BEA Tuxedo

Using Security
iIn ATMI Applications

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Comerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using Security in ATMI Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

1.

Introducing Security

What SECUFLY IMEANS ...ttt ettt e e e e 1-1
SECUNTLY PIUGFINS -ttt sttt eb e e e e 1-2
Security Capabilities.ooieeeee e e 1-3
Operating System (OS) SECUMLYooveeeuereeriere e seereeie et seeseeseeeeeas 1-6
AULNENEICALTON ...t e e e e e 1-7
Authentication Plug-in Architecture ... 1-7
Understanding Delegated Trust Authentication...........cccoccoveieeieieeiecinns 1-7
EstabliShing @ SESSIONccvieiiiieeeeeetee et st e 1-9
Getting Authorization and Auditing TOKeNS........ccccceeevevieceeieececeeeee 1-10
Replacing Client Tokenswith Server Tokens..........coceevevrveiennnceeeene 1-11
Implementing Custom AUthenticationccovereeieinienie s 1-12
AULNOTIZELION ...ttt e e b e b e 1-12
Authorization Plug-in ArchiteCture...........ccccoveiveiicieccinieicec e 1-13
How the Authorization Plug-in Works..........cccoceveveevecicie e, 1-15
Implementing Custom AUthOriZation...........ccoccoe e 1-18
U o [11T SRS 1-18
Auditing Plug-in ArchiteCture.........ccocveciiiiiivscecee e 1-19
How the Auditing Plug-in WOrKS..........cccoveviiiiecee e e 1-20
Implementing Custom AUdItING........cooeeerereree e e 1-23
Link-Level ENCrYPLIONcccviiiice et e 1-23
HOW LLE WOIKS ...ttt e e s e 1-24
Encryption Key Size Negotiation..........ccoeveverene e neeneeieee e 1-24
Backward Compatibility Of LLE..........ccoooioiiiiiiiie e 1-26
WSL/WSH Connection Timeout During Initialization.............ccccceevenen. 1-27
LLE Instalation and LiCENSINGcccoueieeieiieceeieeececee e 1-28

Using Security in ATMI Applications iii

iv

PUDITIC K@Y SECUILY ...ttt 1-29

PKCS-7 ComMPliantooeieee et e 1-29
Supported Algorithms for Public Key Security..........ocoeieennieeinieene. 1-30
Public Key Installation and LiCeNSING........cocoveireeirinneee e 1-32
Message-based Digital SIgNatUrecocecveeecieie e e 1-34
Digital CertifiCales.....cccuiiueceiie et e 1-36
Certification AULNOIITYcoeiiieiiee e e 1-36
Certificate REPOSITONIESeoeeeeeeeeecee ettt et 1-37
Public-Key INfrastrUCUre..........coeeveeuieee et 1-37
Message-based ENCIYPLIONcoie it e 1-39
Public Key Implementationco e e 1-41
Public Key Initiali Zation............cccccveiicecce e 1-42
KeY ManagemeEnt.........ccceeiiiiiiie i sie e e sias e s e ssae e ssae s e snaennns 1-42
Certificate LOOKUP ... oottt e e e 1-42
CertifiCaE ParSiNgcccveiieeieeeeeeeee et e 1-42
Certificate Vaidation ... e s 1-43
Proof Material Mappingccceeeerereniereee et s 1-43
Implementing Custom Public K&y SECUNtYcccceviiinieie s 1-43
Default Public Key Implementation...........c.cooeoeinici e 1-43
Default Authentication and AUthOFZatioNccoeveieieiineeiee e 1-44
ClENt NGMING ..ottt sr e sresraeaeerseaeeneens 1-47
User, Group, and ACL FIlES......cccoiiiieeereee e 1-50
Optional and Mandatory ACLS.......cccuiireeeireriene e e 1-52
Security INteroperabilityccooii i 1-53
Interoperating with Pre-Release 7.1 Software..........cccoecevvvevece e e e, 1-55
Interoperability for Link-Level Encryption..........ccceevevieiece e cve e, 1-56
Interoperability for Public Key SECUritycocovveviiceiviiie s 1-56
Security Compatibilitycoeeveiiiiieer e 1-59
Mixing Default/Custom Authentication and Authorization..................... 1-59
Mixing Default/Custom Authentication and Auditing.........ccccceevevveneee. 1-59
Compatibility Issuesfor Public Key Securitycccccveeveveeienceeiesieenn, 1-60

Administering Security

What Administering Security MEanScceeeerieeeieereene e 2-1
Security AdMINiSration TasKScccueeerreee e s 2-3

Using Security in ATMI Applications

Setting the BEA TUXEAO REGISIIYcoueiei et s 2-3

Purpose of the BEA Tuxedo REJISLIYccueueieiieiieiereeeee e 2-4
REGISENTNG PlUG-INS ...ttt e 2-4
Configuring an Application for SECUMtYccoveirieieinieee e 2-5
Editing the Configuration File..........c.coooiiiiiii e 2-6
Changing the TM_MIB.......oci it 2-6
Using the BEA Administration CONS0Ie.........cccecveeveiievieniieseerie e e 2-6
Setting Up the Administration ENVIroNMeNntcccevereeneeininieee e 2-7
Administering Operating System (OS) SECUNLYcovevrerrreee e e seereeens 2-8
Recommended Practices for OS SECUNtYcccoceveeviiveevenieceee e 2-8
Administering AUtNENLICALIONc..cce i e 2-9
Specifying Principal NamMES.........ccco vt 2-11
How System Processes Acquire Credentials.........oocoeeoerereniecescneneiens 2-12
Why System Processes Need CredentialS.........ccccoocecieeecieciecieeiceeieennenns 2-14
Example UBBCONFIG Entries for Principal Names..........ccoccoeeevevenenne 2-15
Mandating Interoperability POlICYccocoeiririene i 2-15
Establishing an Identity for an Older Client.........cccceoevivieveciece e, 2-20
Summarizing How the CLOPT -t Option WOrKS.........ccocveieirneineciinien 2-21
Example UBBCONFIG Entries for Interoperability..........cccoooeveneeinnnn 2-23
Establishing aLink Between DOMaINS..........ccceceeieiiecenieenececee e 2-24
Example DM CONFIG Entriesfor EstablishingaLinkcccocoeeeneens 2-27
SEtiNg ACL POLICY ..ottt e s s n 2-29
Impersonating the Remote Domain Gatewaycccevrreeeereerienesenneas 2-32
Example DMCONFIG Entriesfor ACL POlICYcccccoeiinineiciininens 2-33
Administering AUtNOZatioN..........cocceiveeie e 2-34
Administering Link-Level ENCryptionccoveiveie e 2-35
Understanding min and maX ValUES..........cccccueveeveenieneceieie e 2-35
Verifying the Installed LLE VErsion.........cccoveveiieevieceseeee s 2-36
How to Configure LLE on Workstation Client Links............cccceeeeveiuennen. 2-36
How to Configure LLE on Bridge Linkscccecveieiecieiecceeeeceeee 2-37
How to Configure LLE ontlisten LinksS........cccccevevieveveeie e e 2-38
How to Configure LLE on Domain Gateway Links..........ccccccceuvevvenennen. 2-39
Administering Public K&y SECUNtYcccovveieie s 2-41
Recommended Practices for Public Key Security........cccceveeveiiececnennen, 2-41
Assigning Public-Private Key Pairs.........ccccceeie e ce e 2-42

Using Security in ATMI Applications %

Vi

Setting Digital Signature POlICYcoiueviiereeee e 2-42

Setting ENCryption POIICYcoue i 2-47
Initializing Decryption Keys Through the PIug-ins..........ccccoocoeveneeeen. 2-50
Failure Reporting and AUditing...........ccoeeirneneeieee e 2-54
Administering Default Authentication and Authorizationccccceeeeeen. 2-56
Designating a SeCUrity LEVE........cooe i e 2-56
Configuring the Authentication SErver ..o vvrennnnc e 2-57
How to Enable Application Password SECUNLYccooieeererienese e 2-59
How to Enable User-Level Authentication Securityccceveeece e ce e, 2-60
Setting Up the UBBCONFIG File.......ooiiiiiieieee e 2-60
Setting Up the User and Group Files..........coeirerienieiinecnee e 2-61
Enabling Access CONtrol SECUNLYccceiviiieeiieeieerieesie e st sre e 2-64
How to Enable Optional ACL SECUFLYccovvireeieeirreee e 2-65
How to Enable Mandatory ACL SECUNLYccceeeeveeieiieeiieeseesee e 2-68

Programming Security

What Programming SeCUrity MEANS..........cceoieueriireeee e e e 31
Programming an Application With SECUFtYccveiiiiininenee e 3-3
Setting Up the Programming ENVIrONMENtccoeiririeeineniene e 3-3
Writing Security Code So Client Programs Can Join the Application.............. 3-4
Getting SECUNTY D@taccve et 3-6
JoiNiNG the APPITCALION.c.eiie e e e ee s 3-8
Transferring the Client Security Data..........ccccveveeecie e 3-11
Calling a Service Request Before Joining the Application...................... 3-14
Writing Security Code to Protect Data Integrity and Privacyccceeueeee. 3-15
ATMI for PUDIIC K&Y SECUNLYc.coiieieeieeieie et 3-16
Recommended Uses of Public Key Security......c.ccccoevieceiecieececceceee, 3-22
Sending and Receiving SIgned MESSAQESvceeeieriecieeieereesieeseeseeeseesree e 3-23
Writing Code to Send Signed MESSAgEScccecueeveereereeiieeneesreeseesreeseens 3-23
How a Signed Message ISRECEIVE.........cccce e 3-32
Sending and Receiving Encrypted MeSSagesccoeereieerieneseseenesie s e 3-34
Writing Code to Send Encrypted MeSSages..........coeuevereeneeieernenieseneens 3-34
Writing Code to Receive Encrypted Messages........cccveveeeeeieerneeieeueneens 3-44
Examining Digital Signature and Encryption Information.............ccoccoeeuenenne. 3-52
What Happens When an Originating Process Calls tpenvelope............... 3-53

Using Security in ATMI Applications

What Happens When a Receiving Process Callstpenvelope................... 3-54

Understanding the Composite Signature Status.........cccceeveereeeeeseereneinens 3-56
Example Code for tpenvelope. ... 3-57
Externalizing Typed Message BUFfErSooeeinie e 3-59
How to Create an Externaized Representation............coceeeverveneseseenenne 3-60
How to Convert an Externalized Representationcccccvereeevnieecne 3-60
Example Code for tpexport and tpimport...........cccooreeieienene e 3-60

Using Security in ATMI Applications Vii

Viii Using Security in ATMI Applications

About This Document

This document provides an introduction to the A pplication-to-Transaction Monitor
(ATMI) security featuresin the BEA Tuxedo® product and information about
securing your ATMI application using the ATMI security features.

This document includes the following topics:

m Chapter 1, “Introducing ATMI Security,” presents an overview of the security
features for ATMI in the BEA Tuxedo product.

m Chapter 2, “Administering Security,” describes setting parametersin the
UBBCONFI Gfileto enable security for an ATMI application.

m Chapter 3, “Programming Security,” describesthe ATMI functionsused in
clients to securely interact with an ATMI application.

What You Need to Know

Thisdocument isintended for application developerswho areinterested in securing an
ATMI application. It assumes afamiliarity with the ATMI programming environment.

Using Security in ATMI Applications iX

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA System, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs’ Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about BEA Tuxedo, distributed object computing, and
transaction processing, see the CORBA Bibliography in the BEA Tuxedo online
documentation.

X Using Security in ATMI Applications

Documentation Conventions

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number
m Your company name and company address

m Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Using Security in ATMI Applications Xi

Xii

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
BI TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ()
nonospace Identifies variables in code.
italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Using Security in ATMI Applications

Documentation Conventions

Convention

Item

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Using Security in ATMI Applications Xiii

Xiv Using Security in ATMI Applications

CHAPTER

1 Introducing ATMI
Security

Thistopic includes the following sections:

What Security Means

Security Plug-ins

ATMI Security Capabilities

Default Authentication and Authorization

Security Interoperability

Note: Release 8.0 of the BEA Tuxedo product includes environmentsthat allow you

to build both Application-to-Transaction Monitor Interfaces (ATMI) and
CORBA applications. Thistopic explains how to implement security in an
ATMI application. For information about implementing security ina CORBA
application, see Using Security in CORBA Applications.

What Security Means

Security refers to techniques for ensuring that data stored in a computer or passed
between computers is not compromised. Most security measures involve passwords
and data encryption, where a password is a secret word or phrase that gives a user
accessto a particular program or system, and data encryption is the trandation of data
into aform that is unintelligible without a deciphering mechanism.

Using Security in ATMI Applications 1-1

1 Introducing ATMI Security

See Also

Distributed applications such as those used for el ectronic commerce (e-commerce)
offer many access points for malicious people to intercept data, disrupt operations, or
generate fraudulent input; the more distributed a business becomes, the more
vulnerableit isto attack. Thus, the distributed computing software, or middieware,
upon which such applications are built must provide security.

The BEA Tuxedo product provides several security capabilities for ATMI
applications, most of which can be customized for your particular needs.

m “Security Plug-ins’ on page 1-2

m “ATMI Security Capabilities’ on page 1-4

m “What Administering Security Means” on page 2-1
m “What Programming Security Means’ on page 3-1

Security Plug-ins

Asshowninthefollowing figure, all but one of the security capabilities available with
the ATMI environment of the BEA Tuxedo product areimplemented through aplug-in
interface, which allows BEA Tuxedo customers to independently define and
dynamically add their own security plug-ins. A security plug-in is a code modul e that
implements a particular security capability.

1-2 Using Security in ATMI Applications

Security Plug-ins

Figure1-1 BEA Tuxedo ATMI Plug-in Security Architecture

Authentication

| o | . | Link-Level | Public Key
| Authorization | Auditing | Encryption | Security
BEA Tuxedo Security
Link-Level
Encryption

Plug-in Interface

Default
Authentication

| Custom

Default Default Default
Authorization Auditing Public Key Security
| Custom | Custom Custom

See Also

Security Plug-ins

The specificationsfor the security plug-in interface are not generally available, but are
available to third-party security vendors who have entered into a special agreement
with BEA Systems. BEA Tuxedo customers who want to customize a security
capability must contact one of these vendors. For example, a BEA Tuxedo customer
who wants a custom implementation of public key security must contact a third-party
security vendor who can provide the appropriate plug-ins.

For more information about security plug-ins, including install ation and configuration
procedures, see your BEA account executive.

m “ATMI Security Capabilities” on page 1-4

Using Security in ATMI Applications 1-3

1 Introducing ATMI Security

ATMI Security Capabilities

The BEA Tuxedo system can enforce security in a number of ways, which includes
using the security features of the host operating system to control access to files,
directories, and system resources. The following table describes the security
capabilities available with the ATMI environment of the BEA Tuxedo product.

Table1-1 ATMI Security Capabilities

Security Capability

Description

Plug-in Interface Default Implementation

Operating system
security

Controls access to files,
directories, and system
resources.

N/A

N/A

Authentication

Provesthe stated identity of
users or system processes;
safely remembers and
transports identity information;
and makes identity information
available when needed.

Implemented as a
single interface

The default authentication
plug-in provides security at
three levels: no
authentication, application
password, and user-level
authentication. This plug-in
worksthe sameway the BEA
Tuxedo implementation of
authenti cation has worked
since it was first made
available with the BEA
Tuxedo system.

Authorization

Controls access to resources
based on identity or other
information.

1-4 Using Security in ATMI Applications

Implemented as a
single interface

The default authorization
plug-in provides security at
two levels: optional access
control lists and mandatory
access control lists. This
plug-in works the same way
the BEA Tuxedo
implementation of
authorization has worked
since it was first made
available with the BEA
Tuxedo system.

ATMI Security Capabilities

Table 1-1 ATMI Security Capabilities (Continued)

Security Capability Description

Plug-in Interface

Default Implementation

Auditing

Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
singleinterface

Default auditing security is
implemented by the BEA
Tuxedo EventBroker and
user log (ULOG) features.

Link-level encryption

Usessymmetrickey encryption N/A
to establish data privacy for

messages moving over the

network links that connect the
machinesin an ATMI

application.

RC4 symmetric key
encryption.

Public key security

Usespublic key (or asymmetric
key) encryption to establish
end-to-end digital signing and
data privacy between ATMI
application clients and servers.
Complies with the PKCS-7
standard.

Implemented as six
interfaces

Default public key security

supports the following

algorithms:

m RSA public key
algorithm

m RSA and DSA digital
signature algorithms

m DES-CBC, two-key
triple-DES, and RC2
symmetric key
algorithms

= MD5and SHA-1
message digest
algorithms

See Also

“Operating System (OS) Security” on page 1-6
“Authentication” on page 1-7

“Authorization” on page 1-12

“Auditing” on page 1-18

“Link-Level Encryption” on page 1-23

Using Security in ATMI Applications

1-5

1 Introducing ATMI Security

m “Public Key Security” on page 1-29

Operating System (OS) Security

See Also

On host operating systems with underlying security features, such as file permissions,
the operating-system level of security isthe first line of defense. An application
administrator can use file permissions to grant or deny access privileges to specific
users or groups of users.

Most ATMI applicationsare managed by an application administrator who configures
the application, starts it, and monitors the running application dynamically, making
changes as necessary. Because the ATMI application is started and run by the
administrator, server programs are run with the administrator’ s permissions and are
therefore considered secure or “trusted.” Thisworking method is supported by the
login mechanism and the read and write permissions on the files, directories, and
system resources provided by the underlying operating system.

Client programsare run directly by userswith the users’ own permissions. In addition,
users running native clients (that is, clients running on the same machine on which the
server program is running) have access to the UBBCONFI G configuration file and
interprocess communication (IPC) mechanisms such as the bulletin board (areserved
piece of shared memory in which parameters governing the ATMI application and
stati stics about the application are stored).

For ATMI applications running on platforms that support greater security, a more
secure approach isto limit access to the files and | PC mechanisms to the application
administrator and to have “trusted” client programs run with the permissions of the
administrator (using the set ui d command on a UNIX host machine or the equivalent
command on another platform). For the most secure operating system security, allow
only Workstation clients to access the application; client programs should not be
allowed to run on the same machines on which application server and administrative
programs run.

m “Security Administration Tasks’ on page 2-3

1-6 Using Security in ATMI Applications

Authentication

m “Administering Operating System (OS) Security” on page 2-8

m “About the Configuration File” on page 2-1 and “ Creating the Configuration
File" on page 3-1 in Setting Up BEA Tuxedo Applications

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

Authentication

Authentication allows communicating processes to mutually proveidentification. The
authentication plug-in interfacein the ATMI environment of the BEA Tuxedo product
can accommodate various security-provider authentication plug-ins using various
authentication technologies, including shared-secret password, one-time password,
challenge-response, and Kerberos. The interface closely follows the generic security
service (GSS) application programming interface (API) where applicabl e; the GSSAPI
is apublished standard of the Internet Engineering Task Force. The authentication
plug-in interface is designed to make integration of third-party vendor security
products with the BEA Tuxedo system as easy as possible, assuming the security
products have been written to the GSSAPI.

Authentication Plug-in Architecture

The underlying plug-in interface for authentication security isimplemented asasingle
plug-in. The plug-in may be the default authentication plug-in or a custom
authentication plug-in.

Understanding Delegated Trust Authentication

Direct end-to-end mutual authentication in a distributed enterprise middleware
environment such as the BEA Tuxedo system can be prohibitively expensive,
especially when accomplished with security mechanisms optimized for long-duration
connections. It is not efficient for clientsto establish direct network connections with

Using Security in ATMI Applications 1-7

1

Introducing ATMI Security

1-8

each server process, nor isit practical to exchange and verify multiple authentication
messages as part of processing each service request. Instead, the ATMI applications
use a delegated trust authentication model, as shown in the following figure.

Figure1-2 ATMI Delegated Trust Authentication Model

— N
~ 7 ~

b
Trusted Server Computing Base

—

/ ~— T~
— ~N
\
\
Workstation Client /
(
> Server \
\
Initiator / Target |
(Client) \ (Trusted Gateway) /
\
N /
-
\ _ /
N e
— -

A Workstation client authenticates to atrusted system gateway process, the
workstation handler (WSH), at initialization time. A native client authenticates within
itself, as explained later in this discussion. After a successful authentication, the
authentication software assignsasecurity token to theclient. A token is an opaque data
structure suitable for transfer between processes. The WSH safely stores the token for
the authenticated Workstation client, or the authenti cated native client safely storesthe
token for itself.

Asaclient request flows through a trusted gateway, the gateway attaches the client’s
security token to the request. The security token travels with the client’ s request
message, and is delivered to the destination server process(es) for authorization
checking and auditing purposes.

In this model, the gateway trusts that the authentication software will verify the
identity of the client and generate an appropriate token. Servers, in turn, trust that the
gateway processwill attach the correct security token. Servers also trust that any other
servers involved in the processing of aclient request will safely deliver the token.

Using Security in ATMI Applications

Authentication

Establishing a Session

Thefollowing figure showsthe control flow insidethe ATMI environment of the BEA
Tuxedo system while a session is being established between a Workstation client and
the WSH. The Workstation client and WSH are attempting to establish along-term
mutually authenticated connection by exchanging messages.

Figure1-3 Client-WSH Authentication

Initiate Connection

Application Communication
Client Protocol

a g =
BEA Tuxedo Library |« (u——]p> WSH Process

i e I L
BEA Tuxedo e / BEA Tuxedo eh

s (Exchange of Session v

Security Tokens) Security
Authentication » Authentication
Plug-in (2) Plug-in (1)
Obtain a Session Obtain a Session Accept Received Session Obtain a Session
Credential Handle Context Handle and Token and Return Credential Handle
a Session Token a Session Token (at Startup)

Theinitiator process (may be thought of asamiddleware client process) creates a
session context by repeatedly calling the BEA Tuxedo “initiate security context”
function until areturn code indicates success or failure. A session context associates
identity information with an authenticated user.

When aWorkstation client callst pi ni t (3c) for Cor TPI NI TI ALI ZE(3cbl) for
COBOL tojoin an ATMI application, the BEA Tuxedo system begins its response by
first calling the internal “acquire credentials’ function to obtain a session credential
handle, and then calling the internal “initiate security context” function to obtain a
session context. Each invocation of the “initiate security context” function takes an
input session token (when oneis available) and returns an output session token. A
session token carries a protocol for verifying a user’ sidentity. Theinitiator process
passes the output session token to the session’ s target process (WSH), whereit is
exchanged for another input token. The exchange of tokens continues until both
processes have completed mutual authentication.

Using Security in ATMI Applications 1-9

1

Introducing ATMI Security

A security-provider authentication plug-in defines the content of the session context
and session token for its security implementation, so ATMI authentication must treat
the session context and session token as opaque objects. The number of tokens passed
back and forth is not defined, and may vary based on the architecture of the
authentication system.

For anative client initiating a session, the initiator process and the target process are
the same; the process may be thought of as a middleware client process. The
middleware client process calls the security provider’ s authentication plug-in to
authenticate the native client.

Getting Authorization and Auditing Tokens

1-10

After asuccessful authentication, the trusted gateway calls two BEA Tuxedo internal
functions that retrieve an authorization token and an auditing token for the client,
which the gateway stores for safekeeping. Together, these tokens represent the user
identity of a security context. The term security token refers collectively to the
authorization and auditing tokens.

When default authentication is used, the authorization token carries two pieces of
information:

m Principal name—the name of an authenticated user.

m Application key—a 32-bit value that uniquely identifies the client initiating the
request message. See“ Application Key” on page 1-49 for more detail.

In addition, when default authentication is used, the auditing token carries the same
two pieces of information: principal name and application key.

Like the session token, the authentication and auditing tokens are opaque; their
contents are determined by the security provider. The authorization token can be used
for performing authorization (permission) checks. The auditing token can be used for
recording audit information. In some ATMI applications, it is useful to keep separate
user identities for authorization and auditing.

Using Security in ATMI Applications

Authentication

Replacing Client Tokens with Server Tokens

As shown in the following figure, there are situations where a client service request
forwarded by a server takes on the identity of the server. The server replaces the client
tokens attached to the request with itsown tokens and then forwardsthe service request
to the destination service.

Figure1-4 Server Permission Upgrade Example

Server

Client
tpcall (“TOLOAER',

tpcall (“.TMB", ...)
(“ TRANSFER',

tpcal |

Service Request Sent with Client's Authorization and Auditing Tokens

Service Request Sent with Server’s Authorization and Auditing Tokens

Note: See“Specifying Principal Names® on page 2-11 for an understanding of how
serversacquiretheir own authorization and auditing tokens and why they need
them.

The feature demonstrated in the preceding figure is known as server permission
upgrade, which operatesin thefollowing manner: whenever aserver callsadot service
(asystem-supplied service having a beginning period initsname—such as. T™ B), the
service reguest takes on the identity of the server and thus acquires the access
permissions of the server. A server’s access permissions are those of the application
(system) administrator. Thus, certain requeststhat would be denied if the client called

Using Security in ATMI Applications 1-11

1 Introducing ATMI Security

the dot service directly would be allowed if the client sent the requeststo a server, and
the server forwarded the requests to the dot service. For more information about dot
services, seethe . TM B service description on the M B(5) reference pagein the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

Implementing Custom Authentication

Y ou can provide authentication for your ATMI application by using thedefault plug-in
or acustom plug-in. Y ou choose a plug-in by configuring the BEA Tuxedo registry, a
tool that controls all security plug-ins.

If you want to use the default authentication plug-in, you do not need to configure the
registry. If you want to use a custom authentication plug-in, however, you must
configure the registry for your plug-in before you can install it. For more detail about
the registry, see “ Setting the BEA Tuxedo Registry” on page 2-3.

See Also

m “Default Authentication and Authorization” on page 1-45

m “Security Administration Tasks’ on page 2-3

m “Administering Authentication” on page 2-9

m “Programming an ATMI Application with Security” on page 3-3

m “Writing Security Code So Client Programs Can Join the ATMI Application” on
page 3-4

Authorization

Authorization allows administrators to control accessto ATMI applications.
Specifically, an administrator can use authorization to allow or disallow principals
(authenticated users) to use resources or facilitiesin an ATMI application.

1-12 Using Security in ATMI Applications

Authorization

Authorization Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are
connected. As shown in the following figure, the authorization plug-in interface is
implemented as a fanout.

Figure1-5 Authorization Plug-in Architecture

Plug-in Interface

Fanout Plug-in

Default Custom Custom
Authorization Authorization e oo Authorization
Plug-in Plug-in Plug-in

The default authorization implementation consists of afanout plug-in and a default
authorization plug-in. A custom implementation consists of the fanout plug-in, the
default authorization plug-in, and one or more custom authorization plug-ins.

In afanout plug-in model, a caler sends a request to the fanout plug-in. The fanout
plug-in passes the request to each of the subordinate plug-ins, and receives aresponse
from each. Finally, the fanout plug-in forms a composite response from the individual
responses, and sends the composite response to the caller.

The purpose of an authorization request is to determine whether a client operation
should be allowed or whether the results of an operation should be kept unchanged.
Each authorization plug-in returns one of threeresponses. per mit, deny, or abstain. The
abstain response gives writers of authorization plug-ins a graceful way to handle
situations that are not accommodated by the original plug-in, such as names of
operations that are added to the system after the plug-in is installed.

Using Security in ATMI Applications 1-13

1

Introducing ATMI Security

1-14

The authorization fanout plug-in forms a composite response as described in the
following table. For default authorization, the composite responseis determined solely
by the default authorization plug-in.

Table 1-2 Authorization Composite Responses

If Plug-insReturn . .. TheComposite Responsels. ..

All permit or a combination of permit
permit and abstain

At least one deny deny

All abstain deny

If the SECURI TY parameter in the ATMI
application’s UBBCONFI Gfileis set to
MANDATORY_ACL
permit

If the SECURI TY parameter isnot setinthe ATMI
application’s UBBCONFI Gfile or is set to any value
other than MANDATORY_ACL

Asan exampleof custom authorization, consider a banking application in which auser
isidentified as amember of the Cust omer group, and the following conditions are in
effect:

m Thedefault authorization plug-in allows any user in the Cust omer group to
withdraw money from a particular account.

m A custom authorization plug-in allows any user in the Cust omer group to
withdraw money from a particular account but only on Monday through Friday
between 9:00 A.M. and 5:00 PM.

m A second custom authorization plug-in allows any user in the Cust omer group
to withdraw money from a particular account but only if the amount being
withdrawn is less than $10,000.

So, if auser inthe Cust oner group attempts to withdraw $500.00 on Monday at 10
A.M., the operation is allowed. If the same user attempts the same withdrawal on
Saturday morning, the operation is not alowed.

Many other custom authorization scenarios are possible. Feel freeto improvise; define
the conditions that best serve the needs of your business.

Using Security in ATMI Applications

Authorization

How the Authorization Plug-in Works

Authorization decisions are based partly on user identity, which is stored in an
authorization token. Because authorization tokens are generated by the authentication
security plug-in, providers of authentication and authorization plug-ins need to ensure
that these plug-ins work together.

A BEA Tuxedo system process or server (such as/Q server TMQUEUE(5) or
EventBroker server TMUSREVT(5)) calls the authorization plug-in when it receives a
client request. In response, the authorization plug-in performs a pre-operation check
and returns whether the operation should be allowed.

m If alowed, the system carries out the client request.
m If not allowed, the system does not carry out the client request.

If the client operation is allowed, the BEA Tuxedo system process or server may call
the authorization plug-in after the client operation completes. In response, the
authorization plug-in performs a post-operation check and returns whether the results
of the operation are acceptable.

m |f acceptable, the system accepts the operation results.

m If not unacceptable, the system either modifies the operation results or rolls back
(reverses) the operation.

These calls are system-level calls, not application-level calls. An ATMI application
cannot call the authorization plug-in.

The authorization processis somewhat different for (1) users of the default
authorization plug-in provided by the BEA Tuxedo system and (2) users of one or
more custom authorization plug-ins. The default plug-in does not support
post-operation checks. If the default authorization plug-in receives a post-operation
check request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation checks.

Default Authorization
When default authorization is called by an ATMI process to perform a pre-operation

check in response to a client request, the authorization plug-in performsthe following
tasks.

Using Security in ATMI Applications 1-15

1

Introducing ATMI Security

1. Getsinformation from the client’s authorization token by calling the authentication
plug-in.
Because the authorization token is created by the authentication plug-in, the

authorization plug-in has no record of the token’s content. Thisinformation is
necessary for the authorization process.

2. Performs a pre-operation check.

The authorization plug-in determines whether that operation should be allowed
by examining the client’s authorization token, the access control list (ACL), and
the configured security level (optional or mandatory ACL) of the ATMI
application.

3. Issues adecision about whether the operation will be performed.

The authorization fanout plug-in receives a decision (permit or deny) from the
default authorization plug-in and operates on its behalf.

e |f thedecision isto permit the client operation, the fanout plug-in returns
permit to the calling process. The system carries out the client request.

e |f thedecision isto deny the operation, the fanout plug-in returns deny to the
calling process. The system does not carry out the client request.

Custom Authorization

1-16

Users of one or more custom authorization plug-ins may take advantage of additional
functionality offered by the ATMI environment of the BEA Tuxedo product.
Specifically, the custom plug-ins may perform an additional check after an operation
occurs.

When custom authorization is called by an ATMI process to perform a pre-operation
check in response to a client request, the authorization plug-in performs the following
tasks.

1. Getsinformation from the client’s authorization token by calling the authentication
plug-in.

2. Performs a pre-operation check.

The authorization plug-in determines whether the operation should be allowed
by examining the operation, the client’s authorization token, and associated data.
“Associated data’ may include user data and the security level of the ATMI
application.

Using Security in ATMI Applications

Authorization

If necessary, in order to satisfy authorization requirements, the authorization
plug-in may modify the user data before the operation is performed.

3. Issues a decision about whether the operation will be performed.

The authorization fanout plug-in makes the ultimate decision by checking the
individual responses (permit, deny, abstain) of its subordinate plug-ins.

e |f the fanout plug-in allows the client operation, it returns permit to the
calling process. The system carries out the client request.

e |f the fanout plug-in does not allow the operation, it returns deny to the
calling process. The system does not carry out the client request.

If the client operation is allowed, custom authorization may be called by the ATMI
process to perform a post-operation check after the client operation completes. If so,
the authorization plug-in performs the following tasks.

1. Getsinformation from the client’sauthorization token by calling the authentication
plug-in.

2. Performs a post-operation check.

The authorization plug-in determines whether the operation results are
acceptabl e by examining the operation, the client’s authorization token, and
associated data. “ Associated data” may include user data and the security level
of the ATMI application.

3. Issues a decision about whether the operation results are acceptable.

The authorization fanout plug-in makes the ultimate decision by checking the
individual responses (permit, deny, abstain) of its subordinate plug-ins.

e |f the fanout plug-in decides that the operation results are acceptable, it
returns permit to the calling process. The system accepts the operation
results.

e |f the fanout plug-in does not allow the operation, it returns deny to the
calling process. The system either modifies the operation results or rolls back
(reverses) the operation.

A post-operation check is useful for label-based security models. For example,
suppose that auser is authorized to access CONFIDENTIAL documents but performs
an operation that retrieves a TOP SECRET document. (Often, a document’s

Using Security in ATMI Applications 1-17

1 Introducing ATMI Security

classification label is not easily determined until after the document has been
retrieved.) In this case, the post-operation check is an efficient meansto either deny the
operation or modify the output data by expunging any restricted information.

Implementing Custom Authorization

See Also

Y ou can provide authorization for your ATMI application by using the default plug-in
or adding one or more custom plug-ins. Y ou choose a plug-in by configuring the BEA
Tuxedo registry, atool that controls all security plug-ins.

If you want to use the default authorization plug-in, you do not need to configure the
registry. If you want to add one or more custom authorization plug-ins, however, you
must configure the registry for your additional plug-ins before you can install them.

For more detail about theregistry, see” Setting the BEA Tuxedo Registry” on page 2-3.

m “Default Authentication and Authorization” on page 1-45

m “Security Administration Tasks’ on page 2-3

m “Administering Authorization” on page 2-35

m “Programming an ATMI Application with Security” on page 3-3

Auditing

Auditing providesameansto collect, store, and distribute information about operating
reguests and their outcomes. Audit-trail records may be used to determine which
principals performed, or attempted to perform, actionsthat violated the security levels
of an ATMI application. They may also be used to determine which operations were
attempted, which onesfailed, and which ones successfully completed.

How auditing is done (that is, how information is collected, processed, protected, and
distributed) depends on the auditing plug-in.

1-18 Using Security in ATMI Applications

Auditing

Auditing Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are
connected. As shown in the following figure, the auditing plug-in interface is
implemented as a fanout.

Figure1-6 Auditing Plug-in Architecture

Plug-in Interface

Fanout Plug-in

Default Custom Custom
Auditing Auditing e e Auditing
Plug-in Plug-in Plug-in

The default auditing implementation consists of afanout plug-in and adefault auditing
plug-in. A custom implementation consists of the fanout plug-in, the default auditing
plug-in, and one or more custom auditing plug-ins.

In afanout plug-in model, a caler sends a request to the fanout plug-in. The fanout
plug-in passes the request to each of the subordinate plug-ins, and receives aresponse
from each. Finally, the fanout plug-in forms a composite response from the individual
responses, and sends the composite response to the caller.

The purpose of an auditing request isto record an event. Each auditing plug-in returns
one of two responses: success (the audit succeeded—Iogged the event) or failure (the
audit failed—did not log the event). The auditing fanout plug-in forms a composite
responsein the following manner: if al responses are success, the composite response
is success; otherwise, the composite response is failure.

For default auditing, the composite response is determined solely by the default
auditing plug-in. For custom auditing, the composite response is determined by the
fanout plug-in after collecting the responses of the subordinate plug-ins. For more
insight into how fanouts work, see“ Authorization Plug-in Architecture” on page 1-13.

Using Security in ATMI Applications 1-19

1

Introducing ATMI Security

How the Auditing Plug-in Works

Auditing decisions are based partly on user identity, which is stored in an auditing
token. Because auditing tokens are generated by the authentication security plug-in,
providers of authentication and auditing plug-ins need to ensure that these plug-ins
work together.

An ATMI system process or server (such as /Q server TMQUEUE(5) or EventBroker
server TMUSREVT(5)) calls the auditing plug-in when it receives a client request.
Becauseit iscalled before an operation begins, the auditing plug-in can audit operation
attempts and store data if that data will be needed later for a post-operation audit. In
response, the auditing plug-in performs a pre-operation audit and returns whether the
audit succeeded.

The ATMI system process or server may call the auditing plug-in after the client
operation is performed. In response, the auditing plug-in performs a post-operation
audit and returns whether the audit succeeded.

In addition, an ATMI system process or server may call the auditing plug-in when a
potentia security violation occurs. (Suspicion of a security violation arises when a
pre-operation or post-operation authorization check fails, or when an attack on
security is detected.) In response, the auditing performs a post-operation audit and
returns whether the audit succeeded.

These calls are system-level calls, not application-level calls. An ATMI application
cannot call the auditing plug-in.

Theauditing processis somewhat different for (1) users of the default auditing plug-in
provided by the BEA Tuxedo system and (2) users of one or more custom auditing
plug-ins. The default plug-in does not support pre-operation audits. If the default
auditing plug-in receivesa pre-operation audit request, it returnsimmediately and does
nothing.

The custom plug-ins support both pre-operation and post-operation audits.

Default Auditing

1-20

The default auditing implementation consists of the BEA Tuxedo EventBroker
component and userlog (ULOG). These utilities report only security violations; they do
not report which operations were attempted, which ones failed, and which ones
successfully completed.

Using Security in ATMI Applications

Auditing

When default auditing is called by an ATMI process to perform a post-operation audit
when a security violation is suspected, the auditing plug-in performs the following
tasks.

1. Getsinformation from the client’s auditing token by calling the authentication
plug-in.

Because the auditing token is created by the authentication plug-in, the auditing
plug-in has no record of the token’s content. Thisinformation is necessary for
the auditing process.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token and the security
violation delivered in the post-operation audit request.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in receives a decision (success or failure) from the
default auditing plug-in and operates on its behalf.

e |f the decision is success, the post-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the security
violation.

e |f the decision isfailure, the post-operation audit failed. The auditing fanout
returns failure to the calling process.

Custom Auditing

Users of one or more custom auditing plug-ins may take advantage of additional
functionality offered by the ATMI environment of the BEA Tuxedo product.
Specifically, the custom plug-ins may perform an additional audit before an operation
occurs.

When custom auditing is called by an ATMI process to perform a pre-operation audit
in response to aclient request, the auditing plug-in performs the following tasks.

1. Getsinformation from the client’s auditing token by calling the authentication
plug-in.

2. Performs a pre-operation audit.

The auditing plug-in examines the client’s auditing token and may store user
dataif that datawill be needed | ater for a post-operation audit.

Using Security in ATMI Applications 1-21

1 Introducing ATMI Security

3. Issues adecision about whether the pre-operation audit succeeded.

The auditing fanout plug-in makes the ultimate decision by checking the
individual responses (success or failure) from its subordinate plug-ins.

e |f the composite decision is success, the pre-operation audit succeeded. The
auditing fanout plug-in returns success to the calling process and logs the
client’s attempt to perform the operation.

e |f the composite decision is failure, the pre-operation audit failed. The
auditing fanout returns failure to the calling process.

Custom auditing may be called by the ATMI processto perform a post-operation audit
after the client operation is performed. If so, the auditing plug-in performs the
following tasks.

1. Getsinformation from the client’s auditing token by calling the authentication
plug-in.

2. Performs a post-operation audit.
The auditing plug-in examines the client’s auditing token, the completion status

delivered in the post-operation audit request, and any data stored during the
pre-operation audit.

3. Issues adecision about whether the post-operation audit succeeded.

The auditing fanout plug-in decidesif the post-operation audit succeeded or
failed by checking the individual responses (success or failure) from its
subordinate plug-ins.

e |f the composite decision is success, the post-operation audit succeeded. The
auditing fanout plug-in returns success to the calling process and logs the
completion status of the operation.

e |f the composite decision is failure, the post-operation audit failed. The
auditing fanout returns failure to the calling process.

An operation is considered successful if it passes both pre- and post-operation audits,
and the operation itself is successful. Some companies collect and store both pre- and
post-operation auditing data, even though such data can occupy alot of disk space.

1-22 Using Security in ATMI Applications

Link-Level Encryption

Implementing Custom Auditing

Y ou can provide auditing for your ATMI application by using the default plug-in or
adding one or more custom plug-ins. Y ou choose a plug-in by configuring the BEA
Tuxedo registry, atool that controls all security plug-ins.

If you want to use the default auditing plug-in, you do not need to configure the
registry. If you want to add one or more custom auditing plug-ins, however, you must
configure the registry for your additiona plug-ins before you can install them. For
more detail about the registry, see “ Setting the BEA Tuxedo Registry” on page 2-3.

Link-Level Encryption

Link-level encryption (LLE) establishes data privacy for messages moving over the
network links that connect the machinesin an ATMI application. It employs the
symmetric key encryption technique (specifically, RC4), which uses the same key for
encryption and decryption.

When LLE isbeing used, the BEA Tuxedo system encrypts databefore sending it over
anetwork link and decrypts it asit comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For this
reason, LLE isreferred to as a point-to-point facility.

LLE can be used on the following types of ATMI application links:

m Workstation client to workstation handler (WSH)

m Bridge-to-Bridge

m Administrative utility (such ast mboot ort nehut down) totl i sten
m Domain gateway to domain gateway

Therearethreelevelsof LLE security: 0-bit (no encryption), 56-bit (International), and
128-bit (United States and Canada). The International LLE version allows 0-bit and
56-bit encryption. The United Statesand Canada L L E version alows0, 56, and 128-bit
encryption.

Using Security in ATMI Applications 1-23

1

Introducing ATMI Security

How LLE Works

LLE control parameters and underlying communication protocols are different for
variouslink types, but the setup is basically the samein all cases:

m Aninitiator process begins the communication session.
m A target process receivesthe initial connection.

m Both processes are aware of the link-level encryption feature, and have two
configuration parameters.

Thefirst configuration parameter is the minimum encryption level that a process
will accept. It is expressed as a key length: 0, 56, or 128 hits.

The second configuration parameter is the maximum encryption level a process
can support. It also is expressed as akey length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (i n, max) in the discussion that
follows. For example, the values “ (56, 128)” for a process mean that the process
accepts at least 56-bit encryption but can support up to 128-bit encryption.

Encryption Key Size Negotiation

When two processes at the opposite ends of anetwork link need to communicate, they
must first agree on the size of the key to be used for encryption. This agreement is
resolved through a two-step process of negotiation.

1. Each processidentifiesits own mi n-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values

1-24

When either of the two processes starts up, thelocal BEA Tuxedo software (1) checks
the bit-encryption capability of the installed LLE version by checking the LLE
licensing informationinthel i c.t xt fileand (2) checksthe LLE mi n-max valuesfor
the particular link type as specified in the two configuration files. The local software
then proceeds as follows:

Using Security in ATMI Applications

Link-Level Encryption

m If the configured ni n-nax values accommodate the installed LLE version, then
the local software assigns those values as the ni n-max values for the process.

m If the configured ni n-max values do not accommodate the installed LLE version,
for example, if the International LLE version isinstalled but the configured
m n-max values are (0, 128), then the local software issues a run-time error;
link-level encryption is not possible at this point.

m If thereare no m n-max values specified in the configurations for a particular
link type, then the local software assigns 0 as the minimum value and assigns the
highest bit-encryption rate possible for the installed L LE versions as the
maximum value, that is, (0, 128) for the United States and Canada LL E version.

Finding a Common Key Size

After them n-max values are determined for the two processes, the negotiation of key
size begins. The negotiation process need not be encrypted or hidden. Once akey size
is agreed upon, it remains in effect for the lifetime of the network connection.

The following table shows which key size, if any, is agreed upon by two processes
when all possible combinations of m n-max values are negotiated. The header row
holdsthe mi n-max valuesfor one process; thefar left column holdsthe mi n-max values
for the other.

Table 1-3 Interprocess Negotiation Results

(0,0) (0, 56) (0, 128) (56, 56) (56,128) (128, 128)
(0,0) 0 0 0 ERROR ERROR ERROR
(0, 56) 0 56 56 56 56 ERROR
(0, 128) 0 56 128 56 128 128
(56, 56) ERROR 56 56 56 56 ERROR
(56, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

Using Security in ATMI Applications 1-25

1 Introducing ATMI Security

Backward Compatibility of LLE

The ATMI environment of the BEA Tuxedo product offers some backward
compatibility for LLE.

Interoperating with Release 6.5 BEA Tuxedo Software

The following table shows which key size, if any, is agreed upon by two ATMI
applications when one of them is running under release 6.5 and the other under release
7.1 or later. The header row holds the i n-max values for the process running under
release 7.1 or later; the far left column holds the mi n-max values for the process
running under release 6.5.

Table 1-4 Negotiation Results When Interoperating with Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56,128) (128,128)
(0, 0) 0 0 0 ERROR ERROR ERROR
(0, 40) 0 56 56 56 56 ERROR
(0, 128) 0 56 128 56 128 128
(40, 40) ERROR 56 56 56 56 ERROR
(40, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

If your current BEA Tuxedo installationis configured for (0, 56), (O, 128), (56, 56), or
(56, 128), and you want to interoperate with arelease 6.5 ATMI application that is
configured for amaximum LLE level of 40 bits, then any negotiation resultsin an
automatic upgrade to 56.

The negotiation result in this case is the same as the negotiation result for two sites
running release 6.5 and configured for amaximum LLE level of 40 bits. In both
scenarios, the negotiation results in an automatic upgrade to 56.

1-26 Using Security in ATMI Applications

Link-Level Encryption

Interoperating with Pre-Release 6.5 BEA Tuxedo Software

The following table shows which key size, if any, is agreed upon by two ATMI
applications when one of them is running under pre-release 6.5 and the other under
release 7.1 or later. The header row holds the mi n-max values for the process running
under release 7.1 or later; thefar left column holds the mi n-max valuesfor the process
running under pre-release 6.5.

Table 1-5 Negotiation Results When Interoperating with Pre-Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56,128) (128, 128)
(0,0) 0 0 0 ERROR ERROR ERROR
(0, 40) 0 40 40 ERROR ERROR ERROR
(0, 128) 0 40 128 ERROR 128 128
(40, 40) ERROR 40 40 ERROR ERROR ERROR
(40, 128) ERROR 40 128 ERROR 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

If your current BEA Tuxedo installation is configured for (0, 56) or (0, 128), and you
want to interoperate with a pre-release 6.5 ATMI applications that is configured for a
maximum LLE level of 40 bits, then the result of any negotiation is 40.

If your current BEA Tuxedo installation is configured for (56, 56), (56, 128), or
(128, 128), then your system cannot interoperate with a pre-release 6.5 ATMI
application that is configured for amaximum LLE level of 40 bits. Attempts to
negotiate a common key size fail.

WSL/WSH Connection Timeout During Initialization

Thelength of timeaWorkstation client can takefor initialization islimited. By default,
thisinterval is 30 seconds in an ATMI application not using LLE, and 60 secondsin
an ATMI application using LLE. The 60-second interval includes the time needed to
negotiate an encrypted link. Thistime limit can be changed when LLE is configured

Using Security in ATMI Applications 1-27

1

Introducing ATMI Security

by changing the value of the MaXI NI TTI ME parameter for the workstation listener
(WSL) server in the UBBCONFI Gfile, or the value of the TA_ MAXI NI TTI ME attributein
the T_WSL class of thews_M B(5) .

LLE Installation and Licensing

1-28

As part of the BEA Tuxedo system, L LE software is delivered on the BEA Tuxedo
CD-ROM. If you have a BEA Tuxedo release 7.1 license to use LLE in the United
States and Canada, you can use 56-bit or 128-bit encryption. If you have alicense to
use LLE on aBEA Tuxedo system outside the United States and Canada, you can use
56-bit encryption.

All BEA Tuxedo licenses are stored in the $TUXDI R/ udat aobj /| i c. txt fileona
UNIX host machine, or inthe %aUXDI R# udat aobj\ | i c. t xt fileonaWindows host
machine.

Thefollowing listing is an excerpt from a sample license file for running LLE in the
United States and Canada.

[BEA Tuxedo]

VERSI ON=8. 0

LI CENSEE=ACVE CORPORATI ON

SERI AL=155566678

ORDERI D=

USERS=1000

EXPI RATI ON=2000- 01- 31

SI GNATURE=TXnt x+AhQdJgr 3sj j znBqRB7SP9Jgr 3Uz AKct j z+e6Rms FSAhUANSE
znBQL9n=

[LI NK ENCRYPTI ON]

VERSI ON=8. 0

LI CENSEE=ACVE CORPORATI ON

SERI AL=155566678

ORDERI D=

USERS=1000

STRENGTH=128

EXPI RATI ON=2000- 01- 31

Sl GNATURE=TXUAhSPnx2C9k MCOCFG+e6Rgr 3Uz ms FKRBPdJASAhU7Kct j znBqFQsj
j znBdhOh=

Using Security in ATMI Applications

Public Key Security

See Also

m “Security Administration Tasks” on page 2-3
m “Administering Link-Level Encryption” on page 2-35

m “Distributing ATMI Applications Across aNetwork” on page 7-1 and “ Creating
the Configuration File for a Distributed ATMI Application” on page 8-1in
Setting Up BEA Tuxedo Applications

Public Key Security

Public key security provides two capabilities that make end-to-end digital signing and
data encryption possible:

m Message-based digital signature
m Message-based encryption

M essage-based digital signature allows the recipient (or recipients) of a message to
identify and authenticate both the sender and the sent message. Digital signature
provides solid proof of the originator and content of amessage; a sender cannot falsely
repudiate responsibility for a message to which that sender’ s digital signatureis
attached. Thus, for example, Bob cannot issue arequest for awithdrawal from hisbank
account and later claim that someone el se issued that request.

In addition, message-based encryption protects the confidentiality of messages by
ensuring that only designated recipients can decrypt and read them.

PKCS-7 Compliant

Informal but recognized industry standards for public key software have been issued
by a group of leading communications companies, led by RSA Laboratories. These
standards are called Public-Key Cryptography Standards, or PKCS. The public key
software in the ATMI environment of the BEA Tuxedo software complies with the
PKCS-7 standard.

Using Security in ATMI Applications 1-29

1

Introducing ATMI Security

PKCS-7 isahybrid cryptosystem architecture. A symmetric key algorithm with a
random session key is used to encrypt amessage, and a public key algorithmis used to
encrypt the random session key. A random number generator creates anew session key
for each communication, which makes it difficult for a would-be attacker to reuse
previous communications.

Supported Algoritnms for Public Key Security

All the algorithms on which public key security is based are well known and
commercialy available. To select the algorithms that will best serve your ATMI
application, consider the following factors: speed, degree of security, and licensing
restrictions (for example, the United States government restricts the algorithms that it
allowsto be exported to other countries).

Public Key Algorithms

The public key security in the ATMI environment of the BEA Tuxedo product
supports any public key algorithms supported by the underlying plug-ins, including
RSA, ElGamal, and Rabin. (RSA stands for Rivest, Shamir, and Adelman, the
inventors of the RSA algorithm.) All these algorithms can be used for digital signatures
and encryption.

Public key (or asymmetric key) a gorithms such as RSA are implemented through a
pair of different but mathematically related keys:

m A public key (which is distributed widely) for verifying adigital signature or
transforming data into a seemingly unintelligible form.

m A private key (which is aways kept secret) for creating a digital signature or
returning the datato its original form.

Digital Signature Algorithms

1-30

The public key security in the ATMI environment of the BEA Tuxedo product
supports any digital signature algorithms supported by the underlying plug-ins,
including RSA, ElGamal, Rabin, and Digital Signature Algorithm (DSA). With the
exception of DSA, all these algorithms can be used for digital signatures and
encryption. DSA can be used for digital signatures but not for encryption.

Using Security in ATMI Applications

Public Key Security

Digital signature algorithms are simply public key agorithms used to provide digital
signatures. DSA isalso a public key a gorithm (implemented through public-private
key pairs), but it can only be used to provide digital signatures, not encryption.

Symmetric Key Algorithms

Public key security supports the following three symmetric key algorithms:

m DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC isa 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-bit keys (8 parity bits are stripped from the full 64-bit key) and is
exportabl e outside the United States.

m Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit
key) and is not exportable outside the United States.

For some time it has been common practice to protect and transport a key for
DES encryption with triple-DES, which means that the input data (in this case
the single-DES key) is encrypted, decrypted, and then encrypted again (an
encrypt-decrypt-encrypt process). The same key is used for the two encryption
operations.

m RC2 (Rivest's Cipher 2)

RC2 is avariable key-size block cipher with akey size range of 40 to 128 hits. It
is faster than DES and is exportable with a key size of 40 bits. A 56-bit key size
is alowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC2 can be used with keys of virtually
unlimited length, although the ATMI public key security restricts the key length
to 128 hits.

BEA Tuxedo customers cannot expand or modify thislist of algorithms.

In symmetric key a gorithms, the same key is used to encrypt and decrypt a message.
The public key encryption system uses symmetric key encryption to encrypt amessage
sent between two communicating entities. Symmetric key encryption operates at | east
1000 times faster than public key cryptography.

Using Security in ATMI Applications 1-31

1

Introducing ATMI Security

A block cipher isatype of symmetric key algorithm that transforms a fixed-length
block of plaintext (unencrypted text) datainto a block of ciphertext (encrypted text)
data of the same length. This transformation takes place in accordance with the value
of arandomly generated session key. The fixed length is called the block size.

Message Digest Algorithms

Public key security supports any message digest algorithms supported by the
underlying plug-ins, including MD5, SHA-1 (Secure Hash Algorithm 1), and many
others. Both MD5 and SHA-1 are well known, one-way hash algorithms. A one-way
hash algorithm takes a message and converts it into a fixed string of digits, which is
referred to as a message digest or hash value.

MD?5 isahigh-speed, 128-bit hash; it isintended for use with 32-bit machines. SHA-1
offers more security by using a 160-bit hash, but is slower than MD5.

Public Key Installation and Licensing

1-32

As part of the BEA Tuxedo system, the software for message-based digital signature
and message-based encryption is delivered on the BEA Tuxedo CD-ROM, but cannot
be used without a separate license. All BEA Tuxedo licenses arein the

$TUXDI R/ udat aobj /i c. t xt fileonaUNIX host machine, or inthe

%TUXDI RoA udat aobj \1i c. t xt fileon aWindows 2000 host machine.

Thefollowing listing isan excerpt from asample licensefile for message-based digital
signature and message-based encryption.

[BEA Tuxedo]

VERSI ON=8. 0

LI CENSEE=ACVE CORPORATI ON

SERI AL=155566678

ORDERI D=

USERS=1000

EXPI RATI ON=2000- 01- 31

SI GNATURE=TXnt x+AhQdJgr 3sj j znBqRB7SP9Jgr 3Uz AKct j z+e6Rms FSAhUANSE
znBQL9n=

[PK ENCRYPTI ON|
VERSI ON=8. 0

Using Security in ATMI Applications

Public Key Security

See Also

LI CENSEE=ACVE CORPORATI ON

SERI AL=155566678

ORDERI D=

USERS=1000

STRENGTH=128

EXPI RATI ON=2000- 01- 31

SI GNATURE=TXOCFHkaBpKpAl XGEt Qqi +/ j JvMb1VBIAhUAUAKI zwsgYef RwQI DNTF
0205b1i k=

[PK SI GNATURE]

VERSI ON=8. 0

LI CENSEE=ACVE CORPORATI ON

SERI AL=155566678

ORDERI D=

USERS=1000

STRENGTH=128

EXPI RATI ON=2000- 01- 31

S| GNATURE=TX0Ci qASFCAXJFXUEGY Aki +gL+i 09eRep9hYdshS/ 8a70M JQChUAK9
zI AhUI H4=

m “Message-based Digital Signature” on page 1-34

m “Message-based Encryption” on page 1-39

m “Public Key Implementation” on page 1-42

m “Security Administration Tasks” on page 2-3

m “Administering Public Key Security” on page 2-42

m “Programming an ATMI Application with Security” on page 3-3

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Using Security in ATMI Applications 1-33

1

Introducing ATMI Security

Message-based Digital Signature

1-34

M essage-based digital signatures enhance ATMI security by allowing a message
originator to proveitsidentity, and by binding that proof to a specific message buffer.
Mutually authenticated and tamper-proof communication is considered essential for
ATMI applications that transport data over the Internet, either between companies or
between a company and the general public. It also is critical for ATMI applications
deployed over insecure internal networks.

The scope of protection for amessage-based digital signature isend-to-end: a message
buffer is protected from the time it leaves the originating process until thetimeit is
received at the destination process. It is protected at all intermediate transit points,
including temporary message queues, disk-based queues, and system processes, and
during transmission over inter-server network links.

The following figure shows how end-to-end message-based digital signature works.

Using Security in ATMI Applications

Message-based Digital Signature

Figure1-7 ATMI PKCS-7 End-to-End Digital Signing

tpsign()
From Signer To Recipient

—— ~ -\\

Clear Data Buffer - Clear Data

Public Key/ Security

Digital Signature Algorithm

No >
- | Discard<—o p N\
s - @ L
/ 1
! \

Signer’s Signer’s \
/ Private Key : Public Key y

(. Digest
| L u |

\ Signer’s Assigned Public Key Pair

~ | /
Message Digest Algorithm -~ _

M essage-based digital signature involves generating adigital signature by computing
amessage digest on the message, and then encrypting the message digest with the
sender’s private key. The recipient verifies the signature by decrypting the encrypted
message digest with the signer’ s public key, and then comparing the recovered
message digest to an independently computed message digest. The signer’ s public key
either iscontained in adigital certificate included in the signer information, or is
referenced by an issuer-distinguished name and issuer-specific serial number that
uniquely identify the certificate for the public key.

Using Security in ATMI Applications 1-35

1

Introducing ATMI Security

Digital Certificates

1-36

Digita certificates are electronic files used to uniquely identify individuals and
resources over networks such asthe Internet. A digital certificate securely binds the
identity of an individual or resource, as verified by atrusted third party known as a
Certification Authority, to aparticular public key. Because no two public keys are ever
identical, apublic key can be used to identify its owner.

Digital certificatesallow verification of the claim that aspecific public key doesin fact
belong to a specific subscriber. A recipient of acertificate can usethe public key listed
inthe certificate to verify that the digital signature was created with the corresponding
private key. If such verification is successful, this chain of reasoning provides
assurance that the corresponding private key is held by the subscriber named in the
certificate, and that the digital signature was created by that particular subscriber.

A certificate typically includes a variety of information, such as:

m The name of the subscriber (holder, owner) and other identification information
required to uniquely identify the subscriber, such as the URL of the Web server
using the certificate, or an individual’s e-mail address.

m The subscriber’s public key.
m The name of the Certification Authority that issued the certificate.
m A seria number.

m Thevalidity period (or lifetime) of the certificate (defined by a start date and an
end date).

The most widely accepted format for certificatesis defined by the ITU-T X.509
international standard. Thus, certificates can be read or written by any ATMI
application complying with X.509. The public key security in the ATMI environment
of the BEA Tuxedo product recognizes certificates that comply with X.509 version 3,
or X.509v3.

Using Security in ATMI Applications

Message-based Digital Signature

Certification Authority

Certificates are issued by a Certification Authority, or CA. Any trusted third-party
organization or company that iswilling to vouch for the identities of those to whom it
issues certificates and public keys can be aCA. When it creates a certificate, the CA
signs the certificate with its private key, to obtain adigital signature. The CA then
returns the certificate with the signature to the subscriber; these two parts—the
certificate and the CA’ s signature—together form avalid certificate.

The subscriber and others can verify the issuing CA’ s digital signature by using the
CA’spublickey. The CA makesitspublic key readily available by publicizing that key
or by providing a certificate from a higher-level CA attesting to the validity of the
lower-level CA’s public key. The second solution gives rise to hierarchies of CAs.

The recipient of an encrypted message can develop trust in the CA’s private key
recursively, if the recipient has a certificate containing the CA’ s public key signed by
asuperior CA whom therecipient already trusts. Inthis sense, acertificateisastepping
stonein digital trust. Ultimately, it is necessary to trust only the public keys of asmall
number of top-level CAs. Through achain of certificates, trust in alarge number of
users signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a
signature can betrusted only to the extent that the public key for verifying the signature
can be trusted.

Notethat BEA Systemshasno plansto becomea CA. By offering apublic key plug-in
interface, BEA Systems extends the opportunity to all BEA Tuxedo customersto
select a CA of their choice.

Certificate Repositories

To makeapublic key and itsidentification with a specific subscriber readily available
for usein verification, the digital certificate may be published in arepository or made
available by other means. Repositories are databases of certificates and other
information availablefor retrieval and use in verifying digital signatures. Retrieval can
be accomplished automatically by having the verification program directly request
certificates from the repository as needed.

Using Security in ATMI Applications 1-37

1 Introducing ATMI Security

Public-Key Infrastructure

The Public-Key Infrastructure (PKI) consists of protocols, services, and standards
supporting applications of public key cryptography. Because the technology is still
relatively new, the term PK1 is somewhat loosely defined: sometimes “ PKI1” simply
refersto atrust hierarchy based on public key certificates; in other contexts, it
embraces digital signature and encryption services provided to end-user applications
aswell.

Thereis no single standard public key infrastructure today, though efforts are
underway to define one. It is not yet clear whether a standard will be established or
multipleindependent PKIswill evolve with varying degrees of interoperability. Inthis
sense, the state of PK1 technology today can be viewed as similar to local and
wide-area network technology in the 1980s, before there was widespread connectivity
viathe Internet.

Thefollowing services are likely to befound in a PKI1:

m Key registration: for issuing a new certificate for a public key

m Certificaterevocation: for canceling a previously issued certificate
m Key selection: for obtaining a party’s public key

m Trust evaluation: for determining whether a certificate is valid and which
operationsit authorizes

The following figure shows the PK1 process flow.

Figure 1-8 PKI ProcessFlow

Certification N .
Authority 3 Repository
Subscriber {(4) > Recipient

1. Subscriber appliesto Certification Authority (CA) for digital certificate.

2. CA verifiesidentity of subscriber and issues digital certificate.

1-38 Using Security in ATMI Applications

Message-based Encryption

See Also

6.

CA publishes certificate to repository.

Subscriber digitally signs el ectronic message with private key to ensure sender
authenticity, message integrity, and non-repudiation, and then sends message to
recipient.

Recipient receives message, verifies digital signature with subscriber’s public
key, and goesto repository to check status and validity of subscriber’s certificate.

Repository returns results of status check on subscriber’s certificate to recipient.

Notethat BEA Systems has no plansto becomeaPK| vendor. By offering a public key
plug-ininterface, BEA Systems extendsthe opportunity to all BEA Tuxedo customers
to use a PKI security solution with the PK|1 software from their vendor of choice.

“Public Key Implementation” on page 1-42

“Security Administration Tasks” on page 2-3

“Administering Public Key Security” on page 2-42

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Message-based Encryption

M essage-based encryption keeps data private, which is essential for ATMI
applications that transport data over the Internet, whether between companies or
between a company and its customers. Data privacy isalso critical for ATMI
applications deployed over insecure internal networks.

M essage-based encryption also helps ensure message integrity, because it is more
difficult for an attacker to modify a message when the content is obscured.

Using Security in ATMI Applications 1-39

1 Introducing ATMI Security

The scope of protection provided by message-based encryption is end-to-end; a
message buffer is protected from the time it leaves the originating process until the
time it isreceived at the destination process. It is protected at al intermediate transit
points, including temporary message queues, disk-based queues, and system
processes, and during transmission over interserver network links.

1-40 Using Security in ATMI Applications

Message-based Encryption

The following figure shows how end-to-end message-based encryption works.

Figure1-9 ATMI PKCS-7 End-to-End Encryption

tpseal ()
From Sender To Recipient
Clear Data —»| Buffer T T~ _ T T Buffer |—> Clear Data
Public Key Security .
/ \ -
7 Symmetric Key Algorithm - ™~
- \
g \
{/ Public Key Algorithm \
| ! g ! /
N [o |
\

N VP | | 5 | >| Decrypt

// 4>| EncTrypt DecTrypt }7 \
(| \

Session Recipient's ' Recipient's |

Key Public Key ' Private Key y
\ !

AN /
~ _ /
-~ AN Recipient’s Assigned Public Key Pair - _

\ _~ /
~ _ N J
~ P

— - —

The message is encrypted by a symmetric key algorithm and a session key. Then, the
session key is encrypted by therecipient’s public key. Next, the recipient decrypts the
encrypted session key with the recipient’s private key. Finally, the recipient decrypts
the encrypted message with the session key to obtain the message content.

Note: The figure does not show two other stepsin this process: (1) the datais
compressed immediately before the message is encrypted; and (2) the datais
uncompressed immediately after the message is decrypted.

Using Security in ATMI Applications 1-41

1 Introducing ATMI Security

Because the unit of encryption isan ATMI message buffer, message-based encryption
is compatible with all existing ATMI programming interfaces and communication
paradigms. The encryption process is always the same, whether it is being performed
on messages shipped between two processes in a single machine, or on messages sent
between two machines through a network.

See Also

“Public Key Implementation” on page 1-42

“Security Administration Tasks’ on page 2-3

“Administering Public Key Security” on page 2-42

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Public Key Implementation

The underlying plug-in interface for public key security consists of six component
interfaces, each of which requires one or more plug-ins. By instantiating these
interfaces with your preferred plug-ins, you can bring custom message-based digital
signature and message-based encryption to your ATMI application.

The six component interfaces are:

Public key initialization
Key management
Certificate lookup
Certificate parsing
Certificate validation

Proof material mapping

1-42 Using Security in ATMI Applications

Public Key Implementation

Public Key Initialization

The public key initialization interface allows public key software to open public and
private keys. For example, gateway processes may need to have access to a specific
private key in order to decrypt messages before routing them. Thisinterfaceis
implemented as a fanout.

Key Management

The key management interface allows public key software to manage and use public
and private keys. Note that message digests and session keys are encrypted and
decrypted using this interface, but no bulk data encryption is performed using public
key cryptography. Bulk data encryption is performed using symmetric key
cryptography.

Certificate Lookup

The certificate lookup interface allows public key software to retrieve X.509v3
certificates for agiven principal. Principal s are authenticated users. The certificate
database may be stored using any appropriate tool, such as Lightweight Directory
Access Protocol (LDAP), Microsoft Active Directory, Netware Directory Service
(NDS), or locdl files.

Certificate Parsing

The certificate parsing interface allows public key software to associate asimple
principal name with an X.509v3 certificate. The parser analyzes a certificate to
generate a principal hame to be associated with the certificate.

Using Security in ATMI Applications 1-43

1 Introducing ATMI Security

Certificate Validation

The certificate validation interface allows public key software to validate an X.509v3
certificate in accordance with specific businesslogic. Thisinterfaceisimplemented as
afanout, which allows BEA Tuxedo customersto use their own business rules to
determine the validity of a certificate.

Proof Material Mapping

The proof material mapping interface allows public key software to access the proof
materials needed to open keys, provide authorization tokens, and provide auditing
tokens.

Implementing Custom Public Key Security

Y ou can provide public key security for your ATMI application by using custom
plug-ins. Y ou choose a plug-in by configuring the BEA Tuxedo registry, atool
that controls all security plug-ins.

If you want to use custom public key plug-ins, you must configure the registry for
your public key plug-ins before you can install them. For more detail about the
registry, see “ Setting the BEA Tuxedo Registry” on page 2-3.

Default Public Key Implementation

The default public key implementation supports the following agorithms:
m Public key algorithms: RSA
m Digital signature algorithms: RSA and DSA

m Symmetric key algorithms:
¢ DESCBC

1-44 Using Security in ATMI Applications

Default Authentication and Authorization

e Two-key triple-DES
e RC2

m Message digest algorithms:
e MD5
e SHA-1

See Also

m “Public Key Security” on page 1-29

m “Security Administration Tasks” on page 2-3

m “Administering Public Key Security” on page 2-42

m “Programming an ATMI Application with Security” on page 3-3

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Default Authentication and Authorization

The default authentication and authorization plug-ins provided by the ATMI
environment of the BEA Tuxedo product work in the same manner that
implementations of authentication and authorization have worked sincethey werefirst
made available with the BEA Tuxedo system.

An application administrator can use the default authentication and authorization
plug-insto configurean ATMI application with one of five levels of security. Thefive
levelsare:

m No authentication
m Application password security

m User-level authentication

Using Security in ATMI Applications 1-45

1 Introducing ATMI Security

m Optiona accesscontrol list (ACL) security

m Mandatory ACL security

At the lowest level, no authentication is provided. At the highest level, an access
control checking feature determines which users can execute a service, post an event,
or enqueue (or dequeue) a message on an application queue. The security levels are
briefly described in the following table.

Table 1-6 Security Levelsfor Default Authentication and Authorization

Security L evel

Description

No authenti cation

Clientsdo not have to be verified before joining the ATMI
application.

When joining an ATMI application at this security level, auser
has accessto al application resources.

Application password

The application administrator defines asingle password for the
entire ATMI application, and clientsmust provide the password
to join the application.

When successfully joining an ATMI application at this security
level, auser has accessto all application resources.

User-level authentication

In addition to the application password, each client must
provide avalid username and user-specific data, such asa
password, to join the ATMI application.

When successfully joining an ATMI application at this security
level, auser has accessto all application resources.

Optional ACL security

Clientsmust provide the application password, ausername, and
user-specific data such as a password.

For auser who successfully joins an ATMI application at this
security level, accessto application resourcesisrestricted in the
following way. The ACL database contains alist of application
resources and, for each resource, alist of users with permission
to useit. A user who is not included in the list for a particular
resource is not allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security isbeing
used.

If thereis no entry in the ACL database for aresource and the
security level for the ATMI application is set to optional ACL
security, all users are permitted to access the resource.

1-46 Using Security in ATMI Applications

Default Authentication and Authorization

Table 1-6 Security Levelsfor Default Authentication and Authorization

Security Level

Description

Mandatory ACL security

Clientsmust providethe application password, ausername, and
user-specific data such as a password.

For a user who successfully joinsan ATMI application at this
security level, accessto application resourcesisrestrictedinthe
following way. The ACL database containsalist of application
resources and, for each resource, alist of userswith permission
touseit. A user who isnot included in the list for a particular
resource is not allowed to access that resource, regardl ess of
whether optional ACL or mandatory ACL security isbeing
used.

If thereis no entry in the ACL database for aresource and the
security level for the ATMI application is set to mandatory
ACL security, users are not permitted to access the resource.

Note: Thetermclientissynonymouswith client process, meaning aspecificinstance
of aclient program in execution. An ATMI client program can exist in active
memory in any humber of individual instances.

An application administrator can designate a security level by setting the SECURI TY
parameter in the UBBCONFI G configuration file to the appropriate value.

For This Security L evel

Set SECURITY Parameter to. ..

No authentication NONE
Application password security APP_PW
User-level authentication USER_AUTH
Optional ACL security ACL

Mandatory ACL security

MANDATORY_ACL

The default is NONE. If SECURI TY is set to USER_AUTH, ACL, or MANDATORY_ACL, then
the application administrator must configure a system-supplied authentication server
named AUTHSVR. AUTHSVR performs per-user authentication.

Using Security in ATMI Applications 1-47

1

Introducing ATMI Security

An application developer can replace AUTHSVR with an authentication server that has
logic specific to the ATMI application. For example, acompany may want to develop
a custom authentication server so that it can use the popular Kerberos mechanism for
authentication.

Client Naming

Upon joining an ATMI application, a client process has two hames: a combined
user-client name and a unique client identifier known as an application key.

m Theuser-client name consists of a username and a client name and is used for
security, administration, and communications.

m Theapplication key is a 32-bit value that is called on behalf of the client and
used by the access control checking feature.

Two client names are reserved for special semantics: t psysadmand t psysop.
t psysadmis treated as the application administrator, and t psysop is treated as the
application operator.

User-Client Names

1-48

When an authenticated client joins an ATMI application, it passes a username and
client nametot pi ni t (3c) inaTPI NI T buffer if the application iswrittenin C, or to
TPI NI TI ALI ZE(3cbl) inaTPI NFDEF- REC record if the application iswritten in
COBOL. The username and client name, aswell as other security-related fieldsin the
TPI NI T buffer/ TPI NFDEF- REC record, are described in the following table.

Table 1-7 Security-Related Fieldsin TPINIT Buffer/ TPINFDEF-REC Record

TPINIT TPINFDEF-REC Description

usrname USRNAVE A user name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, or MANDATCORY_ACL. The username represents
the caller.

* The binary equivalent of the UBBCONFI Gfile.
** Usually auser password.

Using Security in ATMI Applications

Default Authentication and Authorization

Table 1-7 Security-Related Fieldsin TPINIT Buffer/ TPINFDEF-REC Record
TPINIT TPINFDEF-REC Description

cltname CLTNAME A client name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, or MANDATORY_ACL. The client name
represents the client program.

passwd PASSVD Application password. Required for security level
APP_PW USER_AUTH, ACL, or VANDATORY_ACL.
tpinit() or TPI NI TI ALI ZE() validatesthis
password by comparing it to the configured
application password stored in the TUXCONFI Gfile.*

datalen DATALEN Length of the user-specific data** that follows.

dat a N/A User-specific data.** Required for security level
USER_AUTH, ACL, or MVANDATORY_ACL.
tpinit() or TPI NI TI ALI ZE() forwardsthe
user-specific data to the authentication server for
validation. The authentication server is AUTHSVR.

* The binary equivalent of the UBBCONFI Gfile.
** Usually auser password.

For an authenti cated security level (USER_AUTH, ACL, or MANDATORY_ACL), the
username, client name, and user-specific data are transferred to AUTHSVR without
interpretation by the BEA Tuxedo system. The only manipulation of thisinformation
isits encryption when transmitted over the network from a Workstation client.

Application Key

Every time aclient joinsan ATMI application, it is assigned a 32-bit application key
by the BEA Tuxedo system. The client cannot reset the key other than by terminating
its association and joining the ATMI application as a different user.

The assigned application key isthe client’s security credential. The client providesits
application key with every serviceinvocation as part of the TPSVCI NFOstructurein the
appkey field. (Seet pservi ce(3c) inthe BEA Tuxedo ATMI C Function Reference
for more information about TPSVCI NFO.)

Using Security in ATMI Applications 1-49

1

Introducing ATMI Security

Thefollowing table shows how the application key isset for various security levelsand
clients. All application key assignments are hardcoded except the last item in the table.

Table 1-8 Application Key Assignments

At ThisSecurity Level Messagesof ThisType

Are Assigned the Following
Application Key

Any security level Messages from native ATMI clientsthat ~ 0x80000000
must be run by the administrator (like (Application key of the administrator)
t madm n(1))

NONE or APP_PW Messages from native ATMI clientsthat 0x80000000

1-50

cal tpinit()/TPI NI TI ALl ZE()
with aclient name of t psysadmand are
run by the administrator

(Application key of the administrator)

Messages from native ATMI clients that
cal tpinit()/TPI NI TI ALI ZE()
with aclient name of t psysop and are
run by the administrator

0xC0000000
(Application key of the operator)

Messages from any ATMI client other
thant psysadmor t psysop

Using Security in ATMI Applications

1

Default Authentication and Authorization

Table 1-8 Application Key Assignments (Continued)

At ThisSecurity Level Messages of This Type

Are Assigned the Following
Application Key

USER_AUTH, ACL, or
MANDATORY_ACL

Messages from native ATMI clients that
cal tpinit()/TPI NI Tl ALl ZE()
with aclient name of t psysadmand are
run by the administrator and bypass
authentication

0x80000000
(Application key of the administrator)

Messages from authenticated ATMI
clientsthat call t pi ni t()/

TPI NI Tl ALI ZE() withaclient nameof
t psysadm

0x80000000
(Application key of the administrator)

Messages from authenticated ATMI
clientsthat call t pi ni t()/

TPI NI Tl ALI ZE() withaclient nameof
t psysop

0xC0000000
(Application key of the operator)

Messages from authenticated ATMI
clientsthat call t pi ni t()/

TPI NI TI ALI ZE() with aclient name
other thant psysadmor t psysop

Application key = user

i dentifier (UID)inthelower 17
bitsandgroup i dentifier (GID)
in the next higher 14 bits; remaining
upper bit is0. AUTHSVR returns this
application key value

In addition, any message that originatesfromt psvri ni t (3c) ort psvrdone(3c) in
a C program (TPSVRI NI T(3cbl) or TPSVRDONE(3cbl) in COBOL) isassigned the
application key of the administrator: 0x80000000. The application key of the clientis
assigned to messages that pass through a server but originate at a client; an exception
to thisruleis described in “ Replacing Client Tokenswith Server Tokens” on page

1-11.

A user identifier (UID) isan integer, between 0 and 128K, that is used by the
applicationto refer to aparticular user. A group identifier (GID) isan integer, between
0 and 16K, that is used by the application to refer to an application group.

Using Security in ATMI Applications 1-51

1

Introducing ATMI Security

User, Group, and ACL Files

1-52

To use access control, an application administrator must maintain lists of (1) users, (2)
groups, and (3) and mappings of groups to application entities (such as services,
events, and application queues). The third type of list, a mapping of groups to
application entities, is known as the access contral list (ACL).

When aclient tries to access an application resource, such as a service, the system
checks the client’ s application key and thus identifies the group to which the user
belongs. Next, the system checks the ACL for the target resource and determines
whether the client’ s group has access permission. The application administrator,
application operator, and processes or service requests running with the privileges of
the application administrator or operator are not subject to ACL permission checking.

Theuser, group, and ACL filesarelocated intheappl i cat i on_r oot directory, where
application _root isthefirst pathname defined for the APPDI R variable. The
following figure identifies these files and specifies the administrative commands
available for controlling each list.

Figure 1-10 Default User, Group, and ACL Files

application_root

tpusr tpgrp tpacl

Administrative Commands Administrative Commands Administrative Commands

for User File for Group File for ACL File
m tpusradd(1) m tpgrpadd(1) m tpacladd(1)
m tpusrdel(1) m tpgrpdel(1) m tpacldel(1)
m tpusrmod(1) m tpgrpmod(1) m tpacimod(1)

Note: For an ATMI application running on the Compag VM S operating system, the
names of the user, group, and ACL fileshave . dat extensions: t pusr. dat ,
t pgr p. dat , and t pacl . dat .

Using Security in ATMI Applications

Default Authentication and Authorization

The files are colon-delimited, flat text files that can be read and written only by the
application administrator—the owner of the TUXCONFI Gfile referenced by the
TUXCONFI Gvariable. The format of thefilesisirrelevant, since thefiles are fully
administered with a set of dedicated commands. Only the application administer is
allowed to use these commands.

An application administer can usethet pacl cvt (1) command to convert security data
files to the format needed by the ACL checking feature. For example, ona UNIX host
machine, an administrator can uset pacl cvt to convert the/ et ¢/ password file and
store the converted version in thet pusr file. The same administrator can use

t pacl cvt to convertthe/ et ¢/ gr oup fileand storethe converted versioninthet pgr p
file.

The AUTHSVR server uses the user information stored in thet pusr file to authenticate
users who want to join the ATMI application.

Optional and Mandatory ACLs

The ACL and MANDATORY_ACL security levels constitute the default authorization
implementation for the ATMI environment in the BEA Tuxedo product.

When the security level isACL, if thereisno entry inthet pacl fileassociated withthe
target application entity, the client is permitted to access the entity. This security level

enables an administrator to configure access for only those resources that need more

security. That is, thereis no need to add entriesto thet pacl filefor services, events,
or application queues that are open to everyone.

When the security level is MANDATORY_ACL, if thereis no entry in thet pacl! file
associ ated with the target application entity, the client is not permitted to accessthe
entity. For thisreason, thislevel is called mandatory. There must be an entry in the
t pacl filefor each and every application entity that the client needs to access.

For both the ACL and MANDATORY_ACL security levels, if an entry for an application
entity existsinthet pacl file and the client attempts to access that entity, the user
associated with that client must be a member of a group that is allowed to access that
entity; otherwise, permission is denied.

For some ATMI applications, it may be necessary to use both system-level and
application-level authorization. Anentry inthet pacl filecan beused to control which
users can access aservice, and application logic can control data-dependent access, for
example, which users can handle transactions for more than a million dollars.

Using Security in ATMI Applications 1-53

1 Introducing ATMI Security

See Also

Notethat thereisno ACL permission checking for administrative services, events, and
application queues with names that begin with adot (.). For example, any client can
subscribe to administrative events such as. SysMachi neBr oadcast ,

. SysNet wor kConfi g, and . SysSer ver d eani ng. In addition, thereisno ACL
permission checking for the application administrator, application operator, or
processes or service requests running with the privileges of the application
administrator or operator.

“What Administering Security Means” on page 2-1

“Security Administration Tasks’ on page 2-3

“Administering Authentication” on page 2-9

“Administering Authorization” on page 2-35

“What Programming Security Means’ on page 3-1
“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code So Client Programs Can Join the ATMI Application” on
page 3-4

“About the Configuration File” on page 2-1 and “Creating the Configuration
File’ on page 3-1 in Setting Up BEA Tuxedo Applications

UBBCONFI G(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

AUTHSVR(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

1-54 Using Security in ATMI Applications

Security Interoperability

Security Interoperability

Application developers and administrators must be aware of certain security issues
when configuring ATMI applicationsto interoperate with BEA Tuxedo pre-release 7.1
(6.5 or earlier) software.

Interoperability, as defined in this discussion, is the ability of the current release of
BEA Tuxedo softwareto communicate over anetwork with apreviousrelease of BEA
Tuxedo software. Specifically, inter-domain interoperability and intra-domain
interoperability have the following meanings:

m Inter-domain interoperability

Involves one ATMI application running BEA Tuxedo release 7.1 or later
software, and another ATMI application running BEA Tuxedo pre-release 7.1
software. See the diagram “Inter-Domain | nteroperability” on page 1-56 for
clarification.

m Intradomain interoperability

Involves one machine in a multiple-machine ATMI application running BEA
Tuxedo release 7.1 or later software, and another machine in the same
application running BEA Tuxedo pre-release 7.1 software. See the figure
“Intra-Domain Interoperability” on page 1-56 for clarification.

Using Security in ATMI Applications 1-55

1 Introducing ATMI Security

Figure1-11 Inter-Domain Interoperability

- AN FRN
. -
Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

s~ 7

Application 2 Runniﬁg
BEA Tuxedo Pre-Release 7.1 Software

/ RN o \

/ N / \

(b }

\ b /
/ / \ \
/ \
l Vo |
\ Workstation I | orkstation }
\ Client / \ Client /

AN /

=T / Conr:\(leitt\i,(\l)(r)]rlzunk) \ /T
N A ~ 7N J
~ / AN -

Figure 1-12 Intra-Domain Interoperability

Same BEA Tuxedo Application

Machine 1 Running BEA Tuxedo
Release 7.1 or Later Software

Machine 2 Running BEA Tuxedo
Pre-Release 7.1 Software

Workstation
Client

1-56 Using Security in ATMI Applications

Network
Connection (Link)

Workstation
Client

Security Interoperability

Interoperating with Pre-Release 7.1 Software

Interoperating with BEA Tuxedo pre-release 7.1 software is allowed or disallowed at
the authentication security level. Authentication, asimplemented by BEA Tuxedo
release 7.1 or later software, allows communicating processes to mutually prove their
identities.

By default, interoperability with a machine running BEA Tuxedo pre-release 7.1
softwareisnot allowed. To change the default, an application administrator can usethe
CLOPT -t option to allow workstation handlers (WSHs), domain gateways
(GnrDOMAI Ns), and serversintherelease 7.1 or later ATMI application to interoperate
with BEA Tuxedo pre-release 7.1 software. “Mandating Interoperability Policy” on
page 2-15 providesinstructions for using the CLOPT -t option aswell asthe security
ramifications for authentication and authorization when using CLOPT -t .

Interoperability for Link-Level Encryption

Whenever a network link is established between machines running BEA Tuxedo
software, link-level encryption may be used to encrypt data before sending it over the
network link, and decrypt it asit comes off the link. Of course, link-level encryptionis
possible only if LLE isinstalled on both the sending and receiving machines.

LLE interoperability with BEA Tuxedo pre-release 7.1 software is described in
“Backward Compatibility of LLE” on page 1-26.

Interoperability for Public Key Security

Thefollowing interoperability rulesfor public key security apply to amachinerunning
release 7.1 or later BEA Tuxedo software that is configured to interoperate with a
machine running BEA Tuxedo pre-release 7.1 software. To clarify therules, each rule
has an accompanying example scenario involving a Workstation client running BEA
Tuxedo pre-release 7.1 software.

For inter-domain interoperability, release 7.1 or later domain gateway (GATDOVAI N)
processes enforce the interoperability rules for public key security.

Using Security in ATMI Applications 1-57

1 Introducing ATMI Security

Table 1-9 Interoperability Rulesfor Public Key Security

I nter oper ability Rule

Example

Comments

Encrypted outgoing message buffers
destined for a machine running BEA
Tuxedo pre-release 7.1 software are not
transmitted to the machine.

Encrypted outgoing message buffers
destined for apre-release 7.1
Workstation client are not transmitted
to the Workstation client.

“Encrypted” refersto public
key message-based
encryption, not link-level
encryption.

Incoming message buffers from a
machine running a BEA Tuxedo
pre-release 7.1 software are not accepted
if routed to a process requiring
encryption.

Incoming message buffers from a
pre-release 7.1 Workstation client do
not have encryption envelopes
attached, and are not accepted if routed
to a process requiring encryption.

See “ Setting Encryption
Policy” on page 2-48 for a
description of the
ENCRYPTI ON_REQUI RED
configuration parameter.

For outgoing message buffers destined
for the machine running BEA Tuxedo
pre-release 7.1 software, any digital
signaturesare verified and then removed
before the message buffers are
transmitted to the older machine.

Digital signatures are verified and then
removed from outgoing message
buffers destined for a pre-release 7.1
Workstation client.

It isassumed that the
outgoing message buffer is
digitally signed but not
encrypted. If the outgoing
message buffer isdigitally
signed and encrypted, the
message is not decrypted,
thedigital signaturesare not
verified, and the message is
not transmitted to the ol der
machine.

Incoming message buffers from a
machine running BEA Tuxedo
pre-release 7.1 software are not accepted
if routed to a process requiring digital
signatures.

Incoming message buffers from a
pre-release 7.1 Workstation client do
not have digital signatures attached,
and are not accepted if routed to a
process requiring digital signatures.

See “ Setting Digital
Signature Policy” on page
2-43 for adescription of the
S| GNATURE_REQUI RED
configuration parameter.

For intra-domain interoperability, release 7.1 or later native clients, workstation
handlers (WSHS), or server processes communicating with the local bridge process
enforce the interoperability rules for public key security, as shown in the following

figure. A bridge process operatesonly as aconduit; it does not decrypt message buffer
content or verify digital signatures.

1-58 Using Security in ATMI Applications

Security Interoperability

Figure1-13 EnforcinglIntra-Domain Interoperability Rulesfor Public Key Security

Same BEA Tuxedo Application

Machine 1 Running BEA Tuxedo Machine 2 Running BEA Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software
@ Local Bridge

Bridge

Enforcers

Native
Client

Native
Client

_l Workstation Network Workstation
| Client Connection (Link) Client

Note: Typically, arelease 7.1 or later WSH does not verify digital signatures. But
when routing a digitally signed message buffer to a process running BEA
Tuxedo pre-release 7.1 software, the WSH verifies any digital signatures
before removing them.

See Also

m “Security Compatibility” on page 1-60

m “Mandating Interoperability Policy” on page 2-15
m “Setting Digital Signature Policy” on page 2-43

m “Setting Encryption Policy” on page 2-48

Using Security in ATMI Applications 1-59

1

Introducing ATMI Security

Security Compatibility

For an ATMI application running BEA Tuxedo release 7.1 or later software, it is
possible to have any combination of default or custom authentication, authorization,
auditing, and public key security. In addition, any combination of these four security
capabilitiesis compatible with link-level encryption.

Mixing Default/Custom Authentication and Authorization

It is possible to have default authentication and custom authorization, or custom
authentication and default authorization, as long as the application devel oper is aware
of the following restriction: the authorization security token must carry at a minimum
(1) an authenticated username, or principal hame, and (2) an application key value as
defined in “ Application Key” on page 1-49.

Authorization decisions are based partly on user identity, which is stored in an
authorization token. Because authorization tokens are generated by the authentication
security plug-in, providers of authentication and authorization plug-ins need to ensure
that these plug-ins work together. (See “ Authentication” on page 1-7 and
“Authorization” on page 1-12 for more detail.)

Mixing Default/Custom Authentication and Auditing

1-60

It ispossible to have default authentication and custom auditing, or custom
authentication and default auditing, aslong asthe application devel oper isaware of the
following restriction: the auditing security token must carry at a minimum (1) an
authenticated username, or principal name, and (2) an application key value as defined
in“Application Key” on page 1-49.

Auditing decisions are based partly on user identity, which is stored in an auditing
token. Because auditing tokens are generated by the authentication security plug-in,
providers of authentication and auditing plug-ins need to ensure that these plug-ins
work together. (See “ Authentication” on page 1-7 and “ Auditing” on page 1-18 for
more detail.)

Using Security in ATMI Applications

Security Compatibility

Compatibility Issues for Public Key Security

Public key security is compatible with all features and processes supported by BEA
Tuxedo release 7.1 or |ater software except the compression feature. Encrypted
message buffers cannot be compressed using the compression feature. But, because
the public key software compresses the message content just before it encrypts the
message buffer, any size savings are till achieved.

Thistopic describes the compatibility/interaction of public key security with the
following ATMI features and processes:

m Data-dependent routing

m Threads

m EventBroker

m /Q

m Transactions

m Domain gateways (GATDOVAI Ns)

m Other vendors' gateways

Compatibility/Interaction with Data-dependent Routing

Central to the data-dependent routing feature is the ability of a processto examinethe
content of incoming message buffers. If an incoming message buffer is encrypted, a
process configured for data-dependent routing must have opened arecipient’s private
key so that the public key software can use that key to decrypt the message buffer. For
data-dependent routing, the public key software does not verify digital signatures.

If adecryption key is not available, the routing operation fails. The system generates
an ERROR user | og(3c) message to report the failure.

If adecryption key is available, the process makes a routing decision based on a
decrypted copy of the encrypted message buffer. The chain of eventsis as follows:

1. The public key software makes a copy of the encrypted message buffer and uses
the decryption key to decrypt the buffer.

Using Security in ATMI Applications 1-61

1 Introducing ATMI Security

2. The process reads the resulting plaintext (unencrypted text) message content to
make the routing decision.

3. Thepublic key software overwrites the plaintext message content with zero
values to preserve privacy.

The system then transmits the original encrypted message buffer in accordance with
the routing decision.

Compatibility/Interaction with Threads

Public-private keys are represented and manipulated via handles. A handle has data
associated with it that is used by the public key application programming interface
(API) to locate or access the item named by the handle. A process opens a key handle
for digital signature generation, message encryption, or message decryption.

A key handle is a process resource; it is hot bound to any specific thread or context.
Any communication necessary to open akey is performed within thethread’ s currently
active context. Thereafter, the key is available to any context in the process, whether
or not the context is associated with the sasme ATMI application.

A key’'sinternal data structures are thread safe. As such, akey may be accessed
concurrently by multiple threads.

Compatibility/Interaction with the EventBroker

In general, a TMUSREVT(5) system server handles encrypted message buffers without
decrypting them, that is, both digital signaturesand encryption envelopesremain intact
as messages flow through the BEA Tuxedo EventBroker component. However, the
following cases require that the EventBroker component decrypt posted message
buffers:

m To evaluate subscription filter expressions based on message content.

If the EventBroker does not have access to a suitable decryption key, the
subscription’s filter expression is assumed to be false, and the subscription is not
considered a match.

m To perform subscription notification actions that require access to message
content: user | og(3c) processing or system command execution.

1-62 Using Security in ATMI Applications

Security Compatibility

If the EventBroker does not have access to a suitable decryption key, the
subscription’s notification action fails, and the system generates an ERROR
user| og(3c) message to report the failure.

m To perform subscription notification actions that, based on system
configurations, need to access message content for data-dependent routing.

If the EventBroker does not have access to a suitable decryption key, the
subscription’s notification action fails, and the system generates an ERROR
user| og() messageto report the failure.

For atransactional subscription, the system a so marks the transaction as
rollback-only.

m To comply with an administrative system policy requiring encryption (as
explained in “ Setting Encryption Policy” on page 2-48).

If the EventBroker does not have access to a suitable decryption key, the
t ppost (3c) operation fails, and the system generates an ERROR user | og()
message to report the failure.

m To verify that a posted encrypted message has a valid digital signature attached,
if required to do so by an administrative system policy requiring digital
signatures (as explained in “ Setting Digital Signature Policy” on page 2-43).

If the EventBroker does not have access to a suitable decryption key, the
t ppost (3c) operation fails, and the system generates an ERROR user | og()
message to report the failure.

Compatibility/Interaction with /Q

In general, a TMQUEUE(5) or TMQFORWARD(5) system server handles encrypted
message buffers without decrypting them, that is, both signatures and encryption
envelopes remain intact as messages flow through the BEA Tuxedo /Q component.
However, the following cases require that the /Q component decrypt enqueued
message buffers:

m To perform TMQFORWARD operations that, based on system configurations, need
to access message content for data-dependent routing.

If TMQFORWARD does not have access to a suitable decryption key, the forward
operation fails. The system returns the message to the queue and generates an
ERROR user | og(3c) messageto report thefailure.

Using Security in ATMI Applications 1-63

1

Introducing ATMI Security

After anumber of periodic retry attempts, TMQFORWARD might place the
unreadable message on an error queue.

m To comply with an administrative system policy requiring encryption (as
explained in “ Setting Encryption Policy” on page 2-48).

If the /Q component does not have access to a suitable decryption key, the
t penqueue(3c) operation fails, and the system generates an ERROR
user | og() message to report the failure.

m To verify that an enqueued encrypted message has avalid signature attached, if
required to do so by an administrative system policy requiring digital signatures
(asexplained in “ Setting Digital Signature Policy” on page 2-43).

If the /Q component does not have access to a suitable decryption key, the
t penqueue(3c) operation fails, and the system generates an ERROR
user | og() message to report the failure.

A non-transactional t pdequeue(3c) operation has the side effect of destroying an
encrypted queued message if the invoking process does not hold a valid decryption

key.

If amessage with an invalid signature is placed in a queue (or if the messageis
corrupted or tampered with while on the queue), any attempt to dequeue it fails. A
non-transactional t pdequeue() operation hasthe side effect of destroying such a
message. A transactional t pdequeue() operation causes transaction rollback, and all
future transactional attempts to degueue the message will continue to fail.

Compatibility/Interaction with Transactions

1-64

Public key security operations—opening and closing keys, requesting a digital
signature, or requesting encryption—are not transactional, and are not undone by
transaction rollback. However, transactions might rollback due to failure conditions
associated with the following public key operations:

m If atransactional request or reply message cannot be decrypted, its associated
transaction is rolled back.

m If atransactional request or reply message is discarded because of an invalid or
missing digital signature, its associated transaction isrolled back.

m If atransactional request or reply message is rejected because it violates an
administrative system policy requiring encryption or digital signatures, its
associated transaction isrolled back.

Using Security in ATMI Applications

Security Compatibility

Compatibility/Interaction with Domain Gateways

Domain gateway (GAMDOVAI N) processes connecting two ATMI applications running
BEA Tuxedo release 7.1 or later software preserve digital signatures and encryption
envelopes. In addition, the domain gateway processes verify digital signatures and
enforce administrative system policies regarding digital signatures and encryption.

The following figureis an aid to understanding how domain gateway processes
interact with local and remote ATMI applications. The table following the figure
describes how release 7.1 or later domain gateway processes handle digitally signed
and encrypted message buffers.

Figure 1-14 Communication Between ATMI Applications

GWTDOMAIN / A\ GWTDOMAIN

/ {1 \
/ Nt/ !
| inbound ||| outbound |
\ Workstation outbound /|| inbound Workstation /

\ Client I:>/ N Client /

- N —
~ — /\ / Network \ /\ - g
N /o~ _ J Connection (Link) \ — N\ Y
~ s N ~

Using Security in ATMI Applications 1-65

1

Introducing ATMI Security

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Inbound message— Hasencryptionenvelopeand The domain gateway process accepts the message and
originating from a may or may not havedigital forwardsit in encrypted form.

remote process and signature If the data-dependent routing feature applies and the

received over a
network connection

domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See “ Compatibility/Interaction with
Data-dependent Routing” on page 1-61 for
clarification.)

Inbound message Does not have encryption

envelope or digital signature

If the domain gateway processis running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If aservice
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See “ Setting
Encryption Policy” on page 2-48 for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts and forwards the message.

Inbound message Has digital signaturebutis ~ The domain gateway process verifies the digital
not encrypted signature and forwards the message with digita
signature attached.
Inbound message Does not have digital If the domain gateway processis running within a

signature and is not
encrypted

domain, machine, or group requiring digital signatures,
the gateway process rejects the message. If aservice
advertised by the domain gateway requiresdigital
signatures, the gateway process rejects the message.
(See* Setting Digital Signature Policy” on page 2-43for
clarification.)

If the domain gateway does not require digital
signatures, the gateway process accepts and forwards

the message.

1-66

Using Security in ATMI Applications

Security Compatibility

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOM AIN) Processes

M essage Type Condition Resulting Oper ation

Outbound message— Hasencryptionenvelopeand The domain gateway process accepts the message and
originatingfromalocal may or may not have digital forwardsit in encrypted form over the network.
process and signature If the data-dependent routing feature applies and the

transmitted over a
network connection

domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See “ Compatibility/I nteraction with
Data-dependent Routing” on page 1-61 for
clarification.)

If the encrypted message is destined for a process
running BEA Tuxedo pre-release 7.1 (6.5 or earlier)
software, the domain gateway process rejects the
message. (See “ Interoperating with Pre-Release 7.1
Software” on page 1-57 and “ Interoperability for Public
Key Security” on page 1-57 for clarification.)

Outbound message

Does not have encryption
envelope or digital signature

If the domain gateway process is running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If a service
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See “ Setting
Encryption Policy” on page 2-48 for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts the message and forwards it
over the network.

Outbound message

Has digital signature but is
not encrypted

The domain gateway process verifies the digital
signature and forwards the message with digital
signature attached over the network.

If the message is destined for a process running BEA
Tuxedo pre-release 7.1 software and assuming
interoperability with BEA Tuxedo pre-release 7.1
software is allowed, the domain gateway process
verifies and then removes the digita signature before
forwarding the message over the network. (See
“Interoperating with Pre-Release 7.1 Software” on page
1-57 and “Interoperability for Public Key Security” on
page 1-57 for clarification.)

Using Security in ATMI Applications 1-67

1

Introducing ATMI Security

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Outbound message Does not have digital If the domain gateway processis running within a
signature and is not domain, machine, or group requiring digital signatures,
encrypted the gateway process rejects the message. If aservice

advertised by the domain gateway requiresdigital
signatures, the gateway process rejects the message.
(See* Setting Digital Signature Policy” on page 2-43for
clarification.)

If the domain gateway does not require digital
signatures, the gateway process accepts the message
and forwards it over the network.

Compatibility/Interaction with Other Vendors’ Gateways

1-68

A domain gateway (GATDOVAI N) process connecting arelease 7.1 or later ATMI
application to another vendor’s gateway process operates on outbound message
buffers as follows:

1. Decrypts encrypted messages.
2. Veifiesdigital signatures (if any) and then removes digital signatures.

3. Transmits messages in plaintext format over the network to the vendor’s gateway
process.

In addition, the domain gateway process enforces the administrative system policies
regarding encryption and digital signatures for the ATMI application. As an example,
if encryption and/or digita signatures are required at the domain level for the ATMI

application, the local domain gateway process rejects any message coming from the

other vendor’ s gateway process.

Using Security in ATMI Applications

Security Compatibility

See Also

m “Security Interoperability” on page 1-55

m “Mandating Interoperability Policy” on page 2-15
m “Setting Digital Signature Policy” on page 2-43

m “Setting Encryption Policy” on page 2-48

Using Security in ATMI Applications 1-69

1 Introducing ATMI Security

1-70 Using Security in ATMI Applications

CHAPTER

2 Administering Security

Thistopic includes the following sections:

What Administering Security Means

Security Administration Tasks

Setting the BEA Tuxedo Registry

Configuring an ATMI Application for Security
Setting Up the Administration Environment

Administering Default Authentication and Authorization

What Administering Security Means

Administering security for an ATMI application involves setting and enforcing
security policies for the components of the application, including its clients, server
machines, and gateway links. The application administrator sets the security policies
for the ATMI application, and the BEA Tuxedo system upon which the ATMI
application is built enforces those policies.

The BEA Tuxedo system offers the following ATMI security capabilities:

Authentication
Authorization
Auditing

Link-level encryption

Using Security in ATMI Applications 2-1

2 Administering Security

m Public key security

All but one of the security capabilities can be configured by the application
administrator. The exception is auditing, which cannot be configured, as shown in the

following figure.

Figure2-1 Administering ATMI Security

ATMI Application Administration

Commands API

l l l

Management Information Base (MIB)

BEA Tuxedo Library

| |
| L | . Link-Level Public Key
Authentication Authorization Encryption Security

! | ' {

ATMII Security

Link-Level
Encryption

Plug-in Interface

Default Default Default Default
Authentication Authorization Auditing Public Key Security
[Custom [Custom [Custom Custom

Security Plug-ins

See Also

m “Security Administration Tasks’ on page 2-3

2-2 Using Security in ATMI Applications

Security Administration Tasks

“What Security Means’ on page 1-1

“What Programming Security Means”’ on page 3-1

Security Administration Tasks

See Also

Setting

Security administration consists of the following tasks:

Setting the BEA Tuxedo registry

Configuring an ATMI application for security
Setting up the administration environment
Administering operating system (OS) security
Administering authentication

Administering authorization

Administering link-level encryption

Administering public key security

“Setting the BEA Tuxedo Registry” on page 2-3

the BEA Tuxedo Registry

The application administrator needs to know about the BEA Tuxedo registry if the
ATMI application isto be configured with one or more custom security capabilities.
On the other hand, if the ATMI application is to be configured only with default
security, the BEA Tuxedo registry does not need to be changed.

Using Security in ATMI Applications 2-3

2 Administering Security

The BEA Tuxedo registry is a disk-based repository for storing information related to
plug-in modules. Initially, this registry holdsregistration information about the default
security plug-ins.

Purpose of the BEA Tuxedo Registry

Most BEA middleware products use a common transaction processing (TP)
infrastructure that consists of a set of core services, such as security. The TP
infrastructureisavailableto ATMI applicationsthrough well defined interfaces. These
interfaces allow application administrators to change the default behavior of the TP
infrastructure by loading and linking their own service code modules, referred to as
plug-in modules or simply plug-ins.

Thefirst step in loading a plug-in isto register the plug-in with the host operating
system. Registering aplug-in adds an entry for the plug-into the BEA Tuxedo registry,
which isaset of binary filesthat storesinformation about active plug-ins. Thereisone
registry per BEA Tuxedo installation.

m On aUNIX host machine, the BEA Tuxedo registry isin the
$TUXDI R/ udat aobj directory.

m On aWindows 2000 host machine, the BEA Tuxedo registry isin the
9 UXDI RoA udat aobj directory.

Every Workstation client and server machine in an ATMI application must use the
same set of plug-in modules.

Registering Plug-ins

2-4

The administrator of an ATMI application in which custom plug-ins will be used is
responsible for registering those plug-ins and performing other registry related tasks.
An administer can register plug-insin the BEA Tuxedo registry only from the local
machine. That is, an administrator cannot register plug-ins while logged on to the host
machine from aremote location.

Three commands are available for administering plug-ins:

m epi freg—for registering aplug-in

Using Security in ATMI Applications

Configuring an ATMI Application for Security

See Also

m epi funr eg—for unregistering a plug-in
m epi fregedt —for editing registry information

Instructions for using these commands are available in Developing Security Services
for ATMI and CORBA Environments. (This document contains the specifications for
the security plug-in interface, and describesthe plug-in framewor k feature that makes
the dynamic loading and linking of security plug-in modules possible.) Also, when
installing custom plug-ins, the supplying third-party security vendor should provide
instructions for using these commandsto set up the BEA Tuxedo registry to accessthe
custom plug-ins.

For more information about security plug-ins, including install ation and configuration
procedures, see your BEA account executive.

m “Configuring an ATMI Application for Security” on page 2-5

Configuring an ATMI Application for
Security

An application administrator configures security for the ATMI application on the
MASTER machine when theapplicationisinactive. Theunderlying BEA Tuxedo system
propagates the configuration information to the other machinesin the ATMI
application when the application is booted.

Asthe administrator, you can configure security for your ATMI application by:
m Editing the configuration file (UBBCONFI G)
m Changing the TM M B, or

m Using the BEA Administration Console

Using Security in ATMI Applications 2-5

2 Administering Security

The set of security parameters involved depends upon the security capability
(authentication, authorization, link-level encryption, or public key) and whether you
are using the default or custom security software.

Editing the Configuration File

Y ou can edit the UBBCONFI G configuration file to set security policies for an ATMI

application. The UBBCONFI G configuration file may have any filename, as long asthe
content of the file conforms to the format described on the UBBCONFI G(5) reference
page in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

For more details about UBBCONFI G and its binary equivalent, TUXCONFI G, see “About
the Configuration File” on page 2-1 and “ Creating the Configuration File’ on page 3-1
in Setting Up a BEA Tuxedo Application.

Changing the TM_MIB

2-6

The TM_M B defines a set of classes through which the fundamental aspects of an
ATMI application may be configured and managed. Separate classes are designated
for machines, servers, networks, and so on. Y ou should use the reference page

TM_M B(5) in combination with the generic Management Information Base (MIB)
reference page M B(5) to format administrative requests and interpret administrative
replies. The MIB reference pages are defined in the File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Other component MIBs, includingthe ACL_M B,DM M B, andW5_M B, also play arole
in managing security for an ATMI application. The reference page ACL_M B(5)
defines the ACL_M B, the reference page DM M B(5) definesthe DM M B, and the
reference page Ws_M B(5) definesthe ws_M B.

For more information about BEA Tuxedo MIBs, start with M B(5) intheFile
Formats, Data Descriptions, MIBs, and System Processes Reference. Also, see
Introducing BEA Tuxedo ATMI.

Using Security in ATMI Applications

Setting Up the Administration Environment

Using the BEA Administration Console

See Also

Setting

See Also

Y ou can also use the BEA Administration Console to change security policiesfor an
ATMI application. The BEA Administration Console is a Web-based tool used to
configure, monitor, and dynamically re-configure an application.

For details about the BEA Administration Console, see Introducing BEA Tuxedo
ATMI.

m “Setting Up the Administration Environment” on page 2-7

Up the Administration Environment

The application administrator defines certain environment variables for an ATMI
application as part of configuring the application. The values defined for the variables
are absolute pathnames that reference BEA Tuxedo executables and data libraries.

Being ableto find such filesis essential to the job of administering an ATMI
application. For example, all commands needed to manage application security are
located in $TUXDI R/ bi n on a UNIX host machine, and in %arUXDI R% bi n on a
Windows 2000 host machine.

For details on setting up the administration environment, see Administering a BEA
Tuxedo Application at Run Time.

m “Administering Operating System (OS) Security” on page 2-8
m “Administering Authentication” on page 2-9

m “Administering Authorization” on page 2-35

Using Security in ATMI Applications 2-7

2 Administering Security

m “Administering Link-Level Encryption” on page 2-35
m “Administering Public Key Security” on page 2-42
m “Security Administration Tasks’ on page 2-3

Administering Operating System (0S)
Security

In addition to the security featuresin the ATMI environment of the BEA Tuxedo
product, the application administrator needs to take full advantage of the security
features of the host operating system to control accessto files, directories, and system
resources.

Most ATMI applications are managed by an application administrator who configures
and boots the application, monitors the running application, and makes changesto it
dynamically, as necessary. Because the ATMI application is started and run by the
administrator, server programs are run with the administrator’ s permissions and are
therefore considered secure or “trusted.” Thisworking method is supported by the
login mechanism and the read and write permissions on the files, directories, and
system resources provided by the underlying operating system.

Clients, on the other hand, are not started by the administrator. Instead, they are run
directly by users with their own permissions. As aresult, clients are not trusted.

In addition, users running native clients (that is, clients running on the same machine
on which the server is running) have access to the configuration file and interprocess
communication (IPC) mechanisms such as the bulletin board (in shared memory).
Users running native clients always have such access, even when additional ATMI
security is configured.

Recommended Practices for OS Security

As the administrator, you can improve operating system security by observing the
following general rules:

2-8 Using Security in ATMI Applications

Administering Authentication

m Limit accessto files and |PC resources to the application administrator.

m Have“trusted” client programs run only with the permissions of the
administrator (using aset ui d utility).

m For maximum security on your operating system, allow only Workstation clients
to access the application; client programs should not be allowed to run on the
same machines on which application servers and administrative programs run.

m Combine al of these practices with ATMI security so that the application can
identify any client making arequest.

See Also

m “Operating System (OS) Security” on page 1-6
m “Security Administration Tasks” on page 2-3

Administering Authentication

Authentication alows communicating processes to prove their identities. It is the
foundation for most other security capabilities.

Except for the configuration instructions identified in this topic, the procedures for
administering authentication depend upon the underlying authenti cation system of the
application. For procedures to administer a custom authentication system, see the
documentation for that system. For procedures to administer the default authentication
system, see “ Administering Default Authentication and Authorization” on page 2-57.

Thefollowing figure demonstrates the use of the delegated trust authentication model
by applications running BEA Tuxedo release 7.1 or later software. Workstation
handlers (WSHs) and domain gateways (GADOVAI Ns) are known as trusted system
gateway processes in the delegated trust authentication model, which is described in
“Understanding Delegated Trust Authentication” on page 1-7.

Using Security in ATMI Applications 2-9

2 Administering Security

Figure2-2 Mutual Authentication in the Delegated Trust Authentication M odel

PN -~ o~ _ VRN
ATMI Application 1 ATMI Application 2
/ =
\
\ 14 \
o /
/ \ N
\
) (l
/ \ I:l Workstation Y,

= Client

Network
Connection (Link)

—_— = Mutual Authentication

Note: Mutua authentication is not used for anative client, which authenticates with
itself.

Thefollowing topics provide theinstructions needed to set up the configuration shown
in the preceding figure. All of the topics involve authentication and the authentication

plug-in.

m Specifying principal names

m Mandating interoperability policy

m Establishing alink between domains
m Setting ACL policy

m Setting credential policy

See Also

m “Authentication” on page 1-7
m “Default Authentication and Authorization” on page 1-45

2-10 Using Security in ATMI Applications

Specifying Principal Names

m “Administering Default Authentication and Authorization” on page 2-57

m “Security Administration Tasks” on page 2-3

m “Security Interoperability” on page 1-55

m “Security Compatibility” on page 1-60

m “What IsaDomain?’ on page 4-18 in Introducing BEA Tuxedo ATMI

Specifying Principal Names

Asthe administrator, you use the following configuration parameters to specify
principal names for the workstation handler (WSH), domain gateway (GATDOMVAI N),
and server processes running in your ATMI application built with release 7.1 or later
of the BEA Tuxedo software.

Parameter Name

Description

Setting

SEC_PRI NCI PAL_NAME in
UBBCONFI G

(TA_SEC_PRI NCl PAL_NAME in
T™M M B)

During application booting, each
WSH, domain gateway, and server
process in the ATMI application calls
the authentication plug-in to acquire
security credentials for the security
principal name specified in

SEC_PRI NCI PAL_ NAME.*

1 - 511 characters. If not
specified at any leve in the
configuration hierarchy, the
security principa name defaults
to the DOVAI NI Dstring
specified in the UBBCONFI G
file.

CONNECTI ON_PRI NCI PAL_NAME
for local domain access point in
DMCONFI G

(TA_DMCONNPRI NCI PALNANME for
LACCESSPO NT in DM_M B)**

During application booting, each
domain gateway processin the ATMI
application calls the authentication
plug-in a second time to acquire
security credentials for the connection
principal name specified in
CONNECTI ON_PRI NCI PAL_ NAMVE.*

1 - 511 characters. If not
specified, the connection
principa name defaults to the
DOVAI NI D gtring for the local
domain access point specified
in the DMCONFI Gfile.

* The topicsthat follow explain how the system processes acquire credentials and why they need them.

** Thelocal domain access point is also known as the L DOM(pronounced “ &l dom”) or simply local domain.

Using Security in ATMI Applications

2-11

2 Administering Security

SEC_PRI NCI PAL_NANME may be specified any of the following four levelsin the
configuration hierarchy:

B RESOURCES section in UBBCONFI Gor T_DOVAI Nclassin TM M B
m MACHI NES section in UBBCONFI Gor T_MACHI NE classin TM M B
® GROUPS section in UBBCONFI Gor T_GROUP classinTM M B

m SERVERS section in UBBCONFI Gor T_SERVERCclassin TM M B

A security principal name at a particular configuration level can be overridden at a
lower level. For example, suppose you configuret er ri asthe principa name for
machine mach1, and j ohn as the principal name for server ser v1 running on nachl.
The processes on nach1 behave asfollows:

m All WSH, domain gateway, and server processes on machl except ser vl
processesuseterri asaprincipa name.

m All servl processesusej ohn as aprincipa name.

How System Processes Acquire Credentials

During application booting, each WSH, domain gateway, and server processin the
ATMI application includesitssecurity principal name asan argument when calling the
authentication plug-in to (1) acquire security credentials and (2) get authorization and
auditing tokens for itself. The following figure demonstrates the procedure.

2-12 Using Security in ATMI Applications

Specifying Principal Names

Figure2-3 Acquiring Credentialsand Tokens During Application Booting

Myubbconfig

*RESOURCES
SEC_PRINCIPAL_NAME
SECURITY USER_AUTH

“Tommy”

tm oadcf -y myubbconfig

Enter New Application Password:

password

Re-enter New Application Password:

password

Mytuxconfig l

¢

Call t nboot ()

B

(User Input)

(System Response)

(User Input)

(System Response)

(User Input)

BEA Tuxedo Library Tokens for WSH,
Domain Gateway,
or Server
“Tommy”
Length of APP_PW, - -
APP_PW ‘ r > >] >
vé Credentials % g % }T]W
1. Call “acquire 2. Call “initiate 3. Call “accept 4. Call “get 5. Call “get
credentials” security context” security context” authorization token” auditing token”
Function Function Function Function Function

ATMI Security

it

it

W

L i

Authentication Plug-in

Each domain gateway process in the application calls the authentication plug-in a
second time to acquire credentials and tokens for its assigned connection principal

name.

Using Security in ATMI Applications

2-13

2 Administering Security

Why System Processes Need Credentials

2-14

A WSH needs credentials so that it can authenticate Workstation clients that want to
join the application, and to get authorization and auditing tokens for the authenticated
Workstation clients. A WSH needs its own authorization and auditing tokens when
handling requests from pre-release 7.1 clients (clients running BEA Tuxedo

release 6.5 or earlier software) so that it can call the authentication plug-in to establish
identities for the older clients. This behavior is described in “Mandating
Interoperability Policy” on page 2-15.

A domain gateway needs one set of credentials so that it can authenticate remote
domain gateways for the purpose of establishing links between ATMI applications, as
described in “ Establishing aLink Between Domains’ on page 2-24. (No authorization
or auditing tokens are assigned to authenticated remote domain gateways.) A domain
gateway acquires these credentials for the principal name specified in the

CONNECTI ON_PRI NCI PAL_NAME parameter.

A domain gateway needs a second set of credentials so that it can handlerequestsfrom
pre-release 7.1 clients, which involves calling the authentication plug-in to establish
identities for the older clients. This behavior is described in “Mandating
Interoperability Policy” on page 2-15. It also needs these credentials to establish
identities when enforcing the local access control list (ACL) policy, as described in
“Setting ACL Palicy” on page 2-29. A domain gateway acquires these credentials for
the principal name specified in the SEC_PRI NCI PAL_NANE parameter.

A system or application server needs its own authorization and auditing tokens when
handling requests from pre-release 7.1 clients so that it can call the authentication
plug-in to establish identities for the older clients. This behavior is described in
“Mandating Interoperability Policy” on page 2-15.

A server aso needs its own tokens when performing a server permission upgrade,
which occurs when the authorization and auditing tokens of the server are assigned to
messages that pass through the server but originate at a client. The service upgrade
capability is described in “ Replacing Client Tokenswith Server Tokens’ on page 1-11.

Note: An application server cannot call the authentication plug-in itself. It isthe
underlying system codethat callsthe authentication plug-in for the application
server.

Using Security in ATMI Applications

Mandating Interoperability Policy

Example UBBCONFIG Entries for Principal Names

See Also

The following example pertains to specifying security principal namesin the
UBBCONFI Gfileusing the SEC_PRI NCI PAL_NANE parameter. For an example of
specifying connection principal names in the DMCONFI Gfile using the

CONNECTI ON_PRI NCI PAL_NANME parameter, see “Example DMCONFIG Entries for
Establishing aLink” on page 2-27.

* RESOURCES

SEC PR NCI PAL_NAVE " Tommy"

* SERVERS

" TMQUEUE" SRVGRP=" QUEGROUP" SRVI D=1

CLOPT="-t -s secsdb: TMQUEUE"
SEC PRI NCI PAL_NAME=" TOUPPER"

m “Mandating Interoperability Policy” on page 2-15

m “Establishing aLink Between Domains’ on page 2-24
m “Setting ACL Policy” on page 2-29

m “Security Administration Tasks” on page 2-3

Mandating Interoperability Policy

Asthe administrator, you usethe CLOPT -t option in the UBBCONFI Gfile to allow
WSH, domain gateway (GATDOVAI N), and server processesin your ATMI application
to interoperate with machines running BEA Tuxedo pre-release 7.1 (6.5 or earlier)
software. In addition, you use the WBALLOWPRE7 1 environment variable to allow

Using Security in ATMI Applications 2-15

2 Administering Security

Workstation clients to interoperate with machines running BEA Tuxedo pre-release
7.1 software. The following four figures show what interoperability means for these
processes.

Figure2-4 WSH Operating with Older Workstation Client

VRN N

ATMI Application Running
BEA Tuxedo Release 7.1 or Later Software

’ BN
/ N
[|
\ GWTDOMAINI
/ /
/ \
(\
| 1 I
- &)
N =7
\\ /
| \ /__/
|
|

Workstation Client Running
BEA Tuxedo Pre-Release 7.1 Software

In the preceding figure, the WSH authenticates with the Workstation client using an
older (pre-release 7.1) authentication protocol, callsthe internal impersonate user
function to get authorization and auditing tokens for the client, and attaches the tokens
totheclient request. If the CLOPT -t optionisnot specified for the workstation listener
(WSL) that controlsthe W SH, no communication is possibl e between the newer WSH
and the older Workstation client.

Note: Theimpersonate user function involves calling the authentication plug-in to

establish an identity for the older client. See “ Establishing an Identity for an
Older Client” on page 2-20 for details.

2-16 Using Security in ATMI Applications

Mandating Interoperability Policy

Figure2-5 Older WSH Operating with Workstation Client

VRN //\

ATMI Application Running
BEA Tuxedo Pre-Release 7.1 Software

’ ERERN
/ AN
{ |
\ GWTDOMAIN I
/ /
/ \
(\
(l |
- &
~ L i
=\
: N /_//
: ~ /

WBALLOWPRE71=Y Workstation Client Running
BEA Tuxedo Release 7.1 or Later Software

In the preceding figure, the WSH authenticates with the Workstation client using an
older (pre-release 7.1) authentication protocol; the client request does not receive
authorization and auditing tokens. If the WSALLOWPRE71 environment variableis not
set at the Workstation client or is set to N, no communication is possible between the
older WSH and the newer Workstation client.

Using Security in ATMI Applications 2-17

2 Administering Security

Figure2-6 Server Interoperating with Older ATMI Application

ATMI Application 1 Running ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software BEA Tuxedo Pre-Release 7.1 Software
/ BN s \

/ N 7 \

(b }

\ I U Gwroomain /

/ /o N\ N Client? \
/ / \
| Voo l
\ Workstation l \ Native Workstation]

\ Client J \ Client Client /
N NN J
N \ / Network \ / ~ _
Connection (Link)

N S - ~ N /
~ / N\ ~

In the preceding figure, the local domain gateway (GATDOVAI N) in application 1
authenticates with the remote domain gateway in application 2 using an older
(pre-release 7.1) authentication protocol. Upon receiving arequest from aremote
client, the local domain gateway calls the internal impersonate user function to get
authorization and auditing tokens for the remote client and then attaches the tokensto
the client request. For any outbound client request (client request originating in
application 1 and destined for application 2), the loca domain gateway strips the
tokens from the request before sending the request al ong with the client’ s application
key to the older application. (See“ Application Key” on page 1-49 for a description of
the application key.)

If the CLOPT -t optionis not specified for the domain gateway, no communication is
possible between the newer ATMI application and the older ATMI application.

2-18 Using Security in ATMI Applications

Mandating Interoperability Policy

Figure2-7 Server Interoperating with Older BEA Tuxedo Systems

Same ATMI Application

Machine 1
Running BEA Tuxedo Release 7.1 or Later Software

Machine 2
Running BEA Tuxedo Pre-Release 7.1 Software

Native
Client

_l Workstation

=3 Client

Network
Connection (Link)

T
Workstation _l
Client E—/

In the preceding figure, the destination server on machine 1 calls the internal
impersonate user function to get authorization and auditing tokensfor the remote client
on machine 2, attaches the tokens to the client request, and then performs the request
assuming the client passes any authorization checks. If the CLOPT -t optionis not
specified for the server, no communication is possible between the newer server and

the older client.

Note: Also, inthe preceding figure, if the WSH on machine 1 receives a client
request destined for aserver on machine 2, the WSH stripsthe tokens from the
request before sending the request along with the client’ sapplication key to the
older system. Similarly, if the native client on machine 1 sends arequest to a
server on machine 2, the native client strips the tokens from the request before
sending the request along with the client’ sapplication key to the older system.
See “Application Key” on page 1-49 for a description of the application key.

Using Security in ATMI Applications 2-19

2 Administering Security

Establishing an Identity for an Older Client

For aWSH, domain gateway (GMDOVAI N), or server process to establish an identity
for an older client, the process calls the internal impersonate user function to obtain
authorization and auditing tokens for the older client. The following figure
demonstrates the procedure.

Figure2-8 Obtaining Authorization and Auditing Tokens for an Older Client

WSH, Domain Gateway, or Server Process

1. Name of Older Client or LOCAL_PRINCIPAL_NAME
Configured for Remote Domain Access Point

2. WSH/ Domain Gateway/ Server Authorization Token Tokens for
3. WSH/ Domain Gateway/ Server Auditing Token Older Client

1

Call impersonate user Function

ATMI Security
J

Authentication Plug-in

How the WSH Establishes an Identity for an Older Client

2-20

When the CLOPT -t option is specified, the WSH establishes an identity for an older
client using the usr name field of the TPI NI T buffer for C, or the USRNAME field of the
TPI NFDEF- REC record for COBOL. (The WSH receivesaTPI NI T buffer/

TPI NFDEF- REC record from aclient when the client attemptsto join the application, as
described in“ Joiningthe ATMI Application” on page 3-8.) The WSH includesthe user
name as the principal name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the user name
and its associated application key (user identifier, group identifier combination) inthe
local t pusr file, and then includes the user name and application key in both the

Using Security in ATMI Applications

Mandating Interoperability Policy

authori zation and auditing tokens created for the older client. Thet pusr fileisbriefly
described in “ Setting Up the User and Group Files” on page 2-62.

How the Domain Gateway Establishes an Identity for an Older Client

Whenthe CLOPT -t optionisspecified, thedomain gateway establishesanidentity for
an older client using the LOCAL_PRI NCI PAL_NANE string configured for the remote
domain access point. (The domain gateway searchesthe DM REMOTE_DOMAI NS section
of the local BDMCONFI Gfile—the binary equivalent of the DMCONFI § 5) file—to find
the LOCAL_PRI NCI PAL_NAME string for the remote domain access point. If not
specified, the identity defaults to the DOVAI NI D string for the remote domain access
point.) The domain gateway uses the LOCAL_PRI NCI PAL_ NANE string as the principal
name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the
LOCAL_PRI NCI PAL_NAME string and its associated application key in the local t pusr
file, and then includes that string (identity) and application key in both the
authorization and auditing tokens created for the older client.

How the Server Establishes an Identity for an Older Client

When the CLOPT -t optionis specified, the server establishes an identity for an older
client using the client’ s assigned application key. (The client request received by the
server contains the client’ s assigned application key.) The server finds the application
key and its associated namein thelocal t pusr file, and then includes the name asthe
principal name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the name and
its associated application key in the local t pusr file, and then includes the name and
application key in both the authorization and auditing tokens created for the older
client.

Summarizing How the CLOPT -t Option Works

The following table summarizes the functionality of WSH, domain gateway, and
server processes when interoperability is and is not allowed using the CLOPT -t
option.

Using Security in ATMI Applications 2-21

2 Administering Security

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When | nter oper ability
Isand IsNot Allowed

Process I nteroperability Allowed (CLOPT -t) I nter oper ability Not Allowed
Workstation If theWSH recelvesarequest fromapre-release If the WSH receives arequest from a
Handler (WSH) 7.1 Workstation client to join the application, pre-release 7.1 Workstation client to
the WSH authenticates the client using a join the application, the WSH rejects
pre-release 7.1 authentication protocol and calls the request. No communication is
the impersonate user function to get possible between the newer WSH and

authorization and auditing tokens for the client the older Workstation client.
based on the user name given in the request.

When the WSH receives a service request from
the authenticated Workstation client, it attaches
thetokensto the client request and forwardsthe
request to the destination server.

Domain gateway When the domain gateway setsup aconnection The domain gateway does not set up a

(GWTDOVAI N) to apre-release 7.1 remote domain gateway, it~ connection to a pre-release 7.1 remote
authenti cates the remote domain gateway using domain gateway. No communicationis
apre-release 7.1 authentication protocol and possible between the newer and older
then sets up the network connection. domains.

When the domain gateway receives a client
request from the older domain, the domain
gateway cdls the impersonate user function to
get authorization and auditing tokens for the
client based on the

LOCAL_PRI NCI PAL_ NAME (defaults to
DOVAI NI D) identity configured for the remote
domain access point, attaches the tokens to the
client request, and then forwards the request to
the destination server. The client hasthe same
access permissions as the

LOCAL_PRI NCI PAL_ NAME identity.

For any outbound client request, the domain
gateway strips the tokens from the request
before sending the request along with the
client’ s application key to the older domain.

2-22 Using Security in ATMI Applications

Mandating Interoperability Policy

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When | nteroperability
Isand IsNot Allowed (Continued)

Process

I nter oper ability Allowed (CLOPT -t) Interoperability Not Allowed

System or
application server

If the server receives a request from aremote If the server receives arequest from a

client running BEA Tuxedo pre-release 7.1 remote client running BEA Tuxedo
software, the server callstheimpersonate user pre-release 7.1 software, the server
function to get authorization and auditing rejects the client request. No

tokens for the client based on the client’s communication is possible between the

assigned application key, and then performsthe newer server and the older client.
client request assuming the client passes any
authorization checks.

Example UBBCONFIG Entries for Interoperability

See Also

In the following example, all WSHs controlled by the workstation listener (WSL) are
configured for interoperability.

* SERVERS
WEL SRVGRP="gr oup_nane" SRVI D=server_nunber ...
CLOPT="-A -t "

m “Specifying Principal Names’ on page 2-11

m “Establishing aLink Between Domains’ on page 2-24
m “Setting ACL Policy” on page 2-29

m “Security Administration Tasks” on page 2-3

m “Security Interoperability” on page 1-55

m “Setting Up Security in Domains” on page 2-35 and “Configuring the
Connections Between Your Domains’ on page 2-49 in Using the BEA Tuxedo
Domains Component

Using Security in ATMI Applications 2-23

2 Administering Security

Establishing a Link Between Domains

When a domain gateway (GWTDOMAI N) attempts to establish anetwork link with
another domain gateway, the following major events occur.

1. Theinitiator domain gateway and the target domain gateway exchange link-level
encryption (LLE) mi n-max valuesto be used to set up LLE on thelink between the
gateways. LLE isdescribed in “Link-Level Encryption” on page 1-23.

2. Theinitiator and target domain gateways authenticate one another through the
exchange of security tokens assuming that both gateways are running BEA
Tuxedo release 7.1 or later software.

If one or both of the domain gateways are running BEA Tuxedo pre-release 7.1
software, the gateway processes use an older (pre-release 7.1) authentication
protocol when setting up the connection.

2-24 Using Security in ATMI Applications

Establishing a Link Between Domains

Asthe administrator, you use the following configuration parameter to establish alink
between domain gateways running BEA Tuxedo release 7.1 or later software.

Parameter Name

Description

Setting

CONNECTI ON_PRI NCI PAL_NAVE

in DMCONFI G

(TA_DMCONNPRI NCI PALNAME in

DM M B)

When this parameter appearsin the

DM _LOCAL_DONAI NS section of the DMCONFI G
file, its value becomes the principa name of the
local domain access point when setting up a
connection with a remote domain access point.*

For default authentication plug-ins, if avaueis
assigned to CONNECTI ON_PRI NCI PAL_NAVE
for the local domain access point, it must be the
same as the value assigned to the DOVAI NI D
parameter for the local domain access point. If
these values do not match, the local domain
gateway processwill not boot, and the systemwill
generate the following user | og(3c) message:
ERROR: Unable to acquire

credenti al s.

1-511 characters. If
not specified, the
principal name
defaults to the
DONAI NIl Dstring for
the local domain
access point.

When this parameter appearsin the

DM REMOTE_DOMAI NS section of the

DMCONFI Gfile for a particular remote domain
access point, itsvalue becomesthe principal name
of the remote domain access point when setting
up a connection with the local domain access
point.

For default authentication plug-ins, if avaueis
assigned to CONNECTI ON_PRI NCI PAL_NAMVE
for aremote domain access point, it must be the
same as the vaue assigned to the DOVAI NI D
parameter for the remote domain access point. If
these values do not match, any attempt to set up a
connection between the local domain gateway
and the remote domain gateway will fail, and the
system will generate the following

user | og(3c) message: ERROR: Unabl e to
initialize adm nistration key for
domai n dommi n_nane.

1-511 characters. If
not specified, the
principal name
defaults to the
DONAI NIl Dstring for
the remote domain
access point.

* The local domain access point is also known as the LDOM(pronounced “ &l dom™) or simply local domain. A
remote domain access point is also known as an RDOM(pronounced “are dom”) or simply remote domain.

Using Security in ATMI Applications 2-25

2 Administering Security

Thefollowing figure demonstrates how alink is established between domains using
default authentication plug-ins.

Figure2-9 Establishing a Link Between Domains Using Default Authentication

— Part of ATMI Application 1 = — Part of ATMI Application 2 —
dmconfigl dmconfig2
*DM_LOCAL_DOMAINS *DM_LOCAL_DOMAINS
c01 GWGRP=bankgl b01 GWGRP=auth
TYPE=TDOMAIN TYPE=TDOMAIN
DOMAINID="BA.CEN1" DOMAINID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1" CONNECTION_PRINCIPAL_NAME="BA.BK1"
SECURITY=DM_PW SECURITY=DM_PW
*DM_REMOTE_DOMAINS *DM_REMOTE_DOMAINS
b0l TYPE=TDOMAIN c01 TYPE=TDOMAIN
DOMAINID="BA.BK1" DOMAINID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.BK1" CONNECTION_PRINCIPAL_NAME="BA.CEN1"
dm oadcf -y dntonfigl dm oadcf -y dntonfig2
bdmconfigl ‘ bdmconfig2 ‘

' l

Initiator Domain Gateway (GWTDOMAIN) DM_PW | Target Domain Gateway (GWTDOMAIN)

password
(encrypt) "BA.BK1"
Credentials "BA.CEN1" b | _ Credentials
{ H § 5
“acquire 1. Call “initiate Network Link 2. Call “accept “acquire
credentials” security context” security context” credentials”
Function Function Function Function
ATMI Security 1 ATMI Security | 1
W i 4 4
Authentication Plug-in Authentication Plug-in

2-26 Using Security in ATMI Applications

Establishing a Link Between Domains

Note: The“Credentials’ shown in the preceding figure were acquired by each
domain gateway process at application booting using the
CONNECTI ON_PRI NCI PAL_NANE identity configured for the local domain
access point.

Inthe preceding figure, noticethat theinformation exchanged between theinitiator and
target domain gateways involves the CONNECTI ON_PRI NCI PAL_ NAME strings
configured for the domain gateways, as specified in the BDMOONFI Gfiles. Each
authentication plug-in uses the password assigned to the remote domain access point
(as defined in the DM_PASSWORDS section of the BDMCONFI Gfile) to encrypt the string
before transmitting it over the network, and uses the password assigned to the local
domain access point (as defined in the DM_PASSWORDS section of the BDMCONFI Gfil€)
to decrypt the received string. The encryption algorithm used is 56-bit DES, where
DES is an acronym for the Data Encryption Standard.

For the encryption/decryption operation to succeed, the assigned password for the
remote domain access point in the local BDMCONFI Gfile must be the same as the
assigned password for the local domain access point in the remote BDMCONFI Gfile.
(Similarly, if the domain security level is set to APP_PW the application passwordsin
the respective TUXCONFI Gfiles must be identical for the encryption/decryption
operation to succeed.) For the authentication process to succeed, the received string
must match the CONNECTI ON_PRI NCI PAL_NAME string configured for the sender.

When the domain gateways pass the security checks, the link is established, and the
gateways can forward service requests and receive replies over the established link.

Example DMCONFIG Entries for Establishing a Link

Inthefollowing example, the configurations shown in thelocal DMCONFI Gfileareused
when establishing a connection through the local domain access point c01 and the
remote domain access point b01.

*DM_LOCAL_DOVAI NS
<LDOM nanme> <Gteway G oup nane> <donmai n type>

<domai n id> [<connection principal nane>] [<security>]...
c01 GWGRP=bankgl
TYPE=TDOMAI N

DOVAI NI D=" BA. CENTRALO1"
CONNECT! ON_PRI NCI PAL_NAME=" BA. CENTRALO01"
SECURI TY=DM PW

Using Security in ATMI Applications 2-27

2 Administering Security

* DM_REMOTE_DOVAI NS
<RDOM name> <donmi n type> <domain id>
[<connection principal name>]...
b01 TYPE=TDOVAI N
DONAI NI D=" BA. BANKO1"
CONNECTI ON_PRI NCI PAL_NAME=" BA. BANKO1"

See Also

m “Specifying Principal Names’ on page 2-11

m “Mandating Interoperability Policy” on page 2-15
m “Setting ACL Policy” on page 2-29

m “Security Administration Tasks’ on page 2-3

m “How to Set Up Domains Authentication” on page 2-42 in Using the BEA
Tuxedo Domains Component

2-28 Using Security in ATMI Applications

Setting ACL Policy

Setting ACL Policy

Astheadministrator, you usethefollowing configuration parametersto set and control
the accesscontrol list (ACL) policy between ATMI applications running BEA Tuxedo
release 7.1 or |ater software.

Parameter Name

Description

Setting

ACL_POLI CY in DMCONFI G
(TA_DVACLPOLI CY in DM _M B)

May appear in the DM_REMOTE_DOVAI NS
section of the DMCONFI Gfile for each remote
domain access point. Its value for a particular
remote domain access point determines whether
or not the local domain gateway modifies the
identity of service requests received from the
remote domain.*

LOCAL or GLOBAL.
Default is LOCAL.

LOCAL means modify
the identity of service
requests, and GLOBAL
means pass service
reguests with no change.

LOCAL_PRI NCI PAL_NAME in
DMCONFI G

(TA_DMLOCALPRI NCI PALNAM
EinDM M B)

May appear in the DM_REMOTE_DOVAI NS
section of the DMCONFI Gfile for each remote
domain access point. If the ACL_POLI CY
parameter is set (or defaulted) to LOCAL for a
particular remote domain access point, the local
domain gateway modifiestheidentify of service
requests received from the remote domain to the
principal name specified in

LOCAL_PRI NCI PAL_NANE.

1-511 characters. If not
specified, the principal
name defaults to the
DOVAI NI Dstring for the
remote domain access
point.

* A remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.

The following three figures show how the ACL_PQLI Cy configuration affects the
operation of local domain gateway (GATDOVAI N) processes.

Using Security in ATMI Applications

2-29

2 Administering Security

Figure2-10 Establishing aLocal ACL Policy

o - ™~
AN -\ Ve 7
/ o - \ Y ~ o N
ATMI Application 1 Running ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software BEA Tuxedo Release 7.1 or Later Software
/ N/ \
/ ACL_PQOLI CY=LOCAL \ [ACL_POLI CY=LOCAL \

(Default) | | (Default)

GWTDOMAIN / \ GWTDOMAIN

/) \
[N4/ \
[inbound ||| outbound |
\ Workstation _l outbound / |\ inbound [Native _l Workstation /

\ Client : > \|:> Client == Client /

N _ — N — -
— \ / Network \ / — -
~ J Connection (Link) N
\ r = -7\ /
~ / AN -

In the preceding figure, each domain gateway (GATDOVAI N) modifies inbound client
reguests (requests originating from the remote application and received over the
network connection) so that they take on the LOCAL_PRI NCI PAL_NAME identity
configured for the remote domain access point and thus have the same access
permissions as that identity. Each domain gateway passes outbound client requests
without change.

In this configuration, each ATMI application has an ACL database containing entries
only for usersin its own domain. One such user isthe LOCAL_PRI NCl PAL_NANE
identity configured for the remote domain access point.

Note: The preceding description also appliesto ATMI applications running BEA
Tuxedo pre-release 7.1 software except that the system uses the DOVAI NI D
identity configured for the remote domain access point. Essentially, the local
ACL policy is hardcoded in BEA Tuxedo release 6.5 or earlier software.

2-30 Using Security in ATMI Applications

Setting ACL Policy

Figure2-11 Establishing a Global ACL Policy

o - N
N ~ o~ S
4 - \ / T~ N
ATMI Application 1 Running ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software BEA Tuxedo Release 7.1 or Later Software
/ N/ \
ACL_POLI CY=GLOBAL\ [ACL_PQLI CY=GLOBAL
(Pass-through) I (Pass-through)

GWTDOMAIN / \ GWTDOMAIN

/ ‘) \
/ \4/ |
inbound ||| outbound |
—

\ Workstation _l outbound / |\ inbound _l Workstation /

Cli e = Cli
\ ient g \‘ | — > C ient /

N _ — N — g v
— \ / Network A\ / —
N s~ J/ Connection (Link) \ N Y
~ / A -

In the preceding figure, each domain gateway (GATDOMAI N) passes inbound and
outbound client requests without change. In thisconfiguration, each ATMI application
hasan ACL database containing entries for usersin its own domain aswell asusersin

the remote domain.

Using Security in ATMI Applications 2-31

2 Administering Security

Figure2-12 Establishing a One-way L ocal and One-way Global ACL Policy

o - N
AN N S /s
/ o = N Y ~ o N
ATMI Application 1 Running ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software BEA Tuxedo Release 7.1 or Later Software
/ N/ \

ACL_POLI CY=LOCAL \ (ACL_POLI CY=G.OBAL
(Default) | | (Pass-through)

GWTDOMAIN / \ GWTDOMAIN

/ {) \
/ \4/ \
l 2% ||| outbound |
\ Workstation _l outbound / |\ inbound _l Workstation /

Client p= — : Client
\ AN /
— N —
_,/\ / Network \ /\\’/
N s~ J/ Connection (Link) \ N Y
~ / AN e

In the preceding figure, the domain gateway (GAMDOVAI N) in ATMI application 1
modifies inbound client requests so that they take on the LOCAL_PRI NCI PAL_NAVE
identity configured for the remote domain access point for ATMI application 2 and
thus have the same access permissions as that identity; the domain gateway passes
outbound client requests without change. The domain gateway (GAMDOVAI N) in ATMI
application 2 passes inbound and outbound client requests without change.

Inthisconfiguration, ATMI application 1 hasan ACL database containing entriesonly
for usersin its own domain; one such user isthe LOCAL_PRI NCI PAL_NAME identity
configured for the remote domain access point for application 2. ATMI application 2
has an ACL database containing entries for usersin its own domain aswell asusersin
ATMI application 1.

Impersonating the Remote Domain Gateway

If the domain gateway receives a client request from aremote domain for which the
ACL_POLI CY parameter is set (or defaulted) to LOCAL in the local DMCONFI Gfile, the
domain gateway performs the following tasks.

2-32 Using Security in ATMI Applications

Setting ACL Policy

1. Cadllstheinternal impersonate user function to get authorization and auditing
tokensfor the client based on the LOCAL_PRI NCI PAL_NAME identity configured for
the remote domain access point.

2. Usesthese tokensto overwrite the tokens already attached to the client request.

3. Forwardsthe request to the destination server.

For more detail on the impersonate user function, see “Establishing an Identity for an
Older Client” on page 2-20.

Example DMCONFIG Entries for ACL Policy

In the following example, the connection through the remote domain access point b01
is configured for globa ACL in the local DMOONFI Gfile, meaning that the domain
gateway process for domain access point c01 passes client requests from and to
domain access point b01 without change. For global ACL, the

LOCAL_PRI NCI PAL_NANME entry for domain access point b01 isignored.

*DM_LOCAL_DOVAI NS
<LDOM nane> <Gteway G oup nanme> <donmai n type> <domain id>

#
c0l

[<connection principal nane>] [<security>]...
GWGRP=bankgl

TYPE=TDOVAI N

DOVAI NI D=" BA. CENTRALO1"

CONNECT! ON_PRI NCI PAL_NAMVE=" BA. CENTRALO1"
SECURI TY=DM _PW

* DM_REMOTE_DOVAI NS
<RDOM nane> <domai n type> <donmi n id> [<ACL policy>]

#
b01

[<connection principal name>] [<local principal name>]...
TYPE=TDOMAI N

DOVAI NI D=" BA. BANKO1"

ACL_PCLI CY=GLOBAL

CONNECTI ON_PRI NCI PAL_NAME=" BA. BANKO1"

LOCAL_PRI NCI PAL_NAME=" BA. BANKO1. BOB"

Using Security in ATMI Applications 2-33

2 Administering Security

See Also

m “Specifying Principal Names’ on page 2-11

m “Mandating Interoperability Policy” on page 2-15

m “Establishing a Link Between Domains” on page 2-24
m “Security Administration Tasks’ on page 2-3

Setting Credential Policy

Asthe administrator, you use the following configuration parameter to set and control
the credential policy between ATMI applications running BEA Tuxedo release 8.0 or

later software.
Parameter Name Description Setting
CREDENTI AL_PQLI CYin May appear in the DM_REMOTE_DOVAI NS LOCAL or GLOBAL.
DVMCONFI G section of the DMCONFI Gfile for each remote Default is LOCAL.
(TA_DMCREDENTI ALPCLI CYin domain access point. Its value for a particular L OCAL means do not
DM _M B) remote domain access point determineswhether gita0h the credentials of
the credentials of the user whoinitiated arequest e requesting user to the
are attached to the invocation of aremote remote domain
domain.* invocation, and GLOBAL

Note that this parameter controls whether or not means attach the

user credentialsaresent toaremotedomain. The credentials of the
ACL_POLICY parameter isrelated tothisone requesting user to the
and controlswhether or notincoming credentials remote domain

are accepted by adomain. invocation.

* A remote domain access point is aso known as an RDOM(pronounced “are dom™) or simply remote domain.

2-34 Using Security in ATMI Applications

Administering Authorization

Administering Authorization

Authorization enforces limitations on user access to resources or facilities within an
ATMI application in accordance with application-specific rules. Only when users are
authenticated to join an ATM|I application does authorization go into effect.

The procedures for administering authorization depend upon the underlying
authorization system of the ATMI application. For procedures to administer a custom
authorization system, see the documentation for that system. For proceduresto
administer the default authorization system, see “Administering Default
Authentication and Authorization” on page 2-57.

See Also

m “Authorization” on page 1-12

m “Default Authentication and Authorization” on page 1-45

m “Administering Default Authentication and Authorization” on page 2-57
m “Security Administration Tasks” on page 2-3

m “Security Compatibility” on page 1-60

Administering Link-Level Encryption

Link-level encryption establishes data privacy for messages moving over the network
links that connect the machinesin an ATMI application. There are three levels of
link-level encryption (LLE) security: O-bit (no encryption), 56-bit (International), and
128-bit (United States and Canada). The International LLE version allows 0-bit and
56-bit encryption. The United Statesand Canada L L E version alows0, 56, and 128-bit
encryption.

LLE appliesto the following types of ATMI links:

Using Security in ATMI Applications 2-35

2 Administering Security

m Workstation client to workstation handler (WSH)
m Bridge-to-Bridge
m Administrative utility (such ast nboot) totl i sten

m Domain gateway to domain gateway

Understanding min and max Values

Beforeyou can configure LL E for your ATMI application, you need to befamiliar with
the LLE notation: (m n, max). The defaults for these parameters are:

m Fornin:O

m For max: Number of bits that indicates the highest level of encryption possible
for theinstaled LLE version

For example, the default mi n and max values for the United States and Canada LLE
version are (0, 128). If you want to change the defaults, you can do so by assigning new
values to ni n and max in the UBBCONFI Gfile for your application.

For moreinformation, see“How LLE Works’ on page 1-24 and “ Encryption Key Size
Negotiation” on page 1-24.

Verifying the Installed LLE Version

2-36

Y ou can verify the LLE version installed on a machine by running the t madni n
command in ver bose mode.

tmadmn -v

Key linesfrom the local BEA Tuxedoli c. t xt filewill appear on your computer
screen, similar to the sample display shown below. The sample entry STRENGTH=128
indicates a United States and Canada LLE version.

[BEA Tuxedo] VERS| ON=8. 0
[LI NK ENCRYPTI ON] VERSI ON=8. 0
STRENGTH=128

Using Security in ATMI Applications

Administering Link-Level Encryption

All BEA Tuxedo licenses arein the $TUXDI R/ udat aobj /1 i c. t xt fileonaUNIX
host machine, or in the %a'UXDI R udat aobj \ i c. t xt file on aWindows 2000 host
machine.

How to Configure LLE on Workstation Client Links

If Workstation clients are included in an application, the administrator must configure
one or more workstation listeners (WSLs) to listen for connection requests from
Workstation clients. Each WSL uses one or more associated workstation handlers
(WSHs) to handle the Workstation client workload. Each WSH can manage multiple
Workstation clients by multiplexing all requests and replies with a particular
Workstation client over a single connection.

Asthe administrator, you enable Workstation client accessto the ATMI application by
specifying aWSL server in the SERVERS section of the application’s UBBCONFI Gfile.
Y ou need to specify the - z and - Z command-line options for the WSL server if you
want to override the defaults for the LLE mi n and max parameters. (See
“Understanding min and max Values” on page 2-36 for details.) Of course, link-level
encryption ispossible only if LLE isinstalled on both the local machine and the
Workstation client.

Note: At the Workstation client end of a network connection, you use environment
variables TM NENCRYPTBI TS and TMAXENCRYPTBI TS to override the defaults
for the LLE ni n and nax parameters.

To configure LLE on Workstation client links, follow these steps.

1. Ensurethat you areworking onthe ATMI application MASTER machine and that the
application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the SERVERS
section:

* SERVERS
WEL SRVGRP="gr oup_nane" SRVI D=server_nunber ...
CLOPT="-A -- -z mn-Z max ..."

Using Security in ATMI Applications 2-37

2 Administering Security

3. Load the configuration by running t nl oadcf (1) . Thet m oadcf command
parses UBBCONFI G and loads the binary TUXCONFI Gfile to the location referenced
by the TUXCONFI G variable.

In the preceding example, when t nboot (1) startsthe ATMI application, it passesthe
"-A -- -z min -Z max" command-line optionsto the WSL server. When
establishing a network link between a Workstation client and the WSH, the
Workstation client and WSL negotiate the key size until they agree on the largest key
size supported by both.

SeeWsL(5) ,Ws_M B(5),and UBBCONFI G 5) intheFile Formats, Data Descriptions,
MIBs, and System Processes Reference for additional information.

How to Configure LLE on Bridge Links

2-38

The BEA Tuxedo system architecture optimizes network communications by
establishing a multiplexed channel among the machines in a multiple-machine
application. BEA Tuxedo messages flow in both directions over this channel, and the
message traffic is managed by a specialized ATMI server known as a Bridge server.

Asthe administrator, you place an entry in the NETWORK section of the UBBCONFI Gfile
for each machine in an ATMI application on which a Bridge server resides. Y ou need
to specify the M NENCRYPTBI TS and MAXENCRYPTBI TS optional run-time parameters
for the Bridge server if you want to override the defaultsfor the LLE mi n and max
parameters. (See “ Understanding min and max Values' on page 2-36 for details.) Of
course, Bridge-to-Bridge link-level encryption is possible only if LLE isinstalled on
the machines where the Bridge serversreside.

To configure LLE on Bridge links, follow these steps.

1. Ensurethat you are working on the ATMI application MASTER machine and that the
application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the NETWORK
section:

* NETWORK

LMD NADDR="bridge network_address" BRI DGE="bri dge_devi ce"
NLSADDR="1i st en_net wor k_addr ess"
M NENCRYPTBI TS=ni n
MAXENCRYPTBI TS=nax

Using Security in ATMI Applications

Administering Link-Level Encryption

LM Disthe logical machine where the Bridge server resides; it has direct access
to the network device specified in the BRI DGE parameter.

3. Load the configuration by runningt m oadcf (1) . Thet nl oadcf command
parses UBBCONFI G and loads the binary TUXCONFI Gfileto the location referenced
by the TUXCONFI G variable.

In the preceding example, when t mboot (1) startsthe ATMI application, the Bridge
server reads the TUXCONFI Gfile to access various parameters, including

M NENCRYPTBI TS and MAXENCRYPTBI TS. When establishing a network link with a
remote Bridge server, the local and remote Bridge servers negotiate the key size until
they agree on the largest key size supported by both.

See TM_M B(5) and UBBCONFI G(5) in the File Formats, Data Descriptions, MIBs,
and System Processes Reference for additional information.

How to Configure LLE on tlisten Links

tlisten(1) isanetwork-independent listener process that provides connections
between nodes of a multiple-machine application, on which administrative utilities
such ast nboot (1) can run. The application administrator installst | i st en on all
machines defined in the NETWORK section of the UBBCONFI Gfile.

To configure LLE ont i st en links, follow the steps given in the previous topic,
“How to Configure LLE on Bridge Links" on page 2-38. If you so desire, you can start
aseparate instance of t | i st en on the local machine by entering a command such as:

tlisten -1 nlsaddr [-z mn -Z max]

Thenl saddr value must be the same as that specified for the NLSADDR parameter for
this machine in the NETWORK section of the UBBCONFI Gfile. Seet | i st en(1) inthe
BEA Tuxedo Command Reference, and TM_ M B(5) and UBBCONFI G(5) in theFile
Formats, Data Descriptions, MIBs, and System Processes Reference for additional
information.

Using Security in ATMI Applications 2-39

2 Administering Security

How to Configure LLE on Domain Gateway Links

2-40

A domain gateway isa GATDOVAI N process that relays service requests and service
replies between two or more ATMI applications. It providesinteroperability through a
specially designed transaction processing (TP) protocol that flows over network
transport protocols such as TCP/IP.

A domain gateway belongsto a domain gateway group, for which aseparate Domains
configuration fileisrequired. A domain gateway group consists of alocal domain
access point (LDOM) and the remote domain access points (RDOVs) with which the LDOM
communicates. Like the application configuration files, UBBCONFI G and TUXCONFI G,
aDomains configuration file is created in text format and then converted to binary
format. The text and binary files are referred to as DMCONFI G and BDMCONFI G,
respectively. The DMCONFI G and BDMCONFI G files, and the environment variables
associated with them, are described on the DMCONFI G(5) reference page in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

As the administrator, you must place an entry in the DM TDOVAI N section of the
DMCONFI Gfile for each local domain access point that will accept requests for local
services from remote domain access points. Y ou must also create an entry for each
remote domain access point accessible by a defined local domain access point. Y ou
need to specify the M NENCRYPTBI TS and MAXENCRYPTBI TS optional run-time
parameters for each domain access point for which you want to override the defaults
for the LLE ni n and max parameters. (See “ Understanding min and max Values’ on
page 2-36 for details.) Of course, domain-to-domain link-level encryption is possible
only if LLE isinstalled on the machines where the domains reside.

Using Security in ATMI Applications

Administering Link-Level Encryption

To configure LLE on domain gateway links, follow these steps.

1. Ensurethat you areworking onthe ATMI application MASTER machine and that the
ATMI application isinactive.

2. Open DMCONFI Gwith atext editor and add the following lines to the DM TDOVAI N
section:

*DM TDOVAI N

Local network addresses

LDOM NWADDR="| ocal _domai n_net wor k_addr ess"
NWDEVI CE="1 ocal _donai n_devi ce"
M NENCRYPTBI TS=mi n
MAXENCRYPTBI TS=nax

Renpte networ k addresses

RDOM NWADDR="r enot e_domai n_net wor k_addr ess"
NWDEVI CE="r enpt e_donai n_devi ce"
M NENCRYPTBI TS=mni n
MAXENCRYPTBI TS=nax

LDOMis alocal domain access point identifier, and RDOMis aremote domain
access point identifier.

3. Load the configuration by running dm oadcf (1) . Thedni oadcf command
parses DMCONFI G and |oads the binary BDMCONFI Gfile to the location referenced
by the BDMCONFI G variable.

In the preceding example, whent mboot (1) startsthe ATMI application, each domain
gateway reads the BDMCONFI G file to access various parameters, including

M NENCRYPTBI TS and MAXENCRYPTBI TS, and propagatesthose parameterstoitslocal
and remote domains. When the local domain is establishing a network link with a
remote domain, the two domai ns negotiate the key size until they agree on the largest
key size supported by both.

See DMCONFI G(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference for additional information. Also, see “ Setting Up Security in
Domains’ on page 2-35* in Using the BEA Tuxedo Domains Component.

Using Security in ATMI Applications 2-41

2 Administering Security

See Also

m “Link-Level Encryption” on page 1-23

m “Security Administration Tasks’ on page 2-3
m “Security Interoperability” on page 1-55

m “Security Compatibility” on page 1-60

Administering Public Key Security

The most effective way to make a distributed ATMI application secure isto combine
link-level encryption with public key encryption. Public key encryption isthe
framework on which public key security is built.

Public key security allows you to incorporate message-based digital signatures and
message-based encryption into your ATMI applications. Together, these capabilities
provide data integrity and privacy, which are especially important when an ATMI
application interactswith other ATMI applications or Workstation clientsfrom outside
the company.

Recommended Practices for Public Key Security

m The ATMI application’s operating environment largely determines the level of
security achieved. For maximum safety, install hardware devices that protect
private key information.

m Establish policiesregarding key expiration intervals and key renewal procedures.
Expiration of a Certification Authority’s certificate might have a dramatic impact
on system operation, and should be anticipated so updated user certificates can
be issued in advance.

2-42 Using Security in ATMI Applications

Administering Public Key Security

Assigning Public-Private Key Pairs

Application administrators and developers need to choose a Certification Authority to
provide public-private key pairs and the digital certificates associated with them. Then
they must decide how to assign the key pairsto the ATMI application. There are many
options for assigning key pairs. An administrator can assign one or more of the
following:

m One public-private key to an entire ATMI application

m A public-private key pair to each machine in an ATMI application
m A public-private key pair to each server in an ATMI application

m A public-private key pair to each servicein an ATMI application
m A public-private key pair to each end user

Application administrators and developers are responsible for choosing a method of
assigning key pairs and assigning them. Once key pairs are assigned, however, no
more administrative work is required; the plug-ins for public key security distribute
and manage the keys.

Setting Digital Signature Policy

Asthe administrator, you use the following configuration parametersto set the digital
signature policy for your ATMI application.

Parameter Name Description Setting
S| GNATURE_AHEAD in Maximum permissible time 1-2147483647
UBBCONFI G difference between (1) the seconds. Default is
(TA_SI GNATURE_AHEADIn timestamp value attached to a 3600 seconds (one
TM M B) digitally signed message buffer and hour).

(2) the time at which the message

buffer isreceived. If the signature
timestamp istoo far into the future,
the receiving process rej ects the
message buffer.

Using Security in ATMI Applications 2-43

2 Administering Security

Parameter Name Description Setting

S| GNATURE_BEH NDin Maximum permissible time 1-2147483647
UBBCONFI G difference between (1) the time at seconds. Defaultis
(TA_SI GNATURE_BEHI NDin which adigitaly signed message 604800 seconds
T™M_M B) buffer is received and (2) the (one week).

timestamp value attached to the
message buffer. If the signature
timestamp is too far into the past,
the receiving process rejects the

message buffer.
S| GNATURE_REQUI REDIn Determines whether a receiving Y (yes—digital
UBBCONFI G process will accept only message signatureis
(TA_SI GNATURE_REQUI RED buffersthat are digitally signed. required) or N (no—
inTM_M B) digital signatureis
not required).
Default isN.

Setting a Postdated Limit for Signature Timestamps

SI GNATURE_AHEAD is specified at the domain-wide level of the configuration
hierarchy, meaning that the value you assign to it appliesto all processes running in
the ATMI application. Domain-wide parameters are set in the RESOURCES section in
the UBBCONFI Gfile, and the T_DOMAI Nclassinthe TM M B.

The SI GNATURE_AHEAD parameter establishes the maximum permissible time

difference between (1) the timestamp attached to the incoming message buffer and (2)
the current time shown on the verifying system’slocal clock. The minimum valueis 1
second; the maximum, 2147483647 seconds. The default is 3600 seconds (one hour).

If the attached timestamp shows a time too far into the future, the signatureis
considered invalid. Thisparameter is useful for rejecting signaturesthat are postdated,
while allowing a certain amount of leeway for unsynchronized local clocks.

Example UBBCONFIG Entries for Postdated Limit

2-44

* RESOURCES
SI GNATURE_AHEAD 2400

Using Security in ATMI Applications

Administering Public Key Security

Setting a Predated Limit for Signature Timestamps

S| GNATURE_BEHI ND is specified at the domain-wide level of the configuration
hierarchy, meaning that the value you assign to it applies to all processes running in
the ATMI application. Domain-wide parameters are set in the RESOURCES section in
the UBBCONFI Gfile, and the T_DOMAI Nclassinthe TM M B.

The SI GNATURE_BEHI ND parameter establishes the maximum permissible time
difference between (1) the current time shown on the verifying system’s local clock
and (2) the timestamp attached to the incoming message buffer. The minimum value
is 1 second; the maximum, 2147483647 seconds. The default is 604800 seconds (one
week).

If the attached timestamp shows atimetoo far into the past, the signatureis considered
invalid. This parameter is useful for resisting replay attacks, in which avalid signed
buffer isinjected into the system a second time. However, in a system with
asynchronous communication—for example, in a system in which disk-based queues
are used—nbufferssigned along time ago may still be considered valid. So, inasystem
with asynchronous communication, you may want to increase the S| GNATURE_BEHI ND
setting.

Example UBBCONFIG Entries for Predated Limit
* RESOURCES

S| GNATURE_BEH ND 300000

Enforcing the Signature Policy for Incoming Messages

SI GNATURE_REQUI RED may be specified any of the following four levelsin the
configuration hierarchy:

B RESOURCES section in UBBCONFI Gor T_DOMAI Nclassin TM M B
m MACHI NES section in UBBCONFI Gor T_MACHI NE classin TM M B
B GROUPS section in UBBCONFI Gor T_GROUP classin TM_ M B

m SERVI CES section in UBBCONFI Gor T_SERVI CE classin TM M B

Setting SI GNATURE_REQUI REDtOYY (yes) at a particular level meansthat signaturesare
required for all processes running at that level or below. For example, setting

SI GNATURE_REQUI RED to Y for a machine named mach1 means that all processes
running on mach1 will accept only incoming messages that are digitally signed.

Using Security in ATMI Applications 2-45

2 Ad

ministering Security

Qualifier

Example

2-46

m Set at the domain-wide level (RESOURCES section or T_DOMAI N class), this
parameter covers all application services advertised within the domain, including
those advertised by gateway processes. The default is N.

m Set a the machine level (MACHI NES section or T_MACHI NE class), this parameter
covers all application services advertised on a particular machine, including
those advertised by gateway processes. The default is N.

m Set at the group level (GROUPS section or T_GROUP class), this parameter covers
all application services advertised by a particular group, including those
advertised by gateway processes. The default is N.

m Set at the service level (SERVI CES section T_SERVI CE class), this parameter
coversall instances of a particular service advertised within the domain,
including those advertised by gateway processes. The default is N.

Y ou may specify both SI GNATURE_REQUI RED=Y and ENCRYPTI ON_REQUI RED=Y
together at the domain-wide level, machine level, group level, or service level. See
“Enforcing the Encryption Policy for Incoming Messages’ on page 2-48 for a
description of ENCRYPTI ON_REQUI RED.

The enforcement policy for SI GNATURE_REQUI RED applies only to application
services, application events, and application enqueue requests. It does not apply to
system-generated service invocations and system event postings.

To configure SI GNATURE_REQUI RED for a machine named nach1, follow these steps.

1. Ensurethat you are working on the ATMI application MASTER machine and that the
ATMI application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the MACHI NES
section:

* MACHI NES

machl LM D="machi ne_| ogi cal _nane"
TUXCONFI G="absol ute_path_nane_to_tuxconfig file"
TUXDI R="absol ute_path_name_t o BEA Tuxedo_directory"
APPDI R="absol ute_path_name_to_application_directory"
S| GNATURE_REQUI RED=Y

Using Security in ATMI Applications

Administering Public Key Security

3. Load the configuration by runningt m oadcf (1) . Thet nl oadcf command
parses UBBCONFI G and loads the binary TUXCONFI Gfileto the location referenced
by the TUXCONFI G variable.

In the preceding example, when t mboot (1) startsthe ATMI application, it passesthe
SI GNATURE_REQUI RED=Y parameter to the machine named nach1. At that point, all
application services advertised by mach1, including those advertised by gateway
processes, are allowed to accept only messagesthat include valid digital signatures. If
aprocess controlled by mach1 receives a message that does not include avalid digital
signature, the system takes the following actions:

m Generatesauser | og(3c) message (severity WARN)

m Discards the buffer asif it were never received by the process

Note: A NULL (empty) buffer cannot be digitally signed, meaning that the system
rejects any NULL buffer received by a process requiring digital signatures, in
the manner stated in the preceding bullet list.

How the EventBroker Signature Policy Is Enforced

When digital signatures are attached to a posted message buffer, these signatures are
preserved and forwarded along with the message buffer to subscribersfor the relevant
event.

If the TMUSREVT(5) system server isrunning in a domain, machine, or server group
that requires digital signatures, it rejects any incoming posting without a TPSI GN_OK
composite signature status—see “Understanding the Composite Signature Status’ on
page 3-56.

Possible subscription notification actions that the TMUSREVT server might take include
invoking a service or enqueuing amessage. |f the target service or queue requires a
valid digital signature, but oneis not attached to the posted message, the subscription
notification action fails.

System events (events that are posted by the system itself and processed by the
TMBYSEVT server) may be digitally signed. The administrative policies regarding
digital signature do not apply to the TMSYSEVT(5) server.

Using Security in ATMI Applications ~ 2-47

2 Administering Security

How the /Q Signature Policy Is Enforced

When digital signatures are attached to a queued buffer, the signatures are preserved
in the queue and forwarded to the dequeuing process. Also, if amessage is processed
by TMOFORWARD(5) to invoke a service, signatures are preserved.

If the TMQUEUE(5) system server isrunninginadomain, machine, or server group that
requires digital signatures, it rejects any incoming enqueue request without a

TPSI GN_OK composite signature status—see “ Understanding the Composite Signature
Status’ on page 3-56. In addition, the TMQUEUE server requires adigital signature if
such apolicy isin effect for the service name associated with the queue space.

How the Remote Client Signature Policy Is Enforced

If theworkstation handler (WSH) isrunning in adomain, machine, or server group that
requires digital signatures, it rejects any incoming message buffer containing
application data without a TPSI GN_OK composite signature status—see
“Understanding the Composite Signature Status’ on page 3-56.

Setting Encryption Policy

As the administrator, you use the following configuration parameter to set the
encryption policy for your ATMI application.

Parameter Name Description Setting
ENCRYPTI ON_REQUI REDin Determines whether a receiving Y (yes—encryption
UBBCONFI G process will accept only message isrequired) or N
(TA_ENCRYPTI ON_REQUI RED buffers that are encrypted. (no—encryptionis
inTM_M B) not required).
Default is N.

Enforcing the Encryption Policy for Incoming Messages

ENCRYPTI ON_REQUI RED may be specified at any of the following four levelsin the
configuration hierarchy:

2-48 Using Security in ATMI Applications

Administering Public Key Security

Qualifier

Example

B RESOURCES section in UBBCONFI Gor T_DOMVAI Nclassin TM M B
m MACHI NES section in UBBCONFI Gor T_MACHI NE classin TM M B
B GROUPS section in UBBCONFI Gor T_GROUP classin TM_ M B

m SERVI CES section in UBBCONFI Gor T_SERVI CE classin TM M B

Setting ENCRYPTI ON_REQUI RED to Y (yes) at a particular level means that encryption
isrequired for all processes running at that level or below. For example, setting
ENCRYPTI ON_REQUI RED to Y for a machine named nach1 meansthat all processes
running on machl will accept only incoming messages that are encrypted.

m Set at the domain-wide level (RESOURCES section or T_DOVAI N class), this
parameter covers all application services advertised within the domain, including
those advertised by gateway processes. The default is N.

m Set at the machine level (MACHI NES section or T_MACH NE class), this parameter
covers al application services advertised on a particular machine, including
those advertised by gateway processes. The default is N.

m Set at the group level (GROUPS section or T_GROUP class), this parameter covers
all application services advertised by a particular group, including those
advertised by gateway processes. The default is N.

m Set at the service level (SERVI CES section T_SERVI CE class), this parameter
coversal instances of a particular service advertised within the domain,
including those advertised by gateway processes. The default is N.

Y ou may specify both ENCRYPTI ON_REQUI RED=Y and S| GNATURE_REQUI RED=Y
together at the domain-wide level, machine level, group level, or service level. See
“Enforcing the Signature Policy for Incoming Messages” on page 2-45 for a
description of SI GNATURE_REQUI RED.

The enforcement policy for ENCRYPTI ON_REQUI RED applies only to application
services, application events, and application enqueue requests. It does not apply to
system-generated service invocations and system event postings.

To configure ENCRYPTI ON_REQUI REDfor aserver group named STDGRP, follow these
steps.

Using Security in ATMI Applications 2-49

2 Administering Security

1. Ensurethat you are working on the ATMI application MASTER machine and that the
ATMI application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the GROUPS
section:

* CROUPS

STDGRP LM D="rmachi ne_I ogi cal _nane"
GRPNO="server _group_nunber"
ENCRYPTI ON_REQUI RED=Y

3. Load the configuration by running t ni oadcf (1) . Thet m oadcf command
parses UBBCONFI G and loads the binary TUXCONFI Gfile to the location referenced
by the TUXCONFI G variable.

In the preceding example, when t nboot (1) startsthe ATMI application, it passesthe
ENCRYPTI ON_REQUI RED=Y parameter to the server group named STDGRP. At that
point, all application services advertised by STDGRP, including those advertised by
gateway processes, are allowed to accept only messages protected by an encryption
envelope. If aprocess controlled by STDGRP receives an unencrypted message, the
system takes the following actions:

m Generatesauser| og(3c) message (severity ERROR)

m Discardsthe buffer asif it were never received by the process

Note: A NULL (empty) buffer cannot be encrypted, meaning that the system rejects
any NULL buffer received by a process requiring encryption, in the manner
stated in the preceding bullet list.

How the EventBroker Encryption Policy Is Enforced

When a posted message buffer is encrypted, encryption envelopes are preserved and
forwarded, along with the encrypted message content, to subscribers for the relevant
event.

If the TMUSREVT(5) system server isrunning in adomain, machine, or server group
that requires encryption, it rejects any incoming posting message that is not encrypted.

Possible subscription notification actionsthat the TMUSREVT server might take include
invoking a service or enqueuing a message. If the target service or queue requires
encrypted input, but the posted message is not encrypted, the subscription notification
actionfails. Also, if the subscriber does not possess an appropriate decryption key, the
event notification action fails.

2-50 Using Security in ATMI Applications

Administering Public Key Security

System events (events that are posted by the system itself and processed by the
TMBYSEVT server) may be encrypted. The administrative policiesregarding encryption
do not apply to the TMSYSEVT(5) server.

How the /Q Encryption Policy Is Enforced

When a queued message buffer is encrypted, this statusis preserved in the queue, and
the buffer isforwarded, in encrypted form, to the dequeuing process. Also, if a
message is processed by TMQFORWARD(5) to invoke a service, encryption statusis

preserved.

If the TMQUEUE(5) system server isrunning in adomain, machine, or server group that
requires encryption, it rejects any incoming engqueue request that is not encrypted. In
addition, the TMQUEUE server requires encryption if such apolicy isin effect for the
service name associated with the queue space.

How the Remote Client Encryption Policy Is Enforced

If the workstation handler (WSH) isrunning in adomain, machine, or server group that
requiresencryption, it rejects any incoming message buffer containing an unencrypted

application data buffer.

Initializing Decryption Keys Through the Plug-ins

Asthe administrator, you use the following configuration parameters to specify
principal names and decryption keys for the system processes running in your ATMI

application.
Parameter Name Description Setting
SEC PRI NCI PAL_NAMEin The name of the target 1-511 characters.

UBBCONFI G
(TA_SEC_PRI NCl PAL_NAME in
T™M M B)

principal, which becomesthe
identity of one or more
system processes.

SEC_PRI NCI PAL_LOCATI ONin
UBBCONFI G

(TA_SEC_PRI NCl PAL_LOCATI ON
inT™M M B)

Thelocation of the file or 1-511 characters. If
device where the decryption not specified,

(private) key for the target defaultstoaNULL
principal resides. (zero length) string.

Using Security in ATMI Applications 2-51

2 Administering Security

Parameter Name Description Setting

SEC PRI NCI PAL_PASSVARIN The variable in which the 1-511 characters. If
UBBCONFI G password for the target not specified,
(SEC_PRI NCI PAL_PASSVARIn principal is stored. defaultstoaNULL
T™M_M B) (zerolength) string.

Thistrio of configuration parameters can be specified at any of the following four
levelsin the configuration hierarchy:

® RESOURCES section in UBBCONFI Gor T_DOVAI Nclassin TM M B
m MACHI NES section in UBBCONFI Gor T_MACHI NE classin TM M B
® GROUPS section in UBBCONFI Gor T_GROUP classinTM M B

m SERVERS section in UBBCONFI Gor T_SERVERCclassin TM M B

A principal name and decryption key at a particular configuration level can be
overridden at alower level. For example, suppose you configure a principa name and
decryption key for machine mach1, and a principal name and decryption key for a
server called ser v1 running on nachl. The processes on machl behave as follows:

m All processes on machl except serv1 processes use the decryption key assigned
to mach1 to decrypt any received message buffer that is encrypted.

m All serv1 processes use the decryption key assigned to ser v1 to decrypt any
received message buffer that is encrypted.

Configured decryption keys are automatically opened when an ATMI application is
booted. The following figure demonstrates how the process works.

2-52 Using Security in ATMI Applications

Administering Public Key Security

Figure2-13 How a Decryption Key IsInitialized Example

Myubbconfig

*RESOURCES
SEC_PRINCIPAL_NAME “Tommy”
SEC_PRINCIPAL_LOCATION “/homel/..."
SEC_PRINCIPAL_PASSVAR “TOMMY_VAR’

tm oadcf -y myubbconfig (User Input)

Enter password for Tommy: (System Response)
password (User Input)
Re-enter password for Tommy: (System Response)
password (User Input)
Mytuxconfig l
|
t mboot ()
Y

BEA Tuxedo Library

4

ATMI Security

Public Key Security Plug-in Interface

[1
v

Proof Material Mapping Public Key Initialization

map_proof PKi_init

L) l

t pkey_open(key_handle, “Tommy”, “/home/...”,
“password”, password_len, TPKEY_DECRYPT) ;

|

Decryption Key Handle for Tommy

Using Security in ATMI Applications 2-53

2 Administering Security

2-54

Thefollowing is a detailed description of how the operation shown in the preceding
figureis performed.

1. Theadministrator defines SEC PRI NCI PAL_NANME, SEC PRI NCl PAL_LOCATI ON,
and SEC_PRI NCI PAL_PASSVAR at a particular level inthe ATMI application’s
UBBCONFI Gfile.

2. Theadministrator loads the configuration by running t m oadcf (1) . The
t ml oadcf command parses UBBCONFI G and loads the binary TUXCONFI Gfile to
the location referenced by the TUXCONFI G variable.

3. When prompted, the administrator enters and then re-enters the password for the
target principal.

4. Theadministrator entersthet nboot (1) command to boot the ATMI application.

5. During the boot process, the map_pr oof plug-in reads SEC PRI NCI PAL_NAME,
SEC_PRI NCI PAL_LOCATI ON, and SEC_PRI NCI PAL_PASSVAR, analyzes their
values, and then determines whether the calling process has proven its right to
access the requested decryption key. (Having access to a decryption key, or
private key, is equivalent to possessing the principal’s identity.)

6. If the password associated with SEC PRI NCI PAL_PASSVAR matches the assigned
password for the principal specified in SEC_PRI NCI PAL_NAME, the map_pr oof
plug-in passes the name, location, and password of the principal to the PKi _i ni t
plug-in.

7. ThePkKi _init plug-incalst pkey_open(3c) with the name, location, and
password of the principal as arguments. It returns a decryption key handle for the
principal.

Each time you invoke t m oadcf toload the configuration, you are prompted to enter
the password for each of the decryption keys configured with

SEC_PRI NCI PAL_PASSVAR. If you want to avoid having to enter each password
manually, you can write a script that automatically enters the passwords. The script
must include a definition of each password variable, and it must end with the following
line:

tm oadcf -y ubbconfig _nane < /dev/null

No application process has permission to close adecryption key opened during ATMI
application booting. The decryption keys stay open until you run thet nshut down(1)
command to shut down the ATMI application.

Using Security in ATMI Applications

Administering Public Key Security

Example UBBCONFIG Entries for Principal Names and Decryption Keys

* RESOURCES

SEC PRI NCI PAL_NAMVE " Tomy"

SEC PRI NCl PAL_LOCATI ON "/ hon®/ j hn/ secsapp/ cert/tomy. pvk"
SEC PRI NCl PAL_PASSVAR " TOMW_VAR'

* SERVERS

" TMQUEUE" SRVGRP=" QUEGROUP" SRVI D=1
CLOPT="-s secsdb: TMQUEUE"
SEC PRI NCI PAL_NANME= " TOUPPER"

SEC PRI NCI PAL_LOCATI ON="/ hon®/j hn/ secsapp/ cert/ TOUPPER. pvk"
SEC PRI NCl PAL_PASSVAR= " TOUPPER_VAR'

Failure Reporting and Auditing

Thistopic explains how the system manages errors found through digital signatures
and message encryption.

Digital Signature Error Handling

If message tampering is detected (that is, if the composite signature statusis either
TPSI GN_TAMPERED MESSAGE or TPSI GN_TAMPERED CERT—see “Understanding the
Composite Signature Status” on page 3-56), the system takes the following actions:

m Generatesauser | og(3c) message (severity ERROR)
m Discards the buffer asif it were never received by the process

If any individual signature associated with an expired certificate, revoked certificate,
expired signature, or postdated signature is detected, the system takes the following
actions:

m Generatesauser | og() message (severity WARN)

m Discards the buffer asif it were never received by the process unless the buffer’s
composite signature status is TPSI GN_OK or TPSI GN_UNKNOWN

Using Security in ATMI Applications 2-55

2 Administering Security

If a process that requires avalid digital signature (based on the
SI GNATURE_REQUI RED=Y setting) receives a message with the composite signature
status TPSI GN_UNKNOWN, the system takes the following actions:

Generatesauser | og() message (severity WARN)

Discards the buffer asif it were never received by the process

Encryption Error Handling

If a process receives an encrypted message but does not possess an open decryption
key matching one of the message' s encryption envelopes, the system takes the
following actions:

Generatesauser | og(3c) message (severity ERROR)

Discards the buffer asif it were never received by the process

If a process that requires encrypted input (based on the ENCRYPTI ON_REQUI RED=Y
setting) receives an unencrypted message, the system takes the following actions:

See Also

Generatesauser | og() message (severity ERROR)

Discards the buffer asif it were never received by the process

“Public Key Security” on page 1-29

“Public Key Implementation” on page 1-42
“Security Administration Tasks’ on page 2-3
“Security Interoperability” on page 1-55
“Security Compatibility” on page 1-60

2-56 Using Security in ATMI Applications

Administering Default Authentication and Authorization

Administering Default Authentication and
Authorization

Default authentication and authorization work in the same manner that authentication
and authorization have worked since they were first made available with the BEA
Tuxedo system.

Default authentication provides three levels of security: no authentication (NONE),
application password (APP_PW, and user-level authentication (USER_AUTH). Default
authorization provides two levels of security: optional access control list (ACL) and
mandatory access control list (MANDATORY_ACL). Only when users are authenticated to
join an ATMI application does the access control list become active.

Designating a Security Level

Asthe administrator, you can use one of three waysto designate a security level for an
ATMI application: by editing the UBBCONFI G configuration file, by changing the
TM_M B, or by using the BEA Administration Console.

Establishing Security by Editing the Configuration File

In your UBBCONFI Gfile, set the SECURI TY parameter to the appropriate value:
SECURI TY {NONE | APP_PW| USER AUTH | ACL | NANDATORY_ACL}

The default is NONE. If SECURI TY is set to USER_AUTH, ACL, or MANDATORY_ACL, then
a system-supplied authentication server named AUTHSVR isinvoked to perform
per-user authentication.

If you select any value other than NONE, make sure that the value of the APPDI R
variable is unique for each ATMI application running on the MASTER site. Multiple
ATMI applications cannot share the same application directory if security features are
being used.

Using Security in ATMI Applications 2-57

2 Administering Security

Establishing Security by Changing the TM_MIB

To designate a security level through the TM M B, you must assignh avalue to the

TA _SECURI TY attributeinthe T_DOVAI N class. When an ATMI applicationisinactive,
the administrator can SET the value of TA_SECURI TY to any of the valuesthat arevalid
in UBBCONFI G. To complete this task, run the administrative interface

t padntal | (3c).

Establishing Security by Using the BEA Administration Console

Y ou can also designate a security level through the BEA Administration Console. The
BEA Administration Console is a Web-based tool used to configure, monitor, and
dynamically reconfigure an ATMI application.

Configuring the Authentication Server

2-58

The BEA Tuxedo server called AUTHSVR provides a single service, AUTHSVC, which
performs authentication. AUTHSVC is advertised by the AUTHSVR server as. . AUTHSVC
when the security level is set to ACL or MANDATORY_ACL.

To add AUTHSVCto an ATMI application, you need to define AUTHSVC as the
authentication service and AUTHSVR as the authenti cation server in the UBBCONFI Gfile.
For example:

* RESOURCES
SECURI TY USER AUTH
AUTHSVC AUTHSVC

* SERVERS
AUTHSVR SRVCRP="gr oup_name" SRVI D=1 RESTART=Y CRACE=600 MAXGEN=2
CLOPT="- A"

If you omit the parameter-value entry AUTHSVC ~ AUTHSVC, the system calls AUTHSVC
by default.

As another example:

* RESOURCES
SECURI TY ACL

Using Security in ATMI Applications

Administering Default Authentication and Authorization

See Also

AUTHSVC .. AUTHSVC

* SERVERS
AUTHSVR SRVGRP="gr oup_nanme" SRVI D=1 RESTART=Y GRACE=600 MAXCGEN=2
CLOPT="- A"

If you omit the parameter-value entry AUTHSVC . . AUTHSVC, the system calls
. . AUTHSVC by default.

AUTHSVR may be replaced with an authentication server that implementslogic specific
to the ATMI application. For example, a company may want to develop a custom
authentication server so that it can use the popular K erberos mechanism for
authentication.

To add a custom authentication service to an ATMI application, you need to define
your authentication service and server in the UBBCONFI G file. For example:

* RESOURCES

SECURITY USER_AUTH
AUTHSVC KERBERCS

* SERVERS
KERBEROSSVR SRVGRP="gr oup_nanme" SRVI D=1 RESTART=Y GRACE=600
MAXGEN=2 CLOPT="-A"

m “How to Enable Application Password Security” on page 2-60

m “How to Enable User-Level Authentication Security” on page 2-61
m “Enabling Access Control Security” on page 2-65

m “Default Authentication and Authorization” on page 1-45

m “Security Administration Tasks” on page 2-3

m AUTHSVR(5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

Using Security in ATMI Applications 2-59

2 Administering Security

How to Enable Application Password
Security

Default authentication offers an application password security level that you invoke
by specifying SECURI TY APP_PWin your configuration file. This level requires that
every client provide an application password as part of the process of joiningthe ATMI
application. The administrator defines asingle password for the entire ATMI
application and gives the password only to authorized users.

To enable the APP_Pwsecurity level, follow these steps.

1. Ensurethat you are working on the ATMI application MASTER machine and that the
ATMI application isinactive.

2. Set the SECURI TY parameter in the RESOURCES section of the UBBCONFI Gfile to
APP_PW

3. Load the configuration by running t nl oadcf (1) . Thet m oadcf command
parses UBBCONFI Gand loads the binary TUXCONFI Gfile to the location referenced
by the TUXCONFI G variable.

4. The system prompts you for a password. The password you enter may be up to 30
characterslong. It becomes the password for the ATMI application and remains
in effect until you change it by using the passwd command of t madni n.

5. Distribute the application password to authorized users of the ATMI application
through an offline means such as telephone or letter.

See Also

m “Default Authentication and Authorization” on page 1-45
m “Administering Default Authentication and Authorization” on page 2-57
m “Security Administration Tasks’ on page 2-3

2-60 Using Security in ATMI Applications

How to Enable User-Level Authentication Security

How to Enable User-Level Authentication
Security

Default authentication offers auser-level authentication security level that you invoke
by specifying SECURI TY USER_AUTH in your configuration file. This security level
requires that in addition to the application password, each client must provide avalid
username and user-specific data, such as a password, to join the ATMI application.
The per-user password must match the password associated with the combination
user-client name stored in afile named t pusr . The checking of per-user password
against the password and user-client nameint pusr iscarried out by the authentication
service AUTHSVC, which is provided by the authentication server AUTHSVR.

To enable the USER_AUTH security level, follow these steps.
1. Set up the UBBCONFI Gfile.
2. Set up the user and group files.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensurethat you areworking onthe ATMI application MASTER machine and that the
ATMI application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the RESOURCES
and SERVERS sections:

* RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

* SERVERS
AUTHSVR SRVCGRP="gr oup_nane" SRVI D=1 RESTART=Y GRACE=600 MAXCGEN=2
CLOPT="- A"

Using Security in ATMI Applications 2-61

2 Administering Security

CLOPT="- A" causest mboot (1) to passonly the default command-line options
(invoked by " - A") to AUTHSVR when t mboot startsthe ATMI application. By
default, AUTHSVR uses the client user information in afile named t pusr to
authenticate clients that want to join the ATMI application. t pusr residesin the
directory referenced by the first pathname defined in the ATMI application’s
APPDI Rvariable.

3. Load the configuration by running t nl oadcf (1) . Thet m oadcf command
parses UBBCONFI G and |loads the binary TUXCONFI Gfile to the location referenced
by the TUXCONFI G variable.

4. The system prompts you for a password. The password you enter may be up to 30
characterslong. It becomes the password for the ATMI application and remains
in effect until you change it by using the passwd command of t madni n.

5. Distribute the application password to authorized users of the ATMI application
through an offline means such as telephone or letter.

Setting Up the User and Group Files

2-62

AUTHSVR and the access control checking feature available with the default
authorization system require a user file named t pusr , which contains alist of client
users allowed to join the ATMI application. t pusr is maintained by the application
administrator using thet pusr add(1) , t pusrdel (1), andt pusr nod(1) commands.
The AUTHSVR server takes asinput the client user information stored in thet pusr file;
it uses this information to authenticate clients that want to join the ATMI application.

Thefollowing display is a sample entry in thet pusr file.

user name password user identifier group identifier client name
[I [[[I

smth: 86V7Bz Adwr NVs: 9: 156: TPCLTNM *: :
AUTHSVR and the access control checking feature also require a group file named
t pgr p, which contains alist of groups associated with the client users allowed to join
the ATMI application; t pgr p is maintained by the application administrator using the
t pgr padd(1) , t pgr pdel (1), and t pgr pnrod(1) commands.

Using Security in ATMI Applications

How to Enable User-Level Authentication Security

AUTHSVC assigns an authenticated client user an application key, which contains auser
identifier and associated group identifier for the USER_AUTH, ACL, or MANDATORY_ACL
security level. (See “Application Key” on page 1-49 for more information about

application keys.)
The following display isasample entry in thet pgr p file.

group name group identifier
[[I

Adm ni strators:: 156:
Asthe administrator, you must definelists of usersand groupsinthet pusr andt pgrp
files, both of which are located in the directory referenced by the first path name
defined in the ATMI application’s APPDI Rvariable. Thefiles are colon-delimited, flat
text files, readable and writable only by the application’ s administrator.

Converting System Security Data Files to BEA Tuxedo User and Group Files

Y ou may already have files containing lists of users and groups on your host system.
Y ou can use them as the user and group filesfor your ATMI application, but only after
converting them to the format required by the BEA Tuxedo system. To convert your
files, runthet pacl cvt (1) command, as shown in the following sample procedure.
The sample procedure is written for a UNIX host machine.

1. Ensurethat you areworking onthe ATMI application MASTER machine and that the
ATMI application isinactive.

2. To convert the/ et c/ passwor d file into the format needed by the BEA Tuxedo
system, enter the following command.

tpacl cvt -u /etc/password

Thiscommand creates the t pusr file and stores the converted datain it. If the
t pusr filealready exists, t pacl cvt adds the converted datato thefile, but it
does not add duplicate user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to
enter a password for each user in thefile.

3. To convert the/ et c/ gr oup fileinto the format needed by the BEA Tuxedo
system, enter the following command.

tpaclcvt -g /etc/group

Using Security in ATMI Applications 2-63

2 Administering Security

This command createsthet pgr p file and stores the converted datain it. If the
t pgr p file adready exists, t pacl cvt addsthe converted datato thefile, but it
does not add duplicate group information to the file.

Adding, Modifying, or Deleting Users and Groups

The BEA Tuxedo system requires that you maintain alist of your application usersin
afilenamedt pusr, and alist of groups, inafilenamedt pgr p. There aretwo methods
of modifying the entriesin these files: by issuing commands or by changing the values
of the appropriate attributesin the ACL_M B.

Changing Entries for Users and Groups Through Commands

2-64

Y ou can add, modify, or delete entriesin thet pusr and t pgr p files at any time by
running one of the following commands.

Run ... To... An Entry in ThisFile
t pusradd(1) Add t pusr

t pusrnod(1) M odify

tpusrdel (1) Delete

t pgr padd(1) Add tpgrp

t pgrpnod(1) M odify

tpgrpdel (1) Delete

To run any of these commands, follow these steps.

1. For aninactive ATMI application, make sure you are working from the application
MASTER machine. For an active ATMI application, you may work from any
machine in the configuration.

2. For specific instructions on running a command, see the entry for that command
in the BEA Tuxedo Command Reference.

Using Security in ATMI Applications

Enabling Access Control Security

Changing Entries for Users and Groups Through the ACL_MIB

See Also

If you prefer not to use the command-lineinterface, you can add, modify, or del ete user
entriesint pusr by changing the appropriate attribute valuesin the T_ACLPRI NCI PAL
classinthe ACL_M B(5) . Thismethod is more efficient than the command-line
interface if you want to add several user entries simultaneously, sincet pusr add(1)
allows you to add only one user at atime.

Similarly, you can add, modify, or delete group entriesin t pgr p by changing the
appropriate attribute valuesin the T_ACLGROUP classinthe ACL_M B(5) . Thismethod
is more efficient than the command-line interface if you want to add several group
entries simultaneously, sincet pgr padd(1) allowsyou to add only one group at atime.

Of course, the easiest way to access the M B isviathe BEA Administration Console.

m “Default Authentication and Authorization” on page 1-45
m “Administering Default Authentication and Authorization” on page 2-57

m “Security Administration Tasks” on page 2-3

Enabling Access Control Security

Default authorization consists of an access control checking feature that determines
which users can execute a service, post an event, or enqueue (or dequeue) a message
on an application queue. There are two levels of access control security: optional
access control list (ACL) and mandatory access control list (MANDATORY_ACL). Only
when users are authenticated to join an ATMI application does the access control list
become active.

By using an access control list, an administrator can organize usersinto groups and
associ ate the groups with objects that the member users have permission to access.
Access control is done at the group level for the following reasons:

Using Security in ATMI Applications 2-65

2 Administering Security

m System administration is simplified. It is easier to give a group of people access
to anew servicethan it isto giveindividual users access to the service.

m Performanceisimproved. Because access permission needs to be checked for
each invocation of an entity, permission should be resolved quickly. Because
there are fewer groups than users, it is quicker to search through alist of
privileged groupsthan it isto search through alist of privileged users.

The access control checking feature is based on three files that are created and
maintained by the application administrator:

m tpusr containsalist of users
m tpgrp containsalist of groups

m tpacl containsalist of mappings of groupsto application entities (such as
services) known as the access control list (ACL)

By parsing the client’ s application key, which contains information identifying the
client asavalid user and valid group member, an entity (such as a service, event, or
application queue) can identify the group to which the user belongs; by checking the
t pacl file, an entity can determine whether the client’s group has access permission.

The application administrator, application operator, and processes or service requests
running with the privileges of the application administrator/operator are not subject to
ACL permission checking.

If user-level ACL entriesare needed, they may beimplemented by creating agroup for
each user, and then mapping the group to the appropriate application entitiesin the
t pacl file.

How to Enable Optional ACL Security

2-66

Default authentication offers an optional ACL (ACL) security level that you invoke by
specifying SECURI TY ACL in your configuration file. This security level requires that
each client provide an application password, a username, and user-specific data, such
asapassword, to join the ATMI application. If thereisno entry inthet pacl file

associated with the target application entity, the user is permitted to access the entity.

This security level enables an administrator to configure access for only those
resources that need more security. That is, thereis no need to add entriesto thet pacl
file for services, events, or application queues that are open to everyone. Of course, if

Using Security in ATMI Applications

Enabling Access Control Security

thereisan entry inthet pacl file associated with the target application entity and a
user attemptsto accessthat entity, the user must be amember of agroup that isallowed
to access that entity; otherwise, permission is denied.

To enable the ACL security level, follow these steps.
1. Set up the UBBCONFI Gfile.
2. Setupthe ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensurethat you areworking onthe ATMI application MASTER machine and that the
ATMI application isinactive.

2. Open UBBCONFI Gwith atext editor and add the following lines to the RESOURCES
and SERVERS sections:

* RESOURCES

SECURITY ACL

AUTHSVC .. AUTHSVC

* SERVERS

AUTHSVR SRVCGRP="gr oup_nane" SRVI D=1 RESTART=Y GRACE=600 MAXCGEN=2
CLOPT="- A"

CLOPT="- A" causest nboot (1) to pass only the default command-line options
(invoked by " - A") to AUTHSVR when t nboot startsthe ATMI application. By
default, AUTHSVR uses the client user information in afile namedt pusr to
authenticate clients that want to join the ATMI application. t pusr residesin the
directory referenced by the first pathname defined in the ATMI application’s
APPDI R variable.

3. Load the configuration by runningt m oadcf (1) . Thet nl oadcf command
parses UBBCONFI G and loads the binary TUXCONFI Gfileto the location referenced
by the TUXCONFI G variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the ATMI application and remains
in effect until you change it by using the passwd command of t madni n.

Using Security in ATMI Applications 2-67

2 Administering Security

5. Distribute the application password to authorized users of the ATMI application
through an offline means such as telephone or letter.

Setting Up the ACL File

The access control checking feature requires a user file named t pusr , agroup file
named t pgr p, and an ACL file named t pacl . The ACL file contains mappings of
groups to application entities. An entity may be a service, event, or application queue.

Thefollowing display is a sample entry in thet pacl file.

entity name entity type group identifiers
[[[I

TOLOAER: SERVI CE: 156, 281, 282, 305:
Asthe administrator, you must definetheentriesinthet pacl! file, whichislocated in
the directory referenced by the first pathname defined in the ATMI application’s
APPDI Rvariable. Thefileisacolon-delimited, flat text file, readable and writable only
by the application’s administrator.

There are two methods of modifying the ACL entriesinthet pacl file: by issuing
commands or by changing the values of the appropriate attributesin the ACL_M B.

Changing ACL Entries Through Commands

2-68

Y ou can add, modify, or delete ACL entriesin thet pacl file at any time by running
one of the following commands.

Run... To...

t pacl add(1) Add an entry

t pacl nod(1) Modify an entry
t pacl del (1) Delete an entry

To run any of these commands, follow these steps.

1. For aninactive ATMI application, make sure you are working from the application
MASTER machine. For an active ATMI application, you may work from any
machine in the configuration.

Using Security in ATMI Applications

Enabling Access Control Security

2. For specific instructions on running a command, see the entry for that command
in the BEA Tuxedo Command Reference.

Changing ACL Entries Through the ACL_MIB

If you prefer not to use the command-line interface, you can add, modify, or delete
ACL entriesint pacl by changing the appropriate attribute values in the T_ACLPERM
classinthe ACL_M B(5) . Thismethod is more efficient than the command-line
interface if you want to add several ACL entries simultaneoudly, sincet pacl add(1)
allows you to add only one ACL entry at atime.

Of course, the easiest way to access the M B isviathe BEA Administration Console.

How to Enable Mandatory ACL Security

Default authentication offers a mandatory ACL security level that you invoke by
specifying SECURI TY MANDATORY_ACL in your configuration file. This security level
requires that each client provide an application password, a username, and
user-specific data, such asapassword, to jointhe ATMI application. If thereisno entry
inthet pacl fileassociated with thetarget application entity, the client is not permitted
to access the entity. In other words, an entry must exist in the t pac! file for every

application entity that a client needsto access. For thisreason, thislevel is called
mandatory.

Of coursg, if thereisan entry inthet pacl file associated with the target application
entity and auser attempts to access that entity, the user must be a member of a group
that is allowed to access that entity; otherwise, permission is denied.

To enable the MANDATORY_ACL security level, follow these steps.
1. Set up the UBBCONFI Gfile.
2. Setupthe ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensurethat you areworking onthe ATMI application MASTER machine and that the
ATMI application isinactive.

Using Security in ATMI Applications 2-69

2 Administering Security

2. Open UBBCONFI Gwith atext editor and add the following lines to the RESOURCES
and SERVERS sections:

* RESOURCES

SECURI TY = MANDATORY_ACL

AUTHSVC .. AUTHSVC

* SERVERS

AUTHSVR SRVGRP="gr oup_nane" SRVI D=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="- A"

CLOPT="- A" causest mboot (1) to passonly the default command-line options
(invoked by " - A") to AUTHSVR when t mboot startsthe ATMI application. By
default, AUTHSVR uses the client user information in afile named t pusr to
authenticate clients that want to join the ATMI application. t pusr residesin the
directory referenced by the first pathname defined in the ATMI application’s
APPDI Rvariable.

3. Load the configuration by running t ni oadcf (1) . Thet m oadcf command
parses UBBCONFI G and loads the binary TUXCONFI Gfile to the location referenced
by the TUXCONFI G variable.

4. The system prompts you for a password. The password you enter may be up to 30
characterslong. It becomes the password for the ATMI application and remains
in effect until you change it by using the passwd command of t madni n.

5. Distribute the application password to authorized users of the ATMI application
through an offline means such as telephone or letter.

Setting Up the ACL File

See “ Setting Up the ACL Fil€’ on page 2-68.

See Also

m “Default Authentication and Authorization” on page 1-45
m “Administering Default Authentication and Authorization” on page 2-57
m “Security Administration Tasks’ on page 2-3

2-70 Using Security in ATMI Applications

CHAPTER

3 Programming Security

Thistopic includes the following sections:

m What Programming Security Means

m Programming an ATMI Application with Security

m Writing Security Code So Client Programs Can Join the ATMI Application
m Writing Security Code to Protect Data Integrity and Privacy

What Programming Security Means

Programming security is the task of writing security code for
Application-to-Transaction Monitor Interface (ATMI) applications. In addition to the
code that expresses the logic of the program, application programmers use ATMI to
link their application code with the BEA Tuxedo transaction monitor. The ATMI
programming interfaces enable communication among application clients and servers
running under the control of the BEA Tuxedo transaction monitor. C and COBOL
implementations of the ATMI are available.

As shown in the following figure, application programmers have access to the ATMI
functions for authenticating users and controlling user access, and for incorporating
public key encryption techniquesinto their applications. Also shown isthe absence, at
the application level, of ATMI functions for auditing or link-level encryption.
Auditing is accessed at the BEA Tuxedo system level, and link-level encryption is
configured by the application administrator.

Using Security in ATMI Applications 31

Programming Security

Figure3-1 Programming BEA Tuxedo Security

ATMI Applications

ATMI for Clients to
Join Application

}

ATMI for Public Key
Security

}

BEA Tuxedo Library

L . Public Key
Authenltlcatlon AuthoIzatlon Security

ATMI Security

Link-Level
Encryption

Plug-in Interface

Default Default Default
Authentication Authorization Auditing
[Custom [Custom [Custom
Security Plug-ins

3-2

Default
Public Key Security
Custom

“Programming an ATMI Application with Security” on page 3-3

“What Security Means’ on page 1-1

“What Administering Security Means” on page 2-1

Using Security in ATMI Applications

Programming an ATMI Application with Security

Programming an ATMI Application with
Security

The BEA Tuxedo system offers various ATMI functions for different security needs.

If You AreWriting Security Codefor Then You Usethe ATMI Functions

Availablefor ...
Client programs so that clients can join a Clientsjoining an ATMI application, which
ATMI application and access application in turn invoke system-level cdlsto the
services. authenti cation and authorization plug-ins.

Both client and server programsto protectthe Public key security, which supports
integrity and privacy of the data they end-to-end digital signing and data
exchange. encryption.

See Also

m “Setting Up the Programming Environment” on page 3-3

Setting Up the Programming Environment

To be able to write security code, an application programmer needs:
m Accessto BEA Tuxedo libraries and commands

m Read and execute permissions on the directories and files in the BEA Tuxedo
system directory structure

Using Security in ATMI Applications 3-3

3 Programming Security

See Also

To obtain accessto the required libraries and commands, you must set the TUXCONFI G,
TUXDI R, APPDI R, and other environment variables in your environment. For details,
see “How to Set Your Environment” on page 1-3 in Administering a BEA Tuxedo
Application at Run Time.

The application administrator is responsible for setting the permissions on directories
and files. See your administrator to get the permissions you need.

m “Writing Security Code So Client Programs Can Join the ATMI Application” on
page 3-4

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Writing Security Code So Client Programs
Can Join the ATMI Application

Client programs are responsible for gathering data from outside the application or
computer, bundling the datainto messages, and forwarding the messagesto serversfor
processing. Client programs are made available to users through devices such as
automatic teller machines (ATMs), data entry terminals, and graphics devices.

For default authentication and authorization, application security may be set to one of
fivelevels. At thelowest level, no authentication is performed. At the highest level, an
access control checking feature determines which users can execute a service, post an
event, or enqueue (or dequeue) a message on an application queue. Setting the security
level for an ATMI application is the responsibility of the application administrator.

An application programmer needs to perform two tasks so that a client program can
join an ATMI application:

m Get the security data for the specific client process

m Passthat datato the BEA Tuxedo system

3-4 Using Security in ATMI Applications

Writing Security Code So Client Programs Can Join the ATMI Application

See Also

The following pseudo-code summarizes the operation of abasic client program. The
security-related statements are highlighted in bold.

Listing 3-1 Pseudo-codefor a Client

mai n()
{
call tpchkauth() to check security |evel of ATM application
get usrnane, cltnane
pronpt for application password
pronpt for per-user password
allocate a TPINIT buf fer
place initial client identification into TPINIT buffer
call tpinit() to enroll as a client of the ATM application
al | ocate buffer
do while true {
pl ace user input in buffer
send service request
receive reply
pass reply to user }
| eave application

Most of the statementsin the preceding listing areimplemented by ATMI functionsin
either C or COBOL . The preceding listing shows only the C language implementation.

A client program written in C usest pi ni t (3c) to comply with the level of security
set for the ATMI application and to join the application. Theargument tot pi ni t () is
apointer to aTPI NI T buffer. To perform the same tasksin a COBOL application, a
client program calls TPI NI TI ALI ZE(3cbl), specifying a pointer to a TPI NFDEF- REC
record as an argument.

m “Getting Security Data” on page 3-6
m “Joining the ATMI Application” on page 3-8

m “Writing Clients’ on page 4-1 in Programming BEA Tuxedo ATMI Applications
Using C and Programming BEA Tuxedo ATMI Applications Using COBOL

Using Security in ATMI Applications 3-5

3

Programming Security

m tpinit(3c) in BEA Tuxedo ATMI C Function Reference

m TPI NI TIALI ZE(3cbl) inthe BEA Tuxedo ATMI COBOL Function Reference
m “Administering Public Key Security” on page 2-42

m “Administering Authorization” on page 2-35

m “Default Authentication and Authorization” on page 1-45

m “Programming an ATMI Application with Security” on page 3-3

Getting Security Data

3-6

For general-purpose client programs that are written to work with a variety of
applications, the BEA Tuxedo system providesan ATMI function that enablesaclient
to determine the level of security required by the ATMI application that the client is
trying to join. This ATMI function, implemented ast pchkaut h(3c) for C and
TPCHKAUTH(3cbl) for COBOL, is designed to work with ATMI applications using
default authentication and authorization. Thet pchkaut h() and TPCHKAUTH()
functions can aso be used in ATMI applications in which custom authentication
and/or authorization is used. How they are used, however, depends on how the custom
security features areimplemented. For the most part, this discussion focuses on default
authentication and authorization.

An application programmer writing in C usest pchkaut h() to check the ATMI
application’s security level before calling t pi ni t (3c), so that the client program can
prompt for the application password and the user authentication data needed for the
tpinit () cal;tpchkaut h() iscalled without arguments.

An application programmer writing in COBOL uses TPCHKAUTH() for the same
purpose before calling TPI NI TI ALI ZE(3cbl) . The syntax and functionality of
TPCHKAUTH(3cbl) and TPI NI TI ALI ZE(3cbl) arethe same as those of

t pchkaut h(3c) andt pi nit(3c).

Thet pchkaut h() function (or TPCHKAUTH() routine) returns one of the following
values.

Using Security in ATMI Applications

Getting Security Data

See Also

TPNQAUTH

Nothing is regquired beyond the normal operating system login and file
permission security. TPNOAUTH is returned for security level NONE.

TPSYSAUTH

An application password isrequired. The client program should prompt the
user to provide the password, and should put it in the password field of the
TPI NI T buffer for C, or TPI NFDEF- REC record for COBOL. TPSYSAUTH s
returned for security level APP_PW

The application administrator informs users of the application password, and
the application programmer writes client-program code to prompt users for
the application password and to put the user-supplied password, as plain text,
in the password field of the TPI NI T buffer or TPI NFDEF- REC record. The
password should not be displayed on the user’s screen.

BEA Tuxedo system-supplied client programs, suchasud, wud(1), prompt
for an application password. ud() alows fielded buffersto be read from
standard input and sent to a service.

TPAPPAUTH

The application password isrequired. The client is expected to provide a
valueto be passed to the authentication servicein the datafield of the TPI NI T
buffer for C, or the TPI NFDEF- REC record for COBOL. TPAPPAUTH is
returned for security level USER_AUTH, ACL, or MANDATORY_ACL.

The application programmer writes client-program code to furnish additional
information for the application authentication service, which is provided by
the AUTHSVR server for default authentication and authorization. AUTHSVR is
configured by the administrator to validate the per-user authentication
information with client and usernames, indicating whether the client program
is alowed to join the ATMI application.

m “Joining the ATMI Application” on page 3-8

m “Writing Clients’ on page 4-1 in Programming BEA Tuxedo ATMI Applications
Using C and Programming BEA Tuxedo ATMI Applications Using COBOL

Using Security in ATMI Applications 3-7

3

Programming Security

B tpinit(3c) andtpchkaut h(3c) inthe BEA Tuxedo ATMI C Function

Reference

m TPl NI TI ALl ZE(3cbl) and TPCHKAUTH(3cbl) in the BEA Tuxedo ATMI
COBOL Function Reference

m “Default Authentication and Authorization” on page 1-45

m “Programming an ATMI Application with Security” on page 3-3

Joining the ATMI Application

In asecure ATMI application, it is necessary to pass security information to the BEA
Tuxedo systemviaaTPI NI T buffer for C, or aTPI NFDEF- RECrecord for COBOL. The
TPI NI T buffer is aspecial typed buffer used by a client program to pass client
identification and authentication information to the system astheclient attemptstojoin
the ATMI application. The TPI NFDEF- REC record serves the same purpose in a

COBOL application.

TPI NI T isdefined in the at i . h header file, and TPI NFDEF- REC is defined in the
COBOL cory file. They have the following structures.

TPINIT Structure

TPINFDEF-REC Structure

char usr nane[MAXTI DENT+2] ; 05 USRNAME Pl C X(30).
char cl t name[MAXTI DENT+2] ; 05 CLTNAME PI C X(30).
char passwd[MAXTI DENT+2] ; 05 PASSWD PI C X(30).
char gr pname[MAXTI DENT+2] ; 05 GRPNAME PI C X(30).
long flags; 05 NOTI FI CATI ON FLAG PIC S9(9) COWP-5.
| ong dat al en; 88 TPU-SI G VALUE 1.
| ong dat a; 88 TPU-DI P VALUE 2.
88 TPU-I GN VALUE 3.
05 ACCESS- FLAG PIC S9(9) COWP-5.
88 TPSA- FASTPATH VALUE 1.
Note: MAXTI DENT may contain up to 30 88 TPSA- PROTECTED VALUE 2.
characters. 05 DATLEN PIC S9(9) COwP-5.
3-8 Using Security in ATMI Applications

Joining the ATMI Application

Thefieldsinthe TPI NI T buffer/ TPI NFDEF- REC record are described in the following
table.

Table 3-1 Fieldsin TPINIT Buffer/ TPINFDEF-REC Record

TPINIT Fields TPINFDEF-REC Fields Description
usr name USRNAME Username* A null-terminated string of up to 30
characters.

The username representsthe caller; writers of client
programs might use the same login names used to
log in to the host operating system.

cl t name CLTNAME Client name* A null-terminated string of up to 30
characters.

The client name represents the client program,;
writers of client programs might use thisfield to
indicate the job function or role of the user when
executing the client program.

passwd PASSVD Application password.* A null-terminated string of
up to eight characters.

tpinit() or TPI NI TI ALI ZE() validatesthis
password by comparing it to the configured
application password stored in the TUXCONFI G
filex*

gr pname GRPNAME Group name. A null-terminated string of up to 30
characters. Thisfield is not related to security.

Thegroup nameallows aclient to be associated with
aresource manager group that is defined in the
UBBCONFI Gfile.

* Thisfieldisrequired for the USER_AUTH, ACL, and MANDATCORY_ACL security levels provided by default
authentication and authorization.

** The binary equivalent of the UBBCONFI Gfile; created usingt ml oadcf (1).
*** Usually auser password.

Using Security in ATMI Applications 39

3 Programming Security

Table 3-1 Fieldsin TPINIT Buffer/ TPINFDEF-REC Record (Continued)

TPINIT Fields TPINFDEF-REC Fields Description
fl ags NOTI FI CATI ON- FLAG Notification and access flags. Thisfield is not
TPU- SI G related to security.
TPU-DI P Theflag settings specify the notification mechanism
TPU- | GN and system access mode to be used for the client.
ACCESS- FLAG Selections override (with some exceptions) the

val ues set in the RESOURCES section of the
TPSA- FASTPATH UBBOONFI Gfile.

TPSA- PROTECTED

dat al en DATALEN Length of the user-specific data*** that follows.*

To get asize value for thisfield, writers of client
programs written in C can call TPI NI TNEED with
the number of bytes of user-specific data expected to
be sent. TPI NI TNEED is a macro provided in the
atm . h header file.

dat a N/A User-specific data*** of no fixed length.*

tpinit() or TPI NI TI ALI ZE() forwardsthe
user-specific data to the authentication server for
validation. For default authentication, the
authentication server is AUTHSVR.

* Thisfield isrequired for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default
authentication and authorization.

** The binary equivalent of the UBBCONFI Gfile; created using t ni oadcf (1) .
*** Usually auser password.

The client program callst pal | oc(3c) to allocate aTPI NI T buffer. The following
sample code prepares to pass eight bytes of application-specific datatot pi ni t () and
enables the client to join an ATMI application.

Listing 3-2 Allocating a TPINIT Buffer and Joining an ATMI Application

TPINIT *tpi nfo;

3-10 Using Security in ATMI Applications

Joining the ATMI Application

if.((tpi nfo = (TPINIT *)tpalloc("TPINIT", (char *) NULL,
TPI NI TNEED(8))) == (TPINIT *) NULL){
Error Routine

tpinit(tpinfo) /* join an ATM application */

When a Workstation client callsthet pi ni t () function or the TPI NI TI ALI ZE()
routine to join an ATMI application, the following major events occur.

1. Theinitiator Workstation client and the target workstation listener (WSL)
exchangelink-level encryption (LLE) nmi n-nmax valuesto be usedto setup LLE on
the link between the initiator Workstation client and the target WSH. LLE is
described in “Link-Level Encryption” on page 1-23.

2. Theinitiator Workstation client and target WSH authenti cate one another through
the exchange of security tokens. For default authentication, a successful
authentication ends with the transfer of client security datafromthe TPI NI T
buffer or TPI NFDEF- REC record to the target WSH.

3. After asuccessful authentication, the initiator Workstation client sends another
buffer to the target WSH containing the values of the usr nane, cl t nane, and
f 1 ags fields, to ensure that the target WSH receives thisinformation for the
authenticated Workstation client.

When anative client callsthet pi ni t () function or the TPI NI TI ALI ZE() routine to
join an ATMI application, only authentication occurs. In essence, the native client
authenticates with itself.

Transferring the Client Security Data

The following figure demonstrate the transfer of data from the TPI NI T buffer for a
Workstation client. The transfer of datafrom the TPI NFDEF- REC record issimilar to
what is shown in the figure.

Using Security in ATMI Applications 3-11

3

Programming Security

Figure3-2 TransferringD

atafrom the TPINIT Buffer for a Workstation Client

Workstation Client — Application Client Running on Workstation Machine

TPINIT Buffer
usrname | cltname | passwd | grpname | flags | datalen | data
V ‘ U
Call t pi ni t () Information Sent for Default Authentication
‘ ! ™ usrname | cltname | grpname | flags | datalen | data
| | —
1 1 Information Sent for Custom Authentication
1 l ,—> usrname | datalen | data custom data
BEA Tuxedo Library 44 Workstation Handler (WSH)
~ v
usrname, passwd Credentials
datalen, (encrypt) +
data < > >
Credentials v.é g JJT }T }T
| 4 ot — v{\r v{\r
1. Call “acquire 2. Call “initiate Network Link 3. call “accept 4. Call “get 5. Call “get
credentials” security context” security context” authorization token” auditing token”
Function Function Function Function Function
ATMI Security L ATMI Security L L

Authentication Plug-in

Authentication Plug-in

3-12 Using Security in ATMI Applications

Joining the ATMI Application

Note: The authorization procedure shown in the preceding figure is essentially the
samefor anative client attempting to join an ATMI application except that no
network link or WSH isinvolved. A native client authenticates with itself.

In the preceding diagram, notice that the information sent to the BEA Tuxedo system
differs between default and custom authentication. For default authentication, the
values of thecl t name, gr pname, and f | ags fields are delivered to the default
authentication plug-in at the Workstation client by a means other than through the
plug-in interface. However, for custom authentication, writers of client programs can
include these values as well as any other values they so choose in the variable length
dat a field.

For a Workstation client and assuming default authentication, the authentication
plug-in at the Workstation client uses the passwd/ PASSWD field to encrypt the
information when transmitting the information over the network. The encryption
algorithm used is 56-bit DES, where DES is an acronym for the Data Encryption
Standard. The authentication plug-in at the target WSH uses the application password
stored in the TUXCONFI Gfileto decrypt the information. For anative client, the system
simply comparesthe passwd/ PASSWD field with the application password stored in the
TUXCONFI Gfile.

Note: At the Workstation client, the passwd/ PASSWD field is delivered to the
authentication plug-in by a means other than through the authentication
plug-ininterface. Atthe WSH, the application password in the TUXCONFI Gfile
is delivered to the authentication plug-in through the authentication plug-in
interface during application booting.

After asuccessful authentication of a Workstation client, thet pi ni t () function ends
with the sending of another buffer to the WSH containing the values of the usr nane,
cl tnane, and f | ags fields, to ensure that the WSH receives thisinformation for the
authenticated Workstation client. Similarly, the TPI NI TI ALI ZE() routine ends with
the sending of another buffer containing the same information. A custom
authentication plug-in might not send this information to the WSH during the
authentication procedure, and the WSH needs thisinformation for reporting purposes,
that is, during an invocation of thet madmi n(1) printclient (pclt) command.

When a Workstation or native client passes the security check, it may initiate service
requests and receive replies.

Using Security in ATMI Applications 3-13

3 Programming Security

Calling a Service Request Before Joining the ATMI

Application

See Also

If aclient callsaserviceregquest (or any ATMI function) beforeinvoking t pi nit () or
TPI NI TI ALI ZE() and assuming the SECURI TY configuration for the target ATMI
application is not set or is set to NONE, the BEA Tuxedo system automatically invokes
tpinit()/TPI NI TIALI ZE() withaNULL parameter. This behavior hasthefollowing
consequences:

The TPI NI T/ TPl NFDEF- REC feature cannot be used.

Default values are used for client naming, unsolicited notification type, and
system access mode.

The client cannot be associated with aresource manager group.

An application password cannot be specified.

If aclient callsaserviceregquest (or any ATMI function) beforeinvoking t pi nit () or
TPI NI TI ALI ZE() and assuming the SECURI TY configuration for the target ATMI
application is set to APP_PW USER_AUTH, ACL, or MANDATORY_ACL, the BEA Tuxedo
system rejects the service request.

“Writing Clients’ on page 4-1 in Programming BEA Tuxedo ATMI Applications
Using C and Programming BEA Tuxedo ATMI Applications Using COBOL

tpi nit(3c) andt pal | oc(3c) inthe BEA Tuxedo ATMI C Function Reference
TPI NI TI ALI ZE(3cbl) in the BEA Tuxedo ATMI COBOL Function Reference
“Default Authentication and Authorization” on page 1-45

“Programming an ATMI Application with Security” on page 3-3

3-14 Using Security in ATMI Applications

Writing Security Code to Protect Data Integrity and Privacy

Writing Security Code to Protect Data
Integrity and Privacy

Public key security comprises end-to-end digital signing and data encryption. Both
features are supported by BEA Tuxedo ATMI functions. ATMI applications protected
by public key security are much safer for use across the Internet than programsin
which this type of security isnot used.

The capabilities that make end-to-end digital signing and data encryption possible are
message-based digital signature and message-based encryption. Both capabilities are
built upon the PKCS-7 standard, which is one of a set of Public-Key Cryptography
Standards (PK CS) developed by RSA Laboratories in cooperation with several other
leading communications companies.

M essage-based digital signature ensures data integrity and non-repudiation by having
the sending party bind proof of itsidentity to a specific message buffer. M essage-based
encryption protects the confidentiality of messages; only parties for whom messages
are intended can decrypt and read them.

Because the unit of digital signing and encryption isan ATMI message buffer, both
capabilities are compatible with existing ATMI programming interfaces and
communication paradigms. It is possible for a message buffer to be both signed and
encrypted. Thereis no required relationship between the number of digital signatures
and the number of encryption envel opes associated with a message buffer.

Note: Each encryption envelope identifies a recipient of the message, and contains
information needed by the recipient to decrypt the message.

Using Security in ATMI Applications 3-15

3

Programming Security

ATMI Interface for Public Key Security

3-16

The ATMI interface for public key security is a compact set of functions used to:

Open and close key resources
View and change key optional parameters
Sign and seal (encrypt) message buffers

Access the digital signature and encryption information associated with a
message buffer

Convert atyped message buffer into an exportable, machine-independent string
representation, which includes the generation of any digital signatures or
encryption envel opes associated with the buffer

The ATMI interfaces for public key security are available in both C and COBOL
implementations. The ATMI COBOL language binding, however, does not support
message buffers; thus, explicit signature, encryption, and query operations on
individual buffers cannot be used inaCOBOL application. However, key management
interfaces do have a COBOL |anguage binding, which enables signature generation in
the AUTOSI GN mode and encryption-envel ope generation in the AUTOENCRYPT mode.
All operations related to automatic signature verification or automatic decryption
apply to COBOL client and server processes.

Note: The COBOL TPKEYDEF record is used to manage public-private keys for

performing message-based digital signature and encryption operations. See
“COBOL Language ATMI Return Codes and Other Definitions’ in the
introduction part of the BEA Tuxedo ATMI COBOL Function Reference for a
description of the TPKEYDEF record.

Using Security in ATMI Applications

Writing Security Code to Protect Data Integrity and Privacy

The following tables summarize the ATMI interfaces for public key security. Each
function is also documented in the BEA Tuxedo ATMI C Function Reference and the
BEA Tuxedo ATMI COBOL Function Reference.

Table 3-2 C Functionsin ATMI Interfacefor Public Key Security

Use This Function

To...

t pkey_open(3c)

Open akey handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI application to locate or access the item
named by the handle.

A key may play one or more of the following roles:

Signature Generation

The key identifies the calling process as being authorized to generate adigital
signature under the principal’sidentity. (A principal may be a person or a
process.) Calling t pkey_open() with the principa’s name and either the
TPKEY_SI GNATURE or TPKEY_AUTOSI GNflag returns a handle to the
principal’ s private key and digital certificate.

Signature Verification

The key represents the principal associated with adigital signature. Signature
verification doesnot requireacall tot pkey_open() ; theverifying process uses
the public key specifiedinthedigital certificate accompanying thedigitally signed
message to verify the signature.

Encryption

The key represents the intended principa of an encrypted message. Calling

t pkey_open() with the principa’s name and either the TPKEY_ENCRYPT or
TPKEY_AUTCENCRYPT flag returnsa handle to the principal’ s public key viathe
principal’ s digital certificate.

Decryption

The key identifies the calling process as being authorized to decrypt a private
message for theintended principa. Calling t pkey_open() withthe principal’s
name and the TPKEY_DECRYPT flag returns a handle to the principal’s private
key and digita certificate.

Using Security in ATMI Applications 3-17

3

Programming Security

Table 3-2 C Functionsin ATMI Interface for Public Key Security (Continued)

Use This Function

To...

t pkey_geti nfo(3c)

3-18

Get information associated with akey handle. Some information is specificto a

cryptographic service provider, but the following set of attributesis supported by al
providers:

PRI NCI PAL

The name of the principal associated with the specified key (key handle). A
principal may be a person or a process, depending on how an application
developer sets up public key security. Any principa specified inan ATMI
application’s UBBCONFI Gfile using the SEC_PRI NCl PAL_ NANE parameter
become the identity of one or more system processes. (See “ Specifying Principal
Names’ on page 2-11 and “ I nitializing Decryption Keys Through the Plug-ins’ on
page 2-51 for more detail.)

PKENCRYPT_ALG

An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public
key algorithm used by the key for public key encryption. See the

t pkey_get i nf o(3c) reference page for details.

PKENCRYPT_BI TS

The key length of the public key agorithm (RSA modulus size). The value must
be within the range of 512 to 2048 bits, inclusive.

SI GNATURE_ALG

AnASN.1DER object identifier of thedigital signature algorithm used by thekey
for digital signature. Seethet pkey_get i nf o(3c) reference page for details.
SI GNATURE_BI TS

The key length of the digital signature algorithm (RSA modulus size). The value
must be within the range of 512 to 2048 bits, inclusive.

ENCRYPT_ALG

An ASN.1 DER object identifier of the symmetric key a gorithm used by the key
for bulk data encryption. Seethet pkey_get i nf o(3c) reference page for
details.

ENCRYPT_BI TS

The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 hits, inclusive.

D GEST_ALG

An ASN.1 DER object identifier of the message digest algorithm used by the key
for digital signature. Seethet pkey_get i nf o(3c) reference page for details.
PROVI DER

The name of the cryptographic service provider.

VERSI ON

The version number of the cryptographic service provider’s software.

Using Security in ATMI Applications

Writing Security Code to Protect Data Integrity and Privacy

Table 3-2 C Functionsin ATMI Interface for Public Key Security (Continued)

Use This Function

To...

t pkey_setinfo(3c)

Set optional attribute parameters associated with akey handle. A core set of key
handle attributes isidentified in the preceding description of t pkey_get i nfo() .
Other attributes, specific to a certain cryptographic service provider, may aso be
available.

t pkey_cl ose(3c)

Close a previously opened key handle. A key handle may be opened explicitly using
t pkey_open(), or implicitly (automatically) usingt penvel ope() .

t psi gn(3c) Mark atyped message buffer for digital signature. The public key software generates
the digital signature just before the message is sent.
t pseal (3c) Mark atyped message buffer for encryption. The public key software encrypts the

message just before the message is sent.

t penvel ope(3c)

Accessthe digital signature and encryption information associated with a typed
message buffer. t penvel ope() returns status information about the digital
signatures and encryption envelopes attached to a particular message buffer. It aso
returns the key handle associated with each digital signature or encryption envelope.
The key handle for adigital signature identifies the signer, and the key handle for an
encryption envel ope identifies the recipient of the message.

t pexport (3c)

Convert a typed message buffer into an exportable, machine-independent
(externalized) string representation. t pexport () generatesany digital signaturesor
encryption envel opes associated with a typed message buffer just before it converts
that buffer into an externalized string representation.

Anexternalized string representation can be transmitted between processes, machines,
or domains through any communication mechanism. It can be archived on permanent
storage.

t pi nport (3c)

Convert an externalized string representation back into a typed message buffer.
During the conversion, t pi npor t () decryptsthe message, if necessary, and verifies
any associated digital signatures.

Using Security in ATMI Applications 3-19

3 Programming Security

Table 3-3 COBOL Routinesin ATMI Interface for Public Key Security

Use ThisRoutine. ..

To...

TPKEYOPEN(3cbl)

Open akey handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI application to locate or access the item
named by the handle.

A key may play one or more of the following roles:

Signature Generation

Thekey identifies the calling process as being authorized to generate a digital
signature under the principal’sidentity. (A principal can be a person or a
process.) Calling TPKEYOPEN() with the principal’s name and the

TPKEY- SI GNATURE and TPKEY- AUTCSI GN settings returns a handle to the
principal’ s public key and enabl es signature generationin AUTCSI GNmode. The
public key software generates and attaches the digital signature to the message
just before the message is sent.

Signature Verification

The key represents the principal associated with a digita signature. Signature
verification does not require acall to TPKEYOPEN() ; the verifying process uses
the public key specified in the digital certificate accompanying the digitally
signed message to verify the signature.

Encryption

The key represents the intended principa of an encrypted message. Calling
TPKEYCOPEN() with the principal’s name and the TPKEY- ENCRYPT and
TPKEY- AUTOENCRYPT settings returns a handle to the principal’ s public key
(viathe principal’ sdigital certificate) and enables encryption in AUTCENCRYPT
mode. The public key software encrypts the message and attaches an encryption
envelope to the message; the encryption envel ope enabl es the receiving process
to decrypt the message.

Decryption

The key identifies the calling process as being authorized to decrypt a private
message for the intended principal. Calling TPKEYOPEN() with the principal’s
name and the TPKEY- DECRYPT setting returns a handle to the principal’s
private key and digital certificate.

3-20 Using Security in ATMI Applications

Writing Security Code to Protect Data Integrity and Privacy

Table 3-3 COBOL Routinesin ATMI Interfacefor Public Key Security (Continued)

Use ThisRoutine. ..

To...

TPKEYGETI NFQ(3cbl)

Get information associated with a key handle. Some information is specific to a
cryptographic service provider, but the following set of attributesis supported by all
providers:

= PRI NC PAL
The name of the principal associated with the specified key (key handle). A
principal may be a person or aprocess, depending on how an ATMI application
devel oper sets up public key security. Any principal specified inan ATMI
application’s UBBCONFI Gfile using the SEC_PRI NCl PAL_NANE parameter
become theidentity of one or more system processes. (See“ Specifying Principal
Names” on page 2-11 and “Initializing Decryption Keys Through the Plug-ins’
on page 2-51 for more detail .)

m PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public
key agorithm used by the key for public key encryption. See the
TPKEYGETI NFQ(3chl) reference page for details.

m PKENCRYPT_BI TS
The key length of the public key algorithm (RSA modulus size). The value must
be within the range of 512 to 2048 hits, inclusive.

m S| GNATURE_ALG
AnASN.1DERobjectidentifier of thedigital signaturea gorithm used by thekey
for digital signature. Seethe TPKEYGETI NFQ(3cbl) reference pagefor details.

m S| GNATURE_BI TS
Thekey length of thedigita signature algorithm (RSA modulus size). Thevalue
must be within the range of 512 to 2048 bits, inclusive.

m ENCRYPT_ALG
AnASN.1DER object identifier of the symmetric key algorithm used by the key
for bulk data encryption. See the TPKEYGETI NFQO(3cbl) reference page for
details.

m ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 hits, inclusive.

m DI GEST_ALG
AnASN.1 DER object identifier of the message digest algorithm used by the key
for digital signature. Seethe TPKEYGETI NFQ(3cbl) referencepagefor details.

m PROVI DER
The name of the cryptographic service provider.

m VERSI ON
The version number of the cryptographic service provider’s software.

Using Security in ATMI Applications 3-21

3 Programming Security

Table 3-3 COBOL Routinesin ATMI Interface for Public Key Security (Continued)

Use This Routine.

.. To...

TPKEYSETI NFQ(3cbl) Set optional attribute parameters associated with akey handle. A core set of key

handle attributes is identified in the preceding description of TPKEYGETI NFQ() .
Other attributes, specific to a certain cryptographic service provider, may also be
available.

TPKEYCLGSE(3chl)

Close a key handle previoudy opened using TPKEYOPEN() .

Recommended Uses of Public Key Security

See Also

Uset pkey_cl ose() to release key handles used for digital signature generation
or for data decryption as soon as they are no longer needed.

To inhibit replay attacks, generate digital signatures only on message buffers that
contain detail sidentifying a specific operation. For example, a buffer that
contains the message “ Your deposit is confirmed” is dangerously vague. An
attacker who intercepts such a message can easily reuse it. On the other hand, a
message that contains many operation-specific details is much safer. An attacker
who intercepts a message such as the one that follows will not be able to reuse it
easily: “ John Smith’s deposit of $100.00, account 987654321, confirmation code
123456789, 7/31/2001, is confirmed.”

“Sending and Receiving Sighed Messages” on page 3-23

“Sending and Receiving Encrypted Messages’ on page 3-34
“Examining Digital Signature and Encryption Information” on page 3-52
“Externalizing Typed Message Buffers’ on page 3-59

“Public Key Security” on page 1-29

“Administering Public Key Security” on page 2-42

“Programming an ATMI Application with Security” on page 3-3

3-22 Using Security in ATMI Applications

Sending and Receiving Signed Messages

Sending and Receiving Signed Messages

M essage-based digital signature provides end-to-end authentication and message
integrity protection. For adiagram that illustrates how it works, see the figure“ATMI
PKCS-7 End-to-End Digital Signing” on page 1-35.

To add adigital signatureto an ATMI message buffer, the originating process or user
signsthe message buffer. Thissignature containsacryptographically secure checksum
of the message buffer’'s content and a timestamp based on the signer’slocal clock.

Any party with access to the message buffer can verify that the signing party’s
signature is authentic, that the message buffer content is unchanged, and that the
timestamp is within a configured tolerance of the verifier'sloca clock. In addition,
time-independent verification by athird party guarantees non-repudiation: the
originating process or user cannot later deny authorship or claim the message was
atered.

Writing Code to Send Signed Messages

The following flowchart provides the procedure for writing code to send signed
messages.

Using Security in ATMI Applications 3-23

3

Programming Security

3-24

(Start)

\4

Figure3-3 Procedurefor Sending Signed M essages

(Continue)

\4

1. Open key handle for signer to receive
a key handle to signer’s private key and
digital certificate.

t pkey_open()

6. Send message in buffer by calling
tpsend(),tpcall(),...

t psend()

A

2. (Optional): Get information about
signer’s key handle.

t pkey_getinfo()

A4

3. (Optional): Change information
associated with signer’s key handle.

t pkey_setinfo()

\4

4. Allocate a typed message buffer and
put message in buffer.

tpal l oc()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Adds timestamp from local system’s
clock.

3. Computes hash value using message
digest algorithm.

4. Encrypts hash value, using signer's
private key and digital signature
algorithm, to create a digital signature.

5. Attaches timestamp, digital signature
(encrypted hash value), signer’s digital
certificate, message digest algorithm,
and digital signature algorithm to
message.

A 4

\ 4

5. Mark the message buffer for digital
signature, thus attaching a copy of the
signer’s key handle to the message buffer.

t psi gn()

7. Close signer’s key handle to release
key handle and all resources associated
with it.

t pkey_cl ose()

\ 4

Continue)

Using Security in ATMI Applications

End

Sending and Receiving Signed Messages

For details about these steps and insight into how the system signs a message buffer,
see the following topics.

Step 1: Opening a Key Handle for Digital Signature

Call thet pkey_open(3c) function or TPKEYOPEN(3cbl) routineto makethe private
key and the associated digital certificate of the signer available to the originating
process. The private key is highly protected, and possession of it is equivalent to
possessing the signer’ sidentity.

In order to access the signer’ s private key, the originating process must proveits right
to act asthe signer. Proof requirements depend on theimplementation of the public key
plug-in interface. The default public key implementation requires a secret password
from the calling process.

When the originating process callst pkey_open() to open thekey handle, it specifies
either the TPKEY_SI GNATURE or TPKEY_AUTCSI GNflag to indicate that the handle will
be used to digitally sign a message buffer. Typically, aclient makes this call after
calling t pi ni t (), and a server makes this call as part of initializing through
tpsvrinit().

Opening a key handle with the TPKEY_AUTCSI GN flag enables automatic signature
generation: subsequently, the originating process signs message buffers automatically
whenever they are sent. Using the TPKEY_AUTCsI GN flag is beneficial for three
reasons:

m Lesswork isrequired from application programmers because fewer ATMI calls
are required when operating in a secure ATMI application.

m Existing ATMI applications can leverage digital signature technology with
minimal coding changes.

m The possibility of programming errors that might result in an unsigned buffer
being sent over an insecure network is reduced.

The following example code shows how to open a signer’s key handle. TPKEY isa
special datatype defined inthe at i . h header file.

Using Security in ATMI Applications 3-25

Programming Security

Listing 3-3 Opening a Signer’s Key Handle Example

mai n(argc, argv)
int argc;

char *argv[];
#endi f

TPKEY sdo_key;
char *sdo_| ocation;

if (tpkey_open(&sdo_key, “sdo”, sdo_l ocation,
NULL, O, TPKEY_SIGNATURE) == -1) {
(void) fprintf(stderr, “tpkey_open sdo failed
tperrno=%d(%s)\n”, tperrno, tpstrerror(tperrno));
exit(1l);

Step 2 (Optional): Getting Key Handle Information

3-26

Y ou may want to get information about a signer’s key handle to establish the validity
of thekey. Todo so, call thet pkey_get i nf o(3c) functionor TPKEYGETI NFQ(3cbl)
routine. While some of the information returned may be specific to a cryptographic
service provider, acore set of attributes is common to al providers.

The default public key implementation supports the following signature modes for
computing signatures on a message buffer:

m MD5 message digest algorithm with RSA public key signature
m SHA-1 message digest algorithm with RSA public key signature

The message digest algorithm is controlled by the DI GEST_ALGkey attribute, and the
public key signatureis controlled by the SI GNATURE_ALGkey attribute. Public key
sizes from 512 to 2048 bits are supported, to allow a wide range of safety and
performance options. The public key sizeis controlled by the S| GNATURE _BI TS key
attribute.

Using Security in ATMI Applications

Sending and Receiving Signed Messages

The default public key implementation recognizes only those digital certificate
signatures that are created with these algorithm and key size choices.

The following example code shows how to get information about a signer’s key
handle.

Listing 3-4 Getting I nformation About a Signer’sKey Handle Example

mai n(argc, argv)

int argc;

char *argv[];

#endi f

{
TPKEY sdo_key;
char principal _nane[PNAVE _LEN];
I ong pnane_| en = PNAME LEN;

.if (t pkey_getinfo(sdo_key, “PRI NCI PAL",
princi pal _name, &pnane_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information

about principal: %(%)\n”
tperrno, tpstrerror(tperrno));
exit(1);
}
}

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with asigner’s key handle, call the
t pkey_seti nf o(3c) function or TPKEYSETI NFOQ(3cbl) routine. Key handle
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with a
signer’s key handle.

Using Security in ATMI Applications 3-27

3

Programming Security

Listing 3-5 Changing Information Associated with a Signer’s Key Handle

Example

mai n(argc, argv)

int argc;
char *argv[];
#endi f
{
TPKEY sdo_key;
static const unsigned char shal_objid[] = {
0x06, 0x05, 0x2b, 0x0Oe, 0x03, 0x02, Oxla
b
if (tpkey_setinfo(sdo_key, “DI GEST_ALG', (void *) shal objid,
si zeof (shal_objid), 0) == -1) {
(void) fprintf(stderr, “tpkey_setinfo failed
tperrno=%d(%)\n”",
tperrno, tpstrerror(tperrno));
return(l);
}
}

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To alocate atyped message buffer, call thet pal | oc(3c) function. Then put a
message in the buffer.

Step 5: Marking the Buffer for Digital Signature

3-28

To mark, or register, the message buffer for digital signature, call the t psi gn(3c)
function. By calling this function, you attach a copy of the signer’s key handleto the
message buffer. If you open the key with the TPKEY_AUTOSI GNflag, each message that
you send is automatically marked for digital signature without an explicit call to

t psi gn() ; signature parameters are stored and associated with the buffer for later use.

Note:

In COBOL applications, use the AUTCSI GN settings member to create adigital
signature. See TPKEYOPEN(3cbl).

Using Security in ATMI Applications

Sending and Receiving Signed Messages

Thefollowing example code shows how to mark amessage buffer for digital signature.

Listing 3-6 Marking a M essage Buffer For Digital Signature Example

mai n(argc, argv)
int argc;

char *argv[];
#endi f

{
TPKEY sdo_key;

char *sendbuf, *rcvbuf;

if (tpsign(sendbuf, sdo_key, 0) == -1) {
(void) fprintf(stderr, “tpsign failed tperrno=%(%)\n”,
tperrno, tpstrerror(tperrno));
tpfree(rcvbuf);
t pfree(sendbuf);
tptern();
(void) tpkey_close(sdo_key, 0);
exit(1);

Step 6: Sending the Message

After the message buffer has been marked for digital signature, transmit the message
buffer using one of the following C functions or COBOL routines:

e tpcall () or TPCALL

e tpbroadcast () or TPBROADCAST
e tpconnect () or TPCONNECT

e tpenqueue() or TPENQUEUE

e tpforward()

e tpnotify() or TPNOTI FY

Using Security in ATMI Applications 3-29

3

Programming Security

e tppost() or TPPOST
e tpreturn() or TPRETURN

e tpsend() or TPSEND

Step 7: Closing the Signer’s Key Handle

Call thet pkey_cl ose(3c) function or TPKEYCLOSE(3cbl) routineto release the
signer’s key handle and all resources associated with it.

How the System Generates a Digital Signature

Just before a message buffer is sent, the public key software digitally signsthe
message. If asigned buffer istransmitted more than once, the software generatesanew
signature for each communication. This process makesit possible to modify amessage
buffer after marking the buffer to be digitally signed.

The public key software generates adigital signature by performing the following
three-step procedure.

1. digest{message buffer_data + buffer_type string + buffer_subtype_string] =
hashl

2. digest[hashl + loca_timestamp + PKCS-7_message type] = hash2
3. {hash2}signer’'s private key = encrypted_hash2 = digital_signature

The notation digest[something] means that a hash value has been computed for
something using amessage digest algorithm—in this case, MD5 or SHA-1. The
notation { something} key means that something has been encrypted or decrypted using
key. In this case, the computed hash value is encrypted using the signer’s private key.

Signature Timestamp

3-30

A digital signature includes a timestamp from the local system’s clock. Inclusion of
such atimestamp ensuresthat any tampering with the timestamp value will be detected
when the recipient verifies the signature. In addition, a copy of the timestamp
accompanies the digitally signed message when the messageis routed to its
destination.

Time resolution is to the second. Timestamps are stored in PKCS-9 Si gni ngTi ne
format.

Using Security in ATMI Applications

Sending and Receiving Signed Messages

Multiple Signatures

More than one signature can be associated with a message buffer, which means that
any number of signers can sign a message buffer in parallel. A signer can be a person
or aprocess. Each signer signs the message buffer using his, her, or its private key.

Different signatures may be based on different message digest or digital signature
algorithms. If two signers use the same message digest and digita signaturealgorithm,
the hash value is computed for only one of them.

Signed Message Content

A digitally signed message buffer is represented in the PKCS-7 format asaversion 1
Si gnedDat a content type. The Si gnedDat a content type, asused by the BEA Tuxedo
system, consists of the following items:

m Oneor more digital signatures, each with its own set of signer-specific
information, such as:

e Signer’s X.509v3 certificate
e Message digest and digital signature algorithm identifiers
e Timestamp based on the local clock

m Message content, which is a composite of message buffer data, buffer type
string, and buffer subtype string represented in the BEA Tuxedo encoded format.
The encoded format allows a message buffer’s signature to be verified on any
machine architecture.

As shown in the following figure, the message content is enveloped by Si gnedDat a
content type.

Figure 3-4 SignedData Content Type

SignedData Content Type

(Signing Operation—Contains Digital Signatures and Associated Signer-Specific Information)

TUXBUF Content Type

(Message Content—Contains Composite Encoded Data)

Using Security in ATMI Applications 3-31

3

Programming Security

How a Signed Message Is Received

3-32

No ATMI application code is heeded to receive a signed message buffer. The public
key software automatically verifies the attached digita signatures and passes the
message to the receiving process.

Upon receiving a sighed message buffer, the public key software, operating on behal f
of the receiving process, performs the following tasks.

1

Readsthedigital signature information attached to the received message, including
the signer’s digital certificate, message digest algorithm, digita signature
algorithm, and signature timestamp.

Decrypts the attached digital signature (encrypted hash value) using the signer’s
public key (found in the signer’s digita certificate) and the digital signature
algorithm.

Recomputes the hash value for the received message, as shown in the following
two-step procedure.

a. digestfmessage buffer_data + buffer_type string + buffer_subtype_string] =
hashl

b. digest[hashl + received_timestamp + PKCS-7_message type] = hash2

The notation digest[something] means that a hash value has been computed for
something using amessage digest a gorithm—in this case, MD5 or SHA-1.

Compares the recomputed hash value with the received hash value; if the two are
not identical, discards the message buffer.

Compares the received timestamp with the local system’s clock; if the timestamp
isnot within a configured tolerance, discards the message buffer.

If the message buffer successfully passes the checks performed in Steps 4 and 5,
the public key software decodes the message buffer data, buffer type string, and
buffer subtype string, and then passes the message to the receiving process. This
step reverses the encoding performed by the originating process. (The BEA
Tuxedo encoded format allows a message buffer’s signature to be verified on any
machine architecture.)

Using Security in ATMI Applications

Sending and Receiving Signed Messages

Note: If none of the attached digital signatures can be verified, the receiving process
does not receive the message buffer. Moreover, the receiving process has no
knowledge of the message buffer.

Verifying Digital Signatures

The public key software automatically verifies digital signatures whenever a signed
message buffer entersaclient process, server process, or any system processthat needs
to access the content of the message buffer. If asystem processis acting as a conduit
(that is, if it is not reading the content of the message), then the attached digital
signatures need not be verified. Bridges and workstation handlers (WSHSs) are
examples of system processes acting as conduits.

The signaturetimestamp is based on an unsynchronized clock, and therefore cannot be
fully trusted, especially if the signature is performed on a PC or persona workstation.
However, a server may reject requests with timestampsthat are too old or dated too far
into the future. The capability to reject a request based on the timestamp provides a
measure of protection against replay attacks.

Verifying and Transmitting an Input Buffer’s Signatures

If amessage buffer is passed to an ATMI function (such ast pacal | ()) asaninput
parameter, the public key software verifies any signatures previously attached to the
message and then forwards the message. This behavior enables a secure, verified
transfer of information with signatures from multiple processes.

If a server modifies areceived message buffer and then forwards the buffer, the
original signature is no longer valid. In this case, the public key software detects the
invalid signature and silently discards it. For an example of the process, see
“Discarding an Input Buffer’s Encryption Envelopes’ on page 3-49.

Replacing an Output Buffer’s Signatures

If amessage buffer is passed to an ATMI function (such ast pgetrepl y()) asan
output parameter, the public key software del etes any signatureinformation associated
with the buffer. Thisinformation includes any pending signatures and signatures from
previous uses of the buffer. (A pending signature is a signature that is registered with
amessage buffer.)

Using Security in ATMI Applications 3-33

3 Programming Security

New signature information might be associated with the new buffer content after
successful completion of this operation.

See Also

m “Sending and Receiving Encrypted Messages’ on page 3-34

m “Examining Digital Signature and Encryption Information” on page 3-52
m “Externaizing Typed Message Buffers’ on page 3-59

m “Public Key Security” on page 1-29

m “Administering Public Key Security” on page 2-42

m “Programming an ATMI Application with Security” on page 3-3

Sending and Receiving Encrypted Messages

M essage-based encryption provides end-to-end data privacy. For a diagram that
illustrates how it works, see the figure“ATMI PKCS-7 End-to-End Encryption” on
page 1-41.

A message is encrypted just before it leaves the originating process, and remains
encrypted until it isreceived by the final destination process. It is opaque at all
intermediate transit points (including operating system message queues, system
processes, and disk-based queues) and during network transmission over inter-server
network links.

Writing Code to Send Encrypted Messages

Thefollowing flowchart provides the procedure for writing code to send encrypted
messages.

3-34 Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

Figure 3-5 Procedurefor Sending Encrypted M essages

(Start)

\4

(Continue)

A 4

1. Open key handle for target recipient to
receive a key handle to recipient’s digital
certificate.

t pkey_open()

6. Send message in buffer by calling
tpsend(),tpcall(),...

t psend()

\4

2. (Optional): Get information about
encryption key handle.

t pkey_getinfo()

\4

3. (Optional): Change information
associated with encryption key handle.

t pkey_setinfo()

A4

4. Allocate a typed message buffer and
put message in buffer.

tpal | oc()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Generates digital signatures (if any).

3. Compresses message and digital
signatures (if any) using Deflate
compression algorithm.

4. Encrypts compressed message and
digital signatures (if any) using
random session key and symmetric
key algorithm.

5. Encrypts session key using recipient’s
public key (found in recipient’s digital
certificate) and public key algorithm.

6. Includes encrypted session key and
recipient’s name in a digital
encryption envelope.

7. Attaches encryption envelope to
encrypted message.

\ 4

A 4

5. Mark the message buffer for encryp-
tion, thus attaching a copy of the encryp-
tion key handle to the message buffer.

t pseal ()

7. Close encryption key handle to
release key handle and all resources
associated with it.

t pkey_cl ose()

A 4

(Continue)

Using Security in ATMI Applications

End

3-35

3

Programming Security

For detail s about these steps and insight into how the system encrypts a message
buffer, see the following topics.

Step 1: Opening a Key Handle for Encryption

3-36

Call thet pkey_open(3c) function or TPKEYOPEN(3cbl) routineto make the digital
certificate of the target recipient available to the originating process. The target
recipient might be a client, a service, a server group, a gateway group, a server
machine, or an entire domain of servers.

When the originating process callst pkey_open() to open the key handle, it specifies
either the TPKEY_ENCRYPT or TPKEY_AUTOENCRYPT flag to indicate that the handle
will beused to encrypt amessage buffer. Typically, aclient makesthiscall after calling
t pi nit (), and aserver makesthis call as part of initializing through t psvrinit ().

Opening a key handle with the TPKEY_AUTOENCRYPT flag enables automatic
encryption: subsequently, the originating process encrypts message buffers
automatically whenever they are sent. Using the TPKEY_AUTCENCRYPT flag is
beneficial for three reasons:

m Lesswork isrequired from application programmers because fewer ATMI calls
are required when operating in a secure ATMI application.

m Existing ATMI applications can leverage encryption technology with minimal
coding changes.

m The possibility of programming errors that might result in an unencrypted
(plaintext) buffer being sent over an insecure network is reduced.

Thefollowing example code shows how to open an encryption key handle. TPKEY isa
special datatype defined in the at ni . h header file.

Listing 3-7 Opening an Encryption Key Handle Example

mai n(argc, argv)
int argc;

char *argv[];
#endi f

TPKEY tu_key;

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

if (tpkey_open(&tu_key, “TOUPPER', NULL,
NULL, 0, TPKEY_ENCRYPT) == -1) {
(void) fprintf(stderr, “tpkey open tu failed
tperrno=%l(%)\n”, tperrno, tpstrerror(tperrno));
exit(1);

Step 2 (Optional): Getting Key Handle Information

Y ou may want to get information about an encryption key handle to establish the
validity of thekey. To do so, call thet pkey_get i nf o(3c) function or

TPKEYGETI NFO(3cbl) routine. While some of the information returned may be
specific to a cryptographic service provider, a core set of attributes is common to all
providers.

The default public key implementation supports three algorithms for bulk data
encryption of message content:

m DES (DES-CBC)—a 64-hit block cipher run in Cipher Block Chaining (CBC)
mode. It provides 56-bit keys (8 parity bits are stripped from the full 64-bit key)
and is exportable outside the United States. (DES stands for the Data Encryption
Standard.)

m 3DES (two-key triple-DES)—a 128-hit block cipher runin
Encrypt-Decrypt-Encrypt (EDE) mode. 3DES provides two 56-bit keys (in
effect, a 112-bit key) and is not exportable outside the United States.

m RC2—avariable key-size block cipher with a key size range of 40 to 128 bits. It
is faster than DES and is exportable with a key size of 40 bits. A 56-bit key size
is allowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC2 can be used with keys of virtually
unlimited length, but the public key software restricts the key length to 128 bits.
(RC2 stands for Rivest's Cipher 2.)

Using Security in ATMI Applications 3-37

3

Programming Security

3-38

Encryption strength is controlled by the ENCRYPT_BI TS key attribute, and the
algorithm is controlled by the ENCRYPT_ALGKkey attribute. When an algorithm with
fixed key length is set in ENCRYPT_ALG, the value of ENCRYPT_BI TS is automatically
adjusted to match.

The following example code shows how to get information about an encryption key
handle.

Listing 3-8 Getting Information About an Encryption Key Handle Example

mai n(argc, argv)

int argc;

char *argv[];

#endi f

{

TPKEY tu_key;
char princi pal _nane[PNAVE_LEN] ;
I ong pnane_| en = PNAME LEN
. if (tpkey_getinfo(tu_key, “PRI NClIPAL",
princi pal _name, &pnane_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information
about principal: %(%)\n",
tperrno, tpstrerror(tperrno));
exit(1l);
}
}

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with an encryption key handle, call the
t pkey_seti nf o(3c) function or TPKEYSETI NFQ(3cbl) routine. Key handle
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with an
encryption key handle.

Listing 3-9 Changing Information Associated with an Encryption Key Handle
Example

mai n(argc, argv)
int argc;

char *argv[];
#endi f

{
TPKEY tu_key;

static const unsigned char rc2 objid[] = {
0x06, 0x08, 0Ox2a, 0x86, 0x48, 0x86, O0xf7, 0x0d, 0x03, 0x02

}

if (tpkey_setinfo(tu_key, “ENCRYPT_ALG', (void *) rc2_objid,
sizeof (rc2_objid), 0) ==-1) {
(void) fprintf(stderr, “tpkey_setinfo failed
tperrno=%(%)\n",
tperrno, tpstrerror(tperrno));
return(l);

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To alocate atyped message buffer, call thet pal | oc(3c) function. Then put a
message in the buffer.

Using Security in ATMI Applications 3-39

3 Programming Security

Step 5: Marking the Buffer for Encryption

To mark, or register, the message buffer for encryption, call thet pseal (3c) function.
By calling thisfunction, you attach acopy of the encryption key handle to the message
buffer. If you open the key with the TPKEY_AUTOENCRYPT flag, each message that you
send is automatically marked for encryption without an explicit call tot pseal () .

Note: In COBOL applications, use the AUTOENCRYPT settings member to encrypt a
message buffer. See TPKEYCPEN(3cbl) .

The following example code shows how to mark a message buffer for encryption.

Listing 3-10 Marking a M essage Buffer for Encryption Example

mai n(argc, argv)
int argc;

char *argv[];
#endi f

TPKEY tu_key;
char *sendbuf, *rcvbuf;

if (tpseal (sendbuf, tu_key, 0) == -1) {
(void) fprintf(stderr, “tpseal failed tperrno=%(%)\n”
tperrno, tpstrerror(tperrno));
t pfree(rcvbuf)
t pf ree(sendbuf);
tptern();
(void) tpkey_cl ose(tu_key, 0);
exit(1l);

3-40 Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

Step 6: Sending the Message

After the message buffer has been marked for encryption, transmit the message buffer
using one of the following C functions or COBOL routines:

tpcal | () or TPCALL

t pbroadcast () or TPBROADCAST
tpconnect () or TPCONNECT

t penqueue() or TPENQUEUE

t pf orwar d()

tpnotify() or TPNOTI FY

t ppost () or TPPCST
tpreturn() or TPRETURN

t psend() or TPSEND

Step 7: Closing the Encryption Key Handle

Cadl thet pkey_cl ose(3c) function or TPKEYCLOSE(3cbl) routine to release the
encryption key handle and all resources associated with it.

How the System Encrypts a Message Buffer

Just before a message buffer is sent, the public key software encrypts the message and
attaches an encryption envelope; the encryption envel ope enables the target recipient
to decrypt the message. If asealed buffer is transmitted more than once, encryptionis
performed for each transmission. This process makes it possible to modify a message
buffer after marking the buffer to be encrypted.

The public key software encrypts the content of the message buffer and generates an
encryption envelope for the recipient of the encrypted message by performing the
following two-step procedure.

1. {message buffer_data+ buffer_type string + buffer_subtype_string} session_key
= encrypted_message

2. {session_key}recipient’s public_key = encrypted session_key =
encryption_envelope for_recipient

Using Security in ATMI Applications 3-41

3

Programming Security

The notation { something} key means that something has been encrypted or decrypted
using key. In Step 1, amessage buffer is encrypted using the session key, and in step 2,
the session key is encrypted using the recipient’s public key.

Multiple Message Recipients

More than one encryption envelope can be associated with a message buffer, which
means that multiple recipients, with different private keys, can receive and decrypt an
encrypted message. A recipient can be a person or a process. When amessage is
encrypted for multiple recipients, it is encrypted only once, but the session key is
encrypted with the public key of each recipient. All encryption envelopes are attached
to the encrypted message.

If several encryption envel opes are associated with one message buffer, all of them
must use the same symmetric key a gorithm and the same key size for that algorithm.

Encrypted Message Content

3-42

An encrypted message buffer is represented in the PKCS-7 format asa version 0
Envel opedDat a content type. The Envel opedDat a content type, as used by the BEA
Tuxedo system, consists of the following items:

m A list of recipients (in plaintext) that can be read by any ATMI process
m Encryption envelopes for one or more recipients

m Public key algorithm (and any associated parameters) under which the session
key was encrypted

m Symmetric key algorithm (and any associated parameters) under which the bulk
data was encrypted

m Encrypted bulk data, which is a composite of message buffer data, buffer type
string, buffer subtype string, and digital signatures (if any) that have undergone
the following transformations:

e Conversion of the message buffer data, buffer type string, and buffer subtype
string into the BEA Tuxedo encoded format to form the composite encoded
data. (The BEA Tuxedo encoded format allows a message buffer to be
decrypted on any machine architecture.)

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

e Compression of the composite encoded data and digital signatures (if any)
using the Deflate compression agorithm to form the composite compressed
data

e Encryption of the composite compressed data under a randomly generated
session key and symmetric key algorithm (identified earlier in thislist) to
form the encrypted bulk data.

The following figure shows the envelope hierarchy for the Envel opedDat a content
type. The Si gnedDat a content type is part of the hierarchy only if the message to
which it belongs has one or more associated digital signatures.

Figure 3-6 EnvelopedData Content Type

EnvelopedData Content Type
(Encrypting Operation)

CompressedData Content Type
(Compressing Operation)

SignedData Content Type
(Signing Operation)

TUXBUF Content Type

(Message Content)

Asshown in the preceding figure, amessage buffer may be both signed and encrypted.
No relationship is required between the number of digital signatures and the number
of encryption envel opes associated with a message buffer.

When both processes are performed on amessage buffer, signatures are generated first,
on unencrypted data. The number of attached signatures and the identity of signing
parties are then obscured by the bulk data encryption.

Using Security in ATMI Applications 3-43

3

Programming Security

Note: A suitable decryption key must be available to access message data before
signatures can be verified.

Writing Code to Receive Encrypted Messages

The procedure for writing code to receive encrypted messages consists of the
following steps.

1. Call t pkey_open() to open akey handle for the target recipient. t pkey_open
returns a key handle to the recipient’s private key and digital certificate.

2. (Optional): Call t pkey_get i nf o() to get information about the decryption key
handle.

3. (Optional): Call t pkey_set i nf o() to change information associated with the
decryption key handle.

4. Call t pkey_cl ose() to closethe decryption key handle. t pkey_cl ose()
releases the key handle and all resources associated with it.

For detail s about these steps and insight into how the system decrypts a message
buffer, see the following topics.

Step 1: Opening a Key Handle for Decryption

3-44

Call thet pkey_open(3c) function or TPKEYOPEN(3cbl) routine to makethe private
key and the associated digital certificate of the target recipient available to the
receiving process. The receiving process might be aclient, a service, a server group, a
gateway group, a server machine, or an entire domain of servers.

An application administrator can configure the ATMI application’s UBBCONFI Gfile
such that decryption key handles are opened automatically whenthe ATMI application
is booted. No more than one decryption key handle per server may be used with this
method. See “Initializing Decryption Keys Through the Plug-ins’ on page 2-51 for
details.

If an ATMI application is not configured to open a decryption key handle for the
receiving process during booting, the receiving process initiatesits own

t pkey_open() call. Or, if the receiving process wants to open another decryption key
handl e, the receiving process makes an additional t pkey_open() call.

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

In order to access the target recipient’s private key, the receiving process must prove
itsright to act asthetarget recipient. Proof requirementsdepend on theimplementation
of the public key plug-in interface. The default public key implementation requires a
secret password from the calling process.

When the receiving process callst pkey_open() to open the key handle, it specifies
the TPKEY_DECRYPT flag to indicate that the handle will be used to decrypt a message
buffer. Typically, a client makes this call after calling t pi ni t (), and a server makes
thiscall as part of initializing through t psvrinit ().

The following example code shows how to open adecryption key handle. TPKEY isa
special datatype defined inthe at i . h header file.

Listing 3-11 Opening a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;

char **argyv;

#endi f

{

char *tu_l ocati on;

if (tpkey_open(& u_key, “TOUPPER', tu_l ocation,
NULL, 0, TPKEY_DECRYPT) == -1) {
userl og(“Unabl e to open private key: %l(%)",
tperrno, tpstrerror(tperrno));
return(-1)

Using Security in ATMI Applications 3-45

3

Programming Security

Step 2 (Optional): Getting Key Handle Information

3-46

Y ou may want to get information about a decryption key handle to establish the
validity of thekey. To do so, call thet pkey_get i nf o(3c) function or

TPKEYGETI NFQ(3cbl) routine. While some of the information returned may be
specific to a cryptographic service provider, a core set of attributes is common to all
providers.

The following example code shows how to get information about a decryption key
handle.

Listing 3-12 Getting Information About a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;

char **argv;

#endi f

{
char princi pal _nane[PNAVE_LEN] ;
I ong pnane_| en = PNAME LEN

if (tpkey_getinfo(tu_key, “PRI NClIPAL",
princi pal _name, &pnane_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information
about principal: %(%)\n",
tperrno, tpstrerror(tperrno));

exit(1l);

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

Step 3 (Optional): Changing Key Handle Information

To set optiona attributes associated with a decryption key handle, call the
t pkey_seti nf o(3c) function or TPKEYSETI NFQ(3cbl) routine. Key handle
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with a
decryption key handle.

Listing 3-13 Changing Information Associated with a Decryption Key Handle
Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;

char **argyv;

#endi f

TMB2U nybits = 128;

if (tpkey_setinfo(tu_key, “ENCRYPT_BITS", &nybits,
si zeof (nybits), 0) == -1) {
(void) fprintf(stderr, “tpkey setinfo failed
tperrno=%(%)\n",
tperrno, tpstrerror(tperrno));
return(l);

Step 4: Closing the Decryption Key Handle

Cadl thet pkey_cl ose(3c) function or TPKEYCLOSE(3cbl) routine to release the
decryption key handle and all resources associated with it.

Using Security in ATMI Applications 3-47

3

Programming Security

How the System Decrypts a Message Buffer

3-48

The public key software automatically decrypts an encrypted message buffer
whenever it entersaBEA Tuxedo client process, server process, or any system process
that needs to access the content of the message buffer. For automatic decryption to
succeed, the receiving process must have opened a decryption key (type
TPKEY_DECRYPT) corresponding to a recipient identified in one of the attached
encryption envel opes.

Upon receiving an encrypted message, the public key software, operating on behalf of
the receiving process, performs the following tasks.

1. Readsthe target recipient’s name on the attached encryption envelope.

2. To recover the session key, decrypts the recipient’s encryption envelope using the
recipient’s private key and the public key algorithm.

3. Decrypts the message using the recovered session key and the symmetric key
algorithm.

4. Uncompresses the message.

5. Veifiesdigita signaturesif any. (See “How a Signed Message |s Received” on
page 3-32.)

6. If the message buffer successfully passes the check performed in step 5, the
public key software decodes the message buffer data, buffer type string, and
buffer subtype string, and then passes the plaintext message to the receiving
process. This step reverses the encoding performed by the originating process.
(The BEA Tuxedo encoded format allows a message buffer to be decrypted on
any machine architecture.)

Note: If none of the attached digital signatures can be verified or the message buffer
cannot be decrypted, the receiving process does not receive the message
buffer. Moreover, the receiving process has no knowledge of the message
buffer.

If a system processis acting as a conduit (that is, if it is not reading the content of the
message), then the message need not be decrypted. Bridges and workstation handlers
(WSHs) are examples of system processes acting as conduits.

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

TheWSH is aspecial exampleof aconduit. If aWSH isconfigured for data-dependent
routing, it needs to read the received message buffer to determine how to route the
buffer. The public key software makesacopy of the received message buffer, decrypts
the copy, and then passes the decrypted copy to the WSH. The WSH analyzes the
decrypted copy to determine how to route the buffer, and then routes the origina
message buffer unchanged to the appropriate server. (For more detail about the
interaction between data-dependent routing and public key security, see
“Compatibility/Interaction with Data-dependent Routing” on page 1-61.)

Discarding an Input Buffer’s Encryption Envelopes

If amessage buffer is passed to an ATMI function (such ast pacal | ()) asaninput
parameter, the public key software discards any encryption envelopes previously
attached to the message. This behavior prevents the target recipients for the origina
message from receiving any modifications made by an intermediate process.

Asan example of this process, consider the scenario shown in the following figure.

Figure 3-7 Forwarding a Signed and Encrypted M essage Example

Workstation
Client
I:l =® > Server
.\
Employee (Data-dependent Routing) Manager Purchasing

Encrypt Message

EnvelopedData

Encrypt Env 2
Encrypt Env 1

Message

Decrypt, Read, Sign, Seal,
& Forward Encrypted Message

Decrypt &
Read Message

Decrypt, Read,
& Forward Encrypted Message

EnvelopedData EnvelopedData EnvelopedData
= = =
Message Message Message

Using Security in ATMI Applications 3-49

3

Programming Security

3-50

A server process named Manager receivesasigned and encrypted message buffer from
aclient process named Enpl oyee, decrypts and reads the received message buffer,
signs and sealsit for a service named Pur chasi ng, and then forwards the message to
Pur chasi ng.

Thefollowing is a detailed description of how this operation is performed.

1. Theworkstation handler (WSH) receivesthe signed and encrypted message buffer
from the employee and forwardsit asis.

The WSH process is configured for data-dependent routing, which is briefly
described in “How the System Decrypts a Message Buffer” on page 3-48. The
public key software uses a decryption key previously opened for the WSH
process to decrypt a copy of the received message buffer, and then passes the
decrypted copy to the WSH. After analyzing the decrypted copy, the WSH
routes the received message buffer to the Manager process asis.

If the WSH process is hot configured for data-dependent routing, the Enpl oyee
process does not need to t pseal () the message buffer for the WSH process,
and the WSH process does not need to open a decryption key.

Regardless of how it is configured, the WSH does not verify digital signatures.

2. When the message buffer arrives at the Manager process, the public key
software:

a. Decrypts the message buffer using adecryption key previously opened for the
Manager Process.

b. Verifiesthe employee’s signature.

c. Passesthe message without digital signature or encryption information to the
Manager .

When a process receives a message buffer, it receives only the message content.
Any digital signatures or encryption envelopes associated with the message
buffer are not included.

3. TheMmanager callst penvel ope() repeatedly to find out about the digital
signature and encryption information associated with the message buffer.
t penvel ope() returns:

Using Security in ATMI Applications

Sending and Receiving Encrypted Messages

e Digital signature information, including the signer’s public key and a
digital-signature status of TPSI GN_OK

e Encryption information, including the public keys of the WSH process and
the Manager process itself

4. TheManager calst pkey_getinfo() withthe signer’'s public key as an
argument, to obtain more information about the signer, including the signer’s
principal name.

5. If the Manager determines that the signer is a known employee and that the
employee's request (as stated in the message content) is valid, the Manager
proceeds as follows.

a. Cdlstpsign() tomark the message buffer for digital signature by the
Manager .

a. Cdlstpseal () to mark the message buffer to be encrypted for Pur chasi ng.

b. Callstpforward() (or some other function used to transmit data) to send the
message to Pur chasi ng.

Just before the message is transmitted, the public key software performsthe following
tasks.

1. Generates adigital signature for the Manager .

2. Verifiesthe employee's digital signature.

3. Encryptsthe message content and associated digital signatures.
4.

Creates an encryption envelope for Pur chasi ng.

Replacing an Output Buffer’s Encryption Envelopes

If amessage buffer is passed toan ATMI function (such ast pget r pl y()) asan output
parameter, the public key software del etes any encryption information associated with
the buffer. Thisinformation includes any pending seals, or sealsfrom previous uses of
thebuffer. (A pending seal isarecipient’ sseal that isregistered with amessage buffer.)

New encryption information might be associated with the new buffer content after
successful completion of the operation.

Using Security in ATMI Applications 3-51

3 Programming Security

See Also

m “Examining Digital Signature and Encryption Information” on page 3-52
m “Externaizing Typed Message Buffers’ on page 3-59

m “Public Key Security” on page 1-29

m “Administering Public Key Security” on page 2-42

m “Programming an ATMI Application with Security” on page 3-3

Examining Digital Signature and Encryption
Information

The public key software maintains the order in which:

m Digital-signature registration requests and digital signatures are attached to a
message buffer

m Encryption registration requests and encryption envelopes are attached to a
message buffer

A process obtains thisinformation by calling thet penvel ope() function with the
target message buffer as an argument. t penvel ope() isdescribed on the
t penvel ope(3c) reference page in the BEA Tuxedo ATMI C Function Reference.

There may be multiple occurrences of digital-signature registration requests, digital
signatures, encryption registration regquests, and encryption envel opes associated with
amessage buffer. The occurrences are stored in sequence, with thefirst item at the zero
position and subsequent items in consecutive positions. The occur r ence input
parameter for t penvel ope() indicateswhichitemisbeing requested. When thevalue
of occurrence is beyond the position of the last item, t penvel ope() failswith the
TPENCENT error condition. A process can examineall itemsby callingt penvel ope()
repeatedly until TPENOENT is returned.

3-52 Using Security in ATMI Applications

Examining Digital Signature and Encryption Information

In an originating process, digital signature and encryption information is generally in
apending state, waiting until the message is sent. In areceiving process, digital
signatures have already been verified, and encryption and decryption have already
been performed.

What Happens When an Originating Process Calls

tpenvelope

When an originating process callst penvel ope() with the originating message buffer
as an argument, t penvel ope() reports:

Any digital signature request explicitly registered with the message buffer as
being in the TPSI GN_PENDI NG state. The originating process explicitly registers
adigital signature request by calling thet psi gn(3c) function.

Any digital signature request implicitly registered with the message buffer as
also being in the TPSI GN_PENDI NG state. The originating process implicitly
registers adigita signature request by calling t pkey_open(3c) with the
TPKEY_AUTOSI GN flag specified.

Any encryption (seal) request explicitly registered with the message buffer as
being in the TPSEAL_PENDI NG state. The originating process explicitly registers
an encryption request by calling thet pseal (3c) function.

Any encryption (seal) request implicitly registered with the message buffer as
also being in the TPSEAL_PENDI NG state. The originating process implicitly
registers an encryption request by calingt pkey_open() with the
TPKEY_AUTOENCRYPT flag specified.

In addition to the status, t penvel ope() returnsthe key handle associated with a
digital signature or encryption registration request. A process can call the

t pkey_geti nf o(3c) function with the key handle as an argument, to get more
information about the key handle.

Using Security in ATMI Applications 3-53

3

Programming Security

What Happens When a Receiving Process Calls

tpenvelope

3-54

When a process receives a message buffer, it receives only the message content. Any
digital signatures or encryption envelopes associated with the message buffer are not
included. Thereceiving process must call t penvel ope() to obtain information about
any attached digital signatures or encryption envel opes.

When areceiving process callst penvel ope() with the received message buffer asan
argument, t penvel ope() reports:

Any digital signature attached to the message buffer. A digita signature has one
of the following states:

TPSI GN_OK
Digita signature has been verified.
TPSI GN_TAMPERED_ MESSACE

Digita signatureis not valid because the content of the message buffer has
been altered.

TPSI GN_TAMPERED_CERT

Digita signatureis not valid because the signer’s digital certificate has been
altered.

TPSI GN_REVOKED_CERT

Digita signatureis not valid because the signer’s digital certificate has been
revoked.

TPSI GN_POSTDATED
Digital signatureis not valid because its timestamp istoo far into the future.
TPSI GN_EXPI RED_CERT

Digita signatureis not valid because the signer’s digital certificate has
expired.

TPSI GN_EXPI RED

Digita signatureis not valid because its timestamp is too old.

Using Security in ATMI Applications

Examining Digital Signature and Encryption Information

TPSI GN_UNKNOWN

Digital signatureis not valid because the signer’s digital certificate was
issued by an unknown Certification Authority (CA).

Any encryption envel ope attached to the message buffer. An encryption
envel ope has one of the following states:

TPSEAL_OK
Encryption envelopeisvalid.
TPSEAL_TAMPERED_ CERT

Encryption envelope is not valid because the target recipient’s digital
certificate has been atered. (Target recipient will not receive the message
buffer.)

TPSEAL_REVOKED_CERT

Encryption envelope is not valid because the target recipient’s digital
certificate has been revoked. (Target recipient will not receive the message
buffer.)

TPSEAL_EXPI RED_CERT

Encryption envelope is not valid because the target recipient’s digital
certificate has expired. (Target recipient will not receive the message buffer.)

TPSEAL_ UNKNOWN

Encryption envelope is not valid because the target recipient’s digital
certificate was issued by an unknown CA. (Target recipient will not receive
the message buffer.)

In addition to the status, t penvel ope() returnsthe key handle associated with a
digital signature or encryption envelope. A process can cal thet pkey_get i nf o(3c)
function with the key handle as an argument, to get more information about the key
handle.

If areceiving process callst psi gn() to register adigital signature request after
receiving the message buffer, t penvel ope() reports the status of the registration as
TPSI GN_PENDI NG Similarly, if areceiving processcallst pseal () to register an
encryption (seal) request after receiving the message buffer, t penvel ope() reports
the status of the registration as TPSEAL_PENDI NG

Using Security in ATMI Applications 3-55

3 Programming Security

If areceiving process modifies the content of a signed message buffer after receiving
it, theattached signaturesare no longer valid. Asaresult, t penvel ope() cannot verify

the signatures, and reports a signature status of TPSI GN_TAMPERED MESSAGE.

Understanding the Composite Signature Status

For amessage buffer with multiple digital signatures, the public key software calls an

internal function equivalent tot penvel ope() to examine the state of each digita

signature. Then, by observing certain rules, the public key software forms acomposite
signature status. The rules for forming a composite signature status are shown in the
following table.

Table 3-4 Composite Signature Satus

If Any Statusls. ..

And TherelsNo Statusof ...

Then the Composite Statusls. . .

TPSI GN_TAMPERED_MESSAGE

TPSI GN_TAMPERED MESSAGE

TPSI GN_TAMPERED_CERT

TPSI GN_TAMPERED MESSAGE

TPSI GN_TAMPERED_CERT

TPSI GN_REVOKED CERT

TPSI GN_TAMPERED MESSAGE
TPSI GN_TAMPERED_CERT

TPSI GN_REVOKED_CERT

TPSI GN_POSTDATED

TPSI GN_TAMPERED MESSAGE
TPSI GN_TAMPERED_CERT
TPSI GN_REVOKED_CERT

TPSI GN_POSTDATED

TPSI GN_EXPI RED_CERT

TPSI GN_TAMPERED MESSAGE
TPSI GN_TAMPERED_CERT
TPSI GN_REVOKED_CERT
TPSI GN_POSTDATED

TPSI GN_EXPI RED_CERT

TPSI GN_CK

3-56

TPSI GN_TAMPERED MESSAGE
TPSI GN_TAMPERED_CERT
TPSI GN_REVOKED_CERT
TPSI GN_POSTDATED

TPSI GN_EXPI RED_CERT

Using Security in ATMI Applications

TPSI GN_OK

Examining Digital Signature and Encryption Information

Table 3-4 Composite Sighature Satus (Continued)

If Any Statusls. ..

And TherelsNo Statusof ... Then theComposite Statusls. ..

TPSI GN_EXPI RED

TPSI GN_TAMPERED MESSAGE TPSI GN_EXPI RED
TPSI GN_TAMPERED CERT

TPSI GN_REVOKED_CERT

TPSI GN_POSTDATED

TPSI GN_EXPI RED_CERT

TPSI GN_CK

TPSI GN_UNKNOAN

TPSI GN_TAMPERED MESSAGE ~ TPSI GN_UNKNOWN
TPSI GN_TAMPERED CERT

TPSI GN_REVOKED_CERT

TPSI GN_POSTDATED

TPSI GN_EXPI RED_CERT

TPSI GN_CK

TPSI GN_EXPI RED

Any incoming message buffer without a composite signature status of TPSI GN_OK or
TPSI GN_UNKNOWN is discarded as if it were never received. If the

SI GNATURE_REQUI RED parameter is set to Y (yes) in the ATMI application’s
UBBCONFI Gfile, then any incoming message buffer without a composite signature
status of TPSI GN_CK is discarded asif it were never received. See “Enforcing the
Signature Policy for Incoming Messages” on page 2-45 for more detail .

An exception to the handling of signed message buffers described in the previous
paragraph isthet pi nport (3c) function. Thet pi nport (3c) function deliversan
incoming message buffer regardless of the composite signature status.

Example Code for tpenvelope

The following example code shows how to uset penvel ope() to examinethedigital
signature and encryption information associated with a message buffer.

Using Security in ATMI Applications 3-57

3 Programming Security

Listing 3-14 Using tpenvelope Example

mai n(argc, argv)
int argc;

char *argv[];
#endi f

{
TPKEY tu_key;
TPKEY sdo_key;
TPKEY out put _key;
char *sendbuf, *rcvbuf;
int ret;
int occurrence = 0;
| ong status;
char princi pal _nane[PNAVE_LEN] ;
| ong pname_|l en = PNAME_LEN;
int found = 0O;

out put _key = NULL;
ret = tpenvel ope(rcvbuf, 0, occurrence, &output_key,
&t atus, NULL, 0);

while (ret !'=-1) {
if (status == TPSIGN_OK) {

if (tpkey_getinfo(output_key, “PR NCl PAL",
princi pal _name, &pnane_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information

about principal: %(%)\n",
tperrno, tpstrerror(tperrno));

t pfree(sendbuf);
tpfree(rcvbuf);
tpternm();
(void) tpkey_close(tu_key, 0);
(void) tpkey_close(sdo_key, 0);
(void) tpkey_cl ose(output_key, 0);
exit(1);

}

/* Do not forget to free resources */
(void) tpkey_close(output_key, 0);
out put _key = NULL;

found = 1;

br eak;

3-58 Using Security in ATMI Applications

Externalizing Typed Message Buffers

/* Do not forget to free resources */
(voi d) tpkey_close(output_key, 0);
out put _key = NULL;

occurrence++;

ret = tpenvel ope(rcvbuf, 0, occurrence, &output_ key,
&status, NULL, 0);

See Also

m “Externalizing Typed Message Buffers’ on page 3-59
m “Public Key Security” on page 1-29
m “Administering Public Key Security” on page 2-42

m “Programming an ATMI Application with Security” on page 3-3

Externalizing Typed Message Buffers

An externalized representation is a message buffer that does not include any ATMI
header information that is normally added to amessage buffer just before the buffer is
transmitted. An externalized representation of a signed message buffer enables “pass
through” transmission of signed data and long-term storage of the signed buffer for
non-repudiation. It also enables an encrypted message buffer to be transported through
intermediate processes without access to a decryption key.

Using Security in ATMI Applications 3-59

3 Programming Security

How to Create an Externalized Representation

An ATMI process converts atyped message buffer into an externalized representation
by calling thet pexport (3c) function. Pending signatures associated with a message
buffer are generated at thetimet pexport () iscalled, just asif the buffer were being
transmitted to another process by an ATMI function. Similarly, pending seals
associated with a message buffer are generated at thetimet pexport () iscalled, just
asif the buffer were being transmitted to another process by an ATMI communication
function.

The externalized representation of a message buffer is stored in the PKCS-7 format,
which isabinary format. If astring format isrequired, the calling process must call
t pexport () with the TPEX_STRI NGflag specified.

Note: The ability to create an externalized representation of atyped message buffer
isnot unigque to public key security. A process may call t pexport () to
externalize a typed message buffer regardless of whether a message buffer is
marked for digital signature or encryption.

How to Convert an Externalized Representation

A receiving process calsthet pi npor t (3c) function to convert the externalized
representation of a message buffer into a typed message buffer. Thet pi nport ()
function also performs decryption, if necessary, and verifies any associated digital
signatures.

Example Code for tpexport and tpimport

The following example code shows how to uset pexpor t () to convert atyped
message buffer into an externalized representation, and how to uset pi nport () to
convert the externalized representation back into a typed message buffer.

3-60 Using Security in ATMI Applications

Externalizing Typed Message Buffers

Listing 3-15 Using tpexport and tpimport Example

static void hexdunp _((unsigned char *, long));
#defi ne MAX_BUFFER 80000

mai n(argc, argv)
int argc;

char *argv[];
#endi f

{
char *databuf;
char export buf [MAX_BUFFER] ;
long exportbuf_size = 0;
char *inportbuf = NULL;
long inportbuf_size = 0;
int go_on = 1,

exportbuf _size = 0;
while (go_on == 1) {
if (tpexport(databuf, 0, exportbuf, &exportbuf_size, 0)
== -1) {
if (tperrno == TPELIMT) {
printf(“%l tperrno is TPELIM T, exportbuf_size=%d\n",
_ LINE__, exportbuf_size);
if (exportbuf_size > MAX_BUFFER) {

return(l);
}
}
else {
printf(“tpexport(%) failed: tperrno=%(%)\n”,
__LINE__, tperrno, tpstrerror(tperrno));
return(l);
}
}
el se {
go_on = 0;
}

hexdunp((unsigned char *) exportbuf, (long) exportbuf_size);

Using Security in ATMI Applications 3-61

3 Programming Security

if (tpinmport(exportbuf, exportbuf_size, & nportbuf,
& mportbuf_size, 0) == -1) {
printf(“tpinport(%l) failed: tperrno=%(%)\n",
__LINE_, tperrno, tpstrerror(tperrno));
return(l);

See Also

m “Public Key Security” on page 1-29
m “Administering Public Key Security” on page 2-42
m “Programming an ATMI Application with Security” on page 3-3

3-62 Using Security in ATMI Applications

	Copyright
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions
	1 Introducing ATMI Security
	What Security Means
	Security Plug-ins
	ATMI Security Capabilities
	Operating System (OS) Security
	Authentication
	Authentication Plug-in Architecture
	Understanding Delegated Trust Authentication
	Establishing a Session
	Getting Authorization and Auditing Tokens
	Replacing Client Tokens with Server Tokens
	Implementing Custom Authentication

	Authorization
	Authorization Plug-in Architecture
	How the Authorization Plug-in Works
	Implementing Custom Authorization

	Auditing
	Auditing Plug-in Architecture
	How the Auditing Plug-in Works
	Implementing Custom Auditing

	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Backward Compatibility of LLE
	WSL/WSH Connection Timeout During Initialization
	LLE Installation and Licensing

	Public Key Security
	PKCS-7 Compliant
	Supported Algorithms for Public Key Security
	Public Key Installation and Licensing

	Message-based Digital Signature
	Digital Certificates
	Certification Authority
	Certificate Repositories
	Public-Key Infrastructure

	Message-based Encryption
	Public Key Implementation
	Public Key Initialization
	Key Management
	Certificate Lookup
	Certificate Parsing
	Certificate Validation
	Proof Material Mapping
	Implementing Custom Public Key Security
	Default Public Key Implementation

	Default Authentication and Authorization
	Client Naming
	User, Group, and ACL Files
	Optional and Mandatory ACLs

	Security Interoperability
	Interoperating with Pre-Release 7.1 Software
	Interoperability for Link-Level Encryption
	Interoperability for Public Key Security

	Security Compatibility
	Mixing Default/Custom Authentication and Authorization
	Mixing Default/Custom Authentication and Auditing
	Compatibility Issues for Public Key Security

	2 Administering Security
	What Administering Security Means
	Security Administration Tasks
	Setting the BEA Tuxedo Registry
	Purpose of the BEA Tuxedo Registry
	Registering Plug-ins

	Configuring an ATMI Application for Security
	Editing the Configuration File
	Changing the TM_MIB
	Using the BEA Administration Console

	Setting Up the Administration Environment
	Administering Operating System (OS) Security
	Recommended Practices for OS Security

	Administering Authentication
	Specifying Principal Names
	How System Processes Acquire Credentials
	Why System Processes Need Credentials
	Example UBBCONFIG Entries for Principal Names

	Mandating Interoperability Policy
	Establishing an Identity for an Older Client
	Summarizing How the CLOPT -t Option Works
	Example UBBCONFIG Entries for Interoperability

	Establishing a Link Between Domains
	Example DMCONFIG Entries for Establishing a Link

	Setting ACL Policy
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Setting Credential Policy
	Administering Authorization
	Administering Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed LLE Version
	How to Configure LLE on Workstation Client Links
	How to Configure LLE on Bridge Links
	How to Configure LLE on tlisten Links
	How to Configure LLE on Domain Gateway Links

	Administering Public Key Security
	Recommended Practices for Public Key Security
	Assigning Public-Private Key Pairs
	Setting Digital Signature Policy
	Setting Encryption Policy
	Initializing Decryption Keys Through the Plug-ins
	Failure Reporting and Auditing

	Administering Default Authentication and Authorization
	Designating a Security Level
	Configuring the Authentication Server

	How to Enable Application Password Security
	How to Enable User-Level Authentication Security
	Setting Up the UBBCONFIG File
	Setting Up the User and Group Files

	Enabling Access Control Security
	How to Enable Optional ACL Security
	How to Enable Mandatory ACL Security

	3 Programming Security
	What Programming Security Means
	Programming an ATMI Application with Security
	Setting Up the Programming Environment
	Writing Security Code So Client Programs Can Join the ATMI Application
	Getting Security Data
	Joining the ATMI Application
	Transferring the Client Security Data
	Calling a Service Request Before Joining the ATMI Application

	Writing Security Code to Protect Data Integrity and Privacy
	ATMI Interface for Public Key Security
	Recommended Uses of Public Key Security

	Sending and Receiving Signed Messages
	Writing Code to Send Signed Messages
	How a Signed Message Is Received

	Sending and Receiving Encrypted Messages
	Writing Code to Send Encrypted Messages
	Writing Code to Receive Encrypted Messages

	Examining Digital Signature and Encryption Information
	What Happens When an Originating Process Calls tpenvelope
	What Happens When a Receiving Process Calls tpenvelope
	Understanding the Composite Signature Status
	Example Code for tpenvelope

	Externalizing Typed Message Buffers
	How to Create an Externalized Representation
	How to Convert an Externalized Representation
	Example Code for tpexport and tpimport

