
CORBA Technical Articles

B E A  T u x e d o  8 . 0
D o c u m e n t  E d i t i o n  8 . 0

J u n e  2 0 0 1

BEA Tuxedo



Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems 
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against 
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or 
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable 
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems 
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause 
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR 
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part 
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT 
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc. 
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, 
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF 
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes 
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic 
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic 
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

CORBA Technical Articles

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0



CORBA Technical Articles iii

Contents

About This Document
What You Need to Know ......................................................................................v

e-docs Web Site................................................................................................... vi

How to Print the Document................................................................................. vi

Related Information............................................................................................. vi

Contact Us! ......................................................................................................... vii

Documentation Conventions .............................................................................. vii

1. The CORBA Programming Model
Pre-CORBA Approach to Client/Server Development..................................... 1-2

CORBA Approach to Client/Server Development............................................ 1-4

2. CORBA Objects
Definition of a CORBA Object ......................................................................... 2-2

How a CORBA Object Comes into Being ........................................................ 2-2

Components of a CORBA Object ..................................................................... 2-3

The Object ID............................................................................................. 2-4

The Object Interface................................................................................... 2-5

The Object’s Data ............................................................................... 2-5

The Object’s Operations ..................................................................... 2-5

Where an Object Gets Its Operations ................................................................ 2-6

How Object Invocation Works.......................................................................... 2-8

3. Process-Entity Design Pattern
About the Process-Entity Design Pattern .......................................................... 3-2

Increasing Scalability and Resource Utilization................................................ 3-2

Limitations of the Two-tier System ........................................................... 3-3



iv CORBA Technical Articles

Advantages of the Process-Entity Design Pattern ...................................... 3-3

Applicability ...................................................................................................... 3-4

Request Flow in CORBA Applications...................................................... 3-4

Request Flow in EJB Applications............................................................. 3-5

Participants ........................................................................................................ 3-5

Other Considerations ......................................................................................... 3-6

Related Concepts ............................................................................................... 3-6

4. Client Data Caching Design Pattern
Motivation ......................................................................................................... 4-1

Applicability ...................................................................................................... 4-2

Participants ........................................................................................................ 4-3

Other Considerations ......................................................................................... 4-4



CORBA Technical Articles v

About This Document

This document contains the following technical articles:

n Chapter 1, “The CORBA Programming Model,” describes the CORBA 
programming model.

n Chapter 2, “CORBA Objects,” explains what a CORBA is and the object 
terminology used in the BEA Tuxedo information set.

n Chapter 3, “Process-Entity Design Pattern,” describes the Process-Entity design 
pattern.

n Chapter 4, “Client Data Caching Design Pattern,” describes the CORBA Client 
Data Caching design pattern.

What You Need to Know

This document is intended for system architects and programmers who are interested 
in extending secure, scalable, transaction-based processing from the enterprise to the 
Intranet and the Internet, and who need a broad overview of CORBA programming.



vi CORBA Technical Articles

e-docs Web Site

The BEA Tuxedo® product documentation is available on the BEA Systems, Inc. 
corporate Web site. From the BEA Home page, click the Product Documentation 
button or go directly to the “e-docs” Product Documentation page at 
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using 
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home 
page on the e-docs Web site (and also on the documentation CD). You can open the 
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book 
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click 
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from 
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing, 
transaction processing, C++ programming, and Java programming, see the CORBA 
Bibliography in the BEA Tuxedo online documentation. 



Documentation Conventions

CORBA Technical Articles vii

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail 
at docsupport@bea.com if you have questions or comments. Your comments will be 
reviewed directly by the BEA professionals who create and update the BEA Tuxedo 
documentation.

In your e-mail message, please indicate that you are using the documentation for the 
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems 
installing and running BEA Tuxedo, contact BEA Customer Support through BEA 
WebSUPPORT at www.bea.com. You can also contact Customer Support by using the 
contact information provided on the Customer Support Card, which is included in the 
product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.



viii CORBA Technical Articles

italics Indicates emphasis or book titles.

monospace 
text

Indicates code samples, commands and their options, data structures and 
their members, data types, directories, and filenames and their extensions. 
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main ( ) the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace 
boldface 
text

Identifies significant words in code.

Example:

void commit ( )

monospace 
italic 
text

Identifies variables in code.

Example:

String expr

UPPERCASE 
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should 
never be typed.

[ ] Indicates optional items in a syntax line. The brackets themselves should 
never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

Convention Item



Documentation Conventions

CORBA Technical Articles ix

| Separates mutually exclusive choices in a syntax line. The symbol itself 
should never be typed.

... Indicates one of the following in a command line: 

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. 
The vertical ellipsis itself should never be typed.

Convention Item



x CORBA Technical Articles



CORBA Technical Articles 1-1

CHAPTER

1 The CORBA 
Programming Model

CORBA is a specification for creating distributed object-based applications. The 
CORBA architecture and specification were developed by the Object Management 
Group (OMG). The OMG is a consortium of several hundred information systems 
vendors. The goal of CORBA is to promote an object-oriented approach to building 
and integrating distributed software applications.

The CORBA specification provides a broad and consistent model for building 
distributed applications by defining:

n An object model for building distributed applications.

n A common set of application programming objects to be used by the client and 
server applications.

n A syntax for describing the interfaces of objects used in the development of 
distributed applications.

n Support for use by applications written in multiple programming languages.

The CORBA specification describes how to develop an implementation of CORBA. It 
also describes programming language bindings that developers use to develop 
applications.

To illustrate the advantages of using the CORBA architecture, this section compares 
early client/server application development techniques to CORBA development 
techniques.



1 The CORBA Programming Model

1-2 CORBA Technical Articles

Pre-CORBA Approach to Client/Server 
Development

Client/server computing is an application development methodology that allows 
programmers to distribute processing among networked machine systems, thus 
enabling more efficient use of machine resources. In client/server computing, an 
application consists of two parts: the client application and the server application. 
These two applications typically run on different machines, connected by a network, 
as shown in the following figure.

The client application makes requests for information or services and typically 
provides users with a means to display results. The server application fulfills the 
requests of one or more client applications and usually performs compute-intensive 
functions.

The key advantages of the client/server model are:

n Computing functions run on the most appropriate machine system.

n Developers can balance the load of application processing among several 
servers.

n Server applications can be shared among numerous client applications.

For example, desktop systems provide many business users with an easy-to-use 
graphical environment for displaying information. However, desktop systems may 
have restricted disk space and memory and are typically single-user systems. Larger, 
more powerful machine systems are better suited to perform compute-intensive 
functions and provide multiple user access and shared database access.

Therefore, larger systems usually run the server portion of the application. In this way, 
distributed desktop systems and networked servers provide a perfect computing 
environment for deploying distributed client/server applications.

Requests service

Returns response

Client
Application

Server
Application



Pre-CORBA Approach to Client/Server Development

CORBA Technical Articles 1-3

Although the non-CORBA client/server approach provides the means to distribute 
processing in a heterogeneous network, it has the following disadvantages:

n For communications, the client application must know how to access the server 
application, including any necessary network protocol information. 

Client/server applications might use the same, single network protocol or 
different protocols. If they use multiple protocols, the applications must logically 
repeat the protocol-specific code for each network.

n Applications must handle data format conversions when they are integrated with 
machines that use different data formats.

For example, some machines read an integer value from the lowest byte address 
to the highest (little endian), while others read the highest byte address to the 
lowest (big endian). Some machine systems might also use different formats for 
floating-point numbers or text strings. If an application sends data to a machine 
that uses a different data format, but the application does not convert the data, 
the data is misinterpreted.

Transporting data over the network and converting it to its proper representation 
on the target system is called data marshaling. In many non-CORBA 
client/server models, applications must perform all data marshaling. Data 
marshaling requires that the application use features of the network and 
operating system to move data from one machine to another. It also requires that 
the application perform all data format translations to ensure that the data is read 
in the same way it was sent.

n There is less flexibility for extension of the application.

The non-CORBA client/server approach ties the client and server applications 
together. Therefore, if either the client or server application changes, the 
programmer must change the interface, network address, and network transport. 
Additionally, if the programmer ports the client and server applications to a 
machine that supports a different network interface, the programmer must create 
a new network interface for those applications.



1 The CORBA Programming Model

1-4 CORBA Technical Articles

CORBA Approach to Client/Server 
Development

The CORBA model provides a more flexible approach to developing distributed 
applications. The CORBA model:

n Formally separates the client and server portions of the application

A CORBA client application knows only how to ask for something to be done, 
and a CORBA server application knows only how to accomplish a task that a 
client application has requested it to do. Because of this separation, developers 
can change the way a server accomplishes a task without affecting how the client 
application asks for the server application to accomplish the task.

n Logically separates an application into objects that can perform certain tasks, 
called operations

CORBA is based on the distributed object computing model, which combines 
the concepts of distributed computing (client and server) and object-oriented 
computing (based on objects and operations). 

In object-oriented computing, objects are the entities that make up the 
application, and operations are the tasks that a server can perform on those 
objects. For example, a banking application could have objects for customer 
accounts, and operations for depositing, withdrawing, and viewing the balance in 
the accounts.

n Provides data marshaling to send and receive data with remote or local machine 
applications

For example, the CORBA model automatically formats for big or little endian as 
needed. (Refer to the preceding section for a description of data marshaling.)

n Hides network protocol interfaces from the applications

The CORBA model handles all network interfaces. The applications see only 
objects. The applications can run on different machines and, because all the 
network interface code is handled by the ORB, the application does not require 
any network-related changes if it is later deployed on a machine that supports a 
different network protocol.



CORBA Approach to Client/Server Development

CORBA Technical Articles 1-5

The CORBA model allows client applications to make requests to server applications, 
and to receive responses from them without direct knowledge of the information 
source or its location. In a CORBA environment, applications do not need to include 
network and operating system information to communicate; instead, client and server 
applications communicate with the Object Request Broker (ORB). The following 
figure shows the ORB in a client/server environment.

CORBA defines the ORB as an intermediary between client and server applications. 
The ORB delivers client requests to the appropriate server applications and returns the 
server responses to the requesting client application. Using an ORB, a client 
application can request a service without knowing the location of the server application 
or how the server application will fulfill the request.

In the CORBA model, client applications need to know only what requests they can 
make and how to make the requests; they do not need to be coded with any 
implementation details of the server or of the data formats. Server applications need 
only know how to fulfill the requests, not how to return data to the client application.

This means that programmers can change the way a server application accomplishes a 
task without affecting how the client application asks for the server application to 
accomplish that task. For example, as long as the interfaces between the client and the 
server applications do not change, programmers can evolve and create new 
implementations of a server application without changing the client application; in 
addition, they can create new client applications without changing the server 
applications.

Client
Application

Server
Application

Requests
 Service

Object Request Broker

Directs
Response
to Client

Directs
Request
to Server

Returns
Response



1 The CORBA Programming Model

1-6 CORBA Technical Articles



CORBA Technical Articles 2-1

CHAPTER

2 CORBA Objects

Before any discussion of CORBA programming can be meaningful, it is important to 
have a clear understanding of what a CORBA object is and the object terminology used 
throughout the BEA Tuxedo information set. 

This topic includes the following sections:

n Definition of a CORBA Object

n How a CORBA Object Comes into Being

n Components of a CORBA Object

n Where an Object Gets Its Operations

n How Object Invocation Works

There are a number of variations on the definition of an object, depending on what 
architecture or programming language is involved. For example, the concept of a C++ 
object is significantly different from the concept of a CORBA object. Also, the notion 
of a Component Object Model (COM) object is quite different from the notion of a 
CORBA object. 

Most importantly, the notion of a CORBA object in this chapter is consistent with the 
definition presented by the Object Management Group (OMG). The OMG has a 
number of specifications and other documents that go into complete details on objects.



2 CORBA Objects

2-2 CORBA Technical Articles

Definition of a CORBA Object

A CORBA object is a virtual entity in the sense that it does not exist on its own, but 
rather is brought to life when, using the reference to that CORBA object, the client 
application requests an operation on that object. The reference to the CORBA object 
is called an object reference. The object reference is the only means by which a 
CORBA object can be addressed and manipulated in an BEA Tuxedo system. For 
more information about object references, see Creating CORBA Server Applications 
in the BEA Tuxedo online documentation. 

When the client or server application issues a request on an object via an object 
reference, the BEA Tuxedo server application instantiates the object specified by the 
object reference, if the object is not already active in memory. (Note that a request 
always maps to a specific operation invocation on an object.)

Instantiating an object typically involves the server application initializing the object’s 
state, which may include having the object’s state read from durable storage, such as a 
database.

The object contains all the data necessary to do the following:

n Execute the object’s operations.

n Store the object’s state in durable storage when the object is no longer needed.

How a CORBA Object Comes into Being

The data that makes up a CORBA object may have its origin as a record in a database. 
The record in the database is the persistent, or durable, state of the object. This record 
becomes accessible via a CORBA object in an BEA Tuxedo domain when the 
following sequence has occurred:

1. The server application’s factory creates a reference for the object. The object 
reference includes information about how to locate the record in the database. 

2. Using the object reference created by the factory, the client application issues a 
request on the object.



Components of a CORBA Object

CORBA Technical Articles 2-3

3. The object is instantiated. The object is instantiated by the TP Framework by 
invoking the Server::create_servant method, which exists in the Server 
object. 

4. The BEA Tuxedo domain invokes the activate_object operation on the 
object, which causes the record containing state to be read into memory.

Whereas a language object exists only within the boundaries of the execution of the 
application, a CORBA object may exist across processes and machine systems. The 
BEA Tuxedo system provides the mechanism for constructing an object and for 
making that object accessible to the application. 

The BEA Tuxedo CORBA server application programmer is responsible for writing 
the code that initializes an object’s state and the code that handles that object’s state 
after the object is no longer active in the application. If the object has data in durable 
storage, this code includes the operations that read from and write to durable storage. 
For more information about developing server applications, see Creating CORBA 
Server Applications in the BEA Tuxedo online documentation.

Components of a CORBA Object

CORBA objects typically have the following components, shown in the figure that 
follows:

n An ID, also known as an object ID, or OID

n An interface, which specifies the CORBA object’s data and operations



2 CORBA Objects

2-4 CORBA Technical Articles

The sections that follow describe each of these object components in detail.

The Object ID

The object ID (OID) associates an object with its state, such as a database record, and 
identifies the instance of the object. When the factory creates an object reference, the 
factory assigns an OID that may be based on parameters that are passed to the factory 
in the request for the object reference.

Note: The server application programmer must create the factories used in the BEA 
Tuxedo client/server application. The programmer is responsible for writing 
the code that assigns OIDs. Factories, and examples of creating them, are 
discussed in Creating CORBA Server Applications.

The BEA Tuxedo system can determine how to instantiate the object by using the 
following information:

n The OID

n Addressing data in the object reference

n The group ID in the object reference

Object ID

Interface

Data:
  int teller_id;
  int transactions;
  float drawer_balance;
Operations:
  get_balance();
  credit();
  debit();



Components of a CORBA Object

CORBA Technical Articles 2-5

The Object Interface

The object’s interface, described in the application’s OMG IDL file, identifies the set 
of data and operations that can be performed on an object. For example, the interface 
for a university teller object would identify:

n The data types associated with the object, such as a teller ID, cash in the teller’s 
drawer; and the data managed by the object, such as an account.

n The operations that can be performed on that object, such as obtaining an 
account’s current balance, debiting an account, or crediting an account.

One distinguishing characteristic of a CORBA object is the run-time separation of the 
interface definition from its data and operations. In a CORBA system, a CORBA 
object’s interface definition may exist in a component called the Interface Repository. 
The data and operations are specified by the interface definition, but the data and 
operations exist in the server application process when the object is activated.

The Object’s Data

The object’s data includes all of the information that is specific to an object class or an 
object instance. For example, within the context of a university application, a typical 
object might be a teller. The data of the teller could be:

n An ID

n The amount of cash in the teller’s drawer

n The number of transactions the teller has processed during a given interval, such 
as a day or month

You can encapsulate the object’s data in an efficient way, such as by combining the 
object’s data in a structure to which you can get access by means of an attribute. 
Attributes are a conventional way to differentiate the object’s data from its operations.

The Object’s Operations

The object’s operations are the set of routines that can perform work using the object’s 
data. For example, some of the operations that perform functions using teller object 
might include:

n get_balance()



2 CORBA Objects

2-6 CORBA Technical Articles

n credit()

n debit()

In a CORBA system, the body of code you write for an object’s operations is 
sometimes called the object implementation, which is explained in the next section.

Where an Object Gets Its Operations

As explained in the preceding section, the data that makes up a CORBA object may 
exist in a record in a database. Alternatively, the data could be established for a 
CORBA object only when the object is active in memory. This section explains how 
to write operations for a CORBA object and how to make the operations a part of the 
object.

The operations you write for a given CORBA object are also known as the object’s 
implementation. You can think of the implementation as the code that provides the 
behavior of the object. When you create an BEA Tuxedo CORBA client/server 
application, one of the steps you take is to compile the application’s OMG IDL file. 
The OMG IDL file contains statements that describe the application’s interfaces and 
the operations that can be performed on those interfaces. 

If you are implementing your server application in C++, one of the several files 
optionally produced by the IDL compiler is a template for the implementation file. The 
template for the implementation file contains default constructors and method 
signatures for your application’s objects. The implementation file is where you write 
the code that implements an object; that is, this file contains the business logic of the 
operations for a given interface.

The BEA Tuxedo system implements an interface as a CORBA object. The IDL 
compiler also produces other files, which get built into the BEA Tuxedo CORBA 
client and server application, that make sure that the implementation you write for a 
given object gets properly connected to the correct object data during run time.

This is where the notion of a servant comes in. A servant is an instance of the object 
class; that is, a servant is an instance of the method code you wrote for each operation 
in the implementation file. When the BEA Tuxedo CORBA client and server 



Where an Object Gets Its Operations

CORBA Technical Articles 2-7

applications are running, and a client request arrives in the server application for an 
object that is not active -- that is, the object is not in memory -- the following events 
occur:

1. If no servant is currently available for the needed object, the BEA Tuxedo system 
invokes the Server::create_servant method on the Server object. 

The Server::create_servant method is entirely user-written. The code that 
you write for the Server::create_servant method instantiates the servant 
needed for the request. Your code can use the interface name, which is passed as 
a parameter to the Server::create_servant method, to determine the type of 
servant that the BEA Tuxedo domain creates.

The servant that the BEA Tuxedo domain creates is a specific servant object 
instance (it is not a CORBA object), and this servant contains an executable 
version of the operations you wrote earlier that implement the CORBA object 
needed for the request.

2. The BEA Tuxedo domain passes control to the servant, and optionally invokes 
the servant’s activate_object method, if you have implemented it. Invoking 
the activate_object method gives life to the CORBA object, as follows:

a. You write the code for the activate_object method. The parameter to the 
activate_object method is the string value of the object ID for the object to 
be activated. You may use the object ID as a key to how to initialize the object.

b. You initialize the CORBA object’s data, which may involve reading state data 
from durable storage, such as from a record in a database.

c. The servant’s operations become bound to the data, and the combination of 
those operations and the data establish the activated CORBA object.

After steps a, b, and c are completed, the CORBA object is said to be activated.

Implementing the activate_object method on an object is optional. For more 
information about when you want to implement this operation on an object, see 
Creating CORBA Server Applications in the BEA Tuxedo online documentation. 

Note: A servant is not a CORBA object. In fact, the servant is represented as a 
language object. The server performs operations on an object via its servant. 

For more information about creating object implementations, see Creating CORBA 
Server Applications in the BEA Tuxedo online documentation.



2 CORBA Objects

2-8 CORBA Technical Articles

How Object Invocation Works

Since CORBA objects are meant to function in a distributed environment, OMG has 
defined an architecture for how object invocation works. A CORBA object can be 
invoked in one of two ways:

n By means of generated client stubs and skeletons -- sometimes referred to as 
stub-style invocation.

n By means of the dynamic invocation interface -- referred to as dynamic 
invocation.

Creating CORBA Client Applications describes how dynamic invocation works. This 
section describes stub-style invocation, which is simpler to use than dynamic 
invocation.

When you compile your application’s OMG IDL file, one file that the compiler 
generates is a source file called the client stub. The client stub maps OMG IDL 
operation definitions for an object type to the operations in the CORBA server 
application that the BEA Tuxedo system invokes to satisfy a request. The client stub 
contains code generated during the client application build process that is used in 
sending the request to the server application. Programmers should never modify the 
client stub code.

Another file produced by the IDL compiler is the skeleton, which is also a source file. 
The skeleton contains code used for operation invocations on each interface specified 
in the OMG IDL file. The skeleton is a map that points to the appropriate code in the 
CORBA object implementation that can satisfy the client request. The skeleton is 
connected to both the object implementation and the BEA Tuxedo Object Request 
Broker.



How Object Invocation Works

CORBA Technical Articles 2-9

The following figure shows the client application, the client stub, the skeleton, and the 
CORBA object implementation:

When a client application sends a request, the request is implemented as an operation 
on the client stub. When the client stub receives the request, the client stub sends the 
request to the Object Request Broker (ORB), which then sends the request through the 
BEA Tuxedo system to the skeleton. The ORB interoperates with the TP Framework 
and the Portable Object Adapter (POA) to locate the correct skeleton and object 
implementation.

For more information about generating client stubs and skeletons, see Creating 
CORBA Client Applications and BEA Tuxedo ATMI C Function Reference in the BEA 
Tuxedo online documentation.

Client
Application

Client
Stub

CORBA Object
Implementation

Skeleton

BEA Tuxedo ORB



2 CORBA Objects

2-10 CORBA Technical Articles



CORBA Technical Articles 3-1

CHAPTER

3 Process-Entity Design 
Pattern

This topic includes the following sections:

n About the Process-Entity Design Pattern

n Increasing Scalability and Resource Utilization

n Applicability

n Participants

n Other Considerations

n Related Concepts



3 Process-Entity Design Pattern

3-2 CORBA Technical Articles

About the Process-Entity Design Pattern

The Process-Entity design pattern encapsulates a design solution that incorporates a 
single process object on the server machine that handles all client application 
interactions with database records, known as entities. This design pattern is 
appropriate in situations where a client CORBA or EJB application normally performs 
multiple interactions with a remote database.

By designing a single CORBA object or EJB on the server machine that represents all 
the fine-grained data in the database, you can build a BEA Tuxedo CORBA 
client/server application that provides the following performance benefits:

n Instead of having multiple client interactions with a database, you can have a 
single process object on the server machine that handles all client requests for 
database interactions, thus simplifying network traffic.

n The process object can selectively pass data fields to the client, transferring only 
the necessary data rather than full database records, thus reducing the amount of 
data sent over the network and improving performance.

n The process object encapsulates access to the database. Clients make invocations 
on the object, and the object in turn accesses the database.

Increasing Scalability and Resource 
Utilization

This topic includes the following sections:

n Limitations of the Two-tier System

n Advantages of the Process-Entity Design Pattern



Increasing Scalability and Resource Utilization

CORBA Technical Articles 3-3

Limitations of the Two-tier System

In a conventional two-tier system that presents the database layer as a set of shared 
data, a pure object-oriented approach would be to represent the database records as 
shared CORBA objects (in CORBA applications) or entity beans (in EJB 
applications). However, this approach has the following limitations:

n It does not scale well. As the number of clients increases dramatically, the server 
machine might be required to manage thousands (or even millions) of database 
objects, each requiring its own transaction context.

n It does not use network resources efficiently. When database objects are 
instantiated in the server machine’s memory, the entire database object is read 
into or written from memory regardless of how much data the client application 
really needs from the object.

n For EJB applications, the conventional way to access a database is via entity 
beans, where an entity bean represents a row in a database table. However, to 
access an entity bean, a client application must make two calls: the first call 
obtains the object reference to the entity bean, and the second call invokes a 
method on that entity bean. Obtaining the object reference for the client is an 
expensive operation, particularly in high-volume enterprise applications.

Advantages of the Process-Entity Design Pattern

However, if you design a class for the process object on the server machine that does 
database interactions on behalf of clients, you can overcome these limitations by:

n Reducing the number of CORBA objects or EJBs that need to be managed on 
the server machine.

n Reducing message traffic.

n For EJB applications, eliminating the need for client applications to obtain an 
object reference to the entity bean, and avoiding the use of fine-grain 
(single-row) entity beans.



3 Process-Entity Design Pattern

3-4 CORBA Technical Articles

Applicability

This topic includes the following sections:

n Request Flow in CORBA Applications

n Request Flow in EJB Applications

The Process-Entity design pattern is almost universally applicable in enterprise-class, 
mission-critical applications. It is appropriate for situations in which a client 
application needs to interact with database records stored on a server machine.

Request Flow in CORBA Applications

Figure 3-1 shows the basic design of the Process-Entity design pattern in a CORBA 
application.

Figure 3-1   CORBA Process-Entity Design Pattern

This process flows in the following sequence:

1. The client application issues a request to the CORBA process object to access 
database entities.

2. The CORBA object submits a request to the database.

3. The database returns a response to the CORBA object.

4. The CORBA object returns a response to the client that contains only the subset 
of database information that the client requires.

Client
Application

Server Application

CORBA Object Database1 2
34



Participants

CORBA Technical Articles 3-5

Request Flow in EJB Applications

Figure 3-2 shows the basic design of the Process-Entity design pattern in an EJB 
application.

Figure 3-2   EJB Process-Entity Design Pattern

This process flows in the following sequence:

1. The client application issues a request to the entity bean, using RMI on IIOP, to 
access database entities.

2. The entity bean submits a request to the database.

3. The database returns a response to the entity bean.

4. The entity bean returns a response to the client that contains only the subset of 
database information that the client requires.

Participants

The client application obtains a reference to the process object from a factory (for 
CORBA applications) or the home interface (for EJB applications). The process object 
implements all the interactions with the database. Database records (entities) are 
retrieved when needed to handle client invocations on the process object. Operations 
on the process object return specific data fields to the client application, which then 
performs all the required processing on that data.

Client
Application

Server Application

Entity Bean Database1 2
34



3 Process-Entity Design Pattern

3-6 CORBA Technical Articles

Other Considerations

You should design the process object to pass the minimum amount of information 
actually needed by a particular client request. Implement the operations on a process 
object so that the operations do as much “dense” processing as possible. Design your 
clients applications so that they do not invoke more than one process operation to get 
the data they need to accomplish a task. 

If more than one operation needs to be invoked, design the process object so that the 
additional invocations are done by the process object on the database, and not by the 
client application on the process object. This reduces the number of invocations that 
the client application sends over the network. When the client application needs to 
make serial invocations on a process object, make the process object stateful. For more 
information about making objects stateful, see Creating CORBA Server Applications 
in the BEA Tuxedo online documentation. 

For CORBA applications, avoid the use of attributes in your OMG IDL. Attributes are 
expensive to retrieve over the network. Instead, implement an operation on the process 
object that returns a data structure containing all the values your client application is 
likely to need for an operation.

Related Concepts

n SmallTalk MVC (Model-View-Controller) design pattern. 

n Flyweight design pattern, Object-Oriented Design Patterns, by Gamma et al.



CORBA Technical Articles 4-1

CHAPTER

4 Client Data Caching 
Design Pattern

This chapter describes the CORBA Client Data Caching design pattern. The purpose 
of this design pattern is to make persistent state information from the server available 
locally to the client for data-intensive processing. This way, the CORBA client 
application does not need to make repeated invocations to the server application to 
retrieve data.

Motivation 

This design pattern addresses the scalability and performance of distributed 
client/server applications. The overhead associated with remote invocations to retrieve 
attributes of a CORBA object may be quite high, depending on system load and other 
factors. Also, exposing persistent data records as CORBA objects tends to create 
applications that do not scale well because of the potentially large number of 
simultaneously active objects that must be managed by the system. Client application 
processing that is either data-intensive or that requires user input (for example, editing 
fields) can slow down both the client application and the system if multiple remote 
invocations must be made to retrieve data.



4 Client Data Caching Design Pattern

4-2 CORBA Technical Articles

Applicability

This design pattern is appropriate in situations where the CORBA process object needs 
to pass a large amount of data to the client application for its use. The local language 
object on the client application becomes a container for the data, and its constructor is 
used to populate the local object state.

You implement this design pattern in the client application, which creates a local 
language object, referred to in this chapter as the DataObject. The server application 
implements a CORBA process object that interacts with entities in persistent storage. 
This CORBA object is referred to in this chapter as the DataManager object.

The OMG IDL for the DataManager CORBA object defines a data structure that is 
used for transferring data between the client and server applications. (This design 
pattern assumes "optimistic locking," meaning that the data managed by the server 
application is not locked for update, and that it is hoped that no other server processes 
modify the data while the client application uses its local copy.)

When the client application instantiates the local DataObject, that object’s 
constructor invokes an operation on the DataManager CORBA object, which passes 
a data structure back to the DataObject. The DataObject populates its class 
variables with the passed data.

If the client application needs to pass modified state back to the server machine, the 
client application invokes the DataObject::writeData() method, which, in turn, 
invokes the writeRecord() operation on the DataManager CORBA object. In this 
invocation, the data structure is passed as a parameter to the writeRecord() 
operation. The DataManager CORBA object makes the appropriate updates to durable 
storage.

The following figure illustrates how the CORBA Client Data Caching design pattern 
works.



Participants

CORBA Technical Articles 4-3

In the preceding figure:

1. The DataObject constructor invokes the readRecord() operation on the 
DataManager CORBA object, and uses the returned data structure to initialize its 
local state.

2. The client application may modify the local state of the DataObject instance.

3. To pass modified state back to the DataManager CORBA object, the client 
application invokes the DataObject::writeData() operation, passing a data 
structure containing the modified data.

Participants

The DataObject methods read and write data by invoking operations on the 
DataManager CORBA object. 

Client Application

DataObject

DataObject
writeData

DataManager

readRecord
writeRecord

Server Application

DataManager

readRecord
writeRecord

Data Struct

Durable
Storage

Local language object

CORBA object



4 Client Data Caching Design Pattern

4-4 CORBA Technical Articles

Other Considerations

The data structure passed to the client application should be designed to provide the 
minimal set of data required for an operation. If a large amount of data is involved, it 
may be more efficient to provide multiple data structures with a subset of fields 
required for each operation. Operations on the CORBA process object should be 
designed to involve only the subset of data needed for each operation; this helps reduce 
network traffic.


	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 The CORBA Programming Model
	Pre-CORBA Approach to Client/Server Development
	CORBA Approach to Client/Server Development

	2 CORBA Objects
	Definition of a CORBA Object
	How a CORBA Object Comes into Being
	Components of a CORBA Object
	The Object ID
	The Object Interface
	The Object’s Data
	The Object’s Operations


	Where an Object Gets Its Operations
	How Object Invocation Works

	3 Process-Entity Design Pattern
	About the Process-Entity Design Pattern
	Increasing Scalability and Resource Utilization
	Limitations of the Two-tier System
	Advantages of the Process-Entity Design Pattern

	Applicability
	Request Flow in CORBA Applications
	Request Flow in EJB Applications

	Participants
	Other Considerations
	Related Concepts

	4 Client Data Caching Design Pattern
	Motivation
	Applicability
	Participants
	Other Considerations


