: A CosNotification subscriber called 54555859
SUB_MULTI PLE_CALLS TO ADD_CONS add_const r ai nt s morethanonce
This exception is raised by: on afilter.
m CosNotifyFilter::Filter::

add_constraints
Tobj _Notification:: A CosNotification subscriber called 54555851
SUB_MJLTI PLE_CALLS TO SET_FILTER add _filter morethanonceona
This exception israised by: proxy.

m CosNoti f yChannel Adm n: :
Struct uredPr oxyPushSupplier::
add_filter

2-74 Using the CORBA Notification Service

CosNotification Service API

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Notification:: A CosNotification subscriber called 54555855
SUB_MULTI PLE_CALLS_TO SET_QOS set _gos morethan onceon aproxy.
This exception is raised by:
m CosNoti fyChannel Admi n: :
St ruct ur edPr oxyPushSupplier::
set _qos
Tobj _Notification:: When a CosNotification subscriber 5455585A
SUB_MULTI PLE_CONSTRAI NTS I N_LI ST cdledadd_constrai ntsona
This exception is raised by: filter, the subscriber passed in alist of
m CosNotifyFilter::Filter:: _constralnt_sthat had mgrethan one
. item; that is, the subscriber wastrying
add_constraints
- tosendin alist of datafiltersinstead
of one datafilter.
Tobj _Notification:: When a CosNoatification subscriber 5455585B
SUB_MULTI PLE_TYPES_| N_CONSTRAI NT calledadd _constrai ntsona
This exception is raised by: filter, the subscriber passed on a
m CosNotifyFilter::Filter:: constr_alnt that had mc_)rethan one
. domain/type set; that is, the
add_constraints
- subscriber wastrying to send in alist
of desired event types instead of one
event type.
Tobj _Notification:: A CosNotification subscriber passed 54555853

SUB_NI L_FI LTER_REF
This exception is raised by:
m CosNoti f yChannel Admi n: :

St ruct ur edPr oxyPushSupplier::
add_filter

aNIL filter object reference into
add filter.

Using the CORBA Notification Service

2-75

2

CORBA Notification Service API Reference

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Notification:: A CosNoatification subscriber passed 54555854
SUB_NO _CUSTOM FI LTERS afilter object that was not created by
This exception is raised by: the default filter factory into
. . add_fil ter.Forexample a
m CosNoti f yChannel Adm n: : = . ’
St ruct ur edPr oxyPushSupplier:: _CosNotlflcatlon subscriber
add filter implemented the
- CosNotifyFilter::Filter
interfaceto do somekind of "custom"
filtering and passed one of thosefilter
objectsintoadd_filter.
Tobj _Notification:: A CosNotification subscriber did not 54555850
SUB_SET_FI LTER_NOT_CALLED cal add_filter tothe proxy
This exception is raised by: before connecting to the proxy.
m CosNoti f yChannel Adm n: :
St ruct ur edPr oxyPushSupplier::
connect _structured_push_
consumner
Tobj _Notification:: A CosNotification subscriber did not 54555857
SUB_SET_QOS_NOT_CALLED cal add_filter tothe proxy
This exception is raised by: before connecting to the proxy.
m CosNoti fyChannel Admi n: :
Struct uredProxyPushSupplier::
connect _structured_push_
consumer
Tobj _Notification:: A CosNotification subscriber passed ~ 5455585C

SUB_SYSTEM EVENTS_UNSUPPORTED
This exception is raised by:

2-76

CosNot i f yChannel Admi n: :

Struct uredProxyPushSupplier::

set _qos

inadomain name of " TMEVT" and a
type name that beginswith " . " ; that
is, the CosNotification subscriber was
trying to subscribe to Tuxedo system
events. Thisis not supported. It is
only supported by the Simple Events
API.

Using the CORBA Noatification Service

CosNotification Service API

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Tobj _Notification:: When creating a proxy, a 5455585F
SUB_UNSUPPORTED_CLI ENT_TYPE CosNotification subscriber or poster
Thisis exception raised by: passed in aclient type other than
= Consuner Adni n: - CosNot i f yChannel Admi n: : ST
obtain_notification_push_ RUCTURED_EVENT.
suppl i er
m SupplierAdnmn::
obtain_notification_push_
consumer
CORBA: : OBJECT_NOT_EXI ST Exception
Tobj _Notification:: A CosNotification subscriber calleda 54555880

SUBSCRI PTI ON_DOESNT_EXI ST
This exception israised by:

m StructuredProxyPushSupplier::
add_filter

m StructuredProxyPushSupplier::
set_qos

m StructuredProxyPushSupplier::
connect _structured_push_
consumner

m StructuredProxyPushSupplier::
di sconnect _structured_push_
supplier

Note: connect_structured_push_

consumner canraisethisexceptionsince
auser can create the proxy, then use the

nt sadni n utility to deletethe
subscription, and then call

connect _structured_push_

consuner on the proxy.

method on a proxy that had already
been destroyed. The proxy has been
destroyed by one of the following
actions:

m The CosNoatification subscriber
disconnected the proxy.

m The CosNoatification subscriber
waited more than five minutes
from creating the proxy to
connecting it; that is, it took
longer than five minutes to
compl ete the subscription.

m Theadministrator used the
nt sadm n utility to destroy the
subscription.

Using the CORBA Notification Service

2-77

2 CORBA Notification Service API Reference

2-78 Using the CORBA Notification Service

CHAPTER

3 Using the BEA Simple
Events API

This chapter describes the development steps required to create Notification Service
applications using the BEA Simple Events API and the C++ and Java programming
languages.

This topic includes the following sections:

m Development Process

m Step 1: Writing an Application to Post Events

m Step 2: Writing an Application to Subscribe to Events

m Step 3: Compiling and Running Notification Service Applications

Development Process

Table 3-1 outlines the development process for creating Notification Service
applications.

Table 3-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

Using the CORBA Notification Service 31

Using the BEA Simple Events API

Table 3-1 Development Process (Continued)

Step Description

3 Writing an application that subscribes to events

4 Compiling a Notification Service application

These steps are explained in detail in subsequent topics.

Designing Events

The design of eventsis basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service aswell. Therefore, careful
planning should be done to ensure that your Notification Service will be ableto handle
your needs now and allow for future growth. For adiscussion of event design, see
“Designing Events’ on page 2-7.

Step 1: Writing an Application to Post Events

32

The following types of CORBA applications can post events:

Note: BEA Tuxedo 8.0 supports Javaclients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebL ogic Enterprise product, however, that
support was removed when BEA WebL ogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

m C++clients, joint client/servers and servers.
m Javaclientsand joint client/servers.

m Foreign ORB clients.

Using the CORBA Noatification Service

Step 1: Writing an Application to Post Events

To post events, an application must, at aminimum, implement the following functions:

m Get the event channel factory object reference and use it to get the event
channel.

m Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must first get the event channel.

This development step isillustrated in Listing 3-1. Listing 3-1 is based on the
Notification Service sample applications that use the BEA Simple Events API.

To get the event channel factory object reference, the
resol ve_i ni tial _references methodisinvoked on the Bootstrap object using the
" Tobj _Si npl eEvent sSer vi ce" environmental object. The object referenceis used
to get the channel factory, whichisin turnisused to get the event channel. Listing 3-1
and Listing 3-2 show code examplesin C++ and Java.

Listing 3-1 Getting the Event Channel (C++)

/1 Get the Sinple Events channel factory object reference
CORBA: : Ooj ect _var channel _factory_oref =
boot strap.resol ve_initial _references(
"Tobj _Si npl eEvent sServi ce");

Tobj _Si npl eEvent s: : Channel Factory_var channel factory =
Tobj _Si npl eEvent s: : Channel Fact ory: : _narrow(
channel _factory_oref.in());

/] Use the channel factory to get the default channel
Tobj _Si npl eEvent s: : Channel _var channel =
channel _factory->find_channel (
Tobj _Si npl eEvent s: : DEFAULT_CHANNEL) ;

Using the CORBA Notification Service 3-3

3 Using the BEA Simple Events API

Listing 3-2 Getting the Event Channel (Java)

/1 Get the Sinple Event channel factory object reference.
org. ong. CORBA. Obj ect channel _factory_oref =
boot strap.resol ve_initial _references(
"Tobj _Si npl eEvent sServi ce");

/1 Use the channel factory to get the default channel.
Channel Factory channel _factory =
Channel Fact or yHel per. narrow(channel _factory_oref);

Channel channel =
channel _factory.find_channel (DEFAULT_CHANNEL. val ue) ;

Creating and Posting Events

Before an event can be posted, it must be created. The following listings are based on
the Notification Service sample applications.

Listing 3-3 and Listing 3-4 show how thisisimplemented in C++ and Java
respectively. To report news to the events channel, this application executes the
following steps:

1. Createsan event and setsthe domain name and type name. In the code samples, the
domain nameis set to “News’ and the event type is set to “ Sports”.

2. Addsafield to the event’sfilterable data to contain the story, sets the name of the
added field to “Story”, and the value of the field to a string containing the story.

3. Usesthepush_structured_event operation to post the event to the
Notification Service.

Listing 3-3 Creating and Posting the Event (C++)

/1l Create an event.
CosNotification::StructuredEvent notification;

/1 Set the domain to "News".
notification. header. fixed _header.event _type. domai n_nane =
CORBA: : string_dup("News");

34 Using the CORBA Noatification Service

Step 1: Writing an Application to Post Events

/] Set the type to the news category.
notification. header.fixed_header. event_type.type_nanme =
CORBA: : string_dup(“Sports”);

// Add one field, which will contain the story, to the
/1 event's filterable data. Set the field s nanme to
[/ "Story" and value to a string containing the story.
notification.filterable_data.length(1l);
notification.filterable data[0].name =

CORBA: : string_dup("Story");
notification.filterable_data[0].value <<= “John Smth w ns again”;

/1 Post the event.

/1l Subscribers who subscribed to events whose domain is
/1 "News" and whose type matches the news category will
/1 receive this event

channel - >push_structured_event (notification);

Listing 3-4 Creating and Posting the Event (Java)

/] Create an event.

StructuredEvent notification = new StructuredEvent();

/!l Create the sub structures for the header.

notification. header = new Event Header ();

notification. header.fixed_header = new Fi xedEvent Header ();
notification. header.fi xed_header. event_type = new Event Type();

/1 Set the domain to "News".
notification. header.fixed_header. event type.donmai n_nanme = "News";

/] Set the type to the news category.
notification. header.fixed_header.event_type.type_name = “Sports”;

/1 Set the event nane to an enpty string since this sanple

/1 doesn't use it.
notification. header.fi xed_header. event _nanme = "";

/1 Enpty the variabl e header since this sanple doesn't use it.
notification. header.variabl e_header = new Property[0];

/1 Add one field, which will contain the story, to the
/1 event's filterable data. Set the field s nanme to

/1 "Story" and value to a string containing the story.
notification.filterable_data = new Property[1];
notification.filterable_data[0] = new Property();
notification.filterable_data[0].name = "Story";

Using the CORBA Notification Service 35

3 Using the BEA Simple Events API

notification.filterable data[0].value = orb.create_any();
notification.filterable_data[0].value.insert_string(John Smith
wins again”);

/1 Set the remainder of body to a new (enpty) any since this
/1 sanple doesn't use the renai nder of body.
noti fication.renai nder_of _body = orb. create_any();

// Post the event.
channel . push_structured_event (notification);

Step 2: Writing an Application to Subscribe
to Events

The following types of CORBA applications can subscribe to events:

Note: BEA Tuxedo 8.0 supports Javaclients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebL ogic Enterprise product, however, that
support was removed when BEA WebL ogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

m C++joint client/servers and servers.
m Javajoint client/servers.
m Foreign ORB clients.

To subscribe to events, an application must, at a minimum, implement the following
functions:

m Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_event operation.

m Get the event channel factory object reference and use it to get the event
channel.

m Define and create a subscription that includes the callback object reference.

3-6 Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

m Create acallback object that implements the
CosNotifyComm:: StructuredPushConsumer interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback object to receive events, it must implement the
CosNotifyComm:: StructuredPushConsumer interface that supports the

push_st ruct ured_event operation. When an event occurs that has a matching
subscription, the Notification Service invokes this operation on the callback object to
push the event to the subscriber application.

The CosNotifyComm:: StructuredPushConsumer interface al so defines the operations
of f er _change and di sconnect _struct ured_push_consuner . The Notification
Service never invokes these operations, so you should implement stubbed out versions
that throw CORBA: : NO | MPLEMENT.

Listing 3-5 and Listing 3-6 show how thisinterface isimplemented in C++.

Listing 3-5 Sample CosNotifyComm:: StructuredPushConsumer Interface
Implementation (NewsConsumer_i.h)

#i fndef _news_consuner_i _h
#define _news_consuner_i _h

#i ncl ude "CosNoti fyComm s. h"

/1 For the servant class to receive news events,
/1 it must inplenent the CosNotifyComm : StructuredPushConsumner
/1 idl interface.

cl ass NewsConsumer i : public
POA CosNot i f yComm : St ruct ur edPushConsuner

public:
/1 This method will be called when a news event occurs.

virtual void push_structured_event(
const CosNotification::StructuredEvent& notification

);

Using the CORBA Notification Service 3-7

3 Using the BEA Simple Events API

/1 OM5 s CosNotifyConm : StructuredPushConsuner id

I/ interface defines the nethods "of fer_change" and

[/ "di sconnect_structured_push_consurmer”. Since the

/1 Notification Service never invokes these nethods, just
/1 have themthrow a CORBA:: NO_ | MPLEMENT exception

virtual void of fer_change(
const CosNotification::Event TypeSeq& added
const CosNotification::Event TypeSeg& renoved)

{
t hr ow CORBA: : NO_| MPLEMENT()

}

virtual void disconnect_structured_push_consuner()
t hr ow CORBA: : NO_| MPLEMENT()

}
}s
#endi f

Listing 3-6 Sample CosNotifyComm::StructuredPushConsumer | nterface
Implementation (NewsConsumer_i.cpp)

#i ncl ude " NewsConsuner _i.h"
#i ncl ude <i ostream h>

/1 Subscriber.cpp creates a sinple events subscription to "News"
/1 events and has the events delivered to a NewsConsuner _i

/1 object. Wien a news event occurs (this happens when a user

/1 runs the Reporter application and reports a news story), this
/1 method will be invoked

voi d NewsConsuner _i:: push_structured_event (
const CosNotification::StructuredEvent& notification)

/1 Extract the story fromthe first field in the event’s
/Il filterable data

char* story;

notification.filterable_data[0].value >>= story;

/1 For coding sinplicity, assunme "story" is not "null".

/1 Print out the event.
cout

3-8 Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

<< end
<< "Category : "
<< notification. header.fixed_header
event type.type_nane.in()
<< endl
<< "Story "
<< story
<< endl;

Listing 3-7 shows how thisinterface is implemented in Java.

Listing 3-7 Sample CosNotifyComm:: StructuredPushConsumer Interface
Implementation (NewsConsumer_i.java)

i mport org.ong. CosNotification.*;
i mport org.ong. CosNoti f yComm *;
i mport org. ong. CORBA. *

/1 The servant class to receive news events.
/1 1t must inplenment the CosNotifyComm : StructuredPushConsurer id
/1l interface

public class NewsConsumer i extends
_StructuredPushConsuner | npl Base

/1 Subscriber.java creates a sinple events subscription to "News"
/1 events and has the events delivered to a NewsConsuner _i object.
/1 When a news event occurs (this happens when a user runs the

/1 Reporter application and reports a news story), this nethod wll
/1 be invoked

public void push_structured_event (StructuredEvent notification)

{
/1 For coding sinplicity, assune that:
/1 notification. header.fixed_header.event_type.domai n_nanme is
/1 " News"
/1 notification.header.fixed_header.event_type.type_nane is the
/1l news category
/1 notification.filterable data.length is 1
// notification.filterable_data[0].nane is "Story"
/1 notification.filterable_data[0].value contains the story (as
/1 a string).

Using the CORBA Notification Service 39

3 Using the BEA Simple Events API

/1l Extract the story fromthe first field in the event’s
/1 filterable data.
/1 For coding sinplicity, do not handle errors indicating that the
/1 field does not contain a string.
String story =
notification.filterable_data[O0].value.extract_string();

/1 Print out the event.
Systemout.printIn("-------cmmmm e ");
Systemout.println("Category : " +

notification. header. fixed _header. event _type.type _nane);

System out. println(
"Story "+ story);

/1 At this point, the main has called the "wait_for_shutdown"
/1 method on the shutdown object. That method bl ocks until

/1 the "shutdown" method on the shutdown nmanager is call ed.
/1 Call "shutdown" on the shutdown manager. This will cause
/1 "wait_for_shutdown" to return. Afterwards, the main will
/1 shutdown the application.

m_shut down_nmanager . shut down() ;

}
/1 OM5 s CosNotifyComm : StructuredPushConsuner idl
/1 interface defines the nethods "of fer_change" and
/1 "disconnect _structured_push_consuner”. Since the
/1 notification service never invokes these nethods, just
/1 have themthrow a CORBA:: NO_| MPLEMENT excepti on

public void disconnect_structured_push_consuner ()

{

}

public void offer_change(Event Type[] added, EventType[] renoved)

{
t hr ow new NO | MPLEMENT() ;

}

t hr ow new NO | MPLEMENT() ;

Getting the Event Channel

This step is the same for event posters and event subscribers. For a discussion of this
step, see” Implementing the CosNotifyComm:: StructuredPushConsumer Interface” on
page 3-7.

3-10 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

Creating a Callback Object

To receive events, the application must also be a server; that is, the application must
implement a callback object that can be invoked (called back) when an event occurs
that matches the subscriber’ s subscription.

Creating a callback object includes the following steps:

Note: Thefollowing stepsapply to aBEA Tuxedo CORBA joint client/server. BEA
Tuxedo CORBA servers can also subscribe to events.

1. Create acallback object. Callback objects can be implemented using either the
BEAWrapper Callback API or the CORBA Portable Object Adaptor (POA).

2. Create the servant.
3. Create an object reference to the callback servant.

For acomplete description of the BEAWrapper Callbacks object and its methods, see
the Joint Client/Servers chapter in the CORBA Programming Reference.

Note: Using the BEAWrapper Callback object to create a callback object is
discussed below. For adiscussion of how to implement acallback object using
the POA, see Using CORBA Server-to-Server Communication.

Listing 3-8 and Listing 3-9 show how to use the BEAWrapper Callbacks object to
create a callback object in C++ and Java respectively. In the code examples, the
News Consumnber _i servant iscreatedandthestart transi ent methodisusedto
create atransient object reference.

Listing 3-8 Sample Codefor Creating a Callback Object With Transient Object
Reference (Introductory Application Subscriber.cpp)

/] Create a callback wapper object since this client needs to
/'l support call backs.

BEAW apper: : Cal | backs wrapper(orb.in());
News Consuner _i * news_consumner _i npl = new NewsConsuner i ;

CORBA: : (bj ect _var news_consuner _oref =
wr apper.start_transient(
news_consuner _i npl,

Using the CORBA Notification Service 3-11

3 Using the BEA Simple Events API

CosNoti fyConm : _tc_StructuredPushConsuner->i d()
)

CosNot i f yConm : St ruct ur edPushConsuner _var
news_consuner =
CosNot i fyConm : St ruct uredPushConsuner:: _narr ow
news_consuner _oref.in()

);

Listing3-9 Sample Codefor Creating a Callback Object With Transient Object
Reference (Introductory Application Subscriber .java)

/1 Create a callback wapper object since this client needs to
/'l support call backs.

Cal | backs cal | backs = new Cal | backs(orb);

/1 Instantiate the servant that receives the events.
NewsConsuner i news_consuner _i npl =
new NewsConsuner i ;

/] Create a transient object reference to the callback servant.
cal | backs. start _transient(
news_consuner _i npl,
news_consuner _inmpl. _ids()[0]

)

Creating a Subscription

312

In order for the subscriber to receive events, it must subscribe to the Notification
Service. You can create either atransient subscription or a persistent subscription.

Listing 3-10 and Listing 3-11, which are from the Introductory sample application,
show how to create atransient subscription in C++ and Java respectively.

The following steps must be performed:

1. Set the subscription’s quality of service (Qo0S) to either transient or persistent.

2. Determinethesubscri pti on_nane (optional), domai n_nane, t ype_nane, and
data_filter (optional).

Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

3. Create the subscription. The subscription setsthe domai n_nane, t ype_nane, and
data_filter (optional), the Quality of Service (Qo0S), and supplies the object
reference to the subscriber’s callback object to the Notification Service.

Listing 3-10 Creating a Transient Subscription (C++)

/] Set the quality of service to TRANSI ENT.
CosNot i fication:: QSProperties qos;
gos. length(1);
gos[0] . nane =
CORBA: : st ring_dup(Tobj _Si npl eEvent s: : SUBSCRI PTI ON_TYPE) ;
gos[0] . val ue <<=
Tobj _Si npl eEvent s: : TRANSI ENT_SUBSCRI PTI ON;

/] Set the type to the news category.
const char* type = “Sports”;
/] Create the subscription. Set the domain to "News" and
// the data filter to age greater than 30.
Tobj _Si npl eEvent s: : Subscri ptionl D subscription_id =
channel - >subscri be(
subscri pti on_nane,
"News", // domain
“Sports”, /Il type
"Age > 30", // Data filter.
gos,
news_consuner.in()

)

Listing 3-11 Creating a Transient Subscription (Java)

/1 Set the quality of service to TRANSI ENT.

Property qos[] = new Property[1];

gos[0] = new Property();

gos[0] . nane = SUBSCRI PTI ON_TYPE. val ue;

gos[0] .value = orb.create_any();

gos[0] . val ue.insert_short (TRANSI ENT_SUBSCRI PTI ON. val ue);

/] Set the type to the news category.
String type = "Sports”;

/] Create the subscription. Set the domain to "News" and
// the data filter to age greater than 30.
int subscription_id = channel . subscri be(

Using the CORBA Notification Service 3-13

3 Using the BEA Simple Events API

subscri pti on_nane,
"News", // domain

“Sports”, /'l type
"Age > 30", // data filter.
qos,

news_consuner _i npl

Note: When you use datafiltering, you must also perform some configuration tasks.
For adiscussion of datafiltering configuration requirements, see* Configuring
Data Filters” on page 7-23.

Listing 3-12 and Listing 3-13, which show code in the Advanced sample application
in C++ and Java, illustrates the coding steps required to create a persistent subscription
to the Natification Service. The steps required to create a persistent subscription are

the same as those required to create a transient subscription, as described previously.

Note: While the code examples shown here assume that the news_consurer
callback object has a persistent object reference, you can also create persistent
subscriptions with transient callback object references. For a discussion of
transient versus persistent callback object references, see Table 2-3.

3-14 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing 3-12 Creating a Persistent Subscription (Advanced Subscriber.cpp)

CosNot i fication:: QSProperties qos;
gos. length(1);
gos[0] . nane =
CORBA: : st ring_dup(Tobj _Si npl eEvent s: : SUBSCRI PTI ON_TYPE) ;
gos[0] . val ue <<= Tobj _Si npl eEvent s: : PERSI STENT_SUBSCRI PTI ON,;

CosNot i fyComm : St ruct ur edPushConsuner _var
news_consuner =
CosNot i f yComm : St ruct ur edPushConsuner : : _narr ow(
news_consuner _oref.in()

);

Tobj _Si npl eEvent s: : Subscriptionl D sub_id =
channel - >subscri be(
subscri ption_info. subscription_nane(),
"News", // donain
“Sports”, // type
/1 No data filter.
qos,
news_consuner.in()

Listing 3-13 Creating a Persistent Subscription (Advanced Subscriber.java)

Property qos[] = new Property[1];

gos[0] = new Property();

gos[0] . name = SUBSCRI PTI ON_TYPE. val ue;

gos[0] .value = orb.create_any();

gos[0] . val ue. i nsert_short (PERSI STENT_SUBSCRI PTI ON. val ue) ;

int sub_id =
channel . subscri be(
subscription_info. subscription_nane(),
"News", // domain
“Sports”, /Il type
/1 No data filter.
qos,
m_news_consuner _i npl

)ill

Using the CORBA Notification Service ~ 3-15

3 Using the BEA Simple Events API

Threading Considerations for C++ Joint Client/Server Applications

3-16

A joint client/server application may first function as a client application and then
switch to functioning as a server application. To do this, the joint client/server
application turns complete control of the thread to the Object Request Broker (ORB)
by making the following invocation:

orb -> run();

If amethod in the server portion of ajoint client/server application invokes

ORB: : shut down() , all server activity stops and controal is returned to the statement
after ORB: : run() isinvokedinthe server portion of thejoint client/server application.
Only under this condition does control return to the client functionality of the joint
client/server application.

Since aclient application has only a single thread, the client functionality of the joint
client/server application must share the central processing unit (CPU) with the server
functionality of the joint client/server application. This sharing is accomplished by
occasionally checking with the ORB to seeiif the joint client/server application has
server application work to perform. Use the following code to perform the check with
the ORB:

if (orb->work_pending()) orb->performwork();

After the ORB compl etes the server application work, the ORB returns to the joint
client/server application, which then performs client application functions. The joint
client/server application must remember to occasionally check with the ORB;
otherwise, the joint client/server application will never process any invocations.

Y ou should be aware that the ORB cannot service callbacks while the joint
client/server application is blocking on arequest. If ajoint client/server application
invokesan object in another BEA Tuxedo CORBA server application, the ORB blocks
while it waits for the response. While the ORB is blocking, it cannot service any
callbacks, so the callbacks are queued until the request is compl eted.

Using the CORBA Noatification Service

Step 3: Compiling and Running Notification Service Applications

Step 3: Compiling and Running Notification
Service Applications

Thefinal step in the development of a Notification Service application isto compile,
build, and run the application. To do this, you need to perform the following steps.

1. Generatetherequired client stub and skel eton filesto define interfaces between the
Notification Service and event poster and subscriber applications. Event poster
applications can be clients, joint client/servers, or servers. Event subscriber
applications can be joint client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.
3. Build the application.
4. Run the application.

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must executethei di command for
each of the Notification IDL filesthat your application uses. Table 3-2 showsthe i dl
commands used for each type of subscriber.

Table 3-2 idl Command Requirements

Language BEA Tuxedo CORBA Joint BEA Tuxedo CORBA Server

Client/Server
C++ idl -P idl
Java iditojava Not supported in BEA Tuxedo 8.0 and

|ater

Thefollowing is an example of ani dI command:

>idl -1C\tuxdir\include C:\tuxdir\include\CosEvent Comm i dl

Using the CORBA Notification Service ~ 3-17

3 Using the BEA Simple Events API

Table 3-3liststhe IDL filesrequired by each type of Notification Service application
that uses the BEA Simple Events Interface.

Table 3-3 IDL Files Required by Notification Service Applications
Required OMG IDL Files

Application Type

Event poster (can be aclient, ajoint client/server,or CosEvent Conm i dl
aserver). (Stubs arerequired for al files.) CosNot i fication.idl
CosNot i f yComm i dl
Tobj _Events.idl
Tobj _Si npl eEvents. i dl

Subscriber (can be aserver or ajoint client/server). CosEvent Conm i dl
(Stubs are required for all files. Skeletonisrequired CosNoti fi cati on.idl
for the CosNot i f yComm i dI file) CosNot i fyConmi dI
Tobj _Events.idl
Tobj _Si npl eEvents. i dl

Building and Running Applications

The build procedure differs depending on the type of Naotification Service application
you are building. Table 3-4 provides an overview of the commands and types of files
used to build each type of the Natification Service application.

Table 3-4 Application Build Requirements

Application Type Client

Joint Client/Server

Server

C++ Events Poster Usethe

bui | dobj cl i ent
command to compilethe
application files and the

Usethebui | dobj cl i ent
command with the - P option
to compile the application
filesand the IDL stubs.

Usethe

bui | dobj server
command to compile the
application files and the

IDL stubs. IDL client stubs.
C++ Events Not applicable. Usethebui | dobj cl i ent Usethe
Subscriber command with the- P option bui | dobj server

to compile the application
files, the IDL stubs, the IDL
skeletons, and link with the
BEAWrapper library.

3-18 Using the CORBA Notification Service

command to compile the
application files, the IDL
stubs, and the IDL
skeletons.

Step 3: Compiling and Running Notification Service Applications

Table 3-4 Application Build Requirements (Continued)

Application Type Client Joint Client/Server Server

Java Events Poster Usethej avac Usethej avac commandto Not supported in BEA

command to compilethe compilethe application files Tuxedo 8.0 and later.
application filesandthe and the IDL files.
IDL stubs.

Java Events
Subscriber

Not applicable. Usethej avac commandto Not supported in BEA
compilethe application files, Tuxedo 8.0 and later.
the IDL files, and the IDL
skeletons.

Listing 3-14 showsthe commands used for a C++ poster application (Repor t er . cpp)
on aMicrosoft Windows system. To form a C++ executable, thei di command is run
on therequired IDL file and the bui I dobj cl i ent command compilesthe C++ client
application file and the IDL stubs.

Listing 3-14 C++ Reporter Application Build and Run Commands (M icr osoft
Windows)

Run the idl command.

idl -1C\tuxdir\include C \tuxdir\include\CosEvent Conmidl \
C:\tuxdir\include\CosNotification.idl \

C:\tuxdir\include\ CosNotifyComm idl \

C:\tuxdir\include\Tobj Events.idl \

C:\tuxdir\incl ude\ Tobj _Si npl eEvents. i dl

Run the buil dobjclient comand.
buil dobjclient -v -0 subscriber.exe -f
- DW N32
Reporter.cpp
CosEvent Comm c. cpp
CosNotification_c.cpp
CosNot i fyConm c. cpp
Tobj _Events_c.cpp
Tobj _Si npl eEvents_c. cpp \

— - - - - —

Run the application.
is_reporter

Using the CORBA Notification Service 3-19

3 Using the BEA Simple Events API

3-20

Listing 3-15 and Listing 3-16 show the commands used for a C++ subscriber
application (Subscri ber . cpp) on Microsoft Windows and UNIX respectively. To
form a C++ executable, thebui | dobj cl i ent command, with the- P option, compiles
thejoint client/server application files (Subscri ber . cpp and

News Consuner _i . cpp), the IDL stubs, and the IDL skeleton

(CosNot i f yConm s. cpp).

Listing 3-15 C++ Subscriber Application Build and Run Commands (Micr osoft
Windows)

Run the idl conmand.

idl -P -1C\tuxdir\include C\tuxdir\include\ CosEvent Cormidl \
C:\tuxdir\include\CosNotification.idl \

C:\tuxdir\include\ CosNotifyCommidl \

C:\tuxdir\include\Tobj Events.idl \

C:\tuxdir\include\Tobj _Si npl eEvents.idl

Run the buildobjclient conmand.
buil dobjclient -v -P -0 subscriber.exe -f
- DW N32
Subscri ber. cpp
NewsConsuner _i . cpp
CosEvent Comm c. cpp
CosNotification_c.cpp
CosNot i f yComnm c. cpp
CosNot i f yConm s. cpp
Tobj _Events_c. cpp
Tobj _Si npl eEvents_c. cpp \
c:\tuxdir\lib\libbeaw apper.lib \

— - - - - - —

Run the application.
i s_subscri ber

Listing 3-16 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl conmand.

idl -P -1/usr/local/tuxdir/include

/usr/local /tuxdir/include/ CosEvent Conmidl \
/usr/local/tuxdir/include/ CosNotification.idl \
/usr/local /tuxdir/include/ CosNotifyCommidl \

Using the CORBA Noatification Service

Step 3: Compiling and Running Notification Service Applications

/fusr/local /tuxdir/include/ Tobj Events.idl \
[usr/1local /tuxdir/include/ Tobj_Sinpl eEvents.idl

Run the buil dobjclient conmmand.
buil dobjclient -v -P -0 subscriber -f "
Subscri ber. cpp
NewsConsumner _i . cpp
CosEvent Comm c. cpp
CosNotification_c.cpp
CosNoti f yComm c. cpp
CosNoti f yComm_s. cpp
Tobj _Events_c.cpp
Tobj _Si npl eEvents_c. cpp
- | beawr apper

— - - - —

"

Run the application.
i s_subscri ber

Listing 3-17 shows an example of the commands used to link, build, and run remote
Java poster applications.

Listing 3-17 Java Reporter Application Link, Build, and Run Commands

Run the idltojava comuand.

idltojava -1 C \tuxdir\include C \tuxdir\include\ CosEvent Commidl \
C:\tuxdir\include\ CosNotification.idl C\tuxdir\include\CosNotifyCommidl \
C:\tuxdir\include\Tobj _Events.idl C:\tuxdir\include\Tobj_Sinpl eEvents.idl

Conpile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\nBenvobj.jar Reporter.java

Conmbine the java .class files into the java archive (JAR) file.
jar cf reporter.jar Reporter.class org\ong\ CosEvent Conm \
org\ong\ CosNoti fication org\ong\ CosNotifyComm \
com beasys\ Tobj Events com beasys\ Tobj _Si npl eEvents

Run the reporter application.
java - DTOBJADDR=// BEANI E: 2359 -cl asspath \
reporter.jar; C\tuxdir\udataobj\java\jdk\nBenvobj.jar Reporter

Using the CORBA Notification Service ~ 3-21

3 Using the BEA Simple Events API

Listing 3-18 shows an example of the commands used to link, build, and run remote
Java subscriber applications.

Listing 3-18 Java Subscriber Application Link, Build, and Run Commands

Run the idltojava comand.

idltojava -1 C \tuxdir\include C \tuxdir\include\ CosEvent Cormidl \
C:\tuxdir\include\CosNotification.idl C\tuxdir\include\CosNotifyCommidl \
C:\tuxdir\include\Tobj _Events.idl C:\tuxdir\include\Tobj_SinpleEvents.idl

Conpile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\nBenvobj.jar;\
C:\tuxdi r\udat aobj\java\jdk\w eclient.jar Subscriber.java

Conbine the java .class files into the java archive (JAR) file.

jar cf subscriber.jar Subscriber.class NewsConsuner_i.class \
or g\ ong\ CosEvent Comm or g\ ong\ CosNot i fi cati on or g\ ong\ CosNoti f yComm \
com beasys\ Tobj _Events com beasys\ Tobj _Si npl eEvent s

Run the subscriber application.

java - DTOBJADDR=// BEANI E: 2359 -cl asspath \
subscri ber.jar; C\tuxdir\udataobj\java\jdk\nBenvobj.jar;\
C:.\tuxdi r\udat aobj\java\jdk\w eclient.jar Subscriber

Note: Thej ava command linein Listing 3-18 isfor an application that either sets
the port in the application code or promptsthe user to set the port. Y ou canaso
set the port inthej ava command line. Thefollowing isan exampleof aj ava
command line that sets the port number:

java - DTOBJADDR=// BEANI E: 2359 \
- Dor g. ong. cor ba. ORBPor t =port nunber -cl asspath. ..

3-22 Using the CORBA Notification Service

CHAPTER

4 Using the

CosNotification Service
API

This chapter describes the development steps required to create Notification Service
applications using the CosNoatification Service APl and the C++ and Java
programming languages.

This topic includes the following sections:

Development Process

Step 1: Writing an Application to Post Events

Step 2: Writing an Application to Subscribe to Events

Step 3: Compiling and Running Notification Service Applications

Development Process

Table 4-1 outlines the development process for creating Notification Service
applications.

Using the CORBA Notification Service

4 Using the CosNotification Service API

Table 4-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

3 Writing an application that subscribes to events
4 Compiling a Notification Service application

These steps are explained in detail in subsequent topics.

Designing Events

The design of eventsis basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service aswell. Therefore, careful
planning should be done to ensurethat your Notification Service will be ableto handle
your needs now and allow for future growth. For a discussion of event design, see
“Designing Events’ on page 2-7.

Step 1: Writing an Application to Post Events

The following types of CORBA applications can post events:

Note: BEA Tuxedo 8.0 supports Javaclients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebL ogic Enterprise product, however, that
support was removed when BEA WebL ogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

4-2 Using the CORBA Noatification Service

Step 1: Writing an Application to Post Events

m C++clients, joint client/servers and servers.

m Javaclientsand joint client/servers.

m Foreign ORB clients.

To post events, an application must, at aminimum, implement the following functions:

m Get the event channel factory object reference and use it to get the event
channel.

m Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must get the event channel.

This development step isillustrated in Listing 4-1. Listing 4-1 is code from the
Report er . cpp filein the Introductory sample application that uses the
CosNoatification Service API.

To get the event channel factory object reference, the

resol ve_i ni tial _references methodisinvoked on the Bootstrap object using the
"NotificationService" environmenta object. The object reference is used to get
the channel factory, whichis, inturn, is used to get the event channel. Listing 4-1 and
Listing 4-2 show code examplesin C++ and Java.

Listing4-1 Getting the Event Channel (Reporter.cpp)

/1l Get the CosNotification channel factory object reference.
CORBA: : (bj ect _var channel factory oref =
boot strap.resol ve_initial _references(
"NotificationService");

CosNot i f yChannel Admi n: : Event Channel Factory_var
channel _factory =
CosNot i f yChannel Adnmi n: : Event Channel Factory: : _narrow(
channel _factory oref.in());

Using the CORBA Notification Service 4-3

4 Using the CosNotification Service API

/1 use the channel factory to get the default channel
CosNot i f yChannel Adni n: : Event Channel _var channel =
channel _fact ory->get _event _channel (
Tobj _Notification:: DEFAULT _CHANNEL);

Listing 4-2 Getting the Event Channel (Reporter.java)

i mport org.ong. CosNotification.*;//Sone of the CosNotification API.
i mport org.ong. CosNotifyChannel Adm n.*;inport // The rest of the
/1 CosNotification API.

com beasys. Tobj _Notification.*; // Proprietary constants needed

/1 when using the CosNotification API.
i mport com beasys. Tobj . *;
i mport com beasys. *;
i mport org.ongy. CORBA. *;

import java.io.*;

/1 get the CosNotification channel factory object reference

org. ong. CORBA. Obj ect channel _factory_oref =
bootstrap.resolve_initial _references("NotificationService");

Event Channel Factory channel factory =
Event Channel Fact or yHel per. narrow channel _factory_oref);

/1 use the channel factory to get the default channel
Event Channel channel =
channel _factory. get_event _channel (DEFAULT_CHANNEL. val ue);

Creating and Posting Events

4-4

To post events, you must get the SupplierAdmin object, useit to create aproxy, create
the event, and then post the event to the proxy.

Listing 4-3 and Listing 4-4 show how thisisimplemented in C++ and Java
respectively.

Using the CORBA Noatification Service

Step 1: Writing an Application to Post Events

Listing 4-3 Creating and Posting the Event (Reporter.cpp)

/1l Since we are a supplier (that is, we post events),

/1 get the SupplierAdm n object

CosNot i f yChannel Admi n: : Suppl i er Adm n_var supplier_admn =
channel - >defaul t _supplier_adm n();

/1 Use the supplier admin to create a proxy. Events are posted
// to the proxy (unlike the sinple events interface where events
/1 are posted to the channel).
CosNot i f yChannel Adm n:: Proxyl D proxy_id;
CosNot i f yChannel Admi n: : ProxyConsuner _var generi c_proxy_consumer =
suppl i er _adm n->obtai n_notification_push_consuner (
CosNot i f yChannel Adm n: : STRUCTURED EVENT, proxy_id);

CosNot i f yChannel Adm n:: St ruct ur edPr oxyPushConsuner _var
proxy_push_consuner =
CosNot i f yChannel Adm n: : Struct uredProxyPushConsuner:: _narrow(
generi c_proxy_consuner);

/1 Connect to the proxy so that we can post events.
proxy_push_consuner - >connect _struct ured_push_suppl i er (
CosNot i fyConm : StructuredPushSupplier::_nil());

/'l create an event
CosNotification::StructuredEvent notification;

/1 set the donmain to "News"
notification. header.fi xed_header. event_type. domai n_nanme =
CORBA: : string_dup("News");

/] set the type to the news category
notification. header.fi xed_header. event_type.type_nanme =
CORBA: : string_dup(“Sports”);

/1 add one field, which will contain the story, to the
I/l event's filterable data. set the field s name to
/1 "Story" and value to a string containing the story
notification.filterable_data.length(1);
notification.filterable_data[O].nanme =

CORBA: : string_dup("Story");
notification.filterable_data[0].value <<= “John Smth w ns again”;

/1 post the event

/1l Subscribers who subscribed to events whose domain is
/1 "News" and whose type natches the news category wll
/1 receive this event

proxy_push_consuner - >push_structured_event (notification);

Using the CORBA Notification Service 4-5

4 Using the CosNotification Service API

4-6

/| Di sconnect.
proxy_push_consuner - >di sconnect _structured_push_consuner();

Listing 4-4 Creating and Posting the Event (Reporter.java)

/1 since we're a supplier (that is, we post events)
/1 get the supplier adm n object
Suppl i er Admi n supplier_admn =

channel . def aul t _supplier_adm n();

/1 use the supplier admn to create a proxy. Events are posted
/1 to the proxy (unlike the sinple events interface where events
/] are posted to the channel).
I nt Hol der proxy_id = new I ntHol der();
ProxyConsuner generi c_proxy_consuner =
suppl i er _adm n.obtain_notification_push_consuner(
Cl i ent Type. STRUCTURED_EVENT, proxy_id);

m_pr oxy_push_consuner =
St ruct ur edPr oxyPushConsuner Hel per. nar r ow(
generi c_proxy_consuner);

/1 Connect to the proxy so that we can post events.
m_pr oxy_push_consuner. connect _structured_push_supplier(null);

/'l create an event
StructuredEvent notification = new StructuredEvent();
noti fication. header = new Event Header ();

/Il create the sub structures for the header
noti fication. header. fixed_header = new Fi xedEvent Header () ;
notification. header.fixed_header.event_type = new Event Type();

/1 set the domain to "News"
noti fication. header. fixed_header. event _type. domai n_name = "News";

/1 set the type to the news category
noti fication. header.fixed_header. event_type.type_nane = “Sports”;

/1 set the event nane to an enpty string since this sanple
/1 doesn't use it
notification. header.fixed_header.event_nane = "";

/1 enpty the variable header since this sanple doesn't use it
noti fication. header.vari abl e_header = new Property[0];

Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

/1 add one field, which will contain the story, to the

Il event’'s filterable data. set the field s name to

[/ "Story" and value to a string containing the story
notification.filterable data = new Property[1];
notification.filterable_data[0] = new Property();
notification.filterable_data[0].nane = "Story"
notification.filterable data[0].value = orb.create_any()
notification.filterable_data[0].value.insert_string(“John Smith
wi ns again”);

I/ set the renminder of body to a new (enpty) any since this
/1 sanple doesn't use the remai nder of body
notification.remai nder _of _body = orb.create_any();

m_pr oxy_push_consuner. push_structured_event (notification);

/1 di sconnect
proxy_push_consuner. di sconnect _structured_push_consuner();

Step 2: Writing an Application to Subscribe
to Events

The following types of CORBA applications can subscribe to events:

Note: BEA Tuxedo 8.0 supports Javaclients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebL ogic Enterprise product, however, that
support was removed when BEA WebL ogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

m C++joint client/servers and servers.
m Javajoint client/servers.
m Foreign ORB clients that support callbacks.

To subscribe to events, an application must, at a minimum, support the following
functions:

Using the CORBA Notification Service 4-7

Using the CosNotification Service API

m Implement a CosNotifyComm OMG IDL interface that supports the
push_st ruct ured_event operation.

m Get the event channel factory object reference and use it to get the event
channel.

m Define and create a subscription that includes the callback object reference.

m Create a callback object that implementsthe
CosNot i f yConm : St ruct ur edPushConsurrer interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

4-8

In order for the callback servant object to receive events, it must implement the
CosNotifyComm::StructuredPushConsumer interface that supports the
push_struct ured_event operation. When an event occurs that has a matching
subscription, the Notification Service invokes this operation on the servant callback
object in the subscriber application to deliver the event to the subscriber application.

The CosNotifyComm:: StructuredPushConsumer interface al so defines the operations
of f er _change and di sconnect _structured_push_consuner. The Notification
Service never invokes these operations, so you should implement stubbed out versions
that throw CORBA: : NO_| MPLEMENT.

Listing 4-5 and Listing 4-6 show how thisinterface isimplemented in C++.

Listing 4-5 Sample CosNotifyComm::StructuredPushConsumer | nterface
Implementation (NewsConsumer _i.h)

#i f ndef _news_consuner i _h
#define _news_consuner_i_h

#i ncl ude " CosNotifyComm s. h"

/1 For the servant class to receive news events,
/1 it nust inplenent the CosNotifyComm : StructuredPushConsuner
/1 idl interface

cl ass NewsConsuner i : public
POA _CosNoti f yConmm : St ruct ur edPushConsuner

Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

}s

publi c:

/1 this nmethod will be called when a news event occurs

virtual void push_structured_event (
const CosNotification::StructuredEvent& notification

)

/1 OM5 s CosNotifyComm : Struct uredPushConsuner idl

/1 interface defines the nethods "of fer_change" and

/1 "disconnect _structured_push_consuner”. Since the

/1 Notification Service never invokes these nethods, just
/1 have them throw a CORBA:: NO_ | MPLEMENT exception

virtual void offer_change(
const CosNotification::Event TypeSeq& added,
const CosNotification::Event TypeSeq& renoved)

t hr ow CORBA: : NO_| MPLEMENT() ;
}

virtual void disconnect_structured_push_consuner ()

{
}

t hrow CORBA: : NO_| MPLEMENT() ;

#endi f

Using the CORBA Notification Service 4-9

4 Using the CosNotification Service API

Listing4-6 Sample CosNotifyComm::StructuredPushConsumer | nterface
Implementation (NewsConsumer _i.cpp)

#i ncl ude "NewsConsuner _i.h"
#i ncl ude <i ostream h>

/1 Subscriber.cpp creates a sinple events subscription to "News"
/1 events and has the events delivered to a NewsConsuner _i

/1 object. Wien a news event occurs (this happens when a user

/1 runs the Reporter application and reports a news story), this

/1 method will be invoked

voi d NewsConsuner _i:: push_structured_event (
const CosNotification::StructuredEvent& notification)
{

/1 extract the story fromthe first field in the event’s
/1 filterable data

char* story;

notification.filterable_data[O0].value >>= story;

/1 for coding sinplicity, assune "story" is not "null"

/1 print out the event

cout
L e "
<< end
<< "Category : "

<< notification. header.fixed_header.
event _type.type_nane.in()
<< end
<< "Story "
<< story
<< endl;

4-10 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events

Listing 4-7 shows how thisinterface is implemented in Java.

Listing4-7 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.java)

i mport org.ong. CosNotification.*;

i mport org.ongy. CosNotifyComm *;

i mport org.ong. CORBA. *;
e e

/1l The servant class to receive news events.
/1 1t must inplenent the CosNotifyComm : StructuredPushConsuner idl
/1 interface.

public class NewsConsuner _i extends
_Struct uredPushConsuner | npl Base
{

/1 Subscriber.java creates a sinple events subscription to "News"
/'l events and has the events delivered to a NewsConsuner _i object.
/1 \When a news event occurs (this happens when a user runs the

/1 Reporter application and reports a news story), this nethod wll
/1 be invoked:

public void push_structured_event (StructuredEvent notification)

{
/1 For coding sinplicity, assune that:
/1 notification. header.fi xed_header. event _type. donai n_nane is
/1 "News"
/1 notification. header.fixed_header. event_type.type_nane is
/1 t he news category
/1 notification.filterable data.length is 1
/1 notification.filterable_data[0].nane is "Story"
/1 notification.filterable_data[0].value contains the story
/1 (as a string).

/1l Extract the story fromthe first field in

/1 the event’'s filterable data for coding sinplicity, do not

/1 handle errors indicating that the field

/1 does not contain a string.

String story =
notification.filterable_data[0].value.extract_string();

/1 Print out the event.
Systemout.println("----------mcmmmm ");
Systemout.println("Category : " +

noti fication. header. fixed_header. event_type.type_nane

);

Using the CORBA Notification Service 4-11

4 Using the CosNotification Service API

Systemout.printin("Story : " + story
)i

// At this point, the main has called the "wait_for_shutdown"
// nmethod on the shutdown object. That nethod bl ocks until

/1 the "shutdown" method on the shutdown nmanager is call ed.
[/ Call "shutdown" on the shutdown manager. This will cause
/1 "wait_for_shutdown" to return. Afterwards, the main wll
/1 shutdown the application.

m_shut down_nanager . shut down() ;

}

/1 OMG s CosNotifyConm : StructuredPushConsuner idl

/1 interface defines the nethods "of fer_change" and

/1 "disconnect_structured_push_consuner”. Since the

/1 notification service never invokes these nethods, just
/1 have themthrow a CORBA:: NO | MPLEMENT excepti on

public void di sconnect _structured_push_consuner ()

{
t hrow new NO_| MPLEMENT() ;

}

public void offer_change(Event Type[] added, EventType[] renoved)
{

}

t hrow new NO_I MPLEMENT() ;

Getting the Event Channel, ConsumerAdmin Object, and
Filter Factory Object

4-12

Before an application can create a subscription, it must get the event channel and the
ConsumerAdmin and Filter Factory objects. Listing 4-8 and Listing 4-9 show how this
isimplemented in C++ and Java respectively.

To get the event channel factory object reference, the

resol ve_i ni tial _references methodisinvoked onthe Bootstrap object using the
"NotificationService" environmental object. The object reference is used to get

the channel factory, whichis, in turn, used to get the event channel. Finally, the event
channel is used to get the ConsumerAdmin object and the FilterFactory object.

Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

Listing4-8 Getting the Event Channel and Consumer Admin and Filter Factory
Objects (Subscriber.cpp)

/1l Get the CosNotification channel factory object reference.
CORBA: : Ooj ect _var
channel _factory_oref =
boot strap.resolve_initial _references(
"NotificationService");

CosNot i f yChannel Admi n: : Event Channel Fact ory_var
channel _factory =
CosNot i f yChannel Adm n: : Event Channel Factory:: narrow
channel _factory_oref.in());

/1 Use the channel factory to get the default channel.
CosNot i f yChannel Adm n: : Event Channel _var channel =
channel _factory->get _event _channel (
Tobj _Noti fication:: DEFAULT_CHANNEL);

/1 Use the channel to get the consumer admin and the filter factory.
CosNot i f yChannel Admi n:: Consuner Admi n_var consuner_admn =
channel - >def aul t _consuner _admi n() ;

CosNotifyFilter::FilterFactory var filter_factory =
channel ->default _filter_factory();

Using the CORBA Notification Service 4-13

Using the CosNotification Service API

Listing 4-9 Getting the Event Channel (Subscriber .java)

/1 get the CosNotification channel factory object reference
org. ong. CORBA. Obj ect channel _factory_oref =
bootstrap.resolve_initial _references("NotificationService");

Event Channel Factory channel _factory =
Event Channel Fact or yHel per. narrow(channel _factory_oref);

/1 use the channel factory to get the default channel
Event Channel channel =
channel _factory. get_event _channel (DEFAULT_CHANNEL. val ue) ;

/1 use the channel to get the consuner admin and the filter factory
Consuner Adm n consuner _admin =
channel . def aul t _consuner _admi n();

FilterFactory filter_factory =
channel . default_filter_factory();

Creating a Callback Object

4-14

To receive events, the application must also be a server; that is, the application must
implement a callback object that can be invoked (called back) when an event occurs
that matches the subscriber’ s subscription.

Creating a callback aobject includes the following steps:

Note: Thefollowing steps apply to ajoint client/server. BEA Tuxedo CORBA
servers can a so subscribe to events.

1. Creating a callback wrapper object. This can be implemented using either the
BEAWTrapper Callbacks object or the CORBA Portable Object Adaptor (POA).

2. Creating the servant.
3. Creating an object reference to the callback servant.

For acomplete description of the BEAWrapper Callbacks object and its methods, see
the Joint Client/Servers chapter in the CORBA Programming Reference.

Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

Note: Using the BEAWrapper Callback object to create a callback object is
discussed below. For adiscussion of how to implement acallback object using
the POA, see Using CORBA Server-to-Server Communication.

Listing 4-10 and Listing 4-11 show how to use the BEAWrapper Callbacks object to
create a callback object in C++ and Java respectively. In the code examples, the
NewsConsumber i servant iscreatedandthestart _transi ent methodisusedto
create atransient object reference.

Listing4-10 Sample Codefor Creatinga Callback Object with Transient Object
Reference (Introductory Application Subscriber.cpp)

/1l Create a call back wapper object since this client needs to
/'l support call backs
BEAW apper: : Cal | backs wrapper(orb.in());

NewsConsumer _i * news_consumrer _i npl = new NewsConsumer _i;

/] Create a transient object reference to this servant.
CORBA: : (bj ect _var news_consuner _oref =
wr apper. start_transient(
news_consuner _i npl ,
CosNot i fyConm : _tc_StructuredPushConsuner->i d()

)

CosNot i fyComm : St ruct ur edPushConsuner _var
news_consuner =
CosNot i f yConm : St ruct uredPushConsuner:: _narr ow
news_consuner_oref.in());

Using the CORBA Notification Service 4-15

4 Using the CosNotification Service API

Listing4-11 SampleCodefor CreatingaCallback Object With Transient Object
Reference (Introductory Application Subscriber .java)

/1l Create a call back wapper object since this client needs to
/'l support call backs.

Cal | backs cal | backs = new Cal | backs(orb);

11

I nstantiate the servant that receives the events.

NewsConsuner _i news_consuner _i npl =

new NewsConsuner _i (shut down_nanager) ;

/1l Create a transient object reference to the call back servant.
cal | backs. start _transient(

news_consuner _i npl ,
news_consuner _inpl. _ids()[0]

)

Creating a Subscription

4-16

In order for the subscriber to receive events, it must subscribe to the Notification
Service. You can create atransient subscription or a persistent subscription.

To create a subscription, the following steps must be performed:

1

4,
5.

Create a notification proxy push supplier and useit to create a
StructuredProxySupplier object.

Set the subscription’s Quality of Service (QoS). You can set the QoS to transient
or persistent.

Create afilter object and assign the domai n_nane, t ype_nane, and
data_filter (optiona) toit.

Add the filter to the proxy.

Connect to the proxy passing in the subscription’s callback object reference.

Listing 4-12 and Listing 4-13, whichiscode from the I ntroductory sample application,
show how to create atransient subscription in C++ and Java respectively.

Using the CORBA Noatification Service

Step 2: Writing an Application to Subscribe to Events

Listing4-12 Creating a Transient Subscription

/1 Create a new subscription (at this point, it is not conplete).
CosNot i f yChannel Adm n: : Proxyl D subscription_id;
CosNot i f yChannel Adm n: : ProxySupplier_var generic_subscription =
consuner _adm n->obtai n_notification_push_supplier(
CosNot i f yChannel Adm n: : STRUCTURED EVENT,
subscription_id);

CosNot i f yChannel Admi n: : Struct ur edPr oxyPushSuppl i er _var
subscription =
CosNot i f yChannel Admi n: : Struct ur edProxyPushSuppl i er:: _narrow
generi c_subscription);
s_subscription = subscription.in();

/1 Set the quality of service. This sets the subscription nane
[/ and subscription type (=TRANSI ENT).
CosNotification:: QSProperties qos;
gos. length(2);
gos[0] . nane =
CORBA: : string_dup(Tobj Notification::SUBSCRI PTI ON_NAME) ;

gos[0] . val ue <<= subscri pti on_nane;
gos[1] . nane =

CORBA: : string_dup(Tobj Notification:: SUBSCRI PTI ON_TYPE) ;
gos[1] . val ue <<=

Tobj _Noti fication:: TRANSI ENT_SUBSCRI PTI ON;

subscri ption->set _qos(qos);

/|l Create a filter (used to specify domain, type and data filter).
CosNotifyFilter::Filter_var filter =
filter_factory->create filter(
Tobj _Notification:: CONSTRAI NT_GRAMVAR) ;
s_filter = filter.in();

/1 Set the filtering paraneters.
/1 (donmain = "News", type = “Sports”, and no data filter)
CosNot i fyFilter:: Constrai nt ExpSeq constraints;
constraints.length(1);
constraints[0].event_types.length(1l);
constraints[0].event_types[0].domai n_name =
CORBA: : string_dup("News");
constraints[0].event_types[0].type_nanme =
CORBA: : string_dup(“Sports”);
constrai nts[0].constraint_expr =
CORBA: :string_dup(""); // No data filter.

Using the CORBA Notification Service ~ 4-17

4 Using the CosNotification Service API

CosNotifyFilter:: ConstraintlnfoSeq_ var
add_constraints_results = // ignore this returned val ue
filter->add_constraints(constraints);

// Add the filter to the subscription.
CosNotifyFilter::FilterIDfilter_id =
subscription->add_filter(filter.in());

/1 Now that we have set the subscription name, type and filtering

/| paraneters, conplete the subscription by passing in the

/'l reference of the callback object to deliver the events to.

subscri ption->connect _structured_push_consuner (
news_consuner.in());

Listing4-13 Creating a Transient Subscription (Introductory Subscriber.java)

/] Create a new subscription (at this point, it is not conplete).
I nt Hol der subscription_id = new | nt Hol der();
Pr oxySuppl i er generic_subscription =
consuner _adm n. obtai n_notificati on_push_supplier(
Cl i ent Type. STRUCTURED_EVENT,
subscription_id);

Struct ur edPr oxyPushSuppl i er subscription =
St ruct ur edPr oxyPushSuppl i er Hel per. narr ow(
generi c_subscription);

/1 Set the quality of service. This sets the subscription nane
/1 and subscription type (=TRANSI ENT)

Property qos[] = new Property[2];

qos[0] = new Property();

gos[0] . namre = SUBSCRI PTI ON_NAME. val ue;

gos[0].value = orb.create_any();

gos[0] . val ue.insert_string(subscription_nane);

gos[1] = new Property();

gos[1] . nane = SUBSCRI PTI ON_TYPE. val ue;

gos[1].value = orb.create_any();

gos[1] . val ue.insert_short (TRANSI ENT_SUBSCRI PTI ON. val ue) ;

subscription. set_gos(qos);

/] Create a filter (used to specify domain, type and data filter).
Filter filter =
filter_factory.create_filter(CONSTRAI NT_GRAMMAR. val ue) ;

/1 set the filtering paraneters
/1 (domain = "News", type = “Sports”, and no data filter)

4-18 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Constrai nt Exp constraints[] = new Constrai nt Exp[1];
constrai nts[0] = new Constrai nt Exp();
constrai nts[0].event_types = new Event Type[1];

constraints[0].event_types[0] = new Event Type()
constrai nts[0].event_types[0].donmai n_nane = "News"
constrai nts[0].event_types[0].type_name = “Sports”

constraints[0].constraint_expr ="";

Constraintlnfo add _constraints_results[] =
filter.add_constrai nts(constraints);

/1 add the filter to the subscription
int filter_id = subscription.add_filter(filter);

/1 Now that we have set the subscription nane, type and

/1 filtering paraneters, conplete the subscription by passing

/1 in the reference of the callback object to deliver the

Il events to.

subscription. connect _structured_push_consuner (
news_consuner _inmpl);

Step 3: Compiling and Running Notification
Service Applications

Thefinal step in the development of a Notification Service application isto compile,
build, and run the application. To do this, you need to perform the following steps.

1

Generate therequired client stub and skel eton filesto define interfaces between the
Notification Service and event poster and subscriber applications. Event poster
applications can be clients, joint client/servers, or servers. Event subscriber
applications can be joint client/servers or servers.

Compile the application code and link against the skeleton and client stub files.
Build the application.
Run the application.

Using the CORBA Notification Service 4-19

4 Using the CosNotification Service API

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must executethei di command for
each of the Natification IDL filesthat your application uses. Table 4-2 showsthe i dI

commands used for each type of subscriber.

Table 4-2 idl Command Requirements

Language BEA Tuxedo CORBA BEA Tuxedo CORBA

Joint Client/Server Server
C++ id -P idl
Java iditojava Not supported in BEA

Tuxedo 8.0 and later.

Thefollowing is an example of ani dl command:

>idl -1C\tuxdir\include C:\tuxdir\include\CosEvent Comm i dI

Table 4-3 liststhe IDL files required by each type of Notification Service application.

Table 4-3 IDL Files Required by Notification Service Applications

Application Type

Required OMG IDL Files

Event poster (can be aclient, ajoint client/server, or
aserver)

CosEvent Channel Adm n. i dl
CosEvent Comm i dl
CosNotification.idl
CosNot i f yChannel Admi n
CosNoti fyComm i di
CosNotifyFilter

Tobj _Events.idl

Tobj _Notification.idl

Subscriber (can bejoint client/server or a server)

CosEvent Channel Adm n. i dl
CosEvent Corm i dl

CosNot i fication.idl
CosNot i f yChannel Admi n
CosNoti fyComm i di
CosNotifyFilter

Tobj _Events.idl

Tobj _Notification.idl

4-20 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Compiling and Linking the Application Code

The compiling and linking procedure differs depending on the type of Notification
Serviceapplicationyou are building. Table 4-4 providesan overview of thecommands
and files used to compile each type of application.

Table 4-4 Application Build Requirements

Application Type

Client

Joint Client/Server

Server

C++ Events Poster

Usethe

bui | dobj cl i ent
command to compilethe
application files and the

Usethebui | dobj cl i ent
command with the - P option
to compile the application
filesand the IDL stubs.

Usethe

bui | dobj server
command to compile the
application files and the

IDL stubs. IDL client stubs.
C++ Events Not applicable. Usethebui | dobj cl i ent Usethe
Subscriber command with the- P option bui | dobj server
to compile the application command to compile the
files, the IDL stubs, and the application files, the IDL
IDL skeletons. stubs, and the IDL
skeletons.

Java Events Poster Usethej avac Usethej avac commandto Not supported in BEA
command to compilethe compilethe application files Tuxedo 8.0 and later.
application filesandthe and the IDL files.

IDL stubs.
Java Events Not applicable. Usethej avac commandto Not supported in BEA
Subscriber compilethe application files, Tuxedo 8.0 and later.

the IDL files, and the IDL
skeletons.

Listing 4-14 shows the commands used for a C++ Reporter application
(Report er . cpp) on aMicrosoft Windows system. To form aC++ executable, thei dI
command isrun on the required IDL file and the bui | dobj cl i ent command

compiles the C++ client application file and the IDL stubs.

Using the CORBA Notification Service

4-21

4 Using the CosNotification Service API

Listing 4-14 C++ Reporter Application Build and Run Commands

Run the idl command.

idl -1C\tuxdir\include C\tuxdir\include\ CosEvent Cormidl \
C:\tuxdir\incl ude\ CosEvent Channel Adm n \

C.\tuxdir\include\ CosNotification.idl \

C:\tuxdir\include\ CosNotifyCommidl \

C:\tuxdir\include\ CosNotifyFilter.idl \
C:\tuxdir\include\Tobj Notification.idl

Run the buildobjclient command.
buil dobjclient -v -0 is_reporter.exe -f
- DW N32
Reporter.cpp
CosEvent Comm c. cpp
CosEvent Channel Admi n_c. cpp
CosNotification_c.cpp
CosNot i fyComm c. cpp
CosNotifyFilter_c.cpp
CosNot i f yChannel Adm n_c. cpp
Tobj _Events_c. cpp
Tobj _Notification_c.cpp ”

o o e e e e e e —

Run the application.
is_reporter

Listing 4-15 and Listing 4-16 show the commands used for a C++ Subscriber
application (Subscr i ber . cpp) on Microsoft Windows and UNIX, respectively. To
form a C++ executable, thebui | dobj cl i ent command, with the- P option, compiles
the joint client/server application files (Subscri ber . cpp and

News Consuner _i . cpp), the IDL stubs, the IDL skeleton (for

CosNot i f yConm s. cpp).

Listing4-15 C++ Subscriber Application Build and Run Commands (Micr osoft
Windows)

Run the idl conmand.

idl -P -I1C\tuxdir\include C\tuxdir\include\ CosEvent Coomidl \
C.\tuxdir\incl ude\ CosEvent Channel Adni n \
C:\tuxdir\include\CosNotification.idl \

C:\tuxdir\include\ CosNotifyCommidl \
C:\tuxdir\include\CosNotifyFilter.idl \

4-22 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

C:\tuxdir\include\ CosNotifyChannel Adm n \
\ C:\tuxdir\include\ Tobj _Events.idl \
\C:\tuxdir\include\Tobj Notification

Run the buil dobjclient command.
buil dobjclient -v -P -0 is_subscriber.exe -f "\
- DW N32 \
Subscri ber. cpp
NewsConsuner _i . cpp
CosEvent Comm c. cpp
CosEvent Channel Admi n_c. cpp
CosNot i fication_c.cpp
CosNot i fyConm c. cpp
CosNot i fyComm s. cpp
CosNotifyFilter_c.cpp
CosNot i f yChannel Admi n_c. cpp
Tobj _Events_c. cpp
Tobj _Notification_c.cpp
C:\tuxdir\lib\libbeaw apper.lib

— e —m — — — — —

Run the application.
i s_subscri ber

Listing 4-16 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.

idl -P -I/usr/local/tuxdir/include

[usr/1ocal /tuxdir/include/ CosEvent Channel Adnmi n \
/usr/local /tuxdir/include/ CosEvent Comrmidl \
fusr/local /tuxdir/include/ CosNotification.idl \
/usr/local/tuxdir/include/ CosNotifyCommidl \
/usr/local/tuxdir/include/ CosNotifyFilter.idl \
fusr/local /tuxdir/include/ CosNotifyChannel Adm n \
/usr/local/tuxdir/include/ Tobj Events.idl \
/usr/local/tuxdir/include/ Tobj _Sinpl eEvents.idl

Run the buil dobjclient conmmand.
bui l dobjclient -v -P -0 subscriber -f
Subscri ber. cpp
NewsConsurer _i . cpp
CosEvent Comm c. cpp
CosEvent Channel Adni n_c. cpp
CosNotification_c.cpp
CosNot i f yComm c. cpp
CosNoti f yComm_s. cpp

n

— - - - —

Using the CORBA Notification Service ~ 4-23

4 Using the CosNotification Service API

CosNotifyFilter_c.cpp
CosNot i f yChannel Admi n_c. cpp
Tobj _Events_c. cpp

Tobj _Si npl eEvents_c. cpp

- | beawr apper

e e —

n

Run the application.
i s_subscri ber

Listing 4-17 and Listing 4-18 show an example of the commands used to link, build,
and run remote Java Reporter and Subscriber applications.

Listing 4-17 Java Reporter Application Link, Build, and Run Commands

Run the idltojava comand.
idltojava -1 C \tuxdir\include C\tuxdir\include\ CosEvent Cormidl \
C:\tuxdi r\incl ude\ CosEvent Channel Admi n.idl \
C:\tuxdir\include\ CosNotification.idl C\tuxdir\include\CosNotifyCommidl \
C:\tuxdir\include\CosNotifyFilter.idl \
C:\tuxdir\incl ude\ CosNot i f yChannel Adm n.idl \
C:\tuxdir\include\Tobj Events.idl \
C:\tuxdir\include\Tobj Notification.idl

Compile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\nmBenvobj.jar Reporter.java

Conbine the java .class files into the java archive (JAR) file.

jar cf reporter.jar Reporter.class org\ong\ CosEvent Comm \
or g\ ong\ CosEvent Channel Admi n or g\ ong\ CosNot i fi cati on org\ong\ CosNoti fyConm \
org\ong\ CosNoti fyFilter org\ong\ CosNotifyChannel Adm n com beasys\ Tobj _Events \
com beasys\ Tobj _Notification

Run the reporter application.
java - DTOBJADDR=// BEANI E: 2359 -cl asspath \
reporter.jar; C\tuxdir\udataobj\java\jdk\nBenvobj.jar Reporter

4-24 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications

Listing 4-18 Java Subscriber Application Link, Build, and Run Commands

Run the idltojava conmand.

idltojava -1C \tuxdir\include C \tuxdir\include\CosEvent Cormidl \
C:\tuxdir\incl ude\ CosEvent Channel Admi n.idl \
C:\tuxdir\include\CosNotification.idl C\tuxdir\include\CosNotifyCommidl \
C:\tuxdir\include\ CosNotifyFilter.idl \
C:\tuxdir\incl ude\ CosNoti f yChannel Admi n.idl \
C:\tuxdir\include\Tobj Events.idl C:\tuxdir\include\Tobj Notification.idl

Compile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\nBenvobj.jar;\
C:\tuxdi r\udat aobj\java\jdk\w eclient.jar Subscriber.java

Conmbine the java .class files into the java archive (JAR) file.

jar cf subscriber.jar Subscriber.class NewsConsuner_i.class \
or g\ ong\ CosEvent Conm or g\ ong\ CosEvent Channel Adnmi n or g\ ong\ CosNoti fication \
or g\ ong\ CosNot i f yComm or g\ ong\ CosNoti fyFilter org\ong\ CosNotifyChannel Adm n \
com beasys\ Tobj Events com beasys\ Tobj _Notification

Run the subscriber application.

java - DTOBJADDR=// BEANI E: 2359 -cl asspath \
subscri ber.jar; C\tuxdir\udataobj\java\jdk\nBenvobj.jar;\
C:\tuxdi r\udat aobj\java\jdk\w eclient.jar Subscriber

Note: Thejava command linein Listing 4-18 isfor an application that either sets
the port in the application code or promptsthe user to set the port. Y ou can also
set the port inthej ava command line. Thefollowing isan example of aj ava
command line that sets the port number:

java - DTOBJADDR=// BEANI E: 2359 \ - Dor g. ong. cor ba. ORBPor t =por t nunber
-classpath. ..

Using the CORBA Notification Service ~ 4-25

4 Using the CosNotification Service API

4-26 Using the CORBA Notification Service

CHAPTER

5 Building the

Introductory Sample
Application

This topic includes the following sections:
m Overview

m Building and Running the Introductory Sample Application

Overview

The Introductory sample applications simulate a newsroom environment in which a
news reporter posts a story and a news subscriber consumes the story.

Two implementations of the Introductory sample application are provided: onein the
C++ programming language that uses the BEA Simple Events application
programming interface (API), and another in Java that uses the CosNotification
Service API.

The Introductory sample application consists of the Reporter and Subscriber
applications and the Notification Service. The Reporter application implements a
client application that prompts the user to enter news articles, and then posts the news
articles as events to the BEA Tuxedo CORBA Notification Service. The Subscriber
application implements ajoint client/server application that acts as client when it

Using the CORBA Notification Service 51

5

Building the Introductory Sample Application

5-2

subscribes and unsubscribes for events, and actsasaserver when it receivesevents. To
receive events, the subscriber implements a callback object which isinvoked by the
Notification Service when an event needs to be delivered.

The Introductory sample application shows the simplest usage of the Notification
Service. It demonstrates how to use the BEA Simple Events API, the CosNotification
AP, transient subscriptions, and transient object references. It does not demonstrate
the use of persistent subscriptions or datafiltering. For a sample application that uses
persistent subscriptions and data filtering, see Chapter 6, “Building the Advanced
Sample Application.”

This Introductory sample application provides two executables (see Figure 5-1):

m A Reporter application that posts events to the Notification Service. It isaclient
without callback capability.

m A Subscriber application that subscribes to the Notification Service and receives
events. The subscriber isajoint client/server that acts as a client when it
subscribes to events and acts as a server when it receives events.

Figure5-1 Introductory Sample Application Components

Reporter
(C[I)ient) Push Event /' BEA Tuxedo Domain

Subscrib

Subscriber i Notification

(Joint Client/ Service
Server)

The event poster, the Reporter application, uses the structured event domai n_namne,
type_nane,andfilterabl e_dat a fields to construct the event. The domain name
defines the industry. In this application, domain_nameis set to “News’. The

t ype_name definesthekind of eventintheindustry and it isset to the category of news
story (for example, “ Sports’). The application user specifies this value. In the
filterabl e_data fields, afield named “ Story” is added, which contains the text of
the news story being posted. Thistext is also specified by the application user.

Using the CORBA Noatification Service

Overview

The Subscriber application uses the structured event domai n_nane and t ype_nane
fields to create a subscription to the Notification Service. The subscription defines the
domai n_name asafixed string with the content of “News”. At runtime, the Subscriber
application queries the user for the “News Category” and uses the input to define the
t ype_name field in the subscription. Obviously, the users of both applications, the
reporter and the subscriber, must collaborate on the “News Category” string for the
subscription to match an event, otherwise, no eventswill be delivered to the subscriber.
The subscription does not do any checking of thefi | t er abl e_dat a field, but rather
assumes that the body of the story will be astring, and that the story will bein the first
Named/Value pairinthefi| t er abl e_dat a field of a structured event.

To post events, the Reporter application usesthe push_st ruct ur ed_event method
to push news events to the Notification Service. For each event, the Reporter
application queriesthe user for a“ News category” (for example, “ Sports’) and astory
(amultiple-line text string).

To subscribe to news events, the Subscriber application invokes the Notification
Serviceto subscribe to news events. For each subscription, the Subscriber application
queriesthe user for a“News category” (for example, “ Sports”’). The Subscriber
application also implements a callback object (viathe NewsConsumer_i servant class)
which is used to receive and process news events. When the Subscriber subscribes, it
gives the Notification Service a reference to this callback object. When a matching
event occurs; that is, when the Reporter posts an event with a“News category” that
matches the news category of the subscription, the Notification Service invokes the
push_st ruct ured_event method on the callback object to deliver the event to the
callback object in the subscriber. This method prints out the event, invokes the
unsubscri be method onthe Notification Serviceto cancel the subscription, and shuts
down the Subscriber. For simplicity, the push_st r uct ur ed_event method assumes
that the domai n_nane, t ype_name, | engt h, and nane field match and the story isin
theval ue field.

Note: The“News category” isjust astring that the Reporter user and the Subscriber
user agree on. There are no fixed categoriesin this sample. Therefore, both the
Reporter user and the Subscriber user must type the same string when
prompted for a category (including case and white space).

To run this sample, you must start at least one Reporter application and at least one
Subscriber application; however, you may run multiple Reporters and Subscribers.
Events posted by any Reporter will be delivered to all matching Subscribers (based on
“News category”).

Using the CORBA Notification Service 5-3

5 Building the Introductory Sample Application

Also, be sureto start any subscribers before posting events; otherwise, the events will
be lost.

Building and Running the Introductory
Sample Application

To build and run the Introductory sample application, you must perform these steps:

1

e

© © N o O

Verify that the " TUXDI R' and “ JAVA_HOVE” environment variables are set to the
correct directory path.

Note: The*JAVA HOVE" environment variableisrequired for Java applications
only.

Copy thefiles for the Introductory sample application into awork directory.
Change the protection attributes on the files to grant write and execute access.

For UNIX, ensurethe make fileisin your path. For Microsoft Windows, ensure
the nmake fileisin your path

Set the application environment variables.
Build the sample.

Boot the system.

Run the Subscriber and Reporter applications.

Shut down the system.

10. Restore the directory to its original state.

These steps are described in detail in the following sections.

5-4 Using the CORBA Noatification Service

Building and Running the Introductory Sample Application

Verifying the Settings of the Environment Variables

Before you build and run the I ntroductory sample application, you need to ensure that
the TUXDI R environment variable is set on your system. In most cases, this
environment variableis set as part of the installation procedure. However, you need to
check the environment variablesto ensure they reflect correct information.

Table 5-1 lists the environment variables required to run the Introductory sample
application.

Table5-1 Required Environment Variables for the Introductory Sample Application

Environment Description
Variable
TUXDI R The directory path where you installed the BEA Tuxedo software. For example:

Windows

TUXDI R=c: \ t uxdi r

UNIX

TUXDI R=/ usr /| ocal / tuxdir

JAVA_HOMVE (ForJava Thedirectory path whereyou installed the JDK software. For example:

applications only)

Windows

JAVA_HOME=c:\ JDK1. 2. 2

UNIX

JAVA HOVE=/usr/ | ocal / JDK1. 2. 1

Toverify that theinformation for the environment variables defined during installation
is correct, perform the following steps:

Windows
1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

Using the CORBA Notification Service 5-5

5 Building the Introductory Sample Application

4, Click the Environment tab.

The Environment page appears.
5. Check the setting for TUXDI R and JAVA_HOME.

UNIX
ksh pronpt >pri ntenv TUXDI R
ksh pronpt >printenv JAVA HOVE

To change the settings, perform the following steps:
Windows

1. Onthe Environment page in the System Properties window, click the environment
variable you want to change.

2. Enter the correct information for the environment variable in the Value field.
3. Click OK to save the changes.
UNIX

ksh pronpt >export TUXDI R=directorypath
ksh pronpt >export JAVA HOVE=di rectorypath
Or

csh> setenv TUXDI R=di rectorypath
csh> setenv JAVA HOVE=directorypath

Copying the Files for the Introductory Sample
Application into a Work Directory

Y ou need to copy the files for the Introductory sample application and filesin the
common directory into awork directory on your local machine.

Note: The application directory and the common directory must be copied to the
same parent directory.

Thefiles are located in the following directories:

5-6 Using the CORBA Noatification Service

Building and Running the Introductory Sample Application

Windows

For the C++ Introductory sample:
drive:\tuxdir\sanpl es\corba\notification\introductory_sinpl e_cxx
drive:\tuxdir\sanpl es\corba\notification\comon

For the Java Introductory sample:
drive:\tuxdir\sanpl es\corba\notification\introductory_cos_j ava
drive:\tuxdir\sanpl es\corba\notification\comon

UNIX

For the C++ Introductory sample:

/usr/1ocal /tuxdir/sanpl es/corbal/notification/

i ntroductory_si npl e_cxx

[usr/1ocal /tuxdir/sanpl es/ corbal/ notification/comobn

For the Java Introductory sample:

{usr/1ocal /tuxdir/sanpl es/corbal/notification/

i ntroductory_sinpl e_cxx

/usr/1ocal /tuxdir/sanpl es/ corbal/ notification/comobn

You use thefileslisted in Table 5-2 and Table 5-4 to build and run the C++
Introductory sample application, which isimplemented using the BEA Simple Events
API. You usethefileslisted in Table 5-3 and Table 5-4 to build and run the Java
Introductory sample application, which isimplemented using the CosNotification API.

Table5-2 FilesLocated in theintroductory sample c++ Directory

File Description

Readne. t xt Describes the Introductory sample application and
providesinstructions for setting up the environment and
building and running the application.

setenv. cnd Sets the environment for Microsoft Windows systems.
set env. ksh Sets the environment for UNIX systems.

makefile. nt Makefile for Microsoft Windows systems.

makefil e. mk Makefile for UNIX systems.

nmakefile.inc Common makefile used by the makefi | e. nt andthe

makef il e. nk files.

Reporter. cpp Code for the reporter.

Using the CORBA Notification Service 5-7

5 Building the Introductory Sample Application

Table5-2 FilesLocated in theintroductory_sample c++ Directory (Continued)

File Description

Subscri ber. cpp Code for the subscriber.

News Consurer _i . h and The callback servant classthat subscribers useto receive
News Consuner . cpp news events. (For the Subscriber application.)

Table 5-3 FilesLocated in theintroductory_cos java Directory

File Description

Readn®. t xt Describes the Introductory sample application and
providesinstructions for setting up the environment and
building and running the application.

setenv. cnd Sets the environment for Microsoft Windows systems.
set env. ksh Sets the environment for UNIX systems.
makefile.nt Makefile for Microsoft Windows systems.

makefil e. nk Makefile for UNIX systems.

makefile.inc Common makefile used by the makef i | e. nt and the

makefi |l e. nk files.

Reporter.java Code for the reporter.
Suscri ber.java Code for the subscriber.
NewsConsurmer _i . j ava The callback servant classthat subscribers useto receive

news events. (For the Subscriber application.)

Table 5-4 lists other files that the Introductory sample application uses.

Table 5-4 Other Filesthe Introductory Sample Application Uses

File Description

Thefollowing files are located in the common directory.

common. nt Makefile symbolsfor Microsoft Windows systems.

5-8 Using the CORBA Noatification Service

Building and Running the Introductory Sample Application

Table5-4 Other Filesthe Introductory Sample Application Uses (Continued)

File

Description

common. nk

Makefile symbolsfor UNIX systems.

i ntroductory.inc

Makefile for administrative targets.

ex. h

Utilities to print exceptions. (For C++ only.)

client_ex.h

Client utilities to handle exceptions. (For C++ only.)

Shut downManager . j ava

Class to help the main and the servant in the
Notification Service Java samples coordinate
shutting down the server.

Note: Thisfileis needed for the Java application
only.

Thefollowing filesarelocated in the \tuxdir\include directory.

CosEvent Comm i dl

The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl

The OMG IDL code that declares the
CosNotification module.

CosNot i fyComm i dl

The OMG IDL code that declares the
CosNotifyComm module.

Tobj _Events.idl

The OMG IDL code that declares the Tobj_Events
module.

Tobj _Si npl eEvent s. i dl

The OMG IDL code that declares the
Tobj_SimpleEvents module.

Note: Thisfileisneeded only for the application
that was developed using BEA Simple
Events API.

Thefollowing files are needed only for the application that was developed using

CosNoatification Service API.

CosEvent Channel Admi n. i dl

The OMG IDL code that declares the
CosEventChannel Admin module.

Using the CORBA Notification Service 5-9

5

Building the Introductory Sample Application

Table 5-4 Other Filesthe Introductory Sample Application Uses (Continued)

File Description

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNot i f yChannel Admi n. i dl The OMG IDL code that declares the
CosNotifyChannel Admin module.

Tobj _Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Introductory Sample Application

5-10

During the installation of the BEA Tuxedo CORBA software, the sample application
files are marked read-only. Before you can edit or build the files in the Introductory
sample application, you need to change the protection attribute of the files you copied
into your work directory, as follows:

Windows

1. InaDOS window, change (cd) to your work directory.
2. pronpt>attrib -r drive: \Wworkdirectory*.*
UNIX

1. Change (cd) to your work directory.
2. pronpt>/bi n/ ksh

3. ksh pronpt >chnod u+w /workdi rectory/*.*

On UNIX systems, you also need to change the permission of set env. ksh to give
execute permission to the file, asfollows:

ksh pronpt >chnod +x setenv. ksh

Using the CORBA Noatification Service

Building and Running the Introductory Sample Application

Setting Up the Environment

To set up the environment, enter the following command:

Windows

pronpt >. \setenv. cnd
UNIX

ksh pronpt>. ./setenv.ksh

Building the Introductory Sample Application

Y ou use the make command to run makefiles, which are provided for Microsoft
Windows and UNI X, to build the sample application. For UNIX, use make. For
Microsoft Windows, use nmake.

Makefile Summary

The makefile automates the following steps:

1. Checksthat the set environment command (set env. cnd) has been run. If the
environment variables have not been set, the makefile prints an error message to
the screen and exits.

2. Includesthe comon. nt (for Microsoft Windows) or conmon. nk (for UNIX)
command file. This file defines the makefile symbols used by the samples. These
symbols alow the UNIX and Microsoft Windows makefiles to delegate the build
rules to platform-independent makefiles.

3. Includesthenmakefi | e. i nc command file. Thisfilebuildstheis_reporter
andis_subscri ber executables, and cleans up the directory of unneeded files
and directories.

4, Includesthei nt roduct ory. i nc command file. Thisfile creates the UBBCONFI G
file and executesthet m oadcf -y ubb command to create the TUXCONFI Gfile.
Thisis a platform-independent makefile fragment that defines the administrative
build rules common to the Introductory sample application.

Using the CORBA Notification Service ~ 5-11

5 Building the Introductory Sample Application

Executing the Makefile

Before executing the makef i | e, you need to check the following:

m Ensure that you have the appropriate administrative privileges to build and run
applications.

m On Microsoft Windows, verify that nmake isin the path of your machine.
m On UNIX, verify that nake isin the path of your machine.
To build the Introductory sample application, enter the make command as follows:

Windows

nmake -f nakefile.nt

UNIX

make -f makefil e. nk

Starting the Introductory Sample Application

To start the Introductory sample application, enter the following commands:

1. To boot the BEA Tuxedo system:
pronpt >t nboot -y
This command starts the following server processes:
e TMSUSREVT

A BEA Tuxedo system-provided, EventBroker server that is used by the
Notification Service.

e TMNTS

A BEA Tuxedo Notification Service server that processes requests for
subscriptions and event postings.

e TMNTSFWD_T

A BEA Tuxedo Natification Service server that forwards events to
subscribers that have transient subscriptions.

e |SL

5-12 Using the CORBA Notification Service

Building and Running the Introductory Sample Application

The IlOP Listener/Handler process.

2. To start the Subscriber application:

For C++: pronpt >i s_subscri ber
For Java on Microsoft Windows: pr onpt >j ava % C_SUBSCRI BER%
For Javaon UNIX: pr onpt >j ava $I C_SUBSCRI BER

To start another Subscriber, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

For C++: pronpt >i s_reporter
For Java on Microsoft Windows: pr onpt >j ava % C_REPORTER%
For Javaon UNIX: pronpt >j ava $I C_REPORTER

To start another Reporter, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

Using the Introductory Sample Application

To usethe Introductory sample application, you must use the Subscriber application to
subscribe to an event and the Reporter application to post an event. Be sureto
subscribe before you post each event; otherwise, events will be lost.

Note: The Subscriber application shuts down after it receives one event.

Using the Subscriber Application to Subscribe to Events

Perform these steps:

1. When you start the Subscriber application (pr onpt >i s_subscri ber), the
following prompts are displayed:

Name? (Enter a name (without spaces).)
Category (or all)? (Enter the category of newsyou want or "all".)

Using the CORBA Notification Service 5-13

5

Building the Introductory Sample Application

You may typein any string for the news category; that is, there is no fixed list of
news categories. However, when you use the Reporter application to post an
event, make sure to specify the same string for the news category.

The Subscriber application creates a subscription then prints “Ready” whenitis
ready to receive events. After the Subscriber receives one event, it shuts down.

Note: Y ou should always use the Subscriber application to subscribe to events
before you use the Reporter application to post events; otherwise, events
will belost.

Using the Reporter Application to Post Events

5-14

Perform these steps:

1

When you start the Reporter application (pr onpt > i s_report er), the following
prompts are displayed:

(r) Report news
(e) Exit

Opti on?
Enter r to report news. The following prompt is displayed:
Cat egory?

Enter the news category. It must match exactly the category you typed on the
Subscriber application (including white space and case).

After you enter the news category, the following prompt is displayed:
Enter story (terminate with '.")

Enter your story. It can span multiple lines. Finish the story by typing a period
only (*. ") on aline, followed by a carriage return.

Subscribers whose category matches the category of this story will receive, and
print out the story. When a subscriber receives a story, the subscriber
automatically shuts down.

To send and receive more news stories, start another subscriber, then report
another story. When you are done reporting news, choose the Exit (e) option.

Note: The Subscriber application shuts down after it receives one event.
Therefore, always use the Subscriber application to subscribe to events

Using the CORBA Noatification Service

Building and Running the Introductory Sample Application

before you use the Reporter application to post an event; otherwise, events
will be lost.

Shutting Down the System and Cleaning Up the
Directory

Perform the following steps:
Note: Make sure the Reporter and Subscriber processes have stopped.
1. To shut down the system, in any window, type:
pr onpt >t mshut down -y
2. Torestorethedirectory toitsoriginal state, in any window, type:
Windows
pronpt >nmake -f nakefile.nt clean
UNIX

pronpt >make -f makefile.nk clean

Using the CORBA Notification Service ~ 5-15

5 Building the Introductory Sample Application

5-16 Using the CORBA Notification Service

CHAPTER

O Building the Advanced
Sample Application

This topic includes the following sections:
m Overview

m Building and Running the Advanced Sample Application

Overview

The Advanced sampl e application simulates anewsroom environment in which anews
reporter posts a story, awire service posts the story as an event to the Notification
Service, and a news subscriber consumes the story.

Two implementations of the Advanced sample application are provided: one in the
Java programming language that uses the BEA Simple Events application
programming interface (API), and another in C++ that uses the CosNatification
Service API.

The Advanced sampl e application consists of the reporter, subscriber, and wire service
applications that use the BEA Tuxedo CORBA Noatification Service. The reporter
application implements aclient application. This application prompts the user to enter
news articles and calls the WireService server using application specific IDL. The
WireService server, in turn, posts the events. The subscriber implements ajoint
client/server application. This application acts as client when it subscribes and

Using the CORBA Notification Service 6-1

6 Building the Advanced Sample Application

unsubscribesfor events, and acts asaserver when it receivesevents. To receive events,
the Subscriber implements callback objects which are invoked by the Notification
Service when an event needs to be delivered.

Note: On UNIX systems, you cannot immediately restart the subscriber because the
port takes some time (the actual time depends on the platform) to become
available again. If you restart too soon, you will get a CORBA: : OBJ_ADAPTER
exception. If this occurs, just wait and try again. On Solaris systems, the port
can take up to 10 minutesto become available. To seeif the port isstill in use,
usethiscommand: “Restart -a | grep <the port nunmber>".

This Advanced sample application demonstrates how to use the BEA Simple Events
AP, the CosNatification Service API, transient and persistent subscriptions, and data
filtering.

This Advanced sample provides three executables (see Figure 6-1):

m A WireService application that posts events. It is a Notification Service client
and a BEA Tuxedo CORBA server. It implements an OMG IDL interface, which
the Reporter application uses.

m A Reporter application that reports news stories by invoking methods on the
WireService. The WireService, in turn, converts the stories into events and posts
them using the Notification Service. The reporter is a pure client.

m A Subscriber application that subscribes to the Notification Service and receives
events. The subscriber isajoint client/server that acts as a client when it
subscribes for events, and acts as a server when it receives events.

6-2 Using the CORBA Noatification Service

Overview

Figure6-1 Advanced Sample Application Components

Report_news
Reporter | Shutdown /[WireSevice
(Client) Cancel o Server

BEA Tuxedo Domain Push Event

Notification Service

Substribe
Subscriber Unsubicribe
(Joint Client/
Server) Push Ev

The event poster, the WireService application, uses the structured event
domai n_nare, t ype_name, andfi |l t er abl e_dat a fieldsto construct three events: a
news event, a subscriber shutdown event, and a subscriber cancel event.

¢ Newsevent

For this event, the domain name isa string and is preset by the application as
“News’. The type name is astring and defined by the Reporter application
user at run time. It is set to the category of news (for example, “ Sports”).
Filterable data contains a name/value pair whose name is “Story” and whose
value isastring that contains the body of the news story being posted.

e Subscriber Shutdown event

For this event, the domain name isa string and is preset by the application as
“NewsAdmin”. Thetype nameisastring and is preset by the application as
“Shutdown”. The filterable datais not used.

e Subscriber Cancel event

For this event, the domain name isa string and is preset by the application as
“NewsAdmin”. Thetype nameisastring and is preset by the application as
“Cancel”. Thefilterable datais not used.

Using the CORBA Notification Service 6-3

6

Building the Advanced Sample Application

6-4

The Subscriber application uses the structured event dormai n_nane, t ype_nane, and
filterabl e_dat a fieldsto construct two subscriptions: a news subscription that
processes news stories; and a shutdown subscription that processes Cancel and
Shutdown events. At run time, the Subscriber application establishes these two
subscriptions with the Notification Service.

News subscription

The Subscriber application uses the structured event domai n_nane,
type_name, andfilterabl e_dat a fields to create a subscription to the
Notification Service. The subscription defines the domain name as a fixed
string with the content of “News”. At run time, the Subscriber application
queries the user for the “News Category” and “Keyword” and uses the inputs
to define the type_name and data filter fields in the subscription. Obviously,
the users of both applications, the reporter and the subscriber, must
collaborate on the “News Category” and “keyword” strings for the
subscription to match an event, otherwise, no News events will be delivered
to the subscriber. The subscription does not do any checking of the
filterabl e_data field, but rather assumes that the body of the story will
be a string, and that the story will bein the first Named/Value pair in the
filterabl e_data field of astructured event.

Shutdown subscription

The Subscriber application uses the structured event domain_name and
type_name, fieldsto create a subscription to the Notification Service. The
subscription defines the domain_name as a fixed string with the content of
“NewsAdmin”, the type_name as a string of either “ Shutdown” or “ Cancel”.
Thefilterable datafield isan empty string.

The Reporter application is responsible for implementing the user interface for
reporting news aswell asfor producing Shutdown and Cancel events. Rather than use
the Notification Service directly to post events, it calls methods on the WireService

Server.

The WireService server uses the Natification Service to post three kinds of events:

m “News’ events (used to deliver news to subscribers)

m “Shutdown” events (used to shut down subscribers temporarily)

m “Cancel” events (used to shut down subscribers permanently)

The Notification Service, in turn, delivers the events to the subscribers.

Using the CORBA Noatification Service

Overview

The subscriber usesthe Notification Serviceto create a persistent subscription to news
events. The subscriber implements a persistent callback object (viathe

News Consuner _i servant class), which is used to receive and process news events.
When the subscriber subscribes, it gives the Notification Service areferenceto this
callback object. When a matching event occurs, the Notification Service invokes a
push_st ruct ured_event method on this callback object to push the event to the
subscriber. This method prints out the event.

The subscriber also uses the Notification Service to create a transient subscription to

Shutdown and Cancel events. The subscriber implements another callback object (via
the Shut downConsumer _i servant class), which is used to receive and process these
events.

Whenever the subscriber runs, it prompts the user for a name. The first time this user
runs the subscriber program, the subscriber creates a persistent subscription to News
events. To do this, the subscriber prompts the user for which kind of news stories to
subscribe to and which port number the subscriber should run on. The subscriber runs
on this port, subscribes, then writes the subscription ID, the filter ID (if using the
CosNatification API), and the port number to afile (the name of thefileis

<user _name>. pst or e). The next time the subscriber runs, the subscriber promptsthe
user for a name, opens up the file <user _nane>. pst or e then reads the subscription
ID, filter ID (if using the CosNatification API) and port number for this user from the
file. This satisfies the requirement that the subscriber runs on the same port number
each time because its news callback object’s object reference is persistent.

The Subscriber creates a transient subscription to receive the Shutdown and Cancel
events, therefore, the transient subscription is created and destroyed every time the
subscriber is run and shut down. This subscription ID is not written out to the file
<user _nane>. pstore.

When the subscriber receives a Shutdown event, it destroys the shutdown/callback
subscription but leaves the News subscription intact. If News events are posted after
the subscriber is shut down and before it is restarted, then the notification service will
either deliver the events when the subscriber is restarted, or will put the events on the
error queue. (You can use the nt sadni n utility to either delete these events from the
error queue or retry delivering them.)

Whether the event is redelivered or is put on the error queue depends on whether the
subscriber restarts quickly enough. This depends on the retry parameters of the queue.
See advanced. i nc (in the notification samples common directory) for the values of
the queue retry parameters.

Using the CORBA Notification Service 6-5

6

Building the Advanced Sample Application

News events have two parts: a category (for example, headline) and a story (a
multiple-line text string). The Subscriber application prompts the user to input a news
category. Next the subscriber subscribes to news events whose category matches this
string. The Reporter application promptsthe user for anews category and astory. Next
the reporter (by invoking a method on the wire service) posts a corresponding news
event. The event will only be delivered to subscribers who subscribed to that category
of news.

Note: The category isastring. The same string must be used by the Reporter user
and the Subscriber user. There are no fixed categoriesin this sample.
Therefore both users, the Reporter user and the Subscriber user, must typethe
same string when prompted for a category (including case and white space).

This sample also usesdatafiltering. When auser first runsthe Subscriber, the user will
be prompted for a“keyword.” Events whose category matches and whose story
containsthe keyword will be delivered to the subscriber. For example, if the user enters
akeyword of “none,” data filtering will not be used (thus the user will receive all
eventsfor the chosen news category). If the user entersakeyword “smith”, it trand ates
to“Story 96’ .*smth.* " . Thiskeyword specifies that the subscription only
accepts events that have a*“ Story” field that contains a string, and that the field starts
with any number of characters, hasaliteral string “smith”, and then ends with any
number of characters.

To run this sample, you need to run at least one Reporter and at least one Subscriber;
however, you may run multiple Reporters and multiple Subscribers. Events posted by
any Reporter will be delivered to all matching Subscribers (based on the category).

Also, be sure to start any subscribers before posting events. Events posted before the
subscribers are started will not be delivered.

Building and Running the Advanced Sample
Application

6-6

To build and run the Introductory sample application, you must perform these steps:

1. Verify that the" TUXDI R and “ JAVA_HOVE” environment variables are set to the
correct directory path.

Using the CORBA Noatification Service

Building and Running the Advanced Sample Application

Note: The*JAVA HOVE’ environment variableis required for Java applications
only.

2. Copy thefilesfor the Introductory sample application into awork directory.

3. Change the protection attributes on the files to grant write and execute access.

»

For UNIX, ensure the make fileisin your path. For Microsoft Windows, ensure
the nmake fileisin your path

Set the application environment variables.
Build the sample.
Boot the system.

Run the Subscriber and Reporter applications.

© o N o O

Shut down the system.
10. Restore the directory to its original state.

These steps are described in detail in the following sections.

Verifying the Settings of the Environment Variables

Before you build and run the Advanced sampl e application, you need to ensure that the
TUXDI R environment variableis set on your system. In most cases, this environment
variableis set as part of the installation procedure. However, you need to check the
environment variables to ensure they reflect the correct information.

Table 6-1 lists the environment variables required to run the Callback sample
application.

Using the CORBA Notification Service 6-7

6 Building the Advanced Sample Application

Table 6-1 Required Environment Variablesfor the Callback Sample Application

Environment Description

Variable

TUXDI R The directory path where you installed the BEA Tuxedo software. For example:
Windows
TUXDI R=c: \ t uxdi r
UNIX

TUXDI R=/ usr/ 1 ocal /tuxdir

JAVA HOME (ForJava Thedirectory path where you installed the JDK software. For example:
applications only) Windows

JAVA HOVE=c: \ JDK1. 2

UNIX

JAVA HOVE=/ usr/ | ocal / JDK1. 2

To verify that theinformation for the environment variables defined during installation
is correct, perform the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.
5. Check the setting for TUXDI R and JAVA_HOME.

UNIX
ksh pronpt >pri ntenv TUXDI R
ksh pronpt >printenv JAVA HOVE

6-8 Using the CORBA Noatification Service

Building and Running the Advanced Sample Application

To change the settings, perform the following steps:

Windows

1. Onthe Environment page in the System Properties window, click the environment
variable you want to change.

2. Enter the correct information for the environment variable in the Value field.
3. Click OK to save the changes.
UNIX

ksh pronpt >export TUXDI R=directorypath
ksh pronpt >export JAVA HOVE=di rectorypath

Copying the Files for the Advanced Sample Application
into a Work Directory

Y ou need to copy the files for the Advanced sample application into awork directory
on your local machine.

Note: The application directory and the common directory must be copied to the
same parent directory.

Thefilesfor the Advanced sample application are located in the following directories:
Windows

For the C++ Advanced sample:
drive:\tuxdir\sanpl es\corba\notification\advanced cos_cxx
drive:\tuxdir\sanpl es\corba\notification\comon

For the Java Advanced sample:
drive:\tuxdir\sanpl es\corba\notification\advanced _sinple_java
drive:\tuxdir\sanpl es\corba\notification\comon

UNIX

For the C++ Advanced sample:
[usr/1local /tuxdir/sanpl es/ corbal/ notification/advanced_cos_cxx
[usr/1ocal /tuxdir/sanpl es/corbal/notification/comon

Using the CORBA Notification Service 6-9

6 Building the Advanced Sample Application

For the Java Advanced sample:
/usr/local /tuxdir/sanpl es/corba/notification/advanced_sinple_java
/usr/ | ocal /tuxdir/sanpl es/corbal/notificati on/comon

You usethefileslisted in Table 6-2 and Table 6-4 to build and run the Java Advanced
sample application, whichisimplemented using the BEA Simple EventsAPI. Y ouuse
thefileslisted in Table 6-3 and Table 6-4 to build and run the C++ Advanced sample
application, which isimplemented using the CosNotification API.

Table 6-2 FilesLocated in the advanced_simple java Notification Directory

File Description

Readn®. t xt Describesthe Advanced sample application and providesinstructionsfor
setting up the environment and building and running the application.

set env. cnd Sets the environment for Microsoft Windows systems.

set env. ksh Sets the environment for UNIX systems.

makefil e. nt Makefile for Microsoft Windows systems.

makefil e. nk Makefile for UNIX systems.

makefile.inc Common makefile used by the makef i | e. nt and the makefil e. mk
files.

Reporter.java Code for the reporter.

Subscri ber.j ava Code for the subscriber.

NewsConsurmer _i . j ava Callback servant class that subscribers use to receive news events. (For

the Subscriber application.)

Shut downConsuner _i . j ava Callback servant classes that subscribers use to receive Shutdown and
Cancel events. (For the Subscriber application.)

W reService. xn Server Description file for the WireService server.
W reService_i.java Implements the WireService interfaces.

W reServiceFactory_i.java Implementsthe WireService factory interface.

W reServiceServer.java Code for the WireService server.

6-10 Using the CORBA Notification Service

Building and Running the Advanced Sample Application

You use thefileslisted in Table 6-3 and Table 6-4 to build and run the Advanced

sample application.

Table 6-3 FilesLocated in the advanced_cos _c++ Notification Directory

File

Description

Readne. t xt

Describesthe Advanced sample application and provides
instructions for setting up the environment and building
and running the application.

setenv. cnd

Sets the environment for Microsoft Windows systems.

set env. ksh

Sets the environment for UNIX systems.

makefile.nt

Makefile for Microsoft Windows systems.

makefil e. nmk

Makefile for UNIX systems.

makefile.inc

Common makefile used by the makefi | e. nt and the
makefil e. mk files.

Reporter.cpp

Code for the reporter.

Subscri ber. cpp

Code for the subscriber.

News Consuner _i . h and
News Consuner . cpp

Callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

Shut downConsuner _i . h
and
Shut downConsuner . cpp

Callback servant classes that subscribers use to receive
Shutdown and Cancel events. (For the Subscriber
application.)

W reServiceServer. cpp

Code for the WireService server.

News. i cf

ICFfile for the WireService interfaces.

WreService_i.hand
W reService. cpp

Implements the WireService interfaces.

Table 6-4 lists other files that the Advanced sample application uses. With the
exception of the IDL files, the files are located in the Notification common directory.

Using the CORBA Notification Service ~ 6-11

6

Building the Advanced Sample Application

6-12

Table 6-4 Other Files That the Advanced Sample Uses

File

Description

Thefollowing files are located in the common directory.

News. i dl IDL definitions for the WireService server.

news_fl ds FML field definitions used to perform data filtering
and news events.

common. nt Makefile symbolsfor Microsoft Windows systems.

common. nk Makefile symbolsfor UNIX systems.

advanced. i nc

Makefile for administrative targets.

ex. h

Utilities to print exceptions (C++ only).

client_ex.h

Client utilities to handle exceptions (C++ only).

server_ex. h

Server utilities to handle exceptions.

Thefollowing files are located in the \tuxdir\include directory.

CosEvent Corm i dl

The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl

The OMG IDL code that declares the
CosNotification module.

CosNot i f yConm i dI

The OMG IDL code that declares the
CosNotifyComm module.

Tobj _Events.idl

The OMG IDL code that declares the Tobj_Events
module.

Tobj _Si npl eEvents.idl

The OMG IDL code that declares the
Tobj_SimpleEvents module.

Note: Thisfileis needed only for the application
that was developed using BEA Simple
Events API.

Thefollowing files are needed only for the application that was developed using

CosNotification Service API.

Using the CORBA Noatification Service

Building and Running the Advanced Sample Application

Table 6-4 Other Files That the Advanced Sample Uses (Continued)

File Description

CosEvent Channel Admi n. i dl The OMG IDL code that declares the
CosEventChannel Admin module.

CosNotifyFilter.idl The OMG IDL code that declaresthe
CosNotifyFilter module.

CosNot i f yChannel Admi n. i dl The OMG IDL code that declares the
CosNotifyChannel Admin module.

Tobj _Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Changing the Protection Attribute on the Files for the
Advanced Sample Application

During theinstallation of the BEA Tuxedo software, the Advanced sample application
files are marked read-only. Before you can edit or build the files in the Advanced
sample application, you need to change the protection attribute of the files you copied
into your work directory, as follows:

Windows

1. Change (cd) to your work directory

2. prompt>attrib -r drive: \workdirectory*. *
UNIX

1. Change (cd) to your work directory
2. pronpt>/bin/ksh

3. ksh pronpt >chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of
set env. ksh to give execute permission to the file, as follows:

ksh pronmpt >chnbd +x setenv. ksh

Using the CORBA Notification Service 6-13

6

Building the Advanced Sample Application

Setting Up the Environment

To set up the environment, enter the following command:
Windows

pronpt >. \setenv. cnd

UNIX

pronmpt>. ./setenv. ksh

Building the Advanced Sample Application

Y ou use the make command to run makef i | es, which are provided for Microsoft
Windows and UNI X, to build the sample application. For Microsoft Windows, use
nmake. For UNIX, use nake.

Makefile Summary

6-14

The makefile automates the following steps:

1. Checksthat the set environment command (set env. cnd) has been run. If the

environment variables have not been set, the makefile prints an error message to
the screen and exits.

. Includes the conmon. nt (for Microsoft Windows) or comon. nk (for UNIX)

command file. This file defines the makefile symbols used by the samples. These
symbols allow the UNIX and Microsoft Windows makefiles to delegate the build
rules to platform-independent makefiles.

. Includes the makefi | e. i nc command file. Thisfilebuildstheis_reporter,

i s_subscri ber and AS_ W RESERVI CE executables, and cleans up the directory
of unnecessary files and directories.

. Includes the advanced. i nc command file. Thisfile executest madni n and

gadmi n commands to create the transaction log and the queues required by the
persistent subscriptions. It also creates the UBBCONFI Gfile and executes the
tm oadcf -y ubb command to create the TUXCONFI Gfile.

Using the CORBA Noatification Service

Building and Running the Advanced Sample Application

Executing the Makefile

Before executing the makef i | e, you need to check the following:

m Ensure that you have the appropriate administrative privileges to build and run
applications.

m On Microsoft Windows, make sure nmake isin the path of your machine.
m On UNIX, make sure make isin the path of your machine.
To build the Advanced sample application, enter the make command as follows:

Windows

nmake -f makefile.nt

UNIX

make -f makefile. nk

Starting the Advanced Sample Application

To start the Advanced sample application, enter the following commands:

1. To boot the BEA Tuxedo system:
pronpt >t nhoot -y
This command starts the following server processes:
e TMSUSREVT

A BEA Tuxedo system-provided, EventBroker server that is used by the
Notification Service.

e TMTS

A BEA Tuxedo CORBA Notification Service server that processes requests
for subscriptions and event postings.

e TMNTSFWD T

A BEA Tuxedo CORBA Notification Service server that forwards events to
subscribers that have transient subscriptions. This server is required for
transient subscriptions.

Using the CORBA Notification Service 6-15

6 Building the Advanced Sample Application

e TMNTSFWD_P

A BEA Tuxedo CORBA Notification Service server that forwards persistent
events to subscribers that have persistent subscriptions. This server is
required for persistent subscriptions.

e TMQUEUE

The message queue manager is a BEA Tuxedo system-provided server that
enqueues and degueues messages on behalf of programs calling

t penqueue(3) and t pdequeue(3), respectively. This server isrequired for
persistent subscriptions.

e TMQFORWARD

The message forwarding server is a BEA Tuxedo system-provided server that
forwards messages that have been stored using t penqueue(3c) for later
processing. This server isrequired for persistent subscriptions.

e W RE_SERVI CE_SERVER

A server, specifically built for the Advanced sample application, that receives
events from the Reporter application and posts them to the Notification
Service. Thisreceive and server posts three types of events: News,
Shutdown, and Cancel.

e |SL

The I1OP Listener/Handler process.

2. To start the Subscriber application:

For C++: pronpt >i s_subscri ber
For Java on Microsoft Windows: pr onpt >j ava % C_SUBSCRI BER%
For Javaon UNIX: pr onpt >j ava $I C_SUBSCRI BER

To start another Subscriber, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

For C++: pronmpt >i s_reporter
For Java on Microsoft Windows: pr onpt >j ava % C_REPORTERY%
For Javaon UNIX: pr onpt >j ava $I C REPORTER

To start another Reporter, open another window, change (cd) to your work
directory, set the environment variables (by running set env. cnd or
set env. ksh), and enter the start command that is appropriate for your platform.

6-16 Using the CORBA Notification Service

Building and Running the Advanced Sample Application

Using the Advanced Sample Application

To use the Advanced sampl e application, you must use the Subscriber application to
subscribe to an event and the Reporter application to post to an event. Be sure to
subscribe before you post each event; otherwise, events will be lost.

Using the Subscriber Application to Subscribe to Events

Perform the following steps:

1. When you start the Subscriber application (pr onpt >i s_subscri ber) for thefirst
time, the following prompts are displayed:

Name? (Enter a name (without spaces).)

Port (e.g. 2463) (Enterthe port number that this subscriber should run on.)

Category (or all) (Enterthe category of newsyou want or "all.")

Keyword (or none) (Enter akeyword that you want all delivered storiesto
contain.)

Note: If the Subscriber application is shut down by a Shutdown event from the
Reporter application (Shutdown events do not cancel persistent subscriptions),
on subsequent startups of the Subscriber application, you will only be
prompted for your name. The Subscriber application retrieves the remaining
information from the <user _name>. pst or e file. This guarantees that the
same port number is used, which is required for persistent subscriptions.

If the Subscriber application is shut down by a Cancel event from the Reporter
application (Cancel events cancel all subscriptionsincluding persistent
subscriptions), on subsequent startups of the Subscriber application, you will
be prompted for your name, port number, category, and keyword.

2. You may typein any string for the news category, that is, thereis no fixed list of
news categories. However, when you use the Reporter application to post an
event, make sure you specify the same string for the news category.

Similarly, you may typein astring for akeyword. Thereis no fixed list of
keywords either so when you run the reporter and enter the story, make sure that
the story contains the same string; otherwise, the story will not be delivered to
your subscription.

The first time the Subscriber application is run for your username, category (or
all), and keyword (optional), it creates a news subscription. On subsequent runs,

Using the CORBA Notification Service ~ 6-17

Building the Advanced Sample Application

the subscriber reuses this subscription. In all cases, the Subscriber application
prints “Ready” when it is ready to receive events.

The Subscriber application creates a subscription then prints “ Ready” when it
isready to receive events.

Note: Y ou should always use the Subscriber application to subscribe to events
before you use the Reporter application to post events; otherwise, events
will belost. Thisisbecause even though the Subscriber application creates
a persistent subscription to News events, that subscription is not created
until the Subscriber application is started.

Note: Y ou can start multiple subscribers by opening another window and
repeating this procedure.

Using the Reporter Application to Post Events

6-18

Perform the following steps:

1

When you start the Reporter application (pr onpt > i s_report er), the following
prompt is displayed:

(r) Report news

(s) Shutdown subscribers
(c) Cancel Subscribers
(e) Exit

Opti on?
Enter r to report news. The following prompt is displayed:
Cat egory?

Enter the news category. It must match exactly the category you typed on the
Subscriber application (including white space and case).

After you enter the news category, the following prompt is displayed:

Enter story (terminate with '.")

Enter your story. It can span multiple lines. Finish the story by typing a period
only (".") on aline, followed by a carriage return. If you typed in a keyword
when subscribing, make sure the story contains this string (including white space
and case).

Subscribers whose category and keyword (if specified) matches the category and
akeyword in this story will receive and print out the story.

Using the CORBA Noatification Service

Building and Running the Advanced Sample Application

5.

If you choose the “s” option, a Shutdown event will be posted and received by all
the subscribers and the subscribers will shut down. While the subscribers are shut
down, you may post another news story (by using the “r ” option again). The
Notification Service will place the news story on the pending queue but the News
event subscription is persistent and, therefore, is still in effect. After you restart
the subscribers, they will receive this second news story (unless arestart delay
caused the event to be moved to the error queue). This is because the subscriber
created a persistent subscription for news stories.

Note: Youcanusethent sadmi nretryerrevents command to move events
from the error queue back to the pending queue.

If you choose the “c” option, a Cancel event will be posted and received by all
the subscribers. The subscribers will cancel their news subscriptions and shut
down. If you try to restart the subscribers, then you will be prompted again for
port, category, and keyword because you are creating a new subscription.

When you are finished reporting news, choose the Exit (e) option.

Note: You can start multiple reporters by opening another window and repeating
this procedure. Any news story reported by any reporter will be delivered
to all matching subscribers. Make sure you have exited all reporters before
shutting down the system.

Using the CORBA Notification Service 6-19

6 Building the Advanced Sample Application

Shutting Down the System and Cleaning Up the
Directory

Make sure the Reporter and Subscriber processes have stopped and perform the
following steps:

1. To shut down the system, in any window, type:
pronpt >t rshut down -y

2. Torestorethedirectory toitsorigina state, in any window, type:
Windows
pronmpt >nmake -f nakefile.nt clean
UNIX

pronmpt >make -f nmakefile.nk clean

6-20 Using the CORBA Notification Service

CHAPTER

7

CORBA Notification
Service Administration

This topic includes the following sections:

Introduction

Configuring the Notification Service. This section includes the following topics:
e Configuring Data Filters

e Setting the Host and Port

e Creating a Transaction Log

e Creating Event Queues

e Creating the UBBCONFIG File and the TUXCONFIG File

Managing the Notification Service

Notification Service Administration Utility and Commands

Notification Servers

Using the CORBA Notification Service ~ 7-21

[/ CORBA Notification Service Administration

Introduction

The BEA Tuxedo CORBA Natification Serviceis layered on the BEA Tuxedo
EventBroker and Queuing systems. This means that administering the CORBA
Notification Service requires that you also administer these other BEA Tuxedo
systems. Y ou use the BEA Tuxedo utilitiest madni n, gmadni n, and nt sadmi n to
administer the Notification Service.

Notification Service administration is comprised of two related tasks: configuration
and management. Although these areas are discussed separately, they arein fact,
interrelated. Thus, to fully understand configuration, you must also understand
management and vice versa.

Configuring the Notification Service

Before you can run event Notification Service applications, the following
configuration regquirements must be satisfied:

m |f datafiltering or BEA Tuxedo ATMI interoperability isto be used, create BEA
Tuxedo ATMI FML field definition files that describe the fields on which to
filter or to interoperate.

m |f persistent subscriptions are to be used:

e If usingaajoint client/server, set the host and port number for the callback
object references.

e Create atransaction log.

e Create queuesto hold events.

m Create a system configuration file (UBBCONFI G) and a TUXCONFI Gfile.

7-22 Using the CORBA Notification Service

Configuring Data Filters

Configuring Data Filters

If datafiltering or BEA Tuxedo ATMI interoperability is used in subscriber
applications, you must perform the following steps to use datafiltering in
subscriptions:

1. Create the BEA Tuxedo ATMI FML field table definition file that describes the
fields on which to filter (see Listing 7-2).

2. Inthe UBBCONFI Gfile, specify where the FML field table definition fileislocated
so that when the application is started, the location of field definition filesis
passed to the Notification Service servers (see Listing 7-3).

In Listing 7-1, the code that is shown in bold text shows how the datafiltering is
implemented in an event poster application. Only subscriptions that contain the
name/value pair bi | | i ng and pat i ent _account will receive the event.

Listing 7-1 Sample Data Filtering Using the BEA Simple Events APl (C++)

CosNotification::StructuredEvent notif;

noti f. header.fi xed_header. event _type. domai n_nane =
CORBA: : string_dup("HEALTHCARE") ;

noti f. header. fi xed_header. event type.type_nane =
CORBA: : string_dup("HvMO");

/] Specify an additional filter, based upon nane and val ue
/1 for this event.

notif.filterable data.length(2);
notif.filterable data[0].nane = CORBA::string dup("billing");
notif.filterable_data[0].value <<= CORBA::Long(1999);
notif.filterable_data[l].name =

CORBA: : string_dup("patient_account");
notif.filterable_data[1l].value <<= CORBA::Long(2345);

/1 Push the structured event onto the channel.
t est Channel - >push_structured_event (notif);

Using the CORBA Notification Service ~ 7-23

Z

CORBA Notification Service Administration

7-24

Listing 7-2 shows the FML field table definitions file needed to use datafiltering.

Listing 7-2 Data Filtering FML Field TableFile

*base 2000

#Fi el d Nane Field # Field Type Fl ags Coment s
Heo o oo m oo e e ei mmeimeeeedmetemeoo-
billing 1 | ong - -

pati ent _account 2 | ong - -

Listing 7-3 shows the content of environment variablefile (envfile). Theenvfil e
contains the location of the FML field definitions file.

Note: Y ou can name the environment variabl e file whatever you want, but the name
used must match the name specified for the ENV FILE configuration option n,
the SERVERS section of the UBBCONFI Gfile.

Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft
Windows)

FLDTBLDI R32=D: \ t uxdi r\ EVENTS_Sanpl es\ ADVANCED_Si npl e_cxx\ conmon
FI ELDTBLS32=news_f| ds

Listing 7-4 shows, in bold text, how thelocation of the FML field tablefileis specified
in the UBBCONFI Gfilefor the Advanced samples.

Listing 7-4 Specifyingthe FML Field Definitions Filein the UBBCONFIG File

* SERVERS

TMSYSEVT
SRVGRP = NTS_GRP
SRVID =1

TMUSREVT
SRVGRP = NTS_GRP>>$@
SRVID =2

Using the CORBA Noatification Service

Setting the Host and Port

Setting

ENVFI LE = "D: \tuxdi r\ EVENTS_Sanpl es\ ADVANCED Si npl e_CXX\ envfil e"
TMNTS

SRVGRP = NTS_CRP

SRVID = 3

ENVFI LE = "D: \ t uxdi r\ EVENTS_Sanpl es\ ADVANCED _Si npl e_CXX\ envfil e"

CLOPT = "-A -- -s TMNTSQS"
TMNTSFWD_T

SRVGRP = NTS_CRP

SRVID = 4

ENVFI LE = "D: \tuxdi r\ EVENTS_Sanpl es\ ADVANCED Si npl e_CXX\ envfil e"
TMNTSFWD_P

SRVGRP = NTS_CRP

SRVID = 5

ENVFI LE = "D: \tuxdi r\ EVENTS_Sanpl es\ ADVANCED_ Si npl e_CXX\ envfil e"

the Host and Port

The object references host and port number requirementsfor the callback object are as
follows:

m For transient callback objects, any port is sufficient and can be obtained
dynamically by the ORB.

m For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.

Y ou specify the port number from the user range of port numbers, rather than from the
dynamic range. Assigning port numbers from the user range preventsjoint
client/server applications from using conflicting ports.

The method you useto set the host and port depends on the programming language you
areusing.

m Setting Host and Port on C++ Subscriber Applications

For C++ subscriber applications, to specify a particular port for the joint
client/server application to use, include the following on the command line that
starts the process for the joint client/server application:

-ORBport nnnn -IRBid BEA Il OP

Using the CORBA Notification Service ~ 7-25

Z

CORBA Notification Service Administration

7-26

where nnnn is the number of the port to be used by the ORB when creating
invocations and listening for invocations on the callback object in the joint
client/server application.

Use this command when you want the object reference for the callback object in
ajoint client/server application to be persistent and when you want to stop and
restart the joint client/server application. If this command is not used, the ORB
uses arandom port. If arandom port is used when the joint client/server
application is stopped and then restarted, invocations to persistent callback
objectsin the joint client/server application will fail.

The port number is part of the input to the ar gv argument of the

CORBA: : or b_i ni t member function. When the ar gv argument is passed, the
ORB reads that information, establishing the port for any object references
created in that process.

Setting Host and Port on Java Subscriber Applications

For Java subscriber applications, you can pass in properties that set the host and
port. Listing 7-5 illustrates how to do this.

Listing 7-5 Setting Host and Port in Java Subscriber Applications

Properties prop = new Properties();
prop. put("org.ong. CORBA. ORBO ass", "com beasys. CORBA.iiop. ORB");
prop. put (" org. ong. CORBA. ORBSIi ngl et onCl ass",

"Com beasys. CORBA. i dl . ORBSi ngl eton") ;

prop. put("org.ong. CORBA ORBPort", nnnn);
ORB orb = ORB.init(args, prop);

Note: You canalso settheportinthej ava command line. Hereis an example of
aj ava command line that sets the port number:

java - DTOBJADDR=// BEANI E: 2359 \
- Dor g. ong. cor ba. ORBPor t =port nunber -cl asspath. ..

Using the CORBA Noatification Service

Creating a Transaction Log

Creating a Transaction Log

When you use persistent subscriptions, you must configure and boot the BEA Tuxedo
gueuing system. The queuing system requiresatransaction log. Listing 7-6 showshow
to usethet madmi n utility to create a transaction log.

Listing 7-6 Creating a Transaction Log (createtlog) (Microsoft Windows)

>t madni n

>crdl -b 100 -z D:\tuxdir\ EVENTS Sanpl es\ ADVANCED Si npl e_ CXX\ TLOG
>crlog -m SI TEL

>qui t

>

Creating Event Queues

When you use persistent events, you must configure and boot the BEA Tuxedo
gueuing system. Two event queues must be created:

m TMNTSFWD P

Thisisthe event forwarding queue for persistent subscriptions. Events go to this
queue first and then are forwarded to matching persistent subscriptions. If an
event cannot be delivered on the first attempt, it is held in this queue and
repeated attempts are made to deliver it. If the settable retry limit is reached
before the event can be successfully delivered, the event is moved to the error
queue.

This queue requires the following configuration parameters:
e Queuing order (for example, first in, first out).
e How to handle out-of-order enqueuing.

e Retry limit (how many retries before moving the event to the error queue).

Using the CORBA Notification Service ~ 7-27

[/ CORBA Notification Service Administration

e Retry timeinterval.
e How full the queue can get before administrative intervention is required.

e How low the queue can get after getting full before administrative
intervention is required.

e Definition of the administrative intervention command.

m TMNTSFWD E

Thisisthe error queue. This queue receives events from the TMNTSFWD_P queue
that cannot be delivered to subscriptions. This queue requires the same
configuration parameters as the TWTSFWD_P forwarding queue, however, the
retry limit and retry time interval parameters are irrelevant because thisis the
error queue and errors are only removed by administrative intervention.

To configure these queues, perform the following steps:
1. Create adevice on disk for the queue space.

2. Configure a queue space.

3. Createthe queues.

These steps are described in the following sections.

Determining Space Parameters for Transient and
Persistent Subscriptions

To tune your system for maximum performance, you should determine the optimal
values for the following parameters:

m The number of transient forwarding servers (TMNTSFWD_T) and persistent
forwarding servers (TMNTSFWD_P).

m |PC queue space (thisis used for transient subscriptions).

m Size of /Q queues (thisis used for persistent subscriptions).

7-28 Using the CORBA Notification Service

Creating Event Queues

IPC Queue Space for Transient Subscriptions

Proceed as follows to determine space parameters for transient subscriptions:

1. Determine how many events may bein the pipelinefor transient subscriptions; that
is, how many events may be in the process of being delivered at any given time.
This equal sthe number of eventsmultiplied by the number of subscribersreceiving
them.

2. Determine the size of your events. For purposes of this discussion, we will
assume that they are relatively small—about 300 bytes or less.

3. Determine how many transient forwarding servers you would like to start, most
likely one or two—one per processor on your machine is a good number to start
with.

4. Determine how much IPC queue space you will need to hold your transient
events. The amount of space you need is 1000 bytes multiplied by the number of
events you allow in the pipeline. Divide this number by the number IPC queues
your transient forwarders have. If you use MSSQ sets, then your transient
forwarders share one | PC queue; if you do not, then each forwarder hasits own
IPC queue.

For example, if you estimate that there will be 10 events delivered to 50
subscribersin the pipeline, and you start 2 transient forwarders and they do not
share an IPC queue (that is, you do not use M SSQ sets), the amount of 1PC
gueue space you need is:

10 events * 50 subscribers* 1000 bytes/ 2 forwarders = 250,000 bytes

5. Configure the IPC queue size to that number by changing the entriesin the
system registry. How you do thisis platform-specific.

e For Microsoft Windows systems, see “ Setting |PC Parameters on Microsoft
Windows” on page 7-34.

e For UNIX systems, refer to the system reference manual supplied with the
system.

/Q Queue Size Parameter Persistent Subscriptions

Proceed as follows to determine space parameters for persistent subscriptions:

Using the CORBA Notification Service ~ 7-29

Z

CORBA Notification Service Administration

7-30

1. Determine how many events may be in the pipeline for persistent subscriptions;

that i's, how many eventsmay beinthe process of being delivered at any giventime.
Thisequalsthe number of events multiplied by the number of subscribersreceiving
them.

. Determine the size of your events. For purposes of this discussion, we will

assume that they are relatively small—about 300 bytes or less.

. Determine the size your /Q queues need to be to hold your persistent events (both

for your pending queue and error queue). Proceed as follows to do this:

a. Determine the size of adisk page. Thisis platform-specific. For example, on
Microsoft Windows, a disk page is 500 bytes. On UNIX machines, adisk page
could range from 500 to 4000 bytesin size.

b. Determine how many disk pagesyou will need to store one event rounding up.
For example, if you need 1000 bytes per event and disk pages are 500 bytes,
you will need 2 disk pages per event.

c. Determine how many disk pagesyou will need for your events. For example, if
you want to allow 500 pending events and 200 error events, and an event takes
up 2 disk pages, you will need 1400 disk pages.

d. Determine how many disk pages you will need for your gspace. Thisisthe
number of disk pages you need for your events plus some pages for gspace
overhead. For example, if you need 1400 disk pages for events, then your
gspace needs approximately 1450 disk pages (50 pages of gspace overhead).

e. Determine how many pages you will need for your gspace device. Thisisthe
number of pages you need for the gspace plus some pages for device overhead.
For example, if you need 1450 disk pages for your gspace, then your device
needs approximately 1500 pages (50 pages of device overhead).

. When you use gmadni n to create the gspace for your persistent events, the first

phaseis to create a device. Use the size computed above in step 3e above
(approximately 1500 pages). Next, specify the size of the gspace. Use the size
computed in step 3d (approximately 1450 pages). Next, specify how many events
can be in the pending queue and how many events can be in the error queue. The
following sections explain how to create and configure gspaces.

Using the CORBA Noatification Service

Creating Event Queues

Creating a Device on Disk for the Queue Space

Y ou use the gmadmin command utility to create a device on disk for the queue space.

Before you create a queue space, you must create an entry for it in the universal device
list (UDL). Listing 7-7 shows an example of the commands.

Listing 7-7 Creating a Device on Disk for Queue Space (UNIX)

pronpt >gqmadm n d:\sm t h\reg\ QUE

gmadnmi n - Copyright (c) 1996-1999 BEA Systens, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
Al Rights Reserved.

Di stributed under |icense by BEA Systens, Inc.

BEA Tuxedo is a registered tradenark.

QVCONFI G=d: \ smi t h\ r eg\ QUE

> crdl d:\smith\reg\QUE 0 1100
Created device d:\smth\reg\QUE, offset 0, size 1100
on d:\smth\reg\ QUE

For more information about creating a device on disk, see Using the ATMI /Q
Component.

Configuring a Queue Space

Y ou use the gndani n gspacecr eat e command to configure queue spaces. A queue
space makes use of |PC resources; therefore, when you define a queue space you are
allocating a shared memory segment and a semaphore. The easiest way to use the
gspacecr eat e command isto let it prompt you. Listing 7-8 shows an example queue
space that is configured for the Advanced sample application.

Listing 7-8 Creating Queue Space

> (spacecreate
Queue space nane: TMNTSQS

Using the CORBA Notification Service ~ 7-31

[/ CORBA Notification Service Administration

| PC Key for queue space: 52359

Si ze of queue space in disk pages: 1050

Nunmber of queues in queue space: 2

Nurmber of concurrent transactions in queue space: 10
Nunmber of concurrent processes in queue space: 10
Nunmber of messages in queue space: 500

Error queue nane: TMNTSFWD _E

Initialize extents (y, n [default=n]): vy

Bl ocki ng factor [defaul t=16]:

In the queue space created in Listing 7-8, take note of the following size settings:

Nunmber of nessages in queue space: 500
Setting this parameter to 500 allows room for atotal of 500 eventsin the
pending and error queues.

Si ze of queue space in disk pages: 1050
On Microsoft Windows, each disk page is 500 bytes and each event needs
1000 bytes. In addition, you must allow 2 disk pages per event. Since you
estimate that there will be 500 events in the pending and error queues, then
you must allow 1000 disk pagesto store them (500 * 2). Also, you must allow
50 disk pages for gspace overhead, so the gspace size is set to 1050 disk
pages. Finally, the device needs 50 disk pages of overhead too, so the device
sizeis 1100 disk pages, which you set using the cr di command (see
Listing 7-7).

For more information about creating queue space, see Using the ATMI /Q Component.

Creating the Queues

Y ou must use the gmadni n gcr eat e command to create each queue that you intend
to use. Before you can create a queue, you first have to open the queue space with the
grmadni n gopen command. If you do not provide a queue space name, gopen will
prompt for it.

Listing 7-9 shows an example of creating the TMNTSFWD_P and TMNTSFWD_E queues
that are created for the Advanced sample application.

7-32 Using the CORBA Notification Service

Creating Event Queues

Listing 7-9 Creating Queues

> qopen
Queue space nane: TMNTSQS

> (create

Queue nane: TMNTSFWD_P

Queue order (priority, time, fifo, lifo): fifo

Qut - of -ordering enqueuing (top, nsgid, [default=none]): none
Retries [default=0]: 5

Retry delay in seconds [default=0]: 3

Hgh limt for queue capacity warning (b for bytes used, B for
bl ocks used, % for percent used, mfor nessages [default=100%):
80%

Reset (low) limt for queue capacity warning [defaul t=0%: 0%
Queue capacity conmand:

No default queue capacity command

Queue ' TMNTSFWD_P' created

> (create

Queue nane: TMNTSFWD_E

Queue order (priority, time, fifo, lifo): fifo

Qut - of -ordering enqueuing (top, nsgid, [default=none]): none
Retries [default=0]: 2

Retry delay in seconds [default=0]: 30

Hgh limt for queue capacity warning (b for bytes used, B for
bl ocks used, %for percent used, mfor nessages [defaul t=100%):
80%

Reset (low) limt for queue capacity warning [defaul t=0%: 0%
Queue capacity conmmand:

No default queue capacity command

Q _CAT: 1438: INFO Create queue - error queue TMNTSFWD E created
Queue ' TMWNTSFWD_E' created

> q

For more information about creating queues, see Using the ATMI /Q Component.

Using the CORBA Notification Service ~ 7-33

Z

CORBA Notification Service Administration

Setting IPC Parameters on Microsoft Windows

7-34

The BEA Tuxedo software for Microsoft Windows systems provides you with BEA

Tuxedo IPC Helper (TUXIPC), an interprocess communication subsystem, that is
installed with the product. On most machines, |PC Helper runs as installed; however,

you can use the IPC Resources page of the control panel applet to tune the TUXIPC

subsystem and maximize performance.

To display the IPC Resources page of the IPC Control Panel, perform these steps:

1. Click Start—>Settings—>Control Panel. The Microsoft Windows Control Panel is
displayed (Figure 7-1).

Figure7-1 Microsoft Windows Control Panel

B3 Control Panel
File Edit “iew Help

IS [=] E3

& B B =
thocessibiitg Add/Remove BEA Conzale D ate/Time Devices
______ Options £ Programs Administration

5 Q = O

Diizplay Find Fast Fonts Internet F.eyboard b ail and Fax

5

St Rty : Ll
kGA Dizplay todems touze kultimedia Metwork, ODBC

Properties

D 2 P & -
FC Card Forts Printers Regional SCS5| Adapters Server
[FCMLCIA) Settings

- AT

& = = & 49

Services Sounds System Tape Devices Telephony UPS
|20 object(s)

Using the CORBA Noatification Service

Creating Event Queues

Click the BEA Administration icon. The BEA Administration Control Panel is

displayed (Figure 7-2).

Click on the IPC Resources tab. The IPC Resources Control Panel portion of the

BEA Administration Control Panel is displayed (Figure 7-2).

Figure7-2 BEA Tuxedo Softwarefor Microsoft Windows | PC Resour ces
Control Panel

BEA Administration - \APCWIZ1

Machines] Environment] Logging] Listener IPC HBSDUICESI

Current Rezource: Default b aximum Allowed Meszage Size:

M asirnum Mumber OF Mezzage Headers:

b axirmumm Mumber OF Semaphores:

IV Use Default IPC Settings b axirum Mumber Of Semaphare Sets:

bl amirumm Murmber Of Semaphore Undao Structures:

b aximurn Murnber OF Procezgesz Per Shared Segment:;

MHurmber Of Shared Memony Segments:

Mawimum Mezzage Queue Size:

M aximurm Mumber of Meszage Dueues:
Size of Meszzage Segment;

Mumber Of Mezzage Segments:

td axirum Mumber of Processes Using IPC:

o536

128

5536

27ET

024

024

024

5

JAEEENARNERLN-

]

Ok | Cancel |

To define |PC settings for your BEA Tuxedo machine, proceed as follows:

1

Inthe Current Resource Default box, click the Use Default | PC Settings check box

to clear it.
Click the insert box.

Enter the name of your machine and press Enter.

Using the CORBA Notification Service

7-35

[/ CORBA Notification Service Administration

4. Click the fields next to the IPC resources you want to set, enter the desired
values, and click Apply. Clicking Apply saves the changes in the Registry Table.
You must then stop and then restart the t uxi pc. exe service for the changesto
take effect.

5. Click OK to close the Control Panel.

Y ou can view the performance of arunning BEA Tuxedo server application on the
Performance Monitor.

To start the Performance Monitor, click
Start—>Programs—>Administration Tools—>Performance Monitor on the taskbar.
The Performance Monitor screen is displayed (Figure 7-3).

Figure7-3 BEA Tuxedo Softwarefor Microsoft Windows Performance Monitor

i Performance Monitor H=] &3
Fil= Edit “iew DOptions Help

100
30
80
70
50
50
40
30
20
10

0

Last| 0.000 Averags| 0.000 Min| 0.000 Max| 0.000 Graph Time| 100.000

Color Scale Counter Instance Parent Object Computer

|Data: Current Activity

7-36 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

Creating the UBBCONFIG File and the
TUXCONFIG File

For event poster and subscriber applicationsto communicate witha CORBA aobject in
the BEA Tuxedo domain, in this case the Notification Service, a UBBCONFI Gfileis
required for the Notification Service. The UBBCONFI Gfile must be written as part of
the development of the Notification Service application; otherwise, you will not be
ableto build and run the application.

After you write the UBBCONFI Gfile, you usethet m oadcf command to produce the

TUXCONFI Gfile, which is used at run time. Therefore, the TUXCONFI Gfile must exist

before the Natification Service application is started. The TUXCONFI Gfileissimply a
binary version of the UBBCONFI Gfile. The following is an example of how to use the
tmloadcf command:

tm oadcf -y ubb

Before writing the UBBCONFI G you should list the configuration requirements of your
Notification Service application. To list requirements, determine the required servers
and processes to support the subscription. Table 7-1 shows the configuration
requirements for the different types of subscriptions.

Table 7-1 Configuration Requirementsfor Transient and Persistent Subscriptions

To support these types of subscriptions Your UBBCONFI Gfile must include the following
servers, and processes

Transient subscription TMUSREVT, TMNTS, and TWTSFWD_T
Persistent subscription TMUSREVT, TMNTS, TMNTSFWD_P, TMQUEUE,
TMQFORWARD

If you are using event subscriber applications that use I1OP, you need to configure the
I1OP Listener (ISL) command in the UBBCONFI Gfile with parameters that enable
outbound 110OP to invoke callback objects that are not connected to an [1OP Handler
(ISH). The - Ooption (uppercase | etter O) of the | SL command enables outbound | 1OP.

Using the CORBA Notification Service ~ 7-37

Z

CORBA Notification Service Administration

7-38

Additional parameters allow system administrators to obtain the optimum
configuration for their Notification Service application. For more information about
the ISL command, see Setting Up a BEA Tuxedo Application.

When developing a Notification Service application, the SERVERS section of the
UBBCONFI G file may include the following types of servers:

TMUSREVT

A BEA Tuxedo system-provided server that processes event report message
buffersfromt ppost (3) , and acts as an EventBroker to filter and distribute
them. (Required)

TWNTS

A BEA Tuxedo Notification Service server that processes requests for
subscriptions and event postings. (Required)

TMNTSFWD_T

A BEA Tuxedo Notification Service server that forwards transient eventsto
subscribers of transient subscriptions. (Required for transient subscriptions)

TMNTSFVD_P

A BEA Tuxedo Notification Service server that forwards persistent events to
subscribers that have persistent subscriptions. Events that cannot be delivered to
subscribers are sent to the error queue. (Required for persistent subscriptions)

TMQUEUE

A BEA Tuxedo server that manages event queues. (Required for persistent
subscriptions)

TMQFORWARD

A BEA Tuxedo server that forwards events to the Notification Service
TMWMNTSFWD_P server so that they can be forwarded to persistent subscribers.
(Required for persistent subscriptions)

I SL

The BEA Tuxedo I10P Server Listener/Handler process. (Required if the event
poster or subscriber is remote, that is outside the local domain)

Using the CORBA Noatification Service

Creating the UBBCONFIG File and the TUXCONFIG File

The UBBCONFI Gfile shown in Listing 7-10 is from the Notification Service
Introductory sample application. The Introductory sample application supports
transient subscriptions only; it does not support persistent subscriptions or data
filtering.

Listing 7-10 ThelIntroductory Sample UBBCONFIG File

This UBBCONFI Gfil e supports transi ent subscriptions only; it does
not persistent subscriptions or data filtering.
* RESOURCES

| PCKEY 52359

DOVAI NI D events_i ntro_si npl e_cxx

MASTER SI TE1

MODEL SHM

* MACHI NES
" BEANI E'
LMD = SITE1
APPDI R = "D:\tuxdi r\ EVENTS~1\ | NTRCD~2"
TUXCONFI G = "D:\t uxdi r\ EVENTS~1\ | NTROD~2\t uxconfi g"
TUXDIR = "d:\tuxdir"
MAXWSCLI ENTS = 10
ULOGPFX = "D:\tuxdir\ EVENTS~1\ | NTROD~2\ ULOG'

Since we are using transient events, the group need not be
transactional .
* GROUPS

SYS_GRP

LMD = SITE1

GRPNO = 1

* SERVERS

DEFAULT:

CLOPT = "-A"

TMSYSEVT

SRVCRP = SYS GRP

SRVID = 1
TMUSREVT

SRVCRP = SYS GRP

SRVID = 2
TMFENAME

SRVCRP = SYS GRP

SRVID = 3

CLOPT = "-A-- -N-M
TMFFENAME

SRVCRP = SYS GRP

Using the CORBA Notification Service ~ 7-39

[/ CORBA Notification Service Administration

SRVID = 4
CLOPT = "-A -- -N'
TMFENANVE
SRVGRP = SYS _GRP
SRVID = 5
CLOPT = "-A -- -F"
Start the notification service server.
#
TWNTS
SRVGRP = SYS _GRP
SRVID = 6
Start the Notification Service transient event forwarder.
#
TMNTSFWD_T
SRVGRP = SYS _GRP
SRVID = 7
Start the ISL with -O since we are using callbacks to clients.
I SL
SRVGRP = SYS _GRP
SRVID = 8
CLOPT = "-A -- -O-n //BEAN E: 2359"
He o o o o e m e e eeemmmmao-
* SERVI CES

The code example shown in Listing 7-11 is from the Notification Service Advanced
sample application. The Advanced sample application supportstransient and persistent
subscriptions and data filtering.

Listing 7-11 The Advanced Sample UBBCONFIG File

This UBBCONFI G file supports transient and persistent
subscriptions and data filtering.
* RESOURCES

| PCKEY 52363

DOVAI NI D event s_advanced_si npl e_cxx

MASTER S| TE1

MODEL SHM

* MACHI NES
" BEANI E"
LMD = SITE1
APPDI R = "D:\tuxdi r\ EVENTS~1\ ADVANC~1"
TUXCONFI G = "D:\tuxdi r\ EVENTS~1\ ADVANC~1\t uxconfi g"
TUXDIR = "d:\tuxdir"

7-40 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File

MAXWSCLI ENTS = 10

ULOGPFX = "D:\tuxdi r\ EVENTS~1\ ADVANC~1\ ULOG'
#
Since we are using persistent events, we need a transaction | og.
#

TLOGDEVI CE = "D\t uxdi r\ EVENTS~1\ ADVANC~1\ TLOG'

TLOGSI ZE = 10

He o o e o e e e e e e e e e e e e e e eeeea o
* GROUPS

SYS GRP

LMD = SI TE1

GRPNO = 1

Create a null transactional group for the notification service
servers.

#
NTS_GRP
LMD = SI TE1
GRPNO = 2
TMSNAME = TMS
TMBCOUNT = 2

Since we are using persistent events, we need a persistent queue
create a queue transactional group for the queue servers.
#

QUE_GRP
LMD = SITEL1
GRPNO = 3
TMSNAME = TMS_QM
TMSCOUNT = 2
#
Make the queue group nmanage the QUE space we create.
The nane of the queue space specified here as TMNTSQS nust nat ch
the name of the queue space you created.
#
OPENI NFO = " TUXEDQ' QM D: \ t uxdi r\ EVENTS~1\ ADVANC~1\ QUE; TMNTSQS"
-
* SERVERS
DEFAULT:
CLOPT = "-A"
#
Start the queue server.
The name of the queue space specified in the -s option of
CLOPT nust match the nane of the queue space you created.
#
TMQUEUE
SRVGRP = QUE_GRP
SRVID = 1
CLOPT = "-s TMNTSQS: TMQUELE -- "
#

Start the queue forwarder, have it forward events to the

Using the CORBA Notification Service ~ 7-41

Z

CORBA Notification Service Administration

7-42

notification service persistent forwarder.

#
TMFORWARD
SRVGRP = QUE_GRP
SRVID = 2
CLOPT = "-- -i 2 -q TMNTSFWD_P"
TNMSYSEVT
SRVGRP = NTS_GRP
SRVID = 1
#
Start the user EventBroker. Pass in the environnent file
so that the user EventBroker can find the "Story" fm field
definition. This allows the user EventBroker to perform
data filtering.
#
TMUSREVT
SRVGRP = NTS_GRP
SRVID = 2
ENVFI LE = "D:\tuxdi r\ EVENTS~1\ ADVANC~1\ envfil e"
TMFFNAMVE
SRVGRP = SYS_GRP
SRVID = 1
CLOPT = "-A-- -N-M
TMFFNAMVE
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A -- -N'
TMFFNAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -F"
#
Start the notification service server. Pass in the environnent
file so that the notification server can performdata filtering.
The -s option nust be specified since we are using
persistent events. Note that the -s option specifies the name
of the queue space as TMNTSQS. This name must match the nane
of the queue space you created.
#
TMNTS
SRVGRP = NTS_GRP
SRVID = 3
ENVFI LE = "D:\tuxdi r\ EVENTS~1\ ADVANC~1\ envfil e"
CLOPT = "-A -- -s TMNTSQS"
#
Start the notification service transient event forwarder.
Pass in the environment file so that the server can perform
data filtering.
#

Using the CORBA Noatification Service

Managing the Notification Service

TMNTSFWD_T

SRVGRP = NTS_GRP

SRVID = 4

ENVFI LE = "D:\tuxdi r\ EVENTS~1\ ADVANC~1\ envfil e"
#
Start the notification service persistent event forwarder.
Pass in the environnent file so that the server can perform
data filtering.
#
TMNTSFWD_P

SRVGRP = NTS_GRP

SRVID = 5

ENVFI LE = "D:\tuxdi r\ EVENTS~1\ ADVANC~1\ envfi |l e"
#
Start the ISL with -O since we're using callbacks to clients.
#
I SL

SRVGRP = SYS_GRP

SRVID = 4

CLOPT = "-A -- -O -n //BEAN E: 2363"
-
* SERVI CES

Managing the Notification Service

After you have deployed the Notification Service application, you may need to
perform the following administrative tasks on an on-going basis:

1. Synchronize databases.

2. Purgethe system of dead subscriptions.
3. Monitor queue utilization.

4. Purge the queues of unwanted events.
5

. Move or remove events from the error queue.

Using the CORBA Notification Service ~ 7-43

Z

CORBA Notification Service Administration

Synchronizing Databases

If you configure more than one EventBroker, then your Notification Service
subscription databases will have to be synchronized. Because the synchronization
process requires time—time that can impact event delivery—and increases network
traffic, you should not configure more than one EventBroker unless the event traffic
warrantsit.

When you configure more than one EventBroker, you can configure time required to
synchronize the databases using the - P option on the TMUSREV T server. For more
information on how to set this option, see TMUSREVT(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Note: Thetime required to synchronize the databases affects the elapsed time from
when a subscriber subscribes and when it receives events. It also affectsthe
elapsed time from when a subscriber unsubscribes and when it stopsreceiving
events.

Purging the System of Dead Subscriptions

7-44

A subscription diesin one of two ways: (1) the subscriber creates a persistent
subscription, shuts down without unsubscribing, and then does not restart and
reconnect to the Notification Service, or, (2) the subscriber creates a subscription that
never matches any event. Whileit is allowable for a subscriber to create a persistent
subscription and then shut down without unsubscribing, it is an error if the subscriber
does not periodically reconnect for the purpose of picking up accumulated events.
Because the Notification Service periodically attempts to deliver events that match
persistent subscriptions, such events accumulate while the subscriber is disconnected,
consume queue space, and waste system resources.

Subscriptions that will never match any events should not be created because they
serve no useful purpose. Also, subscriptions consume system resources because each
posted event must be compared against each subscription.

Using thent sadmi n commandslisted in Table 7-2, you can view all subscriptionsand
see how many eventsare currently in the pending queue and in the error queuefor each
subscription. Y ou can a so remove subscriptionsusing ant sadm n command or move
events from the error queue to the pending queue. For adescription of the nt sadmi n
utility, see “ntsadmin” on page 7-48.

Using the CORBA Noatification Service

Managing the Notification Service

Table 7-2 ntsadmin Commands Summary

Command Usage

subscri pti ons Lists subscriptionsin the subscription database.
rmsubscri ptions Removes subscriptions for the subscription database.
pendevent s Lists information about events in the pending events

queue. (For persistent subscriptions only.)

rnpendevent s Removes eventsin the pending events queue. (For
persistent subscriptions only.)

errevents Lists eventsin the event error queue. (For persistent
subscriptions only.)

rmerrevents Removes eventsin the events error queue. (For
persistent subscriptions only.)

Although thereisno way of automatically detecting adead subscription, thent sadmni n
utility is helpful in determining when and if a subscription is dead.

Monitoring Queue Utilization

Queues are created with a fixed amount of space allocated to them. This spaceis
consumed as events accumulate in the queues. If the queues become full, subsequent
attempts to enqueue events will fail.

You use gmadni n Or nt sadni n to monitor queue utilization (see gmadni n(1) inthe
BEA Tuxedo Command Reference).

When the queue space was created to hold the pending events, the maximum number
of eventsthat could be held by the queue space was specified. For example, in the
Advanced sample application, the maximum number of eventsfor the TMNTSQS queue
space was set to 200 (see “ Creating Event Queues’ on page 7-27). With knowledge of
gueue space capacity, you can usethent sadni n pendevent s command to determine
the number of events pending in the event queue. If the event queueisfull or nearly
full, you may want to increase the setting for maximum number of events or increase
the number of event queues.

Using the CORBA Notification Service ~ 7-45

[/ CORBA Notification Service Administration

Note: Usethethreshold command option (cnd) onthe gmadmi n gcr eat e command
to generate a warning when a queue is nearing capacity. For information on
this command, see gmadni n(1) in the BEA Tuxedo Command Reference.

Purging the Queues of Unwanted Events

Y ou can purge events from either the pending queue or the error queue by using the
nt sadni n commandsr mer r event s and r npendevent s.

Warning: After an event has been removed from the queue there is no way to
recover it. The event is gone and the subscribing application will never
receive the event.

Managing the Error Queue

After apreset number of attemptsto deliver an event, the event is moved to the error
gueue. Once on the error queue, the administrator must take some action to either
purge the event from the system, or move the event from the error queue back to the
pending queue. Purging of eventsis discussed in the previous section.

When you move an event from the error queue back to the pending queue, you are
requesting that the system resume delivery attempts of the event. Because failed
attemptsto deliver events consume system resources, you should not do thisunlessyou
have some reason to believe that the condition that prevented delivery before has been
corrected. Thent sadmi nretryerrevents command is provided specifically to
move events back to the pending queue.

7-46 Using the CORBA Notification Service

Notification Service Administration Utility and Commands

Notification Service Administration Utility
and Commands

This topic includes the following sections:
m ntsadmin Utility
m ntsadmin Commands

m Using the ntsadmin Utility

ntsadmin Utility

This section describes the nt sadni n utility.

Using the CORBA Notification Service ~ 7-47

Z

CORBA Notification Service Administration

ntsadmin

Synopsis

Syntax

Description

7-48

Security

See Also

BEA Tuxedo CORBA Natification Service administration command interpreter.
nt sadm n

The Natification Service includes an administration command interpreter, nt sadmi n,
that provides commands to perform the following tasks for CORBA Notification
Service applications:

m List subscriptions
m Delete subscriptions

m Display summary information about structured events on the pending and error
queues

m Delete structured events on the pending and error queues

m Move structured events from the error queue to the pending queue

Note: When you enter nt sadni n to start the program, if your application only has
transient subscriptions, the commands for persistent subscriptions are
disabled.

Note: The Notification Service must be running before you can use nt sadni n.

Y ou can exit thent sadni n program by enteringagq (for quit) at the command prompt.
Y ou can terminate the output from acommand by pressing the Break key; the program
then prompts for a new command.

Output from nt sadmi n is paginated according to the pagination command in use (see
the pagi nat e command).

Note: Thesubscri pti on command hasdifferent output depending on the setting of
the ver bose command.

This utility can only be used by the system administrator.

TMNTS, TMNTSFWD T, TMNTSFWD_P, qmadni n

Using the CORBA Noatification Service

Notification Service Administration Utility and Commands

ntsadmin Commands

Commands may be entered either by their full name or by an abbreviation (if available,
the abbreviation is listed below in parentheses following the full name), followed by
appropriate arguments. Arguments that appear in square brackets [] are optional;
arguments in curly braces{} indicate a selection from mutually exclusive options.
Each command offers the following options:

Option Definition

[-i identifier] If specified, identifies the subscription that matches
identifier.

[-n nane] If specified, identifies the subscription(s) with a subscription

namethat matchesnarre only. To specify names which match
theempty string (that is, subscriptionswith no name), enclosean
empty string between quotes (“).

Note: Thisoption doesnot support the wildcard character (*)
SO name must match the subscription name exactly.

[-t] If specified, designates subscriptions with a QoS of transient
only.

[-p 1] If specified, designates subscriptions with a QoS of persistent
only.

The nt sadnm n commands are as follows:

subscriptions (sub) [{-i identifier |-n nanme |-t | -p}]
Lists subscriptions in the subscription database.

Note: Thesubscri pti on command has different output depending on whether the
verbose modeis on or off (the ver bose command is described below).
Listing 7-12 shows examples of subscri pti on output with verbose on and
off.

Using the CORBA Notification Service ~ 7-49

[/ CORBA Notification Service Administration

Listing 7-12 Subscription Command Output with Verbose M ode On and Off

> verbose on

Ver bose node is now on

> sub
I D
Name
QoS
(space:
Expr essi on:
Filter:

I D

Nane:

QS:
space:
Expr essi on:
Filter:

I D

Nane:

QoS:
(space:
Expr essi on:
Filter:

> verbose off

1000000006
marcel |l o

Tr ansi ent

<N A>

stock trade\. quote

stock_nane %% ' BEAS && price_per_share > 150

1000000005
marcel | o

Per si st ent
TMWNTSQS

stock trade\. sel

1000000004
marcel | o

Per si st ent
TMNTSQS

stock trade\. buy

Ver bose node is now of f

> sub

1D Nane Expr essi on
1000000006 narcello [T] stock trade\.quote
1000000005 narcello [P] stock trade\.sel
1000000004 narcello [P] stock trade\. buy

rmsubscriptions (rnsub) [{-

identifier |-n name |-t | -p]}[-VY]

Removes subscriptions from the subscription database. This command
prompts for confirmation unless—y is used.
This command displays the number of subscriptions removed.

pendevents (pevt) [{-i identifier |-n nane}]
Lists information about events in the pending events queue.

7-50 Using the CORBA Notification Service

Notification Service Administration Utility and Commands

rmpendevents (rnpevt) [{-i identifier |-n name |-0}][-Vy]
Removes eventsin the pending events queue. If —o is specified, all eventsthat
do not currently have a corresponding subscription in the subscription
database will be removed.

This command prompts for confirmation unless—y is used and displays the
number of events removed.

errevents (eevt) [{-i identifier |-n nane}]
Lists eventsin the events error queue.

rmerrevents (rmeevt) [{-i identifier |-n name |-0}][-Vy]
Removes eventsin the eventserror queue. If —o is specified, all eventsthat do
not currently have a corresponding subscription in the subscription database
will be removed.

This command prompts for confirmation unless—y is used and displays the
number of events removed.

retryerrevents (reteevt) [{-i identifier |-n name}][-y]
Retries the events in the events error queue. Thiswill move the events from
the error queue to the pending queue.

This command prompts for confirmation unless -y is used and displays the
number of events moved from the error queue to the pending queue.

quit (q)
Terminates the session.

echo (e) [{off |on}]
Echoes input command lines when set to on. If no input is given, then the
current setting istoggled and the new setting is printed. Theinitia setting is
of f.

help (h) [{command |all}]
Prints help messages. If command is specified, the abbreviation, arguments
and description for that command are printed. al | causesadescription of the
commands to be displayed. Omitting all arguments causes the syntax of all
commands to be displayed.

pagi nate (page) [{off |on}]
Paginates output. If no input is given, the current setting is toggled and the
new setting isprinted. Theinitial settingison, unless either standard input or
standard output is a non-terminal device. Pagination may only be turned on
when both standard input and standard output are terminal devices. The shell

Using the CORBA Notification Service ~ 7-51

Z

CORBA Notification Service Administration

environment variable PAGER may be used to override the default command
used for paging output. The default paging command is the pager indigenous
to the native operating system environment; for example, the command pg is
the default on UNIX operating systems.

verbose (v) [{on | off }]
Produces output in verbose mode. If no optionisgiven then the current setting
will be toggled, and the setting is printed. Theinitial settingisof f .

! shel | conmand
Use this command to escape to shell and execute shel | conmand.

Use this command to repeat the previous shell command.

#[text]
Use this command to designate the line as a comment.

<CR>
Use this command to repeat the previous command.

Using the ntsadmin Utility

7-52

This section provides examples of using the nt sadni n utility.

Listing 7-13 shows an example of using nt sadni n to move events from the error
gueue back to the pending queue. The following steps are performed:

1. Look up al subscriptionsfor mar cel | o.

2. Usetheuniquesubscri ption_i d to display information about events on the
error queue.

3. Movethe events from the error queue to the pending queue.

Listing 7-13 Moving Eventsfrom the Error Queueto the Pending Queue

D:\smth\reg>nt sadnmin

ntsadnmn - Copyright (c) 1996-1999 BEA Systens, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
Al R ghts Reserved.

Di stributed under |icense by BEA Systens, Inc.

BEA Tuxedo is a registered tradenmark.

Using the CORBA Noatification Service

Notification Service Administration Utility and Commands

INFO /Q Qspace - TMNTSQS
INFO /Q Device - D:\smth\reg\QUE (SITE1)

> subscriptions -n narcello

I D Nanme Expr essi on
1000000002 narcello [T] stock trade\.quote
1000000001 narcello [P] stock trade\. sel
1000000000 narcello [P] stock trade\. buy

> ver bose off
Ver bose node is now of f

> eevt -i 1000000003

I D Name Count
1000000003 marcello 1

> reteevt -i 1000000003 -y

1 event(s) retried

Listing 7-14 shows an example of using nt sadni n to remove subscriptions and purge
events.

Listing 7-14 Removing a Subscription

rmsub -n BillJones -y
subscription(s) renoved
rmeevt -n marcello -y
event (s) renoved

rnmpevt -n BillJones -y
No events renoved

VL VDNYV

Listing 7-15 shows how to check events pending for a specific subscription.

Listing 7-15 Checking for Pending Events

> pevt -n nmarcello
I D Name Count

1000000003 narcello 1

Using the CORBA Notification Service ~ 7-53

[/ CORBA Notification Service Administration

Notification Servers

This section provides descriptions of the following servers:
® TMINS

m TWNTSFWD T

m TMNTSFWD_P

The Notification Service also uses the following BEA Tuxedo system servers. For
descriptions of these servers, refer to the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

m TMVBYSEVT(5)
m TMUSREVT(5)
B TMQFORWARD(5)
m TMQUEUE(5)

7-54 Using the CORBA Notification Service

Notification Servers

TMNTS
Synopsis

Syntax

Description

Parameter

Interoperability

Notes

Example

See Also

Processes requests for subscriptions and event postings.

TWNTS SRVGRP="identifier” SRVID="nunber”
[CLOPT="[-A] [servopts options]
[--[-S queuespace] "]

TMWNTS is a BEA Tuxedo-provided server that processes all requests for subscriptions
and event postings.

- S queuespace
The name of the queue space to use. This queue space must contain two
queues. TMNTSFWD_P and TMNTSFWD_E. Thisoptionisrequired for persistent
subscriptions only.

Note: If you plan to use subscriptionswith a QoS of Per si st ent , you must create a
gueue space, aqueue for holding events, and an error queue before the system
is operational. The queue space name must match the queuespace name
specified using the CLOPT - S queuespace parameter for the TMNTS server.
The event queue must be named TWTSFWD_P. The error queue must be named
TMNTSFWD_E.

Itispossibleto boot more then one TMNTS server to increase reliability and availability.

The TMNTS server must be part of atransactional group if eventswill be posted in the
context of atransaction.

TMNTS must run on BEA WebL ogic Enterprise version 5.0 or later or BEA Tuxedo 8.0
or later.

The TMNTS server relies on services provided by the TMUSREVT and TMSYSEVT servers.
Therefore, these servers must be booted before the system is operational. If transient
subscriptions are used, the TWNTSFWD_T server must also be booted before the system
isoperational. If persistent subscriptions are used, the TWNTSFWD_P, TMQUEUE, and
TMFORWARD servers must al so be booted before the system is operational .

* SERVERS
TMNTS SRVGRP = NTS_GRP SRVID = 3
CLOPT = "-A -- -s TMNTSQS"

TMVBYSEVT(5) , TMUSREVT(5) , TMQUEUE(5) , TMOFORWARD(5) , TMNTSFWD_P,
TMNTSFVD_T(5) , UBBCONFI &(5)

Using the CORBA Notification Service ~ 7-55

[/ CORBA Notification Service Administration

TMNTSFWD_T
Synopsis Forwards events to transient subscribers.
Syntax ~ TMNTSFWD_T SRVGRP="i dentifier” SRVI D="nunber”
[CLOPT="[-AJ[--"]
Description TMNTSFWD_T isa BEA Tuxedo-provided server that forwards events to subscribers

Interoperability

Notes

Example

See Also

who specified aQoS of Tr ansi ent . There is no transaction context associated with
event delivery.

Note: It ispossibleto boot morethen one TMNTSFWD_T server to increase reliability
and availahility.

TMNTS must run on BEA WebL ogic Enterprise version 5.0 or later or BEA Tuxedo 8.0
or later.

The TMNTSFWD_T server relies on services provided by the TWNTS, TMUSREVT, and
TMBYSEVT servers. Therefore, these servers must be booted before the system is
operational.

* SERVERS
TMNTSFWD_T SRVGRP = SYS_ GRP SRVID = 7

TMBYSEVT(5) , TMUSREVT(5) , TMNTS(5) , TMNTSFWD_P, UBBCONFI & 5) . Also, see
“1PC Queue Space for Transient Subscriptions’ on page 7-29.

7-56 Using the CORBA Notification Service

Notification Servers

TMNTSFWD_P
Synopsis Forwards events to persistent subscribers.
Synopsis TMNTSFWD_P SRVGRP="identifier” SRVI D="nunber”
CLOPT="[-A] [--"]
Description TMNTSFWD_P isa BEA Tuxedo-provided server that forwards events to subscribers

Interoperability

Notes

Example

See Also

who specified a QoS of persistent. There is no transaction context associated with
event delivery.

It is possible to boot more then one TMNTSFWD_P server to increase reliability and
availability.

TMNTS must run on BEA WebL ogic Enterprise version 5.0 or later or BEA Tuxedo 8.0
or later.

The TMNTSFWD_P server relies on services provided by the TMNTS, TMUSREVT,
TMBYSEVT, TMQUEUE, and TMQFORWARD servers. Consequently, these servers must be
booted before the system is operational.

This server must be booted in a transactional group.

The number of TWNTSFWD_P servers booted should be the same as the number of
TMQFORWARD servers booted.

* SERVERS
TMNTSFWD_P SRVGRP = NTS_GRP SRVID = 5

TVBYSEVT(5) , TMUSREVT(5) , TMNTS, TMNTSFWD T, ser vopt s(5) , UBBCONFI G(5)

Using the CORBA Notification Service ~ 7-57

[/ CORBA Notification Service Administration

7-58 Using the CORBA Notification Service

Index

A

Advanced application process
Advanced sample application 6-15
Advanced sample application
building 6-6
changing protection on files 6-13
setting up the work directory 6-9
source files 6-9, 6-10, 6-11
starting the server application 6-15

B

BEA Administration Control Panel
IPC Resources page 34
BEA Tuxedo system servers 1-4
BEAWTrapper callback
object 3-11
Boolean expression operators 2-14
Bootstrap Object
service IDs 2-4
building
C++ joint client/server applications 3-
17,4-19
buildobjclient command 3-19, 4-21

C

C++ joint client/server applications
compiling 3-17, 4-19
threading considerations 3-16

callback object

creating 3-11, 4-14
persistent 25
transient 25

Callback sample application
environment variables 6-8
JAVA_HOME directory path 6-8

required environment variables 5-5, 6-7

Channel Factory 2-3
client stub files 3-17, 4-20
compiling

C++ joint client/server applications 3-

17,4-19
ConsumerAdmin object 4-12
copy samplefiles 5-6
copying sample files 6-9
COS Structured Events 2-5

filterable body 2-6
fixed header 2-6
remaining body 2-7
variable header 2-6
CosNoatification Service API
overview 2-27
Push Consumer class 2-64
service classes
descriptions 2-31
model 2-28
customer support contact information xi

D
datafiltering 2-14, 6-6

Using the CORBA Notification Service

-1

configuring 23

directory location of source files
Advanced sample application 6-9
Introductory sample application 5-7

directory path 5-5, 6-8

documentation, where to find it x

E

environment variables 5-5
Callback sample application 5-5, 6-7
JAVA_HOME 5-5, 6-7
TUXDIR 5-5, 5-6, 6-7, 6-9

error queue 46

event channel
finding 2-3
getting 3-3, 4-3

event design 2-7, 3-2, 4-2

event queues
creating 27

events
creating and posting 3-4, 4-4
news 6-6
posting 2-11, 3-2
receiving 2-11
subscribing 3-6
system 2-11

example 2-12
user 2-11
example 2-12
exception
CORBA:: TRANSIENT 2-3

F
Field Manipulation Language (FML)
buffer 2-10
creating field table files 2-8
field table definition
files23
field table files 2-10

[-2 Using the CORBA Notification Service

filenames 2-10
FML32 2-10
file protections
Advanced sample application 6-13
Introductory sample application 5-10
FilterFactory object 4-12
FML field table files 2-10
FML field tables 1-4
FML filename 2-10

H

host and port
number requirements 25

idl command 3-17
IDL files 3-18
Introductory application process
Introductory sample application 5-12
Introductory sample application
building 5-4
changing protection on files 5-10
description 5-1
setting up the work directory 5-6
source files 5-7
starting the server application 5-12
IPC Helper (TUXIPC) 34
ISL 38

J

JAVA_HOME parameter
Callback sample application 5-5, 6-7

M

makefile
executing 5-12, 6-15
summary 5-11, 6-14

N

news events 6-6
Notification servers 1-4, 54
TMNTSFWD_P 54
TMNTSFWD_T 54
TMQFORWARD 54
TMQUEUE 54
TMSYSEVT 54
TMTNS 54
TMUSREVT 54
Notification Service
application build
requirements 4-21
Bootstrap object 2-4
build requirements 3-18
compiling and running 4-19
configuring 22
defined 1-1
event design 2-7
exception symbols 2-66
managing 43
minor codes 2-66
product features 1-4
programming model 1-2
TUXCONFIG file 37
UBBCONFIG file 37
Notification Service system
components 1-2
ntsadmin
commands 49
utility
description 48
using 52

P

Performance Monitor screen 36
printing product documentation x

Q
gmadmin command 31
Quiality of Service (QoS) 2-16
persistent 1-4, 2-2
persistent subscription 1-4, 2-2
setting 2-2
subscription
persistent
properties 2-2
transactions 2-4
transient 1-4, 2-2
transient subscription 1-4
properties 2-3
transient versus persistent 2-16
queue
creating a 32
managing error queue 46
monitoring space 45
purging unwanted events 46
gueue space
configuring 31
creating a device 31

R

related information Xi

Reporter application 5-2, 6-4
post an event 6-18

retry limit 1-4

S

server applications
starting
Advanced sample application 6-15
Introductory sample application 5-
12
servers 54
Setting IPC Parameters 34
Simple Events API 2-17
Channel Factory interface 2-25

Using the CORBA Notification Service -3

Channél interface 2-18 TMNTS 1-4, 38, 55, 56

skeleton files 3-17, 4-20 TMNTSFWD_P 1-4, 38, 57
Subscriber application 5-2 TMNTSFWD_T 1-4, 38, 56
news subscription 6-4 TMQFORWARD 1-4, 38
shutdown subscription 6-4 TMQUEUE 1-4, 38
subscribe to event 6-17 TMSUSREVT 1-4, 55, 56
subscription TMSYSEVT 1-4, 55, 56
cancellation 2-3 TMSY SEVT application process
checking successful delivery 2-3 Advanced sample application 6-15
cleanup mechanism 2-3 Introductory sample application 5-12
creating 4-16 TMUSREVT 38
parameters 2-12 transaction log
data filter 2-13 creating 27
domain_type 2-13 transactions
push_consumer 2-16 QoS 2-4
QoS 2-16 TUXCONFIG file
subscription_name 2-13 creating 37
type_name 2-13 TUXDIR parameter
persistent Callback sample application 5-5, 6-7, 6-
/Q queue size parameter 29 8
creating 3-12 TUXIPC 34
creating atransaction log 27
creating an event queue 27 U
IPC gqueue space 28
properties 2-2 UBBCON FIGfile1-4
purging dead subscriptions 44 creating 37
retry limit 1-4
synchronizing databases 44
transient
creating 3-12, 4-17
IPC gqueue space 28
properties 2-3
viewing with ntsadmin 44
support
technical xi
T

TMFFNAME application process
Advanced sample application 6-15
Introductory sample application 5-12

-4 Using the CORBA Notification Service

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview
	Introduction
	Functional Overview
	Figure 1�1 Notification Service Model

	Product Components

	2 CORBA Notification Service API Reference
	Introduction
	Quality of Service
	Persistent Subscriptions
	Transient Subscriptions

	Obtaining the Channel Factory
	Using Transactions
	Structured Event Fields, Types, and Filters
	Figure 2�1 Structured Event

	Designing Events
	Listing 2-1 Event Design

	Creating FML Field Table Files for Events
	Table 2�1 Supported CORBA Any Types�
	Listing 2-2 Data Filtering FML Field Table File

	Interoperability with BEA Tuxedo Applications
	Posting Events
	Receiving Events

	Parameters Used When Creating Subscriptions
	subscription_name
	domain_type
	type_name
	data_filter
	Table 2�2 Boolean Expression Operators

	Listing 2-3 Data Filtering Requirements
	push_consumer
	Table 2�3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

	qos (quality of service)

	BEA Simple Events API
	Figure 2�2 BEA Simple Events Interfaces
	TOBJ_SimpleEvents::Channel Interface

	Channel::subscribe
	CORBA IDL
	Parameters
	Exceptions
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT
	CORBA::INV_OBJREF

	Description
	Return Value
	Examples

	Channel::unsubscribe
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Examples

	Channel::push_structured_event
	CORBA IDL
	Parameter
	notification

	Exceptions
	CORBA_IMP_LIMIT

	Description
	Examples

	Channel::exists
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	TOBJ_SimpleEvents::ChannelFactory Interface

	Channel_Factory::find_channel
	CORBA IDL
	Parameter
	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	CosNotification Service API
	Overview of Supported CosNotification Service Classes
	Figure 2�3 Implemented CosNotification Service Classes

	Detailed Descriptions of CosNotification Service Classes
	CosNotifyFilter::Filter Class

	CosNotifyFilter::Filter::add_constraints
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidConstraint
	CORBA::BAD_PARAM
	CORBA_IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyFilter::Filter::destroy
	Synopsis
	OMG IDL
	Exceptions
	CORBA::BAD_PARAM

	Description
	CosNotifyFilter::FilterFactory Class

	CosNotifyFilter::FilterFactory::create_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidGrammar

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: connect_structured_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosEventChannelAdmin::TypeError
	CORBA::INV_OREF
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST
	CosEventChannelAdmin::AlreadyConnected

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos
	Synopsis
	OMG IDL
	Exceptions
	UnsupportedQoS
	ORBA::IMP_LIMIT

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter
	Synopsis
	OMG IDL
	Exceptions
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::FilterNotFound

	Description
	Restrictions
	a. Filter object references that are returned from this operation cannot be used in comparison op...
	b. Filter object references returned by this operation can be used by the CosNotifyFilter::Filter...

	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: disconnect_structured_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CORBA::OBJECT_NOT_EXIST

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: connect_structured_push_supplier
	Synopsis
	OMG IDL
	Exception
	CosEventChannelAdmin::AlreadyConnected

	Description
	1. Make a proxy.
	2. Use this operation to connect to the Notification Service and pass in a NIL.
	3. Post events.
	4. Before exiting the poster program, disconnect.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected
	CORBA::IMP_LIMIT

	Descriptions
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Descriptions
	1. Make a proxy.
	2. Connect and disconnect on every run of the poster application.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::ConsumerAdmin Class

	CosNotifyChannelAdmin::ConsumerAdmin:: obtain_notification_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ProxyNotFound

	Descriptions
	Return Value
	Examples
	CosNotifyChannelAdmin::SupplierAdmin Class

	CosNotifyChannelAdmin::SupplierAdmin:: obtain_notification_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannel Class

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_consumer_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_supplier_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel::default_filter_factory
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannelFactory Class

	CosNotifyChannelAdmin::EventChannelFactory::get_event_channel
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ChannelNotFound

	Description
	Return Value
	Examples
	CosNotifyComm::StructuredPushConsumer Interface

	CosNotifyComm::StructuredPushConsumer::push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected

	Description
	Examples

	CosNotifyComm::StructuredPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Description
	Examples

	CosNotifyComm::StructuredPushConsumer::Offer_change
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyComm::InvalidEventType

	Description
	Examples
	Exception Minor Codes
	Table 2�4 Tobj_Events Exception Minor Codes�
	Table 2�5 Tobj_Notification Exception Minor Codes�

	3 Using the BEA Simple Events API
	Development Process
	Table 3�1 Development Process�

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 3-1 Getting the Event Channel (C++)
	Listing 3-2 Getting the Event Channel (Java)

	Creating and Posting Events
	1. Creates an event and sets the domain name and type name. In the code samples, the domain name ...
	2. Adds a field to the event’s filterable data to contain the story, sets the name of the added f...
	3. Uses the push_structured_event operation to post the event to the Notification Service.
	Listing 3-3 Creating and Posting the Event (C++)
	Listing 3-4 Creating and Posting the Event (Java)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 3-5 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 3-6 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...
	Listing 3-7 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...

	Getting the Event Channel
	Creating a Callback Object
	1. Create a callback object. Callback objects can be implemented using either the BEAWrapper Call...
	2. Create the servant.
	3. Create an object reference to the callback servant.
	Listing 3-8 Sample Code for Creating a Callback Object With Transient Object Reference (Introduct...
	Listing 3-9 Sample Code for Creating a Callback Object With Transient Object Reference (Introduct...

	Creating a Subscription
	1. Set the subscription’s quality of service (QoS) to either transient or persistent.
	2. Determine the subscription_name (optional), domain_name, type_name, and data_filter (optional).
	3. Create the subscription. The subscription sets the domain_name, type_name, and data_filter (op...
	Listing 3-10 Creating a Transient Subscription (C++)
	Listing 3-11 Creating a Transient Subscription (Java)
	Listing 3-12 Creating a Persistent Subscription (Advanced Subscriber.cpp)
	Listing 3-13 Creating a Persistent Subscription (Advanced Subscriber.java)
	Threading Considerations for C++ Joint Client/Server Applications

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notifica...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 3�2 idl Command Requirements
	Table 3�3 IDL Files Required by Notification Service Applications

	Building and Running Applications
	Table 3�4 Application Build Requirements�
	Listing 3-14 C++ Reporter Application Build and Run Commands (Microsoft Windows)
	Listing 3-15 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 3-16 C++ Subscriber Application Build and Run Commands (UNIX)
	Listing 3-17 Java Reporter Application Link, Build, and Run Commands
	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter.java
	# Combine the java .class files into the java archive (JAR) file. jar cf reporter.jar Reporter.cl...
	# Run the reporter application. java -DTOBJADDR=//BEANIE:2359 -classpath \ reporter.jar;C:\tuxdir...
	Listing 3-18 Java Subscriber Application Link, Build, and Run Commands

	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\ C:\tuxdir\u...
	# Combine the java .class files into the java archive (JAR) file. jar cf subscriber.jar Subscribe...
	# Run the subscriber application. java -DTOBJADDR=//BEANIE:2359 -classpath \ subscriber.jar;C:\tu...

	4 Using the CosNotification Service API
	Development Process
	Table 4�1 Development Process�

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 4-1 Getting the Event Channel (Reporter.cpp)
	Listing 4-2 Getting the Event Channel (Reporter.java)

	Creating and Posting Events
	Listing 4-3 Creating and Posting the Event (Reporter.cpp)
	Listing 4-4 Creating and Posting the Event (Reporter.java)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 4-5 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 4-6 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...
	Listing 4-7 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...

	Getting the Event Channel, ConsumerAdmin Object, and Filter Factory Object
	Listing 4-8 Getting the Event Channel and ConsumerAdmin and Filter Factory Objects (Subscriber.cpp)
	Listing 4-9 Getting the Event Channel (Subscriber.java)

	Creating a Callback Object
	1. Creating a callback wrapper object. This can be implemented using either the BEAWrapper Callba...
	2. Creating the servant.
	3. Creating an object reference to the callback servant.
	Listing 4-10 Sample Code for Creating a Callback Object with Transient Object Reference (Introduc...
	Listing 4-11 Sample Code for Creating a Callback Object With Transient Object Reference (Introduc...

	Creating a Subscription
	1. Create a notification proxy push supplier and use it to create a StructuredProxySupplier object.
	2. Set the subscription’s Quality of Service (QoS). You can set the QoS to transient or persistent.
	3. Create a filter object and assign the domain_name, type_name, and data_filter (optional) to it.
	4. Add the filter to the proxy.
	5. Connect to the proxy passing in the subscription’s callback object reference.
	Listing 4-12 Creating a Transient Subscription
	Listing 4-13 Creating a Transient Subscription (Introductory Subscriber.java)

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notifica...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 4�2 idl Command Requirements
	Table 4�3 IDL Files Required by Notification Service Applications

	Compiling and Linking the Application Code
	Table 4�4 Application Build Requirements�
	Listing 4-14 C++ Reporter Application Build and Run Commands
	Listing 4-15 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 4-16 C++ Subscriber Application Build and Run Commands (UNIX)
	Listing 4-17 Java Reporter Application Link, Build, and Run Commands
	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter.java
	# Combine the java .class files into the java archive (JAR) file. jar cf reporter.jar Reporter.cl...
	# Run the reporter application. java -DTOBJADDR=//BEANIE:2359 -classpath \ reporter.jar;C:\tuxdir...
	Listing 4-18 Java Subscriber Application Link, Build, and Run Commands

	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\ C:\tuxdir\u...
	# Combine the java .class files into the java archive (JAR) file. jar cf subscriber.jar Subscribe...
	# Run the subscriber application. java -DTOBJADDR=//BEANIE:2359 -classpath \ subscriber.jar;C:\tu...

	5 Building the Introductory Sample Application
	Overview
	Figure 5�1 Introductory Sample Application Components

	Building and Running the Introductory Sample Application
	1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the correct director...
	2. Copy the files for the Introductory sample application into a work directory.
	3. Change the protection attributes on the files to grant write and execute access.
	4. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake file i...
	5. Set the application environment variables.
	6. Build the sample.
	7. Boot the system.
	8. Run the Subscriber and Reporter applications.
	9. Shut down the system.
	10. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 5�1 Required Environment Variables for the Introductory Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR and JAVA_HOME.
	1. On the Environment page in the System Properties window, click the environment variable you wa...
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Introductory Sample Application into a Work Directory
	Table 5�2 Files Located in the introductory_sample_c++ Directory�
	Table 5�3 Files Located in the introductory_cos_java Directory
	Table 5�4 Other Files the Introductory Sample Application Uses�

	Changing the Protection Attribute on the Files for the Introductory Sample Application
	1. In a DOS window, change (cd) to your work directory.
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory.
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Introductory Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variable...
	2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX) command file. This file...
	3. Includes the makefile.inc command file. This file builds the is_reporter and is_subscriber exe...
	4. Includes the introductory.inc command file. This file creates the UBBCONFIG file and executes ...

	Executing the Makefile

	Starting the Introductory Sample Application
	1. To boot the BEA Tuxedo system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Introductory Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber), the following prompts are di...
	2. The Subscriber application creates a subscription then prints “Ready” when it is ready to rece...

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompts are displ...
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber applic...
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") o...
	5. To send and receive more news stories, start another subscriber, then report another story. Wh...

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	6 Building the Advanced Sample Application
	Overview
	Figure 6�1 Advanced Sample Application Components

	Building and Running the Advanced Sample Application
	1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the correct director...
	2. Copy the files for the Introductory sample application into a work directory.
	3. Change the protection attributes on the files to grant write and execute access.
	4. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake file i...
	5. Set the application environment variables.
	6. Build the sample.
	7. Boot the system.
	8. Run the Subscriber and Reporter applications.
	9. Shut down the system.
	10. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 6�1 Required Environment Variables for the Callback Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR and JAVA_HOME.
	1. On the Environment page in the System Properties window, click the environment variable you wa...
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Advanced Sample Application into a Work Directory
	Table 6�2 Files Located in the advanced_simple_java Notification Directory
	Table 6�3 Files Located in the advanced_cos_c++ Notification Directory
	Table 6�4 Other Files That the Advanced Sample Uses�

	Changing the Protection Attribute on the Files for the Advanced Sample Application
	1. Change (cd) to your work directory
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Advanced Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variable...
	2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX) command file. This file...
	3. Includes the makefile.inc command file. This file builds the is_reporter, is_subscriber and AS...
	4. Includes the advanced.inc command file. This file executes tmadmin and qadmin commands to crea...

	Executing the Makefile

	Starting the Advanced Sample Application
	1. To boot the BEA Tuxedo system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Advanced Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber) for the first time, the follo...
	2. You may type in any string for the news category, that is, there is no fixed list of news cate...

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompt is displayed:
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber applic...
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") o...
	5. If you choose the “s” option, a Shutdown event will be posted and received by all the subscrib...
	6. If you choose the “c” option, a Cancel event will be posted and received by all the subscriber...
	7. When you are finished reporting news, choose the Exit (e) option.

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	7 CORBA Notification Service Administration
	Introduction
	Configuring the Notification Service
	Configuring Data Filters
	1. Create the BEA Tuxedo ATMI FML field table definition file that describes the fields on which ...
	2. In the UBBCONFIG file, specify where the FML field table definition file is located so that wh...
	Listing 7-1 Sample Data Filtering Using the BEA Simple Events API (C++)
	Listing 7-2 Data Filtering FML Field Table File
	Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows)
	Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

	Setting the Host and Port
	Listing 7-5 Setting Host and Port in Java Subscriber Applications

	Creating a Transaction Log
	Listing 7-6 Creating a Transaction Log (createtlog) (Microsoft Windows)

	Creating Event Queues
	1. Create a device on disk for the queue space.
	2. Configure a queue space.
	3. Create the queues.
	Determining Space Parameters for Transient and Persistent Subscriptions
	IPC Queue Space for Transient Subscriptions
	1. Determine how many events may be in the pipeline for transient subscriptions; that is, how man...
	2. Determine the size of your events. For purposes of this discussion, we will assume that they a...
	3. Determine how many transient forwarding servers you would like to start, most likely one or tw...
	4. Determine how much IPC queue space you will need to hold your transient events. The amount of ...
	5. Configure the IPC queue size to that number by changing the entries in the system registry. Ho...

	/Q Queue Size Parameter Persistent Subscriptions
	1. Determine how many events may be in the pipeline for persistent subscriptions; that is, how ma...
	2. Determine the size of your events. For purposes of this discussion, we will assume that they a...
	3. Determine the size your /Q queues need to be to hold your persistent events (both for your pen...
	a. Determine the size of a disk page. This is platform-specific. For example, on Microsoft Window...
	b. Determine how many disk pages you will need to store one event rounding up. For example, if yo...
	c. Determine how many disk pages you will need for your events. For example, if you want to allow...
	d. Determine how many disk pages you will need for your qspace. This is the number of disk pages ...
	e. Determine how many pages you will need for your qspace device. This is the number of pages you...
	4. When you use qmadmin to create the qspace for your persistent events, the first phase is to cr...

	Creating a Device on Disk for the Queue Space
	Listing 7-7 Creating a Device on Disk for Queue Space (UNIX)

	Configuring a Queue Space
	Listing 7-8 Creating Queue Space
	Number of messages in queue space:500
	Size of queue space in disk pages:1050

	Creating the Queues
	Listing 7-9 Creating Queues

	Setting IPC Parameters on Microsoft Windows
	1. Click Start—>Settings—>Control Panel. The Microsoft Windows Control Panel is displayed (Figure...
	Figure 7�1 Microsoft Windows Control Panel
	2. Click the BEA Administration icon. The BEA Administration Control Panel is displayed (Figure�7...
	3. Click on the IPC Resources tab. The IPC Resources Control Panel portion of the BEA Administrat...

	Figure 7�2 BEA Tuxedo Software for Microsoft Windows IPC Resources Control Panel
	1. In the Current Resource Default box, click the Use Default IPC Settings check box to clear it.
	2. Click the insert box.
	3. Enter the name of your machine and press Enter.
	4. Click the fields next to the IPC resources you want to set, enter the desired values, and clic...
	5. Click OK to close the Control Panel.

	Figure 7�3 BEA Tuxedo Software for Microsoft Windows Performance Monitor

	Creating the UBBCONFIG File and the TUXCONFIG File
	Table 7�1 Configuration Requirements for Transient and Persistent Subscriptions
	Listing 7-10 The Introductory Sample UBBCONFIG File
	Listing 7-11 The Advanced Sample UBBCONFIG File

	Managing the Notification Service
	1. Synchronize databases.
	2. Purge the system of dead subscriptions.
	3. Monitor queue utilization.
	4. Purge the queues of unwanted events.
	5. Move or remove events from the error queue.
	Synchronizing Databases
	Purging the System of Dead Subscriptions
	Table 7�2 ntsadmin Commands Summary�

	Monitoring Queue Utilization
	Purging the Queues of Unwanted Events
	Managing the Error Queue

	Notification Service Administration Utility and Commands
	ntsadmin Utility

	ntsadmin
	Synopsis
	Syntax
	Description
	Security
	See Also
	ntsadmin Commands
	subscriptions (sub) [{-i identifier |-n name |-t | -p}]
	Listing 7-12 Subscription Command Output with Verbose Mode On and Off
	rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -p]}[-y]
	pendevents (pevt) [{-i identifier |-n name}]
	rmpendevents (rmpevt) [{-i identifier |-n name |-o}][-y]
	errevents (eevt) [{-i identifier |-n name}]
	rmerrevents (rmeevt) [{-i identifier |-n name |-o}][-y]
	retryerrevents (reteevt) [{-i identifier |-n name}][-y]
	quit (q)
	echo (e) [{off |on}]
	help (h) [{command |all}]
	paginate (page) [{off |on}]
	verbose (v) [{on | off }]
	! shellcommand
	!!
	#[text]
	<CR>

	Using the ntsadmin Utility
	1. Look up all subscriptions for marcello.
	2. Use the unique subscription_id to display information about events on the error queue.
	3. Move the events from the error queue to the pending queue.
	Listing 7-13 Moving Events from the Error Queue to the Pending Queue
	Listing 7-14 Removing a Subscription
	Listing 7-15 Checking for Pending Events

	Notification Servers

	TMNTS
	Synopsis
	Syntax
	Description
	Parameter
	-S queuespace

	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_T
	Synopsis
	Syntax
	Description
	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_P
	Synopsis
	Synopsis
	Description
	Interoperability
	Notes
	Example
	See Also
	Index

