BEA Tuxedo

Using the CORBA Name Service

BEA Tuxedo Release 8.0
Document Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Using the CORBA Name Service

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KINOWccoiuiiiiiieseietie sttt sttt st v
E-00CSWED SItO....ciiiieecteeee e et r e sr et saeerae e enaens Vi
How to Print the DOCUMENL..........coooe et e e e Vi
Documentation CONVENLIONScc.cceeuiieeieie e e st ee e sr e sreereeereeraes e ere e ens Vii

1. Overview of the CORBA Name Service

The CORBA NaIME SENVICE....c.ciiiueeie et aeeee e e sae e e e 1-1
Understanding the CORBA NamMe SEIVICEccovveiieeie et 1-3

2. CORBA Name Service Reference

CORBA Name Service COMMAENGS........c.oierierrieririeseeie e seessneeseseessseesees 2-1
Capabilities and Limitations of the CORBA Name Service.......c.ccoveveeeenee. 2-12
Getting the Initial Reference to the NameService Environmental Object 2-13
The CosNaming Data Structures Used by the CORBA Name Service........... 2-14
The NamingContext ODJECE.........coiie i 2-14

CosNaming::NamingContext::new_CONLEXE().......evererreeererieeeeeirerenaens 2-21
The NamingContextEXt ODJECLc.corieieireeeie e 2-25
The Bindinglterator ObJECL...........cooiiiieiireee e e e 2-30
Exceptions Raised by the CORBA Name ServiCe........ccoevereeeeeernerieee s 2-34

3. Managing a BEA Tuxedo Namespace

Installing the CORBA NamMeE SENVICE........ccoevveeieirieie ettt 31
Starting the Server Process for the CORBA Name Service.......oceeeeeveereeenee. 3-2
Making the Namespace Persistent...........cocccuveriereie e 3-3
Compressing the Persistent Storage File.......ocooo e 34
Removing Orphan NamingContext ODJECLS...........ccovireierereeie e 3-5

Using the CORBA Name Service iii

iv

Federating the NameSPaCE..........coiie it s 3-6

[NbOUN FEABIatiON......eoneie e 3-6
OutbouNd FEAEration...........coeuerreee e e 37
Federation Across BEA Tuxedo DOMAINS.........ccccoeierereeneeieie e 3-8
Managing Binding [tErators..........ccccoiieeieeiie ettt s 3-8
Using the CORBA Name Service in Secure BEA Tuxedo Applications.......... 39

4. Developing an Application That Uses the CORBA Name
Service

DeVE OPMENT SEEPS.....ceeceeeeeee ettt ettt et ee e e e ene e e ees 4-2
Step 1: Obtain the OMG IDL for the CosNaming Interfaces........cccccevvieeenene 4-3
Step 2: Include the Declarations and Prototypes for the CosNaming

INEEITACES ..ottt e e e e e e 4-6
Step 3: Connect to the BEA Tuxedo Namespace...........cooeveeererieeeeeeriene e 4-7
Step 4: Bind an Object to the BEA Tuxedo Namespace.........ccccoeeeeeenereennne 4-10
Step 5: Use aNameto Locate an Object in the BEA Tuxedo Namespace4-11

Using the CORBA Name Service Sample Application

How the Name Service Sample Application Works...........ccoceveeeienecieinnene 5-1
Building and Running the Name Service Sample Applicationcccceeeuee.. 5-3
Step 1: Copy the Files for the Name Service Sample Application into a
WOIK DIFECLOIYvieiieieseereetei et se e s en e enens 5-4
CORBA C++ Client and Server, and CORBA Java Client Version of
the Name Service Sample Applicationccoceveeeirieieeinenne. 5-4
Step 2: Change the Protection Attribute on the Files for the Name Service
Sample APPIICALTON ...ttt e 5-6
Step 3: Verify the Settings of the Environment Variables...........cccccoe.e.. 5-6
Step 4: Execute the runme Commandccoeveieeveereeeie e 5-9
Using the Name Service Sample Applicationccoceeeeerenenesieneeienns 5-14

Index

Using the CORBA Name Service

About This Document

This document provides information on using the BEA Tuxedo® CORBA Name
Service.

This document includes the following topics:

Chapter 1, “Overview of the CORBA Name Service,” introduces the features
and concepts of the BEA Tuxedo CORBA Name Service.

Chapter 2, “CORBA Name Service Reference,” describes the commands and
application programming interfaces (APIs) of the BEA Tuxedo CORBA Name
Service.

Chapter 3, “Managing a BEA Tuxedo Namespace,” describes the administration
tasks associated with the BEA Tuxedo CORBA Name Service.

Chapter 4, “Developing an Application That Uses the CORBA Name Service,”
explains how to develop a BEA Tuxedo application that uses a namespace for
storing references to objects.

Chapter 5, “Using the CORBA Name Service Sample Application,” describes
how to build and run the CORBA Name Service sample application.

What You Need to Know

Thisdocument is intended for programmers who are devel oping applications with the
BEA Tuxedo product and want to use the name service feature.

Using the CORBA Name Service

\Y

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA System, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

Vi

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, and Java programming, see the CORBA
Bibliography in the BEA Tuxedo online documentation.

Using the CORBA Name Service

Documentation Conventions

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can al so contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using the CORBA Name Service Vii

viii

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
BI TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ()
nonospace Identifies variables in code.
italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui l dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Using the CORBA Name Service

Documentation Conventions

Convention

Item

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Using the CORBA Name Service

iX

Using the CORBA Name Service

CHAPTER

1 overview of the
CORBA Name Service

Thistopic includes the following sections:
m The CORBA Name Service

m Understanding the CORBA Name Service

The CORBA Name Service

The BEA Tuxedo Name Service (referred to throughout thisdocument asthe CORBA
Name Service) alows BEA Tuxedo CORBA server applications to advertise object
references using logical names. BEA Tuxedo CORBA client applications can then
locate an object by asking the CORBA Name Service to look up the name.

The CORBA Name Service provides:

m Animplementation of the Object Management Group (OMG) Interoperable
Name Service (INS) specification.

m Application programming interfaces (APIs) for mapping object references into
an hierarchical naming structure (referred to as a namespace).

m Commands for displaying bindings and for binding and unbinding naming
context objects and application objects into the namespace.

Using the CORBA Name Service 1-1

1 overview of the CORBA Name Service

1-2

The CORBA Name Serviceis alayered product. The CORBA Name Serviceis
installed as part of the BEA Tuxedo product. For a complete description of the
supported platforms and the installation procedure, see Installing the BEA Tuxedo
System.

When using the CORBA Name Service:

1. BEA Tuxedo CORBA server applications bind a name to one of its application
objects or a naming context object within a namespace.

2. BEA Tuxedo CORBA client applications can then use the namespace to resolve a
name and obtain an object reference to the application object or the naming
context object.

Figure 1-1 presents an overview of the CORBA Name Service.

Figure1-1 CORBA Name Service

CORBA

- 4. Invoke methods on
Server Application

objects

Namespace

<nane_1, objref_1>
<nane_2, objref_2>
<nane_3, objref_3>

1. bind(name, objref)

<nane_x, objref_x>
. Resolve returns an

Qbject reference

CORBA

Client Application
2. resolve(name) PP

Using the CORBA Name Service

Understanding the CORBA Name Service

Understanding the CORBA Name Service

Figure 1-2 shows how a hamespace might be used to store objects that make up an
order entry application.

Figure1-2 A BEA Tuxedo Namespace

New Jersey

New Hampshire

California

4

Manufacturing

\ 4

Sales

Inventory

e

Orders

Customers
Billing \\

PK Boutique

Rose House

Order
Object

The illustrated application organizes its namespace by geographic region, then by
department. To implement the namespace using the objects in the CORBA Name
Service, each shadowed box would be implemented by a Nani ngCont ext object. A
Nani ngCont ext object containsalist of CosNani ng: : Nane datastructuresthat have
been bound to application objects or to other Nanmi ngCont ext objects.

Nani ngCont ext objects are traversed to locate a particular name. For example, the
logical name Cal i f or ni a. Manuf act uri ng. Order can be used to locate the Or der

object.

Using the CORBA Name Service 1-3

1 overview of the CORBA Name Service

A CosNani ng: : Nane datastructure is not simply astring of al phanumeric characters;
it is a sequence of one or more CosNani ng: : NaneConponent data structures. Each
CosNami ng: : NameConponent data structure contains two strings, i d and ki nd. The
CORBA Name Service does not interpret or manage these strings, except to ensurethat
each ID isunique within agiven Nani ngCont ext object.

BEA Tuxedo CORBA server applications use the bi nd() method of the

Nani ngCont ext object to bind anameto an application object contained in the server
application. BEA Tuxedo CORBA client applications use ther esol ve method of a
Nami ngCont ext object to locate an object using a binding.

The CORBA Name Service also provides aBi ndi ngl t er at or object and a

Nami ngCont ext Ext object. TheBi ndi ngl t er at or object allowsaclient application
to obtain a specified number of bindingsin each call. The Nani ngCont ext Ext object
provides methods to use Uniform Resource Locators (URL) and stringified names.

For a complete description of the objects in the CORBA Name Service and their
interfaces, see Chapter 2, “CORBA Name Service Reference.”

1-4 Using the CORBA Name Service

CHAPTER

2 CORBA Name Service
Reference

Thistopic includes the following sections:

CORBA Name Service Commands

Capabilities and Limitations of the CORBA Name Service

Getting the Initial Reference to the NameService Environmental Object
The CosNaming Data Structures Used by the CORBA Name Service
The NamingContext Object

The NamingContextExt Object

The Bindinglterator Object

Exceptions Raised by the CORBA Name Service

CORBA Name Service Commands

The CORBA Name Service provides the following commands to manage the server

process for the CORBA Name Service, bind and unbind objects to names in the

namespace, and display the contents of the namespace:

cns

cnsbi nd

Using the CORBA Name Service

2-1

2 CORBA Name Service Reference

m cnsls

® cnsunbind

The following sections describe these commands.

2-2 Using the CORBA Name Service

CORBA Name Service Commands

cns

Synopsis

Syntax

Description

Controls the server process for the CORBA Name Service.

cns CLOPT="[-A] [servopts options] --
[-b bucket count]
[-c]
[-d]
[-f fil enane]
[-M mexiterators]
[-p [persiststoragefil enanme] "

The server process for the CORBA Name Service provides a CORBA CosNaming
compliant name service. Y ou need to define the server process for the CORBA Name
Service and its optionsin the UBBCONFI Gfilefor your BEA Tuxedo application asyou
do any other server process used by your BEA Tuxedo application. Enter the cns
command-line options after the double dash (- -) in the CLOPT parameter of the
UBBCONFI Gfile. The command-line options are as follows:

-b bucket count
Specifies the hash table bucket count used internally by the server processto
locate naming contexts in-memory. Each naming context has its own hash
table. If your BEA Tuxedo application uses a small number of bindingsin
each naming context, use asmall bucket count (for example, 4 or 5). If your
BEA Tuxedo application uses a large number of bindings (for example,
1,000) in each naming context, use alarger number such as 50 for the bucket
count.

Compresses the persistent storage file when the server process for the
CORBA Name Service starts. Over time the persistent storage file can grow
in size as naming context and application objectsare added and removed from
the namespace. Compression reduces the size of the persistent storage file to
aminimum. Dangling bindings are removed during compression. Dangling
bindings are left in the namespace after the object the binding is associated
with is deleted from the namespace. The- p command-line option must be
specified when specifying the - ¢ command-line option.

Directs the server process for the CORBA Name Service to delete orphan

contextswhen the server process starts. An orphan context isacontext that is
not bound to any other context. It may never have been bound or it may have
been bound to a context and the binding was destroyed either explicitly or as

Using the CORBA Name Service 2-3

2

CORBA Name Service Reference

2-4

aside-effect of arebind. The - p command-line option must be specified
when specifying the-d command-line option.

-f fil enanme

Specifies afile into which the server process for the CORBA Name Service
writesthe I nteroperable Object Reference (IOR) of the root of the namespace.

-M mexiterators

Defines the maximum number of binding iterators that can be outstanding at
any onetime.

Binding iterators are created when a client application uses the

CosNami ng: : Nami ngCont ext : : | i st () method. The client application
should use the CosNani ng: : Bi ndi nglt erator: : dest r oy() method to
delete a binding iterator when the client application is done using the binding
iterator.

If aclient application does not specifically delete binding iterators, the server
process for the CORBA Name Service deletes the binding iterators when the
number reaches the value specified in the - Mcommand-line option. Oncethe
maximum number of binding iteratorsis reached, any attempt to create anew
binding iterator causes the server process for the CORBA Name Service to
destroy a binding iterator currently in use by the client application.

Binding iterators are deleted using a least-recently-used algorithm. The
default valueis 20. A value of 0 indicates that there is no maximum number
of binding iterators (meaning binding interators are never destroyed by the
server process for the CORBA Name Service and the associated memory is
not released). If avalue of 0 is specified, the client application must explicitly
use the CosNami ng: : Bi ndi ngl terator:: destroy() methodto delete
outstanding binding iterators.

-p [persi stentstoragefil enane]

Directsthe server processfor the CORBA Name Serviceto save acopy of the
current namespace to persistent storage using the specified file. If afilename
isnot specified, thevalue of the CNS_PERSI ST_FI LE environment variableis
used. If the CNS_PERSI ST_FI LE environment variable is not set, the
following files are used:

Windows
%APPDI R cnsper si st . dat

Using the CORBA Name Service

CORBA Name Service Commands

UNIX
$APPDI R/ cnsper si st . dat

The persistent storage file is read when the server process for the CORBA
Name Service starts. The persistent storage file is added to as changes are
made to the namespace. If you want to create a new namespace, the existing
persistent storage file must be deleted or a new one must be created on the
server process for the CORBA Name Service.

Using the CORBA Name Service 2-5

2

CORBA Name Service Reference

cnsbind

2-6

Synopsis

Syntax

Description

Binds application objects and naming context objects into the namespace.

Note: Thecnsbi nd command interacts with the CosNaming interfaces. The server
process for the CORBA Name Service must be running to use this command.

cnsbi nd
[-d
[-f root_context filenane]
[-h]
[-N
[-o ior_filenane]
[-r]
[-T TObj Addr]
bi nd_nane

The cnsbi nd command binds new application and naming context objects into the
namespace using the CORBA CosNaming interfaces. This command facilitates the
creation of afederated namespace. If an exception is returned when the cnsbi nd
command isinvoked, the command exits and an appropriate message is displayed.

The command-line options for the cnsbi nd command are as follows:

-C
Specifiesthat the cnsbi nd command creates a context using thebi nd_nane
for the name and thei or _f i | ename specified for the - o command-line
option. The - C command-line option is used to federate a naming context
object from one namespace into the specified namespace.

-f root_context filenane
Specifies the file containing the IOR of the server process for the CORBA
Name Service with which the command interacts to modify the contents of
the namespace. If this command-line option is not specified, the command
usesthe Tobj Bootstrap::resolve_initial _references() method
with the NameService environmental object to locate the server process for
the CORBA Name Service in the specified BEA Tuxedo domain. The host
and port in the IOR must match the value of TOBJADDR. This command-line
option overrides the setting for the TOBJADDR environment variable. If the
command-line option is not specified, the TOBJADDR environment variableis
used.

Using the CORBA Name Service

CORBA Name Service Commands

Prints the command syntax.

Creates anew context and bindsthe new context into the namespace using the
specified name. The-o command-line option is not needed with the - N
command-line option because the cnsbi nd command is creating a new
context. If the- o command-line option is used with the - N command-line
option, the information from the - o command-line option is ignored.

-o ior_filenane
Specifies afile that contains the |OR of the object to be bound into the
namespace specified viathe - f command-line option. If the- C
command-line option is specified, an object of typencont ext iscreated
otherwise a object of type nobj ect is created.

Creates abinding for an application or naming context object even if thename
already has a binding. The default behavior of the cnsbi nd command
without the - r command-line option isto raise the Al r eadyBound exception
in the case where a binding for the specified object aready exists. If an

Al r eadyBound or any other exception is returned when the cnsbi nd
command isinvoked, the command exitsand an“Err or, al ready bound”

message is displayed.

-T TObj Addr
Specifies the host and port for a BEA Tuxedo domain. Before connecting to
aserver process for the CORBA Name Service, the cnsbi nd command must
log into the BEA Tuxedo domain in which the server processisrunning. This
command-line option overrides the setting for the TOBJADDR environment
variable. If the command-line option is not specified, the value of the
TOBJADDR environment variable isused. The valid format for the TObj Addr
specification is/ / host nane: port _nunber .

bi nd_nane
Specifies the name to be bound to the application object or name context
object added to the namespace relative to either the root naming context
retrieved from the Tobj _Boot strap: :resolve_initial _references
method, or the naming context identified by thestringified | OR obtained from
the -f command-line option. The bi nd_nane string should conform to the
name string form specified in the Object Management Group (OMG)
Interoperable Name Service (INS) specification.

Examples The following example illustrates binding an application object:

Using the CORBA Name Service 2-7

2 CORBA Name Service Reference

cnshind -o ./app_obj ior.txt MyContext/AppObjectl

Thefollowing example illustrates binding a naming context object:

cnshind -N M/Context/ C xObject1

Thefollowing example illustrates binding a federation point to another namespace:

cnshind -C -0 ./renote_ior.txt My/Context/Renot eNSCt x1

2-8 Using the CORBA Name Service

CORBA Name Service Commands

cnsls

Synopsis

Syntax

Description

Displays the contents of the namespace.

Note: Thecnsl s command interacts with the CosNaming interfaces. The server
process for the CORBA Name Service must be running to use this command.

cnsls
[-f root_context fil enane]
[-h]
[-s]
[-Rl
[-T Tobj Addr]
[resol ve_nane]

The cnsl s command displays the contents of the namespace using the CORBA
CosNaminginterfaces. If non-printing charactersare used as part of aNaneConponent
data structure, the behavior of the cnsl s command is undefined. If an exceptionis
returned when the cnsl s command isinvoked, the command exits and an appropriate

message is displayed.
The command-line options for the cnsl s command are as follows:

-f root_context fil enane
Specifies the file containing the IOR of the server process for the CORBA
Name Service with which the command interacts to modify the contents of
the namespace. If this command-line option is not specified, the command
usesthe Tobj Boot strap: :resolve_initial _references() method
with the NameService environmental object to locate the server process for
the CORBA Name Service in the specified BEA Tuxedo domain. The host
and port in the IOR must match the value of TObj Addr . This command-line
option overrides the setting for the TOBJADDR environment variable. If the
command-line option is not specified, the value of the TOBJADDR
environment variable is used.

Prints the command syntax.

Displays the stringified |OR for the namespace name specified in
resol ve_name command-line option.

Using the CORBA Name Service 2-9

2

CORBA Name Service Reference

2-10

Example

Recursively displays namespace bindings beginning at r esol ve_nane. This
command-line option may cause the cnsl s command to cross federation
boundaries with no indication when such aboundary is cross. Also, if cycles
exist in the namespace information, this command-line option can cause the
cnsl s command to enter aloop.

-T TObj Addr

Specifies the host and port for aBEA Tuxedo domain. Before connecting to
aserver processfor the CORBA Name Service, thecnsl s command must log
into the BEA Tuxedo domain in which the server processis running. This
command-line option overrides the setting for the TOBJADDR environment
variable. If the command-line option is not specified, the TOBJADDR
environment variable is used.

resol ve_nane

Specifies the name to resolve in the name service relative to either the root
naming context retrieved viathe

Tobj _Bootstrap::resolve_initial _references() method or the
naming context identified by the stringified |OR obtained from the - f
command-line option. Ther esol ve_name string should conform to the name
string form specified in the OMG INS specification. The backslash (\)
character is used to delimit name components and the period (.) character
separatesthei d and ki nd fields.

If this command-line option is not specified, the root context is resolved.

cnsl s -R MyCont ext . ki nd/ Anot her Cont ext
[context] MyCont ext. ki nd/ Anot her Cont ext

[object] Objl
[object] Obj2
[context] Cx1

[obj ect] Anot her bj ect

Using the CORBA Name Service

CORBA Name Service Commands

cnsunbind
Synopsis Removes bindings from the namespace.
Syntax cnsunbi nd
[-D
root _context fil enane]

[-h]

[-T TObj Addr]
bi nd_nane

Description The cnsubi nd command removes bindings from the namespace. If an exception is

returned when the cnsunbi nd command isinvoked, the command exits and an
appropriate message is displayed.

The cnsunbi nd command-line options are as follows:

-D

-f

Destroys the naming context bound to the bi nd_name after removing the
binding. Specifying the - D command-line option when deleting a context
prevents the context from being orphaned if it is not part of another binding.
This command-line option should be used with care because it can cause
dangling bindings (for example, if the binding was bound to multiple naming
context objects at the same time).

root _context fil enanme

Specifies the file containing the IOR of the server process for the CORBA
Name Service with which the command interacts to modify the contents of
the namespace. If this command-line option is not specified, the command
usesthe Tobj Boot strap: :resolve_initial _references() method
with the NameService environmental object to locate the server process for
the specified BEA Tuxedo domain.

Prints the command syntax.

-T TObj Addr

Specifies the host and port for a BEA Tuxedo domain. Before connecting to
aserver process for the CORBA Name Service, the cnsbi nd command must
log into the BEA Tuxedo domain in which the server processisrunning. This
command-line option overrides the setting for the TOBJADDR environment
variable. If the command-line option is not specified, the TOBJADDR
environment variable is used.

Using the CORBA Name Service 2-11

2

CORBA Name Service Reference

Examples

bi nd_nane

Specifies the name of the binding to be removed from the namespace rel ative
to either the root naming context retrieved viathe

Tobj _Bootstrap::resolve_initial _references() method or the
naming context identified by the stringified |OR obtained from the - f
command-line option. The bi nd_nane string should conform to the name
string form specified in the OMG INS specification.

Thefollowing example illustrates removing a binding from the namespace:

cnsunbi nd MyCont ext/ Ct xCbj ect 1

Thefollowing example illustrates removing a binding from the namespace and
destroying the object to which it was bound:

cnsunbi nd - D MyCont ext/ Ct xCbj ect 1

Capabilities and Limitations of the CORBA
Name Service

2-12

The CORBA Name Service has the following capabilities and limitations:

m A NULL character must only be used to terminate thei d and ki nd strings (empty

strings are considered valid).
Wide characters are not supported.

The CORBA Name Service imposes no limit on the length of the stringsin a
name component.

The CORBA Name Service imposes no maximum on the number of components
in aname. Zero length names areillegal.

The CORBA Name Service imposes no limit on the number of bindingsin a
context.

The CORBA Name Service imposes no limit on the number of bindings
(implementation-wide).

The CORBA Name Service imposes no limit on the number of contexts.

Using the CORBA Name Service

Getting the Initial Reference to the NameService Environmental Object

m The CORBA Name Service deletes orphaned naming contexts and dangling
bindings when starting the server process for the CORBA Name Service.

m The CORBA Name Service deletes orphaned naming contexts when starting the
server process for the CORBA Name Service.

m The CORBA Name Service offers the option of cleaning up binding iterator
objects based on a least-recently-used algorithm. For more information, see
“Managing Binding Iterators’ on page 3-8.

m The CORBA Name Service does not throw the Cannot Pr oceed exception.

Getting the Initial Reference to the
NameService Environmental Object

A NameSer vi ce environmental object is available for connecting to the root of the
namespace. When using the NameSer vi ce environmental object, the Object Request
Broker (ORB) locates the root of the namespace. Use the Bootstrap object or the
CORBA Interoperable Naming Service (INS) bootstrapping mechanism to get an
initial reference to the NameService environmental object. Use the BEA proprietary
mechanism if you are using the BEA client ORB. Use the CORBA INS mechanism is
you are using aclient ORB from another vendor.

For more information on connecting to the namespace, see “Step 3: Connect to the
BEA Tuxedo Namespace.” For more information about bootstrapping the BEA
Tuxedo domain see Chapter 4, “CORBA Bootstrapping Programming Reference,” in
the CORBA Programming Reference in the BEA Tuxedo online documentation.

Using the CORBA Name Service ~ 2-13

2 CORBA Name Service Reference

The CosNaming Data Structures Used by the
CORBA Name Service

The CORBA Name Service uses the following CosNaming data structures:
m CosNam ng: : Bi ndi ngLi st

m CosNami ng: : Bi ndi ngType

m CosNam ng::lstring

m CosNam ng: : Nane

m CosNam ng: : NaneConponent

The NamingContext Object

The Nani ngCont ext object isused to contain and manipulate alist of namesthat are
bound to Object Request Broker (ORB) objects or to other Nanmi ngCont ext objects.
BEA Tuxedo CORBA client applications use this interface to resolve or list al the
names within that context. BEA Tuxedo CORBA server applications use thisobject to
bind names to application objects or naming context objects. Listing 2-1 shows the
OMG IDL for the Nami ngCont ext object.

Listing2-1 OMG IDL for the NamingContext Object

nmodul e CosNam ng {
i nterface Nam ngContext {
void bind(in Nane, in Cbject obj)
rai ses(Not Found, Cannot Proceed, |nvalidNanme, Al readyBound);
void rebind(in Name, in (oject obj)
rai ses(Not Found, Cannot Proceed, |nvalidNane);
voi d bind_context(in Nane n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, |nvalidNanme, Al readyBound);
void rebind_context(in Name n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, |nvalidNane);
bj ect resol ve(in Name n)

2-14 Using the CORBA Name Service

The NamingContext Object

rai ses(Not Found, Cannot Proceed, |nvali dNane);
voi d unbi nd(in Name n)
rai ses(Not Found, Cannot Proceed, |nvali dNane);
Nam ngCont ext new_cont ext
Nam ngCont ext bi nd_new context (in Name n)
rai ses(Not Found, Cannot Proceed, |nvali dNane, AlreadyBound);
voi d destroy()
rai ses(Not Enpty);
void list(in unsigned | ong how _many,
out Bi ndingList bl,
out Bindinglterator bi);

Using the CORBA Name Service 2-15

2 CORBA Name Service Reference

CosNaming::NamingContext::bind()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Value

Attempts to bind the specified object to the specified name by resolving the context
associated with the first NaneConponent data structure and then binding the object to
the new context.

void bind(in Name n, in Cbject obj);
voi d bind (NameConponent [] n, (bject obj);
n
A Name data structure, initialized with the desired name of the object.
obj
The object to bind to the supplied name.

Al r eadyBound
The Name on abi nd() orabi nd_context () method hasalready been
bound to another object within the naming context.

I nval i dName
The specified Nane has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Name or one of its components, could not be found.

Naming contexts bound with bi nd do not participate in name resolution when com-
pound names are passed to be resolved.

None.

2-16 Using the CORBA Name Service

The NamingContext Object

CosNaming::NamingContext::bind_context()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Value

Thismethod is similar to the bi nd() method, except that the supplied Nane is associ-
ated with aNani ngCont ext object.

voi d bi nd_context(in Nanme n, in Nam ngContext nc);
voi d bi nd_cont ext (NarmeConponent [] n, Nam ngContext nc);

n
A Name data structure initialized with the desired name for the naming
context. The first NameConponent data structure in the sequence must
resolve to a naming context.

nc

The Nani ngCont ext object to be bound to the supplied name.

Al r eadyBound
The Nane on abi nd() or abi nd_cont ext () method has already been
bound to another object within the naming context.

I nval i dNane
The specified Nane has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Nane or one of its components, could not be found.

BAD_PARAM
Indicates the call attempted to bind a NULL context.

Naming contexts bound with bi nd_cont ext () participate in name resolution when
compound hames are passed to be resolved.

None.

Using the CORBA Name Service 2-17

2 CORBA Name Service Reference

CosNaming::NamingContext::bind_new_context()

Synopsis
C++ Mapping
Java Mapping

Parameter

Exceptions

Description

Return Value

Creates anew context and bindsit to the specified Name within this context.
Nam ngCont ext bi nd_new context (in Name n);
bi nd_new _cont ext (NaneConponent [] n);

n
A Nane datastructure, initialized with the desired name for the newly created
Nani ngCont ext object.

Al r eadyBound
The Name on abi nd() orabi nd_context () method hasalready been
bound to another object within the naming context.

I nval i dName
The specified Nane has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Name or one of its components could not be found.

This method combines the CosNami ng: : Nanmi ngCont ext : : new_cont ext () and
CosNami ng: : Nami ngCont ext : : bi nd_cont ext () methods into a single method.

Returns areference to a new Nani ngCont ext object.

2-18 Using the CORBA Name Service

The NamingContext Object

CosNaming::NamingContext::destroy()

Synopsis

C++ Mapping
Java Mapping
Parameter

Exceptions

Description

Return Value

DeletesaNani ngCont ext object. Any subsequent attempt to invoke methods on the
Nami ngCont ext object raisesa CORBA: : NO_| MPLEMVENT exception.

voi d destroy();

voi d destroy();

None.

Not Enpt y
If the Nami ngCont ext object contains bindings, the method raises
Not Enpt y.

Before using this method, all name objects that have been bound to the Nani ngCon-
text object should be unbound using the
CosNami ng: : Nami ngCont ext : : unbi nd() method.

None.

Using the CORBA Name Service 2-19

2 CORBA Name Service Reference

CosNaming::NamingContext::list()

Synopsis
C++ Mapping

Java Mapping

Parameters

Exceptions

Description

Return Value

Returns all of the bindings contained by this naming context.

void list(in unsigned_| ong how nany,
out BindingList bl,
out Bindinglterator bi);

void list(int how many,
Bi ndi ngLi st Hol der bl ,
Bi ndi nglteratorHol der bi);

how_nany
The maximum number of bindingsto be returned in the list.

bl
A list of returned bindings where each element is abinding containing aName
representing a single NameConponent object. Each Name is a simple name,
that is, a name sequence of length 1. The number of bindingsin the list does
not exceed the value of how_many.

bi

A referenceto aBi ndi ngl t er at or object for useintraversing therest of the
bindings.

I nval i dName
The specified Nane has zero name components or one of the first name
components did not resolve to a naming context.

Not Found
The Name or one of its components could not be found.

This method returns a sequence of name bindings. If more name bindings exist than
canfitinthebl list,aBi ndi ngl terat or object isreturned. The Bi ndi ngl t er at or
object can be used to get the next set of bindings. The Bi ndi ngLi st (C++) or

Bi ndi ngLi st Hol der (Java) object can return less than the requested number of
bindingsif it is at the end of thelist. If bi returnsaNULL reference, then bl contains
all of the bindings.

None.

2-20 Using the CORBA Name Service

The NamingContext Object

CosNaming::NamingContext::new_context()

Synopsis

C++ Mapping
Java Mapping
Parameter
Exceptions

Description

Return Value

Creates anew naming context. The newly created context isinitially not bound to any
Name.

Nam ngCont ext new_cont ext ();
Nam ngCont ext new_cont ext ();
None.
None.

Usethe CosNami ng: : Nami ngCont ext : : bi nd_cont ext () method to bind the new
naming context to a Nane.

Returns areference to a new nami ng context.

Using the CORBA Name Service 2-21

2 CORBA Name Service Reference

CosNaming::NamingContext::rebind()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Value

This method issimilar to the bi nd() method. The differenceis that the r ebi nd
method does not raisethe Al r eadyBound exception. If the specified Nanme has aready
been bound to another object, that binding is replaced by the new binding.

void rebind(in Name n, in oject obj);
voi d rebi nd(NameConponent [] n, Object obj);

n
A Name data structure, initialized with the desired name for the object.

obj
The object to be named.

I nval i dName
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The Name or one of its components, could not be found. If this exception is
raised because the binding already exists or the binding is of the wrong type,
therest _of _name member of the exception has alength of 1.

Naming contexts bound with the r ebi nd() method do not participate in name resol u-
tion when compound names are passed to be resolved.

None.

2-22 Using the CORBA Name Service

The NamingContext Object

CosNaming::NamingContext::rebind_context()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Value

Thismethod is similar to the bi nd_cont ext () method. The differenceisthat the

r ebi nd_cont ext method does not raise the Al r eadyBound exception. If the speci-
fied Name has already been bound to another object, that binding is replaced by the
new binding.

void rebind _context(in Nane n, in Nam ngContext nc);
voi d rebind_context (NaneConponent [] n, Nam ngContext nc);

n
A Nane data structure, initialized with the desired name for the object.

nc
The Nani ngCont ext object to be rebound.

I nval i dNane
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The component of aname does not identify a binding or the type of binding
isincorrect for the operation being performed. If this exception is raised
because abinding already existsor it isof thewrong type, ther est _of _nane
member of the exception has a length of 1.

Naming contexts bound with the r ebi nd_cont ext method do not participate in
name resolution when compound names are passed to be resolved.

None.

Using the CORBA Name Service 2-23

2 CORBA Name Service Reference

CosNaming::NamingContext::resolve()

Synopsis
C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Value

Attempts to resolve the specified Nane.
bj ect resolve(in Name n);
bj ect resol ve (NameConponent n);

n
A Name data structure, initialized with the desired name for the object.

I nval i dName
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The component of a name does not identify a binding or the type of binding
isincorrect for the operation being performed.

The specified Name must exactly match the name used to bind the object. The
CORBA Name Service does not return the type of the object. Client applications are
responsible for narrowing the object to the appropriate type.

Returns the object reference for the specified Name.

2-24 Using the CORBA Name Service

The NamingContextExt Object

CosNaming::NamingContext::unbind()

Synopsis

C++ Mapping
Java Mapping

Parameters

Exceptions

Description

Return Value

Performs the inverse operation of the bi nd() method, removing the binding associ-
ated with the specified Nane.

voi d unbind(in Name n);
voi d unbind (NaneConponent [] n);

n
A Name data structure, initialized with the desired name for the object.

I nval i dNane
The specified Nane data structure has zero name components or one of the
first name components did not resolve to a naming context.

Not Found
The component of aname does not identify a binding or the type of binding
isincorrect for the operation being performed.

This method removes the binding between a name and an object. It does not delete the
object. Use the CosNami ng: : Nami ngCont ext : : unbi nd() method and then the
CosNani ng: : Nam ngCont ext : : dest roy() method to delete the object.

None.

The NamingContextExt Object

The Nani ngCont ext Ext object provides methodsto use URL s and stringified names
in the CORBA Name Service. The Nani ngCont ext Ext object is derived from the
Nani ngCont ext object. Note that the root of the CORBA Name Serviceisa

Nani ngCont ext Ext object (which means the root is aso a Nam ngCont ext object).
No special operation is needed to obtain a reference to a Nani ngCont ext Ext object.
Listing 2-2 showsthe OMG IDL for the Nami ngCont ext Ext object.

Using the CORBA Name Service 2-25

2 CORBA Name Service Reference

Listing2-2 OMG IDL for the NamingContextExt Object

nmodul e CosNam ng {
i nterface Nam ngCont ext Ext : Nam ngCont ext {
typedef string StringNane;
typedef string Address;
typedef string URLString;

StringNane to_string(in Nane n)
rai ses(l nvali dNane) ;

Name to_nanme(in StringNanme sn)
rai ses(l nvali dNane);

exception InvalidAddress {};

URLString to_url (in Address addr, in StringNanme sn)
rai ses(lnval i dAddress, InvalidNane);
bj ect resolve_str(in StringNanme n)
r ai ses(Not Found,
Cannot Pr oceed,
I nval i dNane,
Al r eadyBound) ;

2-26 Using the CORBA Name Service

The NamingContextExt Object

CosNaming::NamingContextExt::resolve_str()

Synopsis
Syntax

Parameter

Exceptions

Description

Return Value

Takes a stringified name, convertsit to aName, and resolvesit.
obj ect resolve_str(in StringName n);

n
The stringified name to be resolved.

I nval i dName
The nameisinvalid. A name of length zero isinvalid.

Not Found
The component of the name does not identify a binding or the type of the
binding isincorrect for the operation being performed.

Thisis a convenience method that performs aresolve in the same manner as the
CosNani ng: Nanmi ngCont ext : : resol ve() method. The method accepts a stringi-
fied name as an argument instead of a Name object. The method returns errorsif the
stringified name isinvalid or if the method cannot bind it.

A reference to the bound name.

Using the CORBA Name Service — 2-27

2 CORBA Name Service Reference

CosNaming::NamingContextExt::to_name()

Synopsis Takes a stringified name and returns a Nane object.
Syntax Name to_nanme(in StringName sn);

Parameter sn
The stringified name to be resolved to a Nane object.

Exceptions 1 nval i dName
Thenameisinvalid. A name of length zero isinvalid.

Description This method accepts a stringified name and returns a Nane object. The method returns
errorsif the nameisinvalid.

Return Value Returnsa Nane object.

2-28 Using the CORBA Name Service

The NamingContextExt Object

CosNaming::NamingContextExt::to_string()

Synopsis
Syntax

Parameter

Exceptions

Description

Return Value

Acceptsa Nane object and returns a stringified name.
StringNanme to_string(in Nane n);

n
The Nane object to be converted to stringified name

I nval i dName
The nameisinvalid. A name of length zeroisinvalid.

This method accepts a Nane object and returns a stringified name. It returns errors if
the nameisinvalid.

Returns a stringified name.

Using the CORBA Name Service 2-29

2 CORBA Name Service Reference

CosNaming::NamingContextExt::to_ URL()

Synopsis

Syntax

Parameter

Exceptions

Return Value

Combines a URL and a stringified name and returns a URL string.
CosNami ng: : Nami ngCont ext Ext: :t o_URL()
URLString to_URL(in Address addr, in StringName sn);

addr

A URL. If this parameter is not defined, the local host name is used with the
[1OP protocol.

sn
The stringified name to be combined with the URL.

I nval i dAddr ess
The URL isinvalid.
I nval i dNane

Thenameisinvalid. A name of length zero isinvalid.

Returnsa URL string that combines the URL and the stringified name.

The Bindinglterator Object

The Bi ndi ngl t er at or object allows a client application to walk through the
unbounded collection of bindings returned by thel i st method of a

Nani ngCont ext object. Using the Bi ndi ngl t er at or object, aclient application can
control the number of bindings obtained with each call. If a naming context is modi-
fied between calls to the methods of aBi ndi ngl t er at or object, the behavior of fur-
ther callsto the next _one() method or the next _n() method is implementation
specific.

If aclient application creates Bi ndi ngl t er at or objects but never callsthedest r oy
method, the client application can run out of resources. The CORBA Name Serviceis
free to destroy binding iterators at any time and without warning to the client applica-
tion. Client applications should be written to expect the OBJECT_NOT_EXI ST excep-

2-30 Using the CORBA Name Service

The Bindinglterator Object

tion from callsto aBi ndi ngl t er at or object and to handle this exception gracefully.

Listing 2-3 shows the OMG IDL for the Bi ndi ngl t er at or object.

Listing2-3 OMG IDL for Bindinglterator Object

nmodul e CosNam ng {
interface Bindinglterator {
bool ean next _one(out Binding b);
bool ean next _n(in unsigned | ong how many,
out BindingList b);
voi d destroy();

Using the CORBA Name Service 2-31

2 CORBA Name Service Reference

CosNaming::Bindinglterator::destroy()

Synopsis

C++ Mapping
Java Mapping
Parameter
Exceptions

Description

Return Value

Destroys the Bi ndi ngl t er at or object and releases the memory associated with the
object. Failure to call this method results in increased memory usage.

voi d destroy();
voi d destroy();
None.
None.

If aclient application invokes any operation on aBi ndi ngl t er at or object after
calling the dest r oy method, the operation raises an OBJECT_NOT_EXI ST exception.

None.

2-32 Using the CORBA Name Service

The Bindinglterator Object

CosNaming::Bindinglterator::next_n()

Synopsis

C++ Mapping
Java Mapping

Parameter

Exceptions

Return Value

Returns aBi ndi ngLi st data structure containing the number of requested bindings
from the list. The number of bindings returned may be less than the requested amount
if thelist is exhausted.

bool ean next _n(in unsigned_| ong how many, out Bindi ngList bl);
bool ean next _n(int how many, Bindi ngListHol der bl);

how_many
The maximum number of bindings to return.

bl
A Bi ndi ngLi st data structure containing no more than the requested
number of bindings.

BAD_PARAM

Raised if the how_many parameter has a value of zero.

CORBA: : FALSE isreturned when the list has been exhausted. Otherwise,
CORBA: : TRUE is returned.

Using the CORBA Name Service 2-33

2 CORBA Name Service Reference

CosNaming::Bindinglterator::next_one()

Synopsis Returnsthe next Bi ndi ng object in the list.
C++ Mapping bool ean next_one(out Binding b);
Java Mapping bool ean next _one(Bi ndi ngHol der b);

Parameter b
The next Bi ndi ng object from the list.

Exceptions None.

Return Value CORBA: : FALSE is returned when the list has been exhausted. Otherwise,
CORBA: : TRUE isreturned.

Exceptions Raised by the CORBA Name
Service

This section describes the exceptions raised by the CORBA Name Service.

2-34 Using the CORBA Name Service

Exceptions Raised by the CORBA Name Service

AlreadyBound

Syntax exception Al readyBound{};
Parameter None.

Description This exception is raised when an object is already bound to the supplied name. Only
one object can be bound to a name in a context.

Using the CORBA Name Service 2-35

2 CORBA Name Service Reference

CannotProceed

Syntax exception Cannot Proceed{};

Parameters Nami ngCont ext cxt
The context that the operation may be able to retry from.

Narme rest _of nane
Theremainder of the non working name.

Description Thisexception israised when an unexpected exception is encountered and the method
cannot proceed in a meaningful way.

2-36 Using the CORBA Name Service

Exceptions Raised by the CORBA Name Service

InvalidAddress

Syntax exception InvalidAddress{};
Parameter None.

Description ~ Thisexception israised if aURL isinvalid.

Using the CORBA Name Service 2-37

2 CORBA Name Service Reference

InvalidName

Syntax exception InvalidNanme{};
Parameter None.

Description This exception israised if aNane isinvalid. A name length of zeroisinvalid.

2-38 Using the CORBA Name Service

Exceptions Raised by the CORBA Name Service

NotEmpty

Syntax exception Not Enpty{};
Parameter None.

Description This exception is raised when the dest r oy () method is used on a Nani ngCont ext
object that contains bindings. A Nami ngCont ext object must be empty beforeit is
destroyed.

Using the CORBA Name Service 2-39

2 CORBA Name Service Reference

NotFound

Syntax exception Not Found{ Not FoundReason why; Name rest_of nane;};
Parameters why
The context that the operation may be able to retry from.

rest _of _nane
The remainder of the non-working name.
Description Thisexception israised when acomponent of the name does not identify abinding, or
if thetypeof binding isincorrect for the operation being performed. Thewhy parameter

explainsthereason for the error. Ther est _of _nane parameter identifies the cause of
the error. The following causes can appear:

® ni ssi ng_node—the first name component in ther est _of _name parameter isa
binding that is not bound under that name within its parent context.

m not _cont ext —the first name component in ther est _of _nane parameter is a
binding with atype of nobj ect when the type of ncont ext was required.

®m not _obj ect —the first name component in ther est _of _nanme parameter isa
binding with atype of ncont ext when the type of nobj ect was required.

2-40 Using the CORBA Name Service

CHAPTER

3 Managing a BEA
Tuxedo Namespace

Thistopic includes the following sections:

Installing the CORBA Name Service

Starting the Server Process for the CORBA Name Service
Making the Namespace Persistent

Compressing the Persistent Storage File

Removing Orphan NamingContext Objects

Federating the Namespace

Managing Binding Iterators

Installing the CORBA Name Service

You install the CORBA Name Service when you install BEA Tuxedo. For complete
information about installing BEA Tuxedo, see Installing the BEA Tuxedo System.

Using the CORBA Name Service 31

3 Managing a BEA Tuxedo Namespace

Starting the Server Process for the CORBA
Name Service

3-2

Tostart the server processfor the CORBA Name Service, you need to define the server
processin the UBBCONFI Gfilefor your BEA Tuxedo CORBA application. Usethecns
command to start the server process for the CORBA Name Service. List thecns
command-line optionsafter the CLOPT parameter in the UBBCONFI Gfile. Notethere can
be only one CORBA Name Service server process running per BEA Tuxedo domain.
Listing 3-1 is an example of the UBBCONFI Gentry for the server process for the
CORBA Name Service.

Listing 3-1 UBBCONFIG File Entry for the CORBA Name Service

#

#Server process for BEA Tuxedo CORBA Nanme Service
#
cns
SRVGRP = SYS GRP
SRVID = 6
RESTART = N
CLOPT = "-A -- -f C\cnsroot.dat -M 0"

For acomplete description of the cns command and its options, see Chapter 2,
“CORBA Name Service Reference.” For information about creating a configuration
file, see Setting Up a BEA Tuxedo Application in the BEA Tuxedo online
documentation.

Once the server process for the CORBA Name Service is started, you can use the
commands listed in Table 3-1 to display the contents of the namespace and manage
objects in the namespace. For a complete description of the commands and their
options, see Chapter 2, “CORBA Name Service Reference.”

Using the CORBA Name Service

Making the Namespace Persistent

Table 3-1 Commands for Managing a BEA Tuxedo Namespace

Command Description

cns Startsthe server process for the BEA Tuxedo
namespace.

cnsbi nd Bindsapplication obj ects and naming context objects

to the BEA Tuxedo namespace.

cnsls Displays the contents of a BEA Tuxedo namespace.

cnsunbi nd Removes bindings from a BEA Tuxedo namespace.

Making the Namespace Persistent

The CORBA Name Service keeps two copies of the information in anamespace. One
copy iskept in-memory. Accessto this copy isfast and optimized for name resolution.
Theother copy is optionally saved to persistent storage allowing the state and structure
of the namespace to be saved and restored.

The primary goal of making a namespace persistent isto keep a current representation
of thein-memory naming information maintained by the currently running instance of
the namespace. By maintaining apersistent copy of the namespace, the CORBA Name
Service can recreate current naming information in case the server process of the
CORBA Name Service isterminated. A new instance of the server process for the
CORBA Name Service can be configured to read the persistent storage file to recreate
the last recorded naming information.

To create a persistence copy of the namespace and store the copy to afile, specify the
- p option of thecns command when starting the server process for the CORBA Name
Service. The CORBA Name Service creates a persistent storage file with the specified
location and hame.

If the persistent storagefile specified by the- p option already exists, thefileis opened
and processed. A backup of the persistent storage file is aways made prior to the
startup of the server process for the CORBA Name Service. The name of the backup

Using the CORBA Name Service 3-3

3 Managing a BEA Tuxedo Namespace

copy of the persistent storagefileisf i | enane. BAK. If you want to reuse the name of
the persistent storage file, you must delete or move the existing file and then restart the
server process for the CORBA Name Service.

If the persistent storage fileis successfully created, an entry for thefileiswritten to the
uLoGfile. The entry indicates the directory location and name of the file, whether or
not the file was newly created, and the mechanism used to determine the name of the
file (for example, specified, environmental, or default). If an error occurs when
creating the persistent storage file, an entry is written to the ULOGfile indicating the
type of error that occurred.

Since the server process for the CORBA Name Service recreates the structure of the
namespace from the persistent storage file at startup, the startup time is directly
proportional to the size of the persistent storage file.V ery large persistent storage files
(on the order of hundreds of megabytes) can result in the server process for the
CORBA Name Service taking severa seconds or even minutes to recreate the
namespace at startup.

Compressing the Persistent Storage File

34

The persistent storage file contains information about all operations affecting the
in-memory copy of the namespace. Over time, the persistent storage file can contain
more information than is necessary to recreate the structure and state of the current
namespace. In fact, the persistent storage file can grow quite large even though the
structure of the namespace stays the same size.

The CORBA Name Service allows you to compress the persistent storage file to
remove unneeded information. The - ¢ option of the cns command controls
compression of the persistent storage file. The compression option processes the
current information to produce a new compressed persistent storage file.

When the server process for the CORBA Name Service is started, the compression
operation performs the following:

1. Processes the in-memory structure of the namespace.

2. Overwrites the existing persistent storage file.

Using the CORBA Name Service

Removing Orphan NamingContext Objects

3. Deletesall bind and rebind entries which were removed from the namespace by
unbind, rebind, or destroy operations.

4. Removesall dangling bindings. Dangling bindings are bindings|eft in the
namespace after the object the binding is associated with is deleted from the
namespace. Dangling bindings occur when a
CosNani ng: : Nam ngCont ext : : dest roy() method is performed on a naming
context without the naming context being unbound from its parent context.

The - ¢ option can only be used if the - p option of thecns command is specified.
For a complete description of the - ¢ option of the cns command, see Chapter 2,
“CORBA Name Service Reference.”

Removing Orphan NamingContext Objects

An orphan context is a context that is not bound to any other context. The context may
have never been bound or it may have been bound and the binding was destroyed either
explicitly or asthe result of arebind. In the CORBA Name Service, orphan

Nani ngCont ext objects are created in one of the following ways:

m Using the CosNani ng: : Nani ngCont ext : : new_cont ext method to create a
new Nanmi ngCont ext object but never binding the new Nani ngCont ext object
to the namespace.

m Using the CosNani ng: : Nanmi ngCont ext : : r ebi nd() or
CosNani ng: : Nami ngCont ext : : unbi nd() methods to unbind the
Nani ngCont ext object from their last parent Nanmi ngCont ext object but never
destroying the Nami ngCont ext object.

Client applications and other namespaces federated to the Nani ngCont ext object can
perform operations on orphan Nani ngCont ext objects as long as they maintain the
object reference to the orphan Nami ngCont ext object.

The current implementation of the namespace maintains the orphan Nani ngCont ext
objectsin aspecial Lost andFoundCont ext object.

Usethe-d option of thecns command to delete orphan Nanmi ngCont ext objects
from the namespace. The - d option unbinds and destroysall Nani ngCont ext objects
identified as orphaned.

Using the CORBA Name Service 3-5

3 Managing a BEA Tuxedo Namespace

The-d option can only be used if the - p option of the cns command is specified.
For a compl ete description of the - d option of the cns command, see Chapter 2,
“CORBA Name Service Reference.”

Federating the Namespace

The CORBA Name Service supports the concept of a federated namespace which
means elements of alogical hamespace may reside on multiple, disparate, and remote
machines. In afederated namespace, a Nani ngCont ext object can be bound to one
namespace using an object reference to a Nani ngCont ext object maintained by
another namespace. The CORBA Name Service supports federation with
implementations of the CORBA Name Service running on other machines as well as
third-party name services. In order for the CORBA Name Service to federate with a
third-party name service, the third-party hame service must support the naming
formats specified in the Object Management Group (OMG) Interoperable Name
Service (INS) specification.

Thefollowing topics explain how to support inbound and outbound federation as well
as federation with third-party name services.

Inbound Federation

3-6

Inbound federation is the ability to bind a Nam ngCont ext object which existsin a
local BEA Tuxedo namespace into a namespace on a remote name service. Once the
namespaces are federated, the remote name service can perform operations on

Nani ngCont ext objectsin athe BEA Tuxedo namespace. Inbound federation with a
third-party name service is done using the Internet Inter-Orb Protocol (110P).
Therefore, the 11OP Listener/Handler for the CORBA Name Service must be
configured to support unoffical [1OP connections.

To enable the unofficial connections on the |1OP Listener/Handler, use the- C
parameter of the ISL command. The - C parameter determines how the 11OP
Listener/Handler will behave when unofficial connections are made to it. To use
inbound federation, specify thewar n or none valuesfor the - C parameter. A value of
war n causesthellOP Listener/Handler tolog amessageto the user |og exception when
an unofficial connection is detected; no exception will be raised. A value of none

Using the CORBA Name Service

Federating the Namespace

causes the 11OP Listener/Handler to ignore unofficial connections. For more
information about the | SL command, see the BEA Tuxedo Command Reference in the
BEA Tuxedo online documentation.

Listing 3-2 shows an example of the UBBCONFI Gentry for the IIOP Listener/Handler
that supports inbound federation.

Listing 3-2 UBBCONFIG File Entry for an I10P Listener/Handler That
SupportsInbound Federation

#
Entry to start |1 OP Listener/Handl er
that supports inbound federation

I SL
SRVGRP = SYS GRP
SRVID =5
M N =1
MAX =1
CLOPT ="-A-- -n //blotto:2470 -C none"

Outbound Federation

Outbound federation is the ability to bind a Nami ngCont ext object which existsin a
remote name service into the namespace of a CORBA Name Service. Operations can
then be performed on this Nani ngCont ext object using the CORBA Name Service.
Outbound federation with athird-party name serviceisdone using |1 OP. Therefore, the
[1OP Listener/Handler for the CORBA Name Service must be configured to support
outbound federation.

To enable outbound federation on the IOP Listener/Handler, use the - O parameter of
theISL command. The - Oparameter causesthe IIOP Listener to allow outbound |1OP
invocations to objects located in server applications not connected to a llOP Handler.
For more information about the ISL command, see the BEA Tuxedo Command
Reference in the BEA Tuxedo online documentation.

Listing 3-3 shows an example of the UBBCONFI Gentry for the IIOP Listener/Handler
that supports outbound federation.

Using the CORBA Name Service 3-7

3 Managing a BEA Tuxedo Namespace

Listing 3-3 UBBCONFIG File Entry for an I10OP Listener/Handler That
Supports Outbound Federation

#
Entry for |1 OP Listener/Handl er
that supports outbound federation

#
I SL
SRVGRP = SYS GRP
SRVID =5
M N =1
MAX =1
CLOPT ="-A-- -n //blotto:2470 -O'

Federation Across BEA Tuxedo Domains

Federation across multiple CORBA Name Service server processes running in
different BEA Tuxedo domains requires the use of Domain Gateways to allow for
inter-domain communication. For more information about configuring a domain
gateway, see the “Configuring Multiple Domains (BEA Tuxedo System)” section in
the Administration topic.

Managing Binding Iterators

3-8

The OMG INS specification allows the collection of outstanding binding iterators.
Since binding iterators require explicit destruction by client applications, thereis the
chance that binding iterators will not be deleted properly.

To minimize the possibility that the CORBA Name Service will run out of resources
due to alarge number of unused binding iterators, use the - Moption of the cns
command to set the maximum number of binding iteratorsin the name service. Once
the limit has been reached, requests for new binding iterators may result in the
destruction of outstanding binding iterators. The CORBA Name Service uses a
least-recently-used algorithm to select which binding iterators are del eted.

Using the CORBA Name Service

Using the CORBA Name Service in Secure BEA Tuxedo Applications

If the server process for the CORBA Name Service is started with the - Moption, the
CORBA Name Service may destroy a binding iterator that is currently being used by
aBEA Tuxedo CORBA application so all BEA Tuxedo applications need to be ableto
handle the CORBA: : OBJECT_NOT_EXI ST system exception when invoking on binding
iterators.

Using the CORBA Name Service in Secure
BEA Tuxedo Applications

When using the cnsl s, cnsbi nd, and cnsunbi nd commandsin a secure BEA
Tuxedo CORBA application, you need to obtain the Principal Authenticator object for
the BEA Tuxedo domain and log on to the domain with the appropriate security
information.

In order for asecurelogon to occur, the BEA Tuxedo domain must be configured with
a security level of TOBJ_SYSAUTH or TOBJ_APPAUTH. The username for thecnsl s,
cnsbi nd, and cnsunbi nd commandsiscnsuti | s. You need to usethe t pusradd
command to create auser named cnsut i | s. Depending on the Security level specified
for the BEA Tuxedo domain, the user password and/or the domain password may be
defined in the UBBCONFI Gfilein the USER_AUTH and APP_PWenvironment variables.
If these environment variables are not set and the BEA Tuxedo domain has a security
level of TOBJ_SYSAUTH or TOBJ_APPAUTH, thecnsl s, cnsbi nd, and cnsunbi nd
commands will prompt for a password.

For more information about security levels and defining users in the BEA Tuxedo
security environment, see Using Security in CORBA Applicationsin the BEA Tuxedo
online documentation.

Using the CORBA Name Service 39

3 Managing a BEA Tuxedo Namespace

3-10 Using the CORBA Name Service

CHAPTER

4 Developing an

Application That Uses
the CORBA Name
Service

Thistopic includes the following sections:

Development Steps

Step 1: Obtain the OMG IDL for the CosNaming Interfaces

Step 2: Include the Declarations and Prototypes for the CosNaming Interfaces
Step 3: Connect to the BEA Tuxedo Namespace

Step 4: Bind an Object to the BEA Tuxedo Namespace

Step 5: Use a Name to Locate an Object in the BEA Tuxedo Namespace

Using the CORBA Name Service

4-1

4 Developing an Application That Uses the CORBA Name Service

Development Steps

4-2

Table 4-1 outlines the process for developing BEA Tuxedo CORBA applications that
use the CORBA Name Service.

Table 4-1 Development Process

Step

Description

1

Obtain the OMG IDL for the CosNaming interfaces.

2

Include the declarations and prototypes for the CosNaming
interfaces.

Connect to the BEA Tuxedo namespace.

Bind an object to the BEA Tuxedo namespace.

Use aname to locate an object in the BEA Tuxedo namespace.

Before performing the steps in thistopic, you need to start the server process for the
CORBA Name Service. For more information, see “ Starting the Server Processfor the
CORBA Name Service” on page 3-2.

After performing the development stepsin thistopic, use the bui | dobj cl i ent and
bui | dobj ser ver commands to compile server and client applications that use the
CORBA Name Service. For more information about the bui | dobj cl i ent and

bui | dobj ser ver commands, see the BEA Tuxedo Command Reference.

Using the CORBA Name Service

Step 1: Obtain the OMG IDL for the CosNaming Interfaces

Step 1: Obtain the OMG IDL for the
CosNaming Interfaces

A BEA Tuxedo CORBA application accesses the CORBA Name Service using the
interfaces defined in CosNani ng. i dI . This Object Management Group (OMG)
Interface Definition Language (IDL) file defines the interfaces, COSnaming data
structures, and exceptions used by the CORBA Name Service. The CosNani ng. i dI
fileislocated in the following directory locations:

Windows

drive:\ %UXDI R% i ncl ude\ CosNani ng. i dl
UNIX

/usr/ | ocal /$TUXDI R/ i ncl ude/ CosNami ng. i dl

Listing 4-1 showsthe OMG IDL for CosNani ng. i dl . Thesame OMG IDL fileisused
by both CORBA C++ and Java applications.

Listing4-1 CosNaming.idl

#i fndef _COSNAM NG | DL_
#define _COSNAM NG | DL_

nmodul e CosNam ng {

#pragma prefix "ong. or g/ CosNam ng"
typedef string Istring;

struct NanmeConponent {
Istring id;

I'string kind;
b

typedef sequence<NaneConponent > Nane;

enum Bi ndi ngType { nobject, ncontext };

struct Binding {
Nare bi ndi ng_narne;

Using the CORBA Name Service 4-3

4 Developing an Application That Uses the CORBA Name Service

Bi ndi ngType bi ndi ng_type;
I

typedef sequence <Bindi ng> Bi ndi ngLi st;
interface Bindinglterator;

i nterface Nam ngContext {
enum Not FoundReason { m ssing_node,
not _cont ext,
not _obj ect };

exception Not Found {
Not FoundReason why;
Narre rest_of nane;

}s

exception Cannot Proceed {
Nam ngCont ext cXt ;
Narre rest_of nane;

H

exception InvalidName{};
exception Al readyBound {};
exception Not Enpty{};

voi d bind(in Name n, in Object obj)
rai ses(Not Found,
Cannot Pr oceed,
I nval i dNane,
Al r eadyBound) ;

voi d rebi nd(in Name n, in Cbject obj)
r ai ses(Not Found,
Cannot Pr oceed,
I nval i dNane) ;

void bind_context(in Narme n, i n Nam ngCont ext nc)
r ai ses(Not Found,
Cannot Pr oceed,
I nval i dNane,
Al r eadyBound) ;

void rebind_context(in Name n, i n Nam ngCont ext nc)
r ai ses(Not Found,
Cannot Pr oceed,
I nval i dNane) ;

4-4 Using the CORBA Name Service

Step 1: Obtain the OMG IDL for the CosNaming Interfaces

Obj ect resolve (in Name n)
rai ses(Not Found,
Cannot Pr oceed,
I nval i dNan®) ;

voi d unbi nd(in Nanme n)
rai ses(Not Found,
Cannot Pr oceed,
I nval i dNan®) ;

Nam ngCont ext new_context();
Nam ngCont ext bi nd_new cont ext (i n Name n)
rai ses(Not Found,
Al r eadyBound,
Cannot Pr oceed,

I nval i dNan®) ;
voi d destroy() raises(NotEnpty);
voi d list(in unsigned |ong how_nany,
out Bi ndi ngLi st bl ,

out Bindinglterator bi);
b

interface Bindinglterator {
bool ean next _one(out Binding b);
bool ean next _n(in unsigned | ong how many,
out BindingList bl);
voi d destroy();
h

i nterface Nam ngCont ext Ext: Nami ngCont ext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringNane to_string(in Nane n) raises(IlnvalidNane);
Narme to_name(in StringNane sn)

rai ses(| nval i dName) ;
exception InvalidAddress {};

URLSt ri ng to url(in Address addr, in StringNane sn)
rai ses(I nval i dAddress, | nvali dNane);

oj ect resolve_str(in StringName n)
rai ses(Not Found,
Cannot Pr oceed,
I nval i dNane,
Al r eadyBound

Using the CORBA Name Service 4-5

Developing an Application That Uses the CORBA Name Service

}s

}s

#pragma | D CosNam ng "I DL: ong. or g/ CosNami ng: 1. 0"
#endif // _COSNAM NG | DL_

Step 2: Include the Declarations and
Prototypes for the CosNaming Interfaces

4-6

The declarations and prototypes for the CosNaming interfaces are provided as part of
the software kit for the CORBA Name Service.

For CORBA C++ client applications, include the declarations and prototypes for
the naming interfaces by adding this statement to your BEA Tuxedo CORBA
client application:

#i ncl ude "CosNam ng_c.h"

Theincludefiles for aBEA Tuxedo CORBA C++ client application are located
inthe $TUXDI R/ i ncl ude directory on UNIX systemsand the
9 UXDI R% i ncl ude directory on Windows systems.

For CORBA Java client applications, include the declarations and prototypes for
the interfaces by adding this statement to your BEA Tuxedo CORBA client
application:

i nport org.ong. CosNam ng. *;

Theinterfaces for the CORBA Name service arein the or g. ong. CosNani ng
package.

The Java packages for aBEA Tuxedo CORBA Java client application are
located in the $TUXDI R/ udat aobj / j ava/ j dk/ nBenvobj . j ar fileon UNIX
systems and the %rUXDI R% udat aobj \ j ava\ j dk\ nBenvobj . j ar fileon
Windows systems.

If you are using a third-party Object Request Broker (ORB), you need to include
or import the CosNaming interfaces in your client source stub programs before
compiling.

Using the CORBA Name Service

Step 3: Connect to the BEA Tuxedo Namespace

Step 3: Connect to the BEA Tuxedo
Namespace

The Bootstrap object supportsaNameSer vi ce environmental object for connecting to
the root of the namespace. When using the NameService environmental object, the
Object Request Broker (ORB) locates the root of the namespace. The object reference
can then be narrowed to CosNami ng: : Nami ngCont ext or CosNanmi ngCont ext Ext .
Y ou need to connect to the BEA Tuxedo namespace before binding objects into the
namespace and resolving names in the namespace.

Use the Bootstrap object or the CORBA Interoperable Naming Service (INS)
bootstrapping mechanism to get aninitial reference to the NameService environmental
object. Usethe BEA proprietary mechanism if you are using the BEA client ORB. Use
the CORBA INS mechanism if you are using a client ORB from another vendor. For
more information about bootstrapping the BEA Tuxedo domain see Chapter 4,
“CORBA Bootstrapping Programming Reference,” in the CORBA Programming
Reference in the BEA Tuxedo online documentation.

Listing 4-2 and Listing 4-3 illustrate C++ and Java code that establishes
communication with a BEA Tuxedo namespace.

Listing4-2 C++ Example of Connecting to a Namespace

Tobj _Bootstrap * bootstrap = new Tobj _Bootstrap (v_orb.in(), "");
CORBA: : Cbj ect _var var_naneservice_oref=

bootstrap.resol ve_initial _references("NaneService");
root = CosNam ng:: Nam ngContext:: narrow (obj);

Listing 4-3 Java Example of Connecting to a Namespace

Tobj _Bootstrap bootstrap = new Tobj Bootstrap(orb, "");
or g. ong. CORBA. Obj ect NaneServi ceobj =

gBoot strapCbj Ref.resol ve_initial _references("NaneService");
CosNam ng. Nam ngCOnt ext Ext ns_root =

Using the CORBA Name Service 4-7

4 Developing an Application That Uses the CORBA Name Service

4-8

CosNami ng. Nam ngCont ext Ext Hel per. narrow (ns_obj);

A stringified object reference for the root of the namespace can also be used to connect
to anamespacein aBEA Tuxedo domain. In order to use astringified object reference,
the-f command-line option must be specified when starting the server processfor the
CORBA Name Service. The-f command-line option writes the stringified object
reference to the CNS_ROOT_FI LE environment variable or to one of the following
locations:

Windows

9%APPDI R cnsr oot . dat

UNI X
$APPDI R/ cnsr oot . dat

The stringified object reference for the root of the namespace does not change when
the server process for the CORBA Name Service is started and stopped because
stringified object reference is associated with a particular host machine rather than a
particular server process. A stringified object reference that has been retrieved to
communicate with one BEA Tuxedo namespace cannot be used to communicate with
another BEA Tuxedo namespace.

Listing 4-4 and Listing 4-5 include C++ and Java code that establi shes communication
with a BEA Tuxedo hamespace using a stringified object reference.

Listing 4-4 C++ Example of Using a Stringified Object Reference

Tobj Bootstrap * bootstrap;

bootstrap = new Tobj _Bootstrap (v_orb.in(), "");

CORBA: : Obj ect _var obj = GetRefFronFile ("cnsroot.dat", v_orb);
root = CosNam ng:: Nam ngCont ext:: narrow (obj);

Using the CORBA Name Service

Step 3: Connect to the BEA Tuxedo Namespace

Listing 4-5 Java Example of Using a Stringified Object Reference

Tobj _Bootstrap bootstrap = new Tobj Bootstrap(orb, "");
Buf f eredReader inFile =

newBuf f er edReader (new Fi | eReader ("cnsroot.dat"));
String root_ior_string = inFile.readLine ();
or g. ong. CORBA. Obj ect ns_obj =

orb.string_to _objecet (root_ior_string);
CosNam ng. Nam ngCont ext Ext ns_root =

CosNam ng. Nam ngCont ext Ext Hel per . narrow (ns_obj);

If you choose to use a stringified object referencein a BEA Tuxedo CORBA
application that also employs security and transactions, please note the following
restrictions:

1. The BEA Tuxedo CORBA application must create a Bootstrap object and connect
to the 11OP Listener/Handler before using the stringified object reference to
connect to aBEA Tuxedo nhamespace. By calling the Bootstrap object first, the
BEA Tuxedo application establishes an official connection to the I1OP
Listener/Handler.

If a BEA Tuxedo application does not first create a Bootstrap object,
transactions and security cannot be used with any object retrieved from the
namespace. Transactions and security require the use of an official connection.

2. If more than one IIOP Listener/Handler is defined in the UBBCONFI Gfile, the
BEA Tuxedo CORBA application must use the first 110P Listener/Handler
defined in the UBBCONFI Gfile by the TOBJADDR environment variable.

The CORBA Name Service creates the stringified object reference for the root
of the namespace, using the default I1OP Listener/Handler’s host and port. The
first I11OP Listener/Handler defined in a UBBCONFI Gfile is considered the default
[1OPListener/Handler. Using the default 11OP Listener/Handler causes al object
references retrieved by the CORBA Name Service to be official connections.
Transactions and security require the use of official connections.

Using the CORBA Name Service 4-9

4 Developing an Application That Uses the CORBA Name Service

Step 4: Bind an Object to the BEA Tuxedo
Namespace

4-10

There are two ways to bind an object to the BEA Tuxedo namespace:
m The cnsbi nd command
m The bi nd() method of the CosNani ng: : Nami ngCont ext object

The cnsbi nd command can be used to bind application objects or naming context
objects to the BEA Tuxedo namespace. The server process for the CORBA Name
Service must be started before using the cnsbi nd command. For a complete
description of the cnsbi nd command, see Chapter 2, “CORBA Name Service
Reference.”

Listing 4-6 and Listing 4-7 show the C++ and Java code implementations of the
bi nd() method of the CosNani ng: : Nani ngCont ext object. The code examples
accept two parameters, representing thei d and ki nd fields for aNane. These
parameters initialize a Nane for the Si npl eFact or y object and bind the

Si npl eFact or y object to the namespace.

Listing4-6 C++ Example of Binding a Nametothe BEA Tuxedo Namespace

/1 Establish the Nanme used to identify the SinpleFactory object
//in the nanmespace.

CosNam ng: : Nanme_var factory _name = new CosNanmi ng:: Name(1);
factory_name->length(1);
factory_name[(CORBA:: ULong) 0].id =
(const char * "sinple_ factory";
factory_name[(CORBA: : ULong) 0].kind =
(const char *) "";
//Create an object reference for the SinpleFactory object

s v_factory refer = TP::create_object _reference(
_tc_Sinpl eFactory->id(),
"sinmple_factory",
CORBA: : NVList:: _nil()

)

Using the CORBA Name Service

Step 5: Use a Name to Locate an Object in the BEA Tuxedo Namespace

/1 Get the NaneService object reference. See Listing 4-2.
/1 Place the object reference for SinpleFactory in the nanespace

root->bind(factory nane, s v _fact _ref);

Listing4-7 Java Example of Binding a Nameto the BEA Tuxedo Namespace

/] Create an object reference for the SinpleFactory object
org. ong. CORBA. obj ect fact_ref =
TP. creat e_obj ect _reference(
Si npl eFact or yHel per.id()
"sinple_factory",
nul |

)

/1 Get the NaneService object reference. See Listing 4-3.
/1 Place the object reference for SinpleFactory in the nanespace
CosNam ng. NaneConponent[] factName =
ns_root.to_name("sinmple_factory");
ns_root. bi nd(fact Nanme, fact _ref);

Step 5: Use a Name to Locate an Object in the
BEA Tuxedo Namespace

Usetheresol ve() method of the CosNani ng: : Nani ngCont ext object to locate an
object in anamespace in aBEA Tuxedo domain. Listing 4-8 and Listing 4-9 showsthe
C++ and Java code that accepts two parameters, representing thei d and ki nd fields
for a Nanme. The code example then binds to a naming context, resolves the name, and
obtains an object reference for the specified object.

Using the CORBA Name Service 4-11

4 Developing an Application That Uses the CORBA Name Service

4-12

Listing 4-8 C++ Example of Locating a Namein the BEA Tuxedo Namespace

/1 Establish the Nanme used to identify the SinpleFactory object

//in the nanmespace.

CosNam ng: : Nanme_var factory _name = new CosNani ng:: Name(1);
factory_name->length(1);
factory_name[(CORBA:: ULong) 0].id

(const char * "sinple factory";
factory_name[(CORBA: : ULong) 0].kind =
(const char *) "";

//Locate the SinpleFactory object in the nanespace
CORBA: : Object _var v_sinple_factory oref =
root ->resol ve(*factory_nane);
Si npl eFactory_var v_sinple factory ref =
Si npl eFactory:: _narrowv_sinple_factory oref.in());

/1 Use the reference obtained fromthe BEA Tuxedo CORBA Nane Servi ce
/1 to find the Sinple object
Sinple_var v_sinple = v_sinple_factory_ref->find_sinple();

Listing 4-9 Java Example of L ocating a Namein the BEA Tuxedo Namespace

/1 Find the Sinpl eFactory object in the namespace via a string nane
org. ong. CORBA. bj ect sinple fact_oref =
ns_root.resolve_str("sinple_factory");
Si npl eFactory sinple factory ref =
Si npl eFact oryHel per.narrow(si nple_fact_oref);

/1 Find the S nple object
Sinple sinple = sinple_factory_ref.find_sinple();

Using the CORBA Name Service

CHAPTER

5 Usingthe CORBA Name

Service Sample
Application

Thistopic includes the following sections:
m How the Name Service Sample Application Works

m Building and Running the Name Service Sample Application

How the Name Service Sample Application
Works

The CORBA Name Service sample application is a modification of the Simpapp
sample application. Thissample application providesaCORBA C++ client and server,
and a CORBA Javaclient. The Name Service sample application uses anamespace to
store the Si npl eFact or y object. The server application creates the Si npl eFact ory
object and binds the object to the namespace. The client application connects to the
namespace, resolves the name of the Si npl eFact or y object, and then invokes
methods on the Si npl eFact ory. Figure 5-1 illustrates how the Name Service sample
application works.

Using the CORBA Name Service 5-1

5 Using the CORBA Name Service Sample Application

Figure5-1 The Name Service Sample Application

CORBA Server Application

create_obj ect _reference(Si npl eFactory)
bootstrap resol ve_initial _reference(NanmeServi ce)
bi nd (Sinpl eFactory)

Namespace

Si npl eFact ory CORBA Client Application

bootstrap resol ve_initial _reference(NanmeServi ce)
resol ve (Sinpl eFactory)

find_Sinple

Si npl e- >t o_upper

Si npl e- >t o_| ower

The Name Service sample application implements the CORBA interfaces listed in
Table 5-1:

Table5-1 CORBA Interfacesfor the Name Service Sample Application

Interface Description Operation

Si npl eFact ory Creates object referencestothe fi nd_si npl e()
Si npl e object

Sinple Converts the case of astring to_upper ()

to_lower()

Listing 5-1 showsthesi npl e. i dlI filethat definesthe CORBA interfacesin the
Name Service sample application.

5-2 Using the CORBA Name Service

Building and Running the Name Service Sample Application

Listing5-1 OMG IDL Code for the Name Service Sample Application

#pragma prefix "beasys. cont

interface Sinple

{
/Il Convert a string to |ower case (return a new string)
string to_lower(in string val);
/] Convert a string to upper case (in place)
void to_upper(inout string val);
b
interface Sinpl eFactory
{
Sinple find_sinple();
}

Building and Running the Name Service
Sample Application

To build and run the Name Service sample application, complete the following steps:
1. Copy thefiles for the Name Service sample application into a work directory.

2. Changethe permissions on thefilesin the work directory.

3. Verify the locations defined in environment variabl es.
4

. Execute the r unme command.

Using the CORBA Name Service 5-3

5 Using the CORBA Name Service Sample Application

Step 1: Copy the Files for the Name Service Sample
Application into a Work Directory

Copy thefiles for the Name Service sample application into awork directory on your
local machine. Running the sample application in awork directory allows you to
identify the files that are created when the sample is executed. The following sections
detail the directory location and sources files for the the Name Service sample
application.

CORBA C++ Client and Server, and CORBA Java Client Version of the Name
Service Sample Application

Thefiles for the Name Service sample application are located in the following
directories:

Windows

drive: \tuxdir\sanpl es\corba\ cnssi npapp

UNIX

/usr/local/tuxdir/sanpl es/ corbal/ cnssi npapp

Usethefileslisted in Table 5-2 to build and run the Name Service sample application.

Table 5-2 FilesIncluded in the Name Service Sample Application

File Description

sinpl e.idl The OMG IDL code that declares the Si npl e and
Si npl eFact or y interfaces.

si npl es. cpp The C++ source code for the CORBA server
application in the Name Service sample application.

si nmpl ec. cpp The C++ source code for the CORBA client
application in the Name Service sampl e application.

sinple_i.cpp The C++ source code that implements the Si npl e
and Si npl eFact or y methods.

5-4 Using the CORBA Name Service

Building and Running the Name Service Sample Application

Table5-2 FilesIncluded in the Name Service Sample Application (Continued)

File

Description

simple_i.h

The C++ header file that defines the implementation
of the Si npl e and Si npl eFact or y methods.

Sinpledient.java

The Java source code for the CORBA client
application in the Name Service sample application.

Readne. t xt

Provides information about building and running the
C++ client and server, and the Java client of the
Name Service sample application.

runme. crd The Windows command file that builds and runsthe
Name Service sample application.

runme. ksh The UNIX Korn shell script that builds and executes
the Name Service sample application.

makefil e. mk The makefile for the Name Service sample

application on UNIX operating systems. Thisfileis
used to build the Name Service sample application
manualy. See the Readne. t xt file for additional
information. The location of the executable UNIX
make command must be defined in the PATH
environment variable.

makefile.nt

The makefile for the Name Service sample
application on the Windows operating system. This
makefile can be used directly by the Visual C++
nmake command. Thisfileisused to manually build
the Name Service sample application. See the
Readne. t xt file for more information. The
location of the executable Windows nmeke
command must be defined inthe PATH environment
variable.

Using the CORBA Name Service

5-5

5

Using the CORBA Name Service Sample Application

Step 2: Change the Protection Attribute on the Files for
the Name Service Sample Application

Thefilesfor the sample application are installed with a permission level of read only.
Beforeyou can edit or build thefilesin the Name Service sample application, you must
change the protection attribute of the files you copied into your work directory, as
follows:

Windows
pronpt> attrib -r drive:\workdirectory*.*
UNI X

1. pronpt> /bin/ksh

2. ksh pronpt> chnod u+w /workdirectory/*.*

On UNIX platforms, you also need to change the permission of r unme. ksh to allow
execute permission, as follows:

ksh pronpt> chnod +x runne. ksh

Step 3: Verify the Settings of the Environment Variables

5-6

Before running the Name Service sample application, you need to verify that certain
environment variables are defined to correct locations. In most cases, these
environment variables are set as part of the installation procedure. Some environment
variables are set when you execute the r unme command. Y ou need to check the
environment variables to ensure they reflect correct information.

Table 5-3 lists the environment variabl es required to run the Name Service sample
application.

Using the CORBA Name Service

Building and Running the Name Service Sample Application

Table 5-3 Required Environment Variablesfor the Name Service Sample Application

Environment Description
Variable
APPDI R Execution of ther unme command sets this environment variable to the absol ute path
name of the current directory. Execute the r unme command from the directory to
which you copied the sample application files. For example:
Windows
APPDI R=C: \ wor kdi r ect or y\ cnssi npapp
UNIX
APPDI R=/ usr/ wor kdi r ect or y/ cnssi npapp
JAVA_HOVE The directory path where you installed the Java 2 Software Development Kit (SDK).
For example:
Windows
JAVA HOVE=C: \ JDK1. 3
UNIX
JAVA HOVE=/usr /| ocal / JDK1. 3
Note: Definethis environment variable if you want to run the Java client in the
Name Service sample application. If this environment variableis not set, the
r unme command does not execute the Java client application.
Note: The Java client application requires the Java 2 Software Devel opment Kit
(SDK) version 1.3, for support of wst ri ng and wchar datatypes.
RESULTSDI R Execution of ther unme command sets this environment variabletother esul t s
directory, subordinate to the location defined by the APPDI R environment variable.
Windows
RESULTSDI R=%APPDI RA resul ts
UNIX
RESULTSDI R=$APPDI R\ resul t s
TUXCONFI G Execution of the r unme command setsthis environment variable to the directory path

and filename of the configuration file.
Windows

TUXCONFI G=YRESULTSDI R t uxconfi g
UNIX

TUXCONFI G=$RESULTSDI R/ t uxconfi g

Using the CORBA Name Service 5-7

5

Using the CORBA Name Service Sample Application

5-8

Toverify that theinformation for the environment variables defined during installation
is correct, complete the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.
The Control Panel appears.

3. Click the System icon.
The System Properties window appears.
4. Click the Environment tab.
The Environment page appears.
5. Check the settings of the environment variables.
UNIX

ksh pronpt> printenv TUXDI R
ksh pronpt> printenv JAVA HOVE

To change the settings, complete the following steps:
Windows

1. Onthe Environment pagein the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Vari abl e field.

2. Enter the correct information for the environment variablein the val ue field.
3. Click OK to save the changes.
UNI X

ksh pronpt> export TUXDI R=di rectorypath
ksh pronpt> export JAVA HOME=di rectorypath

Using the CORBA Name Service

Building and Running the Name Service Sample Application

Step 4. Execute the runme Command

The r unme command completes the following steps end-to-end:
Sets the system environment variables.

L oads the UBBCONFI Gfile.

Compiles the code for the client application.

Compiles the code for the server application.

Starts the server application using thet mboot command.

Starts the client application.

N o g &~ w N BB

Stops the server application using the t mshut down command.

Note: Y ou canalso runthe Name Service sample application manually. The stepsfor
manually running the Name Service sample application are described in the
Readne. t xt file.

To build and run the Name Service sample application, enter the r unme command, as
follows:

Windows

pronpt> cd workdi rectory
pronpt > runne

UNIX

ksh pronpt > cd workdirectory

ksh pronpt> ./runne. ksh

When the Name Service sample application runs successfully from start to finish, this
series of messages is printed:

Testing NaneServi ce sinpapp
cl eaned up
prepar ed
bui | t
| oaded ubb
boot ed
ran

Using the CORBA Name Service 5-9

5 Using the CORBA Name Service Sample Application

shut down
saved results
PASSED

Table 5-4 liststhe filesin the work directory generated by the r unme command.

Table 5-4 C++ Files Generated by the runme Command

File

Description

sinmple_c.cpp

Generated by thei dI command, thisfile contains
the client stubs for the Si npl eFact ory and
Si npl e interfaces.

simple_c.h

Generated by thei dI command, thisfile contains
theclient definitions of the Si npl eFact ory and
Si npl e interfaces.

sinmple_s.cpp

Generated by thei dI command, thisfile contains
the server skeletonsfor theSi npl eFact ory and
Si npl e interfaces.

sinmple_s.h

Generated by thei dI command, thisfile contains
the server definition for the Si npl eFact ory
and Si npl e interfaces.

.adni . keybd

A filethat contains the security encryption key
database. The subdirectory is created by the
t m oadcf command inthe r unme command.

results

A directory created by ther unme command,
subordinateto thelocation defined by the APPDIR
environment variable.

Table 5-5 lists the Java files in the work directory generated by the r unme command.

Table 5-5 Java Files Generated by the runme Command

File

Description

Sinpl eClient.class

The Java class file constructed as a product of
running thej avac command.

SinpleClient.jar

5-10 Using the CORBA Name Service

The Java Archive file constructed as a product of
running thej avac command.

Building and Running the Name Service Sample Application

Table5-5 Java Files Generated by therunme Command (Continued)

File

Description

Si npl eFactory. j ava

Generated by thei dl t oj ava command for the
Si npl eFact ory interface. The

Si npl eFact or y interface contains the Java
version of the OMG IDL interface. It extends

or g. ong. CORBA. Obj ect .

Si npl eFact oryHel per.j ava

Generated by thei dI t oj ava command for the
Si npl eFact ory interface. This class provides
auxiliary functionality, notably the nar r ow
method.

Si npl eFact oryHol der . j ava

Generated by thei dI t oj ava command for the
Si npl eFact or y interface. Thisclass holds a
public instance member of type

Si npl eFact or y. The class provides operations
forout andi nout argumentsthat areincludedin
CORBA, but that do not map exactly to Java.

_Si npl eFactorySt ub. j ava

Generated by thei dI t oj ava command for the
Si npl eFact or y interface. Thisclassisthe
client stub that implements the

Si npl eFact ory. j ava interface.

__Si npl eFact oryl npl Base. j ava

Generated by thei dI t oj ava command for the
Si npl eFact or y interface. This abstract classis
the server skeleton. It implements the

Si npl eFact ory. j ava interface. The
user-written server class Si npl eFact or yl npl
extends _Si npl eFact oryl npl Base.

Sinple.java

Generated by thei dl t oj ava command for the
Si npl e interface. The Si npl e interface
contains the Java version of the OMG IDL
interface. It extends or g. ong. CORBA. (bj ect .

Si npl eHel per.java

Generated by thei dI t oj ava command for the
Si npl e interface. This class provides auxiliary
functiondity, notably the nar r ow method.

Using the CORBA Name Service 5-11

5 Using the CORBA Name Service Sample Application

Table 5-5 Java Files Generated by the runme Command (Continued)

File

Description

Si npl eHol der . j ava

Generated by thei dl t oj ava command for the
Si npl e interface.This class holds a public
instance member of type Si npl e. The class
provides operations for out and i nout
arguments that CORBA has but that do not match
exactly to Java.

_Si npl eStub. java

Generated by thei dl t oj ava command for the
Si npl e interface. Thisclassistheclient stub that
implementsthe Si npl e. j ava interface.

.adni . keybd

A filethat contains the security encryption key
database. The subdirectory is created by the
t m oadcf command inthe r unme command.

Table5-6 listsfilesinther esul t s directory generated by ther unme command.

Table5-6 Filesin theresultsDirectory Generated by therunme Command

File Description

i nput Contains the input that the r unme command
provides to the Java client application.

out put Containsthe output produced whenthe r unme

command executes the Java client application.

expect ed_out put

Contains the output that is expected when the
Java client application is executed by the

r unme command. The datain the out put file
is compared to the datain the

expect ed_out put fileto determine whether
or not the test passed or failed.

| og

5-12 Using the CORBA Name Service

Contains the output generated by the r unme
command. If ther unme command fails, check
thisfilefor errors.

Building and Running the Name Service Sample Application

Table5-6 Filesintheresults Directory Generated by the runme Command

File

Description

set env. cnmd

Contains the commands to set the environment
variablesneeded to build and run the JavaName
Service sample application on the Windows
operating system platform.

set env. ksh

Contains the commands to set the environment
variablesneeded to build and run the JavaName
Service sample application on UNIX operating
system platforms.

stderr

Output from commands generated by the

t mboot command, which is executed by the
r unme command. If the - nor edi r ect
JavaServer option is specified in the
UBBCONFI Gfile,theSystem err. println
method sends the output to the st der r file
instead of to the ULOGfile.

st dout

Output generated by thet mboot command,
which is executed by ther unme command. If
the- nor edi r ect JavaServer optionis
specified in the UBBCONFI Gfile, the

Syst em out . pri ntl n method sendsthe
output to thest dout fileinstead of to the
ULOGfile.

t neysevt . dat

Containsfiltering and notification rules used by
the TMSYSEVT (system event reporting)
process. Thisfileis generated by thet nboot
command in ther unme command.

tuxconfig A binary version of the UBBCONFI Gfile.

ubb TheUBBCONFI Gfilefor the JavaName Service
sampl e application.

ULCG. dat e A log file that contains messages generated by

thet mboot command.

Using the CORBA Name Service 5-13

5 Using the CORBA Name Service Sample Application

Using the Name Service Sample Application

Run the server application in the Name Service sample application, as follows:
Windows

pronpt > t nboot

UNIX

ksh pronpt > t mboot

Run the client application in the Name Service sample application, as follows:
Windows

pronpt > java -cl asspath %CLI ENTCLASSPATHY%
- DTOBJ ADDR=%d OBJ ADDR% Si npl ed i ent

String?
Hello Wrld

HELLO WORLD
hello world

UNIX

ksh pronpt> java -cl asspath $CLI ENTCLASSPATH
/ nBenvobj .jar - DTOBJADDR=$TOBJADDR Si npl ed i ent

String?
Hello Wrld

HELLO WORLD
hello world

Before using another sample application, enter the following commands to stop the
Name Service sample application and to remove unnecessary files from the work
directory:

Windows

pronpt > t nshut down -y

pronpt > nmake -f makefile.nt clean

UNI X
ksh pronpt> tmshutdown -y

ksh pronpt> nmake -f makefile.nk clean

5-14 Using the CORBA Name Service

Index

A

administration tasks
compressing the persistent storage file
34
federating the namespace 3-6
making the namespace persistent 3-3
removing orphan naming context objects
3-5
starting the server process 3-2
AlreadyBound exception

described 2-35

B

BEA Tuxedo CORBA Name Service
capabilities 2-12

commands 2-1
CosNaming data structures 2-14
exceptions 2-34
features 1-1
illustrated 1-2
installing 3-1
limitations 2-12
overview 1-1
binding iterators
defining maximum 2-4
Bindinglterator object
described 1-4
methods
destroy 2-32
next_n() 2-33

next_one 2-34
OMG IDL 2-31
overview 2-30
Bootstrap object
connecting to the namespace 4-7
getting initial references 2-13
using the NameService environmental
object 4-7

C

C++ code examples
binding a name to the namespace 4-10
connecting to the namespace 4-7
locating a name 4-12
using a stringified object reference 4-8
cns command
command-line options 2-3
compressing the persistent storage file
3-4
deleting orphan naming context objects
3-5
described 2-3
making the namespace persistent 3-3
syntax 2-3
cnsbind command
binding objects to the namespace 2-6
command-line options 2-6
described 2-6
examples 2-7
syntax 2-6

Using the CORBA Name Service -1

cnsls command
described 2-9
displaying the contents of the namespace
2-9
example 2-10
syntax 2-9
cnsunbind command
command-line options 2-11
deleting bindings from the namespace
2-11
described 2-11
examples 2-12
syntax 2-11
commands
cns 2-3
cnsbind 2-6
cnsls 2-9
cnsunbind 2-11
CORBA Name Service sample application
5-1
CosNaming data structures
BindingList 2-14
BindingType 2-14
Istring 2-14
listed 2-14
Name 2-14
NameComponent 2-14
CosNaming interfaces
compiling the OMG IDL 4-6
directory location of OMG IDL 4-3
obtaining the OMG IDL 4-3
customer support contact information vii

D
dangling bindings
defined 2-3
deleting 2-3, 3-5
directory location of source files
Name Service sample application 5-4
OMG IDL for CosNaming interfaces 4-3

[-2 Using the CORBA Name Service

documentation, where to find it vi

E

environment variables
JAVA_HOME 5-6
Name Service sample application 5-6
TUXDIR 5-6
exceptions
AlreadyBound 2-35
InvalidAddtress 2-37
InvalidName 2-38
NotEmpty 2-39
NotFound 2-40

F

federation
inbound 3-6
outbound 3-7

the ISL command 3-6
file protections
Name Service sample application 5-6

[1OP Listener/Handler
enabling
inbound federation 3-6
outbound federation 3-7
INS see Interoperable Name Service 2-7
Internet Inter-Orb Protocol (I10P) 3-6
Interoperable Name Service 2-7
InvalidAddress exception
defined 2-37
InvalidName exception
defined 2-38
ISL command
inbound federations 3-6
outbound federation 3-7

J

Java code examples
binding a name to the namespace 4-11
connecting to the namespace 4-7
locating a name 4-12
using a stringified object reference 4-9
JAVA_HOME environment variable
Name Service sample application 5-6

N

name
described 1-3
locating in the namespace 4-11
Name Service sample application
building 5-3
changing protection on files 5-6
compiling
the C++ client application 5-9
the C++ server application 5-9
the Java client application 5-9
loading the UBBCONFIG file 5-9
required environment variables 5-6
runme command 5-9
source files 5-4
starting the Java client application 5-14
starting the Java server application 5-14
using the client applications 5-14
NameService environmental object
connecting to the namespace 4-7
described 2-13
using the Bootstrap object 2-13
namespace
binding an object to 4-10
cnsls command 2-9
cnsunbind command 2-11
connecting
using a stringified object reference
4-8
deleting bindings from 2-11
displaying the contents 2-9

federating 3-6
making persistent 3-3
NamingContext object
described 1-3
methods
bind 2-16
bind context 2-17
bind_new_context 2-18
destroy 2-19
list 2-20
new_context 2-21
rebind 2-22
rebind_context 2-23
resolve 2-24
unbind 2-25
OMG IDL 2-14
overview 2-14
NamingContextExt object
described 1-4
methods
resolve str 2-27
to_name 2-28
to_string 2-29
to_URL 2-30
OMG IDL 2-25
overview 2-25
NotEmpty exception
defined 2-39
NotFound exception
defined 2-40

0]

OMG IDL
Bindinglterator object 2-31
compiling 4-6
filename 4-3
for NamingContext object 2-14
location on the kit 4-3
NamingContextExt object 2-25
Simple interface 5-2

Using the CORBA Name Service

SimpleFactory interface 5-2
orphan contexts
defined 2-3
deleting 2-3
orphan naming context objects
creating 3-5
deleting 3-5

P

persistent storage file
compressing 3-4
creating 3-3
printing product documentation vi
programming tasks
binding objects to the namespace 4-10
compiling the OMG IDL 4-6
connecting to the namespace 4-7
obtaining the OMG IDL 4-3
overview 4-2
using a nameto locate an object 4-11

R

related information vi
resolve method
overview 1-4
runme command
description 5-9
files generated by 5-10

S

stringified object references
connecting to the namespace 4-8
restrictions for 4-9

support
technical vii

-4 Using the CORBA Name Service

T

tmboot command

Name Service sample application 5-14
tmloadcf command

Name Service sample application 5-9
TOBJADDR environment variable

cnsbind command 2-6, 2-9

use with cnsls command 2-9

use with cnsunbind command 2-11
TUXCONFIG parameter

setenv file 5-7
TUXDIR environment variable

Name Service sample application 5-6

U

UBBCONFIG file 5-9
example
for inbound federation 3-7
for Name Server server process 3-2
Name Service sample application 5-9
ULOG file
persistent storage file 3-4

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of the CORBA Name Service
	The CORBA Name Service
	Understanding the CORBA Name Service

	2 CORBA Name Service Reference
	CORBA Name Service Commands
	cns
	cnsbind
	cnsls
	cnsunbind

	Capabilities and Limitations of the CORBA Name Service
	Getting the Initial Reference to the NameService Environmental Object
	The CosNaming Data Structures Used by the CORBA Name Service
	The NamingContext Object
	CosNaming::NamingContext::bind()
	CosNaming::NamingContext::bind_context()
	CosNaming::NamingContext::bind_new_context()
	CosNaming::NamingContext::destroy()
	CosNaming::NamingContext::list()
	CosNaming::NamingContext::new_context()
	CosNaming::NamingContext::rebind()
	CosNaming::NamingContext::rebind_context()
	CosNaming::NamingContext::resolve()
	CosNaming::NamingContext::unbind()

	The NamingContextExt Object
	CosNaming::NamingContextExt::resolve_str()
	CosNaming::NamingContextExt::to_name()
	CosNaming::NamingContextExt::to_string()
	CosNaming::NamingContextExt::to_URL()

	The BindingIterator Object
	CosNaming::BindingIterator::destroy()
	CosNaming::BindingIterator::next_n()
	CosNaming::BindingIterator::next_one()

	Exceptions Raised by the CORBA Name Service
	AlreadyBound
	CannotProceed
	InvalidAddress
	InvalidName
	NotEmpty
	NotFound

	3 Managing a BEA Tuxedo Namespace
	Installing the CORBA Name Service
	Starting the Server Process for the CORBA Name Service
	Making the Namespace Persistent
	Compressing the Persistent Storage File
	Removing Orphan NamingContext Objects
	Federating the Namespace
	Inbound Federation
	Outbound Federation
	Federation Across BEA Tuxedo Domains

	Managing Binding Iterators
	Using the CORBA Name Service in Secure BEA Tuxedo Applications

	4 Developing an Application That Uses the CORBA Name Service
	Development Steps
	Step 1: Obtain the OMG IDL for the CosNaming Interfaces
	Step 2: Include the Declarations and Prototypes for the CosNaming Interfaces
	Step 3: Connect to the BEA Tuxedo Namespace
	Step 4: Bind an Object to the BEA Tuxedo Namespace
	Step 5: Use a Name to Locate an Object in the BEA Tuxedo Namespace

	5 Using the CORBA Name Service Sample Application
	How the Name Service Sample Application Works
	Building and Running the Name Service Sample Application
	Step 1: Copy the Files for the Name Service Sample Application into a Work Directory
	CORBA C++ Client and Server, and CORBA Java Client Version of the Name Service Sample Application

	Step 2: Change the Protection Attribute on the Files for the Name Service Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Execute the runme Command
	Using the Name Service Sample Application

	Index

