%%,

7 hea
BEA Tuxedo

Introducing
BEA Tuxedo ATMI

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Introducing BEA Tuxedo ATMI

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

What Y OU Need t0 KNOWcueiuicieeceeseee ettt st v iX
E-00CSWED SItO....ciiieieee et st st n e sre e a e en s X
HoW to Print the DOCUMENT..........cee et s sttt ens X
Related INfOrmMation.........c.ooueeie ittt st X
CONLBCE US! ...ttt et st et e ae e s e et e e e sreeraesranns Xi
Documentation CONVENLIONScc.ccecueieeieie e s ee s e rae st sreesreeraenaeere e Xii

1. BEA Tuxedo System Fundamentals

FOr More Information..........ccccceeiece et er e s sr e e 1-1
What Isthe BEA TUXEO SYSIEM?......eiiiiieieiieeee et 1-2
Features of the BEA TUXEdO SyStemcccoeirieieiireceee e 1-3
Anatomy of the Client/Server Model ..o 1-5
Characteristics of Client/Server ArchiteCturecooeeevvevveeiceveeieeieenens 1-5
Differences Between 2-Tier and 3-Tier Client/Server Architectures......... 1-7
Client/Server Variationsto Suit Your Needs..........cccccoeeeeiecceiecveccieeenn, 1-9
How the BEA Tuxedo System Fitsinto the Client/Server Model................... 1-10
What Are Clients, Servers, and Servicesin a BEA Tuxedo Environment?.... 1-12
What IsaBEA Tuxedo CHENt?........ccoooeiieieee e 1-12
What |SaBEA TUXEAO SEIVEI?......coeeeeeceeetie et ese e seesrens 1-13
What Are BEA TUXEAO SEIVICES?.......oovevieeeieee e seenre s 1-13
Services Provided by the BEA Tuxedo Systemccoooeceiecieeiecceesieeieeeiens 1-13
AdMINISLIatiVe SEIVICESccueieiciiecee ettt sre et 1-13
Application ProCessing SErVICES........oocerirerenesiereesieie e seenieres e 1-14
BEA Family of ProdUCLScoviieie e e 1-15

Introducing BEA Tuxedo ATMI iii

2. BEA Tuxedo ATMI Architecture

Basic Architecture of the BEA Tuxedo ATMI Environment..........ccccoceeeeeeene 2-1
What You Can Do USiNg the ATMI ... 2-4
What Are the BEA Tuxedo ATMI Messaging Paradigms?cccccoeeeverenenes 2-8
What |s Conversational CommuniCation?...........ccceeeeurerneeieeereneneseeseeeee s 2-9
How the EventBroker WOrksS ..o 2-10
What Types of Events Are REPOMEd?.......coo i 2-11
How Are EVENtS REPOIEA?ooviiiie et e s 2-12
What I's Queue-based COMMUNICALION?cceeieiieciiere e 2-13
Using Application QUEUES.cceuereerueiereereeieeee e eeesees e see e seenee e 2-13
What |s Request/Reply CommuniCation?..........cccooveoeeuererieeeseereeseieseeneeneenens 2-14
What 1S Synchronous MeSSaging?........ccccveeeeeerececieeeeseseeseeeeeseee e 2-15
What IS Asynchronous MeSSaging?ccoveveeeeeseeciesecneieeees e esees e 2-16
What Is Unsolicited COMMUNICATON?.........ccoiueiiierieeeineire e e 2-17
What Are Nested and Forwarded Service REQUESES?..........oveieievernecieeenennee 2-18
NESEEA REQUESES... ... cceeeeeeee ettt sttt sb bbb 2-18
FOrwarded REQUESEScoeeieieree ettt e 2-20
How BEA Tuxedo ATMI ProcesseS MESSAQES.......cocvvveerveereesresreesreervesreennennes 2-21
What Are the Benefits of Service Request Processing?.........coccoeeveeneeneas 2-23
What Are TYPed BUFfEIS?.......coi et 2-24
Characteristics of BUffer TYPES.......coviueierierecierrere e 2-25
USINGThEIMIB ...ttt e e e 2-28
TYPES Of MIB USEN'S ...ttt et e e e 2-29
Classes, Attributes, and States in the MIB ..o 2-29
BEA Tuxedo ATMI Application Processing ServiCes........coccoueeenneeeerenenen 2-30
What 1S Data COMPIESSION?ccveiueeieiieieesree st eereesee st sraesae e e e ee e eeeas 2-30
What Is Data-dependent ROULING?.........cccocueieeieie e e 2-31
Uses of Data-dependent ROULING.........cccccueiecieiie e 2-32
Example of Data-dependent Routing with a Horizontally Partitioned
DAtaESE ...ttt e 2-33
Example of Data-dependent Routing with Rule-based Servers.............. 2-34
Example of Data-dependent Routing with Distributed Application......... 2-35
What Are Encoding and Decoding of Data?..........cccoeevveveeciececneieeeseeenn 2-37
What 1S Data ENCryption?..........ccoeeieiieiiiiieeeeie ettt st 2-37
What IsDataMarshalling?........cccooiiiiiiiieeeieceeee et e 2-38

iv Introducing BEA Tuxedo ATMI

What 1S Load BalanCing?coccei e e 2-39

AsSigning aLoad Factorcocooiiie it 2-39
What 1S Message PriofitiZation?............ccoeeevereneie e 2-41
What Is Meant by Naming?.........ccooiviiiiieeee e s 2-42

NaMING SENVICESoiiieectie et er e st r e saesaaenne s 2-42

AAVErTISING SEIVICES ...ttt et re e e srens 2-43

NaMING EVENES ..ot et s r et e e n 2-43
BEA Tuxedo ATMI Administrative SErviCeS.........ocooevereneeirerieee e 2-44

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Basic BEA Tuxedo ATMI INfrastruCtUre.cooeeeeeieieee s e 31
Management View: Using Administrative TOOIS.........ccocooeoeeirinieeie e 3-2
Available BEA TUXedO MIBS.......ccoiiiiiieiereeeieeiee e e 33
Using the BEA Administration CONSOIE..........ccccevveiieeiectieie e e 34
Browser REQUIFEMENESccooiieiriieeie et see e e seese e 3-4
Benefits of Using the BEA Administration Console..........ccocveeviveeececvvennane. 35
Exploring the Main Menu of the BEA Administration Console..........c..cccc..... 3-6
What ISThE TIEE? ...ttt e e e 37
Using the Configuration TOOlcccceeieie e 3-8
USING the TOOIDASooeeeieeceee e e e 3-9
Managing Operations UsSing the MIBccccooviiiiiiniene e 3-10
TYPES Of MIB USEI'S ...ttt ettt st s e b e 311
Classes, Attributes, and Statesin the MIB ... 312
Using Command-1ing ULIILIES..........ccco v iie e 312
Configuring Y our Application Using Command-line Utilities.............cc.cc..... 3-13
Operating Y our Application Using Command-line Utilities............ccccceeveneee 3-14
Managing System Events Using EVENtBrokercccoceveveeveveesieveeevie e 3-14
What 1S @N EVENE?.....oiiie ettt s e s e 3-15
SUBSCIibING 0 AN EVENL ..ot s e 3-16
TYPES OF EVENES ...ttt e e e e b e b 3-17
Differences Between System and Application-specific Events............... 3-18
BEA Tuxedo ATMI Administrative SErviCeS........cocooevereneeirinieee e 3-19
Managing Application QUELIES..........c.cocreeeiriereie e s 3-20
Using gmadmin to Administer Application Queues...........ccccceveveeeennee. 3-20
Using tmconfig to Modify Your Configurationcccceeeeveeecveeinenen, 321

Introducing BEA Tuxedo ATMI %

Vi

Managing Y our Configurationcccceveieierenenee e e 3-22

Creating the Configuration File.........ccuviiiiiiniiee e 3-22
Making Permanent Configuration Changescc.ceeeeieeenenienesee e 3-24
Managing Y our Configuration Dynamically........ccccuvvrnecininnienie e 3-25
Performing Dynamic Operations Using tmadmin(1)ccccccvereeienerienenenne 3-26

Commonly Used tmadmin Commandscc.coeerereeerenieneseeseeeie e 3-26

Sample Output from the tmadmin Commandcceeveeiereieneienenes 3-27
Managing aDistributed Application Centrallyccccooeeiiiiiiieieneneee 3-28
MaNAGING SECUNTYev ettt sttt e e e e e e e aenee e 3-30
Selecting Security OPtIONSccucue it 3-31
SEttiNg UP SECUMTY ...veueeeie ettt sttt e e e 3-32
Starting Up and Shutting Down Y our AppliCationcccoeeeeieieneeneienenes 3-33
Managing TraNSACLIONS.........ccceceeieeieie e ee e sr e seesraenaesresreesreenrennes 3-34

Coordinating Operations with a Transaction Manager Server (TMS).....3-35

Tracking Participants with a Transaction Log (TLOG)cceeeerereenens 3-35
Managing WOrKSLatiOnS..........ccceeierieeie e s s s e 3-36
Development View: What You Can Do Usingthe ATMIccviviiiiiienenne. 3-37
Run-time System View: Using Toolsin Different Configurations................. 3-39

Run-time System CapabilitieS.........ccovereierirreeir e 3-39
What Is a Single-machine Configuration?...........ccccocvveveeviesiieieceeie e 3-40
What |s a Multiple-machine (Distributed) Configuration?.........c.cccccecevennen. 3-43
What |sa Multiple-domain Configuration?............cccceureriereneneeneie e 3-47
Features of a Multiple-domain Configurationccccoeeeenenine e 3-51
What IsaBEA Tuxedo Bridge?........cciiiiiiieieeceeceeeeeetee st 3-51
What Isthe Role of the Bulletin Board and Bulletin Board Liaison?............. 3-53
What Are ClientS and SEIVEIS?.........oo it s 3-54
What Isthe Distinguished Bulletin Board Liaison (DBBL)?........cccceeveneneee. 3-55
What Are the Domains Administrative TOOIS?ccurerieeenenenee e 3-55
What Are IPC MeSSage QUELIES?..........ccueieeeeieeeereesee ettt sreesae e se e sn e 3-57

When to Use Single Server, Single Queues (SSSQ)ccveverreeveeeenenne. 3-58

When to Use Multiple Server, Single Queue (MSSQ) Sets.........cccveueee 3-58
What Are the Workstation Handler and Workstation Listener?...........c......... 3-60

How aWorkstation Client Connectsto an Applicationcccceeveenenns 3-61
What Isthe User LOG (ULOG)?....c.ui ittt sttt s 3-62

HOW 1Sthe ULOG Created?..... ..ottt s 3-62

Introducing BEA Tuxedo ATMI

Example of aULOG MESSAQEccuevereereeieiieiereeiiseee e seeeenes

Where the ULOG Resides

Introducing BEA Tuxedo ATMI

Vii

viii Introducing BEA Tuxedo ATMI

About This Document

This document provides a general introduction to the core BEA Tuxedo® ATMI
(Application-to-Transaction Monitor Interface) programming environment.

This document includes the following topics:

m Chapter 1, “BEA Tuxedo System Fundamentals,” provides an overview of the
BEA Tuxedo programming environment.

m Chapter 2, “BEA Tuxedo ATMI Architecture,” describes the basic architectural
elements of aBEA Tuxedo ATMI environment, including external interfacesto
the environment, the ATMI layer, the MIB, system services, and the ATMI
environment’ s interface with standards-compliant resource managers.

m Chapter 3, “Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure,”
describes the BEA Tuxedo ATMI infrastructure from three perspectives:
administrative or management, development (using the ATMI), and run time.

What You Need to Know

This document isintended for programmers who want to familiarize themselves with
the BEA Tuxedo programming environment and create distributed ATMI applications
using the BEA Tuxedo product.

Introducing BEA Tuxedo ATMI iX

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

X

The following documents provide related information about BEA Tuxedo software.
m Installing the BEA Tuxedo System—paper copy distributed with the CD
m BEA Tuxedo Release Notes—paper copy distributed with the CD

m Setting Up a BEA Tuxedo Application—available through the BEA Tuxedo
Online Documentation CD, this guide describes how to set up and administer the
BEA Tuxedo system.

Introducing BEA Tuxedo ATMI

m Administering a BEA Tuxedo Application at Run Time—available through the
BEA Tuxedo Online Documentation CD, this guide describes how to administer
BEA Tuxedo applications at run time.

m Getting Sarted with BEA Tuxedo CORBA Applications—avail able through the
BEA Tuxedo Online Documentation CD, this guide describes how to develop
distributed CORBA applications in the BEA Tuxedo CORBA environment.

For more information about configuring and administering BEA Tuxedo ATMI
environment, refer to the CORBA Bibliography at http://edocs.bea.com/.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

Your machine type and authorization codes

m The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Introducing BEA Tuxedo ATMI Xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

nonospace Indicates code samples, commands and their options, data structures and

t ext their members, data types, directories, and filenames and their extensions.

M onospace text also indicates text that you must enter from the keyboard.
Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .

void commt ()
nonospace Identifies variables in code.
italic Example:
text .

String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:

LPT1

SIGNON

OR

Xii Introducing BEA Tuxedo ATMI

Convention

Item

{1}

Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Introducing BEA Tuxedo ATMI Xiii

Xiv Introducing BEA Tuxedo ATMI

CHAPTER

1

For More

BEA Tuxedo System
Fundamentals

Thistopic includes the following sections:

m What Isthe BEA Tuxedo System?

m Anatomy of the Client/Server Model

m How the BEA Tuxedo System Fitsinto the Client/Server Model

m What Are Clients, Servers, and Servicesin a BEA Tuxedo Environment?
m Services Provided by the BEA Tuxedo System

m BEA Family of Products

Information

Many resources are available to help you understand the BEA Tuxedo system. The
following books, white papers, and presentations provide information about
client/server architecture, building and managing distributed business applications,
and using the BEA Tuxedo system to build and manage enterprise applications:

m Andrade, Juan, M. Carges, T. Dwyer, and S. Felts, The Tuxedo System - Software
for Constructing and Managing Distributed Business Applications. Reading,
Massachusetts: Addison-Wesley Publishing, 1996.

m Edwards, Jeri, with D. DeVoe, 3-Tier Client/Server at Work. New York: John
Wiley & Sons, Inc., April 1997.

Introducing BEA Tuxedo ATMI 1-1

1

BEA Tuxedo System Fundamentals

m Edwards, Jeri, D. Harkey, R. Orfali, The Essential Client/Server Survival Guide.
New York: John Wiley & Sons, Inc., May 1997.

m Hall, Carl, Building Client/Server Applications Using Tuxedo - Designing and
Building Cost-Effective, High Performance Client/Server Applications Using
Tuxedo. Wiley Computer Publishing.

m Lee, Rich, BEA Tuxedo Essentials. Presented at the BEA User’s Conferencein
New Orleans, La., February, 1999.

m MacBlane, Randy, Managing your BEA Tuxedo Applications Even Over the
Internet. Presented at the BEA User’s Conference in San Jose, Ca., May 1997.

m MacBlane, Randy, Tuxedo's Management Information Base. Presented at the
BEA User’s Conference in San Francisco, Ca., February 1996.

m BEA Tuxedo: The Programming Model (White Paper)
m BEA Tuxedo and the Component Software Model (White Paper)

m Inter-Application Transaction Processing with BEA Tuxedo Domains (White
Paper)

m Reliable Queuing Using BEA Tuxedo (White Paper)

What Is the BEA Tuxedo System?

1-2

The BEA Tuxedo system is a middleware product that distributes applications across
multiple platforms, databases, and operating systems using message-based
communications and, if desired, distributed transaction processing.

Middleware is used with client/server applications to distribute processing among
multiple servers, manage distributed transactions, and integrate multiple database
platforms. Middleware systems are sometimes known as “on-line transaction
processing” or “OLTP” systems.

Introducing BEA Tuxedo ATMI

What Is the BEA Tuxedo System?

The BEA Tuxedo system is a mature product based on over 15 years of development
from a diverse group of technology companiesincluding AT& T, UNIX System
Laboratories (USL), Novell, and BEA Systems, Inc. It is both adevelopment platform
and an execution platform. The BEA Tuxedo system serves as an extension to the
operating system.

The BEA Tuxedo system provides the following:

m Anindustry standard for the creation and central administration of distributed
on-line transaction applications in a heterogeneous client/server environment.

m Ease of use for application developers, who do not need to know all the details
about server locations, routing, or platforms used. In a BEA Tuxedo application,
these aspects of a program are transparent.

m The fundamental underpinnings for creating, managing, and maintaining reliable,
high performance, easily managed distributed systems.

Features of the BEA Tuxedo System

The BEA Tuxedo system offers many features to accommodate the needs of the
administrator, architect, and programmer of an application.

Administrative Features

m Password security and access control security—password security allows
application designers to control access by requiring passwords at initialization
time (authentication). Further control is available through authorization, a means
of restricting access to certain application services to clients that have been
given explicit permission and that have authenticated identities.

m System events notification—the BEA Tuxedo system provides detail s about
system events, such as servers dying and network failures. When an event is
posted by clients or servers, the EventBroker looks up all the subscribersto that
event and takes appropriate actions, as determined by each subscription.

m The MIB (Management Information Base)—an administrative interface that
enables you to monitor, configure, and tune your application through your own
programs. It is an implementation-independent management database defined as
aset of FML attributes, which alows you to query or change information.

Introducing BEA Tuxedo ATMI 1-3

1

BEA Tuxedo System Fundamentals

Web-based administration—a graphical user interface, available through the
World Wide Web, for the configuration and control of BEA Tuxedo applications.

Architectural Features

Distributed services—allow transparent access to application and/or system
services located on different hardware platforms.

Fast, connectionless communications—clients connect to a bulletin board rather
than to servers, thus improving system performance.

Scalability—you can quickly scale your application to match varying system
load demands because services and servers can be replicated and distributed
easily. You can set thresholds programmatically to enable the BEA Tuxedo
system to spawn new servers or to shut down servers automatically.

Server transparency—the directory of services on the bulletin board maps
service namesto servers; clients do not need to be aware of server identity.

Programming Features

1-4

Communi cation techniques—the application programming interface (API) for

the BEA Tuxedo system is a superset of X/Open’'s XATMI interface called the
Application-to-Transaction Monitor Interface or ATMI. The Tuxedo ATMI isa
rich set of communication techniques for writing distributed applications.

Distributed Transaction Processing (DTP)—allows work being done throughout
adistributed application to be atomically completed—an essential characteristic
of any OLTP system.

Typed buffers—provides transparent handling of application data across
heterogeneous platforms.

X/Open TX compliance—the BEA Tuxedo system conforms to the X/Open
interface standard for transaction demarcation.

X/Open XA compliance—the BEA Tuxedo system conforms to the X/Open
interface standard for transaction database systems (called resource managers).
As aresult, you can mix and match databases within one application while
maintaining dataintegrity.

Introducing BEA Tuxedo ATMI

Anatomy of the Client/Server Model

See Also
m “Services Provided by the BEA Tuxedo System” on page 1-13

m “BEA Family of Products’ on page 1-15

Anatomy of the Client/Server Model

In client/server architecture, clients, or programs that represent users who need
services, and servers, or programs that provide services, are separate logical objects
that communicate over anetwork to perform tasks together. A client makes a request
for aservice and receives areply to that request; a server receives and processes a
request, and sends back the required response.

Characteristics of Client/Server Architecture

m Asymmetrica protocols—there is a many-to-one relationship between clients
and a server. Clients dways initiate a dialog by requesting a service. Servers
wait passively for requests from clients.

m Encapsulation of services—the server is a specialist: when given a message
requesting a service, it determines how to get the job done. Servers can be
upgraded without affecting clients as long as the published message interface
used by both is unchanged.

m Integrity—the code and data for a server are centrally maintained, which results
in cheaper maintenance and the protection of shared dataintegrity. At the same
time, clients remain personal and independent.

m Location transparency—the server is a process that can reside on the same
machine as a client or on a different machine across a network. Client/server
software usually hides the location of a server from clients by redirecting service
requests. A program can be a client, a server, or both.

m Message-based exchanges—clients and servers are |oosely-coupled processes
that can exchange service reguests and replies using messages.

Introducing BEA Tuxedo ATMI 1-5

1

BEA Tuxedo System Fundamentals

1-6

Modular, extensible design—the modular design of a client/server application
enables that application to be fault-tolerant. In a fault-tolerant system, failures
may occur without causing a shutdown of the entire application. In a
fault-tolerant client/server application, one or more servers may fail without
stopping the whole system as long as the services offered on the failed servers
are available on servers that are still active. Another advantage of modularity is
that a client/server application can respond automatically to increasing or
decreasing system loads by adding or shutting down one or more services or
servers.

Platform independence—the ideal client/server software is independent of
hardware or operating system platforms, allowing you to mix client and server
platforms. Clients and servers can be deployed on different hardware using
different operating systems, optimizing the type of work each performs.

Reusable code—service programs can be used on multiple servers.

Scalability—client/server systems can be scaled horizontaly or vertically.
Horizontal scaling means adding or removing client workstations with only a
dlight performance impact. Vertical scaling means migrating to alarger and
faster server machine or adding server machines.

Separation of Client/Server Functionality—client/server is arelationship
between processes running on the same or separate machines. A server process
isaprovider of services. A client is aconsumer of services. Client/server
provides a clean separation of functions.

Shared resources—one server can provide services for many clients at the same
time, and regulate their access to shared resources.

Introducing BEA Tuxedo ATMI

Anatomy of the Client/Server Model

Differences Between 2-Tier and 3-Tier Client/Server
Architectures

Every client/server application contains three functional units:
m Presentation logic or user interface (for example, ATM machines)

m Businesslogic (for example software that enables a customer to request an
account balance)

m Data (for example, records of customer accounts)

These functional units can reside on either the client or on one or more serversin your
application. Which of the many possible variations you choose depends on how you
split the application and which middleware you use to communi cate between the tiers.

In 2-tier client/server applications, the business logic is buried inside the user interface
on the client or within the database on the server in the form of stored procedures.
Alternatively, the business logic can be divided between the client and server. File
serversand database serverswith stored procedures are examples of 2-tier architecture.

In 3-tier client/server applications, the business logic residesin the middle tier,
separate from the data and user interface. In this way, processes can be managed and
deployed separately from the user interface and the database. Also, 3-tier systems can
integrate data from multiple sources.

Introducing BEA Tuxedo ATMI 1-7

1 BEATuxedo System Fundamentals

Figurel-1 2-Tier and 3-Tier Client/Server M odels

=

-Presentation logic
-Business logic
-Database access (SOL)

Clients Clients

Business Logic Middlewara
Borvica A
Borvies B
Barvica € |
RDBMS]
Server
Business logic in the
form of stored
rocedures
P RDBMS
Server

2.TIER CLIENT/SERVER

Two or more operating systems

3-TIER CLIENT/SERVER
Multiple operating systems

1-8

One or more programming
languages
Local and remote databases

Hetworking/communication issues

Inter-program communications

Introducing BEA Tuxedo ATMI

One or more programming
languages

Local and remote databases
Hetworking/communication issues
Inter-program communications
Message routing

Anatomy of the Client/Server Model

Client/Server Variations to Suit Your Needs

Client/server architecture can accommodate the needs of each of the following
situations:

m Small shops and laptops—the client, the middleware software, and most of the
business services operate on the same machine. We recommend this approach
for one-person businesses such as a dentist’ s office, ahome office, and a
business traveler who frequently works on alaptop computer.

m Small businesses and corporate departments—a L AN-based single-server
application isrequired. Users of this type of application include small
businesses, such asamedical practice with several doctors, a multi-department
corporation, or abank with several branch offices. In this type of application,
multiple clientstalk to alocal server. Administration is simple: security is
implemented at the machine level and failures are detected easily.

m Large enterprises—multiple serversthat offer diverse functionality are required.
Multiple servers can reside on the Internet, intranets, and corporate networks, al
of which are highly scalable. Servers can be partitioned by function, resources,
or databases, and can be replicated for increased fault tolerance or enhanced
performance. This model provides a great amount of power and flexibility. How
well you architect your application is critical to this client/server model. You
may need to partition work among servers, or design servers to delegate work to
other servers.

Introducing BEA Tuxedo ATMI 1-9

1 BEA Tuxedo System Fundamentals

How the BEA Tuxedo System Fits into the
Client/Server Model

The BEA Tuxedo system fits into the middle of the client/server model. In aBEA
Tuxedo application, clientslog in and request services offered by an application. The
BEA Tuxedo system offers these services through a transparent bulletin board. The
bulletin board contains a directory advertising services. In abanking application, for
exampl e, the bulletin board might advertise deposit, withdrawal, and inquiry services.
The BEA Tuxedo system then finds aserver (for example, at the appropriate branch or
district office) that can provide the requested services.

Figure1-2 Clientsand Serversin a Sample Banking Application

Cash Branch
Machines Server
Replies Feature: Deposit
Eeque_ﬂst Distributed Witk ane
Epos Sernvices Ingjuiry
Middieware
Cash Replies Reguests
Machines Bulletin Board Directory]
— of Services Feature:
erLe L
- i h
Withclr sl Dot Sl g@’ﬁﬂ grsﬁggded
CLIENTS Cllaclenel e SERVERS
Incquiry Branch
Incquiry District -
Bank Tramsfer District District
Tellers] Server
Replies Requests
Eg;.‘;l.;iset Transfer
el Incjuiry
Feature:

Service Transparency-no
knowledge of server
location

The preceding figure shows the primary building blocks of aBEA Tuxedo application:

m Clients—programs that collect input from users, sends requests through the BEA
Tuxedo system to servers, and then collects the replies from servers and delivers
them to the users.

1-10 Introducing BEA Tuxedo ATMI

How the BEA Tuxedo System Fits into the Client/Server Model

m Servers—programs that encapsulate the business logic into a set of services that
define the application.

m Middleware—comprises al the distributed software needed to support
interactions between clients and servers. It isthe medium that enables aclient to
obtain a service from a server. Middleware includes: API functions used by the
client (to issue requests and receive replies) and the server (to issue replies) and
messaging paradigms used to transmit client requests and server responses over
anetwork. Middleware does not include any of the following: the user interface
on the client, application logic, and services provided by servers.

In this sample BEA Tuxedo banking application, clients (cash machines and tellers)
make requests, and servers (at branch and district offices) provide services and
responses. For example, a customer may use a cash machine to find out how much
money isavailablein his personal checking account. The cash machine (aclient) calls
the server to get the balance. The server receivestherequest, retrievesthe balance, and
sends the information to the cash machine.

See Also

m “Anatomy of the Client/Server Model” on page 1-5

m “What Are Clients, Servers, and Servicesin aBEA Tuxedo Environment?’ on
page 1-12

Introducing BEA Tuxedo ATMI -1

1

BEA Tuxedo System Fundamentals

What Are Clients, Servers, and Services In a
BEA Tuxedo Environment?

This topic describes a client, server, and servicesin aBEA Tuxedo environment.

What Is a BEA Tuxedo Client?

1-12

A client is aprogram that collects a request from a user and passes that request to a
server capable of fulfilling it. It can reside on a PC or workstation as part of the front
end of an application. It can also be embedded in software that reads a communication
device such asan ATM machine from which data is collected and formatted before
being processed by BEA Tuxedo servers.

Tobeaclient, aprogram must be ableto invokethe BEA Tuxedo libraries of functions
and procedures known collectively as the Application-to-Transaction-Monitor
Interface, or ATMI. The ATMI is supported in several language bindings.

A client joins a Tuxedo application by calling the ATMI client initialization routine.
Once it has joined an application, a client can define transaction boundaries and call
ATMI functions that enable it to communicate with other programs in your
application. Theclient leavesthe BEA Tuxedo ATMI application by issuing an ATMI
termination function. By joining an application only when necessary and leaving it
once the appropriate task is complete, aclient frees BEA Tuxedo system resourcesfor
use by other clients and servers.

When building a distributed application, you must determine how information is
gathered and presented to your business for processing. Y ou have complete control
over where and when to call ATMI or CORBA functions, depending upon your
businesslogic and rules. Y our program can join one BEA Tuxedo application, perform
some tasks and leave, and then join a different BEA Tuxedo application to perform
another task. If you are using a multicontext application, your client can perform tasks
in more than one application without leaving any of them.

Introducing BEA Tuxedo ATMI

Services Provided by the BEA Tuxedo System

What Is a BEA Tuxedo Server?

A BEA Tuxedo server is aprocess that oversees a set of services, dispatching them
automatically for clients that request them. A service, in turn, is afunction within a
server program that performs a particular task needed by a business. A bank, for
example, might have one service that accepts deposits and another that reports account
balances. A server at thisbank might receive requests from clients for both services. It
isthe server’sjob to dispatch each request to the appropriate service.

Service functions implement business logic through calls to database interfaces such
as SQL and, possibly, callsto the ATMI to access additional services, queues, and
other resources. The servers on which these services reside then reply to the clients or
forward client requests to a new service.

What Are BEA Tuxedo Services?

A serviceisamodule of application code that performs atask. Services are compiled
and link edited to form executable servers.

Services Provided by the BEA Tuxedo System

The BEA Tuxedo system offers many administrative and application processing
services to help you streamline and administer your application.

Administrative Services

The BEA Tuxedo system provides services for the following administrative tasks:
m Application queue management
m Centralized application configuration

m Distributed application management

Introducing BEA Tuxedo ATMI 1-13

1 BEA Tuxedo System Fundamentals

m Dynamic application reconfiguration

= Event management

m Security management

m Startup and shutdown of an application
m Transaction management

m Workstation management

Application Processing Services

The BEA Tuxedo system provides servicesthat enable you toimplement thefollowing
functionality in your application:

m Data compression

m Data-dependent routing
m Dataencoding

m Dataencryption

m Datamarshalling

m Load balancing

m Message prioritization

m Service and event naming

1-14 Introducing BEA Tuxedo ATMI

BEA Family of Products

BEA Family of Products

The BEA product family facilitates end-to-end integration of heterogeneous hardware
and software environments allowing businesses to create enterprise-wide transaction
processing systems. BEA products enable companies to enjoy the benefits of robust
mission-critical applicationswith theflexibility of distributed client/server computing.
Compliant with all leading industry standards, BEA products enable developersto
build, deploy, manage, and connect enterprise-wide applications on more than 70
platforms. These products also provide complete integration with market-leading
application development tools, systems management solutions, and |legacy

applications.

ThisProduct...

Provides...

BEA eLink Adapter for

A suite of connectivity products that allow seamless

Mainframe integration of BEA Tuxedo distributed applications with
enterprise applications.
BEA Jolt A BEA Tuxedo client API in Java. BEA Jolt takes requests

from Java-enabled clients and translates them into BEA
Tuxedo application calls.

BEA Tuxedo and
BEA Log Central

BEA application management products that provide a
complete environment for managing, integrating, and
deploying BEA Tuxedo and BEA WebL ogic Server
applications.

BEA Tuxedo ATMI
consists of 4 components:

m Core BEA Tuxedo
ATMI

m Domains

m /Q
m Workstation

m BEA Tuxedo ATMI core product—enables you to build
high-performance, mission-critical, and reliable
distributed applications. It provides the framework for
building scalable 3-tier client-server applicationsin
heterogeneous, distributed environments.

m Domains—extends the BEA Tuxedo client/server model

to provide transaction interoperability across separately
administered BEA Tuxedo applications.

m /Q—allowsreliable queueing of requests.

m Workstation—offersfull client support for awide variety
of operating systems, allowing applications to use remote
clientsthat don’t need afull BEA Tuxedo implementation.

Introducing BEA Tuxedo ATMI 1-15

1

BEA Tuxedo System Fundamentals

1-16

This Product...

Provides... (Continued)

BEA Tuxedo CORBA
consists of 5 components:

m BEA Tuxedo CORBA

m BEA Tuxedo CORBA core product—the Common Object
Reqguest Broker Architecture (CORBA) component in
BEA Tuxedo uses distributed object technol ogy to provide

core product arich set of programming models by extending the Object
= Bootstrap Obiect Reqguest Broker (ORB) model with online transaction
00 r.ap d processing (OLTP) functions.

= lloP L@ener/ Handler m Bootstrap object—establishes communication between an

= ORB Client/Server client application and a BEA Tuxedo domain.

m TP Framework m |IOP Listener/Handler—a process that retrieves a client

request and deliversit to the appropriate server application.

m ORB—serves as an intermediary for requests that client
applications send to server applications.

m TP Framework—provides a programming model that
achieves high levels of performance while shielding the
application programmer from the complexities of the
CORBA interfaces.

BEA WebL ogic Server A Java-application server for developing, integrating,
deploying, and managing large-scale, distributed Web,
network, and database applications.

BEA WebL ogic An XML- and Java-based open market el ectronic commerce

Collaborate platform for implementing business-to-business e-commerce
systems on the Web.

BEA WebL ogic Enables rapid deployment of adaptable and personalized

Commerce Server &
Personalization Server

e-commerce applications to accelerate response time to
customer and market demands.

BEA WebL ogic Process
Integrator

Automates and integrates a business process by managing the
sequence of activities and invoking the appropriate resources
required by the various activities or stepsin the process.

Introducing BEA Tuxedo ATMI

CHAPTER

2 BEA Tuxedo ATMI
Architecture

Thistopic includes the following sections:

Basic Architecture of the BEA Tuxedo ATMI Environment
What Arethe BEA Tuxedo ATMI Messaging Paradigms?
How BEA Tuxedo ATMI Processes M essages

BEA Tuxedo ATMI Application Processing Services

BEA Tuxedo ATMI Administrative Services

Basic Architecture of the BEA Tuxedo ATMI
Environment

The following figure illustrates the basic architectural elements of a BEA Tuxedo
ATMI environment: externd interfacesto the environment, the ATMI layer, theMIB,
BEA Tuxedo system services, and the environment’s interface with
standards-compliant resource managers.

Introducing BEA Tuxedo ATMI 2-1

2 BEA Tuxedo ATMI Architecture
Figure2-1 TheBEA Tuxedo ATMI Basic Architecture

Toals far App Applications that 3rd Party BEA Administration | External
Development use BEATUXEDD mManagement Tools Console Interface | ayer
ATM! fApplication to Transaction Monitor Interface) 4_| AT Layer
T e —————— T MBS (ACL Care, Events, |
Messaging Paradigms 10, Warkstation)
Administrative
Data compression services
Data-dependentrouting Centralized application BEA TUXEDO
Data encoding .ﬂ.pphcafmn canfiguration & System Services
Data encryption processing Distributed application management I ayer
Data marshalling senvices Cynamic reconfiguration
Load halancing Event managerment
Messane prioritization Security management
Maming services Starting up and shutting down
Transaction management Warkstation management
XA Qpen Protocol
.{ -- Interface with any
standards-based
Resource Manager Resource Manager

Asshown in thisillustration, the BEA Tuxedo ATMI environment contains the
following components:

Architectural Part Description

External interfacelayer ~ Thislayer consists of interfaces between the user and the
environment. It includes both tools for application development
and administration, such as the BEA Administration Console.
The BEA Administration Console can interact with standard
management consoles. Thus a user can manage a BEA Tuxedo
ATMI environment and a network configuration from one
console. In addition, application architects and developers can
build their own administrative tools or application- or
market-specific tools on top of the MIB.

2-2 Introducing BEA Tuxedo ATMI

Basic Architecture of the BEA Tuxedo ATMI Environment

Architectural Part

Description (Continued)

ATMI (Application-to-
Transaction Monitor
Interface)

Theinterface between an application and the BEA Tuxedo ATMI
environment. The ATMI and the BEA Tuxedo environment
implement the X/Open DTP modée of transaction processing. An
abstract environment, the ATMI supports location transparency
and hides implementation details. As aresult, programmers are
free to configure and deploy BEA Tuxedo applicationsto
multiple platforms without modifying the application code.

M essaging paradigms Different models of transferring messages between aclient and a
server. Examplesinclude request/response mode, conversational
mode, events and unsolicited notification.

M anagement The MIB is an interface that enables users to program and

Information Base (MIB)

administer a BEA Tuxedo ATMI environment easily. MIB
operations enable you to perform all management tasks
(monitoring, configuring, tuning, and so on). The MIB allows
you to perform one task to one object at atime or to build toolkits
with which you can batch tasks and/or objects. (For information
about available MIBs, see “Available BEA Tuxedo MIBs” on

page 3-3.)

BEA Tuxedo Services
(administrative services
and application
processing services)

Servicesand/or capabilities provided by the BEA Tuxedo ATMI
environment infrastructure for developing and administering
applications. The application processing services available to
developersinclude: data compression, data-dependent routing,
dataencoding, load balancing, and transaction management. The
administrative services include: centralized application
configuration, distributed application management, domains
partitioning, dynamic reconfiguration, event and fault
management, | PC message queues, and workstation
management. (For information on administrative services, see
thetopictitled: “ Three Ways of Viewing the BEA Tuxedo ATMI
Infrastructure” on page 3-1.)

Resource Manager

A software product in which datais stored and available for
retrieval through application-based queries. The resource
manager (RM) interacts with the BEA Tuxedo ATMI
environment and implements the XA standard interfaces. The
most common example of aresource manager is a database.
Resource managers provide transaction capabilities and
permanence of actions; they are the entities accessed and
controlled within a global transaction.

Introducing BEA Tuxedo ATMI 2-3

2 BEA Tuxedo ATMI Architecture

See Also

m “BEA Tuxedo ATMI Administrative Services’ on page 2-44

m “BEA Tuxedo ATMI Application Processing Services’ on page 2-30

What You Can Do Using the ATMI

The Application-to-Transaction Monitor Interface (ATMI), the BEA Tuxedo AP, is
an interface for communications, transactions, and management of data buffers that
worksin all environments supported by the BEA Tuxedo system. It provides the
connection between application programs and the BEA Tuxedo system. The ATMI is
asimpleinterface for acomprehensive set of capabilities. It implements the X/Open
DTP model of transaction processing.

Figure2-2 Usingthe ATMI

Tools Languages (C, C++ COBOL, Java)
AT
BEATUSEDD Clientt Mame Management - Distributed AEE
i s And Connectivity ' Transaction W 1B
Administration Processing g

Systerm-Level (Hardware, Operating Systerm, Metwoark)

The ATMI supports the following tasks:
-Client initialization

-Zerver naming

-System messaging

-Managing transactions

-Dizpatching of services

-Managing buffers

The ATMI library offersyou avariety of functionsfor defining and controlling global
transactions in a BEA Tuxedo application. Global transactions enable you to manage
exclusive units of work spanning multiple programs and resource managersin your

2-4 Introducing BEA Tuxedo ATMI

What You Can Do Using the ATMI

distributed application. All work in asingle transaction istreated as alogical unit, so
that if any one program cannot completeitstask successfully, no work is performed by
programsin the transaction. Most ATMI functions support different communication
styles. These functions knit together distributed programs by enabling them to send
and receive data. All ATMI functions send or receive datain typed buffers. Following
isalist of ATMI functions (for C and COBOL bindings), and the tasks they perform.
The functions are grouped by task.

Table2-1 Usingthe ATMI Functions

For a Task
Related to...

UseThisC
Function...

Or ThisCOBOL
Function...

To...

Client membership

t pchkaut h(3c)

TPCHKAUTH(3cbl)

Check whether authenticationis
required

tpinit(3c) TPI NI TI ALl ZE(3cbl) Haveaclient join an application
t pt ern(3c) TPTERM 3cbl) Have aclient leave an
application
Buffer t pal 1 oc(3c) N A Create a message buffer
management
tpreal | oc(3c) N A Resize a message buffer
t pfree(3c) N A Free amessage buffer
t pt ypes(3c) N A Get a message type and subtype
M essage priority t pgpri o(3c) TPGPRI (3chbl) Get the priority of the last
request
t psprio(3c) TPSPRI O(3chbl) Set the priority of the next
request
Request/response tpcal | (3c) TPCALL(3chl) Initiate a synchronous
communications request/response to a service
t pacal I (3c) TPACALL(3chbl) Initiate an asynchronous

request (fanout)

t pgetrpl y(3c)

TPGETRPLY(3chbl)

Receive an asynchronous
response

t pcancel (3c)

TPCANCEL(3cbl)

Cancel an asynchronous request

Introducing BEA Tuxedo ATMI 2-5

2 BEA Tuxedo ATMI Architecture

Table 2-1 Usingthe ATMI Functions (Continued)

For aTask
Related to...

UseThisC
Function...

Or ThisCOBOL
Function...

To...

Conversational
communications

t pconnect (3c)

TPCONNECT(3cbl)

Begin a conversation with a
service

t pdi scon(3c)

TPDI SCON(3cbl)

Abnormally terminate a
conversation

t psend(3c)

TPSEND(3cbl)

Send amessagein a
conversation

tprecv(3c)

TPRECV(3cbl)

Receive amessagein a

conversation
Reliable queuing t penqueue(3c) TPENQUEUE(3chbl) Enqueue a message to a
message queue
t pdequeue(3c) TPDEQUEUE(3chl) Dequeue amessage from a
message queue
Event-based tpnotify(3c) TPNOTI FY(3cbl) Send an unsolicited message to

communications

aclient

t pbr oadcast (3c)

TPBROADCAST(3cbl)

Send messages to severa
clients

t pset unsol (3c)

TPSETUNSOL(3cbl)

Set unsolicited message
call-back

t pchkunsol (3c)

TPCHKUNSOL(3cbl)

Check the arrival of unsolicited
messages

N A

TPGETUNSOL(3cbl)

Get an unsolicited message

t ppost (3c)

TPPCST(3chl)

Post an event message

t psubscri be(3c)

TPSUBSCRI BE(3cbl)

Subscribe to event messages

t punsubscri be(3c)

TPUNSUBSCRI BE(3cbl)

Unsubscribe to event messages

2-6 Introducing BEA Tuxedo ATMI

What You Can Do Using the ATMI

Table2-1 Using the ATMI Functions (Continued)

For a Task UseThisC Or ThisCOBOL

Related to... Function... Function... To...

Transaction t pbegi n(3c) TPBEAQ N(3chl) Begin atransaction
management

t pcommi t (3c)

TPCOW T(3cbl)

Commit the current transaction

t pabort (3c)

TPABORT(3cbl)

Roll back the current
transaction

t pgetl ev(3c)

TPGETLEV(3cbl)

Check whether in transaction
mode

t psuspend(3c)

TPSUSPEND(3cbl)

Suspend the current transaction

t presune(3c)

TPRESUME(3cbl)

Resume a transaction

Service entry and
return

tpsvrinit(3c)

TPSVRI NI T(3chl)

Initialize a server

t psvrdone(3c)

TPSVRDONE(3cbl)

Terminate a server

t pservice(3c)

N A

Prototype for a service entry
point

N A

TPSVCSTART(3chl)

Get service information

tpreturn(3c)

TPRETURN(3cbl)

End a service function

t pf orwar d(3c)

TPFORWAR(3cbl)

Forward request

Dynamic t padverti se(3c) TPADVERTI SE(3cbl) Advertise a service name
advertisement

t punadvertise(3c) TPUNADVERTI SE(3chl) Unadvertise a service name
Resource t popen(3c) TPOPEN(3chl) Open aresource manager
management

t pcl ose(3c)

TPCLOSE(3cbl)

Close a resource manager

Note: The use of ATMI transaction management functions is optional.

Introducing BEA Tuxedo ATMI 2-7

2 BEA Tuxedo ATMI Architecture

See Also

m “Using the ATMI to Handle System and Application Errors’ on page 2-28 in
Administering a BEA Tuxedo Application at Run Time

What Are the BEA Tuxedo ATMI Messaging
Paradigms?

Thefollowing table describesthe BEA Tuxedo ATMI messaging paradigms available
to application devel opers.

Table 2-2 BEA Tuxedo ATMI| Messaging Paradigms

BEA Tuxedo ATMI Description
M essaging Paradigm

Conversational communication Service request mode involving multiple 2-way
interactions between a client and a dedicated server.

Event-based communication Publish/subscribe mode.

Queue-based communication Guaranteed delivery mode.

Request/reply communication Service request modethat can be synchronous (processing
waits until the requester receives the response) or
asynchronous (processing continues while the requester
waits for the response).

Unsolicited messaging Communication from any client or server to any clients
that were not requested or expected by those clients.

2-8 Introducing BEA Tuxedo ATMI

What Is Conversational Communication?

See Also

m “What Is Conversational Communication?’ on page 2-9

m “How the EventBroker Works’ on page 2-10

m “What Is Queue-based Communication?’ on page 2-13

m “What Is Request/Reply Communication?’ on page 2-14

m “What IsUnsolicited Communication?’ on page 2-17

m “What Are Nested and Forwarded Service Requests?’ on page 2-18

What Is Conversational Communication?

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between clients and servers. In this
form of communication, a virtual connection is maintained between the client and
server. Just asin a conversation between two people, a number of messages pass back
and forth between the two entities until aconclusion isreached. Over the course of the
communication, both sides“remember” the point (or state) of the conversation so that
relatively long operations, such as ad hoc queries, reports, and file transfers, can be
supported. Conversational servers are available by default, but more can be spawned
automatically if needed.

The BEA Tuxedo system provides an application programming interface (API) that
can be used to create conversations in applications; specifically to connect clients to
servers, to send and receive messages, and to end the conversation.

Conversations can be nested but performance may be degraded as a result of doing so.
Conversations may contain either transactions or service requests as appropriate.
Although a conversational service can make service calls and establish conversations,
those service calls and conversations cannot be forwarded. A conversation can be
within the scope of, and controlled by atransaction.

Introducing BEA Tuxedo ATMI 2-9

2 BEA Tuxedo ATMI Architecture

Figure 2-3 Conversational Communication

SERWER

CLIENT

|- =1 TpConnmect|)
E—| tpsend()

tprecw()

'AFYY}

See Also

m “Using Conversational Communication” on page 1-11 in Tutorials for
Developing BEA Tuxedo ATMI Applications

How the EventBroker Works

The BEA Tuxedo EventBroker provides a communication paradigm in which an
arbitrary number of suppliers can post messagesfor an arbitrary number of subscribers.
Because client and server processes that use the EventBroker communicate with one
another based on a set of subscriptions, this paradigm is known as
publish-and-subscribe communication. The EventBroker acts like a newspaper
delivery person who delivers newspapers only to customers who have paid for a
subscription.

2-10 Introducing BEA Tuxedo ATMI

What Types of Events Are Reported?

Figure2-4 Posting and Subscribing to an Event

Event Event
Subscription Posting ;
Client or Server ——————» Bvent |~ Client or Server
Broker
Event
Hotification

Event generators (either clients or servers) inform the EventBroker of changes and
problems asthey occur. Thisprocessis called posting an event. The EventBroker then
matches the name of the event to an event name associated with alist of subscribers,
and notifies each subscriber on the list of the event.

See Also

m “What Types of Events Are Reported?’ on page 2-11
m “How AreEvents Reported?’ on page 2-12

m “Using Event-based Communication” on page 1-14 in Tutorials for Devel oping
BEA Tuxedo ATMI Applications

What Types of Events Are Reported?

The BEA Tuxedo system supports two different types of event reports:

m System Event reports—provide detail s about BEA Tuxedo system events, such
as servers dying, and network failures. When an event is posted by clients or
servers, EventBroker matches the posted event’s name to subscriber’s of the
same events and takes appropriate action determined by each subscription.

m Reports of User Events or Application-Defined Events—allow application
programsto post events when certain criteria are met. A banking application, for
example, might post an event for withdrawals over a certain limit.

Introducing BEA Tuxedo ATMI 2-11

2

BEA Tuxedo ATMI Architecture

How Are Events Reported?

2-12

The EventBroker provides publish-and-subscribe functionality. A processregisters a
subscription with the EventBroker, indicating interest in a particular event.
Subsequently, whenever the EventBroker is notified by another process that the
specified event has occurred, the EventBroker reports the occurrence to any process

that has subscribed for this event.

Figure2-5 Event-based Messaging

EventBroker

AR
tpsubscribe ()
/

Motify a
client Witite 10
userlog

Inwoke a service | Engueue Execute a
to queue command

tppost()

The EventBroker uses several mechanisms for publishing (that is, issuing notices of)

events:

m Disk-based queuing

m Asynchronous service calls
m User log entries

m Unsolicited messages

m System commands

Introducing BEA Tuxedo ATMI

What Is Queue-based Communication?

What Is Queue-based Communication?

The BEA Tuxedo system offers a queue-based architecture known as/Q for
applicationsthat require persistent storage of data. The/Q component allowsany client
or server to store messages or service reguestsin queues and guaranteesthat any stored
request is sent through the transaction protocol to ensure safe storage.

BEA Tuxedo system queues can be ordered as LIFO (last in, first out) or FIFO (first
in, first out), or on the basis of time or priority. A collection of queuesisadministered
and referred to as a single entity known as a queue space.

Figure 2-6 Queue-based M essaging

CLIENT - SERVER
. P
L
- |1F]
‘\Tﬁ_,
tpengquele |) = =
tpdequens ()
QLEUE

Using Application Queues

Application queues are appropriate if you must communicate in a time-independent
fashion. Time-independence isa characteristic of programsthat operate independently
from one another and do not need to synchronize their communications
simultaneously. Time-independent programs synchronize by |eaving messages for
each other in application queues. M essages can be dequeued in any of several ordering
schemes, such asfirstin, first out (FIFO) order, priority order, or time-based order.
BEA Tuxedo client and server programs can enqueue messages and dequeue messages
from queues. More than one client and server can access the same queue.

Introducing BEA Tuxedo ATMI 2-13

2 BEA Tuxedo ATMI Architecture

See Also

To use an application queue, your program must name the queue to be accessed and
the queue space in which it resides. Y our application can use more than one queue
space and each space can contain more than one message queue.

Because application queues reside on a disk, the availability of stored messagesis
guaranteed even after machine failures. To determine when the use of application
gueuesis appropriate, you need to determine when time-independent synchronization
occursinyour business, for example, in filling orders. Orders can be enqueued to disk
and depending on specific order criteria, such asitems or shipment location, placed in
different queue spaces. Within each queue space, you can determine additional criteria,
such as cost, state, and so on.

m “Using Queue-based Communication” on page 1-15 in Tutorials for Developing
BEA Tuxedo ATMI Applications

What Is Request/Reply Communication?

To implement request/reply communication, the BEA Tuxedo system uses |PC
message queues. Queues are the key to connectionless communication. Each server is
assigned an Inter-Process Communication (IPC) message queue called areguest queue
and each client is assigned areply queue. Therefore, rather than establishing and
maintaining a connection with a server, a client application can send requests to the
server by putting those requests on the server’s queue, and then check and retrieve
messages from the server by pulling messages from its own reply queue.

The request/reply model is used for both synchronous and asynchronous service
reguests as described in the following topics.

2-14 Introducing BEA Tuxedo ATMI

What Is Request/Reply Communication?

What Is Synchronous Messaging?

Inasynchronouscall, aclient sendsarequest to aserver, which performsthe requested
action while the client waits. The server then sends the reply to the client, which
receives the reply.

Figure 2-7 Synchronous Request/Reply Communication

CLIENT SERVER
-

——
|- == | tpcall() “Hlnm

Introducing BEA Tuxedo ATMI 2-15

2 BEA Tuxedo ATMI Architecture

What Is Asynchronous Messaging?

In an asynchronous call, the BEA Tuxedo client does not wait for a service request it
has submitted to finish before undertaking other tasks. Instead, after issuing arequest,
the client performs additional tasks (which may include issuing more requests). When
areply to thefirst request is available, the client retrievesit.

Figure2-8 Asynchronous Request/Reply Communication

& SERVER
CLIENT - SERVER
= SERVER

-
tpacallil) Hlﬂmm
tpgetreply () e [

See Also

m “Using the Request/Response Model (Synchronous Calls)” on page 1-7 in
Tutorials for Developing BEA Tuxedo ATMI Applications

2-16 Introducing BEA Tuxedo ATMI

What Is Unsolicited Communication?

What Is Unsolicited Communication?

The BEA Tuxedo system offers a powerful communication paradigm called
unsolicited notification. When unsolicited notification occurs, a BEA Tuxedo client
receives a message that it has never requested. This capability makes it possible for
application clients to receive notification of application-specific events as they occur,
without having to request notification explicitly in real time.

Unsolicited messages can be sent to client processes by name (t pbr oadcast) or by an
identifier received with a previously processed message (t pnot i f y). Messages sent
viat pbr oadcast can originate either in a service or in another client. Y ou can target
anarrow or wide audience. Y ou can send a message with or without guaranteed
delivery to an individual client through point-to-point notification (t pnot i f y), or you
can send information to agroup of clients (t pbr oadcast). For example, aserver may
alert asingle client that the account about which the client isinquiring has been closed.
Or, aserver may send amessageto all the clients on amachine to remind the users that
the machine will be shut down for maintenance at a specific time.

Any process that wantsto be notified about aparticular event (such asamachinebeing
shut down for maintenance) can register arequest, with the system, to be notified
automatically. Once registered, a client or server isinformed whenever the specified
event occurs. Thistype of automatic communication about an event is called
unsolicited notification.

Becausethereisno limit to the number of clients and serversthat may generate events
and receive unsolicited notification about such events, the task of managing this
category of communication can become complex. The BEA Tuxedo system offersa
tool for managing unsolicited notification called the EventBroker.

Introducing BEA Tuxedo ATMI 2-17

2 BEA Tuxedo ATMI Architecture

Figure2-9 Unsolicited Notification M essaging

CLENT 2

- E_EE| tpnotify ()
Thbroadcasti()

See Also

m “Using Unsolicited Notification” on page 1-13 in Tutorials for Developing BEA
Tuxedo ATMI Applications

What Are Nested and Forwarded Service
Requests?

Nested Requests

A powerful feature of the BEA Tuxedo systemisthat it allows servicesto act as clients
and call other services. Nesting is limited to two levels, which works particularly well
ina3-tier client/server architecture, that is, a system that comprises a presentation
logic layer, abusinesslogic layer, and a database layer. In such a system, the
presentation layer is used to formulate arequest for a particular business function that
involves one or more queriesto a database. Because nesting islimited to two levels, it
does not degrade performance.

2-18 Introducing BEA Tuxedo ATMI

What Are Nested and Forwarded Service Requests?

Figure2-10 Nested Service Requests

SERVER

CLIENT

[]

Benefit of Nested Requests

One benefit of using nested requests isthat doing so enables you to keep your code
small and reusable, such that each piece performs alimited task. However, if the
servicesin your system are distributed across several servers, nested regquests can lead
to poor performance. While a nested request is being processed, the original service
(that is, the service that issued the nested request) must wait for a response before
continuing. Until aresponseis received, the origina service cannot process another
request. Asaresult, messages can get backed up in the request queuefor the server on
which this service resides.

Example of a Nested Service Request

A customer uses a cash machine to transfer money from her savings account to her
checking account. A BEA Tuxedo application performsthe work necessary to transfer
the money. First, on behalf of the customer, the client issues arequest for a service
called TRANSFER, and the request is placed on a queue for a server that provides that

Introducing BEA Tuxedo ATMI 2-19

2 BEA Tuxedo ATMI Architecture

service. Next, the TRANSFER service regquests two other services, W THDRAWand
DEPOSI T, which are processed by a second server. The W THDRAWand DEPCSI T
servicesreturn responsesto the TRANSFERservice. Finally, TRANSFER sends aresponse
to the client’ s response queue. When the client retrieves the response from the queue,
the system displays a message on the screen of the cash machine, notifying the
customer that the transfer is complete.

Forwarded Requests

One alternative to nesting service requests is called request forwarding. Instead of
processing a client’ s request, a service can pass the request to another service. The
second service, also, can either process the request or pass it to another service.

Figure2-11 Forwarded Service Requests

SERVER

CLIENT
=
D tpforward()l
|' E—E-ll SERVER

2-20 Introducing BEA Tuxedo ATMI

How BEA Tuxedo ATMI Processes Messages

See Also

Thereis no limit to the number of times aregquest can be forwarded. Because aservice
that forwards arequest does not need to wait for areply from the service receiving the
request, forwarding, unlike nesting requests, does not block servers. Forwarding,
however, is not supported by the X/OPEN protocol X/ATMI, which may be aproblem
in some applications.

m “Using Forwarded Calls’ on page 1-10 in Tutorials for Developing BEA Tuxedo
ATMI Applications

m “Using Nested Calls’ on page 1-9 in Tutorials for Developing BEA Tuxedo
ATMI Applications

How BEA Tuxedo ATMI Processes Messages

All communication within the BEA Tuxedo ATMI environment is accomplished by
transferring messages. The BEA Tuxedo ATMI environment passes service request
messages between clients and servers through operating system Inter-Process
Communications (IPC) message queues. System messages and data are passed
between operating system-supported, memory-based queues of clients and serversin
buffers. In the BEA Tuxedo ATMI environment, messages are packaged in typed
buffers, buffers that contain both message data and data identifying the types of
message data being sent.

Introducing BEA Tuxedo ATMI 2-21

2

BEA Tuxedo ATMI Architecture

2-22

Figure2-12 Processing a Request

ATIH
TYPESWIS!
SYSTEM SOFTWARE

CLIENT Reply Gueue Request Queue SERVER
K?Gfi-"L_‘OCf{ﬁ} i T i TUXEDC main receiving
i butfer
tocallfs)
decompress
SEFVICE processing
- decode
-NAME Magpping . -
-type valication . pos recen.re.
-zervice prioritization dispatch service
-routef) tpsensice3)
-load balancing tareturni3)
presendr) presendf)
encode/decode | encdec) encode/decode (encdec)
compress data compress data
send 2 zend
postsend(] postsend(]

A client usesan ATMI function to request aservice by name. A naming facility isused
to check the M 1B to determine whether the specified serviceiscurrently available. The
BEA Tuxedo system uses an automatic routing option to map messages that meet
specific criteria (message value) to a specific server. Thisis called data-dependent
routing. If messages use data-dependent routing, the system usesthe datain the buffer
for the routing algorithm. This algorithm provides a method of selecting a group of
servers that can process the service request. To avoid burdening afew servers with
many requests while leaving other serversthat advertise the same servicesidle, the
BEA Tuxedo system maintainsaset of metricsinthe MIB that helpit distribute service
requests evenly across all servers. This practice is called load balancing.

A local service request may be prepared for a selected server and enqueued on that
server’ s queue with apredefined priority. This practiceis called service prioritization.
Oncethe service request is on the server, the run-time system retrieves the message in
priority order. The message is dispatched to the appropriate service and processed.
Then the results are returned to the client queue.

BEA Tuxedo system-provided software offers features that an application can
automatically and routinely use during message processing. These features include:
data encoding and decoding, data compression and decompression, transactional

Introducing BEA Tuxedo ATMI

How BEA Tuxedo ATMI Processes Messages

context setting, and security processing, to name afew. In addition, the BEA Tuxedo
system software invokes application business logic by dispatching a service function
and passing it to the appropriately preprocessed buffer.

The serviceroutine is executed and returns areply (also atyped buffer). The run-time
system prepares the reply for the client by encoding the message automatically: it
packages the datain such away that it can be transmitted between machines on which
different types of byte ordering are used, allowing datato cross network and platform
boundaries. The system then sends the message to the client. This processis called
data encoding. The run-time system on the client retrieves the reply message, decodes
itif necessary, and deliversthe FM. buffers (or buffers of another message buffer type)
to package the application data. Type validation, encoding, routing, and load balancing
are performed as required. Service requests can be performed synchronously or
asynchronously.

Remote requests travel through the local bridge to the remote machine, where the
remote bridge simply acts as a client and the request is processed as if the client and
server were on the same machine. The bridge provides standard data
encoding/decoding and uses standard network transports to communicate. Bridges
look like ordinary local serversto clients and servers.

What Are the Benefits of Service Request Processing?

See Also

m Connectionless processing—this processing, coupled with direct client/server
communication, reduces the overhead associated with establishing a connection.

m Reduced network traffic—service requests invoke potentially complex services
on remote machines, sending only the minimum data required and receiving
minimal results.

m “What Are the BEA Tuxedo ATMI Messaging Paradigms?’ on page 2-8
m “What Are Typed Buffers?’ on page 2-24

Introducing BEA Tuxedo ATMI 2-23

2

BEA Tuxedo ATMI Architecture

What Are Typed Buffers?

2-24

All ATMI functions send or receive datausing typed buffers. The BEA Tuxedo system
handl es translations and data conversions between dissimilar machines. By using
buffers, BEA Tuxedo programs avoid the need to translate data that crosses different
platforms with different data representations.

A buffer isamemory areathat serves asalogical container for data. When abuffer
contains no metadata (that is, no information about itself), then it is an untyped buffer.
When a buffer includes metadata such as information that can be stored in it (for
example, atype and subtype, or string names that characterize a buffer), thenitisa
typed buffer.

Typed buffers can be transmitted over any network, on any operating system, with any
protocol supported by the BEA Tuxedo system. They can also be used on platforms
with different data representations. As aresult, the use of typed buffers facilitates the
tasks of translation and data conversion between dissimilar machines.

The BEA Tuxedo system supports five sorts of typed buffers:

m STRI NG

m VIEW

m CARRAY

® FM

B XM

Y ou assign buffer typesin the ENVFI LE parameter defined in the MACHI NES section of
the configuration file. Assigning or overriding them in the ENVFI LE parameter in the

SERVERS section of the configuration file can make them unavailable to processes that
require them.

Definitions of the various types of message buffers are provided in the description of
tmtypeswintuxtypes(5) intheFile Formats, Data Descriptions, MIBs, and
System Processes Reference. It is to your advantage to changet m t ypesw so it
contains only buffer types specifically needed by a given server.

Introducing BEA Tuxedo ATMI

What Are Typed Buffers?

Characteristics of Buffer Types

When you use ATMI communication functions, your application must first use

t pal I oc to get a buffer from the system, specifying its size, type, and optionally
subtype. The BEA Tuxedo system recognizes and processes the buffer type, so that
your data istransmitted over any type of network, protocol, and operating system
supported by the BEA Tuxedo system. The following table describes the different
types of buffers available in aBEA Tuxedo environment.

Table 2-3 Buffer Types Characteristics

Typed
Buffer Description Purpose
CARRAY Character array typeisacollection of characters that is handled Data that will not be
opaquely: interpreted by the BEA
m Characters are not interpreted in any way. Tuxedo system and for
No sub ified which data-dependent
" 0 subtypes are specified. routing, encoding, or
= Your application must specify the buffer length for CARRAY decoding is not
message buffers used as input to ATMI functions. required.
STRI NG A set of non-null characters ending with anull character. Thedatatype C programs

is character and the length is determined by counting charactersin the
buffer until reaching the null character. No subtype is specified.

Introducing BEA Tuxedo ATMI 2-25

2 BEA Tuxedo ATMI Architecture

Table 2-3 Buffer Types Characteristics (Continued)

Typed
Buffer

Description

Purpose

FML

Field Manipulation Language (FML) is a data structure that stores
tagged values. Values are typed, may be specified more than once, and
vary in length.

The FML buffer is an abstract datatype used in operations to create,
modify, delete, or accessfields. In your program, you access or update
afield in the fielded buffer by referencing the identifier, and the FM_
function provides for a run-time translation of the field' s location and
data type, and performs the operation.

One interface to FML uses 16 bits (FML16) for field identifiers and
lengths of fields; the other uses 32 bits (FML32).

m The 16-bit version allowsfor up to approximately 8000 unique
fields, character strings, and arrays of up to 64,000 bytes, and
similar lengths for the entire buffer.

m The32-bitinterface allowsfor millions of unique fields and buffer
lengths of up to two billion bytes.

The functionality of the two interfacesis identical. The power of FM_
isinitsflexibility. The size of the buffer can vary, depending on the
needs of the application for each message. Character fields may also
vary in length, so wasted space is avoided.

Fielded buffers offer data independence to the application. When
writing an application, you do not need to know how or where the data
isstored within afielded buffer. FML provides associative field access,
so you simply specify afield by name and its value is returned. FML
also contains conversion functions, so that you can store or retrieve a
field in a particular data format, regardless of the underlying storage
type.

FML buffers also support storage of more than onevaluefor afield. The
variable length format of fielded buffers alows for multiple field
occurrencesto be stored and retrieved.

Fielded buffers provide a convenient way to transfer a collection of
fields, perhaps different with each message, from a client to a server
and back, or to store fields in an application queue. We recommend
using FML, particularly if theinterface between clients and servers may
change.

Communications

Creating,
modifying,
deleting, or
accessing fields
during operations

2-26

Introducing BEA Tuxedo ATMI

What Are Typed Buffers?

Table 2-3 Buffer Types Characteristics (Continued)

Typed
Buffer

Description

Purpose

VI EW

A VI EWis simply a C structure or a COBOL record that has an
associated definition of which fields and their types appear in the
record in which order. This buffer isused for fixed collections of data
elements, or structures or records; its subtype is used to specify the
record format name.

VI EWrecords are flat data structures. They do not support structures
within other structures, nor do they allow arrays of structures or
pointers. They support integral data types such as long integer,
character, and decimal.

VI EW are provided as away to use C structures and COBOL records
with the BEA Tuxedo system. The BEA Tuxedo run-time system
understands therecord format based on the view description read at run
time. When allocating a VI EW your application specifies abuffer type
of VI EWand a subtype that matchesthe name of theview. Therun-time
system can do the following:

m Determine how much space is needed, based on structure size, so
the application need not specify buffer length.

= Compute how much datato send in arequest or response, and
handle encoding and decoding when a message is transferred
between different machine types.

C dructures and
COBOL records used
with aBEA Tuxedo
application

XM
(Extensible
Markup

Language)

XML buffers enable BEA Tuxedo applications to use XML for
exchanging data within and between applications. BEA Tuxedo
applications can send and receive simple XML buffers, and route those
buffers to the appropriate servers. All logic for dealing with the XML
documents, including parsing, resides in the application. An XML
document consists of: a sequence of characters that encode the text of
adocument and alogical structure of the document and
meta-information related to the structure.

The XML parser inthe BEA Tuxedo system performs autodetection of
character encodings, character code conversion, detection of element
content and attribute values, and data type conversion.

Data-dependent routing is supported for XM buffers.

m XML documents
and datagrams

m Datainterchange
between humans
and machines,
such asfrom a
Web server to a
user’s browser

m Dataexchange
between
applications, or
from machine to
machine

Introducing BEA Tuxedo ATMI 2-27

2 BEA Tuxedo ATMI Architecture

See Also

m “Customizing a Buffer” on page 3-28 in Programming BEA Tuxedo ATMI

Applications Using C

Using the MIB

See Also

The MIB programming interface enables you to manage operations in the BEA
Tuxedo system easily. Specifically, it alowsyou to monitor, configure, and tune your
application through your own programs. The MIB can be defined as:

An implementation-independent management database defined as a set of FM.
attributes.

A programming interface that enables you to query the BEA Tuxedo system
(that is, to obtain information from the system through aget operation) or to
update the BEA Tuxedo system (that is, to change information in the system
through aset operation) at any time using a set of ATMI functions. Examples of
these functionsincludet pal | oc, t preal | oc, tpgetrply,tpcall,tpacall,

t penqueue, and t pdequeue.

MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“Types of MIB Users’ on page 2-29

“Classes, Attributes, and States in the MIB” on page 2-29

2-28 Introducing BEA Tuxedo ATMI

Types of MIB Users

Types of MIB Users

The MIB defines three types of users. system administrators, system operators, and
others. The following table describes each type.

Type of User

Characteristics

Application administrator

Person responsible for keeping an application running
successfully. The administrator is authorized to use all
administrative tools and al MIB administrative capabilities.
Theadministrator configures, manages, and modifiesarunning
production application.

System operator

M onitors and reacts to the daily operation of a production
application. The operator monitors statistics about a running
application, sometimes reacting to events and alerts by taking
actions such as booting servers or shutting down machines. An
operator does not reconfigure an application, add servers or
machines, or delete machines.

Other

People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.

Classes, Attributes, and States in the MIB

Classes are the types of entities, such as servers and machines, that make up a BEA
Tuxedo application. Attributes are characteristics of the objectsin a class: identity,
state, configuration parameters, run-time statistics, and so on. There are a number of
attributes that are common to MIB operations and replies, and common to individual
classes. Every class has a state attribute that indicates the state of the object. The state
of an object is either return to the user or new, changed state, if you are invoking an
operation on the MIB to change an object’s state.

Introducing BEA Tuxedo ATMI 2-29

2 BEA Tuxedo ATMI Architecture

Independent of classesis a set of common attributes that are defined in the M B(5)
reference page. These attributes control theinput operations, communicateto the M1B
what the user istrying to do, and/or identify to the programmer some of the
characteristics of the output buffer that are independent of a particular class.

BEA Tuxedo ATMI Application Processing

Services

The BEA Tuxedo ATMI environment offers the following application processing
services:

Data compression
Data-dependent routing
Data encoding

Data encryption

Data marshalling

Load balancing
Message prioritization

Service and event naming

What Is Data Compression?

Data compression is the process of shrinking an application buffer so it can be
transmitted more quickly across a network or to a remote domain. By setting a
maximum size for an application buffer, you can make sure that compression is

2-30 Introducing BEA Tuxedo ATMI

What Is Data-dependent Routing?

triggered automatically for application buffersthat match or exceed a specified size.
When the buffer arrives at its destination, its data is decompressed, that is, restored to
its original size.

Data compression, performed before files are shipped between machines, improves
network performance. The process of compression enhances security slightly because
it involves scrambling the data.

Note: Data compression aso occurs frequently during encryption.

Figure 2-13 Data Compression

Compress Decompress

What Is Data-dependent Routing?

The BEA Tuxedo system uses an operation called data-dependent routing to enable a
client to send requests for the same service to multiple copies of that service. Which
copy of the service eventually accepts and processes the request is determined by the
datain the request message. Once an administrator has set up data-dependent routing
for an application, client requests can be routed automatically to servers based on the
datain the requests.

When an application includes multiple copies of the same service, each copy is
assigned a unique purpose, just as the first volume of a multivolume encyclopedia
contains entries that begin with the letter “A.” A list of all copies of the service, along
with identifying information about the purpose of each, iskept in a set of routing tables
in the BEA Tuxedo bulletin board. When the system receives a client request, it finds
an identifying string in the request message and searches the routing tables in the
bulletin board for the same string. On the basis of this match, the system identifies the
appropriate server to which it can forward the client request.

Note: The bulletin board routing tables can be modified as necessary.

Introducing BEA Tuxedo ATMI 2-31

2

BEA Tuxedo ATMI Architecture

Uses of Data-dependent Routing

2-32

Data-dependent routing is useful when clientsissue service requests to:
m Horizontally partitioned databases

m Rule-based servers

m Distributed Application

A horizontally partitioned database is an information repository that has been divided
into segments, each of which isused to store adifferent category of information. This
arrangement is similar to alibrary in which each shelf of a bookcase holds booksfor a
different category (for example, biography, fiction, and so on).

A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based
servers are useful when you want to handl e requests that are almost identical by taking
dlightly different actions for business reasons.

A distributed application consists of one or more local or remote clients that
communicate with one or more servers on several machineslinked through a network.
A client (or server acting as a client) issues arequest for a particular service. The
address of the request is determined by data (carried in the same buffer that conveys
the request), identifying the server that can fulfill the request. More than one server
may be able to do so. The BEA Tuxedo system selects a server to receive the request
by matching the data to the routing criteria provided in the bulletin board.

Introducing BEA Tuxedo ATMI

What Is Data-dependent Routing?

Example of Data-dependent Routing with a Horizontally
Partitioned Database

Suppose two clientsin a banking application issue requests for the current balance in
two accounts: Account 3 and Account 17. If data-dependent routing is being used in

the application, then the BEA Tuxedo system performs the following actions:
1
2.

Gets the account numbers for the two service requests (3 and 17).

Checks the routing tables on the BEA Tuxexdo bulletin board that show which
servers handle which range of data. (In this example, server 1 handles all requests
for Accounts 1 through 10; server 2 handles all requests for Accounts 11 through

20.)

Sends each request to the appropriate server. Specifically, the system forwards

the request about Account 3 to server 1, and the request about Account 17 to

server 2.

The following figure illustrates this process.

Figure2-14 Data-dependent Routing with a Horizontally Partitioned Database

Machine
Server 1 Server 2
Databaze Databaze
acct1-10 ™ Service & 0 Service A ™ acct11-20
Irake Inteake
Acct=5 Aoct=1T
Cliert or

Server

Introducing BEA Tuxedo ATMI

2-33

2 BEA Tuxedo ATMI Architecture

Example of Data-dependent Routing with Rule-based
Servers

A banking application includes the following rules:
m Customers can withdraw up to $500 without entering a special password.
m Customers must enter a special password to withdraw more than $500.

Two clientsissue withdrawal requests: one for $100 and one for $800. If
data-dependent routing is enabled to support the withdrawal rules, then the BEA
Tuxedo system performs the following actions:

1. Gets the amount specified for withdrawal in the two service requests ($100 and
$800).

2. Checksthe routing tables on the BEA Tuxedo bulletin board that show which
servers handle request for the amount being requested. (In this example, server 1
handles all requests to withdraw amounts up to $500; server 2 handles all
requests to withdraw amount over $500.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request for $100 to server 1 and the request for $300 to server 2.

Thefollowing figureillustrates this process.

2-34 Introducing BEA Tuxedo ATMI

What Is Data-dependent Routing?

Figure2-15 Data-dependent Routing with Rule-based Servers

Machine
Server1 0 Serwer 2
Databasze Databasze
Acctz =F3a00 Accts =H500
wyithiout - Service & | | Service A * password-
pazsword required
Withelrawy 5100 Withdraw $300
Client or
Server

Example of Data-dependent Routing with Distributed
Application

The following diagram shows how client requests are routed to servers. In this
example, abanking application called bankapp uses data-dependent routing. bankapp
hasthree server groups (BANK1, BANK2, and BANK3) and two routing criteria(Account

I Dand Br anch | D). The services W THDRAW DEPCSI T, and | NQUI RY are routed using
the Account _I Dfield; the services OPEN and CLOSE are routed using the Branch_I D

field.

Introducing BEA Tuxedo ATMI 2-35

2 BEA Tuxedo ATMI Architecture

Figure2-16 Sample Banking Application Using Routing Criteria

bankapp - Sampie Banking Application

Bank? - Branch_ID: 57

Bank1 - Branch_ID: 14
Account_ID: 50000-79999

Account_ID: 10000-49999

DBBL BBL BEL
Client Server Client Server
Application BB s Application BB BEA
Cod Servers VWESED Cod TUXEDD
pde : ATMI o Servers ATMI
ATMI Services : ATMI Senvices
BEA Wiithdraw BES Withdraw
TUXEDD BAE TUXEDD Deposit
Inquiny Ingquiny
Bridge Bridge
Network

Bank3 - Branch_ID: §-10
Account_ID: 80000-109999

BEL
Bridge
i BE
ACIIfmt- Servers SE.EE‘,QE '
pE\:IlI:i'IDn Senvices TLESFEMDID
ﬁ;TEhil ith draw
TUZEDD ?:qp:usr:

In the preceding diagram, requests are routed as indicated in the following table.

Withdrawals, Deposits, Inquiries, and AreRoutedto...
Openingsor Closings of the Following

Accounts. ..

Numbers 1000049999 for branches 14 Bank1

Numbers 50000-79999 for branches 5-7 Bank2

Numbers 80000-109999 for branches 8-10 Bank3

2-36 Introducing BEA Tuxedo ATMI

What Are Encoding and Decoding of Data?

What Are Encoding and Decoding of Data?

Encoding and decoding enable messages with different data representations (for
example, byte ordering or character sets) to be transferred between machines. The
BEA Tuxedo system accomplishes this by encoding and decoding data to a
machine-independent representation for transmission. It employs, by default, the XDR
algorithm, which can be customized by replacing the BEA Tuxedo system functions
with user-written functions. Encoding and decoding are used only between machines
and only when a remote machine uses a data representation other than the one used on
the local machine. Encoding and decoding allow machines with different data
architectures to operate within a heterogeneous BEA Tuxedo system. Programmers
can manage data in representations natural to their own environments.

The BEA Tuxedo system uses buffer typesto determinethe type of fields contained in
amessage, and to perform the mapping required for coding tasks. This mapping is not
performed by unstructured buffer types such as X_OCTET and CARRAY. Thus,
developers using X_OCTET and CARRAY buffers are free to deploy in mixed-machine
environments.

What Is Data Encryption?

Encryption isthe act of converting amessage into a coded format that is unintelligible
to users. When an encrypted message arrives at its destination, it is decrypted, that is,
converted back to its original format.

Introducing BEA Tuxedo ATMI 2-37

BEA Tuxedo ATMI Architecture

Figure2-17 Data Encryption

Cliert or Server 1 Cliert or Server 2
"hella" "hella"

Encrypt —* Decrypt
"hello” = "ifrimgp" "ifnmp" = "hella"

Encryption does not increase the number of bitsin the data, but it adds processing time
to the task of sending a message. Because datais compressed during encryption,
however, lost processing time may be bought back, sinceless datais being sent across
the network. When data is compressed, there is a'so a moderate boost to security,
because the data is somewhat scrambled during compression.

What Is Data Marshalling?

2-38

Data marshalling is amethod of handling information through the language-based
TXRPC (X/Open-TxRPC) offered by the BEA Tuxedo system. TXRPC is a set of
protocols for remote procedure calls that supports global transactions. Though a
TXRPC call looks like aloca procedure call, when aC function is called, the
arguments passed to the function are packaged so they can be sent to a server that
performs the work of the called function. This argument packaging is called
marshalling. A function’ s arguments are marshalled or packaged in away that allows
them to cross network and platform boundaries, and then unmarshalled at their
destination before being passed to the invoked remote procedure, ready for use.

This processistransparent to the client (the calling program) and the server (theremote
procedure). The marshalling and unmarshalling routines are generated automatically
by the BEA Tuxedo Interface Definition Language (IDL) compiler. An IDL compiler
takes a description of a set of RPCs and generates routines, called stubs, for the client
and server programs. These stubs contain marshalling and unmarshalling logic, aswell
asthe communication logic that allows a client and server to exchange marshalled
data.

Introducing BEA Tuxedo ATMI

What Is Load Balancing?

Figure2-18 Data Marshalling

Client or Server
mm/dd oy

mmiddinny = date
date = dd.mm.aany

Client or Server
mm/dd/yyyy

What Is Load Balancing?

Load balancing is atechnique used by the BEA Tuxedo system for distributing service
requests evenly among servers that offer the same service. This avoids overburdening
some servers while leaving othersidle or infrequently used. Before sending arequest
to aservice routine, the system identifies all servers capable of handling the request
and selects the one most appropriate for maintaining a balanced load across all the
serversin the configuration.

Assigning a Load Factor

Load refers to a number assigned to a service request based on the amount of time
required to executethat service. L oads are assigned to servicesso that the BEA Tuxedo
system can understand the rel ationship between requests. To keep track of the amount
of work, or total load, being performed by each server in a configuration, the

Introducing BEA Tuxedo ATMI 2-39

2

BEA Tuxedo ATMI Architecture

2-40

administrator assigns aload factor to every service and service request. A load factor
isanumber indicating the amount of time needed to execute a service or arequest. On
the basis of these numbers, statistics are generated for each server and maintained on
the bulletin board on each machine. Each bulletin board keeps track of the cumulative
load associated with each server, so that when al servers are busy, the BEA Tuxedo
system can select the one with the lightest |oad.

Y ou can control whether aload-balancing algorithmis used on the system asawhole.
Such as algorithm should be used only when necessary, that is, only when a serviceis
offered by serversthat use more than one queue. Services offered by only one server,
or by multiple serversin an MSSQ (Multiple Server, Single Queue) do not need load
balancing. The LDBAL parameter for these services should be set to N. In other cases,
you may want to set LDBAL to Y.

To determine how to assign load factors (in the SERVI CES section of UBBCONFI G), run
an application for along period of time and note the average time it takes to perform
each service. Assign a LOAD value of 50 (LOAD=50) to any service that takes roughly
the average amount of time. Any service taking longer than average should have a
LQAD>50; any service taking less than the average should have a LOAD<50.

Figure2-19 Load Balancing

Bulletin Board Site 1
Current Load
Client Server 1 Load = 300
client applicstion Server 2 Load = 400
hufier Load Factors Server 1 SErver 2

ATMI Deposit Add 50 ’ : . .
Withdrawe Add 75 Serwce_.&. Serwce_.&.
Mg Deposit Deposit
type walidation Wt En Whithiclr e
data-cependent routing
load balancing
data marshalling .
send messae L

Hetwork

Introducing BEA Tuxedo ATMI

What Is Message Prioritization?

What Is Message Prioritization?

Priorities determine the order in which service requests are dequeued by a server.
Priority isassigned by aclient toindividual servicesand canrangefrom 1t0100, where
100 represents the highest priority.

All services are assigned a starting priority of 50. A server’s starting priority can be
changed during application configuration. Once you have defined your set of services,
you can assign the appropriate priorities to them. For example, your business may
require that some services have arelatively high priority of 70, which means those
services are dequeued before those with the lower priority of 50. In the following
illustration, a server offers services A (with apriority of 50), B (with apriority of 50),
and C (with a priority of 70).

Figure 2-20 Prioritization of M essages

ENEIEREN R

Server

Clignt ar
Saerver

A request for service C isalways dequeued beforearequest for A or B dueto the higher
priority of C. Requests for A and B have equal priority. This featureis useful in
applicationsin which not all requests are equally urgent or important.

A “starvation prevention” mechanism prevents low-priority messages from waiting
endlessly on the queue. Every tenth message is dequeued in FIFO (first in first out)
order regardless of priority; the first through the ninth messages are dequeued in order
of priority.

Introducing BEA Tuxedo ATMI 2-41

2

BEA Tuxedo ATMI Architecture

What Is Meant by Naming?

The BEA Tuxedo system uses three naming devices: service names, message queue
names, and event names. Names can be any words or alphanumeric strings, aslong as
they do not begin with a period (“."). Because administrative servers use the BEA
Tuxedo system infrastructure, system and application resources must be clearly
distinguished.

Naming Services

2-42

When services are named, an application component can locate another component
through a name. Names can be simple words (such as “deposit”) or alphanumeric
strings (such as* deposit2”). Names should be selected on the basis of the scope of the
application and a map that contains the global picture of the relationships among
application components. These maps or servicesare likethe pagesin atelephone book
for application components.

When a BEA Tuxedo system server is activated, the bulletin board (the dynamic part
of the MIB) advertises the names of its services. Service names are associated with a
server’ s physical address so that requests can be routed to that server. Names that
programmers use in their applications are completely location transparent. When a
client program asks for a service by name, the BEA Tuxedo system consults its name
registry in the bulletin board. The nameregistry provides the information necessary to
convert the string name (for example, TI CKET) to a machine name and the physical
address of aserver that advertisesthat service. The BEA Tuxedo system then sendsthe
request to the appropriate server.

Introducing BEA Tuxedo ATMI

What Is Meant by Naming?

Figure2-21 Locating a Service by Name

Looks up name (Maming Service

J Gets name

Client or Server

- Sepvice A
Invakes a =ervice

Advertising Services

The BEA Tuxedo system usestwo administrative serversto coordinate thedistribution
of information on the bulletin board to all active machinesin the application:

m DBBL—the Distinguished Bulletin Board Liaison server propagates global
changesto the MIB and maintains the static part of the MIB. The DBBL
coordinates the state of different machines involved in an application. Only one
DBBL exists for an entire application. It can be migrated to other machines for
fault resiliency.

m BBL—the Bulletin Board Liaison server maintains the bulletin board. A BBL
resides on every active machine in an application. The BBL coordinates changes
to thelocal MIB and verifies the integrity of application programs active on its
machine.

Naming Events

The BEA Tuxedo system offers a publish-and-subscribe mechanism: clients and
servers can dynamically register or unregister a standing regquest to receive aerts (or
messages) when a particular event occurs. Other clients and servers post user-defined
or system events as they occur in the application. When a client or server no longer
needs to be notified about aparticular event, the relevant subscription can be cancelled.

Introducing BEA Tuxedo ATMI 2-43

2 BEA Tuxedo ATMI Architecture

See Also

m “How the EventBroker Works’ on page 2-10

BEA Tuxedo ATMI Administrative Services

A set of system servers provides the following administrative services needed by the
BEA Tuxedo ATMI environment:

m Application queue management

m Centralized application configuration
m Distributed application management

m Dynamic application reconfiguration

m Event management

m Security management

m Startup and shutdown of an application
m Transaction management

m Workstation management

Note: For information on administrative services, see the topic, “ Three Ways of
Viewing the BEA Tuxedo ATMI Infrastructure” on page 3-1

2-44 Introducing BEA Tuxedo ATMI

CHAPTER

3 Three Ways of Viewing

the BEA Tuxedo ATMI
Infrastructure

Thistopic includes the following sections:

Basic BEA Tuxedo ATMI Infrastructure

Management View: Using Administrative Tools

BEA Tuxedo ATMI Administrative Services
Development View: What You Can Do Using the ATMI

Run-time System View: Using Tools in Different Configurations

Basic BEA Tuxedo ATMI Infrastructure

The BEA Tuxedo ATMI environment provides an infrastructure for the efficient
routing, dispatching, and management of application service requests, event postings
and notification, and application queues. Thisinfrastructure can be explored from
three perspectives:

m Administrative or management perspective—encompasses a variety of tools

available to manage your application.

Introducing BEA Tuxedo ATMI 31

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Development (using the ATMI) perspective—encompasses those tasks you can
perform using the ATMI. Clients request services through the ATMI. Server
programs group several services, which are invoked according to the rules
defined by the ATMI. Application designers construct client and server programs
by linking the BEA Tuxedo run-time system with their application code.

BEA Tuxedo run-time system view—encompasses single, distributed, and
multiple domain configurations.

Management View: Using Administrative
Tools

3-2

The BEA Tuxedo MIB contains all the information necessary for the operation of an
application. The MIB is designed to be programmable, so that you can write custom
administrative programs. Administrative tools are constructed around the MIB and
provide different types of interfacesto it. These tools include the following:

BEA Administration Console—a Web-based tool used to monitor an application,
and to dynamically configureit.

BEA Tuxedo administrative servers—servers that automate most of the
management tasks for a distributed application, such as naming services and
events, starting up and shutting down an application, dynamically reconfiguring
an application, and so on.

BEA Tuxedo MIB application programming interface—a set of functions for
accessing and modifying information in the MIB.

Command-line utilities—a set of commands used to activate, deactivate,
configure, and manage an application (that is, t nboot , t mshut down, t ntonfi g,
and t madni n, respectively). (See the BEA Tuxedo Command Reference.)

EventBroker—a mechanism that informs administrators of faults or exceptional
happenings.

Introducing BEA Tuxedo ATMI

Management View: Using Administrative Tools

Figure3-1 Toolsto Administer Your Application

¥

Command-Line || Administration
Ltilities Console

| | I | ’_l

rIE Events

TLOG Board

BU*E“H LG

MIB AP EventBroker

Available BEA Tuxedo MIBs

The Management Information Base comprises a core MIB, which is common to all
applications, and several component MIBs, which are optional. The core MIB, called
TM_MIB, defines the parts of an application that are required in every BEA Tuxedo
application. It isalso used to administer those parts of an application. TM_MIB defines
aBEA Tuxedo system application as a set of classes (for example, servers, groups,
machines, domains), each of which is made up of objects that are characterized by
various attributes (for example, identity and state).

Each of the component M1Bs describes a subsystem of the BEA Tuxedo system. The
following components are currently available:

m ACL_MIB—used to administer Access Control Lists
m APPQ_MIB—used to administer application stable-storage queues
m DM_MIB—used to administer Tuxedo domains

m EVENT_MIB—used to control event notification and the subscription request
database

Introducing BEA Tuxedo ATMI 3-3

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

m WS MIB—used to manage Workstation groups and processes associated with
them

Using the BEA Administration Console

Based on Javaand Web technology, the BEA Administration Consol e letsyou operate
your BEA Tuxedo domainsfrom virtually anywhere—even from home, given security
authorization. The BEA Administration Console is a Java-based applet that you can
download into your Internet browser and useto remotely manage BEA Tuxedo system
applications.

The BEA Administration Console simplifies many of the system administration tasks
required for managing multiple-tier systems. It lets you monitor system events,
manage system resources, create and configure administration objects, and view
system statistics.

Browser Requirements

Each release of the BEA Tuxedo system supports the currently available browsers.
Consult the following BEA Web site for information about browsers currently
supported by the BEA Administration Console.

See Also

m “Benefits of Using the BEA Administration Console” on page 3-5
m “Exploring the Main Menu of the BEA Administration Consol€’ on page 3-6
m BEA Administration Console Online Help

m “Waysto Monitor Your Application” on page 2-2 in Administering a BEA
Tuxedo Application at Run Time

3-4 Introducing BEA Tuxedo ATMI

Benefits of Using the BEA Administration Console

Benefits of Using the BEA Administration
Console

m Authentication—the BEA Administration Console forces users to identify
themselves. It prompts the administrator for a username and password. This
information is communicated in an encrypted fashion between the browser and
the server, where the user’s identity is then verified. (Much of the server setup is
done during installation, when server components of the BEA Administration
Console are installed and made available to the Web server.)

m Context-sensitive hel p—context-sensitive help is available for al BEA
Administration Console windows and tools. You can request information about
any field or area of awindow simply by dragging a question mark icon to that
field or any area and clicking.

m Encryption—the data transferred between the server side and the browser is
compressed (56-bit or 128-bit encryption) so that no one can read it. This makes
the system resistant to anyone trying to inject false administrative protocol
messages into the stream.

m Firewal readiness—the port on which the BEA Administration Console server
listens and interacts with the browser is well defined and configurable; you can
configure it to match ports that you want to allow through your firewall. This
capability enables you to do Console-based administration through your firewall,
if necessary.

m Icons—theiconsused in the BEA Administration Console connote state (for
example, not active) or represent particular objects in the application, for
example, machines or servers.

m Java-capable browser—the Java browser supports the Java virtual machine that
runs the applets and enables communication.

m No client-side installation—no installation is required on your machine. Point
your browser to the URL for a machine in your domain on which the Console
server components reside. Then initiate a download of Java applets. The applets
implement the BEA Administration Console and establish communication with
the server.

m Universa secure access—from any Java-capable browser, you can access the
system from anywhere in the world with confidence that security mechanisms
are already in place.

Introducing BEA Tuxedo ATMI 35

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Exploring the Main Menu of the BEA
Administration Console

3-6

When you first bring up the Web and invoke the BEA Administration Console, the
main window is displayed. The main window is divided into four major areas:

Menu bar—menus that provide accessto al actions.

tool bar—buttons that provide shortcuts to frequently used action or
administrative tools.

tree view—a hierarchical representation of the administrative class objects (such
as servers and clients) in a BEA Tuxedo domain.

Configuration tool—a set of tabbed pages on which you can display, define, and
modify the attributes of objects, such asthe name of a machine.

Introducing BEA Tuxedo ATMI

Exploring the Main Menu of the BEA Administration Console

Figure3-2 Main Menu of the Administration Console

Configuration Tool Tabbed Pages

RKIBEA Administration Consale

Menu Bar Doman Ssthge "l Rek
Toolbar oo | # g E) g | B R I 4
Ratech | Searsh | actbeats | Descl | bigrata | Log#s | S Statz | Sefirgs | CEHelp | Help
Ll Sesimpasp A Covmau-ator Tao T MAGHINE
E-"8trach nes
Sirhle Lo LL General | systecrians | zecut | Lmies | 1vansastor Log | Sabsics 1| 4w
W :Il?«mup;
Slserars Wzealra Mame: _C-Dw-Cl
{af o =
3 Wenire Log eal Waching Ma=e =i e
T SCoRBE i ey
ZBGOHEA 1o mass Gueues s —jte,
! ﬁT'an;a'}nrs L LOG Praie
Sic ans Tusedu Ruol Direclury ;=u | =alg. | rodied
Jloerczs
3 3;”” Cusuw Spaw Apclizatizon Ditechary (Su | = aky: rumyAnp

3+ SE Lisior o

Anplicatinn Z-nfig watinn Zile 5ol = aka CoMpaapcizont o
il i Handlp =

[rteit=niewe -t Tilee
-:iElr dyus
—Tbo~ea Jotaurs Objzel Trate: RASTIVE
| | —PJ Chsnge | Zacosl | Flew., | Lieleze |
HE [Tava AppleT Window

Tree View Configuration Tool Pane

Note: The toolbar buttons and some menu items are not fully displayed unless you
are connected to a domain.

What Is the Tree?

The Tree View pane appearsin the left column of the main GUI window. Thetreeisa
hierarchical representation of the administrative objectsin asingle BEA Tuxedo
system domain. The GUI graphically depictsthe relationship between each object and

Introducing BEA Tuxedo ATMI 3-7

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

the others by showing its nesting level and parent objects. Y ou can chooseto view a
complete tree (comprising al configurable objects of all typesin the domain) or a
subset of objects.

After you have set up and activated adomain, the Treeis populated with labeled icons,
representing the administrative class objectsin your domain.

What Is an Administrative Object?

The BEA Administration Console Tree View contains multipleroots, oneroot for each
administrative object. Thefirst root consists of the application domain. The next root
displaysthe object classes defined in the BEA Tuxedo TMIB. Each set of object
classesisapart of an application domain. The third level represents an instance of an
object belonging to an object class.

For example, suppose your domain includes two machines (both at SITE1) named
romeo andj ul i et . Since both machines are objects, they are listed in the Tree below
the name of the object class to which they belong: Machi nes. Therefore, they will be
listed as follows:

Machi nes
SI TE1/ r oneo
SITEL juliet

The name of each object in the Tree View is preceded by an icon. Each machine, for
example, is represented by a computer; each client, by a human figure.

Using the Configuration Tool

3-8

The Configuration Tool is a utility that lets you set or change the attributes for a
selected class of BEA Tuxedo system objects. When you select an object in the tree,
the Configuration Tool Pane for that object is displayed on the right side of the main
window.

The tabbed pages in the Configuration Tool area are electronic forms that display and
solicit information about the attributes of an administrative object. A set of tabbed
pages is provided for each administrative class of objects (such as machines and

Introducing BEA Tuxedo ATMI

Exploring the Main Menu of the BEA Administration Console

servers). The number of attributes associated with a class varies greatly, depending on
the class. Therefore, anywhere from one to eight folders may be displayed when you
invoke the Configuration Tool by selecting an object in the tree.

When the Configuration Tool areais populated, another row of buttonsis displayed
below the tabbed pages. These four buttons allow you to control the configuration
work done in the pages.

Using the Toolbar

The toolbar isarow of 12 buttons that allow you to invoke tools for frequently
performed administrative operations. They arelabeled with both iconsand names. The
following table describes each button.

Button Description

Stop Interrupts the current operation and returns control to the
administrator (who can then request a new operation).

Refresh Updates the tree view and configuration tool pane with the
most up-to-date data.

Search Searchesfor aparticular administrative object classor objectin
the expanded Tree.

Activate Activates al or part of a BEA Tuxedo domain.

Deactivate Deactivates all or part of a BEA Tuxedo domain.

Migrate Migrates a server group or machine to another location, or

swaps the master and backup machines.

Logfile Displaysthe ULOGfile from a particular machine in the active
domain.

Event Displays awindow for monitoring system-generated events.

Stats Displays the tabbed pages that allow you to view a graphical

presentation of BEA Tuxedo domain activity.

Introducing BEA Tuxedo ATMI 3-9

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Button Description

Settings Provides the option to set the foll owing default settings for the
Administration Console session:

m Thelocation of your BEA Tuxedo online documentation
m The method for sorting your data (by state or name)
m Your default work mode (view-only or edit mode)

CSHelp Invokes context-sensitive help. Click afield or a specific area
of the console to get information about the selected item.

Help Opensthe BEA Administration Console Online Helpin a
separate Web browser.

Managing Operations Using the MIB

The AdminAPI is an application programming interface (API) for directly accessing
and manipulating system settingsin the BEA Tuxedo Management Information Bases
(MIBs). You can use the AdminAPI to automate administrative tasks, such as
monitoring log files and dynamically reconfiguring an application, thus eliminating
the need for human intervention. This advantage can be crucially important in
mission-critical, real-time applications. Using the MIB programming interface, you
can manage operationsin the BEA Tuxedo system easily. Specifically, you can
monitor, configure, and tune your application through your own programs. The MI1B
can be defined as:

® An implementation-independent management database defined as a set of FM
attributes.

m A programming interface that enables you to query the BEA Tuxedo system
(that is, to obtain information from the system through aget operation) or to
update the BEA Tuxedo system (that is, to change information in the system
through aset operation) at any time using a set of ATMI functions. Examples of
these functionsincludet pal | oc, t preal | oc, tpgetrply,tpcall,tpacall,

t penqueue, and t pdequeue.

3-10 Introducing BEA Tuxedo ATMI

Types of MIB Users

See Also

m M B(5) intheFile Formats, Data Descriptions, MIBs, and System Processes

Reference

m “Typesof MIB Users’ on page 3-11

m “Classes, Attributes, and Statesin the MIB” on page 3-12

Types of MIB Users

The MIB defines three types of users. system administrators, system operators, and
others. The following table describes each type.

Type of User

Characteristics

Application administrator

Person responsible for keeping an application running
successfully. The administrator is authorized to use all
administrative tools and al MIB administrative capabilities.
Theadministrator configures, manages, and modifiesarunning
production application.

System operator

Person responsible for monitoring and reacting to the daily
operation of a production application. An operator monitors
statistics about a running application, sometimes reacting to
events and derts by taking actions such as booting servers or
shutting down machines. An operator does not reconfigure an
application, add servers or machines, or delete machines.

Other

People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.

Introducing BEA Tuxedo ATMI 31

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Classes, Attributes, and States in the MIB

Classes are the types of entities such as servers and machines that make up a BEA
Tuxedo application. Attributes are characteristics of the objectsin a class: identity,
state, configuration parameters, run-time statistics, and so on. There are a number of
attributes that are common to M1B operations and replies and common to individual
classes. Every class has a state attribute that indicates the state of the object. The state
of an object iseither return to the user or new, changed state, if you areinvoking an
operation on the MIB to change an object’s state.

Independent of classesis a set of common attributes that are defined in the M B(5)
reference page. These attributes control theinput operations, communicateto the M1B
what the user istrying to do, and/or identify to the programmer some of the
characteristics of the output buffer that are independent of a particular class.

Using Command-line Utilities

3-12

The BEA Tuxedo system provides a set of commands for managing different parts of
the system. The commands enable you to access common administrative utilities.
These utilities can be used for the following tasks:

m Configuring your application using command-line utilities
m Operating your application using command-line utilities

m Monitoring your application using command-line utilities

Introducing BEA Tuxedo ATMI

Configuring Your Application Using Command-line Utilities

Configuring Your Application Using
Command-line Utilities

Y ou can configure your application by using command-line utilitiessuch asthevi text
editor. Specifically, you can use command-line utilities to write the configuration file,
UBBCONFI G, and tranglate the file from atext format (UBBCONFI G) to a binary format
(TUXCONFI G), by running the t mi oadcf command. Then you are ready to boot your
application.

Y ou can dynamically administer your configuration by adding servers or machines,
deleting machines, and so forth. Updating TUXCONFI G (the binary file version),
however, does not update the UBBCONFI G (the text file version). To synchronize both
files, you need to back them up. To do this, you trand ate the binary file back to text by
running the t munl oadcf command.

Note: The UBBCONFI Gisgenerated and stored by the application administrator in the
application directory (APPDI R).

Following is alist of common command-line utilities that you can use to configure
your application.

m tnconfi g—acommand that enables you to update some configuration file
parameters, or M B attributes, and add records to some TUXCONFI G sections
while the BEA Tuxedo system application is running.

m tnl oadcf —acommand that allows you to load the binary TUXCONFI G
configuration file.

m t nunl oadcf —a command that allows you to translate the binary configuration
file back to atext version, so that UBBCONFI G and TUXCONFI Gcan be
synchronized.

m tpacl add,t pacl cvt,t pacl del , andt pacl mod—a set of commands that allow
you to create or manage access control lists for applications. These commands
enable the use of security-related authorization features.

m tpgrpadd,t pgrpdel ,tpgr pnrod—aset of commands that allow you to create
and manage user groups by using access control lists to authorize access to
services, queues, and events.

Introducing BEA Tuxedo ATMI 3-13

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

m tpusradd,tpusrdel,tpusr nod—aset of commandsthat allow you to create
and manage a user database for authorization purposes.

See Also

m UBBCONFI G 5) in theFile Formats, Data Descriptions, MIBs, and System
Processes Reference

m “Creating the Configuration File” on page 3-22
m “Making Permanent Configuration Changes’ on page 3-24

Operating Your Application Using
Command-line Utilities

Once you have configured your application successfully, you can use the following
command-line utilities to operate your application.

®m t madni n—acommand that allows you to configure, monitor, and tune a
distributed application.

®m t nboot —acommand that allows you to centrally start up your application
servers for adistributed application.

m t nshut down—a command that allows you to centrally shut down an application
program across a distributed application.

Managing System Events Using EventBroker

The BEA Tuxedo EventBroker performs the following tasks:

m Monitors events and notifies subscribers when events are posted viat ppost (3c).

3-14 Introducing BEA Tuxedo ATMI

What Is an Event?

m Keepsan administrator informed of changesin an application by tracking events.
m Enhances event monitoring by providing a system-wide summary of events.

m Provides a mechanism through which an event can trigger a variety of
notification activities.

The EventBroker recognizes over 100 meaningful state transitionsin aMIB object as
system events. The postings for system events include the current MIB representation
of the object on which the event has occurred, and some event-specific fields that
identify the event that occurred. For example, if a machineis partitioned, an event is
posted with the following information:

m The name of amachine class object (T_MACHI NE), with al the attributes of that
machine

m Some event attributes identifying the event as machine partitioned

Y ou can use the EventBroker simply by subscribing to system events. Then, instead of
having to query for MIB records, you can be informed automatically when events
occur inthe MIB by receiving FM. data buffers representing M1B objects.

See Also

m “What Isan Event?’ on page 3-15
m “Subscribing to an Event” on page 3-16
m “Typesof Events’ on page 3-17

m “Using Event-based Communication” on page 1-14 in Tutorials for Devel oping
BEA Tuxedo ATMI Applications

What Is an Event?

An event is a state change or other occurrence in arunning application that may
warrant special attention from an operator, an administrator, or the software. In the
EventBroker, events are assigned one of three severity levels:

Introducing BEA Tuxedo ATMI 3-15

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Error—for example, a server has died or a network connection has been dropped

Informational—for example, a state change has occurred as aresult of a process
or the detection of a configuration change

Warning—for example, a client has not been alowed to join the application after
failing authentication

Subscribing to an Event

3-16

As the administrator for your BEA Tuxedo application, you can enter subscription
reguests on behalf of aclient or server process through callsto the EVENT_M B(5) .
Youuset psubscri be to subscribeto an event using the EventBroker. You may want
to subscribe to Events A, B, and C and request to be informed when they occur.

Each subscription specifies one of the following notification methods:

Client notification—the EventBroker keeps track of the client’s interest in these
events and aclient is notified in the form of unsolicited notification. Some
events are anonymously posted. A client can join an application, independent of
whether anyone el se has subscribed, and post events to the EventBroker. The
EventBroker matches these events against its database of subscriptions and sends
an unsolicited notification to the appropriate clients.

Service calls—if the subscriber wants event notifications to go to service cals,
thenthect | parameter must point to avalid TPEVCTL structure.

M essage enqueuing to stable-storage queues—for subscriptions to stable-storage
gueues, the queue space, queue hame, and correlation identifier are used, in
additionto event expr andfil t er, when determining matches. The correlation
identifier can be used to differentiate among several subscriptionsfor the same
event expression and filter rule, destined for the same queue.

Placing messages on the ULOG—using the T_EVENT_USERLOG class of
EVENT_M B, subscribers can write system USERLOG messages. When events are
detected and matched, they are written to the USERLOG

Command-line utilities—using the T_EVENT_COWMAND class of EVENT_M B, the
EventBroker tracks and matches events. When a match isfound, it is passed to
the command used when subscribing to the event.

Introducing BEA Tuxedo ATMI

Types of Events

Note: Notification methods are determined by the subscriber processtype and the
arguments passed to t psubscr i be.

Figure 3-3 Subscribing to an Event

Event Fvent
Subscription Posting ;
Client or Server ——————» Bvent |~ Client or Server
Broker
B T
Event
Hotification

See Also

m EVENT_M B(5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

m tpsubscribe(3c) inthe BEA Tuxedo ATMI C Function Reference

Types of Events

The BEA Tuxedo system supports two event types:

m System Events—provide details about BEA Tuxedo system events, such as
servers dying, and network failures. When an event is posted by clients or
servers, the EventBroker matches the posted event’s nameto alist of subscribers
for that event and takes appropriate action, as determined by each subscription.

m User Events or Application-specific Events—allow application programsto post
events when certain criteria are met. An example is a banking application that
posts an event for withdrawals over a certain limit.

Introducing BEA Tuxedo ATMI 3-17

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Differences Between System and Application-specific

Events

Thefollowing tableidentifiesthe differences between system and application-specific

events.

Table 3-1 Differences Between System and Application-specific Events

Area

Differences

Events

System events are defined in advance by the BEA Tuxedo system code.
For an application, designers decide which application events should be
monitored. Application programs are written to: (a) detect when an event
of interest has occurred, and (b) post the event to the EventBroker through
t ppost .

Event List

A list of the application event subscriptionsis made availableto interested
usersjust as the BEA Tuxedo system provides alist of system events
availableto userswith EVENTS(5) . System event names begin with adot
(.); application-specific event names may not begin with adot (.).

Subscriptions

Subscribing to an event in an application-specific event broker is similar
to subscribing to the BEA Tuxedo System EventBroker. Y ou subscribe by
making callstot psubscr i be using the published list of events for the
application. EVENTS(5) lists the notification message generated by an
event as well asthe event name (used as an argument whent ppost is
called). Subscribers can use the wildcard capability of regul ar expressions
to makeasinglecall tot psubscr i be that covers awhole category of
events.

3-18 Introducing BEA Tuxedo ATMI

BEA Tuxedo ATMI Administrative Services

BEA Tuxedo ATMI Administrative Services

A set of system servers provides the following administrative services needed by the
BEA Tuxedo ATMI environment:

m Application queue management

m Centralized application configuration
m Distributed application management

m Dynamic application reconfiguration

m Event management

m Security management

m Startup and shutdown of an application
m Transaction management

m Workstation management

Introducing BEA Tuxedo ATMI 3-19

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Managing Application Queues

Queueing enables programmers to write applications that communicate by accessing
one or more gqueues. Because of the location transparency of queues, administrators
can move queues from one machine to another without requiring any programming
changes.

The MIB consists of a queue device, queue spaces, and queues (required by an
application), and the BEA Tuxedo system servers that enqueue and dequeue messages
from a queue space. Administrators can use the BEA Administration Console or
command-line utilities to define the queue spaces, queues, and administrative servers
inthe MIB.

Using gmadmin to Administer Application Queues

The command-line utility gmadmi n allowsyou to perform all administration functions
for the application queuesin aconfiguration, that is, setting up the universal devicelist
(UDL) and volumetable of contents (VTOC) that will contain aqueue, defining queue
spaces within a queue device, and so on. gmadni n enables you to manipulate the file
system. Using some run-time monitoring capabilities, you can see how many messages
are in queues or how many headers are in messages. Y ou can a so change
characteristics of queues or messages on queues, delete messages on queues, change
the size of devices, and so on. In an application you can have multiple application
gueue devices, and run application queues on multiple machines. Each machine hasits
own queue device, so you can run gnadni n to monitor and manage a particular
application queue device on each machine.

Utility

Description

gqmadm n

Provides for the creation, inspection and modification of message queues. The name of the
device (file) on which the universal device list resides (or will reside) for the queue space may
either be specified as a command-line argument or through the environment variable
QVICONFI G If both are specified, the command option is used.

3-20 Introducing BEA Tuxedo ATMI

Managing Application Queues

Using tmconfig to Modify Your Configuration

Thet nconfi g command enables you to browse and modify the TUXCONFI G file and
its associated entities, and to add new components (such as machines and servers)
while your application is running.

When you modify your configuration file (TUXCONFI G on the MASTER machine), the
t nconfi g command:

m Updates the TUXCONFI Gfile on al machinesin the application that are currently
booted.

m Propagates the TUXCONFI Gfile automatically to new machines asthey are
booted.

m RunsasaBEA Tuxedo system client.

Note: Refertothet nconfig, wnconfig(1) and TM M B(5) inthe BEA Tuxedo
Command Reference and the File Formats, Data Descriptions, MIBs, and
System Processes Reference for information on the semantics, range values,
and validation of configuration parameters.

Introducing BEA Tuxedo ATMI 3-21

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Managing Your Configuration

The configuration of any application is primarily controlled by the creation and
maintenance of a configuration file, or UBBCONFI Gfile. Managing your configuration
involves the following tasks:

m Creating the configuration file to suit your application needs
m Making permanent configuration changes by updating the UBBCONFI Gfile

m Changing your configuration while the application is running

Creating the Configuration File

3-22

Application configuration data is maintained in the UBBCONFI G, an ordinary text file
on the MASTER machine. The configuration file (UBBCONFI G) is a repository that
contains all the information necessary to boot an application, such as lists of its
resources, machines, groups, servers, available services, and so on. Once written, the
UBBCONFI Gfileiscompiled into a binary file, TUXCONFI G. (If you are developing a
multidomain application, you must provide a configuration file for each domainin the
application.) An application cannot run without a configuration file.

The UBBCONFI Gfile consists of eight sections, five of which are required for all
configurations: RESOURCES, MACHI NES, GROUPS, SERVERS, and SERVI CES. The
RESOURCES and MACHI NES sections must be the first and second sections, respectively

(asillustrated in the following diagram). GROUPS must be ahead of SERVERS and
SERVI CES.

Introducing BEA Tuxedo ATMI

Creating the Configuration File

See Also

Figure3-4 UBBCONFIG File

*RESOURCES (applicaton-wide information)

*MACHIHES {machine-wide information)
*GROUPS (group-wide information)

*HETWORK (networking

information) *SERVERS

SEIVEr-
*HETGROUPS (network specific

groups information) ERVICES information

Services-
specific
information

B RESOURCES—(required) contains system-wide parameters that describe the
application asawhole

m MACH NES—(required) containslogical names and types of physical machines
m GROUPS—(required) associates servers with resource managers and machines
m SERVERS—identifies each server in the application

m SERVI CES—identifies each service, and specifies priority, loading, and so on
m NETWORK—contains configuration datafor LAN environments

®m ROUTI NG—contains data-dependent routing tables

m NETGROUPS—allows for multiple BRI DGES per machine

Y our particular configuration determines which sections of the UBBCONFI Gfile are
required. Once you have written your UBBCONFI Gfile, you must compileit into a
binary file called TUXCONFI G Y ou can generate your TUXCONFI Gfile by running the
thet m oadcf (1) command or by using the BEA Administration Console.

m “How to Create a Configuration File” on page 3-2 in Setting Up a BEA Tuxedo
Application

Introducing BEA Tuxedo ATMI 3-23

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Making Permanent Configuration Changes

To make permanent configuration changes, the administrator can use a text editor to
update the configuration parameters in the UBBCONFI Gfile, and use thet ml oadcf
utility to load the text file into the binary TUXCONFI Gfile used by the BEA Tuxedo
system. When the application isstarted, t nboot oads TUXCONFI Ginto shared memory
to establish the bulletin board, propagating the changes to remote machines if
necessary.

Figure 3-5 Configuration Management

" twloadcf creates TUXCONFIG
file from UBECONFIG file.

* twhoot [0ads and starts bulletin

hoard and servers from hinary

CONFIG file.

*RESCURCES
*MACHINES 5 BB
"GROUPS ervers f
“§ERVERS Senices Site
*BERVICES
SNETORK BBL
*ROUTING
SHETGROUPS DBBL Client
UBBCONFIG TUXCONFIG o Server
BBL Application BB BEA
. Goda Servers TUXEDD
Client Server ATMI Senvices AT
Application EBEA Comains BEA Withdraw
Soda TUXEDO plocesses TUXEDD Inquiry
ATHH ATHH
EEA Withdraw _ Bri Domains
ridge
TUXEDO Inquiry Bndgs\ 4 processes
Metwork

3-24 Introducing BEA Tuxedo ATMI

Managing Your Configuration Dynamically

Managing Your Configuration Dynamically

See Also

Administrators can use the BEA Administration Console or the BEA Tuxedo system
command-line utilities to reconfigure applications dynamically, adjusting parameters
to respond to varying system loads while the system isrunning. A revised TUXCONFI G
fileis propagated automatically to all machinesin the system asit is updated.
However, many RESOURCES parameters cannot be changed while the system is
running.

Examples of tasks you can do dynamically include: adding servers or machines,
deleting machines, and so forth. To ensure that the text and binary versions of your
configuration file (UBBCONFI G and TUXCONFI G, respectively) always match, you need
to back them up and synchronize them by using t munl oadcf . This command
translates the binary file to atext version.

Y ou can change most elements of the system dynamically. Y ou can, for example,
spawn new servers, add new machines, or change timeout parameters. There are,
however, afew things you cannot change while a system is running:

m Any parameter in the configuration file that affects the size and shape of the
bulletin board cannot be changed. Many such parameters are named with the
prefix “MAX,” such as the MAXGTT parameter, which specifies the maximum
number of in-flight transactions allowed within the BEA Tuxedo system at any
time.

m The processor name of a machine within a particular application cannot be
changed. (You can add new machines with different names but you cannot
change the name of an existing machine.)

m Thevalues of server executables, assigned to run on MASTER and BACKUP
machines, cannot be changed.

m “Performing Dynamic Operations Using tmadmin(1)” on page 3-26

Introducing BEA Tuxedo ATMI 3-25

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Performing Dynamic Operations Using
tmadmin(1)

Using thet madni n(1) command, you can perform any of the following operationsto
arunning application:

m Monitor performance by checking statistics on groups, servers, and services
(bbst at s, bbpar ns).

m Modify server and service parameters such as those that change load values
(changel oad), suspend and resume services (suspend and r esune), advertise
and unadvertise services (adver ti se and unadverti se), and change the
AUTOTRAN timeout value (changet r ant i me).

m Boot (boot), cleanup (pcl ean), and migration (ni gr at emach, m gr at egr oup).

Commonly Used tmadmin Commands

t madm n provides subcommands that enable you to monitor your run-time system,
tune your application, and dynamically configure your application. Followingisalist
of the most commonly used t madni n commands. (For a comprehensive list of the

t madmi n commands, refer to thet madni n(1) in the BEA Tuxedo Command
Reference.)

m hel p—providesyou with alist of subcommands, their abbreviation, arguments,
and descriptions.

m printserver (psr)—printsinformation for application and administrative
servers.

m printservice (psc)—printsinformation for application and administrative
services.

m printclient (pclt)—printsinformation for the specified set of client
processes. If no arguments or defaults are set, then information on al clientsis
printed.

3-26 Introducing BEA Tuxedo ATMI

Performing Dynamic Operations Using tmadmin(1)

Sample Output from the tmadmin Command

Following is sample output from thet madni n pri nt server (psr) command, which
provides information about application and administrative servers.

Figure3-6 Sample Output from thetmadmin printserver Command

>psr

Prog Nanme Queue Name G p Nane I D RgDone Load Done Current Service
BBL 83108 S| TE1 0 1 50 (IDLE)
AUDI TC auditc BANKB1 1 0 0 (IDLE)
XFER 00001. 00101 BANKB1 101 1 30 (TRANSFER)
TMS_SQL BANKB1_TMS BANKB1 30001 0 0 (IDLE)
ACCT 00001. 00102 BANKB1 102 0 0 (IDLE)
TMS_SQL BANKB1_TMS BANKB1 30002 0 0 (IDLE)
BAL 00001. 00103 BANKB1 103 6 7 (IDLE)
BTADD 00001. 00104 BANKB1 104 0 0 (IDLE)
BALC 00001. 00105 BANKB1 105 0 0 (IDLE)
TLR thrl BANKB1 111 0 0 (IDLE)
TLR thrl BANKB1 112 3 110 (W THDRAWAL)
TLR thrl BANKB1 113 0 0 (IDLE)
TLR thrl BANKB1 114 0 0 (IDLE)
TLR thrl BANKB1 115 0 0 (IDLE)
TLR thrl BANKB1 116 9 100 (IDLE)
TLR thrl BANKB1 117 20 2048 (IDLE)
TLR thrl BANKB1 118 30 600 (IDLE)
TLR thrl BANKB1 119 0 0 (IDLE)
TLR thrl BANKB1 120 0 0 (IDLE)

>

See Also

m “How atmadmin Session Works” on page 2-13 in Administering a BEA Tuxedo
Application at Run Time

m “Using Command-line Utilities to Monitor Your Application” on page 2-10in
Administering a BEA Tuxedo Application at Run Time

Introducing BEA Tuxedo ATMI 3-27

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Managing a Distributed Application
Centrally

3-28

Even if your BEA Tuxedo application is large and complex, you can perform all
run-time administrative functions from one MASTER machine. Y ou can do so using the
BEA Tuxedo system-supplied command-line utilities, or the BEA Administration
Console, or through your third-party administration tool s used with the BEA Manager
product.

From the MASTER machine, you can configure your application, initiate start up and
shutdown, and perform administrative tasks during run time. All other machines can
query the MASTER machine. From the MASTER machine, you have control over
configuration, fault management, security, monitoring, and performance.

Y ou can use the following two methods to make changes to your system whileit is
running:

m TheBEA Administration Console—a graphical user interface (GUI) to the
commands that perform administrative tasks, including dynamic system
modification.

m Thetmadmin command—a shell-level meta-command that enables you to run 50
subcommands for performing various administrative tasks, including dynamic
system modification.

Becauseit isagraphical user interface, the BEA Administration Consoleis simpler to
use than thet madm n command interpreter. If you prefer using a GUI, bring the BEA
Administration Console up on your screen as soon as you are ready to begin an
administrative task. Graphics and online help provided with the BEA Administration
Console guide you through any task you need to perform. The following illustration
shows how you can usethet madni n command or the BEA Administration Consoleto
control arun-time application. All operations can be performed from the MASTER
machine. The utilities directly affect the bulletin board on the MASTER machine, and
updates are distributed to other bulletin boards automatically.

Introducing BEA Tuxedo ATMI

Managing a Distributed Application Centrally

Figure 3-7 Centralized Control of a Distributed Application

Master Site 2
DBBL BBL BBL
Client Server Client Server
BB Applicati BB BEA
Application BEA pplication
Code S‘S:nr:g'rass TUXEDD Code Servers TUXEDD
ATMI AT AT Services AT
BEA With draw BEA Wifithd rau
TUXEDD Inquiry TUXEDO Inquiry
Lomains - T
- omain:s
Mcaesses i
p Bridge /Brldge -
Network
Site 3 \

i BBL
£ Bridge
Using tmadwin orthe BEA DT
Administration Console: processes
v Btarfstop servers BB
* Suspendiresume senices Client Servers Server
* Adveriselunadverise senices | application Senvices BE&
' Query statistics Coda TUAEDRD
AT AT
EEA Wiithd raw
TUXEDO Inquing

See Also

m “Using the BEA Administration Console” on page 3-4

m “Performing Dynamic Operations Using tmadmin(1)” on page 3-26

Introducing BEA Tuxedo ATMI 3-29

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Managing Security

See Also

Administrators can configure applicationswith appropriatelevels of security provided
by the BEA Tuxedo system. Incremental level s of authentication and authorization can
be used to define access to an application. Levels can vary from no authentication for
highly secure environments, to a password or an access control list (ACL) that filters
who can use services, post an event, and enqueue or dequeue a message on a queue.

Withan ACL, not only is a user authenticated when joining an application, but
permissions are checked automatically when attempts are made to access application
entities, such as services. When an ACL is created for aresource, users not included
on the list are denied access to the resource. Resources unprotected by an ACL are
accessible by any client who successfully joins the application. Resources unprotected
by an ACL with the MANDATORY_ACL security option specified, are denied for any
client who joins the application.

An application can be configured so that all servers (except AUTHSVR, the BEA Tuxedo
administration server) have restricted access to shared resources, such as shared
memory and message queues. When a client joins an application, AUTHSVR provides
an authentication service that verifies whether the user has the correct authentication
level (inthe MIB). Thisserviceis transparent to the programmer.

m “Selecting Security Options’ on page 3-31

m “Setting Up Security” on page 3-32

m “Administering Security” on page 2-1 in Using Security in CORBA Applications
m “Programming Security” on page 3-1 in Using Security in CORBA Applications

3-30 Introducing BEA Tuxedo ATMI

Selecting Security Options

Selecting Security Options

The following are the security options provided by the BEA Tuxedo system:

No authentication—clients do not have to be verified before joining an
application.

Application Password—a single password is defined for an entire application
and clients must provide the password to join the application.

User-level Authentication—in addition to an application password, each client
must provide a valid username and application-specific data such as a password
to join the application.

Optional Access Control List (ACL)—clients must provide an application
password, a username, and a user password. If thereisno ACL associated with a
user name, permission is granted. This practice enables an administrator to
configure access for only those resources that need more security; ACLSs need
not be configured for services, queues, or events that are open to everyone.

Mandatory Access Control List (ACL)—clients must provide an application
password, a username, and a user password. Thislevel is similar to optiona
ACL, but an access control list must be configured for every entity (such asa
service, queue, or event) that users can access. If mandatory ACLs are being
used and thereis no ACL for a particular entity, permission for that entity is
denied.

Link-Level Encryption—users of BEA Tuxedo System Security can establish
data privacy for messages moving over the network links that connect the
machinesin a BEA Tuxedo application. The BEA Tuxedo system encrypts data
before sending it over a network link and decryptsit asit comes off the link.
Three levels of security are offered: 0-bit (no encryption), 56-bit (international),
or 128-bit (U.S. and Canada).

Public key encryption—consists of message-based encryption and
message-based digital signature. Message-based encryption reveals user data
only to designated recipients. With message-based digital signature, a sending
process must prove its identity, and bind that proof to a specific message buffer.
Any third party can verify the signature’s authenticity. Undetected tampering is
impossible because a digital signature contains a cryptographically secure

Introducing BEA Tuxedo ATMI 3-31

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

checksum computed on the entire contents of a buffer. A digital signature also
contains a tamper-proof stamp based on the originating machine's local clock.

m Auditing—collects, stores, and distributes information about operating requests
and their outcomes.

Setting Up Security

Thetype of administrative work and/or programming you must do to set up security
for your application depends upon the security options that you choose.
Administratively, you need to configure the MIBs using either the BEA
Administration Console or the command-line utilities.

Y ou can aso build your own security mechanisms. To do so, set the application
security level to User-Level Authentication and specify an application service that
performs authentication in the BEA Tuxedo MIB.

To enable authentication and authorization, administrators must configure the
following in the MIB:

B AUTHSVR server
m |dentity and passwords of authorized users

m Access control lists used on services, queues, and/or events

3-32 Introducing BEA Tuxedo ATMI

Starting Up and Shutting Down Your Application

Starting Up and Shutting Down Your
Application

To start an application, you need to perform the following tasks as stated in
Administering a BEA Tuxedo Application at Run Time.

1

6.

Set the environment variables as described in “How to Set Your Environment” on
page 1-3.

Create the TUXCONFI Gfile as described in “How to Create the TUXCONFIG
File" on page 1-4.

Propagate the BEA Tuxedo software as described in “How to Manually
Propagate the A pplication-Specific Directories and Files” on page 1-5.

Create a TLOG device, (if required) as described in “How to Create a TLOG
Device” on page 1-6.

Startt1i sten at al sites (MP environments) as described in “How to Start tlisten
at All Sites’ on page 1-7.

Boot the application as described in “How to Boot the Application” on page 1-9.

To shut down an application, you need to perform the following task.

Run t mshut down on the MASTER machine as described in “How to Shut Down Y our
Application” on page 1-11.

Introducing BEA Tuxedo ATMI 3-33

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Managing Transactions

3-34

A powerful feature of the BEA Tuxedo system isthe ability to managetransactionsfor
database applications that support the XA interface. Transactions simplify the writing
of distributed applications. They allow your application to cope more easily with a
large set of problems that can occur in distributed environments, such as machine,
program, and network failures.

In adistributed architecture, alocal machine involved in atransaction can
communicate with aremote machine which may, in turn, communicate with another
remote machine. The communication and the work done by the remote machinesis
part of the transaction, and integrity must be maintained. Keeping track of distributed
transaction processing (DTP) can be acomplex task because the system must maintain
enough information about a transaction to be ableto roll it back (that is, to undo it) at
any moment.

Figure 3-8 Transaction Management

Yes X4 Mo
oY TLOG)ﬁ/

Transaction T i
W or M7 ransaction o or N7
Manager = es Manager G

M \%
Commit the Yes Roll Back the

Transaction Transaction

Yes

To keep track of the participants in atransaction, the BEA Tuxedo system creates a
transaction log. To maintain the state of an application as represented by the contents
of the computer’s memory, the BEA Tuxedo system uses one or more resource
managers (or RM; acollection of information and processes for accessing it, such asa
database management system). To coordinate all the operations performed and all the
modul es affected by atransaction, the BEA Tuxedo system uses a Transaction
Manager (TM), which directs the actions of the RMs. Together, TMs and RMs
maintain the atomicity of adistributed transaction.

Introducing BEA Tuxedo ATMI

Managing Transactions

Coordinating Operations with a Transaction Manager
Server (TMS)

The BEA Tuxedo Transaction Manager (TM) is responsible for coordinating global
transactions involving system-wide resources. Loca resource managers (RMs) are
responsible for individual resources. The transaction manager server (TMs) begins,
commits, and aborts transactions involving multiple resources. The server uses an
embedded SQL interface to the RM to read and update the database accessed by the
server group. The TMs and RMs use the X A interface to perform all or none of the
resource work in a global transaction.

Tracking Participants with a Transaction Log (TLOG)

See Also

A global transaction islogged in the transaction log (TLOG) only when it isin the
process of being committed. The TLOG records the reply from the global transaction
participants at the end of the first phase of a 2-phase-commit protocol. A TLOG record
indicates that a global transaction should be committed; no TLOG record iswritten for
those transactions that are to be rolled back. In the first phase, or pre-commit, each
Resource Manager must commit to performing the transaction request. Once all parties
commit, transaction management commits and compl etes the transaction. If either
tasks fails because of an application or system failure, both tasks fail and the work
performed is undone or “rolled back” to itsinitial state.

The TS that coordinates global transactions uses the TLOG file. Each machine should
have its own TLOG.

Note: Customers using the Domains feature should note that the Domains gateway
performsthe functions of the TMs in Domains groups. However, Domainsuses
its own transaction log containing information similar to that in the TLQG, in
addition to Domains-specific information.

m “Using Transactions’ on page 1-18 in Tutorials for Developing BEA Tuxedo
ATMI Applications

m “Configuring Your ATMI Application to Use Transactions” on page 5-1in
Setting Up a BEA Tuxedo Application

Introducing BEA Tuxedo ATMI 3-35

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Managing Workstations

3-36

Workstation clients need enough of the BEA Tuxedo system software to package the
information associated with arequest. They can then send that information to asystem
that supports all the BEA Tuxedo system software, including ATMI functions and
networking software.

The administrator configures one or more Workstation Listeners (WSLs) to be ready
for connection requests from Workstation clients. Each WSL uses one or more
associated Workstation Handlers (WSHSs) to handle the client’ s workl oad. Each WSH
manages multiple workstations, multiplexes all communication with a particular
workstation over a single connection.

Figure3-9 Handling Workstation Clients

BEA Tuxedo Application Site 1
LIME Wark station BBL

-l ative

YWarkstation Client \ Tk
Client st — Serveri

Board
Workstation
Zlient /

BRIDGE
. Ml ative
Client
Site 2
Windows WWaorkstation BRIDGE BEL DEEBL
Workstation \ L

Client Bulletin

Board —. Server? :

Warkstation

WWSH
wsH '

WeL

Introducing BEA Tuxedo ATMI

Development View: What You Can Do Using the ATMI

A machine can then handle thousands of Workstation clients. An administrator can
define several WSLsin adomain to distribute and balance the workstation
communication load across multiple machines. From a programming perspective, all
client ATMI programming interfaces are supported for Workstation client
development.

Development View: What You Can Do Using
the ATMI

The Application-to-Transaction Monitor Interface (ATMI), the BEA Tuxedo AP,
provides an interface for communications, transactions, and management of data
buffersthat worksin all environments supported by the BEA Tuxedo system. It defines
the interface between application programs and the BEA Tuxedo system. The ATMI
offersasimple interface for a comprehensive set of capabilities. It implements the
X/Open DTP model of transaction processing.

Figure3-10 Usingthe ATMI

Tools Languages (C, C++ COBOL, Java)
AT
BEATUSEDD Clientt Mame Management - Distributed AEE
i s And Connectivity ' Transaction W 1B
Administration Processing g

Systerm-Level (Hardware, Operating Systerm, Metwoark)

The ATMI supports the following tasks:
-Client initialization

-Zerver naming

-System messaging

-Managing transactions

-Dizpatching of services

-Managing buffers

Introducing BEA Tuxedo ATMI 3-37

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

The ATMI library offersyou avariety of functionsfor defining and controlling global
transactions in a BEA Tuxedo application. Global transactions enable you to manage
exclusive units of work spanning multiple programs and resource managersin a
distributed application. All the work in asingle transaction istreated as alogical unit,
so that if any one program cannot completeitstask successfully, no work is performed
by any programs in the transaction. Most ATMI functions support different
communication styles. These functions knit together distributed programs by enabling
them to exchange data. All ATMI functions send or receive datain typed buffers.

For alist of the ATMI functions (for C and COBOL bindings), grouped by the type of
task they perform, refer to Table 2-1, “Using the ATMI Functions,” in Chapter 2,
“BEA Tuxedo ATMI Architecture.”

Note: Theuse of ATMI transaction management functions is optional.

See Also

m “Using the ATMI to Handle System and Application Errors’ on page 2-28 in
Administering a BEA Tuxedo Application at Run Time

m “Creating a BEA Tuxedo ATMI Client” on page 1-2 in Tutorials for Developing
BEA Tuxedo ATMI Applications

m “Creating a BEA Tuxedo ATMI Server” on page 1-4 in Tutorials for Developing
BEA Tuxedo ATMI Applications

m “Using Typed Buffersin Your Application” on page 1-6 in Tutorials for
Developing BEA Tuxedo ATMI Applications

m “What Are the BEA Tuxedo ATMI Messaging Paradigms?’ on page 2-8

m “What Is Meant by Naming?’ on page 2-42

3-38 Introducing BEA Tuxedo ATMI

Run-time System View: Using Tools in Different Configurations

Run-time System View: Using Tools In
Different Configurations

The BEA Tuxedo system providestoolsto create, monitor, and manage both processes
and the communication that occurs between processesin agiven application. Y ou can
use the basic processes and messaging paradigms in many different configurations.
Each configuration fallsinto one of the following run-time categories:

m Single machine application—one or more local or remote clients communicate
with one or more serversresiding on the same machine.

m Distributed application across multiple machines—one or more local or remote
clients communicate with one or more serversresiding on severa machinesin
one domain.

m Multiple-domain application—two or more domains communicate with each
other.

Run-time System Capabilities

The following table lists the BEA Tuxedo system functionality availablein a
single-machine application, adistributed application, and a multiple-domain
application.

Table 3-2 Functionality Availablein Different Types of Configurations

Available Functionality Singleemachine Multiplemachine Multiple-domain
Configuration (Distributed) Configuration
Configuration
ATMI X X X
M essaging paradigms X X X

Introducing BEA Tuxedo ATMI 3-39

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Table 3-2 Functionality Availablein Different Types of Configurations (Continued)

Available Functionality

Single-machine Multiple-machine
Configuration (Distributed)
Configuration

Multiple-domain
Configuration

Administrative parts:
Bulletin Board (BB), Bulletin Board

Liaison (BBL), TLOG, UBBCONFI G, X X X
ULOG TUXCONFI G

Distinguished Bulletin Board Liaison

(DBBL) X X
Bridges X X
Domains processes:

DVADM GWADM GWIDOMAI N (for

TDomains), dm oadcf , dmunl oadcf,

and DVCONFI G, DMILOG and X
BDMCONFI G

Application processes: X X X
clients, servers, and services

Queuing X X X
Transaction management X X X
Event management X X

Security management X X X

What Is a Single-machine Configuration?

A single-machine configuration consists of one or more local or remote clients that
communicate with one or more servers residing on a single machine running one or
more business applications. Even though it may include multiple applications, this
type of configuration is considered a single domain because it isadministered as a

single entity.

3-40

Introducing BEA Tuxedo ATMI

What Is a Single-machine Configuration?

All the managed elements (services, servers, and so on) of all the applicationsin this
configuration are defined in and controlled from one BEA Tuxedo configuration file.
The basic parts of a single-machine configuration when installed and running on a
single machine areillustrated in the following diagram.

Figure3-11 A Single-machine BEA Tuxedo Configuration

Bulletin Board
Liaison

ULOG Bulletin Board
Directory of Services

Whithdra
Client Inguiry Server
Application Replies Requests BEA TUXEDD
Code] ATHI
AT T Withdraw
BEA TUXEDD Inquiry

. Wodestation
Mo destat .
?—Ian:l::rn Listener
Table 3-3 Parts of a Single-machine Configuration
Single-machine Part Description
Bulletin Board (BB) A shared memory segment that holds configuration and

dynamic information for the system. It isavailable to all BEA
Tuxedo processes.

Bulletin Board Liaison A BEA Tuxedo administrative process that monitors both the
(BBL) data stored in the bulletin board (including any changes made
toit) and all application programs.

Clients Executable programsthat periodically request servicesthrough
the BEA Tuxedo system. (Client programs are normally
written by customers.)

Introducing BEA Tuxedo ATMI 341

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Table 3-3 Parts of a Single-machine Configuration (Continued)

Single-machine Part

Description

Message queues

Communication between clients and serversis performed
through operating-system supported, memory-based message
queues.

Messaging paradigms

Different model s of transferring messages between aclient and
a server. Examples include request/response mode,
conversational mode, events, and unsolicited communication.

Servers

Executable programs that offer named services through the
BEA Tuxedo system. (Server programs are normally written
by customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(WSL)

A server process running on an application site that listensfor
and distributes connections from Workstation clients (client
process running on aremote site).

ULOG (User Log)

A filein which error messages are stored.

See Also

m “How to Create a Configuration File” on page 3-2 in Setting Up a BEA Tuxedo

Application

3-42 Introducing BEA Tuxedo ATMI

What Is a Multiple-machine (Distributed) Configuration?

What Is a Multiple-machine (Distributed)
Configuration?

A distributed-domain (or multiple-machine) configuration consists of one or more
business applications running on multiple machines. Although it includes multiple
machines, thistype of configuration is considered a single domain becauseit is
administered centrally as asingle entity. In other words, all the elements (services,
servers, machines, and so on) of al the applications on all the machinesin this
configuration are defined in, and controlled from, one BEA Tuxedo configuration file.

Asabusiness grows, application devel opers may need to organize different segments
of the business by sets of functionality that require administrative autonomy but allow
sharing of services and data. Each functionality set defines an application that may
span one or more machines, and that is administered independently from other
applications. Such afunctionally distinct application is referred to as a domain.

The names of domains frequently reflect the functionality provided. When domains
have names such as “marketing” and “research and development,” it is easy for
customers to find the applications they need.

Introducing BEA Tuxedo ATMI 3-43

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

The basic parts of a configuration distributed across multiple machines are illustrated
in the following diagram.

Figure3-12 Distributed Application

Machine 1 (Master) Machine 2
DBBL BBL BBL
Client BB Server Client Server
Application Servers EEA Application BB BEA
Gods Services TUXEDD Coda Servers TUXERD
ATMI ATMI ATMI Senvices AT
BEA Wfithd mw EEA Wfith draw
TUHEDD IMquiny TUXEDD Inquiny
Bridge Bridge
Network
Machine 3
BBL
Bridge
) BB
Client Servers Server
Application Services BEA
Code TUXEDD
ATl ATHI
BEA Wiithdraw
TUXEDD Inquins

Table 3-4 Partsof a Distributed Configuration

Multiple Machine Description
Part
Bridges BEA Tuxedo system-supplied servers within a domain that send

and receive service requests between machines, and route
requests to loca servers (literally, to local server queues).

3-44 Introducing BEA Tuxedo ATMI

What Is a Multiple-machine (Distributed) Configuration?

Table 3-4 Parts of a Distributed Configuration (Continued)

Multiple M achine
Part

Description

Bulletin Board (BB)

A shared memory segment that holds configuration and dynamic
information for the system. It isavailable to all BEA Tuxedo
processes.

Bulletin Board Liaison
(BBL)

A BEA Tuxedo administrative process that monitors both the
data stored in the bulletin board (including any changes made to
it), and all application programs.

Clients

Executable programs that periodically request services through
the BEA Tuxedo system. (Client programs are usually by
customers.)

Distinguished Bulletin
Board Liaison (DBBL)

A process dedi cated to making sure that the BBL server on each
machineis alive and functioning correctly. This server runson
the Master machine of adomain and communicates directly with
all administration facilities.

M essage queues

Communication between clients and serversis performed
through operating-system supported, memory-based message
queues.

M essaging paradigms

Different models of transferring messages between aclient and a
server. Examples include request/response mode, conversational
mode, events, and unsolicited communication.

Servers

Executabl e programs that offer named servicesthrough the BEA
Tuxedo system. (Server programs are normally written by
customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(WSL)

A server process running on an application site that listensfor and
distributes connections from Workstation clients (client
processes running on remote sites).

ULOG (User Log)

A filein which error messages are stored.

Introducing BEA Tuxedo ATMI 3-45

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

A configuration that runs on more than one machine requires platform interoperability
and server transparency.

m Platform interoperability—means that your application can rely on intermachine
communications even when different machines are running different operating
systems, without code customization.

m Server transparency—means that a client can access a server without specifying
its location. The locations of servers are recorded in the bulletin board and
accessed as needed. As aresult, servers can be moved, dropped, or added to an
application dynamically, without needing to change the application itself.

The DBBL and Bridge servers support these requirements of a distributed-domain
configuration.

See Also

m “How to Create the Configuration File for a M ultiple-machine (Distributed)
Application” on page 3-3 in Setting Up a BEA Tuxedo Application

m “Distributing ATMI Applications Across a Network” on page 7-1 in Setting Up
a BEA Tuxedo Application

m “Creating the Configuration File for a Distributed ATMI Application” on page
8-1in Setting Up a BEA Tuxedo Application

m “Setting Up the Network for a Distributed Application” on page 9-1 in Setting
Up a BEA Tuxedo Application

m “Managing the Network in a Distributed Application” on page 4-1 in
Administering a BEA Tuxedo Application at Run Time

3-46 Introducing BEA Tuxedo ATMI

What Is a Multiple-domain Configuration?

What Is a Multiple-domain Configuration?

A multiple-domain configuration consists of two or more domains that communicate
with each other. Each domain may be either a single-machine configuration or a
multi ple-machine configuration. Inter-domain communication is achieved through a
highly asynchronous multitasking gateway that processes outgoing and incoming
service reguests to or from all domains. Multiple BEA Tuxedo domains can be
connected, allowing clients in one domain transparent access to services physically
located in remote domains. Each domain can share services and data, but is
administered separately.

The BEA Tuxedo system provides different types of gateways to accommodate
various network transport protocols. Following are the different types of Domains
gateways:

m The BEA Tuxedo Domains (TDomains) gateway provides interoperability
between two or more BEA Tuxedo applications through a specially designed TP
protocol that flows over network transport protocols such as TCP/IP.

m TheBEA eLink OS| TP gateways provides interoperability between BEA
Tuxedo applications and other transaction processing applications that use the
OSl TP standard. OSI TP is a protocol for distributed transaction processing
defined by the International Standards Organization (1SO).

m TheBEA elLink Adadpter for Mainframe SNA gateway provides interoperability
between clients and serversin a BEA Tuxedo domain and clients and serversin
an MV S/CICS or MV S/IMS environment in remote SNA domains. It also
connects alocal BEA Tuxedo domain to multiple SNA networks.

m TheBEA elLink Adapter for Mainframe TCP for CICS is a gateway connectivity
feature that makesit possible for non-transactional tasks within BEA Tuxedo
regions to access services provided by CICS application programs and
vice-versa It enables a BEA Tuxedo domain to communicate viathe TCP/IP
network transport protocol to a CICS environment.

m TheBEA elLink Adapter for Mainframe TCP for IMS is agateway connectivity
feature that provides transparent communications between client and server
transactionsin an IMS system and a BEA Tuxedo domain, a CICS system, or
another IMS system.

m The TOP END Domain Gateway (TEDG) provides interoperability between
BEA TOP END systems and BEA Tuxedo domains.

Introducing BEA Tuxedo ATMI 3-47

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

3-48

The basic parts of a multiple-domain configuration areillustrated in the following

diagram.

Figure 3-13 Multiple-domain Configuration

BEA TUXEDO Dornain [Dormain 1)

tachine 1 [Master)

OEEL EEL
Cliert
Application EE
Code Servers
ATMI Services
BEA
TUXEDD Eridge
Metweork
Machine 2 f > Eridge
BEL Eridge .
Clizrt Servear arver
Application BE BEA BEA
Code Servers TUXEDRD TUXEDO
ATMI Services ATMI .ATMI
BEA Withdraw i
TUXEDD Inquin Inguiny
EEA TUXEDO Domain (Domain 2)
t=achine 1 [Master)
OEEL EEBL
Cliert Server
Application EE BEA
Code Servers TUXEDOD
AT sarvices ATHI
BEA Withdraw s
TUXEDD Bridge Inquiry TU?(TE%D
AThil
Hetvor k Niith drave
Machine 2 121 Inquiny
EEL Eridge Eridge
Client Server
Application EE BEA EE
Code Servers TUXEDRO Sarvers
ATH Services AT Services
BEA With draw
TUWXEDRD Ingquiny

EEA TUXEDO Domain (Domain 3)

Domains

Server
BEA
TUXEDOD
AT
With drawe
i tachine 3
Client
Application EE EEL
Code Servers
ATMI Services
BEA
TUXEDD Domains
& atewway Group Administrative
.
Do‘r'n:;———b DA
GUITDOMAIN |
TLOG BOMCONFIS
tachine 3
Client L
Application EEL
Code
AT
BEA
TUxXEDRD .
Domains
& atewway Group Administrative
offiom | Catuasy
Comains QMADH
GUTLOMAIN
TLOG BDMCENFIG

& atewway Group
G b

Administrative
& ateway

Domains Db AL

TLoG | GUTDOMAIN ;
BDMCONFIG

Introducing BEA Tuxedo ATMI

What Is a Multiple-domain Configuration?

Table 3-5 Parts of a Multiple-domain Configuration

Multiple-domain Part

Description

Bridges

BEA Tuxedo system-supplied servers within a domain that
send and recei ve service requests between machines, and route
requests to loca servers (literally, to local server queues).

Bulletin Board (BB)

A shared memory segment that holds configuration and
dynamic information for the system. It isavailable to all BEA
Tuxedo processes.

Bulletin Board Liaison
(BBL)

A BEA Tuxedo administrative process that monitors both the
data stored in the bulletin board (including any changes made
toit), and all application programs.

Clients

Executable programsthat periodically request servicesthrough
the BEA Tuxedo system. (Client programs are normally
written by customers.)

Distinguished Bulletin
Board Liaison (DBBL)

Ensures that the BBL servers on each machine are aive and
functioning correctly. This server runs on the Master machine
of an application and communicates directly with any
administration facility.

Domains tools: DMADM
GWADM GWIDOVAI N,
dm oadcf,

dmunl oadcf, and
DMCONFI G

m DMADM—the Domains administrative server.

= GMDM—the gateway group administrative server that
registers with the DMADMserver to obtain configuration
information used by the gateway group.

= GAMDOVAI N—the gateway process that provides
connectivity to remote gateway processes (for TDomains).

m dnl oadcf —trandates the DMCONFI Gfileto abinary
BDMCONFI G configuration file.

m dnunl oadcf —translatesthe BDMCONFI Geonfiguration.
file from the binary representation into ASCII.

= DMCONFI G—the Domains configuration file.

M essage queues

Communication between clients and serversis performed
through operating-system supported, memory-based message
queues.

Introducing BEA Tuxedo ATMI 3-49

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Table 3-5 Partsof a Multiple-domain Configuration (Continued)

Multiple-domain Part

Description

Messaging paradigms

Different model s of transferring messages between aclient and
a server. Examples include request/response mode,
conversational mode, events, and unsolicited communi cation.

Servers

Executable programs that offer named services through the
BEA Tuxedo system. (Server programs are normally written
by customers.)

Workstation Handler
(WSH)

A multi-contexted gateway process on a server that manages
service requests from Workstation clients (that is, client
processes running on remote sites).

Workstation Listener
(W8L)

A server process running on an application site that listensfor
and distributes connections from Workstation clients (client
processes running on remote sites).

ULOG (User Log)

A filein which error messages are stored.

See Also

m “What Is a Single-machine Configuration?’ on page 3-40

m “What Are the Domains Administrative Tools?’ on page 3-55

m “How to Create the Configuration File for a Multiple-domain Application” on
page 3-4 in Setting Up a BEA Tuxedo Application

3-50 Introducing BEA Tuxedo ATMI

Features of a Multiple-domain Configuration

Features of a Multiple-domain
Configuration

A configuration that includes more than one domain requires platform interoperability
and server transparency:

m Platform interoperability—means that your application can rely on intermachine
communications even when different machines are running different operating
systems, without code customization.

m Server transparency—means that a client can access a server without specifying
its location. The locations of servers are recorded in the bulletin board and
accessed as needed. As aresult, servers can be moved, dropped, or added to an
application dynamically, without needing to change the application itself.

What Is a BEA Tuxedo Bridge?

A BEA Tuxedo Bridge is aserver, provided by the BEA Tuxedo system, for sending
and receiving service requests between machines, and routing requeststo local server
queues.

Each bridge enables a network connection to be created with every other bridge in the
system. Network connections are established as needed and then maintained
indefinitely. Bridges are hidden servers, that is, they are started and stopped
automatically, as needed, without an explicit configuration entry. Messages are
asynchronously sent across these persistent network connections. No network
connection overhead isincurred for individual messages.

Introducing BEA Tuxedo ATMI 3-51

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Figure3-14 Using Bridgesin a Multiple-machine (Distributed) Application

Master Site 2
DBBL BBL BBL
Client Server
Client BB Server Application EB BEA
Application Servers BE& Code SE[\!’ETS TUXEDD
Code Servi TUXEDRD AT Services ATHI
ATMI BniCes AT BEA Wifithd raw
BEA, Wiithdraw TUXEDD Inquiny
TUWAEDO Inguiny
Damdins Brid Domains
i ridge
processes Bridge / q plocesses
Network
Site 3 X
i BBL
Cramains B"dge
proceszses
] BB
Client Servers Server
Application Services BEA
Coda TUXEDD
ATHI AT
EEA Wirithdraw
TUXEDS Inquiny

See Also

m “Setting Up the Network for a Distributed Application” on page 9-1 in Setting
Up a BEA Tuxedo Application

m “Creating the Configuration File for a Distributed ATMI Application” on page
8-1in Setting Up a BEA Tuxedo Application

3-52 Introducing BEA Tuxedo ATMI

What Is the Role of the Bulletin Board and Bulletin Board Liaison?

What Is the Role of the Bulletin Board and
Bulletin Board Liaison?

The bulletin board (BB) is a memory segment in which all the application
configuration and dynamic processing information is held at run time. It provides the
following functionality:

Assigns service requests to specific servers. When a serviceis called, the
bulletin board looks up servers that offer the requested service. Based on this
information, and any data-dependent routing criteria, the bulletin board places
the request data on the request queue of avalid server.

Maintains dynamic information about the state of an application, such as how
many requests are waiting on a given server’s queue and how many reguests
have been processed.

Provides server location transparency, allowing an application to be devel oped
independently of deployment. Therefore, development and deployment costs are
minimized.

Supports service name aliases, allowing multiple namesto be assigned to the
same service. This capability is useful for constructing interpreters, such as
gateways.

The Bulletin Board Liaison (BBL) isa BEA Tuxedo server that performs periodic
health checks of the bulletin board and coordinates functions of all parts of the system.

Introducing BEA Tuxedo ATMI 3-53

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Figure 3-15 Bulletin Board and Bulletin Board Liaison

Bulletin Board
Liaison

ULOG Bulletin Board
Directony of Services

Withdraw
Client Inguiry Server
Application Replies Requests BE& TUXEDD
Code] ATHI
ATHI T withdraw
BEA TUXEDD Inquiry

Wonkstation
Handler

Mo testation
Listener

What Are Clients and Servers?

3-54

m Client—a program that collects a request from a user and passes that request to a
server capable of fulfilling it. It can reside on a PC or workstation as part of the
front-end of an application gathering input from users. It can a so be embedded
in software that reads a communication device such asan ATM machine from
which datais collected and formatted before being processed by BEA Tuxedo
servers.

m Server—aprocess that oversees a set of services and dispatches services
automatically for clients that request them. A service, in turn, isafunction
within the server program that performs a particular task needed by abusiness.
A bank, for example, might have one service that accepts deposits and another
that reports account balances. A server at this bank might receive requests from
clientsfor both services. It isthe server’s job to dispatch each request to the
appropriate service.

Introducing BEA Tuxedo ATMI

What Is the Distinguished Bulletin Board Liaison (DBBL)?

What Is the Distinguished Bulletin Board
Liaison (DBBL)?

The Distinguished Bulletin Board Liaison (DBBL) isthe server that makesit possible
to distribute an application across multiple machines. The DBBL ensuresthat the
Bulletin Board Liaison (BBL) server on each machineis aive and functioning
correctly. The DBBL runs on the master machine of an application and communicates
directly with al administration facilities.

The DBBL ensuresthat configuration and service addressing information isreplicated
to the bulletin board on each machine in the configuration. Servers located on remote
machines are accessed through the bridge on the local machine. Servers on the local
machine are accessed directly. All local communications are performed through high
performance operating system message queues. Remote communications are
performed in two phases. First, service requests are forwarded to a remote machine
through the (local) bridge. Second, when a request reaches the remote machine,
operating system messages are used to send the request to the appropriate server.

What Are the Domains Administrative
Tools?

To build a multiple-domain configuration, you need to integrate your existing BEA
Tuxedo application with other domains. Y ou heed to ensure interoperability across
domains, preserve access to services on all domains, and accept service requests from
all domains. Y ou can perform these functions through a highly asynchronous
multitasking gateway that processes outgoing and incoming service requeststo or from
all domains. To usethe gateway, you must add entries for domain gateway groups and
gateway serversto the TUXCONFI Gfile. The following illustration shows the tools
provided by the BEA Tuxedo system for setting up and maintaining amultiple-domain
configuration.

Introducing BEA Tuxedo ATMI 3-55

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Figure3-16 Domains Administrative Tools

Client Server
& .
o Bridge
&
SR ¢ e
& T Pt
& s
Domains
Administrative
Gateway Group o
T, T T Y
T Y DhaDM
S GIATDOMAIN
/ \ BDMCOMNFIG
Diormain Dotmain

Table 3-6 Domains Administrative Tools

Domains Tool

Description

dmadmi n(1)

A command that allows you to configure, monitor, and tune
domain gateway groups dynamically. Use this command to
update the BDMCONFI G file while an application is running.
The command acts as a front-end process that trand ates
admini strative commands to service requests to the DVADM N
service, a generic administrative service advertised by the
DMvADMserver. The DMADM N service invokes the vaidation,
retrieval, or update functions provided by the DMADMserver to
maintain the BDMCONFI Gfile.

DMCONFI G(5),
BDMCONFI G

All Domainsconfigurationinformationisstoredinabinary file
called the BDMCONFI Gfile. Y ou can create and edit the text
version of the Domains gateway configuration file,

DMCONFI G, with any text editor. Y ou can update the compiled
BDMCONFI Gfile while the system is running.

dm oadcf and
dnunl oadcf

dm oadcf —readsthe DMCONFI Gfile, checksthe syntax, and
optionally loads a binary BDMCONFI G configuration file.

dmunl oadcf —translates the BDMCONFI G configuration file
from binary to text format.

3-56 Introducing BEA Tuxedo ATMI

What Are IPC Message Queues?

Table 3-6 Domains Administrative Tools (Continued)

Domains T ool

Description

DMVADM(5)

A Domains administrative server that enables you to managea
Domains configuration at run time. DMADM provides a
registration service for gateway groups. This serviceis
requested by GAADM servers as part of their initiaization
procedure. The registration service downloads the
configuration information required by the requesting gateway
group. The DMADMSserver maintainsalist of registered gateway
groups, and propagates to these groups any changes made to
the configuration.

GMDM5)

A gateway administrative server that supports run-time
administration of a specific gateway group. This server
registers with the DMADMserver to obtain the configuration
information used by the corresponding gateway group. GAADM
accepts requests from DMADM Nto obtain run-time statisticsor
to change the run-time options of the specified gateway group.
Periodically, GAADMsends an “|-am-alive” message to the
DVADMserver. If no reply is received from DVADM GAADM
registers again. This process ensures the GAWADMserver always
has the current copy of the Domains configuration for its

group.

GWIDOVAI N(5)

A gateway process that receives and forwards messages from
clientsand serversin al connected domains (for TDomains).

BDMCONFI G

The binary version of the configuration file for a
multiple-domain configuration.

What Are IPC Message Queues?

The BEA Tuxedo system uses |PC message queues to support communication
between processes that are executed on a particular machine. |PC message queues are
transient memory areas, typically provided by the underlying operating system, used
for communication between clients and servers. By default, each server hasits own

I PC message queue on which to receive requests and replies, referred to asa Single
Server, Single Queue (SSSQ). If you prefer, however, you can override the default and

Introducing BEA Tuxedo ATMI 3-57

3

Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

assign multiple serversto read from the same queue. Thisarrangement isreferred to as
Multiple Servers, Single Queue (M SSQ). Y ou can use both SSSQ and MSSQ setsin
the same application. Servers can be assigned to either type of queue.

When to Use Single Server, Single Queues (SSSQ)

To understand how SSSQ sets work, consider an analogy that can be found in your
supermarket, where there may be several checkout lines. Each line islike a separate
gueuein which customerswait for aclerk at oneregister, who determines how fast that
lineis serviced. If adelay isintroduced by one person, each subsequent personis also
delayed onthat line, but the delay has no effect on other lines. This scheme can be used
to load balance and throttle work across several servers offering different kinds of
services. Customerswith relatively small requests can be processed by a server with a
separate queue, thus speeding throughput by guaranteeing available cycles or registers
for small requests.

When to Use Multiple Server, Single Queue (MSSQ) Sets

3-58

The MSSQ scheme offers additional load bal ancing through IPC messaging, whichis
offered by the operating system. One queue is accommodated by several servers
offering identical services at al times. If the server queue to which arequest is sent is
part of an MSSQ set, the message is dequeued to the first available server. Thus load
balancing is provided at the individua queue level.

When aserver ispart of an MSSQ set, it must be configured with its own reply queue.
When the server makes requests to other servers, the replies must be returned to the
original reguesting server; they must not be dequeued by other serversin the MSSQ
set.

In many applications, Multiple Server, Single Queue (M SSQ) sets can play an
important role. They are ideal when you need to minimize the total waiting time for
services. If it isunacceptable for a service request to wait while a server capable of
fulfilling that request remainsidle, M SSQ sets should be used.

Introducing BEA Tuxedo ATMI

What Are IPC Message Queues?

Example

We recommend using an MSSQ set in the following situations:

m Service turnaround time is paramount.

m You have areasonable number of servers (between 2 and 12).

m Servers offer identical sets of services.

m The messages involved are reasonably sized (less than 75% of the queue size).

m You can configure MSSQ sets to be dynamic so they automatically spawn and
reduce servers based upon a queue |load.

Note: For fault tolerance, you should aways use M SSQ sets with two or more
servers.

An MSSQ set isinappropriate when long messages are being passed to services. Long
messages can cause a queue to be exhausted. When a queue is exhausted, either
non-blocking sendsfail or blocking sends block.

We recommend against using an MSSQ set in the following situations:
m Buffer sizesare large enough to exhaust one queue.

m You have alarge number of servers. (You can compromise by using afew

MSSQ sets.)

m Each server offersdifferent services.

To consider how M SSQ setswork, consider an anal ogy that can befound inyour bank,
where several tellers performing identical services handle asingle line of customers.
The next avail able teller always takes the next person in line. In this scenario, each
teller must be able to perform all customer services. In a BEA Tuxedo environment,
all servers set up to share a single queue must offer the identical set of services at all
times. The advantage of M SSQ sets is that they offer a second form of load balancing
at the individual queue level.

Introducing BEA Tuxedo ATMI 3-59

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

What Are the Workstation Handler and
Workstation Listener?

The Workstation component extends the availability of a native BEA Tuxedo
application to clients that reside on workstations. With this component, workstations
need not be within the administrative domain of the application.

The following figure shows an application with two Workstation clients (WSC). One
client isrunning on a UNIX system workstation, while the other client isrunning on a
Windows 2000 workstation. Both WSCs are communicating with the application
through the Workstation Handler (WSH) process. Initially, both joined by
communicating with the Workstation Listener (WSL). The Workstation defines an
environment in which clients can access the services of an application through a
surrogate handler process.

Figure3-17 BEA Tuxedo Application with the Workstation Component

BEA Tuxedo Application Site 1
LIME Wark station BBL

-l ative

YWarkstation Client \ Tk
Client st — Serveri

Board
Workstation
Zlient /
BRIDGE
. Ml ative
Client
Site 2
Windows WWaorkstation BRIDGE BEL DEEBL
Workstation \ L
Client Bulletin
Board —. Server? :

Warkstation

WWSH
wsH '

WeL

3-60 Introducing BEA Tuxedo ATMI

What Are the Workstation Handler and Workstation Listener?

The programming environment on a Workstation is determined by the operating
system of the machine. A Local Area Network (LAN) provides a connection to the
administrative domain of the application, affording greater flexibility in the choice of
hardware and software platforms on which you can deliver application services.

How a Workstation Client Connects to an Application

A Workstation client connects to an application in the following way.

Figure 3-18 WSC Connecting to an Application

Workstation Client
calls tpinit () or
tpchkauth ()

Client connects to
WWSL using knawn
network addrass

|
WWSL assigns
appropriate WWSH
for client

|
YWSL returns
address of a WSH
to the client

1
WL connects to
WWEH

|
tpinici) ar
tpchkauth()
returns control to
application

Initiated with
tpchkauth ()
or tpinic i)

Performed by
BEA Tuxedo
systern on behalf
of the application

All communication
between the ¥W3L and
the application takes
place through the YW3H

Introducing BEA Tuxedo ATMI 3-61

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

What Is the User Log (ULOG)?

The user log (ULOG) is afileto which all messages generated by the BEA Tuxedo
system—error messages, warning messages, information messages, and debugging
messages—are written. Application clients and servers can aso write to the user log.
A new log is created every day and there can be a different log on each machine.

However, a ULOG can be shared by multiple machines when aremote file system is
being used.

The ULOG provides an administrator with arecord of system events from which the
causes of most BEA Tuxedo system and application failures can be determined. Y ou
can view the ULOG, atext file, with any text editor. The ULOG also contains messages
generated by thet | i st en process. Thet i st en process provides remote service
connections for other machines. Each machine, including the master machine, should
haveat!i st en processrunning on it.

How Is the ULOG Created?

A ULGCGiscreated by the BEA Tuxedo system whenever one of the following activities
oCCurs:

m A new configuration file isloaded.

m An application is booted.

Example of a ULOG Message

Thefollowing is an example of a ULOG message:
121449. gunby! si npserv. 27190. 1. 0: LI BTUX CAT: 262: std main starting

A ULOG message consists of two parts: atag and text.

3-62 Introducing BEA Tuxedo ATMI

What Is the User Log (ULOG)?

The tag consists of the following:

m A6-digit string (hhmss) representing the time of day (in terms of hour, minute,
and second)

m The name of the machine (as returned, on UNIX systems, by the unane - n
command)

m The name and processidentifier of the processthat islogging the message. (This
process |D can optionally include a transaction I1D.) Also included is athread ID
(1) and acontext ID (0).

Note:

Placeholders are printed in the t hr ead_I D and cont ext _1 Dfield of entries
for single-threaded applications. (Whether an application is multithreaded is
not apparent until more than one thread is used.)

The text consists of the following:

m The name of the message catalog

m The message number

m The BEA Tuxedo system message

The Tag Indicates...

The Text I ndicates...

The message was written into the log at m The message came from the LI BTUX catalog.

approximately 12:15 P.M. -
The machine on which the error occurred was gumby.

The number of the message is 262.
Themessageitself readsasfollows: st d mai n

The message was logged by the simpserv process, starting.
which has a process ID of 27190.

Thethread ID is 1.
The context ID isO.

Note:

For more information about a message, note its catalog name and number.
With thisinformation, you can look up the message in the appropriate catal og.

Introducing BEA Tuxedo ATMI 3-63

3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure

Where the ULOG Resides

By default, the user log is called ULOG. mmddyy (where mddyy represents the date in
terms of month, day, and year) and it is created in the $APPDI R directory. Y ou can
place thisfile in any location, however, by setting the ULOGPFX parameter in the
MACHI NES section of the UBBCONFI Gfile.

3-64 Introducing BEA Tuxedo ATMI

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 BEA Tuxedo System Fundamentals
	For More Information
	What Is the BEA Tuxedo System?
	Features of the BEA Tuxedo System
	Administrative Features
	Architectural Features
	Programming Features

	See Also

	Anatomy of the Client/Server Model
	Characteristics of Client/Server Architecture
	Differences Between 2-Tier and 3-Tier Client/Server Architectures
	Figure 1�1 2-Tier and 3-Tier Client/Server Models

	Client/Server Variations to Suit Your Needs

	How the BEA Tuxedo System Fits into the Client/Server Model
	Figure 1�2 Clients and Servers in a Sample Banking Application
	See Also

	What Are Clients, Servers, and Services in a BEA Tuxedo Environment?
	What Is a BEA Tuxedo Client?
	What Is a BEA Tuxedo Server?
	What Are BEA Tuxedo Services?

	Services Provided by the BEA Tuxedo System
	Administrative Services
	Application Processing Services

	BEA Family of Products

	2 BEA Tuxedo ATMI Architecture
	Basic Architecture of the BEA Tuxedo ATMI Environment
	Figure 2�1 The BEA Tuxedo ATMI Basic Architecture
	See Also

	What You Can Do Using the ATMI
	Figure 2�2 Using the ATMI
	Table 2�1 Using the ATMI Functions�

	See Also

	What Are the BEA Tuxedo ATMI Messaging Paradigms?
	Table 2�2 BEA Tuxedo ATMI Messaging Paradigms
	See Also

	What Is Conversational Communication?
	Figure 2�3 Conversational Communication
	See Also

	How the EventBroker Works
	Figure 2�4 Posting and Subscribing to an Event
	See Also

	What Types of Events Are Reported?
	How Are Events Reported?
	Figure 2�5 Event-based Messaging

	What Is Queue-based Communication?
	Figure 2�6 Queue-based Messaging
	Using Application Queues
	See Also

	What Is Request/Reply Communication?
	What Is Synchronous Messaging?
	Figure 2�7 Synchronous Request/Reply Communication

	What Is Asynchronous Messaging?
	Figure 2�8 Asynchronous Request/Reply Communication

	See Also

	What Is Unsolicited Communication?
	Figure 2�9 Unsolicited Notification Messaging
	See Also

	What Are Nested and Forwarded Service Requests?
	Nested Requests
	Figure 2�10 Nested Service Requests
	Benefit of Nested Requests
	Example of a Nested Service Request

	Forwarded Requests
	Figure 2�11 Forwarded Service Requests

	See Also

	How BEA Tuxedo ATMI Processes Messages
	Figure 2�12 Processing a Request
	What Are the Benefits of Service Request Processing?
	See Also

	What Are Typed Buffers?
	Characteristics of Buffer Types
	Table 2�3 Buffer Types Characteristics �

	See Also

	Using the MIB
	See Also

	Types of MIB Users
	Classes, Attributes, and States in the MIB
	BEA Tuxedo ATMI Application Processing Services
	What Is Data Compression?
	Figure 2�13 Data Compression

	What Is Data-dependent Routing?
	Uses of Data-dependent Routing
	Example of Data-dependent Routing with a Horizontally Partitioned Database
	1. Gets the account numbers for the two service requests (3 and 17).
	2. Checks the routing tables on the BEA Tuxexdo bulletin board that show which servers handle whi...
	3. Sends each request to the appropriate server. Specifically, the system forwards the request ab...
	Figure 2�14 Data-dependent Routing with a Horizontally Partitioned Database

	Example of Data-dependent Routing with Rule-based Servers
	1. Gets the amount specified for withdrawal in the two service requests ($100 and $800).
	2. Checks the routing tables on the BEA Tuxedo bulletin board that show which servers handle requ...
	3. Sends each request to the appropriate server. Specifically, the system forwards the request fo...
	Figure 2�15 Data-dependent Routing with Rule-based Servers

	Example of Data-dependent Routing with Distributed Application
	Figure 2�16 Sample Banking Application Using Routing Criteria

	What Are Encoding and Decoding of Data?
	What Is Data Encryption?
	Figure 2�17 Data Encryption

	What Is Data Marshalling?
	Figure 2�18 Data Marshalling

	What Is Load Balancing?
	Assigning a Load Factor
	Figure 2�19 Load Balancing

	What Is Message Prioritization?
	Figure 2�20 Prioritization of Messages

	What Is Meant by Naming?
	Naming Services
	Figure 2�21 Locating a Service by Name

	Advertising Services
	Naming Events
	See Also

	BEA Tuxedo ATMI Administrative Services

	3 Three Ways of Viewing the BEA Tuxedo ATMI Infrastructure
	Basic BEA Tuxedo ATMI Infrastructure
	Management View: Using Administrative Tools
	Figure 3�1 Tools to Administer Your Application
	Available BEA Tuxedo MIBs

	Using the BEA Administration Console
	Browser Requirements
	See Also

	Benefits of Using the BEA Administration Console
	Exploring the Main Menu of the BEA Administration Console
	Figure 3�2 Main Menu of the Administration Console
	What Is the Tree?
	What Is an Administrative Object?

	Using the Configuration Tool
	Using the Toolbar

	Managing Operations Using the MIB
	See Also

	Types of MIB Users
	Classes, Attributes, and States in the MIB
	Using Command-line Utilities
	Configuring Your Application Using Command-line Utilities
	See Also

	Operating Your Application Using Command-line Utilities
	Managing System Events Using EventBroker
	See Also

	What Is an Event?
	Subscribing to an Event
	Figure 3�3 Subscribing to an Event
	See Also

	Types of Events
	Differences Between System and Application-specific Events
	Table 3�1 Differences Between System and Application-specific Events

	BEA Tuxedo ATMI Administrative Services
	Managing Application Queues
	Using qmadmin to Administer Application Queues
	Using tmconfig to Modify Your Configuration

	Managing Your Configuration
	Creating the Configuration File
	Figure 3�4 UBBCONFIG File
	See Also

	Making Permanent Configuration Changes
	Figure 3�5 Configuration Management

	Managing Your Configuration Dynamically
	See Also
	Performing Dynamic Operations Using tmadmin(1)
	Commonly Used tmadmin Commands
	Sample Output from the tmadmin Command
	Figure 3�6 Sample Output from the tmadmin printserver Command
	>psr
	Prog Name Queue Name Grp Name ID RqDone Load Done Current Service --------- ---------- -------- -...

	See Also

	Managing a Distributed Application Centrally
	Figure 3�7 Centralized Control of a Distributed Application
	See Also

	Managing Security
	See Also
	Selecting Security Options
	Setting Up Security

	Starting Up and Shutting Down Your Application
	1. Set the environment variables as described in “How to Set Your Environment” on page 1�3.
	2. Create the TUXCONFIG file as described in “How to Create the TUXCONFIG File” on page 1�4.
	3. Propagate the BEA Tuxedo software as described in “How to Manually Propagate the Application-S...
	4. Create a TLOG device, (if required) as described in “How to Create a TLOG Device” on page 1�6.
	5. Start tlisten at all sites (MP environments) as described in “How to Start tlisten at All Site...
	6. Boot the application as described in “How to Boot the Application” on page 1�9.

	Managing Transactions
	Figure 3�8 Transaction Management
	Coordinating Operations with a Transaction Manager Server (TMS)
	Tracking Participants with a Transaction Log (TLOG)
	See Also

	Managing Workstations
	Figure 3�9 Handling Workstation Clients
	Development View: What You Can Do Using the ATMI
	Figure 3�10 Using the ATMI
	See Also

	Run-time System View: Using Tools in Different Configurations
	Run-time System Capabilities
	Table 3�2 Functionality Available in Different Types of Configurations�

	What Is a Single-machine Configuration?
	Figure 3�11 A Single-machine BEA Tuxedo Configuration
	Table 3�3 Parts of a Single-machine Configuration�

	See Also

	What Is a Multiple-machine (Distributed) Configuration?
	Figure 3�12 Distributed Application
	Table 3�4 Parts of a Distributed Configuration�

	See Also

	What Is a Multiple-domain Configuration?
	Figure 3�13 Multiple-domain Configuration
	Table 3�5 Parts of a Multiple-domain Configuration�

	See Also

	Features of a Multiple-domain Configuration
	What Is a BEA Tuxedo Bridge?
	Figure 3�14 Using Bridges in a Multiple-machine (Distributed) Application
	See Also

	What Is the Role of the Bulletin Board and Bulletin Board Liaison?
	Figure 3�15 Bulletin Board and Bulletin Board Liaison

	What Are Clients and Servers?
	What Is the Distinguished Bulletin Board Liaison (DBBL)?
	What Are the Domains Administrative Tools?
	Figure 3�16 Domains Administrative Tools
	Table 3�6 Domains Administrative Tools�

	What Are IPC Message Queues?
	When to Use Single Server, Single Queues (SSSQ)
	When to Use Multiple Server, Single Queue (MSSQ) Sets
	Example

	What Are the Workstation Handler and Workstation Listener?
	Figure 3�17 BEA Tuxedo Application with the Workstation Component
	How a Workstation Client Connects to an Application
	Figure 3�18 WSC Connecting to an Application

	What Is the User Log (ULOG)?
	How Is the ULOG Created?
	Example of a ULOG Message
	Where the ULOG Resides

