0?27,

l": hea

BEA Tuxedo

Using Security
In CORBA Applications

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA Weblogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using Security in CORBA Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KINOWccoiuiiiiiieseietie sttt sttt st X
E-00CSWED SItO....ciiiieecteeee e et r e sr et saeerae e enaens Xi
How to Print the DOCUMENL..........coooe et e e e Xi
Documentation CONVENLIONScc.cceeuiieeieie e e st ee e sr e sreereeereeraes e ere e ens Xii

Part I. Security Concepts

1. Overview of the CORBA Security Features

The CORBA SeCUritY FEALUIEScoeiieie et ee e e 1-2
The CORBA Security ENVIrONMENt.........ccoiiieeiiieie e 1-4
Single Sign-on in the CORBA Security Environmentcccoceeeerevencienens 1-7
BEA TUXed0 SECUNLY SPIS ...t st 1-9

2. Introduction to the SSL Technology

THE SSL ProtOCOIc.eeuiiieeeeee ettt ettt ee e e ene e e 2-2
Digital CartifiCalS......uiuiiiiirieie ettt e et e e e ere s 2-5
Ceartificate AULNOIITY ...ttt e 2-6
Certificate REPOSITONESeeueeeieeie ettt e enes 2-7
A Public Key INfrastrUCLUre............cocoiueiiieviietie ettt 2-7
PKCS-5 and PKCS-8 COMPIIaNCe........cccoeueiieieieeeee et 2-9
Supported Public Key AlgOrithms...... ..o e 2-9
Supported Symmetric Key Algorithms..........ccooooiioiiinii e 2-10
Supported Message Digest Algorithms.cocoveriieeniniece e 2-11
Supported CIPher SUITES. ..ottt e 2-11
Standards for Digital CertifiCates........coocuviiiveniriece e e 2-12

Using Security in CORBA Applications iii

iv

3. Fundamentals of CORBA Security

Link-Level ENCIYPLION ..ottt s seea 31
HOW LLE WOIKS ...ttt 3-2
Encryption Key Size Negotiation...........ccceiieeieienenie s 3-3
WSL/WSH Connection Timeout During Initialization............cc.cccceeeneene. 3-5
Devel OpMENt PIOCESScoui et enenas 3-5

Password AUthENti CALIONooeiiee e e 3-6
How Password Authentication WOrKS..........cccooererenieiie e 3-7
Development Process for Password Authentication...........cccovceeeeeeeneeee 3-8

THE SSL ProtOCOLccueeeeee ettt st s s en 3-10
How the SSL Protocol WOIKSccoiiieie et 3-10
Requirements for Using the SSL Protocolcceeeeeiereneneseeneeienens 311
Development Process for the SSL Protocolcocoeeeeeievencievicneeienen, 3-12

Certificate AUhENLICALION.ccueieie e e s 3-14
How Certificate Authentication WOrKS...........ccceeinneienineniee e 3-15
Development Process for Certificate Authentication...........c.ccoceeeveneee. 3-17

Using an Authentication PlUG-iNccvoiiiiceiccices e 321

AULNOTIZBLION ...ttt e e 3-22

y U o 11 11 o TSRS 3-22

SINGIE SIGN-0N ..ottt sr e sreea e sreeaeeereennennas 3-24

[S U o T LTSRS 3-25

Commonly Asked Questions About the CORBA Security Features.............. 3-27
Do | Have to Change the Security in an Existing CORBA Application? 3-27
Can | Use the SSL Protocol in an Existing CORBA Application?.......... 3-27
When Should | Use Certificate Authentication?..........ccocveieieienecnenn. 3-29

Part Il. Security Adminstration

4. Managing Public Key Security

Requirements for Using Public Key Security ... 4-1
Who Needs Digital Certificates and Private/Private Key Pairs?..........cccceeee.. 4-2
Requesting aDigital CertifiCatecoouniieineie e e 4-2
Publishing Certificatesin the LDAP Directory Service.........cooeeevereeineeenennenn 4-3
Editing the LDAP Search Filter File ... 4-5
Storing the Private Keysin a Common LOCationcceceeieeecceeieceeesieenns 4-6

Using Security in CORBA Applications

Defining the Trusted Certificate AUthOFTIES.........coceveeiieirrcce e 4-7
Creating aPeer RUIES FIlE........oooiieiiececece et 4-9

Configuring Link-Level Encryption

Understanding min and max ValUES..........cccueueirieeieeiriene e 5-1
Verifying the Installed Version of LLE.........ccouiiiiiiininie e 5-2
Configuring LLE on CORBA Application Linksccooeoeiriniiiriinenceee, 5-2

Configuring the SSL Protocol

Setting Parameters for the SSL Protocolccoveveieieneeiecinin e e 6-2
Defining a Port for SSL Network Connections...........ccccccveveeeciececvese e 6-2
Enabling HOSt MEEChINGc.eeueiieeeiieeiee et s s 6-3
Setting the Encryption Strength............ooooiiin e 6-4
Setting the Interval for Session Renegotiation...........ccccoceveiveeviececceecee e 6-6
Defining Security Parameters for the 11OP Listener/Handlercccooveeeniee 6-7
Example of Setting Parameters on the ISL System Process.........c.ccocceeeveneeneene 6-9
Example of Setting Command-line Options on the CORBA C++ ORB 6-9

Configuring Authentication

Configuring the AuthentiCation SEIVErcocoooeiireieiereee e 7-2
Defining AUthONZEA USEYS.......cooiiiieieee ettt s v e 7-3
Defining & SECUNTY LEVEL ..ottt s s 7-6
Configuring Application Password SECUFLYcocoerrierienininie e 7-8
Configuring Password AUthentiCationccccceeveeieeveeiieesecsee e e 7-8
Sample UBBCONFIG File for Password Authentication.............cccccovenenenee. 7-9
Configuring Certificate Authentication............ccccceeeeeie e, 7-11
Sample UBBCONFIG File for Certificate Authenticationc.cccovenenene 7-13
Configuring ACCESS CONLIOLuooiiieieieceiese sttt 7-15
Configuring Optional ACL SECUMLYccoeieieireiie e 7-16
Configuring Mandatory ACL SECUNLYccocveveeveeriece e e e 7-17
Setting ACL Policy Between CORBA Applications.........ccoceceeeererenens 7-18
Configuring Security to Interoperate with Older WebL ogic Enterprise Client
APPIICAITIONS ...ttt e e e 7-20

Configuring Single Sign-on
Single Sign-on with Password Authentication............ccocoveeeeirnieeie e 8-1

Using Security in CORBA Applications %

Single Sign-on with Password Authentication and the SSL Protocol 8-2
Single Sign-on with the SSL Protocol and Certificate Authentication 8-4

9. Configuring Security Plug-ins
Registering the Security PlUg-iNS (SPIS)oviieiiiriee e 9-1

Part Ill. Security Programming

10. Writing a CORBA Application That Implements Security

Using the Bootstrapping Mechani SmMccooeoeirinine e 10-1
Using the Host and Port Address FOrmat............cceeeeeeeeeeneneneseenecienens 10-4
Using the corbaloc URL Address FOrmatc.ooeeeeeeeeeereenenieseeneeienens 10-4
Using the corbalocs URL Address FOrmat.............ooeeeeeeeerencneneeneeiennns 10-5

Using Password AUthentiCation..........cc.ccecceeeiienieesee et e 10-6
The Security Sample AppliCation..........c.oooee e 10-6
Writing the Client APPliCatioNcoo oo e 10-7

Using Certificate AUthentiCationcccccveeiecieie e 10-15
The Secure Simpapp Sample Application............ccoeeeerieeesenese e 10-16
Writing the CORBA Client AppliCationcoceoeirneenieineniene s 10-17

Using the Interoperable Naming Service Mechanism..........cccccecveeneienenns 10-20

Using the Invocations Options Required() Method...........ccccuveviencncnennes 10-21

11. Building and Running the CORBA Sample Applications

Building and Running the Security Sample Application...........c.cccoevereienenne. 11-2
Building and Running the Secure Simpapp Sample Application.................... 11-2
Step 1: Copy the Files for the Secure Simpapp Sample Application into a
WOIK DIFECLOIY ...ttt ettt seee e e ens 11-3
Step 2: Change the Protection Attribute on the Files for the Secure
Simpapp Sample APPliCaLION.cceveriee e e 11-4
Step 3: Verify the Settings of the Environment Variables....................... 11-5
Step 4: Execute the runme Commandccoeverereneneeniene e 11-7
Using the Secure Simpapp Sample Application..........c.ccccvoieeniicnnnns 11-11
12. Troubleshooting
Using ULOGS and ORB TIaCiNQgceeeeereeueeuerreeeesereesieseseeseesesseseeseessessesenes 12-1
CORBA::ORB_init Problems..........ccccooiiiiie i 12-3

Vi Using Security in CORBA Applications

Password Authentication Problems...........ccooiiie i
Certificate Authentication Problemscocooeiiniiiin e
Tobj::Bootstrap::

resolve initial_references Problems........ccccocveeevecie e
[1OP Listener/Handler Startup Problems............ooooeeiiniieeieecnceee e
Configuration Problems..........c...ooe e e
Problems with Using Callbacks Objects with the SSL Protocal
Troubleshooting Tips for Digital Certificates.........coovieiirieie i

Part IV. Security Reference

13. CORBA Security APIs

The CORBA SeCurity MOGEcccooeieieie e
Authentication Of PrinCipals........ccuueioeiiininie e
Controlling AcCesS t0 ODJECES........eieiiuere e e
AdMINiStrative CONIOL.........cooeviierie et

Functional Components of the CORBA Security Environment......................

The Principal Authenticator ObjECL............cooeiireiieiereee e

Using the Principal Authenticator Object with Certificate
AUNENEICATON ...t e

BEA Tuxedo Extensionsto the Principal Authenticator Object...............
The CredentialS ObJECL.........cooiece e e e
The SecurityCurrent ODJECL..........cccuci e

14. Security Modules
CORBA MOGUIE.......ccuiietiieiiesiie sttt r e e
TIMEBAESE MOUUIE ... e e
SECUNLY MOAUIE ...t e s
Security Level TMOAUIE......co.ooiieeee e e
Security Level 2 MOAUI.........ooieieee e e
TOD) MOUIE. ...ttt et ereeaee

15. C++ Security Reference

SecurityLevel1::Current::get_attributes...........cooeoeeiiicii e
Securityl evel2::Principal Authenticator::authenticate......................
SecurityLevel2::Current::set_credentials........ccccoveveeeeeiiiniece e

Using Security in CORBA Applications

Vii

SecurityL evel2::Current::get_credentialS...........ooceoeeevencievencienn. 15-7

SecurityL evel 2::Current::principal_authenticator............ccoccceeeenne. 15-8
SecurityL evel 2::CredentialS ... 15-9
SecurityL evel2::Credentials::get_attributes.........ccocooiviieiiiien. 15-11
Securityl evel 2::Credentials::invocation_options_supported 15-12
SecurityL evel2::Credentials::invocation_options _required............ 15-14
SecurityL evel2::CredentialS::is Validccooeieieveneieiececens 15-16
SecurityL evel 2::Principal AUthentiCatorccoevvieeircriee e 15-17
SecurityL evel 2::Principal Authenticator::continue_authentication. 15-19
Tobj::Principal Authenticator::get_auth_type...........cccooevereienenns 15-20
Tobj::Principal Authenticator::10gon ... rereeieie s 15-21
Tobj::Principal Authenticator::10goff ... 15-23
Tobj::Principal Authenticator::build_auth_data..............ccocerereenne. 15-24

16. Java Security Reference

17. Automation Security Reference

MethOd DESCITPLIONS.......cueeee ettt e ee e 17-2
DISecurityLevel2 CUMTENt ..ot e 17-2
DISecurityLevel2 Current.get_attributes..........coooo v, 17-3
DISecurityLevel2 Current.set_credentialS.........ccooveveieiievenccnenn. 17-4
DISecurityLevel2 Current.get_credentialS..........ccooeeveeeienenccnenn. 17-5

DI SecurityLevel2_Current.principal_authenticatorccoeuee..e. 17-6
DITobj_Principal AUtheNtiCatorcoviiierineeee et 17-7
DITobj_Principal Authenticator.authenticate.............ccoccooeeeiineeuinnen. 17-8
DITobj_Principal Authenticator.build_auth_data............c.cccceeeeneee 17-10
DITobj_Principal Authenticator.continue_authentication............... 17-12
DITobj_Principal Authenticator.get_auth_type..........cccccveerenenns 17-13
DITobj_Principal Authenticator.logon.............cooeeoeiereneieseneeenns 17-15
DITobj_Principal Authenticator.logoff ... 17-17
DISecurityLevel2 CredentialS.........coceeeeiececieiiecreeeeeseeese et 17-17
DISecurityLevel2 _Credentials.get_attributes........cccveevveiieiennnns 17-18
DlISecurityLevel2_Credentials.is validccccceeoveieiveiinseecieennenns 17-19
Programming EXAMPIE..........cooe it s e e 17-20

Index

Viii Using Security in CORBA Applications

About This Document

This document provides an introduction to concepts associated with the BEA
Tuxedo® security features, a description of how to secure your CORBA applications
using the security features, and a guide to the use of the application programming
interfaces (APIs) in the CORBA Security Service.

Note: Release 8.0 of the BEA Tuxedo product includes environmentsthat allow you
to build both Application-to-Transaction Monitor Interfaces (ATMI) and
CORBA applications. Thistopic explains how to implement security in a
CORBA application. For information about implementing security in an
ATMI application, see Using Security in ATMI Applications.

This document includes the following topics:

m Chapter 1, “Overview of the CORBA Security Features,” presents an overview
of the security features for CORBA in the BEA Tuxedo product.

m Chapter 2, “Introduction to the SSL Technology,” introduces the concepts
associated with a Public Key Infrastructure (PK1).

m Chapter 3, “Fundamentals of CORBA Security,” presents an indepth discussion
of the featuresin the CORBA Security Service and describes the development
and administration processes needed to implement the features.

m Chapter 4, “Managing Public Key Security,” describes how to set up apublic
key infrastructure to interact with CORBA applications that use the Secure
Sockets Layer (SSL) protocol and certificate authentication.

m Chapter 5, “Configuring Link-Level Encryption,” describes setting parametersin
the UBBCONFI Gfilefor Link-Level Encryption (LLE).

m Chapter 6, “Configuring the SSL Protocol,” describes configuring the [1OP
Listener/Handler or the CORBA C++ ORB so that it can be used with the
Secure Sockets Layer (SSL) protocol and certificate authentication.

Using Security in CORBA Applications iX

m Chapter 7, “Configuring Authentication,” explains the configuration tasks
reguired when using authentication in a CORBA application.

m Chapter 8, “Configuring Single Sign-on,” explains the configuration tasks
required when using trusted connection poolsin a CORBA application.

m Chapter 9, “Configuring Security Plug-ins,” explains how to register Security
Plug-Insin the CORBA environment.

m Chapter 10, “Writing a CORBA Application that Implements Security,” explains
how the bootstrapping options work and describes implementing password
authentication and certificate authentication in CORBA applications.

m Chapter 11, “Building and Running the CORBA Sample Applications,”
describes how to build and run the Security and Secure Simpapp sample
applications.

m Chapter 12, “Troubleshooting,” provides troubleshooting tips that can be used
when solving problems that occur with the security portion of a CORBA
application.

m Chapter 13, “CORBA Security APIs” introduces the security model in CORBA
applications and the functional components of the security model.

m Chapter 14, “ Security Modules,” includes the Object Management Group
(OMG@G) Interface Definition Language (IDL) for the modules used by the
CORBA Security service.

m Chapter 15, “ C++ Security Reference,” includes the C++ method descriptions.
m Chapter 16, “ Java Security Reference,” includes the Java method descriptions.

m Chapter 17, “ Automation Security Reference,” includes the Automation method
descriptions.

What You Need to Know

Thisdocument isintended for programmerswho want to incorporate security into their
CORBA applicationsand system administratorswho are responsiblefor setting up and
maintaining the security infrastructure in an enterprise.

X Using Security in CORBA Applications

e-docs Web Site

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.beasys.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavail able on the BEA Tuxedo documentation Home
page on the e-docs Web site (and a so on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ and Java programming, see the CORBA Bibliography in
the BEA Tuxedo online documentation.

Using Security in CORBA Applications Xi

Contact Us!

Y our feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@beasys.com if you have questions or comments. Y our comments will
bereviewed directly by the BEA professional swho create and updatethe BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.beasys.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your hame, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using Security in CORBA Applications

Documentation Conventions

Convention Item
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chmod u+w *
\'t ux\ dat a\ ap
.doc
tux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

bui I dobjclient [-vV]
[-1 file-list]...

[-0 name] [-f file-list]...

Using Security in CORBA Applications Xiii

Xiv

Convention

Item

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Using Security in CORBA Applications

Part |

Security
Concepts

Chapter 1. Overview of the CORBA Security Features
Chapter 2. Introduction to the SSL Technology
Chapter 3. Fundamentals of CORBA Security

CHAPTER

1 overview of the

CORBA Security
Features

Thistopic includes the following sections:

m The CORBA Security Features

m The CORBA Security Environment

m Single Sign-on in the CORBA Security Environment
m BEA Tuxedo Security SPIs

Note: Release 8.0 of the BEA Tuxedo product includes environmentsthat allow you
to build both Application-to-Transaction Monitor Interfaces (ATMI) and
CORBA applications. Thistopic explains how to implement security in a
CORBA application. For information about implementing security in an
ATMI application, see Using Security in ATMI Applications.

Using Security in CORBA Applications 1-1

1 overview of the CORBA Security Features

The CORBA Security Features

Security refers to techniques for ensuring that data stored in a computer or passed
between computersis not compromised. Most security measures involve proof
material and data encryption, where the proof material is asecret word or phrase that
gives auser access to a particular program or system, and data encryption is the
tranglation of datainto aform that cannot be interpreted.

Distributed applications such as those used for el ectronic commerce (e-commerce)
offer many access points for malicious people to intercept data, disrupt operations, or
generate fraudulent input; the more distributed a business becomes, the more
vulnerableit isto attack. Thus, the distributed computing software, or middieware,
upon which such applications are built must provide security.

The CORBA security features of the BEA Tuxedo product lets you establish secure
connections between client and server applications. It has the following features:

m Authentication of CORBA C++ and Java client applications to the BEA Tuxedo
domain. Authentication can be accomplished using a standard
username/password combination or the identity inside of the X.509 digital
certificate provided to the server applications.

m Dataintegrity and confidentiality through Link-Level Encryption (LLE) or the
Secure Sockets Layer (SSL) protocol. CORBA C++ and Java client applications
can establish SSL sessions with a BEA Tuxedo domain. BEA Tuxedo client
applications can use L LE to protect network traffic between bridges and
domains.

m A single sign-on environment between the BEA WebL ogic Server™ and
CORBA environments using WebL ogic Enterprise Connectivity. Thisfeature
allows the propagation of security information about the requesting WebL ogic
Server User to the BEA Tuxedo domain over network connections that are part
of atrusted connection pool.

m Security Service Provider Interfaces (SPIs) that can be used to integrate security
mechanisms that provide authentication, authorization, auditing, and public key
security features. Security vendors can use the SPIs to integrate third-party
security offerings into the CORBA environment.

1-2 Using Security in CORBA Applications

The CORBA Security Features

m A Public Key Infrastructure (PK1) that uses the SSL protocol and X.509 digital
certificates to provide data privacy for messages sent over network links. In
addition, a set of PKI SPIs are provided.

To access the full security features of the CORBA environment, you need to install a
license that enable the use of the SSL protocol, LLE, and PKI. For information about
installing the license for the security features, see the Installing the BEA Tuxedo

System.

Note:

Using Security in CORBA Applications describes the security features of the
CORBA environment in the BEA Tuxedo product. For acomplete description
of using the security featuresin the ATMI environment in the BEA Tuxedo
product, see Using Security in ATMI Applications.

Table1-1 summarizesthefeaturesin the CORBA security featuresin the BEA Tuxedo
product.

Table 1-1 CORBA Security Features

Security Features

Description

ServiceProvider
Interface (SPI)

Default Implementation

Authentication

Proves the stated identity of
USers or System processes;
safely remembers and
trangportsidentity information;
and makesidentity information
available when needed.

Implemented as a
single interface

Provides security at three
levels: no authentication,
application password, and
certificate authentication.

Authorization

Controls access to resources
based on identity or other
information.

Implemented as a
single interface

N/A

Auditing

Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented viathe features
of the user log (ULOG).

Link-Level Encryption

Usessymmetric key encryption
to establish data privacy for
messages moving over the
network links that connect the
machinesin a CORBA
application.

N/A

Using Security in CORBA Applications

RC4 symmetric key
encryption.

1-3

1 overview of the CORBA Security Features

Table 1-1 CORBA Security Features (Continued)

Security Features Description ServiceProvider Default Implementation

Interface (SPI)

The Secure Sockets Uses asymmetric encryptionto N/A The SSL version 3.0
Layer (SSL) protocol establish data privacy for protocol.

messages moving over network
links between BEA Tuxedo

domains.

Single Sign-On Propagatesthe security identity N/A N/A
of aWebL ogic Server User
identity to a BEA Tuxedo
domain.

Public key security Usespublickey (or asymmetric Implemented asthe Default public key security
key) encryption to establish following supports the following
data privacy for messages interfaces: algorithms:
moving over the network links g pyplic key = RSA for key exchange.
between remote client initialization

m DESanditsvariantsRC2
m Key and RCA4 for bulk
management encryption.

applications and the [|OP
Listener/Handler. Complies

with SSL version 3.0 alowing
mutual authenticationbasedon ® Certificate m MD5and SHA for

X.509 digital certificates. lookup message digests.
m Certificate
parsing
m Certificate
vaidation
m Proof material
mapping

The CORBA Security Environment

Direct end-to-end mutual authentication in a distributed enterprise middieware
environment such as the BEA Tuxedo CORBA environment can be prohibitively
expensive, especially when accomplished through security mechanisms optimized for
long duration connections. It is not efficient for principal s to establish direct network

1-4 Using Security in CORBA Applications

The CORBA Security Environment

connections with each server application, nor isit practical to exchange and verify
multiple authentication messages as part of processing each service request. Instead,
CORBA applicationsin a BEA Tuxedo product implements a del egated trust
authentication model as shownin Figure 1-1.

Figure1-1 Delegated Trust Model

Server
Client TP op N
Application - ListeneriHandler | CORBA
Object
Trusted
Server
Computing
Base
BEA Tuxedo Domain

In a delegated trust model, principals (generally users of client applications)
authenticate to atrusted system gateway process. In the case of the CORBA
applications, thetrusted system gateway processisthe I|OP Listener/Handler. As part
of successful authentication, security tokens are assigned to the initiating principal. A
security token is an opaque data structure suitable for transfer between processes.

When arequest from an authenticated principal reachesthe 11OP Listener/Handler, the
[1OP Listener/Handler attaches the principal’s security tokens to the request and
delivers the request to the target server application for authorization and auditing
purposes.

Using Security in CORBA Applications 1-5

1 overview of the CORBA Security Features

1-6

In a delegated trust authentication model, the 11OP Listener/Handler trusts that the
authentication software in the BEA Tuxedo domain will verify the identity of the
principal and generates the appropriate security tokens. Server applications, in turn,
trust that the I1OP Listener/Handler will attach the correct security tokens. Server
applications also trust that any other server applicationsinvolved in the process of a
reguest from a principal will safely deliver the security tokens.

A session is established between the initiating client application and the [IOP
Listener/Handler in the following way:

1. When aclient application wantsto access an object within a BEA Tuxedo domain,
the client application uses either a username and password or a X.509 digital
certificate to authenticate over the connection with the |1OP Listener/Handler.

2. A security association called a security context is established between a principal
and the I1OP Listener/Handler. This security context is used to control access to
objects in the BEA Tuxedo domain.

ThellOP Listener/Handler retrieves the authorization and auditing tokens from
the security context. Together, the authorization and auditing tokens represent
the principa’s identity associated with the security context.

3. Once the authentication process is complete, the principal invokes an object in
the BEA Tuxedo domain. The request is packaged into an |1OP request and
forwarded to the |1OP Listener/Handler. The |1OP Listener/Handler associates the
reguest with the previously established security context.

4. ThellOP Listener/Handler receives the request from the initiating principal.

The protection of messages between the client application and the |10P
Listener/Handler is dependent on the security technology used in the CORBA
application. The default behavior of the BEA Tuxedo product is to encrypt the
authentication information but not to protect the message sent between the client
application and the BEA Tuxedo domain. The message is sent in clear text. The
SSL protocol can be used to protect the message. If the SSL protocol is
configured to protect messages for integrity and confidentiality, the request is
digitally signed and sealed (encrypted) before it is sent to the [1OP
Listener/Handler.

5. ThellOP Listener/Handler forwards the request along with the authorization and
auditing tokens of the initiating principal to the appropriate server application.

Using Security in CORBA Applications

Single Sign-on in the CORBA Security Environment

6. When the request is received by the server application, the BEA Tuxedo system
interrogates the forwarded tokens of the requesting principal to determine if the
request should be processed or denied. The CORBA security features will, based
on the decision of the authorization implementation, deny the processing of any
request on an object for which the requesting principal has no permission to
access.

Single Sign-on in the CORBA Security
Environment

A WebL ogic Server security realm and aBEA Tuxedo domain are considered separate
scopes of security definitions. Each containsit own security database of users and
access control. However, by using WebL ogic Enterprise Connectivity (WLEC), the
identity of aprincipal authenticated in a WebL ogic Server security realm can be
presented and used to form theidentity of an authenticated principal in aBEA Tuxedo
domain over aconnection that is part of atrusted pool of connections.

Note: The single sign-on functionality in the CORBA security environment of the
BEA Tuxedo product is unidirectional. Y ou can only propagate aprincipal’s
identity from the WebL ogic Server security realm to the BEA Tuxedo domain.

Figure 1-2 illustrates how single sign-on works in the CORBA security environment.

Using Security in CORBA Applications 1-7

1 overview of the CORBA Security Features

1-8

Figure 1-2 Single Sign-on in the CORBA Security Environment

WeblLogic Server
Security Realm

Authorization

BEA Tuxedo Domain

Authentication

W

L orP IIOP Authorization

E Trusted ListeneriHandler

c Connection Authentication
Pool

When using single sign-on, the security identity of a WebL ogic Server User is
propagated as part of the service context of allOP request sent to a CORBA object in
aBEA Tuxedo domain over a network connection that is part of atrusted connection
pool. Each network connection in atrusted connection pool has been authenticated
using adefined principal identity. Both password and certificate authentication can be
used to establish atrusted connection pool.

The propagated security identity is used by the I1OP Listener/Handler to impersonate
aprincipal identity in the BEA Tuxedo domain. The impersonated identity is
represented as a pair of tokens: one for authorization and one for auditing. These
tokens are propagated to the target CORBA object in the BEA Tuxedo domain where
they are used for authorization and auditing purposes.

To fecilitate the mapping of principal identities, the [1OP Listener/Handler uses an
authentication plug-in. This plug-in isresponsible for mapping the principal identity
into the authorization and auditing tokens. These tokens are propagated as part of the
reguest being forwarded to the target CORBA object. The target CORBA object can
then use these tokens to determine information about the initiator of the request,
including the identity of the principal.

Using Security in CORBA Applications

BEA Tuxedo Security SPIs

The SSL protocol can be used to protect the confidentiality and integrity of the request
from the WebL ogic Server realm. SSL encryption is provided for 110OP requests to
CORBA objects in the BEA Tuxedo domain. In order to protect the request, both
WebL ogic Connectivity and the CORBA application must be configured to use the
SSL protocol.

For information about implementing single sign-on, see Chapter 8, “ Configuring
Single Sign-on.”

BEA Tuxedo Security SPIs

As shown in Figure 1-3, the authentication, authorization, auditing, and public key
security features available with the BEA Tuxedo product are implemented through a
plug-in interface, which allows security plug-insto be integrated into the CORBA
environment. A security plug-in isacode modul e that implements a particular security
feature.

Using Security in CORBA Applications 1-9

1 overview of the CORBA Security Features

Figure 1-3 Architecturefor the BEA Tuxedo Security Service Provider
Interfaces

Authentication
Plug-In
I

Authorization

. Plug-ns
Client IloP nopr

Application - - ListenerfHandler |
Auditing

Plug-Ins

PKI
Plug-lns

¥

CORBA QObject

Authorization

Authentication

Tuxedo Domain

1-10 Using Security in CORBA Applications

BEA Tuxedo Security SPIs

The BEA Tuxedo product provides interfaces for the types of security plug-ins listed

in Table 1-2.

Table 1-2 The BEA Tuxedo Security Plug-Ins

Plug-In

Description

Authentication

Allows communicating processes to mutually
prove identification.

Authorization

Allows system administrators to control access to
CORBA applications. Specifically, an
administrator can use authorization to allow or
disallow principals to use resources or services
provided by a CORBA application.

Auditing

Provides ameans to collect, store, and distribute
information about operating requests and their
outcomes. Audit-trail records may be used to
determine which principals performed, or
attempted to perform, actions that violated the
configured security policies of a CORBA
application. They may also be used to determine
which operations were attempted, which ones
failed, and which ones successfully completed.

Public key initialization

Allows public key software to open public and
privatekeys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management

Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using thisinterface, but no bulk data encryptionis
performed using public key cryptography. Bulk
dataencryption is performed using symmetric key
cryptography.

Certificate lookup

Allows public key software to retrieve X.509v3
digital certificates for agiven principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

Using Security in CORBA Applications 1-11

1 overview of the CORBA Security Features

Table 1-2 The BEA Tuxedo Security Plug-1ns (Continued)

Plug-In Description

Certificate parsing Allows public key software to associate asimple
principal name with an X.509v3 digitd certificate.
The parser analyzesadigita certificateto generate
aprincipal name to be associated with the digital

certificate.

Certificate validation Allowspublickey softwareto validatean X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof

material s needed to open keys, provide
authorization tokens, and provide auditing tokens.

The specifications for the SPIs are currently only available to third-party security
vendorswho have entered into aspecia agreement with BEA Systems, Inc. Customers
who want to customize a security feature must contact one of these vendors or BEA
Professional Services. For example, a BEA customer who wants a custom
implementation of public key security must contact a third-party vendor who can
provide the appropriate security plug-in or BEA Professional Services.

For more information about security plug-ins, including installation and configuration
procedures, see your BEA account executive.

1-12 Using Security in CORBA Applications

CHAPTER

2 Introduction to the SSL

Technology

Thistopic includes the following sections:
m The SSL Protocol

m Digital Certificates

m Certificate Authority

m Certificate Repositories

m A Public Key Infrastructure

m PKCS-5and PKCS-8 Compliance

m Supported Public Key Algorithms

m Supported Symmetric Key Algorithms
m Supported M essage Digest Algorithms
m Supported Cipher Suites

m Standards for Digital Certificates

Using Security in CORBA Applications

2

Introduction to the SSL Technology

The SSL Protocol

2-2

The Secure Sockets Layer (SSL) protocol alows you to integrate these essential
featuresinto your CORBA application:

Confidentiality

Confidentiality is the ability to keep communications secret from parties other
than the intended recipient. It is achieved by encrypting data with strong
algorithms. The SSL protocol provides a secure mechanism that enables two
communicating parties to negotiate the strongest algorithm they both support and
to agree on the keys with which to encrypt the data.

Integrity

Integrity is a guarantee that the data being transferred has not been modified in
transit. The same handshake mechanism which allows the two parties to agree
on algorithms and keys also allows the two ends of an SSL connection to
establish shared data integrity secrets which are used to ensure that when datais
received any modifications will be detected.

Authentication

Authentication is the ability to ascertain with whom you are speaking. By using
digital certificates and public key security, CORBA client and server
applications can each be authenticated to the other. This allows the two parties to
be certain they are communicating with someone they trust. The SSL protocol
provides a mechanism that can be used to authenticate principals to a BEA
Tuxedo domain using X.509 digital certificates. The use of certificate
authentication can be used as an alternative to password authentication.

The SSL protocol provides secure connections by allowing two applications
connecting over a network connection to authenticate the other’ s identity and by
encrypting the data exchanged between the applications. When using the SSL
protocol, the target always authenticates itself to the initiator. Optionaly, if the target
requestsit, theinitiator can authenticate itself to the target. Encryption makes data
transmitted over the network intelligible only to the intended recipient. An SSL
connection begins with a handshake during which the applications exchange digital
certificates, agree on the encryption algorithms to use, and generate encryption keys
used for the remainder of the session.

Using Security in CORBA Applications

The SSL Protocol

The SSL protocol uses public key encryption for authentication. With public key
encryption, apair of asymmetric keysare generated for aprincipal or other entity such
asthe l1OP Listener/Handler or an application server. The keys are related such that
the data encrypted with the public key can only be decrypted using the corresponding
private key. Conversely, data encrypted with the private key can be decrypted only
with the public key. The private key is carefully protected so that only the owner can
decrypt messages. The public key, however, is distributed freely so that anyone can
encrypt messages intended for the owner.

Figure 2-1 illustrates how the SSL protocol worksin the CORBA security
environment.

Using Security in CORBA Applications 2-3

2 Introduction to the SSL Technology

Figure2-1 TheSSL Protocol in the CORBA Security Environment

Trusted CA
file Trusted CA Authentication
file Plug-In
i / |
Authorization
CORBA IIOP / Plug-Ins
Client NOPISSL .
o bt Listener/Handler |
Application
Auditing
I hi= Plug-Ins
/ w_\ Peer Validation || Private Key
Rule file file |
Peer Validation Private Key PKI
Rule file file Plug-Ins
CORBA Object

Authentication
Authorization

BEA Tuxedo Domain

When using the SSL protocol in the CORBA security environment, the 11OP
Listener/Handler authenticates itself to initiating principals. The [1OP
Listener/Handler presentsits digital certificate to theinitiating principal. To
successfully negotiate a SSL connection, the client application must then authenticate
the [1OP Listener/Handler but the 11OP Listener/Handler will accept any client
applicationinto the SSL connection. Thistype of authentication isreferred to as server
authentication.

2-4 Using Security in CORBA Applications

Digital Certificates

When using server authentication, the initiating client application is required to have
digital certificates for certificate authorities that are to be trusted. The I|OP
Listener/Handler must have a private key and digital certificates that represents its
identity. Server authentication is common on the Internet where customers want to
create secure connections before they share personal data. In this case, the client
application hasa similar role to that of a Web browser.

With SSL version 3.0, principal s can also authenticate to the I|OP Listener/Handler.
Thistype of authentication is referred to as mutual authentication. In mutual
authentication, principal spresent their digital certificatesto the llOP Listener/Handler.
When using mutual authentication, both the 110P Listener/Handler and the principal
need private keys and digital certificates that represent their identity. Thistype of
authentication is useful when you must restrict accessto trusted principals only.

The SSL protocol and the infrastructure needed to use digital certificatesis available
inthe BEA Tuxedo product by installing alicense availablein the product installation.
For more information, see Installing the BEA Tuxedo System.

Digital Certificates

Digital certificates are electronic documents used to uniquely identify principals and
entities over networks such as the Internet. A digital certificate securely binds the
identity of aprincipal or entity, as verified by atrusted third party known asa
certificate authority (CA), to aparticular public key. The combination of the public key
and the private key provides a unique identity to the owner of the digital certificate.

Digital certificatesallow verification of the claim that a specific public key doesin fact
belong to a specific principal or entity. A recipient of adigital certificate can use the
public key contained in the digital certificate to verify that a digital signature was
created with the corresponding private key. If such verificationis successful, thischain
of reasoning provides assurance that the corresponding private key is held by the
subject named in the digital certificate, and that the digital signature was created by
that particular subject.

A digitd certificate typically includes a variety of information, such as:

m The name of the subject (holder, owner) and other identification information
required to uniquely identify the subject, such as the URL of the Web server
using the digital certificate, or an individual’s e-mail address.

Using Security in CORBA Applications 2-5

2

Introduction to the SSL Technology

m Thesubject’s public key.
m The name of the certificate authority that issued the digital certificate.
m A seria number.

m Thevalidity period (or lifetime) of the digita certificate (defined by a start date
and an end date).

Themost widely accepted format for digital certificatesisdefined by the TU-T X.509
international standard. Thus, digital certificates can be read or written by any
application complying with X.509. The PK1 in the CORBA security environment
recognizes digital certificates that comply with X.509 version 3, or X.509v3.

Certificate Authority

2-6

Digita certificates are issued by a certificate authority. Any trusted third-party
organization or company that iswilling to vouch for the identities of those to whom it
issues digital certificates and public keys can be a certificate authority. When a
certificate authority createsadigital certificate, the certificate authority signsit withits
private key, to ensure the detection of tampering. The certificate authority then returns
the signed digital certificate to the requesting subject.

The subject can verify the digital signature of the issuing certificate authority by using
the public key of the certificate authority. The certificate authority makesits public key
available by providing a digita certificate issued from a higher-level certificate
authority attesting to the validity of the public key of the lower-level certificate
authority. The second solution gives rise to hierarchies of certificate authorities. This
hierarchy isterminated by a self-signed digital certificate known as the root key.

Therecipient of an encrypted message can develop trust in the private key of a
certificate authority recursively, if the recipient has a digital certificate containing the
public key of the certificate authority signed by a superior certificate authority whom
the recipient already trusts. In this sense, a digital certificate is a stepping stonein
digital trust. Ultimately, it is necessary to trust only the public keys of a small number
of top-level certificate authorities. Through a chain of digital certificates, trust in a
large number of users' digital signatures can be established.

Using Security in CORBA Applications

Certificate Repositories

Thus, digital signatures establish the identities of communicating entities, but adigital
signature can be trusted only to the extent that the public key for verifying the digital
signature can be trusted.

Certificate Repositories

To make apublic key and itsidentification with a specific subject readily available for
usein verification, the digital certificate may be published in a repository or made
available by other means. Certificate repositories are databases of digital certificates
and other information available for retrieval and use in verifying digital signatures.
Retrieval can be accomplished automatically by directly requesting digital certificates
from the repository as needed.

Inthe CORBA security environment, Lightweight Directory Access Protocol (LDAP)
is used as acertificate repository. BEA Systems, Inc. does not provide or recommend
any specific LDAP server. The LDAP server you choose should support the X.500
scheme definition and the LDAP version 2 or 3 protocol.

A Public Key Infrastructure

A Public Key Infrastructure (PK1) consists of protocols, services, and standards
supporting applications of public key cryptography. Because the technology is still
relatively new, the term PKI is somewhat loosely defined: sometimes PKI1 simply
refersto atrust hierarchy based on public key digital certificates; in other contexts, it
embraces digital signature and encryption services provided to end-user applications
aswell.

There is no single standard public key infrastructure today, though efforts are
underway to define one. It is not yet clear whether a standard will be established or
multiple independent PK1swill evolvewith varying degrees of interoperability. Inthis
sense, the state of PK |1 technology today can beviewed assimilar to local and wide area
(WAN) network technology in the 1980s, before there was widespread connectivity
viathe Internet.

Using Security in CORBA Applications 2-7

2 Introduction to the SSL Technology

Thefollowing services are likely to befound in a PKl:
m Key registration for issuing anew digital certificate for a public key.

m Certificate revocation for canceling a previously-issued digital certificate and
private key.

m Key selection for obtaining a party’s public key.

m Trust evaluation for determining whether adigital certificate isvalid and which
operations it authorizes.

Figure 2-2 shows the PKI process flow.

Figure2-2 PKI ProcessFlow

Certificate i~ _
Authority &) > Repository
Subject (4) - Recipient

1. Thesubject appliesto a certificate authority for digital certificate.

2. The certificate authority verifies the identity of subject and issues a digita
certificate.

3. The certificate authority or the subject publishes the digital certificatein a
certificate repository such as LDAP.

4. The subject digitally signs an electronic message with the associated private key
to ensure sender authenticity, message integrity, and nonrepudiation, and then
sends message to recipient.

5. Therecipient retrieves the sender’s certificate from the certificate repository and
then retrieves the public key from the certificate.

The BEA Tuxedo product does not provide the tools necessary to be a certificate
authority. BEA Systems, Inc. recommends using a third-party certificate authority
such asVeriSign or Entrust. By offering a Public Key SPI, BEA Systems, Inc. extends

2-8 Using Security in CORBA Applications

PKCS-5 and PKCS-8 Compliance

the opportunity to al BEA Tuxedo customersto use a PK| security solution with the
PK I softwarefrom their vendor of choice. See*“ Single Sign-on” on page 3-24 for more
information.

PKCS-5 and PKCS-8 Compliance

Informal but recognized industry standards for public key software have been issued
by a group of leading communications companies, led by RSA Laboratories. These
standards are called “Public-Key Cryptography Standards,” or PKCS. The BEA
Tuxedo product uses PKCS-5 and PKCS-8 to protect the private keys used with the
SSL protocol.

m PKCS-5isaspecification of aformat for using password-based encryption that
uses DES to protect data.

m PKCS-8isaspecification of aformat for storing private keys, including the
ability to encrypt them with PKCS-5.

Supported Public Key Algorithms

Public key (or asymmetric key) algorithms are implemented through a pair of different
but mathematically related keys:

m A public key (whichis distributed widely) for verifying a digital signature or
transforming data into a seemingly unintelligible form.

m A private key (which is always kept secret) for creating adigital signature or
returning the data to its original form.

The public key security in the CORBA security environment also supports digital
signature algorithms. Digital signature algorithms are simply public key algorithms
used to provide digital signatures.

Using Security in CORBA Applications 2-9

2

Introduction to the SSL Technology

TheBEA Tuxedo product supportsthe Rivest, Shamir, and Adelman (RSA) agorithm,
the Diffie-Hellman algorithm, and Digital Signature Algorithm (DSA). With the
exception of DSA, digital signature algorithms can be used for digital signatures and
encryption. DSA can be used for digital signatures but not for encryption.

Supported Symmetric Key Algorithms

2-10

In symmetric key algorithms, the same key is used to encrypt and decrypt a message.
Thepublic key encryption system uses symmetric key encryption to encrypt amessage
sent between two communicating entities. Symmetric key encryption operates at least
1000 times faster than public key cryptography.

A block cipher isatype of symmetric key algorithm that transforms a fixed-length
block of plaintext (unencrypted text) data into a block of ciphertext (encrypted text)
data of the same length. This transformation takes place in accordance with the value
of arandomly generated session key. The fixed length is called the block size.

The Public key security feature in the CORBA security environment supports the
following symmetric key algorithms:

m DES-CBC (DataEncryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-hit keys (8 parity bits are stripped from the full 64-bit key).

m Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit
key).

For some time it has been common practice to protect and transport a key for
DES encryption with triple-DES, which means that the input data (in this case
the single-DES key) is encrypted, decrypted, and then encrypted again (an
encrypt-decrypt-encrypt process). The same key is used for the two encryption
operations.

m RC2 (Rivest's Cipher 2)
RC2 isavariable key-size block cipher.

Using Security in CORBA Applications

Supported Message Digest Algorithms

m RC4 (Rivest's Cipher 4)

RCA4 is avariable key-size block cipher with akey size range of 40 to 128 hits. It
is faster than DES and is exportable with a key size of 40 bits. A 56-bit key size
is alowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC4 can be used with keys of virtually
unlimited length, although the public key security in the CORBA security
environment restricts the key length to 128 bits.

Customers of the BEA Tuxedo product cannot expand or modify thislist of algorithms.

Supported Message Digest Algorithms

The CORBA security environment supports the MD5 and SHA-1 (Secure Hash
Algorithm 1) message digest algorithms. Both MD5 and SHA-1 are well known,
one-way hash algorithms. A one-way hash algorithm takes a message and convertsit
into afixed string of digits, which is referred to as a message digest or hash value.

MD5 isahigh-speed, 128-bit hash; it isintended for use with 32-bit machines. SHA-1
offers more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites

A cipher suiteisa SSL encryption method that includes the key exchange a gorithm,
the symmetric encryption a gorithm, and the secure hash algorithm used to protect the
integrity of the communication. For example, the cipher suite

RSA_W TH_RC4_128_MD5 uses RSA for key exchange, RC4 with a 128-bit key for
bulk encryption, and MD5 for message digest.

Using Security in CORBA Applications 2-11

2 Introduction to the SSL Technology

The CORBA security environment supports the cipher suites described in Table 2-1.
Table2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Cipher Suite Key Symmetric
Exchange Key
Type Strength
SSL_RSA W TH RC4_128_SHA RSA 128
SSL_RSA W TH RC4_128_MD»% RSA 128
SSL_RSA W TH DES_CDC_SHA RSA 56
SSL_RSA_EXPORT_W TH_RC4_40_MD5 RSA 40
SSL_RSA EXPORT_W TH_DES40_CBC SHA RSA 40
SSL_RSA_EXPORT_W TH_RC2_CBC 40_MX»% RSA 40
SSL_DH _DSS_EXPORT_W TH_DES40_CBC_SHA Diffie- 40
Hellman
SSL_DH RSA_EXPORT_W TH_DES40_CBC_SHA Diffie- 40
Hellman
SSL_RSA W TH 3DES_EDE_CBC_SHA RSA 112
SSL_RSA W TH_NULL_SHA RSA 0
SSL_RSA W TH NULL_MD5 RSA 0

Standards for Digital Certificates

The CORBA security environment supportsthe digital certificatesthat conform to the
X.509v3 standard. The X.509v3 standard specifies the format of digital certificates.
BEA recommends obtaining certificates from a certificate authority such as Verisign
or Entrust.

2-12 Using Security in CORBA Applications

CHAPTER

3 Fundamentals of
CORBA Security

Thistopic includes the following sections:

Link-Level Encryption

Password Authentication

The SSL Protocol

Certificate Authentication

Using an Authentication Plug-in

Authorization

Auditing

Single Sign-on

PKI Plug-ins

Commonly Asked Questions About the CORBA Security Features

Link-Level Encryption

Link-Level Encryption (LLE) establishes data privacy for messages moving over the
network links. The objective of LLE is to ensure confidentiality so that a
network-based eavesdropper cannot learn the content of BEA Tuxedo system

Using Security in CORBA Applications 31

3

Fundamentals of CORBA Security

messages or CORBA application-generated messages. It employs the symmetric key
encryption technique (specifically, RC4), which usesthe same key for encryption and
decryption.

When LLE isbeing used, the BEA Tuxedo system encrypts data before sending it over
anetwork link and decryptsit as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For this
reason, LLE isreferred to as a point-to-point facility.

LLE can be used to encrypt communication between machines and/or domainsin a
CORBA application..

Note: LLE cannot be used to protect connections between remote CORBA client
applications and the 11OP Listener/Handler.

There are three levels of LLE security: 0-bit (no encryption), 56-bit (Export), and
128-hit (Domestic). The Export LLE version alows 0-bit and 56-bit encryption. The
Domestic LLE version allows 0, 56, and 128-bit encryption.

How LLE Works

3-2

LLE worksin the following way:

1. The system administrator sets parameters for any processes that want to use LLE
to control the encryption strength.

e Thefirst configuration parameter is the minimum encryption level that a
process will accept. It is expressed as a key length: 0, 56, or 128 bits.

e Thesecond configuration parameter isthe maximum encryption level a
process can support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (i n, max). For example,
the values (56, 128) for a process mean that the process accepts at |east 56-bit
encryption but can support up to 128-bit encryption.

2. Aninitiator process begins the communication session.

3. A target process receivesthe initial connection and startsto negotiate the
encryption level to be used by the two processes to communicate.

4. Thetwo processes agree on the largest common key size supported by both.

Using Security in CORBA Applications

Link-Level Encryption

5. The configured maximum key size parameter is reduced to agree with the
installed software’s capabilities. This step must be done at link negotiation time,
because at configuration time it may not be possible to verify a particular
machine’s installed encryption package.

6. The processes exchange messages using the negotiated encryption level.
Figure 3-1 illustrates these steps.

Figure3-1 How LLE Works

BEA Tuxedo Domain

Machine 1 .
Initiating Process Machine 2
Target Process

UBBCONFIG File

NINENCRYPTEITS 40 40, 128 HIEEI‘?(?P?Y'\II:‘?E I Ege a0
MAXEMCRYPTEITS 128 Bit
Encryption MALXEMNCREYPTEITS 128

Encryption Key Size Negotiation

When two processes at the opposite ends of a network link need to communicate, they
must first agree on the size of the key to be used for encryption. This agreement is
resolved through a two-step process of negotiation.

1. Each processidentifiesits own m n- max values.

2. Together, the two processes find the largest key size supported by both.

Using Security in CORBA Applications 3-3

3 Fundamentals of CORBA Security

Determining min-max Values

When either of the two processes starts up, the BEA Tuxedo system (1) checks the
bit-encryption capability of theinstalled LLE version by checking the LLE licensing
informationinthel i c. txt fileand (2) checksthe LLE mi n- max vauesfor the
particular link type as specified in the two configuration files. The BEA Tuxedo
system then proceeds as follows:

m If the configured ni n-nax values accommodate the installed LL E version, then
the local software assigns those values as the ni n-nmax vaues for the process.

m If the configured ni n-max values do not accommodate the installed LLE version,
for example, if the Export LLE versionisinstalled but the configured mi n-max
values are (0, 128), then the local software issues arun-time error; link-level
encryption is not possible at this point.

m If thereare no mi n-max values specified in the configurations for a particular
link type, then the local software assigns 0 as the minimum value and assigns the
highest bit-encryption rate possible for theinstalled LLE versions as the
maximum value, that is, (0, 128) for the Domestic LLE version.

Finding a Common Key Size

After the mi n-max values are determined for the two processes, the negotiation of key
size begins. The negotiation process need not be encrypted or hidden. Once akey size
isagreed upon, it remains in effect for the lifetime of the network connection.

Table 3-1 shows which key size, if any, is agreed upon by two processes when all
possible combinations of mi n-max values are negotiated. The header row holds the
mi n-max values for one process; the far left column holds the mi n-max valuesfor the
other.

Table 3-1 Interprocess Negotiation Results

(0,0) (0, 56) (0, 128) (56, 56) (56,128) (128, 128)
(0,0) 0 0 0 ERROR ERROR ERROR
(0, 56) 0 56 56 56 56 ERROR
(0, 128) 0 56 128 56 128 128

3-4 Using Security in CORBA Applications

Link-Level Encryption

Table 3-1 Interprocess Negotiation Results (Continued)

(0, 0) (0, 56) (0, 128) (56, 56) (56,128) (128, 128)
(56, 56) ERROR 56 56 56 56 ERROR
(56, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

WSL/WSH Connection Timeout During Initialization

Thelength of timeaWorkstation client can takefor initialization islimited. By default,
thisinterval is 30 seconds in an application not using LLE, and 60 secondsin an
application using LLE. The 60-second interval includes the time needed to negotiate
an encrypted link. Thistimelimit can be changed when LL E is configured by changing
the value of the MAXI NI TTI ME parameter for the Workstation Listener (WSL) server
in the UBBCONFI Gfile, or the value of the TA_MAXI NI TTI ME attribute in the T_WsL
class of the ws_M B(5).

Development Process

TouseLLEinaCORBA application, you need to install alicense that enablesthe use
of LLE. For information about installing the license, see Installing the BEA Tuxedo
System.

The implementation of LLE is an administrative task. The system administrators for
each CORBA application set mi n-max valuesin the UBBCONFI Gfile that control
encryption strength. When the two CORBA applications establish communication,
they negotiate what level of encryption to use to exchange messages. Once an
encryption level is negotiated, it remainsin effect for the lifetime of the network
connection.

Using Security in CORBA Applications 3-5

3 Fundamentals of CORBA Security

Password Authentication

The CORBA security environment supports a password mechanism to provide
authentication to existing CORBA applications and to new CORBA applications that
are not prepared to deploy afull Public Key Infrastructure (PKI). When using
password authentication, the applications that initiate invocations on CORBA objects
authenticate themselves to the BEA Tuxedo domain using a defined username and
password.

Thefollowing levels of password authentication are provided:

m None—indicates that no password or access checking is performed in the
CORBA application.

m Application Password—indicates that users are required to supply adomain
password in order to access the CORBA application.

m User Authentication—indicates that users are required to supply an application
password as well as the domain password in order to access the CORBA
application.

m ACL—indicates that authorization is used in the CORBA application and access
control checks are performed on interfaces, queue names, and event names. If an
associated ALC is not found for a user, it is assumed that access is granted.

m Mandatory ACL—indicates that authorization is used in the CORBA application
and access control checks are performed on interfaces, queue names, and event
names. The value of Mandatory ACL issimilar to ACL, but permission is
denied if an associated ACL is not found for the user.

When using Password authentication, you have the option of using the

Tobj : : Princi pal Aut henti cator:: 1 ogon() or the

SecuritylLevel 2:: Princi pal Aut henti cator:: aut henti cate() methodsin
your client application.

If you use password authentication, the SSL protocol can be used to provide
confidentiality and integrity to communication between applications. For more
information, see “The SSL Protocol” on page 3-10.

3-6 Using Security in CORBA Applications

Password Authentication

How Password Authentication Works

Password authentication worksin the following way:

1

Theinitiating application accessesthe BEA Tuxedo domain in one of thefollowing
ways:

e Through the CORBA Interoperable Naming Service (INS) Bootstrapping
mechanism. Use this mechanism if you are using a client ORB from another
vendor. For more information about using CORBA INS, see the CORBA
Programming Reference in the BEA Tuxedo online documentation

e The BEA Bootstrapping mechanism. Use this mechanism if you are using
BEA CORBA client applications.

The initiating application obtains credentials for the user. The initiating
application must provide proof material to be used by the BEA Tuxedo domain to
authenticate the user. This proof material consists of the name of the user and a
password.

e Theinitiating application creates the security context using a
Pri nci pal Aut henti cat or object. The request for authentication is sent to
the 11OP Listener/Handler. The proof material in the authentication request is
securely relayed to the authentication server, which verifies the supplied
information.

e |f the verification succeeds, the BEA Tuxedo system constructs a
O edent i al s object that is used by all future invocations. The
O edent i al s object for the user is associated with the Cur r ent object that
represents the security context.

The initiating application invokes a CORBA object in the BEA Tuxedo domain
using an object reference. The request is packaged into an I1OP request and is
forwarded to the I1OP Listener/Handler that associates the request with the
previously established security context.

The I1OP Listener/Handler receives the request from theinitiating application.

The I1OP Listener/Handler forwards the request, along with the credentials of the
initiating application, to the appropriate CORBA object.

Figure 3-2 illustrates these steps.

Using Security in CORBA Applications 3-7

Fundamentals of CORBA Security

Figure3-2 How Password Authentication Works

BEA Tuxedo
Client Domain
- Object Reference for
Bootstrap Object SecurityCurrent
Tobj_Bootstrap Object
{orh,/f=zling.con,2143) /)y |[0]
or L Listenerf
Tok]j_Eootstrap Handler [Aufhentication Level
[orh,corbaloc://2ling. com, Z2143)
for BEATuxedo
or ;
Tokhj_Eootstrap Domain
{orh,corbalocs://sling. com, Z143)

SecurityCurrent Object /
FPrincipaliuthenticator

get_auth_type():

logon | usaraass, anofiod E1on Ba3ns,
Passsoad)

Development Process for Password Authentication

3-8

Defining password authentication for a CORBA application includes administration
and programming steps. Table 3-2 and Table 3-3 list the administration and
programming steps for password authentication. For a detailed description of the
administration stepsfor password authentication, see“ Configuring Authentication” on
page 7-1. For a complete description of the programming steps, see “Writing a
CORBA Application That Implements Security” on page 10-1.

Table 3-2 Administration Steps for Password Authentication

Step Description

1 Set the SECURI TY parameter in the UBBCONFI Gfileto APP_PW USER_AUTH,
ACL, or MANDATORY_ACL.

Using Security in CORBA Applications

Password Authentication

Table 3-2 Administration Stepsfor Password Authentication (Continued)

Step Description

2 If you defined the SECURI TY parameter as USER_AUTH, ACL, or
MANDATORY_ACL, configure the authentication server (AUTHSRYV) in the
UBBCONFI Gfile.

3 Usethet pusr add and t pgr padd commands to define lists of authorized users
and groups including the I1OP Listener/Handler.

4 Usethet M oadcf command to load the UBBCONFI Gfile. When the UBBCONFI G

fileisloaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the CORBA application.

Table 3-3 Programming Stepsfor Password Authentication

Step Description

1 Write application code that uses the Bootstrap object to obtain a reference to the
SecurityCurrent object or CORBA INSto obtain areferenceto a
Principal Authenticator object in the BEA Tuxedo domain.

2 Write application code that obtains the Principal Authenticator object from the
SecurityCurrent object.

3 Write application code that uses the
Tobj :: Princi pal Aut henti cator::1ogon() or
SecuritylLevel 2:: Princi pal Aut henti cator:: aut henti cate()
operation to establish a security context with the BEA Tuxedo domain.

4 Write application code that prompts the user for the password defined when the

UBBCONFI Gfileis loaded.

Using Security in CORBA Applications 39

3

Fundamentals of CORBA Security

The SSL Protocol

The BEA Tuxedo product provides the industry-standard SSL protocol to establish
secure communications between client and server applications. When using the SSL
protocol, principals use digital certificatesto prove their identity to a peer.

The default behavior of the SSL protocol in the CORBA security environment is to
havethellOP Listener/Handler proveitsidentity to the principal who initiated the SSL
connection using digital certificates. The digital certificates are verified to ensure that
each of the digital certificates has not been tampered with or expired. If thereisa
problem with any of the digital certificates in the chain, the SSL connection is
terminated. In addition, the issuer of adigital certificate is compared against alist of
trusted certificate authorities to verify the digital certificate received from the [1OP
Listener/Handler has been signed by a certificate authority that is trusted by the BEA
Tuxedo domain.

Like LLE, the SSL protocol can be used with password authentication to provide
confidentiality and integrity to communication between the client application and the
BEA Tuxedo domain. When using the SSL protocol with password authentication, you
are prompted for the password of the 11OP Listener/Handler defined by the

SEC_PRI NCI PAL_NAME parameter when you enter thet nl oadcf command.

How the SSL Protocol Works

3-10

The SSL protocol works in the following manner:

1. ThellOP Listener/Handler presentsits digital certificate to the initiating
application.

2. Theinitiating application compares the digital certificate of the I|OP
Listener/Handler against itslist of trusted certificate authorities.

3. If theinitiating application validates the digital certificate of the I1OP
Listener/Handler, the application and the 11OP Listener/Handler establish an SSL
connection.

Theinitiating application can then use either password or certificate
authentication to authenticate itself to the BEA Tuxedo domain.

Using Security in CORBA Applications

The SSL Protocol

Figure 3-3 illustrates how the SSL protocol works.

Figure 3-3 How the SSL Protocol Worksin a CORBA Application

CORBA Client
Application

SSL Protocol

Certificate for
Hop
Listener/Handler

loP
Listener!
Handler

Requirements for Using the SSL Protocol

To usethe SSL protocol in a CORBA application, you need to install alicense that
enables the use of the SSL protocol and PKI1. For information about installing the
license for the security features, see Installing the BEA Tuxedo System.

The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. The BEA Tuxedo product requiresthat digital certificates are stored in
an LDAP-enabled directory. Y ou can choose any L DAP-enabled directory service.

Y ou &l so need to choose the certificate authority from which to obtain digital
certificates and private keys used in a CORBA application. Y ou must have an
LDAP-enabled directory service and a certificate authority in place before using the
SSL protocol in a CORBA application.

Using Security in CORBA Applications 3-11

3

Fundamentals of CORBA Security

Development Process for the SSL Protocol

3-12

Using the SSL protocol in a CORBA application is primarily an administration
process. Table 3-5 lists the administration steps required to set up the infrastructure
required to use the SSL protocol and configure the I1OP Listener/Handler for the SSL
protocol. For adetailed description of the administration steps, see “ Managing Public
Key Security” on page 4-1 and “Configuring the SSL Protocol” on page 6-1.

Once the administration steps are complete, you can use either password
authentication or certificate authentication in your CORBA application. For more
information, see “Writing a CORBA Application That Implements Security” on
page 10-1.

Note: If youareusingthe BEA CORBA C++ ORB asaserver application, the ORB
can also be configured to use the SSL protocol. For more information, see
“Configuring the SSL Protocol” on page 6-1.

Table 3-4 Administration Stepsfor the SSL Protocol

Step Description

1 Set up an LDAP-enabled directory service. Y ou will be prompted for the name of
the LDAP server during the installation of the BEA Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain adigital certificate and private key for the |1 OP Listener/Handler from a

certificate authority.

4 Publish the digital certificates for the I|OP Listener/Handler and the certificate
authority in the LDAP-enabled directory service.

5 Definethe SEC_PRI NCI PAL_NAME, SEC_ PRI NCI PAL_LOCATI ON, and
SEC PRI NCl PAL_PASSVAR parameters for the |SL server processin the
UBBCONFI Gfile.

6 Set the SECURI TY parameter in the UBBCONFI Gfile to NONE.

7 Define aport for secure communication on the 11 OP Listener/Handler using the - S
option of the ISL command.

8 Create a Trusted Certificate Authority file (t r ust _ca. cer) that definesthe
certificate authorities trusted by the 11OP Listener/Handler.

Using Security in CORBA Applications

The SSL Protocol

Table 3-4 Administration Sepsfor the SSL Protocol (Continued)

Step Description

9 Usethet ml oadcf command to load the UBBCONFI Gfile.

10 Optionally, create a Peer Rulesfile (peer _val . rul) for the IOP
Listener/Handler.

11 Optionally, modify the LDAP Search filter fileto reflect the directory hierarchy in
place in your enterprise.

If you use the SSL protocol with password authentication, you need to set the
SECURI TY parameter in the UBBCONFI Gfileto desired level of authentication and if
appropriate, configure the A uthentication Server (AUTHSRV). For information about the
administration steps for password authentication, see “Password Authentication” on

page 3-6.

Figure 3-4 illustrates the configuration of a CORBA application that uses the SSL
protocol.

Using Security in CORBA Applications 3-13

3 Fundamentals of CORBA Security

Figure3-4 Configuration for Using the SSL Protocol in a CORBA Application

lor
ListeneriHandler

CORBA Client
Application ISL -= -a
SEC_FPRINCIPAL_NWAME
SEC_FRINCIPAL_LOCATION
SEC_FRINCIPAL PASSVAR

Y

tru=st_ca. cer

LDAP
Directory Service

- Private Key for
Certificate for lIOP op

Listener’/Handler

ListeneriHandler

Certificates for
Certificate
Authorities

Certificate Authentication

Certificate authentication requires that each side of an SSL connection provesits
identity to the other side of the connection. In the CORBA security environment, the
[1OP Listener/Handler presentsitsdigital certificate to the principal who initiated the
SSL connection. The initiator then provides achain of digital certificates that are used
by the IIOP Listener/Handler to verify the identity of the initiator.

3-14 Using Security in CORBA Applications

Certificate Authentication

Once achain of digital certificatesis successfully verified, the 11 OP Listener/Handler
retrieves the val ue of the distinguished name from the subject of the digital certificate.
The CORBA security environment uses the e-mail address element of the subject’s
distinguished name astheidentity of the principal. The [IOP Listener/Handler usesthe
identity of the principal to impersonate the principal and establish a security context
between the initiating application and the BEA Tuxedo domain.

Once the principal has been authenticated, the principal that initiated the request and
the I1OP Listener/Handler agree on a cipher suite that represents the type and strength
of encryption that they both support. They also agree on the encryption key and
synchronize to start encrypting al subsequent messages.

Figure 3-5 provides a conceptual overview of the certificate authentication.

Figure 3-5 Certificate Authentication

SSL Protocol

CORBA Client loP
Application Certificate for Listener!
Hop Handler

Listener/Handler

How Certificate Authentication Works

Certificate authentication works in the following manner:

1. Theinitiating application accessesthe BEA Tuxedo domain in one of thefollowing
ways:

e Through the CORBA INS Bootstrapping mechanism. Use this mechanism if
you are using aclient ORB from another vendor. For more information about

Using Security in CORBA Applications 3-15

3

Fundamentals of CORBA Security

3-16

using CORBA INS, see CORBA Programming Reference in the BEA Tuxedo
online documentation.

e TheBEA Bootstrapping mechanism. Use this mechanism if you are using the
BEA client ORB.

2. Theinitiating application instantiates the Bootstrap object with a URL in the

form of cor bal oc:// host: port or cor bal ocs: // host : port and controlsthe
reguirement for protection by setting attributes on the

Securitylevel 2:: Oredential s object returned asaresult of the
SecuritylLevel 2:: Princi pal Aut henti cator:: aut henti cat e operation.

Note: Youcan asousethe SecuritylLevel 2:: Qurrent: :aut henti cate()

method to secure the bootstrapping process and specify that certificate
authentication is to be used.

. Theinitiating application obtainsthe digital certificates and the private key of the

principal. Retrieval of this information may require proof material to be supplied
to gain access to the principal’s private key and certificate. The proof material
typically is a pass phrase rather than a password.

The security context is established as result of a
SecuritylLevel 2:: Princi pal Aut henti cator:: aut henti cate() method.

The I1OP Listener/Handler receives and validates the application’s digital
certificate as part of the authentication process.

. If the verification succeeds, the BEA Tuxedo system constructs a Cr edent i al s

object. The Credenti al s object for the principa represents the security context
for the current thread of execution.

. Theinitiating application invokes a CORBA object in the BEA Tuxedo domain

using an object reference.

. Therequest is packaged into an I1OP request and is forwarded to the [|OP

Listener/Handler that associates the request with the established security context.

. Therequest isdigitaly signed and encrypted before it is sent to the [lOP

Listener/Handler. The BEA Tuxedo system performs the signing and sealing of
requests.

. ThellOP Listener/Handler receives the request from the initiating application.

Therequest is decrypted.

Using Security in CORBA Applications

Certificate Authentication

9. ThellOP Listener/Handler retrieves the e-mail component of the subjectDN of
the principal’s and uses that as the identity of the user.

10. The l1OP Listener/Handler forwards the request, along with the associated tokens
of the principal, to the appropriate CORBA object.

Figure3-6 How Certificate Authentication Works

CORBA Client
Bootstrap Object BEE'? o-:;l."‘:iﬁdo
TDbj_Bnntstrap 551 lIoP
[orb,corbalocs://sling.com, 2143) Protocol Listener!
Handler
|
SecurityLevel2::Current Object
authenticate | CORBA
Tokj::CertificateBased Object
email address Simple
passphrase) ;

Sinple-rto uppsr():

Development Process for Certificate Authentication

To use certificate authentication in a CORBA application, you need to install alicense
that enablesthe use of the SSL protocol and PKI. For information about installing the
license, see Installing the BEA Tuxedo System.

Using Security in CORBA Applications 3-17

3

Fundamentals of CORBA Security

3-18

Using certificate authentication in a CORBA application includes administration and
programming steps. Table 3-5 and Table 3-6 list the administration and programming
steps for certificate authentication. For a detailed description of the administration
steps, see “Managing Public Key Security” on page 4-1 and “ Configuring the SSL
Protocol” on page 6-1.

Table 3-5 Administration Stepsfor Certificate Authentication

Step

Description

1

Set up an LDAP-enabled directory service. Y ou will be prompted for the name of
the LDAP server during the installation of the BEA Tuxedo product.

Install the license for the SSL protocol.

Obtain adigita certificate and private key for the [IOP Listener/Handler from a
certificate authority.

Obtain digital certificates and private keysfor the CORBA client applicationsfrom
a certificate authority.

Store the private key files for the CORBA client applications and the IlOP
Listener/Handler in the Home directory of the user or in
$TUXDI R/ udat aobj / security/ keys.

Publish the digital certificates for the I|OP Listener/Handler, the CORBA
applications, and the certificate authority in the LDAP-enabled directory service.

Definethe SEC_PRI NCI PAL_NAME, SEC PRI NCl PAL_LOCATI ON, and
SEC PRI NCl PAL_PASSVAR for the ISL server processin the UBBCONFI Gfile.

Set the SECURI TY parameter in the UBBCONFI Gfile to USER_AUTH, ACL, or
MANDATORY_ACL.

Configure the Authentication Server (AUTHSRV) in the UBBCONFI Gfile.

10

Usethet pusradd and t pgr padd commands to define the authorized Users and
Groups of your CORBA application.

11

Define aport for SSL communication on the 11OP Listener/Handler using the - S
option of the ISL command.

12

Enable certificate authentication in the |1OP Listener/Handler using the - a option
of the ISL command.

Using Security in CORBA Applications

Certificate Authentication

Table 3-5 Administration Sepsfor Certificate Authentication (Continued)

Step Description

13 Create a Trusted Certificate Authority file (t r ust _ca. cer) that definesthe
certificate authorities trusted by the 11OP Listener/Handler.

12 Create a Trusted Certificate Authority file (t r ust _ca. cer) that defines the
certificate authorities trusted by the CORBA client application.

13 Usethet ml oadcf command to load the UBBCONFI Gfile. Y ou will be prompted
for the password of the IIOP Listener/Handler defined in the
SEC PRI NCI PAL_NAME parameter.

14 Optionally, create a Peer Rulesfile (peer _val . r ul) for both the CORBA client
application and the IIOP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in

place in your enterprise.

Figure 3-7 illustrates the configuration of a CORBA application that uses certificate
authentication.

Using Security in CORBA Applications 3-19

3 Fundamentals of CORBA Security

Figure3-7 Configuration for Using Certificate Authentication in a CORBA

Application
CORBA Client nop
Application ListeneriHandler
corbalocs 7 N
host port "l I1SL -= -a
o SEC_FPRINCIFPAL_HWAME

SEC_PRINCIPAL_LOCATION
pesr_val rul \ SEC_PRINCIPAL_PASSVAR

trust_ca.cer

tru=st_ca.cer LDAP
Directory Service

Certificate for [IOP peer_wval rul

Private Key for Listener/Handler
CORBA Client Certificates for

Application Certificate -
Authorities Private Key for

lIoP

Certificates for ListeneriHandler
CORBA Client
Applications

Table 3-6 liststhe programming steps for using certificate authentication in a CORBA
application. For moreinformation, see “Writing a CORBA Application That
I mplements Security” on page 10-1.

3-20 Using Security in CORBA Applications

Using an Authentication Plug-in

Table 3-6 Programming Stepsfor Certificate Authentication

Step Description

1 Write application code that uses the cor bal oc or cor bal ocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the [|OP Listener/Handler must match exactly the host
name provided in the URL address format. For more information on the URL
address formats, see “ Using the Bootstrapping M echanism” on page 10-1.

Y ou can also use the CORBA INS bootstrap mechanism to object areferenceto a
Principal Authenticator object in the BEA Tuxedo domain. For more information
about using CORBA INS, see the CORBA Programming Reference.

2 Write application code that usesthe aut hent i cat e() method of the
SecuritylLevel 2:: Pri nci pal Aut henti cat or interfaceto perform
authentication. Specify Tobj : : Certi fi cat eBased for the method argument
and the pass phrase for the private key asthe aut h_dat a argument for
Security: : Opaque.

Using an Authentication Plug-in

The BEA Tuxedo product alows the integration of authentication plug-insinto a
CORBA application. The BEA Tuxedo product can accommodate authentication
plug-ins using various authentication technol ogies, including shared-secret password,
one-time password, challenge-response, and K erberos. The authentication interfaceis
based on the generic security service (GSS) application programming interface (API)
where applicable and assumes authentication plug-ins have been written to the
GSSAPI.

If you chose to use an authentication plug-in, you must configure the authentication
plug-in in the registry of the BEA Tuxedo system. For more detail about the registry,
see “Configuring Security Plug-ins’ on page 9-1.

For more information about an authentication plug-ins, including installation and
configuration procedures, see your BEA account executive.

Using Security in CORBA Applications 3-21

3

Fundamentals of CORBA Security

Authorization

Authorization allows system administrators to control accessto CORBA applications.
Specifically, an administrator can use authorization to alow or disallow principals to
use resources or services provided by a CORBA application.

The CORBA security environment supports the integration of authorization plug-ins.
Authorization decisions are based in part on the user identity represented by an
authorization token. Authorization tokens are generated during the authentication
process so coordination between the authentication plug-in and the authorization
plug-in isrequired.

If you chose to use an authorization plug-in, you must configure the authorization
plug-in the registry of the BEA Tuxedo system. For more detail about the registry, see
“Configuring Security Plug-ins’ on page 9-1.

For more information about authorization plug-ins, including installation and
configuration procedures, see your BEA account executive.

Auditing

3-22

Auditing providesameansto collect, store, and distribute information about operating
reguests and their outcomes. Audit-trail records may be used to determine which
principals performed, or attempted to perform, actionsthat violated the configured
security policies of a CORBA application. They may a so be used to determine which
operationswere attempted, which onesfailed, and which ones successfully completed.

The current implementation of the auditing feature supports the recording of logon
failures, impersonation failures, and disallowed operations into the ULOGfile. In the
case of disallowed operations, the value of the parameters to the operation are not
provided because thereisno way to know the order and datatypes of the parameter for
an arbitrary operation. Audit entries for logon and impersonation include the identity
of the principal attempting to be authenticated. For information about setting up the
ULOGfile, see Setting Up a BEA Tuxedo Application.

Using Security in CORBA Applications

Auditing

Y ou can enhance the auditing capabilities of your CORBA application by using an
auditing plug-in. The BEA Tuxedo system will invoke the auditing plug-in at
predefined execution points, usually before an operation is attempted and then when
potential security violations are detected or when operations are successfully
completed. The actions taken to collect, process, protect, and distribute auditing
information depend on the capabilities of the auditing plug-in. Care should be taken
with the performance impact of audit information collection, especially successful
operation audits, which may occur at a high rate.

Auditing decisions are based partly on user identity, which is stored in an auditing
token. Because auditing tokens are generated by the authentication plug-in, providers
of authentication and auditing plug-ins need to ensure that these plug-ins work
together.

The purpose of an auditing request isto record an event. Each auditing plug-in returns
one of two responses: success (the audit succeeded and the event was logged) or
failure (theauditfailed and the event was not logged the event). An auditing plug-in
is called once before the operation is performed and once after the operation

compl etes.

m The preoperation audit allows the auditing of both attemptsto call an operation,
and also alows storage of input data for the postoperation check.

m The postoperation audit reports the status of the completion of an operation. For
failure status, the postoperation audit is called to report a potential security
violation. Usually thistype of report is issued when a preoperation or
postoperation authorization check fails or when some other potential security
attack is detected.

Multipleimplementations of the auditing plug-in can be used in a CORBA application.
Using multiple authorization plug-ins causes more than one preoperation and
postoperation auditing operation to be performed.

When using multiple auditing plug-ins, all the plug-ins are placed under asingle
master auditing plug-in. Each subordinate authorization plug-in returns SUCCESS or
FAI LURE. If any plug-in failsthe operation, the auditing master plug-in determinesthe
outcome to be FAI LURE. Other error returns are also considered FAI LURE. Otherwise,
SUCCESS is the outcome.

Using Security in CORBA Applications 3-23

3

Fundamentals of CORBA Security

In addition, a BEA Tuxedo system process may call an auditing plug-in when a
potentia security violation occurs. (Suspicion of a security violation arises when a
preoperation or postoperation authorization check fails or when an attack on security
is detected.) In response, the auditing plug-in performs a postoperation audit and
returns whether the audit succeeded.

The auditing process is somewhat different for users of the auditing feature provided
by the BEA Tuxedo product and users of auditing plug-ins. The default auditing
feature does not support preoperation audits. If the default auditing feature receives a
preoperation audit request, it returns immediately and does nothing.

If you choseto use an auditing plug-in other than the default auditing plug-in, you must
configure the auditing plug-in theregistry of the BEA Tuxedo system. For more detail
about the registry, see “ Configuring Security Plug-ins’ on page 9-1.

For more information about auditing plug-ins, including installation and configuration
procedures, see your BEA account executive.

Single Sign-on

3-24

Single sign-on allows authenti cated WebL ogic Server Usersin a WebL ogic Server
security realm to make secure reguests on CORBA objectsin a BEA Tuxedo domain.
Single sign-on is only supported over the connection pool provided by WebL ogic
Enterprise Connectivity and only if the connection pool has established a trust
relationship with the CORBA environment. The trust relationship of the pool can be
established in one of the following ways:

m With password authentication. In this scenario, the WebL ogic Server User is
authenticated but the request between the WebL ogic Server realm and the BEA
Tuxedo domain is unprotected.

m With password authentication and the SSL protocol. In this scenario, the SSL
protocol is used to protect the integrity and confidentiality of the request.

m With the SSL protocol and certificate authentication. Thisis the most secure
scenario, however, it requires that both WebL ogic Server and the CORBA
application implement public key security.

Using Security in CORBA Applications

PKI Plug-ins

“Configuring Single Sign-on” on page 8-1 describes how to implement each of the

Single sign-on options.

PKI Plug-ins

The BEA Tuxedo product provides a PK| environment which includes the SSL
protocol and the infrastructure needed to use digital certificatesin a CORBA
application. However, you can use the PK1 interfaces to integrate a PK1 plug-in that
supplies custom message-based digital signature and message-based encryption to
your CORBA applications. Table 3-7 describes the PK1 interfaces.

Table 3-7 PKI Interfaces

PKI Interface

Description

Public key initialization

Allows public key software to open public and
privatekeys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management

Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using thisinterface, but no bulk data encryptionis
performed using public key cryptography. Bulk
dataencryption is performed using symmetric key
cryptography.

Certificate lookup

Allows public key software to retrieve X.509v3
digital certificates for agiven principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

Certificate parsing

Allows public key software to associate asimple
principal namewith an X.509v3 digital certificate.
Theparser analyzesadigital certificateto generate
aprincipal name to be associated with the digital
certificate.

Using Security in CORBA Applications 3-25

3 Fundamentals of CORBA Security

Table 3-7 PKI Interfaces (Continued)

PKI Interface Description

Certificate validation Allowspublickey softwareto validatean X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof

material s needed to open keys, provide
authorization tokens, and provide auditing tokens.

The PKI interfaces support the following algorithms:

m Public key algorithms: Rivest, Shamir, and Adelman (RSA) and Digital
Signature Algorithm (DSA)

m Symmetric key algorithms:
e Data Encryption Standard for Cipher Block Chaining (DES-CBC)
e Two-key triple-DES
e Rivest’'s Cipher 4 (RC4)
m Message digest algorithms:
e MessageDigest 5 (MD5)
e Secure Hash Algorithm 1 (SHA-1)

If you chose to use a PKI plug-in, you must configure the PKI plug-in in the registry
of the BEA Tuxedo system. For more detail about the registry, see “Configuring
Security Plug-ins” on page 9-1.

For more information about PKI plug-ins, including installation and configuration
procedures, see your BEA account executive.

3-26 Using Security in CORBA Applications

Commonly Asked Questions About the CORBA Security Features

Commonly Asked Questions About the
CORBA Security Features

The following sections answer some of the commonly asked questions about the
CORBA security features.

Do | Have to Change the Security in an Existing CORBA
Application?

The answer isno. If you are using security interfaces from previous versions of the
WebL ogic Enterprise product in your CORBA application there is no requirement for
you to change your CORBA application. Y ou can leave your current security scheme
in place and your existing CORBA application will work with CORBA applications
built with the BEA Tuxedo 8.0 product.

For example, if your CORBA application consists of aset of server applicationswhich
provide general information to al client applications which connect to them, there is
really no need to implement a stronger security scheme. If your CORBA application
has a set of server applications which provide information to client applications on an
internal network which provides enough security to detect sniffers, you do not need to
implement the additional security features.

Can | Use the SSL Protocol in an Existing CORBA
Application?

The answer isyes. Y ou may want to take advantage of the extra security protection
provided by the SSL protocol in your existing CORBA application. For example, if
you have a CORBA server application which provides stock pricesto a specific set of
client applications, you can use the SSL protocol to make sure the client applications
are connected to the correct CORBA server application and that they are not being
routed to a fake CORBA server application with incorrect data. A username and

Using Security in CORBA Applications 3-27

3

Fundamentals of CORBA Security

3-28

password is sufficient proof material to authenticate the client application. However,
by using the SSL protocol, the message request/reply information can be protected as
an additional level of security.

The SSL protocol offers CORBA applications the following benefits:

m Protection of the entire conversation including the initial bootstrapping process.
The SSL protocol protects against Man-In-The-Middle attacks, replay attacks,
tampering, and sniffing.

m Evenif you only use the default settings, the SSL protocol provides signed and
sealed protection since the default encryption settings are a minimum of 56 bits
by default.

m Client verification of the connected I1OP Listener/Handler using the digital
certificate of the IIOP Listener/Handler. The client application can then apply
additional security rulesto restrict access to the client application by the [lOP
Listener/Handler. This protection also appliesto [IOP Listener/Handlers
connecting to remote server applications when using callback objects.

To usethe SSL protocol in a CORBA application, set up the infrastructure to use
digital certificates, change the command-line options on the I SL server processto use
the SSL protocol, and configure a port for secure communications on the [1OP
Listener/Handler. If your existing CORBA application uses password authentication,
you can use that code with the SSL protocal. If your CORBA C++ client application
does not already catch the | nval i dDomai n exception when resolving initial
referencesto the Bootstrap object and performing authentication, write code to handle
this exception. For more information, see “ Single Sign-on” on page 3-24.

Note: The Javaimplementation of the
Tobj _Bootstrap::resolve_initial _references() method does not
throw an I nval i dDonai n exception. When the cor bal oc or cor bal ocs
URL address formats are used, the
Tobj _Boot strap: :resol ve_initial _references() method internally
catchesthel nval i dDonai n exception and throws the exception as a
COVM _FAI LURE. The method functionsthisway in order to provide backward
compatibility.

Using Security in CORBA Applications

Commonly Asked Questions About the CORBA Security Features

When Should | Use Certificate Authentication?

Y ou might be ready to migrate your existing CORBA application to use I nternet
connections between the CORBA application and Web browsersand commercial Web
servers. For example, users of your CORBA application might be shopping over the
Internet. The users must be confident that:

They are in fact communicating with the server at the online store and not an
impostor that mimics the store's server to get credit card information.

The data exchanged between the user of the CORBA application and the online
store will be unintelligible to network eavesdroppers.

The data exchanged with the online store will arrive unaltered. An instruction to
order $500 worth of merchandise must not accidently or maliciously become a
$5000 order.

In these situations, the SSL protocol and certificate authentication offer CORBA
applications the maximum level of protection. In addition to the benefits achieved
through the use of the SSL protocol, certificate authentication offers CORBA
applications:

[1OP Listener/Handler verification of the client application that initiates a
request using the digital certificate of the client application. In addition, the [|OP
Listener/Handler can apply additional rules which restrict access to the client
application based on the identity established by the digital certificate. A remote
ORB acting as a server application can a so be configured to allow mutual
authentication and verify the identity of a client application based on a digital
certificate.

Inside the BEA Tuxedo domain, the client application can still have a BEA
Tuxedo username and password. The |1OP Listener/Handler maps the identity
defined in adigital certificate to a BEA Tuxedo username and password thus
allowing existing CORBA applications to have an identity in native CORBA
server applications.

For more information, see“ Single Sign-on” on page 3-24.

Using Security in CORBA Applications 3-29

3 Fundamentals of CORBA Security

3-30 Using Security in CORBA Applications

Part Il Security
Adminstration

Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.

Managing Public Key Security
Configuring Link-Level Encryption
Configuring the SSL Protocol
Configuring Authentication
Configuring Single Sign-on
Configuring Security Plug-ins

CHAPTER

4 Managing Public Key
Security

Thistopic includes the following sections:

Requirements for Using Public Key Security

Who Needs Digital Certificates and Private/Private Key Pairs?
Requesting a Digital Certificate

Publishing Certificatesin the LDAP Directory Service

Editing the LDAP Search Filter File

Storing the Private Keys in aCommon Location

Defining the Trusted Certificate Authorities

Creating a Peer Rules File

Perform the tasks in thistopic only if you are using the SSL protocol, or certificate
authentication in your CORBA application.

Requirements for Using Public Key Security

To usethe SSL protocol and public key security to protect communication between
principals and the BEA Tuxedo domain, you need to install a specid license. For
information about installing the license, see Installing the BEA Tuxedo System.

Using Security in CORBA Applications 4-1

4 Managing Public Key Security

Y ou also need to choose a Lightweight Directory Access Protocol server and a
certificate authority (either commercial or private) setup for your organization before
implementing Public Key Security.

Who Needs Digital Certificates and
Private/Private Key Pairs?

To usethe SSL protocol in the CORBA security environment, you need a private key
and a digitally-signed certificate containing the matching public key. How many
digital certificates and private keys you need depends on how you plan to use the SSL
protocol.

m |f the SSL protocol isbeing used for protection of a network connection between
aremote client and the I1OP Listener/Handler, you need to obtain a digital
certificate and private key for the [1OP Listener/Handler.

m |f the SSL protocol is being used with certificate authentication, you need to
obtain adigital certificate and private key for the I|OP Listener/Handler and
each principal that will access the CORBA application.

Any digital certificate that is obtained and used must be issued from a trusted
certificate authority defined in the trusted CA file. For more information, see
“Defining the Trusted Certificate Authorities’ on page 4-7.

Requesting a Digital Certificate

4-2

Toacquire adigital certificate, you need to submit your request for adigital certificate
in a particular format called a certificate signature request (CSR). How you create a
CSR depends on the certificate authority you use. Certificate authorities typically
provide ameans to generate a public key, private key, and a CSR which contains your
public key. To create a CSR follow the steps outlined by your chosen certificate
authority.

Using Security in CORBA Applications

Publishing Certificates in the LDAP Directory Service

When you complete the stepsto create a CSR, you receive the following filesfrom the
certificate authority:

File Description
key. der The private key file.
request . pem The CSR file which you submit to the

certificate authority. It containsthe same data
asthe. demfile but thefileis encoded in
ASCII so that you can copy it into e-mail or
pasteit into a Web form.

To purchase adigita certificate from acertificate authority, you submit the CSR to the
certificate authority according to the enrollment procedure of the certificate authority.
Some commercia certificate authorities allow you to purchase digital certificates
through the Web.

Publishing Certificates in the LDAP Directory
Service

The use of aglobal directory serviceis the most popular way to store digital
certificates. A directory service simplifies the management of information that needs
to beglobally availableto an ever-growing number of users. An LDAP server provides
access to a variety of directory services.

The CORBA security environment in the BEA Tuxedo product, when configured to
use the SSL protocol, can retrieve digital certificates for principals and certificate
authorities from an LDAP directory service, such as Netscape Directory Service or
Microsoft Active Directory. Before you can use the SSL protocol or certificate
authentication, you need to install an LDAP directory service and configureit for your
organization. BEA Systems does not provide nor recommend any specific LDAP
directory service. However, the LDAP directory service you choose should support the
X.500 scheme definition and the LDAP version 2 or 3 protocol.

Using Security in CORBA Applications 4-3

4 Managing Public Key Security

4-4

LDAPdirectory servicesdefineahierarchy of object classes. Whilethere areanumber
of different object classes, thereis a small set associated with digital certificates.
Figure 4-1 illustrates the object classes typically associated with digital certificates.

Figure4-1 LDAP Directory Structurefor Digital Certificates

root

strongAuthenticationUser certificationAuthority

userCertificate caCertificate

Onceyou receive your digital certificates from the certificate authority, store them in
the LDAP directory service as follows:

m Digital certificatesfor the IIOP Listener/Handler and any principals are stored in
the LDAP directory service with an attribute of user Certi fi cat e on an object
class with that attribute defined. Typically, these digital certificates are stored as
an instance of the st rongAut henti cat i onUser object class as defined by
X.500.

m Digital certificatesfor certificate authorities are stored in LDAP directory
service with an attribute of caCertifi cate onan object class with that
attribute defined. Typically, these digital certificates are stored as an instance of
thecertificateAuthority classasdefined by X.500.

If your LDAP schemerequiresthe use of different classes, you will need to modify the
LDAP search file as described in “ Editing the LDAP Search Filter File’ on page 4-5.

The BEA Tuxedo product requires that the digital certificates be stored in thedirectory
service in Privacy Enhanced Mail (PEM) format.

Refer to Installing the BEA Tuxedo System for information about integrating an LDAP
directory service into the CORBA security environment.

Using Security in CORBA Applications

Editing the LDAP Search Filter File

Editing the LDAP Search Filter File

When configuring a CORBA application to use the SSL protocol or certificate
authentication, you may need to customize the LDAP search filter file to limit the
scope of the search of the directory service or specify the object classes that will be
used to hold the digital certificates. Customizing the LDAP search filter file can result
in significant performance gains. The BEA Tuxedo product ships with the following
LDAP search filters:

m A filter stanzathat searches the directory service for digital certificates assigned
to certificate authorities. The filter limitsits search to instances of the
certificationAuthority objectclass.

m A filter stanzathat searches the directory service for digital certificates assigned
to principas. The filter limits its search to instances of the
st rongAut henti cati onUser object class.

If the directory service scheme for your organization is defined to store digital
certificates in object classes other than certi fi cati onAut hori ty and

st rongAut henti cat i onUser , the LDAP search filter file must be modified to
specify those object classes.

Y ou can specify alocation of the LDAP search filter file during the installation of the
BEA Tuxedo product. For moreinformation, see Installing the BEA Tuxedo System.

The LDAP search filter file should be owned by the administrator account. BEA
recommends that the file be protected so that only the owner has read and write
privilegesfor the file and all other users have only read privileges for the file.

To limit the search of the directory service for digital certificates for principals and
certificate authorities, you need to modify the filter stanzasidentified by the following
tagsin the LDAP search filter file:

m BEA person_| ookup

m BEA i ssuer_| ookup

These tags identify the stanzas in the LDAP search filter file that contains the filter
expression that will be used when looking up information in the directory service.
These BEA-specific tags allow the stanzas of an LDAP search filter fileto be storedin
acommon LDAP search filter file with stanzas used by other LDAP-enabled
applications that might be found in your organization.

Using Security in CORBA Applications 4-5

4 Managing Public Key Security

Thefollowing is an example of the stanzas of an LDAP search filter file used by the
BEA Tuxedo product for the SSL protocol and certificate authentication:

“BEA person_| ookup”
“oxmo % % (] (obj ect d ass=strongAut henti cati onUser) (mail=%))"
“e-mai | address”
“(| (obj ect d ass=strongAut henti cati onUser) (mail =%))"

“start of e-mmil address”
“BEA i ssuer _| ookup”

“oRmow Y (&(objectCl ass=certificationAuthority)
(cn=%)" “exact match cn”
(sn=%))" “exact match sn”

m BEA person_| ookup specifiesto search the LDAP directory service for
principals by their e-mail addresses.

m BEA_ i ssuer_| ookup specifiesto search the LDAP directory service for
principals by their common names (cn).

See the documentation for your LDAP-enabled directory service for additional
information about LDAP search file filters.

Storing the Private Keys in a Common
Location

When a principal generates a CSR, they typically get afile with a private key.
Principals need this private key fileto verify their identity in the authentication
process. Assign the private key file protections so that only the owner of the private
key file has read privileges and all other users have no privileges to access thefile.
Private key files must be stored as PEM-encoded PK CS #8 protected format.

The BEA Tuxedo system uses the e-mail address of the principal to construct a name
for the private key file as follows:

1. The @character in the name is replaced by an underscore (_) character.
2. All characters after the dot (.) character are deleted.

3. A . PEMfileextension is appended to thefile.

4-6 Using Security in CORBA Applications

Defining the Trusted Certificate Authorities

For example, if the name of the principal ismi | 0zzi @i gconpany. comtheresulting
private key fileismi | 0zzi _bi gconpany. pem This haming convention allows an
enterprise to have multiple principals that share a common username but are in
different e-mail domains.

The BEA Tuxedo software looks in the following directories for private key files:

Window 2000
9%HOVEDRI VE% %HOVEPATH%

UNIX
$HOVE

The BEA Tuxedo software also looks in the following directory for private key files:
$TUXDI R/ udat aobj / security/ keys

The $TUXDI R/ udat aobj / securi ty/ keys directory should be protected so that only
the owner hasread privilegesfor thedirectory and al other usersdo not have privileges
to access the directory.

Listing 4-1 provides an example of a private key file.

Listing4-1 Example of Private Key File

----- BEG N ENCRYPTED PRI VATE KEY-----
M | CoDAaBgkghki @woBBOMWDQQ t SFrt Ycf KygCAQUEggKAEgr Mko8gYB/ MOSXG

----- END ENCRYPTED PRI VATE KEY-----

Defining the Trusted Certificate Authorities

When establishing an SSL connection, the CORBA processes (client applications and
the 110OP Listener/Handler) check the identity of the certificate authority and
certificates from the peer’ s digital certificate chain against alist of trusted certificate
authorities to ensure the certificate authority istrusted by the organization. This check
is similar to the check done in Web browsers. If the comparison fails, the initiator of

Using Security in CORBA Applications 4-7

4 Managing Public Key Security

4-8

the SSL connection refuses to authenticate the target and dropsthe SSL connection. It
istypically the job of the system administrator to define alist of trusted certificate
authorities.

Retrieve from the LDAP directory service the digital certificates for the certificate
authorities that are to be trusted. Cut and paste the PEM formatted digital certificates
intoafilenamedtrust _ca. cer whichisstoredin

$TUXDI R udat aobj / security/certs. Thetrust _ca. cer canbe edited with any
text editor.

Thetrust_ca. cer file should be owned by the administrator account. BEA
recommends that the file be protected so that only the owner hasread and write
privileges for the file and all other users have only read privileges for the file.

Listing 4-2 provides an example of a Trusted Certificate Authority file.

Listing 4-2 Example of Trusted Certificate Authority File

----- BEG N CERTI FI CATE- - - -

M | Euz CCBCSgAW BAgl QKt ZuMbAOz S9dZal ATIxI uDANBgkghki GOw0BAQQFADCB
z DEXMBUGALUEChMOVMVyaVNpZ24s1 El uYy4xHz AdBgNVBASTFI ZI cni TaWdul FRy
dXNOI E5I dHdvensx Rj BEBgNVBAs TPXd3dy522XJpc2l nbi 5 b20vcm/wb3Npd&y
eS9SUEEgSWEj b3Jwli BCe SBSZWYULExJQUI uTFREKGVL OTgx SDBGBgNVBAMI P1ZI
cm TaWdul ENs YXNz | DEgQOEgSWhkaXZpZHVhbCBTdW z Y3Jp Yy LVBI cnNvbnEg

-----END CERTI FI CATE- - - - -
----- BEGI N CERTI FI CATE- - - -

M | Euz CCBCSgAW BAgl QKt ZuMbAOz S9dZal ATIxI uDANBgkghki GOw0BAQQFADCB
z DEXMBUGALUEChMOVmMVyaVNpZ24s1 El uYy4xHz AdBgNVBASTFI ZI cnl TaWlul FRy
dXNOI E5I dHdvensx Rj BEBgNVBAs TPXd3dy52ZXJpc2l nbi 5 b20vcm/wb3Npd&y

----- END CERTI FI CATE- - - - -

Using Security in CORBA Applications

Creating a Peer Rules File

Creating a Peer Rules File

When communicating across network links, it isimportant to validate the peer to
which you are connected is the intended or authorized peer. Without this check, itis
possible to make a secure connection, exchange secure messages, and receive avalid
chain of digital certificates but still be vulnerable to a Man-in-the-Middl e attack. Y ou
perform peer validation by verifying a set of specified information contained in the
peer digital certificate against alist of information that specifiestherulesfor validating
peer trust. The system administrator maintains the Peer Rules file.

The Peer Rules are maintained in an ASCI| file named peer _val . rul . Store the
peer_val . rul fileinthefollowing location in the BEA Tuxedo directory structure:

$TUXDI R/ udat aobj / security/certs

Listing 4-3 provides an example of a Peer Rulesfile.

Listing 4-3 Example of Peer RulesFile

This file contains the list of rules for validating if
a peer is authorized as the target of a secure connection

H H H

O=Ace I ndustry

O="Acne Systens, Inc.”; OUJCentral Engi neering; L=Her ki mer; S=NY
O="Ball, Corp.”, C=US

o=Ace | ndustry, ou=QA, cn=www.ace.com

Each rulein the Peer Rulesfileis comprised of aset of elementsthat areidentified by
akey. The BEA Tuxedo product recognizes the key names listed in Table 4-1.

Table4-1 Supported Keysfor Peer Rules File

Key Attribute

CN CommonName
SN SurName

L LocalityName

Using Security in CORBA Applications 4-9

4 Managing Public Key Security

4-10

Table 4-1 Supported Keysfor Peer Rules File (Continued)

Key Attribute

S StateOrProvinceName

O OrganizationName

aJ Organizational UnitName
C CountryName

E Email Address

Each key is followed by an optional white space, the character =, an optiona white
space, and finally the val ue to be compared. Thekey is not case sensitive. A ruleisnot
amatch unless the subject’s distinguished name contains each of the specified
elementsin the rule and the values of those el ements match the values specified in the
rule, including case and punctuation.

Each line in the Peer Rulesfile contains a single rule that is used to determine if a
secure connection is to be established. Rules cannot span lines; the entire rule must
appear on asingle line. Each element in the rule can be separated by either acomma
(,) or semicolon (;) character.

Linesbeginning with the pound character (#) are comments. Comments cannot appear
on the same line as the name of an organization.

A vaue must be enclosed in single quotation marksif one of the following casesis
true:
m Strings contain any of the following characters:

, + = "" <CR> < > #

m Strings have leading or trailing spaces
m Strings contain consecutive spaces

By default, the BEA Tuxedo product verifies peer information against the Peer Rules
file. If you do not want to perform this check, create an empty Peer Rulesfile.

Using Security in CORBA Applications

CHAPTER

5 Configuring Link-Level
Encryption

Thistopic includes the following sections

m Understanding min and max Values

m Verifying the Installed Version of LLE

m Configuring LLE on CORBA Application Links

Understanding min and max Values

Before you can configure LLE for your CORBA application, you need to be familiar
with the LLE notation: (m n, max). The defaults for these parameters are:

m Formin:0

m For max: Number of bitsthat indicates the highest level of encryption possible
for theinstalled LLE version

For exampl e, the default mi n and max values for the Domestic LLE version are (0,
128). If you want to change the defaults, you can do so by assigning new valuesto mi n
and max in the UBBCONFI Gfile for your application.

Using Security in CORBA Applications 5-1

5 Configuring Link-Level Encryption

Verifying the Installed Version of LLE

Before setting the ni n and nax values for your CORBA application, you need to
verify what version of LLE isinstalled on your machine. Y ou can verify the LLE
version installed on a machine by running the t madni n command in ver bose mode
asfollows:

tmadmn -v

Key lines from the BEA Tuxedo licensefile (1 i c. t xt) appear on your computer
screen, similar to information in Listing 5-1. The entry 128-bi t Encrypti on
Package indicatesthat the Domestic version of LLE isinstalled.

Listing51 LLE Licencelnformation

I NFO BEA Engi ne, Version 2.4

INFO Serial: 212889588, Expiration 2000-3-15, Maxusers 10000
INFO. Licensed to: ACME CORPORATI ON

INFO 128-bit Encryption Package

BEA Tuxedo license files are located in the following directories:
Windows 2000
%IUXDl R udat aobj\lic.txt

UNI X
$TUXDI R/ udat aobj /i c. t xt

Configuring LLE on CORBA Application Links

To configure LLE in CORBA applications, you need to set the M NENCRYPTBI TS and
MAXENCRYPTBI TS parameters in the UBBCONFI G file for each CORBA application
participating in the network connection, as follows:

5-2 Using Security in CORBA Applications

Configuring LLE on CORBA Application Links

m The M NENCRYPTBI TS parameter specifies that at least the defined number of
bits are meaningful.

m The MAXENCRYPTBI TS parameter specifies that encryption should be negotiated
up to the defined level.

The possible values for theM NENCRYPTBI TS and MAXENCRYPTBI TS parametersare 0,
40, and 128. A value of zero means no encryption is used, while 40 and 128 specify
the number of significant bitsin the encryption key.

Load the configuration file by running t ml oadcf . Thet m oadcf command parses
UBBCONFI G and | oads the binary TUXCONFI Gfile to the location referenced by the
TUXCONFI Gvariable.

Using Security in CORBA Applications 5-3

5 Configuring Link-Level Encryption

5-4 Using Security in CORBA Applications

CHAPTER

6

Configuring the SSL
Protocol

Thistopic includes the following sections:

Setting Parameters for the SSL Protocol

Defining a Port for SSL Network Connections

Enabling Host Matching

Setting the Encryption Strength

Setting the Interval for Session Renegotiation

Defining Security Parameters for the 11OP Listener/Handler
Example of Setting Parameters on the ISL System Process

Example of Setting Command-line Options on the CORBA C++ ORB

Using Security in CORBA Applications

6-1

6 Configuring the SSL Protocol

Setting Parameters for the SSL Protocol

To usethe SSL protocol or certificate authentication with the [10P Listener/Handl er
or the CORBA C++ object request broker (ORB), you need to:

m Specify the secure port on which SSL network connections will be accepted.
m Specify the strength that will be used when encrypting data.

m Optionally, set theinterval for session renegotiation (110P Listener/Handler
only).

Thefollowing sections detail how to use the options of the ISL command or the
command-line options of the CORBA C++ ORB to set these SSL parameters.

Defining a Port for SSL Network
Connections

To define a port for SSL network connections:

m Usethe-S option of the ISL command to specify which port of the IIOP
Listener/Handler will listen for secure connections using the SSL protocol. Y ou
can configure the I1OP Listener/Handler to allow only SSL connections by
setting the - S option and - n option of the ISL command to the same value.

m If you are using aremote CORBA C++ ORB, use the - ORBsecur ePor t
command-line option on the ORB to specify which port of the ORB will listen
for secure connections using the SSL protocol. You should set this
command-line option when using callback objects or the CORBA Notification
Service.

Note: If you are using the SSL protocol with ajoint client/server application, you
must specify a port number for SSL network connections. Y ou cannot use the
default.

6-2 Using Security in CORBA Applications

Enabling Host Matching

Defining a secure port for SSL network connections requires the license for the SSL
protocol to beinstalled. If the - Soption or the - ORBsecur ePor t command-lineoption
isexecuted and alicense to enabl e the use of the SSL protocol does not exist, the [1OP
Listener/Handler or CORBA C++ ORB will not start.

Enabling Host Matching

The SSL protocol is capable of encrypting messages for confidentiality; however, the
use of encryption does nothing to prevent a man-in-the-middle attack. During a
man-in-the-middle attack, a principa masquerades as the location from which an
initiating application retrieves the initial object references used in the bootstrapping
process.

To prevent man-in-the-middle attacks, it is necessary to perform acheck to ensure that
the digital certificate received during an SSL connection isfor the principal for which
the connection was intended. Host Matching is a check that the host specified in the
object reference used to make the SSL connection matches the common name in the
subject in the distinguished name specified in the target’ s digita certificate. Host
Matching is performed only by the initiator of an SSL connection, and confirms that
thetarget of arequest is actually located at the same network address specified by the
domain namein the target’ s digital certificate. If this comparison fails, the initiator of
the SSL connection refuses to authenticate the target and drops the SSL connection.
Host Matching is not technically part of the SSL protocol and is similar to the same
check donein Web browsers.

The domain name contained in the digital certificate must match exactly the host
information contained in the object reference. Therefore, the use of DNS host names
instead of 1P addresses is strongly encouraged.

By default, Host Matching in enabled in the 11 OP Listener/Handler and the CORBA
C++ ORB. If you need to enable Host Matching, do one of the following:

m InthellOP Listener/Handler, specify the - v option of the ISL command.

m Inthe CORBA C++ ORB, specify the -ORBpeer Val i dat e command-line
option.

The valuesfor the -v option and the - ORBpeer Val i dat e command-line option are
asfollows:

Using Security in CORBA Applications 6-3

6 Configuring the SSL Protocol

Setting

m none—~no host matching is performed.

m det ect —if the object reference used to make the SSL connection does not
match the host name in the target’s digital certificate, the 11OP Listener/Handler
or the ORB does not authenticate the target and drops the SSL connection. The
det ect valueisthe default value.

m war n—if the object reference used to make the SSL connection does not match
the host name in the target’s digital certificate, the |1OP Listener/Handler or the
ORB sends a message to the user log and continues processing.

If there is more than one I1OP Listener/Handler in a BEA Tuxedo domain configured
for SSL connections (for example, in the case of fault tolerance), BEA recommends
using DNS alias names for the |1 OP Listener/Handlers or creating different digital
certificates for each 11OP Listener/Handler. The —H switch on the [1OP Listener can
be used to specify the DNS alias name so that object references will be created
correctly.

the Encryption Strength

To set the encryption strength:

m Usethe-z and -z options of the ISL command to set the encryption strength
inthe I1OP Listener/Handler.

m Usethe- ORBni nOr ypt 0 and - ORBmaxCr ypt o command-line option on the
ORSB to set the encryption strength in the CORBA C++ ORB.

The - z option and the - ORBni nCr ypt o command-line option set the minimum level
of encryption used when an application establishesan SSL connection with the [1OP
Listener/Handler or the CORBA C++ ORB. Thevalid valuesare 0, 40, 56, and 128. A
value of 0 means the datais signed but not sealed while 40, 56, and 128 specify the
length (in bits) of the encryption key. If this minimum level of encryption is not met,
the SSL connection fails. The default is 40.

The - Z option and the - ORBmax Cr ypt o command-line option set the maximum level
of encryption used when an application establishesan SSL connection with the [1OP
Listener/Handler or the CORBA C++ ORB. Thevalid valuesare 0, 40, 56, and 128.

6-4 Using Security in CORBA Applications

Setting the Encryption Strength

Zero meansthat datais signed but not sealed while 40, 56, and 128 specify the length
(in bits) of the encryption key. The default minimum value is 40. The default
maximum value is whatever capability is specified by the license.

The -z or -z options and the - ORBni nCr ypt o and - ORBnaxCr ypt o command-line
options are available only if the license for the SSL protocol isinstalled.

To changethe strength of encryption currently used in a CORBA application, you need
to shut down the I1OP Listener/Handler or the ORB.

The combination in which you set the encryption values isimportant. The encryption
values set in the initiator of an SSL connection need to be a subset of the encryption
values set in the target of an SSL connection.

Table 6-1 lists combinations of encryption values and describes the encryption
behavior.

Table 6-1 Combinations of Encryption Values

-z -Z Description
-ORBm nCrypto - ORBmaxCrypt o

No value specified Novalue specified If the use of the SSL protocol is specified by
some other command-line option or system
property but no values are specified for
ORBmi nCr ypt 0 and ORBmax O ypt o, these
command-line options or system properties are
assigned their default values.

0 No vaue specified ~ Maximum encryption defaults to the maximum
value specified in the license. Tamper/replay
detection and privacy protection are negotiated.

No value specified 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

0 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

40, 56, 128 No vaue specified ~ Maximum encryption defaults to the maximum
value specified in the license. Privacy
protection can be negotiated to the maximum
allowed by the SSL license.

Using Security in CORBA Applications 6-5

6 Configuring the SSL Protocol

Table 6-1 Combinationsof Encryption Values (Continued)

-z -Z Description
-ORBm nCrypto - ORBmaxCrypto

No vaue specified 40, 56, 12 Privacy protection can be negotiated to the
value specified by the- Z optionaslong asitis
less than the maximum allowed by the SSL
license. The - z option defaults to 40.

40, 56, 128 40, 56, 128 Privacy protection can be negotiated between
the values specified by the - z option up to the
value specified by the - Z option as long asthe
values are less than the maximum allowed by
the SSL license.

Note: Inall combinationslisted in Table 6-1, the value of the SSL license controls
the maximum bit strength. If a bit strength is specified beyond the maximum
licensed value, the IIOP Listener/Handler or ORB will not start and an error
will be generated indicating the bit strength setting isinvalid. Stopping the
[1OP Listener/Handler or ORB from starting, instead of lowering the
maximum value and giving only awarning, protects against an incorrectly
configured application running with less protection than was expected.

If acipher that exceeds the maximum licensed bit strength is somehow
negotiated, the SSL connection is not established.

For alist of cipher suites supported by the CORBA security environment, see
“Supported Cipher Suites’ on page 2-11.

Setting the Interval for Session
Renegotiation

Note: You set the interval for session renegotiation only in the [1OP
Listener/Handler.

6-6 Using Security in CORBA Applications

Defining Security Parameters for the IIOP Listener/Handler

Use the - R option of the ISL command to control the time between session
renegotiations. Periodic renegotiation of an SSL session refreshes the symmetric keys
used to encrypt and decrypt information which limits the time a symmetric key is
exposed. Y ou can keep long-term SSL connections more secure by periodically
changing the symmetric keys used for encryption.

The —R option specifies the renegotiation interval in minutes. If an SSL connection
does renegotiate within the specified interval, the 11OP Listener/Handler will request
the application to renegotiate the SSL session for inbound connections or actually
performthe renegotiation in the case of outbound connections. The default isO minutes
which results in no periodic session renegotiations.

Y ou cannot use session renegotiation when enabling certificate authentication using
the - a option of the ISL command.

Defining Security Parameters for the [1OP
Listener/Handler

For the IIOP Listener/Handler to participate in SSL connections, the I|OP
Listener/Handler authenticatesitself to the peer that initiated the SSL connection. This
authentication requiresa digital certificate. The private key associated with the digital
certificateis used as part of establishing an SSL connection that resultsin an agreement
between the principal and the peer (in this case a client application and the I10P
Listener/Handler) on the session key. The session key isa symmetric key (as opposed
to the private-public keys) that is used to encrypt data during an SSL session. Y ou
define the following information for the [1OP Listener/Handler so that it can be
authenticated by peers:

m SEC PR NC PAL_NAVE
Specifies the identity of the IIOP Listener/Handler.
m SEC PRI NC PAL_LOCATI ON

Specifies the location of the private key file. For example,
$TUXDI R/ udat aobj / security/keys/ml ozzi.pem

m SEC PRI NCl PAL_PASSVAR

Using Security in CORBA Applications 6-7

6

Configuring the SSL Protocol

6-8

Specifies an environment variabl e that holds the pass phrase for the private key
of the IIOP Listener/Handler when the t ml oadcf command is not run
interactively. Otherwise, you will be prompted for the pass phrase when you
enter thet m oadcf command.

Note: If you define any of the security parameters for the I10P Listener/Handler
incorrectly, the following errors are reported in the ULOG file:

| SH. 28014: LI BPLUG N_CAT: 2008: ERROR: No such file or
directory SEC PRI NCI PAL_LOCATI ON

| SH. 28014: 1 SNAT_CAT: 1552: ERROR: Coul d not open private key,
erro =-3011

| SH. 28104: | SNAT_CAT: 1544: ERROR: Coul d not perform SSL accept
from host/port// 1 PADDRESS: PORT

Toresolvetheerrors, correct information in the security parameters and reboot
the IlOP Listener/Handler.

These parameters are included in the part of the SERVERS section of the UBBCONFI G
file that defines the ISL system process.

Y ou also need to use thet pusr add command to define the I|OP Listener/Handler as
an authorized user in the BEA Tuxedo domain. Y ou will be prompted for a password
for the I1OP Listener/Handler. Enter the pass phrase you defined for

SEC_PRI NCI PAL_PASSVAR.

During initialization, the 11 OP Listener/Handler includesits principal name as defined
by SEC_PRI NCI PAL_NAME as an argument when calling the authentication plug-in to
acquire its credentials. An 11OP Listener/Handler requires credentials so that it can
authenticate remote client applications that want to interact with the CORBA
application, and get authorization and auditing tokens for remote client applications.

Because the IIOP Listener/Handler must authenticate its own identity to the BEA
Tuxedo domain in order to become a trusted system process, it is hecessary to
configure an authentication server when using the default authentication plug-in. See
“Configuring the Authentication Server” on page 7-2 for more information.

Using Security in CORBA Applications

Example of Setting Parameters on the ISL System Process

Example of Setting Parameters on the ISL
System Process

Y ou set parameters for the SSL protocol in the portion of the SERVERS section of the
UBBCONFI Gthat defines information for the ISL server process. Listing 6-1 includes
codefrom aUBBCONFI Gfilethat set parametersto configurethell OP Listener/Handler
for the SSL protocol and certificate authentication.

Listing 6-1 UsingthelSL Command in the UBBCONFIG File

I SL

SRVCRP = SYS_GRP
SRVID =5
CLOPT = “-A -- -a -z40 -Z128 -S3579 -n //|CEPI CK: 2569

SEC_PRI NCI PAL_NAME=" BLOTTO'
SEC_PRI NCI PAL_LQOCATI ON=" BLOTTO. pent
SEC_PRI NCI PAL_VAR=" AUDI T_PASS”

Example of Setting Command-line Options
on the CORBA C++ ORB

Listing 6-2 contains sample code that illustrates using the command-line options on
the CORBA C++ ORB to configure the ORB for the SSL protocol.

Listing 6-2 Example of Setting the Command-line Optionson the CORBA C++
ORB

Chatd i ent -ORBid BEA || OP
- ORBsecurePort 2100
-ORBm nCrypto 40

Using Security in CORBA Applications 6-9

6 Configuring the SSL Protocol

- ORBMaxCrypto 128
TechTopi cs

6-10 Using Security in CORBA Applications

CHAPTER

.

Configuring
Authentication

Thistopic includes the following sections:

Configuring the Authentication Server

Defining Authorized Users

Defining a Security Level

Configuring Application Password Security

Configuring Password Authentication

Sample UBBCONFIG File for Password Authentication
Configuring Certificate Authentication

Sample UBBCONFIG File for Certificate Authentication
Configuring Access Control

Configuring Security to Interoperate with Older WebL ogic Enterprise Client
Applications

Using Security in CORBA Applications

7-1

v

Configuring Authentication

Configuring the Authentication Server

7-2

Note: You only need to configure the authentication server, if you have specified a
value of USER_AUTH or higher for the SECURI TY parameter and are using the
default authentication plug-in.

Authentication requires that an authentication server be configured for the purpose of
authenticating users by checking their individual passwords against afile of lega
users. The BEA Tuxedo system uses a default authentication server called AUTHSRV to
perform authentication. AUTHSVR provides a single service, AUTHSVC, which performs
authentication. AUTHSVC is advertised by the AUTHSVR server as AUTHSVC when the
security level is set to ACL or MANDATORY_ACL.

For a CORBA application to authenticate users, the value of the AUTHSVC parameter
in the RESOURCES section of the UBBCONFI Gfile needs to specify the name of the
processto be used asthe authentication server for the CORBA application. The service
must be called AUTHSVC. If the AUTHSVC parameter is specified in the RESOURCES
section of the UBBCONFI Gfile, the SECURI TY parameter must also be specified with a
value of at least USER_AUTH. If the value is not specified, an error will occur when the
system executesthet nl oadcf command. If the - m option is configured on the | SL
process in the UBBCONFI Gfile, the AUTHSVC must be defined in the UBBCONFI Gfile
before the | SL process.

In addition, you need to define AUTHSVRIin the SERVERS section of the UBBCONFI Gfile.
The SERVERS section contains information about the server processes to be booted in
the CORBA application. To add AUTHSVC to an application, you need to define
AUTHSVC as the authentication service and AUTHSVR as the authentication server in the
UBBCONFI Gfile. Listing 7-1 containsthe portion of the UBBCONFI Gfilethat definesthe
authentication server.

Listing 7-1 Parametersfor the Authentication Server

* RESOURCES
SECURI TY USER _AUTH
AUTHSVC “ AUTHSVC

Using Security in CORBA Applications

Defining Authorized Users

* SERVERS
AUTHSVR SRVGRP="gr oup_nanme" SRVI D=1 RESTART=Y GRACE=600 MAXCEN=2
CLOPT="- A"

If you omit the parameter-value entry AUTHSVC, the BEA Tuxedo system calls
AUTHSVC by defaullt.

AUTHSVR may be replaced with an authentication server that implementslogic specific
to the application. For example, a company may want to develop a custom
authentication server so that it can use the popular K erberos mechanism for
authentication.

To add a custom authentication service to an application, you need to define your
authentication service and server in the UBBCONFI Gfile. For example:

* RESOURCES
SECURITY USER_AUTH
AUTHSVC KERBERCS

* SERVERS
KERBEROSSVR SRVGRP="gr oup_nanme" SRVI D=1 RESTART=Y GRACE=600
MAXGEN=2 CLOPT="-A"

Once you configure the default authentication server, the identity of the [1OP
Listener/Handler (as specified in the SEC_PRI NCI PAL_NANE parameter in the
UBBCONFI Gfile) must be specified inthet pusr file. In addition, all the users of the
CORBA application must be specified in thet pusr file. For more information, see
“Defining Authorized Users’ on page 7-3.

Defining Authorized Users

Aspart of configuring security for a CORBA application, you need to define the
principals and groups of principals who have access to the CORBA application.

Authorized users can be defined in the following ways:

m When using password authentication, authorized users are defined using a
username and an associated password.

Using Security in CORBA Applications 7-3

4 Configuring Authentication

m When using certificate authentication, authorized users are identified by their
e-mail address. The e-mail address maps the external identity of a principal
represented by adigital certificate to an identity used by a CORBA application.

You use thet pusr add command to create files containing lists of authorized
principals. The t pusradd command adds a new principa entry to the BEA Tuxedo
security datafiles. Thisinformation isused by the authentication server to authenticate
principals. Thefile that contains the principalsiscalled t pusr.

Thefileisacolon-delimited, flat ASCI| file, readable only by the system administrator
of the CORBA application. The system file entries have alimit of 512 characters per
line. Thefileiskept in the application directory, specified by the environment variable
$APPDI R. The environment variable $APPDI R must be set to the pathname of the
CORBA application.

Thet pusr add file should be owned by the administrator account. BEA recommends
that the file be protected so that only the owner has read and write privileges for the
file and al other users have only read privileges for the file.

Thet pusradd command has the following options:
m -uuid

The user identification number. The UID must be a positive decimal integer
below 128K. The UID must be unique within thelist of existing identifiers for
the application. The UID defaultsto the next available (unique) identifier greater
than 0.

m -g gid

The group identification number. The GID can be an integer identifier or
character-string name. This option defines the new user’s group membership. It
defaultsto the ot her group (identifier 0).

m -cclient_name

A string of printable characters that specifies the name of the principal. The
name may not contain a colon (:). pound sign (#), or anewline (\n). The
principal name must be unique within the list of existing principals for the
CORBA application.

B usrname

A string of printable characters that specifies the new login nhame of the user.
The name may not contain a colon (:). pound sign (#), or anewline (\n). The

7-4 Using Security in CORBA Applications

Defining Authorized Users

user name must be unique within the list of existing users for the CORBA
application

If you are using the default authentication server, the identity of the 11OP
Listener/Handler (as specified in the SEC_PRI NCI PAL_NANE parameter in the
UBBCONFI Gfile) must be specified inthet pusr file. In addition, all the users of the
CORBA application must be specified in thet pusr file.

If you are using a custom authentication service, define the 110OP Listener/Handler and
the users of the CORBA application in the user registry of the custom authentication
service. In addition, no file called t pusr should appear in $APPDI R If afile by that
name exists, a CORBA/ NO_PERM SSI ON exception will be raised.

Listing 7-2 includes a samplet pusr file.

Listing 7-2 Sampletpusr File

Usr name d tnane Password Entry U d Ganb

m | ozzi “bar” 2 100 0
smart o 1 1 0

pat “t psysadni n” 3 0 8192
but | er “tpsysadm n” 3 N A 8192

Note: Usethe t pgr padd command to add groups of principalsto the BEA Tuxedo
security datafiles.

In addition to thet pusr add and t pgr padd commands, the BEA Tuxedo product
provides the following commands to modify thet pusr and t pgr p files:

m tpusrdel

m tpusrnod

m tpgrpdel

m tpgrpnod

For acompl ete description of the commands, see the BEA Tuxedo Command Reference
in the BEA Tuxedo online documentation.

Using Security in CORBA Applications 7-5

v

Configuring Authentication

Y ou may aready have files containing lists of users and groups on your host system.
Y ou can use them as the user and group files for your CORBA application, but only

after converting them to the format required by the BEA Tuxedo system. To convert
your files, runthet pacl cvt command, as shown in the following sample procedure.
The sample procedure is written for a UNIX host machine.

1

Ensure that you are working on the application MASTER machine and that the
application isinactive.

To convert the/ et ¢/ passwor d file into the format needed by the BEA Tuxedo
system, enter the following command:
tpaclcvt -u /etc/password

This command createsthet pusr file and stores the converted datain it. If the
t pusr fileaready exists, t pacl cvt addsthe converted datato thefile, but it
does not add duplicate user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to

3.

enter a password for each user in thefile.
To convert the/ et ¢/ gr oup file into the format needed by the BEA Tuxedo
system, enter the following command:
tpaclcvt -g /etc/group

This command createsthet pgr p file and stores the converted datain it. If the
t pgr p file aready exists, t pacl cvt addsthe converted datato thefile, but it
does not add duplicate group information to the file.

Defining a Security Level

7-6

As part of defining security for a CORBA application, you need to define the
SECURI TY parameter in the RESOURCES section of the UBBCONFI Gfile. The SECURI TY
parameter has the following format:

* RESOURCES

SECURI TY { NONE| APP_PW USER_AUTH| ACL| MANDATORY_ACL}

Table 7-1 describes the values for the SECURI TY parameter.

Using Security in CORBA Applications

Defining a Security Level

Table 7-1 Valuesfor the SECURITY Parameter

Value

Description

NONE

Indicates that no password or access checking is performed in the
CORBA application.

Tobj : : Princi pal Authenticator::get_auth_type()
returns avalue of TOBJ_NQAUTH.

APP_PW

Indicates that client applications are required to supply an
application password to access the BEA Tuxedo domain. The

t m oadcf command prompts for an application password.
Tobj : : Princi pal Authenticator::get_auth_type()
returnsavalue of TOBJ_SYSAUTH.

USER_AUTH

Indicates that client applications and the | |OP Listener/Handler
are required to authenticate themselves to the BEA Tuxedo
domain using a password. The value USER_AUTH is similar to
APP_PWhbut, in addition, indicatesthat user authentication will be
done during client initialization. Thet m oadcf command
prompts for an application password.

Tobj : : Princi pal Authenticator::get_auth_type()
returns avalue of TOBJ_APPAUTH.

No access control checking is performed at this security level.

ACL

Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
gueue names, and event names. If an associated ACL isnot found
for aname, it is assumed that permission is granted. The

t m oadcf command prompts for an application password.
Tobj : : Princi pal Authenticator::get_auth_type
returns avalue of TOBJ_APPAUTH.

MANDATORY_ACL

Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
queue names, and event names. The value MANDATORY_ACL is
similar to ACL, but permission isdenied if an associated ACL is
not found for thename.Thet m oadcf command promptsfor an

application password.
Tobj : : Princi pal Authenticator::get_auth_type
returns avalue of TOBJ_APPAUTH.

Using Security in CORBA Applications 7-7

v

Configuring Authentication

Note: If the llOP Listener/Handler is configured for using certificate authentication,

the value of the SECURI TY parameter must be USER_AUTH or greater.

Configuring Application Password Security

To configure application password security, complete the following steps:

1

Ensure that you are working on the application MASTER machine and that the
application isinactive.

Set the SECURI TY parameter in the RESOURCES section of the UBBCONFI Gfile to
APP_PW

L oad the configuration by running the t ml oadcf command. Thet ni oadcf
command parses UBBCONFI Gand loads the binary TUXCONFI Gfile to the location
referenced by the TUXCONFI Gvariable.

The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remainsin effect
until you change it by using the passwd parameter of thet madm n command.

Distribute the application password to authorized users of the application through
an offline means such as telephone or letter.

Configuring Password Authentication

7-8

Password authentication requires that in addition to the application password, each
client application must provide a valid username and user-specific data, such asa
password, to interact with the CORBA application. The password must match the
password associated with the username stored in thet pusr file. The checking of user
passwords against the username/password combinationinthet pusr fileiscarried out
by the authentication service AUTHSVC, which is provided by the authentication server
AUTHSVR.

To enable password authentication, complete the following steps:

Using Security in CORBA Applications

Sample UBBCONFIG File for Password Authentication

1. Defineusersand their associated passwordsinthet pusr file. For more
information about the t pusr file, see “Defining Authorized Users’ on page 7-3.

2. Ensure that you are working on the application MASTER machine and that the
application isinactive.

3. Open UBBCONFI Gwith atext editor and add the following lines to the RESOURCES
and SERVERS sections:

* RESOURCES

SECURITY USER_AUTH

AUTHSVC “ AUTHSVC’

* SERVERS

AUTHSVR SRVCGRP="gr oup_nane" SRVI D=1 RESTART=Y GRACE=600 MAXCGEN=2
CLOPT="- A"

CLOPT="- A" causesthet nboot command to pass only the default
command-line options (invoked by " - A") to AUTHSVR when the t mboot
command starts the application.

4. Load the configuration by running thet m oadcf command. Thet ml oadcf
command parses UBBCONFI G and |oads the binary TUXCONFI Gfile to the location
referenced by the TUXCONFI Gvariable.

5. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remainsin effect
until you change it by using the passwd parameter of thet madm n command.

6. Distribute the application password to authorized users of the application through
an offline means such as telephone or |etter.

Sample UBBCONFIG File for Password
Authentication

Listing 7-4 includes a UBBCONFI G file for an application which uses password
authentication. The key sections of the UBBCONFI Gfile are noted in boldface text.

Using Security in CORBA Applications 7-9

4 Configuring Authentication

Listing 7-3 Sample UBBCONFIG File for Password Authentication

* RESOURCES
| PCKEY 55432
DOVAI NI D secur app
MASTER S| TE1
MODEL SHM
LDBAL N
SECURI TY USER AUTH
AUTHSVR “ AUTHSVC’

* MACH NES
"1 CEAXE"
LM D
APPDI R
TUXCONFI G

SI TE1

"D\ TUXDI R sanpl es\ cor ba\ SECURAPP"

"D\ TUXDI R sanpl es\ cor ba\ SECURAPP\resul t s
\'tuxconfig"

TUXDI R "D\ Tux8"

MAXWSCLI ENTS = 10

* GROUPS
SYS GRP
LM D

GRPNO
APP_GRP
LM D

GRPNO

SI TE1

SI TE1

* SERVERS
DEFAULT:
RESTART
MAXGEN

o<

AUTHSVR
SRVCGRP
SRVI D
RESTART
GRACE
MAXGEN = 2

SYS _GRP

TMSYSEVT
SRVCGRP
SRVI D

TMFENAME
SRVCGRP
SRVI D
CLOPT

SYS GRP

o n
N

".A-- -N-M

7-10 Using Security in CORBA Applications

Configuring Certificate Authentication

TMFFENAME
SRVGRP = SYS GRP
SRVID =3
CLOPT ="-A-- -N'
TMFFENAMVE
SRVGRP = SYS GRP
SRVID =4
CLOPT ="-A-- -F"
simpl e_server
SRVGRP = APP_GRP
SRviD =1
RESTART = N
I SL
SRVGRP = SYS GRP
SRVID =5
CLOPT =“-A-- -n//PCWZ::2500"

SEC_PRI NCI PAL_NAME="1| OPLi st ener "
SEC_PRI NCI PAL_PASSVAR="1 SH_PASS"

Configuring Certificate Authentication

Certificate authentication uses the SSL protocol so you need to install the license for
the SSL protocol and configure the SSL protocol before you can use certificate
authentication. Information about installing the license for the SSL protocol can be
foundin Installing the BEA Tuxedo System. For information about configuring the SSL
protocol, see “ Configuring the SSL Protocol” on page 6-1.

Y ou also need an L DAP-enabled directory and certificate authority in place before
using certificate authentication in a CORBA application. Y ou can choose any
LDAP-enabled directory service. You can also choose the certificate authority from
which to obtain certificates and private keys used in a CORBA application. For more
information, see “Managing Public Key Security” on page 4-1.

To enable certificate authentication, complete the following steps:
1. Install the license for the SSL protocol.

2. Set up an LDAP-enabled directory service.

Using Security in CORBA Applications 7-11

4 Configuring Authentication

3. Obtain a certificate and private key for the [IOP Listener/Handler from a
certificate authority.

4. Obtain acertificate and private key for the CORBA application from a certificate
authority.

5. Storethe private keys for the CORBA application in the Home directory of the
user or in the following directories:

Windows 2000

%I'UXDl R udat aobj \ security\keys
UNIX

$TUXDI R/ udat aobj / securi ty/ keys

6. Publish the certificates for the IIOP Listener/Handler, the CORBA application,
and the certificate authority in the LDA P-enabled directory service.

7. Definethe SEC_PRI NCI PAL, SEC_ PRI NCI PAL_LCQOCATI ON, and
SEC_PRI NCI PAL_PASSVAR for the ISL server process in the UBBCONFI Gfile. For
more information, see “Defining Security Parameters for the [IOP
Listener/Handler” on page 6-7.

8. Usethet pusradd command to define the authorized users of your CORBA
application and 110OP Listener/Handler. Use the e-mail addresss of the user in the
t pusr file. For more information about thet pusr file, see “Defining Authorized
Users’ on page 7-3. Use the phase phrase you defined in
SEC_PRI NCI PAL_PASSVAR as the password for the [1OP Listener/Handler.

9. Define aport on the I1OP Listener/Handler for secure communications using the
- S option of the ISL command. For more information, see “Defining a Port for
SSL Network Connections’ on page 6-2.

10. Enable certificate authentication in the I1OP Listener/Handler using the - a option
of the ISL command.

11. Create a Trusted Certificate Authority file (t r ust _ca. cer) that defines the
certificate authorities trusted by the CORBA application. For more information,
see “Defining the Trusted Certificate Authorities’ on page 4-7.

12. Open UBBCONFI Gwith atext editor and add the following lines to the RESOURCES
and SERVERS sections:

* RESOURCES
SECURI TY USER _AUTH

7-12 Using Security in CORBA Applications

Sample UBBCONFIG File for Certificate Authentication

13. Load the configuration by running the t ni oadcf command. Thet nl oadcf
command parses UBBCONFI G and |oads the binary TUXCONFI Gfile to the location
referenced by the TUXCONFI Gvariable.

14. Optionally, create a Peer Rulesfile (peer _val . rul) for both the CORBA
application and the [1OP Listener/Handler. For more information, see “Creating a
Peer Rules File” on page 4-9.

15. Optionally, modify the LDAP search filefilter to reflect the hierarchy in placein
your enterprise. For more information, see “Editing the LDAP Search Filter File”
on page 4-5.

To enable certificate authentication, complete one of the following:

m Usethe-a option of the ISL command to specify that certificate authentication
must be used by applications connecting to the I10P Listener/Handler.

m Usethe- ORBmut ual Aut h command-line option on the ORB to specify that
certificate authentication must be used by applications connecting to the
CORBA C++ ORB.

Enabling certificate authentication requires the license for the SSL protocal to be
installed. If the - a option or the - ORBnut ual Aut h command-line option is executed
and alicense to enable the use of the SSL protocol does not exist, the 11OP
Listener/Handler or CORBA C++ ORB will not start.

Sample UBBCONFIG File for Certificate
Authentication

Listing 7-4includesaUBBCONFI G filefor aCORBA application which usescertificate
authentication. The key sections of the UBBCONFI Gfile are noted in boldface text.

Listing 7-4 Sample UBBCONFIG Filefor Certificate Authentication

* RESOURCES
| PCKEY 55432
DOVAI NI D si npapp

Using Security in CORBA Applications 7-13

4 Configuring Authentication

MASTER SI TE1
MODEL SHM

LDBAL N
SECURITY USER AUTH
AUTHSVR “ AUTHSVC’

* MACHI NES
"1 CEAXE"
LM D = SITEL
APPDI R = "D\ TUXDI R sanpl es\ cor ba\ SI MPAP~1"
TUXCONFIG = "D\ TUXDI R sanpl es\ cor ba\ SI MPAP~1

\resul ts\tuxconfig"
TUXDI R = "D\ TUX8"
MAXWSCLI ENTS = 10

* GROUPS
SYS GRP
LM D

GRPNO
APP_GRP
LM D

GRPNO

SI TE1

SI TE1

* SERVERS
DEFAULT:
RESTART
MAXGEN

o<

AUTHSVR
SRVCGRP
SRVI D
RESTART
GRACE
MAXGEN = 2

SYS _GRP

TMBYSEVT
SRVCGRP
SRVI D

TMFENAME
SRVCGRP
SRVI D
CLOPT

SYS _GRP

I n
N

".A-- -N-M

TMFENAME
SRVCGRP
SRVI D
CLOPT

SYS _GRP

I n
w

NN

7-14 Using Security in CORBA Applications

Configuring Access Control

TMFFENAME
SRVGRP = SYS GRP
SRVID =4
CLOPT ="-A-- -F"
simpl e_server
SRVGRP = APP_GRP
SRviD =1
RESTART = N
I SL
SRVGRP = SYS GRP
SRVID =5
CLOPT = "-A-- -a -z40 -Z128 -S2458 -n //| CEAXE: 2468"

SEC_PRI NCl PAL_NAME="1| | CPLi st ener™
SEC_PRI NCl PAL_LOCATI ON="1| CPLi st ener . pent
SEC_PRI NCI PAL_PASSVAR="1 SH_PASS"

Configuring Access Control

Note: Access control only appliesto the default authorization implementation. The
default authorization provider for the CORBA security environment does not
enforce access control checks. In addition, the setting of the SECURI TY
parameter in the UBBCONFI G file does not control or enforce access control
used by third-party authorization implementation.

There are two levels of access control security: optional access control list (ACL) and
mandatory access control list (MANDATORY_ACL). Only when users are authenticated to
join an application does the access control list become active.

By using an access control list, a system administrator can organize users into groups
and associ ate the groups with obj ects that the member users have permission to access.
Access control is done at the group level for the following reasons:

m System administration is simplified. It is easier to give a group of people access
to anew object than it isto give individual users access to the object.

m Performance isimproved. Because access permission needs to be checked for
each invocation of an entity, permission should be resolved quickly. Because
there are fewer groups than users, it is quicker to search through alist of
privileged groups than it is to search through alist of privileged users.

Using Security in CORBA Applications 7-15

v

Configuring Authentication

When using the default authorization provider, the access control checking featureis
based on the following files that are created and maintained by the system
administrator:

®m tpusr containsalist of users
m tpgrp containsalist of groups

m tpacl containsalist of ACLs

Configuring Optional ACL Security

7-16

The difference between ACL and MANDATORY_ACL is the following.
m In ACL mode, a service request will be allowed if thereis not a specific ACL.

® |n MANDATORY_ACL mode, the service request is denied if thereis not a specific
ACL.

Optional ACL Security requires that each client provide an application password, a
username, and user-specific data, such as a password, to join the application.

To configure optional ACL security, complete the following steps:

1. Ensure that you are working on the application MASTER machine and that the
application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the RESOURCES
and SERVERS sections:

* RESOURCES

SECURI TY ACL

AUTHSVC “ AUTHSVC’

* SERVERS

AUTHSVR SRVGRP="gr oup_nane" SRVI D=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="- A"

CLOPT="- A" causesthet nboot command to pass only the default
command-line options (invoked by " - A") to AUTHSVR when thet nboot
command starts the application. By default, AUTHSVR uses the user information

Using Security in CORBA Applications

Configuring Access Control

inthet pusr fileto authenticate clients that want to interact with the CORBA
application.

3. Load the configuration by running thet m oadcf command. Thet m oadcf
command parses UBBCONFI G and |oads the binary TUXCONFI Gfile to the location
referenced by the TUXCONFI Gvariable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remainsin effect
until you change it by using the passwd command of t madni n.

5. Distribute the application password to authorized users of the application through
an offline means such as telephone or |etter.

Configuring Mandatory ACL Security

Mandatory ACL security level requires that each client provide an application
password, a username, and user-specific data, such as a password, to interact with the
CORBA application.

To configure mandatory ACL security, perform the following steps:

1. Ensure that you are working on the application MASTER machine and that the
application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the RESOURCES
and SERVERS sections:

* RESOURCES

SECURI TY MANDATORY_ACL

AUTHSVC .. AUTHSVC

* SERVERS

AUTHSVR SRVCGRP="gr oup_nane" SRVI D=1 RESTART=Y GRACE=600 MAXCGEN=2
CLOPT="- A"

CLOPT="- A" causesthet nboot command to pass only the default
command-line options (invoked by " - A") to AUTHSVR when the t mboot
command starts the application. By default, AUTHSVR uses the client user
information in thet pusr file named to authenticate clients that want to join the

Using Security in CORBA Applications 7-17

4 Configuring Authentication

application. Thet pusr file residesin the directory referenced by the first

pathname defined in the application’s APPDI R variable.

3. Load the configuration by running thet m oadcf command. Thet m oadcf
command parses UBBCONFI Gand loads the binary TUXCONFI Gfile to the location

referenced by the TUXCONFI Gvariable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remainsin effect
until you change it by using the passwd command of t madmi n.

5. Distribute the application password to authorized users of the application through

an offline means such as telephone or letter.

Setting ACL Policy Between CORBA Applications

Astheadministrator, you use the following configuration parametersto set and control
the access control list (ACL) policy between CORBA applications that reside in

different BEA Tuxedo domains.

Parameter Name Description

Setting

ACL_PQLI CY in DMCONFI G May appear in the DM_REMOTE_DOVAI NS

(TA_DVACLPQLI CY in DM M B) section of the DMCONFI Gfile for each remote
domain access point. Its value for a particul ar
remote domain access point determines whether
or not the local domain gateway modifies the
identity of service requests received from the
remote domain.*

LOCAL or GLOBAL.
Default is LOCAL.

LOCAL means modify
the identity of service
requests, and GLOBAL
means pass service
requests with no
change. DOVAI NI D
string for the remote
domain access point.

* A remote domain access point is a so known as an RDOM(pronounced “are dom”) or simply remote domain.

Thefollowing bullets explain how the ACL_POLI CY configuration affectsthe operation

of local domain gateway (GATDOVAI N) processes.

m Whenusing aloca ACL policy, each domain gateway (GATDOMAI N) modifies
inbound CORBA client requests (reguests originating from the remote

7-18 Using Security in CORBA Applications

Configuring Access Control

application and received over the network connection) so that they take on the
DOMVAI NI D for the remote domain access point and thus have the same access
permissions as that identity. Each domain gateway passes outbound client
requests without change.

In this configuration, each application has an ACL database containing entries
only for usersin its own domain.

m When using aglobal ACL policy, each domain gateway (GATDOVAI N) passes
inbound and outbound CORBA client requests without change. In this
configuration, each application has an ACL database containing entries for users
in itsown domain as well as usersin the remote domain.

Impersonating the Remote Domain Gateway

If the domain gateway receives a client request from a remote domain for which the
ACL_PQLI CY parameter is set (or defaulted) to LOCAL in the local DMCONFI Gfile, the
domain gateway removes any tokens from the request and creates an application key
containing the DOVAI NI D of the remote domain access point.

Example DMCONFIG Entries for ACL Policy

In Listing 7-5, the connection through the remote domain access point b01 is
configured for global ACL in the local DMCONFI Gfile, meaning that the domain
gateway process for domain access point c01 passes client requests from and to
domain access point b01 without change.

Listing 7-5 Sample DM CONFIG Filefor ACL Policy

*DM_LOCAL_DOVAI NS
<LDOM nane> <Gteway G oup nanme> <donmi n type> <domain id>

[<connection principal nane>] [<security>]...
c01 GWGRP=bankgl
TYPE=TDOVAI N

DOVAI NI D=" BA. CENTRALO1"
CONN_PRI NCI PAL_NAVE=" BA. CENTRALO1"
SECURI TY=DM PW

Using Security in CORBA Applications 7-19

4 Configuring Authentication

* DM_REMOTE_DOVAI NS
<RDOM name> <donmi n type> <domain id> [<ACL policy>]
[<connection principal name>] [<local principal name>]...
b01 TYPE=TDOVAI N
DONAI NI D=" BA. BANKO1"
ACL_POLI CY=GLOBAL
CONN_PRI NCI PAL_NAMVE=" BA. BANKO1"

Configuring Security to Interoperate with
Older WebLogic Enterprise Client
Applications

It may be necessary for CORBA erver applicationsin aBEA Tuxedo domain to
securely interoperate with client applicationsthat were built with the security features
available in the 4.2 and 5.0 releases of the WebL ogic Enterprise product. To allow
CORBA server applications to interoperate with older, secure client applications, you
need to either set the CLOPT -t option in the UBBCONFI Gfile or specify the

-ORBi nt er @ command-line option on the CORBA object request broker (ORB).

By setting the CLOPT -t option or specifying the-ORBi nt er OP command-line option,
you arelowering the effectivelevel of security for aCORBA server. Therefore, the use
of compatibility mode should be carefully considered before enabling the mode in a
server application.

Y ou need to set the CLOPT -t option on any server applications that will interoperate
with the older client application. The CLOPT -t option is specified in the * SERVERS
section of the UBBCONFI Gfile.

Listing 7-6 Example UBBCONFIG File Entriesfor Interoperability

* SERVERS
SecureSrv SRVGRP=gr oup_nane SRVI D=server _nunber
CLOPT=A -t..

7-20 Using Security in CORBA Applications

Configuring Security to Interoperate with Older WebLogic Enterprise Client Applica-

If you are using aremote CORBA C++ ORB, specify the -ORBi nt er Op command-line
option on the ORB to allow the ORB to interoperate with client application using the
security featuresin the 4.2 or 5.0 releases of the WebL ogic Enterprise product.

Using Security in CORBA Applications 7-21

4 Configuring Authentication

7-22 Using Security in CORBA Applications

CHAPTER

8 Configuring Single
Sign-on

Thistopic includes the following sections:
m Single Sign-on with Password Authentication
m Single Sign-on with Password Authentication and the SSL Protocol

m Single Sign-on with the SSL Protocol and Certificate Authentication

Single Sign-on with Password
Authentication

The steps for implementing single sign-on with password authentication are as
follows:

1. Inthe CORBA. connect i onpool section of the webl ogi c. properti es filg,
define the following properties:

e appaddrlist=//host:port

where the host and port specify the name and port number of the [lOP
Listener/Handler in the BEA Tuxedo domain used with your CORBA
application. For more information about the different address formats
supported in CORBA applications, see “Writing a CORBA Application that
Implements Security” on page 10-1.

Using Security in CORBA Applications 8-1

8 Configuring Single Sign-on

e user nane asthe name of the WebL ogic Server User.
e user passwor d asthe password for the WebL ogic Server User

e apppasswor d asthe password of the CORBA application you want to
access.

e securitycontext asYes. Yesindicates that you want the security context
of the WebL ogic Server User passed to the BEA Tuxedo domain.

Note: There are other properties in the CORBA. connect i onpool section of the
webl ogi c. properti es file that are used to set up the connection pool. For
more information about setting up CORBA connection pools, see Using
WebL ogic Enterprise Connectivity in the WebL ogic Server online
documentation.

2. Usethet pusradd command to define the WebL ogic Server User asan
authorized user in the BEA Tuxedo domain. The username and password for the
WebL ogic Server User must appear inthet pusr file exactly asthey are defined
inthewebl ogi c. properti es file.

3. Set - E option of the ISL command to configure the [IOP Listener/Handler to
detect and utilize the propagated security context from the WebL ogic Server
security realm. The - E option of the ISL command requires you to specify a
principal name. The principal name isthe username as defined in the
webl ogi c. properti es file. The|SL command for the IIOP Listener/Handler is
defined for the CLOPT parameter in the UBBCONFI Gfile for the BEA Tuxedo
domain.

4. Setthe SECURI TY parameter inthe UBBCONFI G fileto USER_AUTH or higher.

Single Sign-on with Password
Authentication and the SSL Protocol

The steps for implementing single sign-on with password authentication and the SSL
protocol are as follows:

8-2 Using Security in CORBA Applications

Single Sign-on with Password Authentication and the SSL Protocol

1. Configurethe SSL protocol in the WebL ogic Server and the BEA Tuxedo CORBA
environments.

For information about configuring the SSL protocol in the WebL ogic Server
environment, see Managing Security in the WebL ogic Server online
documentation.

For information about configuring the SSL protocol in the CORBA environment,

see

“Single Sign-on” on page 3-24.

2. Inthe CORBA. connect i onpool section of the webl ogi c. properti es file
define the following properties:

Note:

appaddr | i st =cor bal ocs: // host: port

where the host and port specify the name and port number of the IlOP
Listener/Handler in the BEA Tuxedo domain you want to access. For more
information about the different address formats supported in CORBA
applications, see “ Using the Bootstapping Mechanism” on page 10-1.

user name as the name of the WebL ogic Server User.
user passwor d asthe password for the WebL ogic Server User.

apppasswor d as the password of the CORBA application you want to
access.

securitycontext asYes. Yesindicatesthat you want the security context
of the WebL ogic Server User passed to the BEA Tuxedo domain.

m nencryptionl evel and maxecryptionl evel . These are optional
properties. The valid values are 0, 40, 56, and 128. The default is 40 for the

m nencryptionl evel property. Themaxecryptionl evel property defaults
to the maximum strength allowed by the license. These two properties are
used at the time of the SSL handshake to determine the encryption strength
that will be used between the WebL ogic Server and BEA Tuxedo CORBA
environments.

There are other properties in the CORBA. connect i onpool section of the
webl ogi c. proper ti es filethat are used to set up CORBA connection pools.
For more information about setting up connection pools, see Using WebLogic
Enterprise Connectivity in the WebL ogic Server online documentation.

Using Security in CORBA Applications 8-3

8

Configuring Single Sign-on

3. Usethet pusradd command to define the WebL ogic Server User asan

authorized user in the BEA Tuxedo domain. The username and password for the
WebL ogic Server User must appear inthet pusr file exactly asthey are defined
inthewebl ogi c. properti es file.

. Set - E option of the ISL command to configure the IIOP Listener/Handler to

detect and utilize the propagated security context from the WebL ogic Server
security realm. The - E option of the ISL command requires you to specify a
principal name. The principal name isthe username as defined in the

webl ogi c. properti es file. TheSL command for the IIOP Listener/Handler is
defined for the CLOPT parameter in the UBBCONFI Gfile for the BEA Tuxedo
domain.

5. Setthe SECURI TY parameter in the UBBCONFI G fileto USER_AUTH or higher.

Single Sign-on with the SSL Protocol and
Certificate Authentication

8-4

The steps for implementing single sign-on with the SSL protocol and certificate
authentication are as follows:

1. Configurethe SSL protocol in the WebL ogic Server and the BEA Tuxedo CORBA

environments.

For information about configuring the SSL protocol in the WebL ogic Server
environment, see Managing Security in the WebL ogic Server online
documentation.

For information about configuring the SSL protocol in the BEA Tuxedo CORBA
environment, see “ Single Sign-on” on page 3-24.

. Inthe CORBA. connect i onpool section of the webl ogi c. properti es file

define the following properties:

e appaddrlist=corbal ocs://host: port

wherethe host and port specify the name and port number of the 11OP
Listener/Handler in the BEA Tuxedo domain you want to access.

e user nane asthe e-mail address of the subject of the digital certificate.

Using Security in CORBA Applications

Single Sign-on with the SSL Protocol and Certificate Authentication

e userpasswor d asthe private key of the digital certificate.

e apppasswor d as the password of the CORBA application you want to
access.

e securitycontext asYes. Yesindicatesthat you want the security context
of the WebL ogic Server User passed to the BEA Tuxedo domain.

e ninencryptionl evel and maxecr ptionl evel . These are optional
properties. The valid values are 0, 40, 56, and 128. The default is 40 for the
m nencryptionl evel property. Themaxecryptionl evel property defaults
to the maximum strength allowed by the license. These two properties are
used at the time of the SSL handshake to determine the encryption strength
that will be used between the WebL ogic Server and BEA Tuxedo CORBA
environments.

e certificatebasedauth asYes. Yesindicatesthat certificate
authentication isto be used.

Note: There are other properties in the CORBA. connect i onpool section of the

webl ogi c. properti es filethat are used to set up the CORBA connection
pool. For more information about setting up connection pools, see Using
WebL ogic Enter prise Connectivity in the WebL ogic Server online
documentation.

. Usethet pusradd command to define the WebL ogic Server User as an
authorized user in the BEA Tuxedo domain. The username and password for the
WebL ogic Server User must appear inthet pusr file exactly as they are defined
inthewebl ogi c. properti es file.

. Set - E option of the ISL command to configure the IOP Listener/Handler to
detect and utilize the propagated security context from the WebL ogic Server
security realm. The - E option of the ISL command requires you to specify a
principal name. The principal name is the username as defined in the

webl ogi c. properti es file. The ISL command for the [IOP Listener/Handler is
defined for the CLOPT parameter in the UBBCONFI Gfile for the BEA Tuxedo
domain.

. Set the -aoption of the ISL command to configure the 1OP Listener/Handler to
enabl e certificate authentication. The ISL command for the [1OP Listener/Handler
is defined for the CLOPT parameter in the UBBCONFI Gfile for the BEA Tuxedo
domain.

. Set the SECURI TY parameter in the UBBCONFI G fileto USER_AUTH or higher.

Using Security in CORBA Applications 8-5

8

Configuring Single Sign-on

8-6

Using certificate authentication between the WebL ogic Server environment and the
BEA Tuxedo CORBA environment implies performing a new SSL handshake to
establish a connection from the WebL ogic Server environment to a CORBA object in
the BEA Tuxedo CORBA environment. In order to support multiple client requests
over the same SSL network connection, certificate authentication must be set up as
follows:

m Obtain adigital certificate for the WebL ogic Enterprise Connectivity process.
This digital certificateis presented to the BEA Tuxedo CORBA environment for
the purpose of authenticating the identity of the WebL ogic Enterprise
Connectivity process. Once established, the authenticated connection between
the WebL ogic Enterprise Connectivity product and the BEA Tuxedo
environment remains.

m When aclient request is made from the WebL ogic Server environment on a
CORBA object in the BEA Tuxedo CORBA environment, digital certificates are
exchanged between the environments and session keys are generated for both
sides of the connection. Because WebL ogic Connectivity is part of WebL ogic
Server, the WebL ogic Connectivity process will accept any message from the
BEA Tuxedo CORBA environment that has the sessions keys that were created
when the SSL connection was established between the environments. The
WebL ogic Enterprise Connectivity process then forwards the client request using
the established SSL connection to the BEA Tuxedo environment.

Using Security in CORBA Applications

CHAPTER

O Configuring Security
Plug-ins

Thistopic includes the Registering the Security Plug-ins (SPIs) section.
Registering the Security Plug-ins (SPIs)

The CORBA and ATMI environmentsin the BEA Tuxedo product use a common
transaction processing (TP) infrastructure that consists of a set of core services, such
as security. The TP infrastructure is available to CORBA applications through well
defined interfaces. These interfaces allow system administratorsto change the default
behavior of the TP infrastructure by loading and linking their own service code
modules, referred to as security plug-ins.

In order to use a security plug-in, you need to register the security plug-in with the
BEA Tuxedo system. The registry of the BEA Tuxedo system is a disk-based
repository for storing information rel ated to the security plug-ins. Initialy, thisregistry
holds information about the default security plug-ins. Additional entries are made to
the registry as custom security plug-ins are added to the BEA Tuxedo system. The
registry entry for asecurity plug-in isaset of binary filesthat storesinformation about
the plug-in. Thereis oneregistry per BEA Tuxedo installation. Every client
application, server application, and server machine in aparticular CORBA application
must use the same set of security plug-ins.

Theregistry islocated in the following directory:

Using Security in CORBA Applications 9-1

9 Configuring Security Plug-ins

Windows 2000
$TUXDI R\ udat aobj
UNIX

$TUXDI R/ udat aobj

The system administrator of a CORBA application in which custom security plug-ins
are used isresponsiblefor registering those plug-ins. A system administer can register
security plug-insin the registry of the BEA Tuxedo system only from the local
machine. That is, asystem administrator cannot register security plug-inswhilelogged
on to the host machine from a remote | ocation.

The following commands are available for managing security plug-ins:
m epi f reg—for registering a security plug-in

m epi f unreg—for unregistering a security plug-in

B epi f regedt —for editing registry information

Instructions for using these commands are available in Developing Security Services
for ATMI and CORBA Environments. (This document contains the specifications for
the Security SPIs, and describes the BEA Tuxedo plug-in framework feature that
makes the dynamic loading and linking of security plug-ins possible.) To obtain this
document, see your BEA account executive.

Wheninstalling custom security plug-ins, the security vendor that provided the plug-in
should provide instructions for using the commands to set up the registry for the BEA
Tuxedo system in order to access the customer security plug-ins.

9-2 Using Security in CORBA Applications

Part Il1 Security
Programming

Chapter 10. Writing a CORBA Application that
Implements Security

Chapter 11. Building and Running the CORBA Sample
Applications

Chapter 12. Troubleshooting

CHAPTER

10 writing a CORBA

Application That
Implements Security

Thistopic includes the following sections:

Using the Bootstrapping M echanism

Using Password Authentication

Using Certificate Authentication

Using the Interoperable Naming Service Mechanism

Using the Invocations Options Required() Method

Using the Bootstrapping Mechanism

Note: This mechanism should be used with the BEA CORBA client applications.

The Bootstrap object in the BEA Tuxedo CORBA environment has been enhanced so
that users can specify that all communication to a given IOP Listener/Handler be
protected. The Bootstrap object supports cor bal oc and cor bal ocs Uniform
Resource Locator (URL) address formats to be used when specifying the location of
the 110OP Listener/Handler. The type of security provided depends on the format of
URL used to specify the location of the I1OP Listener/Handler.

Using Security in CORBA Applications 10-1

10 Writing a CORBA Application That Implements Security

Aswith the Host and Port address format, you use the URL address formats to specify
the location of the [1OP Listener/Handler, but the bootstrapping process behaves
differently. When using the cor bal oc or cor bal ocs URL address format, theinitial
connection to the I1OP Listener/Handler is deferred until either:

The principal uses password authentication with either the
Tobj : : Princi pal Aut henti cat or: : | ogon or the
SecuritylLevel 2:: Princi pal Aut henti cat or: : aut henti cat e methods.

Theprincipal callsthe Tobj _Bootstrap::resol ve_initial_references
method using an object | D value other than SecurityCurrent.

Using the cor bal ocs URL address format indicates that the SSL protocol is used to
protect at least the integrity of the connection between the principal and the [IOP
Listener/Handler.

Table 10-1 highlights the differences between the two URL address formats.

Table 10-1 Differences Between corbaloc and cor balocs URL Address For mats

URL AddressFormats Functionality

cor bal oc

By default, invocations on the I1OP Listener/Handler are unprotected.
Configuring the 11OP Listener/Handler for the SSL protocol is optional.

A principal can secure the bootstrapping process by using the

aut henti cat e() method of the

SecuritylLevel 2:: Princi pal Aut henti cat or interffaceand the
i nvocati on_options_required() method of the
SecuritylLevel2:: Credenti al s interface to specify that certificate
authentication is to be used.

cor bal ocs

Invocations on the I1OP Listener/Handler are protected and the [l OP
Listener/Handler or the CORBA C++ ORB must be configured to enable the use
of the SSL protocol. For more information, see “ Configuring the SSL Protocol”
on page 6-1.

Both the cor bal oc and cor bal ocs URL address formats provide stringified object
references that are easily manipulated in both TCP/IP and Domain Name System
(DNS) environments. The cor bal oc and cor bal ocs URL address formats contain a
DNS-style host name or an |P address and port.

10-2 Using Security in CORBA Applications

Using the Bootstrapping Mechanism

The URL address formatsfollow and extend the definition of object URL s adopted by
the Object Management Group (OMG) as part of the Interoperable Naming Service
submission. The BEA Tuxedo software a so extends the URL format described in the
OMG Interoperable Naming Service submission to support a secure form that is
modeled after the URL for secure HTTP, aswell asto support functionality in previous
releases of the WebL ogic Enterprise product.

Listing 10-1 contains examples of the new URL address formats.

Listing 10-1 Examples of the corbaloc and corbalocs URL Address For mats

corbal oc://555xyz. com 1024, cor bal oc: // 555backup. com 1022,

cor bal oc:/ /555l ast. com 1999

cor bal ocs: //555xyz. com 1024, (cor bal ocs: // 555backup. com 1022| cor ba
| ocs: // 555l ast. com 1999)

corbal oc://555xyz.com 1111

corbal ocs://24.128.122.32:1011, corbal ocs://24.128.122.34

As an enhancement to the URL syntax described in the OMG Interoperable Naming
Service submission, the BEA Tuxedo product extends the syntax to support alist of
multiple URLSs, each with a different scheme. Listing 10-2 contains exampl es of
specifying multiple URLSs.

Listing 10-2 Examples of Specifying Multiple URL Address Formats

cor bal ocs: //555xyz. com 1024, cor bal oc://555xyz. com 1111
cor bal ocs: // ct xobj.com 3434, corbal ocs://nt hd. com 3434, corbal oc://force.com 1111

In the examples in Listing 10-2, if the parser reaches the URL

corbal oc://force. com 1111, it resetsitsinternal state asif it had never attempted
secure connections, and then begins attempting unprotected connections. This
situation occursiif the client application has not set any SSL parameters on the
Credentials object.

Thefollowing sections describe the behavior when using the different address formats
of the Bootstrap object.

Using Security in CORBA Applications 10-3

10 Writing a CORBA Application That Implements Security

Using the Host and Port Address Format

If a CORBA client application uses the Host and Port address format of the Bootstrap
object, the constructor method of the Bootstrap object constructs an object reference
using the specified host name and port number. The invocation to the |1OP
Listener/Handler is made without the protections offered by the SSL protocol.

The client application can still authenticate using password authentication. However,
since the bootstrapping processis performed over an unprotected and unverified link,
all communications are vulnerable to the following security attacks:

The Man-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal .

The Denial of Service attack, because no object references were returned, the
object references returned wereinvalid, or the security token was invalid.

The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

The Tamper attack, because the integrity of the information is not protected. The
contents of the message could be changed and the change would not be detected.

The Replay attack, because the same request can be sent repeatedly without
detection.

Note: If the lIOP Listener/Handler is configured for the SSL protocol and the Host

and Port address format of the Bootstrap object is used, the invocation on the
specified CORBA object resultsin al NVALI D_DOVAI N exception.

Using the corbaloc URL Address Format

10-4

By default, theinvocation on the |1 OP Listener/Handler is unprotected when using the

cor bal oc URL address format and password authentication. Therefore, all
communications are vulnerable to the following security attacks:

The Man-in-the-Middle attack, because there was no verification that the
principal to which the connection was made was the desired principal .

Using Security in CORBA Applications

Using the Bootstrapping Mechanism

m The Denia of Service attack, because no object references were returned, the
object references returned were invalid, or the security token wasinvalid.

m The Sniffer attack, because the information was sent in the clear so that anyone
with a packet sniffer can see the content of a message that was not encrypted
(for example, only the username/password information is encrypted).

m The Tamper attack, because the integrity of the information is not protected. The
content of the message could be changed and the change would not be detected.

m The Replay attack, because the same request can be sent repeatedly without
detection.

Y ou can protect the bootstrapping process when using the cor bal oc URL address
format by using the

SecuritylLevel 2:: Princi pal Aut henticator:: aut henti cat e() method,
specifying that certificate authentication is to be used, and setting the

i nvocat i on_net hods_r equi r ed method on the Credentials object.

Note: If the [IOP Listener/Handler is configured for the SSL protocol but not
configured for certificate authentication and the cor bal oc URL address
format is used, the invocation on the specified CORBA object resultsin an
I NVALI D_DOMAI N exception.

BEA recommends that existing CORBA applications migrate to the cor bal oc URL
address format instead of using the Host and Port Address format.

Using the corbalocs URL Address Format

Thecor bal ocs URL addressformat isthe recommended format to useto ensure that
communications between principals and the Il OP Listener/Handler are protected. The
cor bal ocs URL address format functionsin the ssmeway asthe cor bal oc URL
address format, except the SSL protocol isused to protect all communications with the
[1OP Listener/Handler or the CORBA C++ ORB regardless of the type of
authentication used.

When the defaults are used with the cor bal ocs URL addressformat, communications
are vulnerable only to Denial of Service security attacks. Using the SSL protocol and
certificate authentication guards against Sniffer, Tamper, and Replay attacks. In
addition, the validation check of the host specified in the digital certificate guards
against Man-in-the-Middle attacks.

Using Security in CORBA Applications 10-5

10 Writing a CORBA Application That Implements Security

Tousethecor bal ocs URL addressformat, the [1OP Listener/Handler or the CORBA
C++ ORB must be configured to enable the use of the SSL protocol. For more
information about configuring the Il OP Listener/Handler or the CORBA C++ ORB for
the SSL protocol, see “ Configuring the SSL Protocol” on page 6-1.

Using Password Authentication

This section describes implementing password authentication in a CORBA
applications.

The Security Sample Application

The Security sample application demonstrates password authentication. The Security
sample application requires each student using the application to havean ID and a
password. The Security sample application works in the following manner:

1. Theclient application hasalogon method. This method invokes operations on the
Principal Authenticator object, which is obtained as part of the process of logging
on to access the domain.

2. Theserver application implements aget _student _det ai | s() method on the
Regi st rar object to return information about a student. After the user is
authenticated and the logon is complete, the get _st udent _det ai | s() method
accesses the student information in the database to obtain the student information
needed by the client logon method.

3. Thedatabase in the Security sample application contains course and student
information.

Figure 10-1 illustrates the Security sample application.

10-6 Using Security in CORBA Applications

Using Password Authentication

Figure10-1 Security Sample Application

CORBA C++
Client
Application

browse_courses()

get _course_detail s()

CORBA Java
Client
Application

ActiveX Client
Application

A

» | ogon()

™ get _student _details() K

Server
Application

« Registrar Object

CORBA

|:| Security Required

The source files for the Security sample application are located in the

\'sanpl es\ cor ba\ uni versity directory in the BEA Tuxedo software. For
information about building and running the Security sample application, see the Guide
to the CORBA University Sample Applications.

Writing the Client Application

Database

When using password authentication, write client application code that does the

following:

1. UsestheBootstrap object to obtain areference to the Security Current object for the
specific BEA Tuxedo domain. You can use the Host and Port Address format, the
cor bal oc URL address format, or the cor bal ocs URL address format.

2. Getsthe Principal Authenticator object from the SecurityCurrent object.

3. Usesone of the following methods to authenticate the principal:

Using Security in CORBA Applications 10-7

10 Writing a CORBA Application That Implements Security

10-8

e C++—SecurityLevel 2::Principal Authenticator::authenticate()
using Tobj : : TuxedoSecurity

e Java—SecuritylLevel 2. Princi pal Aut henti cat or. aut henti cat e()
using Tobj : : TuxedoSecurity

e C++—Tobj :: Princi pal Aut henticator:: I ogon()

e Java—Tobj . Princi pal Aut henti cat or. | ogon()

TheSecuritylLevel 2:: Princi pal Aut henti cat or interfaceis defined inthe
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. There are two methods
because authentication of principals may require more than one step. The

aut henti cat e() method allowsthe caller to authenticate and optionally select
attributes for the principal of this session.

The CORBA environment extends the Principal A uthenticator object with
functionality to support similar security to that found in the ATMI environment in the
BEA Tuxedo product. The enhanced functionality is provided by the

Tobj : : Pri nci pal Aut henti cat or interface.

The methods defined for the Tobj : : Pri nci pal Aut hent i cat or interface provide a
focused, simplified form of the equivalent CORBA-defined interface. Y ou can use
either the CORBA -defined or the BEA Tuxedo extensionswhen developingaCORBA
application.

The Tobj : : Pri nci pal Aut henti cat or interface provides the same functionality as
the SecuritylLevel 2:: Princi pal Aut hent i cat or interface. However, unlike the
SecuritylLevel 2:: Princi pal Aut henti cator:: aut henti cate() method, the

I ogon() method of the Tobj : : Pri nci pal Aut henti cat or interfacedoesnot return
aCredentials object. Asaresult, CORBA applications that need to use more than one
principal identity are required to call the Current : : get _credenti al s() method
immediately after the 1 ogon() method to retrieve the Credentials object as a result
of the logon. Retrieval of the Credentials object directly after alogon method should
be protected with serialized access.

Note: The user data specified as part of the logon cannot contain embedded NULLs.

Thefollowing sections contain C++ and Java code examples that illustrate
implementing password authentication. For a Visual Basic code example, see
“ Automation Security Reference” on page 17-1.

Using Security in CORBA Applications

Using Password Authentication

C++ Code Example That Uses the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method

Listing 10-3 contains C++ code that performs password authentication using the
SecuritylLevel 2:: Princi pal Aut henti cat or: : aut hent i cat e() method.

Listing 10-3 C++ Client Application That Usesthe
SecurityL evel2::Principal Authenticator ::authenticate() M ethod

/] Create Bootstrap object
Tobj _Boot strap* bootstrap = new Tobj Bootstrap(orb,
corbal ocs://sling.com2143);

/] Get SecurityCurrent object
CORBA: : (hj ect _var var_security current_oref =

boot strap.resolve_initial _references(“SecurityCurrent”);
SecuritylLevel 2::Current_var var_security current_ref =

SecuritylLevel 2::Current:: _narrowvar_security current_oref.in());

/1 Get the Principal Aut henti cat or
SecuritylLevel 2:: Princi pal Authenticator_var var_principal authenticator =
var_security_current_oref->principal _authenticator();

const char * user_nane = “john”

const char * client_nane “university”;
char system password[31] {*\0};

char user_password[31] = {*\0"};

Tobj : : Princi pal Authenticator_ptr var_bea_princi pal _authenticator =
Tobj :: Princi pal Authenticator::_narrow var_bea_principal _authenticator.in());

/I Determ ne the security |evel
Tobj :: Aut hType auth_type = var_bea_princi pal _authenticator->get_auth_type();
switch (auth_type)
{
case Tobj :: TOBJ_NOAUTH,
br eak;

case Tobj:: TOBJ_SYSAUTH
strcpy(system password, “sys_pw’);

case Tobj:: TOBJ_APPAUTH
strcpy(system password, “sys_pw’);
strcpy(user_password, “john_pw’);
br eak;

Using Security in CORBA Applications 10-9

10 Writing a CORBA Application That Implements Security

}
if (auth_type != Tobj:: TOBJ_NOAUTH)

{

SecuritylLevel 2:: Credential s_var
Security::
Security:
Security::
Security::

Opaque_var

cAttributelist _var

Opaque_var
Opaque_var

creds;

aut h_dat a;
privil eges;
cont _dat a;

aut h_spec_dat a;

var _bea_pri nci pal aut henti cat or - >bui | d_aut h_dat a(user _nane,

Security:: Aut henti cationStatus status

client_nane,
syst em password,
user _password,
NULL,

aut h_dat a,
privileges);

var _bea_princi pal aut henti cat or->aut henti cat e(

if (status != Security::SecAut hSuccess)

// Failed aut hentication

return;

}
}

/1l Proceed with application

Java Code Example That Uses the

Tobj : : TuxedoSecurity,

user _nane,

aut h_dat a,

privil eges,

creds,

cont _data, auth_spec_data);

SecurityLevel2.PrincipalAuthenticator.authenticate() Method

10-10 Using Security in CORBA Applications

Listing 10-4 contains Java code that performs password authentication using the
SecuritylLevel 2. Pri nci pal Aut hent i cat or. aut hent i cat e() method.

Using Password Authentication

Listing 10-4 Java Client Application That Usesthe
SecurityL evel2.Principal Authenticator.authenticate() M ethod

/1l Oreate Bootstrap object
Tobj _Bootstrap bs =
new Tobj Bootstrap(orb, corbal ocs://sling.com2143);

/1 Get SecurityCurrent object
or g. ong. CORBA. Obj ect secCurnj =
bs.resolve_initial _references("SecurityCurrent");
org.ong. SecuritylLevel 2. Current secCur2Chj =
org.ong. SecuritylLevel 2. Qurrent Hel per. narrow(secCur bj);

/1 Get Principal Authenticator
org.ong. Security. Principal Authenticator princAuth =
secCQur2Qbj . principal _authenticator();
com beasys. Tobj . Pri nci pal Aut henti cator auth =
Tobj . Pri nci pal Aut hent i cat or Hel per. narrow(pri ncAuth);

/1l Get Authentication type
com beasys. Tobj . Aut hType aut hType = auth. get_auth_type();

/1 Initialize argunents
String userNanme = "John";
String clientName = "Tel ler";
String systenmPassword = null;
String userPassword = null;
byte[] userData = new byte[O0];

/1 Prepare argunents according to security |level requested
swi t ch(aut hType. val ue())
{
case com beasys. Tobj . Aut hType. _TPNOAUTH:
br eak;

case com beasys. Tobj . Aut hType. TPSYSAUTH:
syst enPassword = "sys pw';
br eak;

case com beasys. Tobj . Aut hType. TPAPPAUTH:
syst enmPassword = "sys pw';
user Password = "j ohn_pw';
br eak;

}

/1 Build security data
org. ong. Security. OpaqueHol der auth_data =
new or g. ongy. Security. OpaqueHol der () ;

Using Security in CORBA Applications 10-11

10 Writing a CORBA Application That Implements Security

org.ong. Security.AttributeListHolder privs =
new Security.Attributeli st Hol der();
aut h. bui | d_aut h_dat a(user Nnane, clientNanme, systenPassword,
user Passwor d, user Data, authDat a,
privs);

/1 Authenticate user

org.ony. SecuritylLevel 2. Credenti al sHol der creds =
new org. ony. SecuritylLevel 2. O edenti al Hol der ();

org.ony. Security. OpaqueHol der cont _data =
new org. ong. Security. OpaqueHol der();

org.ony. Security. OpaqueHol der auth_spec_data =
new org. ongy. Security. OpaqueHol der();

org.ong. Security. Aut henticati onStatus status =
aut h. aut hent i cat e(com beasys. Tobj . TuxedoSecuri ty. val ue,

0, userNane, auth_data. val ue(),
privs.value(), creds, cont_data,
aut h_spec_data);

if (status != Authenticatoi nStatus. SecAut hSuccess)

Systemexit(1);
}

C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon() Method

Listing 10-5 contains C++ code that performs password authentication using the
Tobj : : Princi pal Aut henti cat or: : | ogon() method.

Listing 10-5 C++ Client Application That Usesthe
Tobj::Principal Authenticator::logon() Method

CORBA: : Cbj ect _var var_security current_oref =
bootstrap.resolve_initial _references(“SecurityCurrent”);
SecuritylLevel 2:: CQurrent_var var_security current_ref =
SecuritylLevel 2::Qurrent:: _narrow var_security current_oref.in());

/1 Get the Principal Aut henti cat or
SecuritylLevel 2:: Princi pal Aut henti cator_var var_princi pal _aut henti cator_oref =
var_security current _oref->principal _authenticator();

/I Narrow the Princi pal Aut henti cat or
Tobj :: Princi pal Aut henti cator _var var_bea_princi pal _authenticator =

10-12 Using Security in CORBA Applications

Using Password Authentication

Tobj : : Princi pal Authenticator:: _narrow
var_princi pal _authenticator_oref.in());

const char * user_nane = “john”

const char * client_nane

char
char

“university”;
syst em passwor d[31] {"\0"};
user _password[31] = {‘\0"};

/I Determ ne the security |evel

Tobj
swi t

{

;. Aut hType auth_type = var_bea_princi pal _authenticator->get_auth_type();
ch (auth_type)

case Tobj:: TOBJ_NQAUTH;
br eak;

case Tobj:: TOBJ_SYSAUTH
strcpy(system password, “sys pw');

case Tobj:: TOBJ_APPAUTH

if (

strcpy(system password, “sys_pw’);

strcpy(user_password, “john_pw’);

br eak;

aut h_type != Tobj:: TOBJ_NOAUTH)
SecuritylLevel 2:: Credential s_var creds;
Security:: Opaque_var aut h_dat a;
Security::Attributelist_var privil eges;
Security:: Opaque_var cont _dat a;
Security:: Opaque_var aut h_spec_dat a;

/I Determne the security |evel

Tobj

::Aut hType auth_type = var_bea_princi pal _authenticator->get_auth_type();

Security::Authenticati onStatus status = var_bea_pri nci pal _aut henti cat or - >l ogon(

if (

user _nane,
client_nane,
system password,
user _password,
0);

status != Security:: SecAut hSuccess)

//Failed authentication
return;

Using Security in CORBA Applications 10-13

10 Writing a CORBA Application That Implements Security

/1 Proceed with application

}}.Log of f
try

I ogoff();
}

Java Code Example That Uses the Tobj.PrincipalAuthenticator.logon() Method

Listing 10-6 contains Java code that performs password authentication using the
Tobj . Pri nci pal Aut henti cat or. | ogon() method.

Listing 10-6 Java Client Application That Usesthe
Tobj.Principal Authenticator.logon() M ethod

/1 COreate bootstrap object
Tobj _Bootstrap bs =
new Tobj Bootstrap(orb, corbaloc://sling.con 2143);

/1 Get security current
or g. ong. CORBA. Obj ect secCurGhj =

bs.resolve_initial _references("SecurityCurrent");
org.ony. SecuritylLevel 2. Current secCur2Chj =

org. ong. SecuritylLevel 2. Current Hel per. narr ow(secCur Obj) ;

/1 Get Principal Authenticator

org.ong. Security. Principal Aut henticator princAuth =
secCur 2Cbj . pri nci pal _aut henticator();

com beasys. Tobj . Pri nci pal Aut henticator auth =
Tobj . Princi pal Aut henti cat or Hel per. narrow(pri ncAut h) ;

/1 Get Authentication type
com beasys. Tobj . Aut hType authType = auth.get_auth_type();

/1 Initialize argunments
String userNanme = "John";
String clientName = "Tel l er";
String systenmPassword = nul | ;
String userPassword = null;
byte[] userData = new byte[O0];

10-14 Using Security in CORBA Applications

Using Certificate Authentication

/1 Prepare argunents according to security |evel
swi t ch(aut hType. val ue())

{
case com beasys. Tobj . Aut hType. TPNQAUTH:

br eak;

case com beasys. Tobj . Aut hType. TPSYSAUTH:
syst enmPassword = "sys pw';
br eak;

case com beasys. Tobj . Aut hType. TPAPPAUTH:
syst enmPassword = "sys pw';
user Password = "j ohn_pw';
br eak;

}

/1 Tuxedo-styl e Authentication
org.ong. Security.AuthenticationStatus status =
aut h. | ogon(user Nane, client Nane, systenPassword,
user Password, userData);

/1 Proceed with application

/1 Log off
try

{
aut h. | ogoff ();

}

Using Certificate Authentication

This section describes implementing certificate authentication in CORBA
applications.

Using Security in CORBA Applications

request ed

10-15

10 Writing a CORBA Application That Implements Security

The Secure Simpapp Sample Application

The Secure Simpapp sampl e appli cation uses the existing Simpapp sample application
and modifies the code and configuration files to support secure communications
through the SSL protocol and certificate authentication.

The server application in the Secure Simpapp sample application provides an
implementation of a CORBA object that has the following two methods:

e Theupper method accepts a string from the client application and converts
the string to uppercase letters.

e Thel ower method accepts a string from the client application and converts
the string to lowercase letters.

The Simpapp sample application was modified in the following ways to support
certificate authentication and the SSL protocol:

Inthel SL section of the UBBCONFI Gfile, the- a, - S, - z, and - Z options of the
ISL command are specified to configure the 11 OP Listener/Handler for the SSL
protocol.

Inthe 1 SL section of the UBBCONFI Gfile, the SEC_PRI NCI PAL_NAME, the
SEC_PRI NCI PAL_LOCATI ON, and the SEC_PRI NCI PAL_PASSVAR parameters are
defined to specify proof material for the I1OP Listener/Handler.

The code for the CORBA client application usesthe cor bal ocs URL address
format.

The code for the CORBA client application usesthe aut hent i cat e() method
of the SecurityLevel 2: Princi pal Aut hent i cat or interface to authenticate
the principal and obtain credentials for the principals.

The source files for the C++ Secure Simpapp sample application are located in the
\ sanpl es\ cor ba\ si npappSSL directory of the BEA Tuxedo software. For
instructions for building and running the Secure Simpapp sample application, see
“Building and Running the CORBA Sample Applications’ on page 11-1.

10-16 Using Security in CORBA Applications

Using Certificate Authentication

Writing the CORBA Client Application

When using certificate authentication, write CORBA client application code that does
the following:

1. UsestheBootstrap object to obtain areference to the Security Current object for the
specific BEA Tuxedo domain. Use the cor bal ocs URL address format.

2. Getsthe Principal Authenticator object from the SecurityCurrent object.

3. Usestheaut henti cat e() method of the
SecuritylLevel 2: Princi pal Aut henti cat or interface to authenticate the
principals and obtain credentials for the principals. When using certificate
authentication, specify Tobj : : Certi fi cat eBased for the met hod argument and
the pass phrase for the private key asthe aut h_dat a argument for
Security:: Qpaque.

The following sections contain C++ and Java code examples that il lustrate
implementing certificate authentication.

C++ Code Example of Certificate Authentication
Listing 10-7 illustrates using certificate authentication in a CORBA C++ client
application.

Listing 10-7 CORBA C++ Client Application That Uses Certificate
Authentication

/1l Initialize the ORB
CORBA: : ORB_var v_orb = CORBA:: CRB_init(argc, argv, "");

/1 Oreate the bootstrap object
Tobj _Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com2143);

/1 Resol ve SecurityCurrent

CORBA: : Cbj ect _ptr seccurobj =

bootstrap.resolve_initial _references("SecurityQurrent");
SecuritylLevel 2::Current_ptr seccur =

Securitylevel 2:: Current::_narrow(seccurobj);

Using Security in CORBA Applications 10-17

10 Writing a CORBA Application That Implements Security

/1 Performcertificate-based authentication
SecuritylLevel 2::Credentials_ptr t he_creds;
Security:: AttributelList_varprivil eges;
Security:: Opaque_var continuation_data;
Security:: Opaque_var auth_specific_data;
Security:: Opaque_var response_dat a;

/I Principal email address

char enmil Address[] = “m | ozzi @i gconpany. conm”
/1 Pass phrase for principal’s digital certificate
char password[] = “asdaw ewe98infldi7;”

/1 Convert the certificate private key password to opaque
unsi gned | ong password_|en = strlen(password);
Security:: Qpaque ssl_auth_dat a(password_I en);

/1 Authenticate principal certificate with principal authenticator
for(int i = 0; (unsigned long) i < password_len; i++)
ssl _auth_data[i] = password[i];

Security:: Aut henti cationSt at us auth_st at us;
SecurityLevel 2:: Principal Aut henti cator_var PA =
seccur ->princi pal _aut henti cator();

aut h_status = PA->aut henti cate(Tobj:: CertificateBased,
emui | Addr ess,
ssl _auth_dat a,
privil eges,
the_creds,
conti nuation_dat a,
aut h_specific_data);

whi | e(aut h_status == Security:: SecAut hContinue) ({
auth_status = PA->conti nue_aut henti cation(
response_dat a,
the_creds,
conti nuation_dat a,
aut h_speci fic_data);

Java Code Example of Certificate Authentication

Listing 10-8 illustrates using certificate authentication in a CORBA Java client
application.

10-18 Using Security in CORBA Applications

Using Certificate Authentication

Listing 10-8 CORBA Java Client Application That Uses Certificate
Authentication

/1l Initialize the ORB.

Properti es Prop;
Prop = new Properties(System getProperties());
Prop. put ("org. ong. CORBA. ORBCI ass", "com beasys. CORBA. i i op. ORB");
Prop. put (" org. ong. CORBA. ORBSI ngl et ond ass",
"com beasys. CORBA. i dl . ORBSi ngl eton");

ORB orb = ORB.init(args, Prop);
/1 Create the Bootstrap object

Tobj Bootstrap bs = new Tobj Bootstrap(orb,
corbal ocs://foo: 2501);

/] Resol ve SecurityCurrent
org. ong. CORBA. obj ect ocurr =
bs.resolve_initial _references(“SecurityCurrent”);
org.ong. SecuritylLevel 2. Current curr =
org.ong. SecuritylLevel 2. Current Hel per. narrow occur);

/1 Get Principal Authenticator

com beasys. Tobj . Pri nci pal Aut henti cator pa =
(com beasys. Tobj . Pri nci pal Aut henti cat or)
curr. principal _authenticator();

OpaqueHol der aut h_data = new OpaqueHol der () ;
AttributeListHolder privileges = new Attri buteLi stHol der();
org.ong. SecuritylLevel 2. Credenti al sHol der creds =
new org. ony. SecuritylLevel 2. O edenti al sHol der ();
OpaqueHol der continuation_data = new OpaqueHol der () ;
OpaqueHol der aut h_specific_data = new QpaqueHol der ();
aut h_dat a. val ue=new String (“deathstar”). getbytes(“UTF8);
i f(pa. authenti cate(com beasys. Tobj. Certi ficateBased. val ue,
“vader @ ar geconpany. conf ,

aut h_dat a. val ue,

privil eges. val ue,

t he_creds,

continuation_dat a,

aut h_speci fi c_dat a)

I Aut henti cati onSt at us. SecAut hSuccess) {
Systemerr.println(“logon failed”);

Using Security in CORBA Applications

10-19

10 Writing a CORBA Application That Implements Security

Systemexit(1l);

Using the Interoperable Naming Service
Mechanism

Note: This mechanism should be used with third-party client ORBs.

To use the Interoperable Naming Service mechanism to access the BEA Tuxedo
domain with the proper credentials, perform the following steps:

1

Usethe ORB: : resol ve_i nitial _ref erences() operationtogeta
SecuritylLevel 2:: Princi pal Aut henti cat or object for the BEA Tuxedo
domain. The Securi tyLevel 2: : Princi pal Aut henti cat or object adheresto
the standard CORBA services Security Service instead of the proprietary BEA
delegated interfaces and contains methods for the purpose of authenticating
principals.

Usethe aut hent i cat e() method of the

SecuritylLevel 2:: Princi pal Aut henti cat or object to log on to the BEA
Tuxedo domain and authenticate the client ORB to the BEA Tuxedo domain. If
security credentials are required to access the BEA Tuxedo domain, the

aut henti cat e() method will return a status indicating that continued
authentication is required.

Usetheconti nue_aut henti cati on() method of the
SecuritylLevel 2:: Princi pal Aut henti cat or object to pass encyrpted logon
and credentia information to the BEA Tuxedo domain.

For more information about using the CORBA Interoperable Naming Service (INS)
mechanism, see the CORBA Bootstrap Object Programming Reference for the
SecuritylLevel 2:: Princi pal Aut henti cat or interface.

10-20 Using Security in CORBA Applications

Using the Invocations_Options_Required() Method

Using the Invocations_Options_Required()
Method

When using certificate authentication, it may be necessary for a principal to explicitly
define the security attributes it requires. For example, a bank application may have
specific security requirementsit needs to meet before the bank application can transfer
datato adatabase. Thei nvocati on_opti ons_requi red() method of the
Securitylevel 2:: Credenti al s interface allows the principal to explicitly control
the security characteristics of the SSL connection. When using the cor bal oc URL
address format, you can secure the bootstrapping process by using the

aut henti cate() andi nvocation_options_required() methods of the
SecuritylLevel 2:: Credenti al s interface.

Tousetheinvocati on_opti ons_requi red() method, complete the following
steps:

1. Write application code that usesthe aut henti cat e() method of the
Securitylevel 2:: Princi pal Aut henticat or object to specify certificate
authentication is being used.

2. Usethe invocation_options_required() method to specify the security
attributes the principal requires. See the description of the
i nvocat i on_opti ons_requi red() method in the “ C++ Security Reference’
on page 15-1 and “ Java Security Reference” on page 16-1 for a complete list of
security options.

Listing 10-9 provides a C++ example that usesthe
i nvocat i on_opti ons_requi red() method.

Listing 10-9 C++ Example That Usestheinvocation_options_required() Method

/1l Initialize the ORB
CORBA: : ORB_var v_orb = CORBA::CRB_init(argc, argv, "");

/1l Create the bootstrap object
Tobj _Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com2143);

/1 Resol ve SecurityCurrent

Using Security in CORBA Applications 10-21

10 Writing a CORBA Application That Implements Security

CORBA: : Cbj ect _ptr seccurobj =

bootstrap.resolve_initial _references("SecurityCurrent");
SecuritylLevel 2:: Qurrent _ptr seccur =

Securitylevel 2::Current:: _narrow(seccurobj);

/1 Performcertificate-based authentication
SecuritylLevel 2::Credentials_ptr t he_creds;

Security::Attributelist_var privil eges;
Security:: Opaque_var continuation_data;
Security:: Opaque_var auth_specific_data;
Security:: Opaque_var response_dat a;

//Principal email address

char enmil Address[] = “m | ozzi @i gconpany. com”
/1 Pass phrase for principal’s digital certificate
char password[] = “asdaw ewe98infldi7;”

/1 Convert the certificate private key password to opaque
unsi gned | ong password_|en = strlen(password);
Security:: Qpaque ssl_auth_dat a(password_I en);

/1 Authenticate principal certificate with principal authenticator
for(int i = 0; (unsigned long) i < password_|en; i++)
ssl _auth_data[i] = password[i];

Security:: Aut henti cationStat us auth_st at us;
SecuritylLevel 2:: Princi pal Aut henti cator _var PA =
seccur ->princi pal _aut henti cator();

aut h_status = PA->aut henti cate(Tobj:: CertificateBased,
emui | Addr ess,
ssl _aut h_dat a,
privil eges,
the_creds,
conti nuation_dat a,
aut h_specific_data);
t he_creds->i nvocati on_opti ons_required(
Security::Integrity]|
Security:: DetectRepl ay|
Security::DetectM sordering|
Security:: EstablishTrustl|nTar get|
Security::EstalishTrustinCient|
Security:: Sinmpl eDel egation);

whi | e(aut h_status == Security:: SecAut hContinue) ({
auth_status = PA->conti nue_authenticati on(
response_dat a,
the_creds,
conti nuation_dat a,
aut h_speci fic_data);

10-22 Using Security in CORBA Applications

Using the Invocations_Options_Required() Method

Listing 10-10 provdes a Java example of using the
i nvocat i on_opti ons_required() method

Listing 10-10 Java Example That Usesthe invocation_options_required()

Method

/1l Initialize the ORB.

Properti es Prop;
Prop = new Properties(System getProperties());
Prop. put ("org. ong. CORBA. ORBCl ass", "com beasys. CORBA. i i op. ORB");
Prop. put ("org. ong. CORBA. ORBSI ngl et ond ass",
"com beasys. CORBA. i dl . ORBSi ngl eton") ;

ORB orb = ORB.init(args, Prop);
/1l Oreate the Bootstrap object

Tobj _Bootstrap bs = new Tobj Bootstrap(orb,
corbal ocs://foo: 2501);

/] Resol ve SecurityCurrent
org. ong. CORBA. obj ect ocurr =
bs.resolve_initial _references(“SecurityCurrent”);
org.ong. SecuritylLevel 2. Current curr =
org.ong. SecuritylLevel 2. Current Hel per. narrow occur);

/1 Get Principal Authenticator

com beasys. Tobj . Pri nci pal Aut henti cator pa =
(com beasys. Tobj . Pri nci pal Aut henti cat or)
curr. principal _authenticator();

OpaqueHol der aut h_data = new OpaqueHol der () ;

AttributeListHolder privileges = new AttributeLi stHol der();

org.ong. SecuritylLevel 2. Credenti al sHol der creds =

new org. ony. SecuritylLevel 2. O edenti al sHol der ();

OpaqueHol der conti nuati on_data = new OpaqueHol der () ;

OpaqueHol der aut h_speci fic_data = new QpaqueHol der ();

aut h_dat a. val ue=new String (“deathstar”). getbytes(“UTF8);

i f(pa. aut henti cate(com beasys. Tobj. Certi ficat eBased. val ue,
“vader @ ar geconpany. coni ,

Using Security in CORBA Applications

10-23

10 Writing a CORBA Application That Implements Security

aut h_dat a. val ue,
privil eges. val ue,
the_creds,
conti nuati on_dat a,
aut h_specific_data)
org.ony. SecuritylLevel 2. Credentials credentials = curr.get_credenti al s(
org.ong. Security. Credenti al Type. Secl nvocati onCr edenti al s);

credential s.invocation_options_required(
(short) (org.ong.Security.Integrity.value |
org.ong. Security. Det ect Repl ay. val ue|
org.ong. Security. Detect M sorderi ng. val ue|
org.ong. Security. Establi shTrustl nTar get. val ue|
org.ong. Security. Establi shTrustlndient.val ue|
org.ong. Security. Si npl eDel egati on. val ue)
)
I'Aut henti cati onSt at us. SecAut hSuccess) {
Systemerr.println(“l ogon failed");
Systemexit(1l);

10-24 Using Security in CORBA Applications

CHAPTER

11 Building and Running

the CORBA Sample
Applications

The topic includes the following sections:
m Building and Running the Security Sample Application
m Building and Running the Secure Simpapp Sample Application

Using Security in CORBA Applications 11-1

11 Building and Running the CORBA Sample Applications

Building and Running the Security Sample
Application

The Security sample application demonstrates using password authentication. For
instructions for building and running the Security sample application, seethe Guideto
the CORBA University Sample Applications.

Building and Running the Secure Simpapp
Sample Application

The Secure Simpapp sample application demonstrates using the SSL protocol and
certificate authentication to protect communications between client applications and
the BEA Tuxedo domain.

To build and run the Secure Simpapp sample application, complete the following
steps:

1
2.

3.
4.

Copy the filesfor the Secure Simpapp sample application into awork directory.

Change the protection attribute on the files for the Secure Simpapp sample
application.

Verify the environment variables.

Execute the r unme command.

Before you can use the Secure Simpapp sample application, obtain a certificate and
private key (11 OPLi st ener . pen) for the I|OP Listener/Handler from the certificate
authority in your enterprise and load the certificate in aLightweight Directory Access
Protocol (L DAP)-enabled directory service. Ther unme command prompts you for the
pass phrase for the private key for the 11OP Listener/Handler.

11-2 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application

Step 1: Copy the Files for the Secure Simpapp Sample
Application into a Work Directory

Y ou need to copy thefiles for the Secure Simpapp sample application into a work
directory on your local machine.

Thefiles for the Secure Simpapp sample application are located in the following
directories:

Windows 2000
drive:\ TUXdi r\ sanpl es\ cor ba\ si npappSSL

UNIX
/usr/1ocal / TUXdi r/ sanpl es/ cor ba/ si npappSSL

Youwill usethefileslisted in Table 11-1 to build and run the Secure Simpapp sample
application.

Table 11-1 FilesIncluded in the Secure Simpapp Sample Application

File Description

Sinpl e.idl The OMG IDL code that declaresthe Si npl e and
Si npl eFact ory interfaces.

Si npl es. cpp The C++ source code that overrides the default
Server::initialize and
Server::rel ease methods.

Si npl ec. cpp The source code for the CORBA C++ client
application in the Secure Simpapp sample
application.

Sinple_i.cpp The C++ source code that implements the Si npl e

and Si npl eFact or y methods.

Sinple_i.h The C++ header file that defines the implementation
of the Si npl e and Si npl eFact or y methods.

SinmpleCient.java The Java source code for the client application in the
Secure Simpapp sample application.

Using Security in CORBA Applications 11-3

11 Building and Running the CORBA Sample Applications

Table 11-1 FilesIncluded in the Secure Simpapp Sample Application

File Description

Readne. ht m Thisfile provides the | atest information about
building and running the Secure Simpapp sample
application.

runne. cnd The Windows 2000 batch file that builds and runsthe
Secure Simpapp sample application.

runme. ksh The UNIX Korn shell script that builds and executes
the Secure Simpapp sample application.

makefil e. mk The makefile for the Secure Simpapp sample

application on the UNIX operating system. Thisfile
isused to manually build the Secure Simpapp sample
application. Refer to the Readne. ht m filefor
information about manually building the Secure
Simpapp sample application. The UNIX make
command needsto be in the path of your machine.

makefil es. nt

The makefile for the Secure Simpapp sample
application on the Windows 2000 operating system.
Thismakefilecan beused directly by theVisual C++
nmake command. Thisfileisused to manually build
the Secure Simpapp sample application. Refer to the
Readne. ht Ml filefor information about manually
building the Secure Simpapp sample application.
The Windows 2000 nmek e command needsto bein
the path of your machine.

Step 2: Change the Protection Attribute on the Files for
the Secure Simpapp Sample Application

11-4

During the installation of the BEA Tuxedo software, the sample application files are
marked read-only. Before you can edit or build the filesin the Secure Simpapp sample
application, you need to change the protection attribute of the files you copied into
your work directory, asfollows:

Windows 2000

Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application

pronpt>attrib -r drive:\workdirectory*.*
UNIX

pronpt >/ bi n/ ksh

ksh pronpt >chnod u+w /wor kdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of
runne. ksh to give execute permission to the file, as follows:

ksh pronpt >chnod +x runne. ksh

Step 3: Verify the Settings of the Environment Variables

Before building and running the Secure Simpapp sample application, you need to
ensure that certain environment variables are set on your system. In most cases, these
environment variables are set as part of the installation procedure. However, you need
to check the environment variables to ensure they reflect correct information.

Table 11-2 lists the environment variables required to run the Secure Simpapp sample
application.

Table 11-2 Required Environment Variables for the Secure Simpapp Sample Application

Environment Description
Variable
APPDI R The directory path where you copied the sample application files. For example:
Windows 2000
APPDI R=c: \ wor k\ si npappSSL
UNIX
APPDI R=/ usr/ wor k/ si npappSSL
TUXCONFI G The directory path and name of the configuration file. For example:

Windows 2000

TUXCONFI G=c: \ wor k\ si npappSSL\ t uxconfi g
UNIX

TUXCONFI G=/ usr / wor k/ si mpappSSL/t uxconfig

Using Security in CORBA Applications 11-5

11 Building and Running the CORBA Sample Applications

Table 11-2 Required Environment Variablesfor the Secure Simpapp Sample Application

Environment
Variable

Description

TOBJADDR

The host name and port number of the 11OP Listener/Handler. The port number must
be defined as a port for SSL communications. For example:

Windows 2000
TOBJADDR=t ri xi e: : 1111
UNI X

TOBJADDR=t ri xi e: : 1111

JAVA HOME

The directory path where you ingtalled the JDK software. For example:

Windows 2000

JAVA HOMVE=c:\ JDK1. 2

UNIX

JAVA HOVE=/usr /| ocal / JDK1. 2

If JAVA_HOME is not defined the sample only uses CORBA C++ client application.

RESULTSDI R

A subdirectory of APPDI R where filesthat are created as aresult of executing the
runme command are stored. For example:

Windows 2000

RESULTSDI R=c: \ wor kdi r ect or y\

UNIX

RESULTSDI R=/ usr/ 1 ocal / wor kdi rectory/

Toverify that theinformation for the environment variables defined during installation
is correct, perform the following steps:

Windows 2000

1
2.

From the Start menu, select Settings.

From the Settings menu, select the Control Panel.
The Control Panel appears.

Click the System icon.

The System Properties window appears.

Click the Environment tab.

11-6 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application

5.

The Environment page appears.

Check the settings of the environment variables.

UNIX

ksh pronpt >pri ntenv TUXDI R

ksh pronpt >printenv JAVA HOMVE (for the CORBA Java client application)

To change the settings, perform the following steps:

Windows 2000

1

2.
3.

On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the

Vari abl e field.

Enter the correct information for the environment variable in the Vval ue field.

Click OK to save the changes.

UNIX

ksh pronpt >export TUXDI R=di rectorypath

ksh pronpt >export JAVA HOVE=di rect orypath (for the CORBA Javaclient
application)

Step 4. Execute the runme Command

The r unme command automates the following steps:

1
2
3
4.
5
6

. Setting the system environment variables.
. Loading the UBBCONFI Gfile.

. Compiling the code for the client application.

Compiling the code for the server application.

. Starting the server application using thet nboot command.

. Starting the client application.

Using Security in CORBA Applications

n-7

11 Building and Running the CORBA Sample Applications

11-8

7. Stopping the server application using the t nshut down command.

Note: Y ou can also run the Secure Simpapp sampl e application manually. The steps
for manually running the Secure Simpapp sampl e application are described in
the Readne. ht i file

To build and run the Secure Simpapp sample application, enter the r unnme command,
asfollows:

Windows 2000

pronpt >cd wor kdi rectory

pr onpt >r unme

UNIX

ksh pronpt>cd workdirectory

ksh pronpt>./runne. ksh
The Secure Simpapp sample application runs and prints the following messages:

Testing sinpapp
cl eaned up
pr epar ed
bui I t
| oaded ubb
boot ed
ran
shut down
saved results

PASSED

During execution of ther unme command, you are prompted for a password. Enter the
pass phrase of the private key of the I1OP Listener/Handler.

Table 11-3 liststhe C++ filesin the work directory generated by ther unme command.

Table 11-3 C++ Files Generated by the runme Command

File Description

Si nmpl e_c. cpp Generated by thei dI command, thisfile contains
the client stubs for the Si npl eFact ory and
Si npl e interfaces.

Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application

Table 11-3 C++ Files Generated by the runme Command (Continued)

File Description

Sinple_c.h Generated by thei dl command, thisfile contains
theclient definitionsof the Si npl eFact or y and
Si npl e interfaces.

Sinpl e_s. cpp Generated by thei dl command, thisfile contains
theserver skeletonsfor the Si npl eFact or y and
Si npl e interfaces.

Sinple_s.h Generated by thei dl command, thisfile contains

the server definition for the Si npl eFact ory
and Si npl e interfaces.

Table 11-4 liststhe Javafiles in the work directory generated by the r unme command.

Table 11-4 Java Files Generated by the runme Command

File

Description

Si npl eFactory. j ava

Generated by thei dl t oj ava command for the
Si npl eFact ory interface. The

Si npl eFact or y interface contains the Java
version of the OMG IDL interface. It extends

or g. ong. CORBA. Obj ect .

Si npl eFact oryHol der . j ava

Generated by thei dI t oj ava command for the
Si npl eFact or y interface.This class holds a
public instance member of type

Si npl eFact or y. The class provides operations
forout andi nout argumentsthat areincludedin
CORBA, but that do not map exactly to Java.

Si npl eFact oryHel per.j ava

Generated by thei dI t oj ava command for the
Si npl eFact ory interface. This class provides
auxiliary functionality, notably the nar r ow
method.

_Sinpl eFactorySt ub. j ava

Generated by thei dI t oj ava command for the
Si npl eFact or y interface. Thisclassisthe
client stub that implements the

Si npl eFact ory. j ava interface.

Using Security in CORBA Applications 11-9

11 Building and Running the CORBA Sample Applications

Table 11-4 Java Files Gener ated by the runme Command (Continued)

File

Description

Sinpl e.java

Generated by thei dl t oj ava command for the
Si npl e interface. The Si npl e interface
contains the Java version of the OMG IDL
interface. It extendsor g. ong. CORBA. Obj ect .

Si npl eHol der . j ava

Generated by thei dl t oj ava command for the
Si npl e interface.This class holds a public
instance member of type Si npl e. The class
provides operations for out and i nout
arguments that CORBA has but that do not match
exactly to Java.

Si npl eHel per.j ava

Generated by thei dl t oj ava command for the
Si npl e interface. This class provides auxiliary
functionality, notably the nar r ow method.

_Si npl eStub. java

Generated by thei dl t oj ava command for the
Si npl e interface. Thisclassistheclient stub that
implementsthe Si npl e. j ava interface.

Table 11-5 listsfiles in the RESULTS directory generated by the r unnme command.

Table 11-5 Filesin theresults Directory Generated by the runme Command

File Description

i nput Contains the input that the r unme command
provides to the CORBA client application.

out put Containsthe output produced whenthe r unme

command executes the CORBA client
application.

expect ed_out put

11-10 Using Security in CORBA Applications

Contains the output that is expected when the
CORBA client application is executed by the

r unme command. The datain the out put file
is compared to the datain the

expect ed_out put fileto determine whether
or not the test passed or failed.

Building and Running the Secure Simpapp Sample Application

Table 11-5 Filesin theresults Directory Generated by the runme Command

File Description

| og Contains the output generated by ther unme
command. If ther unme command fails, check
thisfilefor errors.

set env. cnd Contains the commands to set the environment
variables needed to build and run the Secure
Simpapp sample application on the Windows
2000 operating system platform.

stderr Generated by thet mboot command, which is
executed by ther unme command.

st dout Generated by thet mboot command, which is
executed by ther unme command.

tnsysevt . dat Containsfiltering and notification rules used by
the TMSY SEVT (system event reporting)
process. Thisfileis generated by thet nboot
command in ther unme command.

tuxconfig A binary version of the UBBCONFI Gfile.

ULOG. <dat e> A log file that contains messages generated by
thet mboot command.

Using the Secure Simpapp Sample Application

Run the server application in the Secure Simpapp sample application, as follows:
Windows 2000

pronpt >t nboot -y

UNIX

ksh pronpt >t nboot -y

Run the CORBA C++ client application in the Secure Simpapp sample application as
follows:

Using Security in CORBA Applications 11-11

11 Building and Running the CORBA Sample Applications

Windows 2000

pronpt > set TOBJADDR=cor bal ocs:// host: port

pronpt> sinple_client -ORBid BEA || OP - ORBpeer Val i dat e none
String?

Hello World

HELLO WORLD

hello world

UNIX

ksh pronpt >export TOBJADDR=cor bal ocs:// host: port

ksh pronpt>sinple client -ORBid BEA || OP - ORBpeer Val i date none
String?

Hello World

HELLO WORLD

hello world

Run the CORBA Javaclient application in the Secure Simpapp sample application, as
follows:

Windows 2000

pronpt > set CLASSPATH=%TUXDI R% udat aobj \ j ava\j dk\ nBenvobj . jar;
%IUXDl R udat aobj \java\jdk\w eclient.jar;.; UCLASSPATHY

j ava - DTOBJADDR=% OBJADDR%Y% - Dor g. ong. CORBA. ORBpeer Val i dat e=none
cl asspat h “CLASSPATHY Si npl ed i ent

String?

Hello World

HELLO WORLD

hello world

UNIX

ksh pronpt >export

CLASSPATH=${ TUXDI R}/ udat aobj / j ava/ j dk/ nBenvobj .| ar;

${ TUXDI R}/ udat aobj / j ava/j dk/ wl ecl i ent.jar:.:${ CLASSPATH}

j ava - DTOBJADDR=${ TOBJADDR} - Dor g. ong. CORBA. CRBpeer Val i dat e=none
-cl asspat h ${ CLASSPATH} Si npl eCl i ent

String?

Hello World

HELLO WORLD

hello world

Note: The CORBA Javaclient application in the Secure Simpapp sample CORBA
Java client application uses the client-only JAR filesnBenvobj . j ar and
weclient.jar.

11-12 Using Security in CORBA Applications

Building and Running the Secure Simpapp Sample Application

Before using another sample application, enter the following commands to stop the
Secure Simpapp sample application and to remove unnecessary files from the work
directory:

Windows 2000

pr onpt >t nshut down -y

pronpt >nnake -f mekefile.nt clean

UNIX
ksh pronpt >t nshut down -y

ksh pronpt >make -f nmakefile.nk clean

Using Security in CORBA Applications 11-13

11 Building and Running the CORBA Sample Applications

11-14 Using Security in CORBA Applications

CHAPTER

12 Troubleshooting

Thistopic includes the following sections:

Using ULOGS and ORB Tracing

CORBA::ORB _init Problems

Password Authentication Problems

Certificate Authentication Problems

Tobj::Bootstrap:: resolve initial_references Problems

[1OP Listener/Handler Startup Problems

Configuration Problems

Problems with Using Callbacks Objects with the SSL Protocol

Troubleshooting Tips for Digital Certificates

Note: The problemsin this topic pertain to using the SSL protocol and certificate

authentication with CORBA applications.

Using ULOGS and ORB Tracing

In general, Object Request Brokers (ORBs) write important failures to the ULOGfile.
When using the CORBA C++ ORB, you can also enable ORB internal tracing which
may provide information in addition to the information that appears in the ULOG file.

When looking at the ULOGfile, notethat remote ORB processes by default do not write
datato the ULOGfilein APPDI R.

Using Security in CORBA Applications 12-1

12 Troubleshooting

12-2

m On UNIX, the remote ORB writes information to a ULOGfile in the current
directory.

m On Windows 2000, the remote ORB writes information to a ULOGfile in the
c:\ul og directory.

Y ou can set the ULOGPFX environment variable to control the location of the ULOGfile
for remote ORBs (for example, you can set the location of the ULOGfile to APPDI R SO

that all information is put in the same ULOGfil€e). Set the ULOGPFX environment
variable asfollows:

Windows 2000
set ULOGPFX=%APPDI R% ULOG

UNI X
set env ULOGPFX $APPDI R/ ULOG

To enable ORB tracing, complete the following steps:

1. Createafilenamedtrace. dat in APPDI R. The contents of t r ace. dat should

have al | =on.

2. Usethefollowing command to set the OBB_TRACE_I NPUT environment variable

to point to the trace. dat file before running the application:
set OBB_TRACE | NPUT=%APPDI RWA t r ace. dat

If you want ORB tracing sent to separate files, add the following line to the
trace. dat file:

out put =obbt race%p. | og

This command sends the trace output to files that are named after each running
process. You may want to do thisif you are using ORB tracing on UNIX to an
NFS mounted drive. In this case, trace performance is slow due to the user log
opening, writing, and closing the file for each trace statement.

Using Security in CORBA Applications

CORBA::ORB_init Problems

CORBA::ORB_init Problems

The ORB_i ni t routine does not perform internal ORB tracing so you will not see any
trace output for invalid argument processing. Therefore, you need to double check the
arguments that were passed to the ORB_i ni t routine.

If a CORBA: : BAD_PARAMexception occurs when executing the ORB_i ni t routine,
verify that all required arguments have values. Also, check that arguments which

expect a value from a specific set of valid values have the correct value. Note that
values for the arguments of the ORB i ni t routine are case sensitive.

If aCORBA: : NO_PERM SSI ON exception occursand an SSL argument was specified to
the ORB_i ni t routine, make sure the security license is enabled. Also, verify that the
specified level of encryption does not exceed the encryption level supported by the
security license.

If aCORBA: : | MP_LI M T exception occurs when executing the ORB_i ni t routine,
verify that the ORBport and ORBSecur ePor t System properties have the same value.

If aCORBA: : I ni ti al i ze exception occurs when executing the ORB_i ni t routine,
verify that the values for O bl d or confi gset arevalid.

If Secure Sockets Layer (SSL) arguments are passed to the ORB_i ni t routine, the
ORB attemptsto load and initialize the SSL protocal. If no SSL arguments are passed,
the ORB does not attempt to initialize the SSL protocol.

The ORB is not aware of the new URL address formats for the Bootstrap object so if
you specify acor bal oc or cor bal ocs URL address format, the ORB does not try to
load the SSL protocol during the ORB_i nit routine.

If SSL arguments were specified tothe ORB_i ni t routine, check the following:

m The specified values for the SSL arguments do not conflict with each other or
other ORB arguments.

m Whether or not the ORB is a native process. If the ORB is a native process, SSL
arguments are not supported.

m That the value specified for the mnaxCr ypt o system property is less than the
value specified for the ni nCr ypt o system property. The valuesfor the properties
must be within the range appropriate for the license.

Using Security in CORBA Applications 12-3

12 Troubleshooting

m Application-controlled SSL configuration parameters that are not correct. The
ORB_i ni t routine does not perform digital certificate lookups check so look for
missing or corrupted files that would case the dynamic libraries not to be loaded.
Also, verify the dynamic libraries are loaded. The ORB trace function will
provide information about whether or not the dynamic libraries are loaded.

If the problem persists, turn on ORB tracing. ORB tracing will log SSL failures that
occur when the 1i bor bssl dynamic library isloaded and initialized.

Password Authentication Problems

If the client application fails when using the cor bal ocs URL address format with
password authentication, check the following:

m The proper configuration steps were performed. See “ Configuring the SSL
Protocol” and “ Configuring Authentication” for the list of the required
configuration steps.

m An

initialization error occurred. Specify avalid SSL system property to the

ORB_i ni t routine, an error occursif:

12-4 Using Security i

ThellOP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

The lIOP Listener/Handler is available but it does not support the SSL
protocol. The ULOG file will show that a non-GlOP message was received.

The I1OP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the 110OP
Listener/Handler and the range of encryption strengths required by the client
application do not match.

The uLOGfile will indicate that a non-GlIOP message was received if the
[1OP Listener/Handler was configured for the SSL protocol but the CORBA
client application used a TOBJADDR object without the cor bal ocs prefix to
indicate a secure connection.

n CORBA Applications

Certificate Authentication Problems

Certificate Authentication Problems

If the client application fails when using the cor bal ocs URL address format with
certificate authentication, check the following:

m The proper configuration steps were performed. See “ Configuring the SSL
Protocol” on page 6-1 and “ Configuring Authentication” on page 7-1 for the list
of the required configuration steps.

m Determine whether or not an initialization error occurred.

m Specify avalid SSL system property to the ORB_i ni t routine, an error occurs

if:

The I1OP Listener/Handler is not available. The ORB trace log will show
failed connection attempts.

The I1OP Listener/Handler is avail able but it does not support the SSL
protocol. The ULOGfile will show that a non-GI OP message was received.

The IIOP Listener/Handler was available and configured for the SSL
protocol but the SSL connection could not be established. This error can
occur when the range of encryption strengths supported by the 110P
Listener/Handler and the range of encryption strengths required by the client
application do not match. The error can also occur when the client
application does not trust the certificate chain of the I1OP Listener/Handler
or the client application did not receive a certificate from the I1OP
Listener/Handler. The error will be written to the ULOGfile and the error will
also show up in the ORB trace output.

If an error does not occur, the problem is in the authentication process and the
uLoGfile will contain one of the following error statements indicating the
problem:

Coul dn’t connect to an LDAP server

Couldn't find a filter that matched the client certificate
The client certificate was not found in LDAP

The private key file could not be found

The passphrase used to open the private key is not correct

Using Security in CORBA Applications 12-5

12 Troubleshooting

e The public key fromthe client certificate did not match
the private key

Additional certificate problems can also occur. See “Tobj::Bootstrap::
resolve_initial_references Problems’ on page 12-6 for more information about the
types of certificate errorsthat can occur.

Note: At thispoint of the initialization process, the failureisnot dueto aproblemin
the I1OP Listener/Handler.

Tobj::Bootstrap::
resolve_initial_references Problems

12-6

If afailure occurs when performing a

Tobj : : Bootstrap: :resolve_initial_references withthecorbal oc or

cor bal ocs URL address format, a CORBA: : | nval i dDonai n exception is raised.
This exception may mask CORBA: : NO_PERM SSI ON or CORBA: : COVMM FAI LURE
exceptions that are raised internally. Look at the ULOGfile and turn on ORB tracing to
get more details on the error. The following errors may occur:

m If the lIOP Listener/Handler is not available, the ORB trace log will show failed
connection attempts.

m If the lIOP Listener/Handler is available but it does not support the SSL
protocol, the ULOG file will show that a non-GIOP message was received.

m If the IIOP Listener/Handler is available and configured for the SSL protocol but
the SSL connection could not be established. An error can occur if the range of
encryption strengths supported by the I1OP Listener/Handler and required by the
client application do not match.

m ThellOP Listener/Handler could not map a certificate to a username/password
combination. Verify that the security level for the CORBA application is set to
USER_AUTH and that the specified username matches the principal name passed
into the authenticate call. Also, check that the username does not exceed the 30
character limit.

Using Security in CORBA Applications

[IOP Listener/Handler Startup Problems

Additiona certificate problems can occur. See “ Troubleshooting Tips for Digital
Certificates’ on page 12-9 for more information about the types of certificate errors
that can occur.

Note: The Javaimplementation of the
Tobj _Bootstrap::resolve_initial _references() method doesnot
throw an I nval i dDomai n exception. When the cor bal oc or cor bal ocs
URL address formats are used, the
Tobj _Bootstrap: :resolve_initial _references() method internally
catchesthe I nval i dDomai n exception and throws the exception as a
COMM _FAI LURE. The method functions thisway in order to provide backward
compatibility.

[10P Listener/Handler Startup Problems

This section describes problems that can occur during the startup of the [1OP
Listener/Handler.

If afailure occurs when starting the 11OP Listener/Handler, check the ULOG filefor a
description of the error. The IIOP Listener/Hander verifies that the values for the SSL
arguments specified in the CLOPT parametersarevalid. If any of thevaluesareinvalid,
the appropriate error isrecorded in the ULOGfile. This check is similar to the argument
checking done by the ORB.

ThellOP Listener/Handler will not start its processes unless the - moption is specified.
TheISH isthe process that actually loads and initializes the SSL libraries. If thereisa
problem loading and initializing the SSL librariesin the |SH process, the error will not
be recorded in the ULOGfile until the ISH process starts to handle incoming requests
from client application.

If you suspect a problem with the startup of the 11OP Listener/Handler processes,
check the ULOG file.

Using Security in CORBA Applications 12-7

12 Troubleshooting

Configuration Problems

12-8

Thefollowing are miscellaneous tips to resol ve the common configuration problems
which may occur when using security:

m The ORB - ORBpeer Val i dat e command-line option and the - v option of the

ISL command do not control the peer validation rules checking. This system
property and option only control the checking of the host name specified in the
peer certificate against the host name of the machine to which the principal was
connected.

The only way to disable the peer validation rules on an installed kit isto create
an empty file for %arUXDI R%A udat aobj \ securi ty\certs\peer_val .rul.If
you are writing a script that builds your CORBA application, you cannot register
the peer _val . rul fileinthe script.

When enabling renegotiation intervals in the I1OP Listener/Handler, check that
the option on the ISL command is-Rnot -r. If youusean-r, thellOP
Listener/Handler will use the SSL protocol but the renegotiation interval will not
be used. In addition, the ULOGfile will note that an unknown option was
specified on the |1OP Listener/Handler.

Another way to determine if the |1OP Listener/Handler is performing
renegotiations is to enable ORB tracing on the client side and check whether the
cipher suite negotiation callback is being called the configured renegotiation
interval. Note that the client application must be sending requests for in order for
renegotiations to occur.

If you have defined the SECURI TY parameter in the CORBA application’s
UBBCONFI Gfile to be APP_Pwor greater and you have configured the [1OP
Listener/Handler to use the SSL protocol but not mutual authentication, you
must use password authentication with the cor bal ocs URL address format to
communicate with the [IOP Listener/Handler. If you try to use certificate
authentication, the 110OP Listener/Handler will not ask the principal for a
certificate when establishing an SSL connection and the 11 OP Listener/Handler
isnot able to map the identity of the principal to a BEA Tuxedo identity.

Using Security in CORBA Applications

Problems with Using Callbacks Objects with the SSL Protocol

Problems with Using Callbacks Objects with
the SSL Protocol

If you have ajoint client/server application and the client portion of the joint
client/server application specifies security requirements using either the cor bal ocs
URL address format or by requiring credentials, you must use the - ORBsecur ePor t
system property with the ORB_i ni t routine to specify that a secure port be used.

If you do not specify the - ORBsecur ePor t system property, the server registration
will fail with a CORBA: : NO_PERM SSI ON exception. To verify thisis the problem,
enable ORB tracing and look for the following trace output:

TCPTransport::Listen: FAILURE: Attenpt to listen on clear port
while Credentials require SSL be used

If you want to use the SSL protocol with callback objects, the joint client/server
application must use the

SecuritylLevel 2:: Princi pal Aut henticat or: : aut henti cat e() method with
certificate authentication. Otherwise, the joint client/server application does not have
a certificate with which to identify itself to the I1OP Listener/Handler which in this
caseistheinitiator of the SSL connection.

Troubleshooting Tips for Digital Certificates

In general, problems with digital certificates occur when:

m Oneof thedigital certificatesin the certificate chain of the [IOP
Listener/Handler is not from acertificate authority defined inthetrust _ca. cer
file. A problem can occur if any certificate authority inthet rust _ca. cer fileis
invalid.

m The name the IIOP Listener/Handler connected to the client application does not
match the host name specified in digital certificates of the IIOP Listener/Handler
when a host match is performed. The name of the 11OP Listener/Handler is
specified in the CormonNane attribute of the distinguish name of the 110OP

Using Security in CORBA Applications 12-9

12 Troubleshooting

Listener/Handler. The host name and the ConmonNane attribute must match
exactly.

You can verify this error by setting the - ORBpeer Val i dat e system property to
none and executing the ORB_i ni t routine again.

m Oneof thedigitd certificatesin the certificate chain of the [IOP
Listener/Handler does not match the specified peer validation rules.

m Thedigita certificate of the IIOP Listener/Handler isinvalid. Thedigital
certificate of the IIOP Listener/Handler becomes invalid when the digital
certificate istampered with, it expires, or the certificate authority that issued the
digital certificate expires.

If adigital certificateisrejected for no explainable reason, compl ete the following
steps:

1. Openthedigital certificatein aviewer, for example, Microsoft Explorer.

2. Look at the KeyUsage and Basi cConst r ai nt s properties of the digital
certificate. A small yellow triangle with an exclamation mark indicates the
property is critical. Any digital certificate with a property marked critical is
rejected by the BEA Tuxedo software.

3. If the none of the properties of the digital certificate are critical, check the
properties of the next digital certificate in the certificate chain. Perform this step
until all the properties of all the digital certificatesin the certificate chain have
been verified.

12-10 Using Security in CORBA Applications

Part IV Security
Reference

Chapter 14.
Chapter 15.
Chapter 16.
Chapter 17.
Chapter 18.

CORBA Security APIs
Security Modules

C++ Security Reference

Java Security Reference
Automation Security Reference

CHAPTER

13 CORBA Security APIs

Thistopic includes the following sections:

m The CORBA Security Model

m Functiona Components of the CORBA Security Environment
m The Principal Authenticator Object

m The Credentials Object

m The SecurityCurrent Object

For the C++, Java, and Automation method descriptions for the CORBA Security
APIs, seethe following topics:

m “C++ Security Reference” on page 15-1
m “Java Security Reference” on page 16-1

m “Automation Security Reference” on page 17-1

Using Security in CORBA Applications 13-1

13 CORBA Security APIs

The CORBA Security Model

The security model in the CORBA environment of the BEA Tuxedo product defines
only aframework for security. The BEA Tuxedo product provides the flexibility to
support different security mechanisms and policies that can be used to achieve the
appropriate level of functionality and assurance for a particular CORBA application.

The security model in the CORBA environment defines:

m Under what conditions client applications may access objectsin a BEA Tuxedo
domain

m What type of proof material principals are required to authenticate themselves to
the BEA Tuxedo domain

The security model in the CORBA environment isacombination of the security model
defined in the CORBA services Security Service specification and the value-added
extensions that provide a focused, simplified form of the security model found in the
ATMI environment of the BEA Tuxedo product.

The following sections describe the general characteristics of the CORBA security
model.

Authentication of Principals

13-2

Authentication of principals (for example, an individual user, aclient application, a
server application, ajoint client/server application, or an |1OP Listener/Handler)
provides security officerswith the ability to ensure that only registered principals have
access to the objects in the system. An authenticated principal is used as the primary
mechanism to control accessto objects. Theact of authenticating principals alowsthe
security mechanisms to:

m Make principals accountable for their actions
m Control access to protected objects
m |dentify the originator of arequest

m |dentify the target of request

Using Security in CORBA Applications

Functional Components of the CORBA Security Environment

Controlling Access to Objects

The CORBA security model provides a simple framework through which a security
officer can limit accessto the BEA Tuxedo domain to authorized usersonly. Limiting
access to objects allows security officers to prohibit access to objects by unauthorized
principals. The access control framework consists of two parts:

m The object invocation policy that is enforced automatically on object invocation

m An application access policy that the user-written application can enforce

Administrative Control

The system administrator is responsible for setting security policies for the CORBA
application. The BEA Tuxedo product provides a set of configuration parameters and
utilities. Using the configuration parameters and utilities, a system administrator can
configure the CORBA application to force the principal sto be authenticated to access
a system on which BEA Tuxedo software isinstalled. To enforce the configuration
parameters, the system administrator usesthet ml oadcf command to update the
configuration file for a particular CORBA application.

For more information about configuring security for your CORBA application, see
“Configuring the SSL Protocol” on page 6-1 and “ Configuring Authentication” on
page 7-1.

Functional Components of the CORBA
Security Environment

The CORBA security model isbased on the process of authenticating principal sto the
BEA Tuxedo domain. The objectsin the CORBA security environment are used to
authenticate a principal. The principal providesidentity and authentication data, such
as apassword, to the client application. The client application uses the Principal
Authenticator object to make the calls necessary to authenticate the principal. The

Using Security in CORBA Applications 13-3

13 CORBA Security APIs

credentials for the authenticated principal are associated with the security system’s
implementation of the SecurityCurrent object and are represented by a Credentia s
object.

Figure 13-1 illustrates the authentication process used in the CORBA security model.

Figure13-1 Authentication Processin the CORBA Security Model

)
Sponsor
4

Authenticator

- -

User A Client

Application

e =—"

Security
Current
Principal Object

- w-q

Object

Credentials
Object

The following sections describe the objectsin the CORBA security model.

The Principal Authenticator Object

13-4

The Principa Authenticator object is used by a principal that requires authentication
but has not been authenticated prior to calling the object system. The act of
authenticating a principal resultsin the creation of a Credentials object that is made
available as the default credentials for the application.

Using Security in CORBA Applications

The Principal Authenticator Object

The Principal Authenticator object isa singleton object; thereisonly asingle instance
allowedinaprocess address space. The Principal Authenticator object isalso stateless.
A Credentias object is not associated with the Principal Authenticator object that
created it.

All Principal Authenticator objects support the

SecuritylLevel 2:: Princi pal Aut henti cat or interface defined in the
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. This is because
authentication of principals may reguire more than one step. The aut hent i cat e
method allows the caller to authenticate, and optionally select, attributes for the
principal of this session.

Any invocation that fails because the security infrastructure does not permit the
invocation will raise the standard exception CORBA: : NO_PERM SSI ON. A method that
fails because the feature requested is not supported by the security infrastructure
implementation will raise the CORBA: : NO_| MPLEMENT standard exception. Any
parameter that has inappropriate values will raise the CORBA: : BAD_PARAMSstandard
exception. If atiming-related problem occurs, they raise a CORBA: : COVM _FAI LURE.
The Bootstrap object maps most system exceptionsto CORBA: : | nval i d_Donai n.

The Principal Authenticator object is alocality-constrained object. Therefore, a
Principal Authenticator object may not be used through the DII/DSI facilities of
CORBA.. Any attempt to pass areference to this object outside of the current process,
or any attempt to externalize it using CORBA: : ORB: : obj ect _t o_stri ng, will result
in the raising of the CORBA: : MARSHAL exception.

Using the Principal Authenticator Object with Certificate
Authentication

The Principal Authenticator object has been enhanced to support certificate
authentication. The use of certificate authentication is controlled by specifying the
Security:: Authenticati onMet hod vaueof Tobj:: CertificateBased asa
parameter to the Pri nci pal Aut henti cat or : : aut hent i cat e operation. When
certificate authentication is used, the implementation of the

Pri nci pal Aut henti cat or: : aut henti cat e operation must retrieve the credentials
for the principal by obtaining the private key and digital certificates for the principal
and registering them for use with the SSL protocol.

Using Security in CORBA Applications 13-5

13 corsa Security APIs

Thevalues of thesecuri ty_nanme and aut h_dat a parameters of the

Pri nci pal Aut henti cator: :authenti cat e operation are used to open the private
key for the principal. If the user does not specify the proper values for both of these
parameters, the private key cannot be opened and the user failsto be authenticated. As
aresult of successfully opening the private key, a chain of digital certificates that
represent the local identity of the principal is built. Both the private key and the chain
of digital certificates must be registered to be used with the SSL protocol.

BEA Tuxedo Extensions to the Principal Authenticator

Object

The CORBA environment in the BEA Tuxedo product extends the Principal
Authenticator object to support a security mechanism similar to the security in the
ATMI environment in the BEA Tuxedo product. The enhanced functionality is
provided by defining the Tobj : : Pri nci pal Aut henti cat or interface. Thisinterface
contains methods to provide similar capability to that available from the ATMI
environment through thet pi ni t function. The interface

Tobj : : Princi pal Aut henti cat or isderived from the CORBA

SecuritylLevel 2:: Princi pal Aut henti cat or interface.

The extended Principal Authenticator object adheresto al the same rules as the
Principal Authenticator object defined in the CORBA services Security Service
specification.

Theimplementation of the extended Principal Authenticator object requires usersto
supply a username, client name, and additional authentication data (for example,
passwords) used for authentication. Because the information needs to be transmitted
over the network to the [lOP Listener/Handler, it is protected to ensure confidentiality.
The protection must include encryption of any information provided by the user.

An extended Principal Authenticator object that supportsthe

Tobj : : Princi pal Aut henti cat or interfaceprovidesthe samefunctionality asif the
SecuritylLevel 2:: Princi pal Aut henti cat or interface were used to perform the
authentication of the principal. However, unlike the

SecuritylLevel 2:: Princi pal Aut henti cat or: : aut henti cate method, the
logon method defined on the Tobj : : Pri nci pal Aut hent i cat or interface does not
return a Credential s object.

13-6 Using Security in CORBA Applications

The Credentials Object

The Credentials Object

A Credentials object (as shown in Figure 13-2) holds the security attributes of a
principal. The Credentials object provides methods to obtain and set the security
attributes of the principalsit represents. These security attributes include its
authenticated or unauthenticated identities and privileges. It also containsinformation
for establishing security associations.

Credentials objects are created as the result of:

m Authentication

m Copying an existing Credentials object

m Asking for a Credentias object viathe SecurityCurrent object

Using Security in CORBA Applications 13-7

13 CORBA Security APIs

Figure 13-2 The Credentials Object

(A
Credentials - Containing Security Attributes
) (.
Unauthenticated Authenticated
Attributes Attributes
II/,’ \\\\\ ’,’ Id tt \\\\
' . \ ! entity \
[}
] Public ," \ Attributes
\\ ’/ \\\ ’,I
_ i Y, 9 - y

- J

Multiple references to a Credentials object are supported. A Credentials object is
stateful. It maintains state on behalf of the principal for which it was created. Thisstate
includes any information necessary to determine the identity and privileges of the
principal it represents. Credentials objects are not associated with the Principal
Authenticator object that created it, but must contain some indication of the
authentication authority that certified the principal’ sidentity.

The Credentials object is alocality-constrained object; therefore, a Credentia s object
may not be used through the DI1/DSI facilities. Any attempt to pass areferenceto this
object outside of the current process, or any attempt to externalize it using

CORBA: : ORB: : obj ect _to_stri ng, will resultintheraising of the CORBA: : MARSHAL
exception.

The Credential s object has been enhanced to allow application developers to indicate
the security attributes for establishing secure connections. These attributes all ow
developers to indicate whether a secure connection requires integrity, confidentiality,
or both. To support this capability, two new attributes were added to the
SecuritylLevel 2:: Oredenti al s interface.

m Theinvocation_options_support ed attribute indicates which security
options are alowed when establishing a secure connection.

13-8 Using Security in CORBA Applications

The SecurityCurrent Object

m The i nvocati on_opti ons_r equi r ed atribute alows the application
devel oper to specify the minimum set of security options that must be used in
establishing a secure connection.

The SecurityCurrent Object

The SecurityCurrent object (see Figure 13-3) represents the current execution context
at both the principal and target objects. The SecurityCurrent object represents
service-specific state information associated with the current execution context. Both
client and server applications have SecurityCurrent objects that represent the state
associ ated with the thread of execution and the processin which thethread is
executing.

Figure 13-3 The SecurityCurrent Object

Current

PrincipalAuthenticator

principal_authenticator

authenticate Credentials Credentials
get_credentials

TID Ptr
Credentials _>|T—I_|

The SecurityCurrent object isasingleton object; thereisonly asingleinstance all owed
in aprocess address space. Multiple references to the SecurityCurrent object are
supported.

The CORBAservices Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

m Securitylevel 1:: Current, which derives from CORBA: : Current

m Securitylevel 2:: Current, which derives from the
SecuritylLevel 1:: Current interface

Using Security in CORBA Applications 13-9

13 corsa Security APIs

Both interfaces give access to security information associated with the execution
context.

At any stage, aclient application can determine the default credentials for subsequent
invocations by calling the Current : : get _cr edent i al s method and asking for the
invocation credentials. These default credentials are used in all invocations that use
object references.

WhenthecCurrent:: get_attri but es methodisinvoked by aclient application, the
attributes returned from the Credential s object are those of the principal .

The SecurityCurrent object is alocality-constrained object; therefore, a
SecurityCurrent object may not be used through the DII/DSI facilities. Any attempt to
pass a reference to this object outside of the current process, or any attempt to
externalize it using CORBA: : ORB: : obj ect _to_stri ng, resultsina

CORBA: : MARSHAL exception.

13-10 Using Security in CORBA Applications

CHAPTER

14 Security Modules

Thistopic contains the Object Management Group (OM G) Interface Definition

Language (IDL) definitions for the following modules that are used in the CORBA
security model:

CORBA
TimeBase
Security
Security Level 1
Security Level 2
Tobj

Using Security in CORBA Applications

14-1

14 Security Modules

CORBA Module

The OMG added the CORBA: : Cur r ent interfaceto the CORBA module to support the
Current pseudo-object. This change enables the CORBA module to support Security
Replaceability and Security Level 2.

Listing 14-1 shows the CORBA: : Curr ent interface OMG IDL statements.

Note: Thisinformation istaken from CORBAservices. Common Object Services
Specification, p. 15-230. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Listing 14-1 CORBA::Current Interface OMG IDL Statements

nmodul e CORBA {
/'l Extensions to CORBA
interface Current {

}s

TimeBase Module

14-2

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module. This allows other services
to use these data structures without requiring the interface definitions. Theinterface
definitions and associated enums and exceptions are encapsulated in the TimeBase
module.

Listing 14-2 shows the TimeBase module OMG IDL statements.

Note: Thisinformation istaken from CORBAservices. Common Object Services
Soecification, p. 14-5. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

Using Security in CORBA Applications

Listing 14-2 TimeBase Module OMG IDL Statements

/1 Fromtime service

nodul e Ti meBase {
/1 interimdefinition of type ul onglong pending the
/1 adoption of the type extension by all client ORBs.
struct ul ongl ong {

unsi gned | ong | ow,
unsi gned | ong hi gh;
b
t ypedef ul ongl ong Ti meT,;
typedef short Tdf T,
struct UtcT {
Ti meT tine; /] 8 octets
unsi gned | ong inacclo; // 4 octets
unsi gned short inacchi; [/ 2 octets
Tdf T tdf; /] 2 octets
/] total 16 octets
}s

Table 14-1 defines the TimeBase module data types.

Note: Thisinformation istaken from CORBAservices: Common Object Services
Soecification, p. 14-6. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

Table 14-1 TimeBase Module Data Type Definitions

DataType Definition

Ti ne OMG IDL does not at present have a native type representing an unsigned

ul ongl ong 64-bit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integersin OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. Thisdefinitionisfor theinterim, andismeant to beremoved when
the native unsigned 64-bit integer type becomes availablein OMG IDL.

Using Security in CORBA Applications 14-3

14 Security Modules

Table 14-1 TimeBase M odule Data Type Definitions (Continued)

Data Type

Definition

Time TimeT

Ti meT represents asingle time value, which is 64-bit in size, and holds the
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

Time Tdf T

Tdf T isof size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UceT

Ut cT defines the structure of the time value that is used universally in the
service. When the Ut ¢ T structure is holding, arelative or absolutetime is
determined by itshistory. Thereisno explicit flag within the object holding
that state information. Thei naccl o andi nacchi fieldstogether hold a
valueof typel naccur acyT packedinto 48 bits. Thet df field holdstime
zone information. Implementation must place the time displacement factor
for the local time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structureisintended to be opague; to be able to marshal
it correctly, the types of fields need to be identified.

Security Module

The Security module defines the OMG IDL for security data types common to the
other security modules. This module depends on the TimeBase module and must be
available with any ORB that claims to be security ready.

Listing 14-3 shows the data types supported by the Security module.

Note: Thisinformation is taken from CORBAservices. Common Object Services
Specification, p. 15-193 to 15-195. Revised Edition: March 31, 1995.
Updated: November 1997. Used with permission by OMG.

Listing 14-3 Security Module OMG IDL Statements

nmodul e Security {
typedef sequence<oct et > Opaque;

14-4 Using Security in CORBA Applications

/1l Extensible famlies for standard data types
struct ExtensibleFamly {

unsi gned short fam |y _definer;
unsi gned short famly;
b
/lsecurity attributes
t ypedef unsi gned | ong SecurityAttributeType;

/1 identity attributes; famly =0

const SecurityAttributeType Auditld = 1;

const SecurityAttributeType Accountingld = 2;
const SecurityAttributeType NonRepudiationld = 3;

/1 privilege attributes; famly =1

const SecurityAttributeType Public = 1;

const SecurityAttributeType Accessld = 2;

const SecurityAttributeType PrinmaryGoupld = 3;
const SecurityAttributeType Goupld = 4;

const SecurityAttributeType Role = 5;

const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType C earance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
Ext ensi bl eFam |y attribute famly;
SecurityAttributeType attribute_type;
b

typedef sequence <AttributeType> AttributeTypeLists;
struct SecAttribute {

AttributeType attribute_type;

Opaque defining_authority;

Opaque val ue;

/1l The value of this attribute can be

/1 interpreted only with know edge of type

b

typedef sequence<SecAttribute> Attri butelist;

// Authentication return status
enum Aut henti cati onStat us {
SecAut hSuccess,
SecAut hFai | ure,
SecAut hCont i nue,
SecAut hExpi red

Using Security in CORBA Applications

14-5

14 Security Modules

/1 Aut hentication nethod
typedef unsigned | ong Aut henti cat i onMet hod,;

enum Credenti al Type {
Secl nvocati onCredenti al s;
SecOMCredenti al s;
SecNRCr edent i al s

/1 Pick up from Ti neBase
typedef TinmeBase:: UtcT UtcT;

Table 14-2 describes the Security module data type.

Table 14-2 Security M odule Data Type Definition

Data Type Definition

sequence<oct et > Datawhose representation is known only to the Security Service
implementation.

Security Level 1 Module

This section defines those interfaces available to client application objects that use
only Level 1 Security functionality. This module depends on the CORBA module and
the Security and TimeBase modules. The Current interface isimplemented by the
ORB.

Listing 14-4 shows the Security Level 1 module OMG IDL statements.

Note: Thisinformation istaken from CORBAservices. Common Object Services
Specification, p. 15-198. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Listing 14-4 Security Level 1 Module OMG IDL Statements

nodul e SecuritylLevel 1 {
interface Current : CORBA: :Current {// PIDL
Security::AttributelList get_attributes(

14-6 Using Security in CORBA Applications

in Security::AttributeTypelList attributes
)i
I

Security Level 2 Module

This section definesthe additional interfaces availableto client application objectsthat
use Level 2 Security functionality. This modul e depends on the CORBA and Security
modules.

Listing 14-5 shows the Security Level 2 module OMG IDL statements.

Note: Thisinformation istaken from CORBAservices: Common Object Services
Specification, p. 15-198 to 15-200. Revised Edition: March 31, 1995.
Updated: November 1997. Used with permission by OMG.

Listing 14-5 Security Level 2 Module OMG IDL Statements

nodul e SecuritylLevel 2 {
/'l Forward decl aration of interfaces
interface Principal Aut henti cator;
interface Credenti al s;
interface Current;

/1 Interface Principal Authenticator
interface Principal Aut henticator {
Security:: AuthenticationStatus authenti cat e(
in Security::Authenticati onMet hod nethod,

in string security_nane,

in Security:: Qpaque aut h_dat a,

in Security::AttributeList privileges,

out Credentials creds,

out Security::Opaque conti nuation_dat a,
out Security::Opaque aut h_specific_data

)

Security::AuthenticationStatus
conti nue_aut henti cati on(
in Security:: Qpaque response_dat a,
inout Credentials creds,

Using Security in CORBA Applications 14-7

14 Security Modules

out Security:: Opaque conti nuati on_dat a,
out Security:: Opaque aut h_specific_data
)
I

/'l Interface Credentials
interface Credentials {
attribute Security::Associati onOptions
i nvocation_options_supported;
attribute Security::AssociationQptions
i nvocati on_options_required;
Security::AttributelList get_attributes(
in Security::AttributeTypeli st attri butes

)i
bool ean is_valid(

out Security::UcT expiry_tinme
)i

b

/1l Interface Current derived from SecuritylLevel 1:: Current
/'l providing additional operations on Current at this
/1 security level. This is inplemented by the ORB.
interface Current : SecuritylLevel 1::Current { // PIDL
voi d set_credenti al s(
in Security::Credential Type cred_type,
in Credentials cred

)

Credentials get_credenti al s(
in Security::Credential Type cred_type
)i

readonly attribute Principal Aut henti cat or
princi pal _authenticator;

Tobj Module

14-8

This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the ATMI-style of
authentication.

Listing 14-6 shows the Tobj module OMG IDL statements.

Using Security in CORBA Applications

Listing 14-6 Tobj Module OMG IDL Statements

/1 Tobj Specific definitions

/1 get_auth_type () return val ues
enum Aut hType {
TOBJ_NQAUTH,
TOBJ_SYSAUTH,
TOBJ_APPAUTH
I
typedef sequence<oct et > User Aut hDat a;

interface Principal Authenti cat or
SecuritylLevel 2:: Principal Authenticator { // PIDL
Aut hType get _auth_type();

Security:: Aut henti cati onStatus | ogon(

in string user _nane,

in string client_nane,

in string syst em password,
in string user _password,
in UserAut hDat a user _data

)
void | ogoff();

voi d build_auth_data(

in string user _nane,

in string client_nane,

in string syst em passwor d,
in string user _password,
in UserAut hDat a user _data,

out Security::Opaque aut h_dat a,

out Security::AttributeList privileges

Using Security in CORBA Applications 14-9

14 Security Modules

14-10 Using Security in CORBA Applications

CHAPTER

15 C++ Security Reference

Thistopic contains the C++ method descriptions for CORBA security.

Using Security in CORBA Applications 15-1

15 c++ Security Reference

SecurityLevell::Current::.get_attributes

Synopsis Returns attributes for the Current interface.

OMGIDL Security::AttributelList get_attributes(
Definition in Security::AttributeTypeli st attributes

)i
b
Argument attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist is empty, dl attributes are returned.

Description This method gets privilege (and other) attributes from the principal’ s credentials for
the Current interface.

Return Values Thefollowing table describes valid return values.

Return Value M eaning

Security::Public Empty (Public is returned when no authentication was
performed).

Security:: Accessld Null terminated ASCI| string containing the BEA

Tuxedo username.

Security::PrimaryG oupld Null terminated ASCII string containing the BEA
Tuxedo name of the principal.

Note: Thedefi ni ng_aut hori ty field isaways empty. Depending on the security
level defined in the UBBCONFI G file not all thevaluesfor the get _attribute
method may be available. Two additional values, @ oup Id and Rol e, are
available with the security level is set to ACL or MANDATORY_ACL in the
UBBCONFI Gfile.

Note: Thisinformation istaken from CORBAservices. Common Object Services
Specification, pp. 15-103, 104. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

15-2 Using Security in CORBA Applications

SecurityLevel2::PrincipalAuthenticator::authenticate

Synopsis

OMG IDL
Definition

Arguments

Authenticates the principal and optionally obtains credentials for the principal.

Security:: Authenticati onStatus
aut henti cat e(

net hod

in Security:: Aut henti cati onMet hod et hod,

in Security:: SecurityNane security_nane,

in Security:: Qpaque aut h_dat a,

in Security::Attributelist privileges,

out Credentials cr eds,

out Security:: Qpaque conti nuati on_dat a,
out Security:: Qpaque auth_specific_data);

The security mechanism to be used. Valid values are
Tobj : : TuxedoSecurity and Tobj : : Certificat eBased.

security_nane

The principal’ sidentification information (for example, logon information).
The value must be a pointer to a NULL -terminated string containing the
username of theprincipal. Thestring islimited to 30 characters, excluding the
NULL character.

When using certificate authentication, this nameis used to look up a
certificate in the LDAP-enabled directory service. Itisalso used asthe basis
for the name of the file in which the private key is stored. For example:

m | ozzi @onpany. comisthe e-mail address used to look up a certificate in
the LDAP-enabled directory serviceandni | 0zzi _conpany. pemisthename
of the private key file.

aut h_dat a

The principals' authentication, such astheir password or private key. If the
Tobj : TuxedoSecuri ty security mechanism is specified, the value of this
argument is dependent on the configured level of authentication. If the
Tobj: : CertificateBased argument is specified, the value of this
argument is the pass phrase used to decrypt the private key of the principal.

privileges

creds

The privilege attributes requested.

The object reference of the newly created Credentials object.The object
referenceisnot fully initialized; therefore, the object reference cannot be used
until the return value of the SecuritylLevel 2: : Current: : authenticate
method is SecAut hSuccess.

Using Security in CORBA Applications 15-3

15 c++ Security Reference

Description

Return Values

continuation_data
If the return value of the SecuritylLevel 2:: Current: :authenticate
method is SecAut hCont i nue, this argument contains the challenge
information for the authentication to continue. Thevalue returned will always
be empty.

auth_specific_data
Information specific to the authentication service being used. The value
returned will always be empty.

The SecurityLevel 2:: Current: : aut henti cat e method isused by the client
application to authenticate the principal and optionally request privilege attributesthat
the principal requires during its session with the BEA Tuxedo domain.

If the Tobj : : TuxedoSecurity security mechanism isto be specified, the same
functionality can be obtained by calling the

Tobj : : Princi pal Aut henti cat or: : | ogon operation, which provides the same
functionality but is specifically tailored for use with the ATMI authentication security
mechanism.

Thefollowing table describes the valid return values.

Return Value

M eaning

SecAut hSuccess The object reference of the newly created Credentials object

returned asthe value of thecr eds argument isinitialized and ready
to use.

SecAut hFai l ure The authentication process was inconsistent or an error occurred

during the process. Therefore, thecr eds argument doesnot contain
an object reference to a Credential s object.

If theTobj : : TuxedoSecur i ty security mechanismisused, this
return value indicates that authentication failed or that the client
application was already authenticated and did not call either the
Tobj : : Princi pal Authenticator:: | ogoff orthe

Tobj _Bootstrap: :destroy_current operation.

SecAut hConti nue Indicates that the authentication procedure uses a

challenge/response mechanism. The cr eds argument contains the
object reference of a partialy initialized Credentials object. The
conti nuati on_dat a indicates the details of the challenge.

15-4 Using Security in CORBA Applications

Return Value M eaning

SecAut hExpi red Indicates that the authentication data contained some information,
the validity of which had expired; therefore, thecr eds argument
does not contain an object reference to a Credential s obj ect.

If the Tobj : : TuxedoSecuri ty security mechanismisused, this
return value is never returned.

CORBA: : BAD_PARAM The CORBA: : BAD_PARAMexception occurs if:

m Valuesforthesecurity nane,auth_data,or
pri vil eges arguments are not specified.

m Thelength of an input argument exceeds the maximum length
of the argument.

m Thevalue of the met hod argument is
Tobj : : TuxedoSecuri t y and the content of the
aut h_dat a argument containsauser nane or a
cl i ent nane asan empty or aNULL string.

Using Security in CORBA Applications 15-5

15 c++ Security Reference

SecurityLevel2::Current::set_credentials

Synopsis

OMG IDL
Definition

Arguments

Description

Return Values

Sets credentials type.

voi d set_credential s(
in Security::Credential Type cred_type,

in Credentials creds
)
cred_type
Thetype of credentialsto be set; that is, invocation, own, or non-repudiation.
creds

Theobject reference to the Credential s object, which isto become the default.

This method can be used only to set Secl nvocat i onCr edent i al s; otherwise,

set _credenti al s raises CORBA: : BAD PARAM The credentials must have been
obtained from apreviouscall to SecuritylLevel 2::Current::get_credential s
or SecurityLevel 2:: Princi pal Aut henti cat or:: aut henti cate.

None.

Note: Thisinformation istaken from CORBAservices. Common Object Services
Specification, p. 15-104. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

15-6 Using Security in CORBA Applications

SecurityLevel2::Current::get_credentials

Synopsis
OMG IDL
Definition

Argument

Description

Return Values

Gets credentia stype.

Credentials get_credential s(
in Security::Credential Type cred_type

K

cred_type
The type of credentialsto get.

Thiscall can be used only to get Secl nvocat i onCr edent i al s; otherwise,
get _credenti al s raises CORBA: : BAD_PARAM If no credentials are available,
get _credenti al s raises CORBA: : BAD | N\V_ORDER

Returns the active credentials in the client application only.

Note: Thisinformation istaken from CORBAservices: Common Object Services
Specification, p. 15-105. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Using Security in CORBA Applications 15-7

15 c++ Security Reference

SecurityLevel2::Current::principal_authenticator

Synopsis

OMG IDL
Definition

Description

Return Values

Returnsthe Pri nci pal Aut henti cator.

readonly attribute Principal Aut henti cat or
princi pal _aut henticat or;

ThePrinci pal Aut henti cat or returned by thepri nci pal _aut henti cat or
attribute is of actual type Tobj : : Pri nci pal Aut hent i cat or . Therefore, it can be
used both asaTobj : : Pri nci pal Aut henti cat or and asa

SecuritylLevel 2:: Princi pal Aut henti cator.

Note: This method raises CORBA: : BAD | NV_ORDERIf it iscalled on aninvalid
SecurityCurrent object.

Returnsthe Pri nci pal Aut henti cator.

15-8 Using Security in CORBA Applications

SecurityLevel2::.Credentials

Synopsis Represents a particular principal’s credential information that is specific to a process.
A Credentias object that supportsthe Securi t yLevel 2: : Credenti al s interfaceis
alocality-constrained object. Any attempt to pass a reference to the object outside its
locality, or any attempt to externalize the object using the
CORBA: : ORB: : obj ect _to_string() operation, resultsin a CORBA: : Mar shal |
exception.

OMGIDL #ifndef _SECURITY LEVEL 2 | DL
Definition #define _SECURI TY LEVEL 2 | DL

#i ncl ude <SecuritylLevel 1.idl>
#pragma prefix “ong.org”

modul e SecuritylLevel 2
{
interface Oredentials
{
attribute Security::AssociationOptions
i nvocati on_options_supported;
attribute Security::Associati onOptions
i nvocati on_options_required;
Security::Attributelist
get _attributes(

in Security::AttributeTypeli st attributes);
bool ean
is_valid(

out Security::UcT expiry_time);

}s
b
#endi f /* SECURI TY_LEVEL 2 IDL */

C++ Declaration ¢l ass SecuritylLevel 2

{
public:
cl assCredenti al s;
typedef Credenti als *Credential s_ptr;

class Credentials : public virtual CORBA: :bject

{
public:

Using Security in CORBA Applications 15-9

15 c++ Security Reference

static Credentials_ptr _duplicate(Credentials_ptr obj);
static Credentials _ptr _narrow CORBA:: Cbject_ptr obj);
static Credentials _ptr _nil();

virtual Security::AssociationOptions
i nvocation_options_supported() = O;
virtual void
i nvocati on_options_support ed(
const Security::AssociationOptions options) = 0;
virtual Security::AssociationOptions
invocation_options_required() = 0;
virtual void
i nvocation_options_required(
const Security::AssociationOptions options) = 0;

virtual Security::AttributelList *
get _attributes(
const Security::AttributeTypelList & attributes) = 0;

virtual CORBA:: Bool ean
is_valid(Security::UcT out expiry_ tinme) = 0;

pr ot ect ed:
Credenti al sS(CORBA: : Obj ect _ptr obj = 0);
virtual ~Credentials() { }

private:
Credential s(const Credential s& { }
voi d operator=(const Credentials& { }
}; I/ class Credentials
}; /1 class SecuritylLevel 2

15-10 Using Security in CORBA Applications

SecurityLevel2::Credentials::get_attributes

Synopsis
OMG IDL
Definition

Argument

Description

Return Values

Gets the attribute list attached to the credentias.

Security::AttributelList get_attributes(
in AttributeTypeli st attri butes

K

attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist isempty, all attributes are returned.

Thismethod returns the attribute list attached to the credential s of the principal. In the
list of attribute types, you are required to include only the type value(s) for the
attributes you want returned inthe At t r i but eLi st . Attributes are not currently
returned based on attribute family or identities. In most cases, this is the same result
you would get if you called SecuritylLevel 1:: Current::get_attributes(),
sincethereisonly one valid set of credentialsin the principal at any instancein time.
The results could be different if the credentials are not currently in use.

Returns attribute list.
Note: Thisisinformation taken from CORBAservices: Common Object Services

Specification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

Using Security in CORBA Applications 15-11

15 c++ Security Reference

SecurityLevel2::Credentials::invocation_options_supported

Synopsis Indicates the maximum number of security optionsthat can be used when establishing
an SSL connection to make an invocation on an object in the BEA Tuxedo domain.

OMGIDL attribute Security:: AssociationOptions
Definition i nvocati on_options_support ed;

Argument None.

Description This method should be used in conjunction with the
SecuritylLevel 2:: Oredential s::i nvocation_options_requi red method.

The following security options can be specified:

Security Option Description

NoPr ot ecti on The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

Det ect Repl ay The SSL protocol provides replay detection. Replay occurswhen amessageis
sent repeatedly with no detection.

Det ect M sorderi ng The SSL protocol provides sequence error detection for requests and request
fragments.

Est abl i shTrust | nTarget Indicatesthat the target of arequest authenticates itself to the initiating
principal.

NoDel egat i on Indicates that the principa permits an intermediate object to use its privileges
for the purpose of access control decisions. However, theprincipal’ s privileges
are not del egated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

Si npl eDel egati on Indicates that the principa permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privilegesto the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

15-12 Using Security in CORBA Applications

Security Option Description

Conposi t eDel egati on Indicates that the principal permits the intermediate object to use its

credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Return Values

Thelist of defined security options.

If the Tobj : : TuxedoSecuri ty security mechanism is used to create the security
association, only the NoPr ot ect i on, Est abl i shTrust I nd i ent, and

Si npl eDel egat i on security options are returned. The Est abl i shTrust I nd i ent
security option appearsonly if the security level of the CORBA application is defined
to require passwords to access the BEA Tuxedo domain.

Note: A CORBA: : NO_PERM SSI ON exception is returned if the security options
specified are not supported by the security mechanism defined for the CORBA
application. This exception can also occur if the security options specified
have less capabilities than the security options specified by the
SecuritylLevel 2::Credential s::invocation_options_required
method.

Theinvocati on_opti ons_support ed atribute hasset () and get ()
methods. Y ou cannot use the set () method when using the

Tobj : : TuxedoSecur ity security mechanism to get a Credentials object. If
you do use the set () method with the Tobj : : TuxedoSecuri ty security
mechanism, a CORBA: : NO_PERM SSI ON exception is returned.

Using Security in CORBA Applications 15-13

15 c++ Security Reference

SecuritylLevel2::Credentials::invocation_options_required

Synopsis Specifies the minimum number of security options to be used when establishing an
SSL connection to make an invocation on atarget object in the BEA Tuxedo domain.
OMGIDL attribute Security:: AssociationOptions
Definition i nvocati on_options_required;
Argument None.

Description Use this method to specify that communication between principals and the BEA
Tuxedo domain should be protected. After using this method, a Credentials object
makes an invocation on atarget object using the SSL protocol with the defined level
of security options. This method should be used in conjunction with the
SecuritylLevel 2:: Oredenti al s: ;i nvocation_options_support ed method.
Thefollowing security options can be specified:

Security Option Description

NoPr ot ecti on

The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.
Confidentiality The SSL connection protects the confidentiality of messages. Crytography is

used to protect the confidentiality of messages.

Det ect Repl ay

The SSL protocol provides replay detection. Replay occurswhen amessageis
sent repeatedly with no detection.

Det ect M sorderi ng The SSL protocol provides sequence error detection for requests and request

fragments.

Est abl i shTrust | nTarget Indicatesthat the target of arequest authenticates itself to the initiating

principal.

NoDel egati on

Indicates that the principa permits an intermediate object to use its privileges
for the purpose of access control decisions. However, theprincipal’ s privileges
are not del egated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

15-14 Using Security in CORBA Applications

Security Option Description

Si npl eDel egati on Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privilegesto the
intermediate object. Thetarget object receives only the privileges of theclient
application and does not know the identity of the intermediate object. When
thisinvocation option is used without restrictions on the target object, the
behavior is known as impersonation.

Conposi t eDel egati on Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Return Values Thelist of defined security options.

If the Tobj : : TuxedoSecuri ty security mechanism is used to create the security
association, only the NoPr ot ect i on, Est abl i shTrust I nd i ent, and

Si npl eDel egat i on security options are returned. The Est abl i shTrust I nd i ent
security option appearsonly if the security level of the CORBA application is defined
to require passwords to access the BEA Tuxedo domain.

Note: A CORBA: : NO_PERM SSI ON exception is returned if the security options
specified are not supported by the security mechanism defined for the CORBA
application. This exception can also occur if the security options specified
have more capabilities than the security options specified by the
SecuritylLevel 2::Credential s::invocation_options_supported
method.

Theinvocati on_options_required attribute hasset () and get ()
methods. Y ou cannot use the set () method when using the

Tobj : : TuxedoSecur ity security mechanism to get a Credentials object. If
you do use the set () method with the Tobj : : TuxedoSecuri ty security
mechanism, a CORBA: : NO_PERM SSI ON exception is returned.

Using Security in CORBA Applications 15-15

15 c++ Security Reference

SecurityLevel2::.Credentials::is_valid

Synopsis
OMG IDL
Definition

Description

Return Values

Checks status of credentials.

bool ean is_valid(
out Security::UcT expiry_tinme

)

This method returns TRUE if the credentials used are active at the time; that is, you did
not call Tobj : : Pri nci pal Aut henti cator: : | ogoff or

Tobj _Boot strap:: destroy_current . If thismethod iscaled after

Tobj : : Princi pal Aut henti cat or: : | ogof f (), FALSEisreturned. If thismethodis
called after Tobj _Boot st rap: : destroy_current (), the CORBA: : BAD | N\V_CORDER
exception is raised.

The expiration date returned contains the maxi mum unsi gned 1 ong | ong valuein
C++and maxi mum | ong in Java. Until theunsi gned | ong | ong datatype is adopted,
theul ongl ong datatypeis substituted. The ul ongl ong datatypeis defined asfollows:

/1 interimdefinition of type ulonglong pending the
/1 adoption of the type extension by all client ORBs.
struct ul ongl ong {

unsi gned | ong | ow;

unsi gned | ong hi gh;
I

Note: Thisinformation istaken from CORBAservices. Common Object Services
Soecification, p. 15-97. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

15-16 Using Security in CORBA Applications

SecurityLevel2::PrincipalAuthenticator

Synopsis Allows aprincipal to be authenticated. A Principal Authenticator object that supports
the Securi tylLevel 2:: Princi pal Aut henti cator interfaceisa
locality-constrained object. Any attempt to pass a reference to the object outside its
locality, or any attempt to externalize the object using the
CORBA: : ORB: : obj ect _to_string() operation, resultsin a CORBA: : Mar shal |
exception.

OMGIDL #ifndef _SECURITY LEVEL 2 | DL
Definition #define _SECURI TY LEVEL 2 | DL

#i ncl ude <SecuritylLevel 1.idl>
#pragma prefix “ong.org”

modul e SecuritylLevel 2
{
interface Principal Aut henti cat or
{ /1 Locality Constrained
Security:: Aut henti cationStatus authenticate (
in Security:: Authenticati onMet hod net hod,

in Security:: SecurityNane security_nane,
in Security:: Opaque aut h_dat a,
in Security::Attributeli st privil eges,
out Credentials cr eds,
out Security::Opaque conti nuati on_data,
out Security::Opaque aut h_specific_data
)
Security:: AuthenticationStatus continue_authentication (
in Security:: Opaque response_dat a,
in Credentials creds,
out Security::Opaque conti nuati on_data,
out Security::Opaque aut h_specific_data
)
b

b
#endif // SECURITY_LEVEL 2 IDL

#pragma prefix "beasys. cont
nodul e Tobj

{

const Security::Authenticati onMet hod
TuxedoSecurity = 0x54555800;

Using Security in CORBA Applications 15-17

15 c++ Security Reference

CertificateBased = 0x43455254;

b

C++ Declaration cl ass Securitylevel 2
{
public:

cl assPrinci pal Aut henti cator;
typedef Pri nci pal Aut henti cator * Principal Aut henti cator_ptr;

class Principal Authenticator : public virtual CORBA:: (bject
{
public:
static Principal Authenticator_ptr
_duplicate(Principal Authenti cator_ptr obj);
static Principal Aut henticator_ptr
_narrow CORBA: : (bj ect _ptr obj);
static Principal Authenticator_ptr _nil();

virtual Security::AuthenticationStatus
aut henticate (
Security:: Aut henti cati onMet hod net hod,
const char * security_nane,
const Security:: Qpaque & auth_data,
const Security::AttributeList & privil eges,
Credential s_out creds,
Security:: Opaque_out continuation_data,
Security:: Opaque_out auth_specific_data) = 0;

virtual Security::AuthenticationStatus
continue_authentication (
const Security::Opaque & response_data,
Credential s_ptr & creds,
Security:: Opaque_out continuation_data,
Security:: Opaque_out auth_specific_data) = O;

pr ot ect ed:
Pri nci pal Aut henti cat or (CORBA: : Cbj ect _ptr obj = 0);
virtual ~Principal Authenticator() { }

private:
Pri nci pal Aut henti cator(const Principal Authenticator& { }
voi d operator=(const Principal Authenticator& { }

}; I/ class Principal Authenti cator

b

15-18 Using Security in CORBA Applications

SecurityLevel2::PrincipalAuthenticator::continue_authentication

Synopsis

OMG IDL
Definition

Description

Return Values

Alwaysfails.

Security::AuthenticationStatus continue_aut hentication(

in Security::Opaque response_dat a,

in Credentials creds,

out Security:: Qpaque conti nuation_dat a,
out Security:: Qpaque aut h_specific_data

K

Becausethe BEA Tuxedo software does authentication in one step, thismethod always
failsand returns Securi ty: : Aut hent i cati onSt at us: : SecAut hFai | ure.

Alwaysreturns Security: : Authenticati onSt at us: : SecAut hFai | ure.

Note: Thisinformation istaken from CORBAservices: Common Object Services
Soecification, pp. 15-92, 93. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

Using Security in CORBA Applications 15-19

15 c++ Security Reference

Tobj::PrincipalAuthenticator::get_auth_type

Synopsis

OMG IDL
Definition

Description

Aut hType get_auth_type();

Gets the type of authentication expected by the BEA Tuxedo domain.

This method returns the type of authentication expected by the BEA Tuxedo domain.

Note: This method raises CORBA: : BAD | NV_ORDERIf it iscalled with an invalid

SecurityCurrent object.

Return Values

A reference to the Tobj _Aut hType enumeration. Returns the type of authentication

reguired to access the BEA Tuxedo domain. The following table describes the valid

return values.

Return Value

M eaning

TOBJ_NOAUTH

No authentication is needed; however, the client
application can still authenticate itself by specifying a
username and a client application name. No password
isrequired.

To specify this level of security, specify the NONE
valuefor the SECURI TY parameter in the RESOURCES
section of the UBBCONFI Gfile.

TOBJ_SYSAUTH

The client application must authenticate itself to the
BEA Tuxedo domain, and must specify a username, a
name, and a password for the client application.

To specify thislevel of security, specify the APP_PW

valuefor the SECURI TY parameter in the RESOURCES
section of the UBBCONFI Gfile.

TOBJ_APPAUTH

The client application must provide proof material that
authenticates the client application to the BEA Tuxedo
domain.The proof material may be a password or a
digital certificate.

To specify this level of security, specify the
USER_AUTHvaluefor the SECURI TY parameter inthe
RESOURCES section of the UBBCONFI Gfile.

15-20 Using Security in CORBA Applications

Tobj::PrincipalAuthenticator::logon

Synopsis

OMG IDL
Definition

Arguments

Authenticates the principal.

Security:: AuthenticationStatus | ogon(

in string user _name

in string client_nane,

in string syst em password,
in string user _password,

i n User Aut hDat a user _data
)i

user _nane
The BEA Tuxedo username. The authentication level is TOBJ_NOAUTH. If
user _nane iSNULL or empty, or exceeds 30 characters, | ogon raises
CORBA: : BAD_PARAM

client_nane
The BEA Tuxedo name of the client application. The authentication level is
TOBJ_NOAUTH. If thecl i ent _nanme isNULL or empty, or exceeds 30
characters, logon raises the CORBA: : BAD_PARAMexception.

syst em password
The CORBA client application password. The authentication level is
TOBJ_SYSAUTH. If the client nameis NULL or empty, or exceeds 30
characters, logon raises the CORBA: : BAD_PARAMexception.

Note: Thesyst em passwor d must not exceed 30 characters.

user _password
The user password (needed for use by the default BEA Tuxedo authentication
service). The authentication level is TOBJ_APPAUTH. The password must not
exceed 30 characters.

user_data
Datathat is specific to the client application (needed for use by acustom BEA
Tuxedo authentication service). The authentication level is TOBJ_APPAUTH.

Note: TOBJ_SYSAUTH includes the requirements of TOBJ_NOAUTH, plusaclient
application password. TOBJ_APPAUTH includes the requirements of
TOBJ_SYSAUTH, plus additional information, such as a user password or
user data.

Note: Theuser_passwor d and user _dat a arguments are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the BEA Tuxedo domain. The BEA Tuxedo default

Using Security in CORBA Applications 15-21

15 c++ Security Reference

authentication service expects a user password. A customized
authentication service may require user data. The logon call raises the
CORBA: : BAD_PARAMexception if both user _passwor d and user _dat a
are specified.

Description This method authenticates the principal viathe I1OP Listener/Handler so that the
principal can accessaBEA Tuxedo domain. This method isfunctionally equivalent to
SecuritylLevel 2:: Princi pal Aut henti cat or:: aut henti cat e, but the
arguments are oriented to ATM | authentication.

Note: This method raises CORBA: : BAD | NV_ORDERIf it iscalled with an invalid
SecurityCurrent object.

Return Values ~ Thefollowing table describes the valid return values.

Return Value M eaning

Security::AuthenticationStatus:: The authenti cation succeeded.

SecAut hSuccess

Security:: AuthenticationStatus:: The authentication failed, or the client application was

SecAut hFai l ure already authenticated and did not call one of the following
methods:

Tobj :: Princi pal Aut henti cat or: | ogoff
Tobj Boot strap::destroy_current

15-22 Using Security in CORBA Applications

Tobj::PrincipalAuthenticator::logoff

Synopsis

OMG IDL
Definition

Description

Return Values

Discards the security context associated with the principal .

void |l ogoff();

This call discards the security context, but does not close the network connectionsto
the BEA Tuxedo domain. Logof f also invalidates the current credentials. After
logging off, invocations using existing object references fail if the authentication type
isnot TOBJ_NOAUTH.

If the principal is currently authenticated to a BEA Tuxedo domain, calling
Tobj _Bootstrap: :destroy_current () calsl ogoff implicitly.

Note: This method raises CORBA: : BAD | NV_CRDERf itis called with an invalid
SecurityCurrent object.

None.

Using Security in CORBA Applications 15-23

15 c++ Security Reference

Tobj::PrincipalAuthenticator::build_auth_data

Synopsis

OMG IDL
Definition

Arguments

Creates authentication data and attributes for use by
SecuritylLevel 2:: Princi pal Aut henti cator:: aut henti cate.

voi d buil d_aut h_dat a(

in string user _nane,
in string client_nane,
in string syst em password,
in string user _password,
in User Aut hDat a user _data,
out Security::Opaque aut h_dat a,
out Security::Attributelist privileges
)
user _nane

The BEA Tuxedo username.

client_nane
The CORBA client name.

syst em passwor d
The CORBA client application password.

user _password
The user password (default BEA Tuxedo authentication service).

user _data
Client application-specific data (custom BEA Tuxedo authentication
service).

aut h_dat a
For use by aut hent i cat e.

privil eges
For use by aut hent i cat e.

Note: Ifuser_name,client _name, orsystem passwor diSNULL or empty, or
exceeds 30 characters, the subsequent aut hent i cat e method invocation
raises the CORBA: : BAD_PARAMexception.

15-24 Using Security in CORBA Applications

Description

Return Values

Note: Theuser _passwor d and user _dat a parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the BEA Tuxedo domain. The BEA Tuxedo default
authentication service expects a user password. A customized
authentication service may require user data. If both user _passwor d and
user _dat a are specified, the subsequent authentication call raises the
CORBA: : BAD_PARAMexception.

This method is a helper function that creates authentication dataand attributes to be
used by SecurityLevel 2:: Princi pal Authenticator::authenticate.

Note: This method raises CORBA: : BAD | NV_CRDERf itis called with an invalid
SecurityCurrent object.

None.

Using Security in CORBA Applications 15-25

15 c++ Security Reference

15-26 Using Security in CORBA Applications

CHAPTER

16 Java Security
Reference

For information about the security application programming interface (API), see the
CORBA Javadoc in the BEA Tuxedo online documentation.

Using Security in CORBA Applications 16-1

16 java Security Reference

16-2 Using Security in CORBA Applications

CHAPTER

1/ Automation Security
Reference

Thistopic contains the A utomation method descriptions for CORBA security. In
addition, this topic contains programming examplesthat illustrate using the
Automation methods to implement security in an ActiveX client application.

Thistopic includes the following sections:
m Method Descriptions

m Programming Example

Note: The Automation security methods do not support certificate authentication or
the use of the SSL protocol.

Using Security in CORBA Applications 17-1

17 Automation Security Reference

Method Descriptions

This section describes the Automation Security Service methods.

DISecurityLevel2_Current

The Dl SecurityLevel 2_Current objectisaBEA implementation of the CORBA
Security model. In thisrelease of the BEA Tuxedo software, theget _attri butes(),

set _credential s(),get_credentials(),andPrincipal Authenticator()
methods are supported.

17-2 Using Security in CORBA Applications

Method Descriptions

DISecurityLevel2_Current.get_attributes

Synopsis

MIDL Mapping

Automation
Mapping

Parameters

Description

Return Values

Returns attributes for the Current interface.

HRESULT get _attri but es(
[in] VARIANT attributes,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] VAR ANT* returnVal ue);

Function get _attributes(attributes, [exceptionlnfo])

attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist isempty, all attributes are returned.

exceptioni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception datais returned in the OL E Automation Error Object.

This method gets privilege (and other) attributes from the credentials for the client
application from the Current interface.

A variant containing an array of DI Securi ty_SecAt tri but e objects. Thefollowing
table describes the valid return values.

Return Value M eaning

Security::Public Empty (Public is returned when no authentication was
performed.)

Security::Accessld Null-terminated ASCII string containing the BEA

Tuxedo username.

Security::PrimaryGoupld Null-terminated ASCII string containing the BEA
Tuxedo name of the client application.

Using Security in CORBA Applications 17-3

17 Automation Security Reference

DISecurityLevel2_Current.set_credentials

Synopsis Sets credentials type.

MIDL Mapping HRESULT set _credenti al s(
[in] Security Oredential Type cred_type,
[in] Dl SecuritylLevel 2 Credential s* cred,
[in,out,optional] VARIANT* exceptionlnfo);

Automation Sub set _credential s(cred_type As Security_Credential Type
Mapping cred As Dl SecuritylLevel 2_Credenti al s,
[exceptionl nfo])

Description This method can be used only to set Secl nvocat i onCr edent i al s; otherwise,
set _credenti al s raises CORBA: : BAD PARAM The credentials must have been
obtained from apreviouscall to DI SecuritylLevel 2_Current.get_credentials.

Arguments cred_t ype
Thetype of credentialsto be set; that is, invocation, own, or nonrepudiation.

cred
Theobject reference to the Credential s object, which isto become the default.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception dataif an error occurs. For the ActiveX client applications, all
exception datais returned in the OLE Automation Error Object.

Return Values None.

17-4 Using Security in CORBA Applications

Method Descriptions

DISecurityLevel2_Current.get_credentials

Synopsis

MIDL Mapping

Automation
Mapping

Description

Arguments

Return Values

Gets credentia stype.

HRESULT get credenti al s(
[in] Security Credential Type cred_type,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] DI SecuritylLevel 2_COredential s** returnVal ue);

Function get _credentials(cred_type As Security_ O edential Type,
[exceptionlnfo]) As DI SecuritylLevel 2_Credentials

Thiscall can be used only to get Secl nvocat i onCr edent i al s; otherwise,
get _credenti al s raises CORBA: : BAD_PARAM If no credentials are available,
get _credenti al s raises CORBA: : BAD | N\V_ORDER

cred_type
The type of credentialsto get.

excepti oni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OL E Automation Error Object.

A Dl SecuritylLevel 2_Credenti al s object for the active credentials in the client
application only.

Using Security in CORBA Applications 17-5

17 Automation Security Reference

DISecurityLevel2_Current.principal_authenticator

Synopsis

MIDL Mapping
Automation
Mapping

Description

Return Values

Returnsthe Pri nci pal Aut henti cat or.

HRESULT pri nci pal _aut henti cator([out, retval]
Dl Tobj _Princi pal Aut henticator** returnVal ue);

Property principal _authenticator As D Tobj_ Princi pal Aut henti cat or

ThePrinci pal Aut henti cat or returned by thepri nci pal _aut henti cat or
property is of actual type DI Tobj _Pri nci pal Aut henti cat or. Therefore, it can be
used asaDl SecurityLevel 2_Princi pal Aut henti cator.

Note: This method raises CORBA: : BAD | NV_ORDERIf it iscalled on aninvalid
SecurityCurrent object.

A DI Tobj _Princi pal Aut henti cat or object.

17-6 Using Security in CORBA Applications

Method Descriptions

DITobj_PrincipalAuthenticator

TheDl Tobj _Pri nci pal Authenti cat or objectisusedtologintoandlog out of the
BEA Tuxedo domain. In thisrelease of the BEA Tuxedo software, theaut hent i cat e,
bui l d_auth_data(), continue_aut hentication(), get_auth_type(),

I ogon(), and I ogof f () methods are implemented.

Using Security in CORBA Applications 17-7

17 Automation Security Reference

DITobj_PrincipalAuthenticator.authenticate

Synopsis

MIDL Mapping

Automation
Mapping

Arguments

Authenticates the client application.

HRESULT aut henti cat e(

[in] long nmet hod,
[in] BSTR security_nane,
[in] VARI ANT aut h_dat a,
[in] VARI ANT privil eges,
[out] DI SecuritylLevel 2_Credenti al s**
creds,
[out] VARI ANT* continuation_data,
[out] VARI ANT* aut h_specific_data,
[in,out,optional] VARI ANT* exceptionlnfo,

[out,retval] Security AuthenticationStatus* returnVal ue);

Functi on authenticate(nethod As Long, security name As String,
auth_data, privileges, creds As Dl SecuritylLevel 2_Credenti al s,
continuation_data, auth_specific_data,
[exceptionlnfo]) As Security_ AuthenticationStatus

met hod
Must be Tobj :: TuxedoSecurity. If met hod isinvalid, aut hent i cat e
raises CORBA: : BAD PARAM

security_name
The BEA Tuxedo username.

aut h_dat a
Asreturned by DI Tobj _Pri nci pal Aut henti cator. bui | d_aut h_dat a. If
aut h_dat a isinvalid, aut hent i cat e raises CORBA: : BAD_PARAM

privil eges
As returned by DI Tobj _Pri nci pal Aut henti cator. bui | d_aut h_dat a.
If privil eges isinvalid, aut hent i cat e raises CORBA: : BAD_PARAM

creds
Placed into the SecurityCurrent object.

continuation_data
Always empty.

auth_specific_data
Always empty.

17-8 Using Security in CORBA Applications

Method Descriptions

Description

Return Values

excepti oni nfo

An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OL E Automation Error Object.

This method authenticates the client application viathe |1 OP Listener/Handler so that
it can access a BEA Tuxedo domain.

A Security_AuthenticationStatus Enum value. The following table describes

the valid return values.

Return Value

Meaning

Security:: Aut hentication
Status::
SecAut hSuccess

The authentication succeeded.

Security:: Aut hentication
Status::
SecAut hFai l ure

The authentication failed, or the client application was
aready authenticated and did not invoke

Tobj : : Princi pal Authenticator: | ogoff or
Tobj _Bootstrap::destroy_current.

Using Security in CORBA Applications 17-9

17 Automation Security Reference

DITobj_PrincipalAuthenticator.build_auth_data

Synopsis Creates authentication data and attributes for use by
Dl Tobj _Princi pal Aut henti cat or. aut henti cat e.

MIDL Mapping HRESULT bui | d_aut h_dat a(

[in] BSTR user _nane,

[in] BSTR client_nane,
[in] BSTR syst em password,
[in] BSTR user _password,
[in] VAR ANT user _dat a,

[out] VARI ANT* aut h_dat a,

[out] VARI ANT* privil eges

[in,out,optional] VARI ANT* exceptionlnfo);

Automation Sub buil d_aut h_data(user_name As String, client_name As String,
Mapping system password As String, user_password As String, user_data,
auth_data, privileges, [exceptionlnfo])

Arguments user _nane
The BEA Tuxedo username.

client_nane
A name of the CORBA client application.

syst em passwor d
The password for the CORBA client application.

user _password
The user password (for default authentication service).

user _data
Client application-specific data (custom authentication service).

aut h_dat a
For use by aut hent i cat e.

privil eges
For use by aut hent i cat e.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OLE Automation Error Object.

17-10 Using Security in CORBA Applications

Method Descriptions

Note: Ifuser_name,client_name,orsyst em passwor diSNULL or empty, or
exceeds 30 characters, the subsequent aut hent i cat e method invocation
raises the CORBA: : BAD_PARAMexception.

Note: Theuser _passwor d and user _dat a parameters are mutually exclusive,
depending on the requirements of the authentication service used in the
configuration of the BEA Tuxedo domain. The default authentication
service expects auser password. A customized authentication service may
require user data. If both user _passwor d and user _dat a are specified,
the subsequent authentication call raises the CORBA: : BAD_PARAM

exception.

Description This method is a helper function that creates authentication data and attributes to be
used by DI Tobj _Pri nci pal Aut henti cat or . aut henti cat e.

Note: This method raises CORBA: : BAD | NV_CRDERf itis called with an invalid
SecurityCurrent object.

Return Values None.

Using Security in CORBA Applications 17-11

17 Automation Security Reference

DITobj_PrincipalAuthenticator.continue_authentication

Synopsis Alwaysreturns Securi ty: : Aut henti cati onSt at us: : SecAut hFai | ur e.

MIDL Mapping HRESULT conti nue_aut henti cati on(
[in] VAR ANT response_data,
[in,out] DI SecuritylLevel 2 _Credential s** creds,
[out] VARI ANT* continuation_data,
[out] VARI ANT* auth_specific_data,
[in,out,optional] VARIANT* exceptionlnfo,
[out,retval] Security_ AuthenticationStatus* returnVal ue);

Automation Functi on continue_aut henti cati on(response_dat a,
Mapping creds As DI SecuritylLevel 2 _Credentials, continuation_data,
aut h_specific_data, [exceptionlnfo]) As
Security_ AuthenticationStatus

Description Becausethe BEA Tuxedo software does authentication in one step, this method always
failsand returns Securi ty: : Aut hent i cati onSt at us: : SecAut hFai | ure.

Return Values Always returns SecAut hFai | ur e.

17-12 Using Security in CORBA Applications

Method Descriptions

DITobj_PrincipalAuthenticator.get_auth_type

Synopsis

MIDL Mapping

Automation
Mapping

Argument

Description

Returned
Values

Gets the type of authentication expected by the BEA Tuxedo domain.

HRESULT get _aut h_type(
[in, out, optional] VAR ANT* excepti onl nfo,
[out, retval] Tobj AuthType* returnVal ue);

Function get_auth_type([exceptionlnfo]) As Tobj AuthType

excepti oni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OL E Automation Error Object.

This method returns the type of authentication expected by the BEA Tuxedo domain.

Note: This method raises CORBA: : BAD | NV_CRDERf itis called with an invalid
SecurityCurrent object.

A reference to the Tobj _Aut hType enumeration. The following table describes the
valid return values.

Return Value M eaning

TOBJ_NQAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying
ausername and a client application name. No
password isrequired.

To specify thislevel of security, specify the NONE
value for the SECURI TY parameter in the
RESOURCES section of the UBBCONFI Gfile.

TOBJ_SYSAUTH The client application must authenticate itself to the
BEA Tuxedo domain, and must specify a username,
aname, and a password for the client application.

To specify thislevel of security, specify the APP_PW
value for the SECURI TY parameter in the
RESOURCES section of the UBBCONFI Gfile.

Using Security in CORBA Applications 17-13

17 Automation Security Reference

Return Value

M eaning

TOBJ_APPAUTH

The client application must provide proof material
that authenticates the client application to the BEA
Tuxedo domain.The proof material may be a
password or adigital certificate.

To specify thislevel of security, specify the
USER_AUTHvalue for the SECURI TY parameter in
the RESOQURCES section of the UBBCONFI Gfile.

17-14 Using Security in CORBA Applications

Method Descriptions

DITobj_PrincipalAuthenticator.logon

Synopsis

MIDL Mapping

Automation
Mapping

Description

Arguments

Logsinto the BEA Tuxedo domain. The correct input parameters depend on the
authentication level.

HRESULT | ogon(

[in] BSTR user_nane,

[in] BSTR client_nane,
[in] BSTR system password,
[in] BSTR user _password,
[in] VARI ANT user _dat a,
[in,out,optional] VAR ANT* excepti onl nf o,

[out,retval] Security_ AuthenticationStatus*
ret urnVal ue) ;

Function | ogon(user_nane As String, client_name As String,
system password As String, user_password As String,
user _data, [exceptionlnfo]) As Security_ AuthenticationStatus

For remote CORBA client applications, this method authenticates the client
application viathe |1OP Listener/Handler so that the remote client application can
access aBEA Tuxedo domain. This method is functionally equivalent to

Dl Tobj _Pri nci pal Aut henti cat or . aut hent i cat e, but the parameters are
oriented to security.

user _nane
The BEA Tuxedo username. This parameter isrequired for TOBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

client_nane
The name of the CORBA client application. This parameter isrequired for
TOBJ_NOAUTH, TOBJ_SYSAUTH, and TOBJ_ APPAUTH authentication levels.

syst em password
A password for the CORBA client application. This parameter isrequired for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels.

user _password
The user password (default authentication service). This parameter is
required for the TOBJ_APPAUTH authentication level.

Using Security in CORBA Applications 17-15

17 Automation Security Reference

user _data
Application-specific data (custom authentication service). This parameter is

required for the TOBJ_APPAUTH authentication level.

Note: Ifuser_name,cli ent _name, orsystem passwor diSNULL or empty, or
exceeds 30 characters, the subsequent aut hent i cat e method invocation
raises the CORBA: : BAD_PARAMexception.

Note: If the authorization level is TOBJ_APPAUTH, only one of user _passwor d
or user _dat a may be supplied.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OLE Automation Error Object.

Return Values Thefollowing table describes the valid return values.

Return Value Meaning

Security::AuthenticationStatus:: The authentication succeeded.

SecAut hSuccess

Security:: AuthenticationStatus:: The authentication failed, or the client application was already
SecAut hFai |l ure authenticated and did not call one of the following methods:

Tobj : : Princi pal Aut henti cator: | ogof f
Tobj _Bootstrap::destroy_current

17-16 Using Security in CORBA Applications

Method Descriptions

DITobj_PrincipalAuthenticator.logoff

Synopsis
MIDL Mapping

Automation
Mapping

Description

Argument

Return Values

Discards the current security context associated with the CORBA client application.

HRESULT | ogoff ([in, out, optional] VAR ANT* excepti onl nf o)

Sub | ogoff ([exceptionl nfo])

Thiscall discards the context associated with the CORBA client application, but does
not close the network connections to the BEA Tuxedo domain. Logof f also
invalidates the current credentials. After logging off, calls using existing object
referencesfail if the authentication type is not TOBJ_NOAUTH.

If the client application is currently authenticated to a BEA Tuxedo domain, calling
Tobj _Boot strap. destroy_current () callsl ogof f implicitly.

excepti oni nfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client applications, all
exception datais returned in the OL E Automation Error Object.

None.

DISecurityLevel2_Credentials

TheDI Securi tyLevel 2_Credenti al s object isaBEA implementation of the
CORBA Security model. In thisrelease of the BEA Tuxedo software, the
get _attributes() andis_valid() methods are supported.

Using Security in CORBA Applications 17-17

17 Automation Security Reference

DISecurityLevel2_Credentials.get_attributes

Synopsis Gets the attribute list attached to the credentials.

MIDL Mapping HRESULT get _attri butes(
[in] VAR ANT attributes,
[in,out,optional] VARIANT* exceptionlnfo,
[out,retval] VARIANT* returnVal ue);

Automation Function get_attributes(attributes, [exceptionlnfo])
Mapping

Arguments attributes
The set of security attributes (privilege attribute types) whose values are
desired. If thislist is empty, dl attributes are returned.

exceptioninfo
An optional input argument that allowsthe client application to get additional
exception data if an error occurs. For the ActiveX client application, all
exception datais returned in the OLE Automation Error Object.

Description This method returns the attribute list attached to the credentials of the client
application. In thelist of attribute types, you are required to include only the type
value(s) for the attributesyou want returned inthe At t ri but eLi st . Attributesare not
currently returned based on attribute family or identities. |n most cases, thisisthe same
result you would get if you called
Dl Securitylevel 2. Current::get_attributes(),sincethereisonly onevalid
set of credentialsin the client application at any instancein time. The results could be
different if the credentials are not currently in use.

Return Values A variant containing an array of DIl Security_SecAttri but e objects.

17-18 Using Security in CORBA Applications

Method Descriptions

DISecurityLevel2_Credentials.is_valid

Synopsis

MIDL Mapping

Automation
Mapping

Description

Return Values

Checks the status of credentials.

HRESULT is_val i d(
[out] |Dispatch** expiry_tine,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] VAR ANT_BOOL* r et urnVal ue

Function is_valid(expiry_tinme As Object,
[exceptionl nfo]) As Bool ean

Thismethod returns TRUE if the credentials used are active at thetime; that is, you did
not call DI Tobj _Pri nci pal Aut henticator.|ogoff or destroy_current . If this
method is called after DI Tobj _Pri nci pal Aut henti cat or. | ogoff(),FALSEis
returned. If this method is called after destroy_current (), the

CORBA: : BAD | NV_CORDER exception is raised.

The output expi ry_time asaDl Ti neBase_Ut cT object set to max.

Using Security in CORBA Applications 17-19

17 Automation Security Reference

Programming Example

This section contains the portions of an ActiveX client application that implement the
following:

m Using the Bootstrap object to obtain the SecurityCurrent object
m Getting the Principal Authenticator object from the SecurityCurrent object
m Using Tuxedo-style authentication

m Logging off the BEA Tuxedo domain

Listing17-1 ActiveX Client Application That Uses Tuxedo-Style Authentication

Set obj SecurityCurrent = obj Bootstrap. O eateCbject (“Tobj. SecurityCurrent”)
Set obj Princi pal Aut henticator = obj SecurityCurrent. princi pal _authenticator

Aut horityType = obj Princi pal Aut henti cator.get_auth_type

If AuthorityType = TOBJ_APPAUTH Then | ogonStatus =
oPri nci pal Aut henti cat or. Logon(
User Nane, _
Cl i ent Nane, _
Syst enPasswor d, _
User Passwor d
User Dat a)

End If

obj Pri nci pal Aut henti cator. | ogoff()

17-20 Using Security in CORBA Applications

Index

A

administration steps
certificate authentication 3-18
link-level encryption 3-5
password authentication 3-8
the SSL protocol 3-12
authentication
certificate 3-14
password 3-6
authorized users
defining 7-3
AUTHSRV
code example 7-2
configuring 7-2
described 3-6
use with password authentication 3-9

B

BEA Tuxedo domain
adding security to 10-6

building
Secure Simpapp sample application 11-2
Security sample application 11-2

C

certificate authentication
administration steps 3-18
C++ code example 10-17
configuration illustrated 3-20

described 3-14
devel opment process 3-18
how it works 3-15
illustrated 3-15
Java code example 10-18
programming steps 3-18
sample UBBCONFIG file 7-13
writing the client application 10-17
certificate authorities
defined 4-7
obtaining adigital certificate for 4-8
cipher suites
supported by the WLE product 2-12
compiling
client applications
Secure Simpapp sample
application 11-7
concepts
certificate authentication 3-14
digital certificates 3-10
link-level encryption 3-1
password authentication 3-6
SSL protocol 3-10
configuring
aport for SSL communications 6-2
host matching 6-3
setting session renegotiation 6-7
setting the encyrption strength 6-4
the SSL protocol
CORBA C++ ORB 6-2
[1OP Listener/Handler 6-2

Using Security in CORBA Applications

-1

CORBA C++ client applications
starting
Secure Simpapp sample
application 11-7
CORBA C++ ORB
defining a port for SSL
communications 6-2
enabling host matching 6-3
setting the encryption strength 6-4
CORBA Java client applications
starting
Secure Simpapp sample application
11-7
CORBA module
described 14-2
CORBA Module IDL 14-2
CORBA Security model
accessing objects 13-3
administrative control 13-3
authenticating principals 13-2
components 13-3
Credentias object 13-7
Principal Authenticator object 13-4
SecurityCurrent object 13-9
described 13-2
corbaloc 3-16
corbaloc URL Address format
described 10-4
corbalocs URL Address format
described 10-5
Credentials object
described 13-7
customer support contact information xii

D

Data types
security module 14-4
development process
certificate authentication 3-18
password authentication 3-8

[-2 Using Security in CORBA Applications

the SSL protocol 3-12
digital certificates

certificate authentication 3-14

SSL protocol 3-10

troubleshooting 12-9
directory location of source files

Secure Simpapp sample application 11-3
documentation, where to find it xi

E

encryption
setting encryption strength 6-4
values 6-5
environment variables
JAVA_HOME 11-5
Secure Simpapp sample application 11-5
TUXDIR 11-5

F

file protections
Secure Simpapp sample application 11-4

H

host matching
enabling 6-3
values 6-3

[1OP Listener/Handler

configuring session renegotiation 6-7

defining a port for SSL
communications 6-2

enabling host matching 6-3

SEC_PRINCIPAL_LOCATION
parameter 6-7

SEC_PRINCIPAL_NAME
parameter 6-7

SEC_PRINCIPAL_PASSVAR

parameter 6-8
setting security parameters 6-7
setting the encryption strength 6-4

use with certificate authentication 3-14

use with the SSL protocol 3-10
Interoperable Naming Service
using 10-20
invocation_options_required method
C++ code example 10-21
described 10-21
Java code example 10-23
ISL command

configuring session renegotiation 6-7

enabling host matching 6-3

example 6-9

setting the encryption strength 6-4

specifying a port for SSL
communications 6-2

J
JAVA_HOME parameter

Secure Simpapp sample application 11-5

joint client/server applications
using the SSL protocol 6-2

L

LDAP directory service
search filter file 4-5
use with CORBA security 4-3
use with the SSL protocol 3-11
LDAP Search Filter file
modifying 4-5
stanzas used by SSL protocol 4-6
stanzas used for certificate
authentication 4-6
tags 4-5
link-level encryption
administration steps 3-5
described 3-1

devel opment process 3-5

0]

OMG IDL
CORBA module 14-2
SecurityL evel 2 module 14-7
Security module 14-4
SecurityL evel 1 module 14-6
TimeBase module 14-2
Tobj module 14-7

P

password authentication
administration steps 3-8
application password 3-6
C++ example
SecurityL evel2

Principal Authenticator

10-9

Tobj Principal Authenticator 10-12

defining users and groups 3-9
described 3-6
devel opment process 3-8
how it works 3-7
illustrated 3-7
interfaces explained 10-8
Java example

SecurityL evel2

Principal Authenticator

10-10

Tobj Principa Authenticator 10-14

programming steps 3-8
sample UBBCONFIG file 7-9
system authentication 3-6

writing the client application 10-7

Peer Rulesfile
described 4-9
elements 4-9
example 4-9

Using Security in CORBA Applications

-3

syntax 4-10

Principal Authenticator object

certificate authentication 13-5
CORBA extensions 13-6
described 13-4

using in client applications 10-6

printing product documentation Xi
private keys

example 4-7
format 4-6
|ocation 4-6

protocols

R

link-level encryption 3-1
SSL 3-10

related information Xi
runme command

S

description 11-7
files generated by 11-8, 11-9

SEC_PRINCIPAL_LOCATION parameter

defined 6-7

SEC_PRINCIPAL_NAME parameter

defined 6-7

SEC_PRINCIPAL_PASSVAR parameter

defined 6-8

Secure Simpapp sample application

-4

building 11-2

changing protection on files 11-4

compiling the Java client
application 11-7

description 10-16

development process 10-16

loading the UBBCONFIG file 11-7

required environment variables 11-5

runme command 11-7

setting up the work directory 11-3

Using Security in CORBA Applications

source files 11-3
starting the Javaclient application 11-11
using the client applications 11-11
SecurityLevel 2 module
described 14-7
Security module
described 14-4
SECURITY parameter
defining in UBBCONFIG file 7-7
setting for password authentication 3-8
valuesfor 7-7
Security sample application
description 10-6
illustrated 10-6
location of files10-7
Principal Authenticator object 10-6
SecurityCurrent object 10-6
SecurityCurrent object
described 13-9
using in client applications 10-6
SecurityLevel 1 module
described 14-6
source files
Secure Simpapp sample application 11-3
SSL parameters
SEC_PRINCIPAL_LOCATION 3-12
SEC_PRINCIPAL_NAME 3-12
SEC_PRINCIPAL_PASSVAR 3-12
SSL protocol
administration steps 3-12
configuration illustrated 3-13
described 3-10
devel opment process 3-12
how it works 3-10
requirements 3-11
support
technical xii

T
Third-party ORBs
using the Interoperable Naming
Service 10-20
TimeBase module
described 14-2
TimeBase Module IDL 14-3
tmboot command
Secure Simpapp sample
application 11-11
tmloadcf command
Secure Simpapp sample application 11-7
Tobj module
described 14-7
tpgrpadd command
defining security groups 3-9, 7-4
tpusradd command
defining users for security 3-9, 7-4
troubleshooting
bootstrapping problems 12-6
callback objects 12-9
certificate authentication problems 12-5
configuration problems 12-8
digital certificates 12-9
[1OP Listener/Handler startup
problems 12-7
ORSB initialization problems 12-3
password authentication problems 12-4
tracing 12-1
Ulog file 12-1
Trusted Certificate Authority file
described 4-8
example 4-8
TUXCONFIG parameter
setenv file 11-5
TUXDIR parameter
Secure Simpapp sample application 11-5

U
UBBCONFIG file

configuring the authentication server 7-2
defining a security level 7-6
defining link-level encryption 3-5
defining security parametersfor thellOP
Listener/Handler 6-8
example of certificate
authentication 7-13
example of password authentication 7-9
link-level encryption 3-5
password authentication 3-8
Secure Simpapp sample application 11-7
URL Address formats
certifcate authentication 3-16
corbaloc 10-2, 10-4
corbalocs 10-2, 10-5
Host and Port 10-4
password authentication 3-28
syntax 10-3

Using Security in CORBA Applications [-5

-6 Using Security in CORBA Applications

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Part I Security Concepts
	1 Overview of the CORBA Security Features
	The CORBA Security Features
	The CORBA Security Environment
	Single Sign-on in the CORBA Security Environment
	BEA Tuxedo Security SPIs

	2 Introduction to the SSL Technology
	The SSL Protocol
	Digital Certificates
	Certificate Authority
	Certificate Repositories
	A Public Key Infrastructure
	PKCS-5 and PKCS-8 Compliance
	Supported Public Key Algorithms
	Supported Symmetric Key Algorithms
	Supported Message Digest Algorithms
	Supported Cipher Suites
	Standards for Digital Certificates

	3 Fundamentals of CORBA Security
	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Determining min-max Values
	Finding a Common Key Size

	WSL/WSH Connection Timeout During Initialization
	Development Process

	Password Authentication
	How Password Authentication Works
	Development Process for Password Authentication

	The SSL Protocol
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Development Process for the SSL Protocol

	Certificate Authentication
	How Certificate Authentication Works
	Development Process for Certificate Authentication

	Using an Authentication Plug-in
	Authorization
	Auditing
	Single Sign-on
	PKI Plug-ins
	Commonly Asked Questions About the CORBA Security Features
	Do I Have to Change the Security in an Existing CORBA Application?
	Can I Use the SSL Protocol in an Existing CORBA Application?
	When Should I Use Certificate Authentication?

	Part II Security Adminstration
	4 Managing Public Key Security
	Requirements for Using Public Key Security
	Who Needs Digital Certificates and Private/Private Key Pairs?
	Requesting a Digital Certificate
	Publishing Certificates in the LDAP Directory Service
	Editing the LDAP Search Filter File
	Storing the Private Keys in a Common Location
	Defining the Trusted Certificate Authorities
	Creating a Peer Rules File

	5 Configuring Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed Version of LLE
	Configuring LLE on CORBA Application Links

	6 Configuring the SSL Protocol
	Setting Parameters for the SSL Protocol
	Defining a Port for SSL Network Connections
	Enabling Host Matching
	Setting the Encryption Strength
	Setting the Interval for Session Renegotiation
	Defining Security Parameters for the IIOP Listener/Handler
	Example of Setting Parameters on the ISL System Process
	Example of Setting Command-line Options on the CORBA C++ ORB

	7 Configuring Authentication
	Configuring the Authentication Server
	Defining Authorized Users
	Defining a Security Level
	Configuring Application Password Security
	Configuring Password Authentication
	Sample UBBCONFIG File for Password Authentication
	Configuring Certificate Authentication
	Sample UBBCONFIG File for Certificate Authentication
	Configuring Access Control
	Configuring Optional ACL Security
	Configuring Mandatory ACL Security
	Setting ACL Policy Between CORBA Applications
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications

	8 Configuring Single Sign-on
	Single Sign-on with Password Authentication
	Single Sign-on with Password Authentication and the SSL Protocol
	Single Sign-on with the SSL Protocol and Certificate Authentication

	9 Configuring Security Plug-ins
	Registering the Security Plug-ins (SPIs)

	Part III Security Programming
	10 Writing a CORBA Application That Implements Security
	Using the Bootstrapping Mechanism
	Using the Host and Port Address Format
	Using the corbaloc URL Address Format
	Using the corbalocs URL Address Format

	Using Password Authentication
	The Security Sample Application
	Writing the Client Application
	C++ Code Example That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate() Method
	Java Code Example That Uses the SecurityLevel2.PrincipalAuthenticator.authenticate() Method
	C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon() Method
	Java Code Example That Uses the Tobj.PrincipalAuthenticator.logon() Method

	Using Certificate Authentication
	The Secure Simpapp Sample Application
	Writing the CORBA Client Application
	C++ Code Example of Certificate Authentication
	Java Code Example of Certificate Authentication

	Using the Interoperable Naming Service Mechanism
	Using the Invocations_Options_Required() Method

	11 Building and Running the CORBA Sample Applications
	Building and Running the Security Sample Application
	Building and Running the Secure Simpapp Sample Application
	Step 1: Copy the Files for the Secure Simpapp Sample Application into a Work Directory
	Step 2: Change the Protection Attribute on the Files for the Secure Simpapp Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Execute the runme Command
	Using the Secure Simpapp Sample Application

	12 Troubleshooting
	Using ULOGS and ORB Tracing
	CORBA::ORB_init Problems
	Password Authentication Problems
	Certificate Authentication Problems
	Tobj::Bootstrap:: resolve_initial_references Problems
	IIOP Listener/Handler Startup Problems
	Configuration Problems
	Problems with Using Callbacks Objects with the SSL Protocol
	Troubleshooting Tips for Digital Certificates

	Part IV Security Reference
	13 CORBA Security APIs
	The CORBA Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Functional Components of the CORBA Security Environment
	The Principal Authenticator Object
	Using the Principal Authenticator Object with Certificate Authentication
	BEA Tuxedo Extensions to the Principal Authenticator Object

	The Credentials Object
	The SecurityCurrent Object

	14 Security Modules
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	15 C++ Security Reference
	SecurityLevel1::Current::get_attributes
	SecurityLevel2::PrincipalAuthenticator::authenticate
	SecurityLevel2::Current::set_credentials
	SecurityLevel2::Current::get_credentials
	SecurityLevel2::Current::principal_authenticator
	SecurityLevel2::Credentials
	SecurityLevel2::Credentials::get_attributes
	SecurityLevel2::Credentials::invocation_options_supported
	SecurityLevel2::Credentials::invocation_options_required
	SecurityLevel2::Credentials::is_valid

	SecurityLevel2::PrincipalAuthenticator
	SecurityLevel2::PrincipalAuthenticator::continue_authentication
	Tobj::PrincipalAuthenticator::get_auth_type
	Tobj::PrincipalAuthenticator::logon
	Tobj::PrincipalAuthenticator::logoff
	Tobj::PrincipalAuthenticator::build_auth_data

	16 Java Security Reference
	17 Automation Security Reference
	Method Descriptions
	DISecurityLevel2_Current
	DISecurityLevel2_Current.get_attributes
	DISecurityLevel2_Current.set_credentials
	DISecurityLevel2_Current.get_credentials
	DISecurityLevel2_Current.principal_authenticator

	DITobj_PrincipalAuthenticator
	DITobj_PrincipalAuthenticator.authenticate
	DITobj_PrincipalAuthenticator.build_auth_data
	DITobj_PrincipalAuthenticator.continue_authentication
	DITobj_PrincipalAuthenticator.get_auth_type
	DITobj_PrincipalAuthenticator.logon
	DITobj_PrincipalAuthenticator.logoff

	DISecurityLevel2_Credentials
	DISecurityLevel2_Credentials.get_attributes
	DISecurityLevel2_Credentials.is_valid

	Programming Example

	Index

