BEA Jolt

Using BEA Jolt

BEA Jolt Version

8.0

ion 8.0

June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

Using BEA Jolt

Document Edition Date Software Version

8.0 June 2001 BEA Jolt Release 8.0

Contents

About This Document

What Y OU NEed t0 KINMOWcceeiiiiieieeciietiecteete et et er e srae s ix
E-00CSWED SItO....ciiieiicee ettt st st n e st en e en e X
HoW to Print the DOCUMENT..........cee et s sttt ens X
Related INfOrmMation.........c.ooueeie ittt st X
CONLBCE US! ...ttt et st et e ae e s e et e e e sreeraesranns Xi
Documentation CONVENLIONSccecuieiuecieie e eree e sree s Xi
1. Introducing BEA Jolt
BEA JOIt COMPONENESceiiiuieieieenieiie ettt see e e see e ese e see e anesseeseeneas 1-2
KBY FEALUES......ee ettt e et ee e e eees 1-3
HOW BEA JOIE WOTKS........ooeiceiectee ettt st srae e e 1-5
JOIE SEIVELS ..ottt st ea e b e enr s 1-6
JOIt ClESS LIDIaIY ...ceeeeieeeeiiee et 1-7
JOIEBEANS ...ttt ettt et e e se et e e e b e e steeraenaesaeenne s 1-9
ASP Connectivity for BEA TUXEOcccoeveeririeieeeeieie e 1-10
Jolt Server and Jolt Client Communication...........cccoceveeveveesesveerieenene 1-10
JOIt REPOSITONY ...ttt ettt e e e e e 1-11
JOIt INLENEL REIQY ...t s e 1-12
Creating a Jolt Client to Access BEA Tuxedo Applications...........cccoceeeeenee. 1-13

2. Bulk Loading BEA Tuxedo Services

USING the BUIK LOAAEYc..ecuieceieie ettt et s s 2-2
Activating the Bulk LOAOEYccooiiiiie e 2-2
The BUIK LOBA Fil@ ... 2-3

Syntax of the Bulk Loader Data FilesS.........cccooviviieeiieeee e 2-4
Guidelines for Using KeYWOIdS..........coceoereiineene e 2-4

Using BEA Jolt iii

Keyword Order in the Bulk Loader Data File...........ccooeveviiinniiecinenee 2-5

Using Service-Level Keywords and Values...........cccooeeeeinencneseenecneiene 2-6
Using Parameter-Level Keywords and Values............ccooveveeieienecneciniennes 2-8
018 o] 1= < gToTo (oo TR TSSO 2-9
Sample BUlK LOAA DELA........ccoeeuireireeie et s s s 2-10

3. Configuring the BEA Jolt System

QUICK CONFIQUIBLIONc.e ettt s eeea 3-2
Editing the UBBCONFIG Fil€.......cooiiieieie et 3-2
Configuring the Jolt REPOSITONYcc.couiirieiriiieierere e e e 3-3
Initializing Services That Use BEA Tuxedo and the Repository Editor 3-4
Logging On to the Repository EAItOrcoeriieie e 3-6
Exiting the RepoSitory EditOr..........coooeiriiieeieieiere e 3-8
Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription .

3-10
Configuring JOIt REIGYcocoouiiiiriee e 3-10

Jolt Background INfOrmMation............coeoeieieneeeie e 3-13
JOIE SEIVEL ..ttt e e e e et e e en 3-13
StaArting thE JSL ... e e e 3-13
Shutting DOWN thE JSL ..ot e s s e 3-14
ReStaArtiNg thE JSL......ooeiee e 3-14
Configuring thE JSL ... e 3-15
JSL Command-1iNng OPLiONS.......ccccoueuerirreeieiierer e s seeees 3-15
Security and ENCIYPLIONcoceue it et e 3-19

JOIE REIGY .ottt ettt sttt ettt et s b s e e 3-20
JOIt Rel@y FallOVEN......c.eeiee e st e e 321
JOIt REIAY PrOCESS......ceeeieeeetie sttt st s e 3-22
JRLY Command-line Options for Windows 2000...........c.ccoereeeerereennne. 3-23
JRLY Command-line Option for UNIX ... 3-27
JRLY Configuration File.........coveieie et s 3-27

JOIt REl@Y AQADLEL ...ttt e e e e 3-29
JRAD CoNnfiguratioN.........cc.eeieiiieiece e era e s s s 3-29
Network Address Configurations............cceeeeciiieeneeiieesesseeseseesessae e 3-31

JOIt REPOSITONY ..ottt ettt ettt sreeraesreenaenaeenaenaeeneens 3-32
Configuring the Jolt REPOSITONYccoceevveeviiciie et 3-32

iv Using BEA Jolt

Initializing Services By Using BEA Tuxedo and the Repository Editor. 3-34

EVENt SUDSCHIPLION.ccuiieieiieiie et s e 3-36
Configuring for Event SUDSCHPLIONccuoiiiiieieie e 3-36
Filtering BEA Tuxedo FML or VIEW BUFfers........ccocoieiiiiiiccecene 3-37

BEA Tuxedo Background INformationoccoeverereennneeie e 3-39
Configuration FilEc.uece e e e 3-39
Creating the UBBCONFIG Fil€......ccoviiiiiecee e 3-39

Sample Applicationsin BEA Jolt Onling RESOUICEScoceueueenerieeeerieneenns 3-50

Using the Jolt Repository Editor

Introduction to the RepOSItory EditOr..........ccoeiiie e 4-2
Repository Editor WIiNAOW.........c.ccoe e 4-2
Repository Editor Window DesCription...........ccoeeierrieeieeerienie e 4-4

GEIING SKAMEU.......coeecece e et er e aae e 4-5
Starting the Repository Editor Using the Java Applet Viewer................... 4-5
Starting the Repository Editor from Y our Web Browser............ccoceeeeenee. 4-6
Logging On to the RepoSitory EAItor..........cccoveieieieirieee e 4-7
Exiting the RePOSItory EditOr.........cooo e 4-9

Main Components of the Repository Editor...........ocooereeini i 4-11
REPOSItOry EQItOr FIOWccooiuiiiiiee e s e 4-11
What 1S aPaCkage?coe oot 4-13
What [S @ SEIVICE?. ...ttt ettt e e 4-16
Working With Parameters..........ccov e 4-18

Setting Up Packages and SErVICES.......ccooi e 4-19
SAVING YOUEr WOEK ..ottt et et sr e n e e e 4-20
Adding @aPackage........ccciueciiiieeeieere e 4-20
AddiNG @ SEIVICE.....ccui e et re e sre s 4-22
Adding @aParameterccooviieiieieiesie et 4-27

Grouping Services Using the Package Organizeroccoeveeeneeveeencniennens 4-31

Modifying Packages, Services, and Parameters..........cccovvvveieciececveieenenn, 4-35
o i g To = S = oV ol SRR 4-35
Editing @ Parametercccvocieieeeie e s 4-37
Deleting Parameters, Services, and Packages........ccccovevveeveceiciececienn, 4-39

Making a Service Availableto the Jolt Client..........cccoeeeeie e, 4-41
Exporting and Unexporting SErVICEScccovvveeveireeie e 4-41

Using BEA Jolt %

Vi

Reviewing the Exported and Unexported Status...........ccoeeeeeereeneienenes 4-43

TESHNG A SEIVICE ..ttt ettt et et r e e e e 4-45
Jolt Repository Editor Service Test Windowc.cccoceieieieneienenenenes 4-46
TESHNG A SEIVICE oottt st s r e s en s 4-49

Repository Editor TroubleShootingccoueerreeieeirieiere e 4-51

Using the Jolt Class Library

Class Library Functionality OVENVIEWccccceririiiieie i 5-2
Java Applications Versus Java APPIELS........cevoieeenenene e e 5-2
Jolt Class Library FEatUrES........ccceiriiiieeeireeeee e 5-3
Error and Exception Handling..........ccooveie e 5-3
Jolt Client/Server Relationship.........ccovieeirinieie e 5-4
Jolt Object RelationShiPs........c.oiiieiree e 5-7
Jolt Class Library Walkthrough...........coceieneieieie e 5-8
Logon and LOgOfT ..o e e 5-8
Synchronous Service Callingcceeeeee e e 5-8
Transaction Begin, Commit, and Rollbackc.ccccoovveiiiiiiniieiece 5-9
Using BEA Tuxedo Buffer Types with JOItccooveieienincee e 5-14
Using the STRING BUFfer TYPE.....cco i 5-15
Using the CARRAY BUFfer TYPE ...cooiiiriiiieieeee e 5-19
Using the FIML BUFfer TYPE.....couiiirreee ettt 5-23
Using the VIEW BUFfer TYPE.....co ittt s s 5-30
Using the XML BUFfer TYPe.....cce it e 5-36
Multithreaded APPlICALTIONSc.eiviiiee e e s 5-42
Threads Of CONtrOl........c..oiiii e e s 5-42
Using Jolt with Non-Preemptive Threading...........cccooeveviniiiininiecinns 5-43
Using Threads for Asynchronous BENaVIOrcccceeveiveveveesiesrieniens 5-44
Using Threads With JOIt..........c.oooeiiieie e 5-44
Event Subscription and NOtifiCatiONnsS...........covreeeiiriniene e 5-49
Event SUDSCIption ClaSSES.......cocueieieeeiie et 5-49
Notification Event HandIer..........c.coooeiiieieneeeeeiree e 5-50
CONNECHION MOGES.....coeieieeiieiie ettt e e e 5-51
Notification Data BUFfErs.........cociiieiinee e 5-51
BEA Tuxedo Event SUDSCHPLIONcccceeveiieeie e 5-52
Using the Jolt API to Receive BEA Tuxedo Notifications...................... 5-54

Using BEA Jolt

Clearing Parameter VAIUESccooe e 5-56

REUSING OBJECES. ...t e e 5-58
Deploying and Localizing Jolt APPIELS.......c.ovveeeieiereee e 5-62
Deploying a Jolt APPIEL.......cooe et e 5-62
Client CoNSIAEratioNS..........coreerrierere e e 5-63
Web Server ConSIderations.........c..covevevrreineeineeiseise e s s e 5-63
Locaizing @Jolt APPLEL ..o e 5-64

Using JoltBeans

OVverview Of JOIt BEANSccooeeuiiee ettt e 6-2
JOIBEANS TEIMS ...ttt sttt st e e enes 6-3
Adding JoltBeansto Y our Java Development Environment 6-4
Using Development and Run-time JOItBEans............ccoceveeeeieierneeesicneennnns 6-5

Basic Stepsfor Using JOItBEANS........c..ooiieuiriereie et 6-5

JavaBeans Events and BEA Tuxedo EVeNtSccocoveieieneenee e 6-6
Using BEA Tuxedo Event Subscription and Notification with JoltBeans. 6-6

How JoltBeans Use JavaBeans EVENtS..........cccoeeirieeieienniece e 6-8

The JOIBEANS TOOIKIL.......o et e 6-9
JOIESESSIONBEAN. ...t ettt ettt e e e e e e see e 6-10
JOIESENVICEBEAN ...t e e 6-11
JOIUSErEVENtBEAN ...ttt e 6-12

JOIt-AWEArE GUI BEANS ...ttt e e e 6-12
JOHTEXEFIEIA. ... e e s 6-13
JOITLADE] ...ttt e bbb e 6-13
JOITLISE ettt e b e bbb e 6-13
JOIECRNECKDOX ...ttt e e 6-14
JOIECROICE..... ettt e e s ea e e 6-14

Using the Property List and the Property Editor to Modify the JoltBeans Properties
6-15

JoltBeans Class Library Walkthrough...........cccccooeoiiiiiiiceiicceee e 6-17
Building the Sample FOrmM ... e 6-18
Wiring the JoltBeans TOQELhercoccviviveiicice e 6-26

Using the Jolt Repository and Setting the Property Values...........ccoccceeevenee. 6-45

JoltBeans Programming TasKS..........ccueceeiueeieeiieiieeseeeseesreesaesreeseesraesaesaeenesnes 6-49
Using Transactions with JOItBEaNScccecveveeeieeviieieceee e 6-49

Using BEA Jolt Vii

viii

Using Custom GUI Elements with the JoltService Bean..............cccc........ 6-51

7. Using Servlet Connectivity for BEA Tuxedo

What [S@ SEIVIEL? ...ttt e 7-2
How Servliets Work With JOIt..........c.ooiiii e 7-2
The Jolt Servlet Connectivity Classes........coereierrreeiireenese e 7-3
Writing and Registering HTTP ServIets. ... 7-4
Jolt Servliet Connectivity SAMPIEc.cooiieiereeee e 7-5
Viewing the Sample Servliet Applications.........cccccoeeeieieneeieie e 7-5
SIMPAPP SAMPIE.....eeee et e e e 7-5
BanKAPD SAMPIE.......eeieie ettt e s 7-8
AdMIN SAMPIE.....ee it et e 7-10
Additional Information 0N SErVIELS.........ccoceviieie e 7-11

Using Jolt ASP Connectivity for BEA Tuxedo

KIBY FEBIUIES ...ttt et st e e et e st e et ne e s 8-2
How Jolt ASP Connectivity for BEA Tuxedo WOrkS........ccocevievevveieeveeennnne. 8-2
ASP Connectivity for BEA Tuxedo TOOIKit..........ccoooviiiiiieieeeiec e 8-5
Jolt ASP Connectivity for BEA Tuxedo Walkthroughcccooviiiiiiiinnnes 8-5
Overview of the ASP for BEA Tuxedo Walkthrough...........cccccoeeeiieiecnnenee, 8-6
Getting Started CheCKIISt.........cccuiiiiiiieeciece e 8-7
Tuxedo Host RUNNING JOIt SEIVEXcccovvieieeieieeeee et 8-7
Machine Running Jolt Client and Microsoft [1S..........c.cccecveeiviveeiieeceennene. 8-8
Overview of the TRANSFER ServicCe........cccooovireiniiieciresee e 8-10
TRANSFER Request WalKthrough............ccocooieeiiee e 8-10
Initializing the Jolt Session Pool Managercccceveeveveeeiececvvecve e 8-11
Submitting a TRANSFER Request from the Client..........cocooiiiiiinens 8-13
Processing the REQUESLcoceiui ettt e s 8-16
Returning the Resultsto the Client...........ccocov e 8-18
BEA Jolt Exceptions
BEA JOIt EXCEPLIONS.eieeeeie ettt sttt ettt se e e e en e A-2

Using BEA Jolt

About This Document

This document explains what BEA Jolt is, and describes how to configure and
integrate BEA Jolt with BEA Tuxedo® applications so that Tuxedo services are
available to customers on the Internet.

This document includes the following topics:

Chapter 1, “Introducing BEA Jolt,” is an overview of BEA Jolt.

Chapter 2, “Bulk Loading BEA Tuxedo Services,” describes the Bulk L oader
command utility, which allows you to load multiple, previously-defined BEA
Tuxedo services to the Jolt Repository database in a single step.

Chapter 3, “Configuring the BEA Jolt System,” describes how to configure BEA
Tuxedo.

Chapter 4, “Using the Jolt Repository Editor,” describes how to use the Jolt
Repository Editor to add, modify, test, export, and delete BEA Tuxedo service
definitions from the Jolt Repository.

Chapter 5, “Using the Jolt Class Library,” describes how to use the Jolt Class
Library to customize access to BEA Tuxedo services from Java applets.

Chapter 6, “Using JoltBeans,” describes how to use JoltBeans in Java
development environments (for example, Symantec Visual Cafe) to graphically
construct Jolt clients, without writing any code.

Chapter 7, “Using Servlet Connectivity for BEA Tuxedo,” describes how Jolt
HTTP servlets can perform server-side Java tasks in response to HTTP requests.

Chapter 8, “Using Jolt ASP Connectivity for BEA Tuxedo,” describes how Jolt’'s
Active Server Pages Connectivity enables BEA Tuxedo services and transactions
to be invoked from a Web server using a scripting language.

Using BEA Jolt iX

m Chapter A, “BEA Jolt Exceptions,” describes all the BEA Jolt exceptions that
may be encountered.

What You Need to Know

This document is intended for system administrators, network administrators, and
developers who areinterested in using BEA Jolt to transform BEA Tuxedo
applications so that Tuxedo services are available to customers on the I nternet.
Because you devel op your applications with Jolt API and the Jolt Repository Editor,
which use BEA Tuxedo and the Java programming language, the Jolt documentation
iswritten with the assumption that you are familiar with BEA Tuxedo and Java
programming.

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA System, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

X Using BEA Jolt

How to Print the Document

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about BEA Tuxedo, distributed object computing, and
transaction processing, see the CORBA Bibliography in the BEA Tuxedo online
documentation.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Using BEA Jolt Xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ()
nonospace Identifies variables in code.
italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Using BEA Jolt

Documentation Conventions

Convention

Item

{1}

Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using BEA Jolt Xiii

Xiv Using BEA Jolt

CHAPTER

1 Introducing BEA Jolt

BEA Jolt isa Java-based interface to the BEA Tuxedo system that extends the
functionality of existing BEA Tuxedo applications to include Intranet- and
Internet-wide availability. Using Jolt, you can how easily transform any BEA Tuxedo
application so that its services are available to customersusing an ordinary browser on
the Internet. Jolt interfaces with existing and new BEA Tuxedo applications and
services to allow secure, scalable, intranet/Internet transactions between client and
server. Jolt enables you to build client applications and applets that can remotely
invoke existing BEA Tuxedo services, such as application messaging, component
management, and distributed transaction processing.

Because you devel op your applications with the Jolt API and the Jolt Repository
Editor, which use BEA Tuxedo and the Java programming language, the Jolt
documentation is written with the assumption that you are familiar with BEA Tuxedo
and Java programming. This documentation is intended for system administrators,
network administrators, and devel opers.

Thistopic includes the following sections:
m BEA Jolt Components

m Key Features

m How BEA Jolt Works

m Creating a Jolt Client to Access BEA Tuxedo Applications

Using BEA Jolt 1-1

1

Introducing BEA Jolt

BEA Jolt Components

1-2

BEA JoltisaJavaclasslibrary and API that providesaninterfaceto BEA Tuxedo from
remote Java clients. BEA Jolt consists of the following components for creating
Java-based client programs that access BEA Tuxedo services:

Jolt Servers—one or more Jolt servers listen for network connections from
clients, trandate Jolt messages, multiplex multiple clientsinto a single process,
and submit and retrieve requests to and from BEA Tuxedo-based applications
running on one or more BEA Tuxedo servers.

Jolt Class Library—the Jolt classlibrary is a Java package containing the class
filesthat implement the Jolt API. These classes enable Java applications and
applets to invoke BEA Tuxedo services. The Jolt class library includes
functionality to set, retrieve, manage, and invoke communication attributes,
notifications, network connections, transactions, and services.

JoltBeans—BEA JoltBeans provides a JavaBeans-compliant interface to BEA
Jolt. JoltBeans are Beans components that you can use in JavaBeans-enabled
integrated development environments (IDEs) to construct BEA Jolt clients. Jolt
Beans consists of two sets of Java Beans: JoltBeans toolkit (a
JavaBeans-compliant interface to BEA Jolt that includes the JoltServiceBean,
JoltSessionBean, and JoltUserEventBean) and Jolt GUI beans, which consist of
Jolt-aware Abstract Window Toolkit (AWT) and Swing-based beans.

Jolt Repository—a central repository contains definitions of BEA Tuxedo
services. These repository definitions are used by Jolt at run time to access BEA
Tuxedo services. You can export services to a Jolt client application or unexport
services by hiding the definitions from the Jolt client. Using the Repository
Editor, you can test new and existing BEA Tuxedo services independently of the
client applications.

Jolt Internet Relay—the Jolt Internet Relay is a component that routes messages
from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler (JSH).
This component eliminates the need for the JSH and BEA Tuxedo to run on the
same machine as the Web server. The Jolt Internet Relay consists of the Jolt
Relay (JRLY) and the Jolt Relay Adapter (JRAD).

Using BEA Jolt

Key Features

Key Features

With BEA Jolt, you can leverage existing BEA Tuxedo services and extend your
transaction environment to the corporate intranet or world-wide Internet. The key
feature of Jolt architectureisitssimplicity. Y ou can build, deploy, and maintain robust,
modular, and scal able el ectronic commerce systems that operate over the Internet.

BEA Jolt includes the following features:

Java-based API for simplified development—with its Java-based API, BEA Jolt
simplifies application design by providing well-designed object interfaces. Jolt
supports the Java 2 Software Development Kit (SDK) and is fully compatible
with Java threads. Jolt enables Java programmers to build graphical front-ends
that use the BEA Tuxedo application and transaction services without having to
understand detailed transactional semantics or rewrite existing BEA Tuxedo
applications.

Pure Java client development—using Jolt, you can build a pure Java client that
runsin any Java-enabled browser. Jolt automatically converts from Javato
native BEA Tuxedo data types and buffers, and from BEA Tuxedo back to Java.
Asapure Java client, your applet or application does not need resident
client-side libraries or installation; thus, you can download client applications
from the network.

Easy access to BEA Tuxedo services through Jolt Repository—the BEA Jolt
Repository facilitates Java application development by managing and presenting
BEA Tuxedo service definitions that you can usein your Javaclient. A Jolt
Repository bulk loading utility lets you quickly integrate your existing BEA
Tuxedo services into the Jolt development environment. Jolt and BEA Tuxedo
simplify network and application scalability, while encouraging the reuse of
application components.

GUI-Based maintenance and distribution of BEA Tuxedo services—the Jolt
Repository Editor lets you manage BEA Tuxedo service definitions such as
service names, inputs and outputs. The Jolt Repository Editor provides support
for different input and output names for services defined in the Jolt Repository.

Encryption for secure transaction processing—BEA Jolt allows you to encrypt
data transmitted between Jolt clients and the JSL/JSH. Jolt encryption helps
ensure secure Internet transaction processing.

Using BEA Jolt 1-3

1 introduc ng BEA Jolt

m Added security through Internet Relay—network administrators can use the
BEA Jolt Internet Relay component to separate their Web server and BEA
Tuxedo application server. Web servers are generally considered insecure
because they often exist outside a corporate firewall. Using the Jolt Internet
Relay, you can locate your BEA Tuxedo server in a secure location or
environment on your network, yet still handle transactions from Jolt clientson
the Internet.

m Event Subscription Support—Jolt Event Subscription enables you to receive
event notifications from BEA Tuxedo services and BEA Tuxedo clients. Jolt
Event Subscription lets you subscribe to two types of BEA Tuxedo application
events:

e Unsolicited Event Notifications—a Jolt client can receive these notifications
when a BEA Tuxedo client or service subscribes to unsolicited events and a
BEA Tuxedo client issues a broadcast or a directly targeted message.

e Brokered Event Notifications—the Jolt client receives these notifications
through the BEA Tuxedo Event Broker. The Jolt client receives these
notifications only when it subscribes to an event and any BEA Tuxedo client
or server posts an event.

1-4 Using BEA Jolt

How BEA Jolt Works

How BEA Jolt Works

BEA Jolt connects Java clients to applications that are built using the BEA Tuxedo
system. The BEA Tuxedo system provides a set of modular services, each offering
specific functionality related to the application as awhole.

The end-to-end view of the BEA Jolt architecture, aswell as related BEA Tuxedo
components and their interactions, isillustrated in the figure “BEA Jolt Architecture”
on page 1-6.

Using thisfigure as an example, asimple banking application might have services such
asINQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, servicerequests
areimplemented in C or COBOL asasequence of callstoaprogram library. Accessing
alibrary from a native program means installing the library for the specific
combination of CPU and operating system release on the client machine, asituation
that Java was expressly designed to avoid. The Jolt Server implementation actsas a
proxy for the Jolt client, invoking the BEA Tuxedo service on behalf of theclient. The
BEA Jolt Server accepts requests from the Jolt clients and maps those requests into
BEA Tuxedo service reguests.

UsingBEA Jolt 1-5

1 introduc ng BEA Jolt

Figure1-1 BEA Jolt Architecture

CLIENT SERVER
%‘Xﬁ'ﬁpﬁﬁ'&? ry Internet Application Server
HTML, Applet, and BEA Jolt BEA Tuxedo
Jolt Code Transaction Protocol

INQUIRY Service

Java Virtual Machine

DEPOSIT Service

BEA Jolt Server

Jolt Server Listener

Jolt Server Handler
Repository Server

BEA Tuxedo
State Manager

BEA Jolt databases

Repository @@@
/ Legacy Host

Applications

Legacy
Access Services

Jolt BEA Jolt
\pplet/Application Connectivit
Module

BEA Jolt
Class Library

Repositor
Service
Definitions

Jolt Servers

Thefollowing Jolt Server components act in concert to pass Jolt client transaction
processing requests to the BEA Tuxedo application.

m Jolt Server Listener (JSL)

The JSL handlesthe initia Jolt client connection, and assigns a Jolt client to the
Jolt Server Handler.

m Jolt Server Handler (JSH)

The JSH manages network connectivity, executes service requests on behalf of
the client and translates BEA Tuxedo buffer data into the Jolt buffer, aswell as
Jolt buffer datainto the Tuxedo buffer.

1-6 Using BEA Jolt

How BEA Jolt Works

m Jolt Repository Server (JREPSVR)

The JREPSVR retrieves Jolt service definitions from the Jolt Repository and
returns the service definitions to the JSH. The JREPSVR &l so updates or adds
Jolt service definitions.

The following figure illustrates the Jolt Server and Jolt Repository components.

Figure1-2 Jolt Server and Repository Components

Jolt Server and Repository BEA Tuxedo
IT
’ ﬂlgr? del revrer BEA Tuxedo
(JSH) Services
on
Application
| - Server
Jolt Serve Jolt Repository
Listener Server
(JsL) (JREPSVR)

Jolt Class Library

The BEA Jolt Class Library isaset of classes that you can usein your Javaapplication
or applet to make service requests to the BEA Tuxedo system from a Java-enabled
client. Y ou access BEA Tuxedo transaction services by using Jolt class objects.

When devel oping aJolt client application, you only need to know about the classes that
Jolt provides and the BEA Tuxedo services that are exported by the Jolt Repository.
Jolt hidesthe underlying application details. To use Jolt and the Jolt ClassLibrary, you
do not need to understand: the underlying transactional semantics, the language in
which the services were coded, buffer manipulation, the location of services, or the
names of databases used.

Using BEA Jolt 1-7

Introducing BEA Jolt

The Jolt API isaJavaclasslibrary and has the benefitsthat Java provides: applets are
downloaded dynamically and are only resident during runtime. Asaresult, thereisno
need for client install ation, administration, management, or version control. If services
are changed, the client application notes the changes at the next call to the Jolt
Repository.

Thefollowing figure showsthe flow of activity from a Jolt client to and from the BEA
Tuxedo system. The call-out numbers correspond to descriptions of the activity in the
table “Using the Jolt Class Library” on page 1-9.

Figure 1-3 Using the Jolt ClassLibrary to Access BEA Tuxedo Services

1, 2 connection
CLIENT -+ » \Web Server HOST

BEA Tuxedo Environment

JAVA-Enabled
Web Browser
Application Serve

JAVA VM - 3 connection
6
Application connection/request Jolt request g e
Code Server reply
-

4,5
_ Jolt
Class Library BEA Jolt
Repository
. contains BEA Tuxegdg
Run-Time service definitions

1-8

Using BEA Jolt

How BEA Jolt Works

JoltBeans

The following table briefly describes the flow of activity involved in using the Jolt
ClassLibrary to access BEA Tuxedo services, as shown in the previousfigure “Using
the Jolt Class Library to Access BEA Tuxedo Services.”

Table 1-1 Using the Jolt ClassLibrary

Process Step Action
Connection 1 A Java-enabled Web browser uses HTTP protocol to download
an HTML page.
2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.
3 Thefirst Java applet task is to open a separate connection to the
Jolt Server.
Request 4 The Jolt client now knows the signature of the service (such as

name, parameters, types); can build aservice request object based
on Jolt class definitions, and make a method call.

5 The request is sent to the Jolt Server, which trandates the
Java-based request into a BEA Tuxedo request and forwards the
request to the BEA Tuxedo environment.

Reply 6 The BEA Tuxedo system processes the request and returns the
information to the Jolt Server, which translatesit back to the Java

applet.

BEA Jolt now includes JoltBeans, Java beans components that you usein a
Java-enabledintegrated devel opment environment (IDE) to construct BEA Jolt clients.
Using JoltBeans, and popular JavaBeans-enabl ed devel opment tools such as Symantec
Visual Café, you can graphically create client applications.

BEA JoltBeans provide a JavaBeans-compliant interface to BEA Jolt that enablesyou
to develop afully functional BEA Jolt client without writing any code. Y ou can drag
and drop JoltBeans from the component palette of a development tool and position
them on the Java form (or forms) of the Jolt client application you are creating. Y ou
can popul ate the properties of the beans and graphically establish event source-listener
rel ationships between various beans of the application or applet. Typically, the

Using BEA Jolt 1-9

1

Introducing BEA Jolt

development tool is used to generate the event hook-up code, or you can code the
hook-up manually. Client devel opment with JoltBeansisintegrated with the BEA Jolt
Repository, which provides easy access to available BEA Tuxedo functions.

ASP Connectivity for BEA Tuxedo

The Jolt ASP Connectivity for BEA Tuxedo Toolkit is an extension to the Jolt Java
classlibrary. The Toolkit allowsthe Jolt client classlibrary to be used in aWeb server,
such as the Microsoft Internet Information Server (11S), to provide an interface
between HTML clients or browsers, and BEA Tuxedo services.

The Jolt ASP Connectivity for BEA Tuxedo Toolkit provides an easy-to-use interface
for processing and generating dynamic HTML pages. Y ou do not need to learn how to
write Common Gateway Interface (CGI) transactional programs to access BEA
Tuxedo services.

Jolt Server and Jolt Client Communication

1-10

The Jolt system handles all communication between the Jolt Server and the Jolt client
using the BEA Jolt Protocol. The communication process between the Jolt Server and
the Jolt client applet or applications functions as follows:

1. BEA Tuxedo service requests and associated parameters are packaged into a
message buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message and performs necessary data
conversions, such as numeric format conversions or character set conversions.

3. The Jolt Server makes the appropriate service request to the application service
reguested by the Jolt client.

4. Once aservice reguest enters the BEA Tuxedo system, it is executed in exactly
the same manner as requests issued by any other BEA Tuxedo client.

5. Theresults are then returned to the BEA Jolt Server, which packages the results
and any error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt client
interface objects, completing the request.

Using BEA Jolt

How BEA Jolt Works

Jolt Repository

The Jolt Repository is a database where BEA Tuxedo services are defined, such as
name, number, type, parameter size, and permissions. The repository functions asa
central database of definitionsfor BEA Tuxedo services and permits new and existing
BEA Tuxedo servicesto be made available to Jolt client applications. A BEA Tuxedo
application can have many services or service definitions, such as
ADD_CUSTOMER, GET_ACCOUNTBALANCE, CHANGE_LOCATION, and
GET_STATUS. All or only afew of these definitions can be exported to the Jolt
Repository. Within the Jolt Repository, the devel oper or system administrator usesthe
Jolt Repository Editor to export these services to the Jolt client application.

All Repository servicesthat are exported to one client are exported to all clients. BEA
Tuxedo handles the cases where subsets of services may be needed for one client and
not others.

Thefollowing figureillustrates how the Jolt Repository brokers BEA Tuxedo services
to multiple Jolt client applications. (Four BEA Tuxedo services are shown; however,
the WITHDRAW serviceisnot defined in the repository and the TRANSFER service
is defined but not exported.)

Figure1-4 Distributing BEA Tuxedo Services Through Jolt

Jolt Client

BEA Tuxedo Jolt Repository Application
éppli_cation Services DEPOSIT, INQUIRY

ervices -

INQUIRY DEPOSIT Jolt Client

DEPOSIT INOUIRY Application
WITHDRAW TRA,\?SFER DEPOSIT, INQUIRY

TRANSFER

Jolt Repository Editor
The Jolt Repository Editor isa Java-based GUI administration tool that gives the

application administrator access to individual BEA Tuxedo services. Y ou use the
Editor to define, test, and export servicesto Jolt clients.

Using BEA Jolt 1-11

1

Introducing BEA Jolt

Note: The Jolt Repository Editor only controls services for Jolt client applications.
Y ou cannot use it to make changes to the BEA Tuxedo application.

The Jolt Repository Editor lets you extend and distribute BEA Tuxedo services to Jolt
clientswithout having to modify many lines of code. Y ou can modify parameters for
BEA Tuxedo services, logically group BEA Tuxedo services into packages, and
remove services from created packages. Y ou can also make the services available to
browser-based Jolt applets or Jolt applications by exporting the services.

Jolt Internet Relay

1-12

The Jolt Internet Relay is a component that routes messages from a Jolt client to the
Jolt Server. The Jolt Internet Relay consists of the Jolt Relay (JRLY') and the Jolt Relay
Adapter (JRAD). JRLY isastand-alone software component that routes Jolt messages
to the Jolt Relay Adapter. Requiring only minimal configuration to work with Jolt
clients, the Jolt Relay eliminates the need for the BEA Tuxedo system to run on the
same machine as the Web server.

The JRAD isaBEA Tuxedo system server, but does not include any BEA Tuxedo
services. It requires command-line arguments to allow it to work with the JSH and the
BEA Tuxedo system. JRAD receives client requests from JRLY, and forwards the
request to the appropriate JSH. Repliesfrom the JSH are forwarded back to the JRAD,
which sendsthe response back tothe JRLY . A single Jolt Internet Relay (JRLY/JRAD
pair) handles multiple clients concurrently.

Using BEA Jolt

Creating a Jolt Client to Access BEA Tuxedo Applications

Creating a Jolt Client to Access BEA Tuxedo
Applications

The main steps for creating and deploying a Jolt client, are described in the following
procedure and in the figure “ Creating a Jolt Application” on page 1-14.

1

Make sure you have created a BEA Tuxedo system application.

For information about installing BEA Tuxedo and creating a BEA Tuxedo
application, refer to Installing the BEA Tuxedo Systemand Setting Up a BEA
Tuxedo Application.

Install the Jolt system.
Refer to Installing the BEA Tuxedo System.

. Usethe Bulk Loader utility to load Tuxedo services into the Jolt Repository

Database.

For information on using this utility, see “Bulk Loading Tuxedo Services.”

Configure and define services by using the Jolt Repository Editor.

For information about configuring the Jolt Repository Editor and making BEA
Tuxedo services available to Jolt, see Chapter 4, “Using the Jolt Repository
Editor”

Create a client application by using the Jolt Class Library.

The following documentation shows you how to program your client application
using the Jolt Class Library:

e Chapter 5, “Using the Jolt Class Library”
e BEA Jolt API Reference

Run the Jolt-based client applet or application.

Using BEA Jolt 1-13

1 introduc ng BEA Jolt

Figure1-5 Creating a Jolt Application

Creating a New BEA Tuxedo

Application? Have an Existing BEA Tuxedo
IS BN BN BN BN BN BN BN BN OB O Application?
| Design Your Application | o il il ey :
I Services | BEA Tuxedo Application Is .
|

Installed
F /write/ Deploy Your Application and |
| BEA Tuxedo Services |

g p—— -@IC Install Jolt)

(Start BEA Tuxedo Application

J L
Decide Which BEA Tuxedo Services
to Make Available to Jolt
J L

Use Repository Editor to Define
Services Available from Jolt

Program Client by Using
Jolt Class Library

] Make Jolt Classes Available
Export Services (for example, through the Web)

Run Your Jolt Application I

Test Each Service

1-14 Using BEA Jolt

CHAPTER

2

Bulk Loading BEA
Tuxedo Services

Asa systems administrator, you may have an existing BEA Tuxedo application with
multiple BEA Tuxedo services. Manually creating these definitionsin the repository
database may take hoursto complete. The Jolt Bulk Loader isa command utility that
allows you to load multiple, previously defined BEA Tuxedo services to the Jolt
Repository database in asingle step. Using thej bl d program, the Bulk Loader utility
reads the BEA Tuxedo service definitions from the specified text file and bulk loads
theminto the Jolt Repository. The services are loaded to the repository database in one
“bulk load.” After the services populate the Jolt Repository, you can create, edit, and
group services with the Jolt Repository Editor.

Thistopic includes the following sections:
m Using the Bulk L oader

m Syntax of the Bulk Loader Data Files
m Troubleshooting

m Sample Bulk Load Data

Using BEA Jolt 2-1

2 Buk Loading BEA Tuxedo Services

Using the Bulk Loader

Thej bl d program is a Java application. Before running the j bl d command, set the
CLASSPATH environment variable (or its equival ent) to point to the directory wherethe
Jolt classdirectory (thatis,jolt.jar and j ol tadnmin.j ar)islocated. If the
CLASSPATH variableisnot set, the Java Virtual Machine (JVM) cannot locate any Jolt
classes.

For security reasons, j bl d does not use command-line arguments to specify user
authentication information (user password or application password). Depending on the
server’s security level, j bl d automatically prompts the user for passwords.

The Bulk Loader utility getsitsinput from command-line arguments and from the
input file.

Activating the Bulk Loader

1. Typethefollowing at the prompt (with the correct options):
java bea.jolt.admn.jbld [-n][-p package][-u usrnanme][-r
usrrole] //host:port filenane

2. Usethefollowing tableto correctly specify the command-line options.

Command-line Options

Table 2-1 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the username (default is your account
name). (Mandatory if required by security.)

-r usrrole Specifiestheuser role (defaultisadmi n). (Mandatory
if required by security.)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional)

2-2 Using BEA Jolt

Using the Bulk Loader

Table 2-1 Bulk Loader Command-line Options (Continued)

Option Description

-p package Repository package name (default is BULKPKG).

/ /' host : port Specifiesthe JRLY or JSL address (host name and |P
port number). (Mandatory)

fil enane Specifies the file containing the service definitions.
(Mandatory)

The Bulk Load File

The bulk load fileis atext file that defines services and their associated parameters.
The Bulk L oader |oads the services defined in the bulk loader file into the Jolt
Repository using the package name “BULKPKG” by default. The - p command
overrides the default and you can give the package any name you choose. |f another
load is performed from a bulk loader file with the same - p option, al the servicesin
the original package are deleted and a new package is created with the services from
the new bulk loader file.

If aservice existsin a package other than the package you name that usesthe - p
option, the Bulk Loader reports the conflict and does not |oad a service from the bulk
loader fileinto the repository. Use the Repository Editor to remove duplicate services
and |load the bulk loader file again. See“Using the Jolt Repository Editor” on page 4-1
for additional information.

Using BEA Jolt 2-3

2 Buk Loading BEA Tuxedo Services

Syntax of the Bulk Loader Data Files

Each service definition consists of service properties and parameters that have a set
number of parameter properties. Each property is represented by a keyword and a
value.

Keywords are divided into two levels:
m Service-level

m Parameter-level

Guidelines for Using Keywords

Thej bl d program reads the service definitions from atext file. To use the keywords,
observe the guidelinesin the following table.

Table 2-2 Guidelinesfor Using Keywords

Guideline Example

Each keyword must befollowed Correct: t ype=stri ng

by an equal sign (=) and the Incorrect: t ype
value.

Only onekeywordisalowedon Correct: type=string
each line. Incorrect: t ype=stri ng access=out

Any lines not having an equal Correct: type=string
sign (=) are ignored. Incorrect: type string

Certain keywords only accepta The keyword accessaccepts only these values: in,
well-defined set of values. out, inout, noaccess

2-4 Using BEA Jolt

Syntax of the Bulk Loader Data Files

Table 2-2 Guidelinesfor Using Keywor ds (Continued)

Guiddine Example
Theinput file can contain servi ce=l NQU RY
multiple service definitions. <servi ce keywords and val ues>

servi ce=DEPCSI T

<servi ce keywords and val ues>
servi ce=W THDRAWAL

<servi ce keywords and val ues>
ser vi ce=TRANSFER

<servi ce keywords and val ues>

Each service definition consists ser vi ce=DEPCSI T
of multiple keywords and export=true
values. i nbuf =Vl EVB2

out buf =VI EW82

i nvi ew=l NVI EW

out vi ew=0OUTVI EW

Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the datafilesto ensure an error-free transfer
during the bulk load.

The first keyword definition in the bulk loader data text file must be the initial

ser vi ce=<NAME> keyword definition (shown in the listing “Keyword Hierarchical
Order in aDataFile"). Following the ser vi ce=<NAME> keyword, all remaining
service keywords that apply to the named service must be specified before the first
par am=<NAVE> definition. These remaining service keywords can be in any order.

All parameters associated with the service must be specified. Following each

par am=<NAMVE> keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated with the
first service are defined, specify anew ser vi ce=<NAVE> keyword definition.

Using BEA Jolt 2-5

2 Buk Loading BEA Tuxedo Services

Listing 2-1 Keyword Hierarchical Order in a Data File

servi ce=<NAME>

<servi ce keyword>=<val ue>
<servi ce keyword>=<val ue>
<servi ce keyword>=<val ue>
par am=<NANME>

<par anet er keywor d>=<val ue>
<par anet er keywor d>=<val ue>
par am=<NANME>

<par anet er keywor d>=<val ue>
<par anet er keywor d>=<val ue>

Using Service-Level Keywords and Values

A service definition must begin with the ser vi ce=<NAME> keyword. Services using
CARRAY, STRING, or XML buffer types should only have one parameter in the
service. The recommended parameter name for a service that uses a CARRAY buffer
typeis CARRAY with car r ay asthe datatype. For a service that uses a STRI NG buffer
type, the recommended parameter name is STRI NGwith st ri ng asthe data type. For
a service that uses a XML buffer type, the recommended parameter nameis XML with
xm asthe datatype.

The following table contains the guidelines for use of the service-level keywords and
acceptable values for each.

Table 2-3 Service-L evel Keywords and Values

Keyword Value
servi ce Any BEA Tuxedo service name
export True or false (default is false)

2-6 Using BEA Jolt

Syntax of the Bulk Loader Data Files

Table 2-3 Service-Level Keywordsand Values (Continued)

Keyword Value

i nbuf/ out buf Select one of these buffer types:
FML
FM_32
VI EW
VI EVB2
STRI NG
CARRAY
XM
X_OCTET
X_COMMON
X_C_TYPE

invi ew Any view name for input parameters

(This keyword isoptional only if one of the
following buffer typesis used: VI EW VI EVB2,
X_COMMON, X_C TYPE.)

out vi ew Any view name for output parameters (Optional)

Using BEA Jolt 2-7

2 Buk Loading BEA Tuxedo Services

Using Parameter-Level Keywords and Values

A parameter begins with the par am=<NAME> keyword followed by a number of
parameter keywords. It ends when another par amor ser vi ce keyword, or end-of-file
is encountered. The parameters can be in any order after the par am=<NAME> keyword.

The following table contains the guidelines for use of the parameter-level keywords

and acceptable values for each.

Table 2-4 Parameter-L evel Keywordsand Values

Keyword

Values

par am

Any parameter name

type

byt e
short
i nt eger
fl oat
doubl e
string
carray

xml

access

in

out

i nout
noaccess

count

Maximum number of occurrences (default is1). The
valuefor unlimited occurrencesis0. Used only by the
Repository Editor to format test screens.

2-8 Using BEA Jolt

Troubleshooting

Troubleshooting

If you encounter problems using the Bulk Loader utility, refer to the following table.
For acomplete list of Bulk Loader utility error messages and solutions, see “ System

Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If... Then ...
The datafileis not found Check to ensure that the path is correct.
The keyword isinvalid Check to ensure that the keyword is valid for the

package, service, or parameter.

The value of the keyword is null Type avalue for the keyword.

Thevaueisinvaid Check to ensure that the value of a parameter iswithin
the allocated range for that parameter.

The datatypeisinvalid Check to ensure that the parameter isusing avalid data
type.

Using BEA Jolt 2-9

2 Buk Loading BEA Tuxedo Services

Sample Bulk Load Data

Thefollowing listing contains a sample datafilein the correct format using the UNIX
command cat servi cefile. This sampleloads TRANSFER, LOG N, and PAYROLL
service definitions to the BULKPKG.

Listing 2-2 Sample Bulk L oad Data

ser vi ce=TRANSFER
export=true

i nbuf =FML

out buf =FML

par amrACCOUNT_I D
type=i nt eger
access=in
count =2

par am=SAMOUNT
type=string
access=in

par anFSBALANCE
type=string
access=out
count =2

par anFSTATLI N
type=string
access=out

service=LOG N
i nbuf =Vl EW

i nvi ew=LOGA NS
out vi ew=LOG NR
export=true
par ameuser
type=string
access=in

par amFpasswd
type=string
access=in

par anrt oken

t ype=i nt eger
access=out

2-10 Using BEA Jolt

Sample Bulk Load Data

servi ce=PAYROLL
i nbuf =FML

out buf =FML

par amrEMPLOYEE_NUM
type=i nt eger
access=in

par am=SALARY
type=fl oat
access=i nout

par amrHI RE_DATE
type=string
access=i nout

Using BEA Jolt

2-11

2 Buk Loading BEA Tuxedo Services

2-12 Using BEA Jolt

CHAPTER

3

Configuring the BEA
Jolt System

This chapter describes how to configure BEA Jolt. “ Quick Configuration” isfor users
who are familiar with Jolt. The other sections provide more detailed information. Itis
presumed that readers are system administrators or application developers who have
experience with the operating systems and workstation platforms on which they are
configuring BEA Jolt.

Thistopic includes the following sections:

Quick Configuration

Jolt Background Information

Jolt Relay

Jolt Relay Adapter

Jolt Repository

Event Subscription

BEA Tuxedo Background Information

Sample Applicationsin BEA Jolt Online Resources

Using BEA Jolt

3-1

3 Configuring the BEA Jolt System

Quick Configuration

If you are aready familiar with BEA Jolt and BEA Tuxedo, “Quick Configuration”
provides efficient guidelinesfor the configuration procedure. If you have not used Jolt,
refer to “ Jolt Background Information” on page 3-13 before you begin any
configuration procedures.

Quick Configuration contains the information you need to configure the Jolt Server
Listener (JSL) on BEA Tuxedo and covers the following procedures:

Editing the UBBCONFIG File

Configuring the Jolt Repository

Initializing Services That Use BEA Tuxedo and the Repository Editor

L ogging On to the Repository Editor

Exiting the Repository Editor

Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription

Configuring Jolt Relay

Editing the UBBCONFIG File

3-2

1

In the MACHI NES section, specify MAXWSCLI ENTS=nunber (Required).

Note: If MAXWSCLI ENTS is not set, JSL does not boot.

2.

4.

In the GROUPS section, set GROUPNAME r equi red par aneters [opti onal
par anet er s].

Set the SERVERS section (Required).
Lines within this section have the form:
JSL required paraneters [optional paraneters]

where JSL specifiesthefile (st ri ng_val ue) to be executed by t nboot (1) .

Set the required parametersfor JSL.

Using BEA Jolt

Quick Configuration

Required parameters are:
SVRGRP=string_val ue
SRVI D=nunber

CLOPT="- A...-n.../ | host port”

5. Set other parameters for JSL.

You can use the following parameters with the JSL, but you need to
understand how doing so affects your application. Refer to “Parameters
Usable with JSL” on page 3-43 for additional information.

MAX # of JSHs
M N # of JSHs

Configuring the Jolt Repository

In the Groups Section

1. Specify the same identifiers given as the value of the LM D parameter in the
MACH NES section.

2. Specify the value of the GRPNO, between 1 and 30,000.

In the Servers Section

The BEA Jolt Repository Server (JREPSVR) contains servicesfor accessing and editing
the Repository. Multiple JREPSVR instances share repository information through a
shared file. Include JREPSVR in the SERVERS section of the UBBCONFI Gfile.

1. Indicate anew server identification with the SRVI D parameter.

2. Specify the - Wflag for one (and only one) JREPSVRto ensure that you can edit
the repository. (Without this flag, the repository isread-only.)

3. Typethe- P flag to specify the path of the repository file. (An error message is
displayed in the BEA Tuxedo ULOGfile if the argument for the - P flag is not
entered.)

4. Add thefile pathname of the Repository file (for example, / app/ j r eposi t ory).

Using BEA Jolt 3-3

3 Configuring the BEA Jolt System

5. Boot the BEA Tuxedo system by using thet n oadcf and t mboot commands.

Initializing Services That Use BEA Tuxedo and the
Repository Editor

Definethe BEA Tuxedo servicesthat use BEA Tuxedo and BEA Jolt in order to make
the Jolt services availableto the client.

1. Build the BEA Tuxedo server that contains the service.

2. Accessthe BEA Jolt Repository Editor.

Getting Started with the Repository Editor

Before you start the Repository Editor, make certain that you have installed all of the
necessary BEA Jolt software.

Note: You cannot use the Repository Editor until JREPSVR and JSL are running.

To use the Repository Editor, you must:

1. Start the Repository Editor.

You can start the Repository Editor from either the JavaSoft appl et vi ewer or
from your Web browser. Both of these methods are detailed in the following
sections.

2. Log on to the Repository Editor.

Starting the Repository Editor Using the Java Applet Viewer

1. Setthe CLASSPATH to include the Jolt class directory or the directory where the
*_jar filesreside.

2. If loading the applet from alocal disk, type the following at the URL location:
appl et vi ewer full-pat hname/ RE. ht m

If loading the applet from the Web server, type the following at the URL
location:

34 Using BEA Jolt

Quick Configuration

http://ww. server/ URL pat h/ RE. ht ni

3. Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 3-7.

Starting the Repository Editor Using Your Web Browser

Use one of the following procedures to start the Repository Editor from your Web
browser.

To start the Repository Editor from a local file

1
2.

Set the CLASSPATH to include the Jolt class directory.
Type the following:

file:full-pathname/RE htm

Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 3-7.

To start from a Web server

Ensure that the CLASSPATH does not include the Jolt class directory.
Remove the Jolt cases from CLASSPATH.
Type the following:

http://ww. server/ URL pat h/ RE. ht i

Note: Ifjolt.jar andadm n.jar areinthe samedirectory asRE. ht ni , the
Web server provides the classes. If they are not in the same directory as
RE. ht ni , modify the applet code base.

Press Enter.

The Repository Editor Logon window is displayed as shown in the figure “BEA
Jolt Repository Editor Logon Window” on page 3-7.

Using BEA Jolt 3-5

3 Configuring the BEA Jolt System

Logging On to the Repository Editor

3-6

After starting the Jolt Repository Editor, follow these directions to log on:

Note: The“BEA Jolt Repository Editor Logon Window” on page 3-7 must be
displayed before you log on. Refer to thisfigure asyou perform the following
procedure.

=

In the logon window, type the name of the Server machine designated as the
“access point” to the BEA Tuxedo application and press Tab.

2. Typethe Port Number and press Enter.
The system validates the server and port information.

Note: Unlessyou arelogging on through Jolt Relay, the same port number isused
to configure the Jolt Listener. Refer to your UBBCONFI Gfile for additional
information.

3. Typethe BEA Tuxedo Application Password and press Enter.

Depending upon the authentication level, complete steps 5 and 6 as required.
4. Typethe BEA Tuxedo User Name and press Tab.
5. Typethe BEA Tuxedo User Password and press Enter.

The Packages and Services command buttons are enabled.

Note: TheBEA Jolt Repository Editor uses the hardcoded j ol t admi n for the
User Role value.

Using BEA Jolt

Quick Configuration

Figure3-1 BEA Jolt Repository Editor Logon Window

EiApplet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server: skywalker

Part Murnber: 55557

User Role:
Application Password:
User Mame:

User Password:

EErkanes | SENICES |

joltadmin

| S

Thefollowing table, “ Repository Editor Logon Window Description,” contains details

about each of the fields and buttons.

Repository Editor Logon Window Description

Table 3-1 Repository Editor Logon Window Description

Option Description

Server The server name.

Using BEA Jolt 3-7

3 Configuring the BEA Jolt System

Port Number The port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Name and Password fields are activated. Activation
is based on the authentication level of the BEA Tuxedo

application.
User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level isUSER_AUTH or higher.
Application BEA Tuxedo administrative password text entry.
Password
User Name BEA Tuxedo user identification text entry. Thefirst character must
be an alpha character.
User Password BEA Tuxedo password text entry.
Packages Accesses the Packages window. (Enabled after the logon.)
Services Accesses the Services window. (Enabled after the logon.)
L og Off Terminates the connection with the server.

Exiting the Repository Editor

Exit the Repository Editor when you finish adding, editing, testing, or deleting
packages, services, and parameters. Prior to exit, the window is displayed as shown in
the figure “BEA Jolt Repository Editor Logon Window Prior to Exit” on page 3-9.

3-8 Using BEA Jolt

Quick Configuration

Figure3-2 BEA Jolt Repository Editor L ogon Window Prior to Exit

EiApplet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server: skywalker
Part Murnber: 55557
User Role: joltadmin

Application Password:

User Mame:

Uszer Password:

Fackanes | Services | Log Off

Note that only the Packages, Services, and Log Off command buttons are enabled. All
of the text entry fields are disabled.

Follow the steps below to exit the Repository Editor.
1. Click Back inapreviouswindow to return to the Repository Editor Logon window.

2. Click Log Off to terminate the connection with the server.

The Repository Editor Logon window shows disabled fields.

3. Click Close from your browser menu to close the window.

Using BEA Jolt 39

3 Configuring the BEA Jolt System

Configuring the BEA Tuxedo TMUSREVT Server for Event
Subscription

Jolt Event Subscription receives event notifications from either BEA Tuxedo services
or other BEA Tuxedo clients. Configure the BEA Tuxedo TMJUSREVT server and
modify the application UBBCONFI Gfile. The following listing, “ TMUSREVT
Parametersinthe UBBCONFIG File,” showstherel evant TMUSREVT parametersin the
UBBCONFI Gfile:

Listing3-1 TMUSREVT Parametersin the UBBCONFIG File

TMJSREVT SRVGRP=EVBGRP1 SRVI D=40 GRACE=3600
ENVFI LE="/ usr/ t uxedo/ bankapp/ TMUSREVT. ENV"
CLOPT="-e tnusrevt.out -o tnusrevt.out -A --
-f /usr/tuxedo/ bankapp/tnusrevt. dat"
SEQUENCE=11

In the SERVERS sections of the UBBCONFI Gfile, specify the SRVYGRP and SRVI D.

Configuring Jolt Relay

On UNIX

Start the JRLY process on UNIX by typing the following command at the system
prompt:

jrly -f <config file_path>

If the configurationfiledoesnot exist or cannot be opened, the JRLY writesamessage
to standard error, attempts to log the startup failure in the error log, then exits.

3-10 Using BEA Jolt

Quick Configuration

On UNIX and Windows 2000

The format of the configuration fileis a TAG=VALUE format. Blank lines or
lines starting with a“#” areignored. The following listing, “Formal
Configuration File Specifications,” is an example of the formal specifications of
the configuration file.

Listing 3-2 Formal Configuration File Specifications

LOGDI R=<LOG DI RECTORY_PATH>

ACCESS LOG=<ACCESS FILE NAME i n LOGDI R>

ERROR_LOG=<ERROR FI LE NAME in LOGDI R>

LI STEN=<I P: Port conbinati on where JRLY wi || accept

conma- separ at ed connecti ons>

CONNECT=<I P: Port1, IP:Port2...1P:PortN: Port(List of IP:Port
conbi nati ons associated with JRADs: can be 1...N>

On Windows 2000 Only (Optional)

SOCKETTI MEQUT isthetimein secondsfor which JRLY Windows 2000 service blocks
for network activity (new connections, data to be read, closed connections).
SOCKETTI MEQUT also affects the Service Control Manager (SCM). When the SCM
requests the Windows 2000 service to stop, the SCM must wait for at least

SOCKETTI MEQUT seconds before quitting.

Note: Theformat for directory and filenamesis determined by the operating system.
UNIX systems use the forward slash (/). Windows 2000 systems use the
backslash (\). If any files specified in LOGDI R, ACCESS_LOG, or ERROR_LOG
cannot be opened for writing, JRLY prints an error message on st der r and
exits.

The formats for the host names and the port numbers are shown in the
following table.

Table 3-2 Host Name and Port Number Formats

Host Name/Port Description
Number

/ / Host nane: Port Host nane isastring; Por t isadecimal number.

Using BEA Jolt 311

3 Configuring the BEA Jolt System

Table 3-2 Host Name and Port Number Formats (Continued)

| P: Port | P isadotted notation |P address; Por t isadecimal number.

Start the Jolt Relay Adapter (JRAD)
1. Typetm oadcf -y <UBBFI LE>.

2. Typet mboot .

Configure the JRAD

A single JRAD process can only be connected to asingle JRLY . A JRAD can be
configured to communicate with only one JSL and its associated JSH. However,
multiple JRADs can be configured to communicate with one JSL. The CLOPT
parameter for BEA Tuxedo services must be included in the UBBCONFI Gfile.

1. Type-1 hexadeci mal format (TheJSL portto which the JRLY connectson
behalf of the client.)

2. Type -c¢ hexadeci mal format (Theaddress of the corresponding JSL to
which JRAD connects.)

Note: Theformat is OxO002PPPNNN, or, in dot notation, 100.100.10.100.

3. Configure networked components.

Jolt is now configured.

3-12 Using BEA Jolt

Jolt Background Information

Jolt Background Information

This section contains additional information on Jolt components.

Jolt Server

The Jolt Server is alistener that supports one or more handlers.

Jolt Server Listener (JSL)—the JSL is configured to support clients on an | P/port
combination.The JSL works with the Jolt Server Handler (JSH) to provide client
connectivity to the back-end of the BEA Jolt system. The JSL runs as a BEA Tuxedo
server.

Jolt Server Handler (JSH)—the JSH is a program that runs on a BEA Tuxedo server
machine to provide anetwork connection point for remote clients. The JSH workswith
the JSL to provide client connectivity residing on the back-end of the BEA Jolt system.
More than one JSH can be availableto the JSL, up to 32,767. (Refer to the description
of the - Mcommand-line option in “JSL Command-line Options” on page 3-15 for
additional information.)

System Administrator Responsihilities—the system administrator’ s responsibilities
for the server components of BEA Jolt include:

m Determining the JSL network address.

m Determining the number of Jolt clientsto be serviced. (The number of clientsto
be serviced is limited by MAXWSCLI ENTS in UBB.)

m Determining the minimum and maximum number of JSHSs.

Starting the JSL

To start al administrative and server processes in the UBBCONFI Gfile:

1. Typetni oadcf.

Using BEA Jolt 3-13

3 Configuring the BEA Jolt System

This command parses the configuration file and oads the binary version of the
configuration file.

Typet nboot -y .
This command activates the application specified in the configuration file.

If you do not enter any options, a prompt asks you if you really want to
overwrite your TUXCONFI Gfile.

See Administering a BEA Tuxedo Application at Run Time or the BEA Tuxedo
Command Reference for information about t m oadcf andt nmboot .

Shutting Down the JSL

All shutdown requests to the Jolt servers areinitiated by the BEA Tuxedo command:

t nshut down -y

During shutdown:

No new client connections are accepted.

All current client connections are terminated. BEA Tuxedo rolls back in-flight
transactions. Each client receives an error message indicating that the serviceis
unavailable.

Restarting the JSL

3-14

BEA Tuxedo monitorsthe JSL and restarts it in the event of afailure. When BEA
Tuxedo restarts the listener process, the following events occur:

Clients attempting a listener connection must try to reconnect. Clients attempting
ahandler connection receive atimeout or atime delay.

Clients currently connected to ahandler are disconnected (JSH exits when its
corresponding JSL exits normally).

Using BEA Jolt

Jolt Background Information

Configuring the JSL

The Jolt Server Listener (JSL) isaBEA Tuxedo server responsible for distributing
connection requests from Jolt to the Jolt Server Handler (JSH). BEA Tuxedo must be
running on the host machine where the JSL and JREPSVR are located.

Note: Theway the JSL selects ports for the JSH is different than the process for the
BEA Tuxedo Workstation Server Listener (WSL). For detailed information
regarding on properly configuring JSL ports, refer to the“ SERVERS Section”
of “Creating the UBBCONFIG File” on page 3-39.

JSL Command-line Options

The server may need to obtain information from the command line. The CLOPT
parameter allows you to specify command-line options that can change some defaults
in the server. The JSL command-line options are described in the following table.

Table 3-3 JSL Command-line Options

Option

Description

[-a]

Enables or disablesthe security context for a Jolt connection
pool. This option should be enabled if you want to
implement authentication propagation between WebL ogic
Server and Jolt. If identity propagation is desired, then the
Jolt Service Handler (JSH) must be started with this option.
If the - a option is not set, but SecurityContext is enabled,
the JSH will not accept this request. If the SecurityContext
atribute is enabled, then the Jolt client will pass the
username of the caller to the JSH.

If the JSH, gets a message with the caller’ sidentity, it calls
i nper sonat e_user () togettheappkey for theuser. JSH
caches the appkey, so the next time the caller makes a
request, the appkey is retrieved from the cache and the
request isforwarded to the service. A cacheismaintained by
each JSH, which meansthat there will be acache maintained
for al the session pools connected to the same JSH.

Using BEA Jolt 3-15

3 Configuring the BEA Jolt System

3-16

Table 3-3 JSL Command-line Options (Continued)

Option

Description

[-c
conpr essi on_t hr eshol d]

[-d devi ce_nang]

[-H external netaddr]

[-1 init-timeout]

Using BEA Jolt

Enables application data sent between a Jolt client and a Jolt
server (JSH) to be compressed during transmission over the
network.

conpr essi on_t hr eshol d isanumber that you specify
between 0 and 2,147,483,647 bytes. Any messages that are
larger than the specified compression threshold are
compressed before transmission.

The default is no compression; that is, if no compression
thresholdis specified, BEA Jolt does not compress messages
on client or server.

The device for platforms using the Transport Layer
Interface. There is no default. Required. (Optional for
sockets)

Specifies the network address mask Jolt clients use to
connect to the application when there is network address
translation. The JSL process uses this address to listen for
clients attempting to connect at this address. If the external
address mask is 0x0002MvWMiddddddd and the JSH
network addressis0x00021111f ff f f f f f , theknown (or
externd) network addressis0x00021111dddddddd. If
the address starts with "//" network address, the typeis |P
based and the TCP/IP port number of the JSH network
address is copied into the address to form the combined
network address.

The external |P address mask must be specified in the
following form:
-H //external ip address: MMM

(Optional for JSL in BEA Tuxedo 6.4 and 6.5)

Thetime (in seconds) that a Jolt client isallowed to complete
initialization through the JSH before it istimed out by the
JSL. Default is 60 seconds. (Optional)

Jolt Background Information

Table 3-3 JSL Command-line Options (Continued)

Option

Description

[-] connection_npde]

[-m m nh]

[- M maxh]

The following connection modes from clients are allowed:

RETAINED—the network connectionisretained for thefull
duration of a session.

RECONNECT—the client establishes and brings down a
connection when anidletimeout isreached, reconnecting for
multiple requests within a session.

ANY—the server allows a client to request either a
RETAINED or RECONNECT type of connection for a
session.

Thedefaultis ANY. That is, if no option is specified, the
server allows aclient to request either a RETAINED or
RECONNECT type of connection. (Optional)

The minimum number of JSHs that are availablein
conjunction with the JSL at one time. The range of this
parameter is from O through 255. Default is 0. (Optional)

The maximum number of JSHsthat are available in
conjunction with the JSL at one time. If this option is not
specified, the parameter defaults to the MAXWSCLI ENTS
divided by the - x multiplexing factor (M PX), with the result
rounded up. If specified, the - Moption takes a value from 1
to 32,767. (Optional)

Using BEA Jolt 3-17

3 Configuring the BEA Jolt System

3-18

Table 3-3 JSL Command-line Options (Continued)

Option

Description

[-n netaddr]

[-T Cdient-tineout]

[-w JSH

Using BEA Jolt

Network address used by the BEA Jolt listener with BEA
Tuxedo 6.4 and 6.5, and WebL ogic Enterprise 4.2.

TCP/IP addresses may be specified in thefollowing formats:

"// host. nane: port_nunber"
"I #.#. #. #:port_nunber”

In the first format, the domain finds an address for

host nane by using the local name resolution facilities
(usually DNS). host nanme must be the local machine, and
the local name resol ution facilities must unambiguously
resolve hostname to the address of the local machine.

In the second example, the “#.###" isin dotted decimal
format. In dotted decimal format, each # should be anumber
from 0 to 255. This dotted decimal number representsthe IP
address of the local machine. In both of the above formats,
port _numnber istheTCP port number a whichthe domain
process listens for incoming requests. por t _nunber can
either be a number between 0 and 65535 or a name.

The time (in minutes) allowed for aclient to stay idle. If a
client does not make any requests during thistime, the JSH
disconnects the client and the session is terminated. If an
argument is not supplied, the session does not timeout.

Whenthe-j ANYor-j RECONNECT option is used,
always specify - T with an idle timeout value. If - T isnot
specified and the connection is suspended, JSH does not
automatically terminate the session. The session never
terminatesif a client abnormally ends the session.

If a parameter is not specified, the default is no timeout.
(Optional)

Thiscommand-line option indicates the Jolt Server Handler.
Default is JSH. (Optional)

Jolt Background Information

Table 3-3 JSL Command-line Options (Continued)

Option Description

[-x mpx-factor] Thisisthe number of clientsthat one JSH can service. Use
this parameter to control the degree of multiplexing within
each JSH process. If specified, this parameter takes avalue
from 1to 32767 for UNIX and Windows 2000. Default value
is10. (Optional)

[-Z 0] 56] 128] When a network link between a Jolt client and the JSH is
being established, this option allows encryption up to the
specified level. Theinitial 0 means no DH nodes, no RCA4.
The numbers 56 and 128 specify the length (in bits) of the
encryption key. The DH key exchange is needed to generate
keys. Session keysare not transmitted over the network. The
default valueis 0.

Security and Encryption

Authentication and key exchange data are transmitted between Jolt clients and the
JSL/JSH using the Diffie-Hellman key exchange. All subsequent exchanges are
encrypted using RC4 encryption. International packages use a DES key exchange and
a 128-bit key, with 40 bits encrypted and 88 bits exposed.

Programs using the 128-bit encryption cannot be exported outside the United States
without proper approval from the United States government. Customerswith intranets
extending beyond the United States cannot use this mode of encryption if any internal
clients are outside the United States.

Using BEA Jolt 3-19

3 Configuring the BEA Jolt System

Jolt Relay

The combination of the Jolt Relay (JRLY') and its associated Jolt Relay Adapter
(JRAD) istypically referred to as the Internet Relay. Jolt Relay routes messages from
aJolt clientto aJSL or JSH. This eliminates the need for the JSH and BEA Tuxedo to
run on the same machine as the Web server (which is generally considered insecure).
The Jolt Relay consists of the two components illustrated in the figure “ Jolt Internet
Relay Path” on page 3-21.

m Jolt Relay (JRLY)—the JRLY isthe Jolt Relay front-end. It is not a BEA Tuxedo
client or server and is not dependent on the BEA Tuxedo version. Itisa
stand-alone software component. It requires only minimal configuration to allow
it to work with Jolt clients.

m Jolt Relay Adapter (JRAD)—the JRAD isthe Jolt Relay back-end. It isaBEA
Tuxedo system server, but does not include any BEA Tuxedo services. It
reguires command-line arguments to allow it to work with the JSL and the BEA
Tuxedo system.

Note: TheJolt Relay istransparent to Jolt clients and Jolt servers. A Jolt server can

simultaneously connect to intranet clientsdirectly, or through the Jolt Relay to
Internet clients.

3-20 Using BEA Jolt

Jolt Relay

Figure 3-3 Jolt Internet Relay Path

Firewall

Browser =

software

‘\ BEA Tuxedo
JRLY <——p JRAD

Insecure Secure
environment || environment

Thisfigureillustrates how a browser connects to the Web server software and
downloadsthe BEA Jolt applets. The Jolt applet or client connectsto the JRLY on the
Web server machine. The JRLY forwards the Jolt messages across the firewall to the
JRAD. The JRAD selectively forwards messages to the JSL or appropriate JSH.

Jolt Relay Failover

There are two points of failovers associated with JRLY :
m Jolt Client to JRLY connection failover

m JRLY to JRAD connection failover

Using BEA Jolt 3-21

3 Configuring the BEA Jolt System

Jolt Client to JRLY Connection Failover

If one server address does not result in asuccessful session, the failover function
allowsthe Jolt Client API to connect to the next free (unconnected) JRLY specified in
the argument list of the API. To enablethisfailover in a Windows 2000 environment,
multiple Windows 2000 JRLY services can be executed. In a non-Windows 2000
environment, multiple JRLY processes are executed. Each JRLY (service or process)
hasits own configuration file. This type of failover is handled by the client AP
featuresin BEA Jolt, which alow you to specify alist of Jolt server addresses (JSL or
JRLY).

JRLY to JRAD Adapter Connection Failover

Each JRLY configuration file hasalist of JRAD addresses. When aJJRAD is
unavailable, JRLY tries to connect to the next free (unconnected) JRAD, in a
round-robin fashion. Two JRLY s cannot connect to the same JRAD. Given these facts,
you can make the connection efficient by giving different JRAD address orders. That
is, if you make one extra JRAD available on standby, thefirst JRLY that losesits
JRAD connects to the extra JRAD. This type of failover ishandled by JRLY alone.

If any of the listed JRADs are not executing when JRLY is started, the initial
connection fails. When a Jolt client triesto connect to JRLY, the JRLY again triesto
connect to the JRAD.

To accommodate the failover functionality, you have to boot multiple JRADs by
configuring them in the UBBCONFI Gfile.

Jolt Relay Process

3-22

TheJRLY (front-end relay) process can be started before or after the JRAD is started.
If the JRAD isnot available when the JRLY is started, the JRLY attempts to connect
tothe JRAD when it receives aclient request. If JRLY isstill unable to connect to the
JRAD, the client is denied access and awarning iswritten to the JRLY error log file.

Using BEA Jolt

Jolt Relay

Starting the JRLY on UNIX

Start the JRLY process by typing the command name at a system prompt.

jrly -f config file_path

If the configuration file does not exist or cannot be opened, the JRLY prints an error
message.

If the JRLY isunableto start, it writes amessage to standard error and attemptsto log
the startup failure in the error log, then exits.

JRLY Command-line Options for Windows 2000

This section describes command-line options that are available from the Windows
2000 version of JRLY. exe. Note the following:

JRLY as aWindows service is available only for Windows 2000.

When the display suffix is optional (when [di spl ay_suffix] isshown), al
operations are performed on the default JRLY Windows 2000 service instance.

For manually installed, additional JRLY services, a suffix (any string) is
required. Also, you can install the default service manually by omitting the
optional string suffix.

Each instance of JRLY Windows 2000 service uses the same binary executable
file.

A new processis started for each instance of JRLY Windows 2000 service.
The syntax for these optionsis: jrly -command.
Text specified within brackets ([]) isoptional.

All commandsin the following list of command options except - st art and
- st op require that you have write access to Windows 2000 Registry.

The -start and - st op commands require that you have Windows 2000
Service control access. These requirements are based on Windows 2000 user
restrictions.

Using BEA Jolt 3-23

3 Configuring the BEA Jolt System

3-24

The JRLY command-line options are detailed in the following table:

Table 3-4 JRLY Command-line Optionsfor Windows 2000

Option

Description

jrly -install
[di splay_suffix]

Install j r I y as aWindows 2000 service.

Example 1:
jrly -install
Inthisexample, thedefault JRLY isinstalled asaWindows

2000 Service and is displayed in the Service Control
Manager (SCM) as Jolt Relay.

Example 2:
jrly -install MASTER

Inthiscase, aninstance of JRLY isinstalled as aWindows
2000 Service and is displayed in the SCM as Jolt

Relay MASTER. Thesuffix, MASTER, doesnot have any
significance; it is only used to uniquely identify various
instances of JRLYs.

At this point, thisinstance of JRLY isnot ready to start. It
must be assigned the configuration file (see the set
command discussion) that specifies the listening TCP/IP
port, JSH connection TCP/IP port, log files, and

socket ti meout . Thisfile should not be shared between
various instances of JRLY .

Using BEA Jolt

Jolt Relay

Table 3-4 JRLY Command-line Options for Windows 2000 (Continued)

Option

Description

jrly -renove
[display_suffix] |

Removeoneor al instancesof JRLY from Windows 2000
service.

-all If [di spl ay_suf fi x] isspecified, this command
removes the specified JRLY service.
If [di spl ay_suf fi x] isnot specified, this command
removes the default JRLY from being a Windows 2000
Service.
If the-al | optionisspecified, al JRLY Windows 2000
Services are removed. Related Windows 2000 registry
entries under
HKEY_LOCAL_MACHI NE\ Syst em
Current Control Set\ Servi ces\ BEA Jol t Rel ay
and
HKEY_LOCAL_MACHI NE\ Sof t war e\
BEA Systens\ Jol t\x. x
are removed.

jriy -set Update the registry with the full path of a new

[-d display_suffix] -f
config file

configuration file.

Example 1:

jrly -set -f
c:\tux71\udataobj\jolt\jrly.con

In this example, the default JRLY Windows 2000 Service
(Jolt Relay) is assigned a configuration file called
jrly.con thatislocatedin:
c:\tuxdir\udataobj\jolt directory.

Example 2:
jrly -set -d MASTER -f
c:\tuxdir\udataobj\jolt\master.con

Here, the JRLY Windows 2000 Service instance, called
Jolt Relay_MASTER isassigned aconfigurationfilecalled
jrly_master. conthatislocatedin
c:\tuxdir\udataobj\jolt directory.

Using BEA Jolt 3-25

3 Configuring the BEA Jolt System

Table 3-4 JRLY Command-line Optionsfor Windows 2000 (Continued)

Option Description

jrly -manual Set the start/stop to manual.

[display_suffix] This command sets the specified JRLY instance to be
manually controlled, using either the command-line
options or the SCM.

jrly -auto Set the start/stop to automatic.

[display_suffix] This command sets all the operations for a specified

Windows 2000 Service to be automatically started when
the OS boots and stopped when the OS shuts down.

jrly -start Start the specified JRLY .
[di splay_suffix]

jrly -stop Stop the specified JRLY .

[di splay_suffix]

jryl -version Print the current version of JRLY binary.

jrly -help Print command-line options with brief descriptions.

3-26 Using BEA Jolt

Jolt Relay

JRLY Command-line Option for UNIX

Thereisonly one JRLY command-line option for UNIX:

Table 3-5 JRLY Command-line Option for UNIX

Option Description

jrly -f Start the JRLY process.

config_file_path Thisoption startsthe JRLY process. If the configuration file

does not exist or cannot be opened, the JRLY prints an error
message. If the JRLY cannot start, it writes amessage to
standard error, attemptsto log the startup failure in the error
log, then exits.

JRLY Configuration File

The format of the configuration fileisa TAG=VALUE format. Blank lines or lines
startingwitha“#” areignored. Thefollowing listing contains an example of theformal
specifications of the configuration file.

Listing 3-3 Specification of Configuration File

LOGDI R=<LOG_DI RECTORY_PATH>

ACCESS_LOG=<ACCESS_FI LE_NAME in LOGDI R>

ERROR_LOG=<ERROR_FI LE_NAME i n LOGDI R>

LI STEN=<I P: Port conbinati on where JRLY will accept connections>
CONNECT=<I P: Port conbi nation associated wi th JRAD>

SOCKETTI MEQUT=<Seconds for socket accept()function>

Note: SOCKETTI MEQUT istheduration (in seconds) of which therelay Windows2000
service blocks the establishment of new socket connections to allow network
activity (new connections, datato beread, closed connections). It isvalid only

Using BEA Jolt 3-27

3 Configuring the BEA Jolt System

3-28

on Windows 2000 machines. SOCKETTI MEOUT also affectsthe SCM. When the

SCM requests that the service stop, the SCM needs to wait at |least
SOCKETTI MEQUT seconds before doing so.

Thefollowing listing shows an example of the JRLY configuration file. The
CONNECT line specifies the |P address and port number of JRAD machine.

Listing 3-4 Example of JRLY Configuration File

LOGDI R=/ usr /| og/ rel ay

ACCESS LOG=access_| og

ERROR _LOG=errorl og

#jrly will listen on port 4444
LI STEN=200. 100. 10. 100: 4444
CONNECT=nmchi nel: port1l
CONNECT=nmchi ne2: port 2

SOCKETTI MEQUT=30 /] See text under listing

Theformat for directory and filenames is determined by the operating system. UNIX
systems use the forward slash (/). Windows 2000 systems use the backslash (\). If any
file specified in LOGDI R, ACCESS_LOGOr ERRCR_LOGcannot be opened for writing, the

JRLY printsan error message on st der r and exits.

The formats for host names and port numbers are shown in the following table.

Table 3-6 Host Name and Port Number Formats

Host Name/Port Number Descriptions

Host nane: Por t Host nane isastring, Por t isadecimal number

/ I Host nane: Por t Host nane isastring, Por t isadecimal number

| P: Port | Pisadotted notation | P address, Por t isadecimal
number

Using BEA Jolt

Jolt Relay Adapter

Jolt Relay Adapter

The Jolt Relay Adapter (back-end relay) isa BEA Tuxedo system server. The Jolt
Relay Adapter (JRAD) server may or may not be located on the same BEA Tuxedo
host machine in single host mode (SHM) and server group to which the JSL server is
connected.

The JRAD can be started independently of its associated JRLY . JRAD tracksits
startup and shutdown activity in the BEA Tuxedo log file.

JRAD Configuration

A single JRAD process can only be connected to asingle JRLY . A JRAD can be
configured to communicate with only one JSL and its associated JSHs. However,
multiple JRADs can be configured to communicate with one JSL. The CLOPT
parameter for the BEA Tuxedo servers must be included in the UBBCONFI Gfile. A
sample of thefileis shown in thelisting “ Sample JRAD Entry in UBBCONFIG File”
on page 3-30.

The following table contains additional information about the CLOPT parameters.

Table 3-7 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-1 net addr Port to listen for the JRLY to connect
on behalf of the client.

-C netaddr The address of the corresponding JSL
to which JRAD connects.

Using BEA Jolt 3-29

3 Configuring the BEA Jolt System

Table 3-7 JRAD CLOPT Parameter Descriptions (Continued)

CLOPT Parameter Description

-H netaddr The listening address for an external
proxy. An external proxy isone that
runs on aclient host. This proxy
handles HTTP and other protocols.
The other end of the proxy connectsto
JRLY, which connects to JSL/JSH.

In order for the proxy to work for Jolt
clients (specifically applets that
connect to JRLY), the JRAD passes
the - Hargument to an applet,
instructing it to connect to the proxy
addressinstead of the JRLY address.

Note: Unlikethe JSL - H option,
the JRAD - Hoption is not
used as a network address
translator, nor isit used asan
address mask.

The address for the JRAD CLOPT parameters can be specified in either of the
following formats:

/ I host nane: port

0x0002pppphhhhhhhh
(where pppp is the port number and hhhhhhhh is the hexadecimal |P address)

Listing 3-5 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL
port 8000 on the sanme host

JRAD SRVCRP=JSLGRP SRVI D=60
CLOPT="-A -- -1 0x000207D0C864640A —c 0x00021f 40C864640A"

3-30 Using BEA Jolt

Jolt Relay Adapter

Network Address Configurations

A Jolt Internet Relay configuration requires that several networked components work
together. Prior to configuration, review the criteriain the following table and record
the information to minimize the possibility of misconfiguration.

Table 3-8 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Location where - | : Location where the - n: Location of JSL. Must
the clients connect. listener connectsto the JRLY. match - ¢ parameter of
CONNECT: Location of -c: Location of JSL. Must ~ JRAD.

your JRAD. Must matchthe match - n parameter of JSL.

- | parameter of JRAD.

Using BEA Jolt 3-31

3 Configuring the BEA Jolt System

Jolt Repository

The Jolt Repository contains BEA Tuxedo service definitions that allow Jolt clientsto
access BEA Tuxedo services. The Jolt Repository files included with the installation
contain service definitions used internally by BEA Jolt. See“ Using the Jolt Repository
Editor” on page 4-1 for detailed instructions on how to add definitionsto the
application services.

Configuring the Jolt Repository

3-32

To configure the BEA Jolt Repository, modify the application UBBCONFI Gfile. The

UBBCONFI Gfileisan ASCII version of the BEA Tuxedo configuration file. Create a
new UBBCONFI G file for each application. See the BEA Tuxedo Command Reference
for information regarding the syntax of the entries for the file. The following listing

shows relevant portions of the UBBCONFI Gfile.

Listing 3-6 Sample UBBCONFIG File

* GROUPS

JREPGRP GRPNO=94 LM D=SI TE1

* SERVERS

JREPSVR SRVGRP=JREPGRP SRVI D=98

RESTART=Y GRACE=0 CLOPT="-A -- -W-P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVI D=97

RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"
JREPSVR SRVGRP=JREPGRP SRVI D=96

RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P

[app/jrepository"

Note: For UNIX systems, usetheslash (/) when setting the pathtothej r eposi tory
file (for example, app/ r eposi t or y). For Windows 2000 systems, use the
backslash (\) and specify the drive name (for example,
c:\app\repository).

Using BEA Jolt

Jolt Repository

Change the sections of the UBBCONFI Gfile asindicated in the following table:

Table 3-9 UBBCONFIG File

Section Parameter sto be specified

GROUPS LM D, GRPNO

SERVERS SRVGRP, SRVI D
GROUPS Section

A GROUPS entry isrequired for the group that includes the BEA Jolt Repository. The
group name parameter is a name selected by the application.

1. Specify the same identifiers given as the value of the LM D parameter in the
MACH NES section.

2. Specify the value of the GRPNO between 1 and 30,000 in the GROUPS section.

SERVERS Section

The Jolt Repository Server, JREPSVR, contains services for accessing and editing the
repository. Multiple JREPSVR instances share repository information through ashared
file. Include JREPSVRin the SERVERS section of the UBBCONFI Gfile.

1. Indicate anew server identification (for example, 98) with the SRVI D parameter.

2. Specify the - w flag for one JREPSVR to ensure that you can edit the Repository.
The Repository is read-only without this flag.

Note: You mustinstall only one writable JREPSVR (that is, only one JREPSVR
with the - Wflag). Multiple read-only JREPSVRS can be installed on the
same host.

3. Typethe- P flag to specify the path of the repository file. An error messageis
displayed in the BEA Tuxedo ULOGfile if the argument for the - P flag is not
entered.

4. Add thefile pathname of the repository file (for example, / app/ j r eposi t ory).

Using BEA Jolt 3-33

3 Configuring the BEA Jolt System

5. Boot the BEA Tuxedo system using the t ni oadcf command (for example,
tm oadcf -y ubbconfig)andtnboot command. See Administering a BEA
Tuxedo Application at Run Time for information about t M oadcf andt nboot .

Repository File

A repository file, j r eposi t ory, is available with BEA Jolt. Thisfile includes
bankapp services and the repository services that you can modify, test, and delete
using the Repository Editor.

Note: If you are upgrading from version 1.x of BEA Jolt, you must use the Bulk
L oader to regenerate the j r eposi t ory filein order to ensure compatibility
with the current version.

Start with thej r eposi t or y file provided with the install ation, even if you are not
going to test the bankapp application with BEA Jolt. Delete the bankapp packages or
services that you do not need.

The pathname of the file must match the argument of the - P option.

@ Warning: Do not modify the repository files manually or you will not be able to use
the Repository Editor. Although thej r eposi t or y file can be modified
and read with any text editor, the BEA Jolt system does not have integrity
checksto ensurethat the fileisin the proper format. Any manual changes
tothej r eposi t ory file might not be detected until run time. See“Using
the Jolt Repository Editor” on page 4-1 for additional information.

Initializing Services By Using BEA Tuxedo and the
Repository Editor

3-34

Define the BEA Tuxedo services by using BEA Tuxedo and BEA Jolt Repository
Editor in order to make the Jolt services available to the client.

1. Build the BEA Tuxedo server containing the service. See Administering a BEA
Tuxedo Application at Run Time or Programming BEA Tuxedo ATMI Applications
Using C for additiona information on the following:

e Building the BEA Tuxedo application server
e Editing the UBBCONFI Gfile

Using BEA Jolt

Jolt Repository

Updating the TUXCONFI Gfile

Administering thet nboot command

2. Accessthe BEA Jolt Repository Editor. See “Using the Jolt Repository Editor”
on page 4-1 for additional information on the following:

Adding a Service

Saving Your Work

Testing a Service

Exporting and Unexporting Services

Using BEA Jolt 3-35

3 Configuring the BEA Jolt System

Event Subscription

Jolt Event Subscription receives event notificationsfrom either BEA Tuxedo services
or other BEA Tuxedo clients:

m Unsolicited Event Notifications—a Jolt client receives these notifications as a
result of a BEA Tuxedo client or service subscribing to unsolicited events, and a
BEA Tuxedo client issuing abroadcast (using either at pbroadcast () or a
directly targeted message viaat pnoti fy() ATMI call). Unsolicited event
notifications do not need the TMUSREVT server.

m Brokered Event Notifications—a Jolt client receives these notifications through
the BEA Tuxedo Event Broker. The notifications are only received when both
Jolt clients subscribe to an event and any BEA Tuxedo client or server posts an
event using t ppost () . Brokered event notifications require the TMUSREVT
server.

Configuring for Event Subscription

Configure the BEA Tuxedo TMUSREVT server and modify the application UBBCONFI G
file. The following listing shows the relevant sections of TMUSREVT parameters in the
UBBCONFI Gfile. See Programming BEA Tuxedo ATMI Applications Using C for
information about the syntax of the entries for the file.

Listing 3-7 UBBCONFIG File

TMJSREVT SRVGRP=EVBGRP1 SRVI D=40 GRACE=3600
ENVFI LE="/ usr/ t uxedo/ bankapp/ TMUSREVT. ENV"
CLOPT="-e tnusrevt.out -o tnusrevt.out -A --
-f /usr/tuxedo/ bankapp/tnusrevt. dat"
SEQUENCE=11

In the SERVERS section of the UBBCONFI G file, modify the SRVGRP and SRvI D
parameters as needed.

3-36 Using BEA Jolt

Event Subscription

Filtering BEA Tuxedo FML or VIEW Buffers

Filtering isa process that allows you to customize a subscription. If you require
additional information about the BEA Tuxedo Event Broker, subscribing to events, or
filtering, refer to Programming BEA Tuxedo ATMI Applications Using C.

In order to filter BEA Tuxedo FML or VIEW buffers, the field definition file must be
available to BEA Tuxedo at run time.

Note: There are no special requirements for filtering STRING buffers.

Buffer Types

Table 3-10 BEA Tuxedo Buffer Types

Buffer Type Description
FML Attribute, value pair. Explicit.
VI EW C gructure. Very precise offsetting. Implicit.

STRI NG Length and offset are different values. All readable.
CARRAY Character array. BLOB of binary data. Only client
and server know - JSL doesn’t.

X_C TYPE Equivaent to VIEW.

X_COWON Equivaentto VIEW, but used for both COBOL and
C.

X_OCTET Equivalent to CARRAY.

XML Weéll-formed XML documents. Similar to

CARRAY.

FML Buffer Example

Thelisting“FIELDTBLS Variableinthe TMUSREVT.ENV File” on page 3-38 shows
an examplethat usesthe FML buffer. The FML field definition tableis made available
to BEA Tuxedo by setting the FI ELDTBLS and FLDTBLDI R variables.

Using BEA Jolt 3-37

3 Configuring the BEA Jolt System

3-38

Tofilter afield found intheny. f 1 ds file:
1. Copytheny. flds fileto/usr/ me/ bankapp directory.

2. Addny.flds tothe FI ELDTBLS variable in the TMUSREVT. ENV file as shown in
the following listing:

Listing 3-8 FIELDTBLS Variableinthe TMUSREVT.ENV File

FI ELDTBLS=Usysf | ds, bank.fl ds,credit.flds, event.flds, ny.flds
FLDTBLDI R=/ usr/t uxedo/ me/ T6. 2/ udat aobj : / usr/ me/ bankapp

If ENVFI LE="/ usr/ ne/ bankapp/ TMUSREVT. ENV' isincluded inthe definition of the
UBBCONFI Gfile (shown in the listing “UBBCONFIG File” on page 3-36), the

FI ELDTBLS and FLDTBLDI R definitions are taken from the TMUSREVT. ENV file and
not from your environment variable settings.

If you remove the ENVFI LE="/ usr / me/ bankapp/ TMUSREVT. ENV* definition, the
FI ELDTBLS and FLDTBLDI R definitions are taken from your environment variable
settings. The FI ELDTBLS and FLDTBLDI R definitions must be set to the appropriate
value prior to booting the BEA Tuxedo system.

For additional information on event subscriptions and the BEA Jolt Class Library,
refer to Chapter 5, “Using the Jolt Class Library.”.

Using BEA Jolt

BEA Tuxedo Background Information

BEA Tuxedo Background Information

The following sections provide detailed configuration information. Even if you are
familiar with BEA Tuxedo, you should refer to this section for information concerning
Jolt Service Handler (JSL) configuration.

Configuration File

The BEA Tuxedo configuration filefor your application existsin two forms, the ASCI|
file, UBBCONFI G, and a compiled version called TUXCONFI G. Once you create a
TUXCONFI G, consider your UBBCONFI G as a backup.

Y ou can make changes to the UBBCONFI Gfile with your preferred text editor. Then, at
atime when your application is not running, and when you are logged in to your
MASTER machine, you can recompile your TUXCONFI G by running t ml oadcf (1) .
System/T prompts you to make sure you really want to overwrite your existing
TUXCONFI Gfile. (If you enter the command with the - y option, the prompt is
suppressed.)

Creating the UBBCONFIG File

A binary configuration file called the TUXCONFI Gfile contains information used by

t mboot (1) to start the servers and initialize the bulletin board of aBEA Tuxedo
system in an orderly sequence. The binary TUXCONFI G file cannot be created directly.
Initially, you must create a UBBCONFI Gfile. That fileis parsed and |oaded into the
TUXCONFI Gusingt m oadcf (1) . Thent madmi n(1) usesthe configuration file or a
copy of itinitsmonitoring activity. t rshut down(1) referencesthe configuration file
for information needed to shut down the application.

Using BEA Jolt 3-39

3 Configuring the BEA Jolt System

Configuration File Format

3-40

The UBBCONFI Gfile can consist of up to nine specification sections. Lines beginning
with an asterisk (*) indicate the beginning of a specification section. Each such line
contains the name of the section immediately following the *. Allowable section
names are: RESOURCES, MACHI NES, GROUPS, NETGROUPS, NETWORK, SERVERS,
SERVI CES, | NTERFACES, and ROUTI NG.

Note: The RESOURCES (if used) and MACHI NES sections must be the first two
sections, in that order; the GROUPS section must be ahead of SERVERS,
SERVI CES, and ROUTI NG.

To configure the JSL, you must modify the UBBCONFI Gfile. For further information
about BEA Tuxedo configuration, refer to Administering a BEA Tuxedo Application at
Run Time.

Thefollowing listing shows relevant portions of the UBBCONFI Gfile.

Listing 3-9 UBBCONFIG File

* MACH NES
MACHL LM D=SI TE1
MAXWSCLI ENTS=40

* CROUPS

JSLGRP GRPNGC=95 LM D=SI TE1

* SERVERS

JSL SRVGRP=JSLGRP SRVI D=30 CLOPT= “ -- -n O0x0002PPPPNNNNNNNN - d

/dev/tcp -n2 -M4 -x10”"

The parameters shown in the following table are the only parameters that must be
designated for the Jolt Server groups and Jolt Servers. Y ou are not required to specify
any other parameters.

Change the sections of the UBBCONFI Gfile as shown in the following table.

Using BEA Jolt

BEA Tuxedo Background Information

Table 3-11 UBBCONFIG File Sections

Section Parameter sto be specified
MACHINES MAXWECLI ENTS

GROUPS GRPNO, LMD

SERVERS SRVGRP, SRVI D, CLOPT

MACHINES Section

The MACH NES section specifies the logical names for physical machines for the
configuration. It also specifies parameters specific to a given machine. The MACHI NES
section must contain an entry for each physical processor used by the application.
Entries have the form:

ADDRESS or NAME required paranmeters [optional paraneters]

where ADDRESS is the physical name of the processor, for example, the value produced
by the UNIX system unanme - n command.

LM D=string_val ue

This parameter specifiesthat the st ri ng_val ue isto be used in other sections as the
symbolic name for ADDRESS. This name cannot contain a comma, and must be 30
characters or less. This parameter is required. There must be an LM D line for every
machine used in a configuration.

MAXWSCLI ENTS=nunber

The MAXWSCLI ENTS parameter is required in the MACH NES section of the
configuration file. It specifies the number of accesser entries on this processor to be
reserved for Jolt and Workstation clients only. The value of this parameter must be
between 0 and 32,768, inclusive.

The Jolt Server and Workstation use MAXWSCLI ENTS in the same way. For example, if
200 slots are configured for MAXWSCLI ENTS, this number configures BEA Tuxedo for
the total number of remote clients used by Jolt and Workstation.

Be sure to specify MAXWSCLI ENTS in the configuration file. If it is not specified, the
default is 0.

Using BEA Jolt ~ 3-41

3 Configuring the BEA Jolt System

Note: If MAXWSCLI ENTS is not set, the JSL does not boot.

GROUPS Section

This section provides information about server groups, and must have at least one
server group definedinit. A server group entry providesalogical namefor acollection
of servers and/or services on a machine. The logical name is used as the value of the
SRVGRP parameter in the SERVERS section to identify a server as part of this group.
SRVGRP isalso used in the SERVI CES section to identify a particular instance of a
service with its occurrences in the group. Other GROUPS parameters associate this
group with aspecific resource manager instance (for example, the empl oyee database).
Lines within the GROUPS section have the form:

GROUPNAME required paraneters [optional paraneters]

where GROUPNAME specifies the logical name (string_value) of the group. The group
name must be unique within all group names in the GROUPS section and LM D values
in the MACHI NES section. The group name cannot contain an asterisk(*), comma, or
colon, and must be 30 characters or less.

A GROUPS entry is required for the group that includes the Jolt Server Listener (JSL).
Make the GROUPS entry as follows:

1. Thegroup nameisselected by the application, for example: JSLGRP and JREPGRP.

2. Specify the same identifiers given as the value of the LM D parameter in the
MACHI NES section.

3. Specify the value of the GRPNO between 1 and 30,000 in the * GROUPS section.

Note: Make sure that Resource Managers are not assigned as a default value for all
groups in the GROUPS section of your UBBCONFI Gfile. Making Resource
Managers the default value assigns a Resource Manager to the JSL and you
receive an error during t nboot . In the SERVERS section, default values for
RESTART, MAXGEN, €tc., are acceptable defaults for the JSL.

SERVERS Section

3-42

This section provides information on the initial conditions for servers started in the
system. The notion of a server as aprocessthat continually runs and waitsfor aserver
group’ s service requests to process may or may not apply to a particular remote
environment. For many environments, the operating system, or perhaps a remote

Using BEA Jolt

BEA Tuxedo Background Information

gateway, isthe sole dispatcher of services. When either of these isthe case, you need
only specify SERVI CE entry points for remote program entry points, and not SERVER
table entries. BEA Tuxedo system gateway serverswould advertise and queue remote
domain service requests. Host-specific reference pages must indicate whether or not
UBBCONFI G server table entries apply in their particular environments, and if so, the
corresponding semantics. Lines within the SERVERS section have the form:

AQUT requi red paraneters [optional paraneters]

where AQUT specifiesthefile(stri ng_val ue) to be executed by t nboot (1). t mboot
executes AOUT on the machine specified for the server group to which the server
belongs. t mboot searchesfor the AQUT file on itstarget machine, thus, AOUT must exist
in afile system on that machine. (Of course, the path to AOUT can include RFS
connections to file systems on other machines.) If arelative pathname for a server is
given, the search for AOUT is done sequentially in APPDI R, TUXDI R/ bi n, / bi n, and
thenin pat h, where <pat h> isthe value of the last PATH= line appearing in the
machine environment file, if one exists. The values for APPDI R and TUXDI R are taken
from the appropriate machine entry in the TUXCONFI Gfile.

Clients connect to BEA Jolt applications through the Jolt Server Listener (JSL).
Services are accessed through the Jolt Server Handler (JSH). The JSL supports
multiple clients and acts as asingle point of contact for all the clientsto connect to the
application at the network address that is specified onthe JSL command line. The JSL
scheduleswork for handler processes. A handler process acts asa substitute for clients
on remote workstations within the administrative domain of the application. The
handler uses a multiplexing scheme to support multiple clients on one port
concurrently.

The network address specified for the JSL designates a TCP/IP address for both the
JSL and any JSH processes associ ated with that JSL . The port number identified by the
network address specifies the port number on which the JSL accepts new client
connections. Each JSH associated with the JSL uses consecutive port numbers at the
same TCP/IP address. For example, if theinitial JSL port number is8000 and there are
amaximum of three JSH processes, the JSH processes use ports 8001, 8002, and 8003.

Note: Misconfiguration of the subsequent JSL resultsin a port number collision.

Parameters Usable with JSL
In addition to the parameters specified in the previous sections, the following

parameters can be used with the JSL, although you need to understand how doing so
would affect your application.

Using BEA Jolt 3-43

3 Configuring the BEA Jolt System

SVRGRP=stri ng_val ue

This parameter specifies the group name for the group in which the server isto run.
string_val ue must be the logical hame associated with a server group in the

* GROUPS section, and must be 30 characters or less. This association with an entry in
the * GROUPS section means that AOUT is executed on the machine with the LM D
specified for the server group. This association al so specifiesthe GRPNOfor the server
group and parameters to pass when the associated resource manager is opened. All
server entries must have a server group parameter specified.

SRVI D=nunber

This parameter specifies an identifier, an integer between 1 and 30,00, inclusive, that
identifies this server withinitsgroup. This parameter isrequired on every server entry,
even if the group has only one server. If multiple occurrences of servers are desired,
do not use consecutive numbers for SRvI Ds; leave enough room for the system to
assign additional SRvI Ds up to MAX.

Optional Parameters

Boot Parameters

3-44

The optional parameters of the SERVERS section are divided into boot parameters and
run-time parameters.

Boot parametersare used by t mboot whenit executesaserver. Oncerunning, aserver
readsits entry from the configuration file to determineits run-time options. The unique
server identification number is used to find the right entry. The following are boot
parameters.

CLOPT=string_val ue

The CLOPT parameter specifies astring of command-line optionsto be passed to AOUT
when booted.The ser vopt s(5) page in the File Formats, Data Descriptions, MIBs,
and System Processes Reference lists the valid parameters.

Some of the available options apply primarily to servers under development. For
example, the -r option directs the server to write arecord to its standard error file
each time a service reguest begins or ends.

Other command-line options can be used to direct the server’s standard out (st dout)
and standard error (st der r) to specific files, or to start the server so that it initially
advertises alimited set of its available services.

Using BEA Jolt

BEA Tuxedo Background Information

The default value for the CLOPT parameter is- A, which meansthat the server is started
with all available services advertised.

The maximum length of the CLOPT parameter value is 256 characters; it must be
enclosed in double quotes.

SEQUENCE=nunber

This parameter specifies when to shut down or boot relative to other servers. If
SEQUENCE is not specified, servers are booted in the order found in the SERVERS
section (and shut down in the reverse order). If some servers have sequence numbers
specified and others do not, all servers with sequence numbers are booted first from
low to high sequence number, then all servers without sequence numbers are booted in
the order in which they appear in the configuration file. Sequence numbers range
between 1 and 9999. If the same sequence number is assigned to more than one server,
t mboot may boot those serversin parallel.

M N=nunmber

TheM N parameter specifies the minimum number of occurrences of the server to boot
by t nboot . If an RQADDR s specified, and M Nis greater than 1, the servers form a
multiple servers single queue (M SSQ) set. Theidentifiersfor the serversare SRvI D up
to (SRvI D+ (MAX -1)). All occurrences of the server have the same sequence numbers
aswell asany other server parameters. The valuerange for M Nis0to 1000. If M Nis
not specified, the default valueis 1.

MAX=nunmber

The MAX parameter sets the maximum number of occurrences of the server to be
booted. Initially, t nboot bootsM Nservers, and additional servers can be booted up to
MAX occurrences using the - i option of t mboot to specify the associated server
identifier. The value range for MAX is 0 to 1000. If no value is specified for MAX, the
default is the same asfor M N, or 1.

m tnboot startsM Noccurrences unless you explicitly call for more with the - i
SRVI D option of t nboot .

m |If RQADDRs specified and M Nis greater than one, an MSSQ set isformed
m If M Nisnot specified, the default is 1.
m |If MAXisnot specified, the defaultisM N.

m MAXisespecially important for conversational servers because they are spawned
automatically as needed.

Using BEA Jolt ~ 3-45

3 Configuring the BEA Jolt System

Run-time Parameters

3-46

The server uses run-time parameters after it is started by t mboot . Asindicated
previously, t nboot uses the valuesfound in the TUXDI R, APPDI R and ENVFI LE
parametersfor the MACHI NES section when booting the server. It also setsthe PATH for
the server to:

“APPDI R TUXDI R/ bi n:/ bi n: path”

where pat h isthe value of the last PATH= line appearing in the ENVFI LE file. The
following parameters are run-time parameters.

ENVFI LE=stri ng_val ue

Y ou can use the ENVFI LE parameter for a server to add values to the environment
established by t mboot during initialization of the server. Y ou can optionally set
variables specified in the file named in the SERVERS ENVFI LE parameter after you set
those in the MACHI NES ENVFI LE used by t nboot . These files cannot be used to
override TUXDI R, APDI R, TUXCONFI G, or TUSOFFSET. The best policy isto include
intheserver's ENVFI LE only those variable assignmentsknown to be needed to ensure
proper running of the application.

Ontheserver, the ENVFI LEfileisprocessed after the server starts. Therefore, it cannot
be used to set the pathnames used to find executable or dynamically loaded files
needed to execute the server. If you need to perform these tasks, use the machine
ENVFI LE instead.

Within ENVFI LE only lines of the form
VARI ABLE =string

are allowed. VARI ABLE must start with an underscore or aphabetic character and can
contain only underscore or alphanumeric characters. If the server is associated with a
server group that can be migrated to a second machine, the ENVFI LE must be in the
same location on both machines.

CONV=(Y | N}

CONV specifieswhether the server isaconversational server. CONV takesaY valueif
aconversationa server is being defined. Connections can only be made to
conversational servers, and rpc requests (viat pacal | (3c) ortpcal | (3c)) canonly
be made to non-conversational servers. For a request/response server, you can either
set CONV=N, which is the default, or omit the parameter.

RQADDR=st ri ng_val ue

Using BEA Jolt

BEA Tuxedo Background Information

RQADDR assigns a symbolic name to the request queue of this server. MSSQ sets are
established by using the same symbolic name for more than one server (or by
specifying M N greater than 1). All members of an MSSQ set must offer an identical
set of services and must be in the same server group.

If RQADDR is not specified, the system assigns a unique key to serve as the queue
address for this server. However, t madm n commandsthat take a queue address as an
argument are easier to use if queues are given symbolic names.

RQPERMENnunber

Use the RQPERMparameter to assign UNIX-style permissions to the request queue for
this server. The value of number can be between 0001 and 0777, inclusive. If no
parameter is specified, the permissions value of the bulletin board, as specified by
PERMin the RESOURCES section, is used. If no valueis specified there, the default of
0666 is used (the default exposes your application to possible use by any login on the
system, so consider this carefully).

REPLYQ={ Y | N}

The REPLYQ parameter specifies whether areply queue, separate from the request
gueue, should be established for AQUT. If Nis specified, the reply queueis created on
the same LM D asthe AQUT. If only one server is using the request queue, replies can
be retrieved from the request queue without causing problems. However, if the server
isamember of an MSSQ set and contains services programmed to receive reply
messages, REPLYQ should be set to Y so that an individual reply queueis created for
thisserver. If setto N, thereply is sent to the request queue shared by all servers for
the M SSQ set, and you cannot ensure that the reply will be picked up by the server that
iswaiting for it.

It should be standard practice for al member servers of an MSSQ set to specify
REPLYQ-=Y if replies are anticipated. Serversin an MSSQ set are required to have
identical offerings of services, so it isreasonable to expect that if one server in the set
expects replies, any server in the set can a so expect replies.

RPPERM=numnber

Use the RPPERM parameter to assigh permissions to the reply queue. nunber is
specified in the usual UNIX fashion (for example, 0600); the value can be between
0001 and 0777, inclusive. If RPPERMis not specified, the default value 0666 is used.
This parameter isuseful only when REPLYQ=Y. If requests and replies are read from the
same queue, only RQPERMIi s heeded; RPPERMI s ignored.

Using BEA Jolt 3-47

3 Configuring the BEA Jolt System

RESTART={ Y | N}

The RESTART parameter takes a'Y or Nto indicate whether AQUT isrestartable. The
default is N. If the server isin agroup that can be migrated, RESTART must be Y. A
server started with a SI GTERMsignal cannot be restarted; it must be rebooted.

An application’ s policy on restarting servers might vary according to whether the
server isin production or not. During the test phase of application development it is
reasonable to expect that a server might fail repeatedly, but server failures should be
rare events once the application has been put into production. Y ou might want to set
more stringent parameters for restarting servers once the application is in production.

Parameters Associated with RESTART

3-48

RCVD=stri ng_val ue

If AQUT isrestartable, this parameter specifies the command that should be executed
when AQUT abnormally terminates. The string, up to the first space or tab, must be the
name of an executable UNIX file, either afull pathname or relative to APPDI R. (Do
not attempt to set a shell variable at the beginning of the command.) Optionally, the
command name can be followed by command-line arguments. Two additional
arguments are appended to the command line: the GRPNO and SRvI D associated with
the restarting server. st ri ng_val ue isexecuted in parallel with restarting the server.

Y ou can use the RCVD parameter to specify acommand to be executed in parallel with
the restarting of the server. The command must be an executable UNIX system file
residing in adirectory on the server's PATH. An example is a command that sends a
customized message to the userlog to mark the restarting of the server.

MAXGEN=nunber

If AQUT isrestartable, thisparameter specifiesthat it can berestarted at most (nunber
- 1) times within the period specified by GRACE. The value must be greater than 0 and
lessthan 256. If not specified, the default is 1 (which means that the server can be
started once, but not restarted). If the server isto berestartable, MAXGEN must be equal
to or greater than 2. RESTART must be Y or MAXGEN is ignored.

GRACE=nunber

If RESTART is Y, the GRACE parameter specifies the time period (in seconds) during
which this server can be restarted, (MAXGEN - 1) times. The number assigned must be
equal to or greater than 0, and lessthan 2,147,483,648 seconds (or alittle morethan 68

Using BEA Jolt

BEA Tuxedo Background Information

years). If GRACE is not specified the default is 86,400 seconds (24 hours). Setting
GRACE to 0 removes all limitations; the server can be restarted an unlimited number of
times.

Entering Parameters

Y ou can use BEA Tuxedo parameters, including RESTART, RQADDR, and REPLYQ,
withtheJSL . (See Administering a BEA Tuxedo Application at Run Timefor additional
information regarding run-time parameters.) Enter the following parameters:

1. Toidentify the SRVGRP parameter, type the previously defined group name value
from the GROUPS section.

2. To indicate the SRVI D, type a number between 1 and 30,000 that identifies the
server within its group.

3. Verify that the syntax for the CLOPT parameter is asfollows:
CLOPT= “-- -n OxO002PPPPNNNNNNNN -d /dev/tcp -n2 -M4 -x10"

Note: The CLOPT parameters may vary. Refer to the table “JSL Command-line
Options” on page 3-15 for pertinent command-line information.

4. If necessary, type the optional parameters:

e Type the SEQUENCE parameter to determine the order that the servers are
booted.

e Specify Y to permit release of the RESTART parameter.

e Type O to permit an infinite number of server restarts using the GRACE
parameter.

Using BEA Jolt 3-49

3 Configuring the BEA Jolt System

Sample Applications in BEA Jolt Online
Resources

Y ou can access sample code that can be modified for use with BEA Jolt through the
BEA Jolt product Web page at:

http://ww. bea. com products/jolt/index. htm

These samples demonstrate and utilize BEA Jolt features and functionality.
Other Web sites with Java-related information include:

m Javasoft Home page (htt p: / / www. j ava. sun. com')

m Newsgroups in the comp.lang.java hierarchy. These groups contain lists of past
articles and communications regarding Java, and are a va uable source of
archival material.

3-50 Using BEA Jolt

CHAPTER

A4

Using the Jolt
Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete BEA Tuxedo
service definitions from the Repository based on the information available from the

BEA Tuxedo configuration file. The Jolt Repository Editor accepts BEA Tuxedo
service definitions, including the names of the packages, services, and parameters.

Thistopic includes the following sections:

Introduction to the Repository Editor

Getting Started

Main Components of the Repository Editor
Instructions for Viewing a Parameter

Grouping Services Using the Package Organizer
Modifying Packages, Services, and Parameters
Making a Service Available to the Jolt Client
Testing a Service

Repository Editor Troubleshooting

Using BEA Jolt

4-1

4 us ng the Jolt Repository Editor

Introduction to the Repository Editor

The Jolt Repository isused internally by Jolt to translate Java parameters to a BEA
Tuxedo type buffer. The Repository Editor is available as a downl oadabl e Java appl et.
When a BEA Tuxedo serviceis added to the repository, it must be exported to the Jolt
server to ensure that the client requests can be made from a Jolt client.

Repository Editor Window

Repository Editor windows contain entry fields, scrollable displays, command buttons,
status, and radio buttons. The figure “ Sample Repository Editor Window” on page4-3
illustrates the parts of the window. The table “ Repository Editor Window Parts’” on
page 4-4 contains details about each part.

4-2 Using BEA Jolt

Introduction to the Repository Editor

Figure4-1 Sample Repository Editor Window

EjApplet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: BARNKAPP

1 Service Mame WITHDRAWAL 3 Parareters
2 Input Buffer Type FmiL -
Input YWiew Marme FORMPAM
SAMOLIMNT
COutput Buffer Type FmL - SEALAMCE
Cutput Yiew BMame STATLIN

ExportStatus 5 (™ Unexport @ Export

Service level actions Farameter level actions

Save Service | Testl Elackl 4 M. | Edit... | Delete |

Using BEA Jolt 4-3

4 us ng the Jolt Repository Editor

Repository Editor Window Description

Thefollowing table detail s the parts of the Repository Editor window shown in the
previous figure.

Table 4-1 Repository Editor Window Parts

Part Function

1 Text boxes Enter text, numbers, or alphanumeric characters such as
“Service Name,” “Input View Name,” server names, or port
numbers. In the previous figure, “ Service Name.”

2 Drop-down arrow View lists that extend beyond the display using an arrow
button. In the previousfigure, “Input Buffer Type” or “Output
Buffer Type.”

3 Display list Select fromalist of predefined items such asthe Parameterslist

or select from alist of items that have been defined.

4 Command buttons Activate an operation such as displaying the Packages window,
Serviceswindow, or Package Organizer. Inthe previousfigure,
command buttons include: “ Save Service,” “Test,” “Back,”
“New,” “Edit,” “Delete.”

5 Radio buttons Select one of anumber of options. Only oneof theradio buttons
can be activated at atime. For example, Export Status can only
be “Unexport” or “Export.”

4-4 Using BEA Jolt

Getting Started

Getting Started

Before starting the Repository Editor, make sure that you install the minimally
required components, the Jolt Server and the Jolt Client.

To use the Repository Editor:

1

2.

Start the Repository Editor.

You can start the Repository Editor from either the JavaSoft appl et vi ewer or
from your Web browser. Both of these methods are detailed in the following
sections.

Log on to the Repository Editor.

Note: For information about exiting the Repository Editor after you enter

information, refer to “ Exiting the Repository Editor” on page 4-9.

Starting the Repository Editor Using the Java Applet

Viewer

1
2.

Set the CLASSPATH to include the Jolt class directory.

If loading the applet from alocal disk, type the following at the URL location:
appl etvi ewer <full-pat hname>/ RE. ht n

If loading the applet from the Web server, type the following at the URL
location:

appl etvi ewer http://<ww. server>/<URL pat h>/ RE. ht
Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor
Logon Window” on page 4-8.

Using BEA Joit 45

4 us ng the Jolt Repository Editor

Starting the Repository Editor from Your Web Browser

Use one of the following procedures to start the Repository Editor from your Web
Browser.

To Start from a Local File

1. Set the CLASSPATH to include the Jolt class directory.
2. Typethefollowing:

file:<full-pathname>/ RE. ht m
3. Press Enter.

The editor isdisplayed as shown in “BEA Jolt Repository Editor Logon
Window” on page 4-8.

To Start from a Web Server

1. Ensure that the CLASSPATH does not include the Jolt class directory.
2. Unset the CLASSPATH.
3. Typethefollowing:

http://<ww. server>/<URL pat h>/ RE. ht n

Note: Before opening the file, modify the appl et codebase parameter in
RE. ht i to match your Jolt Java classes directory.

4. Press Enter.

The editor is displayed as shown in the “BEA Jolt Repository Editor Logon
Window” on page 4-8.

4-6 Using BEA Jolt

Getting Started

Logging On to the Repository Editor

Note: If you are using the JIDK 1.3 appletviewer to start the Jolt Repository Editor,
you will not be able to connect to aremote machine, only to alocal host JSL.
Thisisdueto asecurity restriction imposed in the JDK 1.3 appletviewer. Also,
for JDK 1.2, you must usethe- nosecur i ty option in the appletviewer if you
are connecting to a remote machine JSL.

1. Complete the appropriate stepsto start the Repository Editor.

The “BEA Jolt Repository Editor Logon Window” on page 4-8 must be
displayed before you continue with step 2. Refer to thisfigure as you perform
the following procedure.

2. Typethe name of the Server machine designated as the “ access point” to the BEA
Tuxedo application and press Tab.

3. Type the Port Number and press Enter.
The system validates the server and port information.

Note: Unlessyou are logging on through the Jolt Relay, the same port number is
used to configure the Jolt Listener. Refer to your UBBCONFI G file for
additional information.

4. Typethe BEA Tuxedo Application Password and press Enter.
Depending upon the authentication level, complete steps 5 and 6 as required.
5. Typethe BEA Tuxedo User Name and press Tab.

6. Typethe BEA Tuxedo User Password and press Enter.
The Packages and Services command buttons are enabled.

Note: SeetheJol t Sessi onCl ass for additional information.

Using BEA Jolt ~ 4-7

4 us ng the Jolt Repository Editor

Figure4-2 BEA Jolt Repository Editor L ogon Window

EiApplet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server: skywalker
Part Murnber: 55557
User Role: joltadmin

Application Password:

User Mame:

Uszer Password:

EErkanes | SENICES | | S

Thefollowing table, “Repository Editor Logon Window Description,” describes
Repository Editor logon window elements.

4-8 Using BEA Jolt

Getting Started

Repository Editor Logon Window Description

Table 4-2 Repository Editor Logon Window Description

Option

Description

Server

Server name.

Port Number

Port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Name and Password fields are activated. Activation
is based on the authentication level of the BEA Tuxedo

application.
User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level isSUSER_AUTH or higher.
Application BEA Tuxedo administrative password text entry.
Password
User Name BEA Tuxedo user identification text entry. Thefirst character must

be an alpha character.

User Password

BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)
Services Accesses the Services window. (Enabled after the logon.)
L og Off Terminates the connection with the server.

Exiting the Repository Editor

Exit the Repository Editor when you finish adding, editing, testing, or deleting
packages, services, and parameters. Prior to exit, the window isdisplayed as shownin
the figure “BEA Jolt Repository Editor Logon Window Prior to Exit” on page 4-10.

Using BEA Jolt 4-9

4 us ng the Jolt Repository Editor

Figure4-3 BEA Jolt Repository Editor Logon Window Prior to Exit

EiApplet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server: skywalker
Part Murnber: 55557
User Role: joltadmin

Application Password:

User Mame:

Uszer Password:

Fackanes | Services | Log Off

Notethat only the Packages, Services, and Log Off command buttons are enabled. All
of the text entry fields are disabled.

Follow the steps below to exit the Repository Editor:
1. Click Back to return to the Repository Editor L ogon window.

2. Click Log Off to terminate the connection with the server.

The Repository Editor Logon window continues to be displayed with disabled
fields.

3. Select Close from your browser menu to close the window.

4-10 Using BEA Jolt

Main Components of the Repository Editor

Main Components of the Repository Editor

The Repository Editor allows you to add, modify, or delete any of the following
components:

m Packages
m Services

You can also test and group services.

m Parameters

Repository Editor Flow

After you log on to the Repository Editor, two buttons are enabled, Packages and
Services.

The following figure illustrates the Repository Editor flow to help you determine
which of these two buttons to select.

Using BEA Jolt 4-11

4 us ng the Jolt Repository Editor

Figure4-4 Repository Editor Flow Diagram

ﬁ Packages
FPackage Vigw

; Package
Organizer & Serv?ges

|

Logon to the Repository

: Mowve Add
Editor. Sarvice Package Export
Determine
which Delete
tasks to Pack@e
complete,

\ i Services

| I
Add

: : Delete
rdll'}asr:rr:;gr Service or Test Service
Parameter

Service or
Parameter

Select Packagesto open the Packages window and perform the following functions:
m View packages and services

e Make aservice available using Export or Unexport

e Select apackageto delete
m Access the Package Organizer to:

¢ Move services from one package to another

e Create anew package

4-12 Using BEA Jolt

Main Components of the Repository Editor

Refer to “What |s a Package?’ on page 4-13 for complete details.

Select Services to open the Services window and perform the following functions:
m Create, add, edit, or delete service definitions

m Create, add, edit, or delete parameters

m Test the services and parameters

Refer to “What Is a Service?’ on page 4-16 for complete details.

What Is a Package?

Packages provide a convenient method for grouping services for Jolt administration.
(A service consists of parameters, such as pin number, account number, payment, rate,
term, age, or Socia Security number.)

Y ou use the Packages window to perform the following:
m View packages and services

m Export or unexport services

m Delete packages

m Access Package Organizer to:
e Move services

e Create anew package

Click the Packages button in the Jolt Repository Editor logon window to display the
available packages. When you select a specific package from the display lit, its
services within that package are displayed.

The following figure contai ns a sampl e Packages window. The BANKAPP package is
selected, and the services within the BANKAPP package is displayed.

Using BEA Jolt 4-13

4 us ng the Jolt Repository Editor

Figure4-5 Sample Packages Window

EiApplet Viewer: bea jolt. admin RE class
Applet

Packages

Fackages Services

{=f N[DEFOSIT

BULKPKG INGILIRY

SIMPSERY TRAMSFER
WITHDRAWAL

Fackage Qrganizer | Export | Lnexpart | [eete | Back |

Packages Window Description

Table 4-3 Packages Window Description

Option Description
Packages Listsavailable packages.
Services Listsavailable services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Use this window to move the services
among the packages or add a new package.

4-14 Using BEA Jolt

Main Components of the Repository Editor

Table 4-3 Packages Window Description (Continued)

Option Description

Export Makes the most current services available to the client. Thisoption
is enabled when a package is selected.

Unexport Sel ect this option before testing an existing service. Thisoptionis
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within the
package).

Back Returns the user to the previous window.

Instructions for Viewing a Package

1. Click Packages in the Repository Editor Logon window.
The Packages window opens and displays the list of available packages.

In the figure “ Sample Packages Window” on page 4-14, BANKAPP, BULKPKG and
SI MPSERV are the available packages.

2. Refer to “Instructions for Viewing a Parameter” on page 4-19 for additional
information.

Using BEA Jolt 4-15

4 us ng the Jolt Repository Editor

What Is a Service?

A serviceisadefinition of an available BEA Tuxedo service. Servicesinclude
parameters such as pin number, account number, payment, and rate. Adding or editing
a Jolt service does not affect an existing BEA Tuxedo service.

Y ou use the Services Window to add, edit, or delete services.

Thefollowing figure is an example of a Services window with the BANKAPP package
selected, and the display list of services and parameters available for this package
(parameters are detailed |ater).

Figure4-6 Sample Services Window

EiApplet Viewer: bea jolt. admin RE class

Applet
Services

Fackages

BAMNKAPP

BULKPKG

SIMPSERY

Senvices Parameters
ACCOUNT_ID
F ORI MAM
SHALAMCE
STATLIM

MNew. | Edit. | Delste | Back|

4-16 Using BEA Jolt

Main Components of the Repository Editor

Services Window Description

Table 4-4 Services Window Description

Option Description

Packages Lists the available packages.

Services Lists the services in the selected package, which you can edit or
delete. Selecting aservice displaysthe parameters within the service.

Parameters Displaysthe parameters of the selected service.

New Displaysthe Edit Services window for adding a new service.

Edit Displaysthe Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has been
selected.

Back Returns the user to the previous window.

Instructions for Viewing a Service

1. Select Servicesfrom the Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select apackage.
Thelist of available services for the selected package is displayed.

In the figure “ Sample Services Window” on page 4-16, BANKAPP is the selected
package. DEPCSI T, | NQUI RY, TRANSFER, and W THDRAWAL are the available
services for BANKAPP.

3. Refer to “Instructions for Viewing a Parameter” on page 4-19 for additional
information.

Using BEA Jolt 4-17

4 us ng the Jolt Repository Editor

Working with Parameters

A service contains parameters, which may be apin number, account number, payment,
rate, term, age, or Social Security number. The following figure shows a Services
window displaying a selected service and its parameters.

Note: Adding or editing a parameter does not modify or change an existing BEA
Tuxedo Service.

Figure4-7 Sample Services Window with Parameters List

EiApplet Viewer: bea jolt. admin RE class

Applet
Services

Fackages

BAMNKAPP

BULKPKG

SIMPSERY

Senvices Parameters
ACCOUNT_ID
F ORI MAM
SHALAMCE
STATLIM

MNew. | Edit. | Delste | Back|

4-18 Using BEA Jolt

Setting Up Packages and Services

Instructions for Viewing a Parameter

Setting

1. Select Servicesfrom the Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select apackage.
Thelist of available services for the selected package is displayed.
In the preceding figure, BANKAPP is the sel ected package.

3. Select aservice.
Thelist of available parameters for the selected serviceis displayed.
In the preceding figure, | NQUI RY is the selected service.

4. View the parametersfor a selected service in the Parameters display list.

In the preceding figure, ACCOUNT_I D, FORMNAM SBALANCE, and STATLI Nare
the available parameters for the | NQUI RY service.

5. Refer to “Adding a Parameter” on page 4-27 for additional information.

Up Packages and Services

This section includes the necessary steps for setting up a package and its services:
m Saving your work

m Adding apackage

m Adding aservice

m Adding a parameter

Using BEA Jolt ~ 4-19

4 us ng the Jolt Repository Editor

Saving Your Work

Asyou create and edit services and parameters, it isimportant to regularly save
information to avoid losing input. Clicking Save Servicein the Edit Services window
can prevent the need to re-enter information in the event of a system failure.

Caution: When you add or edit the parameters of a service, you must select Add
before choosing Back from the Edit Parameters window and returning to
the Edit Services window.

If adding a new service or modifying an existing service in the Edit Serviceswindow,
be sure to select Save Service before choosing Back. If you select Back before you
save the modified information, awarning is briefly displayed on the statusline at the
bottom of the window.

Adding a Package

4-20

When you need to add a new group of services, you create a new package before
adding the services. The* Package Organizer Window” on page4-21 and thefollowing
procedure show how to add a new package, BALANCE, to the Packages listing.

Using BEA Jolt

Setting Up Packages and Services

Figure4-8 Package Organizer Window

EiApplet Viewer: bea jolt.admin RE class

Applet
Package Organizer
Fackages Fackages
P BANKAPP
BULKPKG BULKPKG
SIMPSERY BALAMCE
SIMPSERY
Services Services
DEPOQSIT e IPASSFEML
IMQLUIRY o 1SImPYIEY
TRAMSFER TOUPPER
WITHD RAWAL
Mlewr Package I Back |

Using BEA Jolt 4-21

4 us ng the Jolt Repository Editor

Instructions for Adding a Package

1. Click Packagesin the Repository Editor Logon window to display the Packages
window.

2. Select Package Organizer to display the Package Organizer window, similar to
that shown in the figure “ Package Organizer Window” on page 4-21.

For adescription of contents of this window, see “Package Organizer Window
Description” on page 4-33.

3. Click the New Package button in the Package Organizer window.
Thetext field is activated.

4. Type the name of the new package (not to exceed 32 characters) and press Enter.

The new name (shown in the preceding figure as BALANCE) is displayed on the
Packages list in random order.

Adding a Service

Services are definitions of available BEA Tuxedo services and can only be a part of a
Jolt package.Y ou must create the service as a part of a new or existing package.

The Repository Editor accepts the new service name exactly asit istyped (that is, all
uppercase | etters, abbreviations, misspellings are accepted). Service names must not
exceed 30 characters.

Thefollowing figure shows the Edit New Services window for adding a service.

4-22 Using BEA Jolt

Setting Up Packages and Services

Figure4-9 Edit ServicesWindow: Add a New Serviceto a Package

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Services
Adding new service to packzge BANKAPP

Service Mame Farameters
Input Buffer Type FmL j

Input View Mame |

Output Buffer Type FhiL -

Output Yiew Mame

Export Status % Unexport € Export
Service level actions Parameter level actions
Save Service | NEST | Back | M. | Edit:. | [Welete |

Using BEA Jolt 4-23

4 us ng the Jolt Repository Editor

Adding a Service Window Description

Thefollowing table describesthe optionsfor adding servicesto apackagein apackage

window.
Option Description
Edit Services Service Name Name of the new service to be added to the Jolt Repository.
Selections
Input Buffer VIEW— C-structureand 16-bit integer field. Contains subtypesthat
Type/Output have a particular structure. X_C_TYPE and X_COMMON are
Buffer Type equivalent. X_COMMON is used for COBOL and C.
VIEW32—similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.
CARRAY —array of uninterrupted binary datathat is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivaent.
XML—well-formed XML document. Similar to CARRAY.
FML—type in which each field carries its own definition.
FML32—similar to FML except the ID field and length field are 32
bits long.
STRING—character array terminated by a null character that is
encoded or decoded.
Input View Unique name assigned to the Input View Buffer and Output View
Name/Output Buffer types. Thesefieldsareonly enabled if VIEW or VIEW32 are
View Name the selected buffer types.
Export Status Unexport Radio button with current status of the service. EXPORT or
Export UNEXPORT statusis checked. UNEXPORT is the default.
Service Level Save Service Saves the newly created service in the Repository.
Actions
Test Tests the service. This command button is disabled until a new
serviceis created or edits to an existing service are saved.
Back Returns you to the previous window.
Par ameter Parameters List of service parameters to edit or delete.

4-24 Using BEA Jolt

Setting Up Packages and Services

Parameter Level
Actions

New Adds new parameters to the service.

Edit Used to edit an existing parameter. Thiscommand button isdisabled
until anew parameter is selected.

Delete Deletes a parameter. This option is disabled until a parameter is
selected.

Instructions for Adding a Service

1

Select Services from the Repository Editor Logon window.

The Services window opens, similar to the figure shown in “ Sample Services
Window” on page 4-16.

Select the package to which you will add the service.

If you later decide that another package should contain the new service, use the
Package Organizer to move the service to a different package. (See “ Grouping
Services Using the Package Organizer” on page 4-31 for additional information.)

From the Services window, select New to display the Edit Services window, as
shown in “Edit Services Window: Add a New Service to a Package” on page
4-23.

Select the Service Nametext field to activate it.
Type the name of the new service you want to add.

Select the input buffer type.

Although the same buffer type selected for the Input Buffer is automatically
selected for the Output Buffer, you can select a different Output Buffer type.

e |f VI Ewor VI EWB2 is selected, you must type the Input View Name and
Output View Name in the associated text fields.

e |f another buffer type is selected, the Input View Name and Output View
Name text fields are disabled.

e |f CARRAY or STRI NGis selected, refer to “ Selecting CARRAY or STRING
as a Service Buffer Type” on page 4-26 for additional instructions.

Select Save Service to save the newly created service.

Using BEA Jolt ~ 4-25

4 us ng the Jolt Repository Editor

Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRI NGis selected as the buffer type for a new service, only CARRAY or
STRI NG can be added as the data type for the accompanying parameters. See aso
“Adding a Parameter” on page 4-27 and “ Selecting CARRAY or STRING asa
Parameter Data Type” on page 4-29. For additional information, refer to Chapter 5,
“Using the Jolt Class Library.”.

Thefollowing figure shows an example Edit Services window with STRI NG sel ected
asthe buffer type for the service SI MPAPP.

Figure4-10 Edit ServicesWindow: Select STRING Buffer Type

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Services
Adding new service to package: SIMPSERY

Service Mame I SIMPAFPP Parameters

Input Buffer Type

Input View Mame

Output Buffer Type STRIMG VI

Output Yiew Mame

Export Status % Unexport € Export
Service level actions Parameter level actions
Save Service | NEST | Back | M. | Edit:. | [Welete |

4-26 Using BEA Jolt

Setting Up Packages and Services

Adding a Parameter

Clicking New under the label Par ameter level actionsin the Edit Serviceswindow is
displayed in the Edit Parameters window. Review the featuresin the following figure.
Use this window to enter the parameter and screen information for a service.

Figure4-11 Edit Parameters Window: Add a Parameter

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Parameters

Adding new parameter to package: SIMPSERY service: SIMPAPP
Farameter Information Screen Information

Field Mame Screen Label I
Diata Type string vl

Direction input (0 output (8 both
Qcourrencels)
Clearl Ehame | Adid | Back | === o) L g =R

Using BEA Jolt ~ 4-27

4 us ng the Jolt Repository Editor

Adding a Parameter Window Description

Option

Description

Field Name

Adds the field name (for example, asset, inventory).

Data Type

Lists data type choices:

byte—8-hit

short—16-bit

integer—32-hit

float—32-hit

double—64-hit

string—null-terminated character array
carray—variable length 8-bit character array

Direction

Radio button choices for direction of information:
Input—information is directed from the client to the server.
Output—information is directed from the server to the client.

Both—information isdirected from the client to the server, and from
the server to the client.

Occurrence(s)

Number of times that an identical field name can be used. If O, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent or
retrieved by BEA Tuxedo.

Screen
Infor mation

This button is disabled when the window is launched.

Clear

Clearsthe fields of the window.

Change

I's disabled while new parameters are added.

Add

Adds new parameters to the service. The parameters are saved when
the service is saved.

Back

Returns the user to the previous window.

4-28 Using BEA Jolt

Setting Up Packages and Services

Instructions for Adding a Parameter

@

1. Select Field Name to activate the field, and type the field name.

Note: If the buffer typeis FML or VIEW, the field name must match the
corresponding parameter field namein FML or VIEW.

2. Select the data type.
3. Specify adirection by selecting the input, output, or both radio buttons.

4. Select the Occurrences text field to activate it, and then enter the number of
occurrences.

5. Select Add to append the information. Add does not save the parameter.

6. Inthe Edit Services window, click Save Service to save the parameter as a part of
the service.

Warning: If youdo not click Save Servicebeforeyou click Back, the parameters
are not saved as part of the service.

7. Click Back to return to the Edit Services window.

Selecting CARRAY or STRING as a Parameter Data Type

If CARRAY or STRING isthe selected buffer typefor anew service, only CARRAY
or string can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use the
parameter name “ CARRAY” for aCARRAY buffer type, and the parameter name
“STRING” for aSTRING buffer type.

See also “Instructions for Adding a Service” on page 4-25 and “Selecting CARRAY
or STRING as a Service Buffer Type” on page 4-26. For additional information, refer
to Chapter 5, “Using the Jolt Class Library.”.

The following figure is an example of the Edit Parameters window with string as the
selected data type for the parameter. The Data Type defaults to string and does not
allow you to modify that particular data type. The Field Name can be any name.

Using BEA Jolt 4-29

Using the Jolt Repository Editor

4-30

Figure4-12 Edit ParametersWindow: string Data Type

EiApplet Viewer: bea jolt. admin RE class

Applet

Edit Parameters

Adding new parameter to package: SIMPSERY service: SIMPAPP

Parameter Information Screen Information

Field Name INPUT Screenlabel | |
Diata Type m

Direction

input (0 output (8 both

Qcourrencels) I 1

Clear | EHERHE |§Add | Back | = == | R R L

adding INPUT parameter

Using BEA Jolt

Grouping Services Using the Package Organizer

Grouping Services Using the Package
Organizer

The Package Organizer moves services between packages. Y ou may want to group
rel ated servicesin apackage (for example, WITHDRAWAL servicesthat are exported
only at a certain time of the day can be grouped together in a package).

Use the Package Organizer arrow buttons to move a service from one package to
another. These buttons are useful if you have several servicesto move between
packages. The packages and services display listings to help track a service within a
particular package.

The following figure is an example of a Package Organizer window with a service
selected for transfer to another package.

Using BEA Jolt 4-31

4 us ng the Jolt Repository Editor

Figure4-13 Package Organizer Window

EiApplet Viewer: bea jolt. admin RE class

Applet

Package Organizer

FPackanes

Fackages

BAMEAPP
BULKPKG BULKPKG
SIMFSERY SIMPSERY
Services Setvices

o

.Y

Mew Fackage I Back |

Added Mew Package: BANIK

4-32 Using BEA Jolt

Grouping Services Using the Package Organizer

Package Organizer Window Description

Option

Description

Packages (left display list)

Lists packages containing services in the selected package.

Packages (right display list)

Lists packages available as destinations for the selected
service.

Services (left display list)

Lists available services for the selected package.

Services (right display list)

Listsavailable services of the highlighted package that you
moved.

Left arrow M oves services (one service at atime) to the package
highlighted on the | eft.

Right arrow M oves services (one service at atime) to the package
highlighted on the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.

Instructions for Grouping Services with the Package Organizer

1
2.

In the Packages window, click Package Organizer.

In the Package Organizer window, select the package containing the servicesto

be moved from the Packages |eft display window.

Select the service to be moved from the Services | eft display window.

In the previous figure, | NQUI RY is the selected service in the BANKAPP package.

Select the package to receive the service from the Packages right display window.

The previous figure shows the sel ected service, | NQUI RY, and the selected
package, BANK, to which the I NQUI RY service will be moved.

Using BEA Jolt 4-33

4 us ng the Jolt Repository Editor

Figure4-14 Example of a Moved Service

EiApplet Viewer: bea jolt. admin RE class
Applet
Package Organizer
Fackages FPackanes
BAM K
BAMEAPP
BULKPKG BULKPKG
SIMFSERY SIMPSERY
Services Setvices
DEPOQSIT = fINGQUIRY
TRAMNSFER -
W THDRAWAL
Mew Fackage I Back |
Added Mew Package: BANIK

5. To move the service between the packages, select the left arrow () or right
arrow (-).

These keys are activated only when both packages (left and right are displayed)
and a service are selected. The keys are only active in the direction of the
package where the service is to be moved. The previous figure, “ Example of a

Moved Service,” showsthat the | NQUI RY service has been moved to the BANK
package on theright.

Note: Y ou cannot select the same package in both the left and right display lists.

4-34 Using BEA Jolt

Modifying Packages, Services, and Parameters

Modifying Packages, Services, and
Parameters

Y ou can make the following changes to packages, services, and parameters:
m Edit aservice
m Edit a parameter

m Delete a parameter, service, or package

Editing a Service

Y ou can edit an existing service name or serviceinformation, or access the window to
add new parametersto an existing service. For a description of the Edit Services
window, see “Adding a Service Window Description” on page 4-24. The following
figure is an example of the Edit Services window.

Using BEA Jolt 4-35

4 us ng the Jolt Repository Editor

Figure4-15 Edit Services Window

EiApplet Viewer: bea jolt. admin RE class

Applet

Edit Services
Editing existing service in package: BARNKAPP

Service Mame TRAMSFER Parameters
Input Buffer Type FmL - ACCOUNT_ID
Input Yiew Mame FORMMAM
SAMOLINT
Output Buffer Type FhiL j SEALAMCE
Cutput Yiew Name STATLIM

Export Status (7 Unexport (& Export

Service level actions Parameter level actions

Save Service | Testl Elackl M. | Edit:. | [Welete |

4-36 Using BEA Jolt

Modifying Packages, Services, and Parameters

Instructions for Editing a Service

Follow these steps to edit aservice:

1. From the Services window, select the package containing the service that requires
editing.
The services available for the selected package are displayed.

2. Select the service to edit.
The parameters available for the selected service are displayed.

3. Click Edit to display the Edit Services window, as shown in the previous figure.

4. Type or select the new information, and click Save Service.

Editing a Parameter

All parameter elements can be changed, including the name of the parameter.

@ Warning: If you create a new parameter using an existing name, the system
overwrites the existing parameter.

The following figure is an example of the Edit Parameters window.

Using BEA Jolt 4-37

4 us ng the Jolt Repository Editor

Figure4-16 Edit ParametersWindow

EiApplet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Changing existing parameter in package: BANKAPP service: TRANSFER

Farameter Information Screen Information

Field Mame ACCOUNT_ID Screen Lahel I
Diata Type integer vl

Direction @ jnput 0 output ¢ both
Qcourrencels) I 2
Clearl Change | Felid | Back | === o) L g =R

Instructions for Editing a Parameter

Follow these steps to change a parameter:

1

4.

In the Services window (see “ Sample Services Window with Parameters List”),
select the package and service that contain the parameter you want to change.

Click Edit to display the Edit Services window.

Select the Parameter you want to edit from the Parameters display list and click
Edit.

The Edit Parameters Window is displayed as shown in the previous figure.

Type the new information and click Change.

4-38 Using BEA Jolt

Modifying Packages, Services, and Parameters

5. Click Back to return to the previous window.

Deleting Parameters, Services, and Packages

This section describe how to delete a package. Before deleting a package, all the
services must be deleted from the package. The Delete option is not enabled until all
components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or packageis scheduled to
be deleted or has been moved to another location before selecting Delete.

Deleting a Parameter
Determine which parameters to delete and follow these steps:
1. Inthelogon window, click Services to display the Services window.

2. Inthe Services window, select the package and service that contain the parameter
you want to delete.

3. Click Edit to display the Edit Services window.
4. Select the parameter you want to delete from the Parameters display list.

5. Under Parameter Level Actions, click Delete.

Deleting a Service
Determine which services to delete and follow these steps:

Note: Make certain that all parameters within this service are deleted before
selecting this option.

1. Select the package containing the service you want to delete.

2. Select the service you want to delete.

Delete is enabled.

3. Click Delete. The serviceis deleted.

Using BEA Jolt 4-39

4 us ng the Jolt Repository Editor

Deleting a Package

Determine which packages to delete and follow these instructions. Make sure all
services contained in this package are deleted or moved to another package before
selecting this option.

1. Inthe Repository Editor Logon window, click Packages to display the Packages
window.

2. Select apackage.

3. Click Delete.
The package is deleted.

4-40 Using BEA Jolt

Making a Service Available to the Jolt Client

Making a Service Available to the Jolt Client

To make a service available to a Jolt client, you export it. All services in a package
must be exported or unexported as a group. A service is made available by using the
Export and Unexport radio buttons.

Thistopic includes the following sections:
m Exporting and Unexporting Services

m Reviewing the Exported and Unexported Status

Exporting and Unexporting Services

Determine which services are being made available or unavail able to the Jolt client.
Services are exported to ensure that the Jolt client can access the most current service
definitions from the Jolt server.

Thefollowing figure shows the Packages window, where you can export and unexport
services.

Using BEA Jolt 4-41

4 us ng the Jolt Repository Editor

Figure4-17 Packages Window: Export and Unexport Buttons

-ﬂ.||-||||-ll Wiewar, boa. @l sdmin RE clazs

Packages
Fackages sSences
BANKAPP DEFOST
SIMPEERY INQLIRY
TR&NSFER

eI THDER AL

Packags Organizer | Expont | unepaon | | Back |

Follow these steps to export or unexport a service:

1. From the Repository Editor Logon window, select Packages to display the
Packages window.

2. Select apackage.
The Export and Unexport buttons are enabled.
3. To make the services in the selected package avail able, click Export.
To make the services in the selected package unavailable, select Unexport.

Caution: The system does not display a confirmation message indicating that the
service is exported or unexported. See “Reviewing the Exported and
Unexported Status’ for additional information.

4-42 Using BEA Jolt

Making a Service Available to the Jolt Client

Reviewing the Exported and Unexported Status

When a service is exported or unexported, you can review its status from the Edit
Services window.

The following figure displays the Export radio button as active, for Export Status;
therefore, the current status for the service TRANSFER is exported.

Figure4-18 Export Status

EiApplet Viewer: bea jolt.admin RE class

Applet

Edit Services
Editing existing serice in packade: BAMNKARPP

Serice Mame TRAMNSFER Parameters
Input Buffer Type FhL - ACCOLUNT_ID
Input Wiew Mame FORMMNAM

SAMOLUIMT
Output Buffer Type FriL - SEALAMCE
Cutput Wiew Narme STATLIM
Export Status

(" Unexport (@ Export

Service level actions Farameter level actions

Save Service | Testl Elackl Mew. | Edit:.. | [ElEte |

To review the current exported or unexported status of a service, follow these steps:

1. Fromthe Repository Editor L ogon window, select Servicesto display the Services
window shown in the “ Sample Services Window” on page 4-16.

2. Select a package from the Package display list.

Using BEA Jolt 4-43

4 us ng the Jolt Repository Editor

The Services display list of available services for the selected packageis
displayed.

3. Select the service you want to review.
4. Click Edit.

The Edit Services window is displayed as shown in the figure “ Edit Services
Window” on page 4-36.

One of theradio buttons (Unexport or Export) next to the Export Status label
will be active, indicating the current status of the service.

4-44 Using BEA Jolt

Testing a Service

Testing a Service

Test a service and its parameters before you make them available to Jolt clients. Y ou
can test currently available services without making changes to the services and
parameters.

Note: The Jolt Repository Editor allowsyou to test an existing BEA Tuxedo service
with Jolt, without writing aline of Java code.

An exported or unexported service can be tested; if you need to change a service and
its parameters, unexport the service prior to editing.

This topic includes the following sections:
m Jolt Repository Editor Service Test Window

m Testing a Service

Using BEA Jolt 4-45

4 us ng the Jolt Repository Editor

Jolt Repository Editor Service Test Window

Use the Run button to test the service to ensure that the parameter information is
accurate. A service can only be tested when the corresponding BEA Tuxedo server is
running for the service being tested.

Although the Test button in the Edit Serviceswindow is enabled when parameters are
not added to the service, the Service Test window displays unused in the parameter
fields, and they are disabled. Refer to “ Sample Service Test Window” on page 4-47 for
an example of unused parameter fields.

Note: The Service Test window displays up to 20 items of any multiple-occurrence
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

Thefollowing figure is an example of a Service Test window with both writable and
read-only text fields.

4-46 Using BEA Jolt

Testing a Service

Figure4-19 Sample Service Test Window

EiApplet Viewer: bea jolt. admin RE class

Applet
Service: INQUIRY 1-4 of 4 Params
ACCOUNT_IDI integer[32]
FOHMNAMI String (Readnh
SEIALANCEI String (ReadCnlky)
STATLINI String (Readnh

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Lnused

Unusedl Unused

RUN | ctear | ‘| Prev] | Back]

Using BEA Jolt 4-47

4 us ng the Jolt Repository Editor

Service Test Window Description

4-48

The following table describes the Service Test window options.

Note: You can enter atwo-digit hexadecimal character (0-9, af, A-F) for each byte
inthe CARRAY datafield. For example, the hexadecimal value for 1234

decimal is 0422.
Option Description
Service Displays the name of the tested service (read-only).

Parametersdisplayed Tracks the parameters displayed in the window (read-only).

Parameter text fields The parameter information text entry field. These fields are
writable or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clearsthe text entry field.

Next Lists additional parameter fields, if applicable.
Prev Lists previous parameter fields, if applicable.
Back Returns to the Edit Services window.

Using BEA Jolt

Testing a Service

Testing a Service

Y ou can test a service without making changesto the service or its parameters. Y ou
can aso test a service after editing the service or its parameters.

Test Service Process Flow
The following figure shows a typical Repository Editor service flow test.

Figure4-20 Test Service Flow

Select Test <

G

Using BEA Jolt 4-49

4 us ng the Jolt Repository Editor

Instructions for Testing a Service

Follow these stepsto test a service. For troubleshooting information, see the first two
entries in the Repository Editor Troubleshooting table.

1

o g ~c w DN

Select Services from the Repository Editor Logon window.
The Services window is displayed.

Select the package and the service to test.

Click Edit to access the Edit Services window.

Click Test to access the Service Test window.

Enter data in the Service test window parameter text fields.
Click RUN.

The status line displays the outcome as follows:

e |f thetest passed: “Run Conpl eted K’

o |If thetest failed: “Cal | Fail ed”

See “Repository Editor Troubleshooting” on page 4-51 for additional
Repository Editor troubleshooting information.

If Edlits are Required After Testing

4-50

Follow these stepsiif editing is required to pass the test:

© N o g0 > w N PR

Return to the Repository Editor Logon window and click Packages.
Select the package with the services to be retested.

Click Unexport.

Click Back to return to the Repository Editor L ogon window.

Click Servicesto display the Services window.

Select the package and the service that requires editing and click Edit.
In the Edit Services window, edit the service.

Save the service, click Test, and repeat steps 5 and 6 of the “Instructions for
Testing a Service” section.

Using BEA Jolt

Repository Editor Troubleshooting

Repository Editor Troubleshooting

Consult the following table if you encounter problems while using the Repository

Editor.

Table 4-5 Repository Editor Troubleshooting

If...

Then...

A parameter isincorrect

Edit the service.

The Jolt server is down

Check the server. The BEA Tuxedo service is down. Y ou do not
need to edit the service.

You receive any error

Make sure the browser you are running is Java-enabled:

For Netscape browsers, make sure that Enable Java and
Enable JavaScript are checked under

Edit - Preferences— Advanced. Then select

Communicator — Tools- Java Console. If the Java Console
does not exist on the menu, the browser probably does not
support Java.

For Internet Explorer, make sure the version is 3.0 (or later).
If running Netscape Navigator, check the Java Console for
error messages.

If running appl et vi ewer , check the system console (or the
window where you started the appl et vi ewer).

Y ou cannot connect to
the Jolt Server (after
entering Server and Port
Number)

Make sure that:

Y our Server nameis correct (and accessible from your
machine). Check that the port number is the correct port. A
JSL or JRLY must be configured to listen on that port.

The Jolt Server is up and running. If any authentication is
enabled, check that you are entering the correct usernames
and passwords.

If the applet was loaded through HT TP, make sure that the
Web server, JRLY, and the Jolt server are on the same
machine. (To do this, enter the server nameinto the
Repository Editor that refersto the same machine name asthe
one used in the URL to download the applet).

Using BEA Jolt 4-51

Using the Jolt Repository Editor

4-52

Table 4-5 Repository Editor Troubleshooting (Continued)

If...

Then...

Y ou cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
Repository Editor applet through HT TP, make sure that:

The browser is Java-enabled.
The Web server is running and accessible.
TheRE. ht M fileisavailable to the Web server.

TheRE. ht Ml file contains the correct <codebase>
parameter. Codebase identifies where the Jolt classfiles are
located.

If running the editor in abrowser (or appl et vi ewer) and
loading the appl et from disk, make sure that:

The browser is Java-enabled.
TheRE. ht M file existsand isreadable.
TheRE. ht M fileis Java-enabled.

TheRE. ht m file contains the correct <codebase>
parameter (thisiswherethe Jolt classfilesareinstalled onthe
local disk).

CLASSPATH is set and points to the Jolt class directory.

Y ou cannot display
Packages or Services
even though you are sure
they exist

Make sure that the Jolt Repository Server isrunning
(JREPSVR).

Make sure that the JREPSVR can access the repository file.

M ake surethat the configuration of JREPSV R: verify CLOPT
parametersand verify thatj r ep. f 16 (FML definitionfile) is
installed and accessible (follow installation documentation).

Y ou cannot save changes
in the Repository Editor

Using BEA Jolt

Check permissions on the repository file. The file must be
writable by the user who starts JREPSVR.

Repository Editor Troubleshooting

Table 4-5 Repository Editor Troubleshooting (Continued)

If...

Then...

Y ou cannot test services

Check that the service is available.
Verify the service definition matches the service.

If BEA Tuxedo authentication isenabled, check that you have
the required permissions to execute the service.

Check if the application file (FML or VIEW) is specified
correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications FML field tables or VIEW
files must be specified in the FIELDTBLS and VIEWFILES
environment variables in the ENVFILE. If these files are not
specified, the JSH cannot process data conversion and you
receive the message “ ServiceException: TPEJOLT data
conversion failed.”

Check the ULOG filefor any additional diagnostic messages.

Using BEA Jolt 4-53

4 us ng the Jolt Repository Editor

4-54 Using BEA Jolt

CHAPTER

5

Using the Jolt Class
Library

The BEA Jolt Class Library provides developers with a set of object-oriented Java
language classes for accessing BEA Tuxedo services. The classlibrary contains the
classfilesthat implement the Jolt API. Using these classes, you can extend
applicationsfor Internet and intranet transaction processing. Y ou can usethe Jolt Class
Library to customize access to BEA Tuxedo services from Java applets.

Thistopic includes the following sections:

m ClassLibrary Functionality Overview

m Jolt Object Relationships

m Jolt Class Library Walkthrough

m Using BEA Tuxedo Buffer Types with Jolt
m Multithreaded Applications

m Event Subscription and Notifications

m Clearing Parameter Values

m Reusing Objects

m Deploying and Localizing Jolt Applets

To usetheinformation in thefollowing sections, you need to be generally familiar with
the Java programming language and object-oriented programming concepts. All the
programming examples are in Java code.

UsingBEA Jolt 51

5 wus ng the Jolt Class Library

Note: All program examples are only fragments used to illustrate Jolt capabilities.
They are not intended to be compiled and run as provided. These program
exampl es require additional code to be fully executable.

Class Library Functionality Overview

The Jolt Class Library givesthe BEA Tuxedo application developer the tools to
develop client-side applications or appletsthat run asindependent Java applications or
in a Java-enabled Web browser. The bea. j ol t package containsthe Jolt Class
Library. To use the Jolt Class Library, the client program or applet must import this
package. For an example of how to import thebea. j ol t package, refer to the listing
“Jolt Transfer of Funds Example (SimXfer.java)” on page 5-11.

Java Applications Versus Java Applets

5-2

Java programsthat run in abrowser are called applets. Applets are small, easily
downloaded parts of an overall application that perform specific functions. Many
popular browsers impose limitations on the capabilities of Java appletsin order to
provide a high degree of security for the users of the browser. Applets have the
following restrictions:

m An applet ordinarily cannot read or write files on any host system.

m An applet cannot start any program on the host (client) that is executing the
applet.

m An applet can make a network connection only to the host from which the appl et
originated; it cannot make other network connections, not even to the client
machine.

Programming workarounds exist for most restrictions on Java applets. Check your
browser’s Web site (for example, www.netscape.com or www.microsoft.com) or
developer documentation for specific information about the applet capabilities that the
browser supports or restricts. Y ou can also use Jolt Relay to work around some of the
network connection restrictions.

Using BEA Jolt

Class Library Functionality Overview

A Javaapplication, however, isnot run in the context of abrowser and isnot restricted
in the same ways. For example, a Java application can start another application on the
host machine where it is executing. While an applet relies on the windowing
environment of a browser or appletviewer for much of its user interface, a Java
application requires that you create your own user interface. An applet is designed to
be small and highly portable. A Java application, on the other hand, can operate much
like any other non-Java program. The security restrictions for appletsimposed by
various browsers and the scope of the two program types are the most important
differences between a Java application and a Java applet.

Jolt Class Library Features

The Jolt Class Library hasthe following characteristics:
m Featuresfully thread-safe classes.

m Encapsulates typical transaction functions such as logon, synchronous calling,
transaction begin, commit, rollback, and logoffs as Java objects.

m Contains methods that allow you to set idle timeouts for continuous and
intermittent client network connections.

m Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and BEA Tuxedo errors as
exceptions. The Jolt Class Library Reference contains the Jolt classes and lists the
errors or exceptions thrown for each class. The BEA Jolt API Reference contains the
Error and Exception Class Reference.

Using BEA Jolt 5-3

5 wus ng the Jolt Class Library

Jolt Client/Server Relationship

BEA Jolt worksin adistributed client/server environment and connects Java clients to
BEA Tuxedo-based applications.

Thefollowing figure illustrates the client/server relationship between a Jolt program
and the Jolt Server.

Figure5-1 Jolt Client/Server Relationship

Client Jolt Server
Application Protocol
GUI Application =& - BEA Tux_edo
Application
. Jolt Transaction Protocol ATMI
Jolt Class Librar
Y - P Protocol Translator
Connection Jolt Network Protocol Connection
Manager - - M anager
TCP/IP

Asillustrated in the figure, the Jolt Server acts as a proxy for a native BEA Tuxedo
client, implementing functionality available through the native BEA Tuxedo client.
The BEA Jolt Server accepts requests from BEA Jolt clients and maps those requests
into BEA Tuxedo serviceregueststhroughthe BEA Tuxedo ATMI interface. Requests
and associated parameters are packaged into a message buffer and delivered over the
network to the BEA Jolt Server. The BEA Jolt Connection Manager handles all
communication between the BEA Jolt Server and the BEA Jolt applet using the BEA
Jolt Transaction Protocol. The BEA Jolt Server unpacks the data from the message,
performs any necessary data conversions, such as numeric format conversions or
character set conversions, and makes the appropriate service request to BEA Tuxedo
as specified by the message.

Once a service request enters the BEA Tuxedo system, it is executed in exactly the
same manner as any other BEA Tuxedo request. The results are returned through the
ATMI interface to the BEA Jolt Server, which packages the results and any error

5-4 Using BEA Jolt

Class Library Functionality Overview

information into a message that is sent to the BEA Jolt client applet. The BEA Jolt
client then maps the contents of the messageinto the various BEA Jolt client interface

objects, completing the request.

Ontheclient side, the user program contai nsthe client application code. The Jolt Class
Library packages a JoltSession and JoltTransaction, which in turn handle service

requests.

The following table describes the client-side requests and Jolt Server-side actionsin a

simple example program.

Table5-1 Jolt Client/Server Interaction

Jolt Client

1 attr=new Jolt SessionAttributes();

attr.setString(attr. APPADDRESS,
“// myhost: 8000");

2 session=new Jol t Session(attr, usernane,
user Rol e, userPassword, appPassword);

3 withdrawal =new Jol t Renot eSer vi ce(
servnanme, session);

4 withdrawal . addStri ng(“account nunber”,
“123");

wi t hdr awal . addFl oat (“anount”, (fl oat)
100. 00) ;

5 trans=new Jol t Transaction(tine-out,
sessi on);

6 withdrawal.call(trans);
7 trans.commt() or trans.rollback();
8 bal ance=wi t hdrawal . get Fl oat Def (“ bal ance, ”

(float) 0.0);

9 session. endSession();

Jolt Server

Binds the client to the BEA
Tuxedo environment

Logsthe client onto BEA
Tuxedo

Looks up the service
attributes in the Repository

Populates variables in the
client (no Jolt Server
activity)

Begins a new Tuxedo

transaction

Executes the BEA Tuxedo
service

Completes or rolls back
transaction

Retrieves the results (no Jolt
Server activity)

Logsthe client off of BEA
Tuxedo

UsingBEA Joit 55

5 wus ng the Jolt Class Library

5-6

The following tasks summarize the interaction shown in the previous table, “ Jolt

Client/Server Interaction.”

1

2
3
4.
5
Each of these activities is handled through the use of the Jolt Class Library classes.

These classes include methods for setting and clearing data and for handling remote
service actions. “ Jolt Object Relationships’ on page 5-7 describes the Jolt Class

Bind the client to the BEA Tuxedo environment using the
Jol t Sessi onAt t ri but es class.

. Establish a session.

. Setvariables.

Perform the necessary transaction processing.

. Log the client off of the BEA Tuxedo system.

Library classesin more detail.

Using BEA Jolt

Jolt Object Relationships

Jolt Object Relationships

Thefollowing figureillustrates the relationship between the instantiated objects of the
Jolt Class Library classes.

Figure5-2 Jolt Object Relationships

JoltRemoteService contains-a JoltUserEvent
uses-a
cal I (transacti on) JoltSession contains-a
JoltTransaction contains-a uses-a*
uses-a

I JoltReply
JoltSessionAttributes

contai ns-a

JoltMessage

Asobjects, the Jolt classes interact in various relationships with each other. In the
previous figure, the relationships are divided into three basic categories:

m Contains-arelationship—at the class level an object can contain other objects.
For example, a JoltTransaction stores (or contains) a JoltSession object.

m |sarelationship—the is-arelationship usually occurs at the class instance or
sub-object level and denotes that the object is an instance of a particular object.

m Uses-arelationship—an object can use another object without containing it. For
example, a JoltSession can use the JoltSessionAttributes object to obtain the host
and port information.

UsingBEA Joit 57

5 wus ng the Jolt Class Library

Jolt Class Library Walkthrough

Use Jolt classes to perform the basic functions of transaction processing: logon/logoff;
synchronous service calling; transaction begin, commit, and rollback. The following
sections describe how Jolt classes are used to perform these functions.

m Logon and Logoff
m Synchronous Service Calling
m Transaction Begin, Commit, and Rollback

Y ou can aso use the Jolt class library to devel op multithreaded applications, define
Tuxedo buffer types, and subscribe to events and unsolicited messages. These
functions are discussed in later sections.

Logon and Logoff

The client application must log on to the BEA Tuxedo environment prior to initiating
any transaction activity. The Jolt Class Library provides the JoltSessionAttributes
class and JoltSession class to establish a connection to a BEA Tuxedo system.

The JoltSessionAttributesclasswill contain the connection propertiesof Jolt and BEA
Tuxedo systems as well as various other properties of the two systems. To establish a
connection, the client application must create an instance of the JoltSession class. This
instance is the JoltSession object. After the devel oper instantiates a Jolt Session and
BEA Tuxedo object, the Jolt and BEA Tuxedo logon capability isenabled. Calling the
endSession method ends the session and alows the user to log off.

Synchronous Service Calling

5-8

Transaction activities such as requests and replies are handled through a
JoltRemoteService object (an instance of the JoltRemoteService class). Each
JoltRemoteService object refers to an exported BEA Tuxedo request/reply service.
Y ou must provide a service name and a JoltSession object to instantiate a
JoltRemoteService object before it can be used.

Using BEA Jolt

Jolt Class Library Walkthrough

To use a JoltRemoteService object:
1. Settheinput parameters.

2. Invokethe service.

3. Examine the output parameters.

For efficiency, Jolt does not make a copy of any input parameter object; only the
references to the object (for example, string and byte array) are saved. Because
JoltRemoteService object is a stateful object, itsinput parameters and the request
attributes are retained throughout the life of the object. Y ou can use thecl ear ()
method to reset the attributes and input parameters before reusing the
JoltRemoteService object.

Because Jolt is designed for a multithreaded environment, you can invoke multiple
JoltRemoteService objects simultaneously by using the Javamultithreading capability.
Refer to “Multithreaded Applications’ on page 5-42 for additional information.

Transaction Begin, Commit, and Rollback

In Jolt, atransaction is represented as an object of the class JoltTransaction. The
transaction begins when the transaction object isinstantiated. The transaction object is
created with atimeout and JoltSession object parameter:

trans = new Jol tTransaction(ti meout, session)

Jolt uses an explicit transaction model for any services involved in atransaction. The
transaction service invocation requires a JoltTransaction object as a parameter. Jolt

also requires that the service and the transaction belong to the same session. Jolt does
not allow you to use services and transactions that are not bound to the same session.

The sample code in thelisting “ Jolt Transfer of Funds Example (SimXfer.java)” on
page 5-11 describes how to use the Jolt Class Library and includes the use of the
JoltSessionAttributes, JoltSession, JoltRemoteService, and JoltTransaction classes.

The same sample combinestwo user-defined BEA Tuxedo services (WI THDRAWAL
and DEPOSIT) to perform asimulated TRANSFER transaction. If the
WITHDRAWAL operation fails, arollback is performed. Otherwise, a DEPOSIT is
performed and a commit completes the transaction.

Using BEA Jolt 5-9

5 wus ng the Jolt Class Library

5-10

The following programming steps describe the transaction process shown in the
sample code listing “ Jolt Transfer of Funds Example (SimXfer.java)” on page 5-11:

1. Set the connection attributes like host narme and por t nunber inthe
JoltSessionAttribute object.

Refer to thislinein the following code listing:

sattr = new JoltSessionAttributes();

2. Thesattr. checkAut henti cati onLevel () alowsthe application to determine
the level of security required to log on to the server.

Refer to this linein the following code listing:

switch (sattr.checkAuthenticationLevel ())
3. Thelogon is accomplished by instantiating a JoltSession object.

Refer to these lines in the following code listing:

session = new Jolt Session (sattr, userNane, userRole,
user Passwor d, appPassword);

This example does not explicitly catch Sessi onExcepti on errors.

4. All JoltRemoteService calls require a service to be specified and the session key
returned from Jol t Sessi on() .

Refer to these lines in the following code listing:
wi t hdrawal = new Jol t Renot eServi ce(“W THDRAWAL”, session);
deposit = new Jol t Renot eServi ce(“ DEPCSI T”, session);

These cdlls bind the service definition of both the WITHDRAWAL and
DEPOSIT services, which are stored in the Jolt Repository, to the withdrawal
and deposit objects, respectively. The services WITHDRAWAL and DEPOSIT
must be defined in the Jolt Repository; otherwise a ServiceException is thrown.
This example does not explicitly catch ServiceException errors.

5. Once the service definitions are returned, the application-specific fields such as
account number ACCOUNT _ID and withdrawal amount SAMOUNT are
automatically populated.

Refer to these lines in the following code listing:

wi t hdr awal . addl nt (“ ACCOUNT_I| D', 100000);
wi t hdrawal . addStri ng(“ SAMOUNT”, “100.00");

Using BEA Jolt

Jolt Class Library Walkthrough

The add* () methods can throw I | | egal AccessError or NoSuchFi el dErr or
exceptions.

6. The JoltTransaction call allows atimeout to be specified if the transaction does
not complete within the specified time.

Refer to thislinein the following code listing:

trans = new Jol t Transaction(5, session);

7. Once the withdrawal service definition is automatically populated, the
withdrawal serviceisinvoked by calling thewi t hdr awal . cal | (trans)
method.

Refer to thislinein the following code listing:
wi t hdrawal . cal | (trans);

8. A failed WITHDRAWAL can berolled back.
Refer to thislinein the following code listing:
trans.roll back();

9. Otherwise, once the DEPOSIT is performed, all the transactions are committed.
Refer to theselines in the following code listing:

deposit.call (trans);

trans.commt();

The following listing shows an example of a simple application for the transfer of
funds using the Jolt classes.

Listing5-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1999 BEA Systens, Inc. Al Rights Reserved */
import bea.jolt.*;
public class SinXfer
{
public static void main (String[] args)
{
Jol t Sessi on sessi on;
Jol t Sessi onAttri butes sattr;
Jol t Renot eService wi t hdrawal ;
Jol t Renot eServi ce deposit;
Jol t Transaction trans;
String user Nanme=nul | ;

Using BEA Jolt 5-11

5 wus ng the Jolt Class Library

String userPassword=nul | ;
String appPasswor d=nul | ;
String userRol e="nyapp”;

sattr = new Jol t SessionAttributes();
sattr.setString(sattr. APPADDRESS, “// bl uefish:8501");

switch (sattr.checkAut henticationLevel ())

case Jol t Sessi onAttri butes. NOAUTH:
System out. println(“NOAUTH\ n");

br eak;

case Jol t Sessi onAttri but es. APPASSWORD:
appPassword = “appPassword”;
br eak;

case Jol t Sessi onAttri but es. USRPASSWORD:

user Name = “mynane”;

user Password = “nysecret”;
appPassword = “appPassword”;
br eak;

}
sattr.setlnt(sattr. | DLETI MEOUT, 300);

session = new Jol t Session(sattr, userNane, userRol e,

user Passwor d, appPassword);

// Simulate a transfer

wi t hdrawal = new Jol t Renot eServi ce(“W THDRAWAL”, sessi on);
deposit = new Jol t Renot eServi ce(“ DEPOSI T", session);

wi t hdr awal . addl nt (“ACCOUNT_I D', 100000);
wi t hdrawal . addStri ng(“ SAMOUNT”, “100.00");

/1 Begin the transaction w a 5 sec tineout
trans = new Jol t Transacti on(5, session);

try
{

}
catch (ApplicationException e)

wi t hdrawal . cal | (trans);

e.printStackTrace();
/1 This service uses the STATLIN field to report errors
/1 back to the client application.
Systemerr.println(w thdrawal .getStringDef(“STATLIN', " NO
STATLIN"));
Systemexit(1l);
}

String wbal = withdrawal.get StringDef(“SBALANCE", “$-1.0");

5-12 Using BEA Jolt

Jolt Class Library Walkthrough

/1 renove |l eading “$" before converting string to float
float w = Fl oat. val ueOf (wbal . substring(1)).floatVal ue();
if (w< 0.0)
{

Systemerr.println(“Insufficient funds”);

trans.roll back();

Systemexit(1);

}
el se /1 now attenpt to deposit/transfer the funds
{
deposit. addl nt (“ACCOUNT_I D', 100001);
deposit.addStri ng(“ SAMOUNT”, “100.00");
deposit.call (trans);
String dbal = deposit.getStringDef(“SBALANCE", “-1.0");
trans.commt();
System out . println(“Successful wthdrawal”);
Systemout.println(“New bal ance is: “ + wbal);
Systemout. printl n(“Successful deposit”);
System out . println(“New bal ance is: “ + dbal);
}

sessi on. endSessi on();
System exit(0);
} /1 end main

} /1 end SinXfer

Using BEA Jolt 5-13

5 wus ng the Jolt Class Library

Using BEA Tuxedo Buffer Types with Jolt

Jolt supports the following built-in BEA Tuxedo buffer types:
m FML, FML32

m VIEW, VIEW32

s X_COMMON

m X C TYPE

m CARRAY

m X OCTET

m STRING

m XML

Note: X_OCTET isused identically to CARRAY .
X_COMMON and X_C_TYPE areused identically to VIEW.

Of the BEA Tuxedo built-in buffer types, the Jolt programmer should be particularly
aware of how Jolt handlesthe CARRAY (character array) and STRING buffer types:

m The CARRAY typeisused to handle data opaquely (that is, the characters of a
CARRAY datatype are not interpreted in any way). Therefore, no data
conversion is performed between a Jolt client and BEA Tuxedo service.

m The STRING datatype is character and, unlike CARRAY, you can determine its
transmission length by counting the number of charactersin the buffer until
reaching the null character. Therefore, datais automatically converted when data
is exchanged by machines with different character sets.

For more information about all the BEA Tuxedo typed buffers, data types, and buffer
types, refer to the following documents:

m Programming BEA Tuxedo ATMI Applications Using C
m BEA Tuxedo ATMI C Function Reference

m BEA Tuxedo ATMI FML Function Reference

5-14 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

m File Formats, Data Descriptions, MIBs, and System Processes Reference

Using the STRING Buffer Type

The STRING buffer typeisan arrary of non-null charactersthat terminates with anull
character. Unlike CARRAY/, you can determine its transmission length by counting
the number of characters in the buffer until reaching the null character. Since the
STRING buffer is self-describing, the BEA Tuxedo System can convert data
automatically when data is exchanged by machines with different character sets.

Note: During the data conversion from Jolt to STRING, the null terminator is
automatically appended to the end of the STRING buffers because a Java
string is not null-terminated.

Using the STRING buffer type requires two main steps:

1. Definethe Tuxedo service that you will be using with the buffer type.
2. Write the code that uses the STRING buffer type.

The next two sections provide examples that demonstrate these steps.

The ToUpper code fragment shown in the listing “ Use of the STRING Buffer Type
(ToUpper.java)” on page 5-18 illustrates how Jolt works with a service whose buffer
typeis STRING. The ToUpper BEA Tuxedo Serviceisavailablein the BEA Tuxedo
si npapp example.

Define TOUPPER in the Repository Editor

Before running the ToUpper . j ava example, you need to define the TOUPPER service
through the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information
about defining your services and adding new parameters.

1. Inthe Jolt Repository Editor Logon window, click Services.

Using BEA Jolt 5-15

5 wus ng the Jolt Class Library

Figure5-3 Add a TOUPPER Service

i Applet Viewer: bea jolt. admin RE class

Apnplet

Services

Packaes
BAMNEAPP

BULKPKG
SIMPSERY

Services

Farameters
TOUFPER

New_ | [Edit | [Deicie | | Back]

2. Inthe Services window, select the TOUPPER servicein the SIMPSERV package.
3. Click Edit.

5-16 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure5-4 Set Input and Output Buffer Typesto STRING

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Services

Editing existing service in package: SIMPSERY
Senice Mame TOUPPER FParameters

Input Buffer Type STRIMG 'I STRIMNG

Input Views Kame

Output Buffer Type | STRING vI

Cutput Wiew Mame

Export Status " Unexport (& Export
Service level actions Parameter level actions
Sawve Service | Testl Elackl Tley.... | Edit:. | [vEe|ete |

4. Inthe Edit Services window, define an input buffer type of STRING and an
output buffer type of STRING. Refer to the figure “ Set Input and Output Buffer
Typesto STRING” on page 5-17.)

5. For the TOUPPER service, define only one parameter named STRING, which is
both an input and an output parameter.

6. Click Save Service.

ToUpper.java Client Code

The ToUpper . j ava Java code fragment in the following listing illustrates how Jolt
works with a service with a buffer type of STRING. The example shows a Jolt client
using a STRING buffer to pass data to a server. The BEA Tuxedo server would take
the buffer, convert the string to all uppercase letters, and pass the string back to the
client. The following example assumes that a session object was already instantiated.

Using BEA Jolt 5-17

5 wus ng the Jolt Class Library

Listing 52 Useof the STRING Buffer Type (ToUpper.java)

/* Copyright 1996 BEA Systens, Inc. Al R ghts Reserved */
inport bea.jolt.?*;
public class ToUpper

{
public static void main (String[] args)
{
Jol t Sessi on sessi on;
Jol t SessionAttributes sattr;
Jol t Renot eSer vi ce t oupper;
Jol t Transacti on trans;

String user Name=nul | ;
String userPassword=nul | ;
String appPassword=nul | ;
String user Rol e="nyapp”;
String outstr;

sattr = new Jol t SessionAttributes();
sattr.setString(sattr. APPADDRESS, “//nmyhost: 8501");

switch (sattr.checkAut henticationLevel ())

{
case Jol t Sessi onAttri butes. NOAUTH:

br eak;

case Jol t Sessi onAttri butes. APPASSWORD:
appPassword = “appPassword”;
br eak;

case Jol t Sessi onAttri butes. USRPASSWORD:
user Name = “mynane”;
user Password = “nysecret”;
appPassword = “appPassword”;
br eak;

}
sattr.setlnt(sattr. | DLETI MEOUT, 300);
session = new Jol t Session(sattr, userNane, userRol e,
user Passwor d, appPassword);
toupper = new Jol t Renot eService (“TOUPPER', session);
toupper.setString(“STRING', “hello world”);
toupper.call (null);
outstr = toupper.getStringDef(“STRING, null);
if (outstr != null)

System out. println(outstr);

sessi on. endSession() ;
System exi t(0);
} /1 end main
} /1 end ToUpper

5-18 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Using the CARRAY Buffer Type

The CARRAY buffer type isasimple character array buffer type that is built into the
BEA Tuxedo system. Because the system does not interpret the data (although the data
typeisknown) whenyou usethe CARRAY buffer type, you must specify adatalength
in the Jolt client application. The Jolt client must specify a data length when passing
this buffer type.

For example, if a BEA Tuxedo service uses a CARRAY buffer type and the user sets
a 32-bit integer (in Javathe integer isin big-endian byte order), then the datais sent
unmodified to the BEA Tuxedo service.

To usethe CARRAY buffer type, you first define the Tuxedo service that you will be
using with the buffer type. Then, write the code that uses the buffer type. The next two
sections demonstrate these steps.

Note: X_OCTET isused identically to CARRAY .

Define the Tuxedo Service in the Repository Editor

Before running the ECHO exampl e, you must write and boot a Tuxedo ECHO service.
The ECHO service takes a buffer and passesit back to the Jolt client. Y ou need to
define the ECHO service in the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information
about defining your services and adding new parameters.

Using BEA Jolt 5-19

5 wus ng the Jolt Class Library

Figure5-5 Repository Editor: Add the ECHO Service

EiApplet Viewer: bea jolt admin RE class
Apnplet

Services
FPackages
|EIANI<AF'F'
SIMFSERY
Senices Fararmeters
CETRING ;I CARRAY
DATATO0X30
DISCONMECTED |
HF
JCARRAY
JFLUSH
JIEWY ;l

Mew | Edit | Delste| Back|

Use the Repository Editor to add the ECHO service asfollows:
1. Inthe Repository Editor, add a service called ECHO.
2. Define the input buffer type and output buffer type as CARRAY.

3. Define only one parameter named CARRAY, which is both an input and output
parameter.

Note: If using the X_OCTET buffer type, you must change the Input Buffer Type
and Output Buffer Typefieldsto X_OCTET.

5-20 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure5-6 Repository Editor: Edit ECHO Service

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing serice in package: BULKFKG

Senice Mame ECHO FParameters

Input Buffer Type CARRAY 'I CARRAY

Input Views Kame

Output Buffer Type | CARRAY vI

Cutput Wiew Mame

Export Status " Unexport (& Export
Service level actions Parameter level actions
Sawve Service | Testl Elackl Tley.... | Edit:. | [vEe|ete |

tryOnCARRAY.java Client Code

The codeinthefollowing listing illustrates how Jolt works with a service with abuffer
type of CARRAY . Because Jolt does not look into the CARRAY data stream, it isthe
programmer’s responsi bility to ensure that the data formats between the Jolt client and
the CARRAY service match. The example in the following listing assumes that a
session object was aready instantiated.

Listing5-3 CARRAY Buffer Type Example

/* Copyright 1996 BEA Systens, Inc. Al Rights Reserved */

/* This code fragnent illustrates how Jolt works with a service
* whose buffer type i s CARRAY.
*/

Using BEA Jolt 5-21

5 wus ng the Jolt Class Library

inport java.io.*;
inport bea.jolt.?*;
class ...

{

public void tryOnCARRAY()
{

byte data[];

Jol t Renot eSer vi ce csvc;

Dat al nput St ream di n;

Dat aQut put St ream dout ;

Byt eArrayl nput St r eam bi n;

Byt eAr rayQut put St r eam bout ;

/*

* Use java.io.DataCQutputStreamto put data into a byte array
*/

bout new Byt eArrayCQut put Stream(512) ;

dout new Dat aCut put St ream(bout) ;

dout.writelnt(100);

dout.witeFloat ((float) 300.00);

dout.writeUTF("Hello World");

dout.writeShort ((short) 88);

/*
* Copy the byte array into a new byte array "data". Then
* issue the Jolt renote service call.
*/

dat a bout .t oByt eArray();

csvce new Jol t Renot eServi ce("ECHO', session);

csvc. set Byt es(" CARRAY", data, data.length);

csve.call (null);

/*
* Get the result from JoltRenoteService object and use
* java.io.DatalnputStreamto extract each individual value
* fromthe byte array.
*/

data = csvc. get Byt esDef (" CARRAY", nul l);

if (data !'= null)

{

bin = new Byt eArrayl nput Strean(dat a) ;
di n = new Dat al nput St rean(bi n);
Systemout.printin(din.readlnt());
System out. println(din.readFloat());
System out. println(din.readUTF());
System out. println(din.readShort());

5-22 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Using the FML Buffer Type

FML (Field Manipulation Language) is a flexible data structure that can be used as a
typed buffer. The FML data structure stores tagged values that are typed, variablein
length, and may have multiple occurrences. The typed buffer is treated as an abstract
datatypein FML.

FML givesyou the ability to access and update data values without having to know
how the datais structured and stored. In your application program, you simply access
or update a field in the fielded buffer by referencing itsidentifier. To perform the
operation, the FML run time determines the field location and data type.

FML isespecially suited for usewith Jolt clients becausethe client and server code can
be in two languages (for example, Java and C); the client/server platforms can have
different data type specifications; or theinterface between the client and the server can
change frequently.

Thefollowing t ryOnFm examplesillustrate the use of the FML buffer type. The
examplesshow aJolt client using FM L buffersto passdatato aserver. The server takes
the buffer, creates a new FML buffer to store the data, and passes that buffer back to
the Jolt client. The examples consist of the following components.

m The“tryOnFml.java Code Example’ on page 5-24 isa Jolt client that contains a
PASSFML service.

m The“tryOnFml.f16 Field Definitions’ on page 5-25isa BEA Tuxedo FML field
definitions table used by the PASSFML service.

m The“tryOnFml.c Code Example’ on page 5-28 is a server code fragment that
contains the server side C code for handling the data sent by the Jolt client.

tryOnFml java Client Code
ThetrynFni . j ava Javacode fragment in the following listing illustrates how Jolt

works with a service whose buffer typeis FML. In this example, it is assumed that a
session object was aready instantiated.

Using BEA Jolt 5-23

5 wus ng the Jolt Class Library

Listing 54 tryOnFml.java Code Example

/* Copyright 1997 BEA Systens, Inc. Al Rights Reserved */

inport bea.jolt.?*;
class ...

{

public void tryOnFm ()
{
Jol t Renot eSer vi ce passFni ;
String output String;
int outputlnt;
float outputFloat;

passFm = new Jol t Renot eSer vi ce(" PASSFM.", sessi on) ;

passFm . set String("1 NPUTSTRI NG', "John");

passFm . set I nt ("I NPUTI NT", 67);

passFnml . set Fl oat ("1 NPUTFLCAT", (float)12.0);

passFm . cal |l (null);

output String = passkFni.getStringDef ("OQUTPUTSTRING', null);

out put I nt = passFml . getlntDef (" OUTPUTI NT", -1);

out put Fl oat = passFml . get Fl oat Def (" QUTPUTFLOAT", (float)-1.0);
Systemout.print("String =" + outputString);

Systemout.print(" Int =" + outputint);
Systemout.println(" Float =" + outputFloat);
}

FML Field Definitions

Theentriesin the following listing,"tryOnFml.f16 Field Definitions,” show the FML
field definitions for the previous listing, “tryOnFml.java Code Example.”

5-24 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Listing 5-5 tryOnFml.f16 Field Definitions

#

FML field definition table
#

*base 4100

INPUTSTRING 1 string

I NPUTI NT 2 | ong

| NPUTFLOAT 3 f 1 oat
QUTPUTSTRI NG 4 string
QUTPUTI NT 5 | ong
OQUTPUTFLQAT 6 f 1 oat

Define PASSFML in the Repository Editor

The BULKPK G package contains the PASSFML service, which is used with the
tryOnFn . java andtryOnFni . c code. Beforerunningthet ryOnFni . j ava
example, you need to modify the PASSFML service through the Jolt Repository
Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information
about defining a service.

1. Inthe Edit Services window of the Jolt Repository Editor, define the PASSFML
service with an input buffer type of FML and an output buffer type of FML.

The figure “Repository Editor Window: Edit Services (PASSFML)” on page
5-26 illustrates the PASSFML service, and Input Buffer and Output Buffer of
FML.

Using BEA Jolt 5-25

5 wus ng the Jolt Class Library

Figure5-7 Repository Editor Window: Edit Services (PASSFML)

EiApplet Viewer: bea jolt admin RE class
Applet
Edit Services
Adding new service to package: BULKPRG
Service Mamea PASSFML FParameters
Input Buffer Type FmL - INPUTFLOAT
Input View Mame INPLITINT
INFUTSTRIMG
Output Buffer Type FhiL i QUTPUTFLOAT
Output Wiew Mame OUTPUTINT
OUTPUTSTING
Export Status Unesport
Service level actions Pararmeter level actions
Sawve Service | Testl Elackl Tley.... | Edit:. | [vEe|ete |

2. Select the input buffer type and output buffer type as FML for the PASSFML
service.

3. Click Edit to display the Edit Parameters window as shown in the following
figure.

5-26 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure5-8 Edit the PASSFML Parameters

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Changing existing parameter in package: BULKPKG service: PASSFML

Parameter Infarmation Screen Information

Field Mame INFUTSTRING Screen Label I
Data Type string vI

Direction @ input O output € bath

Qccurrencels) 1

Clearl Change | Sdd | Elackl e == e e |

4. Definethe parameter for the PASSFML service.

5. Repeat steps 2-4 for each parameter in the PASSFML service.

Using BEA Jolt 5-27

5 wus ng the Jolt Class Library

tryOnFml.c Server Code

Thefollowing listingillustratesthe server side codefor using the FML buffer type. The
PASSFML servicereadsin an input FML buffer and outputs a FML buffer.

Listing 56 tryOnFml.c Code Example

/*

* tryOnFm . c

*

: Copyright (c) 1997 BEA Systens, Inc. Al rights reserved
* Contains the PASSFM. BEA Tuxedo server.

*

*

/

#include <stdlib.h>

#i ncl ude <stdi o. h>

#i ncl ude <ctype. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>

#i ncl ude <sys/sem h>

#i ncl ude <sys/stat. h>

#i ncl ude <mal | oc. h>

#i ncl ude <mat h. h>

#i nclude <string. h>

#include <fni.h>

#i ncl ude <fni32. h>

#i ncl ude <Usysfl ds. h>

#i nclude <atm . h>

#i ncl ude <userl og. h>

#include "tryOnFm . f16. h"

/*
* PASSFML service reads in a input fm buffer and outputs a fm buffer.
*/

voi d

PASSFM_(TPSVCI NFO *rqgst)

{

FLDLENI en;

FBFR*svci nfo = (FBFR *) rqgst->data;

charinput Stri ng[256];

| ongi nput I nt;;

floati nput Fl oat;

FBFR*fm _ptr;

intrt;

if (Fget(svcinfo, INPUTSTRING O, inputString, & en) < 0) {

5-28 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

(void)userl og("Fget of I NPUTSTRING failed %",
Fstrerror(Ferror));
tpreturn(TPFAI L, 0, rgst->data, OL, 0);

}

if (Fget(svcinfo, INPUTINT, 0, (char *) & nputlnt, & en) < 0) {
(void)userl og("Fget of INPUTINT failed 9%",Fstrerror(Ferror));
tpreturn(TPFAI L, 0, rgst->data, OL, 0);

}

if (Fget(svcinfo, |INPUTFLOAT, 0, (char *) & nputFloat, & en) < 0) {
(voi d)userl og("Fget of | NPUTFLOAT failed %",

Fstrerror(Ferror));

tpreturn(TPFAIL, O, rgst->data, OL, 0);

/* We coul d just pass the FML buffer back as is, put |ets*/

/* store it into another FML buffer and pass it back.*/

if ((fm _ptr = (FBFR *)tpal l oc("FM.", NULL, rgst->l en))==(FBFR *) NULL) {
(void)userlog("tpalloc failed in PASSFM. %",

tpstrerror(tperrno));

tpreturn(TPFAI L, O, rgst->data, OL, 0);

}

if(Fadd(fm _ptr, OUTPUTSTRING inputString, (FLDLEN)O) == -1) {
userlog("Fadd failed with error: %", Fstrerror(Ferror));
tpfree((char *)fm _ptr);

tpreturn(TPFAI L, O, NULL, OL, 0);

}
if(Fadd(fm _ptr, OJUTPUTI NT, (char *)& nputlnt, (FLDLEN)O) == -1) {
userlog("Fadd failed with error: %", Fstrerror(Ferror));
tpfree((char *)fm _ptr);
tpreturn(TPFAI L, O, NULL, OL, 0);

}
if(Fadd(fm _ptr, OUTPUTFLQAT, (char *)&i nputFl oat, (FLDLEN)O) == -1) {
userl og("Fadd failed with error: %\ n", Fstrerror(Ferror));
tpfree((char *)fm _ptr);
tpreturn(TPFAI L, O, NULL, OL, 0);

}
tpreturn(TPSUCCESS, 0, (char *)fm _ptr, OL, 0);
}

Using BEA Jolt 5-29

5 wus ng the Jolt Class Library

Using the VIEW Buffer Type

VIEW isabuilt-in BEA Tuxedo typed buffer. The VIEW buffer provides away to use
C structures and COBOL records with the BEA Tuxedo system. The VIEW typed
buffer enables the BEA Tuxedo run-time system to understand the format of C
structures and COBOL records based on the view description that is read at run time.

When allocatinga VIEW, your application specifiesaVVIEW buffer type and asubtype
that matches the name of the view (the namethat appearsin the view descriptionfile).
The parameter name must match thefield namein that view. Because the BEA Tuxedo
run-time system can determine the space needed based on the structure size, your
application need not provide a buffer length. The run-time system can also
automatically handle such things as computing how much data to send in a request or
response, and handle encoding and decoding when the message transfers between
different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client and
its server-side application.

m The“simpview.java Code Example” on page 5-33 is the Jolt client that contains
the code used to connect to BEA Tuxedo and uses the VIEW buffer type.

m Thelisting “simpview.v16 Field Definitions” on page 5-34 contains the BEA
Tuxedo VIEW field definitions.

m The“simpview.c Code Example” on page 5-35 contains the server side C code
for handling the input from the Jolt client.

The Jolt client treats anull character in aVIEW buffer string format as an end-of-line
character and truncates any part of the string that follows the null.

Define VIEW in the Repository Editor

Before running the si npvi ew. j ava and si npvi ew. ¢ examples, you need to define
the SIMPVIEW service through the Jolt Repository Editor.

Note: Refer to“Using the Jolt Repository Editor” on page 4-1 for more information
about defining a service.

5-30 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure5-9 Repository Editor: Add SIMPVIEW Service

i Applet Viewer: bea jolt. admin RE class

Applet

Services

Packaes

BANKAPP
BULKPKG
SIMPSERY

Services Farameters
PASSFRML inint
inString
TOLPPER autFloat
autint
outString

Mew | Edit | Delste| Back|

In the Repository Editor add the VIEW service asfollows:

1. Add aSIMPVIEW servicefor the SIMPSERV package.

2. Definethe SIMPVIEW service with an input buffer type of VIEW and an output
buffer type of VIEW.

Using BEA Jolt 5-31

5 wus ng the Jolt Class Library

Figure5-10 Repository Editor: Edit SIMPVIEW Service

3 Applet Viewer: bea. jolt admin RE class
Applet

Edit Services
Editing existing serice in package: SIMPSERY

Service Mamea SIMPWIEWY Farameters

Input Buffer Type WIEWY 'I

inint

Input Wiew Mame |n8“t:r||ngt
outFloa
Output Buffer Type [VIEW 'I autlnt
Qutput View Marme outString
Export Status @ Unexport () Export
Service level actions Pararmeter level actions
Save Senice | Testl Elackl Mew... | Edit... | Delete |

3. Define the parameters for the VIEW service. In this exampl e the parameters are:
inlnt,inString,outFloat,outlnt,outString.

Note: If using the X_COMMON or X_C_TYPE buffer types, you must put the
correct buffer type in the Input Buffer Type and Output Buffer Type fields.
Additionally, you must choose the corresponding Input View Name and
Output View Name fields.

5-32 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

simpview.java Client Code

The listing “simpview.java Code Example” on page 5-33 illustrates how Jolt works
with aservicewhose buffer typeis VIEW. The client codeisidentical to the code used
for accessing an FML service.

Note: The code in the following listing does not catch any exceptions. Because all
Jolt exceptions are derived from j ava. | ang. RunTi neExcept i on, the Java
Virtual Machine (JVM) catches these exceptionsiif the application does not.
(A well-written application will catch these exceptions and take appropriate
actions.)

Before running the examplein the following listing, you need to add the VIEW service
to the SIMPAPP package using the Jolt Repository Editor and write the si npvi ew. ¢
BEA Tuxedo application. This service takes the data from the client VIEW buffer,
creates a new buffer and passes it back to the client as anew VIEW buffer. The
following example assumes that a session object has already been instantiated.

Listing 5-7 simpview.java Code Example

/* Copyright 1997 BEA Systens, Inc. Al Rights Reserved */

/*

* This code fragnent illustrates how Jolt works with a service whose buffer
* type is VIEW

*/

import bea.jolt.*;

class ...

{

public void sinpview ()

{

Jol t Renot eSer vi ce Vi ewSvc;

String out String;

int outlnt;

fl oat outFl oat;

/] Create a Jolt Service for the BEA Tuxedo service "SI MPVI EW
Vi ewSvc = new Jol t Renot eServi ce("SI MPVI EW , sessi on) ;
/1 Set the input paranetes required for SIMVIEW

Vi ewSvc.setString("inString", "John");

Vi ewSvc.setInt("inlnt", 10);

Vi ewSvc. setFloat("inFloat", (float)10.0);

// Call the service. No transaction required, so pass
/] a "null" paramneter

ViewSvc.call (null);

Using BEA Jolt 5-33

5 wus ng the Jolt Class Library

/'l Process the results

out String = ViewSvc.getStringDef("outString", null);
outlnt = ViewSvc.getlntDef("outlnt", -1);

out Fl oat = Vi ewSvc. get Fl oat Def ("out Float", (float)-1.0);
/1 And display them..

Systemout.print("outString=" + outString + ",");

Systemout.print("outlnt=" + outlnt + ",");
Systemout. println("outFl oat=" + outFl oat);
}
}

VIEW Field Definitions

The“simpview.v16 Field Definitions” listing shows the BEA Tuxedo VIEW field
definitions for the si npvi ew. j ava example that were shown in the previous listing.

Listing 5-8 simpview.v16 Field Definitions

#

VIEWfor SIMPVIEW This viewis used for both input and output. The
service could al so have used separate input and output views.

The first 3 parans are input parans, the second 3 are outputs.

#

VI EW Si npVi ew

$

#type cnane f bname count flag size nul |
string inString - 1 - 32 -

| ong i nlnt - - - -

float inFloat -
string outString -
| ong out | nt -
float outFloat -
END

N
,
w
N
,

5-34 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

simpview.c Server Code

In the following listing, the input and output buffers are VIEW. The code accepts the
VIEW buffer data as input and outputs the same data as VIEW.

Listing 5-9 simpview.c Code Example

/*
* S| MPVI EW ¢

*

* Copyright (c) 1997 BEA Systenms, Inc. All rights reserved
*
* Contains the SIMPVI EW BEA Tuxedo server.
*
*

/

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>
#i ncl ude <sys/stat. h>
#i ncl ude <mall oc. h>
#i ncl ude <math. h>
#i ncl ude <string. h>
#i nclude <fm . h>
#i ncl ude <fm 32. h>
#i ncl ude <Usysflds. h>
#i ncl ude <atni. h>
#i ncl ude <userl og. h>
#i ncl ude "sinpview. h"
/*

* Contents of sinpview h.

*

*struct SimpView {
*

*charinString[32];
*| ongi nl nt;

*f| oati nFl oat ;
*charout String[32];
*| ongout | nt ;

*f| oat out Fl oat ;

>\'}7

*/

/*

* service reads in a input view buffer and outputs a view buffer.

Using BEA Jolt 5-35

5 wus ng the Jolt Class Library

*/

voi d

SIMPVI EW TPSVC NFO *rgst)

{
/*

* get the structure (VIEWSVC) from the TPSVCI NFO structure

*/

struct SinpView'svcinfo = (struct SinpView *) rqst->data;

/*

* print the input parans to the UserLog. Note there is

* no error checking here. Normally a SERVER woul d perform
* sone validation of input and return TPFAIL if the input
* is not correct.

*/

(voi d)userlog("SI MPVI EW | nString=%s, | nl nt =%, | nFl oat =% ",
svcinfo->inString, svcinfo->inlnt, svcinfo->inFloat);

/*

* Popul ate the output fields and send them back to the caller

*/

strcpy (svcinfo->outString, "Return from SI MPVI EW);
svci nf o->outl nt = 100;
svci nfo->outFl oat = (float) 100.00;

/*

* |f there was an error, return TPFAI L
* tpreturn(TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo), 0);

*/

tpreturn(TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);

}

Using the XML Buffer Type

5-36

The XML buffer type enables BEA Tuxedo applications to use XML documents for
exchanging data within and between applications. BEA Tuxedo applications can send
and receive XML buffers, and route those buffers to the appropriate servers. All logic
for dealing with XML documents, including parsing, resides in the application.

A well-formed XML document consists of:

m Textintheform of asequence of encoded characters, including proper headings,
opening and closing tags, etc.

m A description of the logical structure of the document and information about that
structure.

Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

To usethe XML buffer type, you first define the Tuxedo service that you will be using
with the buffer type, and then write the code that uses the buffer type. The next two
sections demonstrate these steps.

Note: Similar to CARRAY, the XML buffer typeis treated as abyte arrary, not a
STRING. Therefore, no data conversion takes place between a Jolt client and
aBEA Tuxedo service.

Define the Tuxedo Service in the Repository Editor

Before running the XML example, you must write and boot a Tuxedo XML service.
The XML servicetakesabuffer and passesit back to the Jolt client. Y ou need to define
the XML service in the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information
about defining your services and adding new parameters.

Using BEA Jolt 5-37

5 wus ng the Jolt Class Library

Figure5-11 Repository Editor: Add the XML Service

E2Applet Viewer: bea.jolt admin RE class
Applet

Services

Packages
BAMNKAPF

BULKFPKG
SIMPSERY

Semices Parametars

EC ! AL
TOLFPER

Mew_ | Edit | Delste | Back|

Applet started.

Use the Repository Editor to add the XML service as follows:
1. Inthe Repository Editor, add a service called ECHO_XML.

2. For the ECHO_XML service, define the input buffer type and output buffer type
asXML.

3. Definethe ECHO_XML service with only one parameter named XML, whichis
both an input and output parameter.

5-38 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

Figure5-12 Repository Editor: Edit the XML Service

EiApplet Viewer: bea_jolt. admin RE class
Applet

Edit Services
Editing existing service in package: SIMPSERY

Senice Marme IECHO_}{ML Pararmeters

Input Buffer Type HML - ML

Input Yiew Mame

Qutput Buffer Type I}{ML vl
Output Wiew Marme I

Export Status " Unexport 8 Export
Service level actions Farameter level actions
Save Service | Testl Backl T ey | Edit:.. | [velete |

simpxml.java Client Code

Thecodeinthefollowinglisting illustrates how Jolt workswith aservicewithan XML
type buffer. Because Jolt does not look into the XML data stream, it is the
programmer’s responsi bility to ensure that the data formats between the Jolt client and
the XML service match. The example in the following listing assumes that a session
object was already instantiated.

Using BEA Jolt 5-39

5 wus ng the Jolt Class Library

Listing 510 XML Buffer Type Example

/* Copyright 2001 BEA Systens, Inc. Al Rights Reserved */
/*

* This code fragment illustrates how Jolt works with a service whose buffer
* type is XM.
*/

inport java.io.*;
i nport java.lang.*;
inport bea.jolt.?*;

public class xm doc {

public static void main (String[] args) {
Jol t SessionAttributes sattr;
Jol t Sessi on sessi on;
Jol t Renot eSer vi ce echo_xn ;

String inString = "<?xm version=\"1.0\" encodi ng=\" UTF- 8\ " ?><ORDER><HEADER
DATE=\"05/13/ 1999\ " ORDERNO=\" 22345\ "/ ><COVPANY>ACME</ COMPANY><LI| NE><I TEM
MODEL=\ " Pabc\ " QUANTI TY=\"5\">LAPTOP</ | TEM></ LI NE><LI NE><| TEM MODEL=\ " P500\ "
QUANTI TY=\" 15\ " >LAPTOP</ | TEM></ LI NE></ ORDER>" ;

byte data[];

Dat al nput St ream di n;

Dat aQut put St ream dout ;

Byt eArrayl nput Stream bi n;
Byt eAr r ayQut put St r eam bout ;

byte odatal];
String outString = null;
String appAddress = null;

//...Create Jolt Session

try {
/*
* Use java.io.DataQutputStreamto put data
* into a byte array
*/
bout = new ByteArrayCQut put Strean(inString.!length());
dout = new Dat aCut put St r ean{ bout) ;
dout.writeBytes(inString);

5-40 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt

}

/*
* Copy the byte array into a new byte array "data".
* Then issue the Jolt renote service call.
*/
data = bout.toByteArray();
} catch (Exception e) {
Systemout.println("toByteArray error");
return;

}

try {
echo_xm = new Jol t Renot eServi ce("ECHO XM.", session);

Systemout. println("JoltRenoteService Created");
echo_xml . set Bytes("XM.", data, data.length);

} catch (Exception e) {
Systemout.println("RenoteService call error” + e);
return;

}

echo_xm .call(null);
System out.println("Service Call Returned");
odata = echo_xmnl . getBytesDef ("XM.", null);

try {
Systemout.println("Return String is:
} catch (Exception e) {
Systemerr.println("getByteDef Error");
}

"

+ new String(odata));

/1 end of class

Using BEA Jolt 5-41

5 wus ng the Jolt Class Library

Multithreaded Applications

As aJava-based set of classes, Jolt supports multithreaded applications; however,
various implementations of the Java language differ with respect to certain language
and environment features. Jolt programmers need to be aware of the following:

m Theuse of preemptive and non-preemptive threads when creating applications or
applets with the Jolt Class Library.

m Theuse of threads to get asynchronous behavior similar to thet pacal | ()
function in BEA Tuxedo.

“Threads of Control” describes the issues arising from using threads with different
Javaimplementations and is followed by an example of the use of threadsin a Jolt
program.

Note: Most Javaimplementations provide preemptive rather than non-preemptive
threads. The difference between these two models can lead to very different
performance and programming requirements.

Threads of Control

5-42

Each concurrently operating task in the Java virtual machineisathread. Threads exist
in various states, the important ones being RUNNING, RUNNABLE, or BLOCKED.

m A RUNNING thread is a currently executing thread.

m A RUNNABLE thread can be run once the current thread has relinquished
control of the CPU. There can be many threads in the RUNNABLE state, but
only one can bein the RUNNING state. Running a thread means changing the
state of athread from RUNNABLE to RUNNING, and causing the thread to
have control of the Java Virtua Machine (VM).

m A BLOCKED thread isathread that is waiting on the availability of some event
or resource.

Note: TheJavaVM schedules threads of the same priority to run in around-robin
mode.

Using BEA Jolt

Multithreaded Applications

Preemptive Threading

The main performance difference between the two threading modelsarisesin telling a
running thread to relinquish control of the Java VM. In a preemptive threading
environment, the usual procedure isto set a hardware timer that goes off periodically.
When the timer goes off, the current thread is moved from the RUNNING to the
RUNNABLE state, and another thread is chosen to run.

Non-Preemptive Threading

In anon-preemptive threading environment, athread must volunteer to give up control
of the CPU and move to the RUNNABLE state. M any methods in the Java language
classes contain code that volunteers to give up control, and are typically associated
with actions that might take a long time. For example, reading from the network
generally causes athread to wait for a packet to arrive. A thread that is waiting on the
availability of some event or resource isin the BLOCKED state. When the event
occurs or the resource becomes available, the thread becomes RUNNABLE.

Using Jolt with Non-Preemptive Threading

If your Jolt-based Java program is running on a non-preemptive threading Virtua
Machine (such as Sun Solaris), the program must either:

m Occasionaly call amethod that blocks the thread, or
m Explicitly give up control of the CPU using the Thr ead. yi el d() method

The typical usage isto make the following call in al long-running code segments or
potentially time-consuming loops:

Thr ead. current Thread. yi el d();

Without sending this message, the threads used by the Jolt Library may never get
scheduled and, as such, the Jolt operation isimpaired.

The only virtual machine known to use non-preemptive threading is the Java
Developer’ sKit (JDK) machine running on a Sun platform. If you want your applet to
work on JDK 1.3, you must make sure to send the yield messages. As mentioned

Using BEA Jolt 5-43

5 wus ng the Jolt Class Library

earlier, some methods contain yields. Animportant exceptionisthe System i n. r ead
method. This method does not cause athread switch. Rather than rely on these
messages, we suggest using yields explicitly.

Using Threads for Asynchronous Behavior

Y ou can use threads in Jolt to get asynchronous behavior that is analogous to the

t pacal | () functionin BEA Tuxedo. With this capability, you do not need an
asynchronous service reguest function. Y ou can get this functionality because Jolt is
thread-safe. For example, the Jolt client application can start one thread that sends a
reguest to a BEA Tuxedo service function and then immediately start another thread
that sends another request to a BEA Tuxedo service function. So even though the Jolt
t pacal | () issynchronous, the application is asynchronous because the two threads
arerunning at the same time.

Using Threads with Jolt

A Jolt client-side program or applet is fully thread-safe. Jolt support of multithreaded
applications includes the following client characteristics:

m Multiple sessions per client

m Multithreaded within a session

m Client application manages threads, not asynchronous calls
m Performs synchronous calls

Thefollowing listing illustrates the use of two threads in a Jolt application.

5-44 Using BEA Jolt

Multithreaded Applications

Listing 5-11 Using Multiple Threads with Jolt (ThreadBank.java)

/* Copyright 1996 BEA Systens, Inc. Al Rights Reserved */
import bea.jolt.*;
public class ThreadBank
{
public static void main (String [] args)
{
Jol t Sessi on session;
try
{
Jol t SessionAttri butes dattr;
String userName = nul | ;
String userPasswd = nul |;
String appPasswd = null;
String userRole = null;

/1 fill in attributes required
dattr = new Jol t SessionAttributes();
dattr.setString(dattr. APPADDRESS, "/ /bl uefi sh: 8501");

// instantiate domain
/1 check authentication |evel
switch (dattr.checkAuthenticationLevel ())

{

case Jol t Sessi onAttri butes. NOAUTH:
System out . println(“NOAUTH n") ;
br eak;

case Jol t Sessi onAttri but es. APPASSWORD:
appPasswd = “nyAppPasswd”;
br eak;

case Jol t Sessi onAttri but es. USRPASSWORD:
user Name = “myName”;
user Passwd = “nySecret”;
appPasswd = “nyAppPasswd”;
br eak;

dattr.setlnt(dattr.|DLETI MEOUT, 60);

session = new Jolt Session (dattr, userName, userRol e,
user Passwd, appPasswd);

Tl t1

T2 t2

new Tl (session);
new T2 (session);

tl.start();
t2.start();

Thr ead. current Thread().yi el d();
try

Using BEA Jolt 5-45

5 wus ng the Jolt Class Library

{
while (tl1.isAlive() & & t2.isAlive())
{
Thr ead. current Thread(). sl eep(1000);
}
catch (InterruptedException e)
{
Systemerr.println(e);
if (t2.isAive())
{
Systemout.printin(“job 2 is still alive”);
try
Thr ead. current Thr ead() . sl eep(1000);
catch (I nterruptedException el)
{
Systemerr.println(el);
}
}
else if (tl.isAive())
{ Systemout.println(“jobl is still alive”);
try
Thr ead. current Thr ead() . sl eep(1000);
catch (I nterruptedException el)
{
Systemerr.println(el);
}
}
}

sessi on. endSessi on() ;

catch (Sessi onException e)

{
Systemerr.println(e);
finally
{
Systemout.println(“normal ThreadBank terni);
}
}
}
class Tl extends Thread
{

5-46 Using BEA Jolt

Multithreaded Applications

Jol t Sessi on j_sessi on;
Jol t Renot eService j_wi thdrawal ;

public T1 (JoltSession session)

{
j _sessi on=session;
j _wi thdrawal = new Jol t Renot eSer vi ce(“W THDRAWAL” ,] _sessi on);
}
public void run()
{
j _wi thdrawal . addl nt (“ ACCOUNT_I D", 10001) ;
j _wi thdrawal . addStri ng(“ SAMOUNT”, " 100. 00");
try
{
Systemout.printin(“Initiating Wthdrawal from account
10001");
j _withdrawal.call(null);
String W= j _wi thdrawal . get StringDef (“SBALANCE", "-1.0");
Systemout. println(“-->Wthdrawal Bal ance: “ + W;
catch (ApplicationException e)
e.printStackTrace();
Systemerr.printin(e);
}
}

}

cl ass T2 extends Thread

{

Jol t Sessi on j_sessi on;
Jol t Renot eService j _deposit;

public T2 (Jol t Session session)

{
j _sessi on=session;
j _deposi t= new Jol t Renot eSer vi ce(“DEPOSI T", j _sessi on);

public void run()

{
_deposi t.addl nt (“ACCOUNT_I D", 10000) ;

J

j _deposi t.addString(“SAMOUNT”, " 100. 00");

try

{

Systemout.printIn(“Initiating Deposit fromaccount 10000");

j _deposit.call(null);
String D = j_deposit.getStringDef(“SBALANCE","-1.0");
Systemout.println(“-->Deposit Balance: “ + D);

Using BEA Jolt 5-47

5 wus ng the Jolt Class Library

catch (ApplicationException e)

e.printStackTrace();
Systemerr.println(e);
}
}
}

5-48 Using BEA Jolt

Event Subscription and Notifications

Event Subscription and Notifications

Programmers devel oping client applications with Jolt can receive event notifications
from either BEA Tuxedo Servicesor other BEA Tuxedo clients. The Jolt ClassLibrary
contains classes that support the following types of BEA Tuxedo notifications for
handling event-based communication:

Unsolicited Event Notifications—these are notifications that a Jolt client receives
as aresult of aBEA Tuxedo client or service issuing a broadcast using either a
t pbroadcast () or adirectly targeted message viaa t pnoti fy() ATMI call.

Brokered Event Notifications—these notifications are received by a Jolt client
through the BEA Tuxedo Event Broker. The notifications are only received
when the Jolt client subscribes to an event and any BEA Tuxedo client or server
issues a system-posted event or t ppost () call.

Event Subscription Classes

The Jolt Class Library provides four classes that implement the asynchronous
notification mechanism for Jolt client applications:

JoltSession—the JoltSession class includes an onRepl y() method for receiving
notifications and notification messages.

JoltReply—the JoltReply class gives the client application accessto any
messages received with an event or notification.

JoltM essage—the JoltM essage class provides get () methods for obtaining
information about the notification or event.

JoltUserEvent—the JoltUserEvent class supports subscription to both unsolicited
and event notification types.

For additional information about these classes refer to the BEA Jolt APl Reference.

Using BEA Jolt 5-49

5 wus ng the Jolt Class Library

Notification Event Handler

5-50

For both unsolicited notifications and a brokered event notification, the Jolt client
application reguires an event handler routine that isinvoked upon receipt of a
notification. Jolt only supports asingle handler per session. In BEA Tuxedo versions,
you cannot determine which event generated a notification. Therefore, you cannot
invoke an event-specific handler based on a particular event.

The client application must provide a single handler (by overriding the onRepl y()
method) per session that will beinvoked for all notifications received by that client for
that session. The single handler call-back function is used for both unsolicited and
event notification types. It is up to the (user-supplied) handler routine to determine
what event caused the handler invocation and to take appropriate action. If the user
does not override the session handler, then notification messages aresilently discarded
by the default handler.

The Jolt client providesthe call back function by subclassing the JoltSession class and
overriding the onRepl y() method with a user-defined onRepl y() method.

In BEA Tuxedo/ATMI clients, processing in the handler call-back function is limited
to asubset of ATMI calls. This restriction does not apply to Jolt clients. Separate
threads are used to monitor notifications and run the event handler method. A Jolt
client can perform al Jolt-supported functionality from within the handler. All the
rules that apply to a normal Jolt client program apply to the handler, such asasingle
transaction per session at any time.

Each invocation of the handler method takes placein aseparatethread. The application
developer should ensure that theonRepl y() method is either synchronized or written
thread-safe, because separate threads could be executing the method simultaneously.

Jolt uses an implicit model for enabling the handler routine. When a client subscribes
to an event, Jolt internally enables the handler for that client, thus enabling unsolicited
notifications aswell. A Jolt client cannot subscribe to event notifications without also
receiving unsolicited notifications. In addition, asingleonRepl y() methodisinvoked
for both types of notifications.

Using BEA Jolt

Event Subscription and Notifications

Connection Modes

Jolt supports notification receipts for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive al
notifications. Jolt clients working in connection-less mode receive notifications while
they have an active network connection to the Jolt Session Handler (JSH). When the
network connection is closed, the JSH logs and drops natifications destined for the
client. Jolt clients operating in a connection-less mode do not receive unsolicited
messages or notifications while they do not have an active network connection. All
messages received during this time are logged and discarded by the JSH.

Connection mode notification handling includes acknowledged notifications for Jolt
clientsin the BEA Tuxedo environment. If a JSH receives an acknowledged
notification for aclient and the client does not have an active network connection, the
JSH logs an error and returns a failure acknowledgment to the notification.

Notification Data Buffers

When aclient receives notification, it is accompanied by adata buffer. The data buffer
can be of any BEA Tuxedo data buffer type. Jolt clients (for example, the handler)
receive these buffersasa Jol t Message object and should use the appropriate

Jol t Message classget *() methods to retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for
notification. However, the Jolt client application programmer needs to know field
names.

The Jolt system does not provide functionality equivalent to t pt ypes() in BEA
Tuxedo. For FML and VIEW buffers, the data is accessed using the get * () methods
with the appropriate field name, for example:

getIntDef ("ACCOUNT |ID', -1);

For STRING and CARRAY buffers, the datais accessed by the same name as the
buffer type:

get StringDef ("STRING', null);
get BytesDef (" CARRAY", null);

Using BEA Jolt 5-51

5 wus ng the Jolt Class Library

STRING and CARRAY buffers contain only a single data element. This complete
element is returned by the preceding get * () methods.

BEA Tuxedo Event Subscription

BEA Tuxedo brokered event notification allows BEA Tuxedo programsto post events
without knowing what other programs are supposed to receive notification of an
event’'s occurrence. The Jolt event notification allows Jolt client applications to
subscribe to BEA Tuxedo events that are broadcast or posted using the BEA Tuxedo
tpnotify() ortpbroadcast() calls.

Jolt clients can only subscribe to events and notifications that are generated by other
componentsin BEA Tuxedo (such asaBEA Tuxedo service or client). Jolt clients can
not send events or notifications.

Supported Subscription Types

Jolt only supports notification types of subscriptions. The Jolt onRepl y() method is
called when a subscription is fulfilled. The Jolt API does not support dispatching a
service routine or enqueueing a message to an application queue when anotificationis
received.

Subscribing to Notifications

5-52

If a Jolt client subscribes to asingle event notification, the client receives both
unsolicited messages and event notification. Subscribing to an eventimplicitly enables
unsolicited notification. This means that if the application creates a JoltUserEvent
object for Event "X", the client automatically receives notifications directed to it asa
result of t pnoti fy() ort pbroadcast ().

Note: Subscribing to single event notification is not the recommended method for
enabling unsolicited notification. If you want unsolicited notification, the
application should explicitly subscribe to unsolicited notifications (as
described in the JoltUserEvent class). The next section isabout unsubscribing
from notifications.

Using BEA Jolt

Event Subscription and Notifications

Unsubscribing from Notifications

To stop subscribing to event notifications and/or unsolicited messages, you need to use
the JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications with
an unsubscribe method does not turn off all subscription notifications. This differs
from BEA Tuxedo. In BEA Tuxedo the use of t pset unsol () with aNULL handler
turns off all subscription notifications.

When unsubscribing, the following considerations apply:

If aclient is subscribed to a single event, unsubscribing from notification
disables both event notification and unsolicited messages.

If aclient has multiple subscriptions, then unsubscribing from any single
subscription disables only that single subscription. Unsolicited notifications
continue. Only the last subscription to be unsubscribed causes unsolicited
notification to stop.

If a client subscribes to both unsolicited and event notifications, then
unsubscribing to only the unsolicited notification will not stop either type of
notification from continuing. In addition, this unsubscribe does not throw an
exception. However, the Jolt API notes that an unsubscribe has taken place, and
a subsequent unsubscribe to the remaining event disables both event notification
and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to make
sure that you have unsubscribed to all events.

Using BEA Jolt 5-53

5 wus ng the Jolt Class Library

Using the Jolt API to Receive BEA Tuxedo Notifications

5-54

The“ Asynchronous Notification” listing shows how to use the Jolt Class Library for
receiving notifications and includes the use of the Jol t Sessi on, Jol t Repl y,
Jol t Message and Jol t User Event classes.

Listing 5-12 Asynchronous Notification

cl ass Event Sessi on extends Jol t Sessi on

{
public Event Sessi on(Jol t SessionAttributes attr, String user,
String role, String upass, String apass)
{

super (attr, user, role, upass, apass);

/**
* Override the default unsolicited nessage handl er.

* @aramreply a place holder for the unsolicited nessage
* @ee bea.jolt.JoltReply

*/

public void onReply(JoltReply reply)

{
/1 Print out the STRING buffer type nessage whi ch contains
/1 only one field; the field nane nust be "STRING'. |[If the
/'l message uses CARRAY buffer type, the field name must be
/Il "CARRAY'. Qherwi se, the field names nust conformto the
// elenments in FML or VIEW
Jol t Message nmsg = (Jol t Message) reply. get Message();
Systemout. println(nmsg. getStringDef ("STRING', "No Mg"));

}

public static void main(Strings args[])

{

Jol t User Event unsol Event;
Jol t User Event hel | oEvent;
Event Sessi on session;

/1 Instantiate nmy session object which can print out the
/1 unsolicited nessages. Then subscribe to HELLO event
/1 and Unsolicited Notification which both use STRI NG

/1 buffer type for the unsolicited nessages.

sessi on = new Event Session(...);

Using BEA Jolt

Event Subscription and Notifications

hel | oEvent = new Jol t User Event ("HELLO', null, session);
unsol Event = new Jol t User Event (Jol t User Event . UNSOLMSG nul |,
sessi on);

/1 Unsubscri be the HELLO event and unsolicited notification.
hel | oEvent . unsubscri be();
unsol Event . unsubscri be();

Using BEA Jolt 5-55

5 wus ng the Jolt Class Library

Clearing Parameter Values

5-56

The Jolt Class Library containsthe cl ear () method, which allows you to remove
existing attributes from an object and, in effect, provides for the reuse of the object.
The*“Jolt Object Reuse (reuseSample.java)” listing illustrates how to usethecl ear ()
method to clear parameter values and how to reuse the JoltRemoteService parameter
values; you do not have to destroy the service to reuse it. Instead, the svc. cl ear () ;
statement is used to discard the existing input parameters before reusing the
addString() method.

Listing 513 Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 BEA Systens, Inc. Al Rights Reserved */
i nport java.net.?*;
inport java.io.*;
inport bea.jolt.?*;

/*
* This is a Jolt sanple programthat illustrates how to reuse the
* Jol t RenpteServi ce after each invocation.

*/

class reuseSanpl e

{

private static Jolt Session s_session;

static void init(String host, short port)

{
/* Prepare to connect to the Tuxedo domain. */
Jol t SessionAttributes attr = new Jolt SessionAttributes();
attr.setString(attr. APPADDRESS, "//”+ host+":” + port);

String username = null;

String userrole = “sw devel oper”;
String appl passwd
String userpasswd

= nul |;
= nul |;
/* Check what authentication | evel has been set. */
switch (attr.checkAuthenticationLevel ())
{
case Jol t Sessi onAttri butes. NOAUTH:
br eak;
case Jol t Sessi onAttri but es. APPASSWORD:
appl passwd = “secret8”;
br eak;

Using BEA Jolt

Clearing Parameter Values

}

/*
/*
att
s_s
use

}

public

{
Str

sho

case Jolt Sessi onAttri but es. USRPASSWORD:

username = “nyNane”;
user passwd = “BEA#1";
appl passwd = “secret8”;
br eak;

Logon now wi thout any idle tinmout (0). */

The network connection is retained until |ogoff. */
r.setlnt(attr.|DLETI MEQUT, 0);

ession = new Jol t Session(attr, usernanme, userrole,
rpasswd, appl passwd);

static void main(String args[])

i ng host;
rt port;

Jol t Renot eSer vi ce svc;

if (args.length = 2)

{
Systemerr.println(“Usage: reuseSanpl e host port”);
Systemexit(1l);

}

/* Get the host name and port nunber for initialization. */

host = args[0];

port = (short)Integer.parselnt(args[1]);

init(host, port);

/*

Get the object reference to the DELREC service. This

* service has no output paraneters, but has only one input

*

*/
svc
try
{

paranet er .

= new Jol t Renot eServi ce(“DELREC’, s_session);

/* Set input paraneter REPNAME. */

svc. addStri ng(“ REPNAME’, “Recordl”);

svc.call (null);

/* Change the input paranmeter before reusing it */
svc. set String(“ REPNAME’, “Record2”);

svc.call (null);

/* Sinmply discard all input parameters */
svc. clear();

svc. addStri ng(“ REPNAME”, “Record3”);
svc.call (null);

Using BEA Jolt 5-57

5 wus ng the Jolt Class Library

catch (ApplicationException e)

Systemerr.println(“Service DELREC failed: “+
e. get Message()+" “+ svc.get StringDef (“MESSAGE", null));
}

/* Logoff now and get rid of the object. */
s_sessi on. endSessi on();

Reusing Objects

5-58

Thefollowing listing, “ Extending Jolt Remote Service (extendSample.java),”
illustrates one way to subclass the JoltRemoteService class. In this case, a
TransferService class is created by subclassing the JoltRemoteService class. The
TransferService class extends the JoltRemoteService class, adding a Transfer feature
that makes use of the BEA Tuxedo BANKAPP funds TRANSFER service.

Thefollowing listing uses the ext ends keyword from the Java language. The
ext ends keyword isused in Javato subclass abase (parent) class. The following code
shows one of many waysto extend from JoltRemoteService.

Listing 514 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1999 BEA Systens, Inc. Al Rights Reserved */

i nport java.net.?*;
inport java.io.*;
inport bea.jolt.?*;

/*
* This Jolt sanple code fragnent illustrates how to custom ze
* Jol t Renpt eService. It uses the Java | anguage “extends” nechani sm
*/
class TransferService extends Jolt RenpteService
{
public String fronBal;
public String toBal;

Using BEA Jolt

Reusing Objects

public TransferService(JoltSession session)

{
super (“TRANSFER’, session);
}
public String doxfer(int fromAcct Num int toAcctNum String
anount)
{

}

/* Clear any previous input paranmeters */
this.clear();

/* Set the input paraneters */
this.setlntltem(“ACCOUNT_I D', 0, fromAcct Num;
this.setlntltem(“ACCOUNT_I D', 1, toAcctNun);
this.setString(“SAMOUNT”, anount);

try

{
/* Invoke the transfer service. */
this.call (null);

/* Get the output paraneters */
fromBal = this.getStringltenDef(“SBALANCE", 0, null);
if (fromBal == null)
return “No bal ance from Account “ +
fromAcct Num
toBal = this.getStringltenDef (“SBALANCE", 1, null);

if (toBal == null)
return “No bal ance from Account “ + toAcctNum
return null;

catch (ApplicationException e)

/* The transaction failed, return the reason */
return this.getStringDef(“STATLIN', “Unknown reason”);

cl ass extendSanpl e

{

public static void main(String args[])

{

Jol t Sessi on s_sessi on;
String host ;

short port;

Tr ansferService xfer;
String failure;

Using BEA Jolt 5-59

5 wus ng the Jolt Class Library

if (args.length !'= 2)
{
Systemerr.println(“Usage: reuseSanple host port”);
Systemexit(1);
}

/* Get the host name and port nunber for initialization. */
host = args[0];
port = (short)Integer.parselnt(args[1]);

/* Prepare to connect to the Tuxedo domain. */
Jol t Sessi onAttributes attr = new Jol t Sessi onAttributes();
attr.setString(attr. APPADDRESS, "//”+ host+":" + port);

String username = null;

String userrole = “swdevel oper”;
String appl passwd = nul |;

String userpasswd = nul|;
/* Check what authentication |evel has been set. */
swi tch (attr.checkAut henticationLevel ())

{
case Jol t Sessi onAttri butes. NOAUTH:
br eak;
case Jol t Sessi onAttri but es. APPASSWORD:
appl passwd = “secret8”;
br eak;
case Jol t Sessi onAttri but es. USRPASSWORD:
username = “myName”;
user passwd = “BEA#1";
appl passwd = “secret8”;
br eak;
}
/* Logon now wi thout any idle timeout (0). */
/* The network connection is retained until |ogoff. */

attr.setlnt(attr.|DLETI MEQUT, 0);
s_session = new JoltSession(attr, usernanme, userrole,
user passwd, appl passwd) ;

/*
* Transf er Servi ce extends fromJol t Renpt eServi ce and uses the
* standard BEA Tuxedo BankApp TRANSFER service. W invoke
this
* service twice with different paranmeters. Note, we assune
* that “s_session” is initialized sonewhere before.
*/

xfer = new TransferService(s_session);
if ((failure = xfer.doxfer (10000, 10001, “500.00")) !'= null)

5-60 Using BEA Jolt

Reusing Objects

Systemerr.pri
el se

{
System out . pri
System out . pri
System out . pri
}

if ((failure = xfer.
Systemerr. pri
el se

{
System out . pri
System out . pri
System out . pri
}

ntln(“Tranasaction failed: “ + failure);

ntln(“Transaction is done.”);
ntln(“From Acct Bal ance: “+xfer.fronmBal);
ntln(* To Acct Balance: “+xfer.toBal);

doxfer (51334, 40343, “$123.25")) !=null)
ntln(“Tranasaction failed: “ + failure);

ntln(“Transaction is done.”);
ntln(“From Acct Bal ance: “+xfer.fronBal);
ntln(* To Acct Bal ance: “+xfer.toBal);

Using BEA Jolt 5-61

5 wus ng the Jolt Class Library

Deploying and Localizing Jolt Applets

Using the Jolt Class Library, you can build Java applications that execute from within
aclient Web browser. For these types of applications, perform the following
application development tasks:

m Deploy your Jolt applet in an HTML page.
m Localize your Jolt applets for different languages and character sets.

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, consider the following:

m Installation and configuration requirements for the BEA Tuxedo server and Jolt
Server

m Client-side execution of the applet
m Requirements for the Web server that downloads the Java applet

Information for configuring the BEA Tuxedo server and Jolt server to work with Jolt
isavailablein Installing the BEA Tuxedo System. The following sections describe
common client and Web server considerations for deploying Jolt applets.

5-62 Using BEA Jolt

Deploying and Localizing Jolt Applets

Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works just as
any other Javaappletin an HTML page. A Jolt applet can be embedded in an HTML
page using the HTML applet tag:

<appl et code="appl et _nane. cl ass” > </ appl et >

If the Jolt applet is embedded in an HTML page, the applet is downloaded when the
HTML pageloads. Y ou can code the appl et to run immediately after it is downloaded,
or you can include code that sets the appl et to run based upon a user action, atimeout,
or asetinterval. Y ou can also create an applet that downloadsin the HTML page, but
opensin another window or, for instance, simply plays a series of sounds or musical
tunes at intervals. The programmer has alarge degree of freedom in coding the applet
initialization procedure.

Note: If the user loads anew HTML page into the browser, the applet execution is
stopped.

Web Server Considerations

When you use the Jolt classes in a Java applet, the Jolt Server must run on the same
machine asthe Web server that downloads the Javaapplet unlessyou install Jolt Relay
on the Web server.

When awebmaster setsup aWeb server, adirectory isspecified to storeall theHTML
files. Within that directory, a subdirectory named “ classes’ must be created to contain
all Java class files and packages. For example:

<htm -dir>/cl asses/ bea/jolt

Or, you can set the CLASSPATH to includethej ol t . j ar file that contains all the Jolt
classes.

Note: Y ou can place the Jolt classes subdirectory anywhere. For convenient access,
you may want to place it in the same directory asthe HTML files. The only
requirement for the Jolt classes subdirectory is that the classes must be made
available to the Web server.

Using BEA Jolt 5-63

5 wus ng the Jolt Class Library

TheHTML file for the Jolt applet should refer the codebasetothejol t. jar fileor
the cl asses directory. For example:

/export/htm/

| _ classes/

| | beal

| | | jolt/

| | | JoltSessionAttributes.cl ass
| | | JoltRenpteServices.cl ass

I I [

| | nyconpany/

| [app. cl ass

| _ exl.htn

| ex2.htn

The webmaster may specify the “app” appletinex1. htnl as:

<appl et codebase="cl asses” code=nyconpany. app. cl ass w dt h=400
hei ght =200>

Localizing a Jolt Applet

If your Jolt application isintended for international use, you must address certain
localizationissues. Localization considerationsapply to applicationsthat executefrom
aclient Web browser and applications that are designed to run outside a Web browser
environment. Localization tasks can be divided into two categories:

m Adapting an application from its original language to atarget language.

m Translating strings from one language to another. This sometimes requires
specifying a different alphabet or a character set from the one used in the
original language.

For localization, the Jolt Class Library package relies on the conventions of the Java
language and the BEA Tuxedo system. Jolt transfers Java 16-bit Unicode charactersto
the JSH. The JSH provides a mechanism to convert Unicodeto thelocal character set.

For information about the Java implementation for Unicode and character escapes,
refer to your Java Development Kit (JDK) documentation.

5-64 Using BEA Jolt

CHAPTER

6

Using JoltBeans

Formerly available asan add on, JoltBeans areincluded in BEA Jolt and are as easy to

use as JavaBeans. They are JavaBeans components you use in Java devel opment

environmentsto construct Jolt clients. Y ou can use popul ar Java-enabled devel opment

tools such as Symantec Visual Café to graphically construct client applications.

JoltBeans provide a JavaBeans-compliant interface to BEA Jolt. Y ou can develop a
fully functional BEA Jolt client without writing any code.

Thistopic includes the following sections:

Overview of Jolt Beans

Basic Steps for Using JoltBeans
JavaBeans Events and BEA Tuxedo Events
How JoltBeans Use JavaBeans Events

The JoltBeans Toolkit

Jolt-Aware GUI Beans

Using the Property List and the Property Editor to Modify the JoltBeans
Properties

JoltBeans Class Library Walkthrough
Using the Jolt Repository and Setting the Property Values
JoltBeans Programming Tasks

Using BEA Jolt

6-1

6 uUs ng JoltBeans

Overview of Jolt Beans

6-2

JoltBeans consists of two sets of Java Beans. The first set, the JoltBeans Toolkit, isa
beans version of the Jolt API. The second set consists of GUI beans, which include
Jolt-aware AWT beans and Jolt-aware Swing beans. These GUI components are a
“Jolt-enabled” version of some of the standard Java AWT and Swing components, and
help you build a Jolt client GUI with minimal or no coding.

Y ou can drag and drop JoltBeans from the component pal ette of a development tool
and position them on the Java form (or forms) of the Jolt client application you are
creating. Y ou can populate the properties of the beans and graphically establish event
source-listener relationships between various beans of the application or applet.
Typically, the development tool is used to generate the event hook-up code, or you can
code the hook-up manually. Client development using JoltBeansisintegrated with the
BEA Jolt Repository, providing easy access to available BEA Tuxedo services.

Note: Currently, Symantec Visual Café 3.0 isthe only IDE that is certified by BEA
for use with JoltBeans. However, JoltBeans are al so compatible with other
Java development environments such as Visua Age.

To use the JoltBeans Toolkit, it is recommended that you be familiar with
JavaBeans-enabled, integrated devel opment environments (IDEs). Thewalkthroughin
this chapter isbased on Symantec’sVisual Café 3.0 IDE and illustrates the basic steps
of building a sample applet.

Using BEA Jolt

Overview of Jolt Beans

JoltBeans Terms

Y ou will encounter the following terms as you work with JoltBeans:

JavaBeans
Portable, platform-independent, reusable software components that are
graphically displayed in a development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of
communication can be JavaBeans events, methods, or properties offered by
JoltBeans.

Jolt-Awar e Bean
A bean that is the source of JoltInputEvents, listener of JoltOutputEvents, or
both. Jolt-aware beans are a subset of Custom GUI elementsthat follow beans
guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components Abstract Window Toolkit (AWT) and
Swing, both containing the JoltList, JoltCheckBox, JoltTextField, JoltLabel,
and JoltChoice components.

JoltBeans Toolkit
A JavaBeans-compliant interface to BEA Jolt, which includes the
JoltServiceBean, JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registered as a
listener of events from another bean.

Using BEA Jolt 6-3

6 uUs ng JoltBeans

Adding JoltBeans to Your Java Development
Environment

6-4

Before you can use JoltBeans, set up your Java devel opment environment to include
JoltBeans:

m Set the CLASSPATH in your devel opment environment to include al Jolt classes.
m Add JoltBeans to the Component Library of your development environment.

The method of setting the CLASSPATH can vary, depending on the devel opment
environment you use.

JoltBeansincludes aset of . j ar filescontaining all of the JoltBeans. Y ou can add
these. j ar filesto your preferred Java devel opment environment so that JoltBeans are
available in the component library of your Javatool. For example, using Symantec
Visual Café, you can set the CLASSPATH so that the . j ar filesarevisiblein the
Component Library window of Visual Café. You only need to set the CLASSPATH of
these . jar filesinyour development environment once. After you place these. j ar
filesin the CLASSPATH of your development environment, you can then add JoltBeans
to the Component Library. Then you can simply drag and drop any JoltBean directly
onto the Javaform on which you are developing your Jolt client application.

To set the CLASSPATH i n your Java devel opment environment, follow the instructions
in the product documentation for your devel opment environment. Navigate from the
IDE of your development tool to the directory wherethej ol t. j ar fileresides. The
jolt.jar fileistypicaly found in the directory called %rUXDI RoA udat adoj \j ol t.
Thejolt.jar filecontainsthe main Jolt classes. Set the CLASSPATH to include these
classes. The JoltBean . j ar files do not need to be added to the CLASSPATH. To use
them, you only need to add them as componentsin your IDE.

After you have set the CLASSPATHto include the Jolt classes, you can add JoltBeansto
the Component Library of your development environment. See the documentation for
your particular development environment for instructions on populating the
Component Library.

When you are ready to add JoltBeans to the Component Library of your devel opment
environment, add only the development version of JoltBeans. Refer to “Using
Development and Run-time JoltBeans” for complete details.

Using BEA Jolt

Basic Steps for Using JoltBeans

Using Development and Run-time JoltBeans

The. j ar files containing JoltBeans contain two versions of each JoltBean, a
development version and arun-time version. The development version of each
JoltBean name endswith the suffix Dev. Therun-time version of each class name ends
with the suffix Rt . For example, the development version of the class, JoltBean, is
Jol t BeanDev, while the run-time version of the same classisJol t BeanRt .

Use the development version of JoltBeans during the devel opment process. The
development JoltBeans have additional properties that enhance development in a
graphic IDE. For exampl e, the JoltBeans have graphic properties (“ bean information”)
that allow you to work with them as graphic iconsin your development environment.

The run-time version of JoltBeans does not have these additional properties. Y ou do
not need the additional development properties of the beans at run time. The run-time
beans are simply a pared down version of the development JoltBeans.

When you compile your application in your development environment, it is compiled
using the development beans. However, if you want to run it from a command line
outside of your development environment, it is recommended that you set the
CLASSPATH so that the run-time beans are used when compiling your application.

Basic Steps for Using JoltBeans

The basic steps for using JoltBeans are as follows:

1. Add thedevelopment version of JoltBeansto the Component Library of your Java
development environment, as described in “Adding JoltBeansto Your Java
Development Environment.”

2. Drag the beans from the JoltBeans component palette of your devel opment
environment to the Java form-designer for a Jolt client application or applet.

3. Populate the properties of the beans and set up the event-source listener
rel ationships between the beans of the application or applet (“wire” the beans
together). The development tool generates the event hook-up code.

4. Add the application logic to the event callbacks.

Using BEA Jolt 6-5

6 uUs ng JoltBeans

These steps are explained in more detail in later sections. The JoltBeans walkthrough
demonstrates each of these steps with an example.

JavaBeans Events and BEA Tuxedo Events

JavaBeans communicate through events. An event in a BEA Tuxedo system is
different from an event in a JavaBeans environment. In aBEA Tuxedo application, an
event is raised from one part of an application to another part of the same application.
JoltBeans events are communicated between beans.

Using BEA Tuxedo Event Subscription and Notification
with JoltBeans

6-6

BEA Tuxedo supports brokered and unsolicited event notification. Jolt provides a
mechanism for Jolt clientsto receive BEA Tuxedo events. JoltBeans also include this
capability.

Note: BEA Tuxedo event subscription and notification is different from JavaBeans
events.

Thefollowing procedure illustrates how the BEA Tuxedo asynchronous notification
mechanism is used in JoltBeans applications.

1. Usetheset Event Nane() andset Fi | t er () methods of the JoltUserEventBean
to specify the BEA Tuxedo event to which you want to subscribe.

2. The component that receives the event notificationsregistersitself asa
JoltOutputL istener to the JoltSessionBean.

3. Thesubscri be() method is called on JoltUserEventBean.

4. When the actual BEA Tuxedo event notification arrives, JoltSessionBean sends a
JoltOutputEvent to its listeners by calling ser vi ceRet ur ned() onthem. The
JoltOutputEvent object contains the data of the BEA Tuxedo event.

Using BEA Jolt

JavaBeans Events and BEA Tuxedo Events

When the client no longer needs to receive the event, it callsunsubscri be() onthe
JoltUserEventBean.

Note: If the client will only subscribe to unsolicited events, use set Event Nane
("\\. UNSOLMSG') , which can be set using the property sheet. Event Name
and Fi | t er are properties of the JoltUserEventBean.

Using BEA Jolt 6-7

6 uUs ng JoltBeans

How JoltBeans Use JavaBeans Events

6-8

A Jolt client applet or application that is built using JoltBeans typically consists of
Jolt-aware GUI beans, such as JoltTextField or JoltList, and JoltBeans, such as
JoltServiceBean and JoltSessionBean. The main mode of communication between
Beansis by JavaBeans events.

Jolt-aware beans are sources of JoltlnputEvents or listeners of JoltOutputEvents or
both. JoltServiceBeans are sources of JoltOutputEvents and listeners of
JoltInputEvents.

The Jolt-aware GUI Beans expose properties and methods so you can link the beans
directly to the parameters of a BEA Tuxedo service (represented by a
JoltServiceBean). Jolt-aware beans notify the JoltServiceBean via a JoltInputEvent
when their content changes. The JoltServiceBean sends a JoltOutputEvent to all
registered Jolt-aware beans when the reply datais available after the service call. The
Jolt-aware GUI Beans contain logic that updates their contents with the corresponding
output parameter of the service.

The following figure represents the possible relati onships among the JoltBeans.

Using BEA Jolt

The JoltBeans Toolkit

Figure6-1 Possible Interrelationships Among JoltBeans

Custamn GUI element

Custom GUI element

Jolt aware AWT bean

Java AWT tean
JoltlnputEvent

JoltOutputEvent

Jolt aware AWT hean

Java AWT hbean

JolthhputEvent

JoltCutputEvent

PropertyChangeEvent

The JoltBeans Toolkit

The JoltBeans Tooalkit includes the following beans:

m JoltSessionBean
m JoltServiceBean

m JoltUserEventBean

These components transform the complete Jolt Class Library into beans components,
with all of the features of any typical JavaBean, including easy reuse and graphic

development.

Refer to the online BEA Jolt API Reference for specific descriptions of the JoltBeans

classes, constructors, and methods.

The following sections provide information about the properties of each bean.

Using BEA Jolt 6-9

6 uUs ng JoltBeans

JoltSessionBean

The JoltSessionBean, which represents the BEA Tuxedo session, encapsulates the
functionality of the JoltSession, JoltSessionAttributes, and JoltTransaction classes.
The JoltSessionBean has properties that you use to set session and security attributes,
such as sending atimeout or aBEA Tuxedo username, aswell as methodsto open and
close aBEA Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the BEA Tuxedo sessionis
established or closed. PropertyChange is a standard bean event defined in the

j ava. beans package. The purpose of thisevent isto signal other beans about achange
of the value of a property in the source bean. In this case, the source isthe
JoltSessionBean,; the targets are JoltServiceBeans or JoltUserEventBeans; and the
property changing isthe LoggedOn property of the JoltSessionBean. When alogonis
successful and a session is established, LoggedOn is set to t r ue. After the logoff is
successful and the session is closed, the L oggedOn property isset to f al se.

The JoltSessionBean provides methods to control transactions, including
begi nTransacti on(), conmi t Transaction(), androl | backTransaction().

The following table shows the JoltSessionBean properties and descriptions.

Table 6-1 JoltSessionBean Properties and Descriptions

Property

Description

AppAddress

Set the | P address (host name) and port number of the JSL or the Jolt
Relay. Theformat is/ / host : port numnber
(for example, nyhost : 7000).

AppPassword

Set the BEA Tuxedo application password used at logon, if required.

ldleTimeOut

Set the IDLETIMEOUT value.

inTransaction

Indicatet r ue orf al se dependingif atransaction has been started
and not committed or aborted.

LoggedOn

Indicatet r ue or f al se if aBEA Tuxedo session does or does not
exist.

ReceiveTimeOut

Set the RECVTIMEOUT value.

SendTimeOut

6-10 Using BEA Jolt

Set the SENDTIMEOUT value.

The JoltBeans Toolkit

Table 6-1 JoltSessionBean Properties and Descriptions (Continued)

Property Description

SessionTimeOut Set the SESSIONTIMEOUT value.

UserName Indicate the BEA Tuxedo username, if required.

UserPassword Indicate the BEA Tuxedo user password, if required.

UserRole Indicate the BEA Tuxedo user role, if required.
JoltServiceBean

The JoltServiceBean represents aremote BEA Tuxedo service. The name of the
service is set as a property of the JoltServiceBean. The JoltServiceBean listens to
JoltInputEvents from other beans to populate its input buffer. JoltServiceBean offers
thecal | Servi ce() method toinvoke the service. JoltServiceBean is an event source
for JoltOutputEvents that carry information about the output of the service. After a
successful cal | Servi ce(), listener beans are notified via a JoltOutputEvent that
carries the reply message.

Although the primary way of changing and querying the underlying message buffer of
the JoltServiceBean isviaevents, the JoltServiceBean also provides methodsto access
the underlying message buffer directly (set I nput Val ue(..), get Qut put Val ue(..)).

The following table shows the JoltServiceBean properties and descriptions.

Table 6-2 JoltServiceBean Propertiesand Descriptions

Property Description

ServiceName The name of the BEA Tuxedo service represented by this
JoltServiceBean.

Session The JoltSessionBean associ ated with the bean that allows access to

the BEA Tuxedo client session.

Transactional Settot r ue if thisJoltServiceBean isto be included in the
transaction that was started by its JoltSessionBean.

Using BEA Jolt 611

6 uUs ng JoltBeans

JoltUserEventBean

The JoltUserEventBean provides access to BEA Tuxedo events. Y ou define the BEA
Tuxedo event to which you subscribe or unsubscribe by setting the appropriate
properties of this bean (event name and event filter). The actual event notification is
delivered in the form of a JoltOutputEvent from the JoltSessionBean.

Thefollowing table shows the JoltUserEventBean properties and descriptions.

Table 6-3 JoltUser EventBean Properties and Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter.

Session The JoltSessionBean associated with the bean that allows accessto

the BEA Tuxedo client session.

Jolt-Aware GUI Beans

The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and are
inherited from the Java Abstract Windowing Toolkit. They include:

m JoltTextField

m Jol t Label

m Jol tList

m Jol t Checkbox

m Jol t Choi ce

Note: To avoid errorswhen compiling, it is recommended that you use only the

AWT beans together, or the Swing beans together, rather than mixing beans
from these two packages.

6-12 Using BEA Jolt

Jolt-Aware GUI Beans

JoltTextField

JoltLabel

JoltList

ThisisaJolt-aware extension of j ava. awt . Text Fi el d and Swing JText fi el d.
JoltTextField contains parts of the input for aservice. A JoltServiceBean can listen to
events raised by a JoltTextField. JoltTextField sends JoltlnputEvents to its listeners
(typicaly JoltServiceBeans) when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listensto
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it is linked.

ThisisaJolt-aware extension of j ava. awt . Label and Swing JLabel that islinked
to aspecific field in the Jolt output buffer by its JoltFieldName property. If the field
occurs multiple times, the occurrence to which thistextfield is linked is specified by
the occurrencel ndex property of this bean. JoltLabel can be connected with
JoltServiceBeans to display output from a service. A JoltLabel listensto
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it is linked.

ThisisaJolt-aware extension of j ava. awt . Li st and Swing Jl i st that islinked to a
specific Jolt field in the Jolt input or output buffer by its JoltFieldName property. If the
field occurs multiple timesin the Jolt input buffer, the occurrence thislist islinked to
is specified by the occurrencel ndex property of this bean. JoltList can be connected
with JoltServiceBeans in two ways:

m JoltList contains parts of the input for aservice. A JoltServiceBean listensto
events raised by a JoltList. JoltList sends JoltInputEventsto its listeners when
the selection in the listbox changes. The JoltInputEvent, in this case, is popul ated
with the single value of the selected item.

m JoltList displays output from a service. When used to display the output of a
service, JoltList listens to JoltOutputEvents from JoltServiceBeans and updates
its contents accordingly with all occurrences of the field to which it islinked.

Using BEA Jolt 6-13

6 uUs ng JoltBeans

JoltCheckbox

JoltCheckbox is a Jolt-aware extension of j ava. awt . Checkbox and Swing
JCheckBox that islinked to aspecific field inthe Jolt input buffer by its JoltFieldName
property. If the field occurs multiple times, the occurrence to which this checkbox is
linked is specified by the occurrencel ndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the input for
aservice. A JoltServiceBean listens to events raised by a JoltCheckbox. JoltCheckbox
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection
in the checkbox changes. The JoltInputEvent in this case is populated with the
TrueVal ue property of datatype String (if the box is selected) or Fal seval ue (if the
box is unselected).

JoltChoice

6-14

JoltChoice providesaJolt-aware extension of j ava. awt . Choi ce and Swing JChoi ce
that islinked to a specific field in the Jolt input buffer by its JoltFieldName property.
If the field occurs multiple times, the occurrence to which this choiceislinked is
specified by the occurrencelndex property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input for a
service. A JoltServiceBean can listen to events raised by a JoltChoice. JoltChoice
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection
in the choicebox changes. The JoltinputEvent in this case is populated with the single
value of the selected item.

Note: For adetailed description of these classes, see the BEA Jolt API Reference.

Using BEA Jolt

Using the Property List and the Property Editor to Modify the JoltBeans Properties

Using the Property List and the Property
Editor to Modify the JoltBeans Properties

The values of most JoltBeans properties can be modified by editing the right column
of the Property List in your integrated devel opment environment (IDE), such asVisual
Café, as shown in the following figure “ Property List: Ellipsis Button.”

Custom property editors are provided for some properties of JoltBeans.

The custom property editors, accessed from the Property List, include dialog boxes
that you useto modify the property values. Y ou can invoke the custom property editors
from the Property List by clicking the button with the ellipsis (“...") that is next to the
value of the corresponding property value.

Figure6-2 Property List: Ellipsis Button

B Property List - JoltBeanDev !EE

IEE? JoltServiceBean vl

Class

beajoltheans. JoltServceBean

MName

Session

JoltServiceBean

null

Transactional

talze

When you click the ellipsis button, the Property Editor shown in the following figure

is displayed.

Using BEA Jolt 6-15

6 uUs ng JoltBeans

Figure6-3 Custom Property Editor Dialog Box

Custom Property Ed... E3

Services:

Logaon | I

The Custom Property Editor of JoltBeans reads cached information. Initially, no
cached information is available, so when the Property Editor is used for the first time,
the dialog box isempty. Log on to the Jolt Repository and load the property editor
cache from the repository.

For detail sabout the logon and using the Property List and Property Editor, see*Using
the Jolt Repository and Setting the Property VVaues’ on page 6-45.

6-16 Using BEA Jolt

JoltBeans Class Library Walkthrough

JoltBeans Class Library Walkthrough

Thiswalkthrough describes how to build an applet that you use to:

m Enter an account 1D

m Click on the Inquiry button

m Display the balance of the account (shown in the following figure)

The following figure shows an example of a completed Java form containing
JoltBeans. The applet implementsthe client functionality for the INQUIRY service of
the BANKAPP sample that isincluded with BEA Tuxedo. To run this sample, the
BEA Tuxedo server must be running.

Figure6-4 SampleInquiry Applet

E%Applet Viewer: Applet].class - [O] x]
Applet

Account D

Balance

Inguiry |

Using BEA Jolt 6-17

6 uUs ng JoltBeans

Refer to the figure “ Visual Café 3.0 Form Designer” on page 6-21 for an example of
each item required by the Javaform. Each item in that figure is described in the
following table “Required Form Elements’.

Table 6-4 Required Form Elements

Element Purpose

Applet (or JApplet,if JFC A form used to paint the beans in your development

applet is chosen) environment.

JoltSessionBean Logs on to aBEA Tuxedo session.

JoltTextField Gets input from the user (in this case, ACCOUNT_ID).

JoltTextField Displays the result (in this case, SBALANCE).

JoltServiceBean Accesses a BEA Tuxedo service. (In this case, INQUIRY
from BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.

Building the Sample Form

The sample form is created using an integrated devel opment environment (IDE), in
this example, Visual Café 3.0. The example demonstrates how to build an applet that
allows you to enter an account 1D and use a BEA Tuxedo service to get and show the
account balance.

Follow the basic steps below to create this sample.

1. InVisua Café, choose File - New Project and select either JFC Applet or AWT
application. This step providesyou with the basi ¢ form designer on which you drop
the JoltBeans.

2. Dragand drop all of the JoltBeans you want to use in your applet from the
Component Library onto the form designer.

3. Modify or customize each bean using the property list or the custom property
editor.

6-18 Using BEA Jolt

JoltBeans Class Library Walkthrough

4. Wire the beanstogether using the Interaction Wizard.
5. Compile the applet.

These steps are described in detail in the following sections.

Note: The graphicinterface of previous versions of Visual Café differ from the look
of Visual Café 3.0. Y ou can complete this sample applet in aprevious version
of Visual Café; however, the steps executed in the Interaction Wizard differ
dlightly from this example.

Placing JoltBeans onto the Form Designer

1. Choose File— New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in the following
figure) onto the palette of the form designer.

Using BEA Jolt 6-19

6 uUs ng JoltBeans

Figure6-5 JoltBeansand the Form Designer in Visual Café

Form D ezigner - JAppletl

[Component Library
-] Standard
F- (20 Uity
- Multimedia
#-C1Farms
[Project Templates
B0 Menus & Menu ltems
- dhawvARE
- Additional
F-CAPanels
-] Shapes
[

- 2@ JoliUserEventBean
388 JoltServiceBean
=23 JoltBeanDewsbet

-2 Joltlist
o JoltCheckbox

[JoltChoice
g JolfTextFiald
-[E JoltiLabel

Thefollowing figure “Visua Café 3.0 Form Designer” illustrates how JoltBeans

appear when they are placed on the palette of the Form Designer.

6-20 Using BEA Jolt

JoltBeans Class Library Walkthrough

Figure6-6 Visual Café 3.0 Form Designer

JoltTextField JoltSessionBean

o / SRS R

Label T
R 'Ziiiidﬁ_j____;_j—;ﬂdoltSerwceBean
= N

ftumnlff S Applet

3. Set the properties of each bean. To modify or customize the buttons, labels or
fields, use the property list. Some JoltBeans use a Custom Property Editor.

The following figure,” Example of JoltTextField Property List and Custom
Property Editor,” shows how selecting the JoltFieldName of the button property
list displays the Custom Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property of
the JoltTextField to ACCOUNT_ID).

Note: For complete information on setting and modifying the properties of the
JoltBeans, refer to “ Using the Jolt Repository and Setting the Property Values”
on page 6-45.

The following table specifies the property values that should be set. Values
specified in bold and italic text are required, and those in plain text are
recommended.

Table 6-5 Required and Recommended Property Values

Bean Property Value
labell Text Account ID
|abel2 Text Balance

Using BEA Jolt 6-21

6 uUs ng JoltBeans

6-22

Table 6-5 Required and Recommended Property Values (Continued)

Bean Property Value
JoltTextFieldl Name accountld
JoltTextFieldl JoltFieldName ACCOUNT_ID
JoltTextField2 Name balance
JoltTextField2 JoltFieldName SBALANCE
JoltSessionBeanl AppAddress /ltuxserv:2010
JoltServiceBeanl Name inquiry
JoltServiceBeanl ServiceName INQUIRY
buttonl Label Inquiry

Note: Inthis walkthrough, the default occurrencelndex of 0 works for both

JoltTextFields.

Refer to the following figure “Example of JoltTextField Property List and
Custom Property Editor”and “Using the Jolt Repository and Setting the Property
Values” on page 6-45 for genera guidelines about JoltBean properties.

Using BEA Jolt

JoltBeans Class Library Walkthrough

Figure6-7 Exampleof JoltTextField Property List and Custom Property Editor

Property List - JoltBeanDev_._ [_ [T]| wote: The Customn Property

I@ D Editoris populated andy if
account] A the Jolt Repository Jerver

Backgroand [whie REF) i rusming.
= Bounds

[]

Lt]

Lot 20 Custom Property Editor [x|
~-He ght 40
Closs aecjothears ot JoltTextField (EISHETES:
Lalumas J
CLrgor TEXT_CILIREOR AALAP T
Edilabile U SLRMIMAM
Erahled rug EE&&H\JCTE

o Fent = ;TATLIM

- Mame Jlizlog

-- Eizz 12

= Ehde

- Bald ‘alse
Ctelic ‘also

Fcreground W blazk ml I ACCOJINT_ID
Inherit Jarkornn| e
Inherit “ent TuE

Inharit =creqrou rue J
Mo te: Salect frorm the abdvwe

karre account D B list, o type in zaanmally.
Nrrurterrelnrla] 1

Tent

isihle T

5. To change the value of the JoltFieldName property, click on the ellipsis button of
the JoltFieldName in the Property List.

The Custom Property Editor is displayed.

6. Select or type the new field name (in this example, “ACCOUNT _ID") and click
OK.

The change isreflected in the Property List shown in the following figure
“Revised JoltFieldName in the JoltTextField Property List”and on the text field
shown on the figure “ Example of JoltBeans on the Form Designer with Property
Changes’ on page 6-25.

Using BEA Jolt 6-23

6 uUs ng JoltBeans

Note: The propertiesthat are visible in the Custom Property Editor are cached
locally; therefore, if the source database is modified you must use the Refresh
button to see the current, available properties.

Figure 6-8 Revised JoltFieldNamein the JoltTextField Property List

& Property List - JoltBeanDev... [l[=]F3

HE accountD -
Background [white
El- Bounds
o 7 0
e 0
- Wificth 20
-+ Height 40
Class beajolt beans.awt. JoltTextField
Columns]
Cursor TEXT_CURSOR
Editahle true
Enabled true
= Fant
- Mame Dialog
- Eize 12
£ Style
- Bold false
- talic falze
Faoreground W black
Inherit Backgroultrue
true
true
W A CCOUNT_ID
accountlD
Ocourrencelnde 0
Text
Yigihle true

Thefollowing figure “Example of JoltBeans on the Form Designer with
Property Changes” illustrates how the text on the button and the textfield
changes after the text is added to the property list fields for these beans.

6-24 Using BEA Jolt

JoltBeans Class Library Walkthrough

Figure 6-9 Example of JoltBeans on the Form Designer with Property Changes

Form Designer - JAppletl =] E3

[J&pplet [Mod | 4

7. After you set the properties to the right values (refer to the table “ Required and
Recommended Property Values’ on page 6-21 for additional information), define
how the beans will interact by wiring them together using the Visual Café
Interaction Wizard. Refer to “Wiring the JoltBeans Together” for details.

Using BEA Jolt 6-25

6 uUs ng JoltBeans

Wiring the JoltBeans Together

6-26

After al the beans are positioned on your form and the properties are set, you must
wire the beans and their events together. The following figure “ Sequence in Which
JoltBeans Are Wired” illustrates an example of the flow to help you determine the
correct order in which to wire the beans.

Wiring the beans allows you to establish event source-listener relationships between
various beans on the form. For example, the JoltServiceBean is a listener of
ActionEvents from the button and invokes cal | Servi ce() whentheeventis
received. Use the Visual Café Interaction Wizard to wire the beans together.

Thefollowing figure shows the sequence in which you will wire the beans together to
create this sample applet. The numbersin thisfigure correspond to the numbered steps
that follow.

Figure6-10 Sequencein Which JoltBeans Are Wired

Form Designer - JApplet1 =] E3

_____ ... —6

|Jﬁ-\pp|et1

Using BEA Jolt

JoltBeans Class Library Walkthrough

The steps below correspond to the callouts shown in the figure “ Sequence in Which
JoltBeans Are Wired” on page 6-26. Each of the steps below isdetail ed in the sections
that follow.

Step 1: Wire the JoltSessionBean L ogon
Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent

Step 4: Wire Button to JoltServiceBean Using JoltAction
Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent
Step 6: Wire the JoltSessionBean L ogoff

Step 7: Compile the Applet (not shown as a call out)

Using BEA Jolt 6-27

6 uUs ng JoltBeans

Step 1: Wire the JoltSessionBean Logon

1. Inthe Form Designer window, click the Interaction Wizard button.

2. Click in the applet window and drag aline to the JoltSessionBean as shown in the
following figure.

Figure6-11 Wirethe Applet to the Jolt Session Bean

Form Designer - JApplet1 o] 3

Yoo o, R Drag
................................... here

[J&pplet [Mod | 7

The Interaction Wizard window is displayed as shown in the figure “ Select
ComponentShown Event” on page 6-29, with the prompt:

What event in JAppletl do you want to start theinteraction?

6-28 Using BEA Jolt

JoltBeans Class Library Walkthrough

3. Select componentShown in the Interaction Wizard window as the event with
which you want to start the interaction, as shown in the following figure.

Figure6-12 Select ComponentShown Event

Interaction Wizard
‘What event in JApplet1 do you wart to start the interaction?

Ewvents:

- componentHidden d

-companenthioyvec

-componentResized
mpan ik

[=]- cortainer

companent Acdded

componentRemoved

[=]-focus

focusGained

. focusLost

El-key e

keyPressed

- hkeyReleased
keyTyped
=l mouse
: maouzeClicked j

IcomponentShown

[Group everts

= Back | Mext = | Rl | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select
Logon to the Tuxedo System Action” on page 6-30, with the prompt:

What do you want to happen when Japplet1 fires componentShown event?

Using BEA Jolt 6-29

6 uUs ng JoltBeans

5. With the Perform an action radio button enabled, select the action Logon to the
TUXEDO system, as shown in the following figure.

Figure6-13 Select Logon to the Tuxedo System Action

Interaction Wizard
‘what do you want to happen when JApplet fires componentShown event?
% Perform an action ™ Call a methad " Set & property

Available ohiects: Actions:

Blegin & new tranzaction...
Commit the current transaction
Lagoff from the TUKEDD zystem
ogon to the TUXE stem
Rallback the current transsction

| 233 inguiry
g accountld
g balance
(B jottLabett
(B jottLabei2
3 buttan

[Logon tothe TUXEDD system

= Back | et = | Finizh | Cancel | Help |

6. Click Finish.

Completing “ Step 1: Wire the JoltSessionBean Logon” enablesthel ogon() method
of the JoltSessionBean to be triggered by an applet (for example, ComponentShown)
that is sent when the applet is opened for the first time.

6-30 Using BEA Jolt

JoltBeans Class Library Walkthrough

Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

1

Figure 6-14 Wirethe JoltSessionBean to the JoltServiceBean

[J&pplett Mod | | |

Form Designer - JAppletl M =] B3

i

propertyChange Event” on page 6-32, with the prompt:

What event in joltSessionBeanl do you want to start the interaction?

Using BEA Jolt

The Interaction Wizard window is displayed as shown in the figure “ Sel ect

Click the Interaction Tool icon in the toolbar of the Visual Café Form Designer
window to display the bean components.

Click on the JoltSessionBean and drag aline to the JoltServiceBean, as shown in
the following figure.

6-31

6 uUs ng JoltBeans

3. Select propertyChange asthe event that startsthe interaction, as shown in the
following figure.

Figure6-15 Select propertyChange Event

Interaction Wizard

What evert in joltSessionBean1 do you want to start the interaction?
Events:

= JqltSessionElea

n hound praperty change
------ propertycha

ange

Iproper‘ty(:hange

[v Group events

= HEn | et = | Fariist | Cancel | Hedlp |

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “ Select
Handle a Jolt property change event...” on page 6-33, with the prompt:

What do you want to happen when joltSessionBean1 fires propertyChange
event?

6-32 Using BEA Jolt

JoltBeans Class Library Walkthrough

5. Select Handle a Jolt property change event as the method, as shown in the
following figure.

Figure6-16 Select Handle a Jolt property change event...

Interaction Wizard

ifwhat do you want to happen when jokSessionBean1 fires propertyChange evert?

% Perform an action " Call 5 methad (" Set a property
Available ohiects: Actions:
&f J&pplet] Clear the Joft mezsage buffer

Handle z Jolt input event

'@ jotSessionBean

andle & Joit

i Irvake the TUXEDD service represented by this Bean

Set 3 specific occurrence of a field in the input butfer as
@ Bl Set & specific occurrence of a field in the input butfer in
(B jotLabett Set all occurrences of a fisld in the input butfer a= text. ..
(B jottLabel2 Set all occurrences of a field in the input buffer in native
3 buttan? Set the value of & field in the input buffer as texd...

Set the value of a field in the input buffer in native formal

| | 2

IHandIe a Jolt property change event

= Back | hext = | RN | Cancel | Help |

6. Click Next.

The Interaction Wizard window is displayed as shown in the figure “ Sel ect
joltSesssionBean1” on page 6-34, with the prompt:

How do you want to supply the parameter to this method?

and alist of available objects and actions from which to choose.

Using BEA Jolt 6-33

6 uUs ng JoltBeans

7. Select joltSessionBeanl as the object that supplies the action, as shown in the
following figure.

8. Select Get the current Property Change Event object as the action, aso as shown
in the following figure.

Figure6-17 Select joltSesssionBeanl

Interaction Wizard

Iinquiry.property(:hange(PropertyChangeEvent ;
Howy do you weant o supply the parameter to this method?

o Get it from an ohject e Let me enter the expression myself

‘;’;, Awailable ohjects: Actions:

et the currert Property Change Event object

L 8B incuiry
4 “Jﬁ H accountld
=iy i balance
. | jntLaben
9_ W | jotLabelz
=3 button?

Show: [Actions [Methods [T Werisbles

IGetthe current Property Change Event object

= Back | et = | Finizh | Cancel | Help |

9. Click Finish.

Completing “ Step 2: Wire JoltSessionBean to JoltServiceBean Using
PropertyChange” enabl es the JoltSessionBean to send a propertyChange event when

I ogon() completes. The JoltServiceBean listensto thisevent and associatesitsservice
with this session.

6-34 Using BEA Jolt

JoltBeans Class Library Walkthrough

Step 3: Wire the accountlD JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the accountI D JoltTextField bean and drag a line to the JoltServiceBean.

The Interaction Wizard window is displayed, as shown in the following figure,
with the prompt:

What event in accountld do you want to start theinteraction?

3. Select dataChanged as the event, as shown in the following figure.

Figure 6-18 Select dataChanged Event

Interaction Wizard

What evert in accountld do you want to start the interaction?

Everts:
EI---Input data

| »

; actionPerformed

- ancestar o
----- ancestorAdded

----- ancestorMoved

----- ancestorRemoved

=) boundPropertyChange

..... propertyChange - Border

..... propertyChange - Caret

----- propertyChange - CaretColor

----- propertyChange - DisabledTextCalar

..... propertyChange - Document

----- propertyChange - Editable j

[data(:hanged

[v Group everts

= Hanh | et = | Fainisty | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “ Sel ect
inquiry Object and Handle a Jolt input event Action” on page 6-36, with the
prompt:

Using BEA Jolt 6-35

6 uUs ng JoltBeans

What do you want to happen when accountld fires dataChanged event?

5. Select the joltServiceBean inquiry as the object supplying the parameter, as

shown in the following figure.

6. Select Handle ajolt input event as the action, aso as shown in the following

figure.

Figure6-19 Select inquiry Object and Handle a Jolt input event Action

Interaction Wizard

What do youw want to happen when accountld fires dataChanged evert?

% Perform an action € Call a methiod " Set a propetty

Lovailable ohjects:

Actions:

¥ deppiett
'@ jotSessionBeant

L inouiry

I accountid
5 balance
(B jottLahelt

(B jottLahel2
3 buttor

Clear the Jott mezsage bufier

andle & Joft input evert. ..
Handle a Jolt property change evert...
Irvoke the TUXEDC service represented by this Bean
Set 5 specific ocourrence of & field in the input buffer as
et a specific occurrence of & field in the input buffer in
Set all occurrences of a field in the input buffer as text...
et all occurrences of a field in the input buffer in native
Set the value of a field in the input butfer as text...
et the value of a field in the input butfer in native formal

Kl | 2

IHandIe a Jolt input event

= Back | Mext = | s | Cancel | Help |

7. Click Next.

The Interaction Wizard window is displayed as shown in “ Select accountld
Object and Get the current Jolt Input Event Action” on page 6-37, with the

prompt:

How do you want to supply the parameter to this method?

and alist of available objects and actions from which to choose.

6-36 Using BEA Jolt

JoltBeans Class Library Walkthrough

8. Select accountld as the object, as shown in the following figure.

9. Select get the current Jolt Input Event as the action, also as shown in the
following figure.

Figure6-20 Select accountld Object and Get the current Jolt | nput Event Action

Interaction Wizard

Iinquiry.dataChanged(JoltinputEvent
Howee do yiou weart to supply the parameter to this method?
g Get it from an ohject . Let me enter the expression myselt

s ‘;" Available objects: Actions:
i

H JApplett et the current Jolt Input Event
. '@ jotSessionBeant

382 incuiry

E accoLntld
I balance
(B jottLabelt
(B jottLahel2
3 buttant

Show: |v Actions [Methods [T Yeriables

IGet the current Jolt Input Event

= Back | et = | Finizh | Cancel | Help |

10. Click Finish.

Completing “ Step 3: Wire the accountI D JoltTextField as Input to the JoltServiceBean
Using JoltInputEvent” enables you to type the account number in the first text field.
The JoltFieldName property of this JoltTextField is set to “ACCOUNT_ID".
Whenever the text inside this text box changes, it sends a JoltlnputEvent to the
JoltServiceBean. (The JoltServiceBean listens to JoltlnputEvents from this text box.)
The JoltInputEvent object contains the name, value, and occurrence index of the field.

Using BEA Jolt 6-37

6 uUs ng JoltBeans

Step 4: Wire Button to JoltServiceBean Using JoltAction

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click the Inquiry Button and drag aline to the JoltServiceBean.

The Interaction Wizard window is displayed as shown in the following figure,
with the prompt:

What event in buttonl do you want to start theinteraction?

3. Select actionPerformed as the event, as shown in the following figure.

Figure6-21 Select action Performed Event

Interaction Wizard

What event in button1 do you want to start the interaction?

Events:
EI a_cﬂo

| v

A actionPerformed
- component
componentHidden
‘- componenthoved
- componentResized
(. companent=hown
[=]-focusz
----- focusGained
‘. focusLost 0

i keyPressed

----- keyReleazed

(. keyTyped

[=]-maouze j

[actionPerforrned

[v Group events

= HEn | et = | Fariist | Cancel | Hedlp |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Sel ect
inquiry Object and Invoke the TUXEDO Service... Action” on page 6-39, with
the prompt:

What do you want to happen when buttonl fires actionPer formed event?

6-38 Using BEA Jolt

JoltBeans Class Library Walkthrough

5. Select inquiry as the object, as shown in the following figure.

6. Select Invoke the TUXEDO Service represented by this Bean asthe action, also

as shown in the following figure.

Figure6-22 Select inquiry Object and Invokethe TUXEDO Service... Action

Interaction Wizard

‘fwhat do you want to happen when buttond fires actionPerformed event?

% Perform an action

Available ohiects:

™ Call 3 methad

(" Set a propetty

Actions:

P¥ dapplett
'@ jotSessionBean

BE inouiry
g accountld
i balance
(B jottLabett

(B jottLabei2
3 buttor

Clear the Jolt meszage buffer
Handle 3 Jolt input event...
Handle & Jolt property change event

Iy he TU \ Eean

Set 3 specific occurrence of a field in the input butfer as
Set a specific ocourrence of a field in the input butfer in
Set all occurrences of a field in the input butfer as text...

Set all occurrences of a field in the input butfer in native
Set the value of a field in the input butfer as text..
Set the value of a field in the input buffer in native formal

| | 2

Ilnvoke the TUXEDD service represented by this Bean

= Back | et = | Finizh | Cancel | Help |

7. Click Finish.

Completing “ Step 4: Wire Button to JoltServiceBean Using JoltAction” enables the
cal I Servi ce() method of the JoltServiceBean to be triggered by an ActionEvent

from the Inquiry button.

Using BEA Jolt

6-39

6 uUs ng JoltBeans

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the JoltServiceBean and drag a line to the AmountJoltTextField bean.

The Interaction Wizard is displayed, as shown in the following figure, with the
prompt:

What event in inquiry do you want to start the interaction?
3. Select serviceReturned as the event, as shown in the following figure.
Figure6-23 Select ServiceReturned Event

Interaction Wizard

‘What event in inquiry do you want to start the interaction?

IserviceReturned

[Group everts

= Hanh | et = | IR | Cancel | Hedlp |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Sel ect
balance Object and Handle a service returned event Action” on page 6-41, with
the prompt:

6-40 Using BEA Jolt

JoltBeans Class Library Walkthrough

What do you want to happen when inquiry fires serviceRetur ned event?

5. Select balance as the object, as shown in the following figure.

6. Select Handle a service returned event... as the action, also as shown in the

following figure.

Figure 6-24 Select balance Object and Handle a servicereturned event Action

Interaction Wizard
‘What do you vwart to happen when inquiry fires serviceReturned event?
% Perform an action ™ Call & method " Set & property
Available ohiects: Actions:
&f J&pplet] Dizable the JokTextFisld =
'@ joltSessionBeant Dizahble the JotTextField on condition...
233 ineguiry Enzhile the JoftTexdField
Enable the JoltTextField on condition....
g accountld - —re—
m.is i = I =
B balance Hidle the JohTextField
(B otLabel Request the focus
(B jottLabel2 Selects allthe text
3 button? Set the Backaround Colar...
Set the Foreground Color...
Set the Jolt field name...
Set the JoltTexdField's Fort.. [
Set the JoltTexdField's text...
Set the bounds rectangle...
Set the cursor type...
Set the occurence index... j
IHandIe a gervice returned event
= Back | hext = | RN | Cancel | Help |

7. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select

inquiry Object and Get the JoltOutputEvent object Action” on page 6-42, with

the prompt:

How do you want to supply the parameter to this method?

Using BEA Jolt

6-41

6 uUs ng JoltBeans

8. Select inquiry asthe object, as shown in the following figure.

9. Select Get the JoltOutputEvent object as the action, also as shown in the
following figure.

Figure6-25 Select inquiry Object and Get the JoltOutputEvent object Action

Interaction Wizard

Ibalance.serviceReiurned(JoltOutputEvent ;
Howee do yiou weart to supply the parameter to this method?
g Get it from an ohject . Let me enter the expression myselt

Aevailable ohjects: Actions:

H JApplett et the JobQutputEvent ohject
4 '@ jotSessionBeant

i accountld
I balance
(B jottLahelt
(B jottLahel2
3 buttan

Show: |v Actions [Methods [T Yeriables

IGet the JotCutputEvent object

= Back | et = | Finizh | Cancel | Help |

10. Click Finish.

Completing “ Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent” allows the JoltServiceBean to send a JoltOutputEvent when it
receives reply data from the remote service. The JoltOutputEvent object contains
methods to accessfieldsin the output buffer. The JoltTextField displays the result of
the INQUIRY service.

6-42 Using BEA Jolt

JoltBeans Class Library Walkthrough

Step 6: Wire the JoltSessionBean Logoff

1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click in the applet window (not on another bean) and drag aline to the
JoltSessionBean.

The Interaction Wizard is displayed, as shown in the following figure, with the
prompt:

What event in JAppletl do you want to start the interaction?
3. Select componentHidden as the event, as shown in the following figure.
Figure 6-26 Select componentHidden Event

What event in JApplet1 do you want to start the interaction’?

Everts:

[=]- component
mponentHidden

-componentiaved

- componentResized

5-----component8hown

[=-- container

‘... component Added

E-----componerﬂRemo\u'ed

[=-focus

E-----focusGained

i focusLost

[key

keyPressed

+keyReleazed

5-----keyTyped j

| v

[componerrtHidden

[Group everts

=BG | et = | Fariist | Cancel | Help |

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “ Select
joltSessionBean1 Object and L ogoff from the Tuxedo System Action” on page
6-44, with the prompt:

Using BEA Jolt 6-43

6 uUs ng JoltBeans

What do you want to happen when JAppletl fires componentHidden event?
5. Select joltSessionBeanl as the object, as shown in the following figure.

6. Select Logoff from the TUXEDO system as the action, also as shown in the
following figure.

Figure6-27 Select joltSessionBeanl Object and L ogoff from the Tuxedo System

Action
Interaction Wizard E

Wwhat co you wart to happen when JApplet! fires componentHidden event?
(% Perfarm an action " Call & methad " Set a property

Available objects: Actions:

Begin & new transaction...
Commit the current transaction
ogotf from the TUXE stem
Logon to the TUXEDC system
Rallback the current transaction

R accountid
i balance
(B jottLabelt
(B jottLakel2
3 buttont

ILogoff from the TUXEDD system

= Back | Mgt = | Finizh | Cancel | Help |

7. Click Finish.
Completing “ Step 6: Wirethe JoltSessionBean L ogoff” enablesthel ogof f () method

of the JoltSessionBean to be triggered by an applet (for example, componentHidden)
that is sent when the applet gets hidden.

6-44 Using BEA Jolt

Using the Jolt Repository and Setting the Property Values

Step 7: Compile the Applet

After wiring the JoltBeans together, compile the applet. It is a so recommended that
you fill in the empty catch blocks for exceptions. Check the message window for any
compilation errors and exceptions.

For additional information see the following section “Using the Jolt Repository and
Setting the Property Values.” Also refer to thetable“ JoltBean Specific Properties’ on
page 6-46 and the figure “ JoltServiceBean Property Editor” on page 6-47.

Running the Sample Application

To run the sample application, you must have the BEA Tuxedo server running. Then
enter an account number in the Account ID textfield. Y ou can use any of the account
numbersincluded in the BANKA PP database. Foll owing are two exampl es of account
numbers you can use to test the sample application:

= 80001
= 50050

Using the Jolt Repository and Setting the
Property Values

Custom Property Editors are provided for the following properties:
m JoltFieldName (Jolt-aware AWT beans)
m serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that are
used to add or modify the properties. Y ou can invoke the boxes from the Property List
by selecting the button with the ellipsis (...) that is next to the value of the
corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in the
following table.

Using BEA Jolt 6-45

6 uUs ng JoltBeans

Table 6-6 JoltBean Specific Properties

JoltBean Property Input Description

JoltSessionBean appAddress eg., //host:port
userName, Password or Type your BEA Tuxedo username
AppPassword and passwords.

JoltServiceBean serviceName INQUIRY, for example.
isTransactional Settot r ue if the service needsto be

executed within atransaction. Set
isTransactional tof al se if the
service does not require atransaction.

JoltUserEventBean eventName Refer to the BEA Tuxedo
filter t psubscri be calls.
All Jolt-aware GUI joltFieldName ACCOUNT_ID, for example
beans occurrencel ndex Multiple fields of the same name.
Index starts at 0.
JoltCheckbox TrueVaueand FalseVaue Thefield value corresponding to the

state of the checkbox.

Theproperty editor reads cached information from the repository and returns names of
the available services and dataelementsin alist box. An example of the ServiceName
property editor is shown in the following figure “ JoltServiceBean Property Editor.”

To add or modify a property bean, follow these steps:

1. Select the service name by clicking on the ellipsisin the ServiceName field shown
in the following figure.

6-46 Using BEA Jolt

Using the Jolt Repository and Setting the Property Values

Figure 6-28 JoltServiceBean Property Editor

& Property List - JoltBeanDev [Hi[=] 3

8| JotServiceBean b

Class beajoltheans JotServiceBean
Marme JoltSerdiceBean

Session null]
Transactional |false

The Custom Property Editor for ServiceName shown in the following figureis
displayed.
Figure 6-29 Custom Property Editor for ServiceName

Custom Property Ed... B

Semices:

Logan | | INQUIRY

If you cannot or do not want to connect to the Repository database, type the
service name in the text box and skip to Step 7.

Note:

2. If you are not logged on, make sure the Jolt Server is running and select L ogon.

The JoltBeans Repository Logon shown in the following figure is displayed.

Using BEA Jolt 6-47

6 uUs ng JoltBeans

Figure6-30 JoltBeans Repository L ogon

E%JultBeans Repaository... B4

Server. I

Fort number: I

Application passwoard,

I—
ser name: I—
I—

ser passward:

Laogan | Cancel |

3. Typethe BEA Tuxedo or Jolt Relay Machine name in the Server field and the
JSL or Jolt Relay in the Port number field.

4. Type the password and username information (if required) and click Logon.

The Custom Property Editor loads its cache from the repository and is displayed,
as shown in the following figure “ Property Editor with Selected Service.”

5. Select the appropriate service name from the list box, as shown in the following
figure.

6. Enter the property value (service or field name) directly.

A text box is provided.
7. Click OK inthe Custom Property Editor dialog.

The bean property is set with the contents of the text box.

6-48 Using BEA Jolt

JoltBeans Programming Tasks

Figure 6-31 Property Editor with Selected Service

Custom Property Editor B

Services:

Refresh | | INGQUIRY

8. Click OK in the Custom Property Editor dialog box again.

JoltBeans Programming Tasks

Additional programming tasks include:
m Using Transactions with JoltBeans

m Using Custom GUI Elements with the JoltService Bean

Using Transactions with JoltBeans

Y our BEA Tuxedo application services may have functionality that updates your
database. If so0, you can use transactions with JoltBeans (for example, in the sample,
BANKAPP, the services TRANSFER and WITHDRAWAL update the database of

BANKAPP). If your application serviceis read-only (such as INQUIRY), you do not
need to use transactions.

Using BEA Jolt 6-49

6 uUs ng JoltBeans

The following example shows how to use transactions with JoltBeans.

1. Theset Transacti onal (true) method is called on the JoltServiceBean.
(isTransactional is a Boolean property of the JoltServiceBean.)

2. Thebegi nTransacti on() method is called on the JoltSessionBean.
3. Thecall Servi ce() method is called on the JoltServiceBean.

4. Depending on the outcome of the service call, the conmi t Tr ansact i on() or
rol | backTransact i on() method is called on the JoltSessionBean.

6-50 Using BEA Jolt

JoltBeans Programming Tasks

Using Custom GUI Elements with the JoltService Bean

JoltBeans provides alimited set of Jolt-enabled GUI components. Y ou can also use
controlsthat are not Jolt-enabled together with the JoltServiceBean. Y ou can link
controlsto the JoltServiceBean that display output information of the service
represented by the JoltServiceBean. Y ou can also link controls that display input
information.

For example, a GUI element that uses an adapter class to implement the
JoltOutputL istener interface can listen to JoltOutputEvents. The JoltServiceBean as
the event source for JoltOutputEvents callsthe ser vi ceRet ur ned() method of the
adapter class when it sends a JoltOutputEvent. Inside ser vi ceRet ur ned() , the
control’ sinternal datais updated using information from the event object.

The development tool generates the adapter class when the JoltServiceBean and the
GUI element are wired together.

As another example, a GUI element can call the set | nput Text Val ue() method on
the JoltServiceBean. The GUI element containsinput datafor the BEA Tuxedo service
represented by the JoltServiceBean.

Asathird example, a GUI element can implement the required methods

(addJol t I nput Li stener () and renoveJol t I nput Li st ener ()) to act as event

sources for JoltlnputEvents. The JoltServiceBean acts as an event listener for these
events. The control sends a JoltinputEvent when its own state changes to keep the

JoltServiceBean updated with the input information.

Using BEA Jolt 6-51

6 uUs ng JoltBeans

6-52 Using BEA Jolt

CHAPTER

.

Using Servlet

Connectivity for BEA
Tuxedo

With BEA Jolt servlet connectivity, you can use HT TP servletsto perform server-side
Javatasksin response to HTTP requests. Jolt certifies servlet connectivity with the
Java Web Server versions 1.1.3 and up, and supports most other standard servlet
engines. Using the Jolt session pool classes, asimple HTML client can connect to any
Web server that supports generic servlets. Thus, all Jolt transactions are handled by a
servlet on the Web server rather than being handled by a client applet or application.

Thiscapability enablesHTML clientstoinvoke BEA Tuxedo serviceswithout directly
connecting to BEA Tuxedo. HTML clients can instead connect to a Web server,
through HTTP, where the BEA Tuxedo service request is executed by a generic
servlet. Using a Jolt session, the servlet on the Web server administers the BEA
Tuxedo service request by connecting to the BEA Tuxedo Server through the Jolt
Server Handler (JSH) or the Jolt Server Listener (JSL), which then makes the BEA
Tuxedo service request.

This capability allows many types of HTML clients to make remote BEA Tuxedo
service requests. All Jolt transactions are handled on the server side without requiring
any changeto the original HTML client. Thus, HTML clients are allowed to be very
simple and require little maintenance.

Thistopic includes the following sections:
m What Isa Servlet?

m How Servlets Work with Jolt

Using BEA Jolt 7-1

7 us ng Servlet Connectivity for BEA Tuxedo

m Writing and Registering HTTP Servlets
m Jolt Servlet Connectivity Sample

m Additional Information on Servlets

What Is a Servlet?

A servlet isany Java class that can be invoked and executed on a server, usually on
behalf of aclient. A servlet works on the server, while an applet works on the client.
An HTTP serviet is a Java class that handles an HTTP request and deliversan HTTP
response. HTTP servlets reside on an HTTP server and must extend the JavaSoft
javax.servlet.http.Http Servlet Class so that they can run in a generic servlet engine
framework.

Some advantages of using HTTP servlets are:

m They are written in awell-formed, and compiled language (Java), so are more
robust than “interpreted” scripts.

m They are anintegral part of the HTTP server that supports them.

m They can be protected by the robust security of the server, unlike some CGI
scriptsthat are hazardous.

m They interact with the HTTP request through a well-developed programmatic
interface, and so are easier to write and less prone to errors.

How Servlets Work with Jolt

With Jolt servlet connectivity, any generic HTTP servlet allows you to take advantage
of the Jolt features. Jolt servletshandle HT TP requests using the following Jolt classes:

m ServietDataSet

m ServletPoolManagerConfig

7-2 Using BEA Jolt

How Servlets Work with Jolt

m ServletResult
m ServletSessionPool
m ServletSessionPoolManager

The Jolt Servlet Connectivity Classes

Following are descriptions of the Jolt servlet connectivity classes.
ServletDataSet

This class contains data el ements that represent the input and output parameters of a
BEA Tuxedo service. It providesamethod toimport the HTML field namesand values
from ajavax. servl et. http. Htt pServl et Request object.

ServletPoolM anager Config

Thisclass is the startup class for a Jolt Session Pool Manager and one or more

associ ated Jolt session pools. It creates the session pool manager if needed and startsa
session pool with aminimum number of sessions. Jolt Session Pool Manager internally
keeps track of one or more named session pools.

Thisclassis derived from bea. j ol t . pool . Pool Manager Conf i g and allows the
caller to passaProperties or Hashtabl e object to the static st ar t up() method to create
a session pool and the static get Sessi onPool Manager () method to get the session
pool manager of bea. j ol t. pool . servl et. Ser vl et Sessi onPool Manager class.

ServletResult
This class provides methods to retrieve each field in a ServletResult object as a String.
Ser vlet SessionPool

This class provides a session pool for usein a Java servlet. A session pool represents
one or more connections (sessions) to aBEA Tuxedo system. This class provides call
methods that accept input parameters for aBEA Tuxedo service as a
javax.servlet. http. HtpServl et Request object.

Using BEA Jolt 7-3

7 us ng Servlet Connectivity for BEA Tuxedo

Servlet SessionPoolM anager

Thisclassis aservlet-specific session pool manager. It manages a collection of one or
more session pools of class Ser vl et Sessi onPool . This class provides methods that
areused to create both the ServletSessionPool M anager itself and the session pool s that
it contains. These methods are part of the administrative API for a session pool.

Writing and Registering HTTP Servlets

7-4

Before writing and registering HT TP servlets, you must first import the packages that
support Jolt servlet connectivity (jol t.jar,joltjse.jar,servlet.jar). HTTP
servlets must extend javax.servlet.http.HttpServlet. After you write your HTTP
servlets, you register them with a Web server that supports generic servlets. Y our
custom servlets are treated exactly like the standard HT TP servletsthat provide the
HTTP capabilities.

Each HTTP servlet isregistered against a specific URL pattern, so that when a
matching URL is requested, the corresponding servlet is called upon to handle the
request.

Refer to the documentation for your particular Web server for instructions on how to
register servlets.

Using BEA Jolt

Jolt Servliet Connectivity Sample

Jolt Servlet Connectivity Sample

The Jolt software includes three sample applications that demonstrate servlet
connectivity using the Jolt servlet classes. The three samples are:

m SimpApp Sample
m BankApp Sample
m Admin Sample

Refer to these samples to see code examples of how to use the Jolt servlet classesin
your own servlets.

Viewing the Sample Servlet Applications

To view the code for the Jolt sample applications, you need to install the Jolt API client
classes (usually chosen asan option wheninstalling Jolt). Oncethe classesareinstalled
in your directory of choice, navigate to the following directory to see the sample
application files:

<Installation directory>\udataobj\jolt\exanpl es\servlet

To view the sample code, use atext editor such as Microsoft Notepad to open the Java
files for each sample application.

SimpApp Sample

A sample application named si npapp isincluded with Jolt. The si npapp application
illustrates how the servlet uses Servlet Connectivity for BEA Tuxedo. The following
servlet tasks areillustrated by the SimpA pp sample:

m Using a property file to create a session pool
m Getting the session pool manager

m Retrieving the session pool by name

UsingBEA Jolt 7-5

7 us ng Servlet Connectivity for BEA Tuxedo

m Invoking a BEA Tuxedo service
m Processing theresult set

This example demonstrates how aservlet can connect to BEA Tuxedo and call upon
one of its services; it should be invoked from the si npapp. ht M file. The servlet
creates a session pool manager at initialization, which is used to obtain a session when
thedoPost () method isinvoked. This session is used to connect to a service in BEA
Tuxedo with aname described by the posted “ SVCNAME” argument. In thisexamplethe
serviceiscaled "TOUPPER', which transposesthe posted “ STRI NG’ argument text into
uppercase, and returns the result to the client browser within some generated HTML.

Note: TheWebLogic Server isused in this example.

Requirements for Running the SimpApp Sample

The requirements for running the SimpA pp sample are:

m Any Web application server with Servlet JSDK 1.1 or above
m BEA Tuxedo 8.0 or later with SimpApp sample running

m BEA Jolt

Installing the SimpApp Sample

7-6

1. Install the Jolt classlibrary (j ol t . j ar) and Servlet Connectivity for BEA Tuxedo
classlibrary (j ol tj se. j ar) on the Web application server. Extract the class files
if itisrequired by your Web application server.

2. Compilethe Si npAppSer vl et . j ava. Make sure that you include the standard
JDK 1.1.x classes. zi p, JSDK 1.1 classes, Jolt classlibrary, and Servlet
Connectivity for BEA Tuxedo class library in the classpath.

javac -cl asspath
$(JAVA HOVE) /i b/ cl asses. zi p: $(JISDK) /| i b/ servlet.jar:

$(JOLTHOVE) /jolt.jar: $(JOLTHOVE)/jol tjse.jar:./cl asses
-d ./classes SinpAppServlet.java

Note: The package name of the SimpAppServiet is
exanpl es.jolt.servlet.sinpapp.

Using BEA Jolt

Jolt Servliet Connectivity Sample

3. Putthesi nmpapp. ht M and si npapp. properti es filesin the public HTML
directory.

4. Modify the si npapp. proper ti es file. Changethe “appaddr!i st ” and
“failoverlist” with the proper Jolt server hosts and ports. Specify the proper
BEA Tuxedo authentication information if the SimpApp has security turned on.
For example:

#si npapp

#Fri Apr 16 00:43:30 PDT 1999
pool name=si npapp

appaddr | i st=//host: 7000, //host : 8000
failoverlist=//backup: 9000

m npool si ze=1

maxpool si ze=3

userrol e=tester

apppasswor d=appPass

user nane=guest

user passwor d=myPass

5. Register “Simpapp” for the SimpAppServiet. Consult your Web application
server for details. If you are using BEA WebL ogic Server, add the following
section of theconfi g. xnl file:

<Appl ication
Depl oyed="t r ue"
Narme="si npapp"
Pat h=".\confi g\ mydonai n\ appl i cati ons"

<WebAppConponent
Name="si npapp"
Tar get s="nyserver"
URI =" si npapp"
/>
</ Appli cation>

6. To accessthe SimpApp initial page “si mpapp. ht mi ,” type:
htt p: // mywebser ver: 8080/ si npapp. ht m

Using BEA Jolt 7-7

7 us ng Servlet Connectivity for BEA Tuxedo

BankApp Sample

The bankapp application illustrates how the servlet is written with
PageCompiledServlet with Servlet Connectivity for BEA Tuxedo. bankapp illustrates
how to:

Use a property file to create a session pool
Get the session pool manager

Retrieve a session pool by name

Invoke a BEA Tuxedo service

Process the result set

Requirements for Running the BankApp Sample

Following are the requirements for running the BankA pp sample:

Any Web application server with Servlet JSDK 1.1 or above
BEA Tuxedo 8.0 or later with BankApp sample running
BEA Jolt

Installation Instructions

1

Install the Jolt classlibrary (j ol t . j ar) and Servlet Connectivity for BEA Tuxedo
classlibrary (j ol tj se. j ar) to the Web application server. Extract the class files
if itisrequired by your Web application server.

Copy al HTML, JHTML and bankapp. pr operti es filesto the public HTML
directory of the Web application server (for example,
$WEBLOG C/ nyser ver/ publ i c_htmi for WebL ogic):

bankapp. properti es
tell erFormhtm
i nqui ryForm ht m

deposi t Form ht m

7-8 Using BEA Jolt

Jolt Servliet Connectivity Sample

w t hdr awal For m ht n
transfer Form ht n

I nquiryServlet.jhtm
DepositServlet.jhtm
Wt hdrawal Servl et.jhtm

TransferServlet.jhtm

3. Modify the bankapp. properti es file. Change the “appaddr! i st ” and

4.

“failoverlist” with the proper Jolt server hosts and ports. Specify the proper
BEA Tuxedo authentication information if the BankApp has security turned on.
For example:

#bankapp

#Fri Apr 16 00:43:30 PDT 1999

pool name=bankapp

appaddr | i st=//host: 8000, //host: 7000
failoverlist=//backup: 9000

m npool si ze=2

maxpool si ze=10

userrol e=teller

apppasswor d=appPass

user name=JaneDoe

user passwor d=myPass

If applicable, turn on the automatic page compilation for JHTML from your
servlet engine. Consult the user manual of your Web application server for
details.

To access BankApp through Servlet Connectivity for BEA Tuxedo, use the
following URL in your favorite browser:

http:// mywebserver: 8080/ tel | er Form ht m

Using BEA Jolt 7-9

7 us ng Servlet Connectivity for BEA Tuxedo

Admin Sample

The Admin sample application illustrates the following servlet tasks:
m Using the administrative API to control the session pools

m Retrieving the statistics through PageCompiledServlet in Servlet Connectivity
for BEA Tuxedo

Requirements for Running the Admin Sample
Following are the requirements for running the Admin sample:
m Any Web application server with Servlet JSDK 1.1 or above

= BEA Jolt

Installation Instructions

1. Install the Jolt classlibrary and Servlet Connectivity for BEA Tuxedo classlibrary
on the Web application server.

2. Copy all HTML filesto the public HTML directory (for example,
$WEBLOG C/ nyserver/ public_htm for \WebLogic):

Pool List.jhtm
Pool Adm n.j ht m

3. Toget alist of session pools, use the following URL in your favorite browser:

http:// mywebserver: 8080/ Pool Li st.jhtn

7-10 Using BEA Jolt

Additional Information on Servlets

Additional Information on Servlets

For more information on writing and using servlets, refer to the following sites:
BEA WebL ogic Servlet Documentation

http://e-docs. bea.com w s/ docs60////adm ngui de/ i ndex. ht m
http://e-docs. bea.com w s/ docs60////servl et/index.htn
http://e-docs. bea. com w s/ docs60/j avadocs/ i ndex. ht nl

Java Servlets

http://jserv.java.sun.coni products/java-server/docunmentation/
webserverl. 1/i ndex_devel oper. htm

Servlet Interest Group

http://servlet-interest@ ava. sun.com

Using BEA Jolt 7-11

7 us ng Servlet Connectivity for BEA Tuxedo

7-12 Using BEA Jolt

CHAPTER

8

Using Jolt ASP

Connectivity for BEA
Tuxedo

Jolt Active Server Pages (A SP) connectivity for BEA Tuxedo provides an easy-to-use
interface for processing and generating dynamic HTML pages. Y ou do not need to

learn how to write Common Gateway Interface (CGl) transactional programsto access
BEA Tuxedo services.

Thistopic includes the following sections:

Key Features

How Jolt ASP Connectivity for BEA Tuxedo Works
ASP Connectivity for BEA Tuxedo Toolkit

Jolt ASP Connectivity for BEA Tuxedo Walkthrough
Overview of the ASP for BEA Tuxedo Walkthrough
Getting Started Checklist

Overview of the TRANSFER Service

TRANSFER Request Walkthrough

Using BEA Jolt

8-1

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Key Features

Jolt ASP Connectivity for BEA Tuxedo, an extension to the Jolt classlibrary, enables
BEA Tuxedo services and transactions to be invoked from aWeb server using a
scripting language.

This architecture has severa benefits:
m TheHTML interfaceis preserved.

m Theneed to download Java class filesis eliminated, a ong with the delays
associated with the downl oad.

m Session Pooling efficiently utilizes the BEA Tuxedo resources.

m Jolt ASP Connectivity for Tuxedo leverages industry standard HTTP protocol
with encryption, as well as firewall configuration for the Web server.

Note: Asynchronous notification is not available in the ASP Connectivity for BEA
Tuxedo. It isrecommended that Jolt enabled Java clients (applets) be written
using aretained connection to support asynchronous notification.

How Jolt ASP Connectivity for BEA Tuxedo

Works

8-2

The Jolt ASP Connectivity for BEA Tuxedo architecture includes three main
components: a session, a session pool, and a session pool manager. A session object
represents a connection with the BEA Tuxedo system. A session pool represents many
physical connections between the Web server and the BEA Tuxedo system. It also
associates a session with an HTTP request.

The session pool manager is responsible for maintaining a set of session objects, each
having a unique session identifier.

Jolt ASP Connectivity for BEA Tuxedo works as follows:

Using BEA Jolt

How Jolt ASP Connectivity for BEA Tuxedo Works

1. If the Web application has not been initialized, the Web application initializes the
session pool manager, creates a session pool, and establishes sessions (also known
as connections) with the Jolt Server.

2. When a service request arrives, the Web application gets a session pool object
from the session pool manager. The session pool invokes the service call using
the session that is the “least busy,” based on the number of outstanding call
requests on a given session.

3. If the selected session is terminated by the Jolt Server, the session pool object
restarts a new session or reroutes the request to another session. If the session
pool manager is unable to get any session, a null session object is returned.

A graphical representation of the ASP Connectivity for BEA Tuxedo architectureis
shown in the following figure.

Using BEA Jolt 8-3

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Figure8-1 Jolt ASP Connectivity for BEA Tuxedo Architecture

Session
Pool Application
Services
Manager
‘ R Session
I i ‘*@
Qg, Host 1
)
o
Weh Server
Application
Services
Host2}
TUXEDO Domain

Refer to the online BEA Jolt APl Reference for additional information about the
Sessi onPool class and Sessi onPool Manager class.

8-4 Using BEA Jolt

ASP Connectivity for BEA Tuxedo Toolkit

ASP Connectivity for BEA Tuxedo Toolkit

The ASP Connectivity for BEA Tuxedo Toolkit is an extension to the Jolt Class
Library. The Toolkit allows the Jolt Client Class Library to be used in a Web server
(such as Microsoft Active Server) to provide an interface between HTML clients or
browsers, and a BEA Tuxedo application.

Samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This section explains the steps you
follow to use an HTML client interface with the TRANSFER service of the BEA
Tuxedo BankApp application. The TRANSFER service illustrates the use of
parameters with multiple occurrences. This walkthrough explains the use of the
TRANSFER service only.

Jolt ASP Connectivity for BEA Tuxedo
Walkthrough

A complete listing of all examples used in this chapter are distributed with the Jolt
software. In this section, segments of code from these samples are used to illustrate the
use of the Toolkit.

The samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This chapter explains the steps you
can follow to use an HTML client interface to the TRANSFER service of the BEA
Tuxedo Bankapp application. The TRANSFER service illustrates the use of
parameters with multiple occurrences. This walkthrough explains the use of the
TRANSFER service only.

Note: Thewalkthrough illustrates the use of the ASP Connectivity for BEA Tuxedo
with Microsoft I1S and VVBScript.

To use the information in the following sections, you should be familiar with:

m BEA Tuxedo and the sample BEA Tuxedo application, BankApp

Using BEA Jolt 8-5

8 us ng Jolt ASP Connectivity for BEA Tuxedo

m BEA Jolt
m Hypertext Markup Language (HTML)
m Visual Basic (VB) Script

m Object-oriented programming concepts

Overview of the ASP for BEA Tuxedo
Walkthrough

Follow the steps below to compl ete the ASP Connectivity for BEA Tuxedo
walkthrough.

1. Review the Getting Started Checklist.
2. Review the Overview of the TRANSFER Service.

3. Complete the steps in the TRANSFER Request Walkthrough:
e Initializing the Jolt Session Pool Manager
e Submitting a TRANSFER Request from the Client
e Processing the Request

e Returning the Results to the Client

8-6 Using BEA Jolt

Getting Started Checklist

Getting Started Checklist

Review this checklist before starting the TRANSFER Request Walkthrough.

Note: Thischecklist appliesto Microsoft Active Server Pagesonly. It aso assumes
that you have already installed BEA Tuxedo and the Jolt Server on a host
machine, as well as the BEA Jolt client on a machine where Microsoft 11Sis
installed.

Tuxedo Host Running Jolt Server

1. Ensurethat you have a supported browser installed on your client machine. The
client machine must have a network connection to the Web server that is used to
connect to the BEA Tuxedo environment.

2. Configure and boot BEA Tuxedo and the BEA Tuxedo BankApp example.
a Make sure the TRANSFER serviceis available.

b. Refertothe BEA Tuxedo user documentation for information about completing
this task.

3. Configure the BEA Tuxedo application to start Jolt. (Refer to Installing the BEA
Tuxedo System for information about how to configure a Jolt server.)

a. Note the hostname and port number associated with your Jolt Server Listener
(JsL).

b. Ensurethat the TRANSFER serviceis defined in the Jolt Repository.

c. Testthe TRANSFER service using the Jolt Repository Editor to make sureitis
accessible. Then, export the TRANSFER service using the Repository Editor
to make the TRANFER service available to all Jolt clients.

Using BEA Jolt 8-7

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Machine Running Jolt Client and Microsoft 11S

8-8

1

If the Microsoft Java Component Framework from the Microsoft [1S SDK 4.0 is
not installed, install it now. (This SDK is not installed if you chose the Typical
installation of the Microsoft NT Service Pack 5.0.)

a. Create anew directory named aspconp inyour j ava\ Trust | i b directory.
Thisis most typically found in the 9%wi ndi r % j ava\ Tr ust Li b directory.

Note: Becausethe framework files are created in a package called aspconp, the
Java Virtua Machine (JVM) expects to find them there.

b. Copy the Microsoft Java Component Framework class files to the
j ava\ Trust Li b\ aspconp directory. (Copy only the*. cl ass files.)

Copy thejol t.j ar fileintotheowi ndir % j ava\ Trust | i b directory. Then use
thej ar command to unpackj ol t. j ar and create the Jolt classfilesin the
j ava\ Trust Li b directory.

Note: Sincethe Jolt classes are created in packages starting with BEA, the VM
expectsto find theminthej ava\ Trust i b\ bea\ ... subdirectories.

Copy thej ol t asp. j ar fileinto the Windows 2000 server’'sj ava\ Trust | ib
directory. Then usethej ar command to unpack j ol t asp. j ar and create the Jolt
Pool Application Services classfilesinthej ava\ Trust 1 i b directory.

Note: Since the Jolt Pool Application Services classes are created in packages
starting with BEA, the VM expects to find them in the
java\ Trust!ib\ bea\ ... subdirectories.

Run the wasr eg. cnd command file to register the BEA Jolt Pool Application
Services classes as BEAJOLTPOOL ActiveX components. This step enables the
BEAJOLTPOOL components to be accessible from the Microsoft ASP scripts.

Note: TheBEA Jolt instalation includes a copy of the wasr eg. cnd file, which
registersyour Java classes as COM objects on the server machine using the
JavaReg utility (available with Visual J++ or the Microsoft SDK for Java).
It also includes a copy of thewasunr eg. cnd file, which unregisters your
Java classes as ActiveX components. Registration can also be done
manually or by a setup program, sincej avar eg/ r egi st er isonly
creating registry entries.

Using BEA Jolt

Getting Started Checklist

5. After registering the ASP classes as ActiveX components, you are ready to test
the sample application delivered with the Jolt ASP Connectivity for BEA Tuxedo

software:

a. Copy the % uxdi r % udat aobj \ j ol t\ exanpl es\ asp\ bankapp directory to
the default Microsoft 11S directory.

b. Start the application by entering the following URL from your browser:
http:// <web- server: port >/ bankapp/tell er Form asp

Note: The port number is optional, depending on how your Web server is
configured. In most cases, the : por t isnot required in the URL.

c. Edit the bankapp. properti es fileto fit your environment.

Note: Refer to the code samples shown in “ TRANSFER Request Walkthrough”
on page 8-10, for additional information.

6. Thefollowing table, “ Sample Bankapp Source Files,” liststhe files in the sample
application. These files are a valuable reference for the walkthrough and are
located in<extract _directory>/teller.

Table8-1 Sample Bankapp Source Files

File Name

Description

tell erForm asp

Initializes the Jolt Session Pool Manager and displays
available BankApp services.

transfer Form htm

Presentsan HTML form for user input.

tlr.asp

Processesthe HTML form and returns results as an
HTML page.

web_admi n.inc

VB Script functionsfor initializing the Jolt Session Pool
Manager.

web_start.inc

VB Script functionsfor initializing the Jolt Session Pool
Manager.

web_tenpl ates.inc

VBScript functions for caching HTML templates.

tenplates/transfer.tenp

HTML templates used for returning results.

Using BEA Jolt 8-9

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Overview of the TRANSFER Service

The TRANSFER servicein BankApp moves funds between two accounts. The service
takes two account numbers, an input amount, and returns two balances—one for each
account. In addition, the service returns an error message if thereis an application or
system error.

A TRANSFER isaWITHDRAWAL and aDEPOSIT executed asasingletransaction.
The transaction is created on the server, so the client does not need to create a
transaction.

The client interface consists of an HTML page with aform used to enter the required
data—account numbers and a dollar amount. This datais sent to the Web server asa
“POST” request.

Inthe Web server, thisrequest is processed using aV BScript Active Server Page. This
program extracts the input data fields from the request, formats them for use with the
Jolt ASP Connectivity for BEA Tuxedo classlibrary, and dispatches the request to the
TRANSFER servicein the BankApp application. The TRANSFER servicereturnsthe
results of the transaction. These results are returned to the VVBScript program that
mergesthem into adynamically created HTML page. Thispageisreturned to theclient
by way of the Web server infrastructure.

In the final part of thiswalkthrough, run the necessary HTML pages and server-side
VBScript logic to execute a TRANSFER.

TRANSFER Request Walkthrough

This section explains what happens when you execute a TRANSFER request. Each
step is not include here; only those steps that are necessary, as follows:

m |nitializing the Jolt Session Pool Manager
m Submitting a TRANSFER Request from the Client

m Processing the Request

8-10 Using BEA Jolt

TRANSFER Request Wal kthrough

m Returning the Resultsto the Client

Initializing the Jolt Session Pool Manager

To start the walkthrough, use the browser on your client to connect to the Web server
where the Jolt Asp Connectivity for BEA Tuxedo classes are installed. The first page
to download ist el | er For m asp (see the following figure for an example of a

tel | er Form asp page). If the teller sample has been installed as described in the
“Getting Started Checklist” on page 8-7, the URL for this page will be:

http://<web-server:port>/teller/tellerFormasp

Note: The use of the port number is optional, depending on how your Web server is
configured. In most cases, you are not required to add the “:port” in the URL.

Using BEA Jolt 811

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Figure8-2 tellerForm.asp Example

/A Banking Demo - Microsoft Internet Explorer
JEiIe Edit View Go Favorites Help ‘

ler 20N A3 8 BB S
JAddress @http:;‘,’spider;‘samples,’teller/tellerForm.asj JLinks

Please Select One of the Banking
Transactions:

Inquiry |
Deposit |

Withdrawal J

Transfer

Status |

~l
| l_l_’_[% Local intranet zone i

Thepage, t el | er For m asp, contains VVBScript procedures required to initialize the
Jolt Session Pool Manager. Theinitialization codeis contained inan A SP Script block.
This code tells the Web server to execute this block of code on the server, instead of

sending it to the client.

Listing 81 tellerForm.asp: Initialize the Jolt Session Pool M anager

<%

"I/ Initialize the session nanager and cache tenpl ates
Call web_initSessionMyr(Null)

Call web_cacheTenpl at es()

%

8-12 Using BEA Jolt

TRANSFER Request Wal kthrough

The VBScript procedureweb_i ni t Sessi onMyr () calsother VBScript proceduresto
establish a pool of Jolt sessions. A Jolt session is established between the Jolt ASP
Connectivity for BEA Tuxedo inthe Web server and the Jolt Serversthat residein your
BEA Tuxedo application. One of the procedures called isweb_st art (). This
procedure (in thefileweb_st art . i nc) should have been edited as part of the teller
application installation process in the “ Getting Started Checklist” on page 8-7.

The procedure web_cacheTenpl at es() readsvariousHTML template filesinto a
memory cache. This step is not required, but it improves performance.

Listing 8-2 tellerForm.asp: Allow the User to Choose TRANSFER Service

<I NPUT TYPE="button" VALUE="Transfer"
onCl i ck="wi ndow. | ocation="transferFormhtm ">

TheHTML segment shownin the previouslisting displaysabutton labeled “ Transfer.”
When this button is selected, the browser loads the paget r ansf er For m ht m This
page presents a form used to enter the data required by the TRANSFER service.

Submitting a TRANSFER Request from the Client

Theforminthefollowing figure“transferForm.htm Example” isgenerated by the page
transf er For m ht m This page presents you with aform for input. The page consists
of three text fiel ds (two account numbers and a dollar amount), and a button that, when
pressed, causes the TRANSFER service to be invoked.

Using BEA Jolt 8-13

8 us ng Jolt ASP Connectivity for BEA Tuxedo

8-14

Figure 8-3 transfer Form.htm Example

-'aTransfer Fund between Accounts - Microsoft Inter... [l[=E3
J File Edit View Go Favorites Help ‘
ey 20N Q38 RS H
JAddress @Hspider!samples/tellen‘transferForm.htmj JLinks
=
Enter the Account Numbers and the
Amount:
From Account Number: |10000
To Account Number: |10001
Amount: $[100.00
Transfer | Clearl
[
| l_l_’_[% Local intranet zone i

The code segment in thefollowing listing showsthe key HTML elementsfor this page.
The bolded text in the following listing correspond to the elements in the table “Key
HTML Elements and Descriptions’ on page 8-15.

Listing 8-3 transferForm.htm: TRANSFER Form

<FORM NAME="tel l er" ACTION="tIr.asp" METHOD="PCST">
<TABLE>
<TR><TD ALI GN=RlI GHT>From Account Nunber: </ TD>

<TD><I NPUT TYPE="text" NAVME="ACCOUNT | D 0"></TD></TR>
<TR><TD ALI GN=RI GHT>To Account Nunber: </TD>

<TD><I NPUT TYPE="text" NAVME="ACCOUNT |D 1"></TD></TR>
<TR><TD ALI G\N=RI GHT>Anount : $</ TD>

Using BEA Jolt

TRANSFER Request Wal kthrough

<TD><I NPUT TYPE="text" NAME="SAMOUNT"></TD></ TR>
</ TABLE>
<CENTER>
<I NPUT TYPE="hi dden" NAME="SVCNAME" VALUE="TRANSFER'>
<I NPUT TYPE="submit" VALUE="Transfer">
<I NPUT TYPE="reset" VALUE="O ear">
</ CENTER>
</ FORM>

Table8-2 Key HTML Elements and Descriptions

Element Description

ACTION="t I r.asp” When you click the Submit button, the contents of this
formaredeliveredto apagecaledt| r. asp onthe Web
server for processing.

=" ACCOUNT_I D 0” Shows the use of afield with multiple occurrences. The
TRANSFER service expects two input account numbers,
both called “ACCOUNT_ID". By appending an
underscore and occurrence_number (e.g., _0, _1) to the
field name, both thename of afield and its occurrence can
be passed to the program on the Web server.

=" SAMOUNT” Shows the use of an input field that has asingle
occurrence. In this example, nothing is appended to the
name of the field.

The HTML form field names used in this example exactly match the BEA Tuxedo
field names expected by the TRANSFER service. Thisis not required, but doing so
facilitates processing on the server because you do not have to map these inputs to
BEA Tuxedo field names. Thisis done by the Jolt ASP Connectivity for BEA Tuxedo
classes.

The hidden field SVCNAME is assigned a value of TRANSFER. Thisfield does not
appear on the client form, but it is sent to the Web server as part of the request. The
VBScript program retrieves the value of thisfield in order to determine which BEA
Tuxedo service isto be called (in this example, the service is TRANSFER).

Using BEA Jolt 8-15

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Complete the fields Fr om Account Nunber, To Account Nunber, and Amount .
(10000 and 10001 are valid BankApp account numbers). Click the Transfer button.
The data entered on the form is sent to the Web server for processing by the program
t1r.asp asspecified inthe ACTION field of the form.

Processing the Request

8-16

When the Web server receivesthe TRANSFER request, it runsthe programt | r . asp.
Client requests are turned into a Request object inthe Web server. This Reguest object
has members containing all the data that was input to the form along with other form
data, such as hidden fields. The Web server makes the Request object available to the
program being invoked.

Theprogramt | r. asp contains only VBScript. The first action performed by this
program verifies that the Jolt Session Pool Manager isinitialized.

The code example shown in the following listing performs the initialization check and
returns an HTML error page if the pool is not initialized.

Listing 8-4 tlr.asp: Verify the Jolt Session Pool M anager IsInitialized

<%

If Not |sCbject(Application("nmgr")) Then

%>
<HTM.>
<HEAD><TI TLE>Er r or </ Tl TLE></ HEAD>
<BODY><CENTER>
<H2>Sessi on Manager is not initialized</H2>
<P>Make sure that you access the correct HTM
</ CENTER></ BODY>
</ HTM_>

<%

End If

%

If the session pool isinitialized, the program continues to process the request. The
program locates a Session from the Session Pool Manager as shown in the following
listing.

Using BEA Jolt

TRANSFER Request Wal kthrough

Listing 8-5 tlr.asp: Locate a Session

Set pool = Application("ngr"). getSessionPool (Null)

Once avalid session is located, the program retrieves an HTML template that is used
to return the results to the client. In this example, these templates were cached in the
initialization section. The template retrieved isidentified by the name of the service
being invoked, Request (" SVCNAMVE") as shown in the following listing.

Listing 8-6 tlr.asp: Retrievea Cached HTML Template

"I/ Choose the response tenpl ate
If IsEnpty(Application("tenplates")) Then
Set tenplate = Server. Creat eObj ect (" BEAVEB. Tenpl ate")
El se
Sel ect Case Request (" SVCNAME")
Case "1 NQU RY"
Set tenplate = Application("tenplates")(1NQU RY)
Case "DEPCSI T"
Set tenplate = Application("tenpl ates")(DEPCSIT)
Case "W THDRAWAL"
Set tenplate = Application("tenpl ates") (W THDRAWAL)
Case " TRANSFER"
Set tenplate = Application("tenpl ates") (TRANSFER)
End Sel ect
End | f

Next, call the BEA Tuxedo service as shown in the following listing “tlr.asp: Invoke
the BEA Tuxedo Service”. In the following listing, the input data from the Request
object is passed to the cal | () method of the session. Thecal | () method usesthe
built-in ASP Request object as input. The results of thecal | () are stored in the

out put object and an array, i odat a.

Using BEA Jolt 8-17

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Listing 87 tlr.asp: Invokethe BEA Tuxedo Service

Set output = pool.call (Request ("SVCNAME"), Null, Not hing)
Set iodata(l) = output

After you invoke the BEA Tuxedo service, the out put object and the second element
of the array i odat a contain the results of the service call.

Note: Becausetheinitial form specified field names match the BEA Tuxedo service
parameter names, the Request object can be used in the cal | () method. If
these names do not match, create an input array with “name=value’ elements
for each service parameter before invoking the cal 1 () method.

Returning the Results to the Client

8-18

At thisstage, no results have been returned to theclient. The final step sendsan HTML
page containing the results of the service call back to the client. The HTML page
consists of the template merged with the datareturned by the service call shown inthe
previous listing “tIr.asp: Invoke the BEA Tuxedo Service”.

The template file contains placeholders for variable (call-specific) data. These
placeholders are identified by the special tag <%=NAVEY>. In the code example shown
in the following listing, an index is used to indicate which occurrence of a parameter
nameisused. For example, ACCOUNT_I D[0] specifiesthefirst occurrence of thefield
ACCOUNT_I D.

Listing 8-8 transfer.temp: Placeholdersfor TRANSFER Results

<TABLE BORDER=1>

<TR><TD></ TD><TD ALI GNECENTER>Account #</ B></ TD>
<TD ALI GN=CENTER>Bal ance</ B></ TR>

<TR><TD ALI GN=RI GHT>Fr om </ B></ TD><TD><%ACCOUNT _| D} 0] %</ TD>
<TD><%SBALANCE] 0] %</ TR>

<TR><TD ALI G\N=RI GHT>To: </ B></ TD><TD><%ACCOUNT | Df 1] %</ TD>
<TD><%=SBALANCE] 1] %</ TR>

</ TABLE>

Using BEA Jolt

TRANSFER Request Wal kthrough

To subsgtitute the placeholders in the template with the actual values of the data
returned from the service call, use the eval () method of the Template object shown
in the following listing. This method matches placeholders in the template file with
fields of the same name in the results data and replaces them accordingly. A check for
valid results (out put object) is done as shown in the following listing. If thereis no
output object, an error template page is returned.

Listing 8-9 tlr.asp: Template Processing

path = Application("tenplatedir")
If (Not IsObject(output)) O (output is Nothing) Then
Call tenplate.eval File(path & "\ nosession.tenmp", Null)
El sei f output.noError() Then
Cal |l tenpl ate. eval (i odata)
El sei f output.applicationError() Then
Call tenplate.eval File(path & "\error.tenmp", iodata)
El se
/] Systemerror
Di m errdat a(0)
Set errdata(0) = Server.CreateOhj ect (" BEAVEB. Tenpl at eDat a")
Cal | errdata(0).setValue("ERRNO', output.getError())
Cal |l errdata(0).setValue("ERRVSG', output.getStringError())
Call tenplate.eval File(path & "\syserror.tenp", errdata)
End | f

Note: Thearray i odat a contains both the input request and the results from the
service call. Thisisuseful if you want the results page to contain datathat is
part of the input.

When the template is processed, the resulting HTML isreturned to the client as shown
in the following figure.

Using BEA Jolt 8-19

8 us ng Jolt ASP Connectivity for BEA Tuxedo

Figure8-4 tlr.asp Results Page

3 CTRANSFER Result - Microsoft Internet Explorer [_ (O] x|

J File Edit View Go Favorites Help ‘

|G 2~ ONWAH3E RS

JAddress &1 hitp:/fspider/samplesftellerftir.asp j JLinks
-]

The Result of the CTRANSFER
Service is:

Account Number: 10000
Cwrrent Balance: $4878.82
Cwrrent Drate: Tue May 12 11:37:44 PDT 1998

Back |

R

l_l_’_[% Local intranet zone

8-20 Using BEA Jolt

CHAPTER

A BEA Jolt Exceptions

This appendix describes all the BEA Jolt exceptions that you may encounter. Keep in
mind that the Jolt Class Library returns both BEA Jolt and BEA Tuxedo exceptions.

For details about BEA Tuxedo exceptions, refer to the appropriate document in the
following list:

¢ BEA Tuxedo Command Reference

e BEA Tuxedo ATMI C Function Reference

e BEA Tuxedo ATMI COBOL Function Reference
e BEA Tuxedo ATMI FML Function Reference

e File Formats, Data Descriptions, MIBs, and System Processes Reference

The Jolt Class Library exceptions are listed for each class, constructor, and method
listed in the BEA Jolt API Reference.

Using BEA Jolit A-1

A BEAJolt Exceptions

BEA Jolt Exceptions

Thefollowing table lists the BEA Jolt and BEA Tuxedo exceptions that you may
encounter while running BEA Jolt. Each exception includes a possible cause (or
causes) and arecommended action (wherever possible) to help resolve the situation

1. TPEABORT

A transaction could not commit.

Cause This exception occurs because atransaction could not commit on
the server side. This exception may also occur if the JSH
performs a message resend for a commit that has timed out due
to aprevious blocking condition. In BEA Tuxedo, you can get
thisexceptionif t pcormmi t () iscalled with outstanding replies
Or open conversation connections.

Action Check transaction failures on the server side. BEA Jolt clients
should resend the request after the transaction problem has been
fixed on the server side.

2. TPEBADDESC

This exception should not occur in BEA Jolt.

Cause In BEA Tuxedo, this exception usualy occurs when an invalid
caller descriptor isgiventot pgetrpl y() ortpsend().

Action None.

3. TPEBLOCK

A blocking condition has occurred and the TPNOBLOCK flag is specified in BEA
Tuxedo.

Cause This exception occurs because the server is backed up.

Action Y ou may need to re-examine and re-architect the application to
handle extreme load cases.

A-2 Using BEA Jolt

BEA Jolt Exceptions

4. TPElI NVAL Invalid arguments wer e given by the application.

Cause This exception occursif anew JoltSession classis processed
before performing the security protocol. In Jolt’s URL handler
routine, this exception occurs when ainvalid challenge response
isreceived by the openConnect i on() method. The
TPEI NVAL exception can also occur if you specified a
hexadecimal address for the JSL - H option without aleading
“0x” , or if you entered awrong address in UBBCONFI Gfile. In
addition, the GETREC() , DELREC() and GETSV(C() servicesin
JREPSVR can return TPEI NVAL if the REPNAME is missing.
Also, the ADDREC() servicein JREPSVRcan return TPEI NVAL
if the REPVAL is not specified.

Action This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

5. TPELIMT The maximum number of outstanding requests or subscriptions has been
reached.
Cause The maximum number of outstanding requests has been reached.

This exception could also mean that the BEA Tuxedo System
Event Broker's maximum number of subscriptions (50 internally
defined for now) has been reached.

Action Y ou may need to re-examine and re-architect the application to
handle load extreme cases.

6. TPENCENT Therequested serviceis not available.

Cause Usually, the requested service is not booted or advertised on the
BEA Tuxedo server side. It is also possible that the requested
serviceisnot defined in the Jolt Repository. This exception could
a so indicate that you could not access the BEA Tuxedo System
Event Broker.

Action Y ou need to check the server side to seeif the service is booted
or advertised. Otherwise, check to seeif the requested service is
defined in the Jolt Repository. After the service is available on
the server side, Jolt clients should resend the request.

Using BEA Jolt A-3

A BEAJolt Exceptions

7. TPECS

An operating system exception has occurred.

Cause

The exact nature of the problem is described in the ULOG file.
Typicaly, you can get this exception due to the memory
allocation failures, wrong network address, or failureto attach to
the Bulletin Board for the JSL.

Action

Try fixing the problem as described in the ULOG file. Jolt clients
might need to reconnect or resend the request after the problem
has been fixed.

8. TPEPERM

Thereisa permission problem when attempting to join a session.

Cause

In the JoltSession class, this exception occurs because the Jolt
client does not have the permission to join the application.
Permission may be denied based on an invalid application
password, failure to pass application specific authentication, or
the use of restricted client names. In the Jolt URL handler
routing, this exception occurs when a bad challenge responseis
received on the openConnect i on() method. If the Jolt
Repository is set to read-only, the ADDREC() and DELREC()
services, or the GARBAGECOLLECT() servicein JREPSVR, also
return the TPEPERMexception.

Action

This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

9. TPEPROTO

A function was called in an improper context.

Cause

For this exception, an improper context could include a

rol | back() orcommi t () method called by a participant, an
unsubscribe event that is called while “unsubscribe all” isin
progress, or when the caller is not aclient.

Action

This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

A-4

Using BEA Jolt

BEA Jolt Exceptions

10. TPESVCERR

A service routine has encountered an exception duringt pr et ur n() or
t pf orwar d() in BEA Tuxedo.

Cause The service routine is returning application-level failures, which
may include any of the following: an application cals
tpreturn() ortpforward() withinvalid flags, the caller
descriptor is no longer valid, or there are invalid return values.

Action This type of exception should have been handled during the

application development cycle. Y ou should not receive this
exception in a production environment.

11. TPESVCFAI L

The serviceroutine sending the caller’sreply called t pr et ur n() with TPFAI L.

Cause

The service routineis returning application-level failures.

Action

This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

12. TPESYSTEM

A BEA Tuxedo system exception has occurred.

Cause

The exact nature of the exception iswritten to the ULOG file. For
example, when performing the Diffie-Hellman encryption, this
exception occurs if the JSH is unable to send negotiation
parameters. The JSL fails to send the reply challenge call to the
Jolt client. The Jolt client sends an incorrect timestamp value, an
incorrect number of encrypted bits value, an incorrect ticket
value, or timestamp mismatches in reconnect protocol. The JSL
fails to initialize network protocol information, or could not
establish alistening address on a network. The JSH recelves a
network message with an unknown context or receivesamessage
with a different connection.

Action

In most cases, you need to find out the exact nature of the
exception from the ULOG file on the server side. In case of
hardware or network failures, you can try to reconnect if a
hardware or network failover is available.

13. TPETI ME

A transaction timeout has occurred.

Cause

Thereis atransaction timeout on the server side.

Action

This type of exception should be addressed on the application
server side. Jolt clients should resend the request after the server
side problem has been resolved.

Using BEA Joit A-5

BEA Jolt Exceptions

14. TPETRAN Therequested servicebelongsto a server that does not support transactionsand

TPNOTRANIs not set.

Cause A transaction is not supported for the requested service.

Action This type of exception should be addressed on the application
server side. Jolt clients should resend the request after the server
side problem has been resolved.

15. TPGOTSI G An unexpected signal was received.

Cause A signal was received and the TPSI GSTRT flag was not
specified.

Action None.

16. TPERMERR A resource manager failed to open or close correctly on the server side.

Cause The resource manager might not be available; or all the resource
might not be released or committed before close.

Action Check the ULOG file for reasons why the resource manager
failed to open or close on the server side.

17. TPElI TYPE For the JoltRemoteService class, the requested BEA Tuxedo ser vice does not
recognize the type and subtype of the input data.

Cause The type and subtype of input datais not defined in the Jolt
Repository.

Action The type and subtype of input data should be defined in the Jolt
Repository. This type of exception should have been handled
during the application development cycle. Y ou should not
receive this exception in a production environment.

18. TPEOTYPE For the JoltRemoteService class, the BEA Tuxedo caller does not recognize the
type and the subtype of the reply data.

Cause The type and subtype of output datais not defined in the Jolt
Repository.

Action The type and subtype of output data should be defined in the Jolt
Repository. This type of exception should have been handled
during the application development cycle. Y ou should not
receive this exception in a production environment.

A-6 Using BEA Jolt

BEA Jolt Exceptions

19. TPERELEASE This exception should not occur in BEA Jalt.

Cause Usually, this exception occurs when an unsolicited notification
message is sent from a server with the TPACK flag set, and the
target is a Jolt client from an ol der release of BEA Jolt that does
not support the acknowledgment protocol.

Action Verify that the correct version of BEA Jolt isinstalled on your
machine. Thistype of exception should have been handled during
the application development cycle. Y ou should not receive this
exception in an production environment.

20. TPEHAZARD Dueto some failure, the work done on behalf of the transaction may have been
heuristically completed.

Cause Check the ULOG file on the server side for details.

Action None.

21. TPEHEURI STI C Dueto aheuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

Cause Check the ULOG file on the server side for details.

Action None.

22. TPEEVENT This exception should not occur in BEA Jalt.

Cause Usually, this exception means that an event has occurred when
sending or receiving amessagein aconversational connectionin
BEA Tuxedo. However, conversational server connections are
not available in BEA Jolt.

Action None.

23. TPEMATCH The JoltUser Event class has implemented a subscription to an asynchronous

notification event, but the subscription has failed because it matches an existing
subscription.

Cause The subscription failed because it matched one already listed
with the BEA Tuxedo System Event Broker.

Action None.

Using BEA Jolt A-7

BEA Jolt Exceptions

24.

TPEDI AGNCSTI C This exception should not occur in BEA Jolt.

Cause Usually, this exception occurs when enqueuing or dequeuing a
message from the specified queue failsin BEA Tuxedo.
However, enqueing and dequeing of messagesisnot availablein
BEA Jolt.

Action None.

25.

TPEM B This exception should not occur in BEA Jolt.

Cause Usually, thisexception occurswhen an administrativerequest via
t padntal | () hasfaledin BEA Tuxedo. However, TMIB
calsare not availablein BEA Jolt.

Action None.

26.

TPEJOLT This exception indicatesthereisa problem in BEA Jolt.

Cause The TPEJOLT exception could occur for any of the following
reasons:

m JoltSession class—thesend(),recv() orcancel ()
methods throw TPEJ QLT if the session object or message ID
isinvalid.

m JoltSession class—throws TPEJOLT when TPI NI T data
conversion fails.

m beajolt.pool.connection class—throws TPEJOLT when a
run-time exception occurs.

m JoltRemoteService—thecal | () method throws TPEJOLT
when the buffer conversion between BEA Jolt and BEA
Tuxedo fails, the requested serviceis not defined in the Jolt
Repository, the requested service does not the right version,
or the reply data conversion fails.

m JoltUserEvent class—throws TPEJQOLT when event name

conversion fails, an invalid message ID is encountered, or
unsolicited message data conversion fails.

Action This type of exception should have been handled during the
application development cycle. Y ou should not receive this
exception in a production environment.

A-8

Using BEA Jolt

Index

A
applets

client-side execution 5-62

Java 5-1, 5-2, 5-63

Jolt 1-12, 5-4

localizing 5-64
appletview

Repository Editor 4-5
applications

deployment 5-62

localization 5-62

multithreaded 5-42
ASP Connectivity 8-1

B

BEA Tuxedo

ATMI interface 5-4
buffer types

using with Jolt 5-14
customizing services 5-1
data types

using with Jolt 5-14
distributing services 1-11
Jolt Repository Editor

initializing services using 3-34

logging

off 5-5

on 5-5
server requirements 5-62
services

executing 5-5

requests 5-4
transaction

begin 5-5

complete 5-5

new 5-5

rollback 5-5

buffer types

filtering FML or VIEW 3-37
FML 5-23

overview 5-14

STRING 5-15

VIEW 5-30

XML 5-36

bulk loader

bulk load file 2-3

command line options 2-2
command-line options 2-2
datafile syntax 2-4

getting started 2-2
introduction 2-1

keywords 2-4, 2-5, 2-6, 2-8
sample data 2-10
troubleshooting 2-9

CARRAY 5-21
CARRAY buffer type 5-19
classes 5-6

hierarchy 5-7

Using BEA Jolt

Jolt 5-1, 5-8
JoltRemoteService 5-8
JoltSession 5-8
JoltSessionAttributes 5-6, 5-8
JoltTransaction 5-9
relationships 5-7
subdirectory 5-63
client
Jolt 5-5
logon/logoff 5-8
command-line options 3-15—-3-19
Jolt Relay 3-23
configuration 3-1, 3-33
Event Subscription 3-10, 3-36
Jolt Relay (JRLY) 3-10
Jolt Relay Adapter (JRAD) 3-12, 3-29
Jolt Repository 3-3, 3-32
* GROUPS section 3-33
* SERV ERS section 3-33
Jolt Server Listener (JSL) 3-2, 3-15
network address 3-29, 3-31
quick 3-2
Repository File, jrepository 3-34
configuration file
format 3-40
Jolt Relay 3-27
overview 3-39
connection attributes 5-10
hostname 5-10
portnumber 5-10
connection modes
connection-less 5-51
retained 5-51

D
data types
BEA Tuxedo 5-14
DES 1-3
Diffie-Hellman (DH) Key Exchange 3-19
documentation, where to find it x

[-2 Using BEA Jolt

E
encryption 1-3, 3-19
Event Subscription 5-49
classesfor 5-49
supported types 5-52
events
subscribing to 5-49
exceptions
Jolt 5-3
Jolt interpreter 5-3
ServiceException 5-10
System.in.read 5-44
Tuxedo generated in Jolt 5-3
exceptions, Jolt A-1
exporting services 4-41

F
failover
Jolt Client to JRLY connection 3-22
JRLY to JRAD connection 3-22
FML 5-23
FML buffer type 5-23

G
group services
package organizer
how to use 4-33
GROUPS section configuration 3-33

H
HTML

applet tag 5-63
page 5-63

illustrates 5-33
installation 3-1

J

Java

applets 5-1, 5-2, 5-63
classfiles 5-63

clients 1-7, 5-4
Developer’sKit (JDK) 5-43
language classes 5-1
packages 5-63

programs 5-2
Thread.yield() method 5-43
Virtual Machine (VM) 5-42

Jolt 1-2, 5-6

applets 1-12
deploying 5-62
localizing 5-64
architecture 1-3, 1-5, 1-6
bulk loader 2-1
ClassLibrary 1-2
classes 5-1, 5-63
functionality 5-8
hierarchy 5-7
relationships 5-7
subdirectory 5-63
client
interface objects 5-5
logon/logoff 5-8
populating variables 5-5
requests 5-5
client/server
interaction 5-5
relationship 5-4
clients
communication with servers 1-10
components 1-2
connection manager 5-4
exceptions A-1
international use 5-64
Internet Relay 1-2
JoltBeans 1-2
key features 1-3

Repository Editor 1-2
server 5-4, 5-5, 5-63

requirements 5-62
servers 1-2

communication with clients 1-10

components 1-6

proxy for Tuxedo client 1-5
Transaction Protocol 1-10, 5-4
using threads with 5-44

Jolt Class Library 1-2, 1-7, 5-2, 5-6, 5-8, 5-

10
application development 5-62
errors
handling 5-3
exceptions 5-3
handling 5-3
object/class reusability 5-56
Jolt Internet Relay 1-2, 3-20
Jolt Relay (JRLY)

command-line options for Windows

2000 3-23
configuration 3-27
configuration file 3-27
failover 3-21
network address configuration 3-29
starting 3-23

Jolt Relay Adapter (JRAD) 3-29
configuration 3-29
starting 3-29

Jolt Reply 5-49

Jolt Repository 3-32, 5-5
configuring 3-32
Editor 1-2
Editor, using 4-1
getting started 4-5
initializing services 3-4
service attributes 5-5

Jolt Repository Editor
initializing services using 3-34

Jolt Repository Server 1-6

Jolt server 3-13

Using BEA Jolt

shutting down the 3-14
starting the 3-13
Jolt Server Handler 1-6
Jolt Server Listener (JSL) 1-6
*MACHINES section 3-41
*SERV ERS section 3-42
configuration 3-15, 3-42
optional parameters 3-44
parameters usable with 3-43
restarting 3-14
UBBCONFIG file 3-40
JoltBeans 1-2, 6-1
JoltM essage 5-49
JoltRemoteService 5-9
cals 5-10
class 5-8
object 5-8
resetting parameters 5-9
reusing 5-56
JoltSession 5-5, 5-9, 5-49, 5-54
class 5-8, 5-9, 5-54
object 5-7, 5-8
instantiating 5-10

JoltSessionAttributes 5-6, 5-7, 5-8, 5-9

JoltTransaction 5-5, 5-7, 5-9
class 5-9

JoltUserEvent 5-49

jrepository 3-34

JREPSVR

JRLY See Jolt Relay

JSH

JSL

L
logon
Repository Editor 4-7

M
MACHINES section

-4 Using BEA Jolt

Jolt Server Listener (JSL) 3-41
methods

clear() 5-9

Thread.yield() 5-43
multithreaded applications 5-42

N

notifications
brokered event 5-49
data buffers 5-51
event handler for 5-50
unsolicited 5-49
unsubscribing 5-53
using Jolt to receive 5-54

0

objects
relationships 5-7
reusability 5-49
reusing 5-58

P
package organizer
description 4-33
group services
how to 4-33
using 4-31
packages
adding 4-20
delete a package 4-39
deleting 4-40
modifying 4-35
package organizer 4-31
Repository Editor 4-13, 4-14
parameters 3-49, 4-18
associated with RESTART 3-48
boot 3-44
delete a parameter 4-39

deleting 4-39

edit a parameter 4-38

editing 4-37

modifying 4-35

optiona for JSL 3-44

runtime 3-46

Tuxedo 3-49

usable with JSL 3-43
printing product documentation x

R

RC4 1-3

Repository Editor 1-11
appletviewer 4-5
exiting 4-9
introduction 4-2
logon 4-7
main components 4-11
packages 4-13, 4-14

setting up 4-19

parameters 4-18
process flow 4-11
sample window 4-2

sample window description 4-4

saving your work 4-20
services 4-16

description of 4-17

setting up 4-19

view services 4-17
starting with browser 3-5

starting with Web browser 4-6

troubleshooting 4-51

S

sample applications, online resources 3-50

saving your work 4-20
security 1-3, 3-19
server

Jolt 5-5

Tuxedo requirements for 5-62
Web 5-63

SErvers

components 1-6
Jolt 1-2
Jolt Repository 1-6

services

add a parameter 4-27
data type selection 4-29
how to 4-29
window description 4-28
add aservice
buffer type selection 4-26
adding to package 4-22
instructions 4-25
options 4-24
calling synchronous 5-8
definitions 5-10
delete a service 4-39
deleting 4-39
edit aservice 4-35
editing 4-37
export status
reviewing 4-43
exporting 4-41
grouping 4-31
Jolt client

make service available to 4-41

modifying 4-35
parameters 4-18
service test window 4-46, 4-48
test aservice
how to 4-49, 4-50
process flow 4-49
testing 4-45
unexport 4-41
unexport status
reviewing 4-43
using the Repository Editor 4-16
view parameters 4-19
view services 4-17

Using BEA Jolt

Servlets 7-1
simpapp, online resources 3-50
STRING 5-17
STRING buffer type 5-15
support

technical xi

T
testing
services 4-45
threads 5-42
BLOCKED 5-42
non-preemptive 5-43
RUNNABLE 5-42
RUNNING 5-42
using Jolt with non-preemptive 5-43
using with Jolt 5-44
TOUPPER 5-15
Transaction
Protocol 5-4
transaction
begin 5-9
commit 5-9
object 5-9
rollback 5-9
troubleshooting
Repository Editor 4-51
Tuxedo
background information 3-39
parameters, entering 3-49

U
UBBCONFIG file
creating 3-39
Jolt Server Listener (JSL) configuration
sample 3-40
unexporting services 4-41

-6 Using BEA Jolt

\Y

VIEW 5-33
VIEW buffer type 5-30
view parameters 4-19

W

Web server
considerations 5-63

X
XML buffer type 5-36

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introducing BEA Jolt
	BEA Jolt Components
	Key Features
	How BEA Jolt Works
	Jolt Servers
	Jolt Class Library
	JoltBeans
	ASP Connectivity for BEA Tuxedo
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Internet Relay

	Creating a Jolt Client to Access BEA Tuxedo Applications

	2 Bulk Loading BEA Tuxedo Services
	Using the Bulk Loader
	Activating the Bulk Loader
	The Bulk Load File

	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values

	Troubleshooting
	Sample Bulk Load Data

	3 Configuring the BEA Jolt System
	Quick Configuration
	Editing the UBBCONFIG File
	Configuring the Jolt Repository
	Initializing Services That Use BEA Tuxedo and the Repository Editor
	Logging On to the Repository Editor
	Exiting the Repository Editor
	Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription
	Configuring Jolt Relay

	Jolt Background Information
	Jolt Server
	Starting the JSL
	Shutting Down the JSL
	Restarting the JSL
	Configuring the JSL
	JSL Command-line Options
	Security and Encryption

	Jolt Relay
	Jolt Relay Failover
	Jolt Relay Process
	JRLY Command-line Options for Windows 2000
	JRLY Command-line Option for UNIX
	JRLY Configuration File

	Jolt Relay Adapter
	JRAD Configuration
	Network Address Configurations

	Jolt Repository
	Configuring the Jolt Repository
	Initializing Services By Using BEA Tuxedo and the Repository Editor

	Event Subscription
	Configuring for Event Subscription
	Filtering BEA Tuxedo FML or VIEW Buffers

	BEA Tuxedo Background Information
	Configuration File
	Creating the UBBCONFIG File

	Sample Applications in BEA Jolt Online Resources

	4 Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Repository Editor Window Description

	Getting Started
	Starting the Repository Editor Using the Java Applet Viewer
	Starting the Repository Editor from Your Web Browser
	Logging On to the Repository Editor
	Exiting the Repository Editor

	Main Components of the Repository Editor
	Repository Editor Flow
	What Is a Package?
	What Is a Service?
	Working with Parameters

	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Adding a Service
	Adding a Parameter

	Grouping Services Using the Package Organizer
	Modifying Packages, Services, and Parameters
	Editing a Service
	Editing a Parameter
	Deleting Parameters, Services, and Packages

	Making a Service Available to the Jolt Client
	Exporting and Unexporting Services
	Reviewing the Exported and Unexported Status

	Testing a Service
	Jolt Repository Editor Service Test Window
	Testing a Service

	Repository Editor Troubleshooting

	5 Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications Versus Java Applets
	Jolt Class Library Features
	Error and Exception Handling
	Jolt Client/Server Relationship

	Jolt Object Relationships
	Jolt Class Library Walkthrough
	Logon and Logoff
	Synchronous Service Calling
	Transaction Begin, Commit, and Rollback

	Using BEA Tuxedo Buffer Types with Jolt
	Using the STRING Buffer Type
	Using the CARRAY Buffer Type
	Using the FML Buffer Type
	Using the VIEW Buffer Type
	Using the XML Buffer Type

	Multithreaded Applications
	Threads of Control
	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt

	Event Subscription and Notifications
	Event Subscription Classes
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	BEA Tuxedo Event Subscription
	Using the Jolt API to Receive BEA Tuxedo Notifications

	Clearing Parameter Values
	Reusing Objects
	Deploying and Localizing Jolt Applets
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet

	6 Using JoltBeans
	Overview of Jolt Beans
	JoltBeans Terms
	Adding JoltBeans to Your Java Development Environment
	Using Development and Run-time JoltBeans

	Basic Steps for Using JoltBeans
	JavaBeans Events and BEA Tuxedo Events
	Using BEA Tuxedo Event Subscription and Notification with JoltBeans

	How JoltBeans Use JavaBeans Events
	The JoltBeans Toolkit
	JoltSessionBean
	JoltServiceBean
	JoltUserEventBean

	Jolt-Aware GUI Beans
	JoltTextField
	JoltLabel
	JoltList
	JoltCheckbox
	JoltChoice

	Using the Property List and the Property Editor to Modify the JoltBeans Properties
	JoltBeans Class Library Walkthrough
	Building the Sample Form
	Wiring the JoltBeans Together

	Using the Jolt Repository and Setting the Property Values
	JoltBeans Programming Tasks
	Using Transactions with JoltBeans
	Using Custom GUI Elements with the JoltService Bean

	7 Using Servlet Connectivity for BEA Tuxedo
	What Is a Servlet?
	How Servlets Work with Jolt
	The Jolt Servlet Connectivity Classes

	Writing and Registering HTTP Servlets
	Jolt Servlet Connectivity Sample
	Viewing the Sample Servlet Applications
	SimpApp Sample
	BankApp Sample
	Admin Sample

	Additional Information on Servlets

	8 Using Jolt ASP Connectivity for BEA Tuxedo
	Key Features
	How Jolt ASP Connectivity for BEA Tuxedo Works
	ASP Connectivity for BEA Tuxedo Toolkit
	Jolt ASP Connectivity for BEA Tuxedo Walkthrough
	Overview of the ASP for BEA Tuxedo Walkthrough
	Getting Started Checklist
	Tuxedo Host Running Jolt Server
	Machine Running Jolt Client and Microsoft IIS

	Overview of the TRANSFER Service
	TRANSFER Request Walkthrough
	Initializing the Jolt Session Pool Manager
	Submitting a TRANSFER Request from the Client
	Processing the Request
	Returning the Results to the Client

	A BEA Jolt Exceptions
	BEA Jolt Exceptions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

