z hea
BEA Tuxedo

CORBA Programming
Reference

BEA Tuxedo Release 8.0
Document Edition 8.0
June 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
CORBA Programming Reference

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo 8.0

Contents

About This Document

What Y OU NEed t0 KNMOWcceeiuiiiiiiiiieiie ettt s XVi
E-0OCSWED SItE....oceieeeeceeee ettt s e r e e e r e e e Xvi
How to Print the DOCUMENT..........cveie ettt et et XVii
Related INfOrmMation..........ccoecie it Xvii
L0701 r=ot A U LS SRR Xvii
Documentation CONVENLIONScc.ccoeeiuiieiiieeieereeecee e sttt erae e e Xviii
OMG IDL Syntax and the C++ IDL Compiler

OMG IDL Compiler EXLENSIONScoerueieiieie e seeeeie e s 1-3
C++ IDL Compiler CONSLIAINES.......ceeieereeie e seeeeieeie e eseeeee e e eee e e e 1-4

Implementation Configuration File (ICF)

[CF SYNEBX ...ttt ettt ettt ettt ettt see et eate ehe e saeenbe e e e e e s e e e e aneen 2-2
SAMPIE TCF FlE... et et e 2-3
Creating the ICF FilE ... e s e e e 2-4

TP Framework

A Simple Programming MOGE ..o 3-3
CONIOl FIOW ..ttt e e e 3-4
Object State Managementcccoe e e 3-4
Transaction INEEGIratioNcc.oooreeieerire et e e 34
Object HOUSEKEEPING -....ceeeverieeie ettt s s eenee e 35
High-16VEl SEIVICES ..o e 35

SEAE MANAGEIMENTeeceieieeeiee e et e e e sre e e s e e e esaeansaeeens 3-6
ACHVALTION POLICY ...t 3-6
Application-controlled Activation and Deactivationccoceeeeeernene 3-8

CORBA Programming Reference iii

iv

SEIVANE LifElIME....eeeiiieeiieecee ettt ae e aae e 3-11

Saving and Restoring Object State.........c.ovveeeiririere e 3-13
TEANSACHIONS. ...ttt ettt st es st eae et es e aen e se e e anseneas 3-14
TranSaCtion POlICIES.cuuiiiieeieiee et e e 3-14
Transaction INItIatiON.........ccooiiiriee e e e 3-15
Transaction TEMMINGALTONcc.ooiiiiee e e 3-16
Transaction Suspend and RESUME..........coeiiieieiie e 3-17
REStriCtions 0N TraNSaCtiONS........c.uevieee et e neens 3-18
SQL and Global Transactionscccccceeeieveeeieeseecie e 3-19
Voting on Transaction OULCOMEceeeeieeieerieesie et e 3-20
TranSaCtion TIMEOULScoerueriireiiee ettt ans 3-20
= 1= @ o =Tt £ SRS 3-21
TP FrameWOrK AP ...t et e e 3-23
SErVEr INLEITACE ...t e e s 3-24
ServerBase INtErfaCe.......coiiviie i s 3-26
Server::Create SErVaNt() ...oovcveieceee e e e 3-28
ServerBase::create_servant With id() ...cccovevevieeiinieriice e, 3-30
Server:iNtialiZE()...ccecvee e e e 3-32
ServerBase::thread_initialize().......coeeveieeviiieiecesee e, 3-35

S AV o €= 1= S (TS 3-36
ServerBase::thread rel€ase().......ccccvveevieveeeieeceeeeseee e 3-38
Tobj_ServantBase INterfaCeceve e 3-38
Tobj_ServantBase:: activate object()ccccvveveevveieiiiiieevieceeie s 3-40
Tobj_ServantBase::_add_ref() ...cccoveeveve e 3-43
Tobj_ServantBase::deactivate 0bject()coeevvevueeveiieniieiieiieie s 3-44
Tobj_ServantBase::_is reentrant()........cccceeveeveeiiesecieiecieese e 3-50
Tobj_ServantBase::_remove ref()ccocevveee v ce e 3-51

TP INEEITACE ..o et e 3-52
TP::application_responsibility()......ccoceveeeeiececie e 3-54

LI R 100 = 1 = o TS 3-55
TP::ClOSE XA M) cvveeie ettt et s e 3-56
TP::create_active_object_reference().......cccovvvvvcivciievevesesie s 3-58
TP::create_object reference()ccoeeeveveeiece e 3-61
TP::deactivateENabl€()cccevveerieiecee e 3-64

IS = o) o = o Al Lo I TSRSt 3-66

CORBA Programming Reference

TP:I0PEN XA FM() wtieitietieee ettt sre e 3-68
TP:IOID() e e 3-70
TP:register faCtory() ... coeeoeeeoe e e 371
TP:iunregister factory() ..o veeee e e 3-73
TP:IUSEITOQ() c-eaveeeeeerneemereiriene et sttt s ese e e e seese e e 3-75
CosTransactions:: Transactional Object Interface Not Enforced............... 3-76
Error Conditions, Exceptions, and Error MeSSages.........ccvvreeereeriereseeseeneens 3-77
Exceptions Raised by the TP Frameworkcccooevieie i 3-77
Exceptionsin the Server Application Code.........ccceoevenreeeiiinieee e 3-77
Exceptions and TranSaCtioNS...........ccueveereeieiererieeiees e s 3-78
Restriction of Nested Callson CORBA ObjJeCtS........ccccoveieevvciececvenn, 3-78

CORBA Bootstrapping Programming Reference

Why Bootstrapping IS Needed...........coooiririiee e 4-1
Supported Bootstrapping MeChaniSmS..........cccceevererere e 4-2
BEA Bootstrapping MeChani SM...........ooooieuireriere et 4-2
How Bootstrap ObjeCtS WOIKccooeriieie et 4-2
Types of BEA Remote Clients SUpported..........cccoveveneeineniecie s 4-6
Capabilities and Limitations..........cccoeeroirieeieneeie e 4-7
BOOtStrap ODJECE APl ...ttt st e e 4-8
TOD) MOUIE. ...ttt e b e saeeree s 4-8
(O Y=o 11 o SRR 4-9

= V2= Y=o o 1 o ST 4-10
Microsoft Desktop Client Mapping.........ccooeeerereeneeienennesie s 4-11
AULOMELTION MEPPING .. veeente ettt ettt e se e e neas 4-11
CH+ MemDBEr FUNCHIONS ..ot s e e 4-11
TOD] BOOSIIaD. ... ettt e 4-12
Tobj_Bootstrap::register_callback_port...........cccoveroeieieneiciiennnne 4-17
Tobj_Bootstrap::resolve_initial_references..........ccocveeeeveveneeienen. 4-18
Tobj_Bootstrap::destroy CUrrent().......cooeoeeeerreeeseereeseseeseeeeeeene 4-19
JAVAMELNOUAS......c.ceiee e e 4-19
AUtOMaLion Methods...........ooiiieiiiie e s 4-20
NITAIIZE e s 4-21

(1T (=0 o 1= o SRRSO 4-23

CORBA Programming Reference %

Vi

DESITOYCUIMENL ...ttt ettt sr e e s b e 4-25

Bootstrap Object Programming EXamplesSccoeveieirneneeincniese e 4-25
Java Client Example: Getting a SecurityCurrent Objectccceeeereeeees 4-25
Visua Basic Client Example: Using the Bootstrap Object...................... 4-26

Interoperable Naming Service Bootstrapping Mechanism............cccccveveennen. 4-27
INEFOTUCTION ...ttt e en e enen 4-28
INS ObjECt REFEIENCES ... e ettt et e 4-28
INS Command-1iNe OPLIONS........c.cooeuerereeieie et s 4-29
INS Initialization OPerations...........ccoeiereerieiierrieee e s 4-29
INS Object URL SChEmMES.........cccooveeiiecectece et 4-30
Getting a FactoryFinder Object Reference Using INS..........ccccoceviienenne. 4-35
Getting a Principa Authenticator Object Reference Using INS.............. 4-36
Getting a TransactionFactory Object ReferenceUsing INS..................... 4-37

5. FactoryFinder Interface

Capabilities, Limitations, and ReqUiremMents...........ccocovereieenereeiecie e 5-2
FUNCtional DESCIIPLIONcoviieiieeie ettt s eeea 5-3
Locating a FaCtoryFiNGero e 5-3
REGIStENING @ FACOIY ...t e e s 5-4
LOCA NG @ FACLOIY ...ttt e e 5-6
Creating Application Factory KeysS........ccoovrerinnieeircree e 5-12
C++ Member Functions and Java Methods............cooiiieiinenieie e 5-20
CosL ifeCycle::FactoryFinder::find_factories.........cccoeoeveceeenenenne. 5-21
Tobj::FactoryFinder::find_one factory.........ccooeoviineneicicene 5-23
Tobj::FactoryFinder::find_one factory by id........ccccooervininiinnnne 5-25
Tobj::FactoryFinder::find_factories by id........ccccocooiiivinieicennne 5-27
Tobj::Factoryfinder::list_factories..........ccoevvevevieiveiieiecieceeie s 5-29
AULOMELION MELNOAS ...t e e 5-30
DITobj_FactoryFinder.find_one factory.........ccccoceeveveeiiiceccicieenen, 5-31
DITobj_FactoryFinder.find_one factory by id......cccccoovvvviennnnen. 5-33
DITobj_FactoryFinder.find factories by id.......ccccoevevvniviicennennen. 5-35
DITobj_FactoryFinder.find _factories.........ccocccveveve s, 5-37
DITobj_FactoryFinder.list_factories.........occcvvvvccivieeveicive e, 5-38
Programming EXAMPIESccoeiririie et s e e 5-39
Using the FactoryFinder ObJECtccovcvici i 5-39

CORBA Programming Reference

© ® N o

Using Extensions to the FactoryFinder Objectoccooeveeiiiiieieseenene 5-41

Security Service
Transactions Service
Notification Service

Request-Level Interceptors

10. CORBA Interface Repository Interfaces

SErUCIUrE @NA USAQE.. ...ttt e ee e e s 10-2
Programming INfOrmMation............oocoeeiriniini i e 10-3
Performance ImpliCationsccooii i 10-4

Building Client APpliCaLIONS.........cccueurireeeieereere e e 10-5

Getting Initial Referencesto the InterfaceRepository Objectccceeeveeneee 10-6

Interface RePOSItOry INtEIfaCeS.........ooveereeeee et 10-6
Supporting Type DefinitioNnS..........cocveiii i 10-6
IRODJECE INEITACE......cctiecec e e 10-7
ContaiNEd INEEITACEveviieiiee e e 10-8
CoNtaiNEr INEEITACE.......ceiie e e 10-9
IDLTYPE INEITACE. ..ot 10-11
REPOSILOrY INEITACE......ecuee ettt e e 10-12
ModUlEDEf INLEMTACEceeviireeiree e e e e 10-13
ConstantDef INEEMTACEccveeecereeeec e e 10-13
TypedefDef INLErfaCeo s 10-14
SUTUCEDES ...ttt e 10-15
UNIONDES ...ttt 10-15
ENUMDES ... e e e e e 10-16
ATTBSDES ... e 10-16
PrMITIVEDES ..ottt 10-17
SHINGDES ...ttt 10-18
WSLINGDES ...t e 10-18
EXCEPLIONDES ...ttt e e e 10-18
AITOULEDES ... e 10-19
OPEratioNDES ..ot e e 10-20

CORBA Programming Reference Vii

INEEITACEDESot s te e et ee e eaae e saaeeans 10-22

11. Joint Client/Servers

INEFOTUCTION ...t ettt e e e 11-2
Main Program and Server Initializationccocoeeeneieiineniene e, 11-2
SEIVAINES ...ttt ettt ettt se e bbb e e a b e e s 11-3
Servant Inheritance from SKeletons...........ccooviriiiie e, 11-4
Callback Object Models SUPPOIEd.........c.coireeieeiriere e 11-6
Configuring Serversto Call Remote Joint Client/Server Objects............ 11-8
Preparing Callback Objects Using CORBA (C++ Joint

Clent/SErvVers ONlY) ..ot 11-8
Preparing Callback Objects Using BEAWrapper Callbacks.................. 11-10
Java Joint Client/Server Programming Considerations..............ccccueuv.a. 11-14

C++ BEAWTrapper Callbacks Interface APl ..., 11-18

CallDBCKS ...t 11-19

Start trANSIENT ... e e e 11-20

start_persistent_SysStemidooeoeerinie e 11-22

restart_persistent_Systemid ... 11-24

start_persistent_USErid..... ..o e e 11-26

SEOP_ODJECE ..t e 11-28

SEOP_All_ODJECES. ..t 11-29

(o L= S 1 o oo 1RSSR 11-30

~CAllIDACKS. ...t e 11-31

Java BEAWrapper Callbacks Interface APcccoooieiiiiiini e 11-31

12. Development Commands

13. Mapping of OMG IDL Statements to C++

[E=To] 0T 0L RSSTR 131
(D = Y o< ST PPR PR 13-3
] o TR SSRR 13-4
WECRAIS. ... ettt ettt e a e e e e ee et eee e eneans 13-5
WWSEFI 10 - ettt sttt et e et eee et e s e se et eaeeae et eaeeaess e e enseneeneaneensesens 13-5
CONSEANES ...ttt ettt ettt sr e b s e sasesaeesbenaeeneens 13-6
ENUMS ...ttt e sttt nee e e 13-7
SEIUCES ...ttt et ettt e ettt et e ea e sa e s saeesbe e e e e eneean 13-8

CORBA Programming Reference

SEOUENCES ...ttt ettt ettt et ettt ss et se e ebeeebeeabe sbeeabenbeenbe e anenneans 13-14
L €= £ TP PRSP 13-19
(o= o] (o] o J USSR 13-21
Mapping of Pseudo-0bjectSto CHt.......ooveiiieieeee e 13-24
Lo PSR 13-24
MEPPING RUIES ...ttt e e e e 13-25
Relation to the C PIDL M@pPingccceeeerereeeseeneee e seeeeees e eeeeeeeas 13-26
TYPEAEFS.....e e e e e naenen 13-27
Implementing INtErfaCES.oiireieer e 13-28
Implementing OPErations..........cocoeuereereeieie e e e 13-30
PortableServer FUNCLIONS ... e e 13-32
IMOAUIES. ...ttt et e et seeean 13-32
INEEITACES ... et et ettt et ee 13-33
Generated Static Member FUNCLIONS.........cccooiviii i 13-34
ObjeCt REFErENCE TYPES ... ivieeieiie ettt e e e 13-35
ATITDULES. ...t e e e 13-36
ANY TYP ettt e e e bbb e ae e 13-38
VBIUE TYPE ittt sttt ettt bbb s e bes e e en e 13-48
Fixed-length Versus Variable-length User-defined Types.......c.cccoceereneeneae 13-52
USING VA ClESSES ...c.uviiieieceietiestiete st et ie e e e e e e se et erae st snaesaesnaenneenean 13-53
SEOUENCE VAI'S....coiee ettt et et ee e ese s e sseeseesee s sbesnae e enbe e eeenneans 13-56
ATTEY VIS .iiiieiiiietie et seesstaes e eee e stae st e st e s s ae e e s sae s e sssessaaesnneesreanneean 13-56
SEHNQ VS oottt ettt ettt sttt aesr et sresaae e enae e eneennens 13-57
USING OUL CIBSSES ...c.uviueieieiietie ettt ete e e e e e e s erae st sraesaesnaenneenen 13-59
Object Reference out Parameter.........coooveieeveeie e 13-61
SOOUEBNCE OULS....uveeivieiriesieeesteeeessteessaesseeessessasssseassaesnessseassansseessananees 13-62
ATTEY OULS .o ceieietie et et e st ete et e st ae e e e e e sae e e ssaeesnaesneeesreannne s 13-62
SEHNQ OULS ...ttt a e er e aaesresaae e e e e e e eeneens 13-62
Argument Passing CoNSIAErations.............cccceevevenieieceieie e ee e eseesens 13-64
Operation Parameters and SIgNaturesSccveeveevveveceeveseesesieeseesieens 13-67
14. CORBA API
GlODEI ClaSSES ... ettt et ettt e e e en e 14-1
PSEUAO-ODJ LS.ttt e e et e 14-2

CORBA Programming Reference iX

Any Class Member FUNCLIONScooiiiiiieie et e 14-2

CORBA::ANYANY() criitieeie ettt e s 14-4
CORBA::Any::Any(const CORBA::Any & InitANy)ccccveenenen. 14-5
CORBA::Any::Any(TypeCode _ptr TC, void * Value,

Boolean REIEASE)........cooiue e 14-6
CORBA::ANY~ANY() contetieieie ettt see e e s se e 14-7
CORBA::Any & CORBA::Any::operator=(const CORBA::Any &

F TR 73N 017 USSR 14-8
void CORBA::any::0perator<<=()ccecerrreereererreneeeeseeseeneeseeseenens 14-9
CORBA::Boolean CORBA::Any::0perator>>=()......ccccererereruens 14-10
CORBA::ANY::0PErAtOr<<=() ocueeeereesie e seeneeeieseeseseeeeseeseseeseeseenenns 14-11
CORBA::Boolean CORBA::Any::0perator>>=()......ccccoeererererunns 14-12
CORBA::TypeCode _ptr CORBA::Any::type() CONSt.......cccveuennees 14-13
vOoid CORBA::ANY:IEPlACE() «uvveeee et 14-14

Context Member FUNCLIONS ... e s 14-15
Memory ManagemeEnt ... e 14-15
CORBA::Context::context_Name..........cccveereerveerieesesssiesieeesessnas 14-16
CORBA::Context::create childcccocovevieveciece e, 14-17
CORBA::Context::delete ValUES.........cccceevveeveirieie e 14-18
CORBA::Context::get_ ValUES.........ccceeveeveerrieie et 14-19
CORBA:::CONMEXLIPANENLc.eeeeeeeieeee et 14-21
CORBA::Context::set_0ne ValUE.......ccccveveveieeeeecieeceesee et 14-22
CORBA::Context::Set VAlUES........cccevveeveeeriece e 14-23
ContextList Member FUNCLIONS........c.ccciririe e 14-24
CORBA::ContextList:: COUNE.........ceiieeeeeireiree e e 14-25
CORBA::ContextList::add........ccourireee e 14-26
CORBA::ContextList::add_cONSUME.........ccevevreeveieirie e 14-27
CORBA::ContextList: itemM. ..o e 14-28
CORBA::ContextLiSt::remMOVE.c.coerereeeeieiie e s 14-29
NamedVaue Member FUNCLIONS..........ccooi i s 14-30
MemOory Managementc.cocveeiceeeieeiiee et se s e naaens 14-30
CORBA::NamedValue:flags........ccooeieiieie e 14-31
CORBA::NamedValue::iName..........ccccereruererierieieee s seeseenens 14-32
CORBA::NamedValue::ValUe..........c.cceoeiuereieeierece e 14-33

NVList Member FUNCLIONS.coiiiie ettt s 14-34

X CORBA Programming Reference

MemOory Managementcccceereerierieeriee et seeeiee e e 14-34

CORBA:NVLISE:AAA. ...t e 14-36
CORBA::NVList::add itemM.....cccce e 14-37
CORBA::NVList::add Value.......cccoevvreeieciie e 14-38
CORBA:INVLISEICOUNE......cueiiereeeirieresie e eeeseie e e 14-39
CORBA:NVLISEITOM .o 14-40
CORBA:INVLISEITEMOVE ...t 14-41
Object Member FUNCLIONS.........ccuoiieee et 14-42
CORBA::Object::_Create reqUESt.......ccoceeervereniesereeeeeieneee e 14-44
CORBA::Object::_dupliCate........cooeuereeieeeeienereee e 14-46
CORBA::Object::_get interface.......cocooveiereneeeinneee s 14-47
CORBA:IODJECE: IS @ .iieiieeiriereeiinieriere st es e e seeeas 14-48
CORBA::Object::_is equivalentcocoeceverene e 14-49
CORBA::ODJECE: Nil.icuviieiieiiiicee et 14-50
CORBA::Object::_NON_eXiStentccccveeveeeeeee e 14-51
CORBA::ODJECE:: FEAUESE ..o ieieceirtircerie et esee e seeeas 14-52
CORBA Member FUNCLIONS.cciiie e e s e 14-53
CORBAUITEIEASE. ...ttt e e 14-54
(010 2= £ 111 P 14-55
CORBA:INASN ... s 14-56
CORBA::resolve initial_references.......cccvvevevcevevievcceevee e 14-57
ORB Member FUNCHONS. ..ot s e 14-58
CORBA::ORB::ClEAr CtX...vciiciiciiceicece et s 14-60
CORBA::ORB::create_context list.........cecveveeiieiieenesieereeieeseene 14-61
CORBA::ORB::create_ environmentcccceeeeveveeieeseereesesieennns 14-62
CORBA::ORB::create_exception list.......ccccocevveieiieciececieeenen 14-63
CORBA::ORB::Create list.....ccooveeiesrieie et 14-64
CORBA::ORB::create_ named value..........cccoeevvreeveiceeieeeieesne 14-65
CORBA::ORB::create_operation list..........cccoeeevveveeieeieeveesieeieenn 14-66
CORBA::ORB::create PoliCy......cccceuerieeieiececiesieereeseeeseeesee e 14-67
CORBA::ORB::dESIIOYocovviiieeiieceeitie ettt 14-70
CORBA::ORB:IQEL CIX cuvvvviviiieciiesiiecreesees e esiae e e s e 14-71
CORBA::ORB::get_default_contextcccccevveeieieciiececieeenen 14-72
CORBA::ORB::get_NeXt_reSPONSEcceviveereerrieirieeseessseeeessaeanees 14-73
CORBA::ORB::inform_thread exitccceovevvviiievinieeceeceeeee 14-74

CORBA Programming Reference Xi

CORBA::ORB::list_initial_SErVICESccevvveveerie e 14-75

CORBA::ORB::0bject t0 StrNQgccccoeoeieereeieie e 14-76
CORBA::ORB::perform_WOrKcccoooeiirerieieieeie e 14-77
CORBA::ORB::poll_next_reSponseccoeeeeeveereerieeenerseeinenens 14-78
CORBA::ORB::resolve initial_references...........cccoveveeveeieeveennen. 14-79
CORBA::ORB::send_multiple_requests deferredccoceeveennee 14-80
CORBA::ORB::send_multiple_requests Onewayc.cccceeenee 14-81
CORBA::ORB:SEL_CEX cvvcuieiiiieiiieceeesties e eeiie et e sraessnaese s sae s 14-82
CORBA::ORB::string_to_0DJeCtcccooiiieiiee e 14-83
CORBA::ORB::WOrk_pendingcccceoevereneieseeneeeeeneseesieens 14-84
ORSB Initiaization Member FUNCLION........c..coiiiriiiierecre e 14-85
CORBA::ORB NIt ...icuiiiecieece ettt st s sae e 14-86
ORB ...ttt ettt ettt b e e e ne e 14-89
Policy Member FUNCLIONS.........c.ooiiiiieie et s 14-95
CORBA :POIICY:ICOPY ..ttt sttt 14-96
CORBA::POlICY::dESIOY ...ttt 14-97
PortableServer Member FUNCLIONScccoiriie i e 14-98
PortableServer::POA::activate ObjecCtccoeeveiceeveeieieieieeiens 14-99
PortableServer::POA::activate object with id..........cccceeeveneee. 14-100
PortableServer::POA::create_id_assignment_policyc.cccu.... 14-101
PortableServer::POA::create_lifespan_policycccccoeeeeeneeenne 14-102
PortableServer::POA::create POAcccoiiviceiieeeveese e 14-104
PortableServer::POA::create reference........cccooevevvecvecceieciennenn 14-106
PortableServer::POA::create reference with id........ccccceeveeneeee. 14-107
PortableServer::POA::deactivate object........ccccevevvveievecrrecnee, 14-108
PortableServer::POA::dESIIOYccveiveeie et 14-109
PortableServer::POA::find POA ... 14-110
PortableServer::POA::reference t0 id.......cccooevveieiveceieiecceceen, 14-111
PortableServer::POA::the POAManager..........ccccoeeveveeeveeseeeneene 14-112
PortableServer::ServantBase::_default POA.........ccccoeeeeveciennen. 14-113
POA Current Member FUNCLIONS.........occoiiuiriere e e 14-114
PortableServer::Current::get_object id........ccccoveveiviveeiiceieeee, 14-115
PortableServer::Current::get POA........cccoooecvecie e 14-116
POAManager Member FUNCLIONS..........c.cccueieeieieceesee e 14-117
PortableServer::POAManager::activate..........cccccveevececcesecienn, 14-118

Xii CORBA Programming Reference

PortableServer::POAManager::deactivate...........ccccevveeeerencennnne 14-119

POA Policy Member ODJECES......cccouiieieeiree e 14-120
PortableServer::LifespanPoliCyc.ccocooereieienniece e 14-121
PortableServer::1dAssignmentPoliCyccooevereeeiniecireee 14-122

Request Member FUNCLIONS.........coouiiie ettt 14-123
CORBA::ReqUESE::arQUMENES......coeereerier e stee e seieiie et 14-124
CORBA::Request::ctX(COoNnteXt PLr)cccveeeeereererieeiereeeeeireenes 14-125
CORBA::ReqUESE::gEt rESPONSE......ccuerteereeeeie e et e eieeeesieseens 14-126
CORBA::REQUESE:IINVOKE........evereireeeie et e 14-127
CORBA::ReQUESEL::0PEIatioNcc.eeueierieeie e 14-128
CORBA::Request::poll_reSPONSEcccoeeuervererie e seereeie s 14-129
CORBA::REQUESE:ITESUIT ...ttt e e 14-130
CORBA:IREQUESEI BNV ...ttt s s s s 14-131
CORBA :IREQUESE ICEX ..ttt e e e se e e 14-132
CORBA::REQUESE::CONEXEScoeeee et it seieie e e 14-133
CORBA::ReqUESE::EXCEPLIONS ...t 14-134
CORBA::REQUESE:ITAIGELcuveeeeceie ettt 14-135
CORBA::Request::send_deferred.........ccoovieiinieie e 14-136
CORBA::Request::Send_ONEWaYcceveeeeireernereee e 14-137

1 10 TSRO SR R 14-138
CORBA::StING_@llOC.....ccceiieiiiee e 14-139
CORBA:SIING_AUP....eeeeeiireiee et e e 14-140
CORBA::SIING frE8 vt 14-141

WiE SHIINGS ..ottt et sr e st sraeaaesreeaneeae e e nnens 14-142

TypeCode Member FUNCLIONS...........ccccviiiieici et 14-144

Memory Managementoceeeirieieiiiie e e e e 14-145
CORBA::TYpeCode::equalccoeevuereeie e se e eie e e 14-146
CORBA::TYPECOUE::ccoeiieieeieeceeetie ettt 14-147
CORBA::TypeCode::Kind...........cccceierieie e 14-148
CORBA::TypeCode::param_COUNt.........cccovveereesreeeesecrieereerneneens 14-150
CORBA::TypeCode::parametercccceevreeveeseeseesresiesreeeesre e 14-151

Exception Member FUNCLIONS..........cccooieie e 14-152

Standard EXCEPLIONS........ccveieirieee et s sr e e 14-154

EXception DEfiNitions..........cccoveeie et e 14-155

ODbjECt NONEXISLENCEceeeieieee ettt st st reen e 14-156

CORBA Programming Reference Xiii

Transaction EXCEPLIONSc.eireeieeuiriiree et s 14-157

ExceptionList Member FUNCLIONScoeiiiiiieee e 14-158
CORBA ::EXCeptionList::CouNtcccoveieeeeirine e 14-159
CORBA::ExceptionList::addcccooveieiieienniecieie e 14-160
CORBA::ExceptionList::add_consSUME.........cccoereveeneeininneeene 14-161
CORBA ::EXCeptionList:itemcoeiueie e 14-162
CORBA ::EXCEptionList:iremMOVec..ceueieeeeieie e 14-163

15. Server-side Mapping

Implementing INtErfaCeS.......ooo i e e 15-1
Inheritance-based Interface Implementationcccocenneiennninc e, 15-2
Delegation-based Interface Implementation.............cooeeie e 15-5
IMplementing OPEratioNS..........coeverere et se e se e aneeneas 15-9

Xiv CORBA Programming Reference

About This Document

This document describes the BEA Tuxedo® CORBA C++ application programming
interface (API).

This document includes the following topics:

Chapter 1, “OMG IDL Syntax and the C++ IDL Compiler,” describes the Object
Management Group (OMG) Interface Definition Language (IDL) and OMG IDL
extensions.

Chapter 2, “Implementation Configuration File (ICF),” describes the
Implementation Configuration File (ICF).

Chapter 3, “TP Framework,” describes the BEA Tuxedo TP Framework
application programming interface (API).

Chapter 4, “CORBA Bootstrapping Programming Reference,” describesthe
Bootstrapping mechanisms.

Chapter 5, “FactoryFinder Interface,” describes the FactoryFinder interface.

Chapter 6, “Security Service,” directs you to information about the Security
Service.

Chapter 7, “Transactions Service,” directs you to information about the
Transactions Service.

Chapter 8, “Notification Service,” directsyou to information about the
Notification Service.

Chapter 9, “Request-L evel Interceptors,” directs you to information about
Request-Level Interceptors.

Chapter 10, “CORBA Interface Repository Interfaces,” describes the Interface
Repository interfaces.

CORBA Programming Reference XV

m Chapter 11, “Joint Client/Servers,” describes how to program joint client/server
applications and the BEAWrapper Callbacks API.

m Chapter 12, “Development Commands,” describes the build and administration
commands for UNIX and Windows platforms.

m Chapter 13, “Mapping of OMG IDL Statementsto C++,” describes mapping of
OMG IDL statementsto C++.

m Chapter 14, “CORBA API,” describesthe CORBA API.

m Chapter 15, “Server-side Mapping,” describes server-side mapping of OMG IDL
statements to C++.

What You Need to Know

This document is intended for application devel opers interested in using the BEA
Tuxedo CORBA C++ API towrite client and joint client/server applications and object
implementations. It assumes a familiarity with CORBA, and with C++ and Java
programming.

e-docs Web Site

The BEA Tuxedo product documentation is avail able on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

XVi CORBA Programming Reference

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavail able on the BEA Tuxedo documentation Home
page on the e-docs Web site (and a so on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see the BEA Tuxedo CORBA Bibliography in the BEA
Tuxedo online documentation.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

CORBA Programming Reference XVii

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
m Your hame, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

XViii

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

CORBA Programming Reference

Convention

Item

nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
.doc
t ux. doc
Bl TVAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
text void comit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

CORBA Programming Reference Xix

XX

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

CORBA Programming Reference

CHAPTER

1

OMG IDL Syntax and
the C++ IDL Compiler

The Object Management Group (OMG) Interface Definition Language (IDL) is used
to describe the interfaces that client objects call and that object implementations
provide. An OMG IDL interface definition fully specifies each operation’ s parameters
and provides the information needed to develop client applications that use the
interface’ s operations.

Client applications are written in languages for which mappings from OMG IDL
statements have been defined. How an OMG IDL statement is mapped to aclient
language construct depends on the facilities available in the client language. For
example, an OM G IDL exception might be mapped to a structure in alanguage that
has no notion of exception, or to an exception in alanguage that does.

OMG IDL statements obey the same lexical rules as C++ statements, although new
keywords are introduced to support distribution concepts. OMG IDL statements al so
provide full support for standard C++ preprocessing features and OMG IDL-specific

pragmas.

Note: When using a pragma version statement, be sureto locate it after the
corresponding interface definition. The following is an example of proper

usage:

nodul e A

{

interface B

{

#pragma version B "3.5"
void opl();
I
b

CORBA Programming Reference 1-1

1 omcipL Syntax and the C++ IDL Compiler

1-2

TheOMG IDL grammar isasubset of ANSI C++ with additional constructsto support
the operation invocation mechanism. OMG IDL is a declarative language; it supports
C++ syntax for constant, type, and operation declarations; it does not include any
algorithmic structures or variables.

For adescription of OMG IDL grammar, see Chapter 3 of the Common Object Request
Broker: Architecture and Specification Revision 2.4 “OMG IDL Syntax and
Semantics.”

All OMG IDL grammar is supported, with the exception of the following type
declarations and associated literals:

m native
Note: Because CORBA 2.4 statesthat the nat i ve type declaration is intended for
use in Object Adapters, not user interfaces, thistypeis availablein the

Por t abl eSer ver module only for clientsthat support callbacks, that is, joint
client/servers.

® | ong double

m fixed

Do not use these data typesin IDL definitions.

Note: Supportforthel ong | ong, unsi gned | ong | ong,wchar ,andwst ri ng data
types was added to BEA Tuxedo CORBA in release 8.0.

CORBA Programming Reference

OMG IDL Compiler Extensions

OMG IDL Compiler Extensions

The IDL compiler defines preprocessor macros specific to the platform. All macros
predefined by the preprocessor that you are using can be used inthe OMG IDL file, in
addition to the user-defined macros. Y ou can also define your own macros when you
are compiling or loading OMG IDL files.

Table 1-1 describes the predefined macros for each platform.

Table 1-1 Predefined M acros

Macro ldentifier Platform on Which the Macro | s Defined

_unix__ Sun Solaris, HP-UX, Tru64 UNIX, and IBM AIX
__osf1l__ True4 UNIX

__sun__ Sun Solaris

__hpux___ HP-UX

_aix__ IBM AIX

_wnnt__ Microsoft Windows 2000 and NT

Note: Thefollowing platformswill not be supported when BEA Tuxedo 8.0 is
initially released to customers, however, they will be certified and supported
after the release:;

= |IBM AIX
m Microsoft Windows NT

To find out when the support for these platforms becomes official, contact
BEA Customer Support. The contact Customer Support, go to
http://www.beasys.com/support/ on the Internet and click on Contact
Customer Support.

CORBA Programming Reference 1-3

1 omcipL Syntax and the C++ IDL Compiler

C++ IDL Compiler Constraints

Table 1-2 describes constraints for the BEA Tuxedo 8.0 C++ IDL compiler and
provides information about recommended workarounds.

Table 1-2 C++ IDL Compiler

Constraint Use of wildcardingin OMG IDL context strings produces war nings.

Description A warning is generated by the C++ DL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify acontext string in an OMG IDL operation definition, the following
warning may be generated:

void op5() context("*");

N

LI BORBCMD_CAT: 131: INFG “*' is a non-standard
context property.

Workaround The OMG CORBA specification is ambiguous about whether the first
character of a context string must be alphabetic.

Thiswarning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires acomma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown aboveis not OMG CORBA compliant, butitis
processed by the BEA Tuxedo software as intended by the user.

Constraint Use of wildcardingin OMG IDL context strings produces war nings.

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

void op5() context("*");
N

LI BORBCMD_CAT: 131: INFG “*’ is a non-standard
context property.

1-4 CORBA Programming Reference

C++ IDL Compiler Constraints

Table 1-2 C++ DL Compiler (Continued)

Workaround The OMG CORBA specification is ambiguous about whether the first
character of a context string must be al phabetic.

Thiswarning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires acomma-separated list of strings, in which the
first character is aphabetic.

Note: The example shown above is not OMG CORBA compliant, but it is
processed by the BEA Tuxedo software as intended by the user.

Constraint The C++ IDL compiler does not support some data types.
Description The C++ IDL compiler currently does not support the following data types,
which are defined in the CORBA specification version 2.4:
m native
m fixed
m | ong double
Workaround Avoid using these datatypesin IDL definitions.
Constraint Using certain substringsin identifiers may cause incorrect code gener ation by the C++
IDL compiler.
Description Using the following substringsin identifiers may cause code to be generated
incorrectly and result in errors when the generated code is compiled:
get _
set _
I mpl _
_ptr
_slice
Workaround Avoid the use of these substrings in identifiers.
Constraint Inconsistent behavior in IDL compiler regarding case sensitivity.

Description According to the CORBA standard, IDL identifiers that differ only in case
should be considered colliding and yield acompilation error. Thereisacurrent
limitation of the BEA Tuxedo IDL compiler for C++ bindingsin that it does
not always detect and report such name collisions.

Workaround Avoid using IDL identifiers that differ only in case.

CORBA Programming Reference 1-5

1 omcipL Syntax and the C++ IDL Compiler

Table 1-2 C++ DL Compiler (Continued)

Constraint

C++ DL typedef problem.

Description

The C++ IDL compiler generates code that does not compile when:
m Defining IDL variables of char or bool ean type
m Andthetypeis aliased multiple times
For example, the generated C++ code from the following IDL code will not
compile:
modul e X
{
typedef bool ean a;
typedef a b;
interface Y
{
attribute b Z
s
H
C++ compilersreport an error that an"oper at or <<"isambiguousand that
thereisno"oper at or >>" for typechar . Theseerrorsare produced because
of the multiplelevel sof typedefs; the C++ compiler may not associatethe type

X: : b with CORBA: : Bool ean because of theintermediate type definition of
X :a.

Workaround

Useasinglelevd of indirection when you definechar orbool ean types.In
thelDL exampleabove, theattribute‘ X: : Z' would be defined using either the
standard type ‘bool ean’ or the user type‘X: : a’, but not the user type

‘X b

1-6

CORBA Programming Reference

CHAPTER

2

Implementation
Configuration File (ICF)

The BEA Tuxedo CORBA TP Framework application programming interface (API)
provides callback methods for object activation and deactivation. These methods
provide the ability for application code to implement flexible state management
schemes for CORBA objects.

State management istheway you control the saving and restoring of object state during
object deactivation and activation. State management al so affects the duration of
object activation, which influences the performance of servers and their resource
usage. The external API of the TP Framework includesthe act i vat e_obj ect () and
deact i vat e_obj ect () methods, which provide a possible location for state
management code. Additionally, the TP Framework APl includesthe

deact i vat eEnabl e() method to enable the user to control the timing of object
deactivation. The default duration of object activation is controlled by policies
assigned to implementationsat OMG IDL compile time.

While CORBA objects are active, their stateis contained in a servant. This state must
beinitialized when objects arefirst invoked (that is, thefirst time amethod isinvoked
on aCORBA object after itsobject referenceis created) and on subsequent invocations
after objects have been deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in
which the servant was active. When an object is activated, its state must be restored.
The object’ s state can be saved in shared memory, in afile, in adatabase, and so forth.
It is up to the programmer to determine what constitutes an object’ s state, and what
must be saved before an object is deactivated and restored when an object is activated.

Y ou can use the Implementation Configuration File (ICF) to set activation policiesto
control the duration of object activationsin each implementation. The ICF file
manages object state by specifying the activation policy. The activation policy

CORBA Programming Reference 2-1

2 Implementation Configuration File (ICF)

determines the in-memory activation duration for a CORBA object. A CORBA object
isactivein a Portable Object Adapter (POA) if the POA’ s active object map contains
an entry that associates an object ID with an existing servant. Object deactivation
removes the association of an object ID with its active servant.

ICF Syntax

ICF syntax is as follows:

[#pragma activation_policy nethod|transaction|process]
[#pragma transaction_policy never|ignore|optional|al ways]
[#pragma concurrency_policy user_control | ed| system control | ed]
[Modul e nodul e-nane {]

i npl enentation [inpl enentation-nane]

{

i npl enent s (nodul e-name: : i nterface-nane);
[activation_policy (method|transaction|process);]
[transaction_policy (never]|ignore|optional|always);]

[concurrency_policy (user_controlled|systemcontrolled);]

[}:]
pragnas
The three optiona pragmas alow you to set a specific palicy asthe default
policy for the entire ICF for al implementations that do not have an explicit
activation_policy,transaction_policy, Or concurrency_policy
statement. Thisfeature relieves the programmer from having to specify
policies for each implementation and/or allows overriding of the defaults.

Modul e nopdul e- nane
The nodul e- nane variableis optiona if it is optional inthe OMG IDL file.
Thisvariableisused for scoping and grouping. Its use must be consistent with
the way it isused inside the OMG IDL file.

i npl enent ati on- nane
Thisvariable is optional and is used as the name of the servant or asthe class
name in the server. It is constructed using i nt er f ace- name with an _i
appended if it is not specified by the programmer.

2-2 CORBA Programming Reference

Sample ICF File

i mpl enents (nodul e-nane: :interface-nane)
Thisvariable identifies the modul e and the interface to which the activation
policy and the transaction policy apply.

activation_policy
For a description of the activation policies, see“Activation Policy” on

page 3-6.

transaction_policy
For a description of the transaction policies, see “ Transaction Policies’ on

page 3-14.

concurrency_policy
For description of the concurrency policies, see “Parallel Objects’ on page
3-21.

Sample ICF File

Listing 2-1 shows a sample ICF file.

Listing 2-1 SamplelCF

nmodul e POA Uni versityl

{
i npl enent ati on CourseSynopsi sEnuner at or _i
{
activation_policy (process);
transaction_policy (optional);
i mpl ements (Universityl:: CourseSynopsi sEnunerator);
I
nmodul e POA Uni versityl
{
i npl enentation Registrar_i

{

activation_policy (nmethod);
transaction_policy (optional);
implenents (Universityl:: Registrar);

’

CORBA Programming Reference 2-3

2 Implementation Configuration File (ICF)

b
nmodul e POA Uni versityl

{

i npl enentation RegistrarFactory_i
{
activation_policy (process);
transaction_policy (optional);
i npl enents (Universityl:: RegistrarFactory);
I

b

Creating the ICF File

Y ou have the option of either coding the ICF file manually or using the geni cf
command to generate it from the OMG IDL file. For a description of the syntax and
options for the geni cf command, see the BEA Tuxedo Command Reference.

2-4 CORBA Programming Reference

CHAPTER

3

TP Framework

Thistopic includes the following sections:
m A Simple Programming Model. This section describes:
e Control Flow
e Object State Management
e Transaction Integration
e Object Housekeeping
e High-level Services
m State Management. This section describes:
e Activation Policy
e Application-controlled Activation and Deactivation
e Servant Lifetime
e Saving and Restoring Object State

m Transactions. This section describes:
e Transaction Policies
e Transaction Initiation
e Transaction Termination
e Transaction Suspend and Resume
e Restrictions on Transactions
e SQL and Globa Transactions
e \oting on Transaction Outcome

e Transaction Timeouts

CORBA Programming Reference

3-1

3

TP Framework

3-2

m Pardlel Objects
m TP Framework API
m Error Conditions, Exceptions, and Error Messages

The BEA Tuxedo CORBA TP Framework provides a programming TP Framework
that enables usersto create serversfor high-performance TP applications. This chapter
describes the TP Framework programming model and the TP Framework application
programming interface (API) in detail. Additional information about how to use this
API can be found in Creating CORBA Server Applications.

The TP Framework isrequired when developing BEA Tuxedo CORBA servers. Later
releases will relax this requirement, though it is expected that most customerswill use
the TP Framework as an integral part of their applications.

BEA Tuxedo provides the infrastructure for providing load balancing, transactional
capabilities, and administrative infrastructure. The base API used by the TP
Framework is the CORBA API with BEA extensions. The TP Framework API is
exposed to customers. The BEA Tuxedo ATMI isan optional API that can be mixed
in with TP Framework APIs, allowing a customer to deploy distributed applications
using amix of CORBA serversand ATMI servers.

Before BEA Tuxedo CORBA, ORB products did not approach BEA Tuxedo's
performance in large-scale environments. BEA Tuxedo systems support applications
that can process hundreds of transactions per second. These applicationsarebuilt using
the BEA Tuxedo statel ess-service programming model that minimizes the amount of
system resources used for each request, and thus maximizes throughput and price
performance.

Now, BEA Tuxedo CORBA and its TP Framework give customers a way to develop
CORBA applications with performance similar to BEA Tuxedo ATMI applications.
BEA Tuxedo CORBA servers provide throughput, response time, and price
performance approaching the BEA Tuxedo statel ess-service programming model,
while using the CORBA programming model.

CORBA Programming Reference

A Simple Programming Model

A Simple Programming Model

The TP Framework provides a simple, useful subset of the wide range of possible
CORBA object implementation choices. Y ou useit for the development of server-side
object implementations only. When using any client-side CORBA ORB, clients
interact with CORBA objects whose server-side implementations are managed by the
TP Framework. Clients are unaware of the existence of the TP Framework—a client
written to access a CORBA object executing in a non-BEA Tuxedo server
environment will be able to access that same CORBA object executing in a BEA
Tuxedo server environment without any changes or restrictionsto the client interface.

The TP Framework provides a server environment and an API that is easier to use and
understand than the CORBA Portable Object Adapter (POA) API, and is specifically
geared towards enterprise applications. It isasimple server programming model and
an orthodox implementation of the CORBA model, which will be familiar to
programmers using ORBs such as ORBIX or VisiBroker.

The TP Framework simplifies the programming of BEA Tuxedo CORBA servers by
reducing the complexity of the server environment in the following ways:

m The TP Framework does all interactions with the POA and the Naming Service.
The application programmer requires no knowledge of POA or Naming Service
interfaces.

m The TP Framework is single threaded—only one request on one CORBA object
will be processed at atime, obviating the need to write thread-safe
implementations.

m A CORBA object may be involved in only one transaction at atime (consistent
with the association of one object ID to one servant).

The TP Framework provides the following functionality:
m Control Flow

m Object State Management

m Transaction Integration

m Object Housekeeping

m High-level Services

CORBA Programming Reference 3-3

3

TP Framework

Control Flow

The TP Framework, in conjunction with the ORB and the POA, controlsthe flow of
the application program by doing the following:

Controlling the server mainline and invoking callback methods on TP
Framework-defined classes at appropriate times for server startup and shutdown.
This relieves the application programmer from complex interactions related to
ORB and POA initialization and coordination of transactions, resource
managers, and object state on shutdown.

Scheduling objects for activation and deactivation when client requests arrive
and are completed. This removes the complexity of management of object
activation and deactivation from the realm of the application programmer and
enables the use of the TP monitor infrastructure’s powerful load-balancing
capabilities, crucial to performance of mission-critical tasks.

Object State Management

The TP Framework API provides callback methods for application code to implement
flexible state management schemes for CORBA objects. State management involves
the saving and restoring of object state on object deactivation and activation. It also
concerns the duration of activation of objects, which influences the performance of
serversand their resource usage. The default duration of object activation iscontrolled
by policies assigned to implementations at IDL compile time.

Transaction Integration

34

TP Framework transaction integration provides the following features:

CORBA objects can participate in global transactions.

Objects participating in transactions can be implemented as stateful objects that
remain in memory for the duration of atransaction (by using the transaction
activation policy), to decrease client response time.

CORBA Programming Reference

A Simple Programming Model

CORBA objects that participate in transactions can affect transaction outcome
either during their transactional work or just prior to the system’s execution of
the two-phase commit algorithm after all transactional work has been completed.

Transactions can be automatically initiated on the server transparent to the client.

Object Housekeeping

When a server is shut down, the TP Framework rolls back any transactions that the
server isinvolved in and deactivates any CORBA objects that are currently active.

High-level Services

The TP interface in the TP Framework API provides methods for performing object
registrations and utility functions. The following services are provided:

Object reference creation

Factory-based routing support

Accessors for system objects, such as the ORB

Registration and unregistration of factories with the FactoryFinder
Application-controlled activation and deactivation

User logging

The purpose of these high-level service methodsisto eliminatethe need for developers
to understand the CORBA POA, CORBA Naming Service, and BEA Tuxedo APIs,
which they usefor their underlying implementations. By encapsul ating the underlying
API callswith a high-level set of methods, programmers can focus their efforts on
providing business logic rather than understanding and using the more complex
underlying facilities.

CORBA Programming Reference 3-5

3

TP Framework

State Management

State management involves the saving and restoring of object state on object
deactivation and activation. It also concerns the duration of activation of objects,
which influences the performance of servers and their resource usage. The external
API of the TP Framework providesact i vat e_obj ect anddeacti vat e_obj ect
methods, which are a possible location for state management code.

Activation Policy

3-6

State management is provided in the TP Framework by the activation policy. This
policy control sthe activation and deactivation of servantsfor aparticular IDL interface
(as opposed to the creation and destruction of the servants). This policy is applicable
only to CORBA objects using the TP Framework.

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object isactivein a POA if the POA’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant. Y ou can
choose from one of three activation policies: met hod (the default), t ransact i on, or
process.

Note: Theactivation policies are set in an ICF file that is configured at OMG IDL
compile time. For a description of the ICF file, refer to Chapter 2,
“Implementation Configuration File (ICF).”

The activation policies are described below:

m net hod (Thisisthe default activation policy.)

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the method. At the completion of a
method, the object is deactivated. When the next method is invoked on the
object reference, the CORBA object is activated (the object ID is associated with
anew servant). Thisbehavior is similar to that of a BEA Tuxedo stateless
service.

CORBA Programming Reference

State Management

transaction

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the transaction. During the transaction,
multiple object methods can be invoked. The object is activated before the first
method invocation on the object and is deactivated in one of the following ways:

e |f auser-initiated transaction is in effect when the object is activated, the
object is deactivated when the first of the following occurs: the transaction is
committed or rolled back, or the server is shut down in an orderly fashion.
The latter is done using either the t nshut down or t madmi n command. These
commands are described in the BEA Tuxedo Command Reference online
document.

e If auser-initiated transaction is not in effect when the TP object is activated,
the TP object is deactivated when the method compl etes.

Thetransacti on activation policy provides a means for an object to vote on
the outcome of the transaction prior to the execution of the two-phase commit
algorithm. An object votesto roll back the transaction by calling
CQurrent.roll back_only() inthe

Tobj _Servant Base: : deact i vat e_obj ect method. It votes to commit the
transaction by not calling Current . r ol | back_onl y() inthe method.

Note: Thisisamodel of resource allocation that is similar to that of a BEA
Tuxedo conversational service. However, thismodel islessexpensive than
the BEA Tuxedo conversational servicein that it uses fewer system
resources. Thisis because of the BEA Tuxedo ORB'’s multicontexted
dispatching model (that is, the presence of many servantsin memory at the
same time for one server), which makesit possible for asingle server
process to be shared by many concurrently active servantsthat service
many clients. In the BEA Tuxedo system, the process would be dedicated
to asingle client and to only one service for the duration of a conversation.

process

The activation of the CORBA object beginswhen it isinvoked while in an
inactive state and, by default, lasts until the end of the process.

Note: The TP Framework API provides an interface method
(TP: : deact i vat eEnabl e) that allows the application to control the
timing of object deactivation for objects that have theact i vati on
pol i cy settoprocess. For adescription of this method, see the section
“TP::deactivateEnable()” on page 3-64.

CORBA Programming Reference 3-7

3 TP Framework

Application-controlled Activation and Deactivation

Ordinarily, activation and deactivation decisions are made by the TP Framework, as
discussed earlier in this chapter. The techniques in this section show how to use
alternate mechanisms. The application can control the timing of activation and
deactivation explicitly for objects with particular policies.

Explicit Activation

Usage Notes

Application code can bypass the on-demand activation feature of the TP Framework
for objects that use the pr ocess activation policy. The application can “preactivate”
an object (that is, activate it before any invocation) using the

TP: : create_active_object_reference call.

Preactivation works as follows. Before the application creates an object reference, the
application instantiates a servant and initializes that servant’ s state. The application
uses TP: : creat e_act i ve_obj ect _r ef er ence to put the object into the Active
Object Map (that is, associate the servant with an Qoj ect 1 d). Then, when the first
invocation is made, the TP Framework immediately directs the request to the process
that created the object reference and then to the existing servant, bypassing the
necessity to call Server: : create_servant and thenthe servant’'s

activate_obj ect method (just asif this were the second or later invocation on the
object). Notethat the object reference for such an object will not be directed to another
server and the object will never go through on-demand activation aslong as the object
remains activated.

Since the preactivated object has the pr ocess activation policy, it will remain active
until one of two events occurs: (1) the ending of the process or (2) a
TP: : deact i vat eEnabl e call.

Preactivation is especially useful if the application needs to establish the servant with
aninitial state in the same process, perhaps using shared memory to initialize state.
Waiting to initialize state until alater time and in a potentially different process may
be very difficult if that state includes pointers, object references, or complex data
structures. TP: : cr eat e_act i ve_obj ect _r ef er ence guarantees that the
preactivated object is in the same process as the code that is doing the preactivation.

3-8 CORBA Programming Reference

State Management

While thisis convenient, preactivation should be used sparingly, as should all process
objects, because it preallocates precious resources. However, when needed and used
properly, preallocation is more efficient than aternatives.

Examples of such usage might be an object using the “iterator” pattern. For example,
there might a potentially long list of items that could be returned (in an unbound IDL
sequence) from a“ database_query” method (for example, the contents of the telephone
book). Returning all suchitemsin the sequenceisimpractical becausethe messagesize
and the memory requirements would be too large.

Onaninitial call to get thelist, an object using theiterator pattern returnsonly alimited
number of itemsin the sequence and al so returnsareferenceto an “iterator” object that
can be invoked to receive further elements. This iterator object isinitialized by the
initial object; that is, theinitial object creates a servant and sets its state to keep track
of wherein the long list of items the iteration currently stands (the pointer to the
database, the query parameters, the cursor, and so forth).

Theinitial object preactivates this iterator object by using

TP: :create_acti ve_object _reference. It asocreatesan object reference to that
object to return to the client. The client then invokes repeatedly on the iterator object
to receive, say, the next 100 itemsinthelist each time. The advantage of preactivation
in this situation isthat the state might be complex. It is often easiest to set such state
initialy, from amethod that has all the information in its context (call frame), when
theinitial object still has control.

When the client is finished with the iterator object, it invokes a final method on the
initial object which deacativates the iterator object. Theinitial object deactivates the
iterator object by invoking a method on the iterator object that callsthe

TP: : deact i vat eEnabl e method, that is, the iterator object calls

TP: : deact i vat eEnabl e on itself.

Caution to Users

For objectsto be preactivated in thisfashion, the state usually cannot berecovered if a
crash occurs. (Thisis because the state was considered too complex or inconvenient to
set uponinitial, delayed activation.) Thisisavalid object technique, essentially stating
that the object isvalid only for a single activation period.

CORBA Programming Reference 39

3

TP Framework

However, a problem may arise because of the “one-time” usage. Since aclient still
holds an object reference that leads to the process containing that state, and since the
state cannot be recreated after the crash, care must be taken that the client’s next
invocation does not automatically provoke anew activation of the object, because that
object would have inapplicable state.

The solution isto refuse to allow the object to be activated automatically by the TP
Framework. If the user providesthe Tobj S: : Acti vat eObj ect Fai | ed exception to
the TP Framework as aresult of the acti vat e_obj ect call, the TP Framework will
not complete the activation and will return an exception to the client,

CORBA: : OBJECT_NOT_EXI ST. The client has presumably been warned about this
possibility, since it knows about the iterator (or similar) pattern. The client must be
prepared to restart the iteration.

Note: Thisdefensive measure may not be necessary in thefuture; the TP Framework
itself may detect that the object referenceisno longer valid. In particular, you
should not depend on the possibility that theact i vat e_obj ect method might
becalled. If the TP Framework doesin fact change, activate object will not be
called and the framework itself will generate the OBJECT_NOT_EXI ST
exception.

Self Deactivation

3-10

Just asit is possible to preactivate an object with the pr ocess activation policy, it is
possible to request the deactivation of an object with the pr ocess activation policy.
The ability to preactivate and the ability to request deactivation are independent;
regardless of how an object was activated, it can be deactivated explicitly.

A method in the application can request (viaTP: : deact i vat eEnabl €) that the object
be deactivated. When TP: : deact i vat eEnabl e is called and the object is
subsequently deactivated, no guarantee is made that subseguent invocations on the
CORBA object will result in reactivation in the same process as a previous activation.
Theassociation betweenthe bj ect | d and the servant exists from the activation of the
CORBA object until one of the following eventsoccurs: (1) the shutdown of the server
process or (2) the application callsTP: : deact i vat eEnabl e. After the associationis
broken, when the object isinvoked again, it can be reactivated anywhere that is
allowed by the BEA Tuxedo configuration parameters.

CORBA Programming Reference

State Management

There are two forms of TP: : deact i vat eEnabl e. In the first form (with no
parameters), the object currently executing will be deactivated after completion of the
method in which the call ismade. The object itself makes the decision that it should be
deactivated. This is often done during a method call that acts asa "signoff" signal.

The second form of TP: : deact i vat eEnabl e allowsa server to request deactivation
of any active object, whether it is the object that is executing or not; that is, any part of
the server can ask that the object be deactivated. This form takes parameters
identifying the object to be deactivated. Explicit deactivation is not allowed for objects
with an activation policy of t ransact i on, because such objects cannot be safely
deactivated until the end of atransaction.

Inthe TP: : deact i vat eEnabl e call, the TP Framework calls the servant’s

deact i vat e_obj ect method. Exactly when the TP Framework invokes

deact i vat e_obj ect dependson the state of the object to be deactivated. If the object
is not currently in execution, the TP Framework deactivates it before returning to the
caller. The object might be currently executing a method; thisis always the case for
TP: : deact i vat eEnabl e with no parameters (since it refersto the currently
executing object). Inthiscase, TP: : deact i vat eEnabl e isnot told whether the object
was deactivated immediately or not.

Note: TheTP: : deacti vat eEnabl e(i nterface, object id, servant)
met hod can be used to deactivate an object. However, if that object iscurrently
in atransaction, the object will be deactivated when the transaction commits
or rollsback. If an invoke occurs on the object before the transaction is
committed or rolled back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object isnot in atransaction
or ensure that no invokes occur on the object after the
TP: : deact i vat eEnabl e() call until the transaction is complete.

Servant Lifetime

A servant isa C++ class that contains methods to implement an IDL interface’s
operations. The user writes the servant code. The TP Framework invokes methods in
the servant code to satisfy requests. The servant iscreated by the C++ “new” statement
and is destroyed by the C++ “delete” statement. Exactly who does the creation and
who does the deletion, and the timing of creation and deletion, isthe subject of this
section.

CORBA Programming Reference 3-11

3

TP Framework

The Normal Case

Special Cases

3-12

In the normal case, the TP Framework completely controlsthe lifetime of a servant.
The basic model isthat, when arequest for an inactive object arrives, the TP
Framework obtains a servant and then activatesit (by calingitsact i vat e_obj ect
method). At deactivation time, the TP Framework callsthe servant’s

deacti vat e_obj ect method and then disposes of the servant.

The phase “the TP Framework obtains a servant” means that when the TP Framework
needs a servant to be created, it calls a user-written Server method, either
Server::create_servant or ServerBase::create_servant_with_id. At that
time, the application code must return a pointer to the requested servant. The
application almost always does this by using the C++ “new” statement to create anew
instance of a servant. The phrase “disposes of the servant” means that the TP
Framework removes the reference to the servant, which actually deletesit.

The application must be aware that this current behavior of always creating and
removing a servant may change in future versions of this product. The application
should not depend on the current behavior, but should write servant code that allows
reuse of aservant. Specifically, the servant code must work even if the servant has not
been freshly created (by the C++ “new” statement). The TP Framework reserves the
right not to remove a servant after it has been deactivated and thento reactivateit. This
means that the servant must completely initialize itself at the time of the callback on
theservant’sact i vat e_obj ect method, not at thetime of servant creation (not inthe
constructor).

There are two techniques an application can useto alter the normal TP Framework use
of servants. The first has to do with obtaining a servant and the second has to do with
disposing of the servant.

The application can alter the “obtaining” mechanism by using explicit preactivation.
In this case, the application creates and initializes a servant before asking the TP
Framework to declareit activated. Once such a servant has been turned over to the TP
Framework (by the TP: : creat e_acti ve_obj ect _r ef er ence call), that servant is
treated by the TP Framework just like every other servant. The only differenceisinits
method of creation and initialization.

The application can alter the “disposing” mechanism by taking the responsibility for
disposing of a servant instead of leaving that responsibility with the TP Framework.
Once a servant is known to the TP Framework (through Ser ver : : creat e_ser vant,

CORBA Programming Reference

State Management

ServerBase::create_servant_with_id,or

TP: : create_acti ve_obj ect _reference), the TP Framework’ sdefault behavior is
to remove that servant itself. In this case, the application code must no longer use
references to the servant after deactivation.

However, the application may tell the TP Framework not to dispose of the servant after
the TP Framework deactivates it. Taking responsibility for a servant is done on an
individual servant basis, not for awhole class of servants, by calling

Tobj _Servant Base: : _add_r ef with a parameter identifying the servant.

Note: In applications written using BEA Tuxedo release 8.0 or later, use the
Tobj _Servant Base: : _add_r ef method instead of the
TP: : application_responsibility() method. Unlikethe
TP: : application_responsibility() method, theadd ref () method
takes no arguments.

The advantage of the application taking responsibility for the servant isthat the servant
does not have to be created anew. If obtaining the servant is an expensive proposition,
the application may choose to save the servant and reuse it later. Thisis especialy
likely to be true for servants for preactivated objects, but istrue in general. For
example, the next time the TP Framework makes acall on
Server::create_servant or ServerBase::create_servant_wi th_id,the
application might return a previously saved servant.

Additionally, once an application has taken responsibility for aservant, the application
must take care to remove the servant (using Tobj _Ser vant Base: : _renove_ref)
when the servant is no longer needed, that is, when the reference count drops to zero,
the same asfor any other C++ instance. For more information about how the
_renove_ref () method works, see“Tobj_ServantBase::_remove _ref()” on page
3-51.

For more information on writing single-threaded and multithreaded server
applications, see Creating CORBA Server Applications.

Saving and Restoring Object State

While CORBA objects are active, their state is contained in aservant. Unless an
applicationusesTP: : creat e_acti ve_obj ect _r ef er ence, state must be initialized
when the object isfirstinvoked (that is, thefirst timeamethod isinvoked on aCORBA
object after its object reference is created), and on subsequent invocations after they

CORBA Programming Reference 3-13

3

TP Framework

have been deactivated. While a CORBA object is deactivated, its state must be saved
outside the process in which the servant was active. The object’ s state can be saved in
shared memory, in afile, or in adatabase. Before a CORBA object is deactivated, its
state must be saved, and when it is activated, its state must be restored.

Theprogrammer determines what constitutes an object’ s state and what must be saved
before an object is deactivated, and restored when an object is activated.

Note On Use of Constructors and Destructors for CORBA Objects

The state of CORBA objects must not be initialized, saved, or restored in the
constructors or destructors for the servant classes. Thisis because the TP Framework
may reuse an instance of aservant rather than deleting it at deactivation. No guarantee
is made asto the timing of the creation and deletion of servant instances.

Transactions

The following sections provide information about transaction policies and how to use
transactions.

Transaction Policies

3-14

Eligibility of CORBA objectsto participate in global transactionsis controlled by the
transaction policies assigned to implementations at compile time. The following
policies can be assigned.

Note: Thetransaction policies are set in an ICF file that is configured at OMG IDL
compile time. For a description of the ICF file, refer to Chapter 2,
“Implementation Configuration File (ICF).”

B never

Theimplementation is not transactional. Objects created for this interface can
never be involved in atransaction. The system generates an exception
(I NVALI D_TRANSACTI ON) if an implementation with thispolicy isinvolved in a

CORBA Programming Reference

Transactions

transaction. An AUTOTRAN policy specified in the UBBCONFI Gfile for the
interface isignored.

m ignore

The implementation is not transactional. This policy instructs the system to
allow requests within a transaction to be made of thisimplementation. An
AUTOTRAN policy specified in the UBBCONFI Gfile for the interface is ignored.

m optional (Thisisthedefaulttransaction_policy.)

The implementation may be transactional. Objects can beinvolved in a
transaction if the request is transactional. Servers containing transactional objects
must be configured within agroup associated with an XA-compliant resource
manager. |f the AUTOTRAN parameter is specified in the UBBCONFI Gfile for the
interface, AUTOTRAN is ON.

m al ways

The implementation is transactional . Objects are required to always be involved
in atransaction. If areguest is made outside a transaction, the system
automatically starts atransaction before invoking the method. The transaction is
committed when the method ends. (This is the same behavior that results from
specifying AUTOTRAN for an object with the option transaction policy, except that
no administrative configuration is necessary to achieve this behavior, and it
cannot be overridden by administrative configuration.) Servers containing
transactional objects must be configured within a group that is associated with
an X A-compliant resource manager.

Note: Theopti onal policy isthe only transaction policy that can be influenced by
administrative configuration. If the system administrator sets the AUTOTRAN
attribute for the interface by means of the UBBCONFI Gfile or by using
administrative tools, the system automatically starts a transaction upon
invocation of the object, if it isnot aready infected with atransaction (that is,
the behavior isasif the al ways policy were specified).

Transaction Initiation

Transactions are initiated in one of two ways:

CORBA Programming Reference 3-15

3 TP Framework

m By the application code viause of the CosTr ansacti ons: : Current: : begi n()
operation. This can be done in either the client or the server. For a description of
this operation, see Using CORBA Transactions.

m By the system when an invocation is done on an object which has either:
e Transaction policy al ways
e Transaction policy opti onal and a setting of AUTOTRAN for the interface

For more information, see Using CORBA Transactions.

Transaction Termination

In general, the handling of the outcome of atransaction is the responsibility of the
initiator. Therefore, the following are true:

m If the client or server application codeinitiates transactions, the TP Framework
never commits atransaction. The BEA Tuxedo system may roll back the
transaction if server processing tries to return to the client while the transaction
isinanillegal state.

m If the system initiates a transaction, the commit or rollback will always be
handled by the BEA Tuxedo system.

Thefollowing behavior is enforced by the BEA Tuxedo system:

m If no transaction is active when a method on a CORBA object isinvoked and
that method begins a transaction, the transaction must be either committed,
rolled back, or suspended when the method invocation returns. If none of these
actionsis taken, the transaction is rolled back by the TP Framework, and the
CORBA: : OBJ_ADAPTER exception is raised to the client application. This
exception is raised because the transaction was initiated in the server application;
therefore, the client application would not expect atransactional error condition
such as TRANSACTI ON_ROLLEDBACK.

3-16 CORBA Programming Reference

Transactions

Transaction Suspend and Resume

The CORBA object must follow strict rules with respect to suspending and resuming
atransaction within a method invocation. These rules and the error conditions that
result from their violation are described below.

When a CORBA object method begins execution, it can be in one of the following
three states with respect to transactions:

m The client application began the transaction.

Legal server application behavior: Suspend and resume the transaction
within the method execution.

Illegal server application behavior: Return from the method with the
transaction in the suspended state (that is, return from the method without
invoking resume if suspend was invoked).

Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : TRANSACTI ON_ROLLEDBACK exception to the client application and
the transaction is rolled back by the BEA Tuxedo system.

m The system began atransaction to provide AUTOTRAN or transaction policy
al ways behavior.

Note:

For each CORBA interface, set AUTOTRANtO Yes if you want atransaction to
start automatically when an operation invocation is received. Setting
AUTOTRANtO Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, see Using CORBA Transactions.

Legal server behavior: Suspend and resume the transaction within the
method execution.

Note: Not recommended. The transaction may be timed out and aborted before

the method causes the transaction to be resumed.

Illegal server behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if
suspend was invoked).

Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : OBJ_ADAPTER exception to the client, and the transaction isrolled
back by the system. The CORBA: : OBJ_ADAPTER exception is raised because

CORBA Programming Reference 3-17

3

TP Framework

the client application did not initiate the transaction, and, therefore, does not
expect transaction error conditions to be raised.

m The CORBA object is not involved in atransaction when it starts executing.

e Legal server behavior:
¢ Begin and commit a transaction within the method execution.
¢ Begin and roll back a transaction within the method execution.
¢ Begin and suspend a transaction within the method execution.

e lllegal server behavior: Begin atransaction and return from the method with
the transaction active.

e FError Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : OBJ_ADAPTER exception to the client application and the transaction
isrolled back by the BEA Tuxedo system. The CORBA: : OBJ_ADAPTER
exception is raised because the client application did not initiate the
transaction, and, therefore, does not expect transaction error conditions to be
raised.

Restrictions on Transactions

3-18

Thefollowing restrictions apply to BEA Tuxedo CORBA transactions:

m A CORBA object in the BEA Tuxedo system must have the same transaction

context when it returns from a method invocation that it had when the method
was invoked.

A CORBA object can be infected by only one transaction at atime. If an
invocation tries to infect an already infected object, a
CORBA: : | NVALI D_TRANSACTI ON exception is returned.

If a CORBA aobject isinfected with atransaction and a nontransactional request
ismade on it, a CORBA: : OBJ_ADAPTER exception is raised.

If the application beginsatransaction in Server: :initialize(), it must
either commit or roll back the transaction before returning from the method. If
the application does not, the TP Framework shuts down the server. Thisis
because the application has no predictable way of regaining control after
completing the Server: :initial i ze method.

CORBA Programming Reference

Transactions

m |If aCORBA object isinfected by atransaction and with an activation policy of
transacti on, and if the reason code passed to the method is either
DR_TRANS_COVM TTI NGor DR_TRANS_ABORTED, no invocation on any CORBA
object can be done from within the Tobj _Ser vant Base: : deact i vat e_obj ect
method. Such an invocation resultsin a CORBA: : BAD | NV_ORDER exception.

SQL and Global Transactions

Adhere to the following guidelines when using SQL and Global Transactions:

m Care should be taken when executing SQL statements outside the scope of a
global transaction. The SQL standard specifies that alocal transaction should be
started implicitly by the database resource manager whenever an SQL statement
that needs the context of atransaction is executed and no transaction is active.
The standard also says that a transaction that isimplicitly started by the database
resource manager must then be explicitly terminated by executing a COMMIT
or ROLLBACK SQL statement; the TP Framework is not responsible for
terminating transactions that are started by the resource manager.

Note: Thisisnot an issue when an application uses the XA library to connect to
the Oracle server because those applications can operate only on global
transactions. The Oracle server does not allow local transactionswhenitis
using XA.

m The SQL COMMIT and ROLLBACK statements cannot be used to terminate a
global transaction that has been either started explicitly using Curr ent . begi n()
or started implicitly by the system. Check the database vendor documentation for
each database product for other possible restrictions when using global
transactions.

m SQL cursors may be closed when transactions are terminated. Consult your
database product documentation for exact information about cursor handling
rules. Application programmers should be careful to use cursors only with
CORBA objects with appropriate activation policies and within appropriate
transaction boundaries.

CORBA Programming Reference 3-19

3

TP Framework

Voting on Transaction Outcome

CORBA objects can affect transaction outcome during two stages of transaction
processing:

m During transactional work

ThecCurrent.rol | back_onl y method can be used to ensure that the only
possible outcomeisto roll back the current transaction.
Current.roll back_only() can beinvoked from any CORBA object method.

m After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to
vote whether the transaction should commit or roll back after transactional work
is completed. These objects are notified of the completion of transactional work
prior to the start of the two-phase commit a gorithm when the TP Framework
invokestheir deact i vat e_obj ect method.

Note that this behavior does not apply to objects with pr ocess or net hod
activation policies. If the CORBA object wantsto roll back the transaction, it
cancal Current::roll back_only. If it wantsto vote to commit the
transaction, it does not make that call. Note, however, that a vote to commit does
not guarantee that the transaction is committed, since other objects may
subsequently vote to roll back the transaction.

Note: Users of SQL cursors must be careful when using an object with the met hod
or process activation policy. A process opens an SQL cursor within a
client-initiated transaction. For typical SQL database products, once the client
commits the transaction, all cursors that were opened within that transaction
are automatically closed; however, the object will not receive any notification
that its cursor has been closed.

Transaction Timeouts

3-20

When atransaction timeout occurs, the transaction is marked so that the only possible
outcome isto roll back the transaction, and the CORBA: : TRANSACTI ON_ROLLEDBACK
standard exceptionisreturned to the client. Any attemptsto send new requestswill aso
fail with the CORBA: : TRANSACTI ON_ROLLEDBACK exception until the transaction has
been aborted.

CORBA Programming Reference

Parallel Objects

Parallel Objects

Support for parallel objects was added to BEA Tuxedo CORBA in release 8.0 asa
performance enhancement. The parallel objects feature enables you to designate all
businessobjectsin aparticul ar application asstatel essobjects. The effect isthat, unlike
stateful business objects, which can only run on one server in asingle domain, stateless
business objects can run on all serversin asingle domain. Thus, the benefits of parallel
objects are as follows:

m Parallel objects can run on multiple serversin the same domain at the same time.
Thus, utilization of all serversto service concurrent multiple requests improves
performance.

m When the BEA Tuxedo system services requeststo parallel business objects, it
always looks for an available server to the local machine first. If all servers on
the local machine are busy processing the requested business object, the BEA
Tuxedo system looks for an available server on other machines in the local
domain. Thus, if there are multiple servers on the local machine, network traffic
is reduced and performance is improved.

For more information on parallel objects, see Scaling, Distributing, and Tuning
CORBA Applications.

To implement parallel objects, the concurrency policy option has been added to the
ICFfile. To select parallel objectsfor a particular application, you set the concurrency
policy option to user-controlled. When you select user-controlled concurrency, the
business object are not registered with the Active Object Map (AOM) and, therefore,
are stateless and can be active on more than one server at atime. Thus, these objects
arereferred to as parallel objects.

If user-controlled concurrency is selected, the servant implementation must comply
with one of the following statements:

m The servant implementation must have no requirements for concurrent access to
ashared resource

m Or the servant implementation must utilize some other tool (for example, a
database and locking) to ensure the correct behavior during concurrent access to
resources.

CORBA Programming Reference 3-21

3

TP Framework

In release 8.0 of the BEA Tuxedo software, the Implementation Configuration File
(ICF) was modified to support user-controlled concurrency. In Listing 3-1, the
changes to add this support are highlighted in bold type. For a description of the ICF
syntax, see”|CF Syntax” on page 2-2.

Listing 3-1 |CF Syntax

[#pragma activation_policy nethod|transaction|process]
[#pragma transaction_policy never|ignore|optional|al ways]
[#pragma concurrency_policy user_control |l ed| system control | ed]
[Modul e nodul e-nane {]

i npl enentation [inpl enentation-nane]

[}:]

3-22

i npl enent s (nodul e-name: : i nterface-nane);
[activation_policy (method|transaction|process);]
[transaction_policy (never]|ignore|optional|always);]

[concurrency_policy (user_controlled|systemcontrolled);]

User-controlled concurrency can be used with factory-based routing, all activation
policies, and all transaction policies. The interaction with these featuresis as follows:

m Factory-based routing

If the user specifies factory-based routing when creating the object, then the
object will route to a server in that group. The object key contains the group
selected during factory-based routing, but the client routing code will recognize
that the interface has user-controlled concurrency and specify the desired group.
Thisis accomplished using normal BEA Tuxedo routing.

Activation policy

The TP Framework handles active user-controlled concurrency objectsin the
same manner as system-controlled concurrency objects. The TP Framework
stores information about objectsin the local AOM, and callsthe

activate_obj ect anddeacti vat e_obj ect methods at the appropriate times.
However, the object will not have an entry in the AOM and the TP Framework
will not call any AOM routines. For example, on shutdown, since an active
object will not have an AOM handle, callsto remove the entry from the AOM
will not be invoked.

CORBA Programming Reference

TP Framework API

m Transaction policy

The TP Framework handles active user-controlled concurrency objectsin the
same manner as system-controlled concurrency objects. The TP Framework is
called back for transaction events and the TP Framework stores information
about transactional user-controlled objects in the local AOM. The main
differences when using paralel objectsin transactions as opposed to stateful
objects are that the AOM is not used for GTRID information and the AOM
routines are not called to update or retrieve transactiona information.

Note: Thereisone restriction with user-controlled concurrency.

TP: :create_active_object _reference throwsa

Tobj S:: 111 egal Oper ati on exception if it is passed an interface with
user-controlled concurrency set. Since the AOM is not used when
user-controlled concurrency is set, thereis no way for the TP Framework to
connect an active object to this server.

TP Framework API

This section describes the TP Framework API. Additional information about how to
use this API can be found in Creating CORBA Server Applications.

The TP Framework comprises the following components:

The Ser ver C++ class, which has virtual methods for application-specific server
initialization and termination logic

The Ser ver Base C++ class, which has virtua methods for multithreaded server
applications.

The Tobj _Ser vant Base C++ class, which has virtual methods for object state
management

The TP C++ class, which provides methods to:
e Create object references for CORBA objects
e Register (and unregister) factories with the FactoryFinder object

e [nitiate user-controlled preactivation and deactivation of objects

CORBA Programming Reference 3-23

3 TP Framework

Initiate user-controlled deactivation of the CORBA object currently being
invoked

e Obtain an object reference to the CORBA object currently being invoked
e Open and close XA resource managers
e | og messagesto auser log (ULGG) file

e Obtain object references to the ORB and to Bootstrap objects (if not using
the CORBA Interoperable Naming Service (INS))

m Header filesfor these classes

m Librariesthat are used by server applications

Thevisible part of the TP Framework consists of two categories of operations:

m Service methods that can be called by user code. These are in the TP interface.

m Callback methods that are written by the user and that are invoked by the TP
Framework. This includes methods in the Tobj _Ser vant Base and Ser ver
classes. These operations are intended to be called by TP Framework code only.
The application code should never call the methods of these classes. If it does,
unpredictable results may occur.

Server Interface

The Server interface provides callback methods that can be used for
application-specific server initialization and termination logic. This interface also
provides a callback method that is used to create servants when servants are required
for object activation.

The Server interface has the following characteristics:

m The Server class inherits from the ServerBase class.

m TheServer classisaC++ native class.

m TheServer. hfile contains the declarations and definitions for the Server class.

For a description of the Server interface methods, see “ ServerBase I nterface” on page
3-26.

3-24 CORBA Programming Reference

TP Framework API

C++ Declarations

For the C++ mappings, see" ServerBase Interface” on page 3-26.

CORBA Programming Reference 3-25

3 TP Framework

ServerBase Interface

The serverBase interface alows you to take full advantage of multithreading
capabilities. Y ou can create your own Ser ver classes that inherit from the
Ser ver Base class. This provides you with the following:

m Thecreate_servant_with_i d() method to support implementations requiring
knowledge of the target object during the creation of a servant

m Support for user-supplied thread initialization and release handlers

TheSer ver Base classprovidesthe same operationsthat wereavailablein the Ser ver
classin earlier releases. The Server class inherits from the ServerBase class.

These methods can be used with single-threaded and multithreaded applications:
e Server::create_servant()
e Server::initialize()
e Server::rel ease()
e ServerBase::create_servant_with_id()
These methods can be used with multithreaded server applications only:
e ServerBase:: thread_initialize()

e ServerBase::thread rel ease()

Note: Programmers must provide definitions of the Server class methods. The
ServerBase class methods have default implementations.

C++ Declarations (in Server.h)

The C++ mapping is as follows:

cl ass OBBEXPDLLUSER Server Base {
public:

virtual CORBA: : Bool ean
initialize(int argc, char** argv) = O;

virtual void
rel ease() = 0;

virtual Tobj _Servant
create_servant(const char* interfaceNane) = O;

3-26 CORBA Programming Reference

TP Framework API

}s

/1 Default |nplenentations Supplied
virtual Tobj_Servant
create_servant _wth_id(const char* interfaceNang,
const char* stroid);

virtual CORBA:: Bool ean
thread_initialize(int argc, char** argv);

virtual void
thread_rel ease();

class Server : public ServerBase {

public:

CORBA: : Bool ean initialize(int argc, char** argv);
voi d rel ease();
Tobj _Servant create_servant(const char* interfaceNane)

CORBA Programming Reference 3-27

3

TP Framework

Server::create_servant()

Synopsis

C++ Binding

3-28

Argument

Exception

Creates a servant to instantiate a C++ object.

class Server {

public:

Tobj _Servant create_servant(const char* interfaceNane);

}s

i nterfaceNane

Specifiesacharacter string that containsthefully qualified interface namefor
the object. Thiswill be the same interface name that was supplied when the
object reference was created (TP: : cr eat e_obj ect _r ef erence() or

TP:: create_active_obj ect _reference())fortheobject reference used
for thisinvocation. This name can be used to determine which servant needs
to be constructed.

If an exception isthrownin Server: : cr eat e_ser vant () , the TP Framework
catches the exception. Activation fails. A CORBA: : OBJECT_NOT_EXI ST() exception

israised

back to the client. In addition, an error message is written to the user log

(uLog) file, asfollows, for each exception type:

Tobj S: :

Tobj S: :

CORBA: :

Cr eat eSer vant Fai | ed

"TPFW CAT: 23: ERROR: Activating object - application raised
Tobj S:: CreateServant Fai | ed. Reason = reason. Interface =
interfaceName, A D = oi d"

Wherer eason is auser-supplied reason, and i nt er f aceNane and oi d are
the interface ID and object 1D, respectively, of the invoked CORBA object.

Qut Of Menory

"TPFW CAT: 22: ERROR: Activating object - application raised
Tobj S:: Qut Of Menory. Reason = reason. Interface =
interfaceNane, O D = oi d"

Wherer eason is auser-supplied reason, and i nt er f aceNane and oi d are
the interface ID and object 1D, respectively, of the invoked CORBA object.

Excepti on

"TPFW CAT: 28: ERROR Acti vating object - CORBA Excepti on not
handl ed by application. Exception |ID = exceptionlD.
Interface = interfaceName, O D = oid"

Where excepti onl Distheinterface ID of the exception, and
i nt erf aceName and oi d aretheinterface ID and object ID, respectively, of
the invoked CORBA object.

CORBA Programming Reference

TP Framework API

Description

Return Value

O her Exception
"TPFW CAT: 29: ERROR: Activating object - Unknown Exception
not handl ed by application. Exception |ID = exceptionlD.
Interface = interfaceNane, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er f aceNane and oi d aretheinterface ID and object ID, respectively, of
the invoked CORBA object.

Thecr eat e_ser vant methodisinvoked by the TP Framework when arequest arrives
at the server and there is no available servant to satisfy the request. The TP Framework
callsthecr eat e_servant method with the interface name for the servant to be
created. The server application instantiates an appropriate C++ object and returns a
pointer to it. Typically, the method contains a switch statement on the interface name
and creates a new object, depending on the interface name.

Caution: The server application must not depend on this method being invoked for
every activation of a CORBA object. The server application must not do
any handling of CORBA object state in the constructors or destructors of
any servant classesfor CORBA objects. Thisisbecausethe TP Framework
may possibly reuse servants on activation and may possibly not destroy
servants on deactivation.

Tobj _Servant
The pointer to the newly created servant (instance) for the specified interface.
A NULL valueshould bereturnedif cr eat e_ser vant () isinvoked with an
interface name that it does not recognize or if the servant cannot be created
for some reason.
If thecreat e_servant method returnsaNULL pointer, activation fails. A
CORBA: : OBJECT_NOT_EXI ST() exceptionisraised back to the client. Also,
the following message iswritten to the user log (ULOG):

"TPFW CAT: 23: ERROR Activating object - application raised
Tobj S:: Creat eServant Fai | ed. Reason = Application’s
Server::create_servant returned NULL. Interface =
interfaceNanme, O D = oid"

Wherei nt er f aceNane isthe interface ID of theinvoked interface and oi d
is the corresponding object ID.

Note: The restriction on the length of the Qbj ect I d has been removed in this
release.

CORBA Programming Reference 3-29

3 TP Framework

ServerBase::create_servant_with_id()

Synopsis

C++ Binding

Arguments

Description

Creates a servant for this target object. This method supports the development of
single-headed and multithreaded server applications.

Tobj _Servant create_servant_with id (const char* interfaceNane,
const char* stroid);

i nterfaceName
Specifies a character string containing the fully qualified interface name for
the object. This must be the same interface name that was supplied when the
object reference was created.

stroid
Specifies an object ID in string format. The object ID uniquely identifies the
object associated with the request to be processed. Thisisthe same object ID
that was specified when the object reference was created.

The TP Framework invokesthe cr eat e_ser vant _wi t h_i d method when a request
arrives at the server and there no servant is available to satisfy the request. The TP
Framework passesin the interface name for the servant to be created and the object ID
associated with the object with which the servant will be associated. The server
application instantiates an appropriate C++ object and returnsapointer to it. Typicaly,
the method containsaswi t ch statement on the interface name and creates a new
object, depending on the interface name. Providing the object ID alows a servant
implementation to make decisions during the creation of the servant instance that
reguire knowledge of the target object. Reentrancy support is one example of how a
servant implementation might employ knowledge of the target object.

The Ser ver Base class provides a default implementation of
create_servant_with_i d which callsthe standard cr eat e_ser vant method
passing the interface name. This default implementation ignores the target object |D
parameter.

Caution: The server application must not depend on the invocation of this method
for every activation of a CORBA object. The server application must not
handle the CORBA object state in the constructors or destructors of any
servant classes for CORBA objects. Thisis because the TP Framework
might reuse servants on activation and might not destroy servants on
deactivation.

3-30 CORBA Programming Reference

TP Framework API

Return Value Tobj _Servant
A pointer to the newly created servant (instance) for the specified interface.
Returns NULL if either of these conditionsis true:

m Interface name not recognized

m Unableto create a servant

Example Tobj _Servant sinple_per_request_server::create_servant_wi th_id(
const char* intf_repos_id, const char* stroid)

{
TP: :userlog("create_servant_with_id called in thread %d",
(unsi gned | ong) SI MPTHR_GETCURRENTTHREADI D) ;
/1 Performany necessary initialization based on
/1 this object ID
return create_servant(intf_repos_id);
}

CORBA Programming Reference 3-31

3

TP Framework

Server:initialize()

C

3-32

Synopsis

++ Binding

Arguments

Exceptions

Allows the application to perform application-specific initialization procedures, such
aslogging into a database, creating and registering well-known object factories,
initializing global variables, and so forth.

class Server {
public:

CORBA: : Bool ean initialize(int argc, char** argv);
I

The ar gc and ar gv arguments are passed from the command line. The ar gc argument
contains the name of the server. The ar gv argument contains the first command-line
option that is specific to the application, if there are any.

Command-line options are specified in the UBBCONFI Gfile using the CLOPT parameter
in the entry for the server in the SERVERS section. System-recognized options come
first in the CLOPT parameter, followed by a double-hyphen (- -), followed by the
application-specific options. The value of ar gc is one greater than the number of
application-specific options. For details, seeubbconf i g(5) intheFile Formats, Data
Descriptions, MIBs, and System Processes Reference.

If an exceptionisraised in Server::initialize(),the TP Framework catches the
exception. The TP Framework behavior isthe sasme asifini tiali ze() returned
FAL SE (that is, an exception is considered to be afailure). In addition, an error
message is written to the user log (ULOG) file, as follows, for each exception type:

Tobj S::InitializeFail ed
"TPFW CAT: 1. ERROR Exception in
Server::initialize():1DL: beasys.con Tobj S/InitializeFail ed:
1.0. Reason = reason’

Wherer eason isastring supplied by application code. For example:
Throw Tobj S::InitializeFailed(
"Couldn’t register factory");

CORBA: : Excepti on
"TPFW CAT: 1. ERROR Exception in Server::initialize():
exception. Reason = unknown"

Where excepti on isthe interface ID of the CORBA exception that was
raised.

CORBA Programming Reference

TP Framework API

Description

O her Exceptions
TPFW CAT: 1: ERROR: Exception in Server::initialize():
unknown exception. Reason = unknown"

Theinitial i ze callback method, which isinvoked asthe last step in server
initialization, allows the application to perform application-specific initialization.

Typically, a server application does the following tasksin Server: :initial i ze:

m Creates references for CORBA object factories implemented in the server
application and registers them with the FactoryFinder using the
TP: :register_factory() operation.

m Initializes global variables, if any are used.
m Opens XA resource managers if any are used by the server application.

It is the responsibility of the server application to open any required XA resource
managers. Thisis done by invoking either of the following methods:

m TP::open_xa_rm)
Thisisthe preferred technique for server applications, since it can be done on a
static function, without the need to obtain an object reference.

Note: You must usethe TP: : open_xa_r n() method if you use the INS bootstrap
mechanism to obtain initial object references.

B Tobj::TransactionCurrent::open_xa_rm)
A reference to the TransactionCurrent object can be obtained from the Bootstrap
object. For an explanation of how to obtain a reference to the Bootstrap object,
see the section “ TP::bootstrap()” on page 3-55. For more information about the
TransactionCurrent object, see Chapter 4, “CORBA Bootstrapping Programming
Reference,” and Using CORBA Transactions.

m Transactions may be started in thei ni ti al i ze method after invoking the
Tobj : : Transacti onCurrent::open_xa_rm) or TP: : open_xa_r mmethod.
However, any transactions that are started ini ni ti al i ze() must be terminated
by the server application beforei ni ti al i ze() returns. If the transactions are
till active when control is returned, the server application failsto boot, and it
exits gracefully. This happens because the server application has no logical way
of either committing or rolling back the transaction after
Server::initialize() returns. Thisconditionisan error.

CORBA Programming Reference 3-33

3 TP Framework

Return Value Boolean TRUE or FALSE. TRUE indicates success. FALSE indicates failure. If an error
occursininitialize(), theapplication code should return FALSE. The application
code should not call the system call exit (). Calling exit () doesnot givethe TP
Framework a chance to release resources allocated during startup and may cause
unpredictable results.

If the return value is FALSE:
m Server::rel ease() isnotinvoked.

m Any transactions that are started in thei ni ti al i ze() method and are not
terminated will eventually time out; they are not automatically rolled back.

3-34 CORBA Programming Reference

TP Framework API

ServerBase::thread_initialize()

Synopsis

C++ Binding

Arguments

Description

Return Value

Example

Performsany necessary application-specificinitialization for athread created using the
BEA Tuxedo software. This method supports the development of a multithreaded
server application.

CORBA: : Bool ean thread_initialize(int argc, char** argv)

argc
The number of arguments provided to the application. Initially, thiscount is
passed to the nai n function.

ar gv
The arguments provided to the application. Initially, these arguments are
passed to the nai n function.

In managing the thread pool, the BEA Tuxedo software creates and releases threads
using the operating system thread library services. Depending on application
requirements, these threads might need to beinitialized before they are used to process
requests.

Thethread_initial i ze callback method isinvoked eachtimeathread iscreated, to
initialize the thread. Note that the BEA Tuxedo software manages a number of
system-owned threads that are used for dispatching requests; these system-owned
threads are in addition to those threads in the thread pool. Under some circumstances
the servant methods you implement are also executed in these system-owned threads;
for thisreason the BEA Tuxedo softwareinvokesthet hr ead_i ni ti al i ze method to
initialize the system-owned threads.

The Ser ver Base classprovides adefault implementation of thet hread_i ni ti al i ze
method that opens the XA resource manager in the initialized thread.

CORBA: : Bool ean
Tr ue if theinitialization of the thread was successful.

CORBA: : Bool ean si npl e_per_request_server::thread_initialize(
int argc, char** argv)

{
TP::userlog("thread_initialize called in thread %d",
(unsi gned | ong) SI MPTHR_GETCURRENTTHREADI D) ;
return CORBA _TRUE;
}

CORBA Programming Reference 3-35

3 TP Framework

Server::release()

Synopsis

C++ Binding

Arguments

Exceptions

Description

Allowsthe application to perform any application-specific cleanup, such aslogging of f
a database, unregistering well-known factories, or deallocating resources.

typedef Tobj Servant Base* Tobj Servant;

class Server {
public:
voi d rel ease();

b
None.

If anexceptionisraisedinr el ease() , the TP Framework catchesthe exception. Each
exception causes an error message to be written to the user log (ULQOG) file, asfollows:

Tobj S: : Rel easeFail ed
"TPFW CAT: 2: WARN:. Exception in Server::rel ease():
| DL: beasys. conf Tobj S/ Rel easeFai | ed: 1. 0. Reason = reason"

Wherer eason isastring supplied by application code. For example:
Thr ow Tobj S: : Rel easeFai | ed(
"Coul dn’t unregister factory");
CORBA: : Excepti on
"TPFW CAT: 2: WARN. Exception in Server::release():
exception. Reason = unknown"

Where excepti on isthe interface ID of the CORBA exception that was
raised.

Other Exceptions
"TPFW CAT: 2: WARN:. Exception in Server::release(): unknown
exception. Reason = unknown"

In all cases, the server continues to exit.

The rel ease callback method, which isinvoked asthefirst step in server shutdown,
allowsthe server application to perform any application-specific cleanup. The user
must override the virtual function definition.

Typical tasks performed by the application in this method are as follows:
m Close XA resource managers.

m Unregister CORBA object factories that were registered with the FactoryFinder
inServer::initialize().

3-36 CORBA Programming Reference

TP Framework API

Return Value

m Deallocate any server resources not yet released.

This method is normally called in response to at mshut down command from the
administrator or operator.

The TP Framework provides a default implementation of Ser ver: : rel ease() . The
default implementation closes XA resource managers for the server. The
implementation doesthisby issuing at x_cl ose() invocation, which usesthe default
CLOSEI NFO configured for the server’s group in the UBBCONFI Gfile.

Itisthe responsibility of the application to close any open XA resource managers. This
is done by issuing either of the following calls:

m TP::close xa rm()

Note: Youmust usetheTP: : cl ose_xa_r m() method if you usethe INS bootstrap
mechanism to obtain initial object references.

m Tobj::TransactionCurrent::close xa_rn().A referencetothe
TransactionCurrent object can be obtained from the Bootstrap object. For an
explanation of how to obtain areference to the Bootstrap object, see the section
“TP::bootstrap()” on page 3-55. For more information about the
TransactionCurrent object, see Chapter 4, “CORBA Bootstrapping Programming
Reference,” and Using CORBA Transactions.

Note: Once a server receives arequest from thet nshut down(1) command to shut
down, it can no longer receive requests from other remote objects. This may
require serversto be shut down in a specific order. For example, if the
Server: :rel ease() method in Server 1 needs to access amethod of an
object that resides in Server 2, Server 2 should be shut down after Sever 1is
shut down. In particular, the TP: : unr egi st er _f act or y() method accesses
the FactoryFinder Registrar object that resides in a separate server. The
TP: : unregi st er _factory() method istypically invoked from the
rel ease() method; therefore, the FactoryFinder server should be shut down
after all serversthat call TP: : unregi ster_factory() inther
Server: :rel ease() method.

None.

CORBA Programming Reference 3-37

3

TP Framework

ServerBase::thread_release()

Synopsis

C++ Binding

Arguments

Description

Return Value

Example

Performs application-specific cleanup when a thread that was created by the BEA
Tuxedo softwareisrel eased. This method supportsthe development of amultithreaded
server application.

void thread_rel ease()
None.

Thet hread_r el ease callback method is invoked each time a thread is released.
Implement thet hr ead_r el ease method as necessary to perform application-specific
resource cleanup.

The Ser ver Base class provides a default implementation of thet hr ead_r el ease
method that closes the XA resource manager in the rel eased thread.

None.

voi d sinple_per_request _server::thread rel ease()

{

TP: :userlog("thread rel ease called in thread % d",
(unsi gned | ong) SI MPTHR_GETCURRENTTHREADI D) ;

Tobj_ServantBase Interface

3-38

The Tobj _Ser vant Base interface inherits from the

Por t abl eSer ver : : Ref Count Ser vant Base classand defines operationsthat allow a
CORBA object to assist in the management of its state in a thread-safe manner. Every
implementation skeleton generated by the IDL compiler automatically inherits from
the Tobj _Servant Base class. The Tobj _Ser vant Base class contains two virtual
methods, act i vate_obj ect () and deacti vat e_obj ect (), that may be optionally
implemented by the programmer.

Whenever arequest comesin for aninactive CORBA object, the object isactivated and
theacti vat e_obj ect () method isinvoked on the servant. When the CORBA object
isdeactivated, the deact i vat e_obj ect () method isinvoked on the servant. The
timing of deactivation is driven by the implementation’s activation policy. When the
deacti vat e_obj ect () method isinvoked, the TP Framework passesin areason
code to indicate why the call was made.

CORBA Programming Reference

TP Framework API

These methods support the development of a multithreaded server application:

B Tobj Servant Base:: _add_ref ()
B Tobj ServantBase:: is_reentrant()

B Tobj Servant Base:: renove_ref()

Note: Tobj Servant Base: : acti vate_obj ect() and

Tobj _Servant Base: : deacti vat e_obj ect () arethe only methodsthat the
TP Framework guarantees will be invoked for CORBA object activation and
deactivation. The servant class constructor and destructor may or may not be

invoked at activation or deactivation time (through the

Server: : create_servant cal for C++). Therefore, the server application

code must not do any state handling for CORBA abjects in either the

constructor or destructor of the servant class.

Note: The programmer does not need to use a cast or reference to

Tobj _Ser vant Base directly. The Tobj _Ser vant Base methods show up as
part of the skeleton and, therefore, in the implementation class for a servant.

The programmer may provide definitions for the act i vat e_obj ect and

deact i vat e_obj ect methods, but the programmer should never make direct

invocations on those methods; only the TP Framework should call those

methods.

C++ Declaration (in Tobj_ServantBase.h)

The C++ mapping for the Tobj _ser vant Base interfaceis as follows:

cl ass Tobj _Servant Base : public Portabl eServer: : Ref Count Ser vant Base {
public:

}

Tobj _Servant Base& operat or=(const Tobj _Servant Baseg&) ;
Tobj _Servant Base() {}
Tobj _Servant Base(const Tobj _Servant Base& s)

Port abl eSer ver : : Ref Count Servant Base(s) {}

virtual void activate_object(const char *) {}

virtual void deactivate_object(const char*,
Tobj S: : Deacti vat eReasonVal ue) {}

virtual CORBA::Boolean _is reentrant() { return CORBA FALSE; }

typedef Tobj Servant Base * Tobj_Servant;

CORBA Programming Reference

3-39

3 TP Framework

Tobj_ServantBase:: activate_object()

Synopsis

C++ Binding

Argument

Description

Return Value

Associates an object ID with aservant. This method gives the application an
opportunity to restore the object’ s state when the object is activated. The state may be
restored from shared memory, from an ordinary flat file, or from a database file.

class Tobj _Servant Base : public Portabl eServer:: Servant Base {
public:
virtual void activate_ object(const char * stroid) {}

}s

stroid
Specifiesthe object ID in string format. The object ID uniquely identifiesthis
instance of the class. This is the same object ID that was specified when the
object reference was created (using TP: cr eat e_obj ect _ref erence()) or
intheTP: : create_active_obj ect _reference() fortheobject reference
used for thisinvocation.

Note: Therestriction on the length of the object ID has been removed in this
release.

Object activation is triggered by a client invoking a method on an inactive CORBA
object. This causes the Portable Object Adapter (POA) to assign a servant to the
CORBA object. Theact i vat e_obj ect () method isinvoked before the method
invoked by theclientisinvoked. If act i vat e_obj ect () returns successfully, thatis,
without raising an exception, the requested method is executed on the servant.

Theactivate_obj ect () anddeactivate_obj ect () methods and the method
invoked by the client can be used by the programmer to manage object state. The
particular way these methods are used to manage object state may vary according to
the needs of the application. For adiscussion of how these methods might be used, see
Creating CORBA Server Applications.

If the object is currently infected with a global transaction, act i vat e_obj ect ()
executes within the scope of that same global transaction.

It isthe responsibility of the programmer of the object to check that the stored state of
the object is consistent. In other words, it is up to the application code to save a
persistent flag that indicates whether or not deact i vat e_obj ect () successfully
saved the state of the object. That flag should be checked in acti vat e_obj ect ().

None.

3-40 CORBA Programming Reference

TP Framework API

Exceptions

If an error occurs while executing act i vat e_obj ect (), the application code should
raise either a CORBA standard exception or a Tobj S: : Act i vat e(bj ect Fai | ed
exception. When an exception is raised, the TP Framework catches the exception, and
the following events occur:

m The activation fails.
m The method invoked by the client is not executed.

m If activate_object () isexecuting within atransaction and the client initiated
the transaction, the transaction is not rolled back.

m A CORBA : OBJECT_NOT_EXI ST exception is raised back to the client.

Note: For each CORBA interface, set AUTOTRANtO Yes if you want atransaction to
start automatically when an operation invocation is received. Setting
AUTOTRANtO Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, see Using CORBA Transactions.

m Based on the exception is raised, a message is written to the user log (ULQOG) file,
asfollows:

Tobj S:: Activat ethj ect Fai | ed
"TPFW CAT: 24: ERROR Activating object - application raised
Tobj S:: Activate(oj ect Fai |l ed. Reason = reason. Interface =
interfaceNane, O D = oid"

Wherer eason isa user-supplied reason, and i nt er f aceName and oi d are
the interface ID and object ID, respectively, of theinvoked CORBA object.

Tobj S:: Qut O Menory
"TPFW CAT: 22: ERROR Activating object - application raised
Tobj S:: Qut O Menpbry. Reason = reason. Interface =
interfaceNane, O D = oid"

Wherer eason isa user-supplied reason, and i nt er f aceName and oi d are
the interface ID and object ID, respectively, of theinvoked CORBA object.

CORBA: : Excepti on
"TPFW CAT: 25: ERROR: Activating obj ect - CORBA Exception not
handl ed by application. Exception ID = exceptionlD
Interface = interfaceNane, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er faceNane and oi d aretheinterface ID and object ID, respectively, of
the invoked CORBA object.

CORBA Programming Reference 3-41

3 TP Framework

Ot her exception
"TPFW CAT: 26: ERROR: Activating object - Unknown Exception
not handl ed by application. Exception ID = exceptionlD.
Interface = interfaceName, O D = oid"

Where excepti onl Distheinterface ID of the exception, and
i nt erf aceName and oi d aretheinterface ID and object ID, respectively, of
the invoked CORBA object.

3-42 CORBA Programming Reference

TP Framework API

Tobj_ServantBase::_add_ref()

Synopsis

C++ Binding
Arguments

Description

Return Value

Example

Adds areference to a servant. This method supports the development of a
multithreaded server application.

Note: Inapplicationswritten using BEA Tuxedo release 8.0 or later, use this method
instead of the TP: : appl i cati on_responsi bi | i ty() method.

void _add ref()
None.

Invoke this method when a reference to a servant is needed. Invoking this method
causes the reference count for the servant to increment by one.

None.
nyServant * servant = new intf _i();

if(servant != NULL)
servant->_add_ref();

CORBA Programming Reference 3-43

3 TP Framework

Tobj_ServantBase::deactivate_object()

Synopsis

C++ Binding

Arguments

Removes the association of an object ID with its servant. This method gives the
application an opportunity to save all or part of the object’ s state before the object is
deactivated. The state may be saved in shared memory, in an ordinary flat file, orin a
database file.

class Tobj _Servant Base : public Portabl eServer:: Servant Base {

public:
virtual void deactivate_object(const char* stroid,
Tobj S: : Deact i vat eReasonVal ue reason) {}

b

stroid
Specifiesthe object ID in string format. The object ID uniquely identifiesthis
instance of the class.

Note: Therestriction on the length of the object ID has been removed in this
release.

reason
Indicates the event that caused this method to be invoked. Ther eason code

can be one of the following:

DR_METHOD_END
Indicates that the object is being deactivated after the completion of
amethod. It is used if the object’ s deactivation policy is:

- method

- transaction (only if thereisno transaction in effect)
- process (if TP: : deact i vat eEnabl e() called)

DR_SERVER_SHUTDOVW
Indicates that the object is being deactivated because the server is

being shut down in an orderly fashion. It is used if the object’s
deactivation policy is:

- transaction (only if transaction is active)

- process

Note that when a server is shut down in an orderly fashion, all
transactions that the server isinvolved in are marked for rollback.

DR_TRANS_ABORTED
Thisreason codeis used only for objects that have the
t ransact i on activation policy. It can occur when thetransactionis

3-44 CORBA Programming Reference

TP Framework API

Description

started by either the client or automatically by the system. When the
deact i vat e_obj ect () method isinvoked with this reason code,
the transaction is marked for rollback only.

DR_TRANS_COWM TTI NG
Thisr eason code isused only for objects that have the
transacti on activation policy. It can occur when the transactionis
started by either the client or the TP Framework. It indicates that a
Current . conmit () operation was invoked for the transaction in
which the object isinvolved. Thedeacti vat e_obj ect () method
isinvoked just before the transaction manager’ s two-phase commit
algorithm begins; that is, before pr epar e is sent to the resource
managers.

The CORBA object is allowed to vote on the outcome of the
transaction when the deact i vat e_obj ect () method isinvoked
with the DR_TRANS_COVM TTI NGr eason code. By invoking
CQurrent. rol | back_onl y(),themethod can force the transaction
to be rolled back; otherwise, the two-phase commit algorithm
continues. Thetransaction isnot necessarily committed just because
theCurrent.rol | back_onl y() isnotinvokedinthismethod. Any
other CORBA abject or resource manager involved in the
transaction could also vote to roll back the transaction.

DR_EXPLI C T_DEACTI VATE
Indicatesthat the object isbeing deactivated because the application
executed aTP: : deact i vat eEnabl e(-, -, -) on thisobject. This
can happen only for objectsthat havethepr ocess activation policy.

Object deactivation isinitiated either by the system or by the application, depending
on the activation policy of the implementation for the CORBA object. The
deactivate_obj ect () method isinvoked before the CORBA object is deactivated.
For details of these policies and their use, seethe section “ICF Syntax” on page 2-2.

Deactivation may occur after an execution of a method invoked by aclient if the

activation policy for the CORBA object implementationisnet hod, or asaresult of the
end of transactional work if the activation policy ist r ansacti on. It may also occur
as the result of server shutdown if the activation policy istr ansacti on or process.

In addition, the BEA Tuxedo software supports the use of user-controlled deactivation
of CORBA objects having an activation policy of process or met hod viathe use of
the TP: : deact i vat eEnabl e() and TP: : deact i vat eEnabl e(-, -, -) methods.
TP: : deact i vat eEnabl e can be called inside a method of an object to cause the

CORBA Programming Reference 3-45

3

TP Framework

3-46

Restriction

object to be deactivated at the end of the method. If TP: : deact i vat eEnabl e iscalled
in an object with thet r ansact i on activation policy, an exception is raised

(Tobj S: : 111 egal Oper at i on) and the TP Framework takes no action.

TP: : deact i vat eEnabl e(-, -, -) can be called to deactivate any object that has a
process activation policy. For more information, see the section
“TP::deactivateEnable()” on page 3-64.

Note: Thedeacti vat e_obj ect method will be called at server shutdown time for
every object remaining in the Active Object Map, whether it was entered there
implicitly by the TP Framework (the activation-on-demand technique:

TP: : creat e_servant and the servant'sact i vat e_obj ect method) or
explicitly by the user with TP: : creat e_act i ve_obj ect _r ef erence.

Theact i vate_obj ect () anddeact i vat e_obj ect () methodsand explicit methods
invoked by the client can be used by the programmer to manage object state. The
manner in which these methods are used to manage object state may vary according to
the needs of the application. For adiscussion of how these methods might be used, see
Creating CORBA Server Applications.

The CORBA object witht r ansact i on activation policy getsto vote on the outcome
of the transaction when the deact i vat e_obj ect () method isinvoked with the
DR_TRANS_COWM TTI NG reason code. By calling Current . r ol | back_onl y() the
method can force the transaction to be rolled back; otherwise, the two-phase commit
algorithm continues. The transaction will not necessarily be committed just because
Current.rol |l back_onl y() isnot caled in this method. Any other CORBA object
or resource manager involved in the transaction could also vote to roll back the
transaction.

Note that if the object isinvolved in a transaction when this method is invoked, there
arerestrictions on what type of processing can be done based on the reason the object
isinvoked. If the object wasinvolved in a transaction, the activation policy is
transact i on and ther eason code for thecall is:

DR_TRANS_ABORTED
No invocations on any CORBA objects are allowed in the method. No
tpcal I () isallowed. Transactions cannot be suspended or begun.

DR_TRANS_COWM TTI NG
No invocations on any CORBA objects are allowed in the method. No
tpcal I () isallowed. Transactions cannot be suspended or begun.

CORBA Programming Reference

TP Framework API

Return Value

The reason for these restrictionsis that the deactivation of objectswith activation
policy transaction is controlled by a call to the TP Framework from the transaction
manager for thetransaction. Whenthecall withr eason codeDR_TRANS COVM TTI NG
is made, the transaction manager is executing phase 1 (prepare) of the two-phase
commit. At this stage, it is not possible to issue a call to suspend atransaction nor to
initiate a new transaction. Since acall to a CORBA object that wasin another process
would require that process to join the transaction, and the transaction manager is

already executing the prepare phase, this would cause an errorl. Sinceacall to a
CORBA object that had no transactional properties would require that the current
transaction be suspended, this would also cause an error. The sameistrue of a
tpcall ().

Similarly, when the invocation with r eason code DR_TRANS_ABORTED is made, the
transaction manager is already aborting. While the transaction manager is aborting, it
is not possible to either suspend a transaction or initiate a new transaction. The same
restrictions apply asfor DR_TRANS_COVM TTI NG.

None.

1. In theory, this would mean that an invocation on a transactional CORBA object in
the same process would be valid since it would not require a new processto be regis-
tered with the transaction manager. However, it is not possible for the programmer to
guarantee that an invocation on a CORBA object will occur in-proc, therefore, this
practice is discouraged.

CORBA Programming Reference 3-47

3 TP Framework

Exceptions If the CORBA object method that isinvoked by the client raises an exception, that
exception is caught by the TP Framework and iseventualy returned to the client. This
istrue even if deacti vat e_obj ect () isinvoked and raises an exception.

The client will never be notified about exceptions that are raised in

deacti vat e_obj ect () . It isthe responsibility of the application code to check that
the stored state of the CORBA object is consistent. For example, the application code
could save a persistent flag that indicates whether or not deact i vat e_obj ect ()
successfully saved the state. That flag can then be checked in acti vat e_obj ect () .

If an error occurs while executing deact i vat e_obj ect () , the application code
should raise either a CORBA standard exception or aDeact i vat e(bj ect Fai | ed
exception. If deacti vat e_obj ect () wasinvoked by the TP Framework, the TP
Framework catches the exception and the following events occur:

m Theobject is deactivated.
m |f theclient initiated atransaction, the transaction is not rolled back.

m Theclient is not notified of the exception that israised in
deacti vat e_obj ect ().

m Based on which exception israised, amessage is logged to the user log (ULOG)
file, asfollows:

Tobj S: : Deacti vat eObj ect Fai | ed
"TPFW CAT: 27: ERROR: De-activating object - application
rai sed Tobj S:: Deactivat eObject Fail ed. Reason = reason.
Interface = interfaceName, O D = oid"

Wherer eason is auser-supplied reason, and i nt er f aceNane and oi d are
the interface ID and object 1D, respectively, of the invoked CORBA object.

CORBA: : Excepti on
"TPFW CAT: 28: ERROR: De-activating object - CORBA Exception
not handl ed by application. Exception ID = exceptionlD.
Interface = interfaceName, O D = oid"

Where excepti onl Distheinterface ID of the exception, and
i nt erf aceName and oi d aretheinterface ID and object ID, respectively, of
the invoked CORBA object.

Ot her exception
"TPFW CAT: 29: ERROR: De-activating object - Unknown
Exception not handl ed by application. Exception ID =
exceptionlD. Interface = interfaceName, O D = oi d"

3-48 CORBA Programming Reference

TP Framework API

Where except i onl Disthe interface ID of the exception, and
i nt er faceNane and oi d aretheinterface ID and object ID, respectively, of
the invoked CORBA object.

CORBA Programming Reference 3-49

3 TP Framework

Tobj_ServantBase::_is_reentrant()

Synopsis

C++ Binding
Arguments

Description

Return Value

Example

Indicates that the object supports concurrent, reentrant invocations. This method
supports the development of a multithreaded server application.

CORBA: : Bool ean _is_reentrant ()
None.

The BEA Tuxedo server infrastructure calls this method to determine whether the
servant implementation supports a reentrant invocation. To support reentrancy, a
servant must include the necessary code to protect the integrity of its state while
multiple threads interact with the object.

The Tobj _Ser vant Base class provides a default implementation of the
_is_reentrant method that returns FALSE.

CORBA: : Bool ean
Returns TRUE if the servant can support reentrancy.

CORBA: : Bool ean Sinple_i:: is reentrant()
{ TP: :userlog(" _is_reentrant called in thread %d",
(unsi gned | ong) SI MPTHR_GETCURRENTTHREADI D) ;
return CORBA TRUE;

3-50 CORBA Programming Reference

TP Framework API

Tobj_ServantBase::_remove_ref()

Synopsis

C++ Binding
Parameters

Description

Return Value

Example

Releases areference to a servant. This method supports the development of a
multithreaded server application.

Note: Inapplicationswritten using BEA Tuxedo release 8.0 or later, use this method
instead of the C++ “delete” statement that you used previously with the
TP: : application_responsibility() method

void _renove_ref()
None.

Invoke this method when a reference to a servant is no longer needed. Invoking this
method causes the reference count for the servant to be decremented by one. If the
_renove_r ef () method brings the reference count to zero, it also callsthe C++
“delete” statement on itsown t hi s pointer and deletes the servant.

None.

if(servant != NULL)
servant-> renove_ref();

CORBA Programming Reference 3-51

3 TP Framework

TP Interface

Usage Notes

The TP interface supplies a set of service methods that can be invoked by application
code. Thisisthe only interface in the TP Framework that can safely be invoked by
application code. All other interfaces have callback methods that are intended to be
invoked only by system code.

The purpose of thisinterfaceis to provide high-level callsthat application code can
cal, instead of callsto underlying APIs provided by the Portable Object Adapter
(POA), the CORBA Naming Service, and the BEA Tuxedo system. By using these
cals, programmers can learn asimpler APl and are spared the complexity of the
underlying APIs. The TP interface implicitly uses two features of the BEA Tuxedo
software that extend the CORBA APIs:

m Factories and the FactoryFinder object
m Factory-based routing

For information about the FactoryFinder object, see Chapter 5, “ FactoryFinder
Interface.” For more information about factory-based routing, see Setting Up a BEA
Tuxedo Application.

m During server application initialization, the application constructs the object
reference for an application factory. It then invokesther egi st er _fact ory()
method, passing in the factory's object reference together with afactory i d field.
On server release (shutdown), the application usesthe unregi ster _fact ory()
method to unregister the factory.

m TheTPclassisaC++ native class.
m TheTP. h file contains the declarations and definitions for the TP class.

C++ Declarations (in TP. h)

3-52 CORBA Programming Reference

TP Framework API

The C++ mapping is as follows:

class TP {
public:
static CORBA:: (bject_ptr create_object _reference(
const char* i nt er f aceNane,
const char* stroid,
CORBA: : NVLi st _ptr criteria);
static CORBA:: (Cbject_ptr create_active_object_reference(
const char* interfaceNane,
const char* stroid,
Tobj _Servant servant);
static CORBA:: (bject_ptr get_object_reference();

static void regi ster_factory(
CORBA: : Qvj ect _ptr factory_or,
const char* factory_id);
static void unr egi ster_factory(
CORBA: : nj ect _ptr factory_or,
const char* factory_id);
static void deact i vat eEnabl e()
static void deact i vat eEnabl e(

const char* interfaceNane,
const char* stroid,
Tobj _Servant servant);

static CORBA:: CRB_ptr orb();

static Tobj _Bootstrap* bootstrap();

static void open_xa_rm();

static void close xa_rm);

static int userlog(char*, ...);

static char* get _obj ect _i d(CORBA: : Obj ect _ptr obj);
static void application_responsibility(

Tobj _Servant servant);

CORBA Programming Reference 3-53

3 TP Framework

TP::application_responsibility()

Synopsis

C++ Binding

Arguments

Exceptions

Description

Return Values

Tellsthe TP Framework that the application is taking responsibility for the servant’s
lifetime.

Note: Do not use this method in applications written using BEA Tuxedo release 8.0
or later; instead, use the Tobj_Ser vant Base: : _add_r ef () method.

static void application_responsibility(Tobj_ Servant servant);

ser vant
A pointer to a servant that is aready known to the TP Framework.

Tobj S: : I nval i dServant
Indicates that the specified servant is NULL.

Thismethod tell sthe TP Framework that the application istaking responsibility for the
servant’s lifetime. As aresult of this call, when the TP Framework has completed
deactivating the object (that is, after invoking the servant’sdeact i vat e_obj ect
method), the TP Framework does nothing more with the object.

Once an application has taken responsibility for a servant, the application must take
care to delete servant when it is no longer needed, the same as for any other C++
instance.

If the servant is not known to the TP Framework (that is, it is not active), this call has
no effect.

None.

3-54 CORBA Programming Reference

TP Framework API

TP::bootstrap()

Synopsis

C++ Binding
Arguments

Return Value

Exceptions

Description

Returns a pointer to a Tobj : : Tobj _Boot st r ap object. The Bootstrap object is used
to accessinitial object references for the FactoryFinder object, the Interface
Repository, the TransactionCurrent, and the SecurityCurrent objects.

static Tobj Bootstrap* TP::bootstrap();
None.

Upon successful completion, boot st rap() returns a pointer to the
Tobj : : Tobj _Boot st r ap object that is created by the TP Framework when the server
application is started.

None.

The TP Framework createsaTobj : : Tobj _Boot st r ap object as part of initialization;
it is not necessary for the application code to create any other
Tobj : : Tobj _Boot st r ap objectsin the server.

Caution: Because the TP Framework ownsthe Tobj : : Tobj _Boot strap object,
server application code must not dispose of the Bootstrap object.

Note: If you are using the CORBA INS bootstrap mechanism and you are not using
the Securi tyCQurrent for security or Tr ansacti onCurr ent for
transactions, you do not need to use the Bootstrap object.

CORBA Programming Reference 3-55

3 TP Framework

TP::close_xa_rm()

Synopsis
C++ Binding
Arguments

Description

Return Values

Closes the X A resource manager to which the invoking processis linked.
static void TP::close xa rm();
None.

Thecl ose_xa_rm() method closes the XA resource manager to which the invoking
processis linked. XA resource managers are provided by database vendors, such as
Oracle and Informix.

Note: Thefunctionality of thiscall isalso provided by
Tobj : : TransactionCurrent::close_xa rm().The
TP: : cl ose_xa_rn() method provides a more convenient way for a server
application to close a resource manager because there is no need to obtain an
object reference to the TransactionCurrent object. A referenceto the
TransactionCurrent object can be obtained from the Bootstrap object. See
“TP::bootstrap()” on page 3-55 for an explanation of how to obtain areference
to the Bootstrap object. For more information about the TransactionCurrent
object, see Chapter 4, “CORBA Bootstrapping Programming Reference,” and
Using CORBA Transactions.

This method should be invoked once from the Server : : r el ease() method for each
server that isinvolved in global transactions. Thisincludes serversthat arelinked with
an XA resource manager, as well as servers that are involved in global transactions,
but are not actually linked with an X A-compliant resource manager.

Thecl ose_xa_rm() method should be invoked in place of aclose invocation that is
specific to the resource manager. Because resource managers differ in their
initialization semantics, the specific information needed to close a particular resource
manager is placed in the CLOSE!I NFO parameter in the GROUPS section of the BEA
Tuxedo system UBBCONFI Gfile.

Theformat of the CLOSEI NFO string is dependent on the requirements of the database
vendor providing the underlying resource manager. For more information about the
CLOSEI NFO parameter, see Setting Up a BEA Tuxedo Application and the

ubbconfi g(5) reference page in the File Formats, Data Descriptions, MIBs, and
System Processes Reference. Also, refer to database vendor documentation for
information about how to develop and install applications that use the XA libraries.

None.

3-56 CORBA Programming Reference

TP Framework API

Exceptions ~ CORBA: : BAD | NV_CORDER
Thereis an active transaction. The resource manager cannot be closed while

atransaction is active.

Tobj : : RMFai | ed
Thetx_cl ose() cal returned an error return code.

Note: Unlikeother exceptionsreturned by the TP Framework, the Tobj : : RVFai | ed
exception isdefined in t obj _c. h (which is derived fromt obj . i dl), not
Tobj S_c. h (whichisderived from Tobj S. i dI). Thisisbecause nativeclients
can aso open XA resource managers. Therefore, the exception returned is
consistent with the exception expected by native client code and by
Server: :rel ease() if it usesthe alternate mechanism,
TransactionCurrent::cl ose_xa_rm which isshared with native clients.

CORBA Programming Reference 3-57

3

TP Framework

TP::

create_active_object _reference()

Synopsis Creates an object reference and preactivates an object.

C++Binding static CORBA: : Cbject_ptr

create_active_object_reference(

const char* i nterfaceNane,
const char* stroid,
Tobj _Servant servant);

Arguments i nt erf aceNane
Specifiesacharacter string that containsthefully qualified interface namefor
the object.

stroid
Specifiesthe bj ect | d in string format. The Obj ect | d uniquely identifies
thisinstance of the class. The programmer decides what information to place
in the Obj ect I d. One possibility would be to use it to hold a database key.
Choosing the value of an object identifier, and the degree of uniqueness, is
part of the application design. The BEA Tuxedo software cannot guarantee
any uniqueness in object references, since these may be legitimately copied
and shared outside the BEA Tuxedo environment, for example by
stringifying the object reference.

ser vant
A pointer to a servant that the application has aready created and initialized.

Exceptions: Tobj S: : 1 nvalidlnterface

3-58

Indicates that the specified interfaceNameis NULL.

Tobj S::Invalidjectld
Indicates the specified stroid is NULL.

Tobj S: : Servant Al readyActi ve
The object could not be activated explicitly because the servant is already
being used with another Cbj ect | d. A servant can be used only with asingle
bj ect 1 d. To preactivate objects containing different bj ect 1 ds, the
application must create multiple servants and preactivate them separately,
one per Cbj ect | d.

Tobj S: : Obj ect Al readyActive
The object could not be activated explicitly because the (bj ect | d isaready
being used in the Active Object Map. A given Obj ect | d can have only one
servant associated with it. To change to a different servant, the application
must first deactivate the object and activate it again.

CORBA Programming Reference

TP Framework API

Description

Caution

Tobj S:: 111 egal Operation
The object could not be activated explicitly because it does not have the
process activation policy.

This method creates an object reference and preactivates an object. The resulting
object reference may be passed to clients who will use it to access the object.

Ordinarily, the application will call this method in two places:

m InServer::initialize() topreactivate process objects so that they do not
need activation on the first invocation.

m Inany method that creates object referencesto be returned to clients.

This method allows an application to activate an object explicitly beforeits first
invocation. (For reasons you might want to do this, refer to the section “ Explicit
Activation” on page 3-8.) The user first creates a servant and setsiits state before
calling create_acti ve_obj ect _r ef er ence. The TP Framework then enters the
servant and string Qbj ect | d inthe Active Object Map. Theresult is exactly the same
asif the TP Framework had previously invoked Ser ver : : cr eat e_ser vant , received
back the servant pointer, and then had invoked servant : : acti vat e_obj ect .

The object so activated must be for an interface that was declared with the process
activation policy; otherwise, an exception is raised.

If the object is deactivated, an object reference held by a client might cause the object
to be activated again in some other process. For a discussion about situationsin which
this might be a problem, refer to the section “Explicit Activation” on page 3-8.

Note: Thereis one restriction on this method when the user-controlled concurrency
policy optionisset in the ICF file (See “ Parallel Objects’ on page 3-21.). The
TP: :create_acti ve_object _reference method throwsa
Tobj S:: 111 egal Oper ati on exception if it is passed an interface with
user-controlled concurrency set. Since the AOM is not used when
user-controlled concurrency is set, thereis no way for the TP Framework to
connect an active object to this server.

When you preactivate objectsin an interface, you must specify an activation policy of
process inthe|CF file for that interface. However, when you specify the pr ocess
activation policy for aninterfacein the ICF file, this can lead to the following problem.

CORBA Programming Reference 3-59

3 TP Framework

Problem Statement

1

Workaround

You write SERVER1 such that all objects on interface A are preactivated. To
prevent the object from being activated on demand by the TP Framework, you
write the interface'sact i vat e_obj ect method to always throw the

Act i vat eObj ect Fai | ed exception.

SERVER? also implements objects of interface A. However, instead of
preactivating the objects, SERVER? lets the TP Framework activate them on
demand.

If the administrator configures SERV ER1 and SERVER?2 in the same group, then
aclient can get an interface A object reference from SERVER?2 and invoke on it.
Then, due to load balancing, SERVER1 could be asked to activate an object on
interface A. However, SERVER1 is not able to activate an object on interface A
on demand becauseitsact i vat e_obj ect method throws the

Act i vat eObj ect Fai | ed exception.

Y ou can avoid this problem by having the administrator configure SERVER1 and
SERVER? in different groups. The administrator uses the SERVERS section of the
UBBCONFI Gfile to define groups.

Return Value The newly created object reference.

3-60 CORBA Programming Reference

TP Framework API

TP::.create_object_reference()

Synopsis

C++ Binding

Arguments

Creates an object reference. The resulting object reference may be passed to clients
who use it to access the object.

static

CORBA: : Obj ect _ptr TP: : create_object_reference (
const char* interfaceNane,
const char* stroid,

CORBA: : NVLi st _ptr criteria);

i nt er faceNanme

stroid

Specifiesacharacter string that containsthefully qualified interface name for
the object.

The interface name can be retrieved by making a call on the following
interface typecode 1D function:

const char* _tc <CORBA interface name>::id();

where <CORBA i nt er f ace name> is any object class name. For example:

char* idlnane = _tc_Sinple->id();

Specifies the Obj ect | d in string format. The Obj ect | d uniquely identifies
thisinstance of the class. It is up to the programmer to decide what
information to place in the Obj ect | d. One possibility would be to use the
bj ect | d to hold a database key. Choosing the value of an object identifier,
and the degree of uniqueness, is part of the application design. The BEA
Tuxedo software cannot guarantee any uniquenessin object references, since
object references may be legitimately copied and shared outside the BEA
Tuxedo domain (for example, by passing the object reference as a string). It
isstrongly recommended theyou choose aunique Obj ect | d inorder to allow
parallel execution of invokes on object references.

Note: The restriction on the length of the Cbj ect I d has been removed in this

release.

criteria

Specifies alist of named values that can be used to provide factory-based
routing for the object reference. The list isoptional and is of type

CORBA: : NVLi st . The use of factory-based routing is optiona and is
dependent on the use of thisargument. If you do not want to use factory-based
routing, you can pass a vaue of 0 (zero) for this argument.

CORBA Programming Reference 3-61

3

TP Framework

Exceptions

Description

Return Value

3-62

Example

The BEA Tuxedo system administrator configures factory-based routing by
specifying routing rulesin the UBBCONFI Gfile. See Setting Up a BEA Tuxedo
Application online document for details on this facility.

Thefollowing exceptions can be raised by the cr eat e_obj ect _ref erence()
method:

Invalidlnterface
Indicates that the specified i nt er f aceNane iSNULL.

I nval i dObjectld
Indicates that the specified st roi d iSNULL.

Theserver applicationisresponsiblefor invokingthecr eat e_obj ect _ref erence()
method. This method creates an object reference. The resulting object reference may
be passed to clients who will use it to access the object.

Ordinarily, the server application calls this method in two places:
m InServer::initialize() tocreatefactoriesfor the server.
m |Infactory methodsto create object references to be returned to clients.

For examples of how and when to call thecr eat e_obj ect _ref er ence() method,
see Creating CORBA Server Applications.

oj ect
The newly created object reference.

The following example shows how to use the criteria argument:

CORBA: : NVLi st_ptr criteria;
CORBA: : Long branch_id = 7;
CORBA: : Long account _id = 10001;
CORBA: : Any any_val ;

/1 Create the list and assign to _var to cl eanup on exit
CORBA: : ORB: : create_list (2, criteria);
CORBA: : NVLi st _var criteria_var(criteria);

/1 Add the BRANCH | D
any_val <<= branch_id;
criteria->add_val ue("BRANCH I D', any val, 0);

// Add the ACCOUNT_I D
any_val <<= account _id;
criteria->add_val ue("ACCOUNT_I D", any_val, 0);

CORBA Programming Reference

TP Framework API

/1l Create the object reference.
TP: :create_object _reference ("IDL: BankApp/ Tel | er: 1. 0",
"Teller_01", criteria);

CORBA Programming Reference 3-63

3 TP Framework

TP::deactivateEnable()

Synopsis
C++ Binding

Arguments

Exceptions

Description

Enables application-controlled deactivation of CORBA objects.
Current-object format:

static void TP: : deacti vat eEnabl e();
Any-object format:

static void TP: : deact i vat eEnabl e(
const char* interfaceNane,
const char* stroid,
Tobj _Servant servant);

i nt erfaceName
Specifiesacharacter string that containsthefully qualified interface namefor
the object.

stroid
Specifiesthe bj ect | d in string format for the object to be deactivated.

ser vant
A pointer to the servant associated with the stroid.

Thefollowing exceptions can be raised by the deact i vat eEnabl e() method:

Il egal Operation
Indicatesthat the TP: : deact i vat eEnabl e method wasinvoked by an object
with the activation policy settotr ansacti on.

Tobj S: : Obj ect Not Acti ve
In the Any-object format, the object specified could not be deactivated
because it was not active (the st r oi d and ser vant parameters did not
identify an object that wasin the Active Object Map).

This method can be used to cause deactivation of an object, either the object currently
executing (upon completion of the method in which it is called) or another object. It
can only be used for objects with the process activation policy. It provides additional
flexibility for objects with the pr ocess activation policy.

Note: For single-threaded servers, the TP: : deact i vat eEnabl e(i nt er f ace,
obj ect id, servant) met hod canbeusedto deactivate an object. However,
if that object is currently in atransaction, the object will be deactivated when
the transaction commits or rolls back. If an invoke occurs on the object before
the transaction is committed or rolled back, the object will not be deactivated.

3-64 CORBA Programming Reference

TP Framework API

Return Value

To ensure the desired behavior, make sure that the object isnot in atransaction
or ensure that no invokes occur on the object after the
TP: : deact i vat eEnabl e() call until the transaction is complete.

Note: For multithreaded servers, use of the TP: : deact i vat eEnabl e(i nter f ace,
obj ect id, servant) method isnot supported for deactivation of objects
in per-object servers. This method is supported for deactivation objectsin
per-request servers, however, the deactivation may be del ayed because others
threads are acting on the object.

Depending on which of the overloaded functions are called, the actions are asfollows.

Current-object format
When called from within a method of an object with process activation
policy, the object currently executing will be deactivated after completing the
method being executed.
When called from within a method of an object with method activation, the
effect isthe same as the normal behavior of such objects (effectively, a
NOOP).
When the object is deactivated, the TP Framework first removes the object
from the Active Object Map. It then calls the associated servant’s
deact i vat e_obj ect method with areason of DR_METHOD END.

Any-object format
The application can request deactivation of an object by specifying its
bj ect | d and the associated servant.
If the object is currently executing, the TP Framework marks it for
deactivation and waits until the object’ s method completes before
deactivating the object (as with the “current-object format”). If the object is
not currently executing, the TP Framework may deactivate it immediately.
No indication is given to the caller asto the status of the deactivation. When
the object isdeactivated, the TP Framework first removesthe object from the
Active Object Map. It then calls the associated servant’s
deact i vat e_obj ect method with areason of DR_EXPLI Cl T_DEACTI VATE.

If the object for which the deactivate isrequested hasat r ansact i on activation
policy, an 111 egal Qper ati on exception israised. This is because deactivation of
such objects may interfere with their correct notification of transaction completion by
the BEA Tuxedo transaction manager.

None.

CORBA Programming Reference 3-65

3 TP Framework

TP::get_object id ()

Synopsis

C++ Binding

Arguments

Exception

Description

Return Value

Allows a server to retrieve the string Obj ect | d contained in an object reference that
was created in the TP Framework.

char* TP::get_object _id(Corba:: Cbject_ptr obj);
obj
The object reference from which to get the Qbj ect I d.

Tobj S:: I nval i dOoj ect
The object is nil or was not created by the TP Framework

This method allows a server to retrieve the string Obj ect | d contained in an object
referencethat wascreated inthe TP Framework. If the object reference was not created
in the TP Framework (for example, it was created by a client ORB), an exception is
raised.

The caller must call CORBA: : st ri ng_f r ee on the returned value when the object
reference is no longer needed.

Thestring Obj ect | d passed to TP: : cr eat e_obj ect _ref er ence or
TP: : create_active_obj ect _ref er ence when the object reference was created.

3-66 CORBA Programming Reference

TP Framework API

TP::get_object_reference()

Synopsis
C++ Binding

Arguments

Exceptions

Description

Return Value

Returns a pointer to the current object.
static CORBA:: Object _ptr TP::get_object _reference ();
None.

Notethat if get _obj ect _reference() isinvoked from within either
Server::initialize() orServer::rel ease(),itisconsidered to be invoked
outside the scope of an application’s TP object execution; therefore, the

Tobj S: : Ni | Cbj ect exception israised.

The following exception can be raised by the get _obj ect _r ef erence() method:

N | Obj ect
Indicates that the method was invoked outside the scope of an application’s
CORBA object execution. Ther eason string contains Qut Of Scope.

This method returns a pointer to the current object. The CORBA: : Obj ect _pt r pointer
that is returned can be passed to a client.

Theget _obj ect _reference() method returns a CORBA: : Cbj ect _ptr for the
current object when invoked within the scope of a CORBA object execution.
Otherwise, the Tobj S: : Ni | Obj ect exceptionisraised.

CORBA Programming Reference 3-67

3

TP Framework

TP::open_xa_rm()

C

3-68

Synopsis
++ Binding
Arguments

Exceptions

Description

Opens the XA resource manager to which the invoking processis linked.
static void TP::open_xa rm();
None.

Tobj : : RMFai | ed
Thet x_open() call returned an error return code.

Note: Unlike other exceptions returned by the TP Framework, this exception is
defined int obj _c. h (which is derived from t obj . i dI), notin
Tobj S_c. h (which isderived from Tobj S. i dl). Thisis because native
clients can aso open XA resource managers. Therefore, the exception
returned i sconsistent with the exception expected by native client code and
by Server: : rel ease() if it usesthe aternate mechanism,
TransactionCurrent: :close_xa_rmwhich is shared with native
clients.

Theopen_xa_r n() method opens the XA resource manager to which the invoking
processis linked. XA resource managers are provided by database vendors, such as
Oracle and Informix.

Note: Thefunctionality of this method is aso provided by
Tobj :: TransactionCurrent::close_xa rn(). However,
TP: : open_xa_r m() providesamore convenient way for aserver application
to close aresource manager because there is no need to obtain an object
reference to the TransactionCurrent object. A reference to the
TransactionCurrent object can be obtained from the Bootstrap object. See
“TP::bootstrap()” on page 3-55 for an explanation of how to obtain areference
to the Bootstrap object. For more information about the TransactionCurrent
object, see Chapter 4, “CORBA Bootstrapping Programming Reference,” and
Using CORBA Transactions.

This method should be invoked once fromthe Server: :initialize() method for
each server that participatesin aglobal transaction. This includes serversthat are
linked with an XA resource manager, aswell as servers that participate in a global
transaction, but are not actually linked with an XA-compliant resource manager.

CORBA Programming Reference

TP Framework API

Return Values

The open_xa_r m() method should be invoked in place of an open invocation that is
specific to aresource manager. Because resource managersdiffer in their initialization
semantics, the specific information needed to open a particular resource manager is
placed in the OPENI NFO parameter in the GROUPS section of the UBBCONFI Gfile.

The format of the OPENI NFO string is dependent on the requirements of the database
vendor providing the underlying resource manager. For more information about the
CLOSEI NFO parameter, see Setting Up a BEA Tuxedo Application and the

ubbconfi g(5) reference pagein the File Formats, Data Descriptions, MIBs, and
System Processes Reference. Also, refer to database vendor documentation for
information about how to develop and install applications that use the XA libraries.

Note: Only one resource manager can be linked to the invoking process.

None.

CORBA Programming Reference 3-69

3 TP Framework

TP::orb()
Synopsis Returns a pointer to an ORB object.
C++Binding static CORBA: :ORB ptr TP::orb();
Arguments None.
Exceptions None.

Description Access to the ORB object allows the application to invoke ORB operations, such as
string _to_object() andobject _to_string().

Note: Becausethe TP Framework owns the ORB object, the application must not
deleteit.

Return Value Upon successful completion, or b() returns apointer to the ORB object that is created
by the TP Framework when the server program is started.

3-70 CORBA Programming Reference

TP Framework API

TP::register_factory()

Synopsis
C++ Binding

Arguments

Exceptions

Locates the BEA Tuxedo FactoryFinder object and registers a BEA Tuxedo factory.

static void TP::register_factory(
CORBA: : (bject_ptr factory_or, const char* factory_id);

factory_or
Specifiesthe object reference that was created for an application factory using
the TP: : cr eat e_obj ect _ref erence() method.

factory_id
Specifiesastring identifier that is used to identify the application factory. For
some suggestions as to the composition of this string, see Creating CORBA
Server Applications.

The following exceptions can be raised by ther egi st er _f act or y() method:

Tobj S: : Cannot Pr oceed
Indicates that the FactoryFinder encountered an interna error during the
search, with the error being written to the user log (ULOG). Notify the
operations staff immediately if this exception is raised. Depending on the
severity of theinternal error, the server running the FactoryFinder or the
NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has
terminated, and there is another NameM anager running, start anew one. If no
NameManagers are running, restart the application.

Tobj S:: I nval i dNare
Indicatesthat thei d stringisempty. It isa soraised if thefield contains blank
spaces or control characters.

Tobj S:: I nval i dObj ect
Indicates that the f act ory valueisnil.

Tobj S: : Regi strarNot Avai | abl e
Indicates that the FactoryFinder object cannot locate the NameM anager.
Notify the operations staff immediately if this exception israised. If no
naming services servers are running, restart the application.

Note: Another possible reason that this exception might occur isthat the
FactoryFinder cannot participatein atransaction. Therefore, you may need
to suspend the current transaction before issuing the
TP: :register_factory() andTP: :unregi ster_factory() cals.For

CORBA Programming Reference 3-71

3 TP Framework

Description

Return Value

information on suspending and resuming transactions, see Using CORBA
Transactionsin the online documentation.

Tobj S: : Over Fl ow
Indicates that thei d string islonger than 128 bytes (currently the maximum
allowable length).

This method locates the BEA Tuxedo FactoryFinder object and registersa BEA
Tuxedo factory. Typicaly, TP: : regi ster _factory() isinvoked from
Server::initialize() whentheserver createsitsfactories. The

regi ster_factory() method locates the BEA Tuxedo FactoryFinder object and
registers the BEA Tuxedo factory.

Caution: Callback objects (that is, those created by ajoint client/server directly
through the POA) should not be registered with a FactoryFinder.

None.

3-72 CORBA Programming Reference

TP Framework API

TP::unregister_factory()

Synopsis
C++ Binding

Arguments

Exceptions

Locates the BEA Tuxedo FactoryFinder object and removes a factory.

static void TP::unregister_factory (
CORBA: : (bject_ptr factory_or, const char* factory_id);

factory_or
Specifiesthe object reference that was created for an application factory using
the TP: : cr eat e_obj ect _ref erence() method.

factory_id
Specifiesastring identifier that is used to identify the application factory. For
some suggestions as to the composition of this string, see Creating CORBA
Server Applications.

The following exceptions can be raised by the unr egi st er _fact or y() method:

Cannot Pr oceed
Indicates that the FactoryFinder encountered an interna error during the
search, with the error being written to the user log (ULOG). Notify the
operations staff immediately if this exception is raised. Depending on the
severity of theinternal error, the server running the FactoryFinder or the
NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has
terminated, and there is another NameM anager running, start anew one. If no
NameManagers are running, restart the application.

I nval i dName
Indicatesthat thei d stringisempty. It isa soraised if thefield contains blank
spaces or control characters.

Regi strar Not Avai |l abl e
Indicates that the FactoryFinder object cannot locate the NameM anager.
Notify the operations staff immediately if this exception israised. If no
naming services servers are running, restart the application.

Note: Another possible reason that this exception might occur isthat the
FactoryFinder cannot participatein atransaction. Therefore, you may need
to suspend the current transaction before issuing the
TP: :register_factory() andTP: :unregi ster_factory() cals.For
information on suspending and resuming transactions, see Using CORBA
Transactions in the online documentation.

CORBA Programming Reference 3-73

3 TP Framework

Tobj S: : Over Fl ow

Indicates that thei d string islonger than 128 bytes (currently the maximum
allowable length).

Description This method locates the BEA Tuxedo FactoryFinder object and removes afactory.

Typically TP: : unregi ster_factory() isinvoked from Ser ver : : rel ease() to
unregister server factories.

Return Value None.

3-74 CORBA Programming Reference

TP Framework API

TP::userlog()
Synopsis
C++ Binding

Arguments

Exceptions

Description

Return Value

Example

Writes a message to the user log (ULOG) file.
static int TP: :userlog(char*, ...);

Thefirst argument isapri ntf (3S) style format specification. Thepri nt f (3S)
argument is described in a C or C++ reference manual.

None.

Theuser | og() method writes a message to the user log (ULOG) file. Messages are
appended to the ULOG file with atag made up of the time (hhmmss), system name,
process name, and process-id of the invoking process. The tag is terminated with a
colon.

We recommend that server applications limit their use of user| og() messagesto
messagesthat can be used to help debug application errors; flooding the ULOG filewith
incidental information can make it difficult to spot actua errors.

Theuser 1 og() method returns the number of charactersthat were output, or a
negative value if an output error was encountered. Output errors include the inability
to open or write to the current log file.

The following example shows how to use the TP: : user | og() method:

userlog (“System exception caught: %", e.get_id());

CORBA Programming Reference 3-75

3 TP Framework

CosTransactions::TransactionalObject Interface Not
Enforced

Use of thisinterface is now deprecated. Therefore, the use of thisinterface is now
optional and no enforcement of descent from thisinterfaceis donefor objectsinfected
with transactions. The programmer can specify that an object is not to be infected by
transactions by specifying the never or i gnor e transaction policies. Thereis no
interface enforcement for eligibility for transactions. The only indicator isthe
transaction policy.

Note: The CORBAservices Object Transaction Service does not require that all
reguests be performed within the scope of atransaction. It is up to each object
to determineits behavior when invoked outside the scope of atransaction; an
object that requires a transaction context can raise a standard exception.

3-76 CORBA Programming Reference

Error Conditions, Exceptions, and Error Messages

Error Conditions, Exceptions, and Error
Messages

Exceptions Raised by the TP Framework

The following exceptions are raised by the TP Framework and are returned to clients
when error conditions occur in, or are detected by, the TP Framework:

CORBA: : | NTERNAL

CORBA: : OBJECT_NOT_EXI ST
CORBA: : OBJ_ADAPTER

CORBA: : | NVALI D_TRANSACTI ON
CORBA: : TRANSACTI ON_RCOLLEDBACK

Since the reason for these exceptions may be ambiguous, each time one of these
exceptionsisraised, the TP Framework also writes a descriptive error message that
explains the reason to the user log file.

Exceptions in the Server Application Code

Exceptions raised within a method invoked by a client are always raised back to the
client exactly as they were raised in the method invoked by the client.

The following TP Framework callback methods are initiated by events other than
client requests on the object:

Tobj _Servant Base: : acti vat e_obj ect ()
Tobj _Servant Base: : deacti vat e_obj ect ()
Server::create_servant ()

If exception conditions are raised in these methods, those exact exceptions are not
reported back to the client. However, each of these methodsis defined to raise an
exception that includes a reason string. The TP Framework will catch the exception
raised by the callback and log the reason string to the user log file. The TP Framework
may raise an exception back to the client. Refer to the descriptions of theindividual TP
Framework callback methods for more information about these exceptions.

CORBA Programming Reference 3-77

3 TP Framework

Example

For Tobj _Ser vant Base: : deact i vat e_obj ect () , thefollowing line of codethrows
aDeact i vat eObj ect Fai | ed exception:

throw Tobj S:: Deacti vateoj ect Fai |l ed(“deactivate failed to save
state!”);

This messageisappended to the user log file with atag made up of the time (hhmmss),
system name, process hame, and process-id of the calling process. Thetag is
terminated with a colon. The preceding throw statement causes the following line to
appear in the user log file:

151104. T1! si npapps. 247: APPEXC. deactivate failed to save state!
Where 151104 isthe time (3:11:04pm), T1 isthe system name, si npapps isthe

process hame, 247 is the process-id, and APPEXC identifies the message as an
application exception message.

Exceptions and Transactions

Exceptions that are raised in either CORBA object methods or in TP Framework
callback methods will not automatically cause a transaction to be rolled back unless
the TP Framework started the transaction. It is up to the application code to call
Current.rol | back_onl y() if the condition that caused the exception to be raised
should also cause the transaction to be rolled back.

Restriction of Nested Calls on CORBA Objects

The TP Framework restricts nested calls on CORBA objects. The restriction is as
follows:

m During aclient invocation of a method of CORBA object A, CORBA object A
cannot be invoked by another CORBA object B that is acting as a client of
CORBA object A.

The TP Framework will detect thefact that asecond CORBA objectisacting asaclient
to an object that is already processing a method invocation, and will return a
CORBA: : OBJ_ADAPTER exception to the caller.

3-78 CORBA Programming Reference

Error Conditions, Exceptions, and Error Messages

Note: Application code should not depend on this behavior; that is, users should not
make any processing dependent on thisbehavior. Thisrestriction may belifted
in afuture release.

CORBA Programming Reference 3-79

3 TP Framework

3-80 CORBA Programming Reference

CHAPTER

4 CORBA Bootstrapping

Programming
Reference

Thistopic includes the following sections:

Why Bootstrapping Is Needed

Supported Bootstrapping M echanisms
BEA Bootstrapping Mechanism.
Bootstrap Object API.

Bootstrap Object Programming Examples

Interoperable Naming Service Bootstrapping Mechanism

Why Bootstrapping Is Needed

To communicate with BEA Tuxedo objects, a client application must obtain object
references. Without an object reference, there can be no communication. To solvethis
problem, client applications usea bootstrapping mechanism to obtain object references
to objectsin a BEA Tuxedo domain.

CORBA Programming Reference 4-1

4 CORBA Bootstrapping Programming Reference

Supported Bootstrapping Mechanisms

In the Tuxedo 8.0 release and | ater, two bootstrapping mechanisms are supported:

m BEA Bootstrapping Mechanism
Use this mechanism if you using the BEA client ORB.

m Interoperable Naming Service Bootstrapping Mechanism

Use this mechanism if you using a client ORB from another vendor.

Note: The CORBA C++ and Java clients provided with BEA Tuxedo software may
use the I nteroperabl e Naming Service bootstrapping mechanism, however, for
performance reasons, thisis not recommended.

BEA Bootstrapping Mechanism

The BEA bootstrapping mechanism uses the Bootstrap object. Bootstrap objects are
local programming objects, not remote CORBA abjects, in both the client and the
server. When Bootstrap objects are created, their constructor requires the network
address of a BEA Tuxedo |1OP Listener/Handler. Given thisinformation, the
bootstrapping object can generate object references for the key remote objects in the
BEA Tuxedo domain. These object references can then be used to access services
available in the BEA Tuxedo domain.

How Bootstrap Objects Work

Bootstrap objects are created by aclient or a server application that must access object
references to the following BEA Tuxedo CORBA interfaces:

m FactoryFinder

m Security

4-2 CORBA Programming Reference

BEA Bootstrapping Mechanism

m Interface Repository

m Naming Service

m Notification Service

m Tobj_SimpleEvents Service
m Transaction

Bootstrap objects may represent the first connection to aspecific BEA Tuxedo domain
depending on the format of the 11OP Listener/Handler address. If the NULL scheme

Universal Resource Locator (URL) format is used (the only address format supported
in rel eases of BEA WebL ogic Enterprise prior to version 5.1 and BEA Tuxedo release
8.0), the Bootstrap objects represent the first connection. However, if the URL format
is used, the connection will not occur until after creation of the Bootstrap object. For
more information on address formatsand connection times, refer to “Tobj_Bootstrap”
on page 4-12.

For aBEA Tuxedo CORBA remote client, Bootstrap objects are created with the host
and the port for the BEA Tuxedo I1OP Listener/Handler. However, for BEA Tuxedo
native client and server applications, thereis no need to specify ahost and port because
they executein a specific BEA Tuxedo domain. The I1OP Listener/Handler host and
the port ID areincluded in the BEA Tuxedo domain configuration information.

After they are created, Bootstrap objects satisfy requests for object references for
objectsin a particular BEA Tuxedo domain. Different Bootstrap objects allow the
application to use multiple domains.

Using the Bootstrap object, you can obtain references to the following objects:

m SecurityCurrent

The SecurityCurrent object is used to establish a security context within aBEA
Tuxedo domain. The client can then obtain the Principal Authenticator from the
princi pal _aut henti cator attribute of the SecurityCurrent object.

m TransactionCurrent

The TransactionCurrent object isused to participate in a BEA Tuxedo
transaction. The basic operations are as follows:

e Begin

Begin atransaction. Future operations take place within the scope of this
transaction.

CORBA Programming Reference 4-3

4

CORBA Bootstrapping Programming Reference

4-4

e Commit

End the transaction. All operations on this client application have completed
successfully.

e Roll back
Abort the transaction. Tell all other participants to roll back.
e Suspend

Suspend participation in the current transaction. This operation returns an
object that identifies the transaction and allows the client application to
resume the transaction later.

¢ Resume

Resume participation in the specified transaction.

m FactoryFinder

The FactoryFinder object is used to obtain a factory. In the BEA Tuxedo system,
factories are used to create application objects. The FactoryFinder providesthe
following different methods to find factories:

e Getalist of all available factories that match a factory object reference
(find_factories).

e Get the factory that matches a name component consisting of i d and kind
(find_one_factory).

e Get thefirst available factory of a specific kind
(find_one_factory_by_id).

e Getalist of all available factories of a specific kind
(find_factories_by_id).

e Getalist of all registered factories (1i st _factori es).

m InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA
objects that are implemented within the BEA Tuxedo domain. Clients using the
Dynamic Invocation Interface (DI1) need areference to the Interface Repository
to be able to build CORBA request structures. The ActiveX Client is a special
case of this. Internally, the implementation of the COM/I1OP Bridge uses DI, so
it must get the reference to the Interface Repository, athough thisis transparent
to the desktop client.

CORBA Programming Reference

BEA Bootstrapping Mechanism

m NamingService

A NamingService object is used to obtain a reference to the root namespace.
When you use this object, the ORB locates the root of the namespace.

m NotificationService

The NotificationService object is used to obtain a reference to the event channel
factory (CosNotifyChannel Admin::EventChannel Factory) in the CosNotification
Service. In the BEA Tuxedo system, the EventChannel Factory is used to locate
the Notification Service channel.

m Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain a reference to the event
channel factory (Tobj_SimpleEvents::Channel Factory) in the BEA Simple
Events Service. In the BEA Tuxedo system, the ChannelFactory is used to locate
the BEA Simple Events Service channel.

The FactoryFinder and Interface Repository objects are not implemented in the
environmental objects library. However, they are specific to a BEA Tuxedo domain
and are thus conceptually similar to the SecurityCurrent and TransactionCurrent
objectsin use.

The Bootstrap object implies an association or “session” between the client application
and the BEA Tuxedo domain. Within the context of this association, the Bootstrap
object imposes acontainment rel ationship with the other Current objects (or contained
objects); that is, the SecurityCurrent and TransactionCurrent. Current objectsarevalid
only for this domain and only while the Bootstrap object exists.

Note: Resolving the SecurityCurrent when using the new URL address format
(corbal oc: // host nane: port _nunber) isaloca operation; that is, no
connection is made by the client to the IIOP Listener/Handler.

In addition, a client can have only one instance of each of the Current objects at any
time. If aCurrent object already exists, an attempt to create another Current object does
not fail. Instead, another reference to the already existing object is handed out; that is,
aclient application may have more than one reference to the single instance of the
Current object.

CORBA Programming Reference 4-5

4

CORBA Bootstrapping Programming Reference

To create a new instance of a Current object, the application must first invoke the
destroy_current () method on the Bootstrap object. Thisinvalidates all of the
Current objects, but does not destroy the session with the BEA Tuxedo domain. After
invoking dest r oy_current (), new instances of the Current objects can be created
within the BEA Tuxedo domain using the existing Bootstrap object.

To obtain Current objects for another domain, adifferent Bootstrap object must be

constructed. Although it is possible to have multiple Bootstrap objects at one time,

only one Bootstrap object may be “active;” that is, have Current objects associated

with it. Thus, an application must first invoke dest r oy_current () onthe“active’
Bootstrap object before obtaining new Current objects on another Bootstrap object,
which then becomes the active Bootstrap object.

Note: If you want to access objects in multiple domains, either import the object to
the local domain or administratively configure your application access
multiple domains. For more information on multi-domain configurations
configurations, see “ Configuring Multiple CORBA Domains’ in Using the
BEA Tuxedo Domains Component.

Servers and native clients are inside of the BEA Tuxedo domain; therefore, no
“session” is established. However, the same containment rel ationshi ps are enforced.
Servers and native clients access the domain they are currently in by specifying an
empty string, rather than / / host : port .

Note: When using the Bootstrap object, client and server applications must use the
Tobj _Bootstrap::resolve_initial _references() method, not the
ORB: :resolve_initial_references() method.

Types of BEA Remote Clients Supported

4-6

Table 4-1 shows the types of remote clientsthat can use the Bootstrap object to access
the other environmental objects, such as FactoryFinder, SecurityCurrent,
TransactionCurrent, and I nterfaceRepository. These clientsare provided with the BEA
Tuxedo CORBA software. Third-party client ORBs should use the CORBA
Interoperable Naming Service.

CORBA Programming Reference

BEA Bootstrapping Mechanism

Table 4-1 BEA Remote Clients Supported

Client Description

CORBA C++ CORBA C++ client applications use the BEA Tuxedo C++ environmental
objects to access the CORBA objectsin a BEA Tuxedo domain, and the
BEA Tuxedo Object Request Broker (ORB) to process from CORBA
objects. Usethe BEA Tuxedo system devel opment commandsto build these
client applications (see the BEA Tuxedo Command Reference).

CORBA Java CORBA Java client applications use the BEA Tuxedo Java environmental
objects to access CORBA objectsin aBEA Tuxedo domain. However,
these client applications use an ORB product other than the BEA Tuxedo
ORB to process requests from CORBA objects. These client applications
are built using the ORB product’ s Java devel opment tools.

ActiveX Use the BEA Tuxedo Automation environmental objectsto access CORBA
objectsin a BEA Tuxedo domain, and the ActiveX Client to process
requests from CORBA objects. Use the Application Builder to create
bindings for CORBA objects so that they can be accessed from ActiveX
client applications, which are built using a devel opment tool such as
Microsoft Visua Basic, Delphi, or PowerBuilder.

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

m Multiple Bootstrap objects can coexist in a client application, athough only one
Bootstrap object can own the Current objects (Transaction and Security) at one
time. Client applications must invoke dest r oy_current () on the Bootstrap
object associated with one domain before obtaining the Current objects on
another domain. Although it is possible to have multiple Bootstrap objects that
establish connections to different BEA Tuxedo domains, only one set of Current
objectsisvalid. Attempts to obtain other Current objects without destroying the
existing Current objects fail.

m Method invocationsto any BEA Tuxedo domain that has security enabled other
than the domain that provides the valid SecurityCurrent object will fail and
return a CORBA: : NO_PERM SSI ON exception.

CORBA Programming Reference 4-7

4 CORBA Bootstrapping Programming Reference

m Method invocations to any BEA Tuxedo domain other than the domain that
provides the valid TransactionCurrent object do not execute within the scope of
atransaction.

m Thetransaction and security objects returned by the Bootstrap objects are BEA
implementations of the Current objects. If other (“native’) Current objects are
present in the environment, they are ignored.

Bootstrap Object API

The Bootstrap object application programming interface (API) is described first in
terms of the OMG Interface Definition Language (IDL) (for portability), and then in
C++, Java, and ActiveX. The C++ and Java descriptions add the necessary constructor
to build a Bootstrap object for aparticular BEA Tuxedo domain.

Tobj Module

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-2 Returned Object References

ID Returned Object Referencefor Returned Object Reference for Java

C++ Clients Clients
FactoryFinder FactoryFinder object FactoryFinder object

(Tobj : : Fact or yFi nder) (com beasys. Tobj . Fact or yFi nder)
InterfaceRepository InterfaceRepository object InterfaceRepository object

(CORBA: : Reposi tory) (or g. ong. CORBA. Reposi tory)
NameService CORBA Naming Service CORBA Naming Service

(Tobj : : NaneSer vi ce) (com beasys. Tobj . NaneSer vi ce)
NotificationService EventChannel Factory object EventChannel Factory object

(CosNot i f yChannel Admi n: : (CosNot i f yChannel Admi n.

Event Channel Fact ory) Event Channel Fact ory)

4-8 CORBA Programming Reference

Bootstrap Object API

Table 4-2 Returned Object References (Continued)

ID Returned Object Referencefor Returned Object Reference for Java
C++ Clients Clients
SecurityCurrent SecurityCurrent object SecurityCurrent object

(SecurityLevel 2:: Qurrent)

(org. ong. SecuritylLevel 2. Qurrent)

TransactionCurrent

OTS Current object

(Tobj : : Transacti onCurrent)

OTS Current object (com beasys. Tobj .
Transacti onCurrent)

Tobj_SimpleEvents
Service

BEA Simple Events

Channel Factory object
(Tobj _Si npl eEvent s: :

Channel Fact ory)

BEA Simple Events Channel Factory object
(Tobj _Si nmpl eEvent s. Channel Fact ory)

Table 4-3 describes the Tobj module exceptions.

Table 4-3 Tobj Module Exceptions

C++ Exception

Java Exception

Description

Tobj ::
I nval i dNane

com beasys. Tobj .

I nval i dNane

Raisedif i d isnot oneof the names specified in Table 4-2. On
the server,resol ve_initial _references asorases
I nval i dName when Securi t yCurrent is passed.

Tobj ::
I nval i dDomai n

com beasys. Tobj .

I nval i dDommi n

On the server application, raised if the BEA Tuxedo server
environment is not booted.

CORBA: :
NO_PERM SSI ON

or g. ong. CORBA.
NO_PERM SSI ON

Raised if i d isTransacti onCurrent or
Securi t yCurr ent and another Bootstrap object in the
client owns the Current objects.

BAD PARAM org. ony. CORBA. Raised if the object is nil or if the hostname contained in the
BAD PARAM object does not match the connection.
IMP_LIMT org. ony. CORBA. Raised if t he regi ster_cal | back_port methodis

IMPLIMT

called more than once.

C++ Mapping

Listing 4-1 shows the C++ declarations in the Tobj _boot strap. h file.

CORBA Programming Reference 4-9

4

CORBA Bootstrapping Programming Reference

Listing4-1 Tobj_boostrap.h Declarations

#i ncl ude <CORBA. h>

class Tobj _Bootstrap {
public:
Tobj _Boot strap(CORBA: : ORB_ptr orb, const char* address);
CORBA: : Obj ect _ptr resolve_initial _references(
const char* id);
voi d regi ster_cal |l back_port (CORBA: : Obj ect _ptr objref);
void destroy _current();

Java Mapping

4-10

Listing 4-2 showsthe Tobj _Boot st r ap. j ava mapping.

Listing 4-2 Tobj_Bootstrap.java M apping

package com beasys;

public class Tobj Bootstrap {
public Tobj Boot strap(org. ong. CORBA. ORB orb,
String address)
throws org. ong. CORBA. Syst enExcepti on;
public class Tobj Bootstrap {
public Tobj Bootstrap(org.ong. CORBA. ORB orb, String address,

j ava. appl et. Appl et appl et)
throws org.ong. CORBA. Syst enExcepti on;

public void register_call back_port (orb. ong. CORBA. Obj ect objref)
t hrows org. ong. CORBA. Syst enExcepti on;

public org. ong. CORBA. Obj ect
resolve_initial _references(String id)
throws Tobj.Invali dNane,
or g. ong. CORBA. Syst enExcepti on;
public void destroy_current()
t hrows org. ong. CORBA. Syst enExcepti on;
}

CORBA Programming Reference

Bootstrap Object API

Microsoft Desktop Client Mapping

The Bootstrap object isprovidedin the BEA ActiveX Client softwarefor useby clients
that are implemented on Microsoft desktops. There are two possible interfaces that
desktop clients may use:

m The Automation interface for Visual Basic (VB), Delphi, or PowerBuilder
clients.

m The Dual interface that provides both the Automation interfaces required by
dynamic clients (Visual Basic) and the Vtable interfaces required by statically

linked clients (C++). The Bootstrap object in the ActiveX Client providesthe
hybrid DUAL interface.

Automation Mapping
Listing 4-3 shows Automation Bootstrap interface mapping.

Listing 4-3 Automation (Dual) Bootstrap I nterface M apping

interface DI Tobj Bootstrap : |D spatch

HRESULT Initialize(
[in] BSTR address);

HRESULT Cr eat ebj ect (
[in] BSTR progid,
[out, retval] ID spatch** rtrn);

HRESULT destroy_current();
}

C++ Member Functions

Thissection describesthe C++ member functions supported by the BEA bootstrapping
mechanism.

CORBA Programming Reference 4-11

4 CORBA Bootstrapping Programming Reference

Tobj_Bootstrap

Synopsis The Bootstrap object constructor.

C++ Mapping Tobj _Boot strap(CORBA: : ORB_ptr orb, const char* address);
t hrows Tobj : : BAD_PARAM
or g. ong. CORBA. Syst enExcepti on;

Parameters or b
A pointer to the ORB object in the client. The Bootstrap object uses the
string_to_object method of or b internally.

addr ess
The address of the BEA Tuxedo domain |1OP Listener/Handler. The address
is specified differently depending on the type of client and the level of
security required. There can be three types of clients, asfollows:

¢ Remote client

For adescription of the remote clients supported by BEA Tuxedo CORBA,
see the section “Types of BEA Remote Clients Supported” on page 4-6.

For remote clients, addr ess specifies the network address of an [1OP
Listener/Handler through which client applications gain access to a BEA
Tuxedo domain.

The address may be specified in either of the following formats:

“// host nane: port _nunber”

“I1#.#.#. #:port_nunber”

“cor bal oc:// host nane: port _nunber”
“cor bal ocs: // host nane: port _nunber”

In the first format, the domain finds an address for hostname using the local
name resolution facilities (usually DNS). The hostname must be the remote
machine, and the local name resol ution facilities must unambiguously resolve
hostname to the address of the remote machine.

Note: Thehost name must begin with aletter character.

In the second format, the #. #. #. # isin dotted decimal format. In dotted
decimal format, each # should be a number from O to 255. This dotted
decimal number represents the | P address of the remote machine.

4-12 CORBA Programming Reference

Bootstrap Object API

Note:

In both the first and second formats, port_number is the TCP port number at
which the domain process listens for incoming requests. The port_number
should be a number between 0 and 65535.

You can specify one or more TCP/IP addresses. You specify multiple
addresses using a comma-separated list. For example:

/1 mL. acme: 3050

[/ ml. acne: 3050, //n2. acne: 3050, // nB. acne: 3051

If you specify multiple addresses, the BEA Tuxedo software triesthe
addresses in order, left to right, until a connection is established. If a syntax
error is detected in any of the addresses asit is being tried, a BAD_PARAM
exception isreturned to the caller immediately and the BEA Tuxedo software
aborts the attempt to make a connection. For example, if the first addressin
the comma-separated list shown above were / / mlL. 3050, a Ssyntax error
would be detected and the attempt to make a connection would be aborted. If
the BEA Tuxedo software encounters the end of the address|ist before it
tries an address that is valid, that is, aconnection cannot be made to any of
the addresses listed, the | NVALI D_DOMAI N exception is returned to the caller.
If an exception other than | NVALI D_DOMAI N is raised, it is returned to the
caller immediately.

BEA Tuxedo also supports random address sel ection. To use random address

selection, you can specify any member of an address list as a grouping of

pipe-separated (|) network addresses enclosed in parentheses. For example:
(// L. acre: 3050 // n2. acne: 3050),// nl. acne: 7000

When you use this format, the BEA Tuxedo system randomly selects one of
the addresses enclosed in parentheses, either / / nl. acme: 3050 or

/1 2. acme: 3050. If an exception other than | NVALI D_DOVAI Nisraised, itis
returned to the caller immediately. If a connection cannot be made to the
address selected, the next element that follows the addresses enclosed in
parentheses is attempted. If the end of the string is encountered before a
connection can be made, the | NVALI D_DOVAI N exception is thrown to the
caller.

If you specify an address list in the following format:

(// L. acme: 3050| | // n2. acme: 3050),//r 1. acne: 7000

the NULL address in the pipe-separated list is considered invalid. If the BEA
Tuxedo software randomly selects the invalid address, the BAD_PARAM
exception isreturned to the caller and the BEA Tuxedo software aborts the
connection attempt.

CORBA Programming Reference 4-13

4 CORBA Bootstrapping Programming Reference

The address string can be specified either in the TOBJADDR environment
variable or in the address parameter of the Tobj _Boot st r ap constructor.

For information about the TOBJADDR environment variable, see the chapter
Managing Remote Client Applications in the Setting Up a BEA Tuxedo
Application. However, the address specified in Tobj _Boot st r ap always take
precedence over the TOBJADDR environment variable. To use the TOBJADDR
environment variable to specify an address string, you must specify an empty
string in the Tobj _Boot st r ap addr ess parameter.

Note: For C++ applications, TOBJADDR is an environment variable; for Java
applications, it isa property; for Java applets, it isan HTML parameter.

Thethird and fourth formats are called Uniform Resource L ocator (URL)
address formats and were introduced in the BEA WebL ogic Enterprise
version 5.1 release. Aswith the NULL scheme URL address format

(/ I host name: port _nunber), you use the URL address formats to specify
the location of the IIOP Listener/Handler. However, when the cor bal oc
URL addressformat is used, the client application’sinitial connection to the
[1OP Listener/Handler is deferred until authentication of the principal’s, or
client’s, identity or thefirst user initiated operation. Using the cor bal ocs
URL address format has the same effect on the deferred connection time as
cor bal oc, but, additionally, the client application makes itsinitial
connection to the ISL/ISH using the Secure Sockets Layer (SSL) protocol.
Table 4-4 highlights the differences between the two URL address formats.

Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats

URL AddressFormats Differencesin Mode of Operation

cor bal oc Invocations to the 1OP Listener/Handler are unprotected. Configuring the [IOP
Listener/Handler for the SSL protocol is optional.

Note: A principal can secure the bootstrapping process by using the
Securitylevel 2:: Current:: aut henti cat e() operation to
specify that certificate-based authentication is to be used.

cor bal ocs Invocations to the |1 OP Listener/Handler are protected and the I1OP
Listener/Handler or the server ORB must be configured to enable the use of the
SSL protocol.

These URL address formats are a subset of the definition of object URLs
adopted by the OMG as part of the Interoperable Naming Service

4-14 CORBA Programming Reference

Bootstrap Object API

submission. The BEA Tuxedo software also extends the URL format
described in the OMG Interoperable Naming Service submission to support a
secure form that is modeled after the URL for secure HTTP, as well asto
support the randomize functionality that was added in the BEA WebL ogic
Enterprise version 4.2.

The cor bal oc and cor bal ocs URL schemes provide locations that are
easily manipulated in both TCP/IP and DNS centric environments. These
URL schemes contain a DNS-style host nane or |P addressand a

por t _nunber. The following are some examples of the URL formats:

corbaloc://curly: 1024, arry: 1022, j oe: 1999
cor bal ocs://host1: 1024, { host 2: 1022| host 3: 1999}

As an enhancement to the URL syntax described in the OMG Interoperable

Naming Service submission, the BEA WebL ogic Enterprise version 5.1

software extended the syntax to support alist of multiple URLSs, each with a

different scheme. The following are some examples of the extension:

corbal ocs://curly: 1024, corbal oc://larry: 1111,
cor bal ocs: // ct xobj: 3434, nt hd: 3434, corbal oc://force: 1111

In the above example, if the parser reaches the URL

corbal oc://force: 1111, it resetsitsinterna state asif it had never
attempted secure connections and then begins attempting unprotected
connections.

Caution:

Note:

Note:

Note:

Do not mix the use of NULL scheme URL addresses
(/I host nane: por t _nunber) with cor bal oc and cor bal ocs URL
addresses.

The Bootstrap object supplied for use with the Netscape embedded Java
ORB and JavaSoft JDK ORB does not support cor bal oc and cor bal ocs
URLs.

For more information on using the cor bal oc and cor bal ocs URL
address formats, see Using Security in CORBA Applications.

The network address that is specified in the Bootstrap constructor or in
TOBJADDR must exactly match the network address in the server
application’s UBBCONFI Gfile, both the address aswell asthe capitalization.
If the addresses do not match, the invocation to the Bootstrap constructor
will fail with the following seemingly unrelated error message:

CORBA Programming Reference 4-15

4 CORBA Bootstrapping Programming Reference

Exception

Description

Return Values

ERROR Unofficial connection fromclient at
<tcp/ip address>/<port-nunber>

For example, if the network address is specified (using the NULL URL
addressformat) as/ / TRI XI E: 3500 inthe | SL command-line option string
in the server application’s UBBCONFI Gfile, specifying either

/7192.12. 4.6:35000r//trixie: 3500 in the Bootstrap constructor or
in TOBJADDR will cause the connection attempt to fail. On UNIX systems,
use the uname - n command on the host system to determine the
capitalization used. On Windows 2000 systems, see the host system’s
network settings in the Control Panel to determine the correct
capitalization.

Note: Theerror in the previous note is deferred when the URL address format is
used, that is, the error does not occur at the time of Bootstrap object
construction because the connection to the ISL/ISH is deferred until |ater.

e Nativeclient

For anative client, the addr ess parameter in the Tobj _Boot strap
constructor must always be an empty string (not a NULL pointer). The native
client connects to the application that is specified in the TUXCONFI G
environment variable. The constructor raises CORBA: : BAD_PARAMIf the
address is not empty.

e Server acting asaclient

When servers need access to the Bootstrap object, they should obtain a
reference to it using the TP framework by invoking TP. boot st r ap() .
Servers should not attempt to create a new instance of the Bootstrap object.

appl et (Appliesto Java method only)
Thisisapointer to theclient applet. If theclient appl et does not explicitly pass
the ISH host and port to the Bootstrap constructor, you can pass this
argument, which causes the Bootstrap object to search for the TOBJADDR
definition in the HTML file for the appl et.

BAD_PARAM
Raised if the object isnil or if the host contained in the object does not match
the connection or the host address (/ / host nane: port _nunber)isnotina
valid format.

A C++ member function (or Java method) that creates Bootstrap objects.

A pointer to a newly created Bootstrap object.

4-16 CORBA Programming Reference

Bootstrap Object API

Tobj_Bootstrap::register_callback port

Synopsis
C++ Mapping

Parameter

Exceptions

Description

Usage Notes

Return Values

Registersthejoint client/server’ s listening port in [1OP Handler (ISH).
void register_cal |l back_port (CORBA: : Obj ect _ptr objref);

obj ref
The object reference created by thejoint client/server.

BAD_PARAM
Raised if the object isnil or if the host contained in the object does not match
the connection.

IMP LIMT
Raised if theregi ster_cal | back_port method is called more than once.

This C++ member function (or Java method) is called to notify the ISH of alistening
port in the joint client/server. This method should only be used for joint client/server
ORBsthat do not support GIOP 1.2 bidirectional capabilities (that isGIOP1.0and 1.1
client ORBs). For GIOP 1.0 and 1.1, the ISH supports only one listening port per joint
client/server; therefore, ther egi st er _cal | back_port method should only be called
once per connected joint client/server.

The following information must be given consideration when using this method:

m If theregi ster_cal |l back_port method isnot invoked by the joint
client/server, the callback port is not registered with the | SH and the server
defaults to Asymmetric Outbound I1OP. In this case, you must start the server’s
[1OP Listener (1SL) with the - O option. The - O option enables Asymmetric
outbound 110P; otherwise, server-to-client invocations will not be allowed by the
ISL/ISH.

m If you are using the BEAWrapper Callbacks API instead of the POA and you
want to use bidirectional behavior, you aways need to invoke the
regi ster_cal | back_port method, even when you are using a | SH that
supports GIOP 1.2.

m If you want to use bidirectional capability for a callback object, you must invoke
ther egi st er _cal | back_port method before you pass the callback object
reference to the server.

None.

CORBA Programming Reference 4-17

4 CORBA Bootstrapping Programming Reference

Tobj_Bootstrap::resolve_initial_references

Synopsis Acquires CORBA object references.

C++ Mapping CORBA: : Obj ect _ptr resol ve_initial _references(
const char* id);
throws Tobj::InvalidNane,
or g. ong. CORBA. Syst enExcepti on;

Parameter id
This parameter must be one of the following:

“FactoryFi nder”
“InterfaceRepository”
“NanmeSer vi ce”
“NotificationService”
“SecurityCQurrent”
“TransactionCurrent”

“Tobj _Si npl eEvent sServi ce”

Exceptions 1 nval i dName
Raised if i d is not one of the names specified above. On the server,
resolve_initial _references asoraises Tobj:: I nval i dName when
SecurityCurrent is passed.

CORBA: : NO_PERM SSI ON
Raised if i d is TransactionCurrent or SecurityCurrent and another Bootstrap

object in the client owns the Current objects.

Description This C++ member function (or Java method) acquires CORBA object references for
the FactoryFinder, SecurityCurrent, TransactionCurrent, NotificationService,
Tobj_SimpleEventsService, and InterfaceRepository objects. For the specific object
reference, invoke the _nar r ow function. For example, for FactoryFinder, invoke
Tobj : : Fact oryFi nder:: narrow.

Return Values ~ Table 4-2 shows the object reference that is returned for each typei d.

4-18 CORBA Programming Reference

Bootstrap Object API

Tobj_Bootstrap::destroy_current()

Synopsis Destroysthe Current objects for the domain represented by the Bootstrap object.

C++ Mapping void destroy_current();

Exception RaisesCORBA: : NO_PERM SSI ONif the Bootstrap object isnot the owner of the Current
objects.

Description This C++ member function invalidates the Current objects for the domain represented
by the Bootstrap object. Afterinvoking thedest r oy_current () method, the Current
objects are marked asinvalid. Any subsequent attempt to use the old Current objects
will throw the exception CORBA: : BAD | NV_ORDER. Good programming practice isto
release all Current objects before invoking dest roy_current ().

Note: The destroy_current () method must be invoked on the Bootstrap object
for the domain that currently ownsthe two Current objects (Transaction and
Security). Thisasoresultsin animplicit invocationto | ogof f for security and

implicitly rolls back any transaction that was begun by the client.

The application must invoke dest r oy_current () beforeinvoking

resol ve_initial _references for TransactionCurrent or SecurityCurrent on

another domain; otherwise, resol ve_initi al _references raises
CORBA: : NO_PERM SSI ON.

Return Values None.

Java Methods

The Java BEA bootstrapping APl supports the following methods:

Tobj_Bootstrap
Tobj_Bootstrap.register_callback_port
Tobj_Bootstrap.resolve_initial_references
Tobj_Bootstrap.destroy_current
Tobj_Bootstrap.GetTransactions

Tobj_Bootstrap.getUserTransaction

CORBA Programming Reference

4-19

4 CORBA Bootstrapping Programming Reference

m Tobj_Bootstrap.getNativeProperties
m Tobj_Bootstrap.getRemoteProperties

For adescription of these Java methods, see the Javadoc API.

Automation Methods

This section describes the Automation methods supported by the BEA bootstrapping
mechanism.

4-20 CORBA Programming Reference

Bootstrap Object API

Initialize
Synopsis

MIDL Mapping

Automation
Mapping

Parameter

Return Values

Initializes the Bootstrap object into aBEA Tuxedo domain.

HRESULT Initialize(
[in] BSTR host);

Sub Initialize(address As String)

addr ess
The host name and port of the BEA Tuxedo domain |1OP Listener/Handler.
One or more TCP/IP addresses can be specified. Multiple addresses are
specified using acomma-separated list, asin the C++ mappings. If no address
is specified, the value of the TOBJ ADDR environmental variable is used.

Note: The network addressthat is specified in the Bootstrap constructor or in
TOBJADDR must exactly match the network address in the application’s
UBBCONFI Gfile, both the format of the address aswell asthe capitalization.
If the addresses do not match, the invocation to the Bootstrap constructor
will fail with the following seemingly unrelated error message:

ERROR: Unofficial connection fromclient at
<tcp/ip address>/ <port - nunber >

For example, if the network addressis specified as/ / TRI XI E: 3500 inthe
ISL command-line option string, specifying either / / 192. 12. 4. 6: 3500
or//trixie: 3500 intheBootstrap constructor or in TOBJADDRwill cause
the connection attempt to fail. On UNIX systems, use the unane - n
command on the host system to determine the capitalization used. On
Windows systems, see the host system’s network settings in the Control
Panel to determine the correct capitalization.

None.

CORBA Programming Reference 4-21

4

CORBA Bootstrapping Programming Reference

4-22

Exceptions

Table 4-5 describes the exceptions.
Table 4-5 Initialize Exceptions

HRESULT Description M eaning

| TF_E_NO PERM SSI ON_ Bootstrap already The Bootstrap object has aready

YES initialized been initialized. To connect to a new
BEA Tuxedo domain, you must
create a new Bootstrap object.

E_| NVALI DARG Invalid address The address supplied is not valid.

parameter

E_OUTCOFMVEMOY Memory dlocation The required memory could not be

failed alocated.

E FAIL Invalid domain Unable to communicate with the
BEA Tuxedo domain at the address
specified or TOBJADDR is not
defined.

<SYSTEM ERROR> Unable to obtain Unableto initialize the Bootstrap

initial object object. The system error causing the
failureisreturned in the "Number"
member of the error object.
CORBA Programming Reference

Bootstrap Object API

CreateObject

Synopsis
MIDL Mapping

Automation
Mapping

Parameter

Return Value

Exceptions

Creates an instance of a Current environmental object.

HRESULT Cr eat enj ect (
[in] BSTR progid,

[out, retval] ID spatch** rtrn);

Function CreateCbject(progid As String) As Object

progid

The pr ogi d of the environmental object to create. Valid pr ogi ds are:

Tobj . Fact oryFi nder
Tobj . SecurityCurrent
Tobj . Transacti onCurrent

A reference to the interface pointer of the created environmental object.

Table 4-6 describes the exceptions.

Table 4-6 CreateObject Exceptions

Exception Description

M eaning

| TF_E_NO_PERM SSI ON Bootstrap object
_YES must be
initialized

The Bootstrap object has not been
initialized.

| TF_E_NO_PERM SSI ON No permission
NO

If the pr ogi d specifies atransaction or
security current and another Bootstrap
object in the client owns the current
objects.

E_| NVALI DARG Invalidprogi d Thepr ogi d specified isnot valid.
parameter
E_| NVALI DARG Invalid name The requested pr ogi d is not one of the
valid parameter values specified above.
E_| NVALI DARG Unknown object Therequested pr ogi d isnot registered on

your system.

CORBA Programming Reference 4-23

4 CORBA Bootstrapping Programming Reference

Table 4-6 CreateObject Exceptions (Continued)

Exception Description M eaning

<SYSTEM ERROR> CoCreate The Bootstrap object could not create an
I nstance() instance of the requested object. The
failed system error isreturned in the "Number"

member of the error object.

4-24 CORBA Programming Reference

Bootstrap Object Programming Examples

DestroyCurrent

Synopsis Logs out of the BEA Tuxedo domain and invalidates the TransactionCurrent and
SecurityCurrent objects.

MIDL Mapping HRESULT destroy_current();

Automation Sub destroy_current ()
Mapping

Parameters None.
Return Value None.

Exceptions None.

Bootstrap Object Programming Examples

This section provides the foll owing programming exampl esthat use Bootstrap objects.
e JavaClient Example: Getting a SecurityCurrent Object
e Visua Basic Client Example: Using the Bootstrap Object

Java Client Example: Getting a SecurityCurrent Object
Listing 4-4 shows how to program a Java client to get a SecurityCurrent object.

Listing 4-4 Programming a Java Client to Get a SecurityCurrent Object

import java.util.?*;
i mport org.ongy. CORBA. *;
i mport com beasys. *;
class client {
public static void main(String[] args)
{
Properties prop = null;
Tobj . Princi pal Aut henti cator auth = null;

CORBA Programming Reference 4-25

4

CORBA Bootstrapping Programming Reference

String host_port = "//COLORVAG C: 10000";
/1 Set host and port.
if (args.length == 1) host_port = args[O0];
try {
/1 Initialize ORB
ORB orb = ORB.init(args, prop);
/1 COreate Bootstrap object
Tobj _Bootstrap bs=new Tobj Bootstrap(orb, host port);

/1l Get security current
org. ong. CORBA. Obj ect ocur =

bs.resolve_initial _references("SecurityCQurrent");
SecuritylLevel 2. Current cur =

SecuritylLevel 2. Qurrent Hel per. narrow(ocur);

}

catch (Tobj.InvalidNane e) {
Systemout.printIn("Invalid name: "+e);
Systemexit(1l);

catch (Tobj.InvalidDomain e) {
Systemout.println("Invalid donain address: "+host_port +" "+e);
Systemexit(1l);

catch (SystenkException e) {
Systemout. println("Exception getting security current: "+e);
e.printStackTrace();
Systemexit(1l);

Visual Basic Client Example: Using the Bootstrap Object

4-26

Listing 4-5 shows how to program a Visual Basic client to use the Bootstrap object.

Listing 4-5 Programming a Client in Visual Basic

‘Decl are the Bootstrap object
Publ i c oBootstrap As D Tobj Bootstrap

‘Decl are the FactoryFi nder object
Publ i ¢ oBsFact oryFi nder As DI Tobj Fact oryFi nder

CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

‘Declare factory for Registrar object
Publi c oRegi strarFactory As DI UniversityB Regi strar Factory

‘Decl are actual Registrar object
Publi c oRegi strarFactory As DI UniversityB Regi strarFactory

‘Create the Bootstrap object
Set oBootstrap = O eateCbject(“Tobj.Bootstrap”)

‘Connect to the BEA Tuxedo Domai n
oBootstrap.lnitialize “//host:port”

‘Cet the FactoryFinder for the BEA Tuxedo Domain
Set oBSFactoryFi nder =
oBoot strap. Creat eCbj ect (“Tobj . Fact oryFi nder”)

‘Cet a factory for the Registrar object

‘using the FactoryFi nder method find_one factory by id

Set oRegistrarFactory =

oBSFact oryFi nder. find_one_factory_by id(“RegistrarFactorylD")

'Create a Registrar object
Set oRegistrar = oRegistrarFactory.find_registrar(exc)

Interoperable Naming Service
Bootstrapping Mechanism

Thistopic includes the following topics:
m Introduction

m INSObject References

m INS Command-line Options

m INSObject URL Schemes

m Getting a FactoryFinder Object Reference Using INS

CORBA Programming Reference 4-27

4 CORBA Bootstrapping Programming Reference

m Getting a Principal Authenticator Object Reference Using INS

m Getting a TransactionFactory Object Reference Using INS

Introduction

As of release 8.0, the BEA Tuxedo ORB supports the CORBA Naming Service
bootstrapping mechanism (referred to in this document as the I nteroperable Naming
Service), as specified in Chapters 4 and 13 of the CORBA Specification revision 2.4.2.

This support enables ORBs that implement the Interoperable Naming Service (INS)
bootstrapping mechanism to query the BEA Tuxedo server-side ORB to get object
referencesto initial objects such as FactoryFinder and to Principal Authenticator to the
BEA Tuxedo environment. This support along with client support for interoperable
initial object references enables clients to use the INS bootstrapping mechanism
instead of the BEA bootstrapping mechanism.

Note: The CORBA C++ and Java clients provided with BEA Tuxedo software may
use the IN'S bootstrapping mechanism, however, for performance reasons, this
is not recommended.

INS Object References

Table 4-7 shows the object reference that is returned for each type ID.

Table 4-7 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (CORBA: : Fact or yFi nder)
InterfaceRepository InterfaceRepository object (CORBA: : Reposi t ory)
NameService CORBA Naming Service object (CORBA: : NaneSer vi ce)
NotificationService EventChannel Factory object

(CosNot i f yChannel Adni n: : Event Channel Fact or y)

POACurrent POACurrent object (CORBA: : POACur r ent)

4-28 CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

Table 4-7 Returned Object References (Continued)

ID Returned Object Reference
Principal A uthenti cator Principal Authenticator object (Secur it yLevel 2: : Principal Authenticator)
RootPOA RootPOA object (CORBA: : Root POA)

Tobj_SimpleEventsService BEA Simple Events Channel Factory object

(Tobj _Si nmpl eEvent s: : Channel Fact ory)

INS Command-line Options

Asof release 8.0, BEA Tuxedo CORBA supportsthe - ORBI ni t Ref and
- ORBDef aul t I ni t Ref command-line options. For acomplete description of these
options, see “ORB Initiaization Member Function” on page 14-85.

The following example assumes a BEA Tuxedo CORBA 11OP client istalking to a
BEA Tuxedo CORBA |1OP server environment:

client_app —ORBid BEA || OP —ORBI ni t Ref
Fact or yFi nder =cor bal oc: : nyhost : 2468/ Fact or yFi nder

Given thisexample, acall to ORB: : resol ve_i ni ti al _ref erences for the

Fact oryFi nder will result in an interoperable initial reference request being sent to
theISL/ISH on nyhost at port 2468. Note that the case of nyhost must exactly match
the case of the host specified for the ISL/ISH in thet uxconfi g file.

INS Initialization Operations

To usethe INS bootstrapping mechanism, applications programmers must observe the
following requirements:

m BEA Tuxedo CORBA |IOP clients that want to use the INS initia reference
mechanism must now call ORB: : resol ve_initial _references function,
instead of the Tobj Boot strap::resolve_initial _references function.
For a syntactical description of ORB: : resol ve_i ni ti al _ref erences, see
“CORBA::ORB::resolve _initial_references’ on page 14-79.

CORBA Programming Reference 4-29

4 CORBA Bootstrapping Programming Reference

Note: The Tobj _Boot st rap API isstill supported and its behavior has not
changed.

m BEA Tuxedo CORBA I1OP clients using the INS initial reference mechanism
should usethe ORB: : I i st _initial _services function instead of the
Tobj _Bootstrap::list_initial_services function. For a syntactical
description of ORB: : 1i st _ini ti al _services, see
“CORBA::ORB::list_initial_services’ on page 14-75.

INS Object URL Schemes

As of release 8.0, BEA Tuxedo CORBA supports an additional Uniform Resource

L ocator (URL) format to be used for the specification of the location for accessto a
BEA Tuxedo CORBA server environment and from where to retrieve references to
initial object. The new URL format both follows and extends the definition of object
URL sadopted by the OM G as part of the INS specification. The URL format described
inthe INS specification has al so been extended to support a secure form modeled after
the URL for secure HT TP, aswell asthe ability to support the randomize functionality
initially provided in BEA WebL ogic Enterprise version 5.1.

The CORBA 2.4.2 specification requires that three object URL schemes must be
supported by a compliant ORB. These schemes are defined as |OR, corbaloc, and
corbaname.

Note: Thenew URL string formats may also be passed to the
ORB: :string_to_object function.
IOR URL Scheme

ThelOR schemetakesthe form of astring that is formatted as1 OR: hex_oct et s. The
scheme name is|OR and the text after the ‘" isdefined in the CORBA specification.
Thel OR URL schemeisrobust and insul atesthe client from the encapsul ated transport
information and object key used to reference the object.

corbaloc URL Scheme

It isdifficult for humans to exchange | ORs through nonelectronic means because of
their lengths and the text encoding of binary information. The corbaloc and corbalocs
URL schemesprovide stringified object referencesin aformat that isfamiliar to people

4-30 CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

and similar to the popular URL schemesof FTPand HTTP. The URL schemesdefined
for corbaloc and corbalocs are easily manipulated in both TCP/IP and DNS centric
environments. The corbaloc and corbalocs URL contains:

m DNS-style host name or |P address and port
m Theversion of the I1OP protocol to be used (optional)
m Anobject key (optional)

By default, corbaloc URL s denote objects that can be contacted over [10P, while
corbalocs URL s denote objects that can be contacted using 11OP over SSL.

Table 4-8 lists the BNF syntax for each URLs element.

Table 4-8 BNF Format for URL Elements

URL Element BNF Format

<cor bal oc> = “corbal oc::”<obj _addr_I|ist>]["“/"<key_string>]

[, <cor bal oc>| <cor bal ocs>]

= “corbal ocs::"<obj _addr _list>[“/"<key_string>]
[, <cor bal oc>| <cor bal ocs>]

<cor bal ocs>

<obj _addr list> = [<obj _raddr_list> | <obj_addr> “,”"]* <obj_addr>
<obj raddr_list> = [“{* <obj_addr> [“|” <obj_addr>]* “}"]

<obj _addr > = <iiop_prot_addr> | <future_prot_addr>

<i i op_prot_addr = <iiop_id><iiop_addr>

<iiop_id> “/1" | <iiop_prot_token>":"

<iiop_prot_token> “iiop”

<i i op_addr>

[<version> <host> [“:” <port>]]

<host >

DNS-styl e Host Nanme | ip_address

<ver si on> <mgjor> “.” <mnor>"“@ | enpty_string
<port> number
<nmj or > nunber
<m nor > numrber

CORBA Programming Reference 4-31

4 CORBA Bootstrapping Programming Reference

Table 4-8 BNF Format for URL Elements (Continued)

URL Element

BNF For mat

<key_string>

= <string> | enpty_string

Table 4-9 describes each URL element.

Table 4-9 Descriptions of URL Elements

URL Element

Description

obj _addr i st

A comma-separated list of protocol ID, version, and address information. Thislist is
used in an implementation-defined manner to address the object. An object may be
contacted by any of the addresses and protocals. If anobj _raddr _Ii st is
encountered, only one element will be used. If afailure occurs using the element, the next
element in the comma-separated list will be used.

obj _raddr _|li st

A vertical bar separated list, surrounded by braces, that is used to define the addressto
this object that should be randomized when selecting one. Only one element of this list
will be used.

obj _addr

A protocol identifier, version tag, and a protocol specific address. The right-brace “{*,
left-brace “}”, vertical bar “|”, dash “/”, and comma*“,” characters are specifically
prohibited in this component of the URL.

iiop_prot_addr

An I1OP protocol identifier, version tag, and address containing a DNS-style host name
or | P address.

iiop_id

Tokens recognized to indicate an 110P protocol corbaloc.

iiop_prot_token

An 11OP protocol token, “iiop”.

i i op_addr A single address element.

host A DNS-style host name or |P address. If not present, the local host is assumed.

ver si on A major and minor version number, separated by “.” and followed by “ @". If the version
is absent, 1.0 is assumed.

i p_address A numeric | P address (dotted decimal notation).

port The port number an I1OP Listener/Handler or an initialization agent is listening on. The

default is9999.

4-32 CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

Table 4-9 Descriptions of URL Elements

URL Element

Description

key string

A stringified object key that isnot NULL-terminated. Thekey_st r i ng usestheescape
conventions described in RFC 2396 to map away from octet values that cannot directly
be part of aURL. US-ASCII alphanumeric characters are not escaped. Characters
outside this range are escaped, except for the following:

“ ;11 | LL/H | “ :11 “ ?1 | “ @11 | M&H | M=H | “ +11 | M$H |

n N |u “ |u ” |u ” |u|n |u~n |u*n |un |u(u |u)n
, _ . :

Thekey_stri ng correspondsto the octet sequenceintheobj ect _key member of a
GIOP Request or LocateRequest header as defined in the CORBA specification.

string_nane

A stringified name with URL escapes as defined in the Internet Engineering Task Force
(IETF) RFC 2396. These escape rules insure that URL s can be transferred viaa variety
of transports without undergoing changes. US-ASCI| al phanumeric characters are not
escaped. Characters outside this range are escaped, except for the following:

“ ;H | LL/H | “ :11 “ ?1 | “ @11 | M&H | M=H | “ +11 | M$H |

n N |u “ |u ” |u ” |u|n |u~n W |un |u(u |u)n
, _ . :

The following are some examples of using the new URL format:

cor bal oc: : 555xyz. com 1024, 555backup. com 1022, 555| ast . com 1999
cor bal ocs: : 555xyz. com 1024, { 555backup. com 1022| 555| ast. com 1999}
corbal oc:: 1. 2@55xyz. com 1111

corbalocs::1.1@4.128.122.32: 1011, 1. 0@4. 128. 122. 34

Asan enhancement to the URL syntax described inthe INS submission, BEA Tuxedo
8.0 has extended the syntax to support alist of multiple URLSs, each with a different
scheme. The following are some examples of the extension:

cor bal ocs: : 555xyz. com 1024, cor bal oc: : 1. 2@55xyz. com 1111
cor bal ocs: : ct xobj : 3434, nt hd: 3434, corbal oc: : force: 1111

In the above example, if the parser reachesthe URL cor bal oc: : force. com 1111, it
will reset its internal state asif it had never attempted secure connections and then
begins attempting unprotected connections.

CORBA Programming Reference 4-33

4 CORBA Bootstrapping Programming Reference

corbaname URL Scheme

The corbaname URL scheme extends the capabilities of the corbaloc schemeto allow
URL sto denote entries in a Naming Service. Resolving corbaname URL s does hot
require a Naming Service implementation in the ORB core. An example of a
corbaname URL is:

cor banane: 5550bj s. con#a/ stri ng/ pat h/ t o/ obj

ThisURL specifiesthat at host 5550bj s. com an object of type NamingContext (with
an object key of NamingService) can be found, or aternatively, that an agent running
at that location will return areference to a NamingContext. The stringified name

al string/ path/to/ obj isthen used asthe argument to ther esol ve operation on
that NamingContext.

A corbaname URL is similar to a corbaloc URL except that a corbaname URL & so
contains a stringified name that identifies a binding in a naming context. The #
character denotes the start of the stringified name.

The BNF syntax for the URL islisted in Table 4-10.

Table 4-10 BNF Syntax for URL

URL Element Format Description
<cor banane> = “corbanane: " <cor bal oc_obj >[cor bal oc_obj isaportion of a
“#" <string_name>] corbaname URL that identifies the

naming context. The syntax is
identicd to itsusein acorbaloc URL.

<cor bal oc_obj > <obj _addr_list>["“/"<key_string>] For a description of
obj addr _|ist,seeTable4-9.

<obj _addr _li st> Asdefinedinacorbaloc URL For a description of
obj addr _|ist,seeTable4-9.

<key_string> As defined in a corbaloc URL For adescription of key_stri ng,
see Table 4-9.

<string_nane> Stringified Name | enpty string For adescription of st ri ng_nane,
see Table 4-9.

4-34 CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

Resolution of a corbaname URL is implemented as a simple extension to corbaloc
URL processing. To illustrate the implementation, we will use the following
corbaname URL:

cor banane: <cor bal oc_obj >[“#” <stri ng_nanme>]
The resolution processis as follows:

1. Construct acorbaloc URL of the form cor bal oc: : <cor bal oc_obj > from the
corbaname URL.

2. Convert the corbaloc URL to a naming context object reference by calling
CORBA: : ORB: : string_to_obj ect toobtain aCosNani ng: : Nam ngCont ext
object.

3. Convert <string_name>to aCosNani ng: : Nane.

4. Invoke the resolve operation on the CosNani ng: : Nani ngCont ext , passing the
CosNani ng: : Name constructed.

5. The object reference returned from CosNani ng: : Nanmi ngCont ext : : r esol ve
should be returned to the caller.

By following this resolution process, you eliminate the possibility of returning an
object reference for a naming context that does not exist in the Naming Service. One
side effect of this approachisthat it requiresthat stubs for the Naming Service be part
of the ORB core or that there be an internal mechanism for sending the request for the
r esol ve operation. Because of the complexity, it is recommended that stubs for the
Naming Service be embedded within the ORB core.

Getting a FactoryFinder Object Reference Using INS

Listing 4-6 shows an example of how a client application, using INS, gets an object
reference to the FactoryFinder object. For a complete code example, see the client
application in the University Sample.

Listing4-6 Code Examplefor Getting the FactoryFinder Object

/] utility to get the registrar
static UniversityW: Registrar_ptr get _registrar(
CORBA: : ORB _ptr orb

CORBA Programming Reference 4-35

4 CORBA Bootstrapping Programming Reference

/1l Get the factory finder fromthe ORB:
CORBA: : (hj ect _var v_fact_finder_oref =
orb->resolve_initial _references("FactoryFi nder");

/1 Narrow the factory finder
Tobj : : FactoryFi nder _var v_fact_finder_ref =
Tobj :: FactoryFi nder:: _narrowv_fact _finder _oref.in());

/1 Use the factory finder to find the
/1 university's registrar factory :
CORBA: : (hj ect _var v_reg fact_oref =
v_fact _finder_ref->find one_factory_ by id(
UniversityW: tc_RegistrarFactory->id()
)

/1 Narrow the registrar factory :
Uni versityW : Regi strarFactory var v_reg fact _ref =
Uni versi tyW : Regi strar Factory:: _narrow
v_reg_fact_oref.in()

)

/1 Return the university's registrar
return v_reg fact _ref->find_registrar();

Getting a PrincipalAuthenticator Object Reference Using

INS

4-36

Listing 4-7 shows an example of how aclient application, using INS, gets an object
reference to the Principal Authenticator object. For a complete code example, see the
client application in the University Sample.

Listing 4-7 Code Examplefor Getting the Principal Authenticator Object

/1 utility to log on to the security system
static SecuritylLevel 2:: Principal Aut henticator_ptr | ogon(

CORBA: : ORB_ptr orb,
const char* pr ogr am nane,
UniversityW:Studentld stu_id

CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

/1 Get a Principal Authenticator directly fromthe ORB:
CORBA: : Cbj ect _var v_pa_obj =
orb->resolve_initial _references("Principal Authenticator");

/1 Narrow the Principal Authenticator
SecuritylLevel 2:: Principal Aut henticator_var v_pa =
SecuritylLevel 2:: Princi pal Aut henti cator:: _narrow
v_pa_obj.in());

Getting a TransactionFactory Object Reference Using INS

Asof release 8.0, BEA Tuxedo CORBA supports the use of the CORBA Transaction
Service Interface for beginning transactions. Using the

ORB: :resol ve_initial _references(*FactoryFinder”) function, aclient gets
an object reference to a FactoryFinder. The client then uses the FactoryFinder to get a
reference to a TransactionFactory, that it in turn uses to create (begin) atransaction.

Listing 4-8 shows an example of how a client application, using INS, gets an object
referenceto the TransactionFactory object. For acompl ete codeexampl e, seetheclient
application in the University Sample.

Listing 4-8 Code Examplefor a Client Application That Uses INS

/]l Get the factory finder fromthe ORB:
CORBA: : Obj ect _var v_fact_finder_oref =
orb->resolve_initial _references("FactoryFinder");

/1 Narrow the factory finder
Tobj : : FactoryFi nder _var v_fact _finder_ref =
Tobj : : FactoryFinder:: narrowv_fact_finder_oref.in());

/1 Get the TransactionFactory fromthe FactoryFi nder
CORBA: : Cbj ect _var v_txn_fac_oref =
v_fact_finder_ref->find one factory_ by id(
"I DL: ong. or g/ CosTr ansact i ons/ Transacti onFactory: 1.0");

/1 Narrow the TransactionFactory object reference
CosTransacti ons:: Transacti onFactory var v_txn_fac ref =

CORBA Programming Reference 4-37

4 CORBA Bootstrapping Programming Reference

CosTransactions:: Transacti onFactory:: narrow
v_txn_fac_oref.in());

The sequence of events using the INS bootstrapping mechanism is as follows:
1. UseORB::resolve_initial_references toget aFactoryFinder.

2. Usethe FactoryFinder to get a TransactionFactory.

3. Usethe create operation on TransactionFactory to begin a transaction.

4

. From the Control object returned from the create operation, use the
get _termi nat or method to get the transaction terminator interface.

5. Usethe commit or rollback operation on the terminator to end or abort the
transaction.

The TransactionFactory returns objects that adhere to the standard CORBA
Transaction Service interfaces instead of the BEA delegated interfaces. This means
that athird party ORB can usetheir ORB’sr esol ve_i ni ti al _r ef er ences function
to get areference to a TransactionFactory from aBEA Tuxedo CORBA server and use
stubs generated from standard OMG IDL to act on the instances returned.

Restrictions

For the BEA Tuxedo 8.0 rel ease, the actions of the TransactionFactory and theclient’s
Current are not coordinated. This means that clients should use one mechanism or the
other to control and get status about transactions, not both. Also, only the interfaces
and operations listed in Table 4-11 are supported. The other operations, as described
inthe OMG IDL, return the CORBA: : NO_| MPLENMENT exception.

Table 4-11 Supported INSInterfaces and Operations

Interface Supported Operations

TransactionFactory create

Control get_terminator
get_coordinator

Terminator commit
rollback

4-38 CORBA Programming Reference

Interoperable Naming Service Bootstrapping Mechanism

Table4-11 Supported INS Interfaces and Operations (Continued)

Interface Supported Oper ations
Coordinator get_status
rollback_only

get_transaction_name

CORBA Programming Reference 4-39

4 CORBA Bootstrapping Programming Reference

4-40 CORBA Programming Reference

CHAPTER

5

FactoryFinder Interface

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the BEA Tuxedo domain. The BEA Tuxedo
NameManager provides the mapping of factory namesto object references for the
FactoryFinder. Multiple FactoryFinders and NameM anagers together provide
increased availability and reliability. In this release the level of functionality has been
extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBAservices Naming
Service, but ismerely avehicle for storing registered factories.

Inthe BEA Tuxedo environment, application factory objects are used to create objects
that clients interact with to perform their business operations (for example,
TellerFactory and Teller). Application factories are generally created during server
initialization and are accessed by both remote clients and clients located within the
server application.

The FactoryFinder interface and the NameM anager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APISs) is
provided so that both client and server applications can access and update the factory
information.

The support for multiple domainsin this release benefits customers that need to scale
to alarge number of machines or who want to partition their application environment.
To support multiple domains, the mechanism used to find factoriesin a BEA Tuxedo
environment has been enhanced to allow factories in one domain to be visiblein
another. The visihility of factoriesin other domainsis under the control of the system
administrator.

CORBA Programming Reference 5-1

5

FactoryFinder Interface

Capabilities, Limitations, and Requirements

5-2

During server applicationinitialization, application factoriesneed to beregistered with
the NameManager. Clients can then be provided with the object reference of a
FactoryFinder to allow them to retrieve afactory object reference based on associated
names that were created when the factory was registered.

Thefollowing functional capabilities, limitations, and requirements apply to this
release:

The FactoryFinder interface is in compliance with the
CoslLi f eCycl e: : Fact or yFi nder interface.

Server applications can register and unregister application factories with the
CORBAservices Naming Service.

Clients can access objects using a single point of entry—the FactoryFinder.

Clients can construct names for objects using a simplified BEA scheme made
possible by BEA Tuxedo extensions to the CORBAservices interface or the
more general CORBA scheme.

Multiple FactoryFinders and NameM anagers can be used to increase availability
and reliability in the event that one FactoryFinder or NameManager should fail.

Support for multiple domains. Factories in one domain can be configured to be
visible in another domain under administrative control.

Two NameManager services, at a minimum, must be configured, preferably on
different machines, to maintain the factory-to-object reference mapping across
process failures. If both NameManagers fail, the master NameM anager, which
has been keeping a persistent journal of the registered factories, recovers the
previous state by processing the journal so asto re-establish its internal state.

One NameManager must be designated as the Master and the Master
NameManager must be started before the Slave. If the master NameM anager is
started after one or more Slaves, the Master assumesthat it isin recovery mode
instead of in initializing mode.

CORBA Programming Reference

Functional Description

Functional Description

The BEA Tuxedo CORBA environment promotesthe use of the factory design pattern
asthe primary meansfor aclient to obtain a reference to an object. Through the use of
thisdesign pattern, client applications require amechanism to obtain areferenceto an
object that acts as afactory for another object. Because the BEA Tuxedo environment
has chosen CORBA as its visible programming model, the mechanism used to locate
factories is modeled after the FactoryFinder as described in the CORBA services
Specification, Chapter 6 “Life Cycle Service,” December 1997, published by the
Object Management Group.

Inthe CORBA FactoryFinder model, application servers register active factories with
a FactoryFinder. When an application server’s factory becomesinactive, the
application server removes the corresponding registration from the FactoryFinder.
Client applicationslocate factories by querying aFactoryFinder. Theclient application
can control the references to the factory object returned by specifying criteriathat is
used to select one or more references.

Locating a FactoryFinder

A client application must obtain areference to a FactoryFinder before it can begin
locating an appropriate factory. To obtain areference to a FactoryFinder in the domain
to which a client application is associated, the client application can use either of two
bootstrapping mechanisms:

m InvoketheTobj _Bootstrap::resol ve_initial _references operation with
avalue of “ Fact or yFi nder ”. This operation returns areferenceto a
FactoryFinder that isin the domain to which the client application is currently
attached. You should use this mechanism if you are using the BEA Tuxedo client
software. For more information, see the section
“Tobj_Bootstrap::resolve_initial_references’ on page 4-18.

m Invokethe CORBA: : ORB: : resol ve_i ni ti al _references operation with a
value of “ Fact or yFi nder ”. This operation returns areference to a
FactoryFinder that isin the domain to which the client application is currently
attached. You should use this mechanism if you are using a third-party client

CORBA Programming Reference 5-3

FactoryFinder Interface

ORB. For more information, see the section
“CORBA::ORB::resolve initial_references’ on page 14-79.

Note: Thereferencesto the FactoryFinder that are returned to the client application
can bereferencesto factory objectsthat are registered on the same machine as
the FactoryFinder, on a different machine than the FactoryFinder, or possibly
in adifferent domain than the FactoryFinder.

Registering a Factory

5-4

For aclient application to be able to obtain areference to afactory, an application
server must register a reference to any factory object for which it provides an
implementation with the FactoryFinder (see Figure 5-1). Using the BEA Tuxedo
CORBA TP Framework, the registration of the reference for the factory object can be
accomplished using the TP: : r egi st er _f act or y operation, once areferenceto a
factory object has been created. The referenceto the factory object, along with avalue
that identifies the factory, is passed to this operation. The registration of referencesto
factory objectsistypically done as part of initialization of the application (normally as
part of the implementation of the operation Server: :initialize).

Figure5-1 Registering a Factory Object

Name

Server TPFW
Manager

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers

CORBA Programming Reference

Functional Description

When the server application is shutting down, it must unregister any references to
factory objectsthat it has previously registered in the application server. Thisis done
by passing the same reference to the factory object, along with the corresponding value
used to identify the factory, to the TP: : unr egi st er _f act or y operation. Once
unregistered, the reference to the factory object can then be destroyed. The process of
unregistering a factory with the FactoryFinder is typically done as part of the
implementation of the Ser ver : : r el ease operation. For more information about
these operations, see the section “ Server Interface” on page 3-24.

C++ Mapping
Listing 5-1 shows the C++ class (static) methods. For more information about these

methods, see the sections “ TP::register_factory()” on page 3-71 and
“TP::unregister_factory()” on page 3-73.

Listing5-1 C++ Mappingsfor the Factory Registration Pseudo OM G IDL

#i ncl ude <TP. h>

static void TP::register_factory(
CORBA: : (bj ect_ptr factory_or, const char* factory_id);

static void TP::unregister_factory (
CORBA: : (bject_ptr factory_or, const char* factory_id);

The TP. h header file contains the two method declarations. This file must to be
included in any server application that wants to use these methods.

A server application generally includes this header file within the application file that
contains the methods for application server initialization and release.

CORBA Programming Reference 5-5

5

FactoryFinder Interface

Locating a Factory

5-6

For aclient application to request afactory to create a reference to an object, it must
first obtain areference to the factory object. The reference to the factory object is
obtained by querying a FactoryFinder with specific selection criteria (see Figure 5-2).
The criteriaare determined by the format of the particular FactoryFinder interface and
method used.

Figure5-2 Locating a Factory Object

Factory Name

Client Bootstrap .
Finder Manager

resolve_initial_references

CORBA::Object

ITo bj_FF::_narrow()

find_*_factor* | find factory object in
NameManager
. IOR string
CORBA::Object <

“*

I factory::_narrow()

BEA Tuxedo CORBA extendsthe CosLi f eCycl e: : Fact or yFi nder interface by
introducing four methodsin additionto thef i nd_f act ori es() method declared for
the FactoryFinder. Therefore, using the Tobj extensions, a client can use either the
find_factories() orfind_factories_by_id() methodsto obtainalist of
application factories. A client can also usethefi nd_one_factory() or
find_one_factory_by_i d() method to obtain asingle application factory, and
list_factories () toobtainalist of al registered factories.

Note: You can used the BEA Tuxedo CORBA extensionsto the
CosLi f eCycl e: : Fact or yFi nder interface if you use the Tobj_Bootstrap
object, however, use of the Tobj_Bootstrap object is not required to locate a
factory. If you use CORBA INS, you can usethefi nd_f act ori es() method
provided by the CosLi f eCycl e: : Fact or yFi nder interface.

CORBA Programming Reference

Functional Description

The CosLi f eCycl e: : Fact or yFi nder interfacedefinesaf act ory_key, whichisa
sequence of i d and ki nd strings conforming to the CosNaming Name shown below.
Theki nd field of the NameComponent for all application factories is set to the string
Factoryl nt er f ace by the TP Framework when an application factory is registered.
Applications supply their own value for thei d field.

Assuming that the CORBA services Life Cycle Service modules are contained in their
ownfile(ns.idl andl cs.idl, respectively), only theOMG IDL codefor that subset
of both filesthat is relevant for using the BEA Tuxedo FactoryFinder is shown in the
following listings.

CORBA Programming Reference 5-7

5 FactoryFinder Interface

CORBAservices Naming Service Module OMG IDL

Listing 5-2 showsthe portionsof thens. i dI filethat arerelevant to the FactoryFinder.

Listing5-2 CORBAservices Naming OMG IDL

Io------ ns.idl ------

nmodul e CosNam ng {
typedef string Istring;
struct NanmeConponent {
Istring id;
I'string kind;
I
t ypedef sequence <NanmeConponent > Nane;

}s

/1 This information is taken from CORBAservices: Commobn Obj ect

/1 Services Specification, page 3-6. Revised Edition:

/1 March 31, 1995. Updat ed: Novenmber 1997. Used with perm ssion by
OoMG.

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-3 showsthe portions of the | cs. i dl filethat are relevant to the
FactoryFinder.

Listing5-3 LifeCycle Service OMG IDL

#include “ns.idl”

nmodul e CoslLifeCycl e{
t ypedef CosNami ng:: Nane Key;
typedef Object Factory;
typedef sequence<Factory> Factori es;

exception NoFactory{ Key search_key; }

5-8 CORBA Programming Reference

Functional Description

interface FactoryFinder {
Factories find factories(in Key factory_key)
rai ses(NoFactory);

I

/1 This information is taken from CORBAservi ces: Conmon Obj ect

/1 Services Specification, pages 6-10, 11. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
oMG.

Tobj Module OMG IDL

Listing 5-4 shows the Tobj Module OMG IDL.

Listing5-4 Tobj Module OMG IDL

Io----- Tobj.idl -----

nmodul e Tobj {
/1 Constants
const string FACTORY_KIND = "Factorylnterface";
/1l Exceptions

excepti on Cannot Proceed { };
exception I nvalidDomain {};
exception InvalidNane { };

excepti on Regi strarNot Available { };

/1 Extension to LifeCycle Service

struct FactoryConponent {
CosLifeCycl e:: Key factory_key;
CosLifeCycl e:: Factory factory_ior;

}
typedef sequence<Fact oryConponent > FactoryLi sting;
interface FactoryFi nder : CosLifeCycle::FactoryFi nder {

CosLifeCycle:: Factory find one factory(in CosLifeCycle::Key
factory_key)

CORBA Programming Reference 5-9

FactoryFinder Interface

rai ses (CosLifeCycle:: NoFactory,
Cannot Proceed,
Regi strar Not Avai | abl e) ;
CosLi feCycle::Factory find one factory by id(in string
factory_id)
rai ses (CosLifeCycle:: NoFactory,
Cannot Pr oceed,
Regi st rar Not Avai | abl e);
CosLifeCycle::Factories find factories_by id(in string
factory_id)
rai ses (CosLifeCycle:: NoFactory,
Cannot Pr oceed,
Regi st rar Not Avai | abl e);
FactoryListing list_factories()
rai ses (Cannot Proceed,
Regi strar Not Avai | abl e) ;

Locating Factories in Another Domain

5-10

Typically, a FactoryFinder returns references to factory objects that are in the same
domain as the FactoryFinder itself. However, it is possible to return references to
factory objectsin domains other than the domain in which a FactoryFinder exists. This
can occur if aFactoryFinder contains information about factories that are resident in
another domain (see Figure 5-3). A FactoryFinder finds out about these interdomain
factory objects through configuration information that describes the location of these
other factory objects.

When a FactoryFinder receives a request to locate afactory object, it must first
determine if areference to afactory object that meets the specified criteriaexists. If
thereisregistration information for a factory object that matches the criteria, the
FactoryFinder must then determineif the factory object is local to the current domain
or needs to be imported from another domain. If the factory object is from the local
domain, the FactoryFinder returns the reference to the factory object to the client.

CORBA Programming Reference

Functional Description

Figure5-3 Inter-Domain FactoryFinder Interaction

Client Bootstrap

resolve_initial_references

CORBA::Object

I Tobj_FF::_narrow()

find_*_factor*

Factory
Finder

CORBA::Object

Intra-domain
FactoryFinder

delegates request
to inter-domain
FactoryFinder

Factory Name

Finder

»| find_*_factor*

NameManager

Manager

find factory
object in

I0R string

“*

jfactory: :_narrow()

CORBA::Object |«

If, on the other hand, the information indicates that the actual factory object isfrom
another domain, the FactoryFinder delegates the request to an interdomain
FactoryFinder in the appropriate domain. Asaresult, only aFactoryFinder in the same
domain asthe factory object will contain an actual reference to the factory object. The
interdomain FactoryFinder is responsible for returning the reference of the factory
object to the local FactoryFinder, which subsequently returnsit to the client.

Why Use BEA Tuxedo CORBA Extensions?

The BEA Tuxedo software extends the interfaces defined in the CORBA services
specification, Chapter 6 “Life Cycle Service,” December 1997, published by the
Object Management Group, for the following reasons:

m Although the CORBA-defined approach is powerful and allows various selection
criteria, the interface used to query a FactoryFinder can be complicated to use.

m Additionally, if the selection criterion specified by the client application is not
specific enough, it is possible that more than one reference to a factory object
may be returned. If this occurs, it is not immediately obvious what a client

application should do next.

m Finally, the CORBAservices specification did not specify a standardized
mechanism through which an application server is to register afactory object.

CORBA Programming Reference 5-11

5

FactoryFinder Interface

Therefore, BEA Tuxedo extends the interfaces defined in the CORBAservices
specification to make using a FactoryFinder easier. The extensions are manifested as
refined interfaces to the FactoryFinder that are derived from the interfaces specified in
the CORBA services specification.

Creating Application Factory Keys

Two of the five methods provided by the FactoryFinder interface accept
CosLi f eCycl e: : Keys, which corresponds to CosNani ng: : Name. A client must be
able to construct these keys.

The CosNaming Specification describestwointerfacesthat constituteaNamesL ibrary
interface that can be used to create and manipulate CosLi f eCycl e: : Keys. The
pseudo OMG IDL statementsfor theseinterfacesis described in thefollowing section.

Names Library Interface Pseudo OMG IDL

5-12

Note: Thisinformation istaken from the CORBAservices: Common Object Services
Soecification, pp. 3-14 to18. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

To alow the representation of namesto evolve without affecting existing client
applications, it is desirable to hide the representation of names from the client
application. Ideally, names themselves would be objects; however, names must be
lightweight entities that are efficient to create, manipulate, and transmit. As such,
names are presented to programs through the names library.

The names library implements names as pseudo-objects. A client application makes
calls on a pseudo-object in the same way it makes calls on an ordinary object. Library
names are described in pseudo-1DL (to suggest theappropriate language binding). C++
client applications use the same client language bindings for pseudo-IDL (PIDL) as
they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Chapter 3 of the CORBAservices: Common Object Services Specification, in the
section “ The CosNaming Module,” the CORBA services Naming Service supports the
NamingContext OMG IDL interface. The names library supports an operation to
convert alibrary name into avalue that can be passed to the name service through the
NamingContext interface.

CORBA Programming Reference

Functional Description

Note: It isnot arequirement to use the names library in order to use the
CORBAservices Naming Service.

The names library consists of two pseudo-IDL interfaces, the L NameComponent
interface and the LName interface, as shown in Listing 5-5.

Listing5-5 NamesLibrary Interfacesin Pseudo-1DL

interface LNameConponent { // PIDL
const short MAX LNAME STRLEN = 128;

exception NotSet{ };
exception OverFlow };

string get_id
rai ses (Not Set);
void set_id(in string i)
rai ses (OverFl ow);
string get_ kind()
rai ses(Not Set) ;
void set_kind(in string k)
rai ses (OverFl ow);
voi d destroy();
}

interface LName {// PIDL
excepti on NoConponent{ };
excepti on OverFl oW };
exception InvalidName{ };
LNare insert_conponent (in unsigned long i,
i n LNameConponent n)
rai ses (NoComponent, OverFl ow);
LNarmeConponent get _conponent (i n unsigned long i)
rai ses (NoConponent);
LNarmeConponent del et e_conponent (in unsi gned long i)
rai ses (NoConponent);
unsi gned | ong num conponent s();
bool ean equal (in LName In);
bool ean | ess_than(in LNane |In);
Narme to_idl _form)
rai ses (InvalidNane);
void fromidl _form(in Name n);
voi d destroy();
b

LNane create | nane();// C C++
LNarmeConponent create_| name_conponent ();// C C++

CORBA Programming Reference 5-13

5

FactoryFinder Interface

Creating a Library Name Component

To create alibrary name component pseudo-object, use the following C/C++ function:

LNarmreConponent create_| name_conponent () ; /1 C C++

Thereturned pseudo-object can then be operated on using the operations shown in
Listing 5-5.

Creating a Library Name

To create alibrary name pseudo-object, use the following C/C++ function:

LNane create_| nanme(); /Il O C++

Thereturned pseudo-object reference can then be operated on using the operations
shown in Listing 5-5.

The LNameComponent Interface

5-14

A name component consists of two attributes: i dent i fi er and ki nd. The
L NameComponent interface defines the operations associated with these attributes, as
follows:

string get_id()

rai ses(Not Set) ;

void set_id(in string k);
string get_kind()

rai ses(Not Set) ;

void set_kind(in string k);

get _id
Theget _i d operation returnsthei denti fi er attribute’svalue. If the
attribute has not been set, the Not Set exception is raised.
set_id
Theset _i d operation setsthe i dent i fi er attribute to the string argument.
get ki nd

The get _ki nd operation returnsthe ki nd attribute' s value. If the attribute
has not been set, the Not Set exception is raised.

CORBA Programming Reference

Functional Description

set _kind
The set _ki nd operation setsthe ki nd attribute to the string argument.
The LName Interface
The following operations are described in this section:
m Destroying alibrary name component pseudo-object

m Inserting a name component

m Getting the it name component
m Deleting a name component

m Number of name components

m Testing for equality

m Testing for order

m Producing an OMG IDL form
m Trandatingan OMG IDL form

m Destroying alibrary name pseudo-object

Destroying a Library Name Component Pseudo-Object

The dest r oy operation destroys library nhame component pseudo-objects.

voi d destroy();

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
i nsert_conponent operation inserts acomponent after positioni .

LNane insert_conponent (in unsigned long i, in LNaneConponent |nc)
rai ses(NoConponent, OverFl ow);

If component i -1 isundefined and component i is greater than 1 (one), the
i nsert_conponent operation raises the NoConponent exception.

CORBA Programming Reference 5-15

5 FactoryFinder Interface

If the library cannot allocate resources for the inserted component, the Over Fl ow
exception is raised.

Getting the i™ Name Component

The get _conponent operation returnsthei th component. The first component is
numbered 1 (one).

LNanmeConponent get conponent (i n unsi gned long i)
rai ses(NoConponent) ;

If the component does not exist, the NoConponent exception is raised.

Deleting a Name Component

Thedel et e_conponent operation removes and returnsthe i th component.

LNaneConponent del ete_conponent (i n unsigned long i)
r ai ses(NoConponent)

If the component does not exist, the NoConponent exception is raised.

After adel et e_conponent operation has been performed, the compound name has
one fewer component and components previously identified asi +1...n are now
identified asi ...n-1.

Number of Name Components
Thenum conponent s operation returns the number of componentsin alibrary name.

unsi gned | ong num conponents();

Testing for Equality

The equal operation tests for equality with library namel n.

bool ean equal (in LNane |In);

Testing for Order

Thel ess_t han operation tests for the order of alibrary namein relation to library
namel n.

5-16 @ CORBA Programming Reference

Functional Description

bool ean I ess_than(in LNane |In);

This operation returns TRUE if thelibrary nameis lessthan the library namel n passed
as an argument. The library implementation defines the ordering on names.

Producing an OMG IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed acrossthe OMG IDL interface for the
CORBAservices Naming Service. Several operationsin the NamingContext interface
have arguments of an OMG IDL-defined structure, Nane. The following PIDL
operation on library names produces a structure that can be passed across the OMG
IDL request.

Narme to_idl _form)
rai ses(l nval i dNane);

If the name is of length O (zero), thel nval i dNane exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed acrossthe OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations
that return an IDL struct of type Name. Thefollowing PIDL operation on library names
sets the components and ki nd attribute for alibrary name from areturned OMG IDL
defined structure, Nane.

void fromidl _form(in Name n);

Destroying a Library Name Pseudo-Object

The dest r oy operation destroys library name pseudo-objects.

voi d destroy();

C++ Mapping

The Names Library pseudo OMG IDL interface mapsto the C++ classes shown in
Listing 5-6, which can be found in the NanesLi b. h header file.

CORBA Programming Reference 5-17

5 FactoryFinder Interface

Two BEA Tuxedo extensions to CORBA are included to support scalability.
Specifically, the LNameConponent : : set _i d() and

LNaneConponent : : set _ki nd() methodsraise an Over Fl owexception if the length
of the input string exceeds MAX_LNAME_STRLEN. This length coincides with the
maximum length of the BEA Tuxedo object ID (OID) and interface name. For a
detailed description of the Library Name class, see the section “Names Library
Interface Pseudo OMG IDL" on page 5-12.

Listing5-6 Library NameClass

const short MAX LNAME STRLEN = 128;

class LNanmeConponent {
public:
class NotSet{ };
cl ass OverFl oW };
stati c LNaneConponent* create_| name_conponent();
voi d destroy();
const char* get _id() const throw (NotSet);

voi d set _id(const char* i) throw (OverFl ow);
const char* get _kind() const throw (NotSet);
voi d set _kind(const char* k) throw (OverFl ow);
I
class LNane {
public:

cl ass NoConponent{ };
class OverFlow };
class InvalidNanme{ };
static LNane* create_| nane();
void destroy();
LName* insert_conponent (const unsigned long i,
LNameConponent * n)
throw (NoConponent, OverFl ow);
const LNameConponent* get_conponent (
const unsigned long i) const
throw (NoConponent) ;
const LNameConponent* del et e_conponent (
const unsigned long i)
throw (NoConponent) ;
unsi gned | ong num conmponents() const;
CORBA: : Bool ean equal (const LName* In) const;
CORBA: : Bool ean | ess_t han(
const LNane* |In) const; // not inplenmented
CosNami ng: : Name* to_idl _forn()
throw (I nvalidNamne);

5-18 CORBA Programming Reference

Functional Description

void from.idl _formconst CosNam ng:: Nane& n);

Java Mapping

The Names Library pseudo OMG IDL interface maps to the Java classes contained in
thecom beasys. Tobj package, showninListing 5-7. All exceptionsare containedin
the same package.

For a detailed description of the Library Name class, refer to Chapter 3 in the
CORBAservices: Common Object Services Specification.

Listing 5-7 Java Mapping for LNameComponent

public class LNameConponent {

b

public static LNanmeConponent create_| nane_conponent();
public static final short MAX LNAVE STRI NG = 128;
public void destroy();
public String get_id() throws Not Set;
public void set_id(String i) throws OverFl ow,
public String get_kind() throws Not Set;

c

public void set_kind(String k) throws OverFl ow,

public class LNanme {

}s

public static LNane create_| nane();

public void destroy();

public LName insert_conponent (long i, LNameConponent n)
t hrows NoConponent, Over Fl ow,

publ i ¢ LNameConponent get_conponent(long i)
throws NoConponent;

publ i ¢ LNameConponent del ete_conponent (long i)
throws NoConponent;

public |long num conponents();

publ i ¢ bool ean equal (LName | n);

public bool ean | ess_than(LNanme In);// not inplenented

publ i c org. onmg. CosNam ng. NameConmponent[] to_idl _form)
throws | nval i dNane;

public void from.dl _formorg. omy. CosNam ng. NaneConponent[] nr);

CORBA Programming Reference 5-19

5

FactoryFinder Interface

C++ Member Functions and Java Methods

5-20

This section describes the FactoryFinder C++ member functions and Java methods.

Note: All FactoryFinder member functions, except thel ess_t han member function
in LName, are implemented in both C++ and Java.

The following methods are described in this section:

m CoslLifeCycle::FactoryFinder::find factories

m Tobj::
m Tobj::
m Tobj::
m Tobj::

Note:

Fact oryfi nder:
Fact oryfi nder:
Fact oryfi nder:

Factoryfinder::

:find_one _factory
:find_one factory by id

:find _factories_by id

list _factories

The CosLifeCycle:: FactoryFinder::find_factori es methodisthe
standard CORBA CosL ifeCycle method. The four Tobj methods are
extensions to the CosL ifeCycle interface and, therefore, inherit the attributes
of the CosLifeCycle interface.

CORBA Programming Reference

C++ Member Functions and Java Methods

CosLifeCycle::FactoryFinder::find_factories

Synopsis
C++ Mapping

Java Mapping

Parameter

Exception

Description

Obtains a sequence of factory object references.

CoslLi feCycl e:: Factories *
CORBA: : (bj ect _ptr CosLifeCycle:: FactoryFinder::find factories(
const CosNami ng: : Nane& factory_key)
throw (CosLifeCycl e:: NoFactory);

i mport org.ony. CosLi feCycle.*;

public org.ong. CORBA. Obj ect[] find factories(
or g. ong. CosNam ng. NaneConponent[] factory_key)
t hrows org. ong. CosLi f eCycl e. NoFact ory;

factory_key
This parameter isan unbounded sequence of NameComponents (tuple of <id,
kind> pairs) that uniquely identifies a factory object reference.
A NameComponent is defined as a having two members: ani d and aki nd,
both of typestring. Thei d field is used to represent the identity of factory
object. Theki nd field isused to indicate how the value of thei d field should
be interpreted.
References to factory object registered using the operation
TP: : regi ster_factory will have akind value of “ Fact oryl nt erf ace”.

CORBA: : BAD_PARAM
Indicates that the value of aninput parameter has an inappropriate valueor is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter f act or y_key is specified.

CosLi feCycl e:: NoFact ory
Indicates that there are no factories registered that match the information in
thef act ory_key parameter.

Thefind_factories method iscaled by an application to obtain a sequence of
factory object references. The operation is passed a key used to identify the desired
factory. The key isaname, as defined by the CORBA services Naming service. More
than one factory may match the key, and, if that is the case, the FactoryFinder returns
a sequence of factories.

The scope of the key is the FactoryFinder. The FactoryFinder assigns no semantics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

CORBA Programming Reference 5-21

5 FactoryFinder Interface

Key vaues are considered equal if they are of equal length (same number of elements
in the sequence), and if every NameComponent value in the key matches the
corresponding NameComponent value at the exact same location in the key that was
specified when the reference to the factory object was registered.

Return Values An unbounded sequence of references to factory objects that match the information
specified asthe value of thef act ory_key parameter. In C++, the method returns a
seguence of object references of type CosLi f eCycl e: : Fact or y. In Java, the method
returns an unbounded array of object references of type or g. ong. CORBA. Obj ect .

If the operation raises an exception, the return value isinvalid and does not need to be
released by the caller.

5-22 CORBA Programming Reference

C++ Member Functions and Java Methods

Tobj::FactoryFinder::find_one_factory

Synopsis
C++ Mapping

Java Mapping

Parameter

Exceptions

Obtains a reference to a single factory object.

vi rtual

public

CosLifeCycl e:: Factory_ptr
find one_factory(const CosNam ng:: Nane& factory_key) = O;

or g. ong. CORBA. Obj ect

find _one_factory(org. ong. CosNam ng. NanmeConponent [] factory_key)
t hr ows

org. ong. CosLi feCycl e. NoFact ory,
com beasys. Tobj . Cannot Proceed,
com beasys. Tobj . Regi strar Not Avai | abl e;

factory_key

CORBA: :

This parameter isan unbounded sequence of NameComponents (tuple of <id,
kind> pairs) that uniquely identifies a factory object reference.

A NameComponent is defined as a having two members: ani d and aki nd,
both of typestring. Thei d field is used to represent the identity of factory
object. Theki nd field isused to indicate how the value of thei d field should
be interpreted.

References to factory object registered using the operation

TP: : regi ster_factory will haveakind value of “ Factoryl nt erf ace”.

BAD_PARAM

Indicates that the value of aninput parameter has an inappropriate valueor is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter f act or y_key is specified.

CosLi feCycl e:: NoFact ory

Indicates that there are no factories registered that match the information in
thef act ory_key parameter.

Tobj : : Cannot Proceed

Indicates that the FactoryFinder or NameM anager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj : : Regi st rar Not Avai | abl e

Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.

CORBA Programming Reference 5-23

5 FactoryFinder Interface

Description

Return Values

Thefind_one_f act ory methodiscalled by anapplicationto obtain areferenceto a
single factory object whose key matches the value of the key specified asinput to the
method. If more than one factory object is registered with the specified key, the
FactoryFinder selects one factory object based on the FactoryFinder’ s load balancing
scheme. As aresult, invoking thefi nd_one_f act or y method multiple times using
the same key may return different object references.

The scope of the key isthe FactoryFinder. The FactoryFinder assigns no semanticsto
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factory or objects they create.

Key vaues are considered equal if they are of equal length (same number of elements
in the sequence), and if every NameComponent value in the key matches the
corresponding NameComponent value at the exact same location in the key that was
specified when the reference to the factory object was registered.

An object referencefor afactory object. In C++, the method returns an object reference
of type CosLi f eCycl e: : Fact ory. In Java, the method returns an object reference of
type or g. ong. CORBA. (bj ect .

If the operation raises an exception, the return value isinvalid and does not need to be
released by the caller.

5-24 CORBA Programming Reference

C++ Member Functions and Java Methods

Tobj::FactoryFinder::find_one_factory by id

Synopsis
C++ Mapping

Java Mapping

Parameter

Exceptions

Description

Obtains a reference to a single factory object.

virtual CosLifeCycle::Factory ptr
find one_factory by id(const char * factory_ id) = 0;

public org. ong. CORBA. Obj ect
find one_factory by id(java.lang.String factory_id)
t hr ows
or g. ong. CoslLi f eCycl e. NoFactory,
com beasys. Tobj . Cannot Pr oceed,
com beasys. Tobj . Regi st rar Not Avai | abl e;

factory_id
A NULL-terminated string that contains a value that is used to identify the
registered factory object to be found.
Thevaue of thef act ory_i d parameter isused asthe value of thei d field
of aNameComponent that has aki nd field with the value
“Factoryl nterface” when comparing against registered references for
factory objects.

CORBA: : BAD_PARAM
Indicates that the value of aninput parameter has an inappropriate valueor is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter f act or y_key is specified.

CosLi feCycl e:: NoFact ory
Indicates that there are no factories registered that match the information in
thef act ory_key parameter.

Tobj : : Cannot Proceed
Indicates that the FactoryFinder or NameM anager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj : : Regi st rar Not Avai | abl e
Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.

Thefind_one_factory_by_id method is called by an application to obtain a
reference to a single factory object whose registration D matches the value of the ID
specified asinput to the method. If more than one factory object is registered with the

CORBA Programming Reference 5-25

5 FactoryFinder Interface

specified ID, the FactoryFinder sel ects onefactory object based on the FactoryFinder’s
load balancing scheme. Asaresult, invoking thefi nd_one_factory_by_id
operation multiple times using the same ID may return different object references.

Thefind_one_factory_by_ i d method behaves the same asthe
find_one_fact ory operation that was passed a key that contains asingle
NameComponent with ani d field that contains the ssmevalue asthef actory_i d
parameter and aki nd field that containsthe value “ Fact oryl nt er f ace” .

Theregistered identifier for afactory is considered equal to the value of the
factory_i d parameter if the result of constructing a CosLi f eCycl e: : Key structure
containing a single NameComponent that hasthef act ory_i d parameter as the value
of thei d field and thevalue“ Fact oryl nt er f ace” asthevalue of theki nd field. The
values must match exactly in all respects (case, location, etc.).

Return Values An object referencefor afactory object. In C++, the method returnsan object reference
of type CosLi f eCycl e: : Fact ory. In Java, the method returns an object reference of
type or g. ong. CORBA. (bj ect .

If the operation raises an exception, the return value isinvalid and does not need to be
released by the caller.

5-26 CORBA Programming Reference

C++ Member Functions and Java Methods

Tobj::FactoryFinder::find_factories_by id

Synopsis
C++ Mapping

Java Mapping

Parameter

Exceptions

Obtains a sequence of one or more factory object references.

virtual CosLifeCycle::Factories *
find factories by id(const char * factory_ id) = 0;

public org. ong. CORBA. Obj ect[]
find factories by id(java.lang.String factory_id)
t hr ows
org. ong. CosLi feCycl e. NoFact ory,
com beasys. Tobj . Cannot Proceed,
com beasys. Tobj . Regi strar Not Avai | abl e;

factory_id
A NULL-terminated string that contains a value that is used to identify the
registered factory object to be found.
Thevaue of thef act ory_i d parameter isused asthe value of thei d field
of aNameComponent that has aki nd field with the value
“Factoryl nterface” when comparing against registered references for
factory objects.

CORBA: : BAD_PARAM
Indicates that the value of aninput parameter has an inappropriate valueor is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter f act or y_key is specified.

CosLi feCycl e:: NoFact ory
Indicates that there are no factories registered that match the information in
thef act ory_key parameter.

Tobj : : Cannot Proceed
Indicates that the FactoryFinder or NameM anager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj : : Regi st rar Not Avai | abl e
Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.

CORBA Programming Reference 5-27

5 FactoryFinder Interface

Description

Return Values

Thefind_factories_by_i d methodiscalled by an application to obtain a sequence
of one or more factory object references. The method is passed a NULL -terminated
string that contains the identifier of the factory to be located. If more than one factory
object is registered with the specified D, the FactoryFinder will return alist of object
references for the matching registered factory objects.

Thefind_factories_by_ i dmethod behavesthe sasmeasthefind factory
operation that was passed a key that contains a single NameComponent with ani d
field that contains the same value asthef act ory_i d parameter and aki nd field that
containsthevalue*“ Factoryl nt erf ace”.

Theregistered identifier for afactory is considered equal to the value of the
factory_i d parameter if the result of constructing a CosLi f eCycl e: : Key structure
containing a single NameComponent that hasthef act ory_i d parameter as the value
of thei d field and thevalue“ Fact oryl nt er f ace” asthevalue of theki nd field. The
values must match exactly in all respects (case, location, etc.).

An unbounded sequence of references to factory objects that match the information
specified asthe value of thef act ory_key parameter. In C++, the method returns a
seguence of object references of type CosLi f eCycl e: : Fact or y. In Java, the method
returns an unbounded array of object references of type or g. ong. CORBA. Obj ect .

If the operation raises an exception, the return value isinvalid and does not need to be
released by the caller.

5-28 CORBA Programming Reference

C++ Member Functions and Java Methods

Tobj::Factoryfinder::list_factories

Synopsis
C++ Mapping
Java Mapping

Exception

Description

Return Values

Obtains alist of factory objects currently registered with the FactoryFinder.
virtual FactoryListing * list _factories() = O;

public com beasys. Tobj . Fact oryConponent[] |ist_factories()
t hr ows
com beasys. Tobj . Cannot Pr oceed,
com beasys. Tobj . Regi strar Not Avai | abl e;

Tobj : : Cannot Proceed
Indicates that the FactoryFinder or NameM anager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj : : Regi st rar Not Avai | abl e
Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.

Thel i st _factories methodiscalled by an application to obtain alist of the factory
objects currently registered with the FactoryFinder. The method returns both the key
used to register the factory, as well as areference to the factory object.

An unbounded sequence of Tobj : : Fact or yConponent . Each occurrence of a
Tobj : : Fact or yConponent in the sequence contains areference to the registered
factory object, as well as the CosLi f eCycl e: : Key that was used to register that
factory object.

If the operation raises an exception, thereturn value isinvalid and does not need to be
released by the caller.

CORBA Programming Reference 5-29

5 FactoryFinder Interface

Automation Methods

This section describes the DI Tobj_FactoryFinder Automation methods.

5-30 CORBA Programming Reference

Automation Methods

DITobj_FactoryFinder.find_one_factory

Synopsis
MIDL Mapping

Automation
Mapping

Parameters

Exceptions

Obtains a single application factory.

HRESULT find_one_factory(
[in] VARIANT factory_key,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] |Dispatch** returnVal ue);

Function find one_factory(factory_ key, [exceptionlnfo]) As (bject

factory_key
This parameter contains a safe array of DICosNaming_NameComponent
(<id, kind> value pairs) that uniquely identifies a factory object reference.

exceptionl nfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

NoFact ory
Thisexception israised if the FactoryFinder cannot find an application
factory object reference that correspondsto the input f act ory_key.

Cannot Pr oceed
This exception israised if the FactoryFinder or CORBA services Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exceptionisraised. Depending on the severity of theinternal error, the server
running the FactoryFinder or CORBA services Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If no naming services serversare running,
restart the application.

Regi strar Not Avai |l abl e
Thisexception israised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exception israised. If no naming services servers are
running, restart the application.

CORBA Programming Reference 5-31

5 FactoryFinder Interface

Description This member function instructs the FactoryFinder to return one application factory
object reference whose key matchesthe input f act or y_key. To accomplish this, the
member function performs an equality match; that is, every NameComponent <id,
kind> pair inthe input f act or y_key must exactly match each <id, kind> pair in the
application factory’ skey. If multiplefactory keys contain theinput f act ory_key, the
FactoryFinder selects one factory key, based on an internally defined load balancing
scheme. Invoking fi nd_one_f act or y multiple times using the samei d may return
different object references.

Return Values Returns areference to an interface pointer for the application factory.

5-32 CORBA Programming Reference

Automation Methods

DITobj_FactoryFinder.find_one_factory by id

Synopsis
MIDL Mapping

Automation
Mapping

Parameters

Exceptions

Obtains a single application factory.

HRESULT find_one_factory_by_id(
[in] BSTR factory_id,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] |Dispatch** returnVal ue);

Function find one factory by id(factory id As String,
[exceptionlnfo]) As Object

factory_id
This parameter represents a string identifier that is used to identify the kind
or type of application factory. For some suggestions as to the composition of
this string, see Creating CORBA Server Applications.

exceptionl nfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

NoFact ory
Thisexception israised if the FactoryFinder cannot find an application
factory object reference that correspondsto theinput f act ory_i d.

Cannot Pr oceed
This exception israised if the FactoryFinder or CORBA services Naming
Service encounter an internal error during the search, with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exceptionisraised. Depending on the severity of theinternal error, the server
running the FactoryFinder or the CORBA services Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If there are no naming services running,
restart the application.

Regi strar Not Avai |l abl e
Thisexception israised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exception israised. If no naming service servers are
running, restart the application.

CORBA Programming Reference 5-33

5 FactoryFinder Interface

Description This member function instructs the FactoryFinder to return one application factory
object reference whose i d in the key matches the method' sinput f act ory_i d. To
accomplish this, the member function performs an equality match (that is, the input
factory_i d must exactly match thei d in the <id,kind> pair in the application
factory’s key). If multiple factory keys contain the input f act ory_i d, the
FactoryFinder selects one factory key, based on an internally defined load balancing
scheme. Invoking fi nd_one_f actory_by_i d multipletimesusing the samei d may
return different object references.

Return Values Returns areference to an interface pointer for the application factory.

5-34 CORBA Programming Reference

Automation Methods

DITobj_FactoryFinder.find_factories_by id

Synopsis
MIDL Mapping

Automation
Mapping

Parameters

Exceptions

Obtains alist of application factories.

HRESULT find_factories_by id(
[in] BSTR factory_id,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] VAR ANT* returnVal ue);

Function find factories by id(factory_ id As String,
[exceptionl nfo])

factory_id
This parameter represents a string identifier that will be used to identify the
kind or type of application factory. The Creating CORBA Client Applications
online document provides some suggestions as to the composition of this
string.

exceptionl nfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

NoFact ory
This exception israised if the FactoryFinder cannot find an application
factory object reference that correspondsto the input f act ory_key or
factory_id.

Cannot Pr oceed
This exception israised if the FactoryFinder or CORBA services Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exceptionisraised. Depending on the severity of theinternal error, the server
running the FactoryFinder or CORBA services Naming Service may have
terminated. If a FactoryFinder service hasterminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If no naming services serversare running,
restart the application.

Regi strar Not Avai |l abl e
This exception israised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff

CORBA Programming Reference 5-35

5 FactoryFinder Interface

immediately if thisexception israised. If no naming services servers are
running, restart the application.

Description This member function instructsthe FactoryFinder to return alist of application factory
object references whose i d in the keys match the method’sinput f act ory_i d. To
accomplish this, the member function performs an equality match (that is, the input
factory_i d must exactly match each i d in the <id,kind> pair in the application
factory’s keys).

Return Values Returns avariant containing an array of interface pointers to application factories.

5-36 CORBA Programming Reference

Automation Methods

DITobj_FactoryFinder.find_factories

Synopsis Obtains alist of application factories.

MIDL Mapping HRESULT fi nd_f act ori es(
[in] VARIANT factory_key,
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] VAR ANT* returnVal ue);

Automation Function find_factories(factory key, [exceptionlnfo])
Mapping

Parameters factory_key

This parameter contains a safe array of DICosNaming_NameComponents
(<id, kind> value pairs) that uniquely identifies a factory object reference.

exceptionlnfo

An optional input argument that enables the application to get additional

exception data if an error occurred.

Exception NoFactory

Thisexception israised if the FactoryFinder cannot find an application
factory object reference that correspondsto the input f act ory_key.

Description Thefind_f act ori es method instructs the FactoryFinder to return alist of server
application factory object references whose keys match the method's input key. The
BEA Tuxedo system assumes that an equality match is to be performed. This means
that for thetwo sequences of <id,kind> pairs (those corresponding to theinput key and
those in the application factory’s keys), each are of equal length; for every pair in one

sequence, thereis an identical pair in the other.

Return Values Returns a variant containing an array of interface pointersto application factories.

CORBA Programming Reference

5-37

5 FactoryFinder Interface

DITobj_FactoryFinder.list_factories

Synopsis
MIDL Mapping

Automation
Mapping

Parameter

Exception

Description

Return Values

Lists al of the application factory names and object references.

HRESULT |ist_factories(
[in,out,optional] VARIANT* exceptionlnfo,
[out,retval] VARIANT* returnVal ue);

Function list_factories([exceptionlnfo])

exceptionlnfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

Cannot Pr oceed
Thisexceptionisraised if the FactoryFinder or the CORBAservices Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception israised. Depending on the severity of theinternal error, the server
running the FactoryFinder or the CORBA services Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If there are no naming service servers
running, restart the application.

Regi st rar Not Avai | abl e
This exception israised if the FactoryFinder object cannot |ocate the
CORBAservices Naming Service object. Notify the operations staff
immediately if thisexception israised. It is possible that no naming service
servers are running. Restart the application.

This method instructs the FactoryFinder to return alist containing all of the factory
keys and associated object references for application factories registered with the
CORBAservices Naming Service.

Returns a variant containing an array of DITobj_FactoryComponent objects. The
FactoryComponent object consists of a variant containing an array of
DICosNaming_NameComponent objects and an interface pointer to the application
factory.

5-38 CORBA Programming Reference

Programming Examples

Programming Examples

This section describes how to program using the FactoryFinder interface.

Note: Remember to check for exceptions in your code.

Using the FactoryFinder Object

A FactoryFinder object is used by programmersto locate a reference to a factory
object. The FactoryFinder object provides operationsto obtain one or more references
to factory objects based on the criteria specified.

There can be more than one FactoryFinder object in a process address space. Multiple
references to a FactoryFinder object must be supported. A FactoryFinder object is
semi-stateful in that it maintains state about the association between FactoryFinder
objects within adomain and a particular [1OP Server Listener/Handler (ISL/ISH)
through which to access the domain.

All FactoryFinder objects support the CosLi f eCycl e: : Fact or yFi nder interface as
defined in CORBA services Specification, Chapter 6 “Life Cycle Service,” December
1997, published by the Object Management Group. The interface contains one
operation that is used to obtain one or more references to factory objects that meet the
criteria specified.

Registering a Reference to a Factory Object

The following code fragment (Listing 5-8) shows how to use the TP Framework
interface to register a reference to a factory object with a FactoryFinder.

Listing 5-8 Server Application: Registering a Factory

/1 Server Application: Registering a factory.
/1 C++ Exanpl e.

TP::register _factory(factory obj.in(), “TellerFactory”);

CORBA Programming Reference 5-39

5 FactoryFinder Interface

Obtaining a Reference to a FactoryFinder Object Using the
CosLifeCycle::FactoryFinder Interface

The following code fragment (Listing 5-9) shows how to use of the
CORBA-compliant interface to obtain one or more references to factory objects.

Listing 59 Client Application: Getting a FactoryFinder Object Reference

/1 Client Application: Qotaining the object reference
/1 to factory objects.

CosLifeCycle::Key var factory_key = new CosLifeCycle:: Key();
factory _key ->length(1);
factory key[O].id=string_dupalloc(“strlien(“TellerFactory”) +1);
factory key[O].kind = string_dupall oc(
strlen(““Factorylnterface”) + 1);

strcpy(factory key[O].id, “"TellerFactory”);
strcpy(facory_key[O].kind, “Factorylnterface”);
CoslLifeCycle::Factories var * flp = ff _np ->

find factories(factory key.in());

Obtaining a Reference to a FactoryFinder Object Using the Extensions
Bootstrap object

Thefollowing code fragment (Listing 5-10) shows how to use of the BEA Tuxedo
extensions Bootstrap object to obtain a reference to a FactoryFinder object.

Listing 5-10 Client Application: Finding OneFactory Using the Tobj Approach

/1 Client Application: Finding one factory using the Tobj
/| approach.

Tobj Bootstrap * bsp = new Tobj _Bootstrap(
orb_ptr.in(), host_port);
CORBA: : Obj ect _varptr ff_op = bsp ->
resolve_initial _references(“FactoryFinder”);
Tobj : : Fact oryFi nder _ptrvar ff np =
Tobj :: FactoryFinder:: _narrowm ff_op);

5-40 CORBA Programming Reference

Programming Examples

Note: You can used the BEA Tuxedo CORBA extensions to the
CosLi feCycl e: : Fact or yFi nder interface if you use the Tobj_Bootstrap
object, however, use of the Tobj_Bootstrap object is not required to locate a
factory. If you use CORBA INS, you can usethefi nd_f act ori es() method
provided by the CosLi f eCycl e: : Fact or yFi nder interface.

Using Extensions to the FactoryFinder Object

BEA Tuxedo extends the FactoryFinder object with functionality to support similar
capabilities to those provided by the operations defined by CORBA, but with a much
simpler and more restrictive signature. The enhanced functionality is provided by
defining the Tobj : : Fact or yFi nder interface. The operations defined for the

Tobj : : Fact or yFi nder interface are intended to provide a focused, simplified form
of the equivalent capability defined by CORBA. An application developer can choose
to use the CORBA-defined or BEA Tuxedo extensions when devel oping an
application. The interface Tobj : : Fact or yFi nder isderived from the

CoslLi feCycl e: : Fact or yFi nder interface.

BEA Tuxedo extensionsto the FactoryFinder object adhereto all the samerulesasthe
FactoryFinder object defined in the CORBA services Specification, Chapter 6 “Life
Cycle Service,” December 1997, published by the Object Management Group.

The implementation of the extended FactoryFinder object requires users to supply
either aCoslLi f eCycl e: : Key, asin the CORBA-defined

CosLi feCycl e: : Fact or yFi nder interface, or aNULL-terminated string containing
the identifier of afactory object to be located.

Obtaining One Factory Using Tobj::FactoryFinder

The following code fragment (Listing 5-11) shows how to use the BEA Tuxedo
extensions interface to obtain one reference to a factory object based on an identifier.

Listing5-11 Client Application: Finding Factories Using the BEA Tuxedo
Extensions Approach

CosLi feCycle:: Factory _ptrvar fp_obj = ff_np ->
find_one factory by id(“TellerFactory”);

CORBA Programming Reference 5-41

5 FactoryFinder Interface

Obtaining One or More Factories Using Tobj::FactoryFinder

Thefollowing code fragment (Listing 5-12) shows how to use the BEA Tuxedo
extensions to obtain one or more references to factory objects based on an identifier.

Listing 5-12 Client Application: Finding Oneor More FactoriesUsing the BEA
Tuxedo Extensions Approach

CoslLifeCycle::Factories * var flp = ff_np ->
find factories by id(“TellerFactory”);

5-42 CORBA Programming Reference

CHAPTER

O Security Service

For adetailed discussion of Security, see Using Security in CORBA Applications. This
document provides an introduction to crytography and other concepts associated with
the BEA Tuxedo security features, a description of how to secure your BEA Tuxedo
applications using the security features, and a guide to the use of the application
programming interfaces (APIs) in the Security Service.

A PDF file of Using Security in CORBA Applicationsis also provided in the online
documentation.

CORBA Programming Reference 6-1

6 Security Service

6-2 CORBA Programming Reference

CHAPTER

[Transactions Service

For adetailed discussion of Transactions, see Using CORBA Transactions. This
document provides an introduction to transactions, a description of the application
programming interfaces (APIs), and aguide to the use of the application programming
interfaces (APIs) to develop applications.

A PDF file of Using CORBA Transactionsis also provided in the online
documentation.

CORBA Programming Reference 7-1

7 Transactions Service

7-2 CORBA Programming Reference

CHAPTER

8 Notification Service

For adetailed discussion of the Notification Service, see Using the CORBA
Notification Service. This document provides an introduction to the Notification
Service, a description of the application programming interfaces (APIs), and aguide
to the use of the APIs to develop applications.

A PDF file of Using the CORBA Notification Service is also provided in the online
documentation.

CORBA Programming Reference 8-1

8 Notification Service

8-2 CORBA Programming Reference

CHAPTER

O Request-Level
Interceptors

For a detailed discussion of request-level interceptors, see Using CORBA
Request-Level Interceptors. This document provides an introduction to request-level
interceptors, a description of the application programming interfaces (APIs), and a
guide to the use of the APIs to implement request-level interceptors.

A PDFfile of Using CORBA Request-Level Interceptorsisalso provided in the online
documentation.

CORBA Programming Reference 9-3

9 Request-Level Interceptors

9-4 CORBA Programming Reference

CHAPTER

10OCORBA Interface

Repository Interfaces

This chapter describes the BEA Tuxedo CORBA Interface Repository interfaces.

Note: Most of the information in this chapter is taken from Chapter 10 of the
Common Object Request Broker: Architecture and Specification, Revision
2.4.2, February 2001. The OMG information has been modified asrequired to
describe the BEA Tuxedo CORBA implementation of the Interface
Repository interfaces. Used with permission of the OMG.

The BEA Tuxedo CORBA Interface Repository containsthe interface descriptions of
the CORBA objects that are implemented within the BEA Tuxedo domain.

The Interface Repository isbased on the CORBA definition of an | nterface Repository.
It offersa proper subset of the interfaces defined by CORBA; that is, the APIsthat are
exposed to programmers are implemented as defined by the Common Object Request
Broker: Architecture and Specification Revision 2.4. However, not al interfaces are
supported. In general, theinterfaces required to read from the Interface Repository are
supported, but the interfaces required to write to the Interface Repository are not.
Additionally, not al TypeCode interfaces are supported.

Administration of the Interface Repository is done using tools specific to the BEA
Tuxedo software. Thesetools allow the system administrator to create an Interface
Repository, populate it with definitions specified in Object Management Group
Interface Definition Language (OMG IDL), and then delete interfaces. Additionally,
an administrator may need to configure the system to include an Interface Repository
server. For adescription of the | nterface Repository administration commands, see the
BEA Tuxedo Command Reference and Setting Up a BEA Tuxedo Application.

CORBA Programming Reference 10-1

10 corBA Interface Repository Interfaces

Several abstract interfaces are used as base interfaces for other objectsin the Interface
Repository. A common set of operations is used to locate objects within the I nterface
Repository. These operations are defined in the abstract interfaces IRObject,
Container, and Contained described in this chapter. All Interface Repository objects
inherit from the IRObject interface, which provides an operation for identifying the
actual type of the object. Objectsthat are containersinherit navigation operationsfrom
the Container interface. Objects that are contained by other objectsinherit navigation
operations from the Contained interface. The IDL Type interface is inherited by all
Interface Repository objects that represent OMG IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface is inherited by all named
noninterface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not
instantiable.

All string data in the Interface Repository are encoded as defined by the SO 8859-1
character set.

Note: TheWriteinterface is not documented in this chapter because the BEA
Tuxedo software supports only read access to the Interface Repository. Any
attempt to use the Write interface to the Interface Repository will raise the
exception CORBA: : NO_| MPLENVENT.

Structure and Usage

10-2

The Interface Repository consists of two distinct components: the database and the
server. The server performs operations on the database.

The Interface Repository database is created and populated using thei dl 2i r
administrative command. For a description of this command, see the BEA Tuxedo
Command Reference and Setting Up a BEA Tuxedo Application. From the
programmer’ s point of view, thereis no write accessto the I nterface Repository. None
of the write operations defined by CORBA are supported, nor are set operations on
nonread-only attributes.

CORBA Programming Reference

Structure and Usage

Read access to the Interface Repository database is always through the Interface
Repository server; that is, a client reads from the database by invoking methods that
are performed by the server. The read operations as defined by the CORBA Common
Object Request Broker: Architecture and Secification, Revision 2.4, are described in
this chapter.

Programming Information

The interface to a server is defined in the OMG IDL file. How the OMG IDL fileis
accessed depends on the type of client being built. Three types of clients are
considered: stub based, Dynamic Invocation Interface (DII), and ActiveX.

Client applications that use stub-style invocations need the OMG IDL file at build
time. The programmer can use the OMG IDL fileto generate stubs, and so forth. (For
more information, see Creating CORBA Client Applications.) No other accessto the
Interface Repository is required.

Client applicationsthat use the Dynamic Invocation Interface (DIl) need to access the
Interface Repository programmatically. The interface to the Interface Repository is
defined in this chapter and is discussed in “Building Client Applications’ on

page 10-5. The exact stepstaken to access the I nterface Repository depend on whether
the client is seeking information about a specific object, or browsing the Interface
Repository to find an interface. To obtain information about a specific object, clients
usethe CORBA: : Cbj ect: : _get _i nt er f ace method to obtain an InterfaceDef object.
(Refer to CORBA: : Obj ect : : _get _i nt erf ace for adescription of this method.)
Using the InterfaceDef object, the client can get complete information about the
interface.

Beforea DIl client can browse the Interface Repository, it needs to obtain the object
reference of the Interface Repository to start the search.

DIl clients use the Bootstrap object to obtain the object reference. (For a description of
this method, see the section “Tobj_Bootstrap::register_callback port” on page 4-17.)
Once the client has the object reference, it can navigate the Interface Repository,
starting at the root.

To obtain areference to a Interface Repository in the domain to which aclient
application is associated, the client application can use either of two bootstrapping
mechanisms:

CORBA Programming Reference 10-3

10 corBA Interface Repository Interfaces

m Invokethe Tobj _Boot strap: :resol ve_initial _references operation with
avalue of “ CORBA: : Reposi t or y”. Thisoperation returns areference to a
InterfaceRepository object that isin the domain to which the client application is
currently attached. You should use this mechanism if you are using the BEA
Tuxedo client software. For more information, see the section
“Tobj_Bootstrap::resolve_initial_references’ on page 4-18.

m Invokethe CORBA: : ORB: : resol ve_i nitial _ref erences operation with a
value of “ CORBA: : Reposi t or y”. This operation returns areferenceto a
InterfaceRepository object that isin the domain to which the client application is
currently attached. You should use this mechanism if you are using a third-party
client ORB. For more information, see the section
“CORBA::ORB::resolve initial_references’ on page 14-79.

Note: TousetheDII, the OMG IDL file must be stored in the Interface Repository.

Client applications that use ActiveX are not aware that they are using the Interface
Repository. From the Interface Repository perspective, an ActiveX client isno
different than a DIl client. ActiveX clientsinclude the Bootstrap object in the Visual
Basic code. Like DIl clients, ActiveX clients use the Bootstrap object to obtain the
Interface Repository object reference. (Refer to
“Tobj_Bootstrap::resolve_initial_references” on page 4-18 for a description of this
method.) Once the client has the object reference, it can navigate the Interface
Repository, starting at the root.

Note: To usean ActiveX client, the OMG IDL file must be stored in the Interface
Repository.

Performance Implications

10-4

All run-time access to the Interface Repository is via the Interface Repository server.
Because there is considerable overhead in making requests of aremote server
application, designers need to be aware of this. For example, consider the interaction
reguired to use an object reference to obtain the necessary information to make a Dl|
invocation on the object reference. The steps are as follows:

1. Theclient application invokesthe get _i nterf ace operation on the
CORBA: : Obj ect to get the InterfaceDef object associated with the object in
question. This causes a message to be sent to the ORB that created the object
reference.

CORBA Programming Reference

Building Client Applications

2. The ORB returns the InterfaceDef object to the client.

3. Theclientinvokes one or more _i s_a operations on the object to determine what
type of interface is supported by the object.

4. After the client hasidentified the interface, it invokesthe descri be_i nterface
operation on the Interface object to get afull description of the interface (for
example, version number, operations, attributes, and parameters). This causes a
message to be sent to the Interface Repository, and areply isreturned.

5. Theclient is now ready to construct a DIl request.

Building Client Applications

Clientsthat use the Interface Repository need to link in Interface Repository stubs.
How this happens is specific to the vendor. If the client application isusing the BEA
Tuxedo ORB, the BEA Tuxedo software provides the stubsin the form of alibrary.
Therefore, programmers do not need to use the Interface Repository OMG IDL fileto
build the stubs. The I nterface Repository definitionsare contained within the CORBA. h
file, but they are not included by default.

Note: To usethe Interface Repository definitions, you must define the
ORB_| NCLUDE_REPCSI TORY macro before including CORBA. h in your client
application code (for example: #Def i ne ORB_| NCLUDE_REPCSI TORY).

If the client application is using a third-party ORB (for example, ORBIX) the
programmer must use the mechanisms that are provided by that vendor. This might
include generating stubs from the OMG IDL file using the IDL compiler supplied by
the vendor, simply linking against the stubs provided by the vendor, or some other
mechanism.

Some third-party ORBs provide alocal Interface Repository capability. In this case,
the local Interface Repository is provided by the vendor and is populated with the
interface definitions that are needed by that client.

CORBA Programming Reference 10-5

10 corBA Interface Repository Interfaces

Getting Initial References to the
InterfaceRepository Object

Y ou use the Bootstrap object to get an initial reference to the InterfaceRepository
object. For a description of the Bootstrap object method, see the command
“Tobj_Bootstrap::resolve initial_references” on page 4-18.

Interface Repository Interfaces

Client applications use the interfaces defined by CORBA to access the Interface
Repository. This section contains descriptions of each interface that isimplemented in
the BEA Tuxedo software.

Note: The BEA Tuxedo CORBA implementation of the Interface Repository only

supports the read operations on the interfaces. The write operations are not
implemented.

Supporting Type Definitions

Several types are used throughout the Interface Repository interface definitions.

nmodul e CORBA {

typedef string Identifier;
typedef string ScopedNane;
typedef string Reposi toryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Mbdul e, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,

10-6 CORBA Programming Reference

Interface Repository Interfaces

dk_Val ue, dk_Val ueBox, dk_Val ueMenber,
dk_Native

b

b

Identifiers arethe simple names that identify modules, interfaces, value types,
value members, value boxes, constants, typedefs, exceptions, attributes, operations,
and native types. They correspond exactly to OMG IDL identifiers. Anldenti fier
isnot necessarily unique within an entire | nterface Repository; it is uniqueonly within
aparticular Repository, ModuleDef, InterfaceDef, ValueDef, or OperationDef.

A ScopedName is a name made up of one or more identifiers separated by double
colons (::). They correspond to OMG IDL scoped names. An absolute ScopedNane is
one that begins with double colons (::) and unambiguously identifies adefinitionin a
Repository. An absolute ScopedNane in a Repository correspondsto aglobal namein
an OMG IDL file. A relative ScopedName does not begin with double colons (::) and
must be resolved relative to some context.

A Reposi toryl d isanidentifier used to uniquely and globally identify a module,
interface, value type, value member, value box, native type, constant, typedef,
exception, attribute, or operation. Because Repositorylds are defined as strings, they
can be manipulated (for example, copied and compared) using a language binding’'s
string manipul ation routines.

A Def i ni ti onKi nd identifiesthe type of an Interface Repository object.

IRODbject Interface

The base interface |RObject (shown bel ow) representsthe most generic interface from
which all other Interface Repository interfaces are derived, even the Repository itself.

nodul e CORBA {
interface | RObj ect {
readonly attribute DefinitionKind def kind;

}s
}

The def _ki nd attribute identifies the type of the definition.

CORBA Programming Reference 10-7

10 corBA Interface Repository Interfaces

Contained Interface

10-8

The Contained interface (shown below) isinherited by all Interface Repository
interfaces that are contained by other Interface Repository objects. All objects within
the Interface Repository, except the root object (Repository) and definitions of
anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are
contained by other objects.

nmodul e CORBA {
typedef string VersionSpec;

interface Contained : | RObject {
readonly attribute Repositoryld id;
readonly attribute ldentifier nanme;
readonly attribute VersionSpec ver si on;
readonly attribute Container defined_in;
readonly attribute ScopedNane absol ut e_nane;
readonly attribute Repository cont ai ni ng_reposi tory;
struct Description {
DefinitionKi nd ki nd;
any val ue;
b
Description describe ();
s

b

An object that is contained by another object has an i d attribute that identifiesit
globally, and anane attribute that identifiesit uniquely within the enclosing Container
object. It also hasaver si on attributethat distinguishesit from other versioned objects
with the same name. The BEA Tuxedo CORBA Interface Repository does hot support
simultaneous containment or multiple versions of the same named object.

Contained objects also have adef i ned_i n attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
modul€) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, thedef i ned_i n
attribute identifies the InterfaceDef or ValueDef from which the object is inherited.

Theabsol ut e_nane attribute is an absolute ScopedNane that identifies a Contained
object uniquely within its enclosing Repository. If thisobject’sdef i ned_i n attribute
references a Repository, the absol ut e_name isformed by concatenating the string

CORBA Programming Reference

Interface Repository Interfaces

“:: " and this object’ s nanme attribute. Otherwise, the absol ut e_nane isformed by
concatenating the absol ut e_name attribute of the object referenced by thisobject’s
def i ned_i n attribute, the string “: : ”, and this object’ s nane attribute.

The cont ai ni ng_r eposi t ory atribute identifies the Repository that is eventually
reached by recursively following the object’s def i ned_i n attribute.

Thewi t hi n operation returns the list of objectsthat contain the object. If the object is
an interface or module, it can be contained only by the object that definesit. Other
objects can be contained by the objectsthat define them and by the objects that inherit
them.

Thedescr i be operation returns astructure containing information about theinterface.
The description structure associated with each interface is provided below with the
interface’ s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, if the descr i be operation is
invoked on an attribute object, the ki nd field containsdk_At t ri but e and the value
field contains an any, which containsthe At t ri but eDescr i pt i on structure.

Container Interface

The base interface Container is used to form a containment hierarchy in the Interface
Repository. A Container can contain any number of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

nodul e CORBA {
typedef sequence <Contai ned> Cont ai nedSeq

interface Container : |RObject {
Cont ai ned | ookup (i n ScopedNanme search_nane);

Cont ai nedSeq contents (
in DefinitionKind limt_type,
in bool ean excl ude_i nherited

)

Cont ai nedSeq | ookup_nane (

in ldentifier sear ch_nane,
in long | evel s_to_search,
in DefinitionKind limt_type,
in bool ean excl ude_i nherited

)

CORBA Programming Reference 10-9

10 corBA Interface Repository Interfaces

struct Description {

Cont ai ned cont ai ned_obj ect;
Definiti onKi nd ki nd;
any val ue;

b
typedef sequence<Description> DescriptionSeq;

Descri ptionSeq describe_contents (

in DefinitionKind limt_type,
in bool ean excl ude_i nherited,
in long max_returned_objs

)
b
b
Thel ookup operation locates a definition relative to this container, given a scoped
name using the OMG IDL rules for name scoping. An absolute scoped name
(beginning double colons (::)) locates the definition relative to the enclosing
Repository. If no object isfound, anil object referenceis returned.

The cont ent s operation returnsthe list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client usesthis operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, al of the interfaces and value types within a specific module, and so on.

limt_type
Iflimt_typeissettodk_all, objectsof all typesare returned. For
example, if thisis an InterfaceDef, the attribute, operation, and exception
objectsare al returned. If 1i ni t _t ype isset to a specific interface, only
objects of that type are returned. For example, only attribute objects are
returnedif limit_typeissettodk_Attri bute.

excl ude_i nherited
If set to TRUE, inherited objects (if there are any) are not returned. If set to
FALSE, all contained objects (whether contained due to inheritance or
because they were defined within the object) are returned.
Thel ookup_nane operation is used to locate an object by name within a
particular object or within the objects contained by that object. The
descri be_cont ent s operation combines the cont ent s operation and the
descri be operation. For each object returned by the contents operation, the
description of the object isreturned (that is, the object’ sdescri be operation
isinvoked and the results are returned).

10-10 CORBA Programming Reference

Interface Repository Interfaces

Thel ookup_name operation is used to |ocate an object by name within a particular
object or within the objects contained by that object.

search_nane
Specifies which name is to be searched for.

|l evel s_to_search
Controls whether the lookup is constrained to the object the operation is
invoked on, or whether the lookup should search through objects contained
by the object as well. Setting | evel s_t o_sear ch to -1 searches the current
object and al contained objects. Setting | evel s_t o_sear ch to 1 searches
only the current object. Use of values of | evel s_t o_sear ch of O or of
negative numbers other than -1 is undefined.

Thedescri be_cont ent s operation combines the contents operation and the
descri be operation. For each object returned by the contents operation, the
description of the object isreturned (i.e., the object’ s describe operation isinvoked and
the results returned).

max_returned_objs
Limits the number of objectsthat can be returned in an invocation of the call
to the number provided. Setting the parameter to -1 indicates return all
contained objects.

IDLType Interface

The base interface IDL Type (shown below) is inherited by al Interface Repository
objectsthat represent OMG IDL types. It provides access to the TypeCode describing
the type, and is used in defining other interfaces wherever definitions of IDL types
must be referenced.

nmodul e CORBA {
interface | DLType : | RObject {
readonly attri bute TypeCode type;
I
b

Thet ype attribute describes the type defined by an object derived from IDL Type.

CORBA Programming Reference 10-11

10 corBA Interface Repository Interfaces

Repository Interface

Repository (shown below) is an interface that provides global access to the Interface
Repository. The Repository object can contain constants, typedefs, exceptions,
interfaces, value types, value boxes, native types, and modules. As it inherits from
Container, it can be used to look up any definition (whether globally defined or defined
within amodule or an interface) either by nane or by i d.

Since the Repository derives only from Container and not from Contained, it does not
have a Repositoryld associated with it. By default, it is deemed to have the
Repositoryld “ ” (the empty string) for purposes of assigning avalue to the defined_in
field of the description structure of ModuleDef, InterfaceDef, ValueDef,
ValueBoxDef, TypedefDef, ExceptionDef, and ConstantDef that are contained
immediately in the Repository object.

nmodul e CORBA {
interface Repository : Container {
Cont ai ned | ookup_id (in Repositoryld search_id);
TypeCode get _canoni cal _typecode(in TypeCode tc);
PrimtiveDef get _primtive (in PrimtiveKind kind);

I
I
Thel ookup_i d operation is used to look up an object in a Repository, given its
Reposi t oryl d. If the Repository does not contain a definition for sear ch_i d, anil
object referenceis returned.

Theget _canoni cal _t ypecode operation looks up the TypeCode in the Interface
Repository and returns an equivalent TypeCode that includes al repository 1Ds,
names, and member_names. If the top level TypeCode does not contain a
Repositoryld, such as array and sequence TypeCodes, or TypeCodes from older
ORBs, or if it contains a Repositoryld that is not found in the target Repository, then a
new TypeCode is constructed by recursively calling get _canoni cal _t ypecode on
each member TypeCode of the origina TypeCode.

Theget _pri ni ti ve operationreturnsareferenceto aPrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.

10-12 CORBA Programming Reference

Interface Repository Interfaces

ModuleDef Interface

A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces,
value types, value boxes, native types, and other module objects.

nodul e CORBA {

i nterface Mdul eDef : Container, Contained {

I
struct Mdul eDescription {
Identifier
Repositoryld
Repositoryld
Ver si onSpec
I

}

nane;
id;
defined_in;
version;

Theinherited descri be operation for a ModuleDef object returns a

M odul eDescription.

ConstantDef Interface

A ConstantDef object (shown below) defines a named constant.

nodul e CORBA {

interface ConstantDef : Contained {

readonly attribute TypeCode type;
readonly attribute | DLType type_def;
readonly attribute any val ue;
I
struct Constant Description {
ldentifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec Ver si on;
TypeCode type;
any val ue;
b

CORBA Programming Reference

10-13

10 corBA Interface Repository Interfaces

type
Specifies the TypeCode describing the type of the constant. The type of a
constant must be one of the simple types (long, short, float, char, string, octet,
and so on).

type_def
| dentifies the definition of the type of the constant.

val ue

Contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as“ 1+2").

The descri be operation for a ConstantDef object returns a ConstantDescription.

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface for al
named nonobject types (structures, unions, enumerations, and aliases). The
TypedefDef interface is not inherited by the definition objects for primitive or
anonymous types.

nmodul e CORBA {
interface TypedefDef : Contained, |DLType {

};

struct TypeDescription {
I dentifier nane;
Reposi toryld id;
Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode type;

I

}s

Theinherited descr i be operation for interfaces derived from TypedefDef returnsa
TypeDescription.

10-14 CORBA Programming Reference

Interface Repository Interfaces

StructDef

A StructDef (shown below) represents an OMG IDL structure definition. It contains
the members of the struct.

nodul e CORBA {
struct Struct Menber {

I dentifier nane;
TypeCode type;
| DLType type_def;

I
typedef sequence <StructMenber> Struct Menber Seq;

interface StructDef : TypedefDef, Contai ner{
readonly attribute Struct Menber Seq nmenbers;

b
b
The nenber s attribute contains a description of each structure member.

Theinherited t ype attributeisat k_st ruct TypeCode describing the structure.

UnionDef

A UnionDef (shown below) represents an OMG IDL union definition. It contains the
members of the union.

nodul e CORBA {
struct Uni onMenber {

I dentifier name;

any | abel ;
TypeCode type;

| DLType type_def;

I
t ypedef sequence <Uni onMenber> Uni onMenber Seq;

interface Uni onDef : Typedef Def, Container {
readonl y attribute TypeCode di scrim nator_type;
readonl y attribute | DLType di scrim nator_type_def;
readonl y attribute Uni onMenber Seq menbers;

b

CORBA Programming Reference 10-15

10 corBA Interface Repository Interfaces

di scriminator_typeanddi scrimnator_type_def
Describes and identifies the union’ s discriminator type.

menber s
Contains a description of each union member. The label of each
UnionMemberDescription isadistinct value of the di scri ni nat or _t ype.
Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value O (zero)
indicates the default union member.

Theinherited t ype attributeisat k_uni on TypeCode describing the union.

EnumDef

An EnumDef (shown below) represents an OMG IDL enumeration definition.

nmodul e CORBA {
typedef sequence <ldentifier> EnumMenber Seq;

interface EnunDef : Typedef Def {
readonly attribute EnumMenber Seq nmenbers;

}
}s

menber s
Contains a distinct name for each possible value of the enumeration.

Theinherited t ype attributeis at k_enumTypeCode describing the enumeration.

AliasDef

An AliasDef (shown below) represents an OMG IDL typedef that aliases another
definition.

nmodul e CORBA {
interface AliasDef : TypedefDef {
readonly attribute |IDLType original_type_ def;

}

10-16 CORBA Programming Reference

Interface Repository Interfaces

original type_ def
Identifies the type being aliased.

Theinherited t ype attributeisat k_al i as TypeCode describing the aias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types.
Because primitive types are unnamed, this interface is not derived from Typedef Def
or Cont ai ned.

nodul e CORBA {
enum PrimtiveKind {
pk_null, pk_void, pk_short, pk_|ong, pk_ushort, pk_ul ong,
pk_float, pk_double, pk_bool ean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_l ongl ong, pk_ul ongl ong, pk_I ongdoubl e, pk_wchar, pk_wstring,
pk_val ue_base

b
interface PrimtiveDef: |DLType {
readonly attribute PrimtiveKi nd ki nd;
b
}s
ki nd

Indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefs with kind pk_nul | . A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_obj r ef
represents the OMG IDL type Object. A PrimitiveDef with kind

pk_val ue_base representsthe IDL type ValueBase.

Theinherited t ype attribute describes the primitive type.

All PrimitiveDefsare owned by the Repository. Referencesto them are obtained using
Repository::get_primtive.

CORBA Programming Reference 10-17

10 corBA Interface Repository Interfaces

StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is
represented as a PrimitiveDef. As string types are anonymous, this interface is not
derived from TypedefDef or Contained.

nmodul e CORBA {
interface StringDef : |DLType {
attri bute unsigned | ong bound;
b
b
The bound attribute specifies the maximum number of charactersin the string and
must not be zero.

Theinherited t ype attributeisat k_st ri ng TypeCode describing the string.

WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string typeis
represented as a PrimitiveDef. As wide string types are anonymous, thisinterfaceis
not derived from TypedefDef or Contained.

nmodul e CORBA {
interface WstringDef : |IDLType {
attri bute unsigned | ong bound;
I
I

The bound attribute specifies the maximum number of wide charactersin awide
string, and must not be zero.

Theinherited t ype attributeisat k_wst ri ng TypeCode describing the wide string.

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain
structs, unions, and enums.

10-18 CORBA Programming Reference

Interface Repository Interfaces

nodul e CORBA {
interface Excepti onDef : Contained, Container {

readonl y attribute TypeCode type;
readonl y attribute Struct Menber Seq nmenbers;
b
struct ExceptionDescription {
ldentifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec version;
TypeCode type;
b
}
type
t k_except TypeCode that describes the exception.
menber s

Describes any exception members.

Thedescri be operation for a ExceptionDef object returns an ExceptionDescription.

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of
an interface.

nodul e CORBA {
enum AttributeMde {ATTR NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

readonl y attri bute TypeCode type;
attribute | DLType type_def;
attribute AttributeMde node;
b
struct AttributeDescription {
I dentifier namne;
Reposi toryld id;
Reposi toryld defined_in;
Ver si onSpec ver sion;
TypeCode type;
Attribut eMode node;
}s

CORBA Programming Reference 10-19

10 corBA Interface Repository Interfaces

type

Provides the TypeCode describing the type of this attribute.

type_def

I dentifies the object that defines the type of this attribute.

node

Specifies read only or read/write access for this attribute.

Thedescri be operation for an AttributeDef object returns an AttributeDescription.

OperationDef

An OperationDef (shown below) represents the information needed to define an
operation of an interface.

nmodul e CORBA {

enum Qper ati onvbde {OP_NORVAL, OP_ONEWAY};

enum Par anet er Mode { PARAM I N, PARAM OUT, PARAM | NOUT};
struct ParaneterDescription {

I dentifier nane;
TypeCode type;
| DLType type_def;
Par anet er Mode node;
IS
typedef sequence <ParaneterDescription> ParDescriptionSeq;
typedef ldentifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;
typedef sequence <ExceptionDef> Excepti onDef Seq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;
interface OperationDef : Contained {
readonl y attri bute TypeCode resul t;
readonl y attribute |IDLType resul t _def;
readonl y attribute ParDescriptionSeq par ans;
readonl y attribute Operati onMbde node;
readonl y attribute Contextl dSeq contexts;
readonl y attri bute Excepti onDef Seq excepti ons;

}s

struct OperationDescription {
I dentifier nanme;

10-20 CORBA Programming Reference

Interface Repository Interfaces

Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode result;
Oper ati onivbde node;
Cont ext | dSeq cont exts;
Par Descri pti onSeq par aneters;
ExcDescri pti onSeq exceptions
};
};
resul t

A TypeCode that describes the type of the value returned by the operation.

resul t _def
Identifies the definition of the returned type.

par ans
Describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptionsin
the sequenceis significant. The nane member of each structure provides the
parameter name. Thet ype member isa TypeCode describing the type of the
parameter. Thet ype_def member identifies the definition of the type of the
parameter. The node member indicateswhether the parameter isanin, out, or
inout parameter.

nmode
The operation’s node is either oneway (that is, no output is returned) or
normal.

contexts

Specifies the list of context identifiers that apply to the operation.

excepti ons
Specifies the list of exception typesthat can be raised by the operation.

Theinherited descri be operation for an OperationDef object returns an
OperationDescription.

Theinherited descri be_cont ent s operation provides a complete description of this
operation, including a description of each parameter defined for this operation.

CORBA Programming Reference 10-21

10 corBA Interface Repository Interfaces

InterfaceDef

An InterfaceDef object (shown below) represents an interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes.

nmodul e CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDef Seq;
typedef sequence <Repositoryl d> RepositoryldSeq;
typedef sequence <OperationDescription> QpDescripti onSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, |DLType {

readonly attribute |nterfaceDef Seq base_interfaces;
readonly attri bute bool ean is_abstract;

boolean is_a (in Repositoryld interface_id);

struct FulllnterfaceDescription {

ldentifier name;
Repositoryl d id;
Repositoryld defined_in;
Ver si onSpec ver si on;
OpDescri pti onSeq operati ons;
AttrDescriptionSeq attri butes;
Reposi toryl dSeq base_i nt erfaces;
TypeCode type;
bool ean is_abstract;
b
Ful I I nterfaceDescription describe_interface();
b
struct InterfaceDescription {
I dentifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;
Reposi toryl dSeq base_i nterfaces;
bool ean is_abstract;
s
b
Thebase_interfaces attribute lists all the interfaces from which thisinterface
inherits.

10-22 CORBA Programming Reference

Interface Repository Interfaces

Thei s_abstract attributeisTRUE if the interface is an abstract interface type.

Thei s_a operation returns TRUE if the interface on which it isinvoked either is
identical to or inherits, directly or indirectly, from the interface identified by its
interface_i d parameter. Otherwise, it returns FALSE.

Thedescri be_i nt er f ace operation returns a FulllnterfaceDescription describing
the interface, including its operations and attributes. The operations and attributes
fields of the FulllnterfaceDescription structure include descriptions of al of the
operations and attributes in the transitive closure of the inheritance graph of the
interface being described.

Theinherited descri be operation for an InterfaceDef returnsan InterfaceDescription.

Theinherited cont ent s operation returnsthe list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If theexcl ude_i nheri t ed parameter is set
to TRUE, only attributes and operations defined within thisinterface are returned. If the
excl ude_i nheri t ed parameter is set to FALSE, al attributes and operations are
returned.

CORBA Programming Reference 10-23

10 corBA Interface Repository Interfaces

10-24 CORBA Programming Reference

CHAPTER

11 Joint Client/Servers

Thistopic includes the following sections:

m Introduction. This section describes:
e Main Program and Server Initialization
e Servants
e Servant Inheritance from Skeletons
e Cadlback Object Models Supported
e Configuring Serversto Call Remote Joint Client/Server Objects
e Preparing Callback Objects Using CORBA (C++ Joint Client/Servers Only)
e Preparing Callback Objects Using BEAWrapper Callbacks

e JavaJoint Client/Server Programming Considerations
m C++ BEAWrapper Callbacks Interface API
m Java BEAWrapper Callbacks Interface AP

This chapter describes programming requirementsfor CORBA joint client/serversand
the C++ BEAWrapper Callbacks API. For a description of the Java BEAWrapper
package and the Java Cal | backs interface API, see the Javadoc API.

CORBA Programming Reference 11-1

11 Joint Client/Servers

Introduction

For either aBEA Tuxedo CORBA client or joint client/server (that is, aclient that can
receive and process object invocations), the programmer writes the client mai n() .
Themai n() uses BEA Tuxedo CORBA environmental objectsto establish
connections, set up security, and start transactions.

BEA Tuxedo clients invoke operations on objects. In the case of DII, client code
creates the DIl Reguest object and then invokes one of two operations on the DI |
Request. In the case of static invocation, client code performs the invocation by
performing what looks like an ordinary invocation (which ends up calling code in the
generated client stub). Additionally, the client programmer uses ORB interfaces
defined by OMG, and BEA Tuxedo CORBA environmental objects that are supplied
with the BEA Tuxedo software, to perform functions unique to BEA Tuxedo.

For BEA Tuxedo joint client/server applications, the client code must be structured so
that it can act asaserver for callback BEA Tuxedo objects. Such clients do not use the
TP Framework and are not subject to BEA Tuxedo system administration. Besides the
programming implications, thismeansthat CORBA joint client/serversdo not havethe
same scal ability and reliability as BEA Tuxedo CORBA servers, nor do they have the
state management and transaction behavior available in the TP Framework. If a user
wants to have those characteristics, the application must be structured in such away
that the object implementations are in a BEA Tuxedo CORBA server, rather thanin a
client.

The following sections describe the mechanisms you use to add callback support to a
BEA Tuxedo client. In some cases, the mechanisms are contrasted with the BEA
Tuxedo server mechanisms that use the TP Framework.

Main Program and Server Initialization

11-2

In aBEA Tuxedo server, you use the bui | dobj ser ver command to create the main
program for the C++ server. (Java servers are not supported in release 8.0 and | ater of
BEA Tuxedo.) Server main program takes care of all BEA Tuxedo- and

CORBA-related initialization of the server functions. However, since you implement

CORBA Programming Reference

Introduction

Servants

the Server object, you have an opportunity to customize the way in which the server
application isinitialized and shut down. The server main program automatically
invokes methods on the Server object at the appropriate times.

In contrast, for aBEA Tuxedo CORBA joint client/server (asfor a BEA Tuxedo
CORBA client), you create the main program and are responsible for all initialization.
Y ou do not need to provide a Server object because you have compl ete control over
the main program and you can provide initialization and shutdown code in any way
that is convenient.

The specific initialization needed for ajoint client/server is discussed in the section
“Servants’ on page 11-3.

Servants (method code) for joint client/servers are very similar to servantsfor servers.
All business logic is written the same way. The differences result from not using the
TP Framework. Therefore, the main difference is that you use CORBA functions
directly instead of indirectly through the TP Framework.

The Ser ver interfaceisused in BEA Tuxedo CORBA serversto allow the TP
Framework to ask the user to create a servant for an object when the ORB receives a
request for that object. However, injoint client/servers, the user programisresponsible
for creating a servant before any requests arrive; thus, the Ser ver interface is not
needed. Typically, the program creates a servant and then activates the object (using
the servant and an bj ect | d; the Obj ect I d ispossibly system generated) before
handing a reference to the abject. Such an object might be used to handle callbacks.
Thus, the servant already exists and the object is activated before a request for the
object arrives.

Joint client/serverswork alittle differently depending on whether the C++ client ORB
or the Java client ORB is used.

m For C++ joint client/servers, instead of invoking the TP interface to perform
certain operations, client servants directly invoke the ORB and POA (which is
what the TP interface does internally). Alternately, since much of the interaction
with the ORB and POA is the same for all applications, for ease of use, the
client library provides a convenience wrapper object that does the same things,
using a single operation. For a discussion of how to use the convenience wrapper

CORBA Programming Reference 11-3

11 Joint Client/Servers

object, see“ Callback Object Models Supported” on page 11-6 and “Preparing
Callback Objects Using BEAWTrapper Callbacks’ on page 11-10.

m For Javajoint client/servers, instead of invoking the TP interface to perform
certain operations, client servants directly invoke the ORB and the BOA (clients
that are based on the Java JDK 1.2 ORB). Alternately, since much of the
interaction with the ORB and the BOA is the same for all applications, the joint
client/server library (Wl ecl i ent . j ar) provides a convenience wrapper object
(Cal I backs) that does the same things using a single operation. In addition, the
wrapper objects also provide extra POA-like life span policies for bj ect | ds,
see “ Callback Object Models Supported” on page 11-6 and “Preparing Callback
Objects Using BEAWrapper Callbacks” on page 11-10. For an example of a Java
joint client/server, see Using the CORBA Notification Service.

Servant Inheritance from Skeletons

In aclient that supports callbacks, aswell asin a server, you write aimplementation
class that inherits from the same skeleton class name generated by the IDL compiler
(thei dI command).

C++ Example of Inheritance from Skeletons

11-4

Thefollowing is a C++ example, given the IDL:
interface Hospital { ...};

The skeleton generated by thei di command contains a“ skeleton” class,
POA Hospi t al , that the user-written classinherits from, asin:

class Hospital i : public POA Hospital { ... };

In aserver, the skeleton class inherits from the TP Framework class
Tobj _Ser vant Base, which in turn inherits from the predefined
Por t abl eSer ver : : Ser vant Base.

Theinheritance tree for a callback object implementation in ajoint client/server is
different than that in a server. The skeleton class does not inherit from the TP
Framework class Tobj _Ser vant Base, but instead inherits directly from

Por t abl eSer ver : : Ser vant Base. This behavior is achieved by specifying the - P
option inthei di command.

CORBA Programming Reference

Introduction

Not having the Tobj _Ser vant Base classin the inheritance tree for a servant means
that the servant doesnot haveact i vat e_obj ect anddeact i vat e_obj ect methods.
In a server, these methods are called by the TP Framework to dynamically initialize
and save a servant’ s state before invoking a method on the servant. For a client that
supports callbacks, you must write code that explicitly creates aservant and initializes
aservant’s state.

Java Example of Inheritance from Skeletons

The following is a Java example, given the IDL:
interface Hospital{ ...};

The skeleton generated by i dlI t oj ava contains a skeleton class,
_Hospi t al | npl Base, from which the user-written class inherits, asin:

cl ass Hospital I npl extends _HospitallnplBase {.};

In aBEA Tuxedo server application, the skeleton class inherits from the TP
Framework class com beasys. Tobj _Ser vant , which in turn inherits from the
CORBA-defined class or g. ong. Por t abl eSer ver . Servant .

The inheritance tree for a callback object implementation in ajoint client/server
application is different from that of aclient. The skeleton class does not inherit from
the TP Framework class, but instead inherits from the

or g. ong. CORBA. Dynarmi cl npl enent at i on class, which in turn inherits from the
or g. ong. CORBA. port abl e. Obj ect | npl class.

Not having the Tobj _Ser vant classintheinheritancetreefor aservant meansthat the
servant does not havetheact i vat e_obj ect anddeact i vat e_obj ect methods. Ina
BEA Tuxedo server application, these methods are invoked by the TP Framework to
dynamically initialize and save a servant’ s state before invoking a method on the
servant. For ajoint client/server application, user code must explicitly create a servant
and initialize a servant’ s state; therefore, the Tobj _Ser vant operations are not
needed.

CORBA Programming Reference 11-5

11 Joint Client/Servers

Callback Object Models Supported

11-6

BEA Tuxedo CORBA supports four kinds of callback objects and provides wrappers
for the three that are most common. These obj ects correspond to three combinations of
POA policies. The POA policies control both the types of objects and the types of
object references that are possible.

The POA policiesthat are applicable are:
m TheLifeSpanPolicy, which controls how long an object referenceisvalid.

m TheldAssignmentPolicy, which controls who assigns the Cbj ect | d—the user or
the system.

These objectsare explained primarily interms of their behavioral characteristicsrather
than in detail s about how the ORB and the POA handle them. Those details are
discussed in the next sections, using either direct ORB and POA calls (which requires
alittle extra knowledge of CORBA servers) or using the BEAWrapper Callbacks
interface, which hides the ORB and POA calls (for users who do not care about the
details).

m Transient/Systemld—object references are valid only for the life of the client
process. The Obj ect | d ishot assigned by the client application, but is a unique
value assigned by the system. This type of object is useful for invocations that a
client wants to receive only until the client terminates. (The corresponding POA
LifeSpanPolicy valueis TRANSI ENT and the IdAssignmentPolicy is SYSTEM | D.)

m Persistent/Systeml d—object references are valid across multiple activations. The
bj ect 1 d is not assigned by the client application, but is a unique value
assigned by the system. Thistype of object and object reference is useful when
the client goes up and down over a period of time. When the client isup, it can
receive callback objects on that particular object reference.

Typically, the client will create the object reference once, saveit in itsown
permanent storage area, and reactivate the servant for that object every time it
comes up. If used with a BEA Tuxedo CORBA Notification Service application,
for example, these are callbacks that correspond to the concept of a persistent
subscription; that is, the Notification Service remembers the callback reference
and delivers events any time the client is up and declares that it is again ready to
receive events. This alows notification service subscriptions to survive client
failures or offline-time. (The corresponding POA policy values are PERSI STENT
and SYSTEM | D.)

CORBA Programming Reference

Introduction

m Persistent/Userld—this is the same as Persistent/Systemld with the exception
that the Obj ect | d has to be assigned by the client application. Such an
bj ect | d might be, for example, a database key meaningful only to the client.
(The corresponding POA policy values are PERSI STENT and USER_I D.)

Note: The Transient/Userld policy combination is not considered particularly
important. It is possible for users to provide for themselves by using the POA
in amanner analogous to either of the persistent cases, but the BEA Tuxedo
wrappers do not provide specia help to do so.

Note: For BEA Tuxedo CORBA nativejoint client/servers, neither of the Persistent
policiesis supported, only the Transient policy.

CORBA Programming Reference 11-7

11 Joint Client/Servers

Configuring Servers to Call Remote Joint Client/Server

Objects

In order for aBEA Tuxedo server to call remote joint client/server objects, that is, joint
client/server objects located outside the BEA Tuxedo domain, the server must be
configured to enable outbound 110P. This capability is enabled by specifying the - O
(uppercaseletter O) optionin the llOP Server Listener (1SL) server command. Setting
the - O option enables outbound invokes (outbound 1 1OP) on joint client/server objects
that are not connected to an I1OP Listener Handler (1SH).

Y ou set ISL command optionsin the SERVERS section of the server’s UBBCONFI Gfile.
Because support for outbound I1OP requires a small amount of extra resources, the
default is outbound I1OP disabled. For more information, see “Using the ISL
Command to Configure Outbound 11OP” in Setting Up a BEA Tuxedo Application and
“I'SL(1) " inthe BEA Tuxedo Command Reference.

Preparing Callback Objects Using CORBA (C++ Joint
Client/Servers Only)

To set up BEA Tuxedo C++ callback objects using CORBA, the client must do the
following:

1. Establish a connection with a POA with the appropriate policies for the callback
object model. (This can be the root POA, available by default, or it may require
creating anew POA.)

2. Create aservant (that is, an instance of the C++ implementation class for the
interface).

3. Inform the POA that the servant isready to accept requests on the callback
object. Technically, thismeanstheclient act i vat es the object in the POA (that
is, puts the servant and the bj ect | d into the POA’s Active Object Map).

4. Tell the POA to start accepting requests from the network (that is, activate the
POA itself).

5. Create an object reference for the callback object.

11-8 CORBA Programming Reference

Introduction

6. Give out the object reference. This usually happens by making an invocation on
another object with the callback object reference as a parameter (that is, the
parameter is a callback object). That other object will then invoke the callback
object (perform a callback invocation) at some later time.

Assuming that the client already has obtained areference to the ORB, performing this
task takes four interactions with the ORB and the POA. It might ook like the model
show in Listing 11-1. In this model, only the Root POA is needed.

Listing 11-1 Transient/Systemlid M odel

/] Create a servant for the call back bject
Catcher _i* ny_catcher_i = new Catcher i ();

/] Get root POA reference and activate the POA
1 CORBA: : (bj ect _var oref =

orb->resolve_initial _references("Root PQA");
2 Port abl eServer: : POA var root_poa =

Port abl eServer:: POA:: _narrow(oref);
3 root _poa -> the_POAManager() -> activate();
4 Port abl eServer::objectld var tenp_ Gd =

root _poa ->activate_object (my_catcher_i);
5 oref = root_poa->create_reference_wth_id(

tenp_ QO d, _tc _Catcher->id());

6 Cat cher _var ny_catcher_ref = Catcher:: _narrow oref);

To use the Persistent/Userld model, there are some additional steps required when
creating a POA. Further, the Obj ect 1 d is specified by the client, and this requires
more steps. It might look like the model shown in Listing 11-2.

Listing 11-2 Persistent/Userld Model

Catcher_i* ny_catcher i = new Catcher _i();
const char* oid_str = "783";
1 Port abl eServer::objectld var oid =
Port abl eServer::string to_objectld(oid str);
/1 Find root POA
2 CORBA: : (bj ect _var oref =
orb->resolve_initial _references("Root POA");
3 Port abl eServer: : POA var root_poa =
Port abl eServer:: PQA:: _narrow(oref);

CORBA Programming Reference 11-9

11 Joint Client/Servers

/1l Create and activate a Persistent/Userld POA
4 CORBA: : Pol i cyLi st policies(2);
5 policies.length(2);

6 policies[0] = root_poa->create_|ifespan_policy(
Port abl eServer : : PERSI STENT) ;
7 policies[1l] = root_poa->create_id_assignnent_policy(

Port abl eServer:: USER ID);
8 Port abl eServer:: PQA var ny_poa ref =
r oot _poa->creat e POA(

"nmy_poa_ref", root_poa->the_ POAManager (), policies);
9 root _poa- >t he_PQAmanager () - >acti vate();
/1l Create object reference for call back Object
10 oref = ny_poa_ref -> create_reference_w th_id(

oid, _tc_Catcher->id());
11 Catcher_var ny_catcher _ref = Catcher:: _narrow oref);
/1 activate object
12 nmy_poa_ref -> activate_object_with_id(oid, ny_catcher_i);
/1 Make the call passing the call back ref
foo -> register_callback (nmy_catcher_ref);

All the interfaces and operations described here are standard CORBA interfaces and
operations.

Preparing Callback Objects Using BEAWrapper Callbacks

Y ou can use the BEAWrapper callbacks APl with to write either C++ or Javajoint
client/servers.

Using BEAWrapper Callbacks With C++

Because the code required for callback objectsis nearly identical for every client that
supports callbacks, you may find it convenient to use the BEAWrappers provided in
the library provided for joint client/servers.

The BEAWTrappers are described in IDL, as shown in Listing 11-3.

11-10 CORBA Programming Reference

Introduction

Listing 11-3 BEAWTrapper IDL

/1 File: BEAW apper

#i f ndef _BEA WRAPPER | DL_
#define _BEA WRAPPER |DL_

#i ncl ude <orb.idl >

#i ncl ude <Port abl eServer.idll>

#pragma prefix “beasys.conf

nodul e BEAW apper {
interface Call backs
{
excepti on Servant Al readyActive{ };
excepti on (bj ect Al readyActive { };
excepti on NotlnRequest{ };

/1l set up transient callback Object

/1l -- prepare PQA, activate object, return objref
Obj ect start_transient(
in Portabl eServer: : Servant Servant,
in CORBA: : Repositoryld rep_id)

rai ses (ServantAl readyActive);

/1 set up persistent/systenid call back Object
Obj ect start_persi stent_system d(

in Portabl eServer:: Servant servant,
in CORBA: : Repository rep_id,
out string stroid)

rai ses (Servant Al readyActive);

/1 reinstate set up for persistent/systenmd
/1 call back object
Obj ect restart_persistent_system d(

in Portabl eServer:: Servant servant,
in CORBA: : Repositoryld rep_id,
in string stroid)

rai ses (Servant Al readyActive, ObjectAlreadyActive);

/1 set up persistent/userid call back Object
Obj ect start_persi stent _useri d(

in Portabl eServer: : Servant servant,
in CORBA: : Repositoryld rep_id,
in string stroid)

rai ses (Servant Al readyActive, ObjectAlreadyActive);

/] stop servicing a particular call back bject
/1 with the given servant
voi d stop_object(in PortableServer::Servant servant);

CORBA Programming Reference 11-11

11 Joint Client/Servers

/1Stop all callback Object processing
void stop_all _objects();

/1 get oid string for the current request
string get_string_oid() raises (NotlnRequest);

}s
}

#endif /* BEA WRAPPER _IDL_ */

The BEAwrappers are described in C++ asshown in Listing 11-4.

Listing 11-4 C++ Declarations (in beawrapper.h)

#i f ndef _BEAWRAPPER H_
#define _BEAWRAPPER H_

#i ncl ude <Port abl eServer. h>
cl ass BEAW apper {
class Cal | backs{
public:
Cal | backs (CORBA:: ORB ptr init_orb);

CORBA: : (bject _ptr start_transient (
Port abl eServer:: Servant servant,
const char * rep_id);

CORBA: : (bject _ptr start_persistent_systemd (
Por t abl eServer:: Servant servant,
const char * rep_id,

char * & stroid);

CORBA: : (bject_ptr restart_persistent_system d (
Por t abl eServer:: Servant servant,
const char * rep_id,

const char * stroid);

CORBA: : (hject _ptr start_persistent _userid (
Por t abl eServer:: Servant servant,
const char * rep_id,

const char * stroid);

voi d stop_object (Portabl eServer:: Servant servant);
char* get _string oid ();

void stop_all _objects();

11-12 CORBA Programming Reference

Introduction

~Cal | backs();
private:

static CORBA : ORB var orb_ptr;

static Portabl eServer::POA var root_poa;
static Portabl eServer::POA var trasys_poa;
static Portabl eServer:: POA var persys_poa;
static Portabl eServer::POA var peruser_poa;

}
b
#endif // _BEAWRAPPER H_

The description of each operation in the BEAW apper : : Cal | backs interface follows,
in the order declared above.

Using BEAWrapper Callbacks With Java

Because the code to prepare for callback objectsis nearly identical for every joint
client/server application, and because the Java JDK ORB does not implement a POA,
BEA Tuxedo provides awrapper classin thejoint client/server library that isvirtually
identical to the wrapper class provided in C++. This wrapper class emul ates the POA
policies needed to support the three types of callback objects.

Listing 11-5 showsthe Java Cal | back wrapper interfaces.

Listing 11-5 Java Callback Wrapper Interfaces

package com beasys. BEAW apper ;

cl ass Cal | backs{
public Callbacks ();

public Call backs (org.ong. CORBA. Cbject init_orb);
public org.ong. CORBA. (bj ect start_transient (
org. ong. Portabl eServer. Obj ectl npl servant,
java.lang. String rep_id)
throws Servant Al readyActi ve,
or g. ong. CORBA. BAD_PARAMETER,

public org.ong. CORBA. (bj ect start_persistent_systemd (

CORBA Programming Reference 11-13

11 Joint Client/Servers

org.ony. Port abl eServer. Obj ect | npl servant,
java.lang. String rep_id,
org. ong. CORBA. StringHol der stroid)
throws Servant Al readyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | MP_LIMT;

public org.ong. CORBA. Obj ect restart _persistent_systenm d (
org.ony. Port abl eServer. Obj ect | npl servant,
java.lang. String rep_id,
java.lang. String stroid)
throws Servant Al readyActi ve,
bj ect Al readyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | MP_LIMT;

public org.ong. CORBA. Obj ect start_persistent_userid (
org.ony. Port abl eServer. Obj ect | npl servant,
java.lang. String rep_id,
java.lang. String stroid)
throws Servant Al readyActi ve,
bj ect Al readyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | MP_LIMT;
public void stop_object(
org.ony. Port abl eServer. Qbj ect | npl
servant);

public String get_string_oid ()
throws Not | nRequest;

public void stop_all _objects();

Java Joint Client/Server Programming Considerations

This section discusses the following Java programming topics:
m Threading Considerationsin the Main Program
m How Multiple Threads Work

m JavaClient ORB Initialization

11-14 CORBA Programming Reference

Introduction

m [IOP Support

Threading Considerations in the Main Program

When a program acts as both a client and a server in a Java client, asin a Javajoint
client/server, thosetwo parts can execute concurrently in different threads. Since Java,
as an execution environment, is inherently multithreaded, there is no reason to invoke
the or g. ong. CORBA. or b. wor k_pendi ng and

or g. ong. CORBA. or b. per f or m wor k methods from aJavaclient. Infact, if the Java
client tries to invoke these methods, these methods throw an

or g. omg. CORBA. NO_| MPLENMENT exception. The client does not need to invoke the
or g. omg. CORBA. or b. r un method. Asin any multithreaded environment, any code
that may execute concurrently (client and servant code for a callback) in the client
application must be coded to be thread safe.

How Multiple Threads Work

In Java, the client starts up in the main thread. The client can then set up callback
objectsviaan invocation to any of the (re) st art _xxxx methods provided by the
Callbacks wrapper class. The wrapper class handles registering the servant and its
associated OID in the ORB's object manager. The application is then free to pass the
object referencereturned by the (r e) st ar t _xxxx method to an application that needs
to call back to the servant.

Note: The ORB requires an explicit invocation to one of the (r e) st art _xxxx
methods to effectively initialize the servant and create avalid object reference
that can be marshaled properly to another application. Thisisadeviation
from the base JDK 1.2 ORB behavior that allowsimplicit object reference
creation via an internal invocation to the or b. connect method when
marshaling an object reference, if the application has not yet done so.

Invocations on the callback object are handled by the ORB. As each request is
received, the ORB validates the request against the object manager and spawns a
thread for that request. Multiple requests can be made simultaneously to the same
object because the ORB creates anew thread for each request; that is why the Servant
code of the Callback must bewritten thread safe. Aseach request terminates, the thread
that runs the servant &l so terminates.

CORBA Programming Reference 11-15

11 Joint Client/Servers

Themain client thread can make as many client invocations as necessary. An
invocation to the st op_(al | _) obj ect methods merely takes the object out of the
object manager’slist, thereby preventing any further invocations onit. Any invocation
to a stopped object fails asif it never existed.

If the client application needs to retrieve the results of a callback from another thread,
the client application must use normal thread synchronization techniques to do so.

If any thread (client main or servant) in the BEA Tuxedo remote-like client application
exits, all the client process activity is stopped, and the Java execution environment
terminates. We recommend only to invoke the r et ur n method to terminate a thread.

Java Client ORB Initialization

A client application must initialize the ORB with the BEA-supplied properties. Thisis
so that the ORB will utilize the BEA-supplied classes and methods that support the
Cal | backs wrapper class and the Bootstrap object. Y ou can find these classes in

w eclient.jar,whichisinstaledin $TUXDI R/ udat aobj / j ava/ j dk (on Solaris) or
9@ UXDI R udat aobj \ j ava\ j dk (on Windows). The application must set certain
system propertiesto do this, asshownin Listing 11-6.

Listing 11-6 System Properties Settings

Properties prop = new Properti es(System get Properties());
prop. put ("org. ong. CORBA. ORBCl ass", "com beasys. CORBA. i i op. ORB") ;
prop. put ("org. ong. CORBA. ORBSi ngl et ond ass",
"com beasys. CORBA. i dl . ORBSi ngl et on") ;
System set Properti es(prop);
/1 Initialize the ORB.
ORB orb = ORB.init(args, prop);

[1OP Support

[1OPisthe protocol used for communication between ORBs. |1 OP allows ORBsfrom
different vendors to interoperate. For Java server applications, a port number must be
supplied at the client for persistent or user ID object reference policies.

11-16 CORBA Programming Reference

Introduction

Java Applet Support

[10OP support for applets that want to receive callbacks or calloutsislimited due to
applet security mechanisms. Any applet run-time environment that allows an applet to
create and listen on sockets (viatheir proprietary environment or protocol) will beable
to act as BEA Tuxedo joint client/server applications. If the applet run-time
environment restricts socket communication, then the applet cannot be ajoint
client/server application to a BEA Tuxedo application.

Port Numbers for Persistent Object References

For a BEA Tuxedo Java remote joint client/server application to support 110P, the
object references created for the server component must contain a host and a port. For
transient object references, any port is sufficient and can be obtained by the ORB
dynamically; however, thisis not sufficient for persistent object references.

Persistent references must be served on the same port after the ORB restarts. That is,
the ORB must be prepared to accept requests on the same port with which it created
the object reference. Therefore, there must be some way to configure the ORB to use
aparticular port.

Java clientsthat expect to act as serversfor callbacks of persistent references must now
be started with a specified port. Thisis done by setting the system property
or g. onmg. CORBA. ORBPor t, asin the following commands:

Windows:

java - DTOBJADDR=// host : port
- Dor g. ong. CORBA. ORBPoOr t =xXXXX
- cl asspat h=%4CLASSPATH% cl i ent

UNIX:

java - DTOBJADDR=// host : port
- Dor g. ong. CORBA. ORBPoOr t =xXXXX
- cl asspat h=$CLASSPATH cl i ent

Typically, a system administrator assigns the port number for the client from the user
range of port numbers, rather from the dynamic range. This keeps the joint
client/server applications from using conflicting ports.

CORBA Programming Reference 11-17

11 Joint Client/Servers

If aBEA Tuxedo remotejoint client/server applicationtriesto create apersistent object
reference without having set a port (asin the preceding command line), the operation
raises an exception, | MP_LI M T, informing the user that a truly persistent object
reference cannot be created.

C++ BEAWrapper Callbacks Interface API

This C++ BEAWrapper Callbacksinterface API is described in the following sections.

11-18 CORBA Programming Reference

C++ BEAWTrapper Callbacks Interface API

Callbacks
Synopsis
C++ Binding
Java Binding

Argument

Exception

Description

Return Value

Returns areference to the Callbacks interface.
BEAW apper :: Cal | backs(CORBA:: ORB ptr init_orb);
public Cal |l backs(org.ong. CORBA. Obj ect init_orb);

init_orb
The ORB to be used for all further operations.

CORBA: : | MP_LIMT
The BEAW apper : : Cal | backs class has already be instantiated with an
ORB pointer. Only oneinstance of this class can be used in a process. Users
who need additional flexibility should use the POA directly.

The constructor returns a reference to the Callbacks interface. Only one such object
should be created for the process, even if multiple threads are used. Using more than
one such object will result in undefined behavior.

A reference to the Callbacks object.

CORBA Programming Reference 11-19

11 Joint Client/Servers

start_transient

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Exceptions

Description

Activates an object, setsthe ORB and the POA to the proper state, and returnsan object
reference to the activated object.

bj ect start_transient(in Portabl eServer:: Servant servant,
in CORBA: : Reposi toryld rep_id)
rai ses (Servant Al readyActive);

CORBA: : Cbj ect _ptr start_transient(
Por t abl eServer: : Servant servant,
const char* rep_id);

org. ong. CORBA. Obj ect start _transient(
org.ong. Portabl eServer. Servant servant,
java.l ang. String rep_id);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository i d of the interface.

Servant Al readyActi ve
The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive callbacks on objects
containing different bj ect 1 ds, you must create different servants and
activate them separately. The same servant can be reused only if a
st op_obj ect operation tells the system to stop using the servant for its
original Obj ect | d.

CCORBA: : BAD_PARAM
Therepository ID wasaNULL string or the servant wasaNULL pointer.

This operation performs the following actions:

m Activates an object using the Ser vant supplied to service objects of the type
rep_id, using an Obj ect | d generated by the system.

m Setsthe ORB and the POA into the state in which they will accept requests on
that object.

m Returns an object reference to the activated object. The returned object reference
will be valid only until the termination of the client or until the callback servant

11-20 CORBA Programming Reference

C++ BEAWTrapper Callbacks Interface API

is halted by the user viathe st op_obj ect operation; after that, invocations on
that object reference are no longer valid and can never be made valid.

Return Value CORBA: : Obj ect _ptr
A referenceto the object that was created with the bj ect | d generated by the

system and ther ep_i d provided by the user. The object reference will need
to be converted to a specific object type by invoking the _narr ow()
operation defined for the specific object. The caller is responsible for
releasing the object when the conversion is done.

CORBA Programming Reference 11-21

11 Joint Client/Servers

start_persistent_systemid

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Exceptions

Activates an object, setsthe ORB and the POA to the proper state, sets the output
parameter st r oi d, and returns an object reference to the activated object.

bj ect start_persistent_systemn d(

in Portabl eServer: : Servant servant,
in CORBA: : Reposi toryld rep_id,
out string stroid)

rai ses (Servant Al readyActive);

CORBA: : Cbj ect _ptr start_persistent_system d(

Por t abl eServer: : Servant servant,
const char* rep_id,
char*& stroid);

org. ong. CORBA. Obj ect start_persistent_system d(
org. ong. Port abl eServer. Servant servant,
java.lang. String rep_id,
java.lang. String stroid);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository ID of theinterface.

stroid
This argument is set by the system and is opague to the user. The client will
use it when it reactivates the object at alater time (using
restart_persistent_systeni d), most likely after the client process has
terminated and restarted.

Servant Al readyActi ve
The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive calbacks on objects
containing different bj ect I ds, you must create different servants and
activate them separately. The same servant can be reused only if ast op
operation tells the system to stop using the servant for its original Obj ect 1 d.

CORBA: : BAD_PARAMETER
Therepository ID wasaNULL string or the servant wasaNULL pointer.

11-22 CORBA Programming Reference

C++ BEAWTrapper Callbacks Interface API

Description

Return Value

CORBA: : | MP_LIMT
In addition to other system reasons for this exception, areason unique to this
situation isthat the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.

This operation performs the following actions:

m Activates an object using the Ser vant supplied to service objects of the type
rep_i d, using an Qobj ect | d generated by the system.

m Setsthe ORB and the POA into the state in which they will accept requests on
that object.

m Setsthe output parameter st r oi d to the stringified version of an bj ect 1 d
assigned by the system.

m Returns an object reference to the activated object. The returned object reference
will be valid even after termination of the client. That is, if the client terminates,
restarts again, and then activates a servant with the samerep_i d and for the
same (bj ect | d, the servant will accept requests made on that same object
reference. Since the Qbj ect | d was generated by the system, the application has
to save that oj ect | d.

CORBA: : Cbj ect _ptr
An object reference created with the Obj ect | d generated by the system and
therep_i d provided by the user. The object reference will need to be
converted to a specific object type by invoking the _nar row() operation
defined for the specific object. The caller isresponsible for releasing the
object when the conversion is done.

CORBA Programming Reference 11-23

11 Joint Client/Servers

restart_persistent_systemid

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Exceptions

Activates an object, setsthe ORB and the POA to the proper state, and returnsan object
reference to the activated object.

bj ect restart_persistent_system d(
in Portabl eServer:: Servant servant,
in CORBA : Repositoryld rep_id,
in string stroid)
rai ses (Servant Al readyActive, ObjectAlreadyActive);

CORBA: : Cbject _ptr restart_persi stent_systen d(
Por t abl eSer ver : : Ser vant servant,
const char* rep_id
const char* stroid);

org. ong. CORBA. Obj ect restart_persistent_systeni d(

or g. ong. Portabl eSer ver. Servant servant,
java.lang. String rep_id,
java.lang. String stroid);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository ID of theinterface.

stroid
The stringified version of the Obj ect I d provided by the user to be set in the
object reference being created. It must have been returned from a previous
cal onstart _persistent_systemnd.

Servant Al readyActi ve
The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive callbacks on objects
containing different bj ect 1 ds, you must create different servants and
activate them separately. The same servant can be reused only if a
st op_obj ect operation tells the system to stop using the servant for its
origina Obj ect I d.

oj ect Al readyActive
Thestringified bj ect | d isalready being used for a callback. A given
bj ect 1 d can have only one servant associated with it. If you wish to change

11-24 CORBA Programming Reference

C++ BEAWTrapper Callbacks Interface API

Description

Return Value

CORBA: :

CORBA: :

to adifferent servant, you must first invoke st op_obj ect with the servant
currently in use.

BAD_PARAM
The repository ID was aNULL string or the servant wasa NULL pointer or
the bj ect | d supplied was not previously assigned by the system.

IMP LIMT
In addition to other system reasons for this exception, areason unique to this
situation isthat the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.

This operation performs the following actions:

m Activates an object using the Ser vant supplied to service objects of the type
rep_i d, using the supplied st r oi d (astringified Obj ect I d), which must have
been obtained by apreviouscall onstart _persi st ent _systenid.

m Setsthe ORB and the POA into the state in which they will accept requests on
that object.

m Returns an object reference to the object activated.

m The reactivation would be done using ther est art _per si stent _systemi d
method.

CORBA:

: Cbj ect_ptr

An object reference created with the stringified oj ect 1 d st r oi d and the

rep_i d provided by the user. The object reference will need to be converted
to aspecific object type by invoking the _nar r ow() operation defined for the
specific object. The caller is responsible for releasing the object when done.

CORBA Programming Reference 11-25

11 Joint Client/Servers

start_persistent_userid

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Exceptions

Activates an object, setsthe ORB and the POA to the proper state, and returnsan object
reference to the activated object.

bj ect start_persistent _userid(

port abl eServer:: Servant a_servant,
in CORBA : Repositoryld rep_id,
in string stroid)

rai ses (Servant Al readyActive, bjectAl readyActive);

CORBA: : Obj ect _ptr start_persistent_userid (

Por t abl eSer ver: : Servant servant,
const char* rep_id,
const char* stroid);

org. ong. CORBA. Obj ect start_persistent_useri d(

org. ong. Port abl eSer ver. Servant servant,
java.lang. String rep_id,
java.lang. String stroid);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository ID of theinterface.

stroid
The stringified version of an bj ect | d provided by the user to be set in the
object reference being created. The st r oi d holds application-specific data
and is opague to the ORB.

Servant Al readyActi ve
The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive calbacks on objects
containing different bj ect 1 ds, you must create different servants and
activate them separately. The same servant can be reused only if a
st op_obj ect operation tells the system to stop using the servant for its
origina Obj ect | d.

oj ect Al readyActive
Thestringified bj ect | d isalready being used for a callback. A given
bj ect 1 d can have only one servant associated with it. If you wish to change

11-26 CORBA Programming Reference

C++ BEAWTrapper Callbacks Interface API

Description

Return Value

CORBA: :

CORBA:

to adifferent servant, you must first invoke st op_obj ect with the servant
currently in use.

BAD_PARAM
The repository ID was a NULL string or the servant was a NULL pointer.

SIMP_LIMT

In addition to other system reasons for this exception, areason unique to this
situation isthat the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.

This operation performs the following actions:

m Activates an object using the Ser vant supplied to service objects of the type
rep_i d, using the object Id st r oi d.

m Setsthe ORB and the POA into the state in which they will accept requests on
that object.

m Returns an object reference to the activated object. The returned object reference
will be valid even after termination of the client. That is, if the client terminates,
and restarts again, and then activates a servant with the samer ep_i d and for the
same (bj ect | d, the servant will accept requests made on that same object
reference.

CORBA:

: Cbj ect_ptr

An object reference created with the stringified oj ect 1 d st r oi d and the
rep_i d provided by the user. The object reference will need to be converted
to aspecific object type by invoking the _nar r on() operation defined for the
specific object. The caller is responsible for releasing the object when the
conversion isdone.

CORBA Programming Reference 11-27

11 Joint Client/Servers

stop_object
Synopsis
IDL
C++ Binding
Java Binding

Argument

Exceptions

Description

Return Value

Tells the ORB to stop accepting requests on the object that is using the given servant.
voi d stop_object(in Portabl eServer::Servant servant);

voi d stop_obj ect (Portabl eServer:: Servant servant);

voi d stop_obj ect (org. ong. Portabl eServer. Servant servant);

ser vant
An instance of the C++ implementation class for the interface. The
associ ation between this servant and its bj ect | d will be removed from the
Active Object Map.

None.

This operation tells the ORB to stop accepting requests on the given servant. It does
not matter what state the servant is in, activated or deactivated; no error isreported.

Note: If you do an invocation on a callback object after you call the st op_obj ect
operation, the OBJECT_NOT_EXI ST exception is returned to the caller. Thisis
because the st op_obj ect operation, in effect, deletes the object.

None.

11-28 CORBA Programming Reference

C++ BEAWTrapper Callbacks Interface API

stop_all_objects

Synopsis Tellsthe ORB to stop accepting requests on all servants.
IDL void stop_all_objects ();
C++Binding void stop_all _objects ();
JavaBinding void stop_all _objects ();
Exceptions None.

Description This operation tells the ORB to stop accepting requests on all servants that have been
set up in this process.

Usage Note If aclient callsthe ORB: : shut down method, then it must not subsequently call
stop_al | _obj ects.

Return Value None.

CORBA Programming Reference 11-29

11 Joint Client/Servers

get_string_oid
Synopsis Requests the string version of the Cbj ect I d of the current request.
IDL string get_string oid() raises (NotlnRequest);
C++Binding char* get_string oid();
JavaBinding java.lang.String get_string_oid();

Exceptions Not I nRequest
The function was called when the ORB was not in the context of a request
(that is, not while the ORB was servicing a request in method code). Do not
call thisfunction from client code. It islegal only during the execution of a
method of the callback object (that is, the servant).

Description This operation returns the string version of the Obj ect | d of the current request.

Return Value char *
The string version of the Obj ect I d of the current request. Thisis the string
that was supplied when the object reference was created. The string is
meaningful to usersonly in the case when the object reference was created by
thest art _per si st ent _useri dfunction. (Thatis, theQbj ect | d created by
start_transient andstart_persistent_system dwerecreated by the
ORB and has no relationship to the user application.)

11-30 CORBA Programming Reference

Java BEAWrapper Callbacks Interface API

~Callbacks
Synopsis

C++ Binding
Java Binding
Arguments
Exceptions
Description

Usage Note

Return Value

Destroys the callback object.

BEAW apper : : ~Cal | backs();

public ~Call backs();

None.

None.

This destructor destroys the callback object.

If aclient wantsto get rid of the wrapper, but not shut down the ORB, then the client
must call thest op_al | _obj ect s method.

None.

Java BEAWrapper Callbacks Interface API

For a complete description of the BEAW apper . Cal | backs interface API, see the
Javadoc API.

CORBA Programming Reference 11-31

11 Joint Client/Servers

11-32 CORBA Programming Reference

CHAPTER

12 Development
Commands

For a detailed discussion of BEA Tuxedo devel opment commands, see the BEA
Tuxedo Command Reference. This document describes all BEA Tuxedo commands

and processes.

A PDF file of the BEA Tuxedo Command Referenceis a so provided in the online
documentation.

CORBA Programming Reference 12-1

12 Development Commands

12-2 CORBA Programming Reference

CHAPTER

13 Mapping of OMG IDL
Statements to C++

This chapter discusses the mappings from OMG IDL statementsto C++.

Note: Some of the information in this chapter is taken from the Common Object
Request Broker: C++ Language Mapping Specification, June 1999, published
by the Object Management Group (OM G). Used with permission of the OMG.

Mappings

OMG IDL-to-C++ mappings are described for the following:
m Data Types

m Strings

m wchars

m wstrings

m Constants

m Enums

m Structs

m Unions

m Seguences

CORBA Programming Reference 13-1

13 Mapping of OMG IDL Statements to C++

m Arrays

m Exceptions

m Mapping of Pseudo-objectsto C++
m Usage

m Mapping Rules

m Relation to the C PIDL Mapping

m Typedefs

m Implementing Interfaces

m Implementing Operations

m PortableServer Functions

m Modules

m Interfaces

m Generated Static Member Functions
m Object Reference Types

m Attributes

= Any Type

m Vaue Type

In addition, the following topics are discussed:
m Fixed-length Versus Variable-length User-defined Types
m Using var Classes

m Using out Classes

m Argument Passing Considerations

13-2 CORBA Programming Reference

Mappings

Data Types

Each OMG IDL datatype is mapped to a C++ datat ype or class.

Basic Data Types

The basic datatypesin OMG IDL statements are mapped to C++ typedefsin the

CORBA module, as shown in Table 13-1.

Table 13-1 Basic OMG IDL and C++ Data Types

OMG IDL C++ C++ Out Type
short CORBA: : Short CORBA: : Short _out

| ong CORBA: : Long CORBA: : Long_out
unsi gned CORBA: : UShor t CORBA: : UShort _out
short

unsi gned CORBA: : ULong CORBA: : ULong_out

| ong

f 1 oat CORBA: : Fl oat CORBA: : Fl oat _out
doubl e CORBA: : Doubl e CORBA: : Doubl e_out
char CORBA: : Char CORBA: : Char _out
bool ean CORBA: : Bool ean CORBA: : Bool ean_out
oct et CORBA: : Cct et CORBA: : Cct et _out
wchar CORBA: : WChar CORBA: : WChart _out

Note: On a64-bit machine where along integer is 64 bits, the definition of
CORBA: : Long would still refer to a 32-bit integer.

Complex Data Types

Object, pseudo-object, and user-defined types are mapped as shown in Table 13-2.

CORBA Programming Reference 13-3

13 Mapping of OMG IDL Statements to C++

Table 13-2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

OMG IDL C++

oj ect CORBA: : Obj ect _ptr
struct C++ struct

uni on C++ cl ass

enum C++ enum

string char *

wstring CORBA: : WChar *
sequence C++ cl ass

array C++ array

The mapping for strings and UDTs is described in more detail in the following
sections.

Strings

A stringin OMG IDL ismapped to char * in C++. Both bounded and unbounded
stringsaremapped to char *. CORBA stringsin C++ are NUL L-terminated and can
be used wherever achar * t ype isused.

If astring is contained within another user-defined t ype, suchasa struct, itis
mapped to a CORBA: : Stri ng_var type. Thisensuresthat each member in the struct
manages its own memory.

Strings must be allocated and deall ocated using the following member functionsin the
CORBA class:

m string_alloc
m string_dup

m string free

13-4 CORBA Programming Reference

Mappings

wchars

wstrings

Note: Thestring_all oc function alocates| en+1 characters so that the resulting
string has enough space to hold atrailing NULL character.

OMG IDL definesawchar datatypethat encodes wide characters from any character
set. Aswith character data, an implementation isfreeto use any code set internally for
encoding wide characters, though, again, conversion to another form may be required
for transmission. The size of wchar isimplementation-dependent.

The syntax for defining awchar is:
<wi de_char _type> ::= “wchar”
A code example for wchar is:
wchar _t wm xed[256] ;
Note: Thewchar andwstri ng datatypesenable usersto interact with computersin
their native written language. Some languages, such as Japanese and Chinese,
have thousands of unique characters. These character sets do not fit within a
byte. A number of schemes have been used to support multi-byte character

sets, but they have proved to be unwieldy to use. Wide characters and wide
strings make it easier to interact with this kind of complexity.

Thewst ri ng data type represents a sequence of wchar , except the wide character
NULL. Thetypewst ri ng issimilar to that of type string, except that its element type
iswchar instead of char . The actual length of awstri ng isset at run time and, if the
bounded form is used, must be less than or equa to the bound.

The syntax for defining awst ri ng is:

<wi de_string type> ::= “wstring” “<” <positive_int_const> “>"
| “wstring

A code examplefor wstri ng is:

CORBA: : W5t ri ng_var v_upper = CORBA::wstring_dup(wm xed);

CORBA Programming Reference 13-5

13 Mapping of OMG IDL Statements to C++

wst ri ng typesarebuilt intypesjust like unsigned long, char, string, double, etc. They
can be used directly as parameters, typedef'd, used to construct structs, sequences,
unions, arrays, and so forth.

Note: Thewchar andwst ri ng datatypes enable usersto interact with computersin
their native written language. Some languages, such as Japanese and Chinese,
have thousands of unique characters. These character sets do not fit within a
byte. A number of schemes have been used to support multi-byte character
sets, but they have proved to be unwieldy to use. Wide characters and wide
strings make it easier to interact with this kind of complexity.

Constants

A constant in OMG IDL is mapped to aC++ const definition. For example, consider
the following OMG IDL definition:

/1 OMG | DL
const string ConpanyNane = “BEA Systens | ncorporated”;

nodul e | NVENT
{

const string Name = “lnventory Modul es”;

interface Order

{
const | ong MAX ORDER NUM = 10000;

}s
}s

This definition maps to C++ as follows:
/] C++

const char *const
CompanyNanme = “BEA Systens | ncorporated”;

class | NVENT
{

static const char *const Nane;

class Order : public virtual CORBA: : Object

{
static const CORBA::Long MAX ORDER NUM

13-6 CORBA Programming Reference

Mappings

b
}s

Top-level constants are initialized in the generated . h include file, but module and
interface constants are initialized in the generated client stub modules.

Thefollowing isan example of avalid reference to the MAX_ORDER _NUM constant, as
defined in the previous example:

CORBA: : Long accnt _id = | NVENT: : Order: : MAX_ORDER _NUM

Enums

Anenumin OMG IDL ismapped to an enum in C++. For example, consider the
following OMG IDL definition:

/1 OM5 | DL

nmodul e | NVENT

{
enum Reply {ACCEPT, REFUSE};

This definition maps to C++ as follows:
/] C++
class | NVENT
{
enum Reply {ACCEPT, REFUSE};
b

The following is an example of avalid reference to the enum defined in the previous
example. You refer to enum as follows:

I NVENT: : Reply accept _reply;
accept _reply = | NVENT: : ACCEPT;

CORBA Programming Reference 13-7

13 Mapping of OMG IDL Statements to C++

Structs

A struct in OMG IDL is mapped to a C++ struct.

The generated code for a struct depends upon whether it is fixed-length or
variable-length. For moreinformation about fixed-length versusvariable-length types,
see the section “Fixed-length Versus Variable-length User-defined Types’ on

page 13-52.

Fixed-length Versus Variable-length Structs

A variable-length struct contains an additional assignment operator member function
to handle assignments between two variable-length structs.

For example, consider the following OMG IDL definition:

/1 OMG | DL

nodul e | NVENT

/1 Fixed-1ength
struct Date
{
| ong year;
| ong nont h;
| ong day;

’

/1l Variabl e-1ength

struct Address
{
string aptNum
string streetNane;
string city;
string state;
string zipCode;

}s

This definition maps to C++ as follows:
/] C++

cl ass | NVENT

{
struct Date

13-8 CORBA Programming Reference

Mappings

{

CORBA: : Long year;

CORBA: : Long nont h;

CORBA: : Long day;
I

struct Address
{
CORBA: : String_var apt Num
CORBA: : String_var street Nane;
CORBA: : String_var city;
CORBA: : String_var state;
CORBA: : String_var zi pCode;
Addr ess &operat or =(const Address & obj);
}s

Member Mapping

Var

Members of astruct are mapped to the appropriate C++ datatype. For basic datatypes
(long, short, and so on), see Table 13-1 on page 13-3. For object references,
pseudo-object references, and strings, the member is mapped to the appropriate var
class:

m CORBA:: String_var
m CORBA:: Obj ect _var

All other datatypes are mapped as shown in Table 13-2, “Object, Pseudo-object, and
User-defined OMG IDL and C++ Types,” on page 13-4.

No constructor for a generated struct exists, so hone of the members are initialized.
Fixed-length structs can be initialized using aggregate initialization. For example:

I NVENT: : Date a_date = { 1995, 10, 12 };

Variable-length members map to self-managing types; these types have constructors
that initialize the member.

A var classis generated for structs. For more information, see the section “Using var
Classes’ on page 13-53.

CORBA Programming Reference 13-9

13 Mapping of OMG IDL Statements to C++

Out

An out classis generated for structs. For more information, see the section “Using out
Classes’ on page 13-59.

Unions

A unionin OMG IDL ismapped to a C++ class. The C++ class containsthe following:
m Constructors
m Destructors
m Assignment operators
m Maodifiersfor the union value
m Accessors for the union value
m Maodifiers and accessors for the union discriminator
For example, consider the following OMG IDL definition:
/1 OMG | DL
union Orderltemswi tch (long)

{

case 1: itenBtruct itenlnfo;
case 2: orderStruct orderlnfo;
default: 1D idlnfo;

b
This definition maps to C++ as follows:
/] C++

class Orderltem

{

public:
Oderltem();
O derlten{const Orderltem &);
~Orderltem();

Orderltem &operator=(const Orderltemg);

13-10 CORBA Programming Reference

Mappings

void _d (CORBA::Long);
CORBA: : Long _d () const;

void itemnfo (const itenStruct &);
const itenBtruct & itemnfo () const;
itenBtruct & itemnfo ();

void orderlnfo (const orderStruct &);
const orderStruct & orderlinfo () const;
orderStruct & orderinfo ();

void idinfo (I1D;
IDidlnfo () const;

b
The default union constructor does not set a default discriminator value for the union;
therefore, you cannot call any union accessor member function until you have set the

value of the union. The discriminator is an attribute that is mapped through the _d
member function.

Union Member Accessor and Modifier Member Function Mapping

For each member in the union, accessor and modifier member functions are generated.

In the following code, taken from the previous example, two member functions are
generated for the ID member function:

void idinfo (ID);
IDidlnfo () const;

In this example, the first function (the modifier) sets the discriminator to the default
value and sets the value of the union to the specified ID value. The second function,
the accessor, returns the value of the union.

Depending upon the datat ype of the union member, additional modifier functions are
generated. The member functions generated for each datat ype are as follows:

m Basic datatypes—short, long, unsigned short, unsigned long, float, double, char,
boolean, and octet

The following example generates two member functions for a basic datat ype
with member name basi ct ype:

CORBA Programming Reference 13-11

13 Mapping of OMG IDL Statements to C++

voi d basictype (TYPE); /1 nodifier
TYPE basi ctype () const; /'l accessor

For the mapping from an OMG IDL datat ype to the C++ datat ype TYPE, see
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-3.

m Object and pseudo-object

For object and Typecode types with member name obj t ype, member functions
are generated as follows:

voi d objtype (TYPE); /1 nodifier
TYPE objtype () const; /'l accessor

For the mapping from an OMG IDL data type to the C++ datatype TYPE, see
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-3.

The modifier member function does not assume ownership of the specified
object reference argument. Instead, the modifier duplicates the object reference
or pseudo-object reference. You are responsible for releasing the reference when
itis nolonger required.

m Enum

For an enum TYPE with member name enunt ype, member functions are
generated as follows:

voi d enuntype (TYPE); /1 nodifier
TYPE enuntype () const; // accessor

m String

For strings, one accessor and three modifier functions are generated, as follows:

void stringlnfo (char *); /1 nodifier 1
void stringlnfo (const char *); /1 modifier 2
void stringlnfo (const CORBA::String var &; // nodifier 3
const char * stringlnfo () const; /'l accessor

Thefirst modifier assumes ownership of the char * parameter passed to it and
the union is responsible for calling the CORBA: : string_free member
function on this string when the union value changes or when the union is
destroyed.

13-12 CORBA Programming Reference

Mappings

Var

Out

The second and third modifiers make a copy of the specified string passed in the
parameter or contained in the string var.

The accessor function returns a pointer to internal memory of the union; do not
attempt to free this memory, and do not access this memory after the union value
has been changed or the union has been destroyed.

m Struct, union, sequence, and any

For these data types, modifier and accessor functions are generated with
referencesto thet ype, asfollows:

void reftype (TYPE &); /1 nodifier
const TYPE & reftype () const; // accessor
TYPE & reftype (); /'l accessor

The modifier function does not assume ownership of theinput t ype parameter;
instead, the function makes a copy of the datat ype.

m Array

For an array, the modifier member function accepts an array pointer while the
accessor returns a pointer to an array slice, asfollows:

void arraytype (TYPE); /1 nodifier
TYPE slice * arraytype () const; // accessor

The modifier function does not assume ownership of theinput t ype parameter;
instead, the function makes a copy of the array.

A var classis generated for a union. For more information, see the section “Using var
Classes’ on page 13-53 .

Anout classis generated for aunion. For more information, see the section “Using
out Classes’ on page 13-59.

CORBA Programming Reference 13-13

13 Mapping of OMG IDL Statements to C++

Member Functions

In addition to the accessor and modifiers, the following member functions are
generated for an OMG IDL union of type TYPE with switch (long) discriminator:

TYPE() ;
Thisisthe default constructor for aunion. No default discriminator is set by
this function, so you cannot access the union until you set the value of the
union.

TYPE(const TYPE & From;
This copy constructor deep copies the specified union. Any datain the union
parameter is copied. The Fr omargument specifies the union to be copied.

~TYPE() ;
This destructor frees the data associated with the union.

TYPE &operator=(const TYPE & Fron);
This assignment operator copies the specified union. Any existing value in
the current union isfreed. The Fr omargument specifies the union to be
copied.

void _d (CORBA::Long Descrim;
Thismember function sets the value of the discriminant and freesthe current
value. The Descr i margument specifies the new discriminant. The data type
of the argument is determined by the OMG IDL data type specified in the
switch statement of the union. For each OMG IDL datat ype, see Table 13-1,
“Basic OMG IDL and C++ DataTypes,” on page 13-3 for the C++ data type.

CORBA: : Long _d () const;
This function returns the current discriminant value. The data type of the
return valueis determined by the OMG IDL datatype specified in the switch
statement of the union. For each OMG IDL datatype, see Table 13-1, “Basic
OMG IDL and C++ Data Types,” on page 13-3 for the C++ data type.

Sequences

A sequencein OMG IDL is mapped to a C++ class. The C++ class contains the
following:

m Constructors

13-14 CORBA Programming Reference

Mappings

Each sequence has the following:
e A default constructor
e A constructor that initializes each element

e A copy constructor

Destructors

Modifiersfor current length (and for maximum, if the sequence is unbounded)

Accessors for current length
Oper at or [] functions to access or modify sequence el ements

Allocation and deallocation member functions

Y ou must set the length before accessing any el ements.

For example, consider the following OMG IDL definition:

/1 OMG | DL

nodul e | NVENT

{

typedef sequence<Loglten LoglLi st;

This definition maps to C++ as follows:

[l C++

cl ass LoglLi st

{

public:
/1 Default constructor
LogList();

/1 Maxi mum const ruct or
LogLi st (CORBA: : ULong _nax);

/1 TYPE * data constructor
LoglLi st
(
CORBA: : ULong _nmax,
CORBA: : ULong _| ength,
Logltem *_val ue,

CORBA Programming Reference

13-15

13 Mapping of OMG IDL Statements to C++

CORBA: : Bool ean _rel se = CORBA FALSE
)

/1 Copy constructor
LogLi st (const LogLi st &);

/| Destructor
~LogLi st ();

LogLi st &operat or =(const LogLi st &);
CORBA: : ULong maxi mum() const;

voi d | engt h(CORBA: : ULong) ;
CORBA: : ULong | engt h() const;

Loglt em &operat or[] (CORBA: : ULong _i ndex);
const Logltem &operator[] (CORBA: : ULong _index) const;

static Logltem *al | ocbuf (CORBA: : ULong _nel ens);
static void freebuf(Logltem*);

}s
I

Sequence Element Mapping

The operator[] functionsare used to access or modify the sequence element. These
operators return areference to the sequence element. The OMG IDL sequence base
type is mapped to the appropriate C++ data type.

For basic datatypes, see Table 13-1, “Basic OMG IDL and C++ Data Types,” on page
13-3. For object references, TypeCode references, and strings, the base type is mapped
toagenerated _For Seq_var class. The_For Seq_var class providesthe capability to
update astring or an object that is stored within the sequence. This generated class has
the same member functions and signatures as the corresponding var class. However,
this_For Seq_var class honors the setting of the release parameter in the sequence
constructor. The distinction isthat the _For Seq_var class lets users specify the

Rel ease flag, thereby alowing users to control the freeing of memory.

All other datatypes are mapped as shown in Table 13-2, “ Object, Pseudo-object, and
User-defined OMG IDL and C++ Types,” on page 13-4.

13-16 CORBA Programming Reference

Mappings

Vars

Out

A var classis generated for a sequence. For more information, see the section “Using
var Classes’ on page 13-53.

Anout classis generated for asequence. For moreinformation, seethe section “Using
out Classes’ on page 13-59.

Member Functions

For agiven OMG IDL sequence SEQ with base type TYPE, the member functions for
the generated sequence class are described as follows:

SEQ ();
Thisisthe default constructor for a sequence. The length is set to O (zero). If

the sequence is unbounded, the maximum is also set to 0 (zero). If the
sequence is bounded, the maximum is specified by the OMG IDL type and
cannot be changed.

SEQ (CORBA: : ULong Max);
This constructor is present only if the sequence is unbounded. This function
setsthelength of the sequenceto 0 (zero) and sets the maximum of the buffer
to the specified value. The Max argument specifiesthe maximum length of the
sequence.

SEQ (CORBA: : ULong Max, CORBA:: ULong Length, TYPE * Val ue,
CORBA: : Bool ean Rel ease);
This constructor sets the maximum, length, and elements of the sequence.
The Rel ease flag determines whether elements are rel eased when the
sequence is destroyed. Explanations of the arguments are as follows:

Max
The maximum value of the sequence. This argument is not present
in bounded sequences.

Length
The current length of the sequence. For bounded seguences, this
value must be less than the maximum specified in the OMG IDL

type.

CORBA Programming Reference 13-17

13 Mapping of OMG IDL Statements to C++

Val ue
A pointer to the buffer containing the elements of the sequence.

Rel ease
Determineswhether elementsarereleased. If thisflag hasavalue of
CORBA_TRUE, the sequence assumes ownership of the buffer pointed
toby theval ue argument. If theRel ease flagis CORBA_ TRUE, this
buffer must be allocated using the al | ocbuf member function,
becauseit will be freed using the f r eebuf member function when
the sequence is destroyed.

SEQ(const S& From;
This copy constructor deep copies the sequence from the specified argument.
The Fr omargument specifies the sequence to be copied.

~SEQ() ;
This destructor frees the sequence and, depending upon the Rel ease flag,
may free the sequence elements.

SEQ& operat or =(const SEQ& From;
This assignment operator deep copies the sequence from the specified
seguence argument. Any existing el ementsin the current sequence are
released if the Rel ease flag in the current sequence is set to CORBA TRUE.
The Fr omargument specifies the sequence to be copied.

CORBA: : ULong maxi mum() const;
Thisfunction returns the maximum of the sequence. For abounded sequence,
thisisthe value set in the OMG IDL type. For an unbounded sequence, this
isthe current maximum of the sequence.

voi d | engt h(CORBA: : ULong Length);
This function sets the current length of the sequence. The Lengt h argument
specifies the new length of the sequence. If the sequence is unbounded and
the new length is greater than the current maximum, the buffer is reallocated
and the elements are copied to the new buffer. If the new lengthis greater than
the maximum, the maximum is set to the new length.

For abounded sequence, the length cannot be set to a value greater than the
maximum.

CORBA: : ULong | engt h() const;
This function returns the current length of the sequence.

13-18 CORBA Programming Reference

Mappings

Arrays

TYPE & operator[] (CORBA: : ULong | ndex);
const TYPE & operator[](CORBA: : ULong | ndex) const;

static

static

I

These accessor functions return areference to the sequence element at the
specified index. Thel ndex argument specifiesthe index of the element to
return. This index cannot be greater than the current sequence length. The
length must have been set either using the TYPE * constructor or the

| engt h(CORBA: : ULong) modifier. If TYPE is an object reference,
TypeCode reference, or string, the return type will be a For Seq_var class.

TYPE * al | ocbuf (CORBA: : ULong Nuntl ens);

Thisstatic function allocates abuffer to be used withthe TYPE * constructor.
The NumElems argument specifies the number of elements in the buffer to
alocate. If the buffer cannot be allocated, NULL is returned.

If this buffer is not passed to the TYPE * constructor with release set to
CORBA_TRUE, it should be freed using the f r eebuf member function.

voi d freebuf (TYPE * Val ue);

This static function freesa TYPE * sequence buffer allocated by the

al | ocbuf function. The val ue argument specifiesthe TYPE * buffer
alocated by the al | ocbuf function. A O (zero) pointer isignored.

Anarray in OMG IDL is mapped to aC++ array definition. For example, consider the
following OMG IDL definition:

OMG | DL

nmodul e | NVENT

I

{

typedef Logltem LogArray[10];
b

This definition maps to C++ as follows:

CH+

nmodul e | NVENT

{

typedef Logltem LogArray[10];
typedef Logltem LogArray_sli ce;

CORBA Programming Reference 13-19

13 Mapping of OMG IDL Statements to C++

Array Slice

static LogArray_slice * LogArray_alloc(void);
static void LogArray free(LogArray_slice *data);

}

A dlice of an array isan array with al the dimensions of the original array except the
first dimension. The member functions for the array-generated classes use a pointer to
adliceto return pointersto an array. A typedef for each dliceis generated.

For example, consider the following OMG IDL definition:

/1 OMG I DL
typedef Logltem LogMil ti Array[5][10];

This definition maps to C++ as follows:

/1 C++
typedef Logltem LogWul ti Array[5][10];
typedef Logltem LogMil ti Array_slice[10];

If you have a one-dimensiona array, an array sliceisjust atype. For example, if you
had a one-dimensional array of | ong, an array slicewould result in a CORBA: : Long
datatype.

Array Element Mapping

Vars

Out

Thetype of the OMG IDL array is mapped to the C++ array element typein the same
manner as structs. For more information, see the section “Member Mapping” on
page 13-9.

A var classisgenerated for an array. For moreinformation, seethe section “Using var
Classes’ on page 13-53.

An out classis generated for an array. For more information, see the section “Using
out Classes’ on page 13-59.

13-20 CORBA Programming Reference

Mappings

Allocation Member Functions

For each array, there are two static functionsfor array allocation and deallocation. For
agiven OMG IDL type TYPE, the alocation and deall ocation routines are as follows:

static TYPE slice * TYPE all oc(void);
Thisfunction allocatesa TYPE array, returning a pointer to the allocated TYPE
array. If the array cannot be dynamically allocated, O (zero) is returned.

static void TYPE free(TYPE slice * Value);
Thisfunction freesadynamically allocated TYPE array. The Val ue argument
is apointer to the dynamically allocated TYPE array to be freed.

Exceptions

An exceptionin OMG IDL is mapped to a C++ class. The C++ class contains the
following:

m Constructors
m Destructors
m A dtatic _nar r owfunction, to determine the type of exception

The generated classis similar to avariable-length structure, but with an additional
constructor to simplify initialization, and with the static _nar r ow member function to
determine the type of UserException.

For example, consider the following OMG IDL definition:
/1 OMG | DL

nmodul e | NVENT

{
excepti on NonExi st

{

| D Badl d;

IS
b

This definition maps to C++ as follows:

[l C++

CORBA Programming Reference 13-21

13 Mapping of OMG IDL Statements to C++

cl ass | NVENT

{
class NonExist : public CORBA: :UserException
{
public:
static NonExist * _narrow(CORBA: : Exception_ptr);
NonExi st (1D _Badld);
NonExi st ();
NonExi st (const NonExist &);
~NonExi st ();
NonExi st & operat or=(const NonExist &);
void _raise ();
I D Badl d;
b
s
Attributes (data members) of the Exception class are public, so you may access them

directly.

Member Mapping

Members of an exception are mapped in the same manner as structs. For more
information, see “Member Mapping” on page 13-9.

All exception members are public datain the C++ class, and are accessed directly.

Var

A var classisgenerated for an exception. For moreinformation, seethe section“Using
var Classes’ on page 13-53.

Out

An out classis generated for an exception. For more information, see the
section“Using out Classes’ on page 13-59.

Member Functions

For agiven OMG IDL exception TYPE, the generated member functionsareasfollows:

13-22 CORBA Programming Reference

Mappings

static TYPE * _narrow(CORBA:: Exception_ptr Except);

TYPE (

Thisfunction returns a pointer to a TYPE exception classif the exception can
be narrowed to a TYPE exception. If the exception cannot be narrowed, 0
(zero) isreturned. The TYPE pointer isnot apointer to anew class. Instead, it
isatyped pointer to the original exception pointer andisvalid only aslong as
the Except parameter isvalid.

);
Thisisthe default constructor for the exception. No initialization of members
is performed for fixed-length members. V ariable-length members map to
self-managing types; these types have constructors that initialize the member.

TYPE(menber - par anet ers) ;

TYPE (

~TYPE

This constructor has an argument for each of the members in the exception.
The constructor copies each argument and does not assume ownership of the
memory for any argument. Building on the previous example, the signature
of the constructor is:

NonExi st (1D _Badld);
There is one argument for each member of the exception. The type and
parameter-passing mechanism areidentical to the Any insertion operator. For
information about the Any insertion operator, see the section to “Insertion
into Any” on page 13-38.

const TYPE & Fron);
This copy constructor copies the data from the specified TYPE exception
argument. The Fr omargument specifies the exception to be copied.

0);
This destructor frees the data associated with the exception.

TYPE & operator=(const TYPE & Fron);

voi d

This assignment operator copies the data from the specified TYPE exception
argument. The Fr omargument specifies the exception to be copied.

_raise ();
This function causes the exception instance to throw itself. A catch clause
can catch it by a more derived type.

CORBA Programming Reference 13-23

13 Mapping of OMG IDL Statements to C++

Mapping of Pseudo-objects to C++

CORBA pseudo-objects may be implemented either as normal CORBA objects or as
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:

m Serverless object types do not inherit from CORBA: : bj ect .
m Individual serverless objects are not registered with any ORB.

m Serverless objects do not necessarily follow the same memory management rules
asfor regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for exampl e, address spaces. | nstead, referencesto serverless objectsthat are
passed as parameters may result in the construction of independent, functionally
identical copies of objects used by receivers of these references. To support this, the
otherwise hidden representational properties (such asdatalayout) of serverlessobjects
are made known to the ORB. Specificationsfor achieving this are not contained in this
chapter; making serverless objects known to the ORB is an implementation detail.

This chapter provides a standard mapping algorithm for all pseudo-object types. This
avoidsthe need for piecemeal mappings for each of the nine CORBA pseudo-object
types, and accommaodates any pseudo-object types that may be proposed in future
revisionsof CORBA. It al so avoids representation dependencein the C mapping, while
till allowing implementations that rely on C-compatible representations.

Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo-object types follow the same
rules as normal OMG IDL interfaces, with the following exceptions:

m They are prefaced by the keyword pseudo.

m Their declarations may refer to other! serverless object types that are not
otherwise necessarily allowed in OMG IDL.

1. In particular, except i on used as a data type and a function name.

13-24 CORBA Programming Reference

Mappings

The pseudo prefix meansthat the interface may beimplemented in either anormal or
serverless fashion. That is, apply either the rules described in the following sections,
or the normal mapping rules described in this chapter.

Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA: : Obj ect,
and arenot necessarily subclassesof any other C++ class. Thus, they do not necessarily
support, for example, the Cbj ect : : creat e_r equest operation.

For each class representing a serverless object type T, overloaded versions of the
following functions are provided in the CORBA namespace:

/1 C++
void rel ease(T _ptr);
Boolean is_nil (T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users,
although subclasses can be provided by implementations. |mplementations are
allowed to make assumptions about internal representations and transport formats that
may not apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is because some
serverless objects, such as CORBA: : NVLi st , are essentially just containers for several
levels of other serverless objects. Requiring callersto explicitly free the values
returned from accessor functionsfor the contained serverless objectswould be counter
to their intended usage.

All other elements of the mapping are the same. In particular:

m Thetypes of references to serverless objects, T_pt r, may or may not simply be a
typedef of T*.

m Each mapped class supports the following static member functions:

/1 C++
static T _ptr _duplicate(T _ptr p);
static T ptr _nil();

CORBA Programming Reference 13-25

13 Mapping of OMG IDL Statements to C++

m Legal implementations of _dupl i cat e include simply returning the argument or
constructing references to a new instance. Individual implementations may
provide stronger guarantees about behavior.

m The corresponding C++ classes may or may not be directly instantiable or have
other instantiation constraints. For portability, users should invoke the
appropriate constructive operations.

m Aswith normal interfaces, assignment operators are not supported.

m Although they can transparently employ “copy-style” rather than
“reference-style” mechanics, parameter passing signatures and rules as well as
memory management rules are identical to those for normal objects, unless
otherwise noted.

Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct anal ogs
in the C mapping. The mapped C++ classes can, but need not, be implemented using
representations compatible to those chosen for the C mapping. Differences between
the pseudo-object specifications for C-PIDL and C++ PIDL are as follows:

m C++PIDL calsfor remova of representation dependencies through the use of
interfaces rather than structs and typedefs.

m C++PIDL calsfor placement of operations on pseudo-objectsin their
interfaces, including a few cases of redesignated functionality as noted.

m InC++ PIDL, rel ease performstherole of the associated f r ee and del et e
operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
document.

13-26 CORBA Programming Reference

Mappings

Typedefs

A typedef in OMG IDL ismapped to atypedef in C++. Depending uponthe OMG IDL
data type, additional typedefs and member functions may be defined. The generated
code for each datatypeis as follows:

m Basic datatypes (short, long, unsigned short, unsigned long, float, double, char,
boolean, and octet)

Basic data types map to a simple typedef. For example:

/1 OMG | DL
typedef long ID;
/1 C++

typedef CORBA::Long |ID;
m string
A string typedef is mapped to a simple typedef. For example:

/1 OMG | DL
typedef string IDStr;

/1 C++
typedef char * IDStr;

m object, interfaces, TypeCode

Object, interfaces, and TypeCode types are mapped to four typedefs. For
example:

/1 OMG | DL
typedef ItemIntf;
/1 C++

typedef ItemIntf;

typedef Itemptr Intf _ptr;
typedef Itemvar Intf_var;
typedef Itemptr & Intf _out;

®m enum, struct, union, sequence

UDTs are mapped to three typedefs. For example:

/1 OMG | DL
typedef LogList ListRetType;

/1 C++
typedef LogList ListRetType;

CORBA Programming Reference 13-27

13 Mapping of OMG IDL Statements to C++

typedef LogLi st_var ListRetType_var;
typedef LogLi st _out & ListRetType out;

m aray

Arrays are mapped to four typedefs and the static member functions to allocate
and free memory. For example:

/1 OMG | DL
typedef LogArray ArrayRet Type;

/] C++

typedef LogArray ArrayRet Type;

typedef LogArray var ArrayRet Type_var;
typedef LogArray forany ArrayRet Type forany;
typedef LogArray_slice ArrayRet Type_slice;
ArrayRet Type_slice * ArrayRet Type_al |l oc();
void ArrayRet Type_free(ArrayRet Type_slice *);

Implementing Interfaces

An operation in OMG IDL is mapped to a C++ member function.

The name of the member function is the name of the operation. The operation is
defined as a member function in both the interface class and the stub class. The
interface classis virtual; the stub class inherits from the virtual class and contains the
member function code from the client application stub. When an operation is invoked
on the object reference, the code contained in the corresponding stub member function
executes.

For example, consider the following OMG IDL definition:

/1 OMG | DL
nmodul e | NVENT
{
interface Order
{
Itenlist nodifyOrder (in Itenlist MdifyList);
b
}s

This definition maps to C++ as follows:

[l C++

13-28 CORBA Programming Reference

Mappings

cl ass | NVENT
{

class Order : public virtual CORBA: : Object
{

virtual IltenList * nodifyOrder (
const ltenList & ModifyList) = 0;

b
I
class Stub_Order : public Oder
{

Itenmlist * nodi fyOrder (
const Iltenlist & ModifyList);

b
The generated client application stub then contains the following generated code for
the stub class:
/1 ROUTI NE NAME: I NVENT: : Stub_Order: : nodi fyOrder
/1l
/1 FUNCTI ONAL DESCRI PTI ON:
/1

/1 dient application stub routine for operation
/1 nodi fyOrder.
/1 (Interface : Order)

I NVENT: : I tenLi st * | NVENT:: Stub_Order:: nodi fyOrder (
const | NVENT::Itenlist & MdifyList)
{

-

Argument Mapping

Each of the arguments in an operation is mapped to the corresponding C++ type as
described in Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-3 and
Table 13-2, “ Object, Pseudo-object, and User-defined OMG IDL and C++ Types,” on
page 13-4.

The parameter passing modes for argumentsin an operation are described in
Table 13-7, “Basic Argument and Result Passing,” on page 13-67 and Table 13-8,
“T_var Argument and Result Passing,” on page 13-69.

CORBA Programming Reference 13-29

13 Mapping of OMG IDL Statements to C++

Implementing Operations

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client side, the server-side mapping requires that the
function header include the appropriate exception (t hr ow) specification. This
requirement allows the compiler to detect when an invalid exception israised, which
isnecessary in the case of alocal C++-to-C++ library call (otherwise, the call would
have to go through awrapper that checks for a valid exception). For example:

/1 1DL
interface A

exception B {};
void f() raises(B);

b
/] C++
class MYA : public virtual PQA A
{
public:
void f() throw(A:: B, CORBA:: Systenktxception);
s

Since all operations and attributes may throw CORBA system exceptions,
CORBA: : Syst enExcept i on must appear inall exception specifications, evenwhen an
operation hasnor ai ses clause.

Within amember function, the“this” pointer refersto theimplementation object’ sdata
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. For example:

/1 1DL

interface A

{
void f();
void g();
I

/] C++
class MYA : public virtual PQA A

{
public:

13-30 CORBA Programming Reference

Mappings

void f() throw(SystenkException);

void g() throw(SystenkException);
private:

long x_;

b

voi d
M/A: . f() throw(SystenkException)
{

this->x_ = 3;
this->g();
}

However, when aservant member function isinvoked in thismanner, it isbeing called
simply as a C++ member function, not as the implementation of an operation on a
CORBA object. In such a context, any information available viathe POA_Cur r ent
object refersto the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

Skeleton Derivation from Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod: : A, the skeleton class
POA_Mod: : Aisderived from class Mod: : A. These systems, therefore, alow an object
reference for a servant to be implicitly obtained vianorma C++ derived-to-base
conversion rules:

/1 C++
M/l npl OF A ny_a; /1 declare inpl of A
A ptr a = &my_a; /1 obtain its object reference
/1 by C++ derived-to-base conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _t hi s() on
the implementation object to implicitly register it if it has not yet been registered, and
to get its object reference:

/] C++

M/l npl OF A ny_a; /1 declare inpl of A
A ptr a =ny_a._this(); // obtain its object reference

CORBA Programming Reference 13-31

13 Mapping of OMG IDL Statements to C++

PortableServer Functions

Modules

Objects registered with POAs use sequences of octet, specifically the

Por t abl eSer ver : : POA: : Cbj ect | d type, as object identifiers. However, because
C++ programmers often want to use strings as object identifiers, the C++ mapping
provides several conversion functionsthat convert stringsto Obj ect I d and vice versa:

/] C++
nanespace Port abl eServer

char* (bjectld to_string(const (bjectld&);

oj ectld* string_to_Objectld(const char*);
}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an Obj ect | d to astringwould result in illegal charactersin the string
(such asaNULL), the first two functions throw the CORBA: : BAD_PARAMexception.

A modulein OMG IDL ismapped to a C++ class. Objects contained in the module are
defined within this C++ class. Becauseinterfaces and types are also mapped to classes,
nested C++ classes resullt.

For example, consider the following OMG IDL definition:

/1 OMG | DL

nmodul e | NVENT
{

interface Order

{
b
b
This definition maps to C++ as follows:

[l C++

13-32 CORBA Programming Reference

Mappings

Interfaces

cl ass | NVENT

{

class Order : public virtual CORBA:: (bj ect
{
}; I/ class Order

}; I/ class | NVENT

Multiple nested modules yield multiple nested classes. Anything inside the module
will be in the module class. Anything inside the interface will bein the interface class.

OMG IDL allows modules, interfaces, and types to have the same name. However,
when generating filesfor the C++ language, having the same nameisnot allowed. This
restriction is necessary because the OMG IDL names are generated into nested C++
classes with the same name; thisis not supported by C++ compilers.

Note: The BEA Tuxedo OMG IDL compiler outputs an informational message if
you generate C++ codefrom OMG IDL with aninterfaceor typewith the same
name as the current module name. If you ignore this informational message
and do not use unique names to differentiate the interface or type from the
module name, the compiler will signa errors when compiling the generated
files.

Aninterfacein OMG IDL is mapped to a C++ class. Thisclass contains the definitions
of the operations, attributes, constants, and user-defined types (UDTSs) contained in the
OMG IDL interface.

For an interface INTF, the generated interface code contains the following items:

m Object referencetype (I NTF_pt r)

Object reference variable type (I NTF_var)
m _duplicate static member function

® _narrow static member function

_ni | static member function

m UDTs

CORBA Programming Reference 13-33

13 Mapping of OMG IDL Statements to C++

m Member functions for attributes and operations

For example, consider the following OMG IDL definition:
/1 OMG | DL

nmodul e | NVENT
{

interface Order

{

voi d cancel Order ();
b
b

This definition maps to C++ as follows:

/] C++
cl ass | NVENT

{
cl ass Or der;
typedef Order * Order _ptr;

class Order : public virtual CORBA:: Obj ect
{

static Order_ptr _duplicate(Order_ptr obj);
static Order_ptr _narrow CORBA: : Object _ptr obj);
static Order_ptr _nil();

virtual void cancel Oder () = 0;

b
b

The object reference types and static member functions are described in the following
sections, as are UDTS, operations, and attributes.

Generated Static Member Functions

This section describesin detail the generated static member functions: _dupl i cat e,
_narrow, and _nil foraninterface INTF.

static INTF ptr _duplicate (INTF_ptr Obj)
This static member function duplicates an existing INTF object reference and
returns anew INTF object reference. The new INTF object reference must be

13-34 CORBA Programming Reference

Mappings

released by calling the CORBA: : r el ease member function. If an error
occurs, areferenceto the nil INTF object is returned. The argument Qbj
specifies the object reference to be duplicated.

static INTF_ptr _narrow (CORBA:: Cbject_ptr nj)
This static member function returns a new INTF object reference given an
existing CORBA: : Obj ect _pt r object reference. The (bj ect _pt r object
reference may have been created by a call to the
CORBA: : ORB: : string_to_obj ect member function or may have been
returned as a parameter from an operation.

The | NTF_pt r object reference must correspond to an INTF object or to an
object that inherits from the INTF object. The new INTF object reference
must be released by calling the CORBA: : r el ease nenber function. The
argument Obj specifiesthe object reference to be narrowed to an INTF object
reference. The Gbj parameter is not modified by this member function and
should be released by the user when it isnolonger required. If Obj cannot be
narrowed to an INTF object reference, the INTF nil object referenceis
returned.

static INTF ptr _nil ()
This static member function returnsthe new nil object referencefor the INTF
interface. The new reference does not have to be released by calling the
CORBA: : r el ease member function.

Object Reference Types

Aninterfaceclass (INTF) isavirtual class, the CORBA standard doesnot allow you to:
m Create or hold an instance of theinterface class
m Useapointer or areference to the interface class

Instead, you use one of the object reference types, | NTF_ ptr or | NTF_var class.
Y ou can obtain an object reference by using the _narr ow static member function.
Operations are invoked on these classes using the arrow operator (- >).

The | NTF_var class simplifies memory management by automatically releasing the
object referencewhen the | NTF_var classgoes out of scope or isreassigned. Variable
types are generated for many of the UDTsand are described in “Using var Classes” on
page 13-53.

CORBA Programming Reference 13-35

13 Mapping of OMG IDL Statements to C++

Attributes

A read-only attributein OMG IDL is mapped to a C++ function that returns the
attribute value. A read-write attribute maps to two overloaded C++ functions, one to
return the attribute value and one to set the attribute value. The name of the overloaded
member function is the name of the attribute.

Attributes are generated in the same way that operations are generated. They are
defined in both the virtual and the stub classes. For example, consider the following
OMG IDL definition:

/1 OMG | DL
nmodul e | NVENT
{
interface O der
{
attribute itenBtruct item nfo;
b
b

This definition maps to C++ as follows:
/] C++
class | NVENT
{
class Item: public virtual CORBA:: Object
{
virtual itenStruct * itemnfo () = 0;

virtual void item nfo (
const itenBtruct & item nfo) = O;

I
b
class Stub_Item: public Item
{

itenStruct * itemnfo ();

void item nfo (
const itenBtruct & item nfo);
}s

13-36 CORBA Programming Reference

Mappings

The generated client application stub then contains the following generated code for

the stub class:

/1 ROUTI NE NAME: I NVENT: : Stub_Item:item nfo
11

/1 FUNCTI ONAL DESCRI PTI ON:

/1

/1 Client application stub routine for attribute
/1 INVENT: : Stub_Item:item nfo. (Interface : Item
INVENT: :itenStruct * | NVENT:: Stub_Item:itemnfo ()
{

}

/1

/1 ROUTI NE NAVE: I NVENT: : Stub_Item:itenm nfo
Il

/1 FUNCTI ONAL DESCRI PTI ON:

I

/1 Aient application stub routine for attribute
/1 I NVENT: : Stub_Item:itenmnfo. (Interface : Item

void INVENT: :Stub Item:item nfo (
const INVENT::itenStruct & itemnl nfo)
{

}

Argument Mapping

An attribute is equivalent to two operations, one to return the attribute and one to set
the attribute. For example, thei t eml nf o attribute listed above is equiva ent to:

void itemnfo (initenStruct item nfo);
itenStruct itemnfo ();

The argument mapping for the attribute is the same as the mapping for an operation
argument. The attribute is mapped to the corresponding C++ type as described in
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-3 and Table 13-2,
“Object, Pseudo-object, and User-defined OMG IDL and C++ Types,” on page 13-4.
The parameter passing modes for argumentsin an operation are described in

Table 13-7, “Basic Argument and Result Passing,” on page 13-67 and Table 13-8,
“T_var Argument and Result Passing,” on page 13-69.

CORBA Programming Reference 13-37

13 Mapping of OMG IDL Statements to C++

Any Type

Anany in OMG IDL is mapped to the CORBA: : Any class. The CORBA: : Any class
handles C++ typesin atype-safe manner.

Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct typein
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided. Overloaded operators are used for these functions to completely
avoid any name space pollution. The nature of these functions, which are described in
detail below, isthat the appropriate TypeCode isimplied by the C++ type of the value
being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are specia casesin which this requirement is not met:

m TheBoolean, octet, and char OMG IDL types are not required to map to distinct
C++ types, which means that a separate means of distinguishing them from each
other for the purpose of function overloading is necessary. The means of
distinguishing these types from each other is described in “ Distinguishing
Boolean, Octet, Char, and Bounded Strings” on page 13-44.

m Since all strings are mapped to char * regardless of whether they are bounded or
unbounded, another means of creating or setting an any with a bounded string
value is necessary. Thisis described in “Distinguishing Boolean, Octet, Char,
and Bounded Strings’ on page 13-44.

m In C++, arrays within afunction argument list decay into pointers to their first
elements. This meansthat function overloading cannot be used to distinguish
between arrays of different sizes. The means for creating or setting an any when
dealing with arrays is described below and in “Arrays’ on page 13-19.

Insertion into Any

To dlow avaueto be set in an any in atype-safe fashion, the following overloaded
operator function is provided for each separate OMG IDL typeT:

13-38 CORBA Programming Reference

Mappings

/1 C++
voi d operator<<=(Any& T);

This function signature suffices for the following types, which are usually passed by
value:

m Short, UShort, Long, ULong, Fl oat , Doubl e
m Enumerations

m Unbounded strings (char * passed by value)

m Object references (T_ptr)

For values of type T that are too large to be passed by value efficiently, two forms of
the insertion function are provided:

/1 C++
voi d operator<<=(Any& const T&); /1 copying form
voi d operator<<=(Any& T*); /1 non-copying form

Note that the copying form islargely equivalent to the first form shown, as far asthe
caller is concerned.

These “| eft-shift-assign” operators are used to insert atyped value into an any, as
follows:

/1l C++

Long val ue = 42;
Any a;

a <<= val ue;

Inthis case, the version of oper at or <<= overloaded for type Long sets both the value
and the TypeCode properly for the Any variable.

Setting avauein an any using oper at or <<= means the following:

m For the copying version of oper at or <<=, the lifetime of the valuein the Any is
independent of the lifetime of the value passed to oper at or <<=. The
implementation of the Any does not store its value as a reference or a pointer to
the value passed to oper at or <<=.

m For the noncopying version of oper at or <<=, the inserted T* is consumed by the
Any. The caller may not use the T+ to access the pointed-to data after insertion
because the Any assumes ownership of T*, and the Any may immediately copy
the pointed-to data and destroy the original.

CORBA Programming Reference 13-39

13 Mapping of OMG IDL Statements to C++

m With both the copying and noncopying versions of oper at or <<=, any previous
value held by the Any is properly deallocated. For example, if the
Any(TypeCode_pt r, voi d*, TRUE) constructor (described in “Handling
Untyped Values’ on page 13-47) were called to create the Any, the Any is
responsible for deallocating the memory pointed to by the voi d* before copying
the new value.

Copying insertion of a string type causes the following function to be invoked:

/] C++
voi d operat or <<=(Any&, const char*);

Since all string types are mapped to char *, this insertion function assumes that the
value being inserted is an unbounded string. “ Distinguishing Bool ean, Octet, Char, and
Bounded Strings’ on page 13-44 describes how bounded strings may be correctly
inserted into an Any. Noncopying insertion of both bounded and unbounded stringscan
be achieved using the Any: : f r om st r i ng helper type described in “Distinguishing
Boolean, Octet, Char, and Bounded Strings’ on page 13-44.

Type-safe insertion of arrays usesthe Arr ay_f or any types described in “Arrays” on
page 13-19. The ORB provides a version of oper at or <<= overloaded for each
Array_for any type. For example:

/1 1DL
typedef |ong LongArray[4][5];

/] C++

typedef Long LongArray[4]][5];
typedef Long LongArray_slice[5];
class LongArray forany { ... };

voi d operator<<=(Any & const LongArray forany &);

TheArray_f or any types are dways passed to oper at or <<= by referenceto const .
Thenocopy flaginthe Array_f or any constructor is used to control whether the
inserted valueis copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and aT*, it ishighly
recommended that portable code explicitly use the appropriate Ar ray_f or any type
when inserting an array into an Any. For example:

/1 1DL
struct S {.
typedef S SA[5]

13-40 CORBA Programming Reference

Mappings

/1 C++

struct S{ ... };
typedef S SA[5];
typedef S SA slice;

class SA forany { ... };

SA s;

/1l ...initialize s...

Any a;

a <<= s; /Il line 1
a <<= SA forany(s); /1l line 2

Line 1 results in the invocation of the noncopying oper at or <<=(Any&, S*) dueto
the decay of the SA array type into a pointer to its first element, rather than the
invocation of the copying SA f or any insertion operator. Line 2 explicitly constructs
the SA_f or any type and thus results in the desired insertion operator being invoked.

Thenoncopying version of oper at or <<= for object referencestakes the address of the
T_ptr type, asfollows:

/1 1DL

interface T { ... };

/1 C++

voi d operator<<=(Any& T ptr); /1 copying
voi d operator<<=(Any& T ptr*); /1 non-copyi ng

The noncopying object reference insertion consumesthe object reference pointed to by
T_pt r *; therefore, after insertion the caller may not access the object referred to by
T_pt r because the Any may have duplicated and then immediately released the
original object reference. The caller maintains ownership of the storagefor the T_pt r
itself.

The copying version of oper at or <<= is also supported on the Any_var type.

Extraction from Any

To alow type-saferetrieval of avalue from an any, the ORB provides the following
operatorsfor each OMG IDL type T:

/1 C++
Bool ean oper at or>>=(const Any&, T&);

This function signature suffices for primitive types that are usually passed by value.
For values of type T that are too large to be passed by value efficiently, the ORB
provides a different signature, as follows:

CORBA Programming Reference 13-41

13 Mapping of OMG IDL Statements to C++

/] C++
Bool ean operat or >>=(const Any&, T*&);

Thefirst form of this function is used only for the following types:

m Bool ean, Char, Octet, Short, UShort, Long, ULong, Float,
Doubl e

m Enumerations

m Unbounded strings (char * passed by reference, i.e., char * &)
m Object references (T_ptr)

For al other types, the second form of the function is used.

This “right-shift-assign” operator is used to extract atyped value from an any, as
follows:

/] C++
Long val ue;
Any a;
a <<= Long(42);
if (a >>= value) {
/'l ... use the value ...

}

In this case, the version of oper at or >>= for type Long determines whether the Any
truly does contain avalue of type Long and, if so, copiesits valueinto the reference

variable provided by the caller and returns TRUE. If the Any does not contain avalue
of type Long, the value of the caller’s reference variable is not changed, and

oper at or >>= returns FALSE.

For nonprimitive types, extraction is done by pointer. For example, consider the
following OMG IDL struct:

/1 1DL
struct MyStruct {
long | mem
short snmem
b
Such a struct could be extracted from an Any as follows:
/] C++
Any a&;
/1 ... ais sonehow given a value of type MyStruct

MyStruct *struct _ptr;

13-42 CORBA Programming Reference

Mappings

if (a >>= struct_ptr) {
/1 ... use the value ...
}

If the extraction is successful, the caller’ s pointer pointsto storage managed by the
Any, and oper at or >>= returns TRUE. The caller must not try to del et e or otherwise
release this storage. The caller also should not use the storage after the contents of the
Any variable are replaced via assignment, insertion, or ther epl ace function, or after
the Any variable is destroyed. Care must be taken to avoid using T_var types with
these extraction operators, since they will try to assume responsibility for deleting the
storage owned by the Any.

If the extraction is not successful, the value of the caller’ s pointer is set equal to the
NULL pointer, and oper at or >>= returns FALSE.

Correct extraction of array typesrelies onthe Array_f or any types described in
“Arrays’ on page 13-19.

An example of the OMG IDL isasfollows:

/1 1DL
typedef |ong Al 20];
typedef A B[30][40][50];

/1 C++

typedef Long A[20];
typedef Long A slice;
class A forany { ... };
typedef A B[30][40][50];
typedef A B slice[40][50];
class B forany { ... };

Bool ean oper at or>>=(const Any&, A foranyé&);

/1 for type A

Bool ean oper at or>>=(const Any&, B foranyé&); /1
for type B

The Array_f or any types are always passed to oper at or >>= by reference.

For strings and arrays, applications are responsible for checking the TypeCode of the
Any to be sure that they do not overstep the bounds of the array or string object when
using the extracted value.

The oper at or >>= isalso supported on the Any_var type.

CORBA Programming Reference 13-43

13 Mapping of OMG IDL Statements to C++

Distinguishing Boolean, Octet, Char, and Bounded Strings

Since the Boolean, octet, and char OMG IDL typesare not required to map to distinct
C++ types, another means of distinguishing them from each other is necessary so that
they can be used with the type-safe Any interface. Similarly, since both bounded and
unbounded strings map to char *, another means of distinguishing them must be
provided. Thisisdone by introducing several new helper types nested inthe Any class
interface. For example, this is accomplished as shown below:

/] C++
class Any
{

public:

/| special hel per types needed for bool ean, octet,
/1 char, and bounded string insertion
struct from bool ean {
from bool ean(Bool ean b) : val (b) {}
Bool ean val ;
};
struct fromoctet {
fromoctet(Cctet o) : val (o) {}
Cctet val;
b
struct fromchar {
fromchar(Char c) : val(c) {}
Char val;
b
struct fromstring {
fromstring(char* s, ULong b,
Bool ean nocopy = FALSE)
val (s), bound(b) {}
char *val;
ULong bound;

}s

voi d oper at or<<=(from bool ean);
voi d operator<<=(fromchar);
voi d operator<<=(fromoctet);
voi d operator<<=(fromstring);
/1 special hel per types needed for bool ean, octet,
/1 char, and bounded string extraction
struct to_bool ean {
t o_bool ean(Bool ean &) : ref(b) {}
Bool ean &ref;
h
struct to_char {
to_char(Char &) : ref(c) {}
Char &ref;

13-44 CORBA Programming Reference

Mappings

b
struct to_octet {
to_octet(Cctet &) : ref(o) {}
Cctet &ref;
b
struct to_string {
to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val
ULong bound;

}s

Bool ean operator>>=(to_bool ean) const;
Bool ean operator>>=(to_char) const;
Bool ean operator>>=(to_octet) const;
Bool ean operator>>=(to_string) const;

/1 other public Any details onmtted

private:
/1 these functions are private and not inpl enented
/1 hiding these causes conpile-tinme errors for
/1 unsigned char
voi d operat or <<=(unsi gned char);
Bool ean operator>>=(unsigned char &) const;

}s

The ORB provides the overloaded oper at or <<= and oper at or >>= functions for
these special helper types. These helper types are used as shown here:

/] C++
Bool ean b = TRUE;
Any any;
any <<= Any::from bool ean(b)
1.
if (any >>= Any::to_bool ean(b)) {
/1 ...any contained a Bool ean...
}
char* p = "bounded";
any <<= Any::fromstring(p, 8);
...
if (any >>= Any::to_string(p, 8)) {
/1 ...any contained a string<8>...
}

A bound vaue of 0 (zero) indicates an unbounded string.

For noncopying insertion of a bounded or unbounded string into an Any, the nocopy
flag on the f rom st ri ng constructor should be set to TRUE:

CORBA Programming Reference 13-45

13 Mapping of OMG IDL Statements to C++

/] C++

char* p = string_alloc(8);

/1l ...initialize string p...

any <<= Any::fromstring(p, 8, 1); /1l any consunes p

Assuming that boolean, char, and octet all map the C++ type unsi gned char, the
private and unimplemented oper at or <<= and oper at or >>= functionsfor unsi gned
char cause acompile-time error if straight insertion or extraction of any of the
boolean, char, or octet typesis attempted:

/] C++

Cct et oct = 040;

Any any;

any <<= oct; /1 this line will not conpile
any <<= Any::fromoctet(oct); /1 but this one wll

Widening to Object

Sometimesit is desirable to extract an object reference from an Any asthe base Object
type. This can be accomplished using a helper type similar to those required for
extracting boolean, char, and octet:

/] C++
class Any
{

public:

st r uct to_object {
to_object(Object_ptr &bj) : ref(obj) {}
bj ect _ptr &ref;

Bool ean oper at or>>=(to_obj ect) const;

b

Thet o_obj ect helper type is used to extract an object reference from an Any asthe
base Object type. If the Any contains a value of an object reference type as indicated
by its TypeCode, the extraction function oper at or >>=(t o_obj ect) explicitly
widens its contai ned object reference to Object and returns TRUE; otherwise, it returns
FALSE. Thisisthe only object reference extraction function that performs widening
on the extracted object reference. Aswith regular object reference extraction, no
duplication of the object referenceis performed by the t o_obj ect extraction
operator.

13-46 CORBA Programming Reference

Mappings

Handling Untyped Values

Under some circumstancesthe type-safe interfaceto Any isnot sufficient. An example
is asituation in which data types are read from afilein binary form and are used to
create values of type Any. For these cases, the Any class provides a constructor with
an explicit TypeCode and generic pointer:

/1 C++
Any(TypeCode_ptr tc, void *val ue, Bool ean release = FALSE);

The constructor duplicates the given TypeCode pseudo-object reference. If the

r el ease parameter is TRUE, the Any object assumes ownership of the storage pointed
to by theval ue parameter. A caller should make no assumptions about the continued
lifetime of the val ue parameter onceit has been handed to an Any with

r el ease=TRUE, since the Any may copy the val ue parameter and immediately free
the original pointer. If ther el ease parameter is FALSE (the default case), the Any
object assumes that the caller manages the memory pointed to by val ue. Theval ue
parameter can be aNULL pointer.

The Any class also defines three unsafe operations:

/1 C++
voi d repl ace(

TypeCode_ptr,

voi d *val ue,

Bool ean rel ease = FALSE
)i
TypeCode_ptr type() const;
const void *val ue() const;

Ther epl ace function isintended to be used with types that cannot be used with the
type-safe insertion interface, and so is similar to the constructor described above. The
existing TypeCode is released and value storage is deallocated, if necessary. The
TypeCode function parameter is duplicated. If ther el ease parameter is TRUE, the
Any object assumes ownership for the storage pointed to by theval ue parameter. The
Any should make no assumptionsabout the continued lifetime of the val ue parameter
onceit hasbeen handed tothe Any: : r epl ace function withr el ease=TRUE, sincethe
Any may copy theval ue parameter and immediately free the original pointer. If the
r el ease parameter is FALSE (the default case), the Any object assumesthat the caller
manages the memory occupied by the value. The val ue parameter of ther epl ace
function can be aNULL pointer.

CORBA Programming Reference 13-47

13 Mapping of OMG IDL Statements to C++

Note that neither the constructor shown above nor ther epl ace function istype-safe.
In particular, no guarantees are made by the compiler at run time asto the consistency
between the TypeCode and the actual type of thevoi d* argument. The behavior of an
ORB implementation when presented with an Any that is constructed with a
mismatched TypeCode and value is not defined.

Thetypefunction returnsa TypeCode_pt r pseudo-object reference to the TypeCode
associated withthe Any. Like all object referencereturn values, the caller must release
thereference when it isno longer needed, or assign it to a TypeCode_var variable for
automatic management.

Theval ue function returns a pointer to the data stored in the Any. If the Any has nho
associated value, the val ue function returnsaNULL pointer.

Any Constructors, Destructor, Assignment Operator

The default constructor creates an Any with a TypeCode of typetk_nul | , and no
value. The copy constructor calls_dupl i cat e on the TypeCode_pt r of itsAny
parameter and deep-copiesthe parameter’ svalue. The assignment operator releasesits
own TypeCode_pt r and deallocates storage for the current value if necessary, then
duplicates the TypeCode_pt r of its Any parameter and deep-copies the parameter’s
value. Thedestructor callsr el ease onthe TypeCode_pt r and deallocates storagefor
the value, if necessary.

Other constructors are described in the section “Handling Untyped Values” on
page 13-47.

The Any Class

Thefull definition of the Any class can be found in the section “Any Class Member
Functions” on page 14-2.

Value Type

This section is based on information contained in Chapters 3, 5, and 6 of the Common
Object Request Broker: Architecture and Specification, Revision 2.4.2, February
2001, and the CORBA C++ Language Mapping Specification, June 1999, published
by the Object Management Group (OMG). Used with permission of the OMG.

13-48 CORBA Programming Reference

Mappings

Overview

Architecture

Objects, more specifically, interface types that objects support, are defined in an IDL
interface, allowing arbitrary implementations. There is great value in having a
distributed object system that places amost no constraints on implementation.
However, there are many occasionsinwhich it is desirableto be ableto pass an object
by vaue, rather than by reference. This may be particularly useful when an object’s
primary “purpose’ isto encapsulate data, or an application explicitly wishes to make
a‘“copy” of an object.

The semantics of passing an object by value are similar to that of standard
programming languages. The receiving side of a parameter passed by value receivesa
description of the“ state” of the object. It theninstantiates anew instance with that state
but having aseparate identity from that of the sending side. Oncethe parameter passing
operation is complete, no relationship is assumed to exist between the two instances.

Becauseiit is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’ s state and implementation. Thus,
valuetype(s) provide semantics that bridge between CORBA structs and CORBA
interfaces, as follows:

m They support description of complex state (that is, arbitrary graphs, with
recursion and cycles).

m Their instances are always local to the context in which they are used (because
they are always copied when passed as a parameter to aremote call).

m They support both public and private (to the implementation) data members.

m They can be used to specify the state of an object implementation (that is, they
can support an interface).

m They support single inheritance (of valuetype) and can support an interface.

m They may be aso be abstract.

Thebasic notion of valuetypesisrelatively simple. A valuetype s, in some sense, half
way between a“regular” IDL interface type and astruct. The use of valuetypeisa
signal from the application programmer that some additional properties (state) and
implementation details be specified beyond that of an interface type. Specification of

CORBA Programming Reference 13-49

13 Mapping of OMG IDL Statements to C++

this information puts some additional constraints on the implementation choices
beyond that of interface types. Thisis reflected in both the semantics specified herein,
and in the language mappings.

Benefits

Prior to supporting valuetypes (objects passable by value), all CORBA objects had
object references. When multiple clients invoked on a particular object, they use the
same object reference. The instance(s) of the object remained on the server ORB and
its state was maintained by the server ORB, not the client ORB.

Valuetypes represent a significant addition to the CORBA architecture. Aswith
objects passed by reference, valuetypes have state and methods, but do not have object
references and are always invoked locally as programming language objects. Upon
reguest from the receiving side, valuetypes package their state in the sending context,
send their state “ over the wire” to the receiving side, where an instance is created and
populated with the transmitted state. The sending side has no further control of the
client-side instance. Thus, the receiving side can make subsequent invocations of the
instance locally. Thismodel eliminates the delaysinvolved when communicating over
the network. These delays can be significant in large networks. The addition of
valuetypes enables CORBA implementations to more easily scale to meet large
data-handling requirements.

Therefore, an essentia property of valuetypesisthat their implementations are always
local. That is, the explicit use of valuetypes in a concrete programming language is
always guaranteed to use aloca implementation, and will not require aremote call.
They have no identity (their value is their identity) and they are not “registered” with
the ORB.

Valuetype Example

For example, consider the following IDL valuetype taken from the CORBA C+ +
Language Mapping Specification, June 1999, published by the Object Management
Group (OMG):

/1 1DL

val uet ype Exanpl e {
short opl();
I ong op2(in Exanple x);
private short val 1;
public long val 2;

13-50 CORBA Programming Reference

Mappings

private string val 3;
private float val 4,
private Exanpl e val5;

b

The C++ mapping for this valuetype is:

/1 C++

cl ass Exanple : public virtual Val ueBase {
publ i c:

virtual Short opl() = 0;
virtual Long op2(Exanple*) = 0;

virtual Long val 2() const = O;
virtual void val 2(Long) = 0;

static Exanpl e* _downcast(Val ueBase*);

pr ot ect ed:
Exanpl e() ;
virtual ~Exanple();

virtual Short val 1() const = 0;
virtual void val 1(Short) = 0;

virtual const char* val 3() const = 0;
virtual void val 3(char*) = 0;

virtual void val 3(const char*) = 0;
virtual void val 3(const String var& = 0;

virtual Float val4() const = 0;
virtual void val 4(Float) = 0;

virtual Exanple* val5() const = 0;
virtual void val 5(Exanpl e*) = 0;

private:
/1 private and uni npl enent ed
voi d operat or=(const Exanpl e&);

}

cl ass OBV _Exanple : public virtual Exanple {
public:
virtual Long val 2() const;
virtual void val 2(Long);

pr ot ect ed:
OBV_Exanpl e();
OBV_Exanpl e(Short init_vall, Long init_val 2,
const char* init_val 3, Float init_val4,

CORBA Programming Reference

13-51

13 Mapping of OMG IDL Statements to C++

Exanpl e* init_val 5);
virtual ~OBV_Exanpl e();

virtual Short val 1() const;
virtual void val 1(Short);

virtual const char* val 3() const;
virtual void val 3(char*);

virtual void val 3(const char*);
virtual void val 3(const String var&)

virtual Float val 4() const;
virtual void val 4(Fl oat);

virtual Exanple* val 5() const;
virtual void val 5(Exanpl e*);

Fixed-length Versus Variable-length
User-defined Types

The memory management rules and member function signatures for a user-defined
type depend upon whether the type is fixed-length or variable-length. A user-defined
typeis variable-length if it is one of the following:

m A bounded or unbounded string

m A bounded or unbounded sequence

m A struct or union that contains a variable-length member
m An array with avariable-length element type

m A typedef to avariable-length type

If atypeisnot on thislist, the type is fixed-length.

13-52 CORBA Programming Reference

Using var Classes

Using var Classes

Automatic variables (vars) are provided to simplify memory management. Vars are
provided through a var class that assumes ownership for the memory required for the
type and frees the memory when the instance of the var object is destroyed or when a
new value is assigned to the var object.

The BEA Tuxedo provides var classes for the following types:
m String (CORBA: : String_var)
m Object references (CORBA: : Cbj ect _var)

m User-defined OMG IDL types (st ruct, uni on, sequence, ar r ay, and
interface)

Thevar classes have common member functions, but may support additional operators
depending uponthe OMG IDL type. For an OMG IDL type TYPE, the TYPE var class
contains constructors, destructors, assignment operators, and operators to access the
underlying TYPE type. An example var classis as follows:

cl ass TYPE var

{
public:
// constructors
TYPE var();
TYPE var (TYPE *);
TYPE var (const TYPE var &);
/1 destructor
~TYPE var ();

/] assignnent operators
TYPE var &operator=(TYPE *);
TYPE var &operator=(const TYPE var &);

/| accessor operators
TYPE *operator->();
TYPE *operator->() const;

TYPE_ var_ptr in() const;
TYPE var_ptr& inout();
TYPE_ var_ptr& out ();

CORBA Programming Reference 13-53

13 Mapping of OMG IDL Statements to C++

TYPE var _ptr _retn();

operator const TYPE ptré&() const;
operator TYPE ptré&();

operator TYPE ptr;

b
The detail s of the member functions are as follows:

TYPE var ()
Thisisthe default constructor for the TYPE var class. The constructor
initializesto O (zero) the TYPE * owned by thevar class. Y ou may not invoke
the oper at or-> onaTYPE_var classunlessavalid TYPE * has been
assigned to it.

TYPE var (TYPE * Val ue);
This constructor assumes ownership of the specified TYPE * parameter.
When the TYPE_var isdestroyed, the TYPE is released. The Val ue argument
isapointer to the TYPE to be owned by this var class. This pointer must not
be 0 (zero).

TYPE var (const TYPE var & Fron);
This copy constructor allocates anew TYPE and makes adeep copy of the data
contained in the TYPE owned by the Fr omparameter. When the TYPE_var is
destroyed, the copy of the TYPE is released or deleted. The Fr omparameter
specifiesthe var class that points to the TYPE to be copied.

~TYPE var ();
Thisdestructor usesthe appropriate mechanism to rel ease the TYPE owned by
the var class. For strings, thisisthe CORBA: : st ri ng_f r ee routine. For
object references, thisisthe CORBA: : r el ease routine. For other types, this
may be del et e or agenerated static routine used to free allocated memory.

TYPE var &operator=(TYPE * Newval ue);
This assignment operator assumes ownership of the TYPE pointed to by the
Newval ue parameter. If the TYPE_var currently ownsa TYPE, it isreleased
before assuming ownership of the Newval ue parameter. The Newval ue
argument is a pointer to the TYPE to be owned by this var class. This pointer
must not be O (zero).

TYPE var &operator=(const TYPE var &Fron);
Thisassignment operator all ocates anew TYPE and makes a deep copy of the
data contained in the TYPE owned by the Fr omTYPE var parameter. If
TYPE_var currently owns aTYPE, it isreleased. When the TYPE var is
destroyed, the copy of the TYPE isreleased. The Fr omparameter specifiesthe
var class that pointsto the data to be copied.

13-54 CORBA Programming Reference

Using var Classes

TYPE *operator->();
TYPE *operator->() const;

These operators return a pointer to the TYPE owned by the var class. The var
class continuesto own the TYPE and it isthe responsibility of the var classto
release TYPE. Y ou cannot use the oper at or - > until the var ownsavalid
TYPE. Do not try to release this return value or access this return value after
the TYPE var hasbeen destroyed.

TYPE var _ptr in() const;
TYPE var _ptré& inout();
TYPE var _ptr& out();
TYPE var _ptr _retn();

Becauseimplicit conversions can sometimes cause aproblem with some C++
compilers and with code readability, the TYPE var types also support
member functions that allow them to be explicitly converted for purposes of
parameter passing. To passaTYPE_var and ani n parameter, call thei n()
member function; for i nout parameters, thei nout () member function; for
out parameters, the out () member function. To obtain areturn value from
the TYPE var, call the_ret urn() function. For each TYPE_var type, the
return types of each of these functions will match the type shown in

Table 13-7, “Basic Argument and Result Passing,” on page 13-67 for thei n,
i nout , out , and return modes for the underlying type TYPE, respectively.

Some differences occur in the operators supported for the user-defined data types.
Table 13-3 describes the various operators supported by each OMG IDL datatype, in
the generated C++ code. Because the assignment operators are supported for all of the
data types described in Table 13-3, they are not included in the comparison.

Table 13-3 Comparison of Operators Supported for User-defined Data Type

var Classes
OMG IDL Data Type operator -> operator|[]
struct Yes No
uni on Yes No
sequence Yes Y es, non-const only
array No Yes

The signatures are as shown in Table 13-4.

CORBA Programming Reference 13-55

13 Mapping of OMG IDL Statements to C++

Table 13-4 Operator Signaturesfor _var Classes

OMG IDL Data Operator Member Functions

Type
struct TYPE * operator-> ()
TYPE * operator-> () const
uni on TYPE * operator-> ()
TYPE * operator-> () const
sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[](CORBA:: Long i ndex)
array TYPE slice & operator[] (CORBA: : Long i ndex)

TYPE slice & operator[] (CORBA: : Long i ndex) const

Sequence vars

Sequence vars support the following additional oper at or [] member function:

TYPE &operator[] (CORBA: : ULong | ndex);
This operator invokes the oper at or [] of sequence owned by the var class.
The operator[] returns areference to the appropriate element of the
seguence at the specified index. The | ndex argument specifies the index of
the element to return. Thisindex cannot be greater than the current sequence
length.

Array vars

Array vars do not support oper at or - >, but do support the following additional
oper at or [] member functions to access the array elements:

TYPE_slice& operator[](CORBA: : ULong | ndex);

const TYPE slice & operator[](CORBA::ULong | ndex) const;
These operatorsreturn areferenceto the array slice at the specified index. An
array sliceisan array with all the dimensions of the original array except the

13-56 CORBA Programming Reference

Using var Classes

first dimension. The member functions for the array-generated classes use a
pointer to asliceto return pointersto an array. Thel ndex argument specifies
the index of the slice to return. Thisindex cannot be greater than the array
dimension.

String vars

The String vars in the member functions described in this section and in the section
“Sequence vars’ on page 13-56 haveaTYPE of char *. String vars support additional
member functions, as follows:

String var(char * str)
This constructor makesa St ri ng_var fromastring. Thestr argument
specifies the string that will be assumed. The user must not usethe st r
pointer to access data.

String var(const char * str)

String var(const String var & var)
This constructor makesa St ri ng_var fromaconst string. Thestr
argument specifies the const string that will be copied. The var argument
specifies areference to the string to be copied.

String _var & operator=(char * str)
This assignment operator first rel eases the contained string using
CORBA: : string_free, and then assumes ownership of the input string. The
st r argument specifies the string whose ownership will be assumed by this
String_var object.

String_var & operator=(const char * str)

String var & operator=(const String var & var)
This assignment operator first rel eases the contained string using
CORBA: : string_free, and then copiesthe input string. The Dat a argument
specifies the string whose ownership will be assumed by thisSt ri ng_var
object.

char operator[] (U ong | ndex)

char operator[] (U ong |Index) const
These array operators are superscripting operators that provide access to
characters within the string. The | ndex argument specifies the index of the
array to usein accessing a particular character within the array. Zero-based
indexing is used. The returned value of the Char operator[] (U ong
I ndex) function can be used as an Ivalue. The returned value of the

CORBA Programming Reference 13-57

13 Mapping of OMG IDL Statements to C++

Char operator[] (U ong Index) const function cannot be used as an
Ivalue.

out Classes

Structured types (struct, union, sequence), arrays, and interfaces have a corresponding
generated _out class. The out classis provided for simplifying the memory
management of pointersto variable-length and fixed-length types. For more
information about out classes and the common member functions, see the section
“Using out Classes’ on page 13-59.

Some differences occur in the operators supported for the user-defined data types.
Table 13-5 describes the various operators supported by each OMG IDL datatype, in
the generated C++ code. Because the assignment operators are supported for all of the
data types described in Table 13-3, they are not included in the comparison.

Table 13-5 Comparison of Operator s Supported for User-defined Data Type Out

Classes
OMG IDL Data Type operator -> operator|]
struct Yes No
uni on Yes No
sequence Yes Y es, non-const only
array No Yes

The signatures are as shown in Table 13-6.

Table 13-6 Operator Signaturesfor _out Classes

OMG IDL Data Operator Member Functions

Type
struct TYPE * operator-> ()

TYPE * operator-> () const
uni on TYPE * operator-> ()

TYPE * operator-> () const

13-58 CORBA Programming Reference

Using out Classes

Table 13-6 Operator Signaturesfor _out Classes

OMG IDL Data Operator Member Functions

Type
sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[] (CORBA: : Long i ndex)
array TYPE_slice & operator[] (CORBA:: Long i ndex)

TYPE_slice & operator[] (CORBA: : Long i ndex) const

Using out Classes

When aTYPE var ispassedasanout parameter, any previousvalueit referred to must
beimplicitly deleted. To give the ORB enough hooks to meet this requirement, each
T_var type hasacorresponding TYPE out typethat is used solely as the out
parameter type.

Note: The_out classes are not intended to be instantiated directly by the
programmer. Specify an _out class only in function signatures.

The general form for TYPE_out types for variable-length typesis as follows:

/1 C++
cl ass TYPE_ out
{
public:
TYPE out (TYPE*& p) : ptr_(p) { ptr_=0; }
TYPE out (TYPE var& p) : ptr_(p.ptr_) { delete ptr_; ptr_ = 0;}
TYPE out (TYPE out& p) : ptr_(p.ptr_) {}
TYPE out & operator=(TYPE out& p) { ptr_ = p.ptr_;
return *this;
}

Type_out & operator=(Type* p) { ptr_ = p; return *this; }

operator Type*&() { return ptr_; }
Type*& ptr() { return ptr_; }

Type* operator->() { return ptr_; }

CORBA Programming Reference 13-59

13 Mapping of OMG IDL Statements to C++

private:
Type*& ptr_;

/1 assignnent from TYPE var not all owed
voi d operator=(const TYPE var&):

}s

Thefirst constructor binds the reference data member with the T+ & argument and sets
the pointer to the zero (0) pointer value. The second constructor binds the reference
data member with the pointer held by the TYPE var argument, and then callsdel et e
on the pointer (or string_free() inthecaseof theStri ng_out typeor
TYPE_free() inthecaseof aTYPE var foranarray type TYPE). Thethird constructor,
the copy constructor, binds the reference data member to the same pointer referenced
by the data member of the constructor argument.

Assignment from another TYPE_out copiesthe TYPE* referenced by the TYPE_out
argument to the data member. The overloaded assignment operator for TYPE* simply
assigns the pointer argument to the datamember. Note that assignment does not cause
any previously held pointer to be deleted; in this regard, the TYPE_out type behaves
exactly as a TYPE*. The TYPE* & conversion operator returns the data member. The
ptr () member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow operator

(oper at or - >()) allows access to members of the data structure pointed to by the
TYPE* datamember. Compliant applications may not call the overloaded

oper at or - >() unlessthe TYPE out hasbeen initialized with avalid nonNULL
TYPE*.

Assignment to a TYPE out from instances of the corresponding TYPE_var typeis
disallowed because there is no way to determine whether the application developer
wants acopy to be performed, or whether the TYPE_var should yield ownership of its
managed pointer so it can be assigned to the TYPE out . To perform a copy of a
TYPE_var toaTYPE_out , the application should use new, as follows:

/] C++
TYPE var t = ...;
ny_out = new TYPE(t.in()); /'l heap-allocate a copy

Thei n() functioncaledont typicaly returnsaconst TYPE&, suitable for invoking
the copy constructor of the newly allocated T instance.

Alternatively, to make the TYPE var yield ownership of its managed pointer so it can
bereturnedinaT_out parameter, the application should usethe TYPE var: : _retn()
function, as follows:

13-60 CORBA Programming Reference

Using out Classes

/] C++
TYPE var t = ...;
nmy_out =t. retn(); /1 t yields ownership, no copy

Note that the TYPE_out typesare not intended to serve as general-purpose data types
to be created and destroyed by applications; they are used only as types within
operation signatures to allow necessary memory management side-effects to occur

properly.

Object Reference out Parameter

When a_var ispassed asan out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type resultsin the generation of an _out type that
is used solely asthe out parameter type. For example, interface TYPE resultsin the
object reference type TYPE_pt r, the helper type TYPE var , and the out parameter
type TYPE out . The general form for object reference _out typesisasfollows:

/1 C++
cl ass TYPE out
{

public:

TYPE out (TYPE ptr& p) : ptr_(p) { ptr_ = TYPE: _nil(); }
TYPE out (TYPE var& p) : ptr_(p.ptr_) {
rel ease(ptr_); ptr_ = TYPE: : _nil();

}
TYPE out (TYPE out& a) : ptr_(a.ptr_) {}
TYPE out & operator=(TYPE out& a) {

ptr_ = a.ptr_; return *this;

}
TYPE_out & operat or=(const TYPE var& a) {
ptr_ = TYPE:: _duplicate(TYPE ptr(a)); return *this;

TYPE_ out & operator=(TYPE ptr p) { ptr_ = p; return *this; }
operator TYPE ptr&() { return ptr_; }

TYPE ptré& ptr() { return ptr_; }

TYPE ptr operator->() { return ptr_; }

private:

TYPE ptré& ptr_;
h

CORBA Programming Reference 13-61

13 Mapping of OMG IDL Statements to C++

Sequence outs

Sequence outs support the following additional oper at or [] member function:

TYPE &operator[] (CORBA: : ULong | ndex);

Array outs

This operator invokesthe oper at or [] of the sequence owned by the out
class. Theoper at or [] returns areference to the appropriate element of the
seguence at the specified index. The | ndex argument specifies the index of
the element to return. Thisindex cannot be greater than the current sequence
length.

Array outs do not support oper at or - >, but do support the following additional
oper at or [] member functions to access the array elements:

TYPE_slice& operator[](CORBA: : ULong | ndex);
const TYPE slice & operator[](CORBA:: ULong | ndex) const;

String outs

These operatorsreturn areferenceto the array slice at the specified index. An
array sliceisan array with all the dimensions of the original array except the
first dimension. The member functions for the array-generated classes use a
pointer to asliceto return pointersto an array. The | ndex argument specifies
the index of the dlice to return. Thisindex cannot be greater than the array
dimension.

When asString_var ispassed asanout parameter, any previous vaue it refers to
must beimplicitly freed. To give C++ mapping implementations enough hooksto meet
this requirement, the string type also resultsin the generation of aSt ri ng_out typein
the CORBA namespace that is used solely asthe string out parameter type. The
genera form for the St ri ng_out typeisasfollows:

/] C++
class String_out
{

public:

String out(char*& p) : ptr_(p) { ptr_ =0; }

13-62 CORBA Programming Reference

Using out Classes

String out(String var& p) : ptr_(p.ptr_) {
string_free(ptr_); ptr_ = 0;
}

String out(String out& s) : ptr_(s.ptr_) {}
String_out& operator=(String out& s) {
ptr_ = s.ptr_; return *this;

}

String_out & operator=(char* p) {
ptr_ = p; return *this;

}

String_out & operator=(const char* p) {
ptr_ = string_dup(p); return *this;
}

operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }

private:
char*& ptr_;

/1 assignment from String_var disall owed
voi d operator=(const String_var&);

}s

Thefirst constructor binds the reference data member with the char * & argument. The
second constructor binds the reference data member with the char * held by the
String_var argument, and then calls string_free() onthestring. The third
constructor, the copy constructor, binds the reference data member to the same char *
bound to the data member of its argument.

Assignment from another St ri ng_out copiesthechar * referenced by the argument
String_out tothechar * referenced by the datamember. The overloaded assignment
operator for char * simply assigns the char * argument to the data member. The
overloaded assignment operator for const char * duplicatesthe argument and assigns
the result to the data member. Note that the assignment does not cause any previously
held string to be freed; in thisregard, the St ri ng_out type behaves exactly as a
char *. Thechar * & conversion operator returnsthe datamember. Thept r () member
function, which can be used to avoid having to rely on implicit conversion, also returns
the data member.

Assignment from Stri ng_var toasSt ri ng_out isdisallowed because of the memory
management ambiguitiesinvolved. Specifically, itisnot possibleto determine whether
thestringowned by the St ri ng_var should betaken over by the St ri ng_out without
copying, or if it should be copied. Disallowing assignment from St ri ng_var forces
the application devel oper to make the choice explicitly, asfollows:

CORBA Programming Reference 13-63

13 Mapping of OMG IDL Statements to C++

/] C++

voi d

A::op(String_out arg)

{
String var s = string_dup("some string");
out = s; /] disallowed; either
out = string_dup(s); /1 1. copy, or
out =s. _retn(); /1 2: adopt

}

On the line marked with the comment “1,” the caller is explicitly copying the string
held by the St ri ng_var and assigning the result to the out argument. Alternatively,
the caller could use the technique shown on the line marked with the comment “2” to
forcethe St ri ng_var to give up its ownership of the string it holds so that it may be
returned in the out argument without incurring memory management efrors.

Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references,
the modes are straightforward, passing the type P for primitives and enumerations and
thetype A_pt r for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
isallocated and deall ocated. Mapping i n parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out andi nout
parameters is more problematic. For variable-length types, the callee must allocate
someif not all of the storage. For fixed-length types, such as a Point type
represented as a struct containing three floating point members, caller allocation is
preferable (to allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mapping
isT&for afixed-length aggregate T and T* & for avariable-length T. This approach has
the unfortunate consequence that usage for structs depends on whether the struct is
fixed- or variable-length; however, the mapping is consistently T_var & if the caller
uses the managed type T_var .

13-64 CORBA Programming Reference

Argument Passing Considerations

The mapping for out andi nout parameters additionally requires support for
deallocating any previous variable-length datain the parameter whena T_var is
passed. Even though their initial values are not sent to the operation, the BEA Tuxedo
includes out parameters because the parameter could contain the result from a
previous call. The provision of the T_out typesisintended to give implementations
the hooks necessary to free the inaccessible storage while converting from the T_var
types. The following examples demonstrate the compliant behavior:

/1 1DL
struct S { string nanme; float age; };
void f(out S p);

/] C++

S var s;

f(s);

/] use s

f(s); /1 first result will be freed

S *sp; /1 need not initialize before passing to out

f(sp);
/'l use sp
del ete sp; /] cannot assune next call will free old val ue

f(sp);

Notethat implicit deallocation of previousvauesfor out andi nout parametersworks
only with T_var types, not with other types:

/1 1DL

void g(out string s);

/1 C++

char *s;

for (int i =0; i < 10; i++4)
q(s); /1 menory | eak!

Each call tothe g functionin theloop resultsin amemory leak becausethe caller isnot
invoking stri ng_f r ee ontheout result. There are two ways to fix this, as shown
below:

/1 C++
char *s;
String_var svar
for (int i =0 ; i <10; i++) {
q(s);
string _free(s); /1 explicit deallocation
/Il OR
q(svar); /1 inplicit deallocation
}

CORBA Programming Reference 13-65

13 Mapping of OMG IDL Statements to C++

Using aplain char * for the out parameter meansthat the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
usingastring_var meansthat any deallocation is performed implicitly upon each
use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For
example, before assigning to ani nout string parameter, the implementor of an
operation may first delete the old character data. Similarly, ani nout interface
parameter should be released before being reassigned. One way to ensure that the
parameter storageisreleasedistoassignittoaloca T_var variablewith an automatic
release, as in the following example:

/1 1DL
interface A
void f(inout string s, inout A obj);

/] C++
void Ainpl::f(char *&s, A ptr &obj) {
String var s_tnp = s;
s = /* new data */;
A var obj _tnmp = obj;
obj = /* new reference */

}

For parametersthat are passed or returned asapointer (T*) or asareferenceto apointer
(T*&), an application is not allowed to pass or return aNULL pointer; the result of
doing so isundefined. In particular, a caller may not passa NULL pointer under any
of the following circumstances:

m inandinout string
®m inandinout array (pointer to first element)

However, a caller may pass areference to a pointer with aNULL vauefor out
parameters, because the callee does not examine the value, but overwritesit. A callee
may not return aNULL pointer under any of the following circumstances:

out and return variable-length struct
m out and return variable-length union
m out and return string

m out and return sequence

m out and return variable-length array, return fixed-length array

13-66 CORBA Programming Reference

Argument Passing Considerations

m out and return any

Operation Parameters and Signatures

Table 13-7, “Basic Argument and Result Passing,” on page 13-67 displaysthe
mapping for the basic OMG IDL parameter passing modes and return type
according to the type being passed or returned. Table 13-8, “T_var Argument and
Result Passing,” on page 13-69 displays the same information for T_var types.
Table 13-8 is merely for informational purposes; it is expected that operation
signaturesfor both clients and serverswill bewrittenin terms of the parameter-passing
modes shown in Table 13-7, with the exception that the T_out typeswill be used as
the actual parameter typesfor all out parameters.

Itisalso expected that T_var typeswill support the necessary conversion operatorsto
allow them to be passed directly. Callers should aways pass instances of either T_var
types or the base types shown in Table 13-7, and callees should treat their T_out
parameters as if they were actually the corresponding underlying types shown in
Table 13-7.

In Table 13-7, fixed-length arrays are the only case where the type of an out
parameter differs from areturn value, which is necessary because C++ does not allow
afunction to return an array. The mapping returns a pointer to a slice of the

array, where adlice isan array with all the dimensions of the original array

specified except the first dimension.

Table 13-7 Basic Argument and Result Passing

Data Type In I nout Out Return
short Short Short& Short& Short
long Long Long& Long& Long
unsigned short UShort UShort& UShort& UShort
unsigned long ULong ULong& ULong& ULong
float Float Float& Float& Float
double Double Double& Double& Double
boolean Boolean Boolean& Boolean& Boolean

CORBA Programming Reference 13-67

13 Mapping of OMG IDL Statements to C++

Table 13-7 Basic Argument and Result Passing (Continued)

Data Type In I nout Out Return
char Char Char& Char& Char
wchar W Char WChar& WChar Octet
octet Octet Octet& Octet& Octet
enum enum enumé& enum& enum
object referenceptr (See objref_ptr objref_ptr& objref_ptr& objref_ptr
Note below.)
struct, fixed const struct& struct& struct& struct
struct, variable const struct& struct& struct* & struct*
union, fixed const union& union& union& union
union, variable const union& union& union* & union*
string const char* char*& char*& char*
wstring const WChar WChar* & Wchar* & WChar*
seguence const sequence& sequence& sequence* & sequence*
array, fixed const array array array array slice* (See Note
below.)
array, variable const array array array slice*& array slice*
any const any& any& any*& any*

Note: The Object reference ptr data type includes pseudo-object references. The
array dicereturnisan array with all the dimensionsof theoriginal array except
the first dimension.

A cdler isresponsible for providing storage for all arguments passed asi n arguments.

13-68 CORBA Programming Reference

Argument Passing Considerations

Table 13-8 T_var Argument and Result Passing

Data Type In I nout Out Return
object reference var const objref_var& objref_var& objref_var& objref_var
(See Note below.)

struct_var const struct_var& struct_var& struct_var& struct_var
union_var const union_var& union_var& union_var& union_var
string_var const string_var& string_var& string_var& string_var
sequence_var const sequence_var& sequence var& sequence var& seguence var
array_var const array_var& aray_var& aray_var& array_var
any_var const any_var& any_var& any_var& any_var

Note: The object reference var data type includes pseudo-object references.

Table 13-9 and Table 13-10 describe the caller’ s responsibility for storage associated
with i nout and out parametersand for return results.

Table 13-9 Caller Argument Storage Responsibilities

Type Inout Param Out Param Return Result
short 1 1 1
long 1 1 1
unsigned short 1 1 1
unsigned long 1 1 1
float 1 1 1
double 1 1 1
boolean 1 1 1
char 1 1 1
wchar 1 1 1

CORBA Programming Reference 13-69

13 Mapping of OMG IDL Statements to C++

Table 13-9 Caller Argument Stor age Responsibilities (Continued)

Type Inout Param Out Param Return Result
octet 1 1 1
enum 1 1 1
object referenceptr 2 2 2
struct, fixed 1 1 1
struct, variable 1 3 3
union, fixed 1 1 1
union, variable 1 3 3
string 4 3 3
wstring 4 3 3
seguence 5 3 3
array, fixed 1 1 6
array, variable 1 6 6
any 5 3 3

Table 13-10 Argument Passing Cases

Case

1 Caller alocates dl necessary storage, except that which may be encapsulated and
managed within the parameter itself. For i nout parameters, the caler provides
theinitial value, and the callee may change that value. For out parameters, the
caller allocates the storage but need not initialize it, and the callee sets the value.
Function returns are by value.

13-70 CORBA Programming Reference

Argument Passing Considerations

Table 13-10 Argument Passing Cases (Continued)

Case

2

Caller allocates storagefor the object reference. For i nout parameters, thecaller
provides an initial value; if the callee wantsto reassign the i nout parameter, it
will first call CORBA: : r el ease on theoriginal input value. To continue to use
an object reference passed inasan i nout , the caller must first duplicate the
reference. The caller isresponsible for the release of al out and return object
references. Release of all object references embedded in other structuresis
performed automatically by the structures themselves.

For out parameters, the caller allocates a pointer and passesit by referenceto the
callee. The callee sets the pointer to point to avalid instance of the parameter’s
type. For returns, the callee returns asimilar pointer. The calleeis not allowed to
return aNULL pointer in either case.

In both cases, the caller is responsible for releasing the returned storage. To
maintain local/remote transparency, the caller must always release the returned
storage, regardless of whether the callee islocated in the same address space as
the caller or islocated in adifferent address space. Following the completion of a
request, the caller isnot allowed to modify any valuesin thereturned storage—to
do so, the caller must first copy the returned instance into a new instance, and
modify the new instance.

For i nout strings, the caller provides storage for both the input string and the
char * pointing toit. Since the calleemay deall ocate the input string and reassign
the char * to point to new storage to hold the output val ue, the caller should
alocatetheinput string using st ri ng_al | oc() . Thesizeof the out stringis,
therefore, not limited by the size of thein string. The caller is responsible for
deleting the storage for the out usingstring_free().Thecalleeisnot
allowed to return aNULL pointer for ani nout , out , or return value.

For i nout sequencesand anys, assignment or modification of the sequence or
any may cause deallocation of owned storage before any reallocation occurs,
depending upon the state of the Bool ean release parameter with which the
sequence or any was constructed.

CORBA Programming Reference 13-71

13 Mapping of OMG IDL Statements to C++

Table 13-10 Argument Passing Cases (Continued)

Case

6 For out parameters, the caller allocates a pointer to an array slice, which has all
the same dimensions of the original array except the first, and passes the pointer
by reference to the callee. The callee sets the pointer to point to avalid instance
of the array.

For returns, the callee returnsa similar pointer. The calleeisnot allowed to return
aNULL pointer in either case. In both cases, the caller isresponsible for releasing
the returned storage.

To maintain local/remote transparency, the caller must always release the
returned storage, regardless of whether the callee islocated in the same address
space asthecalleeorislocated in adifferent address space. Following completion
of arequest, the caller is not allowed to modify any values in the returned
storage—to do s, the caller must first copy thereturned array instance into anew
array instance, and modify the new instance.

13-72 CORBA Programming Reference

CHAPTER

14 cORBA API

This chapter describes the BEA Tuxedo implementation of the CORBA core member
functionsin C++ and their extensions. It aso describes pseudo-objects and their
relationship to C++ classes. Pseudo-objects are object references that cannot be
transmitted across the network. Pseudo-objects are similar to other objects; however,
because the ORB owns them, they cannot be extended.

Note: Some of theinformation in this chapter is taken from the Common Object
Request Broker: Architecture and Specification. Revision 2.4.2, February
2001, published by the Object Management Group (OMG). Used with
permission of the OMG.

Global Classes

The following BEA Tuxedo classes are global in scope:
m CORBA
m Tobj

These classes contain the predefined types, classes, and functionsused in BEA Tuxedo
development.

The CORBA class contains the classes, data types, and member functions essential to
using an Object Request Broker (ORB) as defined by CORBA. The BEA Tuxedo
extensions to CORBA are contained in the Tobj C++ class. The Tobj class contains
data types, nested classes, and member functionsthat BEA Tuxedo provides as an
extension to CORBA.

CORBA Programming Reference 14-1

14 coRBA API

Using CORBA data types and member functions in the BEA Tuxedo product requires
the CORBA: : prefix. For example, aLong isa CORBA: : Long. Likewise, to use Tobj
nested classes and member functionsin the BEA Tuxedo product, you need the

Tobj : : prefix. For example, FactoryFinder isTobj : : Fact or yFi nder .

Pseudo-objects

Pseudo-objects are represented as local classes, which residein the CORBA class. A
pseudo-object and its corresponding member functions are named using a nested class
structure. For example, an ORB object isa CORBA: : ORB and a Current object isa
CORBA: : Current.

Any Class Member Functions

14-2

This section describes the member functions of the Any class.
The mapping of these member functions to C++ isasfollows:

cl ass CORBA

{
cl ass Any

{
public:

Ay ();

Any (const Any&);

Any (TypeCode ptr tc, void *val ue, Bool ean rel ease =
CORBA_ FALSE);

~Any ();

Any & operator=(const Any&);
voi d oper at or <<=(Short);
voi d oper at or <<=(UShort);
voi d oper at or <<=(Long) ;
voi d oper at or <<=(ULong) ;
voi d oper at or <<=(Fl oat) ;
voi d oper at or <<=(Doubl e) ;

CORBA Programming Reference

Any Class Member Functions

voi d
voi d
voi d
voi d
voi d
voi d
voi d
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean

oper at or <<=(const Any&);

oper at or <<=(const char?*);

oper at or <<=(Cbj ect _ptr);

oper at or <<=(from bool ean);

operator<<=(fromchar);

operator<<=(fromoctet);

operator<<=(fromstring);
oper ator>>=(Short & const;
oper at or >>=(UShort &) const;
oper at or >>=(Long&) const;
oper at or >>=(ULong&) const;
oper at or >>=(Fl oat & const;
oper at or >>=(Doubl e&) const;
oper ator>>=(Any&) const;
oper ator>>=(char*&) const;
oper ator>>=((hj ect _ptr& const
oper at or >>=(t o_bool ean) const;
operator>>=(to_char) const;
operator>>=(to_octet) const;
oper at or >>=(t o_obj ect) const
operator>>=(to_string) const;

TypeCode_ptr type()const;

voi d
voi d

repl ace(TypeCode_ptr, void *,
repl ace(TypeCode_ptr, void *)

const void * value() const;

b
}; /1 CORBA

Bool ean) ;

CORBA Programming Reference 14-3

14 coRBA API

CORBA::Any::Any()
Synopsis Constructs the Any object.
C++Binding CORBA: : Any: : Any()
Arguments None.

Description Thisisthe default constructor for the CORBA: : Any class. It createsan Any object with
aTypeCode of type tc_nul | and avalue of O (zero).

Return Values None.

14-4 CORBA Programming Reference

Any Class Member Functions

CORBA::Any::Any(const CORBA::Any & InitAny)

Synopsis
C++ Binding

Argument

Description

Return Values

Constructs the Any object that is a copy of another Any object.
CORBA: : Any: : Any(const CORBA:: Any & I nitAny)

I ni t Any
Refersto the CORBA: : Any to copy.

Thisisthe copy constructor for the CORBA: : Any class. This constructor duplicates
the TypeCode reference of the Any that is passed in.

The type of copying to be performed is determined by ther el ease flag of the Any
objecttobecopied. If r el ease evaluatesas CORBA_TRUE, the constructor deep-copies
the parameter’'svaue; if r el ease evaluates as CORBA_FAL SE, the constructor
shallow-copiesthe parameter’ svalue. Using ashallow copy givesyou more control to
optimize memory allocation, but the caller must ensure the Any does not use memory
that has been freed.

None.

CORBA Programming Reference 14-5

14 coRBA API

CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)

Synopsis Creates the Any object using a TypeCode and a value.
C++Binding CORBA: : Any: : Any(TypeCode_ptr TC, void * Val ue, Bool ean Rel ease)

Arguments TC
A pointer to a TypeCode pseudo-object reference, specifying the type to be
created.

Val ue
A pointer to the datato be used to create the Any object. The datatype of this
argument must match the TypeCode specified.

Rel ease
Determines whether the Any assumes ownership of the memory specified by
the val ue argument. If Rel ease iSCORBA_TRUE, the Any assumes
ownership. If Rel ease iSCORBA_FAL SE, the Any does not assume ownership;
the data pointed to by the val ue argument is not rel eased upon assignment or
destruction.

Description Thisconstructor isused with the nontype-safe Any interface. It duplicatesthe specified
TypeCode object reference and then inserts the data pointed to by value inside the
Any object.

Return Values None.

14-6 CORBA Programming Reference

Any Class Member Functions

CORBA::Any::~Any()
Synopsis Destructor for the Any .
C++Binding CORBA: : Any: : ~Any()
Arguments None.

Description This destructor frees the memory that the CORBA: : Any holds (if the Rel ease flagis
specified as CORBA_TRUE), and rel eases the TypeCode pseudo-object reference
contained in the Any.

Return Values None.

CORBA Programming Reference 14-7

14 coRBA API

CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)

Synopsis
C++ Binding

Arguments

Description

Return Values

Any assignment operator.
CORBA: : Any & CORBA: : Any: : operat or=(const CORBA:: Any & | nitAny)

I ni t Any
A reference to an Any to use in the assignment. The Any to usein the
assignment determineswhether the Any assumes ownership of thememory in
Val ue. If Rel ease iSCORBA_TRUE, the Any assumes ownership and
deep-copiesthel ni t Any argument’svalue; if Releaseis CORBA_FALSE, the
Any shallow-copiesthel ni t Any argument’svalue.

Thisisthe assignment operator for the Any class. Memory management of thismember
function is determined by the current value of the Rel ease flag. The current value of
the Rel ease flag determines whether the current memory is rel eased before the
assignment. If the current Rel ease flag is CORBA_TRUE, the Any releases any value
previously held; if the current Release flag is CORBA FAL SE, the Any does not release
any value previously held.

Returnsthe Any, which holdsthe copy of thel ni t Any.

14-8 CORBA Programming Reference

Any Class Member Functions

void CORBA::
Synopsis
C++ Binding

Argument

Description

Return Values

any::operator<<=()

Type safe Any insertion operators.

voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :

Val ue

;. oper at or <<=(CORBA:
;. oper at or <<=(CORBA:
;. oper at or <<=(CORBA: :
. oper at or <<=(CORBA: :
. oper at or <<=(CORBA: :
. oper at or <<=(CORBA: :
;. operator<<=(const CORBA : Any & Val ue)
;. operator<<=(const char * Val ue)

.. operator<<=(Qbject_ptr Val ue)

: Short Val ue)
: UShort Val ue)

Long Val ue)
U ong Val ue)
Fl oat Val ue)
Doubl e Val ue)

Type specific value to be inserted into the Any .

Thisinsertion member function performstype-safe insertions. If the Any had a

previous value, and the Rel ease flagis CORBA_TRUE, the memory isdeallocated and
the previous TypeCode object referenceisfreed. The new valueisinsertedinto the Any
by copying the value passed in using the Val ue parameter. The appropriate TypeCode
reference is duplicated.

None.

CORBA Programming Reference 14-9

14 coRBA API

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis
C++ Binding

Argument

Description

Return Values

Type safe Any extraction operators.

CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Short & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : UShort & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Long & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Ul ong & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Fl oat & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Doubl e & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(CORBA: : Any & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(char * & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(Cbj ect _ptr & Val ue) const

TheVal ue argument isareferenceto the relevant object that receivesthe output of the
value contained in the Any object.

This extraction member function performs type-safe extractions. If the Any object
contains the specified type, this member function assigns the pointer of the Any to the
output reference value, Val ue, and CORBA_TRUE isreturned. If the Any does not
contain the appropriate type, CORBA_FALSE is returned. The caller must not attempt to
release or delete the storage because it is owned and managed by the Any object. The
Val ue argument is areference to the relevant object that receives the output of the
value contained in the Any object. If the Any object does not contain the appropriate
type, the value remains unchanged.

CORBA_TRUE if the Any contained avalue of the specific type. CORBA FALSE if the Any
did not contain avalue of the specific type.

14-10 CORBA Programming Reference

Any Class Member Functions

CORBA::Any::operator<<=()
Synopsis Type safe insertion operators for Any.

C++Binding voi d CORBA: : Any: : oper at or <<=(from bool ean Val ue)
voi d CORBA: : Any: : operator<<=(from char Val ue)
voi d CORBA:: Any: :operator<<=(fromoctet Val ue)
voi d CORBA:: Any: :operator<<=(fromstring Val ue)

Argument Val ue
A relevant object that contains the value to insert into the Any.

Description These insertion member functions perform atype-safe insertion of a
CORBA: : Bool ean, aCORBA: : Char, or aCORBA: : Cct et referenceinto an Any. If the
Any had aprevious value, and its Rel ease flag is CORBA TRUE, the memory is
deall ocated and the previous TypeCode object reference is freed. The new valueis
inserted into the Any object by copying the value passed in using the Val ue parameter.
The appropriate TypeCode reference is duplicated.

Return Values None.

CORBA Programming Reference 14-11

14 coRBA API

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis Type-safe extraction operators for Any.

C++Binding CORBA: : Bool ean CCRBA: : Any: : oper at or >>=(t 0_bool ean Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(to_char Val ue) const
CORBA: : Bool ean CORBA: : Any: : operat or >>=(to_octet Value) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(t o_obj ect Val ue) const
CORBA: : Bool ean CORBA: : Any: : operator>>=(to_string Val ue) const

Argument Val ue
A reference to the relevant object that receives the output of the value
contained in the Any object. If the Any object does not contain the appropriate
type, the value remains unchanged.

Description These extraction member functions perform atype-safe extraction of a
CORBA: : Bool ean, aCORBA: : Char, aCORBA: : Cct et , aCORBA: : Obj ect,or a
String referencefrom an Any. These member functions are hel pers nested in the Any
class. Their purposeisto distinguish extractions of the OMG IDL types: Boolean, char,
and octet (C++ does not require these to be distinct types).

Return Values If the Any contains the specified type, this member function assigns the value in the
Any object reference to the output variable, val ue, and returns CORBA_TRUE. If the
Any object does not contain the appropriate type, CORBA_FALSE isreturned.

14-12 CORBA Programming Reference

Any Class Member Functions

CORBA::TypeCode_ptr CORBA::Any::type() const

Synopsis
C++ Binding
Arguments

Description

Return Values

TypeCode accessor for Any.
CORBA: : TypeCode_ptr CORBA:: Any::type();
None.

This function returns the TypeCode_pt r pseudo-object reference of the TypeCode
object associated with the Any. The TypeCode_pt r pseudo-object reference must be
released by the CORBA: : r el ease member function or must be assigned to a
TypeCode_var to be automatically released.

TypeCode_ptr contained inthe Any.

CORBA Programming Reference 14-13

14 coRBA API

void CORBA::Any::replace()

Synopsis
C++ Binding

Arguments

Description

Return Values

Nontype safe Any “insertion.”

voi d CORBA: : Any: : repl ace(TypeCode_ptr TC, void * Val ue
Bool ean Rel ease = CORBA FALSE);

TC
A TypeCode pseudo-object reference specifying the TypeCode value for the
replaced Any object. This argument is duplicated.

Val ue
A void pointer specifying the storage pointed to by the Any object.

Rel ease
Determines whether the Any manages the specified val ue argument. If
Rel ease is CORBA_TRUE, the Any assumes ownership. If Rel ease is
CORBA_FALSE, the Any does not assume ownership and the data pointed to by
the Val ue parameter is not released upon assignment or destruction.

These member functions replace the data and TypeCode value currently contained in
the Any with the value of the TC and Val ue arguments passed in. The functions
perform a nontype-safe replacement, which means that the caller is responsible for
consistency between the TypeCode val ue and the data type of the storage pointed to by
the val ue argument.

If the value of Rel ease is CORBA_TRUE, this function releases the existing TypeCode
pseudo-object in the Any object and frees the storage pointed to be the Any object
reference.

None.

14-14 CORBA Programming Reference

Context Member Functions

Context Member Functions

A Context supplies optional context information associated with a method invocation.
The mapping of these member functions to C++ is as follows:

cl ass CORBA
{

cl ass Cont ext

public:
const char *context _nanme() const;
Cont ext _ptr parent() const;

void create_child(const char *, Context_out);

void set_one_val ue(const char *, const Any &);
voi d set_val ues(NVLi st_ptr);
voi d del ete_val ues(const char *);
voi d get val ues(
const char *,

Fl ags,
const char *,
NVLi st _out

)
}; /1 Context
}// CORBA

Memory Management

Context has the following special memory management rule:

m Ownership of the return values of the cont ext _name and par ent functionsis
maintained by the Context; these return values must not be freed by the caller.

This section describes Context member functions.

CORBA Programming Reference 14-15

14 coRBA API

CORBA::Context:.context_name

Synopsis
C++ Binding
Arguments

Description

Return Values

Returns the name of a given Context object.
Const char * CORBA:: Context::context_nane () const;
None.

This member function returns the name of a given Context object. The Context object
reference owns the memory for the returned char *. Users should not modify this
memory.

If the member function succeeds, it returns the name of the Context object. The value
may be empty if the Context object is not a child Context created by a call to
CORBA: : Cont ext :: create_child.

If the Context object has no name, thisis an empty string.

14-16 CORBA Programming Reference

Context Member Functions

CORBA::Context::create_child

Synopsis
C++ Binding

Arguments

Exception

Description

Return Values

See Also

Creates a child of the Context object.

voi d CORBA:: Context::create_child (
const char * Ct xNane,
CORBA: : Cont ext _out Ctxoj ect) ;

C xNane
The name to be associated with the child of the Context reference.

G xoj ect
The newly created Context object reference.

CORBA: : NO_MEMORY

This member function creates a child of the Context object. That is, searches on the
child Context object will look for matching property namesin the parent context (and
S0 on, up the context tree), if necessary.

None.

CORBA: : ORB: : get _def aul t _cont ext
CORBA: : r el ease

CORBA Programming Reference 14-17

14 coRBA API

CORBA::Context::delete_values

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

See Also

Deletes the values for a specified attribute in the Context object.

voi d CORBA: : Cont ext :: del et e_val ues (
const char * At tr Nane) ;

Attr Nane
The name of the attribute whose values are to be del eted. If thisargument has
atrailing wildcard character (*), all namesthat match the string preceding the
wildcard character are deleted.

CORBA: : BAD PARAMIf attribute isan empty string.
CORBA: : BAD_CONTEXT if no matching attributes to be deleted were found.

This member function del etes named valuesfor an attribute in the Context object. Note
that it does not recursively do the same to its parents, if any.

None.

CORBA: : Context::create_child
CORBA: : ORB: : get _defaul t _cont ext

14-18 CORBA Programming Reference

Context Member Functions

CORBA::Context::get_values

Synopsis

C++ Binding

Arguments

Exceptions

Description

Return Values

Retrieves the values for a given attribute in the Context object within the specified
scope.

voi d CORBA: : Context::get_values (

const char * St art Scope,

CORBA: : Fl ags OpFl ags,

const char * Attr Nane,

CORBA: : NVLi st _out AttrVal ues);
St art Scope

The Context object level a which to initiate the search for specified
properties. The level is the name of the context, or par ent , at which the
search is started. If the valueis O (zero), the search begins with the current
Context object.

OoFl ags
The only valid operation flag is CORBA: : CTX_RESTRI CT_SCOPE. If you
specify thisflag, the object implementation restrictsthe property search tothe
current scope only (that is, the property search is not executed recursively up
the chain of the parent context); otherwise, the search continues to a wider
scope until a match has been found or until all wider levels have been
searched.

At t r Name
The name of the attribute whose values are to be returned. If this argument
hasatrailing wildcard character (*), all namesthat match the string preceding
the wildcard character are returned.

AttrVal ues
Receives the values for the specified attributes (returnsan NVLi st object)
where each item in the listisa NamedVal ue.

CORBA: : BAD_PARAMIf attribute is an empty string.
CORBA: : BAD_CONTEXT if no matching attributes were found.
CORBA: : NO_MEMORY if dynamic memory allocation failed.

This member function retrieves the values for a specified attribute in the Context
object. These values are returned as an NV List object, which must be freed when no
longer needed using the CORBA: : r el ease member function.

None.

CORBA Programming Reference 14-19

14 coRBA API

See Also CORBA: : Cont ext::create_child
CORBA: : ORB: : get _defaul t _cont ext

14-20 CORBA Programming Reference

Context Member Functions

CORBA::Context::parent

Synopsis
C++ Binding
Arguments

Description

Return Values

Returns the parent context of the Context object.
CORBA: : Context _ptr CORBA:: Context::parent () const;
None.

This member function returns the parent context of the Context object. The parent of
the Context object is an attribute owned by the Context and should not be modified or
freed by the caller. This parent is nil unless the Context object was created using the
CORBA: : Cont ext : : create_chi| d member function.

If the member function succeeds, the parent context of the Context object is returned.
The parent context may be nil. Use the CORBA: : i s_ni | member function to test for
anil object reference.

If the member function does not succeed, an exception is thrown. Use the
CORBA: : i s_ni | member function to test for anil object reference.

CORBA Programming Reference 14-21

14 coRBA API

CORBA::Context::set_one_value

Synopsis
C++ Binding

Arguments

Exceptions

Description

Return Values

See Also

Sets the value for a given attribute in the Context object.

voi d CORBA: : Cont ext ::set_one_val ue (

const char * At t r Nane,
const CORBA:: Any & AttrVal ue);
Attr Nane

The name of the attribute to set.

AttrVal ue
The value of the attribute. Currently, the BEA Tuxedo system supports only
the string type; therefore, this parameter must contain a CORBA: : Any object
with astring inside.

CORBA: : BAD_PARAMIf At t r Nane isan empty string or At t r Val ue doesnot contain a

string type.
CORBA: : NO_MEMORY if dynamic memory allocation failed.

This member function sets the value for a given attribute in the Context object.
Currently, only string values are supported by the Context object. If the Context object
already has an attribute with the given name, it is deleted first.

None.

CORBA: : Cont ext : : get _val ues
CORBA: : Cont ext : : set _val ues

14-22 CORBA Programming Reference

Context Member Functions

CORBA::Context::set_values

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

See Also

Setsthe vaues for given attributes in the Context object.

voi d CORBA:: Context::set_values (
CORBA: : NVLi st _ptr AttrVal ue);

At trVal ues
The name and value of the attribute. Currently the BEA Tuxedo system
supports only the string type; therefore, all NamedValue objectsin the list
must have CORBA: : Any objects with a string inside.

CORBA: : BAD_PARAMIf any of the attribute values has a value that is not a string type.
CORBA: : NO_MEMDRY if dynamic memory allocation failed.

This member function sets the values for given attributes in the Context object. The
CORBA: : NVLi st member function contains the property name and value pairsto be
set.

None.

CORBA: : Cont ext : : get _val ues
CORBA: : Cont ext: :set _one_val ue

CORBA Programming Reference 14-23

14 coRBA API

ContextList Member Functions

The ContextL ist allowsaclient or server application to provide alist of context strings
that must be supplied with Request invocation. For a description of the Request
member functions, see the section “Request Member Functions’ on page 14-123.

The ContextList differs from the Context in that the former supplies only the context
strings whose values are to be looked up and sent with the request invocation (if
applicable), whilethelatter iswhere those values are obtai ned. For a description of the
Context member functions, see the section “ Context Member Functions’ on

page 14-15.

The mapping of these member functions to C++ isasfollows:
class CORBA

cl ass ContextLi st
{
public:
U ong count ();
voi d add(const char* ctxt);
voi d add_consune(char* ctxt);
const char* item(U ong index);
Status renove(U ong index);
}; /1 ContextlList
}// CORBA

14-24 CORBA Programming Reference

ContextList Member Functions

CORBA::ContextList:: count

Synopsis
C++ Binding
Arguments
Exception
Description

Return Values

See Also

Retrieves the current number of itemsin the list.

U ong count ();

None.

If the function does not succeed, an exception is thrown.

This member function retrieves the current number of itemsin thelist.

If the function succeeds, the returned value isthe number of itemsin thelist. If thelist
hasjust been created, and no ContextL ist objectshave been added, thisfunction returns

0 (zero).

CORBA: :
CORBA:
CORBA: :
CORBA: :

Cont ext Li st::
:ContextList::
Cont ext List::
Context List::

add
add_consune
item

renove

CORBA Programming Reference

14-25

14 coRBA API

CORBA::ContextList::add

Synopsis

C++ Binding

Argument

Exception

Description

Return Values

See Also

14-26 CORBA Programming Reference

Constructs a ContextList object with an unnamed item, setting only the f I ags

attribute.

voi d add(const char* ctxt);

ct xt

Defines the memory location referred to by char*.

If the member function does not succeed, a CORBA: : NO_MEMORY exception is thrown.

This member function constructs a ContextList object with an unnamed item, setting

only the flags attribute.

The ContextList object grows dynamically; your application does not need to track its

size.

If the function succeeds, the return value is a pointer to the newly created ContextL.ist

object.

CORBA: :
CORBA: :
CORBA: :

CORBA:

Cont ext Li st :
Cont ext Li st :
ContextList::
:ContextList::

:add_consune
:count

item
renove

ContextList Member Functions

CORBA::ContextList::add_consume

Synopsis Constructs a ContextList object.
C++Binding voi d add_consume(const char* ctxt);

Argument ctxt
Defines the memory location referred to by char*.

Exception If the member function does not succeed, an exception is raised.
Description This member function constructs a ContextL ist object.

The ContextL ist object grows dynamically; your application does not need to track its
size.

Return Values If the function succeeds, the return value is a pointer to the newly created ContextList
object.

See Also CORBA: : Cont ext Li st: : add
CORBA: : Cont ext Li st:: count
CORBA: : ContextList::item
CORBA: : Cont ext Li st:: renove

CORBA Programming Reference 14-27

14 coRBA API

CORBA::ContextList::item

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

See Also

Retrieves a pointer to the ContextL ist object, based on the index passed in.
const char* itemULong index)

i ndex
Theindex into the ContextList object. The indexing is zero-based.

If this function does not succeed, the BAD_PARAMexception is thrown.

This member function retrieves a pointer to a ContextList object, based on the index
passed in. The function uses zero-based indexing.

If the function succeeds, the return value is a pointer to the ContextList object.

CORBA: : Cont ext Li st :: add

CORBA: : Cont ext Li st: : add_consune
CORBA: : Cont ext Li st : : count

CORBA: : Cont ext Li st::renpve

14-28 CORBA Programming Reference

ContextList Member Functions

CORBA::ContextList::remove

Synopsis

C++ Binding

Argument

Exceptions

Description

Return Values

See Also

Removes theitem at the specified index, frees any associated memory, and reorders
the remaining items on the list.

Status renove(ULong i ndex);

I ndex

The index into the ContextL ist object. The indexing is zero-based.

If this function does not succeed, the BAD_PARAMexception is thrown.

This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

None.

CORBA: :
CORBA: :
CORBA: :
CORBA: :

Cont ext Li st::
Cont ext List::
Cont ext List::
Context List::

add
add_consune
count

item

CORBA Programming Reference

14-29

14 coRBA API

NamedValue Member Functions

NamedVaueisused only asan element of NV List, especially intheDIl. NamedVaue
maintains an (optional) name, an any value, and labelling flags. Legal flag values are
CORBA: : ARG | N, CORBA: : ARG_QUT, and CORBA: : ARG _| NOUT.

The value in a NamedV alue may be manipulated via standard operations on any.

The mapping of these member functions to C++ isasfollows:

/] C++
cl ass NanedVal ue
{
public:
FI ags flags() const;
const char * name() const;
Any * val ue() const;

}s

Memory Management

NamedV a ue has the following special memory management rule:

m Ownership of the return values of the nane() and val ue() functionsis
maintained by the NamedVal ue; these return values must not be freed by the
caller.

The following sections describe NamedV al ue member functions.

14-30 CORBA Programming Reference

NamedValue Member Functions

CORBA::NamedValue::flags

Synopsis Retrieves the flags attribute of the NamedV alue object.
C++Binding CORBA: : Fl ags CORBA: : NamedVal ue::flags () const;
Arguments None.
Description This member function retrieves the flags attribute of the NamedV al ue object.

Return Values I the function succeeds, the return value is the flags attribute of the NamedValue
object.

If the function does not succeed, an exception is thrown.

CORBA Programming Reference 14-31

14 coRBA API

CORBA::NamedValue::name

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves the name attribute of the NamedV alue object.
const char * CORBA: : NanedVal ue: :nanme () const;
None.

This member function retrieves the name attribute of the NamedV a ue object. The
name returned by this member function is owned by the NamedV alue object and
should not be modified or rel eased.

If the function succeeds, the value returned is a constant | dentifier object representing
the name attribute of the NamedV alue object.

If the function does not succeed, an exception is thrown.

14-32 CORBA Programming Reference

NamedValue Member Functions

CORBA::NamedValue::value

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves a pointer to the value attribute of the NamedV al ue object.
CORBA: : Any * CORBA: : NanedVal ue: : value () const;
None.

This member function retrieves a pointer to the Any object that represents the value
attribute of the NamedV aue object. This attribute is owned by the NamedValue
object, and should not be modified or released.

If the function succeeds, the return valueisapointer to the Any object contained inthe
NamedV alue object.

If the function does not succeed, an exception is thrown.

CORBA Programming Reference 14-33

14 coRBA API

NVList Member Functions

NVListisalist of NamedValues. A new NVList is constructed using the

ORB: : create_| i st operation (see“CORBA::ORB::create_exception_list” on
page 14-63). New NamedV alues may be constructed as part of an NVList, in any of
following ways:

m add—creates an unnamed value, initidizing only the flags
®m add_i t em—initializes name and flags

®m add_val ue—initializes name, value, and flags

Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_i t em
add_val ue, add_i t em consune, and add_val ue_consune functions lengthen the

NVLi st to hold the new element each time they are called. Thei t emfunction can be
used to access existing elements.

/] C++
cl ass NVLi st
{

public:

ULong count () const;

NarmedVal ue_ptr add(Fl ags);

NarmedVal ue_ptr add_iten(const char*, Flags);

NamedVal ue_ptr add_val ue(const char*, const Any& Fl ags);
NarmedVal ue_ptr iten{ULong);

voi d renove(ULong);

b

Memory Management

NV List has the following special memory management rules:

m Ownership of the return values of the add, add_i t em add_val ue,
add_it em consune, add_val ue_consune, and i t emfunctionsis maintained
by the NV List; these return values must not be freed by the caller.

14-34 CORBA Programming Reference

NVList Member Functions

m The char* parameterstotheadd_i t em consune and add_val ue_consune
functions and the Any* parameter to the add_val ue_consune function are
consumed by the NV List. The caller may not access these data after they have
been passed to these functions because the NV List may copy them and destroy
the originalsimmediately. The caller should use the NanedVal ue: : val ue()
operation to modify the val ue attribute of the underlying NamedValue, if
desired.

m Therenove function also calls CORBA: : r el ease on the removed NamedValue.

The following sections describe NV List member functions.

CORBA Programming Reference 14-35

14 coRBA API

CORBA::NVList::add

Synopsis

C++ Binding

Argument

Description

Return Values

See Also

Constructs a NamedV alue object with an unnamed item, setting only the f1 ags

attribute.

CORBA: : NanmedVal ue_ptr CORBA: : NVLi st: :add (
CORBA: : Fl ags Fl ags) ;

Fl ags

Flags to determine argument passing. Valid values are:

CORBA: : ARG_I N
CORBA: : ARG _| NOUT
CORBA: : ARG_OUT

This member function constructs aNamedV alue object with an unnamed item, setting
only the flags attribute. The NamedV alue object is added to the NV List object that the
call was invoked upon.

TheNVList object grows dynamically; your application does not need to track its size.

If the function succeeds, the return valueis a pointer to the newly created NamedVaue
object. Thereturned NamedV a ue object reference isowned by the NV List and should
not be released.

If the member function does not succeed, a CORBA: : NO_MEMORY exception is thrown.

CORBA: :
CORBA: :
CORBA: :
CORBA: :
CORBA: :

NVLI st :
NVLI st :
NVLI st :
NVLI st :
NVLI st : :

:add
;add_item
:add_val ue
:count

renove

14-36 CORBA Programming Reference

NVList Member Functions

CORBA::NVList::add_item

Synopsis

C++ Binding

Arguments

Description

Return Values

See Also

ConstructsaNamedV alue object, creating an empty value attribute and initializing the
name and flags attributes.

CORBA: : NanedVal ue_ptr CORBA:: NVList::add_item (
const char * Name,
CORBA: : FI ags Fl ags) ;

The name of the list item.

FI ags
Flags to determine argument passing. Valid values are:

CORBA: : ARG_IN
CORBA: : ARG_| NOUT
CORBA: : ARG QUT

This member function constructs a NamedV alue object, creating an empty value
attribute and initializing the name and flags attributes that pass in as parameters. The
NamedV alue object is added to the NV List object that the call was invoked upon.

The NV List object grows dynamically; your application does not need to track its size.

If the function succeeds, thereturn value is apointer to the newly created NamedValue
object. Thereturned NamedV alue object reference isowned by the NV List and should
not be released.

If the member function does not succeed, an exception is thrown.

CORBA: : NVLi st : : add
CORBA: : NVLi st: : add_val ue
CORBA: : NVLi st : : count
CORBA: : NVList::item
CORBA: : NVLi st: : renove

CORBA Programming Reference 14-37

14 coRBA API

CORBA::NVList::add_value

Synopsis
C++ Binding

Arguments

Description

Return Values

See Also

Constructs a NamedV alue object, initializing the name, value, and flags attribute.

CORBA: : NanmedVal ue_ptr CORBA: : NVLi st: :add_val ue (

const char * Nane,

const CORBA:: Any & Val ue,

CORBA: : Fl ags Fl ags) ;
Narmre

Val ue

Fl ags

The name of thelist item.

The value of thelist item.

Flags to determine argument passing. Valid values are:

CORBA: : ARG I N
CORBA: : ARG _| NOUT
CORBA: : ARG _OUT

This member function constructs a NamedV alue object, initializing the name, value,
and flags attributes. The NamedV alue object is added to the NV List object that the call

was invoked upon.

The NV List object grows dynamically; your application does not need to track its size.

If the function succeeds, the return valueis a pointer to the newly created NamedVaue
object. Thereturned NamedV a ue object reference isowned by the NV List and should
not be released.

If the member function does not succeed, an exception is raised.

CORBA: :
CORBA: :
CORBA: :
CORBA: :
CORBA: :

NVLI st :
NVLI st :
NVLI st :
NVLI st : :
NVLI st : :

:add
;add_item
:count

item
renove

14-38 CORBA Programming Reference

NVList Member Functions

CORBA::NVList::count

Synopsis
C++ Binding
Arguments
Description

Return Values

See Also

Retrieves the current number of itemsin the list.

CORBA: : ULong CORBA: : NVLi st::count () const;

None.

This member function retrieves the current number of itemsin thelist.

If the function succeeds, the returned value isthe number of itemsin thelist. If the list
has just been created, and no NamedV alue objects have been added, this function
returns O (zero).

If the function does not succeed, an exception is thrown.

CORBA: :
CORBA: :
CORBA: :
CORBA: :
CORBA: :

NVLi st : :
NVLi st :
NVLi st : :
NVLi st : :
NVLi st :

add

;add_item

add_val ue
item
renove

CORBA Programming Reference

14-39

14 coRBA API

CORBA::NVList::item

Synopsis
C++ Binding

Argument

Exception

Description

Return Values

See Also

Retrieves a pointer to the NamedV al ue object, based on the index passed in.

CORBA: : NanmedVal ue_ptr CORBA: : NVList::item (
CORBA: : ULong I ndex) ;

I ndex
Theindex into the NV List object. The indexing is zero-based.

If this function does not succeed, the BAD_PARAMexception is thrown.

This member function retrieves a pointer to aNamedV al ue object, based on the index
passed in. The function uses zero-based indexing.

If the function succeeds, the return value is a pointer to the NamedV alue object. The
returned NamedV al ue object reference is owned by the NV List and should not be
released.

CORBA: : NVLi st : : add
CORBA: : NVLi st: :add_item
CORBA: : NVLi st : : add_val ue
CORBA: : NVLi st : : count
CORBA: : NVLi st : : renpve

14-40 CORBA Programming Reference

NVList Member Functions

CORBA::NVList::remove

Synopsis

C++ Binding

Argument

Exception

Description

Return Values

See Also

Removes theitem at the specified index, frees any associated memory, and reorders
the remaining items on the list.

voi d CORBA:: NVLi st::renove (
CORBA: : ULong I ndex) ;

I ndex

Theindex into the NV List object. The indexing is zero-based.

If this function does not succeed, the BAD_PARAMexception is thrown.

This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

None.

CORBA: :
CORBA: :
CORBA: :
CORBA: :
CORBA: :

NVLi st : :
NVLi st : :
NVLi st : :
NVLi st : :
NVLi st :

add
add_item
add_val ue
count
item

CORBA Programming Reference

14-41

14 coRBA API

Object Member Functions

Therulesin this section apply to the OMG IDL interface Object, which is the base of
the OMG IDL interface hierarchy. Interface Object defines a normal CORBA object,
not a pseudo-object. However, it isincluded here because it references other
pseudo-objects.

In addition to other rules, all operation namesin interface Object have leading
underscores in the mapped C++ class. Also, the mapping for cr eat e_r equest is
divided into three forms, corresponding to the usage styles described in the section
“Request Member Functions’ on page 14-123. The i s_ni | andr el ease functions
are provided in the CORBA namespace, as described in “ Object Member Functions”
on page 14-42.

The BEA Tuxedo software uses object reference operations that are defined by
CORBA Revision 2.2. These operations depend only on type Obj ect , so they can be
expressed as regular functions within the CORBA namespace.

Note: Becausethe BEA Tuxedo software uses the POA and not the BOA, the
deprecated get _i npl ement ati on() member functionisnot visible; you will
get acompile error if you attempt to referenceit.

The mapping of these member functions to C++ isasfollows:

cl ass CORBA
{

class Obj ect

CORBA: : Bool ean _is_a(const char *)
CORBA: : Bool ean _is_equivalent();
CORBA: : Bool ean _nonexi stent (Cbj ect_ptr);

static Cbject_ptr _duplicate(Cbject_ptr obj);
static Cbject_ptr _nil();
InterfaceDef _ptr _get_interface();
CORBA: : ULong _hass(CORBA: : ULong);
void _create_request(
Context _ptr ctx,
const char *operation,
NVLi st _ptr arg_list,
NamedVal ue_ptr result,
Request _out request,

14-42 CORBA Programming Reference

Object Member Functions

Fl ags req_fl ags

)
Status _create_request(
Context _ptr ctx,
const char * operation,
NVLi st _ptr arg_list,
NamedVal ue_ptr result,
ExceptionLi st _ptr Except_list,
Cont ext Li st_ptr Context _|i st,
Request _out request,
FI ags reg_fl ags
)
Request _ptr _request(const char* operation);
}; 1/ Object
}; /1 CORBA

The following sections describe the Obj ect member functions.

CORBA Programming Reference 14-43

14 coRBA API

CORBA::Object::_create_request

Synopsis Creates arequest with user-specified information.

C++Binding Voi d CORBA: : Cbj ect::_create_request (

CORBA: : Cont ext _ptr a x,

const char * Operati on,
CORBA: : NVLi st _ptr Arg list,
CORBA: : NanedVal ue_ptr Resul t,

CORBA: : ExceptionLi st_ptr Except_Iist,
CORBA: : Cont ext Li st_ptr Context _|ist,
CORBA: : Request _out Request ,
CORBA: : Fl ags Reqg_fl ags,);

Arguments Ctx
The Context to be used for this request.

Oper ation
The operation name for this request.

Arg_list
The argument list for this request.

Resul t
The NamedV alue reference where the return value of this request isto be
stored after a successful invocation.

Except |i st
The exception list for this request.

Context _|ist
The context list for this request.

Request
The newly created request reference.

Req_fl ags
Reserved for future use; the user must pass a value of zero.

14-44 CORBA Programming Reference

Object Member Functions

Description

Return Values

See Also

Thismember function creates arequest that providesinformation on context, operation
name, and other values (long form). To create a request with just the operation name
supplied at the time of the call (short form), usethe CORBA: : Obj ect : : _request
member function. The remainder of the information provided in the long form
eventually needs to be supplied.

None.

CORBA: : (bj ect:: _request

CORBA Programming Reference 14-45

14 coRBA API

CORBA::Object::_duplicate

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Duplicates the Object object reference.

CORBA: : Cbj ect _ptr CORBA:: Obj ect:: duplicate(
Ooj ect_ptr Obj);

obj
The object reference to be duplicated.

This member function duplicates the specified Object object reference (Qbj). If the
given object referenceis nil, the _dupl i cat e function returns a nil object reference.
The object returned by this call should befreed using CORBA: : r el ease, or should be
assigned to CORBA: : Obj ect _var for automatic destruction.

This function can throw CORBA system exceptions.

Returns the duplicate object reference. If the specified object referenceis nil, anil
object reference is returned.

CORBA: : Cbject_ptr op = TP::create_object_reference(
"IDL: Teller:1.0","MWTeller");
CORBA: : Obj ect _ptr dop = CORBA: : (hject:: _duplicate(op);

14-46 CORBA Programming Reference

Object Member Functions

CORBA::Object::_get_interface

Synopsis
C++ Binding
Arguments

Description

Return Values

Returns an interface definition for the Repository object.
CORBA: : I nterfaceDef _ptr CORBA::(hject:: _get _interface ();
None.

Returns an interface definition for the Repository object.

Note: To usethe Repository Interface API, define amacro before CORBA. h is
included. For information about how to define amacro, see Creating CORBA
Server Applications.

InterfaceDef ptr

CORBA Programming Reference 14-47

14 coRBA API

CORBA::Object::_is_a

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Determines whether an object is of a certain interface.
CORBA: : Bool ean CORBA: : bject:: _is_a(const char * interface_id);

interface_id
A string that denotes the interface repository ID.

This member function is used to determine if an object is an instance of the interface
that you specify inthei nt er f ace_i d parameter. It facilitates maintaining type-saf ety
for object references over the scope of an ORB.

Returns TRUE if the object is an instance of the specified type, or if the object is an
ancestor of the “most derived” type of that object.

CORBA: : Cbject_ptr op = TP::create_object_reference(
"IDL: Teller:1.0", "MyTeller");
CORBA: : Boolean b = op->_is_a("IDL:Teller:1.0");

14-48 CORBA Programming Reference

Object Member Functions

CORBA::Object::_is_equivalent

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

Example

Determinesif two object references are equivalent.

CORBA: : Bool ean CORBA:: (oj ect:: _is_equival ent (
CORBA: : (hj ect _ptr other_obj);

ot her _obj
The object reference for the other object, which is used for comparison with
the target object.

Can throw a standard CORBA exception.

This member function is used to determineif two object references are equivalent, so
far as the ORB can easily determine. It returns TRUE if your object referenceis
equivalent to the object reference you pass as a parameter. If two object references are
identical, they are equivalent. Two different object references that refer to the same
object are also equivalent.

Returns TRUE if thetarget object referenceisknown to be equivalent to the other object
reference passed as a parameter; otherwise, it returns FALSE.

CORBA: : Cbj ect _ptr op = TP::create_object_reference(

"IDL: Teller:1.0", "MWyTeller");
CORBA: : Obj ect _ptr dop = CORBA: : Obj ect:: _duplicate(op);
CORBA: : Bool ean b = op->_i s_equi val ent (dop);

CORBA Programming Reference 14-49

14 coRBA API

CORBA::Object::_nil

Synopsis
C++ Binding
Arguments

Description

Return Values

Example

Returns areference to a nil object.
CORBA: : Cbject _ptr CORBA:: Qbject:: nil();
None.

This member function returns anil object reference. To test whether a given object is
nil, use the appropriate CORBA: : i s_ni | member function (see the section
“CORBA::release’ on page 14-54). Callingthe CORBA: i s_ni | routineonany _ni |
member function alwaysyields CORBA TRUE.

Returns a nil object reference.

CORBA: : Cbject_ptr op = CORBA:: Object:: _nil();

14-50 CORBA Programming Reference

Object Member Functions

CORBA::Object::_non_existent

Synopsis
C++ Binding
Arguments

Description

Return Values

May be used to determine if an object has been destroyed.
CORBA: : Bool ean CORBA:: Obj ect:: _non_existent();
None.

This member function may be used to determine if an object has been destroyed. It
does this without invoking any application-level operation on the object, and so will
never affect the object itself.

Returns CORBA_TRUE (rather than raising CORBA: : OBJECT_NOT_EXI ST) if the ORB
knows authoritatively that the object does not exist; otherwise, it returns
CORBA_FALSE.

CORBA Programming Reference 14-51

14 coRBA API

CORBA::Object::_request

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Creates arequest specifying the operation name.

CORBA: : Request _ptr CORBA: : (bject:: _request (
const char * Operation);

Oper ation
The name of the operation for this request.

This member function creates a request specifying the operation name. All other
information, such as arguments and results, must be populated using
CORBA: : Request member functions.

If the member function succeeds, the return value is a pointer to the newly created
request.

If the member function does not succeed, an exception is thrown.

CORBA: : Obj ect:: _create_request

14-52 CORBA Programming Reference

CORBA Member Functions

CORBA Member Functions

This section describes the Object and Pseudo-Object Reference member functions.

The mapping of these member functions to C++ is as follows:

cl ass CORBA {

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

rel ease(Cbject_ptr);

rel ease(Envi ronnent _ptr);
rel ease(NanmedVal ue_ptr);
rel ease(NVLi st_ptr);

rel ease(Request _ptr);

rel ease(Context _ptr);

rel ease(TypeCode_ptr);

rel ease(POA ptr);

rel ease(ORB ptr);

rel ease(ExceptionList_ptr);
rel ease(ContextList_ptr);

Bool ean is_nil (Qoject_ptr);

Bool ean is_nil (Environnment_ptr);
Bool ean is_nil (NanedVal ue_ptr);
Bool ean is_nil (NVList_ptr);

Bool ean is_nil (Request_ptr);

Bool ean is_nil (Context_ptr);

Bool ean is_nil (TypeCode_ptr);
Bool ean is_nil (POA ptr);

Bool ean is_nil (ORB_ptr);

Bool ean is_nil (ExceptionList_ptr);
Bool ean is_nil (ContextList_ptr);

hash(maxi num ;

resolve_initial _references(identifier);

CORBA Programming Reference 14-53

14 coRBA API

CORBA::release

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Allows allocated resources to be released for the specified object type.
voi d CORBA: : rel ease(spec_obj ect _type obj);

obj
The object referencethat the caller will nolonger access. The specified object
type must be one of the types listed in the section “CORBA Member
Functions” on page 14-53.

This member function indicates that the caller will no longer access the reference so
that associated resources may be deallocated. If the specified object reference is nil,
the rel ease operation does nothing. If the ORB instance releaseis the last reference to
the ORB, then the ORB will be shut down prior to its destruction. This is the same as
calling ORB_shut down prior to calling CORBA: : r el ease. This only appliesto the

r el ease member function called on the ORB.

This member function may not throw CORBA exceptions.
None.
CORBA: : Cbject _ptr op = TP::create_object_reference(

"IDL: Teller:1.0", "MTeller");
CORBA: : rel ease(op);

14-54 CORBA Programming Reference

CORBA Member Functions

CORBA::is_nil

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Determinesif an object exists for the specified object type.
CORBA: : Bool ean CORBA::is_nil (spec_object_type obj);

obj
The object reference. The specified object type must be one of thetypeslisted
in the section “CORBA Member Functions” on page 14-53.

This member function is used to determine if a specified object referenceisnil. It
returns TRUE if the object reference contains the special value for a nil object
reference as defined by the ORB.

This operation may not throw CORBA exceptions.
Returns TRUE if the specified object is nil; otherwise, returns FALSE.
CORBA: : Cbj ect _ptr op = TP::create_object_reference(

"IDL: Teller:1.0", "WyTeller");
CORBA: : Bool ean b = CORBA: :is_nil (op);

CORBA Programming Reference 14-55

14 coRBA API

CORBA::hash
Synopsis
C++ Binding

Argument

Description

Return Values

Providesindirect access to object references using identifiersinternal to the ORB.
CORBA: : hash(CORBA: : ULong maxi munj ;

maxi mum

Specifies an upper bound on the hash value returned by the ORB.

Object references are associated with ORB-internal identifiers that may indirectly be
accessed by applications using the hash() operation. The value of thisidentifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object references are not identical.

The maxi mumparameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since atypical use
of this feature isto construct and access a collision-chained hash table of object
references, the more randomly distributed the values are within that range, and the less
expensive those values are to compute, the better.

None.

14-56 CORBA Programming Reference

CORBA Member Functions

CORBA::resolve_initial_references

Synopsis
C++ Binding

Argument

Exception

Description

Return Values

Example

Returns an initial object reference correspondingto ani denti fi er string.

CORBA: : Cbj ect _ptr CORBA: :resolve_initial _references(
const CORBA::char *identifier);

identifier
String identifying the object whose reference is required.

I nval i dNane

Returns an initial object reference correspondingto ani denti fi er string. Valid
identifiers are “ Root POA” and “ POACurrent ™.

Note: Thisfunction is supported only for ajoint client/server.

Returns a CORBA: : Obj ect _ptr.

CORBA: : ORB ptr orb = CORBA: :ORB init(argc, argv);
CORBA: : Cbj ect _ptr pfobj =

orb->resolve_initial _references("Root POA");
Por t abl eServer: : POA ptr root POA;
root POA = Port abl eServer:: POA: : narrow(pfobj);

CORBA Programming Reference 14-57

14 coRBA API

ORB Member Functions

The ORB member functions constitute the programming interface to the Object
Request Broker.

The mapping of the ORB member functionsto C++ is as follows:

cl ass CORBA

{

cl ass ORB

{

}s
b

publ i c:

char *object _to_string(Object _ptr);

bj ect _ptr string_to_object(const char *);

void create_l|ist(Long, NVList _out);

void create_operation_list(operationDef ptr, NVLi st _out);
voi d create_nanmed_val ue(NanedVal ue_out) ;

void create_exception_list(ExceptionList_out);

void create_context _|ist(ContextList out);

voi d get _default_context (Context_out);

voi d create_environnment (Environnent _out);

voi d send_nul tipl e_requests_oneway(const requestSeq&);
voi d send_mul ti pl e_requests_deferred(const requestSeq&);
Bool ean pol | _next _response();

voi d get _next _response(Request _out);

Bool ean wor k_pendi ng() ;

voi d performwork();

void create_policy (in PolicyType type, in any val);

/1l Extension

voi d destroy();

/1 Extensions to support sharing context between threads
void Ctx get_ctx() = 0;

void set_ctx(Qx) = 0;

void clear_ctx() = 0;

/1 Thread extensions

void informthread exit(TID) = 0;

/1 ORB
/1 CORBA

14-58 CORBA Programming Reference

ORB Member Functions

Thread-related Operations:

To support single-threaded ORBs, as well as multithreaded ORBs that run
multithread-unaware code, two operations (per f or m wor k and wor k_pendi ng) are
included in the ORB interface. These operations can be used by single-threaded and
multithreaded applications. An application that isa pure ORB client would not need to
use these operations.

To support multithreaded server applications, four operations (get _ct x, set _ct x,
clear _ctx,andinformthread_exit) areincluded as extensions to the ORB
interface.

The following sections describe the ORB member functions.

CORBA Programming Reference 14-59

14 coRBA API

CORBA::ORB::clear_ctx

Synopsis Indicates that a context is no longer required by this thread. This method supports the
development of a multithreaded server application.

C++Binding void clear_ctx()
Parameters None.
Return Value None.

Description This method is called by an application-managed thread after the thread has finished
using the context. The method removes the association between that thread and a
context.

Note: Do not call thecl ear _ct x method from within athread that is managed by
the BEA Tuxedo system. The BEA Tuxedo system performs the appropriate
context propagation and cleanup automatically for the threads it manages. If
this method is called on a thread managed by the BEA Tuxedo system, the
BAD_PARAMexception is thrown.

Example TP::orb()->clear_ctx();

See Also CORBA: : ORB: : get _ctx
CORBA: : ORB: : set_ctx

14-60 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::create_context_list

Synopsis
C++ Binding

Argument

Description

Return Values

Creates and returns alist of contexts.

void CORBA:: ORB: : create_context _|i st (
CORBA: : Cont ext Li st_out List);

Li st
Receives areference to the newly created context list.

Thismember function createsand returns alist of context stringsthat must be supplied
with the Request operation in aform that may be used in the Dynamic Invocation
Interface (DI1). When no longer needed, this list must be freed using the

CORBA: : r el ease member function.

None.

CORBA Programming Reference 14-61

14 coRBA API

CORBA::ORB::create_environment

Synopsis
C++ Binding

Argument

Description
Return Values

See Also

Creates an environment.

voi d CORBA: : ORB: : create_environnent (
CORBA: : Envi ronnment _out New _env);

New_env
Receives areference to the newly created environment.

This member function creates an environment.
None.

CORBA: : NVLi st : : add

CORBA: : NVLi st: :add_item

CORBA: : NVLi st : : add_val ue
CORBA: : rel ease

14-62 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::create_exception_list

Synopsis
C++ Binding

Argument

Description

Return Values

Returns alist of exceptions.

voi d CORBA:: ORB: : create_exception_list(
CORBA: : Excepti onLi st_out List);

Li st
Receives areference to the newly created exception list.

This member function creates and returns a list of exceptionsin aform that may be
used in the Dynamic Invocation Interface (DI1). When no longer needed, thislist must
befreed using the CORBA: : rel ease member function.

None.

CORBA Programming Reference 14-63

14 coRBA API

CORBA::ORB::create_list

Synopsis
C++ Binding

Arguments

Description

Return Values

See Also

Creates and returns an NV List object reference.

void CORBA: : ORB: :create_list (

CORBA: : Long Nunmi t em
CORBA: : NVLi st _out List);
Num t em

The number of elementsto preallocate in the newly created list.

Li st
Receives the newly created list.

This member function creates alist, preallocating a specified number of items. List
items may be sequentially added to the list using the CORBA: : NVLi st _add_i t em
member function. When no longer needed, this list must be freed using the

CORBA: : r el ease member function.

None.

CORBA: : NVLi st : : add
CORBA: : NVLi st: :add_item
CORBA: : NVLi st : : add_val ue
CORBA: : rel ease

14-64 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::create_named_value

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Creates a NamedV alue object reference.

voi d CORBA:: ORB: : create_nanmed_val ue (
NameVal ue_out NewNanedVal) ;

NewNanedVal
A reference to the newly created NamedV al ue object.

This member function creates a NamedV a ue object. Its intended use is for the result
argument of arequest that needs a NamedV alue object. The extra steps of creating an
NV List object are avoided by calling this member function.

When no longer needed, the NamedV alue object must be freed using the
CORBA: : r el ease member function.

None.
CORBA: : NVLi st : : add
CORBA: : NVLi st::add_item

CORBA: : NVLi st: : add_val ue
CORBA: : rel ease

CORBA Programming Reference 14-65

14 coRBA API

CORBA::ORB::create_operation_list

Synopsis
C++ Binding

Arguments

Description

Return Values

See Also

Creates and returns a list of the arguments of a specified operation.

void CORBA: : ORB: :create_operation_list (

CORBA: : Oper ati onDef _ptr Oper,
CORBA: : NVLi st _out List);
Oper
The operation definition for which the list is being created.
Li st

Receives areference to the newly created arguments list.

This member function creates and returns a list of the arguments of a specified
operation, in aform that may be used with the Dynamic Invocation Interface (DlI).
When no longer needed, this list must be freed using the CORBA: : r el ease member
function.

None.

CORBA: : OBB: : create_li st
CORBA: : NVLi st : : add
CORBA: : NVLi st: :add_item
CORBA: : NVLi st : : add_val ue
CORBA: : rel ease

14-66 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::create_policy

Synopsis
C++ Binding

Arguments

Exceptions

Description

Creates new instances of policy objects of a specific type with specified initial state.

void CORBA:: ORB::create_policy (

type

in PolicyType type,
in any val);

Bi Di r Pol i cy: : Bl DI RECTI ONAL_POLI CY_TYPE isthe only Pol i cyType
value supported for BEA WebL ogic Enterprise version 4.2.

val

The only val value supported for BEA WebL ogic Enterprise V4.2 is
Bi DirPolicy::Bidirectional PolicyVal ue.

Pol i cyError

This exception is raised to indicate problems with the parameter values
passed to the ORB: : cr eat e_pol i cy operation. The specific exception and
reasons are as follows:

Exception

Reason

BAD POLI CY

The requested Policy is not understood by the ORB.

UNSUPPORTED_POLI CY

The requested Policy isunderstood to be valid by the ORB,
but is not currently supported.

BAD_POLI CY_TYPE

Thetype of the value requested for the Policy isnot valid for
that PolicyType.

BAD_POLI CY_VALUE

The value requested for the Policy is of avalid type, but is
not within the valid range for that type.

UNSUPPORTED_POLI CY_
VALUE

The value requested for the Policy is of avalid type and
within thevalid rangefor that type, but thisvalid valueis not
currently supported.

This operation can be invoked to create new instances of policy objects of a specific
type with specified initial state. If creat e_pol i cy failsto instantiate a new Policy
object due to its inability to interpret the requested type and content of the policy, it
raises the Policy Error exception with the appropriate reason. (See Exceptions below.)

CORBA Programming Reference 14-67

14 coRBA API

TheBi di r ect i onal Pol i cy argument is provided for remote clients using callbacks
because remote clients use I1OP. It is not used for native clients using callbacks or for
BEA Tuxedo servers because machines inside a BEA Tuxedo domain communicate
differently.

Before GIOP 1.2, bidirectional policy was not available as achoice in [1OP (which
uses TCP/IP). Connectionsin GIOP 1.0 and 1.1 were oneway (that is, arequest flowed
from aclient to a server); only responses flowed from the server back to the client. If
the server wanted to make arequest back to the client machine (say for acallback), the
server machine had to establish another one-way connection. (Be advised that
“connections” in this sense mean operating system resources, not physically different
wires or communication paths. A connection uses resources, so minimizing
connectionsis desirable.)

Since this release of the BEA Tuxedo C++ software supports GIOP 1.2, it supports
reuse of the TCP/IP connection for both incoming and outgoing reguests. Reusing
connections saves resources when a remote client sends callback referencesto aBEA
Tuxedo domain. The joint client/server uses a connection to send a request to a BEA
Tuxedo domain; that connection can be reused for the callback request. If the
connection is not reused, the callback request must establish another connection.

Allowing reuse of a connection is a choice of the ORB/POA that creates callback
object references. The server for those object references (usually the creator of the
references, especially inthe callback case) might choose not to allow reusefor security
considerations (that is, the outgoing connection [a client request from this machine to
aremote server] may not need security because the remote server does not require it,
but the callback server on this machine might require security). Since security is
established partly on aconnection basis, the incoming security can be established only
if a separate connection isused. If the remote server requires security, and if that
security involvesamutual authentication, thelocal server usualy feelssafeinallowing
reuse of the connection.

Since the choice of connection reuseis at the server end, whenever aprocess actsasa
server—inthis case ajoint client/server—and creates object references, it must inform
the ORB that it iswilling to reuse connections. The process doesthisby setting apolicy
on the POA that creates the object references. The default policy isto not allow reuse
(that is, if you do not supply a policy object for reuse, the POA does not allow reuse).

14-68 CORBA Programming Reference

ORB Member Functions

Return Values

Example

This default allows for backward compatibility with code written before CORBA
version 2.3. Such code did not know that reuse was possible so it did not have to take
into consideration the security implicationsof reuse. Thus, that unchanged code should
continue to disallow reuse until the user considers security and explicitly makes a
decision to the contrary.

To allow reuse, you use the cr eat e_pol i cy operation to create a policy object that
allows reuse, and use that policy object as part of thelist of policiesfor POA creation.

None.

#i nclude <BiDirPolicy_c. h>
BiDirPolicy::Bidirectional Policy var bd_policy;
CORBA: : Any al | ow reuse;

al l ow reuse <<= BiDirPolicy::BOTH;

CORBA: : Pol i cy_var generic_policy =
orb->create_policy(BiDirPolicy:: Bl DI RECTI ONAL_POLI CY_TYPE,
all ow reuse);
bd_policy = BiDirPolicy::Bidirectional Policy:: narrow
generic_policy);

In the above example, the bd_pol i cy would then be placed in the PolicyList passed
to thecr eat e_poa operation.

CORBA Programming Reference 14-69

14 coRBA API

CORBA::ORB::destroy

Synopsis Destroys the specified ORB.
C++Binding voi d destroy();
Parameter None.
Return Value None.

Description Usethismethod to destroy an ORB so that the resources associated with that ORB can
be reclaimed. Once an ORB has been destroyed, another invocation on the ORB_i ni t
method with the same ORB ID returns a reference to anewly constructed ORB. If an
application invokes the ORB: : dest r oy method from athread that is currently
servicing an invocation, the BEA Tuxedo system raises the BAD | NV_ORDER system
exception with the OM G minor code 3, because blocking would result in a deadlock.

Example pOrb->destroy();

14-70 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::get_ctx

Synopsis

C++ Binding
Arguments

Return Value

Description

Example

See Also

Retrieves the context associated with the current thread. This method supports the
development of a multithreaded server application.

CORBA: : ORB: : Ct x get _ctx()
None.

CORBA: : ORB: : Ot x
The context associated with this thread.

Use thismethod to retrieve the context associated with the current thread. This context
can then be used to initialize other threads that the application creates and manages.

When an object createsathread, the object invokesthis operation onthe ORB to obtain
system context information that the object can pass on to the thread. This operation
must be called from athread that already has a context. For example, the thread in
which a method was dispatched will already have a content.

thread. context = TP::orb()->get_ctx();

CORBA: : ORB: : set _ctx
CORBA: : ORB: : cl ear _ctx

CORBA Programming Reference 14-71

14 coRBA API

CORBA::ORB::get_default_context

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Returns areference to the default context.

voi d CORBA: : ORB: : get _default_context (
CORBA: : Cont ext _out Cont ext Obj) ;

Cont ext Obj
The reference to the default context.

This member function returns a reference to the default context. When no longer
needed, this context reference must be freed using the CORBA: : r el ease member
function.

None.

CORBA: : Cont ext : : get _one_val ue
CORBA: : Cont ext : : get _val ues

14-72 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::get_next_response

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Determines and reports the next deferred synchronous request that compl etes.

voi d CORBA:: ORB: : get _next _response (
CORBA: : Request _out Request Obj) ;

Request j
The reference to the next completed request.

This member function returns a reference to the next request that completes. If no
requests have completed, the function waits for a request to complete. This member
function returns the next request on the queue, in contrast to the

CORBA: : Request : : get _response member function, which waits for a particular
request to complete. When no longer needed, this request must be freed using the
CORBA: : r el ease member function.

None.

CORBA: : ORB: : pol | _next _response
CORBA: : Request : : get _reponse

CORBA Programming Reference 14-73

14 coRBA API

CORBA::ORB::inform_thread_exit

Synopsis

C++ Binding

Parameter

Return Value

Description

Example

Informs the BEA Tuxedo system that resources associated with an
application-managed thread can bereleased. This method supports the devel opment of
amultithreaded server application.

void CORBA: : ORB: :i nform thread_exit(CORBA:: TI D t hreadl d)

threadld
Thelogical thread ID of the application-managed thread being deleted.

None.
This method informs the BEA Tuxedo system about the following conditions:

m The specified application-managed thread is no longer used by a servant
implementation.

m Any resources associated with the thread should be rel eased.

Note: Y ou should only call this operation on threads that the application creates and
manages. Do not invoke this method when specifying a dispatch thread that is
managed by the BEA Tuxedo system.

pOrb->informthread_exit(thread.threadld);

14-74 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::list_initial_services

Synopsis

C++ Binding

Argument

Description

Return Values

See Also

Determines which objects have references available via the initial references
mechanism.

typedef string bjectld,
typedef sequence bjectld ObjectldList;
bj ectldList list_initial _services ();

oj ectld
The object ID.

list _ initial_services ()
Defines the object type.

This operation is used by applications to determine which objects have references
available viathe initial references mechanism. This operation returns an
bj ect | dLi st , which isasequence of Obj ect | ds. Qbj ect | ds are typed as strings.

Each object, which may need to be made available at initialization time, is allocated a
string value to represent it. In addition to defining the ID, the type of object being
returned must be defined, that is, | nt er f aceReposi t or y returns an object of type
Reposi t ory, and NameSer vi ce returns a CosNani ngCont ext object.

Sequence of Qbj ect | ds.

CORBA: : ORB: : resol ve_initial _references

CORBA Programming Reference 14-75

14 coRBA API

CORBA::ORB::0bject_to_string

Synopsis
C++ Binding

Argument

Description

Return Values

Example

See Also

Produces a string representation of an object reference.

char * CORBA: : ORB::object _to _string (
CORBA: : Cbj ect_ptr oj Ref) ;

Obj Ref
The object reference to represent as a string.

This member function produces a string representation of an object reference. The
calling program must use the CORBA: : stri ng_free member function to free the
string memory after it isno longer needed.

The string representing the specified object reference.

CORBA: : Cbject_ptr op = TP::create_object_reference(
"IDL: Teller:1.0", "WyTeller");
char* objstr = TP::orb()->0bject_to_string(op);

CORBA: : ORB: : string_to_object
CORBA: :string free

14-76 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::perform_work

Synopsis
C++ Binding
Arguments

Exceptions

Description

Return Values
See Also

Example

Allowsthe ORB to perform server-related work.
voi d CORBA:: ORB: : performwork ();
None

Once the ORB has shut down, acall to wor k_pendi ng and per f or m wor k() raises
the BAD_| NV_ORDER exception. An application can detect this exception to determine
when to terminate a polling |oop.

If called by the main thread, this operation allows the ORB to perform server-related
work. Otherwise, it does nothing.

Thewor k_pendi ng() andper f or m wor k() operations can be used towriteasimple
polling loop that multiplexes the main thread among the ORB and other activities.
Such aloop would most likely be needed in a single-threaded server. A multithreaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread. See the example below for such a polling loop.

None.
CORBA: : ORB: : wor k_pendi ng

The following is an example of a polling loop:

/1 C++
for (;5) {
if (orb->work_pending()) {
or b- >performwor k() ;

}
/1 do other things
/'l sleep?

CORBA Programming Reference 14-77

14 coRBA API

CORBA::ORB::poll_next_response

Synopsis
C++ Binding
Arguments

Description

Return Values

See Also

Determines whether a completed request is outstanding.
CORBA: : Bool ean CORBA:: ORB: : pol | _next _response ();
None.

This member function reports on whether there is an outstanding (pending) completed
reguest; it does not remove the request. If acompleted request is outstanding, the next
call to the CORBA: : ORB: : get _next _response member function is guaranteed to
return arequest without waiting. If there are no completed requests outstanding, the
CORBA: : ORB: : pol | _next _response member function returns without waiting
(blocking).

If a completed request is outstanding, the function returns CORBA_TRUE.
If no completed request is outstanding, the function returns CORBA_FALSE.

CORBA: : ORB: : get _next _response

14-78 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::resolve_initial_references

Synopsis
C++ Binding

Augument

Description

Return Values

See Also

Obtains object references for initial services.

bj ect resolve_initial _references (in bjectld identifier)
rai ses (InvalidNane);

exception InvalidNane {};

identifier
String that identifies the object whose reference is required.

This operation is used by applications to obtain object references for initial services.
The interface differs from the Naming Service' sresolve in that Obj ect I d (a string)
replaces the more complex Naming Service construct (a sequence of structures
containing string pairs for the components of the name). This simplification reduces
the namespace to one context.

bj ect | ds are strings that identify the object whose reference is required. To
maintain the simplicity of the interface for obtaining initia references, only alimited
set of objects are expected to have their references found via this means. Unlike the
ORB identifiers, the oj ect I d name space requires careful management. To achieve
this, the OMG may, in the future, define which services are required by applications
through this interface and specify hames for those services.

Currently, reserved Obj ect | ds are Root PQA, POACur r ent , I nt er f aceReposi tory,
NaneSer vi ce, Tradi ngSer vi ce, Securi tyCurrent, Transacti onCurrent, and
DynAnyFact ory.

The application is responsible for narrowing the object reference returned from
resol ve_initial _references tothetypethat wasrequested in the Obj ect I d. For
example, for I nt er f aceReposi t ory the object returned would be narrowed to
Reposi tory type.

Object references for initial services.

CORBA: : ORB: : list_initial_services

CORBA Programming Reference 14-79

14 coRBA API

CORBA::0ORB::send_multiple_requests_deferred

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Sends a sequence of deferred synchronous requests.

void CORBA: : ORB: :send_nul tiple_requests deferred (
const CORBA:: ORB: : Request Seq & Reqs);

Reqgs
The sequence of requests to be sent. For more information about how to
populate the sequence with request references, see
CORBA: : ORB: : Request Seq in the section “Usage” on page 13-24.

This member function sends out asequence of requests and returns control to the caller
without waiting for the operation to complete. The caller uses CORBA: : ORB: : pol | _
next _response, CORBA: : ORB: : get _next _response, Or

CORBA: : Rquest : : get _response or all threeto determine if the operation has
completed and if the output arguments have been updated.

None.
CORBA: : Request :: get _response

CORBA: : ORB: : get _next _response
CORBA: : ORB: : send_nul ti pl e_requests_oneway

14-80 CORBA Programming Reference

ORB Member Functions

CORBA::0ORB::send_multiple_requests_oneway

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Sends a segquence of one-way, deferred synchronous reguests.

voi d CORBA:: ORB: : send_nul ti pl e_requests_oneway (
const CORBA: : Request Seq & Reqs) ;

Reqgs
The sequence of requests to be sent. For more information about how to
popul ate the sequence with request references, see
CORBA: : ORB: : Request Seq in the section “Usage”’ on page 13-24.

This member function sends out a sequence of requests and returns control to the caller
without waiting for the operation to complete. The caller neither intends to wait for a
response nor expects any output arguments to be updated.

None.

CORBA: : ORB: : send_mul ti pl e_requests_deferred

CORBA Programming Reference 14-81

14 coRBA API

CORBA::ORB::set_ctx

Synopsis

C++ Binding

Parameter

Return Value

Description

Example

See Also

Sets the context for the current thread. This method supports the development of a
multithreaded server application.

voi d set _ct x(CORBA: : ORB: : Ct x aContext)

aCont ext
The context to be associated with this thread.

None.

This method sets the context for the current application-managed thread. The context
parameter provided must have been obtained in a previously-executed thread that is
managed by the BEA Tuxedo system or in an application-managed thread that has
already been initialized.

Note: Do not call theset _ct x method in athread that is managed by the BEA
Tuxedo system. The BEA Tuxedo system performs the appropriate context
propagation automatically for the threads it manages. If your application calls
this method on athread managed by the BEA Tuxedo system, the BAD_PARAM
exception is thrown.

TP: :orb()->set _ctx(thread->context);

CORBA: : ORB: : get _ctx()
CORBA: : ORB: : cl ear_ctx()

14-82 CORBA Programming Reference

ORB Member Functions

CORBA::ORB::string_to_object

Synopsis

C++ Bi ndi ng

Argument

Description

Return Value

See Also

Converts a string produced by CORBA: : ORB: : obj ect _t o_stri ng operation and
returns the corresponding object reference.

bj ect string to object (in string str);

str
String produced by the CORBA: : ORB: : obj ect _t o_st ri ng operation.

This operation is used by applications to convert a string produced by
CORBA: : ORB: : obj ect _t o_st ri ng operation and returns the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB’sobj ect _t o_st ri ng operation must be used to produce the string. The
string_t o_object operation allows URLsin the IOR, corbaloc, corbalocs, and
corbanames formats to be converted into object references. If a conversion fails, the
string_t o_object operation raises the BAD PARAMSstandard exception with one of
the following minor codes:

B BadScheneNane
B BadAddress
m BadScheneSpeci ficPart

For all conforming ORBs, if obj isavalid reference to an object, then
string_to_object(object_to_string(obj)) will returnavalid referencetothe
same object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting |OP, this remains true even if the two operations are performed on
different ORBs.

Returns an object reference.

CORBA: : ORB: : obj ect _to_string

CORBA Programming Reference 14-83

14 coRBA API

CORBA::ORB::work_pending

Synopsis

C++ Binding
Arguments

Description

Return Values

See Also

Returns an indication of whether the ORB needs the main thread to perform
server-related work.

CORBA: : bool ean CORBA: : ORB: : wor k_pendi ng ();
None.

This operation returns an indication of whether the ORB needs the main thread to
perform server-related work.

A result of TRUE indicates that the ORB needs the main thread to perform
server-related work, and aresult of FALSE indicates that the ORB does not need the
main thread.

CORBA: : ORB: : per f or m wor k

14-84 CORBA Programming Reference

ORB Initialization Member Function

ORB Initialization Member Function

The mapping of this member function to C++ is asfollows:

cl ass CORBA {
static CORBA:: ORB ptr ORB_ init(int& argc, char** argv,
const char* orb_identifier = 0,
const char* -CORBport nnn);
<appl -name> [-ORBid {BEA |1 OP | BEA TOBJ} \
[-ORBIni t Ref <Obj ect | D>=<(hj ect URL> [*]]
[- ORBDef aul t I ni t Ref <Obj ect URL>]
[-ORBport port-nunber] \
[- ORBsecur ePort port-nunber] \
[-ORBm nCrypto {0 | 40 | 56 | 128}] \
[-ORBmaxCrypto {O | 40 | 56 | 128}] \
[- ORBnut ual Aut h] \
[- ORBpeer Val i date {detect | warn | none}] \
[appl - opti ons]

CORBA Programming Reference 14-85

14 coRBA API

CORBA::ORB_init
Synopsis Initializes operations for an ORB.

C++Binding static CORBA :ORB ptr ORB init(int& argc, char** argv,
const char* orb_identifier = 0);

Arguments argc
The number of stringsin ar gv.

ar gv
This argument is defined as an unbound array of strings (char **) and the
number of stringsin the array is passed in the ar gc parameter.

orb_identifier
If theorb_i denti fi er parameter issupplied, “ BEA_|I | OP” explicitly
specifiesaremoteclient and “ BEA_TOBJ” explicitly specifiesanative client,
as defined in the section “ Tobj_Bootstrap” on page 4-12.

Description This member function initializes operations for an ORB and returns a pointer to the
ORB. When your program is done with the ORB, use the CORBA: : r el ease member
function to free the resources allocated for the ORB pointer returned from
CORBA: : ORB ptr ORB_init.

The ORB returned has been initialized with two pieces of information to determine
how it will operate: client type (remote or native) and server port number. The client
type can be specified intheor b_i dent i f i er argument, in the argv argument, or in
the system registry. The server port number can be specified in the ar gv argument.

Thearguments ar gc and ar gv are typically the same parameters that were passed to
the main program. As specified by C++, these parameters contain string tokens from
the command line that started the client. The two ORB options can be specified onthe
command line, each using apair of tokens, as shown in examples below.

Client Type
The ORB_i ni t function determines the client type of the ORB by the following steps.

1. Iftheorb_identifi er argumentispresent, ORB_i ni t determinesthe client type,
either native or remote, if the stringis"BEA | 1 OP" or " BEA_TOBJ", respectively.
If anorb_identifier stringispresent, all -ORBi d parametersin the ar gv are
ignored (removed).

14-86 CORBA Programming Reference

ORB Initialization Member Function

2. Iforb_identifier isnot present or isexplicitly zero, ORB i ni t looks at the
entriesin ar gc/ ar gv. If ar gv contains an entry with " - ORBi d", the next entry
should be either " BEA | 1 OP" or "BEA_TOBJ", again specifying remote or native.
This pair of entries occurs if the command line contains either " - ORBi d
BEA |1 OP” or"- ORBid BEA TOBJ".

3. If noclient typeisspecifiedinar gc/ ar gv, ORB_i ni t usesthe default client type
from the system registry (BEA_| | OP or BEA_TOBJ). The system registry was
initialized at the time BEA Tuxedo was installed.

Server Port

In the case of a BEA Tuxedo remote joint client/server, in order to support |10P, by
definition, the object references created for the server part must contain ahost and port.
For transient object references, any port is sufficient and can be obtained by the ORB
dynamically, but this is not sufficient for persistent object references. Persistent
references must be served on the same port after the ORB restarts, that is, the ORB
must be prepared to accept requests on the same port with which it created the object
reference. Thus, there must be some way to configure the ORB to use aparticular port.

Typically, asystem administrator assignsthe port number for the client from the “ user”
range of port numbersrather from the dynamic range. This keeps the joint
client/servers from using conflicting ports.

To determine port number, ORB_i ni t searches the ar gv parameter for the token

"- ORBpor t" and afollowing numeric token. For example, if the client executableis
named sherry, the command line might specify that the server port should be 937 as
follows:

sherry -ORBport 937
ARGV Parameter Consider ations

For C++, the order of consumption of ar gv parameters may be significant to an
application. To ensure that applications are not required to handle ar gv parameters
they do not recognize, the ORB initialization function must be called before the
remainder of the parameters are consumed. Therefore, after the ORB_i ni t call, the
ar gv and ar gc parameters have been modified to remove the ORB understood
arguments. It isimportant to note that the ORB_i ni t function can only reorder or
remove references to parameters from the ar gv list. Thisrestriction is made to avoid
potential memory management problems caused by trying to free partsof thear gv list
or extending the ar gv list of parameters. Thisiswhy ar gv ispassed asachar ** and
not asachar ** &

CORBA Programming Reference 14-87

14 coRBA API

Note: Usethe CORBA: : r el ease member function to free the resources allocated for
the pointer returned from CORBA: : ORB_i ni t .

Return Value A pointer to a CORBA: : ORB.

Exceptions None.

14-88 CORBA Programming Reference

ORB Initialization Member Function

ORB

Synopsis

Syntax

Description

Parameters

Configures applications based on the BEA Tuxedo CORBA C++ ORB to access or
provide BEA Tuxedo CORBA objects.

<appl -name> [-ORBid {BEA |1 OP | BEA TOBJ} \
[-ORBIni t Ref <Obj ect | D>=<(hj ect URL> [*]]
[- ORBDef aul t I ni t Ref <Obj ect URL>]
[-ORBport port-nunber] \
[- ORBsecur ePort port-nunber] \
[-ORBm nCrypto {0 | 40 | 56 | 128}] \
[-ORBmaxCrypto {O | 40 | 56 | 128}] \
[- ORBnut ual Aut h] \
[- ORBpeer Val i date {detect | warn | none}] \
[appl - opti ons]

The BEA Tuxedo CORBA C++ ORB isaBEA Tuxedo-supplied library that enables
the development of CORBA -based applications used to access or provide BEA
Tuxedo objects using I1OP or 11OP-SSL. The ORB command-line options allow for
customization.

[-ORBid {BEA |1 OP | BEA TOBJ}]
The value BEA_1 | OP explicitly specifies that the ORB be configured to
support either a client or a server environment that communicates over the
[1OP or I1OP-SSL protocol.
The value BEA_TOBJ explicitly specifies that the ORB be configured to
support the native client environment that can only communicate over the
TGIOP protocol within a BEA Tuxedo domain.
If not specified, the ORB will detect the environment in which it is deployed
and configure itself for use in that environment.

[-ORBI ni t Ref Obj ect | d=Cbj ect URL]
The ORB initial reference argument, - ORBI ni t Ref , allows specification of
an arbitrary object reference for an initial service.
bj ect | Drepresentsthe well-known object ID for aservicethat isdefined in
the CORBA specification. This mechanism allows an ORB to be configured
with new initial service Object | Dsthat were not defined when the ORB was
installed.
(bj ect URL can be any of the URL schemes supported by the
CORBA: : ORB: : string_to_obj ect operation as defined in CORBA
specification. If aURL is syntactically malformed or can be determined to be
invalid in an implementation-defined manner, CORBA: : ORB_i ni t will raise
the CORBA: : BAD_PARAMstandard exception listed in Table 14-1.

CORBA Programming Reference 14-89

14 coRBA API

Table 14-1 Minor Codesfor CORBA::BAD_PARAM Standard Exception

Minor Code Description

BadScheneNane The specified scheme is recognized by the ORB implementation. Only the
schemes IOR, corbaloc, corbalocs, and corbaname are supported.

BadAddr ess The format of the addressis not recognized by the ORB implementation.
Host names must be specified according to DNS or as class C |P addresses
in dot-separated form.

BadScheneSpeci fi cPart The format of the addressis not recognized by the ORB implementation.
Host names must be specified according to DNS or as class C |P addresses
in dot-separated form.

BadScheneSpeci fi cPart The scheme specific part of the URL isimproperly formatted for the
specified scheme.

[—ORBDef aul t I ni t Ref <Obj ect URL>]
The ORB default initial reference argument, - ORBDef aul t | ni t Ref , assists
in the resolution of initial references not explicitly specified with
- ORBI ni t Ref . Thisargument provides functionality similar to that of thelist
of IIOP Listeners address that is provided to the current Tobj _Boot st r ap
object.
Unlike the —ORBI ni t Ref argument, - ORBDef aul t | ni t Ref requiresa URL
that, after appending aslash ‘/* character and a stringified object key, forms
anew URL toidentify an initial object reference. For example, if the
following was specified as the default initial reference argument:

- ORBDef aul t I ni t Ref corbal oc: 5550bj s. com

A call to
ORB: :resolve_initial _references(“NotificationService”) to
obtain the initial reference for the service would result in the new URL:

cor bal oc: 5550bj s. conf Noti ficati onService
Theimplementation of the ORB: : resol ve_i nitial _references
operation would take the newly constructed URL and call

CORBA: : ORB: : string_to_obj ect toobtain theinitial reference for the
service.

14-90 CORBA Programming Reference

ORB Initialization Member Function

The URL specified asthe value of the - ORBDef aul t I ni t Ref argument can
contain more than a single location. Thisisthe similar to the functionality
provided for the list of locations to be used by the Tobj _Boot st r ap object.
In this situation, the ORB will process the locations in the URL based on the
syntax rules for the URL. For example, if the following was specified as the
default initial reference argument:

- ORBDef aul t1 ni t Ref corbal oc: 5550bj s. com 555Backup. com

A cal toORB: : resol ve_initial _references(”NaneService”) to
obtaintheinitial referencefor the servicewould result in one of the following
new URLSs:

cor bal oc: 5550bj s. com NaneServi ce
or:
cor bal oc: 555Backup. conmf NaneSer vi ce

The resulting URL would then be passed to
CORBA: : ORB: : string_t o_obj ect inorder to obtain theinitial reference
for the service.

[-ORBm nCrypto [O | 40 | 56 | 128]]
When establishing a network link, this is the minimum level of encryption
required. Zero (0) means no encryption, while 40, 56, and 128 specify the
length (in bits) of the encryption key. If this minimum level of encryption
cannot be met, link establishment will fail.
The default isO.

[-ORBmaxCrypto [0 | 40 | 56 | 128]]
When establishing a network link, this isthe maximum level of encryption
allowed. Zero (0) means no encryption, while 40, 56, and 128 specify the
length (in bits) of the encryption key. The default is whatever capability is
specified by thelicense. The—ORBnaxCr ypt o or —ORBmaxCr ypt o optionsare
available only if either the International or U.S_Canada BEA Tuxedo
Security Add-on Package isinstalled.

[—ORBnut ual Aut h]
Specifies that certificate-based authentication should be enabled when
accepting an SSL connection from a remote application.
The —CRBnut ual Aut h option is available only if either the International or
U.S Canada BEA Tuxedo Security Add-on Package isinstalled.

CORBA Programming Reference 14-91

14 coRBA API

[—-ORBpeer Val i date {detect | warn | none}]
Determines how the BEA Tuxedo CORBA ORB will behave when a digital
certificate for a peer of an outbound connection initiated by the BEA Tuxedo
ORB isreceived as part of the Secure Socket Layer (SSL) protocol
handshake. The validation is only performed by the initiator of a secure
connection and confirms that the peer server is actually located at the same
network address specified by the domain name in the server’s digital
certificate. This validation is not technically part of the SSL protocol, but is
similar to the same check done in web browsers.
A vaue of det ect causes an BEA Tuxedo CORBA ORB to verify that the
host specified in the object reference used to make the connection matchesthe
domain name specified inthe peer’ sdigital certificate. If the comparisonfails,
the ORB refusesto authenticatethe peer and dropsthe connection. This check
protects against man-in-the-middle attacks.
A value of war n causes a BEA Tuxedo CORBA ORB to verify that the host
specified in the object reference used to make the connection matches the
domain name specified inthe peer’ sdigital certificate. If thecomparisonfails,
the ORB logs a message to the user log, but continues processing the
connection.
A value of none causesaBEA Tuxedo CORBA ORB not to perform the peer
validation and will continue the processing of the connection.
The—-ORBpeer Val i dat e optionisavailable only if either the International or
U.S Canada BEA Tuxedo Security Add-on Packageis installed.
If not specified, the default isdet ect .

[-ORBport port-nunber]
Specifies the network address to be used by the ORB to accept connections
from remote CORBA clients. Typically, a system administrator assigns the
port number for the client from the "user" range of port numbers rather from
the dynamic range. This keeps thejoint client/servers from using conflicting
ports.
This parameter is required in order for the BEA Tuxedo CORBA ORB to
create persistent object references. Persistent objects references must be
served on the same port after that is contained in the object reference, even if
the ORB has been restarted. For transient object references, any port is
sufficient and can be obtained by the ORB dynamically.
Theport - nunber isthe TCP port number at which the BEA Tuxedo
CORBA ORB process listens for incoming requests. The por t - nunber can
be a number between 0 and 65535.

14-92 CORBA Programming Reference

ORB Initialization Member Function

Portability

Interoperability

Examples

Note: The Java Tobj _Boot st rap object usesashort typeto store the
por t - nunber . Therefore, you must use aport - nunber in the range of 0
to 32767 if you plan to support connections from Java clients.

[-ORBsecur ePort port-nunber]
Specifies the port number that the 11OP Listener/Handler should useto listen
for secure connections using the Secure Socket L ayer protocol. If the
command-line option is specified without a port number, then the OMG
assigned port number 684 will be used for SSL connections.
The port - nunber isthe TCP port number at which the BEA Tuxedo
CORBA ORB process listens for incoming requests. The por t - nunber can
be a number between 0 and 65535.

Note: The Java Tobj _Boot st rap object usesashort typeto store the
por t - nunber . Therefore, you must use aport - nunber in the range of 0
to 32767 if you plan to support connections from Java clients.

An administrator can configure to only allow secure connectionsinto the
BEA Tuxedo CORBA ORB by setting port numbers specified by the
—ORBport and —ORBsecur ePort to the same value.

The -CRBsecur ePor t option is available only if either the International or
U.S Canada BEA Tuxedo Security Add-on Package isinstalled.

The BEA Tuxedo CORBA ORB is supported as a BEA Tuxedo-supplied client or
server on UNIX and Microsoft Windows 2000 operating systems. It is also supported
as a BEA Tuxedo-supplied client on the Windows 98 operating systems.

The BEA Tuxedo CORBA ORB will interoperate with any 110OP compliant ORB that
supportsthe 1.0, 1.1, or 1.2 version of the GIOP protocol over a TCP/IP connection.
In addition, the BEA Tuxedo CORBA ORB will interoperate with any |10P-SSL
compliant ORB that supports the use of the TAG_SSL_SEC TRANS tagged component
in object references and version 3 of the Secure Socket Layer protocol.

C++ code example

ChatClient —ORBid BEA |1 OP —ORBport 2100
- ORBDef aul t I ni t Ref corbal oc: pi gl et: 1900
- ORBI ni t Ref Trader Servi ce=cor bal oc: ow : 2530
—CORBsecur ePort 2100
- ORBm nCrypto 40
—CRBmaxCrypto 128
TechTopi cs

CORBA Programming Reference 14-93

14 coRBA API

Java code example

j ava —DORBDef aul t | ni t Ref =cor bal ocs: pi gl et: 1900
..... - DORBI ni t Ref =Tr ader Ser vi ce=cor bal oc: ow : 2530
- Dor g. ong. CORBA. CRBPort =1948
- cl asspat h=%CLASSPATH% cl i ent

SeeAlso I SL

14-94 CORBA Programming Reference

Policy Member Functions

Policy Member Functions

A policy is an object used to communicate certain choices to an ORB regarding its
operation. Thisinformation isaccessed in astructured manner using interfaces derived
from the Policy interface defined in the CORBA module.

Note: These CORBA: : Pol i cy operations and structures are not usually needed by
programmers. The derived interfaces usually contain the information relevant
to specifications. A policy object can be constructed by a specific factory or
by using the CORBA: : cr eat e_pol i cy operation.

The mapping of this object to C++ isasfollows:

cl ass CORBA
{

class Policy

{
public:

copy();
voi d destroy();
}; /1Policy
typedef sequence<Pol i cy>PolicylLi st;
}; 1/ CORBA

Pol i cyLi st isused the same as any other C++ sequence mapping. For a discussion
of sequence usage, see “ Sequences” on page 13-14.

See Also: POA Policy and CORBA: : ORB: : create_pol i cy.

CORBA Programming Reference 14-95

14 coRBA API

CORBA:Policy::copy
Synopsis Copies the policy object.
C++Binding CORBA: : Poli cy: : copy();
Argument None.

Description This operation copiesthe policy object. The copy does not retain any rel ationships that
the policy had with any domain or object.

Note: Thisfunction issupported only for ajoint client/server.

Return Values None.

14-96 CORBA Programming Reference

Policy Member Functions

CORBA::Policy::destroy

Synopsis
C++ Binding
Argument

Exceptions

Description

Return Values

Destroys the policy object.
voi d CORBA:: Policy::destroy();
None.

If the policy object determines that it cannot be destroyed, the
CORBA: : NO_PERM SSI ON exception is raised.

This operation destroys the policy object. It isthe responsibility of the policy object to
determine whether it can be destroyed.

Note: Thisfunction is supported only for ajoint client/server.

None.

CORBA Programming Reference 14-97

14 coRBA API

PortableServer Member Functions

The mapping of the PortableServer member functionsto C++ isasfollows:

Li fespanPol i cy;

| dAssi gnent Pol i cy;
PQOA: : find_PQA
reference_to_ id
POAMENager ;

POA;

Current;

virtual Objectld
Servant Base

/] C++

cl ass Portabl eServer

{

publ i c:

cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass

}s

oj ectld

A value that is used by the POA and by the user-supplied implementation to
identify a particular abstract CORBA object. (bj ect | d values may be
assigned and managed by the POA, or they may be assigned and managed by
the implementation. oj ect | d values are hidden from clients, encapsulated
by references. vj ect I ds have no standard form; they are managed by the
POA as uninterpreted octet sequences.

The following sections describe the remaining classes.

14-98 CORBA Programming Reference

PortableServer Member Functions

PortableServer::POA::activate_object

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

Example

Explicitly activates an individual object.

Ooj ectld * activate_object (
Servant p_servant);

p_servant
An instance of the C++ implementation class for the interface.

If the specified servant is already in the Active Object Map, the
Ser vant Al r eadyAct i ve exception is raised.

Note: Other exceptions can occur if the POA uses unsupported policies.

Thisoperation explicitly activatesan individual object by generating an Qbj ect | d and
entering the Mbj ect | d and the specified servant in the Active Object Map.

Note: Thisfunction is supported only for ajoint client/server.

If the function succeeds, the Obj ect | d isreturned.

In the following example, the first struct creates a servant by a user-defined
constructor. The second struct tells the POA that the servant can be used to handle
requests on an object. The POA returnsthe Qbj ect | d it has created for the object. The
third statement assumesthat the POA hasthel MPLI CI T_ACTI VATI ON policy (theonly
supported policy in version 4.2 of the BEA Tuxedo software) and returns a reference
to the object. That reference can then be handed to a client for invocations. When the
client invokes on the reference, the request is returned to the servant just created.

M/FooServant * af oo = new M/FooServant (poa, 27);
Portabl eServer::Objectld var oid =

poa- >acti vat e_obj ect (af 00) ;
Foo_var foo = afoo->_this();

CORBA Programming Reference 14-99

14 coRBA API

PortableServer::POA::activate_object_with_id

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

Example

Activates an individua object with a specified Obj ect | d.

void activate _object with_id (
const Objectld & id,
Servant p_servant);

id
bj ect 1 d that identifies the object on which that operation was invoked.

p_servant
An instance of the C++ implementation class for the interface.

The bj ect Al r eadyAct i ve exceptionisraised if the CORBA object denoted by the
bj ect 1 d valueisalready active in this POA.

TheServant Al readyAct i ve exceptionisraised if theservantisalready intheActive
Object Map.

Note: Other exceptions can occur if the POA uses unsupported policies.

TheBAD_PARAMSystem exception may beraised if the POA hasthe SYSTEM | D policy
and it detectsthat the oj ect | d value was not generated by the system or for this
POA. An ORB isnot required to detect all such invalid Ooj ect | d values. However, a
portable application must not invoke act i vat e_obj ect _wi t h_i d on aPOA if the
POA has the SYSTEM | D policy with an oj ect | d value that was not previously
generated by the system for that POA, or, if the POA also hasthe PERSI STENT policy,
for aprevious instantiation of the same POA.

This operation enters an association between the specified Obj ect I d and the specified
servant in the Active Object Map.

Note: Thisfunction issupported only for ajoint client/server.

None.

MyFooServant* af oo = new MyFooServant (poa, 27);
Port abl eServer:: jectld var oid =
Portabl eServer::string to Qojectld("nmyLittl eFoo");
poa->activate_object_with_ id(oid.in(), afoo);
Foo_var foo = afoo-> this();

14-100 CORBA Programming Reference

PortableServer Member Functions

PortableServer::POA:.create_id_assignment_policy

Synopsis Obtains an object with the | dAssi gnnent Pol i cy interface so the user can passthe
object to the POA: : cr eat e_PQA operation.

C++Binding 1 dAssi gnment Pol i cy_ptr
Port abl eServer:: POA: : create_i d_assi gnment _policy (
Por t abl eServer: : | dAssi gnnent Pol i cyVal ue val ue)

Argument val ue
A value of either Por t abl eSer ver: : USER | D, indicating Obj ect | ds are
assigned only by the application, or Port abl eSer ver : : SYSTEM | D,
indicating Qoj ect | ds are assigned only by the system.

Description The PQA: : creat e_i d_assi gnment _pol i cy operation obtains objects with the
I dAssi gnment Pol i cy interface. When passed to the POA: : cr eat e_ POA operation,
this policy specifies whether Qbj ect | ds in the created POA are generated by the
application or by the ORB. The following values can be supplied:

m Portabl eServer: : USER | D—objects created with that POA are assigned
bj ect | ds only by the application.

m Portabl eServer:: SYSTEM | D—objects created with that POA are assigned
bj ect | ds only by the POA. If the POA also has the PERSI STENT
Li f espanPol i cy, assigned Obj ect | ds must be unique across al instantiations
of the same POA.

If nol dAssi gnnent Pol i cy isspecified at POA creation, the default is SYSTEM | D.
Note: Thisfunction is supported only for ajoint client/server.

Return Values Returnsan1d Assi gnnent policy.

CORBA Programming Reference 14-101

14 coRBA API

PortableServer::POA::create_lifespan_policy

Synopsis Obtains an object with the Li f espanPol i cy interface so the user can pass the object
to the POA: : cr eat e_PQA operation.

C++Binding LifespanPolicy _ptr
Port abl eServer:: POA::create | ifespan_policy (
Port abl eServer: : Li f espanPol i cyPol i cyVal ue val ue)

Argument val ue
A value of either Port abl eServer : : USER | D, indicating Qbj ect | ds are
assigned only by the application, or Por t abl eServer: : SYSTEM | D,
indicating Qbj ect | ds are assigned only by the system.

Description Objects with the Li f espanPol i cy interface are obtained using the
PQA: : create_| i fespan_pol i cy operation and passed to the POA: : cr eat e_POA
operation to specify the lifespan of the objects implemented in the created POA. The
following values can be supplied.

m TRANSI ENT—the objects implemented in the POA cannot outlive the processin
which they are first created. Once the POA is deactivated, use of any object
references generated from it will result in an OBJECT_NOT_EXI ST exception.

m PERSI STENT—the objects implemented in the POA can outlive the processin
which they are first created.

e Persistent objects have a POA associated with them (the POA which created
them). When the ORB receives a request on a persistent object, it first
searches for the matching POA, based on the names of the POA and dl of its
ancestors.

e Administrative action beyond the scope of this specification may be
necessary to inform the ORB'slocation service of the creation and eventual
termination of existence of this POA, and optionaly to arrange for
on-demand activation of a process implementing this POA.

¢ POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will
not conflict with its own POA names. A conforming CORBA
implementation will provide a method for ensuring this property.

If no Li f espanPol i cy object is passed to POA: : cr eat e_PQA, the lifespan policy
defaults to TRANSI ENT.

Note: Thisfunction issupported only for ajoint client/server.

14-102 CORBA Programming Reference

PortableServer Member Functions

Return Values Returns a LifespanPolicy.

CORBA Programming Reference 14-103

14 coRBA API

PortableServer::POA::create_POA

Synopsis
C++ Binding

Arguments

Exceptions

Description

Creates anew POA as achild of the target POA.

PQA ptr Portabl eServer::create_ POA (
const char * adapter_nane,
POAManager _ptr a_POAManager,
const CORBA:: PolicyList & policies)

adapt er _nane
The name of the POA to be created.

a_POAManager
Either aNULL value, indicating that anew POAManager isto be created and
associated with the new POA, or a pointer to an existing POAManager.

policies
Policy objects to be associated with the new POA.

Adapt er Al readyExi sts
Raised if the target POA already has a child POA with the specified name.

I nval i dPol i cy
Raised if any of the policy objects specified are not valid for the ORB
implementation, if conflicting policy objects are specified, or if any of the
specified policy objects require prior administrative action that has not been
performed. Thisexception containstheindex in the policy parameter val ue of
the first offending policy object.

IMP LIMT
Raised if the program tries to create a POA with a LifespanPolicy of
PERSI STENT without having set a port, as described in the operation
“CORBA::ORB init" on page 14-86.

This operation creates a new POA as a child of the target POA. The specified name,
which must be unique, identifies the new POA with respect to other POAs with the
same parent POA.

If the a_POAManager parameter iSNULL, anew Por t abl eSer ver: : POAManager
object is created and associated with the new POA. Otherwise, the specified
PQAMEnager object is associated with the new POA. The POAManager object can be
obtained using the attribute name t he_PQAManager .

14-104 CORBA Programming Reference

PortableServer Member Functions

Return Values

Examples

The specified policy objects are associated with the POA and are used to control its
behavior. The policy objects are effectively copied beforethis operation returns, so the
application isfree to destroy them while the POA isin use. Policies are not inherited
from the parent POA.

Note: Thisfunction is supported only for joint client/servers.

Returns a pointer to the POA that was created.
Example 1

In this example, the child POA would use the same manager as the parent POA; the
child POA would then have the same state as the parent (that is, it would be active if
the parent is active).

CORBA: : Pol i cyLi st policies(2);
policies.length (1);
policies[0] = root POA->create_ I|ifespan_policy(
Por t abl eSer ver: : Li fespanPol i cy: : TRANSI ENT) ;
Port abl eServer:: POA ptr poa =
r oot POA- >create_POA("ny_little_poa",
r oot POA- >t he_ POAManager, policies);

Example 2
In this example, a new POA is created as a child of the root POA.

CORBA: : Pol i cyLi st policies(2);
policies.length (1);
policies[0] = root POA->create_ I|ifespan_policy(
Por t abl eServer: : Li fespanPol i cy: : TRANSI ENT) ;
Port abl eServer:: POA ptr poa =
r oot POA- >create_POA("ny_little_poa",
Por t abl eSer ver: : POAVanager:: _nil (), policies);

CORBA Programming Reference 14-105

14 coRBA API

PortableServer::POA::create_reference

Synopsis Creates an object reference that encapsulates a POA-generated Ooj ect | d value and
the specified interface repository 1D.

C++Binding CORBA: : Qbj ect _ptr create_reference (
const char * intf)

Argument intf
Theinterface repository ID.

Exceptions This operation requires the LifespanPolicy to have the value SYSTEM I D; if not
present, the Por t abl eSer ver : : W ongPol i cy exception is raised.

Description ~ Thiscr eat e_r ef er ence operation creates an object reference that encapsulates a
POA -generated bj ect | d value and the specified interface repository ID. This
operation collects the necessary information to constitute the reference from
information associated with the POA and from parameters to the operation. This
operation only creates areference; it does not associate the reference with an active
servant. The resulting reference may be passed to clients, so that subsequent requests
on those references return to the POA using the Qbj ect | d generated. The generated
bj ect 1 d value may be obtained by invoking POA: : r ef erence_t o_i d with the
created reference.

Note: Thisfunction issupported only for ajoint client/server.

Return Values Returnsa pointer to the object.

14-106 CORBA Programming Reference

PortableServer Member Functions

PortableServer::POA::create_reference_with_id

Synopsis

C++ Binding

Arguments

Exceptions

Description

Return Values

Example

Creates an object reference that encapsul ates the specified Obj ect | d and interface
repository ID values.

CORBA: : Cbj ect _ptr create_reference with_id (
const Objectld & oid,
const char * intf)

oi d

bj ect | d that identifies the object on which that operation was invoked.
intf

The interface repository 1D.

If the POA has a LifespanPolicy with value SYSTEM | Dand it detects that the
bj ect | d value was not generated by the system or for this POA, the operation will
raise the BAD_PARAM system exception.

Thecreat e_r ef er ence operation creates an object reference that encapsulates the
specified oj ect | d and interface repository 1D values. This operation collects the
necessary information to constitute the reference from information associated with the
POA and from parameters to the operation. This operation only creates a reference; it
does not associate the reference with an active servant. Theresulting reference may be
passed to clients, so that subsequent requests on those references cause the invocation
to be returned to the same POA with Qbj ect | d specified.

Note: Thisfunction is supported only for ajoint client/server.

Returns Qbj ect _ptr.

Portabl eServer::Objectld var oid =
Portabl eServer::string to Qojectld("nmyLittl eFoo");
CORBA: : Obj ect _var obj = poa->create_reference with_id(
oid.in(), "IDL:Foo0:1.0");
Foo_var foo = Foo:: _narrow(obj);

CORBA Programming Reference 14-107

14 coRBA API

PortableServer::POA::deactivate_object

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

Removes the Obj ect | d from the Active Object Map.

voi d deacti vat e_obj ect (
const (bjectld & oid)

oid
bj ect | d that identifies the object.

If thereisno active object associated with the specified (bj ect | d, the operation raises
an Obj ect Not Act i ve exception.

This operation causes the association of the (bj ect | d specified by theoi d parameter
and its servant to be removed from the Active Object Map.

Note: Thisfunction issupported only for ajoint client/server.

None.

14-108 CORBA Programming Reference

PortableServer Member Functions

PortableServer::POA:.destroy

Synopsis
C++ Binding

Arguments

Description

Return Values

Destroysthe POA and all descendant POASs.

voi d destroy (
CORBA: : Bool ean etherealize objects
CORBA: : Bool ean wait _for_conpl etion)

ethereal i ze_objects
This argument should be FALSE for this release of BEA Tuxedo.

wai t _for_conpl etion
This argument indicates whether or not the operation should return
immediately.

This operation destroys the POA and &l descendant POAs. The POA with its name
may be recreated later in the same process. (This differsfrom the

POAManager : : deact i vat e operation, which does not allow arecreation of its
associated POA in the same process.)

When a POA is destroyed, any requests that have started execution continue to
completion. Any requeststhat have not started execution are processed asif they were
newly arrived and there is no POA; that is, they are rejected and the
OBJECT_NON_EXI ST exception israised.

If thewai t _f or _conpl eti on parameter is TRUE, thedest r oy operation returns only
after all requestsin process have completed and all invocations of et her eal i ze have
completed. Otherwise, the dest r oy operation returns after destroying the POASs.

Note: Thisrelease of BEA Tuxedo does not support multithreading. Hence,
wai t_for_conpl eti on should not be TRUE if the call is made in the context
of an object invocation. That is, the POA cannot start destroying itself if it is
currently executing.

Note: Thisfunction is supported only for ajoint client/server.

None.

CORBA Programming Reference 14-109

14 coRBA API

PortableServer::POA::find_POA

Synopsis
C++ Binding

Argument

Exception

Description

Return Values

Returns areference to a child POA with a given name.
void find _PQA(in string adapter_name, in boolean activate_ it);

adapt er _nane
A reference to the target POA.
active_ it
In this version of BEA Tuxedo, this parameter must be FALSE.

Adapt er NonExi st ent
This exception israised if the POA does not exist.

If the POA has a child POA with the specified name, that child POA isreturned. If a
child POA with the specified name does not exist and the value of theact i vate_i t
parameter is FALSE, the Adapt er NonExi st ent exception is raised.

None.

14-110 CORBA Programming Reference

PortableServer Member Functions

PortableServer::POA::reference_to_id

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

Returns the bj ect | d value encapsulated by the specified r ef er ence.
ojectld reference_to_id(in Object reference);

reference
Specifies the reference to the object.

W ongAdapt er
This exception israised if the reference was not created by that POA.

This operation returnsthe oj ect | d value encapsul ated by the specifiedr ef er ence.
Thisoperation isvalid only if the reference was created by the POA on which the
operation is being performed. The object denoted by the reference does not have to be
active for this operation to succeed.

Note: Thisfunction is supported only for ajoint client/server.

Returns the bj ect | d value encapsulated by the specified r ef er ence.

CORBA Programming Reference 14-111

14 coRBA API

PortableServer::POA::the_POAManager

Synopsis
C++ Binding
Argument

Description

Return Values

Example

| dentifies the POA manager associated with the POA.
PQAManager ptr the_POAVanager ();
None.

This read-only attribute identifies the POA manager associated with the POA.
Note: Thisfunction issupported only for ajoint client/server.

None.
poa- >t he_POAManager () - >activate();

This statement will set the state of the POAManager for the given POA to active,
which isreguired if the POA isto accept requests. Note that if the POA has a parent,
thatis, itisnot theroot POA, all of itsparent’s POAManagers must also beintheactive
state for this statement to have any effect.

14-112 CORBA Programming Reference

PortableServer Member Functions

PortableServer::ServantBase::_default_POA

Synopsis
C++ Binding

Argument

Description

Return Values

Returns an object reference to the POA associated with the servant.

cl ass Port abl eServer

f:l ass Servant Base
{
public:
virtual POA ptr _default_ POA();
}
}
None.

All C++ Servantsinherit from Por t abl eSer ver : : Ser vant Base, S0 they al inherit
the _def aul t _PQA function. Inthisversion of BEA Tuxedo thereisusually no reason
touse _defaul t POA.

The default implementation of thisfunction returns an object referenceto the root POA
of the default ORB in this process—the same as the return value of an invocation of
ORB: :resolve_initial _references("Root POA").A C++ servant can override
this definition to return the POA of itschoice, if desired.

Note: Thisfunction is supported only for joint client/servers.

The default POA associated with the servant.

CORBA Programming Reference 14-113

14 coRBA API

POA Current Member Functions

The Port abl eSer ver: : Current interface, derived from CORBA: : Current,
provides method implementationswith accessto theidentity of the object onwhich the
method was invoked.

14-114 CORBA Programming Reference

POA Current Member Functions

PortableServer::Current::get_object id

Synopsis
C++ Binding
Arguments

Exception

Description

Return Values

Returns the bj ect | d identifying the object in whose context it is called.
Oojectld * get_object_id ();
None.

If called outside the context of a POA-dispatched operation, a
Por t abl eSer ver : : NoCont ext exception is raised.

This operation returns the Por t abl eSer ver : : Qbj ect | d identifying the object in
whose context it is called.

Note: Thisfunction is supported only for ajoint client/server.

This operation returns the Qbj ect | d identifying the object in whose context it is
called.

CORBA Programming Reference 14-115

14 coRBA API

PortableServer::Current::get_POA

Synopsis
C++ Binding
Argument

Exceptions

Description

Return Values

Returns areference to the POA implementing the object in whose context it is called.
POA ptr get_POA ();
None.

If this operation is called outside the context of a POA-dispatched operation, a
Por t abl eSer ver : : NoCont ext exception is raised.

This operation returns a reference to the POA implementing the object in whose
context it is called.

Note: Thisfunction issupported only for ajoint client/server.

This operation returns a reference to the POA implementing the object in whose
context it is called.

14-116 CORBA Programming Reference

POAManager Member Functions

POAManager Member Functions

Each POA object has an associated POAManager object. A POAManager may be
associ ated with one or more POA objects. A POAManager encapsul atesthe processing
state of the POAswith which it is associated. Using operations on the POA manager,
an application can cause requests for those POA s to be queued or discarded, and can
cause the POAS to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POAManager
object is provided at POA creation time, a POAManager is created when a POA is
created and is automatically associated with that POA. A POAManager object is
implicitly destroyed when all of its associated POAs have been destroyed.

A POAmanager has four possible processing states: active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated POAs
and the disposition of requests received by those POASs.

A POAmanager iscreated inthe holding state. In that state, any invocations on its POA
are queued until the POA manager entersthe active state. This version of BEA Tuxedo
supports only the ability to enter active and inactive states. That is, this version does
not support the ability to return to holding state or to enter discarding state.

CORBA Programming Reference 14-117

14 coRBA API

PortableServer::POAManager::activate

Synopsis
C++ Binding
Argument

Exceptions

Description

Return Values

Changes the state of the POAManager to active.
void activate();
None.

If this operation is issued while the POAmanager isin the inactive state, the
Por t abl eSer ver : : POAManager : : Adapt er | nact i ve exception is raised.

This operation changesthe state of the POAManager to active. Entering the active state
enables the associated POAS to process requests.

Note: All parent POAsmust a so have POAManagersinthe active state for this POA
to process requests.

Note: Thisfunction issupported only for ajoint client/server.

None.

14-118 CORBA Programming Reference

POAManager Member Functions

PortableServer::POAManager::deactivate

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

Changes the state of the POA manager to inactive.

voi d deactivate (
CORBA: : Bool ean et hereal i ze_obj ects,
CORBA: : Bool ean wait_for_conpl etion);

ethereal i ze_objects
For BEA WebL ogic Enterprise 4.2 software and later software and BEA
Tuxedo 8.0 and later software, this argument should always be set to FALSE.

wai t _for_conpl etion
If this argument is TRUE, the deact i vat e operation returns only after all
requests in process have completed. If this argument is FALSE, the

deact i vat e operation returns after changing the state of the associated
POAs.

If issued while the POA manager isin the inactive state, the
Por t abl eServer : : POAManager : : Adapt er | nact i ve exception is raised

This operation changes the state of the POAManager to inactive. Entering theinactive
state causes the associated POAsto reject requests that have not begun to be executed,
aswell as any new requests.

Note: Thisrelease of BEA Tuxedo does not support multithreading. Hence,
wai t_for_conpl eti on should not be TRUE if the call is made in the context
of an object invocation. That is, the POAManager cannot be set to inactive
stateif it is currently executing.

Note: Thisfunction is supported only for ajoint client/server.

None.

CORBA Programming Reference 14-119

14 coRBA API

POA Policy Member Objects

Interfaces derived from CORBA: : Pol i cy are used with the POA: : cr eat e POA
operation to specify policiesthat apply to a POA. Policy objects are created using
factory operations on any preexisting POA, such as the root POA.. Policy objects are
specified when a POA is created. Policies may not be changed on an existing POA.
Policies are not inherited from the parent POA.

14-120 CORBA Programming Reference

POA Policy Member Objects

PortableServer::LifespanPolicy

Synopsis

Description

Exceptions

Specifies the life span of objectsto the cr eat e_POA operation.

Objectswith the Li f espanPol i cy interface are obtained using the

POA: : create_| i f espan_pol i cy operationand are passed tothePQA: : cr eat e_PQOA
operation to specify the life span of the objects implemented in the created POA. The
following values can be supplied:

m TRANSI ENT—the objects implemented in the POA cannot outlive the processin
which they arefirst created.

m PERSI STENT—the objects implemented in the POA can outlive the processin
which they arefirst created.

Persistent objects have a POA associated with them (the POA that created them).
When the ORB receives a request on a persistent object, it searches for the
matching POA, based on the names of the POA and all of its ancestors.

POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will not
conflict with its own POA names.

If noLifespanPol i cy object ispassedto creat e_PQA, the lifespan policy defaults
1o TRANSI ENT.

Note: Thisfunction is supported only for ajoint client/server.

None.

CORBA Programming Reference 14-121

14 coRBA API

PortableServer::ldAssignmentPolicy

Synopsis Specifies whether Cbj ect I ds in the created POA are generated by the application or
by the ORB.

Description Objects with the | dAssi gnment Pol i cy interface are obtained using the
PQA: : create_i d_assi gnment _pol i cy operation and are passed to the
PQA: : cr eat e_POA operation to specify whether Obj ect I ds in the created POA are
generated by the application or by the ORB. The following values can be supplied:

m USER | D—objects created with that POA are assigned Obj ect | ds only by the
application.

m SYSTEM | D—objects created with that POA are assigned Obj ect | ds only by the
POA. If the POA also has the PERSI STENT policy, assigned bj ect | ds must be
unique across al instantiations of the same POA.

If no I dAssi gnment Pol i cy is specified at POA creation, the default is SYSTEM | D.

Note: Thisfunction issupported only for ajoint client/server.

14-122 CORBA Programming Reference

Request Member Functions

Request Member Functions

The mapping of these member functions to C++ is as follows:

/1 C++
cl ass Request

{

}s

public:

bj ect _ptr target() const;
const char *operation() const;
NarmedVal ue_ptr result();
NVLi st _ptr argunents();

Envi ronment _ptr env();
ExceptionLi st_ptr exceptions();
Cont extLi st_ptr contexts();
voi d ctx(Context_ptr);
Context_ptr ctx() const

/1 argunent mani pul ation hel per functions
Any &add _in_arg();

Any &add_in_arg(const char* nane);

Any &add_inout _arg():

Any &add_i nout _arg(const char* nane)

Any &add_out _arg():

Any &add_out _arg(const char* nane)

voi d set_return_type(TypeCode_ptr tc);
Any &return_val ue();

voi d i nvoke();

voi d send_oneway();

voi d send_deferred();
voi d get _response();
Bool ean pol | _response();

Note: Theadd * arg,set _return_type,andreturn_val ue member functions

are added as shortcuts for using the attribute-based accessors.

The following sections describe these member functions.

CORBA Programming Reference 14-123

14 coRBA API

CORBA::Request::arguments

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves the argument list for the request.
CORBA: : NVLi st _ptr CORBA:: Request::arguments () const;
None.

This member function retrieves the argument list for the request. The arguments can
bei nput , out put , or both.

If the function succeeds, the value returned is a pointer to the list of arguments to the
operation for the request. The returned argument list is owned by the Request object
reference and should not be rel eased.

If the function does not succeed, an exception is thrown.

14-124 CORBA Programming Reference

Request Member Functions

CORBA::Request::ctx(Context_ptr)

Synopsis
C++ Binding

Argument

Description
Return Values

See Also

Sets the Context object for the operation.

voi d CORBA: : Request::ctx (
CORBA: : Context _ptr Ct xoj ect) ;

G xoj ect
The new value to which to set the Context object.

This member function sets the Context object for the operation.
None.

CORBA: : Request : :ctx()

CORBA Programming Reference 14-125

14 coRBA API

CORBA::Request::get_response

Synopsis
C++ Binding
Arguments

Description

Return Values

See Also

Retrieves the response of a specific deferred synchronous request.
voi d CORBA: : Request :: get_response ();
None.

This member function retrieves the response of a specific request; it is used after a call
tothe CORBA: : Request :: send_def erred function or the

CORBA: : Request : : send_mul ti pl e_r equests function. If the request has not
completed, the CORBA: : Request : : get _r esponse function blocks until it does
complete.

None.

CORBA: : Request : : send_deferred

14-126 CORBA Programming Reference

Request Member Functions

CORBA::Request::invoke
Synopsis Performs an invoke on the operation specified in the request.
C++Binding voi d CORBA: : Request : :invoke ();
Arguments None.

Description This member function calls the Object Request Broker (ORB) to send the request to
the appropriate server application.

Return Values None.

CORBA Programming Reference 14-127

14 coRBA API

CORBA::Request::operation

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the operation intended for the request.

const char * CORBA: : Request::operation () const;

None.

This member function retrieves the operation intended for the request.

If the function succeeds, the value returned is a pointer to the operation intended for
the object; the value can be 0 (zero). The memory returned is owned by the Request
object and should not be freed.

If the function does not succeed, an exception isthrown.

14-128 CORBA Programming Reference

Request Member Functions

CORBA::Request::poll_response
Synopsis Determines whether a deferred synchronous request has compl eted.
C++Binding CORBA: : Bool ean CORBA: : Request : : pol | _response ();
Arguments None.

Description This member function determines whether the request has completed and returns
immediately. Y ou can use this call to check the state of the request. This member
function can also be used to determine whether a call to
CORBA: : Request : : get _response will block.

Return Values If thefunction succeeds, thevaluereturnedis CORBA TRUE if the response hasalready
completed, and CORBA_FALSE if the response has not yet completed.

If the function does not succeed, an exception is thrown.

See Also CORBA: : ORB: : get _next _response
CORBA: : ORB: : pol | _next _response
CORBA: : ORB: : send_mul ti pl e_requests
CORBA: : Request : : get _response
CORBA: : Request : : send_deferred

CORBA Programming Reference 14-129

14 coRBA API

CORBA::Request::result

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the result of the request.

CORBA: : NanmedVal ue_ptr CORBA: : Request::result ();
None.

This member function retrieves the result of the request.

If the function succeeds, the value returned is a pointer to the result of the operation.
Thereturned result is owned by the Request object and should not be rel eased.

If the function does not succeed, an exception is thrown.

14-130 CORBA Programming Reference

Request Member Functions

CORBA::Request::env

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the environment of the request.

CORBA: : Environnment _ptr CORBA: : Request::env ();
None.

This member function retrieves the environment of the request.

If the function succeeds, the value returned is a pointer to the environment of the
operation. Thereturned environment isowned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.

CORBA Programming Reference 14-131

14 coRBA API

CORBA::Request::ctx

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the context of the request.

CORBA: : context _ptr CORBA:: Request::ctx ();
None.

This member function retrieves the context of the request.

If the function succeeds, the value returned is a pointer to the context of the operation.
Thereturned context is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

14-132 CORBA Programming Reference

Request Member Functions

CORBA::Request::contexts
Synopsis Retrieves the context lists for the request.
C++Binding CORBA: : Cont ext Li st _ptr CORBA : Request::contexts ();
Arguments None.
Description This member function retrieves the context lists for the request.

Return Values If the function succeeds, the value returned is a pointer to the context lists for the
operation. The returned context list is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.

CORBA Programming Reference 14-133

14 coRBA API

CORBA::Request::exceptions

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the exception lists for the request.

CORBA: : ExceptionLi st_ptr CORBA:: Request: : exceptions ();
None.

This member function retrieves the exception lists for the request.

If the function succeeds, the value returned is a pointer to the exception list for the
reguest. The returned exception list is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.

14-134 CORBA Programming Reference

Request Member Functions

CORBA::Request::target

Synopsis Retrieves the target object reference for the request.
C++Binding CORBA: : Obj ect _ptr CORBA: : Request::target () const;
Arguments None.
Description This member function retrieves the target object reference for the request.

Return Values I the function succeeds, the value returned is a pointer to the target object of the
operation. The returned value is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.

CORBA Programming Reference 14-135

14 coRBA API

CORBA::Request::send_deferred

Synopsis Initiates a deferred synchronous request.

C++Binding voi d CORBA: : Request :: send_deferred ();

Arguments None.

Description This member function initiates a deferred synchronous request. Y ou use this function
when aresponse is expected and in conjunction with the
CORBA: : Request : : get _response function.

Return Values None.

See Also CORBA: : ORB: : get _next_response
CORBA: : ORB: : pol | _next _response
CORBA: : ORB: : send_nul tipl e_requests
CORBA: : Request : : get _response
CORBA: : Request : : pol | _response
CORBA: : Request : : send_oneway

14-136 CORBA Programming Reference

Request Member Functions

CORBA::Request::send_oneway

Synopsis

C++ Binding
Arguments
Description
Return Values

See Also

Initiates a one-way request.

voi d CORBA: : Request::send_oneway ();

None.

This member function initiates a one-way request; it does not expect a response.

None.

CORBA: : ORB: : send_mul ti pl e_requests

CORBA: : Request : : send_deferred

CORBA Programming Reference 14-137

14 coRBA API

Strings

The mapping of these functionsto C++ isasfollows:
/] C++

nanespace CORBA {
static char * string_alloc(ULong |len);
static char * string_dup (const char *);
static void string free(char *);

Note: A staticarray of char in C++decaystoachar *. Therefore, care must be taken
when assigning a static array to aSt ri ng_var , becausethe St ri ng_var
assumes that the pointer pointsto dataallocated viast ri ng_al | oc, and thus
eventually attemptsto freeit usingstring_free.

Thisbehavior has changed in ANSI/ISO C++, where string literalsare const
char *, not char *. However, since most C++ compilers do not yet implement
this change, portable programs must heed the advice given here.

The following sections describe the functions that manage memory allocated to
strings.

14-138 CORBA Programming Reference

Strings

CORBA::string_alloc

Synopsis
C++ Binding

Argument

Description

Return Values

Example

See Also

Allocates memory for a string.
char * CORBA::string_alloc(ULong | en);

len
The length of the string for which to allocate memory.

This member function dynamically alocates memory for a string, or returns a nil
pointer if it cannot perform the allocation. It alocates | en+1 characters so that the
resulting string has enough space to hold atrailing NULL character. Freethe memory
allocated by this member function by calling the CORBA: : stri ng_free member
function.

This function does not throw CORBA exceptions.

If the function succeeds, the return value is a pointer to the newly allocated memory
for the string object; if the function fails, the return value is a nil pointer.

char* s = CORBA::string_alloc(10);

CORBA: : string free
CORBA: : string_dup

CORBA Programming Reference 14-139

14 coRBA API

CORBA::string_dup

Synopsis
C++ Binding

Argument

Description

Return Values

Example

See Also

Makes a copy of astring.
char * CORBA: :string dup (const char * Str);

Str
The address of the string to be copied.

This function dynamically allocates enough memory to hold a copy of its string
argument, includingthe NULL character, copiesthe string argument into that memory,
and returns a pointer to the new string.

This function does not throw CORBA exceptions.

If the function succeeds, the return value is a pointer to the new string; if the function
fails, thereturn value is a nil pointer.

char* s = CORBA: :string_dup("hello world");

CORBA: :string _free
CORBA: :string_all oc

14-140 CORBA Programming Reference

Strings

CORBA::string_free

Synopsis
C++ Binding

Argument

Description

Return Values

Example

See Also

Frees memory alocated to a string.
void CORBA::string free(char * Str);

Str
The address of the memory to be deallocated.

This member function deallocates memory that was previously allocated to a string
usingthe CORBA: : string_alloc() or CORBA: :string_dup() member
functions. Passing a nil pointer to thisfunction is acceptable and resultsin no action
being performed.

This function may not throw CORBA exceptions.
None.

char* s = CORBA::string_dup("hello world");
CORBA: : string free(s);

CORBA: : string_all oc
CORBA: : string_dup

CORBA Programming Reference 14-141

14 coRrBA API

Wide Strings

Both bounded and unbounded wide string types are mapped to CORBA: : WChar * in
C++. In addition, the CORBA module definesWst ri ng_var and Wst ri ng_out
classes. Each of these classes provides the same member functions with the same
semantics astheir string counterparts, except of coursethey deal with wide strings and
wide characters.

Dynamic allocation and deallocation of wide strings must be performed viathe
following functions:

/] C++

nanespace CORBA {
I
WChar *wstring_alloc(ULong |en);
WChar *wstring _dup(const WChar* ws);
void wstring_free(Whar*);

}s

These member functions have the same semantics as the same functions for the string
type, except they operate on wide strings.

A compliant mapping implementation provides overloaded oper at or << (insertion)
and oper at or >> (extraction) operatorsfor using Wt ri ng_var and Wst ri ng_out
directly with C++ iostreams.

For descriptions of these member functions, see the corresponding function for
“Strings’ on page 14-138.

Listing 14-1 shows a code exampl e that uses wide strings and wide characters.

Listing 14-1 Wide Strings Example

/1 Get a string fromthe user:

cout << "String?";

char m xed[256]; // this should be big enough!
char | ower[256];

char upper|[256];

wchar _t wm xed[256] ;

cin >> m xed;
/1 Convert the string to a wide char string,

14-142 CORBA Programming Reference

Wide Strings

/1 because this is what the server will expect.
nmbst owcs(wnm xed, m xed, 256);

/1 Convert the string to upper case:

CORBA: : Wat ri ng_var v_upper = CORBA::wstring_dup(wm xed);
v_si npl e->to_upper(v_upper.inout());

west onbs(upper, v_upper.in(), 256);

cout << upper << endl;

/1 Convert the string to | ower case:

CORBA: : Wstring_var v_|lower = v_sinple->to_| ower(wm xed);
westonbs(l ower, v_lower.in(), 256);

cout << |lower << endl;

/1 Everything succeeded:
return O;

CORBA Programming Reference 14-143

14 coRBA API

TypeCode Member Functions

A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo-object reference (TypeCode_pt r) of the form

tc<t ype>that may be used to set typesin Any, as arguments for equal , and so on.
In the names of these TypeCode reference constants, <t ype> refersto the local name
of thetype within its defining scope. Each C++ _t c¢_<t ype> constant isdefined at the
same scoping level asits matching type.

Like all other serverless objects, the C++ mapping for TypeCode providesa _ni | ()
operation that returnsanil object referencefor aTypeCode. This operation can be used
toinitialize TypeCode references embedded within constructed types. However, anil
TypeCode reference may never be passed as an argument to an operation, since
TypeCodes are effectively passed as values, not as object references.

The mapping of these member functions to C++ isasfollows:

class CORBA
{
cl ass TypeCode
{
publ i c:
class Bounds { ... };
class Badkind { ... };

Bool ean equal (TypeCode_ptr) const;
TCKi nd kind() const;
Long param count() const;
Any *paranet er (Long) const;
Repositoryld id () const;
}; /1 TypeCode
}; /1 CORBA

14-144 CORBA Programming Reference

TypeCode Member Functions

Memory Management

TypeCode has the following specia memory management rule:

e Ownership of the return values of thei d function is maintained by the
TypeCode; these return values must not be freed by the caller.

The following sections describe these member functions.

CORBA Programming Reference 14-145

14 coRBA API

CORBA::TypeCode::equal

Synopsis Determines whether two TypeCode objects are equal.

C++Binding CORBA: : Bool ean CCRBA: : TypeCode: : equal (
CORBA: : TypeCode_ptr TypeCodeOhj) const;

Argument TypeCodeQbj
A pointer to a TypeCode object with which to make the comparison.

Description This member function determines whether a TypeCode object is equal to the input
parameter, TypeCodeCbj .

Return Values If the TypeCode object is equal to the TypeCodebj parameter, CORBA TRUE iS
returned.

If the TypeCode object is not equal to the TypeCodeCbj parameter, CORBA FALSE is
returned.

If the function does not succeed, an exception is thrown.

14-146 CORBA Programming Reference

TypeCode Member Functions

CORBA::TypeCode::id

Synopsis
C++ Binding
Arguments
Description

Return Values

Returnsthe ID for the TypeCode.

CORBA: : Repositoryld CORBA:: TypeCode::id () const;
None.

This member function returnsthe ID for the TypeCode.

Repository ID for the TypeCode.

CORBA Programming Reference 14-147

14 coRBA API

CORBA::TypeCode::kind

Synopsis Retrieves the kind of data contained in the TypeCode object reference.

C++Binding CORBA: : TCKi nd CORBA: : TypeCode: : kind () const;

Arguments None.

Description This member function retrieves the ki nd attribute of the CORBA: : TypeCode class,
which specifies the kind of data contained in the TypeCode object reference.

Return Values 1f the member function succeeds, it returnsthe kind of data contained in the TypeCode
object reference. For alist of the TypeCodekinds and their parameters, see Table 14-2.

If the member function does not succeed, an exception is thrown.

Table 14-2 Legal Typecode Kindsand Parameters

TypeCode Kind

ParametersList

CORBA: : tk_nul | *NONE*
CORBA: : tk_void *NONE*
CORBA: : t k_short *NONE*
CORBA: : tk_I ong *NONE*
CORBA: : tk_I ong *NONE*
CORBA: : t k_ushort *NONE*
CORBA: : t k_ul ong *NONE*
CORBA: : t k_fl oat *NONE*
CORBA: : t k_doubl e *NONE*
CORBA: : t k_bool ean *NONE*
CORBA: : t k_char *NONE*
CORBA: : t k_wchar *NONE*
CORBA: : t k_oct et *NONE*
CORBA: : t k_Typecode *NONE*

14-148 CORBA Programming Reference

TypeCode Member Functions

Table 14-2 Legal Typecode Kinds and Parameter s (Continued)

TypeCodeKind

ParametersList

CORBA: : t k_Pri nci pal *NONE*

CORBA: : t k_obj r ef {interface_id}

CORBA: : t k_struct { struct-name, member-name, TypeCode, ... (repeat pairs)}

CORBA: : t k_uni on {union-name, switch-TypeCode, |abel-value,
member-name, enum-id, ...}

CORBA: : t k_enum {enum-name, enum-id, ...}

CORBA: : tk_string {maxlen-integer}

CORBA: : tk_wstring {maxlen-integer}

CORBA: : t k_sequence {TypeCode, maxlen-integer}

CORBA: : tk_array {TypeCode, length-integer}

CORBA Programming Reference 14-149

14 coRBA API

CORBA::TypeCode::param_count

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves the number of parameters for the TypeCode object reference.
CORBA: : Long CORBA: : TypeCode: : param count () const;
None.

This member function retrieves the parameter attribute of the CORBA: : TypeCode
class, which specifies the number of parameters for the TypeCode object reference.
For alist of parameters of each kind, see Table 14-2.

If the function succeeds, it returns the number of parameters contained in the
TypeCode object reference.

If the function does not succeed, an exception is thrown.

14-150 CORBA Programming Reference

TypeCode Member Functions

CORBA::TypeCode::parameter

Synopsis
C++ Binding

Argument

Description

Return Values

Retrieves a parameter specified by the index input argument.

CORBA: : Any * CORBA: : TypeCode: : paraneter (
CORBA: : Long I ndex) const;

I ndex
An index to the parameter list, used to determine which parameter to retrieve.

This member function retrievesa parameter specified by theindex input argument. For
alist of parameters of each kind, see Table 14-2.

If the member function succeeds, the return value is a pointer to the parameter
specified by the index input argument.

If the member function does not succeed, an exception is thrown.

CORBA Programming Reference 14-151

14 coRBA API

Exception Member Functions

The BEA Tuxedo software supports the throwing and catching of exceptions.

Caution: Use of the wrong exception constructor causes noninitialization of a data

member. Exceptions that are defined to have ar eason field need to be
created using the constructor that initializes that data member. If the
default constructor is used instead, that data member isnot initialized and,
during destruction of the exception, the system may attempt to destroy
nonexistent data.

When creating exceptions, be sureto use the constructor function that most
fully initializes the data fields. These exceptions can be most easily
identified by looking at the OMG IDL definition; they have additional data
member definitions.

Descriptions of exception member functions follow:

CORBA: :

CORBA: :

CORBA: :

Syst enExcept i on: : Syst emException ()

Thisisthe default constructor for the CORBA: : Syst enExcept i on class.
Minor codeisinitialized to O (zero) and the completion statusis set to
COVPLETED_NO.

Syst enException: : Syst emException (
const CORBA: : Syst enExcepti on & Se)
Thisisthe copy constructor for the CORBA: : Syst enExcept i on class.

Syst enException: : Syst emExcept i on(

CORBA: : ULong M nor, CORBA:: Conpl eti onSt atus St at us)
This constructor for the CORBA: : Syst enExcept i on class setsthe minor
code and compl etion status.

Explanations of the arguments are as follows:

M nor
The minor code for the Exception object. The minor field is an
implementation-specific value used by the ORB to identify the
exception. The BEA Tuxedo minor field definitions can befoundin
thefile or bmi nor . h.

14-152 CORBA Programming Reference

Exception Member Functions

CORBA: :

CORBA:

CORBA: :

CORBA: :

CORBA:

CORBA: :

CORBA: :

St atus
The completion status for the Exception object. The values are as
follows:
CORBA: : COVPLETED_YES
CORBA: : COVPLETED_NO
CORBA: : COVPLETED_NAYBE

Syst enExcepti on:: ~Syst enException ()
Thisisthe destructor for the CORBA: : Syst enExcept i on class. It freesany
memory used for the Exception object.

. Syst enExcepti on CORBA: : Syst enException: : operator =

const CORBA:: SystenkException Se)
This assignment operator copies exception information from the source
exception. The Se argument specifies the SystemException object that isto
be copied by this operator.

Conpl eti onSt at us CORBA: : Syst emExcepti on: : conpl et ed()
This member function returns the completion status for this exception.

Syst enExcepti on: : conpl et ed(

CORBA: : Conpl eti onSt at us Conpl et ed)
This member function sets the completion status for this exception. The
Conpl et ed argument specifies the completion status for this exception.

: ULong CORBA: : Syst enException: : m nor ()

This member function returns the minor code for this exception.

Syst enException:: mnor (CORBA::ULong M nor)

This member function sets the minor code for this exception. The ni nor
argument specifies the new minor code for this exception. The minor fieldis
an implementation-specific value used by the application to identify the
exception.

Syst enException * CORBA:: Syst enException:: _narrow (

CORBA: : Exception_ptr Exc)
This member function determines whether a specified exception can be
narrowed to a system exception. The Exc argument specifiesthe exception to
be narrowed.

If the specified exception is asystem exception, this member function returns
a pointer to the system exception. If the specified exception is not a system
exception, the function returns O (zero).

CORBA Programming Reference 14-153

14 coRBA API

CORBA: : User Excepti on * CORBA: : User Excepti on:: _narr ow(
CORBA: : Exception_ptr Exc)
This member function determines whether a specified exception can be
narrowed to auser exception. The Exc argument specifiesthe exception to be
narrowed.

If the specified exception is a user exception, this member function returns a
pointer to the user exception. If the specified exception is not a user
exception, the function returns O (zero).

Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as aresult of any operation invocation, regardless of the
interface specification. Standard exceptions are not listed in r ai ses expressions.

To bound the complexity in handling the standard exceptions, the set of standard
exceptions is kept to atractable size. This constraint forces the definition of
equivalence classes of exceptions, rather than enumerating many similar exceptions.

For example, an operation invocation can fail at many different points due to the
inability to allocate dynamic memory. Rather than enumerate several different
exceptions that correspond to the different ways that memory allocation fail ure causes
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets, and so forth), a single exception
corresponding to dynamic memory allocation failure is defined. Each standard
exception includes a minor code to designate the subcategory of the exception; the
assignment of values to the minor codesis left to each ORB implementation.

Each standard exception also includes aconpl et i on_st at us code, which takes one
of the following values:

CORBA: : COVPLETED_YES
The obj ect implementation completed processing prior to the exception being
raised.

CORBA: : COWPLETED_NO
The object implementation was not initiated prior to the exception being
raised.

14-154 CORBA Programming Reference

Standard Exceptions

CORBA: : COVPLETED_NAYBE
The status of implementation completion is unknown.

Exception Definitions

The standard exceptions are defined bel ow. Clients must be prepared to handl e system
exceptions that are not on thislist, both because future versions of this specification
may define additional standard exceptions, and because ORB implementations may
raise nonstandard system exceptions. For more information about exceptions, see
System Messages.

Table 14-3 defines the exceptions.

Table 14-3 Exception Definitions

Exception Description

CORBA: : UNKNOAN The unknown exception.

CORBA: : BAD_PARAM Aninvalid parameter was passed.
CORBA: : NO_MEMORY Dynamic memory allocation failure.
CORBA: : | MP_LIMT Violated implementation limit.
CORBA: : COW _FAI LURE Communication failure.

CORBA: : | NV_OBJREF Invalid object reference.

CORBA: : NO_PERM SSI ON No permission for attempted operation.
CORBA: : | NTERNAL ORB internal error.

CORBA: : MARSHAL Error marshalling parameter/resullt.
CORBA: : | NI TI ALI ZE ORB initidization failure.

CORBA: : NO_| MPLEMENT Operation implementation unavailable.
CORBA: : BAD_TYPECCDE Bad typecode.

CORBA: : BAD_OPERATI ON Invalid operation.

CORBA: : NO_RESOURCES Insufficient resources for request.

CORBA Programming Reference 14-155

14 coRBA API

Table 14-3 Exception Definitions (Continued)

Exception Description

CORBA: : NO_RESPONSE Response to request not yet available.
CORBA: : PERS| ST_STCRE Persistent storage failure.

CORBA: : BAD_| NV_CORDER Routine invocations out of order.
CORBA: : TRANSI ENT Transient failure; reissue request.
CORBA: : FREE_MEM Cannot free memory.

CORBA: : | NV_| DENT Invalid identifier syntax.

CORBA: : | NV_FLAG Invalid flag was specified.

CORBA: : | NTF_REPCS Error accessing interface repository.
CORBA: : BAD_CONTEXT Error processing context object.
CORBA: : OBJ_ADAPTER Failure detected by object adapter.
CORBA: : DATA_ CONVERSI ON Data conversion error.

CORBA: :

OBJECT_NOT_EXI ST

Nonexistent object; delete reference.

CORBA:

: TRANSACTI ON_REQUI RED

Transaction required.

CORBA: :

TRANSACTI ON_RCOLLEDBACK

Transaction rolled back.

CORBA:

;2 I NVALI D_TRANSACTI ON

Invalid transaction.

Object Nonexistence

The CORBA: : OBJECT_NOT_EXI ST exception is raised whenever an invocation on a
deleted object isperformed. It isan authoritative “ hard” fault report. Anyonereceiving
itisallowed (even expected) to delete all copies of thisobject reference and to perform
other appropriate “final recovery” style procedures.

14-156 CORBA Programming Reference

Standard Exceptions

Transaction Exceptions

The CORBA: : TRANSACTI ON_REQUI RED exception indicates that the request carried a
NULL transaction context, but an active transaction is required.

The CORBA: : TRANSACTI ON_ROLLEDBACK exception indicates that the transaction
associ ated with the request has aready been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed because
further computation on behalf of the transaction would be fruitless.

The CORBA: : | NVALI D_TRANSACTI ON indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurred
when trying to register aresource.

CORBA Programming Reference 14-157

14 coRBA API

ExceptionList Member Functions

TheExcepti onLi st member functionsallow aclient or server application to provide
alist of TypeCodes for al user-defined exceptions that may result when the Request
isinvoked. For a description of the Request member functions, seethe section
“Request Member Functions’ on page 14-123.

The mapping of these member functions to C++ isasfollows:

cl ass CORBA
{

cl ass ExceptionLi st

publ i c:
U ong count ();
voi d add(TypeCode_ptr tc);
voi d add_consune(TypeCode_ptr tc);
TypeCode_ptr item(U ong i ndex);
Status renove(U ong index);
}; /1 ExceptionList
}// CORBA

14-158 CORBA Programming Reference

ExceptionList Member Functions

CORBA::ExceptionList::count

Synopsis
C++ Binding
Arguments
Exception
Description

Return Values

Retrieves the current number of itemsin the list.

U ong count ();

None.

If the function does not succeed, an exception is thrown.

This member function retrieves the current number of itemsin the list.

If the function succeeds, the returned value isthe number of itemsin thelist. If the list
has just been created, and no ExceptionList objects have been added, this function
returns O (zero).

CORBA Programming Reference 14-159

14 coRBA API

CORBA::ExceptionList::add

Synopsis

C++ Binding

Arguments

Exception

Description

Return Values

See Also

Constructs a ExceptionList object with an unnamed item, setting only the f 1 ags
attribute.

voi d add(TypeCode_ptr tc);

tc
Defines the memory location referred to by TypeCode_pt r.

If the member function does not succeed, a CORBA: : NO_MEMORY exception is thrown.

This member function constructs an ExceptionList object with an unnamed item,
setting only the flags attribute.

The ExceptionList object grows dynamically; your application does not need to track
itssize.

If the function succeeds, the return value is a pointer to the newly created
ExceptionList object.

CORBA: : ExceptionLi st::add_consune
CORBA: : Excepti onLi st: : count

CORBA: : ExceptionList::item

CORBA: : ExceptionLi st:: renpve

14-160 CORBA Programming Reference

ExceptionList Member Functions

CORBA::ExceptionList::add_consume

Synopsis
C++ Binding

Arguments

Exceptions

Description

Return Values

See Also

Constructs an ExceptionList object.

voi d add_consune(TypeCode_ptr tc);

tc

The memory location to be assumed.

If the member function does not succeed, an exception is raised.

This member function constructs an ExceptionList object.

The ExceptionList object grows dynamically; your application does not need to track

its size.

If the function succeeds, the return value is a pointer to the newly created
ExceptionList object.

CORBA: :
CORBA:
CORBA: :
CORBA: :

Excepti onLi st ::
. ExceptionList::
ExceptionLi st ::
ExceptionLi st ::

add
count
item
renove

CORBA Programming Reference 14-161

14 coRBA API

CORBA::ExceptionList::item

Synopsis
C++ Binding

Argument

Exceptions

Description

Return Values

See Also

Retrieves a pointer to the ExceptionList object, based on the index passed in.
TypeCode_ptr iten{ULong i ndex);

i ndex
Theindex into the ExceptionList object. The indexing is zero-based.

If the function does not succeed, the BAD_PARAMexception is thrown.

This member function retrieves a pointer to an ExceptionL ist object, based on the
index passed in. The function uses zero-based indexing.

If the function succeeds, the return value is a pointer to the ExceptionList object.

CORBA: : Excepti onLi st: : add

CORBA: : ExceptionLi st::add_consune
CORBA: : Excepti onLi st: : count

CORBA: : ExceptionLi st:: renpve

14-162 CORBA Programming Reference

ExceptionList Member Functions

CORBA::ExceptionList::remove

Synopsis

C++ Binding

Argument

Exceptions

Description

Return Values

See Also

Removes theitem at the specified index, frees any associated memory, and reorders
the remaining items on the list.

Status renove(ULong i ndex);

I ndex
The index into the ContextL ist object. The indexing is zero-based.

If the function does not succeed, the BAD_PARAMexception is thrown.

This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

None.
CORBA: : Excepti onLi st:: add
CORBA: : Excepti onLi st::add_consune

CORBA: : Excepti onLi st :: count
CORBA: : ExceptionList::item

CORBA Programming Reference 14-163

14 coRBA API

14-164 CORBA Programming Reference

CHAPTER

15 Server-side Mapping

Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross-address space or machine boundaries. This
mapping addresses any implementation of an Object Management Group (OMG)
Interface Definition Language (IDL) interface.

Note: Theinformation in this chapter is based on the Common Object Request
Broker: Architecture and Specification, Revision 2.4.2, February 2001,
published by the Object Management Group (OMG). Used with permission of
the OMG.

Implementing Interfaces

To defineanimplementation in C++, you definea C++ classwith any valid C++ name.
For each operation in the interface, the class defines a nonstatic member function with
the mapped name of the operation (the mapped name is the same as the OMG IDL
identifier).

The server application mapping specifies two alternative rel ationships between the
implementation class supplied by the application and the generated classor classesfor
the interface. Specifically, the mapping requires support for both inheritance-based
rel ationships and delegation-based relationships. Conforming applications may use
either or both of these alternatives. BEA Tuxedo CORBA supports both
inheritance-based and del egation-based rel ationships.

CORBA Programming Reference 15-1

15 server-side Mapping

Inheritance-based Interface
Implementation

15-2

In the inheritance-based interface implementati on approach, the implementation
classes are derived from a generated base class based on the OMG IDL interface
definition. The generated base classes are known as skeleton classes, and the derived
classes are known as implementation classes. Each operation of the interface has a
corresponding virtual member function declared in the skeleton class. The generated
skeleton classis partially opague to the programmer, though it will contain a member
function corresponding to each operation intheinterface. The signature of the member
function isidentical to that of the generated client stub class.

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. To
allow portable implementations to multiple inheritances from both skeleton classes
and implementation classes for other base interfaces without error or ambiguity, the
Tobj _Ser vant Base class must be avirtual base class of the skeleton, and the

Por t abl eSer ver : : Ser vant Base class must be avirtua base class of the

Tobj _Ser vant Base class. The inheritance among the implementation class, the
skeleton class, the Tobj _Ser vant Base class, and the

Por t abl eSer ver : : Ser vant Base class must all be public virtual.

Theimplementation class or servant must only derive directly from asingle generated
skeleton class. Direct derivation from multiple skeleton classes could result in
ambiguous errors due to multiple definitions of the _t hi s() operation. This should
not be a limitation, however, since CORBA objects have only a single most-derived
interface. C++ servantsthat are intended to support multipleinterface types can utilize
the delegation-based interface implementation approach. See Listing 15-1 for an
example of OMG IDL that usesinterface inheritance.

CORBA Programming Reference

Inheritance-based Interface Implementation

Listing15-1 OMG IDL That UsesInterfacelnheritance

/] 1DL
interface A

{
short opl() ;

void op2(in long val) ;

}

Listing 15-2 Interface ClassA

/1 C++
class A : public virtual CORBA : Object
{
public:
virtual CORBA:: Short opl ();
virtual void op2 (CORBA::Long val);
b

On the server side, a skeleton class is generated. This classis partially opaque to the
programmer, though it does contain a member function corresponding to each
operation in the interface.

For the Portable Object Adapter (POA), the name of the skeleton classis formed by
prepending the string “PQA_" to the fully scoped name of the corresponding interface,
and the classis directly derived from the servant base class Tobj _Ser vant Base. The
C++ mapping for Tobj _Ser vant Base isasfollows:

/1 C++
cl ass Tobj _Servant Base
{
public:
virtual void activate_object(const char* stroid);
virtual void deactivate_object (
const char* stroid,
Tobj S: : Deact i vat eReasonVal ue reason
)
}

CORBA Programming Reference 15-3

15 server-side Mapping

154

Theacti vat e_obj ect () and deacti vat e_obj ect () member functions are
described in detail in the sections “Tobj_ServantBase:: activate _object()” on
page 3-40 and “Tobj_ServantBase::_add_ref()” on page 3-43.

The skeleton classfor interface A shown abovewould appear asshown in Listing 15-3.

Listing 15-3 Skeleton Classfor Interface A

/] C++
class POA A : public Tobj_ServantBase
{
publ i c:
/1 ... server-side ORB-inplenentation-specific
/1 goes here...
virtual CORBA:: Short opl () = 0;
virtual void op2 (CORBA::Long val) = 0;
/...
b

If interface A were defined within amodule rather than at global scope (for example,
Mod: : A), the name of its skeleton classwould be POA_Mod: : A. Thishelpsto separate
server application skeleton declarations and definitions from C++ code generated for
the client.

Toimplement thisinterface using inheritance, you must derive from this skeleton class
and implement each of the operationsin the corresponding OMG IDL interface. An
implementation class declaration for interface A would take the form shown in
Listing 15-4.

CORBA Programming Reference

Delegation-based Interface Implementation

Listing 15-4 Interface A Implementation Class Declaration

/1 C++
class A inpl : public POA A
{

public:

CORBA: : Short opl();
voi d op2(CORBA: : Long val);

Delegation-based Interface Implementation

The del egation-based interface implementation approach is an alternative to using
inheritance when implementing CORBA objects. This approach is used when the
overhead of inheritanceistoo high or cannot be used. For example, dueto theinvasive
nature of inheritance, implementing objects using existing legacy code might be
impossible if inheritance for some global class were required. Instead, delegation can
be used to solve these types of problems. Delegation is amore natural fit doing object
implementations when the Process-Entity design pattern is used. In this pattern, the
Process object would del egate operations onto one or more entity objects.

In the del egati on-based approach, the implementation does not inherit from a skeleton
class. Instead, the implementation can be coded as required for the application, and a
wrapper object will delegate upcallsto that implementation. This “wrapper object,”
called atie, isgenerated by the IDL compiler, along with the same skeleton class used
for the inheritance approach. The generated tieclass is partially opague to the
programmer, though, like the skeleton, it provides a method corresponding to each
OMG IDL operation for the associated interface. The name of the generated tie class
is the same as the generated skeleton class with the addition that the string _ti e is
appended to the end of the class name.

Aninstance of thet i e classis the servant, not the C++ object being delegated to by
the tie object, that is passed as the argument to the operations that require a Ser vant
argument. It should also be noted that the tied object has no accessto the _t hi s()
operation, nor should it access data members directly.

CORBA Programming Reference 15-5

15 server-side Mapping

A type-safetie classisimplemented using C++ templates. The code shown in
Listing 15-5illustrates atie class generated from the Derived interface in the previous
OMG IDL example.

Listing 15-5 Tie Class Generated from the Derived Interface

/] C++
tenplate <class T>
class POA Atie : public POA A {
public:
POA Atie(T& t)
_ptr(&), _poa(PortableServer::POA:: nil()), _rel(0) {}
POA Atie(T& t, PortableServer::POA ptr poa)
_ptr(&), _poa(PortableServer::POA: : duplicate(poa)), _rel(0) {}
POA A tie(T* tp, CORBA::Boolean release = 1)
_ptr(tp), _poa(PortableServer::POA:: nil()), _rel(release) {}
POA A tie(T* tp, Portabl eServer::PQA ptr poa, CORBA::Bool ean rel ease = 1)
_ptr(tp), _poa(PortableServer::POA: : duplicate(poa)), _rel(release) {}
~PQA A tie()
{ CORBA::rel ease(_poa);
if (_rel) delete _ptr;

// tie-specific functions

T* _tied_object () {return _ptr;}
void _tied object(T& obj)

{ if (_rel) delete _ptr;

_ptr = &obj;

rel = 0;

}

void _tied object(T* obj, CORBA::Boolean release = 1)
{ if (_rel) delete _ptr;

_ptr = obj;

_rel = rel ease;

}

CORBA: : Boolean _is_owner() { return _rel; }
void _is_owner (CORBA::Boolean b) { _rel =b; }

// IDL OperatiOns*************************************
CORBA: : Short opl ()
{

return _ptr->opl ();

}

15-6 CORBA Programming Reference

Delegation-based Interface Implementation

voi d op2 (CORBA::Long val)
{

}

// LR R R IR R kR O R R R R R Rk ki

_ptr->op2 (val);

/1 override ServantBase operations
Portabl eServer:: POA ptr _defaul t POA()

if (!CORBA :is_nil(_poa))

{
return _poa;
}
el se {
#i f def W N32
return ServantBase:: _default _PQA();
#el se
return Portabl eServer:: Servant Base:: default POA();
#endi f
}
}
private:
™ _ptr;

Por t abl eServer:: POA ptr _poa;
CORBA: : Bool ean _rel;

/1 copy and assignnent not all owed
POA A tie (const POA A tie<T> &);
voi d operator=(const POA A tie<T> &);

Thisclass definition is atemplate generated by the IDL compiler. Y ou typically useit
by first getting apointer to the legacy class and then instantiating the tie classwith that
pointer. For example:

A d::Legacy * |legacy = new A d:: Legacy(oid);
POA A tie<d d::Legacy> * A servant_ptr =
new POA A tie<d d::Legacy>(|egacy);

Asyou can see, thetie class contains definitions for the op1 and op2 operations of the
interface that assume that the legacy class has operations with the same signatures as
those given inthe IDL. If thisisthe case, you can usethetie classfile asis, letting it
delegate exactly. It ismorelikely, however, that thelegacy classwill not haveidentical

CORBA Programming Reference 15-7

15 server-side Mapping

15-8

signatures or you may have to do more than asingle function call. In that case, it is
your job to replace the code for opl and op2 in this generated code. The code for each
operation typically makes invocations on the legacy class using the tie class variable
_pt r, which contains the pointer to the legacy class. For example, you might change
the following lines:

CORBA: : Short opl () {return _ptr->opl (); }
void op2 (CORBA::Long val) {_ptr->o0p2 (val); }

to the following:

CORBA: : Short opl ()

{
return _ptr->0p37 ();
}
voi d op2 (CORBA: :Long val)
{
CORBA: : Long tenp;
tenmp = val + 15;
_ptr->l ookup(val, tenp, 43);
}

An instance of thistemplate class performs the task of delegation. When the template
isinstantiated with a class type that provides the operation of the Der i ved interface,
then the POA_Der i ved_ti e classwill delegate all operations to an instance of that
implementation class. A reference or pointer to the actual implementation object is
passed to the appropriate tie constructor when an instance of the POA Deri ved_ti e
classis created. When arequest isinvoked on it, the tie servant will just delegate the
reguest by calling the corresponding method on the implementation class.

The use of templates for tie classes alows the application developer to provide
specializations for some or al of the template’ s operations for a given instantiation of
the template. This allows the application to use legacy classes for tied object types,
where the operation signatures of the tied object will differ from that of thetie class.

CORBA Programming Reference

Implementing Operations

Implementing Operations

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client-side mapping, the OMG specifies that the
function header for the server-side mapping include the appropriate exception
specification. An example of thisis shown in Listing 15-6.

Listing 15-6 Exception Specification

/] 1DL
interface A

{

exception B {};
void f() raises(B);

};
/] C++
class MYA : public virtual POA A
{
public:
void f();
b

Since all operations and attributes may raise CORBA system exceptions,
CORBA: : Syst enExcept i on must appear in all exception specifications, evenwhen an
operation hasnor ai ses clause.

Note: Because of the differencesin C++ compilers, it isbest to leave out the "throw
declaration" in the method signature. Some systems cause the application
server to crash if an undeclared exception is thrown in a method that has
declared the exceptions it will throw.

Withinamember function, the“this’ pointer refersto theimplementation object’ sdata
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. An example of this
isshownin Listing 15-7.

CORBA Programming Reference 15-9

15 server-side Mapping

Listing 15-7 Calling Another Member Function

/1 1DL
interface A
{
void f();
void g();
b

/] C++
class MYA : public virtual PQA A
{
public:
void f();
void g();
private:
long x_;

When a servant member function isinvoked in this manner, it is being called simply
as a C++ member function, not as the implementation of an operation on a CORBA
object.

15-10 CORBA Programming Reference

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 OMG IDL Syntax and the C++ IDL Compiler
	OMG IDL Compiler Extensions
	Table 1�1 Predefined Macros

	C++ IDL Compiler Constraints
	Table 1�2 C++ IDL Compiler�

	2 Implementation Configuration File (ICF)
	ICF Syntax
	[#pragma activation_policy method|transaction|process] [#pragma transaction_policy never|ignore|o...

	Sample ICF File
	Listing 2-1 Sample ICF

	Creating the ICF File

	3 TP Framework
	A Simple Programming Model
	Control Flow
	Object State Management
	Transaction Integration
	Object Housekeeping
	High-level Services

	State Management
	Activation Policy
	Application-controlled Activation and Deactivation
	Explicit Activation
	Usage Notes
	Caution to Users

	Self Deactivation

	Servant Lifetime
	The Normal Case
	Special Cases

	Saving and Restoring Object State
	Note On Use of Constructors and Destructors for CORBA Objects

	Transactions
	Transaction Policies
	Transaction Initiation
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions on Transactions
	SQL and Global Transactions
	Voting on Transaction Outcome
	Transaction Timeouts

	Parallel Objects
	Listing 3-1 ICF Syntax
	[#pragma activation_policy method|transaction|process] [#pragma transaction_policy never|ignore|o...

	TP Framework API
	Server Interface
	C++ Declarations

	ServerBase Interface
	C++ Declarations (in Server.h)

	Server::create_servant()
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Value

	ServerBase::create_servant_with_id()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Server::initialize()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	ServerBase::thread_initialize()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Server::release()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	ServerBase::thread_release()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example
	Tobj_ServantBase Interface
	C++ Declaration (in Tobj_ServantBase.h)
	class Tobj_ServantBase : public PortableServer::RefCountServantBase { public:
	Tobj_ServantBase& operator=(const Tobj_ServantBase&); Tobj_ServantBase() {} Tobj_ServantBase(cons...
	virtual void activate_object(const char *) {}
	virtual void deactivate_object(const char*, TobjS::DeactivateReasonValue) {}
	virtual CORBA::Boolean _is_reentrant() { return CORBA_FALSE; } };
	typedef Tobj_ServantBase * Tobj_Servant;

	Tobj_ServantBase:: activate_object()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Value
	Exceptions

	Tobj_ServantBase::_add_ref()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Tobj_ServantBase::deactivate_object()
	Synopsis
	C++ Binding
	Arguments
	Description
	Restriction
	Return Value
	Exceptions

	Tobj_ServantBase::_is_reentrant()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Tobj_ServantBase::_remove_ref()
	Synopsis
	C++ Binding
	Parameters
	Description
	Return Value
	Example
	TP Interface
	Usage Notes

	TP::application_responsibility()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values

	TP::bootstrap()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Exceptions
	Description

	TP::close_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Exceptions

	TP::create_active_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions:
	Description
	Caution
	Problem Statement
	1. You write SERVER1 such that all objects on interface A are preactivated. To prevent the object...
	2. SERVER2 also implements objects of interface A. However, instead of preactivating the objects,...
	3. If the administrator configures SERVER1 and SERVER2 in the same group, then a client can get a...

	Workaround

	Return Value

	TP::create_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value
	Example

	TP::deactivateEnable()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::get_object_id ()
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Value

	TP::get_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::open_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values

	TP::orb()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::register_factory()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::unregister_factory()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::userlog()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value
	Example
	CosTransactions::TransactionalObject Interface Not Enforced
	Error Conditions, Exceptions, and Error Messages
	Exceptions Raised by the TP Framework
	Exceptions in the Server Application Code
	Example

	Exceptions and Transactions
	Restriction of Nested Calls on CORBA Objects

	4 CORBA Bootstrapping Programming Reference
	Why Bootstrapping Is Needed
	Supported Bootstrapping Mechanisms
	BEA Bootstrapping Mechanism
	How Bootstrap Objects Work
	Types of BEA Remote Clients Supported
	Table 4�1 BEA Remote Clients Supported�

	Capabilities and Limitations

	Bootstrap Object API
	Tobj Module
	Table 4�2 Returned Object References�
	Table 4�3 Tobj Module Exceptions�

	C++ Mapping
	Listing 4-1 Tobj_boostrap.h Declarations

	Java Mapping
	Listing 4-2 Tobj_Bootstrap.java Mapping

	Microsoft Desktop Client Mapping
	Automation Mapping
	Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

	C++ Member Functions

	Tobj_Bootstrap
	Synopsis
	C++ Mapping
	Parameters
	Table 4�4 Differences Between corbaloc and corbalocs URL Address Formats�

	Exception
	Description
	Return Values

	Tobj_Bootstrap::register_callback_port
	Synopsis
	C++ Mapping
	Parameter
	Exceptions
	Description
	Usage Notes
	Return Values

	Tobj_Bootstrap::resolve_initial_references
	Synopsis
	C++ Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj_Bootstrap::destroy_current()
	Synopsis
	C++ Mapping
	Exception
	Description
	Return Values
	Java Methods
	Automation Methods

	Initialize
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Return Values
	Exceptions
	Table 4�5 Initialize Exceptions

	CreateObject
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Return Value
	Exceptions
	Table 4�6 CreateObject Exceptions�

	DestroyCurrent
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Return Value
	Exceptions
	Bootstrap Object Programming Examples
	Java Client Example: Getting a SecurityCurrent Object
	Listing 4-4 Programming a Java Client to Get a SecurityCurrent Object
	import java.util.*; import org.omg.CORBA.*; import com.beasys.*; class client { public static voi...
	// Get security current org.omg.CORBA.Object ocur = bs.resolve_initial_references("SecurityCurren...

	Visual Basic Client Example: Using the Bootstrap Object
	Listing 4-5 Programming a Client in Visual Basic

	Interoperable Naming Service Bootstrapping Mechanism
	Introduction
	INS Object References
	Table 4�7 Returned Object References�

	INS Command-line Options
	INS Initialization Operations
	INS Object URL Schemes
	IOR URL Scheme
	corbaloc URL Scheme
	Table 4�8 BNF Format for URL Elements�
	Table 4�9 Descriptions of URL Elements
	corbaloc::555xyz.com:1024,555backup.com:1022,555last.com:1999 corbalocs::555xyz.com:1024,{555back...

	corbaname URL Scheme
	Table 4�10 BNF Syntax for URL
	1. Construct a corbaloc URL of the form corbaloc::<corbaloc_obj> from the corbaname URL.
	2. Convert the corbaloc URL to a naming context object reference by calling CORBA::ORB::string_to...
	3. Convert <string_name> to a CosNaming::Name.
	4. Invoke the resolve operation on the CosNaming::NamingContext, passing the CosNaming::Name cons...
	5. The object reference returned from CosNaming::NamingContext::resolve should be returned to the...

	Getting a FactoryFinder Object Reference Using INS
	Listing 4-6 Code Example for Getting the FactoryFinder Object

	Getting a PrincipalAuthenticator Object Reference Using INS
	Listing 4-7 Code Example for Getting the PrincipalAuthenticator Object

	Getting a TransactionFactory Object Reference Using INS
	Listing 4-8 Code Example for a Client Application That Uses INS
	1. Use ORB::resolve_initial_references to get a FactoryFinder.
	2. Use the FactoryFinder to get a TransactionFactory.
	3. Use the create operation on TransactionFactory to begin a transaction.
	4. From the Control object returned from the create operation, use the get_terminator method to g...
	5. Use the commit or rollback operation on the terminator to end or abort the transaction.

	Restrictions
	Table 4�11 Supported INS Interfaces and Operations�

	5 FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Figure 5�1 Registering a Factory Object
	C++ Mapping
	Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

	Locating a Factory
	Figure 5�2 Locating a Factory Object
	CORBAservices Naming Service Module OMG IDL
	Listing 5-2 CORBAservices Naming OMG IDL

	CORBAservices Life Cycle Service Module OMG IDL
	Listing 5-3 Life Cycle Service OMG IDL

	Tobj Module OMG IDL
	Listing 5-4 Tobj Module OMG IDL

	Locating Factories in Another Domain
	Figure 5�3 Inter-Domain FactoryFinder Interaction

	Why Use BEA Tuxedo CORBA Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Listing 5-5 Names Library Interfaces in Pseudo-IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	The LName Interface
	Destroying a Library Name Component Pseudo-Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL Form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

	C++ Mapping
	Listing 5-6 Library Name Class

	Java Mapping
	Listing 5-7 Java Mapping for LNameComponent

	C++ Member Functions and Java Methods
	CosLifeCycle::FactoryFinder::find_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exception
	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::FactoryFinder::find_factories_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::Factoryfinder::list_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Exception
	Description
	Return Values
	Automation Methods

	DITobj_FactoryFinder.find_one_factory
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_one_factory_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_factories_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exception
	Description
	Return Values

	DITobj_FactoryFinder.list_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Exception
	Description
	Return Values
	Programming Examples
	Using the FactoryFinder Object
	Registering a Reference to a Factory Object
	Listing 5-8 Server Application: Registering a Factory

	Obtaining a Reference to a FactoryFinder Object Using the CosLifeCycle::FactoryFinder Interface
	Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

	Obtaining a Reference to a FactoryFinder Object Using the Extensions Bootstrap object
	Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

	Using Extensions to the FactoryFinder Object
	Obtaining One Factory Using Tobj::FactoryFinder
	Listing 5-11 Client Application: Finding Factories Using the BEA Tuxedo Extensions Approach

	Obtaining One or More Factories Using Tobj::FactoryFinder
	Listing 5-12 Client Application: Finding One or More Factories Using the BEA Tuxedo Extensions Ap...

	6 Security Service
	7 Transactions Service
	8 Notification Service
	9 Request-Level Interceptors
	10 CORBA Interface Repository Interfaces
	Structure and Usage
	Programming Information
	Performance Implications
	1. The client application invokes the _get_interface operation on the CORBA::Object to get the In...
	2. The ORB returns the InterfaceDef object to the client.
	3. The client invokes one or more _is_a operations on the object to determine what type of interf...
	4. After the client has identified the interface, it invokes the describe_interface operation on ...
	5. The client is now ready to construct a DII request.

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	TypedefDef Interface
	StructDef
	UnionDef
	EnumDef
	AliasDef
	PrimitiveDef
	StringDef
	WstringDef
	ExceptionDef
	AttributeDef
	OperationDef
	InterfaceDef

	11 Joint Client/Servers
	Introduction
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	C++ Example of Inheritance from Skeletons
	Java Example of Inheritance from Skeletons

	Callback Object Models Supported
	Configuring Servers to Call Remote Joint Client/Server Objects
	Preparing Callback Objects Using CORBA (C++ Joint Client/Servers Only)
	1. Establish a connection with a POA with the appropriate policies for the callback object model....
	2. Create a servant (that is, an instance of the C++ implementation class for the interface).
	3. Inform the POA that the servant is ready to accept requests on the callback object. Technicall...
	4. Tell the POA to start accepting requests from the network (that is, activate the POA itself).
	5. Create an object reference for the callback object.
	6. Give out the object reference. This usually happens by making an invocation on another object ...
	Listing 11-1 Transient/SystemId Model
	Listing 11-2 Persistent/UserId Model

	Preparing Callback Objects Using BEAWrapper Callbacks
	Using BEAWrapper Callbacks With C++
	Listing 11-3 BEAWrapper IDL
	Listing 11-4 C++ Declarations (in beawrapper.h)

	Using BEAWrapper Callbacks With Java
	Listing 11-5 Java Callback Wrapper Interfaces
	package com.beasys.BEAWrapper; class Callbacks{ public Callbacks (); public Callbacks (org.omg.CO...

	Java Joint Client/Server Programming Considerations
	Threading Considerations in the Main Program
	How Multiple Threads Work
	Java Client ORB Initialization
	Listing 11-6 System Properties Settings
	Properties prop = new Properties(System.getProperties()); prop.put("org.omg.CORBA.ORBClass","com....

	IIOP Support
	Java Applet Support
	Port Numbers for Persistent Object References

	C++ BEAWrapper Callbacks Interface API
	Callbacks
	Synopsis
	C++ Binding
	Java Binding
	Argument
	Exception
	Description
	Return Value

	start_transient
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	Exceptions
	Description
	Return Value

	start_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	Exceptions
	Description
	Return Value

	restart_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	Exceptions
	Description
	Return Value

	start_persistent_userid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	Exceptions
	Description
	Return Value

	stop_object
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Argument
	Exceptions
	Description
	Return Value

	stop_all_objects
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Exceptions
	Description
	Usage Note
	Return Value

	get_string_oid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Exceptions
	Description
	Return Value

	~Callbacks
	Synopsis
	C++ Binding
	Java Binding
	Arguments
	Exceptions
	Description
	Usage Note
	Return Value
	Java BEAWrapper Callbacks Interface API

	12 Development Commands
	13 Mapping of OMG IDL Statements to C++
	Mappings
	Data Types
	Basic Data Types
	Table 13�1 Basic OMG IDL and C++ Data Types�

	Complex Data Types
	Table 13�2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

	Strings
	wchars
	wstrings
	Constants
	Enums
	Structs
	Fixed-length Versus Variable-length Structs
	Member Mapping
	Var
	Out

	Unions
	Union Member Accessor and Modifier Member Function Mapping
	Var
	Out
	Member Functions

	Sequences
	Sequence Element Mapping
	Vars
	Out
	Member Functions

	Arrays
	Array Slice
	Array Element Mapping
	Vars
	Out
	Allocation Member Functions

	Exceptions
	Member Mapping
	Var
	Out
	Member Functions

	Mapping of Pseudo-objects to C++
	Usage
	Mapping Rules
	Relation to the C PIDL Mapping
	Typedefs
	Implementing Interfaces
	Argument Mapping

	Implementing Operations
	Skeleton Derivation from Object

	PortableServer Functions
	Modules
	Interfaces
	Generated Static Member Functions
	Object Reference Types
	Attributes
	Argument Mapping

	Any Type
	Handling Typed Values
	Insertion into Any
	Extraction from Any
	Distinguishing Boolean, Octet, Char, and Bounded Strings
	Widening to Object
	Handling Untyped Values
	Any Constructors, Destructor, Assignment Operator
	The Any Class

	Value Type
	Overview
	Architecture
	Benefits
	Valuetype Example

	Fixed-length Versus Variable-length User-defined Types
	Using var Classes
	Table 13�3 �Comparison of Operators Supported for User-defined Data Type var Classes
	Table 13�4 Operator Signatures for _var Classes
	Sequence vars
	Array vars
	String vars
	out Classes
	Table 13�5 Comparison of Operators Supported for User-defined Data Type Out Classes
	Table 13�6 Operator Signatures for _out Classes

	Using out Classes
	Object Reference out Parameter
	Sequence outs
	Array outs
	String outs

	Argument Passing Considerations
	Operation Parameters and Signatures
	Table 13�7 Basic Argument and Result Passing�
	Table 13�8 T_var Argument and Result Passing
	Table 13�9 Caller Argument Storage Responsibilities�
	Table 13�10 Argument Passing Cases�

	14 CORBA API
	Global Classes
	Pseudo-objects
	Any Class Member Functions
	CORBA::Any::Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any::Any(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any::~Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::TypeCode_ptr CORBA::Any::type() const
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::Any::replace()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Context Member Functions
	Memory Management

	CORBA::Context::context_name
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::create_child
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::Context::delete_values
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::get_values
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::parent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::set_one_value
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::set_values
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	ContextList Member Functions

	CORBA::ContextList:: count
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::add
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::add_consume
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::item
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	CORBA::ContextList::remove
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	NamedValue Member Functions
	Memory Management

	CORBA::NamedValue::flags
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::NamedValue::name
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::NamedValue::value
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	NVList Member Functions
	Memory Management

	CORBA::NVList::add
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::NVList::add_item
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::add_value
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::item
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::NVList::remove
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also
	Object Member Functions

	CORBA::Object::_create_request
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Object::_duplicate
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::Object::_get_interface
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_is_a
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::Object::_is_equivalent
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	CORBA::Object::_nil
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Example

	CORBA::Object::_non_existent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_request
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also
	CORBA Member Functions

	CORBA::release
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::is_nil
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::hash
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::resolve_initial_references
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	Example
	ORB Member Functions

	CORBA::ORB::clear_ctx
	Synopsis
	C++ Binding
	Parameters
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::create_context_list
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::ORB::create_environment
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::create_exception_list
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::ORB::create_list
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::create_named_value
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::create_operation_list
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::create_policy
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	Example

	CORBA::ORB::destroy
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example

	CORBA::ORB::get_ctx
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::get_default_context
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::get_next_response
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::inform_thread_exit
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example

	CORBA::ORB::list_initial_services
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::object_to_string
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::ORB::perform_work
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also
	Example

	CORBA::ORB::poll_next_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::resolve_initial_references
	Synopsis
	C++ Binding
	Augument
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_deferred
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_oneway
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::set_ctx
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::string_to_object
	Synopsis
	C++ Binding
	Argument
	Description
	Return Value
	See Also

	CORBA::ORB::work_pending
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	ORB Initialization Member Function

	CORBA::ORB_init
	Synopsis
	C++ Binding
	Arguments
	Description
	1. If the orb_identifier argument is present, ORB_init determines the client type, either native ...
	2. If orb_identifier is not present or is explicitly zero, ORB_init looks at the entries in argc/...
	3. If no client type is specified in argc/argv, ORB_init uses the default client type from the sy...

	Return Value
	Exceptions

	ORB
	Synopsis
	Syntax
	Description
	Parameters
	Table 14�1 Minor Codes for CORBA::BAD_PARAM Standard Exception

	Portability
	Interoperability
	Examples
	See Also
	Policy Member Functions

	CORBA:Policy::copy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Policy::destroy
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	PortableServer Member Functions

	PortableServer::POA::activate_object
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::activate_object_with_id
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::create_id_assignment_policy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	PortableServer::POA::create_lifespan_policy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	PortableServer::POA::create_POA
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	Examples

	PortableServer::POA::create_reference
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::create_reference_with_id
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::deactivate_object
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::destroy
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	PortableServer::POA::find_POA
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values

	PortableServer::POA::reference_to_id
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::the_POAManager
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	PortableServer::ServantBase::_default_POA
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	POA Current Member Functions

	PortableServer::Current::get_object_id
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values

	PortableServer::Current::get_POA
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	POAManager Member Functions

	PortableServer::POAManager::activate
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POAManager::deactivate
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	POA Policy Member Objects

	PortableServer::LifespanPolicy
	Synopsis
	Description
	Exceptions

	PortableServer::IdAssignmentPolicy
	Synopsis
	Description
	Request Member Functions

	CORBA::Request::arguments
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx(Context_ptr)
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::Request::get_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::invoke
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::operation
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::poll_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::result
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::env
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::contexts
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::exceptions
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::target
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::send_deferred
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::send_oneway
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	Strings

	CORBA::string_alloc
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::string_dup
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::string_free
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also
	Wide Strings
	Listing 14-1

	TypeCode Member Functions
	Memory Management

	CORBA::TypeCode::equal
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::TypeCode::id
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::kind
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Table 14�2 Legal Typecode Kinds and Parameters�

	CORBA::TypeCode::param_count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::parameter
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Exception Member Functions
	Standard Exceptions
	Exception Definitions
	Table 14�3 Exception Definitions�

	Object Nonexistence
	Transaction Exceptions

	ExceptionList Member Functions

	CORBA::ExceptionList::count
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values

	CORBA::ExceptionList::add
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::ExceptionList::add_consume
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::ExceptionList::item
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	CORBA::ExceptionList::remove
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	15 Server-side Mapping
	Implementing Interfaces
	Inheritance-based Interface Implementation
	Listing 15-1 OMG IDL That Uses Interface Inheritance
	Listing 15-2 Interface Class A
	Listing 15-3 Skeleton Class for Interface A
	Listing 15-4 Interface A Implementation Class Declaration

	Delegation-based Interface Implementation
	Listing 15-5 Tie Class Generated from the Derived Interface
	// C++ template <class T> class POA_A_tie : public POA_A { public: POA_A_tie(T& t) : _ptr(&t), _p...
	void op2 (CORBA::Long val) { _ptr->op2 (val); } // **...

	Implementing Operations
	Listing 15-6 Exception Specification
	Listing 15-7 Calling Another Member Function

