
Using Security

B E A  T u x e d o  R e l e a s e  8 . 0
D o c u m e n t  E d i t i o n  8 . 0

J u n e  2 0 0 1

in ATMI Applications

BEA Tuxedo



Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems 
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against 
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or 
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable 
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems 
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause 
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR 
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part 
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT 
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES 
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE 
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, 
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes 
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic 
Comerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic 
Collaborate, BEA WebLogic Enterprise and BEA WebLogic Server are trademarks of BEA Systems, Inc. 

All other company names may be trademarks of the respective companies with which they are associated.

Using Security in ATMI Applications

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0



Contents

1. Introducing Security
What Security Means ........................................................................................ 1-1

Security Plug-ins ............................................................................................... 1-2

Security Capabilities.......................................................................................... 1-3

Operating System (OS) Security ....................................................................... 1-6

Authentication ................................................................................................... 1-7

Authentication Plug-in Architecture .......................................................... 1-7

Understanding Delegated Trust Authentication ......................................... 1-7

Establishing a Session ................................................................................ 1-9

Getting Authorization and Auditing Tokens ............................................ 1-10

Replacing Client Tokens with Server Tokens.......................................... 1-11

Implementing Custom Authentication ..................................................... 1-12

Authorization ................................................................................................... 1-12

Authorization Plug-in Architecture .......................................................... 1-13

How the Authorization Plug-in Works..................................................... 1-15

Implementing Custom Authorization....................................................... 1-18

Auditing ........................................................................................................... 1-18

Auditing Plug-in Architecture .................................................................. 1-19

How the Auditing Plug-in Works............................................................. 1-20

Implementing Custom Auditing............................................................... 1-23

Link-Level Encryption .................................................................................... 1-23

How LLE Works ...................................................................................... 1-24

Encryption Key Size Negotiation............................................................. 1-24

Backward Compatibility of LLE.............................................................. 1-26

WSL/WSH Connection Timeout During Initialization............................ 1-27

LLE Installation and Licensing ................................................................ 1-28
Using Security in ATMI Applications iii



Public Key Security ......................................................................................... 1-29

PKCS-7 Compliant................................................................................... 1-29

Supported Algorithms for Public Key Security........................................ 1-30

Public Key Installation and Licensing...................................................... 1-32

Message-based Digital Signature .................................................................... 1-34

Digital Certificates.................................................................................... 1-36

Certification Authority ............................................................................. 1-36

Certificate Repositories ............................................................................ 1-37

Public-Key Infrastructure ......................................................................... 1-37

Message-based Encryption .............................................................................. 1-39

Public Key Implementation ............................................................................. 1-41

Public Key Initialization........................................................................... 1-42

Key Management...................................................................................... 1-42

Certificate Lookup.................................................................................... 1-42

Certificate Parsing .................................................................................... 1-42

Certificate Validation ............................................................................... 1-43

Proof Material Mapping ........................................................................... 1-43

Implementing Custom Public Key Security ............................................. 1-43

Default Public Key Implementation ......................................................... 1-43

Default Authentication and Authorization ...................................................... 1-44

Client Naming .......................................................................................... 1-47

User, Group, and ACL Files..................................................................... 1-50

Optional and Mandatory ACLs ................................................................ 1-52

Security Interoperability .................................................................................. 1-53

Interoperating with Pre-Release 7.1 Software.......................................... 1-55

Interoperability for Link-Level Encryption.............................................. 1-56

Interoperability for Public Key Security .................................................. 1-56

Security Compatibility..................................................................................... 1-59

Mixing Default/Custom Authentication and Authorization ..................... 1-59

Mixing Default/Custom Authentication and Auditing ............................. 1-59

Compatibility Issues for Public Key Security .......................................... 1-60

2. Administering Security
What Administering Security Means ................................................................ 2-1

Security Administration Tasks .......................................................................... 2-3
iv Using Security in ATMI Applications



Setting the BEA Tuxedo Registry ..................................................................... 2-3

Purpose of the BEA Tuxedo Registry ........................................................ 2-4

Registering Plug-ins ................................................................................... 2-4

Configuring an Application for Security........................................................... 2-5

Editing the Configuration File.................................................................... 2-6

Changing the TM_MIB.............................................................................. 2-6

Using the BEA Administration Console .................................................... 2-6

Setting Up the Administration Environment ..................................................... 2-7

Administering Operating System (OS) Security ............................................... 2-8

Recommended Practices for OS Security .................................................. 2-8

Administering Authentication ........................................................................... 2-9

Specifying Principal Names ............................................................................ 2-11

How System Processes Acquire Credentials............................................ 2-12

Why System Processes Need Credentials ................................................ 2-14

Example UBBCONFIG Entries for Principal Names .............................. 2-15

Mandating Interoperability Policy................................................................... 2-15

Establishing an Identity for an Older Client............................................. 2-20

Summarizing How the CLOPT -t Option Works..................................... 2-21

Example UBBCONFIG Entries for Interoperability................................ 2-23

Establishing a Link Between Domains............................................................ 2-24

Example DMCONFIG Entries for Establishing a Link ........................... 2-27

Setting ACL Policy.......................................................................................... 2-29

Impersonating the Remote Domain Gateway .......................................... 2-32

Example DMCONFIG Entries for ACL Policy ....................................... 2-33

Administering Authorization........................................................................... 2-34

Administering Link-Level Encryption ............................................................ 2-35

Understanding min and max Values ........................................................ 2-35

Verifying the Installed LLE Version........................................................ 2-36

How to Configure LLE on Workstation Client Links.............................. 2-36

How to Configure LLE on Bridge Links ................................................. 2-37

How to Configure LLE on tlisten Links................................................... 2-38

How to Configure LLE on Domain Gateway Links ................................ 2-39

Administering Public Key Security................................................................. 2-41

Recommended Practices for Public Key Security.................................... 2-41

Assigning Public-Private Key Pairs ......................................................... 2-42
Using Security in ATMI Applications v



Setting Digital Signature Policy ............................................................... 2-42

Setting Encryption Policy......................................................................... 2-47

Initializing Decryption Keys Through the Plug-ins ................................. 2-50

Failure Reporting and Auditing................................................................ 2-54

Administering Default Authentication and Authorization .............................. 2-56

Designating a Security Level.................................................................... 2-56

Configuring the Authentication Server .................................................... 2-57

How to Enable Application Password Security............................................... 2-59

How to Enable User-Level Authentication Security ....................................... 2-60

Setting Up the UBBCONFIG File............................................................ 2-60

Setting Up the User and Group Files........................................................ 2-61

Enabling Access Control Security ................................................................... 2-64

How to Enable Optional ACL Security.................................................... 2-65

How to Enable Mandatory ACL Security ................................................ 2-68

3. Programming Security
What Programming Security Means.................................................................. 3-1

Programming an Application with Security ...................................................... 3-3

Setting Up the Programming Environment ....................................................... 3-3

Writing Security Code So Client Programs Can Join the Application.............. 3-4

Getting Security Data ........................................................................................ 3-6

Joining the Application...................................................................................... 3-8

Transferring the Client Security Data....................................................... 3-11

Calling a Service Request Before Joining the Application ...................... 3-14

Writing Security Code to Protect Data Integrity and Privacy ......................... 3-15

ATMI for Public Key Security ................................................................. 3-16

Recommended Uses of Public Key Security............................................ 3-22

Sending and Receiving Signed Messages ....................................................... 3-23

Writing Code to Send Signed Messages .................................................. 3-23

How a Signed Message Is Received......................................................... 3-32

Sending and Receiving Encrypted Messages .................................................. 3-34

Writing Code to Send Encrypted Messages ............................................. 3-34

Writing Code to Receive Encrypted Messages ........................................ 3-44

Examining Digital Signature and Encryption Information.............................. 3-52

What Happens When an Originating Process Calls tpenvelope............... 3-53
vi Using Security in ATMI Applications



What Happens When a Receiving Process Calls tpenvelope................... 3-54

Understanding the Composite Signature Status ....................................... 3-56

Example Code for tpenvelope .................................................................. 3-57

Externalizing Typed Message Buffers ............................................................ 3-59

How to Create an Externalized Representation........................................ 3-60

How to Convert an Externalized Representation ..................................... 3-60

Example Code for tpexport and tpimport................................................. 3-60
Using Security in ATMI Applications vii



viii Using Security in ATMI Applications



About This Document

This document provides an introduction to the Application-to-Transaction Monitor 
(ATMI) security features in the BEA Tuxedo® product and information about 
securing your ATMI application using the ATMI security features.

This document includes the following topics:

n Chapter 1, “Introducing ATMI Security,” presents an overview of the security 
features for ATMI in the BEA Tuxedo product.

n Chapter 2, “Administering Security,” describes setting parameters in the 
UBBCONFIG file to enable security for an ATMI application.

n Chapter 3, “Programming Security,” describes the ATMI functions used in 
clients to securely interact with an ATMI application.

What You Need to Know

This document is intended for application developers who are interested in securing an 
ATMI application. It assumes a familiarity with the ATMI programming environment.
Using Security in ATMI Applications ix



e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA System, Inc. 
corporate Web site. From the BEA Home page, click the Product Documentation 
button or go directly to the “e-docs” Product Documentation page at 
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using 
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home 
page on the e-docs Web site (and also on the documentation CD). You can open the 
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book 
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click 
the PDF files button and select the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from 
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about BEA Tuxedo, distributed object computing, and 
transaction processing, see the CORBA Bibliography in the BEA Tuxedo online 
documentation. 
x Using Security in ATMI Applications



Documentation Conventions
Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail 
at docsupport@bea.com if you have questions or comments. Your comments will be 
reviewed directly by the BEA professionals who create and update the BEA Tuxedo 
documentation.

In your e-mail message, please indicate that you are using the documentation for the 
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems 
installing and running BEA Tuxedo contact BEA Customer Support through BEA 
WebSUPPORT at  www.bea.com. You can also contact Customer Support by using 
the contact information provided on the Customer Support Card, which is included in 
the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
Using Security in ATMI Applications xi



italics Indicates emphasis or book titles.

monospace 
text

Indicates code samples, commands and their options, data structures and 
their members, data types, directories, and filenames and their extensions. 
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main ( ) the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace 
boldface 
text

Identifies significant words in code.

Example:

void commit ( )

monospace 
italic 
text

Identifies variables in code.

Example:

String expr

UPPERCASE 
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should 
never be typed.

[ ] Indicates optional items in a syntax line. The brackets themselves should 
never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

Convention Item
xii Using Security in ATMI Applications



Documentation Conventions
| Separates mutually exclusive choices in a syntax line. The symbol itself 
should never be typed.

... Indicates one of the following in a command line: 

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. 
The vertical ellipsis itself should never be typed.

Convention Item
Using Security in ATMI Applications xiii



xiv Using Security in ATMI Applications



CHAPTER
1 Introducing ATMI 
Security

This topic includes the following sections:

n What Security Means

n Security Plug-ins

n ATMI Security Capabilities

n Default Authentication and Authorization

n Security Interoperability

Note: Release 8.0 of the BEA Tuxedo product includes environments that allow you 
to build both Application-to-Transaction Monitor Interfaces (ATMI) and 
CORBA applications. This topic explains how to implement security in an 
ATMI application. For information about implementing security in a CORBA 
application, see Using Security in CORBA Applications.

What Security Means

Security refers to techniques for ensuring that data stored in a computer or passed 
between computers is not compromised. Most security measures involve passwords 
and data encryption, where a password is a secret word or phrase that gives a user 
access to a particular program or system, and data encryption is the translation of data 
into a form that is unintelligible without a deciphering mechanism.
Using Security in ATMI Applications 1-1



1 Introducing ATMI Security
Distributed applications such as those used for electronic commerce (e-commerce) 
offer many access points for malicious people to intercept data, disrupt operations, or 
generate fraudulent input; the more distributed a business becomes, the more 
vulnerable it is to attack. Thus, the distributed computing software, or middleware, 
upon which such applications are built must provide security.

The BEA Tuxedo product provides several security capabilities for ATMI 
applications, most of which can be customized for your particular needs.

See Also

n “Security Plug-ins” on page 1-2

n “ATMI Security Capabilities” on page 1-4

n “What Administering Security Means” on page 2-1

n “What Programming Security Means” on page 3-1

Security Plug-ins

As shown in the following figure, all but one of the security capabilities available with 
the ATMI environment of the BEA Tuxedo product are implemented through a plug-in 
interface, which allows BEA Tuxedo customers to independently define and 
dynamically add their own security plug-ins. A security plug-in is a code module that 
implements a particular security capability.
1-2 Using Security in ATMI Applications



Security Plug-ins
Figure 1-1   BEA Tuxedo ATMI Plug-in Security Architecture

The specifications for the security plug-in interface are not generally available, but are 
available to third-party security vendors who have entered into a special agreement 
with BEA Systems. BEA Tuxedo customers who want to customize a security 
capability must contact one of these vendors. For example, a BEA Tuxedo customer 
who wants a custom implementation of public key security must contact a third-party 
security vendor who can provide the appropriate plug-ins.

For more information about security plug-ins, including installation and configuration 
procedures, see your BEA account executive.

See Also

n “ATMI Security Capabilities” on page 1-4

BEA Tuxedo Security

Plug-in Interface

Security Plug-ins

Link-Level
Encryption

Custom

Default
Public Key Security

Custom

Default
Authentication

Custom

Default
Authorization

Custom

Default
Auditing

Authentication Authorization Auditing
Public KeyLink-Level

Encryption Security
Using Security in ATMI Applications 1-3



1 Introducing ATMI Security
ATMI Security Capabilities

The BEA Tuxedo system can enforce security in a number of ways, which includes 
using the security features of the host operating system to control access to files, 
directories, and system resources. The following table describes the security 
capabilities available with the ATMI environment of the BEA Tuxedo product.

Table 1-1  ATMI Security Capabilities

Security Capability Description Plug-in Interface Default Implementation

Operating system 
security

Controls access to files, 
directories, and system 
resources.

N/A N/A

Authentication Proves the stated identity of 
users or system processes; 
safely remembers and 
transports identity information; 
and makes identity information 
available when needed.

Implemented as a 
single interface

The default authentication 
plug-in provides security at 
three levels: no 
authentication, application 
password, and user-level 
authentication. This plug-in 
works the same way the BEA 
Tuxedo implementation of 
authentication has worked 
since it was first made 
available with the BEA 
Tuxedo system.

Authorization Controls access to resources 
based on identity or other 
information.

Implemented as a 
single interface

The default authorization 
plug-in provides security at 
two levels: optional access 
control lists and mandatory 
access control lists. This 
plug-in works the same way 
the BEA Tuxedo 
implementation of 
authorization has worked 
since it was first made 
available with the BEA 
Tuxedo system.
1-4 Using Security in ATMI Applications



ATMI Security Capabilities
See Also

n “Operating System (OS) Security” on page 1-6

n “Authentication” on page 1-7

n “Authorization” on page 1-12

n “Auditing” on page 1-18

n “Link-Level Encryption” on page 1-23

Auditing Safely collects, stores, and 
distributes information about 
operating requests and their 
outcomes.

Implemented as a 
single interface

Default auditing security is 
implemented by the BEA 
Tuxedo EventBroker and 
user log (ULOG) features.

Link-level encryption Uses symmetric key encryption 
to establish data privacy for 
messages moving over the 
network links that connect the 
machines in an ATMI 
application.

N/A RC4 symmetric key 
encryption.

Public key security Uses public key (or asymmetric 
key) encryption to establish 
end-to-end digital signing and 
data privacy between ATMI 
application clients and servers. 
Complies with the PKCS-7 
standard.

Implemented as six 
interfaces

Default public key security 
supports the following 
algorithms:

n RSA public key 
algorithm

n RSA and DSA digital 
signature algorithms

n DES-CBC, two-key 
triple-DES, and RC2 
symmetric key 
algorithms

n MD5 and SHA-1 
message digest 
algorithms

Table 1-1  ATMI Security Capabilities (Continued)

Security Capability Description Plug-in Interface Default Implementation
Using Security in ATMI Applications 1-5



1 Introducing ATMI Security
n “Public Key Security” on page 1-29

Operating System (OS) Security

On host operating systems with underlying security features, such as file permissions, 
the operating-system level of security is the first line of defense. An application 
administrator can use file permissions to grant or deny access privileges to specific 
users or groups of users.

Most ATMI applications are managed by an application administrator who configures 
the application, starts it, and monitors the running application dynamically, making 
changes as necessary. Because the ATMI application is started and run by the 
administrator, server programs are run with the administrator’s permissions and are 
therefore considered secure or “trusted.” This working method is supported by the 
login mechanism and the read and write permissions on the files, directories, and 
system resources provided by the underlying operating system.

Client programs are run directly by users with the users’ own permissions. In addition, 
users running native clients (that is, clients running on the same machine on which the 
server program is running) have access to the UBBCONFIG configuration file and 
interprocess communication (IPC) mechanisms such as the bulletin board (a reserved 
piece of shared memory in which parameters governing the ATMI application and 
statistics about the application are stored).

For ATMI applications running on platforms that support greater security, a more 
secure approach is to limit access to the files and IPC mechanisms to the application 
administrator and to have “trusted” client programs run with the permissions of the 
administrator (using the setuid command on a UNIX host machine or the equivalent 
command on another platform). For the most secure operating system security, allow 
only Workstation clients to access the application; client programs should not be 
allowed to run on the same machines on which application server and administrative 
programs run.

See Also

n “Security Administration Tasks” on page 2-3
1-6 Using Security in ATMI Applications



Authentication
n “Administering Operating System (OS) Security” on page 2-8

n “About the Configuration File” on page 2-1 and “Creating the Configuration 
File” on page 3-1 in Setting Up BEA Tuxedo Applications

n UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System 
Processes Reference

Authentication

Authentication allows communicating processes to mutually prove identification. The 
authentication plug-in interface in the ATMI environment of the BEA Tuxedo product 
can accommodate various security-provider authentication plug-ins using various 
authentication technologies, including shared-secret password, one-time password, 
challenge-response, and Kerberos. The interface closely follows the generic security 
service (GSS) application programming interface (API) where applicable; the GSSAPI 
is a published standard of the Internet Engineering Task Force. The authentication 
plug-in interface is designed to make integration of third-party vendor security 
products with the BEA Tuxedo system as easy as possible, assuming the security 
products have been written to the GSSAPI.

Authentication Plug-in Architecture

The underlying plug-in interface for authentication security is implemented as a single 
plug-in. The plug-in may be the default authentication plug-in or a custom 
authentication plug-in.

Understanding Delegated Trust Authentication

Direct end-to-end mutual authentication in a distributed enterprise middleware 
environment such as the BEA Tuxedo system can be prohibitively expensive, 
especially when accomplished with security mechanisms optimized for long-duration 
connections. It is not efficient for clients to establish direct network connections with 
Using Security in ATMI Applications 1-7



1 Introducing ATMI Security
each server process, nor is it practical to exchange and verify multiple authentication 
messages as part of processing each service request. Instead, the ATMI applications 
use a delegated trust authentication model, as shown in the following figure.

Figure 1-2   ATMI Delegated Trust Authentication Model

A Workstation client authenticates to a trusted system gateway process, the 
workstation handler (WSH), at initialization time. A native client authenticates within 
itself, as explained later in this discussion. After a successful authentication, the 
authentication software assigns a security token to the client. A token is an opaque data 
structure suitable for transfer between processes. The WSH safely stores the token for 
the authenticated Workstation client, or the authenticated native client safely stores the 
token for itself.

As a client request flows through a trusted gateway, the gateway attaches the client’s 
security token to the request. The security token travels with the client’s request 
message, and is delivered to the destination server process(es) for authorization 
checking and auditing purposes.

In this model, the gateway trusts that the authentication software will verify the 
identity of the client and generate an appropriate token. Servers, in turn, trust that the 
gateway process will attach the correct security token. Servers also trust that any other 
servers involved in the processing of a client request will safely deliver the token.

WSH

Initiator

Server

Target

Server

Server

Server

Server

Server

Trusted Server Computing Base

(Client) (Trusted Gateway)

Workstation Client
1-8 Using Security in ATMI Applications



Authentication
Establishing a Session

The following figure shows the control flow inside the ATMI environment of the BEA 
Tuxedo system while a session is being established between a Workstation client and 
the WSH. The Workstation client and WSH are attempting to establish a long-term 
mutually authenticated connection by exchanging messages.

Figure 1-3   Client-WSH Authentication

The initiator process (may be thought of as a middleware client process) creates a 
session context by repeatedly calling the BEA Tuxedo “initiate security context” 
function until a return code indicates success or failure. A session context associates 
identity information with an authenticated user.

When a Workstation client calls tpinit(3c) for C or TPINITIALIZE(3cbl) for 
COBOL to join an ATMI application, the BEA Tuxedo system begins its response by 
first calling the internal “acquire credentials” function to obtain a session credential 
handle, and then calling the internal “initiate security context” function to obtain a 
session context. Each invocation of the “initiate security context” function takes an 
input session token (when one is available) and returns an output session token. A 
session token carries a protocol for verifying a user’s identity. The initiator process 
passes the output session token to the session’s target process (WSH), where it is 
exchanged for another input token. The exchange of tokens continues until both 
processes have completed mutual authentication.

BEA Tuxedo Library

Authentication
Plug-in (1)

BEA Tuxedo
Security

Application
Client

Communication
Protocol

Authentication
Plug-in (1)

BEA Tuxedo
Security

WSH Process

Initiate Connection

Obtain a Session
Credential Handle

Obtain a Session
Context Handle and

a Session Token

Accept Received Session
Token and Return
a Session Token

Obtain a Session
Credential Handle

(at Startup)

(Exchange of Session
Tokens)
Using Security in ATMI Applications 1-9



1 Introducing ATMI Security
A security-provider authentication plug-in defines the content of the session context 
and session token for its security implementation, so ATMI authentication must treat 
the session context and session token as opaque objects. The number of tokens passed 
back and forth is not defined, and may vary based on the architecture of the 
authentication system.

For a native client initiating a session, the initiator process and the target process are 
the same; the process may be thought of as a middleware client process. The 
middleware client process calls the security provider’s authentication plug-in to 
authenticate the native client.

Getting Authorization and Auditing Tokens

After a successful authentication, the trusted gateway calls two BEA Tuxedo internal 
functions that retrieve an authorization token and an auditing token for the client, 
which the gateway stores for safekeeping. Together, these tokens represent the user 
identity of a security context. The term security token refers collectively to the 
authorization and auditing tokens.

When default authentication is used, the authorization token carries two pieces of 
information:

n Principal name—the name of an authenticated user.

n Application key—a 32-bit value that uniquely identifies the client initiating the 
request message. See “Application Key” on page 1-49 for more detail.

In addition, when default authentication is used, the auditing token carries the same 
two pieces of information: principal name and application key.

Like the session token, the authentication and auditing tokens are opaque; their 
contents are determined by the security provider. The authorization token can be used 
for performing authorization (permission) checks. The auditing token can be used for 
recording audit information. In some ATMI applications, it is useful to keep separate 
user identities for authorization and auditing.
1-10 Using Security in ATMI Applications



Authentication
Replacing Client Tokens with Server Tokens

As shown in the following figure, there are situations where a client service request 
forwarded by a server takes on the identity of the server. The server replaces the client 
tokens attached to the request with its own tokens and then forwards the service request 
to the destination service.

Figure 1-4   Server Permission Upgrade Example

Note: See “Specifying Principal Names” on page 2-11 for an understanding of how 
servers acquire their own authorization and auditing tokens and why they need 
them.

The feature demonstrated in the preceding figure is known as server permission 
upgrade, which operates in the following manner: whenever a server calls a dot service 
(a system-supplied service having a beginning period in its name—such as .TMIB), the 
service request takes on the identity of the server and thus acquires the access 
permissions of the server. A server’s access permissions are those of the application 
(system) administrator. Thus, certain requests that would be denied if the client called 

C

.TMIB

Client
tpcall (“TOLOWER”, ...)

tpcall (“.TMIB”, ...)

tpcall (“TRANSFER”, ...)

TRANSFER

Server

Service

TOLOWER

S

C

C

C Service Request Sent with Client’s Authorization and Auditing Tokens

S Service Request Sent with Server’s Authorization and Auditing Tokens
Using Security in ATMI Applications 1-11



1 Introducing ATMI Security
the dot service directly would be allowed if the client sent the requests to a server, and 
the server forwarded the requests to the dot service. For more information about dot 
services, see the .TMIB service description on the MIB(5) reference page in the File 
Formats, Data Descriptions, MIBs, and System Processes Reference.

Implementing Custom Authentication

You can provide authentication for your ATMI application by using the default plug-in 
or a custom plug-in. You choose a plug-in by configuring the BEA Tuxedo registry, a 
tool that controls all security plug-ins.

If you want to use the default authentication plug-in, you do not need to configure the 
registry. If you want to use a custom authentication plug-in, however, you must 
configure the registry for your plug-in before you can install it. For more detail about 
the registry, see “Setting the BEA Tuxedo Registry” on page 2-3.

See Also

n “Default Authentication and Authorization” on page 1-45

n “Security Administration Tasks” on page 2-3

n “Administering Authentication” on page 2-9

n “Programming an ATMI Application with Security” on page 3-3

n “Writing Security Code So Client Programs Can Join the ATMI Application” on 
page 3-4

Authorization

Authorization allows administrators to control access to ATMI applications. 
Specifically, an administrator can use authorization to allow or disallow principals 
(authenticated users) to use resources or facilities in an ATMI application.
1-12 Using Security in ATMI Applications



Authorization
Authorization Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are 
connected. As shown in the following figure, the authorization plug-in interface is 
implemented as a fanout.

Figure 1-5   Authorization Plug-in Architecture

The default authorization implementation consists of a fanout plug-in and a default 
authorization plug-in. A custom implementation consists of the fanout plug-in, the 
default authorization plug-in, and one or more custom authorization plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout 
plug-in passes the request to each of the subordinate plug-ins, and receives a response 
from each. Finally, the fanout plug-in forms a composite response from the individual 
responses, and sends the composite response to the caller.

The purpose of an authorization request is to determine whether a client operation 
should be allowed or whether the results of an operation should be kept unchanged. 
Each authorization plug-in returns one of three responses: permit, deny, or abstain. The 
abstain response gives writers of authorization plug-ins a graceful way to handle 
situations that are not accommodated by the original plug-in, such as names of 
operations that are added to the system after the plug-in is installed.

Fanout Plug-in

Plug-in Interface

Default
Authorization

Plug-in

Custom
Authorization

Plug-in

Custom
Authorization

Plug-in
Using Security in ATMI Applications 1-13



1 Introducing ATMI Security
The authorization fanout plug-in forms a composite response as described in the 
following table. For default authorization, the composite response is determined solely 
by the default authorization plug-in. 

As an example of custom authorization, consider a banking application in which a user 
is identified as a member of the Customer group, and the following conditions are in 
effect:

n The default authorization plug-in allows any user in the Customer group to 
withdraw money from a particular account.

n A custom authorization plug-in allows any user in the Customer group to 
withdraw money from a particular account but only on Monday through Friday 
between 9:00 A.M. and 5:00 P.M.

n A second custom authorization plug-in allows any user in the Customer group 
to withdraw money from a particular account but only if the amount being 
withdrawn is less than $10,000.

So, if a user in the Customer group attempts to withdraw $500.00 on Monday at 10 
A.M., the operation is allowed. If the same user attempts the same withdrawal on 
Saturday morning, the operation is not allowed.

Many other custom authorization scenarios are possible. Feel free to improvise; define 
the conditions that best serve the needs of your business.

Table 1-2  Authorization Composite Responses

If Plug-ins Return . . . The Composite Response Is . . .

All permit or a combination of 
permit and abstain

permit

At least one deny deny

All abstain deny 
If the SECURITY parameter in the ATMI 

application’s UBBCONFIG file is set to 
MANDATORY_ACL

permit 
If the SECURITY parameter is not set in the ATMI 

application’s UBBCONFIG file or is set to any value 
other than MANDATORY_ACL
1-14 Using Security in ATMI Applications



Authorization
How the Authorization Plug-in Works

Authorization decisions are based partly on user identity, which is stored in an 
authorization token. Because authorization tokens are generated by the authentication 
security plug-in, providers of authentication and authorization plug-ins need to ensure 
that these plug-ins work together.

A BEA Tuxedo system process or server (such as /Q server TMQUEUE(5) or 
EventBroker server TMUSREVT(5)) calls the authorization plug-in when it receives a 
client request. In response, the authorization plug-in performs a pre-operation check 
and returns whether the operation should be allowed.

n If allowed, the system carries out the client request.

n If not allowed, the system does not carry out the client request.

If the client operation is allowed, the BEA Tuxedo system process or server may call 
the authorization plug-in after the client operation completes. In response, the 
authorization plug-in performs a post-operation check and returns whether the results 
of the operation are acceptable.

n If acceptable, the system accepts the operation results.

n If not unacceptable, the system either modifies the operation results or rolls back 
(reverses) the operation.

These calls are system-level calls, not application-level calls. An ATMI application 
cannot call the authorization plug-in.

The authorization process is somewhat different for (1) users of the default 
authorization plug-in provided by the BEA Tuxedo system and (2) users of one or 
more custom authorization plug-ins. The default plug-in does not support 
post-operation checks. If the default authorization plug-in receives a post-operation 
check request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation checks.

Default Authorization

When default authorization is called by an ATMI process to perform a pre-operation 
check in response to a client request, the authorization plug-in performs the following 
tasks.
Using Security in ATMI Applications 1-15



1 Introducing ATMI Security
1. Gets information from the client’s authorization token by calling the authentication 
plug-in.

Because the authorization token is created by the authentication plug-in, the 
authorization plug-in has no record of the token’s content. This information is 
necessary for the authorization process.

2. Performs a pre-operation check.

The authorization plug-in determines whether that operation should be allowed 
by examining the client’s authorization token, the access control list (ACL), and 
the configured security level (optional or mandatory ACL) of the ATMI 
application.

3. Issues a decision about whether the operation will be performed.

The authorization fanout plug-in receives a decision (permit or deny) from the 
default authorization plug-in and operates on its behalf.

l If the decision is to permit the client operation, the fanout plug-in returns 
permit to the calling process. The system carries out the client request.

l If the decision is to deny the operation, the fanout plug-in returns deny to the 
calling process. The system does not carry out the client request.

Custom Authorization

Users of one or more custom authorization plug-ins may take advantage of additional 
functionality offered by the ATMI environment of the BEA Tuxedo product. 
Specifically, the custom plug-ins may perform an additional check after an operation 
occurs.

When custom authorization is called by an ATMI process to perform a pre-operation 
check in response to a client request, the authorization plug-in performs the following 
tasks.

1. Gets information from the client’s authorization token by calling the authentication 
plug-in.

2. Performs a pre-operation check.

The authorization plug-in determines whether the operation should be allowed 
by examining the operation, the client’s authorization token, and associated data. 
“Associated data” may include user data and the security level of the ATMI 
application.
1-16 Using Security in ATMI Applications



Authorization
If necessary, in order to satisfy authorization requirements, the authorization 
plug-in may modify the user data before the operation is performed.

3. Issues a decision about whether the operation will be performed.

The authorization fanout plug-in makes the ultimate decision by checking the 
individual responses (permit, deny, abstain) of its subordinate plug-ins.

l If the fanout plug-in allows the client operation, it returns permit to the 
calling process. The system carries out the client request.

l If the fanout plug-in does not allow the operation, it returns deny to the 
calling process. The system does not carry out the client request.

If the client operation is allowed, custom authorization may be called by the ATMI 
process to perform a post-operation check after the client operation completes. If so, 
the authorization plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication 
plug-in.

2. Performs a post-operation check.

The authorization plug-in determines whether the operation results are 
acceptable by examining the operation, the client’s authorization token, and 
associated data. “Associated data” may include user data and the security level 
of the ATMI application.

3. Issues a decision about whether the operation results are acceptable.

The authorization fanout plug-in makes the ultimate decision by checking the 
individual responses (permit, deny, abstain) of its subordinate plug-ins.

l If the fanout plug-in decides that the operation results are acceptable, it 
returns permit to the calling process. The system accepts the operation 
results.

l If the fanout plug-in does not allow the operation, it returns deny to the 
calling process. The system either modifies the operation results or rolls back 
(reverses) the operation.

A post-operation check is useful for label-based security models. For example, 
suppose that a user is authorized to access CONFIDENTIAL documents but performs 
an operation that retrieves a TOP SECRET document. (Often, a document’s 
Using Security in ATMI Applications 1-17



1 Introducing ATMI Security
classification label is not easily determined until after the document has been 
retrieved.) In this case, the post-operation check is an efficient means to either deny the 
operation or modify the output data by expunging any restricted information.

Implementing Custom Authorization

You can provide authorization for your ATMI application by using the default plug-in 
or adding one or more custom plug-ins. You choose a plug-in by configuring the BEA 
Tuxedo registry, a tool that controls all security plug-ins.

If you want to use the default authorization plug-in, you do not need to configure the 
registry. If you want to add one or more custom authorization plug-ins, however, you 
must configure the registry for your additional plug-ins before you can install them. 
For more detail about the registry, see “Setting the BEA Tuxedo Registry” on page 2-3.

See Also

n “Default Authentication and Authorization” on page 1-45

n “Security Administration Tasks” on page 2-3

n “Administering Authorization” on page 2-35

n “Programming an ATMI Application with Security” on page 3-3

Auditing

Auditing provides a means to collect, store, and distribute information about operating 
requests and their outcomes. Audit-trail records may be used to determine which 
principals performed, or attempted to perform, actions that violated the security levels 
of an ATMI application. They may also be used to determine which operations were 
attempted, which ones failed, and which ones successfully completed.

How auditing is done (that is, how information is collected, processed, protected, and 
distributed) depends on the auditing plug-in.
1-18 Using Security in ATMI Applications



Auditing
Auditing Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are 
connected. As shown in the following figure, the auditing plug-in interface is 
implemented as a fanout.

Figure 1-6   Auditing Plug-in Architecture

The default auditing implementation consists of a fanout plug-in and a default auditing 
plug-in. A custom implementation consists of the fanout plug-in, the default auditing 
plug-in, and one or more custom auditing plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout 
plug-in passes the request to each of the subordinate plug-ins, and receives a response 
from each. Finally, the fanout plug-in forms a composite response from the individual 
responses, and sends the composite response to the caller.

The purpose of an auditing request is to record an event. Each auditing plug-in returns 
one of two responses: success (the audit succeeded—logged the event) or failure (the 
audit failed—did not log the event). The auditing fanout plug-in forms a composite 
response in the following manner: if all responses are success, the composite response 
is success; otherwise, the composite response is failure.

For default auditing, the composite response is determined solely by the default 
auditing plug-in. For custom auditing, the composite response is determined by the 
fanout plug-in after collecting the responses of the subordinate plug-ins. For more 
insight into how fanouts work, see “Authorization Plug-in Architecture” on page 1-13.

Fanout Plug-in

Plug-in Interface

Default
Auditing
Plug-in

Custom
Auditing
Plug-in

Custom
Auditing
Plug-in
Using Security in ATMI Applications 1-19



1 Introducing ATMI Security
How the Auditing Plug-in Works

Auditing decisions are based partly on user identity, which is stored in an auditing 
token. Because auditing tokens are generated by the authentication security plug-in, 
providers of authentication and auditing plug-ins need to ensure that these plug-ins 
work together.

An ATMI system process or server (such as /Q server TMQUEUE(5) or EventBroker 
server TMUSREVT(5)) calls the auditing plug-in when it receives a client request. 
Because it is called before an operation begins, the auditing plug-in can audit operation 
attempts and store data if that data will be needed later for a post-operation audit. In 
response, the auditing plug-in performs a pre-operation audit and returns whether the 
audit succeeded.

The ATMI system process or server may call the auditing plug-in after the client 
operation is performed. In response, the auditing plug-in performs a post-operation 
audit and returns whether the audit succeeded.

In addition, an ATMI system process or server may call the auditing plug-in when a 
potential security violation occurs. (Suspicion of a security violation arises when a 
pre-operation or post-operation authorization check fails, or when an attack on 
security is detected.) In response, the auditing performs a post-operation audit and 
returns whether the audit succeeded.

These calls are system-level calls, not application-level calls. An ATMI application 
cannot call the auditing plug-in.

The auditing process is somewhat different for (1) users of the default auditing plug-in 
provided by the BEA Tuxedo system and (2) users of one or more custom auditing 
plug-ins. The default plug-in does not support pre-operation audits. If the default 
auditing plug-in receives a pre-operation audit request, it returns immediately and does 
nothing.

The custom plug-ins support both pre-operation and post-operation audits.

Default Auditing

The default auditing implementation consists of the BEA Tuxedo EventBroker 
component and userlog (ULOG). These utilities report only security violations; they do 
not report which operations were attempted, which ones failed, and which ones 
successfully completed.
1-20 Using Security in ATMI Applications



Auditing
When default auditing is called by an ATMI process to perform a post-operation audit 
when a security violation is suspected, the auditing plug-in performs the following 
tasks.

1. Gets information from the client’s auditing token by calling the authentication 
plug-in.

Because the auditing token is created by the authentication plug-in, the auditing 
plug-in has no record of the token’s content. This information is necessary for 
the auditing process.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token and the security 
violation delivered in the post-operation audit request.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in receives a decision (success or failure) from the 
default auditing plug-in and operates on its behalf.

l If the decision is success, the post-operation audit succeeded. The auditing 
fanout plug-in returns success to the calling process and logs the security 
violation.

l If the decision is failure, the post-operation audit failed. The auditing fanout 
returns failure to the calling process.

Custom Auditing

Users of one or more custom auditing plug-ins may take advantage of additional 
functionality offered by the ATMI environment of the BEA Tuxedo product. 
Specifically, the custom plug-ins may perform an additional audit before an operation 
occurs.

When custom auditing is called by an ATMI process to perform a pre-operation audit 
in response to a client request, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication 
plug-in.

2. Performs a pre-operation audit.

The auditing plug-in examines the client’s auditing token and may store user 
data if that data will be needed later for a post-operation audit.
Using Security in ATMI Applications 1-21



1 Introducing ATMI Security
3. Issues a decision about whether the pre-operation audit succeeded.

The auditing fanout plug-in makes the ultimate decision by checking the 
individual responses (success or failure) from its subordinate plug-ins.

l If the composite decision is success, the pre-operation audit succeeded. The 
auditing fanout plug-in returns success to the calling process and logs the 
client’s attempt to perform the operation.

l If the composite decision is failure, the pre-operation audit failed. The 
auditing fanout returns failure to the calling process.

Custom auditing may be called by the ATMI process to perform a post-operation audit 
after the client operation is performed. If so, the auditing plug-in performs the 
following tasks.

1. Gets information from the client’s auditing token by calling the authentication 
plug-in.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token, the completion status 
delivered in the post-operation audit request, and any data stored during the 
pre-operation audit.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in decides if the post-operation audit succeeded or 
failed by checking the individual responses (success or failure) from its 
subordinate plug-ins.

l If the composite decision is success, the post-operation audit succeeded. The 
auditing fanout plug-in returns success to the calling process and logs the 
completion status of the operation.

l If the composite decision is failure, the post-operation audit failed. The 
auditing fanout returns failure to the calling process.

An operation is considered successful if it passes both pre- and post-operation audits, 
and the operation itself is successful. Some companies collect and store both pre- and 
post-operation auditing data, even though such data can occupy a lot of disk space.
1-22 Using Security in ATMI Applications



Link-Level Encryption
Implementing Custom Auditing

You can provide auditing for your ATMI application by using the default plug-in or 
adding one or more custom plug-ins. You choose a plug-in by configuring the BEA 
Tuxedo registry, a tool that controls all security plug-ins.

If you want to use the default auditing plug-in, you do not need to configure the 
registry. If you want to add one or more custom auditing plug-ins, however, you must 
configure the registry for your additional plug-ins before you can install them. For 
more detail about the registry, see “Setting the BEA Tuxedo Registry” on page 2-3.

Link-Level Encryption

Link-level encryption (LLE) establishes data privacy for messages moving over the 
network links that connect the machines in an ATMI application. It employs the 
symmetric key encryption technique (specifically, RC4), which uses the same key for 
encryption and decryption.

When LLE is being used, the BEA Tuxedo system encrypts data before sending it over 
a network link and decrypts it as it comes off the link. The system repeats this 
encryption/decryption process at every link through which the data passes. For this 
reason, LLE is referred to as a point-to-point facility.

LLE can be used on the following types of ATMI application links:

n Workstation client to workstation handler (WSH)

n Bridge-to-Bridge

n Administrative utility (such as tmboot or tmshutdown) to tlisten

n Domain gateway to domain gateway

There are three levels of LLE security: 0-bit (no encryption), 56-bit (International), and 
128-bit (United States and Canada). The International LLE version allows 0-bit and 
56-bit encryption. The United States and Canada LLE version allows 0, 56, and 128-bit 
encryption.
Using Security in ATMI Applications 1-23



1 Introducing ATMI Security
How LLE Works

LLE control parameters and underlying communication protocols are different for 
various link types, but the setup is basically the same in all cases:

n An initiator process begins the communication session.

n A target process receives the initial connection.

n Both processes are aware of the link-level encryption feature, and have two 
configuration parameters.

The first configuration parameter is the minimum encryption level that a process 
will accept. It is expressed as a key length: 0, 56, or 128 bits.

The second configuration parameter is the maximum encryption level a process 
can support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max) in the discussion that 
follows. For example, the values “(56, 128)” for a process mean that the process 
accepts at least 56-bit encryption but can support up to 128-bit encryption.

Encryption Key Size Negotiation

When two processes at the opposite ends of a network link need to communicate, they 
must first agree on the size of the key to be used for encryption. This agreement is 
resolved through a two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values

When either of the two processes starts up, the local BEA Tuxedo software (1) checks 
the bit-encryption capability of the installed LLE version by checking the LLE 
licensing information in the lic.txt file and (2) checks the LLE min-max values for 
the particular link type as specified in the two configuration files. The local software 
then proceeds as follows:
1-24 Using Security in ATMI Applications



Link-Level Encryption
n If the configured min-max values accommodate the installed LLE version, then 
the local software assigns those values as the min-max values for the process.

n If the configured min-max values do not accommodate the installed LLE version, 
for example, if the International LLE version is installed but the configured 
min-max values are (0, 128), then the local software issues a run-time error; 
link-level encryption is not possible at this point.

n If there are no min-max values specified in the configurations for a particular 
link type, then the local software assigns 0 as the minimum value and assigns the 
highest bit-encryption rate possible for the installed LLE versions as the 
maximum value, that is, (0, 128) for the United States and Canada LLE version.

Finding a Common Key Size

After the min-max values are determined for the two processes, the negotiation of key 
size begins. The negotiation process need not be encrypted or hidden. Once a key size 
is agreed upon, it remains in effect for the lifetime of the network connection.

The following table shows which key size, if any, is agreed upon by two processes 
when all possible combinations of min-max values are negotiated. The header row 
holds the min-max values for one process; the far left column holds the min-max values 
for the other.

Table 1-3  Interprocess Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 56) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(56, 56) ERROR 56 56 56 56 ERROR

(56, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128
Using Security in ATMI Applications 1-25



1 Introducing ATMI Security
Backward Compatibility of LLE

The ATMI environment of the BEA Tuxedo product offers some backward 
compatibility for LLE.

Interoperating with Release 6.5 BEA Tuxedo Software

The following table shows which key size, if any, is agreed upon by two ATMI 
applications when one of them is running under release 6.5 and the other under release 
7.1 or later. The header row holds the min-max values for the process running under 
release 7.1 or later; the far left column holds the min-max values for the process 
running under release 6.5.

If your current BEA Tuxedo installation is configured for (0, 56), (0, 128), (56, 56), or 
(56, 128), and you want to interoperate with a release 6.5 ATMI application that is 
configured for a maximum LLE level of 40 bits, then any negotiation results in an 
automatic upgrade to 56.

The negotiation result in this case is the same as the negotiation result for two sites 
running release 6.5 and configured for a maximum LLE level of 40 bits. In both 
scenarios, the negotiation results in an automatic upgrade to 56.

Table 1-4  Negotiation Results When Interoperating with Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 40) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(40, 40) ERROR 56 56 56 56 ERROR

(40, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128
1-26 Using Security in ATMI Applications



Link-Level Encryption
Interoperating with Pre-Release 6.5 BEA Tuxedo Software

The following table shows which key size, if any, is agreed upon by two ATMI 
applications when one of them is running under pre-release 6.5 and the other under 
release 7.1 or later. The header row holds the min-max values for the process running 
under release 7.1 or later; the far left column holds the min-max values for the process 
running under pre-release 6.5.

If your current BEA Tuxedo installation is configured for (0, 56) or (0, 128), and you 
want to interoperate with a pre-release 6.5 ATMI applications that is configured for a 
maximum LLE level of 40 bits, then the result of any negotiation is 40.

If your current BEA Tuxedo installation is configured for (56, 56), (56, 128), or 
(128, 128), then your system cannot interoperate with a pre-release 6.5 ATMI 
application that is configured for a maximum LLE level of 40 bits. Attempts to 
negotiate a common key size fail.

WSL/WSH Connection Timeout During Initialization

The length of time a Workstation client can take for initialization is limited. By default, 
this interval is 30 seconds in an ATMI application not using LLE, and 60 seconds in 
an ATMI application using LLE. The 60-second interval includes the time needed to 
negotiate an encrypted link. This time limit can be changed when LLE is configured 

Table 1-5  Negotiation Results When Interoperating with Pre-Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 40) 0 40 40 ERROR ERROR ERROR

(0, 128) 0 40 128 ERROR 128 128

(40, 40) ERROR 40 40 ERROR ERROR ERROR

(40, 128) ERROR 40 128 ERROR 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128
Using Security in ATMI Applications 1-27



1 Introducing ATMI Security
by changing the value of the MAXINITTIME parameter for the workstation listener 
(WSL) server in the UBBCONFIG file, or the value of the TA_MAXINITTIME attribute in 
the T_WSL class of the WS_MIB(5).

LLE Installation and Licensing

As part of the BEA Tuxedo system, LLE software is delivered on the BEA Tuxedo 
CD-ROM. If you have a BEA Tuxedo release 7.1 license to use LLE in the United 
States and Canada, you can use 56-bit or 128-bit encryption. If you have a license to 
use LLE on a BEA Tuxedo system outside the United States and Canada, you can use 
56-bit encryption.

All BEA Tuxedo licenses are stored in the $TUXDIR/udataobj/lic.txt file on a 
UNIX host machine, or in the %TUXDIR%\udataobj\lic.txt file on a Windows host 
machine.

The following listing is an excerpt from a sample license file for running LLE in the 
United States and Canada.

[BEA Tuxedo]
VERSION=8.0
LICENSEE=ACME CORPORATION
SERIAL=155566678
ORDERID=
USERS=1000
EXPIRATION=2000-01-31
SIGNATURE=TXmtx+AhQdJgr3sjjznBqRB7SP9Jgr3UzAKctjz+e6RmsFSAhUAhStj

znBQdL9n=

[LINK ENCRYPTION]
VERSION=8.0
LICENSEE=ACME CORPORATION
SERIAL=155566678
ORDERID=
USERS=1000
STRENGTH=128
EXPIRATION=2000-01-31
SIGNATURE=TXUAhSPnx2C9kMC0CFG+e6Rgr3UzmsFKRBPdJASAhU7KctjznBqFQsj

jznBdh0h=
.
.
.

1-28 Using Security in ATMI Applications



Public Key Security
See Also

n “Security Administration Tasks” on page 2-3

n “Administering Link-Level Encryption” on page 2-35

n “Distributing ATMI Applications Across a Network” on page 7-1 and “Creating 
the Configuration File for a Distributed ATMI Application” on page 8-1 in 
Setting Up BEA Tuxedo Applications

Public Key Security

Public key security provides two capabilities that make end-to-end digital signing and 
data encryption possible:

n Message-based digital signature

n Message-based encryption

Message-based digital signature allows the recipient (or recipients) of a message to 
identify and authenticate both the sender and the sent message. Digital signature 
provides solid proof of the originator and content of a message; a sender cannot falsely 
repudiate responsibility for a message to which that sender’s digital signature is 
attached. Thus, for example, Bob cannot issue a request for a withdrawal from his bank 
account and later claim that someone else issued that request.

In addition, message-based encryption protects the confidentiality of messages by 
ensuring that only designated recipients can decrypt and read them.

PKCS-7 Compliant

Informal but recognized industry standards for public key software have been issued 
by a group of leading communications companies, led by RSA Laboratories. These 
standards are called Public-Key Cryptography Standards, or PKCS. The public key 
software in the ATMI environment of the BEA Tuxedo software complies with the 
PKCS-7 standard.
Using Security in ATMI Applications 1-29



1 Introducing ATMI Security
PKCS-7 is a hybrid cryptosystem architecture. A symmetric key algorithm with a 
random session key is used to encrypt a message, and a public key algorithm is used to 
encrypt the random session key. A random number generator creates a new session key 
for each communication, which makes it difficult for a would-be attacker to reuse 
previous communications.

Supported Algorithms for Public Key Security

All the algorithms on which public key security is based are well known and 
commercially available. To select the algorithms that will best serve your ATMI 
application, consider the following factors: speed, degree of security, and licensing 
restrictions (for example, the United States government restricts the algorithms that it 
allows to be exported to other countries).

Public Key Algorithms

The public key security in the ATMI environment of the BEA Tuxedo product 
supports any public key algorithms supported by the underlying plug-ins, including 
RSA, ElGamal, and Rabin. (RSA stands for Rivest, Shamir, and Adelman, the 
inventors of the RSA algorithm.) All these algorithms can be used for digital signatures 
and encryption.

Public key (or asymmetric key) algorithms such as RSA are implemented through a 
pair of different but mathematically related keys:

n A public key (which is distributed widely) for verifying a digital signature or 
transforming data into a seemingly unintelligible form.

n A private key (which is always kept secret) for creating a digital signature or 
returning the data to its original form.

Digital Signature Algorithms

The public key security in the ATMI environment of the BEA Tuxedo product 
supports any digital signature algorithms supported by the underlying plug-ins, 
including RSA, ElGamal, Rabin, and Digital Signature Algorithm (DSA). With the 
exception of DSA, all these algorithms can be used for digital signatures and 
encryption. DSA can be used for digital signatures but not for encryption.
1-30 Using Security in ATMI Applications



Public Key Security
Digital signature algorithms are simply public key algorithms used to provide digital 
signatures. DSA is also a public key algorithm (implemented through public-private 
key pairs), but it can only be used to provide digital signatures, not encryption.

Symmetric Key Algorithms

Public key security supports the following three symmetric key algorithms:

n DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It 
provides 56-bit keys (8 parity bits are stripped from the full 64-bit key) and is 
exportable outside the United States.

n Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt 
(EDE) mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit 
key) and is not exportable outside the United States.

For some time it has been common practice to protect and transport a key for 
DES encryption with triple-DES, which means that the input data (in this case 
the single-DES key) is encrypted, decrypted, and then encrypted again (an 
encrypt-decrypt-encrypt process). The same key is used for the two encryption 
operations.

n RC2 (Rivest’s Cipher 2)

RC2 is a variable key-size block cipher with a key size range of 40 to 128 bits. It 
is faster than DES and is exportable with a key size of 40 bits. A 56-bit key size 
is allowed for foreign subsidiaries and overseas offices of United States 
companies. In the United States, RC2 can be used with keys of virtually 
unlimited length, although the ATMI public key security restricts the key length 
to 128 bits.

BEA Tuxedo customers cannot expand or modify this list of algorithms.

In symmetric key algorithms, the same key is used to encrypt and decrypt a message. 
The public key encryption system uses symmetric key encryption to encrypt a message 
sent between two communicating entities. Symmetric key encryption operates at least 
1000 times faster than public key cryptography.
Using Security in ATMI Applications 1-31



1 Introducing ATMI Security
A block cipher is a type of symmetric key algorithm that transforms a fixed-length 
block of plaintext (unencrypted text) data into a block of ciphertext (encrypted text) 
data of the same length. This transformation takes place in accordance with the value 
of a randomly generated session key. The fixed length is called the block size.

Message Digest Algorithms

Public key security supports any message digest algorithms supported by the 
underlying plug-ins, including MD5, SHA-1 (Secure Hash Algorithm 1), and many 
others. Both MD5 and SHA-1 are well known, one-way hash algorithms. A one-way 
hash algorithm takes a message and converts it into a fixed string of digits, which is 
referred to as a message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1 
offers more security by using a 160-bit hash, but is slower than MD5.

Public Key Installation and Licensing

As part of the BEA Tuxedo system, the software for message-based digital signature 
and message-based encryption is delivered on the BEA Tuxedo CD-ROM, but cannot 
be used without a separate license. All BEA Tuxedo licenses are in the 
$TUXDIR/udataobj/lic.txt file on a UNIX host machine, or in the 
%TUXDIR%\udataobj\lic.txt file on a Windows 2000 host machine.

The following listing is an excerpt from a sample license file for message-based digital 
signature and message-based encryption.

[BEA Tuxedo]
VERSION=8.0
LICENSEE=ACME CORPORATION
SERIAL=155566678
ORDERID=
USERS=1000
EXPIRATION=2000-01-31
SIGNATURE=TXmtx+AhQdJgr3sjjznBqRB7SP9Jgr3UzAKctjz+e6RmsFSAhUAhStj

znBQdL9n=
.
.
.

[PK ENCRYPTION]
VERSION=8.0
1-32 Using Security in ATMI Applications



Public Key Security
LICENSEE=ACME CORPORATION
SERIAL=155566678
ORDERID=
USERS=1000
STRENGTH=128
EXPIRATION=2000-01-31
SIGNATURE=TX0CFHkaBpKpAlXGEtQqi+/jJvMo1VB9AhUAUAkizwsgYefRwQJDNTF

0205b1ik=

[PK SIGNATURE]
VERSION=8.0
LICENSEE=ACME CORPORATION
SERIAL=155566678
ORDERID=
USERS=1000
STRENGTH=128
EXPIRATION=2000-01-31
SIGNATURE=TX0CiqA5FCAXJFXUEGvAki+gL+i09eRep9hYdshS/8a70MIJQChUAk9

zIAhUIH4=

See Also

n “Message-based Digital Signature” on page 1-34

n “Message-based Encryption” on page 1-39

n “Public Key Implementation” on page 1-42

n “Security Administration Tasks” on page 2-3

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

n “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15
Using Security in ATMI Applications 1-33



1 Introducing ATMI Security
Message-based Digital Signature

Message-based digital signatures enhance ATMI security by allowing a message 
originator to prove its identity, and by binding that proof to a specific message buffer. 
Mutually authenticated and tamper-proof communication is considered essential for 
ATMI applications that transport data over the Internet, either between companies or 
between a company and the general public. It also is critical for ATMI applications 
deployed over insecure internal networks.

The scope of protection for a message-based digital signature is end-to-end: a message 
buffer is protected from the time it leaves the originating process until the time it is 
received at the destination process. It is protected at all intermediate transit points, 
including temporary message queues, disk-based queues, and system processes, and 
during transmission over inter-server network links.

The following figure shows how end-to-end message-based digital signature works.
1-34 Using Security in ATMI Applications



Message-based Digital Signature
Figure 1-7   ATMI PKCS-7 End-to-End Digital Signing

Message-based digital signature involves generating a digital signature by computing 
a message digest on the message, and then encrypting the message digest with the 
sender’s private key. The recipient verifies the signature by decrypting the encrypted 
message digest with the signer’s public key, and then comparing the recovered 
message digest to an independently computed message digest. The signer’s public key 
either is contained in a digital certificate included in the signer information, or is 
referenced by an issuer-distinguished name and issuer-specific serial number that 
uniquely identify the certificate for the public key.

Digest Encrypt

Signer’s
Private Key

Decrypt

Signer’s
Public Key

Digital Signature Algorithm

Message Digest Algorithm

Signer’s Assigned Public Key Pair

Clear Data Buffer Clear DataBuffer

To RecipientFrom Signer

Public Key Security

tpsign()

Yes

Compare

OK
?

Digest

Decrypt

Store

No
Discard
Using Security in ATMI Applications 1-35



1 Introducing ATMI Security
Digital Certificates

Digital certificates are electronic files used to uniquely identify individuals and 
resources over networks such as the Internet. A digital certificate securely binds the 
identity of an individual or resource, as verified by a trusted third party known as a 
Certification Authority, to a particular public key. Because no two public keys are ever 
identical, a public key can be used to identify its owner.

Digital certificates allow verification of the claim that a specific public key does in fact 
belong to a specific subscriber. A recipient of a certificate can use the public key listed 
in the certificate to verify that the digital signature was created with the corresponding 
private key. If such verification is successful, this chain of reasoning provides 
assurance that the corresponding private key is held by the subscriber named in the 
certificate, and that the digital signature was created by that particular subscriber.

A certificate typically includes a variety of information, such as: 

n The name of the subscriber (holder, owner) and other identification information 
required to uniquely identify the subscriber, such as the URL of the Web server 
using the certificate, or an individual’s e-mail address.

n The subscriber’s public key.

n The name of the Certification Authority that issued the certificate.

n A serial number.

n The validity period (or lifetime) of the certificate (defined by a start date and an 
end date).

The most widely accepted format for certificates is defined by the ITU-T X.509 
international standard. Thus, certificates can be read or written by any ATMI 
application complying with X.509. The public key security in the ATMI environment 
of the BEA Tuxedo product recognizes certificates that comply with X.509 version 3, 
or X.509v3.
1-36 Using Security in ATMI Applications



Message-based Digital Signature
Certification Authority

Certificates are issued by a Certification Authority, or CA. Any trusted third-party 
organization or company that is willing to vouch for the identities of those to whom it 
issues certificates and public keys can be a CA. When it creates a certificate, the CA 
signs the certificate with its private key, to obtain a digital signature. The CA then 
returns the certificate with the signature to the subscriber; these two parts—the 
certificate and the CA’s signature—together form a valid certificate.

The subscriber and others can verify the issuing CA’s digital signature by using the 
CA’s public key. The CA makes its public key readily available by publicizing that key 
or by providing a certificate from a higher-level CA attesting to the validity of the 
lower-level CA’s public key. The second solution gives rise to hierarchies of CAs.

The recipient of an encrypted message can develop trust in the CA’s private key 
recursively, if the recipient has a certificate containing the CA’s public key signed by 
a superior CA whom the recipient already trusts. In this sense, a certificate is a stepping 
stone in digital trust. Ultimately, it is necessary to trust only the public keys of a small 
number of top-level CAs. Through a chain of certificates, trust in a large number of 
users’ signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a 
signature can be trusted only to the extent that the public key for verifying the signature 
can be trusted.

Note that BEA Systems has no plans to become a CA. By offering a public key plug-in 
interface, BEA Systems extends the opportunity to all BEA Tuxedo customers to 
select a CA of their choice.

Certificate Repositories

To make a public key and its identification with a specific subscriber readily available 
for use in verification, the digital certificate may be published in a repository or made 
available by other means. Repositories are databases of certificates and other 
information available for retrieval and use in verifying digital signatures. Retrieval can 
be accomplished automatically by having the verification program directly request 
certificates from the repository as needed.
Using Security in ATMI Applications 1-37



1 Introducing ATMI Security
Public-Key Infrastructure

The Public-Key Infrastructure (PKI) consists of protocols, services, and standards 
supporting applications of public key cryptography. Because the technology is still 
relatively new, the term PKI is somewhat loosely defined: sometimes “PKI” simply 
refers to a trust hierarchy based on public key certificates; in other contexts, it 
embraces digital signature and encryption services provided to end-user applications 
as well.

There is no single standard public key infrastructure today, though efforts are 
underway to define one. It is not yet clear whether a standard will be established or 
multiple independent PKIs will evolve with varying degrees of interoperability. In this 
sense, the state of PKI technology today can be viewed as similar to local and 
wide-area network technology in the 1980s, before there was widespread connectivity 
via the Internet.

The following services are likely to be found in a PKI:

n Key registration: for issuing a new certificate for a public key

n Certificate revocation: for canceling a previously issued certificate

n Key selection: for obtaining a party’s public key 

n Trust evaluation: for determining whether a certificate is valid and which 
operations it authorizes

The following figure shows the PKI process flow.

Figure 1-8   PKI Process Flow

1. Subscriber applies to Certification Authority (CA) for digital certificate.

2. CA verifies identity of subscriber and issues digital certificate.

Subscriber

Certification
Authority

Recipient

Repository

1

3

4

2 5 6
1-38 Using Security in ATMI Applications



Message-based Encryption
3. CA publishes certificate to repository.

4. Subscriber digitally signs electronic message with private key to ensure sender 
authenticity, message integrity, and non-repudiation, and then sends message to 
recipient. 

5. Recipient receives message, verifies digital signature with subscriber’s public 
key, and goes to repository to check status and validity of subscriber’s certificate.

6. Repository returns results of status check on subscriber’s certificate to recipient.

Note that BEA Systems has no plans to become a PKI vendor. By offering a public key 
plug-in interface, BEA Systems extends the opportunity to all BEA Tuxedo customers 
to use a PKI security solution with the PKI software from their vendor of choice.

See Also

n “Public Key Implementation” on page 1-42

n “Security Administration Tasks” on page 2-3

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

n “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Message-based Encryption

Message-based encryption keeps data private, which is essential for ATMI 
applications that transport data over the Internet, whether between companies or 
between a company and its customers. Data privacy is also critical for ATMI 
applications deployed over insecure internal networks.

Message-based encryption also helps ensure message integrity, because it is more 
difficult for an attacker to modify a message when the content is obscured.
Using Security in ATMI Applications 1-39



1 Introducing ATMI Security
The scope of protection provided by message-based encryption is end-to-end; a 
message buffer is protected from the time it leaves the originating process until the 
time it is received at the destination process. It is protected at all intermediate transit 
points, including temporary message queues, disk-based queues, and system 
processes, and during transmission over interserver network links.
1-40 Using Security in ATMI Applications



Message-based Encryption
The following figure shows how end-to-end message-based encryption works.

Figure 1-9   ATMI PKCS-7 End-to-End Encryption

The message is encrypted by a symmetric key algorithm and a session key. Then, the 
session key is encrypted by the recipient’s public key. Next, the recipient decrypts the 
encrypted session key with the recipient’s private key. Finally, the recipient decrypts 
the encrypted message with the session key to obtain the message content.

Note: The figure does not show two other steps in this process: (1) the data is 
compressed immediately before the message is encrypted; and (2) the data is 
uncompressed immediately after the message is decrypted.

Session
Key

Recipient’s Assigned Public Key Pair

Encrypt

Encrypt

Recipient’s
Public Key

Decrypt

Decrypt

Recipient’s
Private Key

Symmetric Key Algorithm

Public Key Algorithm

Clear Data Buffer Clear DataBuffer

To RecipientFrom Sender

Public Key Security

tpseal()
Using Security in ATMI Applications 1-41



1 Introducing ATMI Security
Because the unit of encryption is an ATMI message buffer, message-based encryption 
is compatible with all existing ATMI programming interfaces and communication 
paradigms. The encryption process is always the same, whether it is being performed 
on messages shipped between two processes in a single machine, or on messages sent 
between two machines through a network.

See Also

n “Public Key Implementation” on page 1-42

n “Security Administration Tasks” on page 2-3

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

n “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Public Key Implementation

The underlying plug-in interface for public key security consists of six component 
interfaces, each of which requires one or more plug-ins. By instantiating these 
interfaces with your preferred plug-ins, you can bring custom message-based digital 
signature and message-based encryption to your ATMI application.

The six component interfaces are:

n Public key initialization

n Key management

n Certificate lookup

n Certificate parsing

n Certificate validation

n Proof material mapping
1-42 Using Security in ATMI Applications



Public Key Implementation
Public Key Initialization

The public key initialization interface allows public key software to open public and 
private keys. For example, gateway processes may need to have access to a specific 
private key in order to decrypt messages before routing them. This interface is 
implemented as a fanout.

Key Management

The key management interface allows public key software to manage and use public 
and private keys. Note that message digests and session keys are encrypted and 
decrypted using this interface, but no bulk data encryption is performed using public 
key cryptography. Bulk data encryption is performed using symmetric key 
cryptography.

Certificate Lookup

The certificate lookup interface allows public key software to retrieve X.509v3 
certificates for a given principal. Principals are authenticated users. The certificate 
database may be stored using any appropriate tool, such as Lightweight Directory 
Access Protocol (LDAP), Microsoft Active Directory, Netware Directory Service 
(NDS), or local files.

Certificate Parsing

The certificate parsing interface allows public key software to associate a simple 
principal name with an X.509v3 certificate. The parser analyzes a certificate to 
generate a principal name to be associated with the certificate.
Using Security in ATMI Applications 1-43



1 Introducing ATMI Security
Certificate Validation

The certificate validation interface allows public key software to validate an X.509v3 
certificate in accordance with specific business logic. This interface is implemented as 
a fanout, which allows BEA Tuxedo customers to use their own business rules to 
determine the validity of a certificate.

Proof Material Mapping

The proof material mapping interface allows public key software to access the proof 
materials needed to open keys, provide authorization tokens, and provide auditing 
tokens.

Implementing Custom Public Key Security

You can provide public key security for your ATMI application by using custom 
plug-ins. You choose a plug-in by configuring the BEA Tuxedo registry, a tool  
that controls all security plug-ins.

If you want to use custom public key plug-ins, you must configure the registry for
your public key plug-ins before you can install them. For more detail about the  
registry, see “Setting the BEA Tuxedo Registry” on page 2-3.  

Default Public Key Implementation

The default public key implementation supports the following algorithms:

n Public key algorithms: RSA

n Digital signature algorithms: RSA and DSA

n Symmetric key algorithms:

l DES-CBC
1-44 Using Security in ATMI Applications



Default Authentication and Authorization
l Two-key triple-DES

l RC2

n Message digest algorithms:

l MD5

l SHA-1

See Also

n “Public Key Security” on page 1-29

n “Security Administration Tasks” on page 2-3

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

n “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Default Authentication and Authorization

The default authentication and authorization plug-ins provided by the ATMI 
environment of the BEA Tuxedo product work in the same manner that 
implementations of authentication and authorization have worked since they were first 
made available with the BEA Tuxedo system.

An application administrator can use the default authentication and authorization 
plug-ins to configure an ATMI application with one of five levels of security. The five 
levels are:

n No authentication

n Application password security

n User-level authentication
Using Security in ATMI Applications 1-45



1 Introducing ATMI Security
n Optional access control list (ACL) security

n Mandatory ACL security

At the lowest level, no authentication is provided. At the highest level, an access 
control checking feature determines which users can execute a service, post an event, 
or enqueue (or dequeue) a message on an application queue. The security levels are 
briefly described in the following table.

Table 1-6  Security Levels for Default Authentication and Authorization

Security Level Description

No authentication Clients do not have to be verified before joining the ATMI 
application.

When joining an ATMI application at this security level, a user 
has access to all application resources.

Application password The application administrator defines a single password for the 
entire ATMI application, and clients must provide the password 
to join the application.

When successfully joining an ATMI application at this security 
level, a user has access to all application resources.

User-level authentication In addition to the application password, each client must 
provide a valid username and user-specific data, such as a 
password, to join the ATMI application.

When successfully joining an ATMI application at this security 
level, a user has access to all application resources.

Optional ACL security Clients must provide the application password, a username, and 
user-specific data such as a password.

For a user who successfully joins an ATMI application at this 
security level, access to application resources is restricted in the 
following way. The ACL database contains a list of application 
resources and, for each resource, a list of users with permission 
to use it. A user who is not included in the list for a particular 
resource is not allowed to access that resource, regardless of 
whether optional ACL or mandatory ACL security is being 
used.

If there is no entry in the ACL database for a resource and the 
security level for the ATMI application is set to optional ACL 
security, all users are permitted to access the resource.
1-46 Using Security in ATMI Applications



Default Authentication and Authorization
Note: The term client is synonymous with client process, meaning a specific instance 
of a client program in execution. An ATMI client program can exist in active 
memory in any number of individual instances.

An application administrator can designate a security level by setting the SECURITY 
parameter in the UBBCONFIG configuration file to the appropriate value.

The default is NONE. If SECURITY is set to USER_AUTH, ACL, or MANDATORY_ACL, then 
the application administrator must configure a system-supplied authentication server 
named AUTHSVR. AUTHSVR performs per-user authentication.

Mandatory ACL security Clients must provide the application password, a username, and 
user-specific data such as a password.

For a user who successfully joins an ATMI application at this 
security level, access to application resources is restricted in the 
following way. The ACL database contains a list of application 
resources and, for each resource, a list of users with permission 
to use it. A user who is not included in the list for a particular 
resource is not allowed to access that resource, regardless of 
whether optional ACL or mandatory ACL security is being 
used.

If there is no entry in the ACL database for a resource and the 
security level for the ATMI application is set to mandatory 
ACL security, users are not permitted to access the resource.

For This Security Level Set SECURITY Parameter to . . .

No authentication NONE

Application password security APP_PW

User-level authentication USER_AUTH

Optional ACL security ACL

Mandatory ACL security MANDATORY_ACL

Table 1-6  Security Levels for Default Authentication and Authorization

Security Level Description
Using Security in ATMI Applications 1-47



1 Introducing ATMI Security
An application developer can replace AUTHSVR with an authentication server that has 
logic specific to the ATMI application. For example, a company may want to develop 
a custom authentication server so that it can use the popular Kerberos mechanism for 
authentication.

Client Naming

Upon joining an ATMI application, a client process has two names: a combined 
user-client name and a unique client identifier known as an application key.

n The user-client name consists of a username and a client name and is used for 
security, administration, and communications.

n The application key is a 32-bit value that is called on behalf of the client and 
used by the access control checking feature.

Two client names are reserved for special semantics: tpsysadm and tpsysop. 
tpsysadm is treated as the application administrator, and tpsysop is treated as the 
application operator.

User-Client Names

When an authenticated client joins an ATMI application, it passes a username and 
client name to tpinit(3c) in a TPINIT buffer if the application is written in C, or to 
TPINITIALIZE(3cbl) in a TPINFDEF-REC record if the application is written in 
COBOL. The username and client name, as well as other security-related fields in the 
TPINIT buffer/ TPINFDEF-REC record, are described in the following table.

Table 1-7  Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT TPINFDEF-REC Description

usrname USRNAME A user name consisting of a string of up to 30 
characters. Required for security level USER_AUTH, 
ACL, or MANDATORY_ACL. The username represents 
the caller.

* The binary equivalent of the UBBCONFIG file.

** Usually a user password.
1-48 Using Security in ATMI Applications



Default Authentication and Authorization
For an authenticated security level (USER_AUTH, ACL, or MANDATORY_ACL), the 
username, client name, and user-specific data are transferred to AUTHSVR without 
interpretation by the BEA Tuxedo system. The only manipulation of this information 
is its encryption when transmitted over the network from a Workstation client.

Application Key

Every time a client joins an ATMI application, it is assigned a 32-bit application key 
by the BEA Tuxedo system. The client cannot reset the key other than by terminating 
its association and joining the ATMI application as a different user.

The assigned application key is the client’s security credential. The client provides its 
application key with every service invocation as part of the TPSVCINFO structure in the 
appkey field. (See tpservice(3c) in the BEA Tuxedo ATMI C Function Reference 
for more information about TPSVCINFO.)

cltname CLTNAME A client name consisting of a string of up to 30 
characters. Required for security level USER_AUTH, 
ACL, or MANDATORY_ACL. The client name 
represents the client program.

passwd PASSWD Application password. Required for security level 
APP_PW, USER_AUTH, ACL, or MANDATORY_ACL. 
tpinit() or TPINITIALIZE() validates this 
password by comparing it to the configured 
application password stored in the TUXCONFIG file.*

datalen DATALEN Length of the user-specific data** that follows.

data N/A User-specific data.** Required for security level 
USER_AUTH, ACL, or MANDATORY_ACL. 
tpinit() or TPINITIALIZE() forwards the 
user-specific data to the authentication server for 
validation. The authentication server is AUTHSVR.

Table 1-7  Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT TPINFDEF-REC Description

* The binary equivalent of the UBBCONFIG file.

** Usually a user password.
Using Security in ATMI Applications 1-49



1 Introducing ATMI Security
The following table shows how the application key is set for various security levels and 
clients. All application key assignments are hardcoded except the last item in the table.

Table 1-8  Application Key Assignments

At This Security Level Messages of This Type Are Assigned the Following 
Application Key

Any security level Messages from native ATMI clients that 
must be run by the administrator (like 
tmadmin(1))

0x80000000 
(Application key of the administrator)

NONE or APP_PW Messages from native ATMI clients that 
call tpinit()/ TPINITIALIZE() 
with a client name of tpsysadm and are 
run by the administrator

0x80000000 
(Application key of the administrator)

Messages from native ATMI clients that 
call tpinit()/ TPINITIALIZE() 
with a client name of tpsysop and are 
run by the administrator

0xC0000000 
(Application key of the operator)

Messages from any ATMI client other 
than tpsysadm or tpsysop

-1
1-50 Using Security in ATMI Applications



Default Authentication and Authorization
In addition, any message that originates from tpsvrinit(3c) or tpsvrdone(3c) in 
a C program (TPSVRINIT(3cbl) or TPSVRDONE(3cbl) in COBOL) is assigned the 
application key of the administrator: 0x80000000. The application key of the client is 
assigned to messages that pass through a server but originate at a client; an exception 
to this rule is described in “Replacing Client Tokens with Server Tokens” on page 
1-11.

A user identifier (UID) is an integer, between 0 and 128K, that is used by the 
application to refer to a particular user. A group identifier (GID) is an integer, between 
0 and 16K, that is used by the application to refer to an application group.

USER_AUTH, ACL, or 
MANDATORY_ACL

Messages from native ATMI clients that 
call tpinit()/ TPINITIALIZE() 
with a client name of tpsysadm and are 
run by the administrator and bypass 
authentication

0x80000000 
(Application key of the administrator)

Messages from authenticated ATMI 
clients that call tpinit()/ 
TPINITIALIZE() with a client name of 
tpsysadm

0x80000000 
(Application key of the administrator)

Messages from authenticated ATMI 
clients that call tpinit()/ 
TPINITIALIZE() with a client name of 
tpsysop

0xC0000000 
(Application key of the operator)

Messages from authenticated ATMI 
clients that call tpinit()/ 
TPINITIALIZE() with a client name 
other than tpsysadm or tpsysop

Application key = user 
identifier (UID) in the lower 17 
bits and group identifier (GID) 
in the next higher 14 bits; remaining 
upper bit is 0. AUTHSVR returns this 
application key value

Table 1-8  Application Key Assignments (Continued)

At This Security Level Messages of This Type Are Assigned the Following 
Application Key
Using Security in ATMI Applications 1-51



1 Introducing ATMI Security
User, Group, and ACL Files

To use access control, an application administrator must maintain lists of (1) users, (2) 
groups, and (3) and mappings of groups to application entities (such as services, 
events, and application queues). The third type of list, a mapping of groups to 
application entities, is known as the access control list (ACL).

When a client tries to access an application resource, such as a service, the system 
checks the client’s application key and thus identifies the group to which the user 
belongs. Next, the system checks the ACL for the target resource and determines 
whether the client’s group has access permission. The application administrator, 
application operator, and processes or service requests running with the privileges of 
the application administrator or operator are not subject to ACL permission checking.

The user, group, and ACL files are located in the application_root directory, where 
application _root is the first pathname defined for the APPDIR variable. The 
following figure identifies these files and specifies the administrative commands 
available for controlling each list.

Figure 1-10   Default User, Group, and ACL Files

Note: For an ATMI application running on the Compaq VMS operating system, the 
names of the user, group, and ACL files have .dat extensions: tpusr.dat, 
tpgrp.dat, and tpacl.dat.

application_root

tpgrp tpacltpusr

Administrative Commands
for User File

Administrative Commands
for ACL File

Administrative Commands
for Group File

tpusradd(1)n

tpusrdel(1)n

tpusrmod(1)n

tpgrpadd(1)n

tpgrpdel(1)n

tpgrpmod(1)n

tpacladd(1)n

tpacldel(1)n

tpaclmod(1)n
1-52 Using Security in ATMI Applications



Default Authentication and Authorization
The files are colon-delimited, flat text files that can be read and written only by the 
application administrator—the owner of the TUXCONFIG file referenced by the 
TUXCONFIG variable. The format of the files is irrelevant, since the files are fully 
administered with a set of dedicated commands. Only the application administer is 
allowed to use these commands.

An application administer can use the tpaclcvt(1) command to convert security data 
files to the format needed by the ACL checking feature. For example, on a UNIX host 
machine, an administrator can use tpaclcvt to convert the /etc/password file and 
store the converted version in the tpusr file. The same administrator can use 
tpaclcvt to convert the /etc/group file and store the converted version in the tpgrp 
file.

The AUTHSVR server uses the user information stored in the tpusr file to authenticate 
users who want to join the ATMI application.

Optional and Mandatory ACLs

The ACL and MANDATORY_ACL security levels constitute the default authorization 
implementation for the ATMI environment in the BEA Tuxedo product.

When the security level is ACL, if there is no entry in the tpacl file associated with the 
target application entity, the client is permitted to access the entity. This security level 
enables an administrator to configure access for only those resources that need more 
security. That is, there is no need to add entries to the tpacl file for services, events, 
or application queues that are open to everyone.

When the security level is MANDATORY_ACL, if there is no entry in the tpacl file 
associated with the target application entity, the client is not permitted to access the 
entity. For this reason, this level is called mandatory. There must be an entry in the 
tpacl file for each and every application entity that the client needs to access.

For both the ACL and MANDATORY_ACL security levels, if an entry for an application 
entity exists in the tpacl file and the client attempts to access that entity, the user 
associated with that client must be a member of a group that is allowed to access that 
entity; otherwise, permission is denied.

For some ATMI applications, it may be necessary to use both system-level and 
application-level authorization. An entry in the tpacl file can be used to control which 
users can access a service, and application logic can control data-dependent access, for 
example, which users can handle transactions for more than a million dollars.
Using Security in ATMI Applications 1-53



1 Introducing ATMI Security
Note that there is no ACL permission checking for administrative services, events, and 
application queues with names that begin with a dot (.). For example, any client can 
subscribe to administrative events such as .SysMachineBroadcast, 
.SysNetworkConfig, and .SysServerCleaning. In addition, there is no ACL 
permission checking for the application administrator, application operator, or 
processes or service requests running with the privileges of the application 
administrator or operator.

See Also

n “What Administering Security Means” on page 2-1

n “Security Administration Tasks” on page 2-3

n “Administering Authentication” on page 2-9

n “Administering Authorization” on page 2-35

n “What Programming Security Means” on page 3-1

n “Programming an ATMI Application with Security” on page 3-3

n “Writing Security Code So Client Programs Can Join the ATMI Application” on 
page 3-4

n “About the Configuration File” on page 2-1 and “Creating the Configuration 
File” on page 3-1 in Setting Up BEA Tuxedo Applications

n UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System 
Processes Reference

n AUTHSVR(5) in the File Formats, Data Descriptions, MIBs, and System 
Processes Reference
1-54 Using Security in ATMI Applications



Security Interoperability
Security Interoperability

Application developers and administrators must be aware of certain security issues 
when configuring ATMI applications to interoperate with BEA Tuxedo pre-release 7.1 
(6.5 or earlier) software.

Interoperability, as defined in this discussion, is the ability of the current release of 
BEA Tuxedo software to communicate over a network with a previous release of BEA 
Tuxedo software. Specifically, inter-domain interoperability and intra-domain 
interoperability have the following meanings:

n Inter-domain interoperability

Involves one ATMI application running BEA Tuxedo release 7.1 or later 
software, and another ATMI application running BEA Tuxedo pre-release 7.1 
software. See the diagram “Inter-Domain Interoperability” on page 1-56 for 
clarification.

n Intra-domain interoperability

Involves one machine in a multiple-machine ATMI application running BEA 
Tuxedo release 7.1 or later software, and another machine in the same 
application running BEA Tuxedo pre-release 7.1 software. See the figure 
“Intra-Domain Interoperability” on page 1-56 for clarification.
Using Security in ATMI Applications 1-55



1 Introducing ATMI Security
Figure 1-11   Inter-Domain Interoperability

Figure 1-12   Intra-Domain Interoperability

Server Server

GWTDOMAIN

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Application 1 Running

GWTDOMAIN

BEA Tuxedo Release 7.1 or Later Software
Application 2 Running

BEA Tuxedo Pre-Release 7.1 Software

Network
Connection (Link)

Server Server

Server Server

Native
Client Server

Server

Native
ClientServer

Bridge Bridge

Server

WSH

Workstation
Client

WSH

Workstation
Client

Machine 2 Running BEA TuxedoMachine 1 Running BEA Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software

Network
Connection (Link)

Same BEA Tuxedo Application
1-56 Using Security in ATMI Applications



Security Interoperability
Interoperating with Pre-Release 7.1 Software

Interoperating with BEA Tuxedo pre-release 7.1 software is allowed or disallowed at 
the authentication security level. Authentication, as implemented by BEA Tuxedo 
release 7.1 or later software, allows communicating processes to mutually prove their 
identities.

By default, interoperability with a machine running BEA Tuxedo pre-release 7.1 
software is not allowed. To change the default, an application administrator can use the 
CLOPT -t option to allow workstation handlers (WSHs), domain gateways 
(GWTDOMAINs), and servers in the release 7.1 or later ATMI application to interoperate 
with BEA Tuxedo pre-release 7.1 software. “Mandating Interoperability Policy” on 
page 2-15 provides instructions for using the CLOPT -t option as well as the security 
ramifications for authentication and authorization when using CLOPT -t.

Interoperability for Link-Level Encryption

Whenever a network link is established between machines running BEA Tuxedo 
software, link-level encryption may be used to encrypt data before sending it over the 
network link, and decrypt it as it comes off the link. Of course, link-level encryption is 
possible only if LLE is installed on both the sending and receiving machines.

LLE interoperability with BEA Tuxedo pre-release 7.1 software is described in 
“Backward Compatibility of LLE” on page 1-26.

Interoperability for Public Key Security

The following interoperability rules for public key security apply to a machine running 
release 7.1 or later BEA Tuxedo software that is configured to interoperate with a 
machine running BEA Tuxedo pre-release 7.1 software. To clarify the rules, each rule 
has an accompanying example scenario involving a Workstation client running BEA 
Tuxedo pre-release 7.1 software.

For inter-domain interoperability, release 7.1 or later domain gateway (GWTDOMAIN) 
processes enforce the interoperability rules for public key security.
Using Security in ATMI Applications 1-57



1 Introducing ATMI Security
For intra-domain interoperability, release 7.1 or later native clients, workstation 
handlers (WSHs), or server processes communicating with the local bridge process 
enforce the interoperability rules for public key security, as shown in the following 
figure. A bridge process operates only as a conduit; it does not decrypt message buffer 
content or verify digital signatures.

Table 1-9  Interoperability Rules for Public Key Security

Interoperability Rule Example Comments

Encrypted outgoing message buffers 
destined for a machine running BEA 
Tuxedo pre-release 7.1 software are not 
transmitted to the machine.

Encrypted outgoing message buffers 
destined for a pre-release 7.1 
Workstation client are not transmitted 
to the Workstation client.

“Encrypted” refers to public 
key message-based 
encryption, not link-level 
encryption.

Incoming message buffers from a 
machine running a BEA Tuxedo 
pre-release 7.1 software are not accepted 
if routed to a process requiring 
encryption.

Incoming message buffers from a 
pre-release 7.1 Workstation client do 
not have encryption envelopes 
attached, and are not accepted if routed 
to a process requiring encryption.

See “Setting Encryption 
Policy” on page 2-48 for a 
description of the 
ENCRYPTION_REQUIRED 
configuration parameter.

For outgoing message buffers destined 
for the machine running BEA Tuxedo 
pre-release 7.1 software, any digital 
signatures are verified and then removed 
before the message buffers are 
transmitted to the older machine.

Digital signatures are verified and then 
removed from outgoing message 
buffers destined for a pre-release 7.1 
Workstation client.

It is assumed that the 
outgoing message buffer is 
digitally signed but not 
encrypted. If the outgoing 
message buffer is digitally 
signed and encrypted, the 
message is not decrypted, 
the digital signatures are not 
verified, and the message is 
not transmitted to the older 
machine.

Incoming message buffers from a 
machine running BEA Tuxedo 
pre-release 7.1 software are not accepted 
if routed to a process requiring digital 
signatures.

Incoming message buffers from a 
pre-release 7.1 Workstation client do 
not have digital signatures attached, 
and are not accepted if routed to a 
process requiring digital signatures.

See “Setting Digital 
Signature Policy” on page 
2-43 for a description of the 
SIGNATURE_REQUIRED 
configuration parameter.
1-58 Using Security in ATMI Applications



Security Interoperability
Figure 1-13   Enforcing Intra-Domain Interoperability Rules for Public Key Security

Note: Typically, a release 7.1 or later WSH does not verify digital signatures. But 
when routing a digitally signed message buffer to a process running BEA 
Tuxedo pre-release 7.1 software, the WSH verifies any digital signatures 
before removing them.

See Also

n “Security Compatibility” on page 1-60

n “Mandating Interoperability Policy” on page 2-15

n “Setting Digital Signature Policy” on page 2-43

n “Setting Encryption Policy” on page 2-48

Server Server

Native
Client Server

Bridge

Workstation
Client

WSH

Workstation
Client

Machine 2 Running BEA TuxedoMachine 1 Running BEA Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software

Network
Connection (Link)

Same BEA Tuxedo Application

Local Bridge

Enforcers

Bridge

Native
Client

WSH

Server
Using Security in ATMI Applications 1-59



1 Introducing ATMI Security
Security Compatibility

For an ATMI application running BEA Tuxedo release 7.1 or later software, it is 
possible to have any combination of default or custom authentication, authorization, 
auditing, and public key security. In addition, any combination of these four security 
capabilities is compatible with link-level encryption.

Mixing Default/Custom Authentication and Authorization

It is possible to have default authentication and custom authorization, or custom 
authentication and default authorization, as long as the application developer is aware 
of the following restriction: the authorization security token must carry at a minimum 
(1) an authenticated username, or principal name, and (2) an application key value as 
defined in “Application Key” on page 1-49.

Authorization decisions are based partly on user identity, which is stored in an 
authorization token. Because authorization tokens are generated by the authentication 
security plug-in, providers of authentication and authorization plug-ins need to ensure 
that these plug-ins work together. (See “Authentication” on page 1-7 and 
“Authorization” on page 1-12 for more detail.)

Mixing Default/Custom Authentication and Auditing

It is possible to have default authentication and custom auditing, or custom 
authentication and default auditing, as long as the application developer is aware of the 
following restriction: the auditing security token must carry at a minimum (1) an 
authenticated username, or principal name, and (2) an application key value as defined 
in “Application Key” on page 1-49.

Auditing decisions are based partly on user identity, which is stored in an auditing 
token. Because auditing tokens are generated by the authentication security plug-in, 
providers of authentication and auditing plug-ins need to ensure that these plug-ins 
work together. (See “Authentication” on page 1-7 and “Auditing” on page 1-18 for 
more detail.)
1-60 Using Security in ATMI Applications



Security Compatibility
Compatibility Issues for Public Key Security

Public key security is compatible with all features and processes supported by BEA 
Tuxedo release 7.1 or later software except the compression feature. Encrypted 
message buffers cannot be compressed using the compression feature. But, because 
the public key software compresses the message content just before it encrypts the 
message buffer, any size savings are still achieved.

This topic describes the compatibility/interaction of public key security with the 
following ATMI features and processes:

n Data-dependent routing

n Threads

n EventBroker

n /Q

n Transactions

n Domain gateways (GWTDOMAINs)

n Other vendors’ gateways

Compatibility/Interaction with Data-dependent Routing

Central to the data-dependent routing feature is the ability of a process to examine the 
content of incoming message buffers. If an incoming message buffer is encrypted, a 
process configured for data-dependent routing must have opened a recipient’s private 
key so that the public key software can use that key to decrypt the message buffer. For 
data-dependent routing, the public key software does not verify digital signatures.

If a decryption key is not available, the routing operation fails. The system generates 
an ERROR userlog(3c) message to report the failure.

If a decryption key is available, the process makes a routing decision based on a 
decrypted copy of the encrypted message buffer. The chain of events is as follows:

1. The public key software makes a copy of the encrypted message buffer and uses 
the decryption key to decrypt the buffer.
Using Security in ATMI Applications 1-61



1 Introducing ATMI Security
2. The process reads the resulting plaintext (unencrypted text) message content to 
make the routing decision.

3. The public key software overwrites the plaintext message content with zero 
values to preserve privacy.

The system then transmits the original encrypted message buffer in accordance with 
the routing decision.

Compatibility/Interaction with Threads

Public-private keys are represented and manipulated via handles. A handle has data 
associated with it that is used by the public key application programming interface 
(API) to locate or access the item named by the handle. A process opens a key handle 
for digital signature generation, message encryption, or message decryption.

A key handle is a process resource; it is not bound to any specific thread or context. 
Any communication necessary to open a key is performed within the thread’s currently 
active context. Thereafter, the key is available to any context in the process, whether 
or not the context is associated with the same ATMI application.

A key’s internal data structures are thread safe. As such, a key may be accessed 
concurrently by multiple threads.

Compatibility/Interaction with the EventBroker

In general, a TMUSREVT(5) system server handles encrypted message buffers without 
decrypting them, that is, both digital signatures and encryption envelopes remain intact 
as messages flow through the BEA Tuxedo EventBroker component. However, the 
following cases require that the EventBroker component decrypt posted message 
buffers:

n To evaluate subscription filter expressions based on message content.

If the EventBroker does not have access to a suitable decryption key, the 
subscription’s filter expression is assumed to be false, and the subscription is not 
considered a match.

n To perform subscription notification actions that require access to message 
content: userlog(3c) processing or system command execution.
1-62 Using Security in ATMI Applications



Security Compatibility
If the EventBroker does not have access to a suitable decryption key, the 
subscription’s notification action fails, and the system generates an ERROR 
userlog(3c) message to report the failure.

n To perform subscription notification actions that, based on system 
configurations, need to access message content for data-dependent routing.

If the EventBroker does not have access to a suitable decryption key, the 
subscription’s notification action fails, and the system generates an ERROR 
userlog() message to report the failure.

For a transactional subscription, the system also marks the transaction as 
rollback-only.

n To comply with an administrative system policy requiring encryption (as 
explained in “Setting Encryption Policy” on page 2-48).

If the EventBroker does not have access to a suitable decryption key, the 
tppost(3c) operation fails, and the system generates an ERROR userlog() 
message to report the failure.

n To verify that a posted encrypted message has a valid digital signature attached, 
if required to do so by an administrative system policy requiring digital 
signatures (as explained in “Setting Digital Signature Policy” on page 2-43).

If the EventBroker does not have access to a suitable decryption key, the 
tppost(3c) operation fails, and the system generates an ERROR userlog() 
message to report the failure.

Compatibility/Interaction with /Q

In general, a TMQUEUE(5) or TMQFORWARD(5) system server handles encrypted 
message buffers without decrypting them, that is, both signatures and encryption 
envelopes remain intact as messages flow through the BEA Tuxedo /Q component. 
However, the following cases require that the /Q component decrypt enqueued 
message buffers:

n To perform TMQFORWARD operations that, based on system configurations, need 
to access message content for data-dependent routing.

If TMQFORWARD does not have access to a suitable decryption key, the forward 
operation fails. The system returns the message to the queue and generates an 
ERROR userlog(3c) message to report the failure.
Using Security in ATMI Applications 1-63



1 Introducing ATMI Security
After a number of periodic retry attempts, TMQFORWARD might place the 
unreadable message on an error queue.

n To comply with an administrative system policy requiring encryption (as 
explained in “Setting Encryption Policy” on page 2-48).

If the /Q component does not have access to a suitable decryption key, the 
tpenqueue(3c) operation fails, and the system generates an ERROR 
userlog() message to report the failure.

n To verify that an enqueued encrypted message has a valid signature attached, if 
required to do so by an administrative system policy requiring digital signatures 
(as explained in “Setting Digital Signature Policy” on page 2-43).

If the /Q component does not have access to a suitable decryption key, the 
tpenqueue(3c) operation fails, and the system generates an ERROR 
userlog() message to report the failure.

A non-transactional tpdequeue(3c) operation has the side effect of destroying an 
encrypted queued message if the invoking process does not hold a valid decryption 
key.

If a message with an invalid signature is placed in a queue (or if the message is 
corrupted or tampered with while on the queue), any attempt to dequeue it fails. A 
non-transactional tpdequeue() operation has the side effect of destroying such a 
message. A transactional tpdequeue() operation causes transaction rollback, and all 
future transactional attempts to dequeue the message will continue to fail.

Compatibility/Interaction with Transactions

Public key security operations—opening and closing keys, requesting a digital 
signature, or requesting encryption—are not transactional, and are not undone by 
transaction rollback. However, transactions might rollback due to failure conditions 
associated with the following public key operations:

n If a transactional request or reply message cannot be decrypted, its associated 
transaction is rolled back.

n If a transactional request or reply message is discarded because of an invalid or 
missing digital signature, its associated transaction is rolled back.

n If a transactional request or reply message is rejected because it violates an 
administrative system policy requiring encryption or digital signatures, its 
associated transaction is rolled back.
1-64 Using Security in ATMI Applications



Security Compatibility
Compatibility/Interaction with Domain Gateways

Domain gateway (GWTDOMAIN) processes connecting two ATMI applications running 
BEA Tuxedo release 7.1 or later software preserve digital signatures and encryption 
envelopes. In addition, the domain gateway processes verify digital signatures and 
enforce administrative system policies regarding digital signatures and encryption.

The following figure is an aid to understanding how domain gateway processes 
interact with local and remote ATMI applications. The table following the figure 
describes how release 7.1 or later domain gateway processes handle digitally signed 
and encrypted message buffers.

Figure 1-14   Communication Between ATMI Applications

ATMI Application 1 ATMI Application 2

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client Server

Server Server

Native
Client

Network
Connection (Link)

GWTDOMAIN GWTDOMAIN

outbound

inboundoutbound

inbound
Using Security in ATMI Applications 1-65



1 Introducing ATMI Security
Table 1-10  Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Inbound message—
originating from a 
remote process and 
received over a 
network connection

Has encryption envelope and 
may or may not have digital 
signature

The domain gateway process accepts the message and 
forwards it in encrypted form.

If the data-dependent routing feature applies and the 
domain gateway process does not have a suitable 
decryption key, the gateway process rejects the 
message. (See “Compatibility/Interaction with 
Data-dependent Routing” on page 1-61 for 
clarification.)

Inbound message Does not have encryption 
envelope or digital signature

If the domain gateway process is running within a 
domain, machine, or group requiring encryption, the 
gateway process rejects the message. If a service 
advertised by the domain gateway requires encryption, 
the gateway process rejects the message. (See “Setting 
Encryption Policy” on page 2-48 for clarification.)

If the domain gateway does not require encryption, the 
gateway process accepts and forwards the message.

Inbound message Has digital signature but is 
not encrypted

The domain gateway process verifies the digital 
signature and forwards the message with digital 
signature attached.

Inbound message Does not have digital 
signature and is not 
encrypted

If the domain gateway process is running within a 
domain, machine, or group requiring digital signatures, 
the gateway process rejects the message. If a service 
advertised by the domain gateway requires digital 
signatures, the gateway process rejects the message. 
(See “Setting Digital Signature Policy” on page 2-43 for 
clarification.)

If the domain gateway does not require digital 
signatures, the gateway process accepts and forwards 
the message.
1-66 Using Security in ATMI Applications



Security Compatibility
Outbound message—
originating from a local 
process and 
transmitted over a 
network connection

Has encryption envelope and 
may or may not have digital 
signature

The domain gateway process accepts the message and 
forwards it in encrypted form over the network.

If the data-dependent routing feature applies and the 
domain gateway process does not have a suitable 
decryption key, the gateway process rejects the 
message. (See “Compatibility/Interaction with 
Data-dependent Routing” on page 1-61 for 
clarification.)

If the encrypted message is destined for a process 
running BEA Tuxedo pre-release 7.1 (6.5 or earlier) 
software, the domain gateway process rejects the 
message. (See “Interoperating with Pre-Release 7.1 
Software” on page 1-57 and “Interoperability for Public 
Key Security” on page 1-57 for clarification.)

Outbound message Does not have encryption 
envelope or digital signature

If the domain gateway process is running within a 
domain, machine, or group requiring encryption, the 
gateway process rejects the message. If a service 
advertised by the domain gateway requires encryption, 
the gateway process rejects the message. (See “Setting 
Encryption Policy” on page 2-48 for clarification.)

If the domain gateway does not require encryption, the 
gateway process accepts the message and forwards it 
over the network.

Outbound message Has digital signature but is 
not encrypted

The domain gateway process verifies the digital 
signature and forwards the message with digital 
signature attached over the network.

If the message is destined for a process running BEA 
Tuxedo pre-release 7.1 software and assuming 
interoperability with BEA Tuxedo pre-release 7.1 
software is allowed, the domain gateway process 
verifies and then removes the digital signature before 
forwarding the message over the network. (See 
“Interoperating with Pre-Release 7.1 Software” on page 
1-57 and “Interoperability for Public Key Security” on 
page 1-57 for clarification.)

Table 1-10  Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation
Using Security in ATMI Applications 1-67



1 Introducing ATMI Security
Compatibility/Interaction with Other Vendors’ Gateways

A domain gateway (GWTDOMAIN) process connecting a release 7.1 or later ATMI 
application to another vendor’s gateway process operates on outbound message 
buffers as follows:

1. Decrypts encrypted messages.

2. Verifies digital signatures (if any) and then removes digital signatures.

3. Transmits messages in plaintext format over the network to the vendor’s gateway 
process.

In addition, the domain gateway process enforces the administrative system policies 
regarding encryption and digital signatures for the ATMI application. As an example, 
if encryption and/or digital signatures are required at the domain level for the ATMI 
application, the local domain gateway process rejects any message coming from the 
other vendor’s gateway process.

Outbound message Does not have digital 
signature and is not 
encrypted

If the domain gateway process is running within a 
domain, machine, or group requiring digital signatures, 
the gateway process rejects the message. If a service 
advertised by the domain gateway requires digital 
signatures, the gateway process rejects the message. 
(See “Setting Digital Signature Policy” on page 2-43 for 
clarification.)

If the domain gateway does not require digital 
signatures, the gateway process accepts the message 
and forwards it over the network.

Table 1-10  Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation
1-68 Using Security in ATMI Applications



Security Compatibility
See Also

n “Security Interoperability” on page 1-55

n “Mandating Interoperability Policy” on page 2-15

n “Setting Digital Signature Policy” on page 2-43

n “Setting Encryption Policy” on page 2-48
Using Security in ATMI Applications 1-69



1 Introducing ATMI Security
1-70 Using Security in ATMI Applications



CHAPTER
2 Administering Security

This topic includes the following sections:

n What Administering Security Means

n Security Administration Tasks

n Setting the BEA Tuxedo Registry

n Configuring an ATMI Application for Security

n Setting Up the Administration Environment

n Administering Default Authentication and Authorization

What Administering Security Means

Administering security for an ATMI application involves setting and enforcing 
security policies for the components of the application, including its clients, server 
machines, and gateway links. The application administrator sets the security policies 
for the ATMI application, and the BEA Tuxedo system upon which the ATMI 
application is built enforces those policies.

The BEA Tuxedo system offers the following ATMI security capabilities:

n Authentication

n Authorization

n Auditing

n Link-level encryption
Using Security in ATMI Applications 2-1



2 Administering Security
n Public key security

All but one of the security capabilities can be configured by the application 
administrator. The exception is auditing, which cannot be configured, as shown in the 
following figure.

Figure 2-1   Administering ATMI Security

See Also

n “Security Administration Tasks” on page 2-3

ATMI Application Administration

BEA Tuxedo Library

ATMII Security

Plug-in Interface

Security Plug-ins

Link-Level
Encryption

Custom

Default
Authentication

Custom

Default
Authorization

Custom

Default
Auditing

Custom

Default
Public Key Security

Authentication Authorization
Public Key

Security
Link-Level
Encryption

Commands API GUI

Management Information Base (MIB)
2-2 Using Security in ATMI Applications



Security Administration Tasks
n “What Security Means” on page 1-1

n “What Programming Security Means” on page 3-1

Security Administration Tasks

Security administration consists of the following tasks:

n Setting the BEA Tuxedo registry

n Configuring an ATMI application for security

n Setting up the administration environment

n Administering operating system (OS) security

n Administering authentication

n Administering authorization

n Administering link-level encryption

n Administering public key security

See Also

n “Setting the BEA Tuxedo Registry” on page 2-3

Setting the BEA Tuxedo Registry

The application administrator needs to know about the BEA Tuxedo registry if the 
ATMI application is to be configured with one or more custom security capabilities. 
On the other hand, if the ATMI application is to be configured only with default 
security, the BEA Tuxedo registry does not need to be changed.
Using Security in ATMI Applications 2-3



2 Administering Security
The BEA Tuxedo registry is a disk-based repository for storing information related to 
plug-in modules. Initially, this registry holds registration information about the default 
security plug-ins.

Purpose of the BEA Tuxedo Registry

Most BEA middleware products use a common transaction processing (TP) 
infrastructure that consists of a set of core services, such as security. The TP 
infrastructure is available to ATMI applications through well defined interfaces. These 
interfaces allow application administrators to change the default behavior of the TP 
infrastructure by loading and linking their own service code modules, referred to as 
plug-in modules or simply plug-ins.

The first step in loading a plug-in is to register the plug-in with the host operating 
system. Registering a plug-in adds an entry for the plug-in to the BEA Tuxedo registry, 
which is a set of binary files that stores information about active plug-ins. There is one 
registry per BEA Tuxedo installation.

n On a UNIX host machine, the BEA Tuxedo registry is in the 
$TUXDIR/udataobj directory.

n On a Windows 2000 host machine, the BEA Tuxedo registry is in the 
%TUXDIR%\udataobj directory.

Every Workstation client and server machine in an ATMI application must use the 
same set of plug-in modules.

Registering Plug-ins

The administrator of an ATMI application in which custom plug-ins will be used is 
responsible for registering those plug-ins and performing other registry related tasks. 
An administer can register plug-ins in the BEA Tuxedo registry only from the local 
machine. That is, an administrator cannot register plug-ins while logged on to the host 
machine from a remote location.

Three commands are available for administering plug-ins:

n epifreg—for registering a plug-in
2-4 Using Security in ATMI Applications



Configuring an ATMI Application for Security
n epifunreg—for unregistering a plug-in

n epifregedt—for editing registry information

Instructions for using these commands are available in Developing Security Services 
for ATMI and CORBA Environments. (This document contains the specifications for 
the security plug-in interface, and describes the plug-in framework feature that makes 
the dynamic loading and linking of security plug-in modules possible.) Also, when 
installing custom plug-ins, the supplying third-party security vendor should provide 
instructions for using these commands to set up the BEA Tuxedo registry to access the 
custom plug-ins.

For more information about security plug-ins, including installation and configuration 
procedures, see your BEA account executive.

See Also

n “Configuring an ATMI Application for Security” on page 2-5

Configuring an ATMI Application for 
Security

An application administrator configures security for the ATMI application on the 
MASTER machine when the application is inactive. The underlying BEA Tuxedo system 
propagates the configuration information to the other machines in the ATMI 
application when the application is booted.

As the administrator, you can configure security for your ATMI application by:

n Editing the configuration file (UBBCONFIG)

n Changing the TM_MIB, or

n Using the BEA Administration Console
Using Security in ATMI Applications 2-5



2 Administering Security
The set of security parameters involved depends upon the security capability 
(authentication, authorization, link-level encryption, or public key) and whether you 
are using the default or custom security software.

Editing the Configuration File

You can edit the UBBCONFIG configuration file to set security policies for an ATMI 
application. The UBBCONFIG configuration file may have any filename, as long as the 
content of the file conforms to the format described on the UBBCONFIG(5) reference 
page in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

For more details about UBBCONFIG and its binary equivalent, TUXCONFIG, see “About 
the Configuration File” on page 2-1 and “Creating the Configuration File” on page 3-1 
in Setting Up a BEA Tuxedo Application.

Changing the TM_MIB

The TM_MIB defines a set of classes through which the fundamental aspects of an 
ATMI application may be configured and managed. Separate classes are designated 
for machines, servers, networks, and so on. You should use the reference page 
TM_MIB(5) in combination with the generic Management Information Base (MIB) 
reference page MIB(5) to format administrative requests and interpret administrative 
replies. The MIB reference pages are defined in the File Formats, Data Descriptions, 
MIBs, and System Processes Reference.

Other component MIBs, including the ACL_MIB, DM_MIB, and WS_MIB, also play a role 
in managing security for an ATMI application. The reference page ACL_MIB(5) 
defines the ACL_MIB, the reference page DM_MIB(5) defines the DM_MIB, and the 
reference page WS_MIB(5) defines the WS_MIB.

For more information about BEA Tuxedo MIBs, start with MIB(5) in the File 
Formats, Data Descriptions, MIBs, and System Processes Reference. Also, see 
Introducing BEA Tuxedo ATMI.
2-6 Using Security in ATMI Applications



Setting Up the Administration Environment
Using the BEA Administration Console

You can also use the BEA Administration Console to change security policies for an 
ATMI application. The BEA Administration Console is a Web-based tool used to 
configure, monitor, and dynamically re-configure an application.

For details about the BEA Administration Console, see Introducing BEA Tuxedo 
ATMI.

See Also

n “Setting Up the Administration Environment” on page 2-7

Setting Up the Administration Environment

The application administrator defines certain environment variables for an ATMI 
application as part of configuring the application. The values defined for the variables 
are absolute pathnames that reference BEA Tuxedo executables and data libraries.

Being able to find such files is essential to the job of administering an ATMI 
application. For example, all commands needed to manage application security are 
located in $TUXDIR/bin on a UNIX host machine, and in %TUXDIR%\bin on a 
Windows 2000 host machine.

For details on setting up the administration environment, see Administering a BEA 
Tuxedo Application at Run Time.

See Also

n “Administering Operating System (OS) Security” on page 2-8

n “Administering Authentication” on page 2-9

n “Administering Authorization” on page 2-35
Using Security in ATMI Applications 2-7



2 Administering Security
n “Administering Link-Level Encryption” on page 2-35

n “Administering Public Key Security” on page 2-42

n “Security Administration Tasks” on page 2-3

Administering Operating System (OS) 
Security

In addition to the security features in the ATMI environment of the BEA Tuxedo 
product, the application administrator needs to take full advantage of the security 
features of the host operating system to control access to files, directories, and system 
resources.

Most ATMI applications are managed by an application administrator who configures 
and boots the application, monitors the running application, and makes changes to it 
dynamically, as necessary. Because the ATMI application is started and run by the 
administrator, server programs are run with the administrator’s permissions and are 
therefore considered secure or “trusted.” This working method is supported by the 
login mechanism and the read and write permissions on the files, directories, and 
system resources provided by the underlying operating system.

Clients, on the other hand, are not started by the administrator. Instead, they are run 
directly by users with their own permissions. As a result, clients are not trusted.

In addition, users running native clients (that is, clients running on the same machine 
on which the server is running) have access to the configuration file and interprocess 
communication (IPC) mechanisms such as the bulletin board (in shared memory). 
Users running native clients always have such access, even when additional ATMI 
security is configured.

Recommended Practices for OS Security

As the administrator, you can improve operating system security by observing the 
following general rules:
2-8 Using Security in ATMI Applications



Administering Authentication
n Limit access to files and IPC resources to the application administrator.

n Have “trusted” client programs run only with the permissions of the 
administrator (using a setuid utility).

n For maximum security on your operating system, allow only Workstation clients 
to access the application; client programs should not be allowed to run on the 
same machines on which application servers and administrative programs run.

n Combine all of these practices with ATMI security so that the application can 
identify any client making a request.

See Also

n “Operating System (OS) Security” on page 1-6

n “Security Administration Tasks” on page 2-3

Administering Authentication

Authentication allows communicating processes to prove their identities. It is the 
foundation for most other security capabilities.

Except for the configuration instructions identified in this topic, the procedures for 
administering authentication depend upon the underlying authentication system of the 
application. For procedures to administer a custom authentication system, see the 
documentation for that system. For procedures to administer the default authentication 
system, see “Administering Default Authentication and Authorization” on page 2-57.

The following figure demonstrates the use of the delegated trust authentication model 
by applications running BEA Tuxedo release 7.1 or later software. Workstation 
handlers (WSHs) and domain gateways (GWTDOMAINs) are known as trusted system 
gateway processes in the delegated trust authentication model, which is described in 
“Understanding Delegated Trust Authentication” on page 1-7.
Using Security in ATMI Applications 2-9



2 Administering Security
Figure 2-2   Mutual Authentication in the Delegated Trust Authentication Model

Note: Mutual authentication is not used for a native client, which authenticates with 
itself.

The following topics provide the instructions needed to set up the configuration shown 
in the preceding figure. All of the topics involve authentication and the authentication 
plug-in.

n Specifying principal names

n Mandating interoperability policy

n Establishing a link between domains

n Setting ACL policy

n Setting credential policy

See Also

n “Authentication” on page 1-7

n “Default Authentication and Authorization” on page 1-45

Server Server

ATMI Application 2

GWTDOMAIN

Workstation
Client

Trusted Gateways

Server

ATMI Application 1

GWTDOMAIN

Workstation
Client

Trusted Gateways
WSHWSH

= Mutual Authentication

Server
Native
Client

Native
Client Server

Network
Connection (Link)

Server
2-10 Using Security in ATMI Applications



Specifying Principal Names
n “Administering Default Authentication and Authorization” on page 2-57

n “Security Administration Tasks” on page 2-3

n “Security Interoperability” on page 1-55

n “Security Compatibility” on page 1-60

n “What Is a Domain?” on page 4-18 in Introducing BEA Tuxedo ATMI

Specifying Principal Names

As the administrator, you use the following configuration parameters to specify 
principal names for the workstation handler (WSH), domain gateway (GWTDOMAIN), 
and server processes running in your ATMI application built with release 7.1 or later 
of the BEA Tuxedo software.

Parameter Name Description Setting

SEC_PRINCIPAL_NAME in 
UBBCONFIG 
(TA_SEC_PRINCIPAL_NAME in 
TM_MIB)

During application booting, each 
WSH, domain gateway, and server 
process in the ATMI application calls 
the authentication plug-in to acquire 
security credentials for the security 
principal name specified in 
SEC_PRINCIPAL_NAME.*

1 - 511 characters. If not 
specified at any level in the 
configuration hierarchy, the 
security principal name defaults 
to the DOMAINID string 
specified in the UBBCONFIG 
file.

CONNECTION_PRINCIPAL_NAME 
for local domain access point in 
DMCONFIG 
(TA_DMCONNPRINCIPALNAME for 
LACCESSPOINT in DM_MIB)**

During application booting, each 
domain gateway process in the ATMI 
application calls the authentication 
plug-in a second time to acquire 
security credentials for the connection 
principal name specified in 
CONNECTION_PRINCIPAL_NAME.*

1 - 511 characters. If not 
specified, the connection 
principal name defaults to the 
DOMAINID string for the local 
domain access point specified 
in the DMCONFIG file.

* The topics that follow explain how the system processes acquire credentials and why they need them.

** The local domain access point is also known as the LDOM (pronounced “el dom”) or simply local domain.
Using Security in ATMI Applications 2-11



2 Administering Security
SEC_PRINCIPAL_NAME may be specified any of the following four levels in the 
configuration hierarchy:

n RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

n MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

n GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

n SERVERS section in UBBCONFIG or T_SERVER class in TM_MIB

A security principal name at a particular configuration level can be overridden at a 
lower level. For example, suppose you configure terri as the principal name for 
machine mach1, and john as the principal name for server serv1 running on mach1. 
The processes on mach1 behave as follows:

n All WSH, domain gateway, and server processes on mach1 except serv1 
processes use terri as a principal name.

n All serv1 processes use john as a principal name.

How System Processes Acquire Credentials

During application booting, each WSH, domain gateway, and server process in the 
ATMI application includes its security principal name as an argument when calling the 
authentication plug-in to (1) acquire security credentials and (2) get authorization and 
auditing tokens for itself. The following figure demonstrates the procedure.
2-12 Using Security in ATMI Applications



Specifying Principal Names
Figure 2-3   Acquiring Credentials and Tokens During Application Booting

Each domain gateway process in the application calls the authentication plug-in a 
second time to acquire credentials and tokens for its assigned connection principal 
name.

Myubbconfig

Mytuxconfig

tmloadcf -y myubbconfig
Enter New Application Password:
password

(User Input)
(System Response)
(User Input)

Re-enter New Application Password:
password

(System Response)
(User Input)

1. Call “acquire
credentials”

Function

2. Call “initiate
security context”

Function

3. Call “accept
security context”

5. Call “get
auditing token”

Function Function

4. Call “get
authorization token”

Function

BEA Tuxedo Library

“Tommy”
Length of APP_PW,
APP_PW

ATMI Security

*RESOURCES
SEC_PRINCIPAL_NAME “Tommy”
SECURITY USER_AUTH

Call tmboot()

Tokens for WSH,
Domain Gateway,

or Server

Authentication Plug-in

Credentials
Using Security in ATMI Applications 2-13



2 Administering Security
Why System Processes Need Credentials

A WSH needs credentials so that it can authenticate Workstation clients that want to 
join the application, and to get authorization and auditing tokens for the authenticated 
Workstation clients. A WSH needs its own authorization and auditing tokens when 
handling requests from pre-release 7.1 clients (clients running BEA Tuxedo 
release 6.5 or earlier software) so that it can call the authentication plug-in to establish 
identities for the older clients. This behavior is described in “Mandating 
Interoperability Policy” on page 2-15.

A domain gateway needs one set of credentials so that it can authenticate remote 
domain gateways for the purpose of establishing links between ATMI applications, as 
described in “Establishing a Link Between Domains” on page 2-24. (No authorization 
or auditing tokens are assigned to authenticated remote domain gateways.) A domain 
gateway acquires these credentials for the principal name specified in the 
CONNECTION_PRINCIPAL_NAME parameter.

A domain gateway needs a second set of credentials so that it can handle requests from 
pre-release 7.1 clients, which involves calling the authentication plug-in to establish 
identities for the older clients. This behavior is described in “Mandating 
Interoperability Policy” on page 2-15. It also needs these credentials to establish 
identities when enforcing the local access control list (ACL) policy, as described in 
“Setting ACL Policy” on page 2-29. A domain gateway acquires these credentials for 
the principal name specified in the SEC_PRINCIPAL_NAME parameter.

A system or application server needs its own authorization and auditing tokens when 
handling requests from pre-release 7.1 clients so that it can call the authentication 
plug-in to establish identities for the older clients. This behavior is described in 
“Mandating Interoperability Policy” on page 2-15.

A server also needs its own tokens when performing a server permission upgrade, 
which occurs when the authorization and auditing tokens of the server are assigned to 
messages that pass through the server but originate at a client. The service upgrade 
capability is described in “Replacing Client Tokens with Server Tokens” on page 1-11.

Note: An application server cannot call the authentication plug-in itself. It is the 
underlying system code that calls the authentication plug-in for the application 
server.
2-14 Using Security in ATMI Applications



Mandating Interoperability Policy
Example UBBCONFIG Entries for Principal Names

The following example pertains to specifying security principal names in the 
UBBCONFIG file using the SEC_PRINCIPAL_NAME parameter. For an example of 
specifying connection principal names in the DMCONFIG file using the 
CONNECTION_PRINCIPAL_NAME parameter, see “Example DMCONFIG Entries for 
Establishing a Link” on page 2-27.

*RESOURCES
SEC_PRINCIPAL_NAME "Tommy"

.

.

.

*SERVERS
"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1

CLOPT="-t -s secsdb:TMQUEUE"
SEC_PRINCIPAL_NAME="TOUPPER"

See Also

n “Mandating Interoperability Policy” on page 2-15

n “Establishing a Link Between Domains” on page 2-24

n “Setting ACL Policy” on page 2-29

n “Security Administration Tasks” on page 2-3

Mandating Interoperability Policy

As the administrator, you use the CLOPT -t option in the UBBCONFIG file to allow 
WSH, domain gateway (GWTDOMAIN), and server processes in your ATMI application 
to interoperate with machines running BEA Tuxedo pre-release 7.1 (6.5 or earlier) 
software. In addition, you use the WSALLOWPRE71 environment variable to allow 
Using Security in ATMI Applications 2-15



2 Administering Security
Workstation clients to interoperate with machines running BEA Tuxedo pre-release 
7.1 software. The following four figures show what interoperability means for these 
processes.

Figure 2-4   WSH Operating with Older Workstation Client

In the preceding figure, the WSH authenticates with the Workstation client using an 
older (pre-release 7.1) authentication protocol, calls the internal impersonate user 
function to get authorization and auditing tokens for the client, and attaches the tokens 
to the client request. If the CLOPT -t option is not specified for the workstation listener 
(WSL) that controls the WSH, no communication is possible between the newer WSH 
and the older Workstation client.

Note: The impersonate user function involves calling the authentication plug-in to 
establish an identity for the older client. See “Establishing an Identity for an 
Older Client” on page 2-20 for details.

ATMI Application Running
BEA Tuxedo Release 7.1 or Later Software

CLOPT -t

Workstation Client Running
BEA Tuxedo Pre-Release 7.1 Software 

Server
Native
Client

Server

GWTDOMAIN

Server

WSH
2-16 Using Security in ATMI Applications



Mandating Interoperability Policy
Figure 2-5   Older WSH Operating with Workstation Client

In the preceding figure, the WSH authenticates with the Workstation client using an 
older (pre-release 7.1) authentication protocol; the client request does not receive 
authorization and auditing tokens. If the WSALLOWPRE71 environment variable is not 
set at the Workstation client or is set to N, no communication is possible between the 
older WSH and the newer Workstation client.

 
BEA Tuxedo Pre-Release 7.1 Software

WSALLOWPRE71=Y Workstation Client Running
BEA Tuxedo Release 7.1 or Later Software

Server
Native
Client

Server

GWTDOMAIN

Server

WSH

ATMI Application Running
Using Security in ATMI Applications 2-17



2 Administering Security
Figure 2-6   Server Interoperating with Older ATMI Application

In the preceding figure, the local domain gateway (GWTDOMAIN) in application 1 
authenticates with the remote domain gateway in application 2 using an older 
(pre-release 7.1) authentication protocol. Upon receiving a request from a remote 
client, the local domain gateway calls the internal impersonate user function to get 
authorization and auditing tokens for the remote client and then attaches the tokens to 
the client request. For any outbound client request (client request originating in 
application 1 and destined for application 2), the local domain gateway strips the 
tokens from the request before sending the request along with the client’s application 
key to the older application. (See “Application Key” on page 1-49 for a description of 
the application key.)

If the CLOPT -t option is not specified for the domain gateway, no communication is 
possible between the newer ATMI application and the older ATMI application.

Server Server

GWTDOMAIN

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Client Request
GWTDOMAIN

Network
Connection (Link)

ATMI Application 2 Running
BEA Tuxedo Pre-Release 7.1 Software

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

CLOPT -tServer Server
2-18 Using Security in ATMI Applications



Mandating Interoperability Policy
Figure 2-7   Server Interoperating with Older BEA Tuxedo Systems

In the preceding figure, the destination server on machine 1 calls the internal 
impersonate user function to get authorization and auditing tokens for the remote client 
on machine 2, attaches the tokens to the client request, and then performs the request 
assuming the client passes any authorization checks. If the CLOPT -t option is not 
specified for the server, no communication is possible between the newer server and 
the older client.

Note: Also, in the preceding figure, if the WSH on machine 1 receives a client 
request destined for a server on machine 2, the WSH strips the tokens from the 
request before sending the request along with the client’s application key to the 
older system. Similarly, if the native client on machine 1 sends a request to a 
server on machine 2, the native client strips the tokens from the request before 
sending the request along with the client’s application key to the older system. 
See “Application Key” on page 1-49 for a description of the application key.

Machine 1

Server Server

Native
Client Server

Server

Native
ClientServer

Bridge Bridge

Client Request

CLOPT -t
Server

Machine 2
Running BEA Tuxedo Pre-Release 7.1 SoftwareRunning BEA Tuxedo Release 7.1 or Later Software

WSH

Workstation
Client

WSH

Workstation
Client

Network
Connection (Link)

Same ATMI Application
Using Security in ATMI Applications 2-19



2 Administering Security
Establishing an Identity for an Older Client

For a WSH, domain gateway (GWTDOMAIN), or server process to establish an identity 
for an older client, the process calls the internal impersonate user function to obtain 
authorization and auditing tokens for the older client. The following figure 
demonstrates the procedure.

Figure 2-8   Obtaining Authorization and Auditing Tokens for an Older Client

How the WSH Establishes an Identity for an Older Client

When the CLOPT -t option is specified, the WSH establishes an identity for an older 
client using the usrname field of the TPINIT buffer for C, or the USRNAME field of the 
TPINFDEF-REC record for COBOL. (The WSH receives a TPINIT buffer/ 
TPINFDEF-REC record from a client when the client attempts to join the application, as 
described in “Joining the ATMI Application” on page 3-8.) The WSH includes the user 
name as the principal name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the user name 
and its associated application key (user identifier, group identifier combination) in the 
local tpusr file, and then includes the user name and application key in both the 

WSH, Domain Gateway, or Server Process

2. WSH/ Domain Gateway/ Server Authorization Token
3. WSH/ Domain Gateway/ Server Auditing Token

Tokens for
Older Client

Call impersonate user Function

ATMI Security

Authentication Plug-in

1. Name of Older Client or LOCAL_PRINCIPAL_NAME
Configured for Remote Domain Access Point
2-20 Using Security in ATMI Applications



Mandating Interoperability Policy
authorization and auditing tokens created for the older client. The tpusr file is briefly 
described in “Setting Up the User and Group Files” on page 2-62.

How the Domain Gateway Establishes an Identity for an Older Client

When the CLOPT -t option is specified, the domain gateway establishes an identity for 
an older client using the LOCAL_PRINCIPAL_NAME string configured for the remote 
domain access point. (The domain gateway searches the DM_REMOTE_DOMAINS section 
of the local BDMCONFIG file—the binary equivalent of the DMCONFIG(5) file—to find 
the LOCAL_PRINCIPAL_NAME string for the remote domain access point. If not 
specified, the identity defaults to the DOMAINID string for the remote domain access 
point.) The domain gateway uses the LOCAL_PRINCIPAL_NAME string as the principal 
name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the 
LOCAL_PRINCIPAL_NAME string and its associated application key in the local tpusr 
file, and then includes that string (identity) and application key in both the 
authorization and auditing tokens created for the older client.

How the Server Establishes an Identity for an Older Client

When the CLOPT -t option is specified, the server establishes an identity for an older 
client using the client’s assigned application key. (The client request received by the 
server contains the client’s assigned application key.) The server finds the application 
key and its associated name in the local tpusr file, and then includes the name as the 
principal name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the name and 
its associated application key in the local tpusr file, and then includes the name and 
application key in both the authorization and auditing tokens created for the older 
client.

Summarizing How the CLOPT -t Option Works

The following table summarizes the functionality of WSH, domain gateway, and 
server processes when interoperability is and is not allowed using the CLOPT -t 
option.
Using Security in ATMI Applications 2-21



2 Administering Security
Table 2-1  Functionality of WSH, Domain Gateway, and Server Processes When Interoperability 
Is and Is Not Allowed

Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed

Workstation 
Handler (WSH)

If the WSH receives a request from a pre-release 
7.1 Workstation client to join the application, 
the WSH authenticates the client using a 
pre-release 7.1 authentication protocol and calls 
the impersonate user function to get 
authorization and auditing tokens for the client 
based on the user name given in the request.

When the WSH receives a service request from 
the authenticated Workstation client, it attaches 
the tokens to the client request and forwards the 
request to the destination server.

If the WSH receives a request from a 
pre-release 7.1 Workstation client to 
join the application, the WSH rejects 
the request. No communication is 
possible between the newer WSH and 
the older Workstation client.

Domain gateway 
(GWTDOMAIN)

When the domain gateway sets up a connection 
to a pre-release 7.1 remote domain gateway, it 
authenticates the remote domain gateway using 
a pre-release 7.1 authentication protocol and 
then sets up the network connection.

When the domain gateway receives a client 
request from the older domain, the domain 
gateway calls the impersonate user function to 
get authorization and auditing tokens for the 
client based on the 
LOCAL_PRINCIPAL_NAME (defaults to 
DOMAINID) identity configured for the remote 
domain access point, attaches the tokens to the 
client request, and then forwards the request to 
the destination server. The client has the same 
access permissions as the 
LOCAL_PRINCIPAL_NAME identity.

For any outbound client request, the domain 
gateway strips the tokens from the request 
before sending the request along with the 
client’s application key to the older domain.

The domain gateway does not set up a 
connection to a pre-release 7.1 remote 
domain gateway. No communication is 
possible between the newer and older 
domains.
2-22 Using Security in ATMI Applications



Mandating Interoperability Policy
Example UBBCONFIG Entries for Interoperability

In the following example, all WSHs controlled by the workstation listener (WSL) are 
configured for interoperability.

*SERVERS
WSL SRVGRP="group_name" SRVID=server_number ...

CLOPT="-A -t ..."

See Also

n “Specifying Principal Names” on page 2-11

n “Establishing a Link Between Domains” on page 2-24

n “Setting ACL Policy” on page 2-29

n “Security Administration Tasks” on page 2-3

n “Security Interoperability” on page 1-55

n “Setting Up Security in Domains” on page 2-35 and “Configuring the 
Connections Between Your Domains” on page 2-49 in Using the BEA Tuxedo 
Domains Component

System or 
application server

If the server receives a request from a remote 
client running BEA Tuxedo pre-release 7.1 
software, the server calls the impersonate user 
function to get authorization and auditing 
tokens for the client based on the client’s 
assigned application key, and then performs the 
client request assuming the client passes any 
authorization checks.

If the server receives a request from a 
remote client running BEA Tuxedo 
pre-release 7.1 software, the server 
rejects the client request. No 
communication is possible between the 
newer server and the older client.

Table 2-1  Functionality of WSH, Domain Gateway, and Server Processes When Interoperability 
Is and Is Not Allowed (Continued)

Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed
Using Security in ATMI Applications 2-23



2 Administering Security
Establishing a Link Between Domains

When a domain gateway (GWTDOMAIN) attempts to establish a network link with 
another domain gateway, the following major events occur.

1. The initiator domain gateway and the target domain gateway exchange link-level 
encryption (LLE) min-max values to be used to set up LLE on the link between the 
gateways. LLE is described in “Link-Level Encryption” on page 1-23.

2. The initiator and target domain gateways authenticate one another through the 
exchange of security tokens assuming that both gateways are running BEA 
Tuxedo release 7.1 or later software.

If one or both of the domain gateways are running BEA Tuxedo pre-release 7.1 
software, the gateway processes use an older (pre-release 7.1) authentication 
protocol when setting up the connection.
2-24 Using Security in ATMI Applications



Establishing a Link Between Domains
As the administrator, you use the following configuration parameter to establish a link 
between domain gateways running BEA Tuxedo release 7.1 or later software.

Parameter Name Description Setting

CONNECTION_PRINCIPAL_NAME 
in DMCONFIG 
(TA_DMCONNPRINCIPALNAME in 
DM_MIB)

When this parameter appears in the 
DM_LOCAL_DOMAINS section of the DMCONFIG 
file, its value becomes the principal name of the 
local domain access point when setting up a 
connection with a remote domain access point.*

For default authentication plug-ins, if a value is 
assigned to CONNECTION_PRINCIPAL_NAME 
for the local domain access point, it must be the 
same as the value assigned to the DOMAINID 
parameter for the local domain access point. If 
these values do not match, the local domain 
gateway process will not boot, and the system will 
generate the following userlog(3c) message: 
ERROR: Unable to acquire 
credentials.

1-511 characters. If 
not specified, the 
principal name 
defaults to the 
DOMAINID string for 
the local domain 
access point.

When this parameter appears in the 
DM_REMOTE_DOMAINS section of the 
DMCONFIG file for a particular remote domain 
access point, its value becomes the principal name 
of the remote domain access point when setting 
up a connection with the local domain access 
point.

For default authentication plug-ins, if a value is 
assigned to CONNECTION_PRINCIPAL_NAME 
for a remote domain access point, it must be the 
same as the value assigned to the DOMAINID 
parameter for the remote domain access point. If 
these values do not match, any attempt to set up a 
connection between the local domain gateway 
and the remote domain gateway will fail, and the 
system will generate the following 
userlog(3c) message: ERROR: Unable to 
initialize administration key for 
domain domain_name.

1-511 characters. If 
not specified, the 
principal name 
defaults to the 
DOMAINID string for 
the remote domain 
access point.

*The local domain access point is also known as the LDOM (pronounced “el dom”) or simply local domain. A 
remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.
Using Security in ATMI Applications 2-25



2 Administering Security
The following figure demonstrates how a link is established between domains using 
default authentication plug-ins.

Figure 2-9   Establishing a Link Between Domains Using Default Authentication

“acquire
credentials”

Function

1. Call “initiate
security context”

Function

Credentials

ATMI Security

Authentication Plug-in

dmconfig1

bdmconfig1

*DM_LOCAL_DOMAINS
c01 GWGRP=bankg1
TYPE=TDOMAIN
DOMAINID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1"
SECURITY=DM_PW

*DM_REMOTE_DOMAINS
b01 TYPE=TDOMAIN
DOMAINID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.BK1"

dmconfig2

*DM_LOCAL_DOMAINS
b01 GWGRP=auth

TYPE=TDOMAIN
DOMAINID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.BK1"
SECURITY=DM_PW

*DM_REMOTE_DOMAINS
c01 TYPE=TDOMAIN

DOMAINID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1"

"BA.CEN1"

dmloadcf -y dmconfig1

“acquire
credentials”

Function

2. Call “accept
security context”

Function

Credentials

Authentication Plug-in

bdmconfig2

dmloadcf -y dmconfig2

"BA.BK1"

Network Link

ATMI Security

password
(encrypt)

DM_PW

Part of ATMI Application 2Part of ATMI Application 1

Initiator Domain Gateway (GWTDOMAIN) Target Domain Gateway (GWTDOMAIN)
2-26 Using Security in ATMI Applications



Establishing a Link Between Domains
Note: The “Credentials” shown in the preceding figure were acquired by each 
domain gateway process at application booting using the 
CONNECTION_PRINCIPAL_NAME identity configured for the local domain 
access point.

In the preceding figure, notice that the information exchanged between the initiator and 
target domain gateways involves the CONNECTION_PRINCIPAL_NAME strings 
configured for the domain gateways, as specified in the BDMCONFIG files. Each 
authentication plug-in uses the password assigned to the remote domain access point 
(as defined in the DM_PASSWORDS section of the BDMCONFIG file) to encrypt the string 
before transmitting it over the network, and uses the password assigned to the local 
domain access point (as defined in the DM_PASSWORDS section of the BDMCONFIG file) 
to decrypt the received string. The encryption algorithm used is 56-bit DES, where 
DES is an acronym for the Data Encryption Standard.

For the encryption/decryption operation to succeed, the assigned password for the 
remote domain access point in the local BDMCONFIG file must be the same as the 
assigned password for the local domain access point in the remote BDMCONFIG file. 
(Similarly, if the domain security level is set to APP_PW, the application passwords in 
the respective TUXCONFIG files must be identical for the encryption/decryption 
operation to succeed.) For the authentication process to succeed, the received string 
must match the CONNECTION_PRINCIPAL_NAME string configured for the sender.

When the domain gateways pass the security checks, the link is established, and the 
gateways can forward service requests and receive replies over the established link.

Example DMCONFIG Entries for Establishing a Link

In the following example, the configurations shown in the local DMCONFIG file are used 
when establishing a connection through the local domain access point c01 and the 
remote domain access point b01.

*DM_LOCAL_DOMAINS
# <LDOM name> <Gateway Group name> <domain type> 
# <domain id> [<connection principal name>] [<security>]...
c01 GWGRP=bankg1

TYPE=TDOMAIN
DOMAINID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
SECURITY=DM_PW

.

Using Security in ATMI Applications 2-27



2 Administering Security
.

.

*DM_REMOTE_DOMAINS
# <RDOM name> <domain type> <domain id> 
# [<connection principal name>]...
b01 TYPE=TDOMAIN

DOMAINID="BA.BANK01"
CONNECTION_PRINCIPAL_NAME="BA.BANK01"

See Also

n “Specifying Principal Names” on page 2-11

n “Mandating Interoperability Policy” on page 2-15

n “Setting ACL Policy” on page 2-29

n “Security Administration Tasks” on page 2-3

n “How to Set Up Domains Authentication” on page 2-42 in Using the BEA 
Tuxedo Domains Component
2-28 Using Security in ATMI Applications



Setting ACL Policy
Setting ACL Policy

As the administrator, you use the following configuration parameters to set and control 
the access control list (ACL) policy between ATMI applications running BEA Tuxedo 
release 7.1 or later software.

The following three figures show how the ACL_POLICY configuration affects the 
operation of local domain gateway (GWTDOMAIN) processes.

Parameter Name Description Setting

ACL_POLICY in DMCONFIG 
(TA_DMACLPOLICY in DM_MIB)

May appear in the DM_REMOTE_DOMAINS 
section of the DMCONFIG file for each remote 
domain access point. Its value for a particular 
remote domain access point determines whether 
or not the local domain gateway modifies the 
identity of service requests received from the 
remote domain.*

LOCAL or GLOBAL. 
Default is LOCAL.

LOCAL means modify 
the identity of service 
requests, and GLOBAL 
means pass service 
requests with no change.

LOCAL_PRINCIPAL_NAME in 
DMCONFIG 
(TA_DMLOCALPRINCIPALNAM
E in DM_MIB)

May appear in the DM_REMOTE_DOMAINS 
section of the DMCONFIG file for each remote 
domain access point. If the ACL_POLICY 
parameter is set (or defaulted) to LOCAL for a 
particular remote domain access point, the local 
domain gateway modifies the identify of service 
requests received from the remote domain to the 
principal name specified in 
LOCAL_PRINCIPAL_NAME.

1-511 characters. If not 
specified, the principal 
name defaults to the 
DOMAINID string for the 
remote domain access 
point.

*A remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.
Using Security in ATMI Applications 2-29



2 Administering Security
Figure 2-10   Establishing a Local ACL Policy

In the preceding figure, each domain gateway (GWTDOMAIN) modifies inbound client 
requests (requests originating from the remote application and received over the 
network connection) so that they take on the LOCAL_PRINCIPAL_NAME identity 
configured for the remote domain access point and thus have the same access 
permissions as that identity. Each domain gateway passes outbound client requests 
without change.

In this configuration, each ATMI application has an ACL database containing entries 
only for users in its own domain. One such user is the LOCAL_PRINCIPAL_NAME 
identity configured for the remote domain access point.

Note: The preceding description also applies to ATMI applications running BEA 
Tuxedo pre-release 7.1 software except that the system uses the DOMAINID 
identity configured for the remote domain access point. Essentially, the local 
ACL policy is hardcoded in BEA Tuxedo release 6.5 or earlier software.

Network
Connection (Link)

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software

inbound

outbound

outbound

inbound

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Server Server

ACL_POLICY=LOCAL
(Default)

ACL_POLICY=LOCAL
(Default)

GWTDOMAIN GWTDOMAIN
2-30 Using Security in ATMI Applications



Setting ACL Policy
Figure 2-11   Establishing a Global ACL Policy

In the preceding figure, each domain gateway (GWTDOMAIN) passes inbound and 
outbound client requests without change. In this configuration, each ATMI application 
has an ACL database containing entries for users in its own domain as well as users in 
the remote domain.

Network
Connection (Link)

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software

inbound

outbound

outbound

inbound

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Server Server

ACL_POLICY=GLOBAL

GWTDOMAIN

(Pass-through)
ACL_POLICY=GLOBAL

GWTDOMAIN

(Pass-through)
Using Security in ATMI Applications 2-31



2 Administering Security
Figure 2-12   Establishing a One-way Local and One-way Global ACL Policy

In the preceding figure, the domain gateway (GWTDOMAIN) in ATMI application 1 
modifies inbound client requests so that they take on the LOCAL_PRINCIPAL_NAME 
identity configured for the remote domain access point for ATMI application 2 and 
thus have the same access permissions as that identity; the domain gateway passes 
outbound client requests without change. The domain gateway (GWTDOMAIN) in ATMI 
application 2 passes inbound and outbound client requests without change.

In this configuration, ATMI application 1 has an ACL database containing entries only 
for users in its own domain; one such user is the LOCAL_PRINCIPAL_NAME identity 
configured for the remote domain access point for application 2. ATMI application 2 
has an ACL database containing entries for users in its own domain as well as users in 
ATMI application 1.

Impersonating the Remote Domain Gateway

If the domain gateway receives a client request from a remote domain for which the 
ACL_POLICY parameter is set (or defaulted) to LOCAL in the local DMCONFIG file, the 
domain gateway performs the following tasks.

Network
Connection (Link)

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software

inbound

outbound

outbound

inbound

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Server Server

ACL_POLICY=LOCAL

GWTDOMAIN

(Default)
ACL_POLICY=GLOBAL

GWTDOMAIN

(Pass-through)
2-32 Using Security in ATMI Applications



Setting ACL Policy
1. Calls the internal impersonate user function to get authorization and auditing 
tokens for the client based on the LOCAL_PRINCIPAL_NAME identity configured for 
the remote domain access point.

2. Uses these tokens to overwrite the tokens already attached to the client request.

3. Forwards the request to the destination server.

For more detail on the impersonate user function, see “Establishing an Identity for an 
Older Client” on page 2-20.

Example DMCONFIG Entries for ACL Policy

In the following example, the connection through the remote domain access point b01 
is configured for global ACL in the local DMCONFIG file, meaning that the domain 
gateway process for domain access point c01 passes client requests from and to 
domain access point b01 without change. For global ACL, the 
LOCAL_PRINCIPAL_NAME entry for domain access point b01 is ignored.

*DM_LOCAL_DOMAINS
# <LDOM name> <Gateway Group name> <domain type> <domain id> 
# [<connection principal name>] [<security>]...
c01 GWGRP=bankg1

TYPE=TDOMAIN
DOMAINID="BA.CENTRAL01"
CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
SECURITY=DM_PW

.

.

.

*DM_REMOTE_DOMAINS
# <RDOM name> <domain type> <domain id> [<ACL policy>] 
# [<connection principal name>] [<local principal name>]...
b01 TYPE=TDOMAIN

DOMAINID="BA.BANK01"
ACL_POLICY=GLOBAL
CONNECTION_PRINCIPAL_NAME="BA.BANK01"
LOCAL_PRINCIPAL_NAME="BA.BANK01.BOB"
Using Security in ATMI Applications 2-33



2 Administering Security
See Also

n “Specifying Principal Names” on page 2-11

n “Mandating Interoperability Policy” on page 2-15

n “Establishing a Link Between Domains” on page 2-24

n “Security Administration Tasks” on page 2-3

Setting Credential Policy

As the administrator, you use the following configuration parameter to set and control 
the credential policy between ATMI applications running BEA Tuxedo release 8.0 or 
later software.

Parameter Name Description Setting

CREDENTIAL_POLICY in 
DMCONFIG 
(TA_DMCREDENTIALPOLICY in 
DM_MIB)

May appear in the DM_REMOTE_DOMAINS 
section of the DMCONFIG file for each remote 
domain access point. Its value for a particular 
remote domain access point determines whether 
the credentials of the user who initiated a request 
are attached to the invocation of a remote 
domain.*

Note that this parameter controls whether or not 
user credentials are sent to a remote domain.  The 
ACL_POLICY parameter is related to this one 
and controls whether or not incoming credentials 
are accepted by a domain.

LOCAL or GLOBAL. 
Default is LOCAL.

LOCAL means do not 
attach the credentials of 
the requesting user to the 
remote domain 
invocation, and GLOBAL 
means attach the 
credentials of the 
requesting user to the 
remote domain 
invocation.

*A remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.
2-34 Using Security in ATMI Applications



Administering Authorization
Administering Authorization

Authorization enforces limitations on user access to resources or facilities within an 
ATMI application in accordance with application-specific rules. Only when users are 
authenticated to join an ATMI application does authorization go into effect.

The procedures for administering authorization depend upon the underlying 
authorization system of the ATMI application. For procedures to administer a custom 
authorization system, see the documentation for that system. For procedures to 
administer the default authorization system, see “Administering Default 
Authentication and Authorization” on page 2-57.

See Also

n “Authorization” on page 1-12

n “Default Authentication and Authorization” on page 1-45

n “Administering Default Authentication and Authorization” on page 2-57

n “Security Administration Tasks” on page 2-3

n “Security Compatibility” on page 1-60

Administering Link-Level Encryption

Link-level encryption establishes data privacy for messages moving over the network 
links that connect the machines in an ATMI application. There are three levels of 
link-level encryption (LLE) security: 0-bit (no encryption), 56-bit (International), and 
128-bit (United States and Canada). The International LLE version allows 0-bit and 
56-bit encryption. The United States and Canada LLE version allows 0, 56, and 128-bit 
encryption.

LLE applies to the following types of ATMI links:
Using Security in ATMI Applications 2-35



2 Administering Security
n Workstation client to workstation handler (WSH)

n Bridge-to-Bridge

n Administrative utility (such as tmboot) to tlisten

n Domain gateway to domain gateway

Understanding min and max Values

Before you can configure LLE for your ATMI application, you need to be familiar with 
the LLE notation: (min, max). The defaults for these parameters are:

n For min: 0

n For max: Number of bits that indicates the highest level of encryption possible 
for the installed LLE version

For example, the default min and max values for the United States and Canada LLE 
version are (0, 128). If you want to change the defaults, you can do so by assigning new 
values to min and max in the UBBCONFIG file for your application.

For more information, see “How LLE Works” on page 1-24 and “Encryption Key Size 
Negotiation” on page 1-24.

Verifying the Installed LLE Version

You can verify the LLE version installed on a machine by running the tmadmin 
command in verbose mode.

tmadmin -v

Key lines from the local BEA Tuxedo lic.txt file will appear on your computer 
screen, similar to the sample display shown below. The sample entry STRENGTH=128 
indicates a United States and Canada LLE version.

[BEA Tuxedo] VERSION=8.0
[LINK ENCRYPTION] VERSION=8.0
STRENGTH=128

.

2-36 Using Security in ATMI Applications



Administering Link-Level Encryption
.

.

All BEA Tuxedo licenses are in the $TUXDIR/udataobj/lic.txt file on a UNIX 
host machine, or in the %TUXDIR%\udataobj\lic.txt file on a Windows 2000 host 
machine.

How to Configure LLE on Workstation Client Links

If Workstation clients are included in an application, the administrator must configure 
one or more workstation listeners (WSLs) to listen for connection requests from 
Workstation clients. Each WSL uses one or more associated workstation handlers 
(WSHs) to handle the Workstation client workload. Each WSH can manage multiple 
Workstation clients by multiplexing all requests and replies with a particular 
Workstation client over a single connection.

As the administrator, you enable Workstation client access to the ATMI application by 
specifying a WSL server in the SERVERS section of the application’s UBBCONFIG file. 
You need to specify the -z and -Z command-line options for the WSL server if you 
want to override the defaults for the LLE min and max parameters. (See 
“Understanding min and max Values” on page 2-36 for details.) Of course, link-level 
encryption is possible only if LLE is installed on both the local machine and the 
Workstation client.

Note: At the Workstation client end of a network connection, you use environment 
variables TMINENCRYPTBITS and TMAXENCRYPTBITS to override the defaults 
for the LLE min and max parameters.

To configure LLE on Workstation client links, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the 
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the SERVERS 
section:

*SERVERS
WSL SRVGRP="group_name" SRVID=server_number ...

CLOPT="-A -- -z min -Z max ..."
Using Security in ATMI Applications 2-37



2 Administering Security
3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, it passes the 
"-A -- -z min -Z max" command-line options to the WSL server. When 
establishing a network link between a Workstation client and the WSH, the 
Workstation client and WSL negotiate the key size until they agree on the largest key 
size supported by both.

See WSL(5), WS_MIB(5), and UBBCONFIG(5) in the File Formats, Data Descriptions, 
MIBs, and System Processes Reference for additional information.

How to Configure LLE on Bridge Links

The BEA Tuxedo system architecture optimizes network communications by 
establishing a multiplexed channel among the machines in a multiple-machine 
application. BEA Tuxedo messages flow in both directions over this channel, and the 
message traffic is managed by a specialized ATMI server known as a Bridge server.

As the administrator, you place an entry in the NETWORK section of the UBBCONFIG file 
for each machine in an ATMI application on which a Bridge server resides. You need 
to specify the MINENCRYPTBITS and MAXENCRYPTBITS optional run-time parameters 
for the Bridge server if you want to override the defaults for the LLE min and max 
parameters. (See “Understanding min and max Values” on page 2-36 for details.) Of 
course, Bridge-to-Bridge link-level encryption is possible only if LLE is installed on 
the machines where the Bridge servers reside.

To configure LLE on Bridge links, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the 
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the NETWORK 
section:

*NETWORK
LMID NADDR="bridge_network_address" BRIDGE="bridge_device"

NLSADDR="listen_network_address"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max
2-38 Using Security in ATMI Applications



Administering Link-Level Encryption
LMID is the logical machine where the Bridge server resides; it has direct access 
to the network device specified in the BRIDGE parameter.

3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, the Bridge 
server reads the TUXCONFIG file to access various parameters, including 
MINENCRYPTBITS and MAXENCRYPTBITS. When establishing a network link with a 
remote Bridge server, the local and remote Bridge servers negotiate the key size until 
they agree on the largest key size supported by both.

See TM_MIB(5) and UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, 
and System Processes Reference for additional information.

How to Configure LLE on tlisten Links

tlisten(1) is a network-independent listener process that provides connections 
between nodes of a multiple-machine application, on which administrative utilities 
such as tmboot(1) can run. The application administrator installs tlisten on all 
machines defined in the NETWORK section of the UBBCONFIG file.

To configure LLE on tlisten links, follow the steps given in the previous topic, 
“How to Configure LLE on Bridge Links” on page 2-38. If you so desire, you can start 
a separate instance of tlisten on the local machine by entering a command such as:

tlisten -l nlsaddr [-z min -Z max]

The nlsaddr value must be the same as that specified for the NLSADDR parameter for 
this machine in the NETWORK section of the UBBCONFIG file. See tlisten(1) in the 
BEA Tuxedo Command Reference, and TM_MIB(5) and UBBCONFIG(5) in the File 
Formats, Data Descriptions, MIBs, and System Processes Reference for additional 
information.
Using Security in ATMI Applications 2-39



2 Administering Security
How to Configure LLE on Domain Gateway Links

A domain gateway is a GWTDOMAIN process that relays service requests and service 
replies between two or more ATMI applications. It provides interoperability through a 
specially designed transaction processing (TP) protocol that flows over network 
transport protocols such as TCP/IP.

A domain gateway belongs to a domain gateway group, for which a separate Domains 
configuration file is required. A domain gateway group consists of a local domain 
access point (LDOM) and the remote domain access points (RDOMs) with which the LDOM 
communicates. Like the application configuration files, UBBCONFIG and TUXCONFIG, 
a Domains configuration file is created in text format and then converted to binary 
format. The text and binary files are referred to as DMCONFIG and BDMCONFIG, 
respectively. The DMCONFIG and BDMCONFIG files, and the environment variables 
associated with them, are described on the DMCONFIG(5) reference page in the File 
Formats, Data Descriptions, MIBs, and System Processes Reference.

As the administrator, you must place an entry in the DM_TDOMAIN section of the 
DMCONFIG file for each local domain access point that will accept requests for local 
services from remote domain access points. You must also create an entry for each 
remote domain access point accessible by a defined local domain access point. You 
need to specify the MINENCRYPTBITS and MAXENCRYPTBITS optional run-time 
parameters for each domain access point for which you want to override the defaults 
for the LLE min and max parameters. (See “Understanding min and max Values” on 
page 2-36 for details.) Of course, domain-to-domain link-level encryption is possible 
only if LLE is installed on the machines where the domains reside.
2-40 Using Security in ATMI Applications



Administering Link-Level Encryption
To configure LLE on domain gateway links, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.

2. Open DMCONFIG with a text editor and add the following lines to the DM_TDOMAIN 
section:

*DM_TDOMAIN
# Local network addresses
LDOM NWADDR="local_domain_network_address"

NWDEVICE="local_domain_device"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

.

.

.

# Remote network addresses
RDOM NWADDR="remote_domain_network_address"

NWDEVICE="remote_domain_device"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

.

.

.

LDOM is a local domain access point identifier, and RDOM is a remote domain 
access point identifier.

3. Load the configuration by running dmloadcf(1). The dmloadcf command 
parses DMCONFIG and loads the binary BDMCONFIG file to the location referenced 
by the BDMCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, each domain 
gateway reads the BDMCONFIG file to access various parameters, including 
MINENCRYPTBITS and MAXENCRYPTBITS, and propagates those parameters to its local 
and remote domains. When the local domain is establishing a network link with a 
remote domain, the two domains negotiate the key size until they agree on the largest 
key size supported by both.

See DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System 
Processes Reference for additional information. Also, see “Setting Up Security in 
Domains” on page 2-35“ in Using the BEA Tuxedo Domains Component.
Using Security in ATMI Applications 2-41



2 Administering Security
See Also

n “Link-Level Encryption” on page 1-23

n “Security Administration Tasks” on page 2-3

n “Security Interoperability” on page 1-55

n “Security Compatibility” on page 1-60

Administering Public Key Security

The most effective way to make a distributed ATMI application secure is to combine 
link-level encryption with public key encryption. Public key encryption is the 
framework on which public key security is built.

Public key security allows you to incorporate message-based digital signatures and 
message-based encryption into your ATMI applications. Together, these capabilities 
provide data integrity and privacy, which are especially important when an ATMI 
application interacts with other ATMI applications or Workstation clients from outside 
the company.

Recommended Practices for Public Key Security

n The ATMI application’s operating environment largely determines the level of 
security achieved. For maximum safety, install hardware devices that protect 
private key information.

n Establish policies regarding key expiration intervals and key renewal procedures. 
Expiration of a Certification Authority’s certificate might have a dramatic impact 
on system operation, and should be anticipated so updated user certificates can 
be issued in advance.
2-42 Using Security in ATMI Applications



Administering Public Key Security
Assigning Public-Private Key Pairs

Application administrators and developers need to choose a Certification Authority to 
provide public-private key pairs and the digital certificates associated with them. Then 
they must decide how to assign the key pairs to the ATMI application. There are many 
options for assigning key pairs. An administrator can assign one or more of the 
following:

n One public-private key to an entire ATMI application

n A public-private key pair to each machine in an ATMI application

n A public-private key pair to each server in an ATMI application

n A public-private key pair to each service in an ATMI application

n A public-private key pair to each end user

Application administrators and developers are responsible for choosing a method of 
assigning key pairs and assigning them. Once key pairs are assigned, however, no 
more administrative work is required; the plug-ins for public key security distribute 
and manage the keys.

Setting Digital Signature Policy

As the administrator, you use the following configuration parameters to set the digital 
signature policy for your ATMI application.

Parameter Name Description Setting

SIGNATURE_AHEAD in 
UBBCONFIG 
(TA_SIGNATURE_AHEAD in 
TM_MIB)

Maximum permissible time 
difference between (1) the 
timestamp value attached to a 
digitally signed message buffer and 
(2) the time at which the message 
buffer is received. If the signature 
timestamp is too far into the future, 
the receiving process rejects the 
message buffer.

1-2147483647 
seconds. Default is 
3600 seconds (one 
hour).
Using Security in ATMI Applications 2-43



2 Administering Security
Setting a Postdated Limit for Signature Timestamps

SIGNATURE_AHEAD is specified at the domain-wide level of the configuration 
hierarchy, meaning that the value you assign to it applies to all processes running in 
the ATMI application. Domain-wide parameters are set in the RESOURCES section in 
the UBBCONFIG file, and the T_DOMAIN class in the TM_MIB.

The SIGNATURE_AHEAD parameter establishes the maximum permissible time 
difference between (1) the timestamp attached to the incoming message buffer and (2) 
the current time shown on the verifying system’s local clock. The minimum value is 1 
second; the maximum, 2147483647 seconds. The default is 3600 seconds (one hour).

If the attached timestamp shows a time too far into the future, the signature is 
considered invalid. This parameter is useful for rejecting signatures that are postdated, 
while allowing a certain amount of leeway for unsynchronized local clocks.

Example UBBCONFIG Entries for Postdated Limit

*RESOURCES
SIGNATURE_AHEAD 2400

SIGNATURE_BEHIND in 
UBBCONFIG 
(TA_SIGNATURE_BEHIND in 
TM_MIB)

Maximum permissible time 
difference between (1) the time at 
which a digitally signed message 
buffer is received and (2) the 
timestamp value attached to the 
message buffer. If the signature 
timestamp is too far into the past, 
the receiving process rejects the 
message buffer.

1-2147483647 
seconds. Default is 
604800 seconds 
(one week).

SIGNATURE_REQUIRED in 
UBBCONFIG 
(TA_SIGNATURE_REQUIRED 
in TM_MIB)

Determines whether a receiving 
process will accept only message 
buffers that are digitally signed.

Y (yes—digital 
signature is 
required) or N (no—
digital signature is 
not required). 
Default is N.

Parameter Name Description Setting
2-44 Using Security in ATMI Applications



Administering Public Key Security
Setting a Predated Limit for Signature Timestamps

SIGNATURE_BEHIND is specified at the domain-wide level of the configuration 
hierarchy, meaning that the value you assign to it applies to all processes running in 
the ATMI application. Domain-wide parameters are set in the RESOURCES section in 
the UBBCONFIG file, and the T_DOMAIN class in the TM_MIB.

The SIGNATURE_BEHIND parameter establishes the maximum permissible time 
difference between (1) the current time shown on the verifying system’s local clock 
and (2) the timestamp attached to the incoming message buffer. The minimum value 
is 1 second; the maximum, 2147483647 seconds. The default is 604800 seconds (one 
week).

If the attached timestamp shows a time too far into the past, the signature is considered 
invalid. This parameter is useful for resisting replay attacks, in which a valid signed 
buffer is injected into the system a second time. However, in a system with 
asynchronous communication—for example, in a system in which disk-based queues 
are used—buffers signed a long time ago may still be considered valid. So, in a system 
with asynchronous communication, you may want to increase the SIGNATURE_BEHIND 
setting.

Example UBBCONFIG Entries for Predated Limit

*RESOURCES
SIGNATURE_BEHIND 300000

Enforcing the Signature Policy for Incoming Messages

SIGNATURE_REQUIRED may be specified any of the following four levels in the 
configuration hierarchy:

n RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

n MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

n GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

n SERVICES section in UBBCONFIG or T_SERVICE class in TM_MIB

Setting SIGNATURE_REQUIRED to Y (yes) at a particular level means that signatures are 
required for all processes running at that level or below. For example, setting 
SIGNATURE_REQUIRED to Y for a machine named mach1 means that all processes 
running on mach1 will accept only incoming messages that are digitally signed.
Using Security in ATMI Applications 2-45



2 Administering Security
n Set at the domain-wide level (RESOURCES section or T_DOMAIN class), this 
parameter covers all application services advertised within the domain, including 
those advertised by gateway processes. The default is N.

n Set at the machine level (MACHINES section or T_MACHINE class), this parameter 
covers all application services advertised on a particular machine, including 
those advertised by gateway processes. The default is N.

n Set at the group level (GROUPS section or T_GROUP class), this parameter covers 
all application services advertised by a particular group, including those 
advertised by gateway processes. The default is N.

n Set at the service level (SERVICES section T_SERVICE class), this parameter 
covers all instances of a particular service advertised within the domain, 
including those advertised by gateway processes. The default is N.

You may specify both SIGNATURE_REQUIRED=Y and ENCRYPTION_REQUIRED=Y 
together at the domain-wide level, machine level, group level, or service level. See 
“Enforcing the Encryption Policy for Incoming Messages” on page 2-48 for a 
description of ENCRYPTION_REQUIRED.

Qualifier

The enforcement policy for SIGNATURE_REQUIRED applies only to application 
services, application events, and application enqueue requests. It does not apply to 
system-generated service invocations and system event postings.

Example

To configure SIGNATURE_REQUIRED for a machine named mach1, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the MACHINES 
section:

*MACHINES
mach1 LMID="machine_logical_name"

TUXCONFIG="absolute_path_name_to_tuxconfig_file"
TUXDIR="absolute_path_name_to_BEA_Tuxedo_directory"
APPDIR="absolute_path_name_to_application_directory"
SIGNATURE_REQUIRED=Y
2-46 Using Security in ATMI Applications



Administering Public Key Security
3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, it passes the 
SIGNATURE_REQUIRED=Y parameter to the machine named mach1. At that point, all 
application services advertised by mach1, including those advertised by gateway 
processes, are allowed to accept only messages that include valid digital signatures. If 
a process controlled by mach1 receives a message that does not include a valid digital 
signature, the system takes the following actions:

n Generates a userlog(3c) message (severity WARN)

n Discards the buffer as if it were never received by the process

Note: A NULL (empty) buffer cannot be digitally signed, meaning that the system 
rejects any NULL buffer received by a process requiring digital signatures, in 
the manner stated in the preceding bullet list.

How the EventBroker Signature Policy Is Enforced

When digital signatures are attached to a posted message buffer, these signatures are 
preserved and forwarded along with the message buffer to subscribers for the relevant 
event.

If the TMUSREVT(5) system server is running in a domain, machine, or server group 
that requires digital signatures, it rejects any incoming posting without a TPSIGN_OK 
composite signature status—see “Understanding the Composite Signature Status” on 
page 3-56.

Possible subscription notification actions that the TMUSREVT server might take include 
invoking a service or enqueuing a message. If the target service or queue requires a 
valid digital signature, but one is not attached to the posted message, the subscription 
notification action fails.

System events (events that are posted by the system itself and processed by the 
TMSYSEVT server) may be digitally signed. The administrative policies regarding 
digital signature do not apply to the TMSYSEVT(5) server.
Using Security in ATMI Applications 2-47



2 Administering Security
How the /Q Signature Policy Is Enforced

When digital signatures are attached to a queued buffer, the signatures are preserved 
in the queue and forwarded to the dequeuing process. Also, if a message is processed 
by TMQFORWARD(5) to invoke a service, signatures are preserved.

If the TMQUEUE(5) system server is running in a domain, machine, or server group that 
requires digital signatures, it rejects any incoming enqueue request without a 
TPSIGN_OK composite signature status—see “Understanding the Composite Signature 
Status” on page 3-56. In addition, the TMQUEUE server requires a digital signature if 
such a policy is in effect for the service name associated with the queue space.

How the Remote Client Signature Policy Is Enforced

If the workstation handler (WSH) is running in a domain, machine, or server group that 
requires digital signatures, it rejects any incoming message buffer containing 
application data without a TPSIGN_OK composite signature status—see 
“Understanding the Composite Signature Status” on page 3-56.

Setting Encryption Policy

As the administrator, you use the following configuration parameter to set the 
encryption policy for your ATMI application.

Enforcing the Encryption Policy for Incoming Messages

ENCRYPTION_REQUIRED may be specified at any of the following four levels in the 
configuration hierarchy:

Parameter Name Description Setting

ENCRYPTION_REQUIRED in 
UBBCONFIG 
(TA_ENCRYPTION_REQUIRED 
in TM_MIB)

Determines whether a receiving 
process will accept only message 
buffers that are encrypted.

Y (yes—encryption 
is required) or N 
(no—encryption is 
not required). 
Default is N.
2-48 Using Security in ATMI Applications



Administering Public Key Security
n RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

n MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

n GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

n SERVICES section in UBBCONFIG or T_SERVICE class in TM_MIB

Setting ENCRYPTION_REQUIRED to Y (yes) at a particular level means that encryption 
is required for all processes running at that level or below. For example, setting 
ENCRYPTION_REQUIRED to Y for a machine named mach1 means that all processes 
running on mach1 will accept only incoming messages that are encrypted.

n Set at the domain-wide level (RESOURCES section or T_DOMAIN class), this 
parameter covers all application services advertised within the domain, including 
those advertised by gateway processes. The default is N.

n Set at the machine level (MACHINES section or T_MACHINE class), this parameter 
covers all application services advertised on a particular machine, including 
those advertised by gateway processes. The default is N.

n Set at the group level (GROUPS section or T_GROUP class), this parameter covers 
all application services advertised by a particular group, including those 
advertised by gateway processes. The default is N.

n Set at the service level (SERVICES section T_SERVICE class), this parameter 
covers all instances of a particular service advertised within the domain, 
including those advertised by gateway processes. The default is N.

You may specify both ENCRYPTION_REQUIRED=Y and SIGNATURE_REQUIRED=Y 
together at the domain-wide level, machine level, group level, or service level. See 
“Enforcing the Signature Policy for Incoming Messages” on page 2-45 for a 
description of SIGNATURE_REQUIRED.

Qualifier

The enforcement policy for ENCRYPTION_REQUIRED applies only to application 
services, application events, and application enqueue requests. It does not apply to 
system-generated service invocations and system event postings.

Example

To configure ENCRYPTION_REQUIRED for a server group named STDGRP, follow these 
steps.
Using Security in ATMI Applications 2-49



2 Administering Security
1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the GROUPS 
section:

*GROUPS
STDGRP LMID="machine_logical_name"

GRPNO="server_group_number"
ENCRYPTION_REQUIRED=Y

3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, it passes the 
ENCRYPTION_REQUIRED=Y parameter to the server group named STDGRP. At that 
point, all application services advertised by STDGRP, including those advertised by 
gateway processes, are allowed to accept only messages protected by an encryption 
envelope. If a process controlled by STDGRP receives an unencrypted message, the 
system takes the following actions:

n Generates a userlog(3c) message (severity ERROR)

n Discards the buffer as if it were never received by the process

Note: A NULL (empty) buffer cannot be encrypted, meaning that the system rejects 
any NULL buffer received by a process requiring encryption, in the manner 
stated in the preceding bullet list.

How the EventBroker Encryption Policy Is Enforced

When a posted message buffer is encrypted, encryption envelopes are preserved and 
forwarded, along with the encrypted message content, to subscribers for the relevant 
event.

If the TMUSREVT(5) system server is running in a domain, machine, or server group 
that requires encryption, it rejects any incoming posting message that is not encrypted.

Possible subscription notification actions that the TMUSREVT server might take include 
invoking a service or enqueuing a message. If the target service or queue requires 
encrypted input, but the posted message is not encrypted, the subscription notification 
action fails. Also, if the subscriber does not possess an appropriate decryption key, the 
event notification action fails.
2-50 Using Security in ATMI Applications



Administering Public Key Security
System events (events that are posted by the system itself and processed by the 
TMSYSEVT server) may be encrypted. The administrative policies regarding encryption 
do not apply to the TMSYSEVT(5) server.

How the /Q Encryption Policy Is Enforced

When a queued message buffer is encrypted, this status is preserved in the queue, and 
the buffer is forwarded, in encrypted form, to the dequeuing process. Also, if a 
message is processed by TMQFORWARD(5) to invoke a service, encryption status is 
preserved.

If the TMQUEUE(5) system server is running in a domain, machine, or server group that 
requires encryption, it rejects any incoming enqueue request that is not encrypted. In 
addition, the TMQUEUE server requires encryption if such a policy is in effect for the 
service name associated with the queue space.

How the Remote Client Encryption Policy Is Enforced

If the workstation handler (WSH) is running in a domain, machine, or server group that 
requires encryption, it rejects any incoming message buffer containing an unencrypted 
application data buffer.

Initializing Decryption Keys Through the Plug-ins

As the administrator, you use the following configuration parameters to specify 
principal names and decryption keys for the system processes running in your ATMI 
application.

Parameter Name Description Setting

SEC_PRINCIPAL_NAME in 
UBBCONFIG 
(TA_SEC_PRINCIPAL_NAME in 
TM_MIB)

The name of the target 
principal, which becomes the 
identity of one or more 
system processes.

1-511 characters.

SEC_PRINCIPAL_LOCATION in 
UBBCONFIG 
(TA_SEC_PRINCIPAL_LOCATION 
in TM_MIB)

The location of the file or 
device where the decryption 
(private) key for the target 
principal resides.

1-511 characters. If 
not specified, 
defaults to a NULL 
(zero length) string.
Using Security in ATMI Applications 2-51



2 Administering Security
This trio of configuration parameters can be specified at any of the following four 
levels in the configuration hierarchy:

n RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

n MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

n GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

n SERVERS section in UBBCONFIG or T_SERVER class in TM_MIB

A principal name and decryption key at a particular configuration level can be 
overridden at a lower level. For example, suppose you configure a principal name and 
decryption key for machine mach1, and a principal name and decryption key for a 
server called serv1 running on mach1. The processes on mach1 behave as follows:

n All processes on mach1 except serv1 processes use the decryption key assigned 
to mach1 to decrypt any received message buffer that is encrypted.

n All serv1 processes use the decryption key assigned to serv1 to decrypt any 
received message buffer that is encrypted.

Configured decryption keys are automatically opened when an ATMI application is 
booted. The following figure demonstrates how the process works.

SEC_PRINCIPAL_PASSVAR in 
UBBCONFIG 
(SEC_PRINCIPAL_PASSVAR in 
TM_MIB)

The variable in which the 
password for the target 
principal is stored.

1-511 characters. If 
not specified, 
defaults to a NULL 
(zero length) string.

Parameter Name Description Setting
2-52 Using Security in ATMI Applications



Administering Public Key Security
Figure 2-13   How a Decryption Key Is Initialized Example

*RESOURCES
SEC_PRINCIPAL_NAME “Tommy”

SEC_PRINCIPAL_PASSVAR “TOMMY_VAR”
SEC_PRINCIPAL_LOCATION “/home/...”

Public Key Initialization

PKi_init

Public Key Security Plug-in Interface

Myubbconfig

Mytuxconfig

tmloadcf -y myubbconfig
Enter password for Tommy:
password

(User Input)
(System Response)
(User Input)

Proof Material Mapping

map_proof

tpkey_open(key_handle, “Tommy”, “/home/...”, 
“password”, password_len, TPKEY_DECRYPT);

Decryption Key Handle for Tommy

Re-enter password for Tommy:
password

(System Response)
(User Input)

tmboot()

BEA Tuxedo Library

 ATMI Security
Using Security in ATMI Applications 2-53



2 Administering Security
The following is a detailed description of how the operation shown in the preceding 
figure is performed.

1. The administrator defines SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, 
and SEC_PRINCIPAL_PASSVAR at a particular level in the ATMI application’s 
UBBCONFIG file.

2. The administrator loads the configuration by running tmloadcf(1). The 
tmloadcf command parses UBBCONFIG and loads the binary TUXCONFIG file to 
the location referenced by the TUXCONFIG variable.

3. When prompted, the administrator enters and then re-enters the password for the 
target principal.

4. The administrator enters the tmboot(1) command to boot the ATMI application.

5. During the boot process, the map_proof plug-in reads SEC_PRINCIPAL_NAME, 
SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR, analyzes their 
values, and then determines whether the calling process has proven its right to 
access the requested decryption key. (Having access to a decryption key, or 
private key, is equivalent to possessing the principal’s identity.)

6. If the password associated with SEC_PRINCIPAL_PASSVAR matches the assigned 
password for the principal specified in SEC_PRINCIPAL_NAME, the map_proof 
plug-in passes the name, location, and password of the principal to the PKi_init 
plug-in.

7. The PKi_init plug-in calls tpkey_open(3c) with the name, location, and 
password of the principal as arguments. It returns a decryption key handle for the 
principal.

Each time you invoke tmloadcf to load the configuration, you are prompted to enter 
the password for each of the decryption keys configured with 
SEC_PRINCIPAL_PASSVAR. If you want to avoid having to enter each password 
manually, you can write a script that automatically enters the passwords. The script 
must include a definition of each password variable, and it must end with the following 
line:

tmloadcf -y ubbconfig_name < /dev/null

No application process has permission to close a decryption key opened during ATMI 
application booting. The decryption keys stay open until you run the tmshutdown(1) 
command to shut down the ATMI application.
2-54 Using Security in ATMI Applications



Administering Public Key Security
Example UBBCONFIG Entries for Principal Names and Decryption Keys

*RESOURCES
SEC_PRINCIPAL_NAME "Tommy"
SEC_PRINCIPAL_LOCATION "/home/jhn/secsapp/cert/tommy.pvk"
SEC_PRINCIPAL_PASSVAR "TOMMY_VAR"

.

.

.

*SERVERS
"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1

CLOPT="-s secsdb:TMQUEUE"
SEC_PRINCIPAL_NAME= "TOUPPER"
SEC_PRINCIPAL_LOCATION="/home/jhn/secsapp/cert/TOUPPER.pvk"
SEC_PRINCIPAL_PASSVAR= "TOUPPER_VAR"

Failure Reporting and Auditing

This topic explains how the system manages errors found through digital signatures 
and message encryption.

Digital Signature Error Handling

If message tampering is detected (that is, if the composite signature status is either 
TPSIGN_TAMPERED_MESSAGE or TPSIGN_TAMPERED_CERT—see “Understanding the 
Composite Signature Status” on page 3-56), the system takes the following actions:

n Generates a userlog(3c) message (severity ERROR)

n Discards the buffer as if it were never received by the process

If any individual signature associated with an expired certificate, revoked certificate, 
expired signature, or postdated signature is detected, the system takes the following 
actions:

n Generates a userlog() message (severity WARN)

n Discards the buffer as if it were never received by the process unless the buffer’s 
composite signature status is TPSIGN_OK or TPSIGN_UNKNOWN
Using Security in ATMI Applications 2-55



2 Administering Security
If a process that requires a valid digital signature (based on the 
SIGNATURE_REQUIRED=Y setting) receives a message with the composite signature 
status TPSIGN_UNKNOWN, the system takes the following actions:

n Generates a userlog() message (severity WARN)

n Discards the buffer as if it were never received by the process

Encryption Error Handling

If a process receives an encrypted message but does not possess an open decryption 
key matching one of the message’s encryption envelopes, the system takes the 
following actions:

n Generates a userlog(3c) message (severity ERROR)

n Discards the buffer as if it were never received by the process

If a process that requires encrypted input (based on the ENCRYPTION_REQUIRED=Y 
setting) receives an unencrypted message, the system takes the following actions:

n Generates a userlog() message (severity ERROR)

n Discards the buffer as if it were never received by the process

See Also

n “Public Key Security” on page 1-29

n “Public Key Implementation” on page 1-42

n “Security Administration Tasks” on page 2-3

n “Security Interoperability” on page 1-55

n “Security Compatibility” on page 1-60
2-56 Using Security in ATMI Applications



Administering Default Authentication and Authorization
Administering Default Authentication and 
Authorization

Default authentication and authorization work in the same manner that authentication 
and authorization have worked since they were first made available with the BEA 
Tuxedo system.

Default authentication provides three levels of security: no authentication (NONE), 
application password (APP_PW), and user-level authentication (USER_AUTH). Default 
authorization provides two levels of security: optional access control list (ACL) and 
mandatory access control list (MANDATORY_ACL). Only when users are authenticated to 
join an ATMI application does the access control list become active.

Designating a Security Level

As the administrator, you can use one of three ways to designate a security level for an 
ATMI application: by editing the UBBCONFIG configuration file, by changing the 
TM_MIB, or by using the BEA Administration Console.

Establishing Security by Editing the Configuration File

In your UBBCONFIG file, set the SECURITY parameter to the appropriate value:

SECURITY {NONE | APP_PW | USER_AUTH | ACL | MANDATORY_ACL}

The default is NONE. If SECURITY is set to USER_AUTH, ACL, or MANDATORY_ACL, then 
a system-supplied authentication server named AUTHSVR is invoked to perform 
per-user authentication.

If you select any value other than NONE, make sure that the value of the APPDIR 
variable is unique for each ATMI application running on the MASTER site. Multiple 
ATMI applications cannot share the same application directory if security features are 
being used.
Using Security in ATMI Applications 2-57



2 Administering Security
Establishing Security by Changing the TM_MIB

To designate a security level through the TM_MIB, you must assign a value to the 
TA_SECURITY attribute in the T_DOMAIN class. When an ATMI application is inactive, 
the administrator can SET the value of TA_SECURITY to any of the values that are valid 
in UBBCONFIG. To complete this task, run the administrative interface 
tpadmcall(3c).

Establishing Security by Using the BEA Administration Console

You can also designate a security level through the BEA Administration Console. The 
BEA Administration Console is a Web-based tool used to configure, monitor, and 
dynamically reconfigure an ATMI application.

Configuring the Authentication Server

The BEA Tuxedo server called AUTHSVR provides a single service, AUTHSVC, which 
performs authentication. AUTHSVC is advertised by the AUTHSVR server as ..AUTHSVC 
when the security level is set to ACL or MANDATORY_ACL.

To add AUTHSVC to an ATMI application, you need to define AUTHSVC as the 
authentication service and AUTHSVR as the authentication server in the UBBCONFIG file. 
For example:

*RESOURCES
SECURITY   USER_AUTH
AUTHSVC AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 
CLOPT="-A"

If you omit the parameter-value entry AUTHSVC AUTHSVC, the system calls AUTHSVC 
by default.

As another example:

*RESOURCES
SECURITY   ACL
2-58 Using Security in ATMI Applications



Administering Default Authentication and Authorization
AUTHSVC ..AUTHSVC
.
.
.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 
CLOPT="-A"

If you omit the parameter-value entry AUTHSVC ..AUTHSVC, the system calls 
..AUTHSVC by default.

AUTHSVR may be replaced with an authentication server that implements logic specific 
to the ATMI application. For example, a company may want to develop a custom 
authentication server so that it can use the popular Kerberos mechanism for 
authentication.

To add a custom authentication service to an ATMI application, you need to define 
your authentication service and server in the UBBCONFIG file. For example:

*RESOURCES
SECURITY   USER_AUTH
AUTHSVC KERBEROS

.

.

.

*SERVERS
KERBEROSSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 
MAXGEN=2 CLOPT="-A"

See Also

n “How to Enable Application Password Security” on page 2-60

n “How to Enable User-Level Authentication Security” on page 2-61

n “Enabling Access Control Security” on page 2-65

n “Default Authentication and Authorization” on page 1-45

n “Security Administration Tasks” on page 2-3

n AUTHSVR(5) in the File Formats, Data Descriptions, MIBs, and System 
Processes Reference
Using Security in ATMI Applications 2-59



2 Administering Security
How to Enable Application Password 
Security

Default authentication offers an application password security level that you invoke 
by specifying SECURITY APP_PW in your configuration file. This level requires that 
every client provide an application password as part of the process of joining the ATMI 
application. The administrator defines a single password for the entire ATMI 
application and gives the password only to authorized users.

To enable the APP_PW security level, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.

2. Set the SECURITY parameter in the RESOURCES section of the UBBCONFIG file to 
APP_PW.

3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30 
characters long. It becomes the password for the ATMI application and remains 
in effect until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application 
through an offline means such as telephone or letter.

See Also

n “Default Authentication and Authorization” on page 1-45

n “Administering Default Authentication and Authorization” on page 2-57

n “Security Administration Tasks” on page 2-3
2-60 Using Security in ATMI Applications



How to Enable User-Level Authentication Security
How to Enable User-Level Authentication 
Security

Default authentication offers a user-level authentication security level that you invoke 
by specifying SECURITY USER_AUTH in your configuration file. This security level 
requires that in addition to the application password, each client must provide a valid 
username and user-specific data, such as a password, to join the ATMI application. 
The per-user password must match the password associated with the combination 
user-client name stored in a file named tpusr. The checking of per-user password 
against the password and user-client name in tpusr is carried out by the authentication 
service AUTHSVC, which is provided by the authentication server AUTHSVR.

To enable the USER_AUTH security level, follow these steps.

1. Set up the UBBCONFIG file.

2. Set up the user and group files.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES 
and SERVERS sections:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 
CLOPT="-A"
Using Security in ATMI Applications 2-61



2 Administering Security
CLOPT="-A" causes tmboot(1) to pass only the default command-line options 
(invoked by "-A") to AUTHSVR when tmboot starts the ATMI application. By 
default, AUTHSVR uses the client user information in a file named tpusr to 
authenticate clients that want to join the ATMI application. tpusr resides in the 
directory referenced by the first pathname defined in the ATMI application’s 
APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30 
characters long. It becomes the password for the ATMI application and remains 
in effect until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application 
through an offline means such as telephone or letter.

Setting Up the User and Group Files

AUTHSVR and the access control checking feature available with the default 
authorization system require a user file named tpusr, which contains a list of client 
users allowed to join the ATMI application. tpusr is maintained by the application 
administrator using the tpusradd(1), tpusrdel(1), and tpusrmod(1) commands. 
The AUTHSVR server takes as input the client user information stored in the tpusr file; 
it uses this information to authenticate clients that want to join the ATMI application.

The following display is a sample entry in the tpusr file.

AUTHSVR and the access control checking feature also require a group file named 
tpgrp, which contains a list of groups associated with the client users allowed to join 
the ATMI application; tpgrp is maintained by the application administrator using the 
tpgrpadd(1), tpgrpdel(1), and tpgrpmod(1) commands.

user name password user identifier client namegroup identifier

smith: 86V7BzAdwrNVs: 9: 156: TPCLTNM,*::
2-62 Using Security in ATMI Applications



How to Enable User-Level Authentication Security
AUTHSVC assigns an authenticated client user an application key, which contains a user 
identifier and associated group identifier for the USER_AUTH, ACL, or MANDATORY_ACL 
security level. (See “Application Key” on page 1-49 for more information about 
application keys.)

The following display is a sample entry in the tpgrp file.

As the administrator, you must define lists of users and groups in the tpusr and tpgrp 
files, both of which are located in the directory referenced by the first path name 
defined in the ATMI application’s APPDIR variable. The files are colon-delimited, flat 
text files, readable and writable only by the application’s administrator.

Converting System Security Data Files to BEA Tuxedo User and Group Files

You may already have files containing lists of users and groups on your host system. 
You can use them as the user and group files for your ATMI application, but only after 
converting them to the format required by the BEA Tuxedo system. To convert your 
files, run the tpaclcvt(1) command, as shown in the following sample procedure. 
The sample procedure is written for a UNIX host machine.

1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.

2. To convert the /etc/password file into the format needed by the BEA Tuxedo 
system, enter the following command.

tpaclcvt -u /etc/password

This command creates the tpusr file and stores the converted data in it. If the 
tpusr file already exists, tpaclcvt adds the converted data to the file, but it 
does not add duplicate user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to 
enter a password for each user in the file.

3. To convert the /etc/group file into the format needed by the BEA Tuxedo 
system, enter the following command.

tpaclcvt -g /etc/group

group identifiergroup name

Administrators:: 156:
Using Security in ATMI Applications 2-63



2 Administering Security
This command creates the tpgrp file and stores the converted data in it. If the 
tpgrp file already exists, tpaclcvt adds the converted data to the file, but it 
does not add duplicate group information to the file.

Adding, Modifying, or Deleting Users and Groups

The BEA Tuxedo system requires that you maintain a list of your application users in 
a file named tpusr, and a list of groups, in a file named tpgrp. There are two methods 
of modifying the entries in these files: by issuing commands or by changing the values 
of the appropriate attributes in the ACL_MIB.

Changing Entries for Users and Groups Through Commands

You can add, modify, or delete entries in the tpusr and tpgrp files at any time by 
running one of the following commands.

To run any of these commands, follow these steps.

1. For an inactive ATMI application, make sure you are working from the application 
MASTER machine. For an active ATMI application, you may work from any 
machine in the configuration.

2. For specific instructions on running a command, see the entry for that command 
in the BEA Tuxedo Command Reference.

Run . . . To . . . An Entry in This File

tpusradd(1) Add tpusr

tpusrmod(1) Modify

tpusrdel(1) Delete

tpgrpadd(1) Add tpgrp

tpgrpmod(1) Modify

tpgrpdel(1) Delete
2-64 Using Security in ATMI Applications



Enabling Access Control Security
Changing Entries for Users and Groups Through the ACL_MIB

If you prefer not to use the command-line interface, you can add, modify, or delete user 
entries in tpusr by changing the appropriate attribute values in the T_ACLPRINCIPAL 
class in the ACL_MIB(5). This method is more efficient than the command-line 
interface if you want to add several user entries simultaneously, since tpusradd(1) 
allows you to add only one user at a time.

Similarly, you can add, modify, or delete group entries in tpgrp by changing the 
appropriate attribute values in the T_ACLGROUP class in the ACL_MIB(5). This method 
is more efficient than the command-line interface if you want to add several group 
entries simultaneously, since tpgrpadd(1) allows you to add only one group at a time.

Of course, the easiest way to access the MIB is via the BEA Administration Console.

See Also

n “Default Authentication and Authorization” on page 1-45

n “Administering Default Authentication and Authorization” on page 2-57

n “Security Administration Tasks” on page 2-3

Enabling Access Control Security

Default authorization consists of an access control checking feature that determines 
which users can execute a service, post an event, or enqueue (or dequeue) a message 
on an application queue. There are two levels of access control security: optional 
access control list (ACL) and mandatory access control list (MANDATORY_ACL). Only 
when users are authenticated to join an ATMI application does the access control list 
become active.

By using an access control list, an administrator can organize users into groups and 
associate the groups with objects that the member users have permission to access. 
Access control is done at the group level for the following reasons:
Using Security in ATMI Applications 2-65



2 Administering Security
n System administration is simplified. It is easier to give a group of people access 
to a new service than it is to give individual users access to the service.

n Performance is improved. Because access permission needs to be checked for 
each invocation of an entity, permission should be resolved quickly. Because 
there are fewer groups than users, it is quicker to search through a list of 
privileged groups than it is to search through a list of privileged users.

The access control checking feature is based on three files that are created and 
maintained by the application administrator:

n tpusr contains a list of users

n tpgrp contains a list of groups

n tpacl contains a list of mappings of groups to application entities (such as 
services) known as the access control list (ACL)

By parsing the client’s application key, which contains information identifying the 
client as a valid user and valid group member, an entity (such as a service, event, or 
application queue) can identify the group to which the user belongs; by checking the 
tpacl file, an entity can determine whether the client’s group has access permission.

The application administrator, application operator, and processes or service requests 
running with the privileges of the application administrator/operator are not subject to 
ACL permission checking.

If user-level ACL entries are needed, they may be implemented by creating a group for 
each user, and then mapping the group to the appropriate application entities in the 
tpacl file.

How to Enable Optional ACL Security

Default authentication offers an optional ACL (ACL) security level that you invoke by 
specifying SECURITY ACL in your configuration file. This security level requires that 
each client provide an application password, a username, and user-specific data, such 
as a password, to join the ATMI application. If there is no entry in the tpacl file 
associated with the target application entity, the user is permitted to access the entity.

This security level enables an administrator to configure access for only those 
resources that need more security. That is, there is no need to add entries to the tpacl 
file for services, events, or application queues that are open to everyone. Of course, if 
2-66 Using Security in ATMI Applications



Enabling Access Control Security
there is an entry in the tpacl file associated with the target application entity and a 
user attempts to access that entity, the user must be a member of a group that is allowed 
to access that entity; otherwise, permission is denied.

To enable the ACL security level, follow these steps.

1. Set up the UBBCONFIG file.

2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES 
and SERVERS sections:

*RESOURCES
SECURITY ACL
AUTHSVC ..AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 
CLOPT="-A"

CLOPT="-A" causes tmboot(1) to pass only the default command-line options 
(invoked by "-A") to AUTHSVR when tmboot starts the ATMI application. By 
default, AUTHSVR uses the client user information in a file named tpusr to 
authenticate clients that want to join the ATMI application. tpusr resides in the 
directory referenced by the first pathname defined in the ATMI application’s 
APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30 
characters long. It becomes the password for the ATMI application and remains 
in effect until you change it by using the passwd command of tmadmin.
Using Security in ATMI Applications 2-67



2 Administering Security
5. Distribute the application password to authorized users of the ATMI application 
through an offline means such as telephone or letter.

Setting Up the ACL File

The access control checking feature requires a user file named tpusr, a group file 
named tpgrp, and an ACL file named tpacl. The ACL file contains mappings of 
groups to application entities. An entity may be a service, event, or application queue.

The following display is a sample entry in the tpacl file.

As the administrator, you must define the entries in the tpacl file, which is located in 
the directory referenced by the first pathname defined in the ATMI application’s 
APPDIR variable. The file is a colon-delimited, flat text file, readable and writable only 
by the application’s administrator.

There are two methods of modifying the ACL entries in the tpacl file: by issuing 
commands or by changing the values of the appropriate attributes in the ACL_MIB.

Changing ACL Entries Through Commands

You can add, modify, or delete ACL entries in the tpacl file at any time by running 
one of the following commands.

To run any of these commands, follow these steps.

1. For an inactive ATMI application, make sure you are working from the application 
MASTER machine. For an active ATMI application, you may work from any 
machine in the configuration.

entity name entity type group identifiers

TOLOWER: SERVICE: 156,281,282,305:

Run . . . To . . .

tpacladd(1) Add an entry

tpaclmod(1) Modify an entry

tpacldel(1) Delete an entry
2-68 Using Security in ATMI Applications



Enabling Access Control Security
2. For specific instructions on running a command, see the entry for that command 
in the BEA Tuxedo Command Reference.

Changing ACL Entries Through the ACL_MIB

If you prefer not to use the command-line interface, you can add, modify, or delete 
ACL entries in tpacl by changing the appropriate attribute values in the T_ACLPERM 
class in the ACL_MIB(5). This method is more efficient than the command-line 
interface if you want to add several ACL entries simultaneously, since tpacladd(1) 
allows you to add only one ACL entry at a time.

Of course, the easiest way to access the MIB is via the BEA Administration Console.

How to Enable Mandatory ACL Security

Default authentication offers a mandatory ACL security level that you invoke by 
specifying SECURITY MANDATORY_ACL in your configuration file. This security level 
requires that each client provide an application password, a username, and 
user-specific data, such as a password, to join the ATMI application. If there is no entry 
in the tpacl file associated with the target application entity, the client is not permitted 
to access the entity. In other words, an entry must exist in the tpacl file for every 
application entity that a client needs to access. For this reason, this level is called 
mandatory.

Of course, if there is an entry in the tpacl file associated with the target application 
entity and a user attempts to access that entity, the user must be a member of a group 
that is allowed to access that entity; otherwise, permission is denied.

To enable the MANDATORY_ACL security level, follow these steps.

1. Set up the UBBCONFIG file.

2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensure that you are working on the ATMI application MASTER machine and that the 
ATMI application is inactive.
Using Security in ATMI Applications 2-69



2 Administering Security
2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES 
and SERVERS sections:

*RESOURCES
SECURITY MANDATORY_ACL
AUTHSVC ..AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 
CLOPT="-A"

CLOPT="-A" causes tmboot(1) to pass only the default command-line options 
(invoked by "-A") to AUTHSVR when tmboot starts the ATMI application. By 
default, AUTHSVR uses the client user information in a file named tpusr to 
authenticate clients that want to join the ATMI application. tpusr resides in the 
directory referenced by the first pathname defined in the ATMI application’s 
APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command 
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced 
by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30 
characters long. It becomes the password for the ATMI application and remains 
in effect until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application 
through an offline means such as telephone or letter.

Setting Up the ACL File

See “Setting Up the ACL File” on page 2-68.

See Also

n “Default Authentication and Authorization” on page 1-45

n “Administering Default Authentication and Authorization” on page 2-57

n “Security Administration Tasks” on page 2-3
2-70 Using Security in ATMI Applications



CHAPTER
3 Programming Security

This topic includes the following sections:

n What Programming Security Means

n Programming an ATMI Application with Security

n Writing Security Code So Client Programs Can Join the ATMI Application

n Writing Security Code to Protect Data Integrity and Privacy

What Programming Security Means

Programming security is the task of writing security code for 
Application-to-Transaction Monitor Interface (ATMI) applications. In addition to the 
code that expresses the logic of the program, application programmers use ATMI to 
link their application code with the BEA Tuxedo transaction monitor. The ATMI 
programming interfaces enable communication among application clients and servers 
running under the control of the BEA Tuxedo transaction monitor. C and COBOL 
implementations of the ATMI are available.

As shown in the following figure, application programmers have access to the ATMI 
functions for authenticating users and controlling user access, and for incorporating 
public key encryption techniques into their applications. Also shown is the absence, at 
the application level, of ATMI functions for auditing or link-level encryption. 
Auditing is accessed at the BEA Tuxedo system level, and link-level encryption is 
configured by the application administrator.
Using Security in ATMI Applications 3-1



3 Programming Security
Figure 3-1   Programming BEA Tuxedo Security

See Also

n “Programming an ATMI Application with Security” on page 3-3

n “What Security Means” on page 1-1

n “What Administering Security Means” on page 2-1

ATMI Applications

BEA Tuxedo Library

ATMI Security

Plug-in Interface

Security Plug-ins

Link-Level
Encryption

Custom

Default
Authentication

Custom

Default
Authorization

Custom

Default
Auditing

Custom

Default
Public Key Security

ATMI for Public Key
Security

Authentication Authorization
Public Key

Security

ATMI for Clients to
Join Application
3-2 Using Security in ATMI Applications



Programming an ATMI Application with Security
Programming an ATMI Application with 
Security

The BEA Tuxedo system offers various ATMI functions for different security needs.

See Also

n “Setting Up the Programming Environment” on page 3-3

Setting Up the Programming Environment

To be able to write security code, an application programmer needs:

n Access to BEA Tuxedo libraries and commands

n Read and execute permissions on the directories and files in the BEA Tuxedo 
system directory structure

If You Are Writing Security Code for 
. . .

Then You Use the ATMI Functions 
Available for . . .

Client programs so that clients can join a 
ATMI application and access application 
services.

Clients joining an ATMI application, which 
in turn invoke system-level calls to the 
authentication and authorization plug-ins.

Both client and server programs to protect the 
integrity and privacy of the data they 
exchange.

Public key security, which supports 
end-to-end digital signing and data 
encryption.
Using Security in ATMI Applications 3-3



3 Programming Security
To obtain access to the required libraries and commands, you must set the TUXCONFIG, 
TUXDIR, APPDIR, and other environment variables in your environment. For details, 
see “How to Set Your Environment” on page 1-3 in Administering a BEA Tuxedo 
Application at Run Time.

The application administrator is responsible for setting the permissions on directories 
and files. See your administrator to get the permissions you need.

See Also

n “Writing Security Code So Client Programs Can Join the ATMI Application” on 
page 3-4

n “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Writing Security Code So Client Programs 
Can Join the ATMI Application

Client programs are responsible for gathering data from outside the application or 
computer, bundling the data into messages, and forwarding the messages to servers for 
processing. Client programs are made available to users through devices such as 
automatic teller machines (ATMs), data entry terminals, and graphics devices.

For default authentication and authorization, application security may be set to one of 
five levels. At the lowest level, no authentication is performed. At the highest level, an 
access control checking feature determines which users can execute a service, post an 
event, or enqueue (or dequeue) a message on an application queue. Setting the security 
level for an ATMI application is the responsibility of the application administrator. 

An application programmer needs to perform two tasks so that a client program can 
join an ATMI application: 

n Get the security data for the specific client process

n Pass that data to the BEA Tuxedo system
3-4 Using Security in ATMI Applications



Writing Security Code So Client Programs Can Join the ATMI Application
The following pseudo-code summarizes the operation of a basic client program. The 
security-related statements are highlighted in bold.

Listing 3-1   Pseudo-code for a Client

main()
{

call tpchkauth() to check security level of ATMI application
get usrname, cltname
prompt for application password
prompt for per-user password
allocate a TPINIT buffer
place initial client identification into TPINIT buffer
call tpinit() to enroll as a client of the ATMI application
allocate buffer
do while true {

place user input in buffer
send service request
receive reply
pass reply to user }

leave application
}

Most of the statements in the preceding listing are implemented by ATMI functions in 
either C or COBOL. The preceding listing shows only the C language implementation.

A client program written in C uses tpinit(3c) to comply with the level of security 
set for the ATMI application and to join the application. The argument to tpinit() is 
a pointer to a TPINIT buffer. To perform the same tasks in a COBOL application, a 
client program calls TPINITIALIZE(3cbl), specifying a pointer to a TPINFDEF-REC 
record as an argument.

See Also

n “Getting Security Data” on page 3-6

n “Joining the ATMI Application” on page 3-8

n “Writing Clients” on page 4-1 in Programming BEA Tuxedo ATMI Applications 
Using C and Programming BEA Tuxedo ATMI Applications Using COBOL
Using Security in ATMI Applications 3-5



3 Programming Security
n tpinit(3c) in BEA Tuxedo ATMI C Function Reference

n TPINITIALIZE(3cbl) in the BEA Tuxedo ATMI COBOL Function Reference

n “Administering Public Key Security” on page 2-42

n “Administering Authorization” on page 2-35

n “Default Authentication and Authorization” on page 1-45

n “Programming an ATMI Application with Security” on page 3-3

Getting Security Data

For general-purpose client programs that are written to work with a variety of 
applications, the BEA Tuxedo system provides an ATMI function that enables a client 
to determine the level of security required by the ATMI application that the client is 
trying to join. This ATMI function, implemented as tpchkauth(3c) for C and 
TPCHKAUTH(3cbl) for COBOL, is designed to work with ATMI applications using 
default authentication and authorization. The tpchkauth() and TPCHKAUTH() 
functions can also be used in ATMI applications in which custom authentication 
and/or authorization is used. How they are used, however, depends on how the custom 
security features are implemented. For the most part, this discussion focuses on default 
authentication and authorization.

An application programmer writing in C uses tpchkauth() to check the ATMI 
application’s security level before calling tpinit(3c), so that the client program can 
prompt for the application password and the user authentication data needed for the 
tpinit() call; tpchkauth() is called without arguments.

An application programmer writing in COBOL uses TPCHKAUTH() for the same 
purpose before calling TPINITIALIZE(3cbl). The syntax and functionality of 
TPCHKAUTH(3cbl) and TPINITIALIZE(3cbl) are the same as those of 
tpchkauth(3c) and tpinit(3c).

The tpchkauth() function (or TPCHKAUTH() routine) returns one of the following 
values.
3-6 Using Security in ATMI Applications



Getting Security Data
TPNOAUTH 
Nothing is required beyond the normal operating system login and file 
permission security. TPNOAUTH is returned for security level NONE.

TPSYSAUTH 
An application password is required. The client program should prompt the 
user to provide the password, and should put it in the password field of the 
TPINIT buffer for C, or TPINFDEF-REC record for COBOL. TPSYSAUTH is 
returned for security level APP_PW. 

The application administrator informs users of the application password, and 
the application programmer writes client-program code to prompt users for 
the application password and to put the user-supplied password, as plain text, 
in the password field of the TPINIT buffer or TPINFDEF-REC record. The 
password should not be displayed on the user’s screen.

BEA Tuxedo system-supplied client programs, such as ud, wud(1), prompt 
for an application password. ud() allows fielded buffers to be read from 
standard input and sent to a service.

TPAPPAUTH 
The application password is required. The client is expected to provide a 
value to be passed to the authentication service in the data field of the TPINIT 
buffer for C, or the TPINFDEF-REC record for COBOL. TPAPPAUTH is 
returned for security level USER_AUTH, ACL, or MANDATORY_ACL.

The application programmer writes client-program code to furnish additional 
information for the application authentication service, which is provided by 
the AUTHSVR server for default authentication and authorization. AUTHSVR is 
configured by the administrator to validate the per-user authentication 
information with client and usernames, indicating whether the client program 
is allowed to join the ATMI application.

See Also

n “Joining the ATMI Application” on page 3-8

n “Writing Clients” on page 4-1 in Programming BEA Tuxedo ATMI Applications 
Using C and Programming BEA Tuxedo ATMI Applications Using COBOL
Using Security in ATMI Applications 3-7



3 Programming Security
n tpinit(3c) and tpchkauth(3c) in the BEA Tuxedo ATMI C Function 
Reference

n TPINITIALIZE(3cbl) and TPCHKAUTH(3cbl) in the BEA Tuxedo ATMI 
COBOL Function Reference

n “Default Authentication and Authorization” on page 1-45

n “Programming an ATMI Application with Security” on page 3-3

Joining the ATMI Application

In a secure ATMI application, it is necessary to pass security information to the BEA 
Tuxedo system via a TPINIT buffer for C, or a TPINFDEF-REC record for COBOL. The 
TPINIT buffer is a special typed buffer used by a client program to pass client 
identification and authentication information to the system as the client attempts to join 
the ATMI application. The TPINFDEF-REC record serves the same purpose in a 
COBOL application.

TPINIT is defined in the atmi.h header file, and TPINFDEF-REC is defined in the 
COBOL COPY file. They have the following structures.

TPINIT Structure TPINFDEF-REC Structure

char usrname[MAXTIDENT+2];
char cltname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];
long flags;
long datalen;
long data;

Note: MAXTIDENT may contain up to 30 
characters.

05 USRNAME PIC X(30).
05 CLTNAME PIC X(30).
05 PASSWD PIC X(30).
05 GRPNAME PIC X(30).
05 NOTIFICATION-FLAG PIC S9(9) COMP-5.

88 TPU-SIG VALUE 1.
88 TPU-DIP VALUE 2.
88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 DATLEN PIC S9(9) COMP-5.
3-8 Using Security in ATMI Applications



Joining the ATMI Application
The fields in the TPINIT buffer/ TPINFDEF-REC record are described in the following 
table.

Table 3-1  Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT Fields TPINFDEF-REC Fields Description

usrname USRNAME Username.* A null-terminated string of up to 30 
characters.

The username represents the caller; writers of client 
programs might use the same login names used to 
log in to the host operating system.

cltname CLTNAME Client name.* A null-terminated string of up to 30 
characters.

The client name represents the client program; 
writers of client programs might use this field to 
indicate the job function or role of the user when 
executing the client program.

passwd PASSWD Application password.* A null-terminated string of 
up to eight characters.

tpinit() or TPINITIALIZE() validates this 
password by comparing it to the configured 
application password stored in the TUXCONFIG 
file.**

grpname GRPNAME Group name. A null-terminated string of up to 30 
characters. This field is not related to security.

The group name allows a client to be associated with 
a resource manager group that is defined in the 
UBBCONFIG file.

* This field is required for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default 
authentication and authorization.

** The binary equivalent of the UBBCONFIG file; created using tmloadcf(1).

*** Usually a user password.
Using Security in ATMI Applications 3-9



3 Programming Security
The client program calls tpalloc(3c) to allocate a TPINIT buffer. The following 
sample code prepares to pass eight bytes of application-specific data to tpinit() and 
enables the client to join an ATMI application.

Listing 3-2   Allocating a TPINIT Buffer and Joining an ATMI Application

.

.

.
TPINIT *tpinfo;

.

flags NOTIFICATION-FLAG
TPU-SIG

TPU-DIP

TPU-IGN

ACCESS-FLAG

TPSA-FASTPATH

TPSA-PROTECTED

Notification and access flags. This field is not 
related to security.

The flag settings specify the notification mechanism 
and system access mode to be used for the client. 
Selections override (with some exceptions) the 
values set in the RESOURCES section of the 
UBBCONFIG file.

datalen DATALEN Length of the user-specific data*** that follows.*

To get a size value for this field, writers of client 
programs written in C can call TPINITNEED with 
the number of bytes of user-specific data expected to 
be sent. TPINITNEED is a macro provided in the 
atmi.h header file.

data N/A User-specific data*** of no fixed length.*

tpinit() or TPINITIALIZE() forwards the 
user-specific data to the authentication server for 
validation. For default authentication, the 
authentication server is AUTHSVR.

Table 3-1  Fields in TPINIT Buffer/ TPINFDEF-REC Record (Continued)

TPINIT Fields TPINFDEF-REC Fields Description

* This field is required for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default 
authentication and authorization.

** The binary equivalent of the UBBCONFIG file; created using tmloadcf(1).

*** Usually a user password.
3-10 Using Security in ATMI Applications



Joining the ATMI Application
.

.
if ((tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,

TPINITNEED(8))) == (TPINIT *)NULL){
Error Routine

}
.
.
.

tpinit(tpinfo) /* join an ATMI application */
.
.
.

When a Workstation client calls the tpinit() function or the TPINITIALIZE() 
routine to join an ATMI application, the following major events occur.

1. The initiator Workstation client and the target workstation listener (WSL) 
exchange link-level encryption (LLE) min-max values to be used to set up LLE on 
the link between the initiator Workstation client and the target WSH. LLE is 
described in “Link-Level Encryption” on page 1-23.

2. The initiator Workstation client and target WSH authenticate one another through 
the exchange of security tokens. For default authentication, a successful 
authentication ends with the transfer of client security data from the TPINIT 
buffer or TPINFDEF-REC record to the target WSH.

3. After a successful authentication, the initiator Workstation client sends another 
buffer to the target WSH containing the values of the usrname, cltname, and 
flags fields, to ensure that the target WSH receives this information for the 
authenticated Workstation client.

When a native client calls the tpinit() function or the TPINITIALIZE() routine to 
join an ATMI application, only authentication occurs. In essence, the native client 
authenticates with itself.

Transferring the Client Security Data

The following figure demonstrate the transfer of data from the TPINIT buffer for a 
Workstation client. The transfer of data from the TPINFDEF-REC record is similar to 
what is shown in the figure.
Using Security in ATMI Applications 3-11



3 Programming Security
Figure 3-2   Transferring Data from the TPINIT Buffer for a Workstation Client

usrname datalen data

passwd

1. Call “acquire
credentials”

Function

2. Call “initiate
security context”

Function

3. Call “accept
security context”

5. Call “get
auditing token”

Function Function

4. Call “get
authorization token”

Function

usrname cltname passwd grpname flags datalen data

TPINIT Buffer

BEA Tuxedo Library

usrname,
datalen,
data

Workstation Client — Application Client Running on Workstation Machine

Workstation Handler (WSH)

(encrypt)

Call tpinit()

Network Link

ATMI SecurityATMI Security

Authentication Plug-in Authentication Plug-in

usrname cltname grpname flags datalen

Information Sent for Default Authentication

data

Information Sent for Custom Authentication

custom data

Credentials

Credentials
3-12 Using Security in ATMI Applications



Joining the ATMI Application
Note: The authorization procedure shown in the preceding figure is essentially the 
same for a native client attempting to join an ATMI application except that no 
network link or WSH is involved. A native client authenticates with itself.

In the preceding diagram, notice that the information sent to the BEA Tuxedo system 
differs between default and custom authentication. For default authentication, the 
values of the cltname, grpname, and flags fields are delivered to the default 
authentication plug-in at the Workstation client by a means other than through the 
plug-in interface. However, for custom authentication, writers of client programs can 
include these values as well as any other values they so choose in the variable length 
data field.

For a Workstation client and assuming default authentication, the authentication 
plug-in at the Workstation client uses the passwd/ PASSWD field to encrypt the 
information when transmitting the information over the network. The encryption 
algorithm used is 56-bit DES, where DES is an acronym for the Data Encryption 
Standard. The authentication plug-in at the target WSH uses the application password 
stored in the TUXCONFIG file to decrypt the information. For a native client, the system 
simply compares the passwd/ PASSWD field with the application password stored in the 
TUXCONFIG file.

Note: At the Workstation client, the passwd/ PASSWD field is delivered to the 
authentication plug-in by a means other than through the authentication 
plug-in interface. At the WSH, the application password in the TUXCONFIG file 
is delivered to the authentication plug-in through the authentication plug-in 
interface during application booting.

After a successful authentication of a Workstation client, the tpinit() function ends 
with the sending of another buffer to the WSH containing the values of the usrname, 
cltname, and flags fields, to ensure that the WSH receives this information for the 
authenticated Workstation client. Similarly, the TPINITIALIZE() routine ends with 
the sending of another buffer containing the same information. A custom 
authentication plug-in might not send this information to the WSH during the 
authentication procedure, and the WSH needs this information for reporting purposes, 
that is, during an invocation of the tmadmin(1) printclient (pclt) command.

When a Workstation or native client passes the security check, it may initiate service 
requests and receive replies.
Using Security in ATMI Applications 3-13



3 Programming Security
Calling a Service Request Before Joining the ATMI 
Application

If a client calls a service request (or any ATMI function) before invoking tpinit() or 
TPINITIALIZE() and assuming the SECURITY configuration for the target ATMI 
application is not set or is set to NONE, the BEA Tuxedo system automatically invokes 
tpinit()/ TPINITIALIZE() with a NULL parameter. This behavior has the following 
consequences:

n The TPINIT/ TPINFDEF-REC feature cannot be used.

n Default values are used for client naming, unsolicited notification type, and 
system access mode.

n The client cannot be associated with a resource manager group.

n An application password cannot be specified.

If a client calls a service request (or any ATMI function) before invoking tpinit() or 
TPINITIALIZE() and assuming the SECURITY configuration for the target ATMI 
application is set to APP_PW, USER_AUTH, ACL, or MANDATORY_ACL, the BEA Tuxedo 
system rejects the service request.

See Also

n “Writing Clients” on page 4-1 in Programming BEA Tuxedo ATMI Applications 
Using C and Programming BEA Tuxedo ATMI Applications Using COBOL

n tpinit(3c) and tpalloc(3c) in the BEA Tuxedo ATMI C Function Reference

n TPINITIALIZE(3cbl) in the BEA Tuxedo ATMI COBOL Function Reference

n “Default Authentication and Authorization” on page 1-45

n “Programming an ATMI Application with Security” on page 3-3
3-14 Using Security in ATMI Applications



Writing Security Code to Protect Data Integrity and Privacy
Writing Security Code to Protect Data 
Integrity and Privacy

Public key security comprises end-to-end digital signing and data encryption. Both 
features are supported by BEA Tuxedo ATMI functions. ATMI applications protected 
by public key security are much safer for use across the Internet than programs in 
which this type of security is not used.

The capabilities that make end-to-end digital signing and data encryption possible are 
message-based digital signature and message-based encryption. Both capabilities are 
built upon the PKCS-7 standard, which is one of a set of Public-Key Cryptography 
Standards (PKCS) developed by RSA Laboratories in cooperation with several other 
leading communications companies.

Message-based digital signature ensures data integrity and non-repudiation by having 
the sending party bind proof of its identity to a specific message buffer. Message-based 
encryption protects the confidentiality of messages; only parties for whom messages 
are intended can decrypt and read them.

Because the unit of digital signing and encryption is an ATMI message buffer, both 
capabilities are compatible with existing ATMI programming interfaces and 
communication paradigms. It is possible for a message buffer to be both signed and 
encrypted. There is no required relationship between the number of digital signatures 
and the number of encryption envelopes associated with a message buffer.

Note: Each encryption envelope identifies a recipient of the message, and contains 
information needed by the recipient to decrypt the message.
Using Security in ATMI Applications 3-15



3 Programming Security
ATMI Interface for Public Key Security

The ATMI interface for public key security is a compact set of functions used to:

n Open and close key resources

n View and change key optional parameters

n Sign and seal (encrypt) message buffers

n Access the digital signature and encryption information associated with a 
message buffer

n Convert a typed message buffer into an exportable, machine-independent string 
representation, which includes the generation of any digital signatures or 
encryption envelopes associated with the buffer

The ATMI interfaces for public key security are available in both C and COBOL 
implementations. The ATMI COBOL language binding, however, does not support 
message buffers; thus, explicit signature, encryption, and query operations on 
individual buffers cannot be used in a COBOL application. However, key management 
interfaces do have a COBOL language binding, which enables signature generation in 
the AUTOSIGN mode and encryption-envelope generation in the AUTOENCRYPT mode. 
All operations related to automatic signature verification or automatic decryption 
apply to COBOL client and server processes.

Note: The COBOL TPKEYDEF record is used to manage public-private keys for 
performing message-based digital signature and encryption operations. See 
“COBOL Language ATMI Return Codes and Other Definitions” in the 
introduction part of the BEA Tuxedo ATMI COBOL Function Reference for a 
description of the TPKEYDEF record.
3-16 Using Security in ATMI Applications



Writing Security Code to Protect Data Integrity and Privacy
The following tables summarize the ATMI interfaces for public key security. Each 
function is also documented in the BEA Tuxedo ATMI C Function Reference and the 
BEA Tuxedo ATMI COBOL Function Reference. 

Table 3-2  C Functions in ATMI Interface for Public Key Security

Use This Function To . . .

tpkey_open(3c) Open a key handle for digital signature generation, message encryption, or message 
decryption. Keys are represented and manipulated via handles. A handle has data 
associated with it that is used by the ATMI application to locate or access the item 
named by the handle.

A key may play one or more of the following roles:

n Signature Generation
The key identifies the calling process as being authorized to generate a digital 
signature under the principal’s identity. (A principal may be a person or a 
process.) Calling tpkey_open() with the principal’s name and either the 
TPKEY_SIGNATURE or TPKEY_AUTOSIGN flag returns a handle to the 
principal’s private key and digital certificate.

n Signature Verification
The key represents the principal associated with a digital signature. Signature 
verification does not require a call to tpkey_open(); the verifying process uses 
the public key specified in the digital certificate accompanying the digitally signed 
message to verify the signature.

n Encryption
The key represents the intended principal of an encrypted message. Calling 
tpkey_open() with the principal’s name and either the TPKEY_ENCRYPT or 
TPKEY_AUTOENCRYPT flag returns a handle to the principal’s public key via the 
principal’s digital certificate.

n Decryption
The key identifies the calling process as being authorized to decrypt a private 
message for the intended principal. Calling tpkey_open() with the principal’s 
name and the TPKEY_DECRYPT flag returns a handle to the principal’s private 
key and digital certificate.
Using Security in ATMI Applications 3-17



3 Programming Security
tpkey_getinfo(3c) Get information associated with a key handle. Some information is specific to a 
cryptographic service provider, but the following set of attributes is supported by all 
providers:

n PRINCIPAL
The name of the principal associated with the specified key (key handle). A 
principal may be a person or a process, depending on how an application 
developer sets up public key security. Any principal specified in an ATMI 
application’s UBBCONFIG file using the SEC_PRINCIPAL_NAME parameter 
become the identity of one or more system processes. (See “Specifying Principal 
Names” on page 2-11 and “Initializing Decryption Keys Through the Plug-ins” on 
page 2-51 for more detail.)

n PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public 
key algorithm used by the key for public key encryption. See the 
tpkey_getinfo(3c) reference page for details.

n PKENCRYPT_BITS
The key length of the public key algorithm (RSA modulus size). The value must 
be within the range of 512 to 2048 bits, inclusive.

n SIGNATURE_ALG
An ASN.1 DER object identifier of the digital signature algorithm used by the key 
for digital signature. See the tpkey_getinfo(3c) reference page for details.

n SIGNATURE_BITS
The key length of the digital signature algorithm (RSA modulus size). The value 
must be within the range of 512 to 2048 bits, inclusive.

n ENCRYPT_ALG
An ASN.1 DER object identifier of the symmetric key algorithm used by the key 
for bulk data encryption. See the tpkey_getinfo(3c) reference page for 
details.

n ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the 
range of 40 to 128 bits, inclusive.

n DIGEST_ALG
An ASN.1 DER object identifier of the message digest algorithm used by the key 
for digital signature. See the tpkey_getinfo(3c) reference page for details.

n PROVIDER
The name of the cryptographic service provider.

n VERSION
The version number of the cryptographic service provider’s software.

Table 3-2  C Functions in ATMI Interface for Public Key Security (Continued)

Use This Function To . . .
3-18 Using Security in ATMI Applications



Writing Security Code to Protect Data Integrity and Privacy
tpkey_setinfo(3c) Set optional attribute parameters associated with a key handle. A core set of key 
handle attributes is identified in the preceding description of tpkey_getinfo(). 
Other attributes, specific to a certain cryptographic service provider, may also be 
available.

tpkey_close(3c) Close a previously opened key handle. A key handle may be opened explicitly using 
tpkey_open(), or implicitly (automatically) using tpenvelope().

tpsign(3c) Mark a typed message buffer for digital signature. The public key software generates 
the digital signature just before the message is sent.

tpseal(3c) Mark a typed message buffer for encryption. The public key software encrypts the 
message just before the message is sent.

tpenvelope(3c) Access the digital signature and encryption information associated with a typed 
message buffer. tpenvelope() returns status information about the digital 
signatures and encryption envelopes attached to a particular message buffer. It also 
returns the key handle associated with each digital signature or encryption envelope. 
The key handle for a digital signature identifies the signer, and the key handle for an 
encryption envelope identifies the recipient of the message.

tpexport(3c) Convert a typed message buffer into an exportable, machine-independent 
(externalized) string representation. tpexport() generates any digital signatures or 
encryption envelopes associated with a typed message buffer just before it converts 
that buffer into an externalized string representation.

An externalized string representation can be transmitted between processes, machines, 
or domains through any communication mechanism. It can be archived on permanent 
storage.

tpimport(3c) Convert an externalized string representation back into a typed message buffer. 
During the conversion, tpimport() decrypts the message, if necessary, and verifies 
any associated digital signatures.

Table 3-2  C Functions in ATMI Interface for Public Key Security (Continued)

Use This Function To . . .
Using Security in ATMI Applications 3-19



3 Programming Security
Table 3-3  COBOL Routines in ATMI Interface for Public Key Security

Use This Routine . . . To . . .

TPKEYOPEN(3cbl) Open a key handle for digital signature generation, message encryption, or message 
decryption. Keys are represented and manipulated via handles. A handle has data 
associated with it that is used by the ATMI application to locate or access the item 
named by the handle.

A key may play one or more of the following roles:

n Signature Generation
The key identifies the calling process as being authorized to generate a digital 
signature under the principal’s identity. (A principal can be a person or a 
process.) Calling TPKEYOPEN() with the principal’s name and the 
TPKEY-SIGNATURE and TPKEY-AUTOSIGN settings returns a handle to the 
principal’s public key and enables signature generation in AUTOSIGN mode. The 
public key software generates and attaches the digital signature to the message 
just before the message is sent.

n Signature Verification
The key represents the principal associated with a digital signature. Signature 
verification does not require a call to TPKEYOPEN(); the verifying process uses 
the public key specified in the digital certificate accompanying the digitally 
signed message to verify the signature.

n Encryption
The key represents the intended principal of an encrypted message. Calling 
TPKEYOPEN() with the principal’s name and the TPKEY-ENCRYPT and 
TPKEY-AUTOENCRYPT settings returns a handle to the principal’s public key 
(via the principal’s digital certificate) and enables encryption in AUTOENCRYPT 
mode. The public key software encrypts the message and attaches an encryption 
envelope to the message; the encryption envelope enables the receiving process 
to decrypt the message.

n Decryption
The key identifies the calling process as being authorized to decrypt a private 
message for the intended principal. Calling TPKEYOPEN() with the principal’s 
name and the TPKEY-DECRYPT setting returns a handle to the principal’s 
private key and digital certificate.
3-20 Using Security in ATMI Applications



Writing Security Code to Protect Data Integrity and Privacy
TPKEYGETINFO(3cbl) Get information associated with a key handle. Some information is specific to a 
cryptographic service provider, but the following set of attributes is supported by all 
providers:

n PRINCIPAL
The name of the principal associated with the specified key (key handle). A 
principal may be a person or a process, depending on how an ATMI application 
developer sets up public key security. Any principal specified in an ATMI 
application’s UBBCONFIG file using the SEC_PRINCIPAL_NAME parameter 
become the identity of one or more system processes. (See “Specifying Principal 
Names” on page 2-11 and “Initializing Decryption Keys Through the Plug-ins” 
on page 2-51 for more detail.)

n PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public 
key algorithm used by the key for public key encryption. See the 
TPKEYGETINFO(3cbl) reference page for details.

n PKENCRYPT_BITS
The key length of the public key algorithm (RSA modulus size). The value must 
be within the range of 512 to 2048 bits, inclusive.

n SIGNATURE_ALG
An ASN.1 DER object identifier of the digital signature algorithm used by the key 
for digital signature. See the TPKEYGETINFO(3cbl) reference page for details.

n SIGNATURE_BITS
The key length of the digital signature algorithm (RSA modulus size). The value 
must be within the range of 512 to 2048 bits, inclusive.

n ENCRYPT_ALG
An ASN.1 DER object identifier of the symmetric key algorithm used by the key 
for bulk data encryption. See the TPKEYGETINFO(3cbl) reference page for 
details.

n ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the 
range of 40 to 128 bits, inclusive.

n DIGEST_ALG
An ASN.1 DER object identifier of the message digest algorithm used by the key 
for digital signature. See the TPKEYGETINFO(3cbl) reference page for details.

n PROVIDER
The name of the cryptographic service provider.

n VERSION
The version number of the cryptographic service provider’s software.

Table 3-3  COBOL Routines in ATMI Interface for Public Key Security (Continued)

Use This Routine . . . To . . .
Using Security in ATMI Applications 3-21



3 Programming Security
Recommended Uses of Public Key Security

n Use tpkey_close() to release key handles used for digital signature generation 
or for data decryption as soon as they are no longer needed.

n To inhibit replay attacks, generate digital signatures only on message buffers that 
contain details identifying a specific operation. For example, a buffer that 
contains the message “Your deposit is confirmed” is dangerously vague. An 
attacker who intercepts such a message can easily reuse it. On the other hand, a 
message that contains many operation-specific details is much safer. An attacker 
who intercepts a message such as the one that follows will not be able to reuse it 
easily: “John Smith’s deposit of $100.00, account 987654321, confirmation code 
123456789, 7/31/2001, is confirmed.”

See Also

n “Sending and Receiving Signed Messages” on page 3-23

n “Sending and Receiving Encrypted Messages” on page 3-34

n “Examining Digital Signature and Encryption Information” on page 3-52

n “Externalizing Typed Message Buffers” on page 3-59

n “Public Key Security” on page 1-29

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

TPKEYSETINFO(3cbl) Set optional attribute parameters associated with a key handle. A core set of key 
handle attributes is identified in the preceding description of TPKEYGETINFO(). 
Other attributes, specific to a certain cryptographic service provider, may also be 
available.

TPKEYCLOSE(3cbl) Close a key handle previously opened using TPKEYOPEN().

Table 3-3  COBOL Routines in ATMI Interface for Public Key Security (Continued)

Use This Routine . . . To . . .
3-22 Using Security in ATMI Applications



Sending and Receiving Signed Messages
Sending and Receiving Signed Messages

Message-based digital signature provides end-to-end authentication and message 
integrity protection. For a diagram that illustrates how it works, see the figure “ATMI 
PKCS-7 End-to-End Digital Signing” on page 1-35.

To add a digital signature to an ATMI message buffer, the originating process or user 
signs the message buffer. This signature contains a cryptographically secure checksum 
of the message buffer’s content and a timestamp based on the signer’s local clock.

Any party with access to the message buffer can verify that the signing party’s 
signature is authentic, that the message buffer content is unchanged, and that the 
timestamp is within a configured tolerance of the verifier’s local clock. In addition, 
time-independent verification by a third party guarantees non-repudiation: the 
originating process or user cannot later deny authorship or claim the message was 
altered.

Writing Code to Send Signed Messages

The following flowchart provides the procedure for writing code to send signed 
messages.
Using Security in ATMI Applications 3-23



3 Programming Security
Figure 3-3   Procedure for Sending Signed Messages

End

Start

Continue

Continue

1. Open key handle for signer to receive
a key handle to signer’s private key and 
digital certificate.

tpkey_open()

2. (Optional): Get information about
signer’s key handle. 

tpkey_getinfo()

4. Allocate a typed message buffer and 
put message in buffer.

tpalloc()

3. (Optional): Change information
associated with signer’s key handle.

tpkey_setinfo()

5. Mark the message buffer for digital
signature, thus attaching a copy of the
signer’s key handle to the message buffer.

tpsign()

6. Send message in buffer by calling
tpsend(), tpcall(), . . . 

tpsend()

7. Close signer’s key handle to release
key handle and all resources associated
with it.

tpkey_close()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Adds timestamp from local system’s
clock.

3. Computes hash value using message
digest algorithm.

5. Attaches timestamp, digital signature
(encrypted hash value), signer’s digital

and digital signature algorithm to
message.

certificate, message digest algorithm,

4. Encrypts hash value, using signer’s
private key and digital signature
algorithm, to create a digital signature.
3-24 Using Security in ATMI Applications



Sending and Receiving Signed Messages
For details about these steps and insight into how the system signs a message buffer, 
see the following topics.

Step 1: Opening a Key Handle for Digital Signature

Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the private 
key and the associated digital certificate of the signer available to the originating 
process. The private key is highly protected, and possession of it is equivalent to 
possessing the signer’s identity.

In order to access the signer’s private key, the originating process must prove its right 
to act as the signer. Proof requirements depend on the implementation of the public key 
plug-in interface. The default public key implementation requires a secret password 
from the calling process.

When the originating process calls tpkey_open() to open the key handle, it specifies 
either the TPKEY_SIGNATURE or TPKEY_AUTOSIGN flag to indicate that the handle will 
be used to digitally sign a message buffer. Typically, a client makes this call after 
calling tpinit(), and a server makes this call as part of initializing through 
tpsvrinit().

Opening a key handle with the TPKEY_AUTOSIGN flag enables automatic signature 
generation: subsequently, the originating process signs message buffers automatically 
whenever they are sent. Using the TPKEY_AUTOSIGN flag is beneficial for three 
reasons:

n Less work is required from application programmers because fewer ATMI calls 
are required when operating in a secure ATMI application.

n Existing ATMI applications can leverage digital signature technology with 
minimal coding changes.

n The possibility of programming errors that might result in an unsigned buffer 
being sent over an insecure network is reduced.

The following example code shows how to open a signer’s key handle. TPKEY is a 
special data type defined in the atmi.h header file.
Using Security in ATMI Applications 3-25



3 Programming Security
Listing 3-3   Opening a Signer’s Key Handle Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY sdo_key;
char *sdo_location;
.
.
.
if (tpkey_open(&sdo_key, “sdo”, sdo_location,

NULL, 0, TPKEY_SIGNATURE) == -1) {
(void) fprintf(stderr, “tpkey_open sdo failed

tperrno=%d(%s)\n”, tperrno, tpstrerror(tperrno));
exit(1);

}
.
.
.

}

Step 2 (Optional): Getting Key Handle Information

You may want to get information about a signer’s key handle to establish the validity 
of the key. To do so, call the tpkey_getinfo(3c) function or TPKEYGETINFO(3cbl) 
routine. While some of the information returned may be specific to a cryptographic 
service provider, a core set of attributes is common to all providers.

The default public key implementation supports the following signature modes for 
computing signatures on a message buffer:

n MD5 message digest algorithm with RSA public key signature

n SHA-1 message digest algorithm with RSA public key signature

The message digest algorithm is controlled by the DIGEST_ALG key attribute, and the 
public key signature is controlled by the SIGNATURE_ALG key attribute. Public key 
sizes from 512 to 2048 bits are supported, to allow a wide range of safety and 
performance options. The public key size is controlled by the SIGNATURE_BITS key 
attribute.
3-26 Using Security in ATMI Applications



Sending and Receiving Signed Messages
The default public key implementation recognizes only those digital certificate 
signatures that are created with these algorithm and key size choices.

The following example code shows how to get information about a signer’s key 
handle.

Listing 3-4   Getting Information About a Signer’s Key Handle Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY sdo_key;
char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;

.

.

.
if (tpkey_getinfo(sdo_key, “PRINCIPAL”,

principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

.

.

.
exit(1);

}
.
.
.

}

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with a signer’s key handle, call the 
tpkey_setinfo(3c) function or TPKEYSETINFO(3cbl) routine. Key handle 
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with a 
signer’s key handle.
Using Security in ATMI Applications 3-27



3 Programming Security
Listing 3-5   Changing Information Associated with a Signer’s Key Handle 
Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY sdo_key;
static const unsigned char sha1_objid[] = {

0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a
};
.
.
.
if (tpkey_setinfo(sdo_key, “DIGEST_ALG”, (void *) sha1_objid,

sizeof(sha1_objid), 0) == -1) {
(void) fprintf(stderr, “tpkey_setinfo failed

tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));

return(1);
}
.
.
.

}

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To allocate a typed message buffer, call the tpalloc(3c) function. Then put a 
message in the buffer.

Step 5: Marking the Buffer for Digital Signature

To mark, or register, the message buffer for digital signature, call the tpsign(3c) 
function. By calling this function, you attach a copy of the signer’s key handle to the 
message buffer. If you open the key with the TPKEY_AUTOSIGN flag, each message that 
you send is automatically marked for digital signature without an explicit call to 
tpsign(); signature parameters are stored and associated with the buffer for later use.

Note: In COBOL applications, use the AUTOSIGN settings member to create a digital 
signature. See TPKEYOPEN(3cbl).
3-28 Using Security in ATMI Applications



Sending and Receiving Signed Messages
The following example code shows how to mark a message buffer for digital signature.

Listing 3-6   Marking a Message Buffer For Digital Signature Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY sdo_key;
char *sendbuf, *rcvbuf;

.

.

.
if (tpsign(sendbuf, sdo_key, 0) == -1) {

(void) fprintf(stderr, “tpsign failed tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));

tpfree(rcvbuf);
tpfree(sendbuf);
tpterm();
(void) tpkey_close(sdo_key, 0);
exit(1);

}
.
.
.

}

Step 6: Sending the Message

After the message buffer has been marked for digital signature, transmit the message 
buffer using one of the following C functions or COBOL routines:

l tpcall() or TPCALL

l tpbroadcast() or TPBROADCAST

l tpconnect() or TPCONNECT

l tpenqueue() or TPENQUEUE

l tpforward()

l tpnotify() or TPNOTIFY
Using Security in ATMI Applications 3-29



3 Programming Security
l tppost() or TPPOST

l tpreturn() or TPRETURN

l tpsend() or TPSEND

Step 7: Closing the Signer’s Key Handle

Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the 
signer’s key handle and all resources associated with it.

How the System Generates a Digital Signature

Just before a message buffer is sent, the public key software digitally signs the 
message. If a signed buffer is transmitted more than once, the software generates a new 
signature for each communication. This process makes it possible to modify a message 
buffer after marking the buffer to be digitally signed.

The public key software generates a digital signature by performing the following 
three-step procedure.

1. digest[message_buffer_data + buffer_type_string + buffer_subtype_string] = 
hash1

2. digest[hash1 + local_timestamp + PKCS-7_message_type] = hash2

3. {hash2}signer’s_private_key = encrypted_hash2 = digital_signature

The notation digest[something] means that a hash value has been computed for 
something using a message digest algorithm—in this case, MD5 or SHA-1. The 
notation {something}key means that something has been encrypted or decrypted using 
key. In this case, the computed hash value is encrypted using the signer’s private key.

Signature Timestamp

A digital signature includes a timestamp from the local system’s clock. Inclusion of 
such a timestamp ensures that any tampering with the timestamp value will be detected 
when the recipient verifies the signature. In addition, a copy of the timestamp 
accompanies the digitally signed message when the message is routed to its 
destination.

Time resolution is to the second. Timestamps are stored in PKCS-9 SigningTime 
format.
3-30 Using Security in ATMI Applications



Sending and Receiving Signed Messages
Multiple Signatures

More than one signature can be associated with a message buffer, which means that 
any number of signers can sign a message buffer in parallel. A signer can be a person 
or a process. Each signer signs the message buffer using his, her, or its private key.

Different signatures may be based on different message digest or digital signature 
algorithms. If two signers use the same message digest and digital signature algorithm, 
the hash value is computed for only one of them.

Signed Message Content

A digitally signed message buffer is represented in the PKCS-7 format as a version 1 
SignedData content type. The SignedData content type, as used by the BEA Tuxedo 
system, consists of the following items:

n One or more digital signatures, each with its own set of signer-specific 
information, such as:

l Signer’s X.509v3 certificate

l Message digest and digital signature algorithm identifiers

l Timestamp based on the local clock

n Message content, which is a composite of message buffer data, buffer type 
string, and buffer subtype string represented in the BEA Tuxedo encoded format. 
The encoded format allows a message buffer’s signature to be verified on any 
machine architecture.

As shown in the following figure, the message content is enveloped by SignedData 
content type.

Figure 3-4   SignedData Content Type

TUXBUF Content Type

(Message Content—Contains Composite Encoded Data)

SignedData Content Type

(Signing Operation—Contains Digital Signatures and Associated Signer-Specific Information)
Using Security in ATMI Applications 3-31



3 Programming Security
How a Signed Message Is Received

No ATMI application code is needed to receive a signed message buffer. The public 
key software automatically verifies the attached digital signatures and passes the 
message to the receiving process.

Upon receiving a signed message buffer, the public key software, operating on behalf 
of the receiving process, performs the following tasks.

1. Reads the digital signature information attached to the received message, including 
the signer’s digital certificate, message digest algorithm, digital signature 
algorithm, and signature timestamp.

2. Decrypts the attached digital signature (encrypted hash value) using the signer’s 
public key (found in the signer’s digital certificate) and the digital signature 
algorithm.

3. Recomputes the hash value for the received message, as shown in the following 
two-step procedure.

a. digest[message_buffer_data + buffer_type_string + buffer_subtype_string] = 
hash1

b. digest[hash1 + received_timestamp + PKCS-7_message_type] = hash2

The notation digest[something] means that a hash value has been computed for 
something using a message digest algorithm—in this case, MD5 or SHA-1.

4. Compares the recomputed hash value with the received hash value; if the two are 
not identical, discards the message buffer.

5. Compares the received timestamp with the local system’s clock; if the timestamp 
is not within a configured tolerance, discards the message buffer.

6. If the message buffer successfully passes the checks performed in Steps 4 and 5, 
the public key software decodes the message buffer data, buffer type string, and 
buffer subtype string, and then passes the message to the receiving process. This 
step reverses the encoding performed by the originating process. (The BEA 
Tuxedo encoded format allows a message buffer’s signature to be verified on any 
machine architecture.)
3-32 Using Security in ATMI Applications



Sending and Receiving Signed Messages
Note: If none of the attached digital signatures can be verified, the receiving process 
does not receive the message buffer. Moreover, the receiving process has no 
knowledge of the message buffer.

Verifying Digital Signatures

The public key software automatically verifies digital signatures whenever a signed 
message buffer enters a client process, server process, or any system process that needs 
to access the content of the message buffer. If a system process is acting as a conduit 
(that is, if it is not reading the content of the message), then the attached digital 
signatures need not be verified. Bridges and workstation handlers (WSHs) are 
examples of system processes acting as conduits.

The signature timestamp is based on an unsynchronized clock, and therefore cannot be 
fully trusted, especially if the signature is performed on a PC or personal workstation. 
However, a server may reject requests with timestamps that are too old or dated too far 
into the future. The capability to reject a request based on the timestamp provides a 
measure of protection against replay attacks.

Verifying and Transmitting an Input Buffer’s Signatures

If a message buffer is passed to an ATMI function (such as tpacall()) as an input 
parameter, the public key software verifies any signatures previously attached to the 
message and then forwards the message. This behavior enables a secure, verified 
transfer of information with signatures from multiple processes.

If a server modifies a received message buffer and then forwards the buffer, the 
original signature is no longer valid. In this case, the public key software detects the 
invalid signature and silently discards it. For an example of the process, see 
“Discarding an Input Buffer’s Encryption Envelopes” on page 3-49.

Replacing an Output Buffer’s Signatures

If a message buffer is passed to an ATMI function (such as tpgetreply()) as an 
output parameter, the public key software deletes any signature information associated 
with the buffer. This information includes any pending signatures and signatures from 
previous uses of the buffer. (A pending signature is a signature that is registered with 
a message buffer.)
Using Security in ATMI Applications 3-33



3 Programming Security
New signature information might be associated with the new buffer content after 
successful completion of this operation.

See Also

n “Sending and Receiving Encrypted Messages” on page 3-34

n “Examining Digital Signature and Encryption Information” on page 3-52

n “Externalizing Typed Message Buffers” on page 3-59

n “Public Key Security” on page 1-29

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

Sending and Receiving Encrypted Messages

Message-based encryption provides end-to-end data privacy. For a diagram that 
illustrates how it works, see the figure “ATMI PKCS-7 End-to-End Encryption” on 
page 1-41.

A message is encrypted just before it leaves the originating process, and remains 
encrypted until it is received by the final destination process. It is opaque at all 
intermediate transit points (including operating system message queues, system 
processes, and disk-based queues) and during network transmission over inter-server 
network links.

Writing Code to Send Encrypted Messages

The following flowchart provides the procedure for writing code to send encrypted 
messages.
3-34 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
Figure 3-5   Procedure for Sending Encrypted Messages

Start

EndContinue

Continue

2. (Optional): Get information about
encryption key handle. 

tpkey_getinfo()

4. Allocate a typed message buffer and 
put message in buffer.

tpalloc()

3. (Optional): Change information
associated with encryption key handle.

tpkey_setinfo()

1. Open key handle for target recipient to
receive a key handle to recipient’s digital 
certificate.

tpkey_open()

5. Mark the message buffer for encryp-
tion, thus attaching a copy of the encryp- 
tion key handle to the message buffer.

tpseal()

6. Send message in buffer by calling
tpsend(), tpcall(), . . . 

tpsend()

7. Close encryption key handle to
release key handle and all resources
associated with it.

tpkey_close()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Generates digital signatures (if any).

4. Encrypts compressed message and
digital signatures (if any) using

key algorithm.
random session key and symmetric

5. Encrypts session key using recipient’s
public key (found in recipient’s digital
certificate) and public key algorithm.

6. Includes encrypted session key and
recipient’s name in a digital
encryption envelope.

3. Compresses message and digital
signatures (if any) using Deflate
compression algorithm.

7. Attaches encryption envelope to
encrypted message.
Using Security in ATMI Applications 3-35



3 Programming Security
For details about these steps and insight into how the system encrypts a message 
buffer, see the following topics.

Step 1: Opening a Key Handle for Encryption

Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the digital 
certificate of the target recipient available to the originating process. The target 
recipient might be a client, a service, a server group, a gateway group, a server 
machine, or an entire domain of servers.

When the originating process calls tpkey_open() to open the key handle, it specifies 
either the TPKEY_ENCRYPT or TPKEY_AUTOENCRYPT flag to indicate that the handle 
will be used to encrypt a message buffer. Typically, a client makes this call after calling 
tpinit(), and a server makes this call as part of initializing through tpsvrinit().

Opening a key handle with the TPKEY_AUTOENCRYPT flag enables automatic 
encryption: subsequently, the originating process encrypts message buffers 
automatically whenever they are sent. Using the TPKEY_AUTOENCRYPT flag is 
beneficial for three reasons:

n Less work is required from application programmers because fewer ATMI calls 
are required when operating in a secure ATMI application.

n Existing ATMI applications can leverage encryption technology with minimal 
coding changes.

n The possibility of programming errors that might result in an unencrypted 
(plaintext) buffer being sent over an insecure network is reduced.

The following example code shows how to open an encryption key handle. TPKEY is a 
special data type defined in the atmi.h header file.

Listing 3-7   Opening an Encryption Key Handle Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY tu_key;
.
.

3-36 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
.
if (tpkey_open(&tu_key, “TOUPPER”, NULL,

NULL, 0, TPKEY_ENCRYPT) == -1) {
(void) fprintf(stderr, “tpkey_open tu failed

tperrno=%d(%s)\n”, tperrno, tpstrerror(tperrno));
exit(1);

}
.
.
.

}

Step 2 (Optional): Getting Key Handle Information

You may want to get information about an encryption key handle to establish the 
validity of the key. To do so, call the tpkey_getinfo(3c) function or 
TPKEYGETINFO(3cbl) routine. While some of the information returned may be 
specific to a cryptographic service provider, a core set of attributes is common to all 
providers.

The default public key implementation supports three algorithms for bulk data 
encryption of message content:

n DES (DES-CBC)—a 64-bit block cipher run in Cipher Block Chaining (CBC) 
mode. It provides 56-bit keys (8 parity bits are stripped from the full 64-bit key) 
and is exportable outside the United States. (DES stands for the Data Encryption 
Standard.)

n 3DES (two-key triple-DES)—a 128-bit block cipher run in 
Encrypt-Decrypt-Encrypt (EDE) mode. 3DES provides two 56-bit keys (in 
effect, a 112-bit key) and is not exportable outside the United States.

n RC2—a variable key-size block cipher with a key size range of 40 to 128 bits. It 
is faster than DES and is exportable with a key size of 40 bits. A 56-bit key size 
is allowed for foreign subsidiaries and overseas offices of United States 
companies. In the United States, RC2 can be used with keys of virtually 
unlimited length, but the public key software restricts the key length to 128 bits. 
(RC2 stands for Rivest’s Cipher 2.)
Using Security in ATMI Applications 3-37



3 Programming Security
Encryption strength is controlled by the ENCRYPT_BITS key attribute, and the 
algorithm is controlled by the ENCRYPT_ALG key attribute. When an algorithm with 
fixed key length is set in ENCRYPT_ALG, the value of ENCRYPT_BITS is automatically 
adjusted to match.

The following example code shows how to get information about an encryption key 
handle.

Listing 3-8   Getting Information About an Encryption Key Handle Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY tu_key;
char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;
.
.
.
if (tpkey_getinfo(tu_key, “PRINCIPAL”,

principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

.

.

.
exit(1);

}
.
.
.

}

3-38 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with an encryption key handle, call the 
tpkey_setinfo(3c) function or TPKEYSETINFO(3cbl) routine. Key handle 
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with an 
encryption key handle.

Listing 3-9   Changing Information Associated with an Encryption Key Handle 
Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY tu_key;
static const unsigned char rc2_objid[] = {

0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02
};

.

.

.
if (tpkey_setinfo(tu_key, “ENCRYPT_ALG”, (void *) rc2_objid,

sizeof(rc2_objid), 0) == -1) {
(void) fprintf(stderr, “tpkey_setinfo failed

tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));

return(1);
}

.

.

.
}

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To allocate a typed message buffer, call the tpalloc(3c) function. Then put a 
message in the buffer.
Using Security in ATMI Applications 3-39



3 Programming Security
Step 5: Marking the Buffer for Encryption

To mark, or register, the message buffer for encryption, call the tpseal(3c) function. 
By calling this function, you attach a copy of the encryption key handle to the message 
buffer. If you open the key with the TPKEY_AUTOENCRYPT flag, each message that you 
send is automatically marked for encryption without an explicit call to tpseal().

Note: In COBOL applications, use the AUTOENCRYPT settings member to encrypt a 
message buffer. See TPKEYOPEN(3cbl).

The following example code shows how to mark a message buffer for encryption.

Listing 3-10   Marking a Message Buffer for Encryption Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY tu_key;
char *sendbuf, *rcvbuf;
.
.
.
if (tpseal(sendbuf, tu_key, 0) == -1) {

(void) fprintf(stderr, “tpseal failed tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));

tpfree(rcvbuf);
tpfree(sendbuf);
tpterm();
(void) tpkey_close(tu_key, 0);
exit(1);

}
.
.
.

}

3-40 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
Step 6: Sending the Message

After the message buffer has been marked for encryption, transmit the message buffer 
using one of the following C functions or COBOL routines:

l tpcall() or TPCALL

l tpbroadcast() or TPBROADCAST

l tpconnect() or TPCONNECT

l tpenqueue() or TPENQUEUE

l tpforward()

l tpnotify() or TPNOTIFY

l tppost() or TPPOST

l tpreturn() or TPRETURN

l tpsend() or TPSEND

Step 7: Closing the Encryption Key Handle

Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the 
encryption key handle and all resources associated with it.

How the System Encrypts a Message Buffer

Just before a message buffer is sent, the public key software encrypts the message and 
attaches an encryption envelope; the encryption envelope enables the target recipient 
to decrypt the message. If a sealed buffer is transmitted more than once, encryption is 
performed for each transmission. This process makes it possible to modify a message 
buffer after marking the buffer to be encrypted.

The public key software encrypts the content of the message buffer and generates an 
encryption envelope for the recipient of the encrypted message by performing the 
following two-step procedure.

1. {message_buffer_data + buffer_type_string + buffer_subtype_string}session_key 
= encrypted_message

2. {session_key}recipient’s_public_key = encrypted_session_key = 
encryption_envelope_for_recipient
Using Security in ATMI Applications 3-41



3 Programming Security
The notation {something}key means that something has been encrypted or decrypted 
using key. In Step 1, a message buffer is encrypted using the session key, and in step 2, 
the session key is encrypted using the recipient’s public key.

Multiple Message Recipients

More than one encryption envelope can be associated with a message buffer, which 
means that multiple recipients, with different private keys, can receive and decrypt an 
encrypted message. A recipient can be a person or a process. When a message is 
encrypted for multiple recipients, it is encrypted only once, but the session key is 
encrypted with the public key of each recipient. All encryption envelopes are attached 
to the encrypted message.

If several encryption envelopes are associated with one message buffer, all of them 
must use the same symmetric key algorithm and the same key size for that algorithm.

Encrypted Message Content

An encrypted message buffer is represented in the PKCS-7 format as a version 0 
EnvelopedData content type. The EnvelopedData content type, as used by the BEA 
Tuxedo system, consists of the following items:

n A list of recipients (in plaintext) that can be read by any ATMI process

n Encryption envelopes for one or more recipients

n Public key algorithm (and any associated parameters) under which the session 
key was encrypted

n Symmetric key algorithm (and any associated parameters) under which the bulk 
data was encrypted

n Encrypted bulk data, which is a composite of message buffer data, buffer type 
string, buffer subtype string, and digital signatures (if any) that have undergone 
the following transformations:

l Conversion of the message buffer data, buffer type string, and buffer subtype 
string into the BEA Tuxedo encoded format to form the composite encoded 
data. (The BEA Tuxedo encoded format allows a message buffer to be 
decrypted on any machine architecture.)
3-42 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
l Compression of the composite encoded data and digital signatures (if any) 
using the Deflate compression algorithm to form the composite compressed 
data.

l Encryption of the composite compressed data under a randomly generated 
session key and symmetric key algorithm (identified earlier in this list) to 
form the encrypted bulk data.

The following figure shows the envelope hierarchy for the EnvelopedData content 
type. The SignedData content type is part of the hierarchy only if the message to 
which it belongs has one or more associated digital signatures.

Figure 3-6   EnvelopedData Content Type

As shown in the preceding figure, a message buffer may be both signed and encrypted. 
No relationship is required between the number of digital signatures and the number 
of encryption envelopes associated with a message buffer.

When both processes are performed on a message buffer, signatures are generated first, 
on unencrypted data. The number of attached signatures and the identity of signing 
parties are then obscured by the bulk data encryption.

TUXBUF Content Type

(Message Content)

SignedData Content Type

(Signing Operation)

CompressedData Content Type

(Compressing Operation)

EnvelopedData Content Type

(Encrypting Operation)
Using Security in ATMI Applications 3-43



3 Programming Security
Note: A suitable decryption key must be available to access message data before 
signatures can be verified.

Writing Code to Receive Encrypted Messages

The procedure for writing code to receive encrypted messages consists of the 
following steps.

1. Call tpkey_open() to open a key handle for the target recipient. tpkey_open 
returns a key handle to the recipient’s private key and digital certificate.

2. (Optional): Call tpkey_getinfo() to get information about the decryption key 
handle.

3. (Optional): Call tpkey_setinfo() to change information associated with the 
decryption key handle.

4. Call tpkey_close() to close the decryption key handle. tpkey_close() 
releases the key handle and all resources associated with it.

For details about these steps and insight into how the system decrypts a message 
buffer, see the following topics.

Step 1: Opening a Key Handle for Decryption

Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the private 
key and the associated digital certificate of the target recipient available to the 
receiving process. The receiving process might be a client, a service, a server group, a 
gateway group, a server machine, or an entire domain of servers.

An application administrator can configure the ATMI application’s UBBCONFIG file 
such that decryption key handles are opened automatically when the ATMI application 
is booted. No more than one decryption key handle per server may be used with this 
method. See “Initializing Decryption Keys Through the Plug-ins” on page 2-51 for 
details.

If an ATMI application is not configured to open a decryption key handle for the 
receiving process during booting, the receiving process initiates its own 
tpkey_open() call. Or, if the receiving process wants to open another decryption key 
handle, the receiving process makes an additional tpkey_open() call.
3-44 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
In order to access the target recipient’s private key, the receiving process must prove 
its right to act as the target recipient. Proof requirements depend on the implementation 
of the public key plug-in interface. The default public key implementation requires a 
secret password from the calling process.

When the receiving process calls tpkey_open() to open the key handle, it specifies 
the TPKEY_DECRYPT flag to indicate that the handle will be used to decrypt a message 
buffer. Typically, a client makes this call after calling tpinit(), and a server makes 
this call as part of initializing through tpsvrinit().

The following example code shows how to open a decryption key handle. TPKEY is a 
special data type defined in the atmi.h header file.

Listing 3-11   Opening a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;
char **argv;
#endif
{

char *tu_location;
.
.
.
if (tpkey_open(&tu_key, “TOUPPER”, tu_location,

NULL, 0, TPKEY_DECRYPT) == -1) {
userlog(“Unable to open private key: %d(%s)”,

tperrno, tpstrerror(tperrno));
return(-1)
}

.

.

.
}

Using Security in ATMI Applications 3-45



3 Programming Security
Step 2 (Optional): Getting Key Handle Information

You may want to get information about a decryption key handle to establish the 
validity of the key. To do so, call the tpkey_getinfo(3c) function or 
TPKEYGETINFO(3cbl) routine. While some of the information returned may be 
specific to a cryptographic service provider, a core set of attributes is common to all 
providers.

The following example code shows how to get information about a decryption key 
handle.

Listing 3-12   Getting Information About a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;
char **argv;
#endif
{

char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;
.
.
.
if (tpkey_getinfo(tu_key, “PRINCIPAL”,

principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

.

.

.
exit(1);

}
.
.
.

}

3-46 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with a decryption key handle, call the 
tpkey_setinfo(3c) function or TPKEYSETINFO(3cbl) routine. Key handle 
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with a 
decryption key handle.

Listing 3-13   Changing Information Associated with a Decryption Key Handle 
Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;
char **argv;
#endif
{

TM32U mybits = 128;
.
.
.
if (tpkey_setinfo(tu_key, “ENCRYPT_BITS”, &mybits,

sizeof(mybits), 0) == -1) {
(void) fprintf(stderr, “tpkey_setinfo failed

tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));

return(1);
}

.

.

.
}

Step 4: Closing the Decryption Key Handle

Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the 
decryption key handle and all resources associated with it.
Using Security in ATMI Applications 3-47



3 Programming Security
How the System Decrypts a Message Buffer

The public key software automatically decrypts an encrypted message buffer 
whenever it enters a BEA Tuxedo client process, server process, or any system process 
that needs to access the content of the message buffer. For automatic decryption to 
succeed, the receiving process must have opened a decryption key (type 
TPKEY_DECRYPT) corresponding to a recipient identified in one of the attached 
encryption envelopes.

Upon receiving an encrypted message, the public key software, operating on behalf of 
the receiving process, performs the following tasks.

1. Reads the target recipient’s name on the attached encryption envelope.

2. To recover the session key, decrypts the recipient’s encryption envelope using the 
recipient’s private key and the public key algorithm.

3. Decrypts the message using the recovered session key and the symmetric key 
algorithm.

4. Uncompresses the message.

5. Verifies digital signatures if any. (See “How a Signed Message Is Received” on 
page 3-32.)

6. If the message buffer successfully passes the check performed in step 5, the 
public key software decodes the message buffer data, buffer type string, and 
buffer subtype string, and then passes the plaintext message to the receiving 
process. This step reverses the encoding performed by the originating process. 
(The BEA Tuxedo encoded format allows a message buffer to be decrypted on 
any machine architecture.)

Note: If none of the attached digital signatures can be verified or the message buffer 
cannot be decrypted, the receiving process does not receive the message 
buffer. Moreover, the receiving process has no knowledge of the message 
buffer.

If a system process is acting as a conduit (that is, if it is not reading the content of the 
message), then the message need not be decrypted. Bridges and workstation handlers 
(WSHs) are examples of system processes acting as conduits.
3-48 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
The WSH is a special example of a conduit. If a WSH is configured for data-dependent 
routing, it needs to read the received message buffer to determine how to route the 
buffer. The public key software makes a copy of the received message buffer, decrypts 
the copy, and then passes the decrypted copy to the WSH. The WSH analyzes the 
decrypted copy to determine how to route the buffer, and then routes the original 
message buffer unchanged to the appropriate server. (For more detail about the 
interaction between data-dependent routing and public key security, see 
“Compatibility/Interaction with Data-dependent Routing” on page 1-61.)

Discarding an Input Buffer’s Encryption Envelopes

If a message buffer is passed to an ATMI function (such as tpacall()) as an input 
parameter, the public key software discards any encryption envelopes previously 
attached to the message. This behavior prevents the target recipients for the original 
message from receiving any modifications made by an intermediate process.

As an example of this process, consider the scenario shown in the following figure.

Figure 3-7   Forwarding a Signed and Encrypted Message Example

Server

Employee

Server

Purchasing

Message

Sig 1

EnvelopedData

Encrypt Message & Forward Encrypted Message
Decrypt, Read, Sign, Seal,

Read Message
Decrypt &

Message

EnvelopedData

Sig 2

Message

EnvelopedData

Workstation
Client

& Forward Encrypted Message
Decrypt, Read,

Message

EnvelopedData

Sig 1Sig 1

Encrypt Env 1

Server

Manager

Encrypt Env 2

Encrypt Env 3

Sig 2

Sig 1

Encrypt Env 3

Encrypt Env 1

Encrypt Env 2

Encrypt Env 1

Encrypt Env 2

WSH

(Data-dependent Routing)
Using Security in ATMI Applications 3-49



3 Programming Security
A server process named Manager receives a signed and encrypted message buffer from 
a client process named Employee, decrypts and reads the received message buffer, 
signs and seals it for a service named Purchasing, and then forwards the message to 
Purchasing.

The following is a detailed description of how this operation is performed.

1. The workstation handler (WSH) receives the signed and encrypted message buffer 
from the employee and forwards it as is.

The WSH process is configured for data-dependent routing, which is briefly 
described in “How the System Decrypts a Message Buffer” on page 3-48. The 
public key software uses a decryption key previously opened for the WSH 
process to decrypt a copy of the received message buffer, and then passes the 
decrypted copy to the WSH. After analyzing the decrypted copy, the WSH 
routes the received message buffer to the Manager process as is.

If the WSH process is not configured for data-dependent routing, the Employee 
process does not need to tpseal() the message buffer for the WSH process, 
and the WSH process does not need to open a decryption key.

Regardless of how it is configured, the WSH does not verify digital signatures.

2. When the message buffer arrives at the Manager process, the public key 
software:

a. Decrypts the message buffer using a decryption key previously opened for the 
Manager process.

b. Verifies the employee’s signature.

c. Passes the message without digital signature or encryption information to the 
Manager.

When a process receives a message buffer, it receives only the message content. 
Any digital signatures or encryption envelopes associated with the message 
buffer are not included.

3. The Manager calls tpenvelope() repeatedly to find out about the digital 
signature and encryption information associated with the message buffer. 
tpenvelope() returns:
3-50 Using Security in ATMI Applications



Sending and Receiving Encrypted Messages
l Digital signature information, including the signer’s public key and a 
digital-signature status of TPSIGN_OK

l Encryption information, including the public keys of the WSH process and 
the Manager process itself

4. The Manager calls tpkey_getinfo() with the signer’s public key as an 
argument, to obtain more information about the signer, including the signer’s 
principal name.

5. If the Manager determines that the signer is a known employee and that the 
employee’s request (as stated in the message content) is valid, the Manager 
proceeds as follows.

a. Calls tpsign() to mark the message buffer for digital signature by the 
Manager.

a. Calls tpseal() to mark the message buffer to be encrypted for Purchasing.

b. Calls tpforward() (or some other function used to transmit data) to send the 
message to Purchasing.

Just before the message is transmitted, the public key software performs the following 
tasks.

1. Generates a digital signature for the Manager.

2. Verifies the employee’s digital signature.

3. Encrypts the message content and associated digital signatures.

4. Creates an encryption envelope for Purchasing.

Replacing an Output Buffer’s Encryption Envelopes

If a message buffer is passed to an ATMI function (such as tpgetrply()) as an output 
parameter, the public key software deletes any encryption information associated with 
the buffer. This information includes any pending seals, or seals from previous uses of 
the buffer. (A pending seal is a recipient’s seal that is registered with a message buffer.) 

New encryption information might be associated with the new buffer content after 
successful completion of the operation.
Using Security in ATMI Applications 3-51



3 Programming Security
See Also

n “Examining Digital Signature and Encryption Information” on page 3-52

n “Externalizing Typed Message Buffers” on page 3-59

n “Public Key Security” on page 1-29

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

Examining Digital Signature and Encryption 
Information

The public key software maintains the order in which:

n Digital-signature registration requests and digital signatures are attached to a 
message buffer

n Encryption registration requests and encryption envelopes are attached to a 
message buffer

A process obtains this information by calling the tpenvelope() function with the 
target message buffer as an argument. tpenvelope() is described on the 
tpenvelope(3c) reference page in the BEA Tuxedo ATMI C Function Reference.

There may be multiple occurrences of digital-signature registration requests, digital 
signatures, encryption registration requests, and encryption envelopes associated with 
a message buffer. The occurrences are stored in sequence, with the first item at the zero 
position and subsequent items in consecutive positions. The occurrence input 
parameter for tpenvelope() indicates which item is being requested. When the value 
of occurrence is beyond the position of the last item, tpenvelope() fails with the 
TPENOENT error condition. A process can examine all items by calling tpenvelope() 
repeatedly until TPENOENT is returned.
3-52 Using Security in ATMI Applications



Examining Digital Signature and Encryption Information
In an originating process, digital signature and encryption information is generally in 
a pending state, waiting until the message is sent. In a receiving process, digital 
signatures have already been verified, and encryption and decryption have already 
been performed.

What Happens When an Originating Process Calls 
tpenvelope

When an originating process calls tpenvelope() with the originating message buffer 
as an argument, tpenvelope() reports:

n Any digital signature request explicitly registered with the message buffer as 
being in the TPSIGN_PENDING state. The originating process explicitly registers 
a digital signature request by calling the tpsign(3c) function.

n Any digital signature request implicitly registered with the message buffer as 
also being in the TPSIGN_PENDING state. The originating process implicitly 
registers a digital signature request by calling tpkey_open(3c) with the 
TPKEY_AUTOSIGN flag specified.

n Any encryption (seal) request explicitly registered with the message buffer as 
being in the TPSEAL_PENDING state. The originating process explicitly registers 
an encryption request by calling the tpseal(3c) function.

n Any encryption (seal) request implicitly registered with the message buffer as 
also being in the TPSEAL_PENDING state. The originating process implicitly 
registers an encryption request by calling tpkey_open() with the 
TPKEY_AUTOENCRYPT flag specified.

In addition to the status, tpenvelope() returns the key handle associated with a 
digital signature or encryption registration request. A process can call the 
tpkey_getinfo(3c) function with the key handle as an argument, to get more 
information about the key handle.
Using Security in ATMI Applications 3-53



3 Programming Security
What Happens When a Receiving Process Calls 
tpenvelope

When a process receives a message buffer, it receives only the message content. Any 
digital signatures or encryption envelopes associated with the message buffer are not 
included. The receiving process must call tpenvelope() to obtain information about 
any attached digital signatures or encryption envelopes.

When a receiving process calls tpenvelope() with the received message buffer as an 
argument, tpenvelope() reports:

n Any digital signature attached to the message buffer. A digital signature has one 
of the following states:

l TPSIGN_OK

Digital signature has been verified.

l TPSIGN_TAMPERED_MESSAGE

Digital signature is not valid because the content of the message buffer has 
been altered.

l TPSIGN_TAMPERED_CERT

Digital signature is not valid because the signer’s digital certificate has been 
altered.

l TPSIGN_REVOKED_CERT

Digital signature is not valid because the signer’s digital certificate has been 
revoked.

l TPSIGN_POSTDATED

Digital signature is not valid because its timestamp is too far into the future.

l TPSIGN_EXPIRED_CERT

Digital signature is not valid because the signer’s digital certificate has 
expired.

l TPSIGN_EXPIRED

Digital signature is not valid because its timestamp is too old.
3-54 Using Security in ATMI Applications



Examining Digital Signature and Encryption Information
l TPSIGN_UNKNOWN

Digital signature is not valid because the signer’s digital certificate was 
issued by an unknown Certification Authority (CA).

n Any encryption envelope attached to the message buffer. An encryption 
envelope has one of the following states:

l TPSEAL_OK

Encryption envelope is valid.

l TPSEAL_TAMPERED_CERT

Encryption envelope is not valid because the target recipient’s digital 
certificate has been altered. (Target recipient will not receive the message 
buffer.)

l TPSEAL_REVOKED_CERT

Encryption envelope is not valid because the target recipient’s digital 
certificate has been revoked. (Target recipient will not receive the message 
buffer.)

l TPSEAL_EXPIRED_CERT

Encryption envelope is not valid because the target recipient’s digital 
certificate has expired. (Target recipient will not receive the message buffer.)

l TPSEAL_UNKNOWN

Encryption envelope is not valid because the target recipient’s digital 
certificate was issued by an unknown CA. (Target recipient will not receive 
the message buffer.)

In addition to the status, tpenvelope() returns the key handle associated with a 
digital signature or encryption envelope. A process can call the tpkey_getinfo(3c) 
function with the key handle as an argument, to get more information about the key 
handle.

If a receiving process calls tpsign() to register a digital signature request after 
receiving the message buffer, tpenvelope() reports the status of the registration as 
TPSIGN_PENDING. Similarly, if a receiving process calls tpseal() to register an 
encryption (seal) request after receiving the message buffer, tpenvelope() reports 
the status of the registration as TPSEAL_PENDING.
Using Security in ATMI Applications 3-55



3 Programming Security
If a receiving process modifies the content of a signed message buffer after receiving 
it, the attached signatures are no longer valid. As a result, tpenvelope() cannot verify 
the signatures, and reports a signature status of TPSIGN_TAMPERED_MESSAGE.

Understanding the Composite Signature Status

For a message buffer with multiple digital signatures, the public key software calls an 
internal function equivalent to tpenvelope() to examine the state of each digital 
signature. Then, by observing certain rules, the public key software forms a composite 
signature status. The rules for forming a composite signature status are shown in the 
following table.

Table 3-4  Composite Signature Status

If Any Status Is . . . And There Is No Status of . . . Then the Composite Status Is . . .

TPSIGN_TAMPERED_MESSAGE . . . TPSIGN_TAMPERED_MESSAGE

TPSIGN_TAMPERED_CERT TPSIGN_TAMPERED_MESSAGE TPSIGN_TAMPERED_CERT

TPSIGN_REVOKED_CERT TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT

TPSIGN_REVOKED_CERT

TPSIGN_POSTDATED TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT

TPSIGN_POSTDATED

TPSIGN_EXPIRED_CERT TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED

TPSIGN_EXPIRED_CERT

TPSIGN_OK TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT

TPSIGN_OK
3-56 Using Security in ATMI Applications



Examining Digital Signature and Encryption Information
Any incoming message buffer without a composite signature status of TPSIGN_OK or 
TPSIGN_UNKNOWN is discarded as if it were never received. If the 
SIGNATURE_REQUIRED parameter is set to Y (yes) in the ATMI application’s 
UBBCONFIG file, then any incoming message buffer without a composite signature 
status of TPSIGN_OK is discarded as if it were never received. See “Enforcing the 
Signature Policy for Incoming Messages” on page 2-45 for more detail.

An exception to the handling of signed message buffers described in the previous 
paragraph is the tpimport(3c) function. The tpimport(3c) function delivers an 
incoming message buffer regardless of the composite signature status.

Example Code for tpenvelope

The following example code shows how to use tpenvelope() to examine the digital 
signature and encryption information associated with a message buffer.

TPSIGN_EXPIRED TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK

TPSIGN_EXPIRED

TPSIGN_UNKNOWN TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK
TPSIGN_EXPIRED

TPSIGN_UNKNOWN

Table 3-4  Composite Signature Status (Continued)

If Any Status Is . . . And There Is No Status of . . . Then the Composite Status Is . . .
Using Security in ATMI Applications 3-57



3 Programming Security
Listing 3-14   Using tpenvelope Example

main(argc, argv)
int argc;
char *argv[];
#endif

{
TPKEY tu_key;
TPKEY sdo_key;
TPKEY output_key;
char *sendbuf, *rcvbuf;
int ret;
int occurrence = 0;
long status;
char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;
int found = 0;
.
.
.
output_key = NULL;
ret = tpenvelope(rcvbuf, 0, occurrence, &output_key, 

&status, NULL, 0);

while (ret != -1) {
if (status == TPSIGN_OK) {

if (tpkey_getinfo(output_key, “PRINCIPAL”,
principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

tpfree(sendbuf);
tpfree(rcvbuf);
tpterm();
(void) tpkey_close(tu_key, 0);
(void) tpkey_close(sdo_key, 0);
(void) tpkey_close(output_key, 0);
exit(1);

}

/* Do not forget to free resources */
(void) tpkey_close(output_key, 0);
output_key = NULL;
found = 1;
break;

}

3-58 Using Security in ATMI Applications



Externalizing Typed Message Buffers
/* Do not forget to free resources */
(void) tpkey_close(output_key, 0);
output_key = NULL;

occurrence++;
ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,

&status, NULL, 0);
}

.

.

.
}

See Also

n “Externalizing Typed Message Buffers” on page 3-59

n “Public Key Security” on page 1-29

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3

Externalizing Typed Message Buffers

An externalized representation is a message buffer that does not include any ATMI 
header information that is normally added to a message buffer just before the buffer is 
transmitted. An externalized representation of a signed message buffer enables “pass 
through” transmission of signed data and long-term storage of the signed buffer for 
non-repudiation. It also enables an encrypted message buffer to be transported through 
intermediate processes without access to a decryption key.
Using Security in ATMI Applications 3-59



3 Programming Security
How to Create an Externalized Representation

An ATMI process converts a typed message buffer into an externalized representation 
by calling the tpexport(3c) function. Pending signatures associated with a message 
buffer are generated at the time tpexport() is called, just as if the buffer were being 
transmitted to another process by an ATMI function. Similarly, pending seals 
associated with a message buffer are generated at the time tpexport() is called, just 
as if the buffer were being transmitted to another process by an ATMI communication 
function.

The externalized representation of a message buffer is stored in the PKCS-7 format, 
which is a binary format. If a string format is required, the calling process must call 
tpexport() with the TPEX_STRING flag specified.

Note: The ability to create an externalized representation of a typed message buffer 
is not unique to public key security. A process may call tpexport() to 
externalize a typed message buffer regardless of whether a message buffer is 
marked for digital signature or encryption.

How to Convert an Externalized Representation

A receiving process calls the tpimport(3c) function to convert the externalized 
representation of a message buffer into a typed message buffer. The tpimport() 
function also performs decryption, if necessary, and verifies any associated digital 
signatures.

Example Code for tpexport and tpimport

The following example code shows how to use tpexport() to convert a typed 
message buffer into an externalized representation, and how to use tpimport() to 
convert the externalized representation back into a typed message buffer.
3-60 Using Security in ATMI Applications



Externalizing Typed Message Buffers
Listing 3-15   Using tpexport and tpimport Example

static void hexdump _((unsigned char *, long));

#define MAX_BUFFER 80000

main(argc, argv)
int argc;
char *argv[];
#endif

{
char *databuf;
char exportbuf[MAX_BUFFER];
long exportbuf_size = 0;
char *importbuf = NULL;
long importbuf_size = 0;
int go_on = 1;

.

.

.
exportbuf_size = 0;
while (go_on == 1) {

if (tpexport(databuf, 0, exportbuf, &exportbuf_size, 0) 
== -1) {
if (tperrno == TPELIMIT) {

printf(“%d tperrno is TPELIMIT, exportbuf_size=%ld\n”,
__LINE__, exportbuf_size);

if (exportbuf_size > MAX_BUFFER) {
return(1);

}
}
else {

printf(“tpexport(%d) failed: tperrno=%d(%s)\n”,
__LINE__, tperrno, tpstrerror(tperrno));

return(1);
}

}
else {

go_on = 0;
}

}
.
.
.

hexdump((unsigned char *) exportbuf, (long) exportbuf_size);
Using Security in ATMI Applications 3-61



3 Programming Security
if (tpimport(exportbuf, exportbuf_size, &importbuf,
&importbuf_size, 0) == -1) {
printf(“tpimport(%d) failed: tperrno=%d(%s)\n”,

__LINE__, tperrno, tpstrerror(tperrno));
return(1);

}
.
.
.

}

See Also

n “Public Key Security” on page 1-29

n “Administering Public Key Security” on page 2-42

n “Programming an ATMI Application with Security” on page 3-3
3-62 Using Security in ATMI Applications


	Copyright
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions
	1 Introducing ATMI Security
	What Security Means
	Security Plug-ins
	ATMI Security Capabilities
	Operating System (OS) Security
	Authentication
	Authentication Plug-in Architecture
	Understanding Delegated Trust Authentication
	Establishing a Session
	Getting Authorization and Auditing Tokens
	Replacing Client Tokens with Server Tokens
	Implementing Custom Authentication

	Authorization
	Authorization Plug-in Architecture
	How the Authorization Plug-in Works
	Implementing Custom Authorization

	Auditing
	Auditing Plug-in Architecture
	How the Auditing Plug-in Works
	Implementing Custom Auditing

	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Backward Compatibility of LLE
	WSL/WSH Connection Timeout During Initialization
	LLE Installation and Licensing

	Public Key Security
	PKCS-7 Compliant
	Supported Algorithms for Public Key Security
	Public Key Installation and Licensing

	Message-based Digital Signature
	Digital Certificates
	Certification Authority
	Certificate Repositories
	Public-Key Infrastructure

	Message-based Encryption
	Public Key Implementation
	Public Key Initialization
	Key Management
	Certificate Lookup
	Certificate Parsing
	Certificate Validation
	Proof Material Mapping
	Implementing Custom Public Key Security
	Default Public Key Implementation

	Default Authentication and Authorization
	Client Naming
	User, Group, and ACL Files
	Optional and Mandatory ACLs

	Security Interoperability
	Interoperating with Pre-Release 7.1 Software
	Interoperability for Link-Level Encryption
	Interoperability for Public Key Security

	Security Compatibility
	Mixing Default/Custom Authentication and Authorization
	Mixing Default/Custom Authentication and Auditing
	Compatibility Issues for Public Key Security


	2 Administering Security
	What Administering Security Means
	Security Administration Tasks
	Setting the BEA Tuxedo Registry
	Purpose of the BEA Tuxedo Registry
	Registering Plug-ins

	Configuring an ATMI Application for Security
	Editing the Configuration File
	Changing the TM_MIB
	Using the BEA Administration Console

	Setting Up the Administration Environment
	Administering Operating System (OS) Security
	Recommended Practices for OS Security

	Administering Authentication
	Specifying Principal Names
	How System Processes Acquire Credentials
	Why System Processes Need Credentials
	Example UBBCONFIG Entries for Principal Names

	Mandating Interoperability Policy
	Establishing an Identity for an Older Client
	Summarizing How the CLOPT -t Option Works
	Example UBBCONFIG Entries for Interoperability

	Establishing a Link Between Domains
	Example DMCONFIG Entries for Establishing a Link

	Setting ACL Policy
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Setting Credential Policy
	Administering Authorization
	Administering Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed LLE Version
	How to Configure LLE on Workstation Client Links
	How to Configure LLE on Bridge Links
	How to Configure LLE on tlisten Links
	How to Configure LLE on Domain Gateway Links

	Administering Public Key Security
	Recommended Practices for Public Key Security
	Assigning Public-Private Key Pairs
	Setting Digital Signature Policy
	Setting Encryption Policy
	Initializing Decryption Keys Through the Plug-ins
	Failure Reporting and Auditing

	Administering Default Authentication and Authorization
	Designating a Security Level
	Configuring the Authentication Server

	How to Enable Application Password Security
	How to Enable User-Level Authentication Security
	Setting Up the UBBCONFIG File
	Setting Up the User and Group Files

	Enabling Access Control Security
	How to Enable Optional ACL Security
	How to Enable Mandatory ACL Security


	3 Programming Security
	What Programming Security Means
	Programming an ATMI Application with Security
	Setting Up the Programming Environment
	Writing Security Code So Client Programs Can Join the ATMI Application
	Getting Security Data
	Joining the ATMI Application
	Transferring the Client Security Data
	Calling a Service Request Before Joining the ATMI Application

	Writing Security Code to Protect Data Integrity and Privacy
	ATMI Interface for Public Key Security
	Recommended Uses of Public Key Security

	Sending and Receiving Signed Messages
	Writing Code to Send Signed Messages
	How a Signed Message Is Received

	Sending and Receiving Encrypted Messages
	Writing Code to Send Encrypted Messages
	Writing Code to Receive Encrypted Messages

	Examining Digital Signature and Encryption Information
	What Happens When an Originating Process Calls tpenvelope
	What Happens When a Receiving Process Calls tpenvelope
	Understanding the Composite Signature Status
	Example Code for tpenvelope

	Externalizing Typed Message Buffers
	How to Create an Externalized Representation
	How to Convert an Externalized Representation
	Example Code for tpexport and tpimport



