z hea
BEA Tuxedo

Using the CORBA
IdItojava Compiler

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using the CORBA idltojava Compiler

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KINMOWcceeiiiiieieeciietiecteete et et er e srae s Vi
E-00CSWED SItO....ciiiieecteeee e et r e sr et saeerae e enaens Vi
How to Print the DOCUMENL..........coooe et e e e Vi
Related INfOrMation...........ccuveii ittt et sreas Vii
CONLBCE US! ...t ettt ea e sae e s ee e e snesreesreas Vii
Documentation CONVENLIONScc.coecueiecieeeree s e e eer e sraestesraeanesaeenne s viii

1. Overview of idltojava Compiler

Where Do | Get the BEA idItojava Compiler?..........cooeiine i ieenee e 1-2
How Doesthe BEA idltojava Compiler Differ from the Sun Microsystems, Inc.
WBISIONT oottt ettt ettt b bbbttt b e e b e b e enen 1-2
WHEL 1S TDL?2 ..ttt ettt bbb st e bbb e 1-3
WHEL 1S JAVA IDL 2.ttt e 1-4
Accessing CORBA ODJECES......ooiiiauiriireie et se e 1-4

2. Using the idltojava Command

Syntax of the idltojava Command.............cooieieriereeie e 2-2
iditojava Command DeSCriPtiON........cc.oie et 2-2
Running idltojava on Client or Joint Client/Server IDL Files.........c.ccccoveenennene 2-2
iditojava Command OPLiONS..........ccoueerireeeireriere e seeseenee 2-3
iditojava Command FlagS.........couoeieirrre et 2-4
Using #pragmain IDL FilES......c.ooiuiiieeeie e 2-6

3. Java IDL Examples

Getting Started with a Simple Example Of IDLcccooviiioiiiiiiceee e 31
Callback Objects IDL EXAMPIE.......cccoiireeie e 3-2

Using the CORBA idltojava Compiler iii

4. Java IDL Programming Concepts

EXCEPLIONS ...ttt et et e et ettt en e e 4-1
Differences Between CORBA and Java EXceptions...........ccccceeveieeineenne. 4-2
SYSEEM EXCEPLIONS.....cv et seee ettt s s ene e ene e 4-2

System EXCEption StrUCTUNEcc.eveeieee e 4-2
COMPIELION SEALUS -...cveeeie et e e neee e 4-3
USEr EXCEPLIONS. ...ttt ettt ettt et se e s 4-3
MinOr Code MEBNINGS........cceivieieeceietie e e erae et eaaeereeanan 4-4

INITAlIZALTIONS ...t e et 4-7

Creating an ORB ODJECL.........cciieieiieeieeiere et e ee e e 4-8
Creating an ORB for an Application...........cocoeiireieiene e 4-8
Creating an ORB for an AppPlet..... ..o 4-8
Argumentsto ORBLINIT()cceevieiiiriecieee e e 4-9
SYSEEM ProPErties.occceiueiie ettt e 4-10

Obtaining Initial Object REfErences.........oovvevevveie e 4-10
Stringified Object REfEIENCES.........cccccveiieveeecee e e 4-11
Getting References fromthe ORBcccveevevievecice e, 4-11

The FactoryFinder INtErfacecccve e cieie e 4-12

5. IDL-to-Java Mappings Used by the idltojava Compiler

Index

Using the CORBA idltojava Compiler

About This Document

This document explains what Java | nterface Definition Language (IDL) isand
describes how to use the idltojava compiler for developing CORBA Java clients and
CORBA Javajoint client/serversin the BEA Tuxedo® environment. CORBA Java
clients and CORBA Java joint client/servers communicate with the
Application-to-Transaction Monitor Interface (ATMI) environment in the BEA
Tuxedo product using the Internet Inter-ORB Protocol (I10OP). The ATMI environment
in the BEA product does not support the hosting of CORBA Java server objects.

This document includes the following topics:

Chapter 1, “Overview of idltojava Compiler,” explainsthe relationship of Java
IDL to CORBA, and explains how you can use Java IDL to create CORBA Java
clients and CORBA Javajoint client/servers that interoperate with CORBA
objects. This chapter also explains where to get the BEA idltojava compiler, and
how the BEA idltojava compiler differs from the iditojava compiler available
from Sun Microsystems, Inc.

Chapter 2, “Using the idltojava Command,” explains how to run the iditojava
compiler and explains all the options and flags on thei dI t oj ava command.

Chapter 3, “Java IDL Examples,” provides several code examplesto illustrate
the use of the idltojava compiler. The code examples include the Java SimpApp
sample application to get you started. The other example included in thistopic
illustrates the use of Callback Objects.

Chapter 4, “Java IDL Programming Concepts,” discusses some relevant
programming concepts, such as Exceptions, Initiaization, and use of the Factory
Finder object.

Chapter 5, “IDL-to-Java Mappings Used By the idltojava Compiler,” explains
the CORBA |DL-to-Java mappings that the idltojava compiler implements.

Using the CORBA idltojava Compiler %

What You Need to Know

This document is intended mainly for developers who are interested in building
CORBA Javaclients and CORBA Java joint client/servers that can interact with
CORBA objects. It assumes afamiliarity with the CORBA programming environment
and Java programming.

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA System, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Vi

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for freefrom
the Adobe Web site at http://www.adobe.com/.

Using the CORBA idltojava Compiler

How to Print the Document

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, and Java programming, see the CORBA
Bibliography in the BEA Tuxedo online documentation.

For more general information about Java DL and Java CORBA applications, refer to
the following sources:

m The Object Management Group (OMG) Web site at http://www.omg.org/

m The Sun Microsystems, Inc. Java Web site at http://java.sun.com/

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

Using the CORBA idltojava Compiler Vii

m A description of the problem and the content of pertinent error messages

Documentation Conventions

viii

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ()
nonospace Identifies variablesin code.
italic Example:
text .
String expr

Using the CORBA idltojava Compiler

Documentation Conventions

Convention Item
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin asyntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Using the CORBA idltojava Compiler

iX

Using the CORBA idltojava Compiler

CHAPTER

1

Overview of idltojava
Compiler

The CORBA environment in the BEA Tuxedo product allows CORBA Java clients
and CORBA Java joint client/servers to invoke operations on CORBA objectsin a
BEA Tuxedo domain using the industry standard Object Management Group (OMG)
Interface Definition Language (IDL) and Internet Inter-ORBProtocol (110P) defined
by the OMG.

To build CORBA Javaclients and CORBA Javajoint client/servers that can access
CORBA objects, you need the BEA idltojavacompiler, atool that converts OMG IDL
filesto Java client stub and skeleton files. Theidltojava compiler is included with the
BEA Tuxedo software.

Thistopic includes the following sections:
m Where Do | Get the BEA idlItojava Compiler?

m How Doesthe BEA idltojava Compiler Differ from the Sun Microsystems, Inc.
Version?

m What IsIDL?
m What IsJavalDL?

m Accessing CORBA Objects

Using the CORBA idltojava Compiler 1-1

1 overview of idltojava Compiler

Where Do | Get the BEA idltojava Compiler?

The BEA Tuxedo CD-ROM includesthe BEA version of theidltojavacompiler. Once
you have installed the BEA Tuxedo software, you can find the idltojava compiler in
TUXDI R/ bi n.

How Does the BEA idltojava Compiler Differ
from the Sun Microsystems, Inc. \ersion?

The idltojava compiler provided with the BEA Tuxedo product includes several
enhancements, extensions, and additionsthat are not included in the original compiler
produced by Sun Microsystems, Inc. Thistopic includes asummary of therevisionsin
the compiler included with the BEA Tuxedo product. For detailed information on
using the idltojava compiler provided with the BEA Tuxedo product, see the topic
“Using the iditojava Command” on page 2-1.

The BEA Tuxedo idltojava compiler:

m Thebehavior and defaults of the flags differ from that described in the Sun
Microsystems, Inc. documentation. (See “idltojava Command Flags’ on page
2-4))

m Includes anew #pragmatag: #pragma | D <nane> <Repostitory_id>
(See“Using #pragmain IDL Files’ on page 2-6.)

m Includes anew #pragmatag: #pr agma ver si on <name> <m n> (See“Using
#pragmain IDL Files’ on page 2-6.)

m Extendsthe #pr agma prefi x to work on inner scope. A blank prefix reverts.
(See“Using #pragmain IDL Files’ on page 2-6.)

= Allows unions with Boolean discriminators.

m Allowsdeclarations nested inside complex types.

1-2 Using the CORBA idltojava Compiler

What Is IDL?

What Is IDL?

Interface Definition Language (IDL) is a generic term for alanguage that lets a
program or object written in one language communicate with another program written
in an unknown language. In distributed object technology, new objects must be ableto
be sent to any platform environment and have the ability to discover how to run in that
environment. An ORB is an example of a program that uses an interface definition
language to “broker” communication between one object program and another.

All CORBA objects support an IDL interface; the IDL interface definesan object type.
Aninterface can inherit from one or more other interfaces. IDL syntax isvery similar
to that of Javaor C++, and an IDL fileis functionally the CORBA
language-independent equivalent to a C++ header file. IDL is mapped into each
programming languageto provide access to object interfaces from that language. With
Java|DL, these IDL interfaces can be translated to Java using the idltojava compiler.
For each IDL interface, theidltojavacompiler generates a Javainterface and the other
. j ava files needed, including a client stub and a server skeleton.

An IDL interface declares a set of client-accessible operations, exceptions, and typed
attributes (values). Each operation has a signature that defines its name, parameters,
result, and exceptions. Listing 1-1 showsthe IDL for the Simple interface in the
Simpapp sample application included with the BEA Tuxedo product.

Listing1-1 An IDL Interfacefor the Simpapp Sample Application

#pragma prefix "beasys. cont

interface Sinple

{
/Il Convert a string to |ower case (return a new string)
string to_lower(in string val);
/] Convert a string to upper case (in place)
void to_upper(inout string val);
}
interface Sinpl eFactory
{
Sinple find_sinple();
b

Using the CORBA idltojava Compiler 1-3

1 overview of idltojava Compiler

What Is Java IDL?

JavaIDL is not aparticular kind of Interface Definition Language (IDL) apart from
OMG IDL. The same IDL can be compiled with the idltojava compiler to produce
CORBA-compatible Javafiles, or with a C++ based compiler to produce
CORBA-compatible C++ files. The compiler that you use on the IDL iswhat makes
the difference. The OMG has established I DL -to-Java mappings as well as

IDL -to-C++ mappings. The language-based compilers generate code based on the
OMG CORBA mappings to their particular language.

The BEA Tuxedo product providesits own "brand" of JavaIDL. In other words, the
BEA Tuxedo product provides all of the components you need to build CORBA Java
clientsand CORBA Javajoint client/servers that are capable of accessing CORBA
objects. The key componentsin the BEA Tuxedo product are listed in “ Accessing
CORBA Objects” on page 1-4.

Accessing CORBA Objects

1-4

Y ou can build two types of applications using the idItojava compiler:

m A CORBA Javaclient which usesfilesfrom thei dl t oj ava command for its
client stubs.

m A CORBA Javajoint client/server which usesfilesfromthei dl t oj ava
command for its client stubs and its server skeletons.

CORBA Javaclients and CORBA Java joint client/servers communicate with the
Application-to-Transaction Monitor Interface (ATMI) environment in the BEA
Tuxedo product using the Internet Inter-ORB Protocol (I10P). The ATMI environment
in the BEA product does not support the hosting of CORBA Java server objects.

Note: A joint client/server isaclient that implements CORBA server objectsto be
used as callback objects. The server role of the remote joint client/server is
considerably lessrobust than that of aBEA Tuxedo CORBA server. For more
information about joint client/servers, see Using CORBA Server-to-Server
Communication.

Using the CORBA idltojava Compiler

Accessing CORBA Objects

The BEA Tuxedo product provides all of the components you need to build CORBA
Java clients and CORBA Java joint client/servers capable of accessing CORBA
objects. The key components are:

m idltojava compiler—atool for converting IDL interface definitions to Java client
stubs and skeleton files. Thei dl t oj ava command compiles standard CORBA
IDL source code into Java source code. (Y ou can then use thej avac compiler to
compile that source to Java bytecodes.) For a detailed description of the idltojava
compiler, see Chapter 2, “Using the idltojava Command.”

m Bootstrap Object and FactoryFinder—CORBA objects that supply local and
remote object references. A CORBA Javaclient or CORBA Javajoint
client/server uses the Bootstrap object to obtain initial object references to
CORBA objectsin aBEA Tuxedo domain, one of which isthe FactoryFinder.

CORBA Java clients and CORBA Java joint client/servers obtain object references
from:

m A factory object

For example, the client could invoke a cr eat e method on Docunent Fact ory
object to create anew Docunent . The Document Fact ory cr eat e method
would return an object reference for Docunent to the client.

The use of afactory object to obtain object referencesis the recommended
method for CORBA Java clients in this release of the BEA Tuxedo product.

The FactoryFinder object registers, stores, and finds CORBA objects within a
single BEA Tuxedo domain or across multiple domains.

For detailed information on how to use the FactoryFinder object, see the CORBA
Programming Reference.

m A string that was specially created from an object reference

After an object referenceis obtained, the client must narrow it to the appropriate type.
IDL supports inheritance; the root of its hierarchy is Qbj ect inIDL,

or g. omg. CORBA. Obj ect inJava. (or g. ong. CORBA. bj ect is, of course, a subclass
of j ava. | ang. Obj ect .) Some operations, notably name lookup and unstringifying,
return an or g. ong. CORBA. Obj ect , which you harrow (using ahel per class generated
by the idItojava compiler) to the derived type you want the object to be. CORBA
objects must be explicitly narrowed because the Javarun time cannot aways know the
exact type of a CORBA object.

Using the CORBA idltojava Compiler 1-5

1 overview of idltojava Compiler

1-6 Using the CORBA idltojava Compiler

CHAPTER

2

Using the idltojava
Command

The idltojava compiler compiles IDL filesto Java source code based on IDL-to-Java
mappings defined by the OMG. For more information about the IDL -to-Java
mappings, refer to the topic “1DL-to-Java M appings Used By the idItojava Compiler”
on page 5-1.

Thistopic includes the following sections:

m Syntax of the idltojava Command

m idltojava Command Description

m Running idltojavaon Client or Joint Client/Server IDL Files
m idlitojava Command Options

m iditojava Command Flags

m Using #pragmain IDL Files

For a quick summary of the enhancements and updates added to the BEA Tuxedo
idltojava compiler, see the topic “How Does the BEA idltojava Compiler Differ from
the Sun Microsystems, Inc. Version?’ on page 1-2.

Using the CORBA idltojava Compiler 2-1

2 Using the idltojava Command

Syntax of the idltojava Command

Thefollowing is an example of thei dI t oj ava command syntax:

idltojava [idltojava Command Fl ags] [idltojava Conmand Options] filenane ...

idItojava Command Description

Thei dlI t oj ava command compiles DL source code into Java source code. Y ou then
usethej avac compiler to compile that source to Java bytecodes. The command

i dl t oj ava isused to trandate IDL source code into generic client stubs and generic
server skeletons which can be used for callbacks.

The IDL declarations from the named IDL files are translated to Java declarations
according to the mappings specified in the OMG | DL -to-Java mappings. (For more
information on the mappings, see “IDL -to-Java M appings Used By the idltojava
Compiler” on page 5-1.)

Running idltojava on Client or Joint
Client/Server IDL Files

Torunidl t oj ava onclient-side IDL filesfor either CORBA Javaclients or CORBA
Javajoint client/servers, use the following command:

idltojava <flags> <options> <idl-fil es>

Thei dI t oj ava command requires a C++ preprocessor, and is used to generate
deprecated names. The commandi dl t oj ava generates Javacode asisappropriatefor
the Java client ORB.

2-2 Using the CORBA idltojava Compiler

idltojava Command Options

Note: A remote joint client/server is aclient that implements server objects to be
used as callback objects. The server role of the remote joint client/server is
considerably less robust than that of a BEA Tuxedo server. For more
information about joint client/servers, see Using CORBA Server-to-Server
Communication.

IdItojava Command Options

Note: Several option descriptions have been added here that are not documented in
the original Sun Microsystems, Inc. iditojava compiler documentation (see
Table 2-1).

Table 2-1 idltojava Added Options

Option Description

-j javaDirectory Specifies that generated Java files should be written to the
givendirectory. Thisdirectory isindependent of the- p option,
if any.

-J filesFile Specifies that alist of the files generated by idltojava should
be written to filesFile.

-p package- nane Specifies the name of an outer package to enclose all the
generated Javafiles. It has the same function as #pr agna
j avaPackage.

Note: You must include an outer package. The compiler
does not do this for you. If you do not have an outer
package, theidltojavacompiler will still generate Java
filesfor you but you will get a Java compiler error
when you try to compilethe*. j ava files.

Thefollowing options areidentical to the equivalent C/C++ compiler options (cpp):

-ldirectory Specifies a directory or path to be searched for files that are
#included in IDL files. This option is passed to the
preprocessor.

Using the CORBA idltojava Compiler 2-3

2 Using the idltojava Command

Table 2-1 idltojava Added Options (Continued)

Option

Description

- Dsynbol

Specifies a symbol to be defined during preprocessing of the
IDL files. This option is passed to the preprocessor.

- Usynbol

Specifiesasymbol to be undefined during preprocessing of the
IDL files. This option is passed to the preprocessor.

IdItojava Command Flags

Theflags can beturned on by specifying them as shown, and they can be turned off by
prefixing them with the letters no- . For example, to prevent the C preprocessor from
being run on the input IDL files, use - f no- cpp.

Table 2-2 includes descriptions of all flags.

Table 2-2 idltojava Command Flags

Flag

Description

-flist-flags

Reguests that the state of all the-f flags be printed. The default value of this
flagisof f.

-flist -debug-flags

Provides alist of debugger flags.

-fcasel ess

Requests that the use of upper- and lowercase letters in keywords and
identifiers not be significant. Note that this does not mean that caseisignored,
because all uses of an identifier must have the same use of case asthe initial
usage. For example, “ Session” and “ session” are the sameidentifier, but using
“session” after aninitial use of “Session” resultsin an error because“ session”
does not have the case as “ Session.” CORBA uses this definition of caseless
to allow accurate mappings to case-sensitive languages. The default value of
thisflagison. The severity of identifier conflictsfound with thisflag specified
iswarning (the default). Seethe-f strict flagfor moreinformation.

-fclient

Reqgueststhe generation of the client side of the IDL files supplied. The default
value of thisflagison.

2-4 Using the CORBA idltojava Compiler

idltojava Command Flags

Table 2-2 idltojava Command Flags (Continued)

Flag

Description

-fcpp

Requests that the IDL source be run through the C/C++ preprocessor before
being compiled by the idltojava compiler. The default value of thisflag ison.

-fignore-duplicates

Specifiesthat duplicate definitionsbeignored. Thismay be useful if compiling
multiple IDL files at one time. The default value of thisflagisof f .

-flist-options

Liststhe options specified on the command line. The default val ue of thisflag
isof f.

-fmap-included-files

Specifies that Java files be generated for definitionsincluded by #i ncl ude
preprocessor directives. The default value for thisflagisof f , which specifies
that the Java files for included definitions not be generated.

-fserver Requests the generation of the server side of the IDL files supplied. The
default value of thisflagison.

-fverbose Requests that the compiler comment on the progress of the compilation. The
default value of thisflagisof f .

-fversion Requests that the compiler print its version and timestamp. The default value

of thisflagisof f .

- fwarn-pragma

Requests that warning messages be issued for unknown or improperly
specified #pr agnas. The default value of thisflagison.

-fwrite-files

Requeststhat the derived Javafiles bewritten. The default value of thisflagis
on. You might specify - f no-wri te-fil es if youwished to check for
errors without actually writing the files.

-fstrict

In previous releases, the severity of identifier conflicts found with the

- f casel ess flag specified was er r or . In thisrelease, the - f casel ess
flag performs its identifier comparisons exactly as before but the severity of
the conflicts has changed fromer r or towar ni ng. To request the previous,
strict CORBA conformance which requiresidentifier conflictsto be specified
aserr or, specify thisflagwith the - f casel ess flag.

Using the CORBA idltojava Compiler 2-5

2

Using the idltojava Command

Using #pragma in IDL Files

2-6

Note: TheBEA Tuxedoidltojavacompiler processes#pr agma somewhat differently
from the Sun Microsystems, Inc. iditojava compiler.

Reposi toryPrefi x="prefix"

A default repository prefix can also be requested with the line #pr agma pr ef i x
"request ed prefix" atthetop-level intheIDL fileitself. Theline:

#pragma j avaPackage "package"

wraps the default package in one called package. For example, compiling an IDL
module Mnormally creates a Java package M If the modul e declaration is preceded by:

#pragma j avaPackage browser

the compiler will create the package Minside package browser. This pragmais useful
when the definitions in one IDL module will be used in multiple products. The
command-line option - p can be used to achieve the same result. The line:

#pragma | D scoped- nane "I DL: <pat h>: <ver si on>"

specifiesthe repository 1D of the identifier scoped-name. This pragma may appear
anywhereinan IDL file. If the pragmaappearsinside acomplex type, such asstructure
or union, then only as much of scoped-name need be specified to specify the element.
A scoped-name s of theform out er _nane: : name: : i nner _nane. The

<pat h>component of the repository ID is aseries of identifiers separated by forward
dlashes (/) . The<ver si on> component isadecimal number MM mm where MMisthe
major version number and nmis the minor version number.

Using the CORBA idltojava Compiler

CHAPTER

3 Java IDL Examples

Thistopic includes the following sections:
m Getting Started with a Simple Example of IDL
m Callback Objects IDL Example

Getting Started with a Simple Example of
IDL

Listing 3-1 shows the OMG IDL to describe a CORBA object whose operations

to_l ower () andt o_upper () eachreturnasinglestring in whichtheletter case of the
user input is changed accordingly. (Uppercase input is changed to lowercase, and vice
versa)

Listing 3-1 IDL Interfacefor the Simpapp Sample Application

#pragma prefix "beasys. cont

interface Sinple

{
/Il Convert a string to |ower case (return a new string)
string to_lower(in string val);
/] Convert a string to upper case (in place)
void to_upper(inout string val);
}

Using the CORBA idltojava Compiler 31

3 JavalDL Examples

interface SinpleFactory

Sinple find_sinple();
I

If you were implementing this application from scratch, you would compile this IDL
interface with the following command:

idltojava Sinple.idl

This would generate stubs and skeletons and several other files.

For information on the options and flags on the idltojava compiler, refer to the topic
“Using the iditojava Command” on page 2-1.

Callback Objects IDL Example

Listing 3-2 showsthe OMG IDL to define the Callback, Simple, and SimpleFactory
interfaces in the Callback sample application.

Listing 3-2 IDL Definition for the Callback Sample Application

#pragma prefix "beasys. cont
interface Call back

/1 This method prints the passed data i n uppercase and | ower case
/lletters.

{
}s

void print_converted(in string nessage);

interface Sinple

//Call the callback object in the joint client/server
/lapplication

{

void call _callback(in string val, in Callback
cal | back_ref)

3-2 Using the CORBA idltojava Compiler

Callback Objects IDL Example

b
interface Sinpl eFactory
{
Sinple find_sinple();
b

For a compl ete explanation of the Java CORBA callbacks example as well as
information on how to build and run the example, see Using CORBA Server-to-Server
Communication in the BEA Tuxedo online documentation.

Using the CORBA idltojava Compiler 3-3

3 JavalDL Examples

3-4 Using the CORBA idltojava Compiler

CHAPTER

4 Java IDL Programming
Concepts

Thistopic includes the following sections:
m Exceptions
m |nitializations

m The FactoryFinder Interface

Exceptions

CORBA has two types of exceptions: standard system exceptions, which are fully
specified by the OMG, and user exceptions, which are defined by the individual
application programmer. CORBA exceptions differ dightly from Java exception
objects, but those differences are largely handled in the mapping from IDL-to-Java.

Topicsin this section include:

m Differences Between CORBA and Java Exceptions
m System Exceptions

m User Exceptions

m Minor Code Meanings

Using the CORBA idltojava Compiler 4-1

4 JavalDL Programming Concepts

Differences Between CORBA and Java Exceptions

To specify an exceptionin I DL, the interface designer usestheraises keyword. Thisis
similar to the throws specification in Java. When you use the exception keyword in
IDL, you create a user-defined exception. The standard system exceptions need not
(and cannot) be specified this way.

System Exceptions

CORBA defines a set of standard system exceptions, which are generally raised by the
ORSB librariesto signal systemic error conditions including:

m Server-side system exceptions, such as resource exhaustion or activation failure.

m Communication system exceptions, for example, losing contact with the object,
host down, or cannot talk to the ISL or ISH.

m Client-side system exceptions, such asinvalid operand type or anything that
occurs before arequest is sent or after the result comes back.

All IDL operations can throw system exceptionswhen invoked. Theinterface designer
need not specify anything to enable operations in the interface to throw system
exceptions; the capability is automatic.

This makes sense because ho matter how trivial an operation’simplementation is, the
potentia of an operation invocation coming fromaclient that isin another process, and
perhaps (likely) on another machine, meansthat awhole range of errorsis possible.

Therefore, a CORBA Java client should always catch CORBA system exceptions.
Moreover, devel opers cannot rely on the idltojava compiler to notify them of asystem
exception they should catch, because CORBA system exceptions are descendants of
j ava. |l ang. Runt i neExcepti on.

System Exception Structure

All CORBA system exceptions have the same structure:

exception <SystenkExceptionNanme> { // descriptive of error
unsi gned | ong mnor; /1 nore detail about error

4-2 Using the CORBA idltojava Compiler

Exceptions

Conpl eti onSt atus conpl et ed; /1 yes, no, maybe
}

System exceptions are subtypes of j ava. | ang. Runt i meExcept i on through
or g. ong. CORBA. Syst enExcepti on:

java. | ang. Excepti on

+--java. | ang. Runti neExcepti on

I
+- - or g. ong. CORBA. Syst enExcepti on

I
+- - BAD_PARAM

+--//etc.

Completion Status

All CORBA system exceptions have a completion status field which indicates the
status of the operation that threw the exception. The completion codes are:

m COMPLETED_YES

The object implementation has completed processing prior to the exception
being raised.

m COMPLETED_NO
The object implementation was not invoked prior to the exception being raised.
m COMPLETED_MAYBE

The status of the invocation is unknown.

User Exceptions

CORBA user exceptions are subtypes of j ava. | ang. Except i on through
or g. ong. CORBA. User Excepti on:

java. | ang. Excepti on

I
+--o0rg. ong. CORBA. User Excepti on

I
+- - St ocks. BadSynbol

Using the CORBA idltojava Compiler 4-3

Java IDL Programming Concepts

+--//etc.

Each user-defined exception specified in IDL resultsin a generated Java exception
class. These exceptions are entirely defined and implemented by the programmer.

Minor Code Meanings

4-4

Every system exception hasa“minor” field that allows CORBA vendorsto provide
additional information about the cause of the exception. Table 4-1 and Table 4-2 list
the minor codes of Java IDL's system exceptions and describes their significance.

Table4-1 ORB Minor Codes and Their M eanings

Code

M eaning

BAD_PARAM Exception Minor Codes

1

A null parameter was passed to a Java DL method.

COMM_FAILURE Exception Minor Codes

1

Unable to connect to the host and port specified in the object reference, or in the
object reference obtained after locati on/object forward.

Error occurred whiletrying to write to the socket. The socket has been closed by the
other side, or is aborted.

3

Error occurred while trying to write to the socket. The connectionisno longer alive.

6

Unable to successfully connect to the server after several attempts.

DATA_CONVERSION Exception Minor Codes

1

Encountered abad hexadecimal character whiledoingORB st ri ng_t o_obj ect
operation.

The length of the given IOR for st ri ng_t o_obj ect () isodd. It must be even.

Thestring giventostring_t o_obj ect () doesnot start with |OR; and hence,
isabad stringified IOR.

Using the CORBA idltojava Compiler

Exceptions

Table4-1 ORB Minor Codes and Their Meanings (Continued)

Code

M eaning

4

Unableto perform ORB r esol ve_i ni ti al _r ef er ences operation dueto the
host or the port being incorrect or unspecified, or the remote host does not support
the Java IDL bootstrap protocol.

INTERNAL Exception Minor Codes

3 Bad status returned in the 110P Reply message by the server.

6 When unmarshaling, the repository 1D of the user exception was found to be the
incorrect length.

7 Unabl e to determine the local hostname using the Java APls
| net Addr ess. get Local Host (). get Host Nane() .

8 Unableto create the listener thread on the specific port. Either the port isalready in
use, there was an error creating the daemon thread, or security restrictions prevent
listening.

9 Bad locate reply status found in the [IOP locate reply.

10 Error encountered while stringifying an object reference.

11 11OP message with bad GIOP 1.0 message type found.

14 Error encountered while unmarshaling the user exception.

18 Internal initialization error.

INV_OBJREF Exception Minor Codes

1

An IOR with no profile was encountered.

MARSHAL Exception Minor Codes

4 Error occurred while unmarshaling an object reference.

5 Marshaling/unmarshaling unsupported IDL types like wide characters and wide
strings.

6 Character encountered while marshaling or unmarshaling a character or string that

isnot 1SO Latin-1 (8859.1) compliant. It is not in the range of 0 to 255.

Using the CORBA idltojava Compiler 4-5

4 JavalDL Programming Concepts

Table4-1 ORB Minor Codes and Their Meanings (Continued)

Code

M eaning

NO_IMPLEMENT Exception Minor Codes

1

Dynamic Skeleton Interface is not implemented.

OBJ_ADAPTER Exception Minor Codes

1

No object adapter was found matching the one in the object key when dispatching
the request on the server side to the object adapter layer.

No object adapter was found matching the one in the object key when dispatching
the locate request on the server side to the object adapter layer.

4

Error occurred when trying to connect a servant to the ORB.

OBJ_NOT_EXIST Exception Minor Codes

1

L ocate request received a response indicating that the object is not known to the
locator.

Server ID of the server that received the request does not match the server 1D baked
into the object key of the object reference that was invoked upon.

No skeleton was found on the server sidethat matchesthe contents of the object key
inside the object reference.

UNKNOWN Exception Minor Codes

1

Unknown user exception encountered while unmarshaling; the server returned a
user exception that does not match any expected by the client.

3

Unknown run-time exception thrown by the server implementation.

Table 4-2 Name Server Minor Codes and Their M eanings

Code

M eaning

INITIALIZE Exception Minor Codes

150

Transient name service caught a Syst enExcept i on whileinitiaizing.

151

Transient name service caught a Java exception while initializing.

4-6 Using the CORBA idltojava Compiler

Initializations

Table 4-2 Name Server Minor Codesand Their Meanings (Continued)

Code Meaning

INTERNAL Exception Minor Codes

100 An Al r eadyBound exception was thrown in ar ebi nd operation.

101 An Al r eadyBound exception was thrown in ar ebi nd_cont ext operation.

102 Binding type passed to the internal binding implementation was not
Bi ndi ngType. nobj ect or Bi ndi ngType. ncont ext.

103 Object reference was bound as a context, but it could not be narrowed to
CosNami ng. Nam ngCont ext .

200 Implementation of the bind operation encountered a previous binding.

201 Implementation of the list operation caught a Java exception while creating the list
iterator.

202 Implementation of the new_cont ext operation caught a Java exception while

creating the new NamingContext servant.

203 Implementation of the destroy operation caught a Java exception while
disconnecting from the ORB.

Initializations

Before a CORBA Java client or a CORBA Javajoint client/server can use CORBA
objects, it must initialize itself by:

m Creating an ORB object.

m Obtaining one or more initial object references, typically using a FactoryFinder
object.

Using the CORBA idltojava Compiler 4-7

4 JavalDL Programming Concepts

Creating an ORB Object

Before it can create or invoke a CORBA object, a CORBA Java client or a CORBA
Javajoint client/server must first create an ORB object. By creating an ORB object,
the client or joint client/server introduces itself to the ORB and obtains access to
important operations that are defined on the ORB object.

Clientsand joint client/servers create ORB instances slightly differently, because their
parameters, which must be passed inthe ORB. i ni t () call, are arranged differently.

Creating an ORB for an Application

Thefollowing code fragment shows how a CORBA Java client might create an ORB:
i mport org.ongy. CORBA. ORB;

public static void main(String args[])
{

try{
ORB orb = ORB.init(args, null);
/1 code continues

Creating an ORB for an Applet

A Javaapplet creates an ORB like this:
i mport org.ongy. CORBA. ORB;

public void init() {

try {
ORB orb = ORB.init(this, null);
/! code continues

Some Web browsers have a built-in ORB. This can cause problemsif that ORB is not
entirely compliant. In this case, special steps must be taken to initialize the Java IDL
ORB specificaly. For example, because of missing classesin the installed ORB in
Netscape Communicator 4.01, an applet displayed in that browser must contain code
similar to thefollowing in its i ni t () method:

import java.util.Properties;
i mport org.ongy. CORBA. *;

public class MyAppl et extends java.appl et. Appl et {

4-8 Using the CORBA idltojava Compiler

Initializations

public void init()

{
/1 Instantiate the Java IDL ORB, passing in this appl et

/1 so that the ORB can retrieve the applet properties.

Properties p = new Properties();

p. put ("org. ong. CORBA. ORBd ass", "com sun. CORBA.iiop. ORB");

p. put (" org. ong. CORBA. ORBSi ngl et onCl ass", "com sun. CORBA. i dl . ORBSi ngl eton") ;
Syst em set Properties(p);

ORB orb = ORB.init(args, p);

Arguments to ORB.init()

For both applications and applets, the arguments for the initialization method are:
m argsorthis

Provides the ORB access to the application’s arguments or applet's parameters.
m null

Ajava.util.Properties object.

Thei ni t () operation usesthese parameters, aswell asthe system properties, to obtain
information it needs to configure the ORB. It searches for ORB configuration
properties in the following places and order:

1. The application or applet parameters (first argument).
2. Ajava.util.Properties object (second argument), if one has been supplied.
3. The java. util.Properties object returned by Syst em get Properties().

Thefirst value found for a particular property isthe value used by thei ni t ()
operation. If a configuration property cannot be found in any of these places, the

i ni t() operation assumes an implementation-specific value for it. For maximum
portability anong ORB implementations, appl ets and applications should explicitly
specify configuration property valuesthat affect their operation, rather than relying on
the assumptions of the ORB in which they are running.

Using the CORBA idltojava Compiler 4-9

4 JavalDL Programming Concepts

System Properties

The BEA Tuxedo product uses the Sun Microsystem, Inc. Javavirtual machine, which
adds - D command-line arguments to it. Other Java virtual machines may or may not
do the same.

Currently, the following configuration properties are defined for all ORB
implementations:

m org.ong. CORBA. ORBCl ass

The name of a Java class that implements the or g. ong. CORBA. ORB interface.
Applets and applications do not need to supply this property unless they must
have a particular ORB implementation. The value for the Java DL ORB is
com sun. CORBA. i i op. ORB.

m org.ong. CORBA. ORBSI ngl et ond ass

The name of a Java class that implements the or g. ong. CORBA. ORB interface.
Thisisthe object returned by acall toorb. i ni t () with no arguments. It isused
primarily to create typecode instances than can be shared across untrusted code
(such as unsigned applets) in a secured environment.

Applet parameters should specify the full property nhames. The conventions for
applications differ from applets so as not to expose language-specific detailsin
command-line invocations.

Obtaining Initial Object References

ToinvokeaCORBA object, an applet or application must have areferencefor it. There
are three waysto get a reference for a CORBA object:

m From astring that was specialy created from an object reference
m From another object, such as a FactoryFinder

m From theboot st r ap method

4-10 Using the CORBA idltojava Compiler

Initializations

Stringified Object References

The first technique, converting a stringified reference to an actual object reference, is
ORB-implementation independent. Regardless of which ORB an appl et or application
runs on, it can convert a stringified object reference. However, it isup to the applet or
application developer to:

m Ensure that the object referred to is actually accessible from where the applet or
application isrunning.

m Obtain the stringified reference, perhaps from afile or a parameter.

Getting References from the ORB

If you do not use a stringified reference to get an initial CORBA object, you use the
ORSB itself to produce an initial object reference.

The Bootstrap object defines an operation called resol ve_i nitial _ref erences()
that isintended for bootstrapping object references into a newly started application or
applet. The operation takes a string argument that names one of a few recognized
objects; it returns a CORBA Object, which must be narrowed to the type the applet or
application knowsit to be.

Using the Bootstrap object, you can obtain the following object references
(SecurityCurrent, TransactionCurrent, FactoryFinder, NotificationService,
Tobj_SimpleEventsService, NameService, and InterfaceRepository). The object of
concern to us here is the FactoryFinder object.

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the BEA Tuxedo domain. The FactoryFinder object is
used to obtain a specific factory object, which in turn can create the needed objects.

For more information on how to use the Bootstrap object, see the CORBA
Programming Reference.

Using the CORBA iditojava Compiler 4-11

4 JavalDL Programming Concepts

The FactoryFinder Interface

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the BEA Tuxedo domain. Multiple FactoryFinders
provide increased availability and reliability. Mapping across multiple domains is
supported.

The FactoryFinder interface and the NameManager are a mechanism for registering,
storing, and finding objects. In the BEA Tuxedo environment, you can:

m Usethe Bootstrap object to obtain an object reference to a FactoryFinder object.
m Usethe FactoryFinder object to find the Factory object you need.
m Usethe Factory object to create new instances of the CORBA object.

For more information about how to use the FactoryFinder object, see the CORBA
Programming Reference.

4-12 Using the CORBA idltojava Compiler

CHAPTER

5

IDL-to-Java Mappings
Used by the idltojava
Compiler

Theidltojava compiler readsan OMG IDL interface and transl ates or mapsit to aJava
interface. The idltojava compiler also creates stub, skeleton, helper, holder, and other
filesas necessary. These . j ava files are generated from the IDL file according to the
mapping specified in the OMG document I DL/Java L anguage Mapping.

For more information on the DL -to-Java mappings, refer to the OMG Web site at
http://www.omg.org.

CORBA objects are defined in OM G IDL (Object Management Group Interface
Definition Language). Before they can be used by a Java developer, their interfaces
must be mapped to Java classes and interfaces. The idltojava compiler performs this
mapping automatically.

Table 5-1 shows the correspondence between OMG IDL constructs and Java
constructs. Note that OMG IDL, asits name implies, defines interfaces. Like Java
interfaces, IDL interfaces contain no implementationsfor their operations (methodsin
Java). In other words, IDL interfaces define only the signature for an operation (the
name of the operation, the datatype of itsreturn value, the data types of the parameters
that it takes, and any exceptionsthat it raises). The implementations for these
operations need to be supplied in Java classes written by a Java programmer.

Using the CORBA idltojava Compiler 5-1

5

IDL-to-Java Mappings Used By the idltojava Compiler

Table5-1 IDL Constructs M apped to Java Constructs

IDL Construct Java Construct
module package

interface interface, helper class, holder class
constant public static final
boolean boolean

char, wchar char

octet byte

string, wstring java.lang. String
short, unsigned short short

long, unsigned long int

long long, unsigned long long long

float float

double double

enum, struct, union class

sequence, array array

exception class

readonly attribute method for accessing value of attribute

readwrite attribute methods for accessing and setting value of attribute

operation method

Note: When a CORBA operation takes atype that correspondsto a Java object type
(astring, for example), it isillegal to pass a Javanull asthe parameter value.
Instead, pass an empty version of the designated object type (for example, an
empty string or an empty array). A Javanull can be passed asa parameter only
when the type of the parameter is a CORBA object reference, in which case
the null isinterpreted as a nil CORBA object reference.

5-2 Using the CORBA idltojava Compiler

Index

Symbols
#pragma, using in IDL files 2-6

B
Bootstrap object 1-5

C

CORBA
exceptionsin 4-1

D

documentation, where to find it vi

E

exceptions 4-1
completion statusin 4-3
minor codesin 4-4
system 4-2
user 4-3

F

FactoryFinder 1-5
FactoryFinder interface 4-12

IDL

Using the CORBA idltojava Compiler

See Interface Definition Language 1-2
IDL interface 1-3
idltojava command
flags 2-4
options 2-3
syntax of 2-2
using 2-1
idltojava compiler
differences from Sun version 1-2
whereto get it 1-2
initialization
of Java program 4-7
interface
FactoryFinder 4-12
IDL 1-3
Interface Definition Language (IDL)
what itis 1-3

J

Java DL
examples of 3-1
what itis1-3

M
mappings, IDL-to-Java 5-1
minor codes, meaning of 4-4

0]

object references

obtaining 1-5, 4-10
ORB object, creating 4-8
ORB.init 4-9

P
pragma, using in IDL files 2-6
printing product documentation vi

S

Sun Microsystems, Inc.
differences between Sun and BEA
iditojava compilers 1-2
support
technical vii

[-2 Using the CORBA idltojava Compiler

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of idltojava Compiler
	Where Do I Get the BEA idltojava Compiler?
	How Does the BEA idltojava Compiler Differ from the Sun Microsystems, Inc. Version?
	What Is IDL?
	What Is Java IDL?
	Accessing CORBA Objects

	2 Using the idltojava Command
	Syntax of the idltojava Command
	idltojava Command Description
	Running idltojava on Client or Joint Client/Server IDL Files
	idltojava Command Options
	idltojava Command Flags
	Using #pragma in IDL Files

	3 Java IDL Examples
	Getting Started with a Simple Example of IDL
	Callback Objects IDL Example

	4 Java IDL Programming Concepts
	Exceptions
	Differences Between CORBA and Java Exceptions
	System Exceptions
	System Exception Structure
	Completion Status

	User Exceptions
	Minor Code Meanings

	Initializations
	Creating an ORB Object
	Creating an ORB for an Application
	Creating an ORB for an Applet
	Arguments to ORB.init()
	System Properties

	Obtaining Initial Object References
	Stringified Object References
	Getting References from the ORB

	The FactoryFinder Interface

	5 IDL-to-Java Mappings Used By the idltojava Compiler
	Index

