
BEA Tuxedo Interoperability

B E A T u x e d o R e l e a s e 8 . 0
D o c u m e n t E d i t i o n 8 . 0

J u n e 2 0 0 1

BEA Tuxedo

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA Tuxedo Interoperability

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

What You Need to Know ..v

e-docs Web Site ... vi

How to Print the Document... vi

Documentation Conventions .. vii

1. Introduction
Interoperability Between the WLS J2EE and BEA Tuxedo Programming

Models .. 1-1

BEA Tuxedo Server Interoperability ... 1-2

Transactions and Security ... 1-3

BEA Tuxedo Client and Server Interoperability.. 1-3

Transactions and Security ... 1-5

About BEA Jolt ... 1-6

BEA WebLogic Server and BEA Tuxedo Interoperability........................ 1-6

BEA Tuxedo Interoperability with Third-Party ORBs 1-7

BEA Tuxedo Interdomain Interoperability .. 1-7

Interoperability Solutions .. 1-8

Connectivity from BEA WebLogic Server to BEA Tuxedo ATMI........... 1-8

Using BEA Jolt ... 1-8

Using WebLogic Tuxedo Connector (WTC) Version 1.0 1-9

Connectivity from BEA Tuxedo CORBA to BEA WebLogic Server 1-10

Using RMI/IIOP and IDL Interfaces .. 1-10

Using WebLogic Tuxedo Connector (WTC) Version 1.1 1-11

Connectivity from BEA WebLogic Server to BEA Tuxedo CORBA 1-11

Using WebLogic Enterprise Connectivity (WLEC) 1-11

Using WebLogic Tuxedo Connector (WTC) Version 1.1 1-12

Interoperability Sample Applications.. 1-13
BEA Tuxedo Interoperability iii

2. Connectivity Between a BEA Tuxedo CORBA Client and an EJB
in WebLogic Server

Overview of the WLStrader Value Type Sample Application2-1

Components of the Wlstrader Value Type Sample Application 2-3

WebLogic Server Trader Sample Application ... 2-3

Mapping from a WebLogic Server to a CORBA Client 2-4

BEA Tuxedo CORBA C++ Client ... 2-5

Building and Running the WLStrader Value Type Sample Application 2-7

Set the Development Environment... 2-8

Copy the BEA Tuxedo WLStrader Value Type Files 2-8

Build the Example .. 2-10

Configure the Server... 2-11

Run the Example ... 2-12

Additional Sources of Information .. 2-12

WebLogic Server.. 2-13

Object Management Group (OMG) ... 2-13

BEA Tuxedo CORBA .. 2-13

3. Connectivity from WebLogic Server to a CORBA Object
WLEC EJB simpapp Sample Application ... 3-1

Building and Running the WLEC EJB simpapp Sample Application 3-2

Description ... 3-3

Prerequisites ... 3-3

Build the Example .. 3-3

Index
iv BEA Tuxedo Interoperability

About This Document

This document presents an overview of BEA Tuxedo® interoperability with other
BEA software components and third-party software providers. This document
identifies interoperability solutions, outlines some solutions, and provides references
to other documentation and sample applications.

This document includes the following topics:

n Chapter 1, “Introduction,” provides a high-level overview of the interoperability
and coexistence capabilitities in the BEA Tuxedo system between the WebLogic
Server J2EE and BEA Tuxedo programming models. Additionally, this chapter
provides information on interoperability solutions between specific components.

n Chapter 2, “Connectivity Between a BEA Tuxedo CORBA Client and an EJB in
WebLogic Server,” provides detailed information about the WLStrader Value
Type sample program, stepping you through the build and run processes for this
sample application.

n Chapter 3, “Connectivity from WebLogic Server to a CORBA Object,” provides
supplementary information about the WebLogic Enterprise Connectivity
(WLEC) EJB simpapp sample application.

What You Need to Know

This document is intended for application developers who are interested in creating
secure, scalable, transaction-based server applications that interoperate between
components in the BEA product suite. It assumes you are knowledgeable about
CORBA, Enterprise JavaBeans, and the C++ and Java programming languages. This
document is also a resource for locating information about other BEA interoperability
solutions.
BEA Tuxedo Interoperability v

e-docs Web Site

The BEA Tuxedo product documentation is available from the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, and Java programming, see the CORBA
Bibliography in the BEA Tuxedo online documentation.
vi BEA Tuxedo Interoperability

Documentation Conventions
Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
BEA Tuxedo Interoperability vii

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
viii BEA Tuxedo Interoperability

Documentation Conventions
| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA Tuxedo Interoperability ix

x BEA Tuxedo Interoperability

CHAPTER
1 Introduction

This topic includes the following sections:

n Interoperability Between the WLS J2EE and BEA Tuxedo Programming Models

n Interoperability Solutions

n Interoperability Sample Applications

Interoperability Between the WLS J2EE and
BEA Tuxedo Programming Models

This section describes the interoperability and coexistence capabilities in the BEA
Tuxedo system between the WebLogic Server J2EE and Tuxedo programming
models. The key interoperability features are presented in the following categories:

n BEA Tuxedo Server Interoperability

n BEA Tuxedo Client and Server Interoperability

n BEA WebLogic Server and BEA Tuxedo Interoperability

n BEA Tuxedo Interoperability with Third-Party ORBs

n BEA Tuxedo Interdomain Interoperability

A summary description of BEA clients and servers follows.
BEA Tuxedo Interoperability 1-1

1 Introduction
Note the following definitions:

n BEA client

A BEA client can be any of the following entities, which exist outside the BEA
domain and must use a listener/handler as a gateway to the domain:

l Jolt client application (through the Jolt listener/handler)

l BEA Tuxedo /WS client application (through the Tuxedo /WS
listener/handler)

l BEA Tuxedo CORBA client application (through the IIOP listener/handler)

l ActiveX client application (through the IIOP listener/handler)

l RMI client application (through the IIOP listener/handler)

l EJB on BEA WebLogic Server using WebLogic Enterprise Connectivity
(WLEC)

Note that a BEA Tuxedo client invoking another BEA Tuxedo client is not
supported.

n BEA Tuxedo server

A BEA Tuxedo server includes Tuxedo services and CORBA objects that run on
the BEA Tuxedo system. These servers run within the administrative unit of a
BEA Tuxedo domain and are configured through a UBBCONFIG file.

BEA Tuxedo Server Interoperability

This section describes the interoperability between the following BEA Tuxedo server
components:

n BEA Tuxedo ATMI service

n CORBA C++ object

Figure 1-1 shows the direct interoperability support between BEA Tuxedo server
applications.
1-2 BEA Tuxedo Interoperability

Interoperability Between the WLS J2EE and BEA Tuxedo Programming Models
A BEA Tuxedo service can invoke a CORBA C++ object using the compiled C++
client stub file for that object. One way to do this is to implement the BEA Tuxedo
service as a C-callable C++ function that invokes the client stub file for the C++ object.
If you use this approach, note that you need to link in the C++ ORB libraries when you
build the Tuxedo service.

Figure 1-1 BEA Tuxedo Server Interoperability

A C++ object can include ATMI calls to BEA Tuxedo services. See the Wrapper
University sample application, available in the Guide to the CORBA University Sample
Applications, for a sample application that demonstrates this feature.

Transactions and Security

Transaction and security context propagation between server applications running in a
BEA Tuxedo domain is fully supported.

BEA Tuxedo Client and Server Interoperability

Figure 1-2 shows the interoperability support among BEA clients invoking BEA
servers.

BEA Tuxedo
Service

CORBA C++
Object
BEA Tuxedo Interoperability 1-3

1 Introduction
Figure 1-2 Remote Client and Server Interoperability

Note the following information illustrated in the preceding figure:

1. Jolt client application invoking a BEA Tuxedo service

A Jolt client can invoke a BEA Tuxedo service running in the BEA Tuxedo
domain through a Jolt listener/handler. For more information about Jolt, see
Using BEA Jolt and the BEA Jolt API Reference in the online BEA Tuxedo
documentation.

2. BEA Tuxedo /WS client application invoking a BEA Tuxedo service

A BEA Tuxedo /WS client application can invoke a BEA Tuxedo service
running in the BEA Tuxedo domain using the workstation listener/handler.

3. BEA CORBA C++ client application invoking a CORBA object

A BEA CORBA C++ client application can invoke CORBA C++ objects. For
more information, see Creating CORBA Client Applications.

4. BEA CORBA Java client application invoking a CORBA object

Jolt ActiveXCORBA
Java

CORBA
C++

Tuxedo
/WS

JSL/JSH ISL/ISHWSL/WSH

1 2 3 4 5 6

CORBA C++
Object

Tuxedo
Service
1-4 BEA Tuxedo Interoperability

Interoperability Between the WLS J2EE and BEA Tuxedo Programming Models
A BEA CORBA Java client application can invoke CORBA C++ objects
running in a BEA Tuxedo domain using the IIOP listener/handler. For more
information, see Creating CORBA Client Applications.

5. BEA ActiveX client application invoking a CORBA object

A BEA ActiveX client application can invoke CORBA C++ objects running in a
BEA Tuxedo domain using the IIOP listener/handler. For more information, see
Creating CORBA Client Applications.

The following additional invocation paths are also supported in the BEA Tuxedo
environment using proxy objects or servers:

n BEA CORBA C++ client application invoking a BEA Tuxedo service

You can create a C++ client with a set of operations that maps one-to-one with
calls to BEA Tuxedo services using an intermediary C++ server-side object. For
an example application illustrating this feature, see the Wrapper University
sample application in the Guide to the CORBA University Sample Applications.

n BEA Tuxedo/WS client application invoking a CORBA C++ object

Interoperability is provided using a BEA Tuxedo service wrapper. You create a
BEA Tuxedo service wrapper as a CORBA C++ object that runs in the BEA
Tuxedo domain and that makes invocations on the CORBA C++ object.

Transactions and Security

Transaction and security context propagation between BEA client and server
applications is fully supported, with the following restriction:

n BEA client applications can demarcate a transaction—that is, they can explicitly
begin, suspend, resume, and commit a transaction—but they cannot participate
in a transaction.

For example, a client can begin a transaction and make multiple invocations on
services and objects within the domain, and those services and objects can in
turn make invocations on yet other services and objects. The client application
cannot, within the scope of that transaction, perform operations locally and have
them included in that transaction. That is, if the client application starts a
transaction, invokes an object within the domain, then writes data to a database
local to the client, the local database operation cannot not be included in the
transaction.
BEA Tuxedo Interoperability 1-5

1 Introduction
About BEA Jolt

BEA Jolt provides a mechanism for allowing Java clients to make ATMI calls on BEA
Tuxedo services that exist in a BEA Tuxedo domain. Jolt also provides a mechanism
for allowing BEA WebLogic Server to invoke BEA Tuxedo services. This latter
capability is performed through Jolt connection pools and is described in the next
section.

For more information, see the following documentation:

n For information about Jolt, see Using BEA Jolt.

n For information about setting up Jolt connection pools to connect WebLogic
Server to BEA Tuxedo, see Using BEA Jolt with BEA WebLogic Server.

BEA WebLogic Server and BEA Tuxedo Interoperability

WebLogic Server applications can invoke CORBA objects and BEA Tuxedo services
in a BEA Tuxedo domain. Figure 1-3 illustrates the use of connection pools for these
implementations.

Figure 1-3 WebLogic Server and BEA Tuxedo Interoperability

Browser
Clients

Tuxedo
Service

ISH

JSH

Java Server
Page

Servlet

Enterprise
JavaBean

IIOP Connection Pool

Jolt Connection Pool

CORBA C++
Object
1-6 BEA Tuxedo Interoperability

Interoperability Between the WLS J2EE and BEA Tuxedo Programming Models
Note the following about these connection pools:

n IIOP connection pools allow BEA WebLogic Server applications to invoke
CORBA objects in a BEA Tuxedo domain. For information about setting up and
using IIOP connection pools, see WebLogic Enterprise Connectivity (WLEC)
topics in WebLogic Server documentation.

n Jolt connection pools allow BEA WebLogic Server applications to invoke BEA
Tuxedo services in a BEA Tuxedo domain. For information about setting up and
using Jolt connection pools, see Using BEA Jolt with BEA WebLogic Server.

BEA Tuxedo Interoperability with Third-Party ORBs

This release of BEA Tuxedo includes support for the CORBA Services Interoperable
Naming Service (INS) to enhance interoperability with third-party ORB applications.
The addition of INS enables third-party ORBs that use INS to interoperate with the
BEA Tuxedo CORBA server ORB. Using INS, third-party ORBs can execute the
following operations on BEA Tuxedo CORBA servers without requiring the use of the
BEA Bootstrap, SecurityCurrent, or TransactionCurrent environmental objects:

n Bootstrapping

n Authentication

n Starting transactions

Note: BEA Tuxedo CORBA client environmental objects continue to be supported
in BEA Tuxedo 8.0, as they were in BEA WebLogic Enterprise Version 5.1.

BEA Tuxedo Interdomain Interoperability

A server application running in one BEA Tuxedo domain can interoperate with a
server application running in another BEA Tuxedo domain through the domain
gateway. For more information about interdomain BEA Tuxedo interoperability, see
the BEA Tuxedo Product Overview. and Administering a BEA Tuxedo Application at
Run Time in the BEA Tuxedo online documentation.
BEA Tuxedo Interoperability 1-7

1 Introduction
Interoperability Solutions

This section provides information on interoperability solutions between these
components:

n Connectivity from BEA WebLogic Server to BEA Tuxedo ATMI

n Connectivity from BEA Tuxedo CORBA to BEA WebLogic Server

n Connectivity from BEA WebLogic Server to BEA Tuxedo CORBA

Connectivity from BEA WebLogic Server to BEA Tuxedo
ATMI

This section provides information on options for connectivity between WebLogic
Server and BEA Tuxedo ATMI. It includes the following sections:

n Using BEA Jolt

n Using WebLogic Tuxedo Connector (WTC) Version 1.0

Using BEA Jolt

With BEA Jolt for BEA WebLogic Server, you can enable BEA Tuxedo services for
the Web, using WebLogic Server as the front-end HTTP and applications server.

BEA Jolt is a Java-based client API that manages requests to BEA Tuxedo services
using a Jolt Service Listener (JSL) running on the Tuxedo server. The Jolt API is
embedded in the WebLogic Server API, and is accessible from a servlet, JHTML, or
other BEA WebLogic application.

The product consists of two main components: the Jolt Class Library and the Jolt
Repository. With BEA Jolt, you can create secure, scalable transactions, over the
Internet, between clients and severs.
1-8 BEA Tuxedo Interoperability

Interoperability Solutions
For complete information on using BEA Jolt with WebLogic Server, see Using BEA
Jolt with BEA WebLogic Server in the BEA Tuxedo online documentation. This
document explains the operation of BEA Jolt for WebLogic Server, and describes how
to use, configure, and integrate BEA Jolt, BEA Tuxedo ATMI, and WebLogic Server.
The document includes these sample programs:

n Appendix B, Simple Servlet Example

This example demonstrates how to use BEA Jolt to connect to BEA Tuxedo
ATMI from a WebLogic servlet.

n Appendix C, Servlet with Enterprise JavaBean Example

This example demonstrates an EJB interface for accessing BEA Tuxedo ATMI.

Note: The current release of BEA Jolt does not support bidirectional connectivity or
transaction context propagation.

The current release of BEA Jolt has been enhanced to support:

n XML buffer types.

You can send an eXtensible Markup Language (XML) buffer from a Jolt client
to a BEA Tuxedo ATMI Service using Data Dependent Routing (DDR.) A Jolt
client can receive an XML document from a BEA Tuxedo ATMI Service.

n Transparent end-to-end user authentication for BEA Tuxedo ATMI service
requests initiated by WebLogic Server.

WebLogic Server-authenticated user credentials are mapped to the appropriate
security interfaces/protocols, and an incoming request does not require
re-authentication before invoking BEA Tuxedo ATMI services.

n Jolt Connection Pooling, which supports connection pool reset in the event of
connection pool failure.

In a WebLogic Server/BEA Tuxedo environment, this eliminates the requirement
to restart BEA WebLogic Server if the connection pool requires a restart.

Using WebLogic Tuxedo Connector (WTC) Version 1.0

WebLogic Tuxedo Connector version 1.0 delivers bidirectional interoperability
between WebLogic Server and BEA Tuxedo ATMI. This allows BEA Tuxedo
applications using ATMI APIs to take advantage of the advanced messaging facilities
provided by JMS.
BEA Tuxedo Interoperability 1-9

1 Introduction
BEA Tuxedo services makes calls through WebLogic Tuxedo Connector using ATMI.
Communication with Java programs using the connector is transparent to BEA Tuxedo
ATMI clients. WebLogic Tuxedo Connector extracts the contents of the BEA Tuxedo
ATMI buffer and presents the contents to a Java application.

WebLogic Tuxedo Connector also provides a Java API that enables invocation from
WLS servlets, JSPs, and EJBs on BEA Tuxedo ATMI services without changes to the
ATMI services.

For information on the features and operation of WebLogic Tuxedo Connector 1.0, see
http://e-docs.bea.com/wtc/wtc10/index.html in the online documentation.
These pages provide WebLogic Tuxedo Connector 1.0 documentation on the
following specific topics:

n Administration Guide: http://e-docs.bea.com/wtc/wtc10/admin

n ATMI Guide: http://e-docs.bea.com/wtc/wtc10/atmi

Connectivity from BEA Tuxedo CORBA to BEA WebLogic
Server

This section provides information on options for connectivity between BEA Tuxedo
CORBA Server and BEA WebLogic Server. It includes the following sections:

n Using RMI/IIOP and IDL Interfaces

n Using WebLogic Tuxedo Connector (WTC) Version 1.1

Using RMI/IIOP and IDL Interfaces

BEA Tuxedo CORBA C++ clients, and CORBA C++ servers acting as clients, support
the CORBA standard of passing objects by value. This enables CORBA client support
for RMI over IIOP invocations on IDL interfaces for WebLogic Server EJBs.

The BEA Tuxedo CORBA WLStrader Value Type client application employs RMI
over IIOP and IDL interfaces to connect to the Trader EJB in WebLogic Server. See
Chapter 2, “Connectivity Between a BEA Tuxedo CORBA Client and an EJB in
WebLogic Server,” for complete information on how to build and run this sample
application.
1-10 BEA Tuxedo Interoperability

Interoperability Solutions
Using WebLogic Tuxedo Connector (WTC) Version 1.1

WebLogic Tuxedo Connector version 1.1 enhances the bidirectional interoperability
between BEA WebLogic Server and BEA Tuxedo components. This gateway provides
interoperability between BEA WebLogic Server and both BEA Tuxedo CORBA and
BEA Tuxedo ATMI. This product provides functional equivalence to BEA Jolt and
WebLogic Enterprise Connectivity. Unlike Jolt, this product does not provide
transparent migration.

Using this version of WebLogic Tuxedo Connector, a WebLogic Server programmer
can invoke CORBA C++ objects using the standard CORBA API. WebLogic Tuxedo
Connector supports routing of CORBA invocations through the BEA Tuxedo domain
gateway to the appropriate CORBA C++ object. WebLogic Tuxedo Connector
supports security and transaction propagation from BEA WebLogic Server to BEA
Tuxedo.

WebLogic Tuxedo Connector version 1.1 supports all of the functionality included in
version 1.0.

BEA Systems encourages the use of WebLogic Tuxedo Connector version 1.1 for
WebLogic Server/BEA Tuxedo connectivity.

Connectivity from BEA WebLogic Server to BEA Tuxedo
CORBA

This topic provides information on options for connectivity between BEA WebLogic
Server and BEA Tuxedo CORBA. It includes the following sections:

n Using WebLogic Enterprise Connectivity (WLEC)

n Using WebLogic Tuxedo Connector (WTC) Version 1.1

Using WebLogic Enterprise Connectivity (WLEC)

WebLogic Enterprise Connectivity (WLEC) is a component of WebLogic Server. This
component enables the use of IIOP connection pooling from WebLogic Server clients,
including servlets, EJBs, JSPs, and RMI objects, to invoke CORBA, EJB, and other
RMI objects.
BEA Tuxedo Interoperability 1-11

1 Introduction
The key features of WebLogic Enterprise Connectivity are:

n Pooled IIOP connections to the BEA Tuxedo system.

n Multiple active BEA Tuxedo CORBA client transactions from a single
WebLogic Server process.

n Configuration of IIOP connection pools through the weblogic.properties
file.

n Monitoring of IIOP connection pools through the WebLogic Console.

n Secure Sockets Layer (SSL) support.

n Security context propagation from WebLogic Server to BEA Tuxedo CORBA.

n Pool reinitialization at run time.

Note: WebLogic Enterprise Connector is CORBA 2.2 compliant. WebLogic
Enterprise Connectivity does not support passing of objects by value, in value
types.

For complete information on WebLogic Enterprise Connectivity, see WebLogic
Enterprise Connectivity (WLEC) topics in the BEA WebLogic Server online
documentation.

Documentation provided at the BEA WebLogic Server installation location includes
examples showing how to use WebLogic Enterprise Connectivity to access BEA
WebLogic Enterprise or BEA Tuxedo CORBA objects from servlets, JSP and
Enterprise JavaBeans running on a BEA WebLogic Server. The files are in this
location: wlserver6\samples\examples\wlec\package-summary.html.

For supplementary information on building and running the WebLogic Server WLEC
EJB simpapp application to connect to a BEA Tuxedo CORBA object, see
“Connectivity from WebLogic Server to a CORBA Object.”

Using WebLogic Tuxedo Connector (WTC) Version 1.1

See “Using WebLogic Tuxedo Connector (WTC) Version 1.1” on page 1-11 for
information on WebLogic Tuxedo Connector Version 1.1.
1-12 BEA Tuxedo Interoperability

Interoperability Sample Applications
Interoperability Sample Applications

This section lists the interoperability sample applications provided with BEA Tuxedo
and BEA WebLogic Server software. The sample applications provide client and
server programmers with information about the basic concepts of combining
Enterprise JavaBeans (EJBs) and CORBA objects in an application.

The BEA Tuxedo and WebLogic Server software include the sample applications
outlined in Table 1-1.

Table 1-1 Interoperability Sample Applications

Application Description

WLStrader Value Type sample
application

Demonstrates connectivity between a CORBA C++ client
application using RMI over IIOP, and passing objects by
value to an EJB in WebLogic Server.

WLEC EJB simpapp sample
application

Demonstrates how to use WebLogic Enterprise Connectivity
(WLEC) to access a BEA Tuxedo CORBA object from a
stateless EJB on WebLogic Server.
BEA Tuxedo Interoperability 1-13

1 Introduction
1-14 BEA Tuxedo Interoperability

CHAPTER
2 Connectivity Between a
BEA Tuxedo CORBA
Client and an EJB in
WebLogic Server

This topic includes the following sections:

n Overview of the WLStrader Value Type Sample Application

n Components of the WLStrader Value Type Sample Application

n Building and Running the WLStrader Value Type Sample Application

n Additional Sources of Information

Overview of the WLStrader Value Type
Sample Application

The WLStrader Value Type sample application demonstrates connectivity between an
RMI over IIOP client and an EJB. More specifically, this sample application illustrates
how a CORBA C++ client application developed in BEA Tuxedo can interact with an
BEA Tuxedo Interoperability 2-1

2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
EJB in WebLogic Server. The application makes use of the Trader EJB included in the
WebLogic Server examples. The WLStrader Value Type sample builds on components
of the Trader sample application, while providing its own build and run procedures.

Figure 2-1 illustrates the connectivity provided in the WLStrader Value Type sample
application.

Figure 2-1 CORBA C++ Client to WebLogic Server EJB

In the WLStrader Value Type example, a BEA Tuxedo CORBA C++ client employs a
value type, passing an object-by-value. This supports an RMI over IIOP invocation of
an IDL interface, and provides connectivity to the WebLogic Server TraderBean
Enterprise JavaBean (EJB).

A value type represents a class whose values can be moved between systems. Value
types can be passed as arguments or results of remote methods, or as fields within other
objects that are passed remotely. For information on support for value types in BEA
Tuxedo CORBA, see Chapter 13, “Mapping of OMG IDL Statements to C++,” in the
CORBA Programming Reference in the BEA Tuxedo online documentation.

The CORBA client obtains the WebLogic Server Inter-operable Object Reference
(IOR) by invoking the COSNaming Service layer provided in the WebLogic Server
JNDI implementation. For information on the CORBA Name Service and the
COSNaming data structures, see Using the CORBA Name Service in the BEA Tuxedo
online documentation.
2-2 BEA Tuxedo Interoperability

Components of the WLStrader Value Type Sample Application
Components of the WLStrader Value Type
Sample Application

This topic describes the components and operations in the WLStrader Value Type
sample application. It includes the following sections:

n WebLogic Server Trader Sample Application

n Mapping from a WebLogic Server to a CORBA Client

n BEA Tuxedo CORBA C++ Client

WebLogic Server Trader Sample Application

The WLStrader Value Type sample builds on components of the WebLogic Server
Trader sample application, employing its XML deployment files and Trader EJB. To
derive the optimum benefit from this example, read through the source code files to
understand the design and the steps involved. Review the deployment files to
understand the general structure of the Trader EJB.

The WebLogic Server code sample files for the Trader sample are in the
wlserver6\samples\examples\rmi_iiop\ejb\rmi_iiop directory.

Table 2-1 provides a summary of the Java interfaces in this example.

Table 2-1 Java Interface Summary

Java Interface Description

Trader The methods in this interface are the public face of
TraderBean.

TraderHome This interface is the home interface for
TraderBean.java, which in WebLogic is
implemented by the code-generated container class
TraderBeanC.
BEA Tuxedo Interoperability 2-3

2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
Table 2-2 provides a summary of the Java classes in this example.

Mapping from a WebLogic Server to a CORBA Client

When deriving the mapping from a WebLogic Server application to a CORBA client,
the sources of the mapping information are the EJB classes as defined in the Java
source files. WebLogic Server provides the weblogic.ejbc utility for generating
required CORBA IDL files. These files represent the CORBA view into the state and
behavior of the target EJB.

The weblogic.ejbc utility performs the following:

n Places the EJB classes, interfaces, and deployment descriptor files in a JAR file.

n Generates WebLogic Server container classes for the EJBs.

n Runs each EJB container class through the RMI compiler to create stubs and
skeletons.

n Generates a directory tree of CORBA IDL files describing the CORBA interface
to these classes.

Table 2-2 Java Class Summary

Java Class Description

Tuxclient This C++ client program logic invokes a stateless Session
Bean and performs the following exercises: creates a
Trader, buys some shares using the Trader, retrieves the
NumberTraded returned in a value type, and removes
the Trader.

TraderBean TraderBean is a stateless Session Bean.

TradeResult This class implements the serializable interface, and does
not have any classes generated on the value type. The state
of TradeResult is maintained in private instance
members, and there is no default public access to the state
of the value type. Because TradeResult implements
the serializable interface, the ejbc utility generates a
value type for it in the IDL file.
2-4 BEA Tuxedo Interoperability

Components of the WLStrader Value Type Sample Application
The weblogic.ejbc utility supports a number of command qualifiers. In the
WLStrader Value Type example, the ejbc step invokes these qualifiers on the
command line:

n -idl

Directs the utility to create CORBA Interface Definition Language (IDL) files
for all appropriate classes.

n -idlDirectory idlSources

Directs the utility to create a directory tree named idlSources, and to store IDL
files in this location. The directory tree structure corresponds to the Java package
hierarchy.

n -idlOverwrite

Directs the utility to overwrite any existing IDL files in the idlSources output
directory.

Resulting files are processed using the BEA Tuxedo IDL compiler, reading source files
from the idlSources directory and generating CORBA C++ stub and skeleton files.
These generated files are sufficient for all CORBA data types with the exception of
value types. Value types need to be implemented on each platform on which they are
defined or referenced. Specifying the -i qualifier directs the IDL compiler to create
implementation files named FileName_i.h and FileName_i.cpp. For example, this
syntax creates the TradeResult_i.h and TradeResult_i.cpp implementation
files:

idl -IidlSources -i
idlSources\examples\rmi_iiop\ejb\rmi_iiop\TradeResult.idl

The resulting source files provide implementations for application-defined operation
on a value type. Implementation files are included in a CORBA client application.

BEA Tuxedo CORBA C++ Client

The CORBA C++ client program tuxclient performs the exercises against the
Trader. The results from a Trader transaction are returned to the client through the
TradeResult value type. The tuxclient application performs these operations:

n Registers value factories for value types from which it expects to receive output.
Listing 2-1 is a code extract from tuxclient.cpp, illustrating the
register_value_factory operation.
BEA Tuxedo Interoperability 2-5

2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
Listing 2-1 tuxclient.cpp—Register Value Factories

 . . .
// Need to register value factories for all value types we
// might receive.
//
examples_rmi_iiop_ejb_rmi_iiop_TradeResult_factory* TRf = new
 examples_rmi_iiop_ejb_rmi_iiop_TradeResult_factory();
orb->register_value_factory((char*const)
 examples::rmi_iiop::ejb::rmi_iiop::_tc_TradeResult->id(), TRf);
//
 . . .

n Reads the ior.txt file containing the stringified IOR for the WebLogic Server.

n Converts the IOR to an object.

n Obtains a COSNaming context.

n Creates an instance of a Trader.

n Buys some shares by issuing a trade request.

n Employs WStringValue value types for specifying the stock symbol and
number of shares requested.

n Obtains the actual number of shares traded from the TradeResult value type.

n Reports the actual number of shares bought.

The code extract from tuxclient.cpp in Listing 2-2 contains the steps for creating a
Trader instance and buying some shares of BEAS.

Listing 2-2 tuxclient.cpp—Create a Trader; Buy Some Shares

 . . .
// Create a Trader instance
::examples::rmi_iiop::ejb::rmi_iiop::Trader_ptr trader =
 home->create();

// Buy some shares
CORBA::WStringValue_ptr BEASsym = new
 CORBA::WStringValue(CORBA::wstring_dup((wchar_t *)L"BEAS"));
2-6 BEA Tuxedo Interoperability

Building and Running the WLStrader Value Type Sample Application
::examples::rmi_iiop::ejb::rmi_iiop::TradeResult_ptr result;
cout << "Buying 3000 shares of BEAS" << endl;
result = trader->buy(BEASsym, 3000);
 . . .

The “buy” request from the CORBA client is for 3000 shares of BEA stock with
symbol BEAS. The actual number of shares traded is 500, imposed by the
tradeLimit threshold defined in the ejb-jar.xml deployment file for the WebLogic
Server examples.

Listing 2-3 tradeLimit Defined in ejb-jar.xml

 . . .
<env-entry-name>tradeLimit</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>500</env-entry-value>
 . . .

To achieve different results when you run the WLStrader Value Type sample
application, you can vary definitions in the ejb-jar.xml file, or constants in the
tuxclient.cpp source file.

Building and Running the WLStrader Value
Type Sample Application

This section leads you through the process of building and running the WLStrader Value
Type sample application.

Before running the example, described later in the sequence of steps, you must obtain
the WebLogic Server Inter-operable Object Reference (IOR) by running the host2ior
utility. Complete this step once for any WebLogic Server installation. You can obtain
this file any time after installing WebLogic Server, and before running an application
requiring the file.
BEA Tuxedo Interoperability 2-7

2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
To build and run the wlstrader sample application, complete the following steps. Each
step is described in detail in subsequent sections. The steps detailed here supplement
the information in the WebLogic Server installation location:
wlserver6\samples\examples\rmi_iiop\ejb\rmi_iiop\package-summary.

html.

n Set the Development Environment

n Copy the BEA Tuxedo WLStrader Value Type Files

n Build the Example

n Configure the Server

n Run the Example

Set the Development Environment

When developing in Java, make sure you have a controlled development environment.

1. Set your development environment as described in the WebLogic Server Examples
Guide (which is included with the product). See Setting Up Your Environment for
Building and Running the Examples.

2. From your user interface tool or from a command prompt, set the TUXDIR
environment variable to the BEA Tuxedo installation location.

For example:

Windows

> set TUXDIR=D:\TUXDIR

UNIX

ksh prompt> export TUXDIR=/usr/local/TUXDIR

Copy the BEA Tuxedo WLStrader Value Type Files

Rename the build command script, and copy the BEA Tuxedo WLStrader Value Type
files from the BEA Tuxedo CORBA samples directory to your WebLogic Server
examples build area.
2-8 BEA Tuxedo Interoperability

Building and Running the WLStrader Value Type Sample Application
1. Use a command prompt or user interface tool to rename the build command script
to a unique, recognizable name. The remainder of this text uses the script name
tuxbuild. You will be copying this file into a WebLogic Server examples
directory that already contains a build command script.

For example:

Windows

rename %TUXDIR%\samples\corba\wlstrader\build.cmd tuxbuild.cmd

UNIX

mv $TUXDIR/samples/corba/wlstrader/build.sh tuxbuild.sh

2. From a command prompt or user interface tool, copy files from the BEA Tuxedo
CORBA samples wlstrader directory to your WebLogic Server examples build
area.

For example:

Windows

copy %TUXDIR%\samples\corba\wlstrader*.*
D:\bea\wlserver6\samples\examples\rmi_iiop\ejb\rmi_iiop*.*

UNIX

cp $TUXDIR/samples/corba/wlstrader/*.*
/usr/local/wlserver6/samples/examples/rmi_iiop/ejb/rmi_iiop/*.*

The sample files listed in Table 2-3 should now be in your WebLogic Server examples
build area.

Table 2-3 WLStrader Value Type Sample Files

File Description

TradeResult_i.cpp C++ source defining the constructor for the
TradeResult value type. TradeResult_i.cpp
and TradeResult_i.h provide the actual
implementation of the concrete class for the
TradeResult value type.

TradeResult_i.h The C++ header file that defines the implementation
class for the TradeResult value type.

tuxbuild.cmd The renamed build command file for Windows
systems.
BEA Tuxedo Interoperability 2-9

2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
Build the Example

Execute the renamed build script for this example. This is the file you renamed before
copying from the BEA Tuxedo samples\corba\wlstrader directory into the
samples\examples\rmi_iiop\ejb\rmi_iiop directory of your WebLogic Server
installation. The script performs the following steps presented here for a Windows
environment:

1. Sets the TUXDIR environment variable. You can modify this step in the
tuxclient.cmd script, or comment out the step if TUXDIR is already defined.

2. Sets the IDL2CPP environment variable, defining the idl executable program in
the %TUXDIR%\bin directory and setting the required command-line parameters.

3. Creates a build directory structure, copies in the deployment descriptors, and
copies in *.gif images.

> mkdir build build\META-INF build\images

> copy *.xml build\META-INF

> copy *.gif build\images

4. Compiles EJB classes into the build directory (JAR preparation).

> javac -d build Trader.java TraderHome.java
 TraderResult.java TraderBean.java

5. Makes an EJB JAR file, including the XML deployment descriptors.

> cd build

> jar cv0f std_ejb_over_iiop.jar META-INF examples images

> cd ..

tuxbuild.sh The renamed build command script for UNIX
systems.

tuxclient.cpp C++ source code for the CORBA client application.

Table 2-3 WLStrader Value Type Sample Files (Continued)

File Description
2-10 BEA Tuxedo Interoperability

Building and Running the WLStrader Value Type Sample Application
6. Runs the weblogic.ejbc utility against the JAR file, directing generated IDL
files to the idlSources directory.

> java weblogic.ejbc -compiler javac -keepgenerated
 -idl -idlDirectory idlSources
 -iiop build\std_ejb_over_iiop.jar
 %APPLICATIONS%\ejb_over_iiop.jar

7. Compiles the EJB interfaces and client application into the directory defined by
the CLIENT_CLASSES target variable.

> javac -d %CLIENT_CLASSES% Trader.java TraderHome.java
 TradeResult.java Client.java

8. Runs the IDL compiler against the IDL files built in the weblogic.ejbc step,
creating C++ source files.

>%IDL2CPP% idlSources\examples\rmi_iiop\ejb\rmi_iiop\Trader.idl

 . . .
>%IDL2CPP% idlSources\javax\ejb\RemoveException.idl

9. Builds the CORBA C++ client executable program tuxclient.exe by invoking
the buildobjclient command.

Configure the Server

Start the WebLogic Server by reviewing and implementing the steps defined in the
WebLogic Server Examples documentation. See Starting WebLogic Server with the
Examples Configuration. Review the configuration file containing the configuration
attributes for all of the examples, located in config\examples\config.xml in the
WebLogic Server installation location. To run a start server script:

Windows

prompt> startExampleServer

Alternatively, on Windows platforms you can start the WebLogic Server with the
examples configuration from the Windows Start Menu.

UNIX

$ sh startExamplesServer.sh
BEA Tuxedo Interoperability 2-11

2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
Run the Example

Run the WLStrader Value Type sample program by setting up the environment and
starting the tuxclient.exe executable program. The following steps are for a
Windows environment:

1. Add the ejb_over_iiop.jar file to your WebLogic Server CLASSPATH. For
example:

prompt> set CLASSPATH=%CLASSPATH%;%WL_HOME%\config\
 examples\applications\ejb_over_iiop.jar

2. Ensure that you have obtained the WebLogic Server Inter-operable Object
Reference (IOR) by running the host2ior utility. The ior.txt file must be
accessible to the tuxclient.exe CORBA C++ client program. You create this
file once for a specific WebLogic Server installation. For example:

prompt> java utils.host2ior hostname port

3. Start the tuxclient.exe CORBA client program by invoking the executable
client application you created when you built the example.

prompt> tuxclient.exe

4. Observe CORBA client output messages similar to the following:

Creating a trader

Buying 3000 shares of BEAS
500 shares bought
Buying 100 shares of PSFT
100 shares bought

End statelessSession.Client

Additional Sources of Information

The process of developing a BEA Tuxedo CORBA client application to interact with
a WebLogic Server application begins with an EJB. If you are creating a new
WebLogic Server application, the first step is to design and implement the server.
2-12 BEA Tuxedo Interoperability

Additional Sources of Information
The following sections list sources of information about the steps required to
implement connectivity between an RMI over IIOP CORBA Client and an EJB in
WebLogic Server.

WebLogic Server

These topics are included in the WebLogic Server online documentation:

n WebLogic RMI over IIOP in the Developer Guide, Using WebLogic RMI over
IIOP.

n WebLogic EJB in the Developer Guide, BEA WebLogic Server Enterprise
JavaBeans.

n WebLogic RMI in the Developer Guide, Using WebLogic RMI.

Object Management Group (OMG)

Information about CORBA objects and value types, which are objects passable by
value, is available from the OMG Web site: http://www.omg.org.

BEA Tuxedo CORBA

The BEA Tuxedo online documentation provides complete documentation on
CORBA topics in the BEA Tuxedo product. The references listed here contain
information on creating CORBA clients, the COSNaming Service, the IDL command,
and BEA Tuxedo support for value types:

n Creating CORBA Client Applications

n Using the CORBA Name Service

n BEA Tuxedo Command Reference

n CORBA Programming Reference
BEA Tuxedo Interoperability 2-13

2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
2-14 BEA Tuxedo Interoperability

CHAPTER
3 Connectivity from
WebLogic Server to a
CORBA Object

This topic includes the following sections:

n WLEC EJB simpapp Sample Application

n Building and Running the WLEC EJB simpapp Sample Application

WLEC EJB simpapp Sample Application

The WebLogic Server WebLogic Enterprise Connectivity (WLEC) EJB simpapp
sample application demonstrates how to use WebLogic Enterprise Connectivity
(WLEC) to access a BEA Tuxedo CORBA object from a stateless EJB on WebLogic
Server.

Note: Information for building and running this sample application is in WebLogic
Server online documentation. This section provides supplementary
information, and uses BEA Tuxedo 8.0 terminology. The information in
WebLogic Server 6.0 documentation uses WebLogic Enterprise 5.1
terminology.

Figure 3-1 illustrates the connectivity provided in the WLEC EJB simpapp sample
application.
BEA Tuxedo Interoperability 3-1

3 Connectivity from WebLogic Server to a CORBA Object
Figure 3-1 WebLogic Server EJB to BEA Tuxedo CORBA Object

This example combines a WebLogic Server Enterprise JavaBean and the simple object
from the BEA Tuxedo simpapp sample application. There are two ways to run this
example:

n From a Java application

n From an Internet client and servlet

Building and Running the WLEC EJB
simpapp Sample Application

The WebLogic Server code sample files and instructions for building and running the
the WLEC EJB simpapp sample application are in the WebLogic Server installation
location, in the wlserver6\samples\examples\wlec\ejb\simpapp directory. The
information in the following sections supplement the WebLogic Server documentation
for this sample.
3-2 BEA Tuxedo Interoperability

Building and Running the WLEC EJB simpapp Sample Application
Description

This WebLogic Server file explains how to build and run the sample application:
wlserver6\samples\examples\wlec\ejb\simpapp\package-summary.html

At startup, WLS creates a WLEC connection pool for simpapp Domain, a BEA
Tuxedo domain. At run time, the WebLogic Server simpapp EJB acts as a remote BEA
Tuxedo CORBA client.

Prerequisites

The software products listed are prerequisites for running this sample application. For
version information, see Installing the BEA Tuxedo System. Install and set up the
following:

n WebLogic Server (WLS)

n Java Software Development Kit (SDK)

n BEA Tuxedo CORBA

Build the Example

To build and run the BEA Tuxedo CORBA simpapp sample, go to the Samples page
in the BEA Tuxedo online documentation, and select the simpapp sample application.

Note: There is no longer a requirement to add the RemoteObjectReference class
to the CLASSPATH in your WebLogic Server start script. The BEA Tuxedo 8.0
release does not include a wlej2eecl.jar file.
BEA Tuxedo Interoperability 3-3

3 Connectivity from WebLogic Server to a CORBA Object
3-4 BEA Tuxedo Interoperability

Index

A
authentication 1-7

B
BEA Jolt 1-8
BEA Tuxedo CORBA

online documentation 2-13
prerequisite for WLEC sample 3-3

Bootstrap object 1-7
Bootstrapping 1-7

C
CORBA

data types 2-5
skeleton files 2-5
stub files 2-5

customer support contact information vii

D
documentation, where to find it vi

E
ejb_over_iiop.jar file 2-12
ejb-jar.xml deployment file 2-7
EJBs

third-party 1-7
environment variables

CLASSPATH 2-12

IDL2CPP 2-10
TUXDIR 2-10

environmental objects 1-7

H
host2ior utility 2-12

I
IDL compiler 2-5
implementation files

generating 2-5
INS 1-7
interoperability

third-party 1-7
with third-party ORBs 1-7

Interoperable Naming Service 1-7
Inter-operable Object Reference (IOR) 2-2,

2-7, 2-12
ior.txt file 2-6, 2-12

O
object by value

using 2-2
Object Management Group 2-13
ORBs

third-party 1-7
BEA Tuxedo Interoperability I-1

P
printing product documentation vi

R
related information vi

S
SecurityCurrent object 1-7
starting transactions 1-7
support

technical vii

T
third-party interoperability 1-7
Trader EJB

connectivity to 2-2
in the WebLogic Trader sample

application 2-2
TradeResult_i.cpp file 2-9
TradeResult_i.h file 2-9
TransactionCurrent object 1-7
transactions

starting 1-7
tuxbuild.cmd file 2-9
tuxbuild.sh file 2-10
tuxclient.cpp file 2-7, 2-10
tuxclient.exe file 2-12
TUXDIR environment variable

setting 2-8, 2-10

U
utilities

host2ior 2-7, 2-12
IDL compiler 2-5
jar 2-10
RMI compiler 2-4
weblogic.ejbc 2-4

V
value type

as a CORBA data type 2-5
definition of 2-2

W
WebLogic Server

additional sources of information 2-13
WebLogic Server Trader sample application

source code files 2-3
XML deployment files 2-3

WebLogic Tuxedo Connector (WTC) 1-9, 1-
12

weblogic.ejbc utility 2-4
WLEC EJB simpapp sample application

building 3-3
building and running 3-2
connectivity demonstrated 3-1
description of 3-3
overview 3-1
prerequisites for 3-3

WLStrader Value Type sample application
building the example 2-10
components of 2-3
configuring the server 2-11
connectivity demonstrated 2-1
copying the files 2-8
overview 2-1
running the example 2-12
setting the development environment 2-8

X
XML deployment file

for WebLogic Server examples 2-7
I-2 BEA Tuxedo Interoperability

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Interoperability Between the WLS J2EE and BEA Tuxedo Programming Models
	BEA Tuxedo Server Interoperability
	Figure 1�1 BEA Tuxedo Server Interoperability
	Transactions and Security

	BEA Tuxedo Client and Server Interoperability
	Figure 1�2 Remote Client and Server Interoperability
	1. Jolt client application invoking a BEA Tuxedo service
	2. BEA Tuxedo /WS client application invoking a BEA Tuxedo service
	3. BEA CORBA C++ client application invoking a CORBA object
	4. BEA CORBA Java client application invoking a CORBA object
	5. BEA ActiveX client application invoking a CORBA object

	Transactions and Security
	About BEA Jolt

	BEA WebLogic Server and BEA Tuxedo Interoperability
	Figure 1�3 WebLogic Server and BEA Tuxedo Interoperability

	BEA Tuxedo Interoperability with Third-Party ORBs
	BEA Tuxedo Interdomain Interoperability

	Interoperability Solutions
	Connectivity from BEA WebLogic Server to BEA Tuxedo ATMI
	Using BEA Jolt
	Using WebLogic Tuxedo Connector (WTC) Version 1.0

	Connectivity from BEA Tuxedo CORBA to BEA WebLogic Server
	Using RMI/IIOP and IDL Interfaces
	Using WebLogic Tuxedo Connector (WTC) Version 1.1

	Connectivity from BEA WebLogic Server to BEA Tuxedo CORBA
	Using WebLogic Enterprise Connectivity (WLEC)
	Using WebLogic Tuxedo Connector (WTC) Version 1.1

	Interoperability Sample Applications
	Table 1�1 Interoperability Sample Applications

	2 Connectivity Between a BEA Tuxedo CORBA Client and an EJB in WebLogic Server
	Overview of the Wlstrader Value Type Sample Application
	Figure 2�1 CORBA C++ Client to WebLogic Server EJB

	Components of the Wlstrader Value Type Sample Application
	WebLogic Server Trader Sample Application
	Table 2�1 Java Interface Summary �
	Table 2�2 Java Class Summary

	Mapping from a WebLogic Server to a CORBA Client
	BEA Tuxedo CORBA C++ Client
	Listing 2-1 tuxclient.cpp—Register Value Factories
	Listing 2-2 tuxclient.cpp—Create a Trader; Buy Some Shares
	Listing 2-3 tradeLimit Defined in ejb-jar.xml

	Building and Running the Wlstrader Value Type Sample Application
	Set the Development Environment
	1. Set your development environment as described in the WebLogic Server Examples Guide. See Setti...
	2. From your user interface tool or from a command prompt, set the TUXDIR environment variable to...

	Copy the BEA Tuxedo Wlstrader Value Type Files
	1. Use a command prompt or user interface tool to rename the build command script to a unique, re...
	2. From a command prompt or user interface tool, copy files from the BEA Tuxedo CORBA samples wls...
	Table 2�3 Wlstrader Value Type Sample Files�

	Build the Example
	1. Sets the TUXDIR environment variable. You can modify this step in the tuxclient.cmd script, or...
	2. Sets the IDL2CPP environment variable, defining the idl executable program in the %TUXDIR%\bin...
	3. Creates a build directory structure, copies in the deployment descriptors, and copies in *.gif...
	4. Compiles EJB classes into the build directory (JAR preparation).
	5. Makes an EJB JAR file, including the XML deployment descriptors.
	6. Runs the weblogic.ejbc utility against the JAR file, directing generated IDL files to the idlS...
	7. Compiles the EJB interfaces and client application into the directory defined by the CLIENT_CL...
	8. Runs the IDL compiler against the IDL files built in the weblogic.ejbc step, creating C++ sour...
	9. Builds the CORBA C++ client executable program tuxclient.exe by invoking the buildobjclient co...

	Configure the Server
	Run the Example
	1. Add the ejb_over_iiop.jar file to your WebLogic Server CLASSPATH. For example:
	2. Ensure that you have obtained the WebLogic Server Inter-operable Object Reference (IOR) by run...
	3. Start the tuxclient.exe CORBA client program by invoking the executable client application you...
	4. Observe CORBA client output messages similar to the following:

	Additional Sources of Information
	WebLogic Server
	Object Management Group (OMG)
	BEA Tuxedo CORBA

	3 Connectivity from WebLogic Server to a CORBA Object
	WLEC EJB simpapp Sample Application
	Figure 3�1 WebLogic Server EJB to BEA Tuxedo CORBA Object

	Building and Running the WLEC EJB simpapp Sample Application
	Description
	Prerequisites
	Build the Example
	Index
	A
	B
	C
	D
	E
	H
	I
	O
	P
	R
	S
	T
	U
	V
	W
	X

