”,
-4
Py

%%,

o
¥
h ila

BEA Tuxedo

Setting Up a BEA Tuxedo
Application

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Setting Up a BEA Tuxedo Application

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

What Y OU NEed t0 KNMOWcceeiuiiiiiiiiieiie ettt s Xiv
E-0OCSWED SItE....oceieeeeceeee ettt s e r e e e r e e e Xiv
How to Print the DOCUMENL..........coooe et e e e XV
Related INfOrmMation.........ccccuecieiiee et e et e s XV
(07001 = ot AU LS SRS Xvi
Documentation CONVENLIONSc.coecueiueciee et sr e erae s sreeanas XVii

1. Administrative Tasks and Tools

Tasks an Administrator Performs...........cccoe o e 1-1
SEEUP TASKS ..ttt ettt e s s et eb s eee e e e seneeeeas 1-2
RUN-EIME TASKSeecveetie ettt sttt e e e e e e sreens 1-3
Differences Between the BEA Tuxedo ATMI and CORBA

ENVIFONMENES ..ot et e 1-4

Planning the Design of Your Applicationccccooe e neenece e 1-6

Toolsto Help You Administer Your Applicationcccevereieveneeieienenene 1-8

2. About the Configuration File

What Isthe Configuration FIlE?o 2-1
Text and Binary Versions of the Configuration File...........cccccociiiiieenne. 2-1
Contents of the Configuration File.........cccoveoeiiiicivici e 2-2
CORBA Administrative Requirements and Performance.............ccccoveeveennene. 2-4
Configuring NameManagercoeevueeieieerieie et s srae 2-4
Reliability REQUIFEMENLS.......cccuriiieie et s 2-5
PerformanCe Hintoocieiriee e 2-6

Setting Up a BEA Tuxedo Application iii

iv

3. Creating the Configuration File

How to Create a Configuration File ... 3-2
How to Create the Configuration File for a Single-machine Application......... 3-2
How to Create the Configuration File for a Multiple-machine (Distributed)

YN o] o)L= 1 o o OSSOSO 3-3
How to Create the Configuration File for a Multiple-domain Application....... 34
How to Create the RESOURCES Section of the Configuration File................ 3-7

Sample RESOURCES SECHONc.cooviuireieeeie e e 39
Defining the APpliCation TYPE.......oo et 39

Characteristics of the MODEL and OPTIONS Parameters...................... 3-10

EXAMPIE SEEINGS. ... vttt sttt st s eneenens 3-10
Controlling the Number of Buffer Types and Subtypes..........ccoceoeviiiiienenne. 311

Characteristics of the MAXBUFTY PE and MAXBUFSTY PES

Par@MELErS ..ot s ea e e e e e 311

EXAMPIE SEEINGS. ...ccveeteeeie ettt st e s esennea 311
Controlling the Number of Conversations...........ccccoeveeveiieenesieeseesee e 312

Characteristics of the MAXCONV Parameterccooveieeennneeinencenne. 312

EXAMPIE SEEING. ... eeveetieee ettt e e nnea 312
DefinNiNg TPC LIMITScccuiiiiiieeieee ettt sttt se e e e sre s 3-12

Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES,

MAXINTERFACES, and MAXOBJECTS Parameters................... 3-13

EXAMPIE SEEINGS. ...ccveeteeeie ettt e s nnea 3-15
Enabling Load BalanCingccoeeieiice ettt s s 3-15

Characteristics of the LDBAL Parameter.............cccooeeereeneneeseneeneie s 3-16

EXAMPIE SEEINGS.....ccveeteeeie ettt st e e enea 3-16
Identifying the Master Machingcccovvvieiicic e 3-17

Characteristics of the MASTER Parameter...........ccocoeveniencieneeneienene 3-17

EXaMPle SELtINGS....ccveiecec et e 3-17
Specifying the Maximum Number of Network Groups..........ccccceeeveeveerveennne. 3-18
Specifying the Number of Sanity Checks and Blocking Timeouts................. 3-18

Characteristics of the SCANUNIT, SANITY SCAN, and BLOCKTIME

Par@MELErS ..ot e e e e 3-19

Timeouts for Blocking ATMI Operations..........cccccevveeveveeneesesvese e 3-19

EXaMPle SELtINGS....ccveecie et e 3-20
Establishing Operating System-level SECUNityccccevvevevvevivie e, 3-20

Setting Up a BEA Tuxedo Application

Characteristics of the UID, GID, and PERM Parameters.............oo........ 3-21

Specifying the Security LEVEl ... 3-22
Characteristics of the SECURITY and AUTHSV C Parameters.............. 3-22
Defining the Security Attributes of @ Server ... 3-23
Protecting Shared MEmMOIYo et 3-24
Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE
ParamMeters.... ...t 3-25
EXAMPIE SEHINGS. ... ettt s e 3-25
Setting the Address of the System Resources for an Application................... 3-25
Characteristics of the IPCKEY Parameterccocooeoerereneeeseeneeiennnne 3-26
EXAMPIE SEHINGS. ..ottt e 3-26
Specifying How Clients Receive Unsolicited Notification...........cccocvenennene 3-26
Characteristics of the NOTIFY and USIGNAL Parameters...........c........ 3-27
How to Create the MACHINES Section of the Configuration File................ 3-28
Sample MACHINES SECHIONcc.ciiieiee e 3-32
Specifying the Maximum Number of ACL Entriesin the Cache.................... 3-34
Defining an Additional Service Request Load...........ccoceeeieveinecinvnneccciiien 3-34
Reserving the Physical Address and MachineIDcccccceevveveeveveciiecn e 3-35
Characteristics of the Address and the LMID Parameter.............ccuuuee.. 3-35
Setting the Number of LOCK SPINS........cooiiiiiiriieieeeeee e 3-36
Characteristics of the SPINCOUNT Parameterccooevereeneeinicniennens 3-36
Specifying MachingS @S TYPES.....c..oieee ittt s 3-36
Characteristics of the TY PE Parameterccoooevereineeininieee e 3-37
Identifying the Location of the Configuration File.......cccccoovveveieciciecn 3-37
Characteristics of the TUXCONFIG Parameter............ccceerneeeeeinenennens 3-37
Indicating the Size of the DTP Transaction LOg.........cccceveveevieevieeieeceeerie e 3-38
Defining the DTP Transaction Log Name.........cccovveeveieeiecie et 3-38
Specifying Environment Variable Settings.........cccoce v e, 3-38
Characteristics of the ENVFILE Parameterocooeeeeiveneceseeneeiennnn, 3-39
Defining the BEA Tuxedo Filesystem Containing the TLOG...........c.ccueen....e. 3-39
Specifying a Machine's Maximum Number of Simultaneous Global
TPANSACHIONS ...ttt e et e et eb e sresn e e e 3-40
Defining the Number of Accesser Entries on a Workstation Client 3-40
Defining Space Limits for Messages Transmitted by the BRIDGE................ 3-41
Indicating the Offset for the DTP Transaction Log.........cccoeevveveeeiievieeviecn e 3-41

Setting Up a BEA Tuxedo Application %

Vi

Defining the Offset for TUXCONFIG ..o 3-42

Characteristics of the TUXOFFSET Parameterccoceoeeeveneeeneenenne. 3-42
Identifying the L ocations of the System Software and Application Server
SOFEWEAIE. ...ttt ettt e ee et e e e aeneeee s 3-42
Characteristics of the APPDIR and TUXDIR Parameters..........c.cccenee. 3-43
Indicating a Threshold Message Size for COMpPressioncoeoeeeveeneenenns 3-43
EXAMPIE.. e et et e enean 3-44
Specifying the Pathname for the ULOG...........cccooiiiiriiieiireree e 3-44
Characteristics of the ULOGPFX Parametercocooeieievencieneneeens 3-44
How to Create the GROUPS Section of the Configuration File 3-45
Sample GROUPS Section for ATMI ... 3-46
Sample GROUPS Section for CORBAccoiriiiene e 3-47
Specifying a Group Name, Number, and LMID ..o 3-48
Characteristics of the Group Name, Group Number, and LMID.............. 3-49
Indicating a Transaction Manager Server Name and Numbers per Group 3-50
Identifying the Environment File Location for Serversin a Group................. 3-50
Defining Information Needed When Opening and Closing the Resource
IVTBINBOE ... ettt ettt e et e eh e e e e e e et e e e sn e e s enseenne e 3-51
How to Create the NETWORK Section of the Configuration File................. 3-53
Sample NETWORK SECHONccueieieeiieiiereeeeeietese et e 3-54
Specifying a Device Name for the BRIDGE Process...........cooceoeveneiesenennene 3-54
Assigning a BRIDGE Network Address.........cccceeeveceecie e 3-55
AsSIgNing ENCIyption LEVEIS........coveiiieeieeeeie et e 3-56
EXAMPIE.. ot e e e enean 3-56
Assigning atlisten Network Addressccceeveveeveveeie e e 3-56
How to Create the NETGROUPS Section of the Configuration File.............. 3-58
Sample Network Groups Configuration............cccceeeueeeeieececiesieesesieeneenn 3-59
Configuring a Sample UBBCONFIG File with Netgroups..........c.ccuc...... 3-60
Assigning a Name to a Network GroUp........cceceveereceieieceiee e eese e 3-61
Assigning a Network Group NUMDES ..o 3-62
Assigning a Priority to the Network Group........cccceveeveveciee e 3-62
How to Create the SERVERS Section of the Configuration File.................... 3-62
Sample SERVERS SECION........ccoviiiiiceeceesee et 3-66
Specifying a Server as Conversationalccccoeeceieeveeiieeveescee s seeevee e 3-68
Characteristics of the CONV Parameter............coovveeeneneiennneeieieeee 3-68

Setting Up a BEA Tuxedo Application

Setting the Order in Which Servers Are Bootedoocooeoeeininiecie s 3-68

Required Order in Which to Boot CORBA C++ Servers........cccceeeveeeeee 3-69
Characteristics of the SEQUENCE, MIN, and MAX Parameters................... 3-72
Specifying Server Command-1ine Options.........cccooeeerererieeiririe e 3-73

Characteristics of the CLOPT Parameterccccoceveneeieerneeieseneneneens 3-74
Identifying the Location of the Server Environment File ... 3-74

Characteristics of the Server Environment Filecococeiniiiiinicnicns 3-75
Defining Server Name, Group, and ID ..o e 3-75

Characteristics of the Server Name, SRVGRP, and SRVID Parameters. 3-76
Identifying Server Queue INformationcccccoeeceieeeieiieese e 3-76

M SSQ EXBMPIE.....itiitiiie ettt s sr e e 3-76

Characteristics of the RQADDR, RQPERM, REPLY Q, and RPPERM

ParamMeters........ccoooiirieeeeie ettt e 3-77
Defining Server Restart Information..........cccccecveciiieecinieesceceeseee e 3-78
Characteristics of the RESTART, RCMD, MAXGEN, and GRACE
ParamMeters.ottt e e e 3-79
Defining Server Accessto Shared MemOryccovveevieiieeveeseseee e 3-79

Characteristics of the SYSTEM_ACCESS Parameterccccceeeeveenennen. 3-80
Defining the Server Dispatch Threadso 3-80
Setting Security Parameters for ISL SErvers.......coce e 3-81
How to Create the SERVICES Section of the Configuration File.................. 3-81

Sample SERVICES SECHONc.cuiieieiieie et s s 3-83
Specifying Automatic Starts and Timeout Intervalsfor Transactions............ 3-83
Specifying aList of Allowable Buffer Typesfor aService.......cccoovevenennnne 3-84

Examples of the BUFTY PE Parameterocooeueennneeieseniene e 3-84
Designating How Much Time to Processa Requestccceceeveeceerieeceennenn, 3-85

What Happens When a Timeout OCCUIS.........ccccueeecveiieceeiecceesee e 3-85

How a Service Timeout ISREPOIEdccccveveevieeie v 3-86
Enabling Load BalanCingcccceveieiueeie e 3-87

Characteristics of the LDBAL Parametercccooeveneeirenieeieseneneiens 3-87
Defining the Name of the Routing Criteria........cccoovvvviivevie e 3-88
Specifying Service Parameters for Different Server Groups........cccceeeveeeenene 3-88
Controlling the Flow of Data by Service Priofitycccccoveeecveiiecceiieies 3-88

Characteristics of the PRIO Parameter...........ooeoeveneenenininieee e 3-89

Sample SERVICES Section Using Different Priorities.......c.cccccveveeneee. 3-89

Setting Up a BEA Tuxedo Application Vii

viii

Indicating Service Processing TiMEccoocoieiereniee e 3-89

How to Create the INTERFACES Section of the Configuration File............. 3-90
Specifying CORBA Interfaces in the INTERFACES Section................. 3-90
Specifying FACTORY ROUTING Criteria.......ccevreeeireriene e 3-92
Enabling Load BalanCingcocoeeeierinene et 3-94
Controlling the Flow of Data by Interface Priorityccccceceevvveeicenieennen. 3-94
Specifying Different Interface Parameters for Different Server Groups.. 3-95

How to Create the ROUTING Section of the Configuration File................... 3-95
ROUTING Section EXample.......c.cooe i 3-97

Defining the Routing Buffer Field and Field TYPeooooe e 3-97

Specifying RaNGE CrterTacoccveuereceeiireir et e 3-99

DefiNiNg BUFfEr TYPES....coueuee ettt st e e s e 3-99

CORBA Factory-based Routing in the University Production Sample
YN o] o)L= o] o SRS 3-100

CORBA Factory-based Routing in the Bankapp Sample Application.......... 3-103

How to Configure the BEA Tuxedo System to Take Advantage of Threads3-104

How to Compile a Configuration File...........ccoceoiiniiin i 3-107

About Transactions

What [S@TranSaCtiONTccue ittt e e 4-1
What Arethe ACID PropertieS?.......occeeerieieee e seee e 4-2
How a Transaction SUCCeedS OF FailS.........ccooieviieie e 4-3

Benefits of USiNg TranSaCtioNS..........coccueeeirieeeiricrese e s e 4-4

Example of a Global Transaction ... iriinee e 4-4

What Isthe BEA Tuxedo Transaction Manager (TM)?.....cocoveieniienieeineennes 4-5

How the System Tracks Distributed Transaction Processing.........ccccceceeeeeeene 4-7
How the System Uses Globa Transaction Identifiers (GTRIDs) for

TIACKING v cvtete ettt ettt ste et ae e e e e e e e e e e sreeraesraeneeereenean 4-8
How the System Uses a Transaction Log (TLOG) for Tracking 4-8

How the System Uses a Two-Phase Commit to Commit Transactions 4-9
How the System Handles Transaction Infectionccccccoveiiecienieenen, 4-10
How the ATMI Protects a Transaction’s Integrity Before a Two-Phase

(@01 4110 SRS 4-11
SEE AISD ...ttt ettt et et bbbt e b bbbttt e e 4-12

Setting Up a BEA Tuxedo Application

5. Configuring Your ATMI Application to Use Transactions

Modifying the UBBCONFIG File to Accommodate ATMI Transactions........ 5-2
Specifying Global Transaction Parameters in the RESOURCES Section........ 5-3
Creating a Transaction Log (TLOG) in the MACHINES Section.................... 5-4
Creating thE UDL ...ttt st 5-4
Defining Transaction-related Parameters in the MACHINES Section...... 5-5
Creating the Domains Transaction LOgccecveevveiececiieieeeeceeseeesee e 5-6
SEE AISD. ..ttt b e en b nae e 5-6
Defining Resource Managers and the Transaction Manager Server in the
GROUPS SECLIONviiieeeirtie et se s e eae e e e e eeas 5-6
Sample of the GROUPS SECHiON.........ccueueieeeeeie e 5-7
Enabling a Service to Begin a Transaction in the SERVICES Section............. 5-8
Characteristics of the AUTOTRAN, TRANTIME, and ROUTING
ParaMEtErS. ..ottt ettt e e s 5-9
Modifying the Domains Configuration File to Support Transactions............. 5-10
Characteristics of the DMTLOGDEY, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters.........ccooeeemenceneneens 5-10
Characteristics of the AUTOTRAN and TRANTIME Parameters.......... 5-11
Example: A Distributed Application with Transactions............ccccocveeeeerieneene 5-12
Sample RESOURCES SeCHON.......ccco it 5-13
Sample MACHINES SECLIONccuciiieiee e 5-14
Sample GROUPS and NETWORK Sections..........cooeoeeirenieeeseneneiens 5-15
Sample SERVERS, SERVICES, and ROUTING Sections.........c.ccceuee. 5-16
SEE ALSD. .ttt e ettt er e en e 5-17

6. Managing CORBA Interface Repositories

Administration CONSIAEratiONS.........cooveerierireerineerere e 6-2

Using Administration Commands to Manage I nterface Repositories............... 6-3
= = 0 TS S S PSRST 6-3
Creating and Populating an Interface ReSpoSItoryccoeeeeeveereeieenneae 6-4
Displaying or Extracting the Content of an Interface Repository 6-4
Deleting an Object from an Interface REPOSItOrYccccooeeeeiieeescnennnne 6-5

Configuring the UBBCONFIG File to Start One or More Interface Repository
SEIVEIS ..ottt e e e e 6-5

Setting Up a BEA Tuxedo Application iX

7. Distributing ATMI Applications Across a Network

What IsaDistributed ATMI Application?.........ccooeeeieriie e 7-1
Example of aDistributed Applicationccccooe i neneeee e 7-3
Implementing a Distributed Application.........cccoeveieieseneenee e 7-4

Why Distribute an ATMI Application Across a Network?..........ccccceveeeeinenne. 7-5
Features of a Distributed Application..........cccvvererevereenee e 7-6

8. Creating the Configuration File for a Distributed ATMI

Application
Configuration File Requirements for a Distributed BEA Tuxedo ATMI
YN o] o[- 1 o] o OSSR 8-2
Creating the RESOURCES SECHONceiiiiieiiriiieie e 8-3
Creating the MACHINES SECION......c.ciiiiiieeeeee e 8-5
Creating the GROUPS SECHION.........coi it 8-7
Creating the SERVICES SECHON.........ccieiiiiieeeeieesreeree ettt se e 8-8
Creating the ROUTING SECHION......cceiiiiiieeceeceeeecee ettt e 8-10
Example Configuration File for a Distributed Application............ccccceeeveenne. 8-12
Modifying the Domain Gateway Configuration Fileto Support Routing....... 8-13
Description of ROUTING Section Parametersin DMCONFIG.............. 8-13

9. Setting Up the Network for a Distributed Application

Configuring the Network for a Distributed Applicationccoceeeeieneecenens 9-1
How Data Moves OVer aNEIWOTKcoovieirieiriiee e 9-5
How Data Moves Over Parallel NetWOrkS.........cccooeireinennie i 9-6
Example of a Network Configuration for a Simple Distributed Application.... 9-8
How Failover and Failback Work in Scheduling Network Data....................... 9-8
Example Configuration of Multiple Netgroups.........ccoccoeeereereieneeneeieeee e 9-9

Configuration File for the Sample Network ... 9-11

Assigning Priorities for Each Network Groupcccooooeeoeiineieieieeens 9-11

10. About Workstation Clients

What |sthe Workstation COmMpPONeNnt?...........ccceveieeieeirenieeeseereeseeeseeseeeeneas 10-1
Sample Application with Four Workstation Clients............cccceeveeeerenceenenes 10-2
How the Workstation Client Connectsto an Applicationcccoceevreeenne. 10-4

Setting Up a BEA Tuxedo Application

11.

12.

Setting Up Workstation Clients
Defining Workstation ClHENES.........ccueueiiieeeiririene e e 11-1
Specifying the Maximum Number of Workstation Clients...........cccecveeneennnne 11-3
Defining a Workstation Listener (WSL) asa Server........ocooeeeeneeeeeeercnienns 11-4
Passing Information to a WSL Process.........ccocoviiiie e veeneeis e 11-4
Using Command-line Options Set with CLOPTccooeiiiiirieee e 11-5
Detecting NetWork FailUres..........cveiecieieciee et e 11-7
Using the Keep-alive OPtioN..........cc.eieiie e s e e 11-8
Limitations When Using the Keep-alive Option..........cocoeeeevrienenenienn 11-9
Using the Network Timeout OPtioNcccueeerreeesenene e 11-10
How Network Timeout WOrKS.........ccoeriiiie e 11-10
Limitations When Using the Network Timeout Option...........c.cccceeun.e. 11-11
Setting the Network Timeout Option..........cccceveveereiererneeeee e 11-11
Sample Configuration File That Supports Workstation Clients.................... 11-11
Modifying the MACHINES and SERV ERS Sections..........c.ccceeueneee. 11-12
Managing Remote BEA Tuxedo CORBA Client Applications
CORBA ODjeCt TEMMINOIOQYveuverereeueeeeriereeeeseereesie e seeseeseeeesseeneseesseseeens 12-2
Remote CORBA Client OVENVIEWccccoeeiieieeeerierieie et seeseesenen 12-4
[lustration of an Application with Remote CORBA Clients................... 12-5
How the Remote Client Connectsto an Applicationcccceeeveieecnne 12-6
Setting Environment Variables for Remote CORBA Clients.........ccccceveue. 12-6
Setting the Maximum Number of Remote CORBA Clients.........cccccoeeeevvenee 12-7
Configuring a Listener for aRemote CORBA Client.........cccoevveveeiieieennnnne 12-8
Format of the CLOPT Parameterccooeeeiineeieie e 12-8
Modifying the Configuration File to Support Remote CORBA Clients......... 12-9
Configuring Outbound I110P for Remote Joint Client/Servers...................... 12-10
FUNCtional DESCHIPLIONccieeuiriiree et e 12-10
Using the ISL Command to Configure Outbound 110P Support.................. 12-17
Types of Object REFEIENCESccoeie i s 12-17
USEr INEEITACE ... s 12-17

Setting Up a BEA Tuxedo Application Xi

Xii Setting Up a BEA Tuxedo Application

About This Document

Thisdocument explains how to plan, design, and configure the BEA Tuxedo® system,
for either an data-dependent ATMI environment or an object-oriented CORBA
environment.

This document includes the following topics:

Chapter 1, “Administrative Tasks and Tools,” introduces the BEA Tuxedo
administrator’s tasks.

Chapter 2, “About the Configuration File,” provides an overview of the BEA
Tuxedo configuration file, arepository that contains all the information
necessary to boot and run an application, as well as an overview of the
NameManager for CORBA environments.

Chapter 3, “Creating the Configuration File,” explains how to create a
configuration file for single-machine running in an ATMI or CORBA
environment.

Chapter 4, “About Transactions,” provides an overview of BEA Tuxedo
transactions.

Chapter 5, “Configuring Your ATMI Application to Use Transactions,” describes
how to configure transactionsin a BEA Tuxedo ATMI environment.

Chapter 6, “Managing CORBA Interface Repositories,” describes how to create
an interface repository for CORBA objects implemented within the BEA Tuxedo
domain.

Chapter 7, “Distributing ATMI Applications Across a Network,” describes how
to distribute a Tuxedo ATMI application for local or remote clients over one or
more servers on several machines through a single BEA Tuxedo configuration
file.

Setting Up a BEA Tuxedo Application Xiii

m Chapter 8, “Creating the Configuration File for a Distributed ATMI
Application,” describes how to create a configuration file for multiple machines
inan ATMI environment.

m Chapter 9, “ Setting Up the Network for a Distributed Application,” describes
how to configure your network environment in order to support a distributed
application within the BEA Tuxedo system.

m Chapter 10, “About Workstation Clients,” provides an explanation of the BEA
Tuxedo Workstation component of the BEA Tuxedo system.

m Chapter 11, “ Setting Up Workstation Clients,” describes how to configure the
BEA Tuxedo environment so that a Tuxedo Workstation client can join an
application.

m Chapter 12, “Managing Remote BEA Tuxedo CORBA Client Applications,”
explains how to configure connections from remote CORBA client applications
to CORBA objects viathe standard Internet Inter-ORB Protocol (I10P).

What You Need to Know

This document is intended mainly for administrators who configure operational
parameters that support mission-critical the BEA Tuxedo systems. It assumes a
familiarity with the BEA Tuxedo platform.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at http://e-docs.bea.com.

Xiv Setting Up a BEA Tuxedo Application

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavail able on the BEA Tuxedo documentation Home
page on the e-docs Web site (and a so on the documentation CD). Y ou can open the
PDF in Adobe A crobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following documents provide related information about BEA Tuxedo software.

Installing the BEA Tuxedo System—paper copy distributed with the CD
BEA Tuxedo Rel ease Notes—paper copy distributed with the CD

Administering a BEA Tuxedo Application at Run Time—available through the
BEA Tuxedo Online Documentation CD, this guide describes the command-line
interface access to BEA Tuxedo administration tasks.

Using the BEA Tuxedo Domains Component—availabl e through the BEA
Tuxedo Online Documentation CD, this guide describes how to configure and
manage BEA Tuxedo domains.

Scaling, Distributing, and Tuning CORBA Applications—available through the
BEA Tuxedo Online Documentation CD, this guide describes how to tune and
scale CORBA applications that run in the BEA Tuxedo environment.

Using CORBA Transactions—availabl e through the BEA Tuxedo Online
Documentation CD, this guide describes how to configure CORBA transactions
in aBEA Tuxedo environment.

Setting Up a BEA Tuxedo Application XV

For more information about configuring and administering BEA Tuxedo ATMI and
BEA Tuxedo CORBA environments, see the CORBA Bibliography in the BEA
Tuxedo online documentation.

Contact Us!

XVi

Y our feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
m Your hame, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Setting Up a BEA Tuxedo Application

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
.doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR

Setting Up a BEA Tuxedo Application XVii

XViii

Convention

Item

{1}

Indicates a set of choicesin a syntax line. The braces themsel ves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.
Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Setting Up a BEA Tuxedo Application

CHAPTER

1 Administrative Tasks
and Tools

Thistopic includes the following sections:
m Tasksan Administrator Performs
m Planning the Design of Your Application

m Toolsto Help You Administer Your Application

Tasks an Administrator Performs

An administrator’s job can be viewed as two broadly defined tasks:

m Setup tasks—all the tasks required to prepare your system before booting your
application.

m Run-time administration—any tasks performed on an application that has been
booted.

Setting Up a BEA Tuxedo Application 1-1

1 Administrative Tasks and Tools

Setup Tasks

During the setup phase, an administrator is responsible for the planning, design,
installation, security, and configuration of the BEA Tuxedo system. The following
table describes the required and optional tasks during the setup phase.

Setup Task Required Optional

Collect information from designers, programmers, and X
business users of the application

Set up the hardware and software, and install the BEA Tuxedo X
system and the application (installation)

Set up the BEA Tuxedo system parametersthat governhow the X
application uses components (configuration)

Configure transactions for domains, machines, groups, X
interfaces, services, and other required components
(configuration)

Select and implement security methods for protecting the X
application and data

For CORBA environments, configure an Internet Inter-ORB X
Protocol (110P) Listener/Handler and modify the machine
configuration

Set up distributed applications with routing tools: X
factory-based routing for CORBA environments and
data-dependent routing for ATMI environments

Set up networked applications X
Configure local and remote domains X
Set up Workstation clients: add environment tables and a X

workstation listener, and modify the machine configuration

Create an application queue space and modify the X
configuration to support queued messages

1-2 Setting Up a BEA Tuxedo Application

Tasks an Administrator Performs

Run-time Tasks

With your BEA Tuxedo system installed and your TUXCONFI Gfile loaded, you are
ready to boot your application. When your application is launched, you must start
monitoring its activities for problems—both actual and potential. The following table
describes the required and optional tasks during the run-time phase.

Run-time Task Required Optional

Start up and shut down an application X

Manage buffers

X
Administer the security of your application X
X

Monitor the activities, problems, and performance of your
application

For ATMI environments, manage transactions

For CORBA environments, manage interfaces

M anage networked applications

M anage remote Workstation clients

Subscribe to events

Use queued messaging

Identify and resolve problems as they occur (troubleshoot)

X | X| X| X| X| X| X[X

Reassign primary responsibility for your application from the
MASTER machine to an aternate (BACKUP) machine
(migration) when problems occur on the MASTER (migration)

Change system parameters and the sel ection of servicesto meet X
evolving needs (dynamic modification)

Refine your application to reflect additional components, such X
as new machines or servers (dynamic reconfiguration)

Setting Up a BEA Tuxedo Application 1-3

1 Administrative Tasks and Tools

During run time, you may need to respond quickly to potential problems or evolving
reguirementsof an application. To help you perform these functions, you have achoice
of three tools: the BEA Administration Console, the command-line interface, and the
AdminAPI. The following chart describes some of the circumstances in which your
intervention may be needed.

To... You May Want to...

Maximize performance Adds load balancing or set priorities for
interfaces and services.

Fix problems that may develop on the Replaces it with a designated BACKUP
MASTER machine machine.

Change processing and resource usage Adds machines, servers, clients, interfaces,
requirements services, and so on.

See Also

m “Planning the Design of Your Application” on page 1-6

m “Toolsto Help You Administer Your Application” on page 1-8

Differences Between the BEA Tuxedo ATMI and CORBA
Environments

For the BEA Tuxedo CORBA environment, the BEA Tuxedo administration facilities
support the administration of applications running within the context of the Object
Request Broker (ORB) and the TP Framework.

The UBBCONFI G configuration file for BEA Tuxedo CORBA environments supports
the configuration of client and server applications, as follows:

m The RESOURCES section provides application-wide defaults for the sizing of
bulletin board tables.

1-4 Setting Up a BEA Tuxedo Application

Tasks an Administrator Performs

The MACH NES section allows the specification of processor-specific values for
sizing of those tables.

The | NTERFACES, section allows the specification of information about CORBA
interfaces used by the application.

The ROUTI NG section provides support for a different type of routing criteria
used with Tuxedo CORBA environments. Also, existing ROUTI NG sections that
specify BEA Tuxedo ATMI data-dependent routing parameters continue to work
without modification.

In the BEA Tuxedo ATMI environment, you configure workstation handlers and
listeners for connections from client applications to server applications. From an
administrative viewpoint, thistask issimilar in BEA Tuxedo CORBA
environments.

However, the BEA Tuxedo CORBA environment uses a different
communications protocol to connect remote and foreign clients to BEA Tuxedo
server applications. The protocol is the standard Internet Inter-ORB Protocol
(I1OP). Instead of the BEA Tuxedo Workstation Handler (WSH) process and
Workstation Listener (WSL) process, the CORBA environment calls its gateway
processes the IlOP Handler (ISH) and the [IOP Listener (ISL). Thisresultsin a
dlight syntax difference, 1 SL instead of W5L, in the SERVERS section of each
application’s UBBCONFI G configuration file.

Overall, the administration tasks for the BEA Tuxedo CORBA and ATMI
environments are similar. There are afew principal differences between the
environments, however, as follows:

In both environments, you use a routing criteria to distribute processing to
specific server groups. The routing mechanism in a BEA Tuxedo CORBA
environment system is known as factory-based routing. It is fundamentally
different than the BEA Tuxedo ATMI data-dependent routing mechanism.

In the BEA Tuxedo ATMI environment, you can examine any FML field used
for aservice invocation to determine the data-dependent routing criteria. In BEA
Tuxedo CORBA environments, the system designer must personally
communicate the routing criteria of CORBA interfaces. For BEA Tuxedo
CORBA environments, there is no service request message data or associated
buffer information available for routing. This occurs because CORBA routing is
performed at the factory, not on a method invocation on the target CORBA
object.

Setting Up a BEA Tuxedo Application 1-5

1 Administrative Tasks and Tools

m You cannot dynamically advertise CORBA interfaces at run time. However, you
can suspend or reactivate CORBA interfaces.

m Nodirect ACL control is provided for CORBA interfaces. No control over
servantsis provided at the administrative level. In the UBBCONFI G configuration
file, the MANDATORY_ACL parameter to the SECURI TY parameter isignored.

Note: The Management Information Base (MIB) defines the set of classes through
which the fundamental aspects of an application can be configured and
managed. The MIB classes provide an administrative programming interface
to the BEA Tuxedo CORBA and ATMI environments.

Planning the Design of Your Application

An administrator needs to know a customer’s business requirements and how the
software will be used. Once these needs are understood, administrators can work with
their system designers and application devel opers to make sure that the application’s
configuration can support its requirements.

Answersto the following preliminary questions may help in planning the design of
your application.

1. How many machineswill be used?

2. Will client applications reside on machines that are remote from the server
applications?

3. For ATMI, which services will your application offer?

4. For CORBA, which interfaceswill your client or server application use?

5. What resource managers (database) will the application use and where will they
be located?

1-6 Setting Up a BEA Tuxedo Application

Planning the Design of Your Application

6. What “open” stringswill the resource managers need?

7. What setup information will be needed for an RDBM S?

8. Will transactions be distributed?

9. Wiill the application use global transactions?

10. What buffer types will be used?

11. Will data be distributed across machines?

12. To which external domains will the application export services? From which
external domains will the application import services?

13. Will factory-based or data-dependent routing be used in your application?

14. What are the names of the CORBA interfaces or ATMI services?

15. Inwhat order of priority should the interfaces or services be available?

16. What are the reliability requirements? Will redundant listener and handler ports
be needed? Will replicated server applications be needed?

Setting Up a BEA Tuxedo Application 1-7

1 Administrative Tasks and Tools

17. For CORBA environments, will the domain need an Interface Repository (IR)
database? If so, will the domain benefit from having IR replicas, and how many
IR server applications should be defined?

18. Are there any conversational services? What resource managers do they access?
What buffer types do they use?

See Also

m “Toolsto Help You Administer Your Application” on page 1-8

Tools to Help You Administer Your
Application

The BEA Tuxedo system gives you a choice of several methods for performing the
same set of administrative tasks for either BEA Tuxedo ATMI or CORBA
environments. Whether you are more comfortable using a graphical user interface or
entering commands at a shell prompt, you will be ableto find a comfortable method of
doing your job asthe administrator of aBEA Tuxedo application. Thefollowingfigure
illustratesthetool syou can useto write the configuration file and administer your BEA
Tuxedo application during run time.

1-8 Setting Up a BEA Tuxedo Application

Tools to Help You Administer Your Application

Figure1-1 Administration Tools

Cnmmle!nld—Lme Administration EventBroker
LHtilities Console

| I | | ’—l

ll=; Events

¢ Elu+etin UL%JG

TLOG Board

MIB AP

m BEA Administration Console—a Web-based tool used to monitor an application,
and to dynamically configure its operation.

m BEA Tuxedo MIB Application Programming Interface—an interface to a set of
procedures for accessing and modifying information in the MIBs.

m Command-line utilities—a set of commands used to manage, activate, configure,
and deactivate the application (that is, t madni n(1) , t mboot (1), t nconfi g,
wt nconfi g(1), t nshut down(1), respectively). For more information, refer to
the BEA Tuxedo Command Reference.

If YouUseThisTool... You Must...

BEA Administration Console ~ Useagraphical user interface (GUI) to create and edit the
TUXCONFI Gfile. Full descriptions of the GUI are
available by accessing Help directly from the GUI.

BEA Tuxedo MIB Application Write a program that modifies the TUXCONFI Gfile for
Programming Interface youl.

Setting Up a BEA Tuxedo Application 1-9

1 Administrative Tasks and Tools

See Also

If YouUseThisTool... You Must...

Command-line interface 1. Create and edit the UBBCONFI Gfile (atext version of

TUXCONFI G) with atext editor.

2. Runtm oadcf toconvert the UBBCONFI Gfileintoa
TUXCONFI G (binary) file.

(For specific details about thet ml oadcf command
options, seet m oadcf (1) inthe BEA Tuxedo Command
Reference.)

“Using the BEA Administration Console” on page 3-4 in Introducing BEA
Tuxedo ATMI

“Managing Operations Using the MIB” on page 3-10 in Introducing BEA Tuxedo
ATMI

“Using Command-line Utilities” on page 3-12 in Introducing BEA Tuxedo ATMI
“Tasks an Administrator Performs’ on page 1-1

“BEA Tuxedo ATMI Architecture” on page 2-1 in Introducing BEA Tuxedo
ATMI

“The Tuxedo CORBA Programming Environment,” in Getting Sarted with BEA
Tuxedo CORBA Applications

ACL_M B(5), APPQ M B(5), EVENT_M B(5), M B(5), TM M B(5) , Ws_M B(5),
and UBBCONFI @ 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

t mshut down(1) inthe BEA Tuxedo Command Reference

1-10 Setting Up a BEA Tuxedo Application

CHAPTER

2 About the
Configuration File

Thistopic includes the following sections:
m What Isthe Configuration File?

m Contents of the Configuration File

What Is the Configuration File?

Configuring each BEA Tuxedo application is acentral task of the administrator. By
configuring afile, you are describing your application using a set of parameters that
the software interprets to create a viable application. The configuration fileisa
repository that contains all the information necessary to boot and run an application,
such as specifications for application resources, machines, machine groups, servers,
available services, interfaces, and so on.

Text and Binary Versions of the Configuration File

The configuration file exists in two versions:

m The UBBCONFI Gfileis atext version of the configuration file, created and edited
with any text editor. Except for sample configuration files distributed with BEA
Tuxedo sample applications, no UBBCONFI Gfileis provided. You must create a
UBBCONFI Gfile for each new application. The syntax used for entriesin the file

Setting Up a BEA Tuxedo Application 2-1

2 Aboutthe Configuration File

isdescribed in UBBCONFI G(5) in the File Formats, Data Descriptions, MIBs,
and System Processes Reference.

Note: TheBEA Tuxedo software provides three sample UBBCONFI Gfiles—
ubbshm ubbnp, and ubbsi npl e—as part of the bankapp and si mpapp
applications. (See Tutorials for Developing BEA Tuxedo ATMI
Applications.)

The TUXCONFI Gfileisabinary version of the configuration file, created from
the text version by the t ml oadcf (1) command. Beforet nl oadcf is executed,
the environment variable TUXCONFI G must be set to the full pathname of the
device or system file where TUXCONFI Gisto be loaded. If necessary, many
parameters in TUXCONFI G can be changed while the application is running by
usingt nconfi g, wt nconfig(l) orthe MIB.

Contents of the Configuration File

2-2

Thefollowing table lists the nine sections of the configuration file and describes the
purpose of each section.

Required

Section or Optional Purpose

RESQURCES Required Defines all system parameters.

MACHI NES Required Specifies all the machinesin your application.

GROUPS Required Defines all groups, group names, and group IDs for your
application.

SERVERS Optional Specifies theinitial conditions for servers started in the
system.

SERVI CES Optional Provides information on services used by the application.

| NTERFACES Optional For CORBA environments, provides information on

application-wide, default parameters for interfaces used
by the application.

Setting Up a BEA Tuxedo Application

Contents of the Configuration File

Required
Section or Optional Purpose
NETWORK Optional Describes the network configuration for aLAN
environment.
NETGROUPS Optional Describes the network groups available to the application
inthe LAN environment.
ROUTI NG Optional Provides information for data-dependent routing of

service requests using FML buffers and views.

The file must also contain a minimum of nine parameters. There are 80 different
parameters, and all sections but the first, may contain multiple entries, each with its
own selection of parameters. In all sections other than RESOURCES, you can use a
default to specify parametersthat are included in multiple entries.

Y ou can use the command-line interface or BEA Administration Consoleto create the
binary version of the configuration file (TUXCONFI G). First you need to determine the
type of configuration you are defining in the file.

m A single-machine application—one or more local or remote clients communicate
with one or more servers residing on the same machine.

m A multiple-machine (distributed) application—one or more local or remote
clients communicate with one or more serversresiding on several machines.

m A multiple-domain application—two or more applications communicate with
each other through the use of the BEA Tuxedo Domains extension. Each
application included in such a configuration is called a domain.

Setting Up a BEA Tuxedo Application 2-3

2 Aboutthe Configuration File

CORBA Administrative Requirements and
Performance

This section provides information to assist you in administering your CORBA
environment in the BEA Tuxedo system.

Configuring NameManager

2-4

Adhering to the following requirements is fundamental to successful CORBA
administration.

m NameManagers should coordinate their activities with each other using the BEA

Tuxedo EventBroker without administrative or operations intervention. The
EventBroker must be started before any servers provide the NameM anager
service. If the EventBroker is not configured into the application and is not
running when the NameManager service is booted, the NameManager abortsits
startup and writes an error message to the user log.

At least two servers must be configured to run the NameM anager service as part
of any application. Thisrequirement is to ensure that a working copy of the
“name-to-lOR” mapping is always available. If the servers are on different
machines, and one machine crashes, when the machine and application are
restarted, the new NameManager obtains the mapping from the other
NameManager. If an application is solely contained on one machine and the
machine crashes, the NameManagers are rebooted as part of the application
startup because the application must be rebooted. If two NameManagers are not
configured in the application when a NameManager service is booted, the
NameManager aborts its startup and writes an error message to the user log.

NameM anagers can be designated as either master or slave, the default being
dave. If amaster NameManager server is not configured in the application and
isnot running when a slave NameManager server starts, the server terminates
itself during boot and writes an error message to the user log.

If a NameManager service is not configured in the application when a
FactoryFinder service is booted, the FactoryFinder aborts its startup and writes

Setting Up a BEA Tuxedo Application

CORBA Administrative Requirements and Performance

an error message to the user log. It is not necessary for the NameM anager
service to start before a FactoryFinder service because the FactoryFinder only
communicates with a NameManager when a“fi nd” request isreceived from an
application. NameManagers, on the other hand, attempt to communicate with
each other when they boot. FactoryFinders do not communicate with each other
except when arequest isreceived to find afactory that isin aremote domain.

m BEA Tuxedo EventBroker, NameManager, and FactoryFinder services must be
started before any of the application-specific servers. However, if more than one
EventBroker isto be configured in the application, all secondary EventBrokers
must be started after all application servers are started. Thereis no system
protocol to enforce thisin an application server; therefore, you accomplish this
by positioning all secondary EventBrokers after the application servers.

m The Master NameManager must be started and must be running before any
application server can register areference to afactory object. The existence of
an executing Slave NameManager is hot sufficient.

Reliability Requirements

This section contains information that will improve CORBA reliability.

Managing Factory Entries

When application servers “die,” they often fail to unregister their factories with the
NameManager. |n some cases, the FactoryFinder may give out object references for
factories that are no longer active. This occurs because the servers containing those
factories have become unavailable, have failed to unregister their factories with the
NameManager, and there is no other server capable of servicing the interface for that
factory.

In general, an application factory can restart shortly thereafter, and then offer the
factories. However, to ensure that factory entries are not kept indefinitely, the
NameManager is notified when application servers die. Upon receipt of this
notification, the NameManager may remove those factory entries that are not
supported in any currently active server.

Setting Up a BEA Tuxedo Application 2-5

2 Aboutthe Configuration File

Configuring Multiple NameManagers and FactoryFinders

At a minimum, two NameM anagers, a master and a slave, must be configured in an
application, preferably on different machines, to provide querying capabilities for a
FactoryFinder. Multiple FactoryFinders can also be configured in an application.

Designating a Master NameManager

A Master NameManager must be designated in the UBBCONFI Gfile. All registration
activities are sent to the Master NameManager. The Master NameM anager then
notifies the Slave NameM anagers about the updates. If the Master NameManager is
down, registration/unregistration of factoriesis disabled until the Master restarts.

Performance Hint

Y ou can optimize FactoryFinder and NameManager performance by running these
services on separate servers within the same machine rather than running these
services on different machines. This provides a quicker response becauseit eliminates
the need for machine-to-machine communication.

See Also

m “How to Create a Configuration File” on page 3-2

m “What Is a Single-machine Configuration?’ on page 3-40 in Introducing BEA
Tuxedo ATMI

m “What Is a Multiple-machine (Distributed) Configuration?’ on page 3-43in
Introducing BEA Tuxedo ATMI

m “What IsaMultiple-domain Configuration?’ on page 3-47 in Introducing BEA
Tuxedo ATMI

m “How to Create the TUXCONFIG File” on page 1-4 in Administering a BEA
Tuxedo Application at Run Time

m For distributed BEA Tuxedo CORBA applications, refer to the Scaling,
Distributing, and Tuning CORBA Applications guide.

2-6 Setting Up a BEA Tuxedo Application

CHAPTER

3

Creating the
Configuration File

Thistopic includes the following sections:

How to Create a Configuration File
How to Create the Configuration File for a Single-machine Application

How to Create the Configuration File for a Multiple-machine (Distributed)
Application

How to Create the Configuration File for a Multiple-domain Application
How to Create the RESOURCES Section of the Configuration File

How to Create the MACHINES Section of the Configuration File

How to Create the GROUPS Section of the Configuration File

How to Create the NETWORK Section of the Configuration File

How to Create the NETGROUPS Section of the Configuration File
How to Create the SERVERS Section of the Configuration File

How to Create the SERVICES Section of the Configuration File

How to Create the INTERFACES Section of the Configuration File
How to Create the ROUTING Section of the Configuration File

How to Configure the BEA Tuxedo System to Take Advantage of Threads

How to Compile a Configuration File

Setting Up a BEA Tuxedo Application

3-1

3 Creating the Configuration File

How to Create a Configuration File

Configuration file requirements are determined by the needs of your application.
Following are instructions for several types of configurations:

m How to Create the Configuration File for a Single-machine Application

m How to Create the Configuration File for a Multiple-machine (Distributed)
Application

m How to Create the Configuration File for a Multiple-domain Application
m How to Configure the BEA Tuxedo System to Take Advantage of Threads

See Also

m “About the Configuration File’ on page 2-1

m UBBCONFI G 5) in theFile Formats, Data Descriptions, MIBs, and System
Processes Reference

How to Create the Configuration File for a
Single-machine Application

For asingle-machine configuration, you need to create the following sections of the
configuration file. Click on each task for instructions on completing that task.

1. Create the RESOURCES section of the configuration file
2. Create the MACHI NES section of the configuration file

3. Create the GROUPS section of the configuration file
4

. Create the SERVERS section of the configuration file

3-2 Setting Up a BEA Tuxedo Application

How to Create the Configuration File for a Multiple-machine (Distributed) Application

5. Create the SERVI CES section of the configuration file
6. Createthe | NTERFACES section of the configuration file (CORBA only)
7. Create the ROUTI NG section of the configuration file

Y ou can also click on any area of the following diagram to learn how to create the
section named in that area.

*RESOURCES (applicaton-wide information)
*MACHIHES (machine-wide information)

*GROUPS (group-wide information}

*SERVERS (server-
surl . specific information)

suct sucl? E&

surd

*SERVICES (=ervices-
specific information)

How to Create the Configuration File for a
Multiple-machine (Distributed) Application

For adistributed ATMI application, you need to create the following sections of the
configuration file. Click any of the following tasks for instructions on completing that
task.

1. Create the RESOURCES section of the configuration file
2. Create the MACHI NES section of the configuration file

3. Create the GROUPS section of the configuration file
4

. Create the NETWORK section of the configuration file

Setting Up a BEA Tuxedo Application 33

3 Creating the Configuration File

Create the NETGROUPS section of the configuration file
Create the SERVERS section of the configuration file

Create the SERVI CES section of the configuration file

© N o o

Create the ROUTI NG section of the configuration file (optional)

Note: For detailed information about creating a configuration file for a distributed
CORBA application in the BEA Tuxedo system, refer to the Scaling,
Distributing, and Tuning CORBA Applications guide.

Y ou can aso click on any area of the following diagram to learn how to create the
section named in that area.

*RESOURCES (applicaton-wide information)

*MACHIHNES {machine-wide information}

*GROUPS (group-wide information)

*HETWORK (networking

information) *SERVERS

SEerver-
*HETGROUPS (network specific
groups information, *GERYVICES INTOrmation
SEervices-

specific

information

How to Create the Configuration File for a
Multiple-domain Application

For amultiple-domain configuration, you need to create two configuration files for
each participating domain:

m UBBCONFI G—the application configuration file

34 Setting Up a BEA Tuxedo Application

How to Create the Configuration File for a Multiple-domain Application

® DMCONFI G—the domains configuration file

For an application that consists of two domains (for example, | app and r app for local
and remote domains, respectively), the following tasks are required.

Click on each task for instructions on completing that task.

Figure3-1 Configuration Tasksfor a Sample M ultiple-domain Application

Set environment variahles for
lapp

Define the Domains
environment in TBBCONEFIG

Define the Domains-related
parameters for Lapp

Compile the application file
using tmloadcfi{1) and the
domain gatewsay configuration
file using dmloadefi1)

Set environment variahles for
Iapp

Define the Domains
environment in TBBCONEIG

Define the Domains-related
parameters for rapp

I
Caompile the application file
using tmloadcfi1) and the
damain gatewsay configuratian
file using dmloadefi1)

The following diagram shows which sections of the UBBCONFI G and DMCONFI Gfiles

you need to configure for atwo-domain application. One domain represents the local
domain; the other, the remote domain.

Setting Up a BEA Tuxedo Application 3-5

3 Creating the Configuration File

Click on any area of the following diagram for instructions on creating that section of
the configuration file.

Figure3-2 Configuring a Multiple-domain Application

REMOTE DOMAIN

*RESOURCES (applicaton-wide information) *DM_LOCAL _DOMAINS

*MACHINES (machine-wide information)

*GROUPS (group-wide information) *DM_LOCAL _SERVICES

*SERVERS (server-specific information)
DMADM APP *DM_TDOMAIN

= \-_Jmnmnm SERVER 8
‘—J

2
Sves GWTDOMAIN

*SERVICES (services-
specific information)

UBBCONFIG File

LOCAL DOMAIN

*RESOURCES (applicaton-wide information) *DM_LOCAL_DOMAINS

*MACHIHES (machine-wide information)
*GROUPS (group-wide information) *DM_LOCAL_SERVICES
*SERVERS (=erver-specific information)
DMADM *OM_TDOMAIN

GWADM
GWTDOMAIN
e

*SERVICES (services-
specific Information)

UBBCONFIG File

3-6 Setting Up a BEA Tuxedo Application

How to Create the RESOURCES Section of the Configuration File

See Also

m “About Domains’ on page 1-1 in Using the BEA Tuxedo Domains Component

m “Configuring a Domains Environment” on page 2-18 in Using the BEA Tuxedo
Domains Component

m DMCONFI G(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

How to Create the RESOURCES Section of
the Configuration File

The first section of every configuration file must be the RESOURCES section. The
parameters defined in this section control the application as awhole and serve as
system-wide defaults. The values of RESOURCES parameters can be overridden,
however, on a per-machine basis by assigning other values in the MACHI NES section.

For each parameter in the RESOURCES section, the following table provides a
description and links to reference pages and additional information.

To Specify ThisInformationin Set This Parameter For More Information,
the RESOURCES Section (Required/Optional) Click the Following
Unique address of interprocess | PCKEY (Required) Shared memory address
communication (IPC) resources

Security access Ul D, G D, and PERM(Optional) Security access

M aximum number of processes that MAXACCESSERS (Optional) IPC limits

can be simultaneously connected to a

bulletin board

M aximum number of server table MAXSERVERS (Optional) IPC limits

entriesin abulletin board

Setting Up a BEA Tuxedo Application 3-7

3 Creating the Configuration File

To Specify ThisInformation in
the RESOURCES Section

Set ThisParameter
(Required/Optional)

For Morelnformation,
Click the Following

Maximum number of service table MAXSERVI CES (Optional) IPC limits
entriesin abulletin board

Maximum number of CORBA MAXI NTERFACES (Optional) IPC limits
interfaces

Maximum number of CORBA objects MAXOBJECTS (Optional) IPC limits

Distinguished Bulletin Board Liaison
(DBBL) location at which booting,
shutdown, and other administrative
tasks are performed

MASTER (Required)

Master processor

Bulletin board architecture

MODEL , SHMor MP, and LAN or
M GRATE options (Required)

Application type

Security level

SECUR! TY, AUTHSVC (Optional)

Security levels

Principal name of the process used for
identification, location of private key
of principal user, and the environment
variable containing the password

SEC_PRI NCI PAL_ NAME,

SEC_PRI NCI PAL_LOCATI ON,
and SEC_PRI NCI PAL_PASSVAR

Security attributes

Default method for clients to detect
unsolicited messages

NOTI FY, US| GNAL (Optional)

Unsolicited notification

Protecting shared memory

SYSTEM ACCESS (Optional)

Shared memory protection

Whether server load balancing is LDBAL (Optional) Load balancing

enabled

Maximum number of buffer typesand MAXBUFTYPE, MAXBUFSTYPES Buffer types/subtypes
subtypes (Optional)

Maximum number of conversations MAXCONV (Optional) Conversation limits
allowed on amachine

Maximum number of network groups MAXNETGROUPS (Optional) Network groups

Sanity check frequency and amount of ~ SCANUNI T, SANI TYSCAN, Sanity check frequency and

time alowed for blocking calls

BLOCKT! ME (Optional)

blocking timeouts

3-8 Setting Up a BEA Tuxedo Application

Defining the Application Type

Sample RESOURCES Section

See Also

The following is a sample RESOURCES section of a configuration file.

* RESOURCES

| PCKEY

ub

G D

PERM
MAXACCESSERS
MAXSERVERS
MAXSERVI CES
MASTER
MODEL

OPTI ONS
SECURI TY
AUTHSVC
NOTI FY

39211
0

1
0660
75

40

55

Sl TE1,
MP
LAN, M GRATE
APP_PW

" AUTHSVC'

D PIN

SI TE2

SYSTEM ACCESS PROTECTED, NO_OVERRI DE

LDBAL

Y

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

m “How to Create the MACHINES Section of the Configuration File” on page

3-28

Defining the Application Type

Among the architectural decisions needed for a BEA Tuxedo application are the

following:

m Should this application run on a single processor or multiprocessor with global
shared memory?

m Will the application be networked?

Setting Up a BEA Tuxedo Application 39

3 Creating the Configuration File

m Will server migration be supported?
Use the MODEL and OPTI ONS parameters to define the application type.

The MODEL parameter specifies whether an application runs on asingle processor. Itis
set to SHMfor uniprocessors and also for multiprocessors with global shared memory.
A MODEL value of MP is used for multiprocessors that do not have global shared
memory, as well asfor networked applications. Thisisarequired parameter.

The OPTI ONS parameter is a comma-separated list of application configuration
options. Two available options are LAN (indicating a networked configuration) and
M GRATE (indicating that application server migration is allowed).

Characteristics of the MODEL and OPTIONS Parameters

Par ameter Characteristics

MODEL Itisarequired parameter. A value of SHMindicates asingle machine with
global shared memory. A value of MP indicates either multiple machines
without global shared memory, or a networked application.

OPTI ONS It isacomma-separated list of application configuration options. A value
of LANindicates alocal areanetwork. A value of M GRATE enables
server migration.

In the sample RESOURCES section, MODEL is set to MP; OPTI ONSis set
to LAN and M GRATE.

Example Settings

Thefollowing is a sample setting in the RESOURCES section of a configuration file.
* RESOURCES

MODEL WP
OPTIONS LAN, M GRATE

3-10 Setting Up aBEA Tuxedo Application

Controlling the Number of Buffer Types and Subtypes

Controlling the Number of Buffer Types and
Subtypes

Y ou can control the number of buffer types and subtypes allowed in the application
with the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. Unless you are
creating many user-defined buffer types, you can omit MAXBUFTYPE. If you intend to
use many different Vi Ewtypes, you may want to set MAXBUFSTYPE to avalue higher
than its current default.

Characteristics of the MAXBUFTYPE and MAXBUFSTYPES
Parameters

Parameter Characteristics

MAXBUFTYPE Maximum number of buffer types allowed in the system. Use
only if you create 8 or more user-defined buffer types. The
value of MAXBUFTYPE must be greater than 0 and less than
32,768. If not specified, the default is 16.

Example. MAXBUFTYPE 20

MAXBUFSTYPE Maximum number of buffer subtypes allowed in the system.
The value of MAXBUFSTYPE must be greater than 0 and less
than 32,768. If not specified, the default is 32.

Example: MAXBUFSTYPE 40

Example Settings

In this example, the maximum number of buffer typesis 20; the maximum number of
subtypesis 40.

* RESOURCES
MAXBUFTYPE 20
MAXBUFSTYPE 40

Setting Up a BEA Tuxedo Application 31

3 Creating the Configuration File

Controlling the Number of Conversations

Y ou can specify the maximum number of simultaneous conversations on a machine
with the MAXCONV parameter. The value of MAXCONV must be greater than 0 and less
than 32,768.

Characteristics of the MAXCONV Parameter

The MAXCONV parameter has the following characteristics:

m |t defines the maximum number of simultaneous conversations allowed on each
machine.

m Thedefault for an application that has conversational serverslisted in the
SERVERS section is 10; otherwise, the default is 1.

m You can overwrite this parameter for any machine by specifying a different
valuein the MACHI NES section.

Example Setting
In this example, the maximum number of simultaneous conversationsallowed on each
machineis 15.
* RESOURCES
MAXCONV 15

Defining IPC Limits

Because most interprocess communication (IPC) and shared memory bulletin board
tables are statically alocated for speedy processing, it isimportant to tune them
correctly. If they are sized too generously, memory and |PC resources are wasted; if

3-12 Setting Up aBEA Tuxedo Application

Defining IPC Limits

too small, processes fail when the limits are exceeded. Y ou can usethet nl oadcf -c
command to find out the maximum IPC resources required by a specific application.
(Seet m oadcf (1) inthe BEA Tuxedo Command Reference.)

MAXACCESSERS, MAXSERVERS, MAXSERVI CES, MAXI NTERFACES, and MAXOBJECTS are
the tunable parameters that control IPC sizing. The amount of shared memory
allocated in an application is controlled by the MAXGTT and MAXCONV parameters.

Characteristics of MAXACCESSERS, MAXSERVERS,
MAXSERVICES, MAXINTERFACES, and MAXOBJECTS

Parameters

Parameter

Characteristics

MAXACCESSERS

Maximum number of overall processes that can be
simultaneously connected to the bull etin board at any particul ar
sitein the BEA Tuxedo application. This number includes all
clients and system-supplied and application servers, but does
not include administrative processes such asthe Bull etin Board
Liaison (BBL) and t madmi n() , which have reserved access
slots to the bulletin board.

The value of MAXACCESSERS must be greater than 0 and less
than 32,768. If not specified, the default is 50. Y ou can
overwrite MAXACCESSERS, on a per-machine basis, in the
MACHI NES section.

MAXSERVERS

M aximum number of server processes available to the
application. This number includes all system-supplied and
application servers.

Thevalue of MAXSERVERS must be greater than 0 and lessthan
8,192. If not specified, the default is 50.

Setting Up a BEA Tuxedo Application 3-13

3 Creating the Configuration File

Par ameter Characteristics

MAXSERVI CES Maximum number of different BEA Tuxedo services that can
be advertised in the application. The value of MAXSERVI CES
must be greater than 0 and lessthan 32,768. If not specified, the
default is 100.

Note: For CORBA environments, each CORBA interfaceis
mapped to a BEA Tuxedo service. Make sure you
account for the number of services generated.

MAXI NTERFACES For CORBA environments, the maximum number of CORBA
interfaces that can be advertised in the application. The value
of MAXI NTERFACES must be greater than 0 and less than
32,766. If not specified, the default is 100.

Note: All instances of an interface occupy and reuse the
same slot in the interface table in the bulletin board.
For example, if server SVR1 advertisesinterfaces| F1
and | F2, server SVR2 advertisesinterfaces | F2 and
| F3, and server SVR3 advertisesinterfaces | F3 and
| F4, theinterface count is 4 (not 6) when calculating
MAXI NTERFACES.

MAXOBJECTS For CORBA environments, the maximum number of active
CORBA objectsin the application. Thevalue of MAXOBJECTS
must be greater than 0 and lessthan 32,766. If not specified, the
default is 100.

Note: Examples of system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD,
TMUSREVT, TMSYSEVT, TMS, TM5_QM, GWIDOVAI N, and WSL.

The cost incurred by increasing MAXACCESSERS is one additional semaphore per site
per client or server process (accesser—see note that follows). Thereis asmall fixed
semaphore overhead for system processes in addition to that added by the
MAXACCESSERS value. The cost of increasing MAXSERVERS and MAXSERVI CES isa
small amount of shared memory that is kept for each server, service, and client entry,
respectively. The general ideafor these parametersisto allow for future growth of the
application. It is more important to scrutinize MAXACCESSERS.

Note: Thesystem allocates one semaphore for each access dlot to the bulletin board.
A semaphoreis alatch circuit that prevents more than one process from
accessing the same shared memory in the bulletin board at the same time.

3-14 Setting Up aBEA Tuxedo Application

Enabling Load Balancing

For BEA Tuxedo releases prior to release 7.1, both the MAXACCESSERS and
MAXSERVERS parameters for an application play apart in the user license checking
scheme. Specifically, amachineisnot allowed to boot if the number of MAXACCESSERS
for that machine + the number of MAXACCESSERS for the machine (or machines)
already running in the application is greater than the number of MAXSERVERS + user
licenses for the application. Thus, the total number of MAXACCESSERS for an
application must be less than or equal to the number of MAXSERVERS + user licenses
for the application.

The user license checking schemein BEA Tuxedo release 7.1 or later considers only
the following two factors when performing its checks: the number of user licenses for
an application and the number of licenses currently in usefor the application. When all
user licenses are in use, no new clients are allowed to join the application.

Example Settings

Inthisexample, a most 75 processes (clientsand servers) can accessthe system at any
onetime. Thereisroom for 40 servers advertising 55 services in the bulletin board.

* RESOURCES
MAXACCESSERS 75
MAXSERVERS 40
MAXSERVI CES 55

Enabling Load Balancing

Y ou can control whether aload balancing algorithm is used on the BEA Tuxedo
application as awhole. When load balancing is used, aload factor is applied to each
service within the system, allowing you to track the total load on every server. Every
service request is sent to the qualified server that isleast |oaded.

To specify whether load balancing should be used, set the LDBAL parameter to Y (Y es)
or N (No). By default, itis set toN.

Y ou should use load balancing only if necessary; that is, whenever aserviceis offered
by serversthat use more than one queue. L oad balancing is not appropriatefor services
offered by only one server, or by serversin an MSSQ (Multiple Server, Single Queue)

Setting Up a BEA Tuxedo Application 3-15

3 Creating the Configuration File

set. If you have only these types of services in your configuration, set the LDBAL
parameter to N. If LDBAL is set to Nand multiple queues offer the same service, thefirst
available queue is selected.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:
m |f LDBAL issetto, then load balancing is used.

m If LDBAL issetto Y and the application is networked, you can use TMNETLOAD for
local preference.

m If LDBAL issetto N, the server assigned isthe first available server.
m ThedefaultisN.
m Because LDBAL incurs overhead, use it only when necessary.

m Do not use load balancing if every BEA Tuxedo serviceis offered by only one
server.

m Do not use load balancing if every BEA Tuxedo service is offered by one MsSQ
server set.

Example Settings

In this example, load balancing is enabled for the application.

* RESOURCES
LDBAL Y

See Also

m “What Is Load Balancing?’ on page 2-39 in Introducing BEA Tuxedo ATMI

3-16 Setting Up aBEA Tuxedo Application

Identifying the Master Machine

ldentifying the Master Machine

The MASTER machine controls the booting and administration of the entire application.
Y ou must specify a MASTER machine for every application by setting the MASTER
parameter. The value of MASTER isthe Logical Machine Identifier (LM D) for the
appropriate computer. The LM D, in turn, is defined as an al phanumeric string, chosen
by the administrator, that is assigned to the LM D parameter in the MACH NES section.
Therefore, for example, if the value of the LM D parameter is Sl TE1, then the value of
MASTER must also be SI TEL.

If you want to be able to bring down the MASTER machine without shutting down the
application, you must be able to migrate the MASTER. To enable migration, you must
specify two values for LM D: the primary MASTER and the backup MASTER.

Characteristics of the MASTER Parameter

The MASTER parameter has the following characteristics:
m Itisrequired and it controls booting and administration.
m Two LM Ds are required for migration to back up the master machine.

m |n the sample RESOURCES section, the master siteis SI TE1; the backup siteis
SI TE2.

Example Settings

Si t el isthe MASTER machine; SI TE2 isthe backup machine.

* RESOURCES
MASTER SI TE1, SITE2

Setting Up a BEA Tuxedo Application 3-17

3 Creating the Configuration File

Specifying the Maximum Number of
Network Groups

To specify the maximum number of configured network groups, set the
MAXNETGROUPS parameter. The value must be greater than or equal to 1 and less than
8192. The default is 8. This parameter is optional .

Specifying the Number of Sanity Checks and
Blocking Timeouts

Periodically (every 120 seconds, by default) the Bulletin Board Liaison (BBL) checks
the sanity of the servers onitsmachine. Y ou can changethefrequency of these checks,
however, by setting the SCANUNI T and SANI TYSCAN parameters. In addition, you can
specify the number of timeout periods for blocking messages, transactions, and other
system activities by setting the BLOCKTI ME parameter. The value you assign must be a
positive multiple of 5.

Use the SANI TYSCAN parameter to specify how many SCANUNI Ts el apse between
sanity checks of the servers. Its current default is set so that SANI TYSCAN* SCANUNI T
is approximately 120 seconds.

3-18 Setting Up aBEA Tuxedo Application

Specifying the Number of Sanity Checks and Blocking Timeouts

Characteristics of the SCANUNIT, SANITYSCAN, and

BLOCKTIME Parameters

Parameter

Characteristics

SCANUNI T

Controls the granularity of check intervals and timeouts.
SCANUNI T must be amultiple of 5 between 0 and 60 seconds.
Example: SCANUNI T 10

The default is 10.

SANI TYSCAN

Specifies how many scan units el apse between sanity checks of
the servers.

SANI TYSCAN may be any number up to 32,767.

The default is such that SCANUNI T * SANI TYSCANis
approximately 120 seconds.

BLOCKTI ME

Controls how long a message can block before it times out.
SCANUNI T * BLOCKTI ME must not exceed 32,767.

The default is such that SCANUNI T * BLOCKTI MEis
approximately 60 seconds.

Timeouts for Blocking ATMI Operations

Theterm timeout is used to refer, collectively, to the amount of timethat el apses while

a

client:

Waits to send a message into the request queue

Waits to receive a message from the reply queue

I's processed by the server

Travels on the network

Theterm blocking timeout refersto the amount of time spent by aclient request waiting
for ablocking condition to clear up. Block timeouts for asynchronous service requests
and conversations apply to individual send and receive operations. When a process

Setting Up a BEA Tuxedo Application 3-19

3

Creating the Configuration File

sends amessage using t pacal | (3c), t pconnect (3c), or t psend (3c), the timeout
applies only to the period during which the request waits to get on the queue if the
queue isfull. When aclient processissues at pget rpl y (3c) or t precv(3c) call to
receive amessage, the timeout specifies how long the client may wait for theincoming
message if its queue is empty.

Example Settings

In this example, sanity scans are performed every 30 seconds and requests block for
no more than 10 seconds. A SCANUNI T of 10 and a SANI TYSCAN of 3 allow 3 blocks of
10 seconds or 30 seconds to elapse before the BBL scans.

* RESOURCES
SCANUNI T 10
SANI TYSCAN 3
BLOCKTI ME 1

Establishing Operating System-level
Security

3-20

Y ou can restrict access to BEA Tuxedo administrative functions to authorized
administrators only, by setting three parameters: Ul D, G D, and PERM

The defaults of Ul Dand Gl D are the user |D and group | D, respectively, of the person
who runsthet m oadcf (1) command on the configuration, unless overriding values
have been specified in the MACHI NES section.

Setting Up a BEA Tuxedo Application

Establishing Operating System-level Security

Characteristics of the UID, GID, and PERM Parameters

Parameter

Characteristics

u b

The user ID of the administrator. The value is a numeric string
corresponding to the UNIX system user ID of the person who boots and
shuts down the system.

The default isthe user 1D of the person who runst ml oadcf (1) .
Example: Ul D=3002

Note: On Windows 2000, this value must be set to 0.

The numeric group ID of the administrator.
The default isthe group ID of the person who runst ml oadcf (1) .
Example: G D=100

Note: On Windows 2000, this value must be set to 0.

PERM

The valueis an octal number that specifies permissionsfor the IPC
resources created when the application is booted. This parameter
providesthe first level of defense of the BEA Tuxedo system IPC
structures against unauthorized access. These val ues should be specified
for production applications.

The default is 0666, which gives read/write access to all.
Example: PERME0660

Note: You can overwrite the values assigned to these parameters for remote
machines. The user and group IDs on aremote machine are not required to be
the same as the user and group 1Ds on the MASTER machine. Y ou can override
the defaults by specifying different user and group 1Ds in the MACHI NES
section of the configuration file. If not specified, values specified in the
RESQURCES section are used.

Setting Up a BEA Tuxedo Application 3-21

3

Creating the Configuration File

Specifying the Security Level

Y ou can set the following three levels of security:

m PERMparameter—provides minimal security by restricting, through permissions,
the ability to write to the application queues.

m SECURI TY parameter—provides greater security. When this parameter is set, a
client must supply a password when joining the application. This password is
checked against the password supplied by the administrator when the
TUXCONFI Gfileis generated from the UBBCONFI Gfile.

m AUTHSVC parameter—sets the maximum level of security. When this parameter
isset, any client request to join the application is sent to an authentication
service. The authentication service may be the default service supplied by the
BEA Tuxedo system or athird-party vendor service, such as a Kerberos service.
Thislevel of security cannot be used unless the SECURI TY parameter is set.

Characteristics of the SECURITY and AUTHSVC
Parameters

3-22

Par ameter Characteristics

SECURI TY Security level that requires a password to join an application.
Accepted values are: NONE (default), APP_PW USER_AUTH,
ACL, and MANDATORY_ACL.

Default is NONE.
Example: SECURI TY APP_PW

AUTHSVC The name of the authentication service.
SECURI TY APP_PWor higher must be specified.
Default is no authentication service.
Client authentication with Kerberos is possible.
Example: AUTHSVC “AUTHSVC'’

Setting Up a BEA Tuxedo Application

Defining the Security Attributes of a Server

See Also

m “Introducing ATMI Security” on page 1-1 in Using Security in ATMI
Applications

m Using Security in CORBA Applications

Defining the Security Attributes of a Server

Y ou can use the SEC_PRI NCI PAL_NAME, SEC PRI NCI PAL_LQOCATI ON, and
SEC_PRI NCI PAL_PASSVAR parameterstoidentify the security attributes of any servers
used for authentication.

m SEC PRI NCI PAL_NAME—defines the principal name used by the server for
various security operations.

m SEC PRI NCI PAL_LCOCATI ON—specifies the location of the private key of the
principal user.

m SEC PRI NC PAL_PASSVAR—specifies the environment variable that contains the
password used to open the private key of the principal user.

If Specifiedin This Parameter Defines And Overrides Parameter
This Section Settingsin This Section
RESOURCES All system servers booted in the N/A

domain.
MACHI NES All system servers booted on a RESOURCES

machine.
GROUPS All system and interoperating MACHI NES

application servers booted within a

group.
SERVERS All system and interoperating GROUPS

application services booted within a

Sserver.

Setting Up a BEA Tuxedo Application 3-23

3 Creating the Configuration File

Note: These policiesapply to the Workstation handler, Domains gateway processes,
and interoperating application servers.

See Also

m “Introducing ATMI Security” on page 1-1 in Using Security in CORBA
Applications

m “Administering Security” on page 2-1 in Using Security in CORBA Applications

Protecting Shared Memory

Y ou can shield system tables kept in shared memory from application clients and/or
servers using the SYSTEM ACCESS parameter. This parameter is useful when
applications are being developed because faulty application code can inadvertently
corrupt shared memory with abad pointer. Once an application is fully debugged and
tested, the value of this parameter can be changed to allow for faster responses.
Following are valid values for this parameter:

m PROTECTED—BEA Tuxedo libraries compiled with application code do not
attach to shared memory while executing system code.

m FASTPATH—BEA Tuxedo libraries attach to shared memory at all times.

Onceyou select avalue, you can specify NO_OVERRI DE, which meansthat the selected
option cannot be changed either by theclient, inthe TPI NI T structure of thet pi ni t ()
call, or by the administrator, in the SERVERS section for servers.

3-24 Setting Up aBEA Tuxedo Application

Setting the Address of the System Resources for an Application

Characteristics of the PROTECTED, FASTPATH, and
NO_OVERRIDE Parameters

Parameter Characteristics

PROTECTED Internal structuresin shared memory are not corrupted inadvertently by
application processes.

FASTPATH Application processes join the application with access to shared

(Default) memory at all times.

NO_OVERRI DDE The specified option (either PROTECTED or FASTPATH) cannot be
changed.

Example Settings

SYSTEM ACCESS PROTECTED, NO_OVERRI DE

Setting the Address of the System Resources
for an Application

To set the address of shared memory, set the | PCKEY parameter. This parameter isused
by the BEA Tuxedo system to all ocate application | PC resources such that they may
be located easily by new processes joining the application. This key and its variations
areused internally to alocate the bulletin board, message queues, and semaphoresthat
must be available to new application processes. In single processor mode, this key
names the bulletin board; in multiprocessor mode, this key names the message queue
of the DBBL.

Setting Up a BEA Tuxedo Application 3-25

3 Creating the Configuration File

Characteristics of the IPCKEY Parameter

The I PCKEY parameter has the following characteristics:

Itisrequired.
It is used to access the bulletin board and other |PC resources.
Its value must be an integer in the range 32,769 to 262,144.

No other application on the system may use this specific value for its | PCKEY. Its
value must be unique among all applications.

Example Settings

* RESOURCES

| PCKEY 39211

Specifying How Clients Receive Unsolicited
Notification

Y ou can select the default method by which clients receive unsolicited messages by
setting the NOTI FY parameter. The client, however, can override this choice when
calingtpinit().

Following are four possible methods:

| GNORE—clients ignore unsolicited messages.

DI PI N—clients receive unsolicited messages only when they call
t pchkunsol () or when they make an ATMI call.

SI GNAL—clients receive unsolicited messages by having the system generate a
signal that has the signa handler call the function, that is, set with
t psetunsol ().

3-26 Setting Up aBEA Tuxedo Application

Specifying How Clients Receive Unsolicited Notification

Note: Thismethod is not allowed for multithreaded or multicontexted

applications.

m THREAD—unsolicited messages are handled by a separate thread managed by the
BEA Tuxedo system for this purpose.

The USI GNAL parameter specifiesthe signal to be used if SI GNAL-based notificationis
used. Two types of signals can be generated: SI GUSR1 and SI GUSR2. The default is
SI GUSR2. This method has the advantage of immediate notification, but is limited
when you are running a native client. In that case, you must have the same user 1D as
the sending process. Workstation clients do not have this limitation.

Note: Thismethod is not available on all platforms.

Characteristics of the NOTIFY and USIGNAL Parameters

Parameter

Characteristics

NOTI FY

Value of I GNORE means clients should ignore unsolicited
messages.

Value of DI PI N means clients should receive unsolicited
messages only when they call t pchkunsol () or when they
make an ATMI call.

Value of SI GNAL means clients should receive unsolicited
messages by signals.

DefaultisDI PI N

Example: NOTI FY SI GNAL

US| GNAL

Value of SI GQUSRL and SI GQUSR2 means notify clients with
thistype of signal.

Default is SI GUSR2
Example: USI GNAL SI GUSRL

Setting Up a BEA Tuxedo Application 3-27

3

Creating the Configuration File

How to Create the MACHINES Section of the
Configuration File

The second section of every configuration file must be the MACH NES section. The
MACHI NES section defines parameters for each machine in an application. These
parameters provide the following information:

The mapping of the machine address to alogical identifier (LM D)
Thelocation of the configuration file (TUXCONFI G)

Thelocation of theinstalled BEA Tuxedo software (TUXDI R)
Thelocation of the application servers (APPDI R)

Thelocation of the application log file (ULOGPFX)

Thelocation of the environment file (ENVFI LE)

Note: For aparticular machine, you can override the following system-wide

parameters: Ul D, G D, PERM MAXACCESSERS, MAXOBJECTS, MAXCONV, and
MAXGTT. Each parameter, except MAXGTT, is described in the RESOURCES
section.

For each parameter in the MACHI NES section, thefollowing table provides adescription
and links to reference pages and additional information.

To Specify ThisInformation in the Set This Parameter For More Information,
MACHINES Section (Required/Optional) Click the Following
The number of entriesin the cache used for ACL MAXACL CACHE ACL entriesin the cache
entries when SECURI TY is set to ACL or (Optional)

MANDATORY_ACL.

The additional |0ad to be added when computingthe NETLQAD (Optional) Additional loads
cost of sending a service request from this machine
to another machine.

3-28

Setting Up a BEA Tuxedo Application

How to Create the MACHINES Section of the Configuration File

To Specify ThisInformation in the
MACHINES Section

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

The address is the name of the physical processor,
which all other entries describe. The LM D
parameter specifies the logical name of the
computer.

LM D (Required)

Address and machine ID

The number of attemptsthat should be made at user
level to lock the bulletin board before blocking
processes on a UNIX semaphore.

SPI NCOUNT (Optional)

Bulletin board locking limit

A value used for grouping machines into classes.

TYPE (Optional)

Class grouping value

The absolute pathname of the file or device where
the binary TUXCONFI Gfileisfound on this
machine.

Note: The pathname specified for this parameter
must match exactly (including case) the
pathname specified for the TUXCONFI G
environment variable. Otherwise,

t m oadcf (1) cannot berun

successfully.

TUXCONFI G (Required)

Configuration file location

The maximum number of simultaneous
conversations in which processes on a particular
machine can be involved.

MAXCONV (Optional)

Conversation limits

The numeric size, in pages, of the DTP transaction
log for this machine.

TLOGSI ZE (Optional)

DTPTLOGsize

The name of the DTP transaction log for this
machine.

TLOGNANME (Optional)

DTP transaction log name

A valuethat specifiesthat all clientsand serverson
the machine are to be executed with the
environment specified in the named file.

ENVFI LE (Optional)

Environment variable
settings

The BEA Tuxedo filesystem that containsthe DTP
transaction log (TLOG) for this machine.

TLOGDEVI CE (Optional)

Filesystem containing the
TLOG

The maximum number of processes that can have
access to the bulletin board on this processor at any
onetime.

MAXACCESSERS
(Optional)

IPC limits

Setting Up a BEA Tuxedo Application

3-29

3 Creating the Configuration File

To Specify ThisInformation in the
MACHINES Section

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

For CORBA environments, the maximum number ~ MAXOBJECTS (Optional) IPC limits

of CORBA objectsthat can be accommodated in the

Active Object Table on this processor at any one

time.

The maximum number of simultaneous global MAXGTT (Optional) Limit of simultaneous global
transactions in which a particular machine can be transactions

involved.

The number of accesser entries on this processorto MAXWSCLI ENTS Limit of workstation

be reserved for Workstation clients. The parameter (Optional) accesser entries

is only used when the BEA Tuxedo system
Workstation component is used.

A limit for the amount of spacethat can be allocated
for messages waiting to betransmitted by the bridge
process.

MAXPENDI NGBYTES
(Optional)

Message space limits

The numeric offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo
filesystem that contains the DTP transaction log for
this machine.

TLOGOFFSET (Optional)

Numeric offset containing
the DTP TLOG

The numeric offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo
filesystem that containsthe TUXCONFI Gfilefor this
machine.

TUXOFFSET (Optional)

Numeric offset containing
the TUXCONFI G

The numeric group ID to be associated with the IPC
structures created for the bulletin board. The valid
range is 0-2147483647. If not specified, the default
is the value specified in the RESOURCES section.

G D (Optional)

Security access

The numeric permissions associated with the IPC
structures that implement the bulletin board. This
parameter is used to specify the read/write
permissionsfor processesin the usual UNIX system
fashion (that is, with an octal number such as 0600).
The value can be between 0001 and 0777, inclusive.
If not specified, the default is the val ue specified in
the RESOURCES section.

PERM(Optional)

Security access

3-30 Setting Up aBEA Tuxedo Application

How to Create the MACHINES Section of the Configuration File

To Specify ThisInformation in the Set This Parameter For More Information,
MACHINES Section (Required/Optional) Click the Following
The numeric user ID to be associated withthe IPC Ul D (Optional) Security access

structures created for the bulletin board. The valid
rangeis 0-2147483647. If not specified, the default
isthe value specified in the RESOURCES section.

Principal name of the process used for SEC PRI NCI PAL_NAME, Security attributes
identification, location of private key of principal SEC PRI NCl PAL_LOCA
user, and the environment variabl e containing the TI ON,

password SEC PRI NCl PAL_PASS

VAR
The absolute pathname of the application directory TUXDI R (Required) System and application
(APPDI R), which isthe current directory for al software locations

application and administrative servers booted on
this machine; and the absolute pathname of the
directory wherethe BEA Tuxedo system softwareis
found on this machine.

The threshold message size for messages—bound ~ CVPLI M T (Optional) Threshold message size
to remote processes (st ri ng_val uel) and local

processes (st ri ng_val ue2), respectively—on

which automatic data compression will be

performed.

The full pathname to be used as the prefix of the ULOGPFX (Optional) ULOG pathname
name of the user | 0g(3c) message file on this
machine.

Setting Up a BEA Tuxedo Application 3-31

3

Creating the Configuration File

Sample MACHINES Section

Following is a sample MACHI NES section of a configuration filein an ATMI

environment.

* MACH NES
gunby

LM D=SI TE1
TUXDI R="/tuxdir”
APPDI R="/ hone/ apps/ nor t gage”
TUXCONFI G="/ hone/ apps/ nor t gage/ t uxconfi g”
ENVFI LE="/ hone/ apps/ nort gage/ ENVFI LE”
ULOGPFX="/ hone/ apps/ nort gage/ | ogs/ ULOG’
MAXACCESSERS=100

MAXCONV=15

Following is a sample MACHI NES section of a configuration filein a CORBA

environment.

* MACH NES
gunby

LM D=SI TE1

TUXDI R="/tuxdir”

APPDI R="/ hone/ apps/ nort gage”

TUXCONFI G="/ hone/ apps/ nort gage/ t uxconfi g”
ENVFI LE="/ hone/ apps/ nort gage/ ENVFI LE”
MAXOBJECTS=700

ULOGPFX="/ hone/ apps/ nort gage/ | ogs/ ULOG’
MAXACCESSERS=100

Sample MACHINES Parameters

3-32

In the preceding sample MACHI NES section, the following parameters and values are

specified.

Par ameter Meaning

gunby The machine name obtained with the command uname - n on UNIX
systems. On a Windows 2000 system, the value can be set using the
Computer Name value in the Network Control Panel and must be
specified in uppercase.

LM D=SI TE1 The logical machine identifier of the machine gumby.

TUXD R The full path to the installed BEA Tuxedo software (shown in double

quotation marks).

Setting Up a BEA Tuxedo Application

How to Create the MACHINES Section of the Configuration File

Parameter

M eaning

APPDI R

The full path to the application directory (shown in double quotation
marks).

TUXCONFI G

Thefull pathname of the configuration file (shown in double quotation
marks).

Note: Thepathname specified for thisparameter must match exactly
(including case) the pathname specified for the TUXCONFI G
environment variable. Otherwise, t ml oadcf (1) cannot be
run successfully.

ENVFI LE

Thefull pathname of afile containing environment information (shown
in double quotation marks).

ULOGPFX

The full pathname to be used as the prefix of the name of thelog file
(shown in doubl e quotation marks).

MAXACCESSERS

For this machine, override the system-wide value (defined in the
RESOURCES section) with 100.

MAXOBJECTS

(For the CORBA example.) For thismachine, overridethe system-wide
value (defined in the RESOURCES section) with 700.

MAXCONV

For this machine, override the system-wide value (defined in the
RESOURCES section) with 15.

How to Customize the Sample MACHINES Section

Y ou can customize the MACHI NES section by indicating the following:

m Your machine name for gumby

Note: OnaWindows 2000 system, the machine name must be specified in

uppercase.

m Thefull path of your BEA Tuxedo software directory as the value of TUXDI R

m Thefull path of your application directory as the value of APPDI R

m Thefull pathnames for ENVFI LE, TUXCONFI G and ULOGPFX on your system

Setting Up a BEA Tuxedo Application 3-33

3 Creating the Configuration File

See Also

m UBBCONFI G 5) in theFile Formats, Data Descriptions, MIBs, and System
Processes Reference

m “How to Create the GROUPS Section of the Configuration File” on page 3-45

Specifying the Maximum Number of ACL
Entries in the Cache

Y ou can use the MAXACL CACHE parameter to specify the number of ACL entriesin the
cache when SECURI TY is set to ACL or MANDATORY_ACL. By setting of this parameter
to an appropriate value, you can:

m Help conserve shared memory resources
m Reduce the number of disk accesses performed in order to do ACL checking

The value must be a number greater than or equal to 10, and less than or equal to
30,000. The default is 100.

Defining an Additional Service Request
Load

Y ou can use the NETLOAD parameter to specify aload to be added when computing the
cost of sending a service request from one machine to another. The value must be a
number greater than or equal to O, and less than 32,768. The default is 0.

3-34 Setting Up aBEA Tuxedo Application

Reserving the Physical Address and Machine ID

See Also

m “What IsLoad Balancing?’ on page 2-39 in Introducing BEA Tuxedo ATMI

Reserving the Physical Address and Machine
ID

Youinitially define the address of your MASTER machinein the address portion, which
isthe basisfor aMACHI NES section entry. All other parametersin the entry describe the
machine specified by this address. Y ou must set the address to the value printed by
calling uname - n on UNIX systems. On Windows 2000 systems, see the Computer
Name value in the Network Control Panel.

The LM D parameter is mandatory. It specifies alogical name used to designate the
computer for which an address has just been provided. It may be any alphanumeric
value, but it must be unique among other machines in the application.

Characteristics of the Address and the LMID Parameter

The address and machine ID have the following characteristics:
m The address and machine ID are specified as follows:
address LM D=l ogi cal _machi ne_nane
The address identifies the physical processor name.
m ThelLM Dis specified as follows:
LM D=l ogi cal _nachi ne_nane

The LM Disthe logical machine name for a physical processor. It may be any
alphanumeric string, but it must be unique within the MACH NES section.

Setting Up a BEA Tuxedo Application 3-35

3 Creating the Configuration File

Setting the Number of Lock Spins

For some BEA Tuxedo system operations (such as service name lookups and
transactions), the bulletin board must be locked for exclusive access: that is, it must be
accessible by only one process. If a process or thread finds that the bulletin board is
locked by another process or thread, it retries, or spins on the lock for SPI NCOUNT
number of times before giving up and going to sleep on awaiting queue. Because
sleeping is a costly operation, it is efficient to do some amount of spinning before

sleeping.

Characteristics of the SPINCOUNT Parameter

Though the value of the SPI NCOUNT parameter is application- and system-dependent,
it may be helpful to keep the following basic guidelinesin mind:

m A process on a uniprocessor system should not spin. If the bulletin board is
locked when a uniprocessor process tries to access it, then the process with the
lock should be allowed to run as quickly as possible. Thisis possible only if the
newcomer process gives up immediately.

m A SPI NCOUNT value of 1 isappropriate for uniprocessors.

m On multiprocessors, agood starting value is 5,000, but some customers have
benefited from a SPI NCOUNT val ue as high as 100,000.

m Set the SPI NCOUNT value and observe your application throughput. Because you
can tune the SPI NCOUNT value using the TM B, you can adjust it while the
system is running.

Specifying Machines as Types

Y ou can use the TYPE parameter to group machines into classes. Y ou can set TYPE to
any string that contains 15 or fewer characters.

3-36 Setting Up a BEA Tuxedo Application

Identifying the Location of the Configuration File

Characteristics of the TYPE Parameter

m |f two machines have the same TYPE value, data encoding/decoding is not
performed when data is sent between the machines.

m TYPE can begiven any string value. It is used simply for comparisons.

m The TYPE parameter should be used when the application involves a
heterogeneous network of machines or when different compilers are used on the
machinesin the network.

m If avaluenot specified, the default is the null string, which matches any other
entry for which a value has not been specified.

|dentifying the Location of the
Configuration File

To identify the configuration file location and filename for an entry that identifies a
machine, set TUXCONFI G, arequired parameter. The val ue of the TUXCONFI Gparameter
is enclosed in double quotes and represents a full pathname, which may contain up to
64 characters.

Note: The pathname specified for this parameter must match exactly (including
case) the pathname specified for the TUXCONFI Genvironment variable.
Otherwise, t nl oadcf (1) cannot be run successfully.

Characteristics of the TUXCONFIG Parameter

The TUXCONFI G parameter has the following characteristics:

m The syntax of the TUXCONFI G parameter is
TUXCONFI G="f ul | _pat h_of _tuxconfig”.

m This parameter identifies the location and name of the configuration file.

Setting Up a BEA Tuxedo Application 3-37

3 Creating the Configuration File

m Thevalue of TUXCONFI G can include up to 64 characters.

m Thevalue of TUXCONFI G must match the value of the TUXCONFI G environment
variable.

Indicating the Size of the DTP Transaction

Log

Usethe TLOGSI ZE parameter to indicate the size, in pages, of the DTP transaction log
for this machine. The value must be a number greater than 0, and less than or equal to
2048, subject to theamount of space available on the operating system filesystem. The
default is 100 pages.

Defining the DTP Transaction Log Name

Use the TLOGNANVE parameter to define the name of the DTP transaction log for this
machine. The default is TLOG. If morethan one TLOG exists on the same TLOGDEVI CE,
each must have a unique name. The value of TLOGNAMVE must be different from the
name of any other table in the vTocC (V olume Table of Contents) on the TLOGDEVI CE
wherethe TLOGtable is created. The value of TLOGNAME must be an a phanumeric
string containing 30 or fewer characters.

Specifying Environment Variable Settings

3-38

Withthe ENVFI LE parameter, you can specify afilethat containsenvironment variable
settings for all processes to be booted by the BEA Tuxedo system. The system sets
TUXDI Rand APPDI R for each process, so these parameters should not be specified in
thisfile.

Setting Up a BEA Tuxedo Application

Defining the BEA Tuxedo Filesystem Containing the TLOG

Y ou can, however, specify settingsfor thefollowing parameters because they affect an
application’ s operation:

FI ELDTBLS, FLDTBLDI R
VI EWFI LES, VI EWDI R
TMCMPLIM T

TMNETLOAD

Characteristics of the ENVFILE Parameter

ENVFI LE is an optional parameter with the following characteristics:

The syntax of the value of the ENVFI LE parameter is a string enclosed in double
quotes: ENVFI LE="envfil e”.

ENVFI LE isthe file containing environment variable settings for all processes
booted by the BEA Tuxedo system. (The UBBCONFI Gfileissueswarningsin a
similar way, that is, using fully qualified pathnames.)

Set FI ELDTBLS, FLDTBLDI R, and so on, but do not set TUXDI R and APPDI R.

All settings must be hard coded. No evaluations such as FLDTBLDI R=$APPDI R
are allowed.

The format for entriesin thefileis VARI ABLE=st ri ng.

Defining the BEA Tuxedo Filesystem
Containing the TLOG

Use the TLOGDEVI CE parameter to specify the BEA Tuxedo filesystem that contains
the DTP transaction log (TLGOG) for thismachine. The TLOGis stored asa BEA Tuxedo
system VTOC table on the specified device. The value of TLOGDEVI CE must beastring
containing a maximum of 64 characters.

Setting Up a BEA Tuxedo Application 3-39

3

Creating the Configuration File

If this parameter is not specified, then it is assumed that the machine does not have a
TLOG.

Specifying a Machine’s Maximum Number of
Simultaneous Global Transactions

Use the MAXGTT parameter to indicate the maximum number of simultaneous global
transactions in which a particular machine can be involved. The value must be a
number greater than or equal to O, and less than 32,768. Y ou can override the value
specified in the RESOURCES section with avalue specified in the MACHI NES section for
an individual machine.

Defining the Number of Accesser Entries on
a Workstation Client

3-40

Use the MAXWSCLI ENTS parameter to define the number of entries on amachine to be
reserved for Workstation clients. Set the number of accesser slots reserved for
MAXWBCLI ENTS cautiously, since this number takes a portion of thetotal accesser slots
specified with MAXACCESSERS for this machine; the accesser slots reserved for
MAXWSCLI ENTS are unavailable for use by other clients and servers on this machine.
By setting this parameter to an appropriate value, you can hel p conserve | PC resources
because Workstation client accessto the system is multiplexed through aBEA Tuxedo
system-supplied surrogate, the BEA Tuxedo Workstation Handler (WSH).

The value of MAXWSCLI ENTS must be greater than or equal to 0 and less than 32,768.
If not specified, the default is 0. It isan error to set this parameter to anumber greater
than MAXACCESSERS.

Note: Thevalue of MAXWSCLI ENTS is constrained by the number of your licensed
users.

Setting Up a BEA Tuxedo Application

Defining Space Limits for Messages Transmitted by the BRIDGE

Defining Space Limits for Messages
Transmitted by the BRIDGE

Usethe MAXPENDI NGBYTES parameter to definealimit for the amount of spacethat can
be allocated for messages waiting to be transmitted by the BRI DGE process. This
number must be between 100,000 and MAXLONG.

There are two situations when MAXPENDI NGBYTES is significant:
m When the BRI DGE requests an asynchronous connection
m When all circuits are busy

Y ou can configure larger computers that have more memory and disk space, with
larger MAXPENDI NGBYTES, and smaller computers with smaller MAXPENDI NGBYTES.

Indicating the Offset for the DTP Transaction
Log

Every BEA Tuxedo filesystem has a Volume Table of Contents (VTOC): alist of the
files on the devices named in the Universal DeviceList (UDL). The UDL specifiesthe
location of the physical storage space for BEA Tuxedo system tables. In a BEA
Tuxedo system application, all system files might be stored together on the same raw
disk slice or operating system filesystem file.

Use the TLOGOFFSET parameter to indicate the offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo filesystem that containsthe DTP transaction
log for this machine. The offset must be a number greater than or equal to 0, and less
than the number of pages on the device. The default is 0.

Setting Up a BEA Tuxedo Application 3-41

3 Creating the Configuration File

Defining the Offset for TUXCONFIG

Every BEA Tuxedo filesystem has a Volume Table of Contents (VTOC): alist of the
fileson the devices named in the Universal DeviceList (UDL). The UDL specifiesthe
location of the physical storage space for BEA Tuxedo system tables. In aBEA
Tuxedo system application, all system files might be stored together on the same raw
disk slice or operating system filesystem file.

Usethe TUXOFFSET parameter to define the offset in pages (from the beginning of the
device) to the start of the BEA Tuxedo filesystem that contai nsthe TUXCONFI Gfor this
machine. (For information on how thisvalue is used in the environment, see the
ENVFI LE parameter in the MACH NES section.)

Characteristics of the TUXOFFSET Parameter

m The offset must be a number greater than or equal to 0, and less than the number
of pages on the device.

m Thedefault offset isO.

m Thevalue of TUXOFFSET, if non-zero, is placed in the environment of all servers
booted on a machine.

|dentifying the Locations of the System
Software and Application Server Software

Each machine in an application that supports servers must have a copy of the BEA
Tuxedo system software and application software. Y ou identify the location of system
software with the TUXDI R parameter. Y ou identify the location of the application
software with the APPDI R parameter. Both parameters are mandatory. The APPDI R
parameter becomes the current working directory of all server processes. The BEA
Tuxedo software looks in TUXDI R/ bi n and APPDI R for executables.

3-42 Setting Up aBEA Tuxedo Application

Indicating a Threshold Message Size for Compression

Characteristics of the APPDIR and TUXDIR Parameters

Parameter Characteristics

APPDI R The syntax requires a full pathname enclosed in double quotes:
APPDI R="“APPDI R".

APPDI Ridentifies the location of application software.
APPDI Risarequired parameter.
APPDI R becomes the current working directory of server processes.

TUXDI R The syntax requires a full pathname enclosed in double quotes:
TUXDI R=“TUXDI R".

TUXDI Ridentifies the location of the BEA Tuxedo software.
TUXDI Risarequired parameter.

Indicating a Threshold Message Size for
Compression

Usethe CWPLI M T parameter to define the threshold message sizes at which automatic
data compression is performed for messages bound to remote processes
(string_val uel) and local processes (st ri ng_val ue2), respectively.

Both values must be either a non-negative numeric value or the string MAXLONG. If not
specified, the default is MAXL ONG MAXLONG.

Note: Setthe QvPLI M T vaue and observe your application throughput. Because
you can tune the CVPLI M T value using the TM B, you can adjust it while the
system is running.

Setting Up a BEA Tuxedo Application 3-43

3 Creating the Configuration File

Example

CMPLIM T=string_valuel,string_val ue2

Specifying the Pathname for the ULOG

Set the ULOGPFX parameter to specify the full pathname to be used as the prefix of the
name of the user | og(3c) message file on this machine. The value of ULOGPFX for a
given machine is used to create the user | og(3c) message file for al servers, clients,
and administrative processes executed on that machine. If this parameter is not
specified, the path specified by the APPDI R environment variableis used. nmddyy
(month, day, year) is appended to the prefix to form the full name of the log file.

Characteristics of the ULOGPFX Parameter

The ULOGPFX parameter has the following characteristics:

m Thesyntax of the value of the ULOGPFX parameter is a string enclosed in double
quotes: ULOGPFX="ULOGPFX".

m Theapplication log contains all messages for TPESYSTEMand TPECS errors.
m You can use the user log to log application errors.
m The ULOGPFX defaultsto APPDI R/ ULOG

m For the sample filename BANKLOG. 022667, the prefix of the name of the
user | og is specified as follows.
ULOGPFX="/ mt / usr/ appdi r/ | ogs/ BANKLOG’

3-44 Setting Up aBEA Tuxedo Application

How to Create the GROUPS Section of the Configuration File

See Also

How to

m “How to Create the GROUPS Section of the Configuration File” on page 3-45

Create the GROUPS Section of the

Configuration File

Use the GROUPS section to designate logically grouped sets of servers, which can later
be used to access resource managers, and facilitate server group migration. The
GROUPS section of the configuration file contains definitions of server groups. Y ou
must define at least one server group for amachineto have application serversrunning
onit. If no group is defined for amachine, the group can still be part of the application
and you can run the administrative command t madmi n(1) from that site.

For nontransactional, nondistributed systems, groups are relatively ssmple. Y ou only
need to map the group name to the number and logical machine ID for each group.
Additional flexibility is available to support distributed transactional systems.

For each parameter in the GROUPS section, the following table provides a description
and links to reference pages and additional information.

To Specify ThisInformationin theGROUPS Set ThisParameter ~ For More Information,

Section (Required/Optional) Click the Following
Thelogical name of the group. GROUPNAME (Required) Group name
The group number associated with this server group. GRPNO (Required) Group number

This number must be greater than 0 and less than
30000, and must be unique among all entriesin the

GROUPS section.

The resource manager dependent information needed CLOSEI NFO(Optional) Information for closing the
when closing the resource manager. resource manager

The resource manager dependent information needed OPENI NFO (Optional) Information for opening the
when opening the resource manager. resource manager

Setting Up a BEA Tuxedo Application 3-45

3 Creating the Configuration File

To Specify ThisInformation inthe GROUPS Set ThisParameter For More Information,

Section (Required/Optional) Click the Following
The number of transaction manager serversto start for TMSCOUNT (Optional) Number of TMS serversin
the associated group, if TMSNAME is specified. the group
Principal name of the process used for identification, SEC_PRI NCI PAL_NAM Security attributes
location of private key of principa user, and the E,
environment variable containing the password. SEC_PRI NCl PAL_LCC

ATI ON,

SEC PRI NCI PAL_PAS

SVAR
A value that specifiesthat all serversinthe group are ENVFI LE (Optional) Server group environment
to be executed with the environment specified in the
named file.
A valuethat specifiesthat thisgroup of serversresides LM D (Required) Server group location

on the machine symbolically named by
string_val uel inthe MACHI NES section (or the
default in SHMmode).

The name of the transaction manager server process ~ TMSNAME (Optional) Transaction manager server
associated with this group. for group

Sample GROUPS Section for ATMI

Following isasample GROUPS section of aconfiguration filein an ATMI environment.
##EVBCRP1 LM D=SI TE1 GRPNC=104

DEFAULT: TMSNAMVE=TMS_SQL TMSCOUNT=2 LM D=SI TE1

BANKB1GRPNO=1 OPENI NFO=" TUXEDQ SQL: APPDI R1/ bankdl 1: bankdb: readw i t e"
BANKB2GRPNC=2 OPENI NFO=" TUXEDQ SQL: APPDI R1/ bankdl 2: bankdb: readwri t e"
BANKB3GRPNO=3 OPENI NFO=" TUXEDQ SQL: APPDI R1/ bankdl 3: bankdb: readwri t e"

3-46 Setting Up aBEA Tuxedo Application

How to Create the GROUPS Section of the Configuration File

Sample GROUPS Section for CORBA

The following sample GROUPS section is from the UBBCONFI Gfile in the Tuxedo
CORBA University sample Production application. In this sample, the groups
specified by the RANGES identifier in the ROUTI NG section of the UBBCONFI Gfile need
to be identified and configured.

The Production sample specifies four groups: ORA_GRP1, ORA GRP2, APP_GRP1,
and APP_GRP2. These groups mst be configured, and the machines on which they run
on must be identified.

* GROUPS

APP_GRP1
LMD = SI TE1
GRPNO = 2
TMSNAME = TMS

APP_GRP2
LMD = SI TE1
GRPNO = 3
TMSNAME = TMS

ORA_GRP1
LMD = SI TE1
GRPNO = 4

OPENI NFO = "ORACLE_XA: O acl e_XA+Acc=P/ scott/ti ger +SesTm=100+LogDi r =. +MaxCur =5"

CLCSEINFO = ""
TMSNAME = " TMS_ORA'

ORA_GRP2
LMD = SI TE1
GRPNO = 5

OPENI NFO = "ORACLE_XA: O acl e_XA+Acc=P/ scott/ti ger +SesTm=100+LogDi r =. +MaxCur =5"

CLCSEINFO = ""
TMSNAME = " TNMS_ORA'

The preceding example shows how the ORA_GRP1, ORA GRP2, APP_GRP1, and

APP_GRP2 groups are configured. Seethe section “ CORBA Factory-based Routing in
the University Production Sample Application” on page 3-100 to understand how the
names in the GROUPS section match the group names specified in the ROUTI NGsection.

Setting Up a BEA Tuxedo Application 3-47

3 Creating the Configuration File

Thismatch is critical for the routing function to work correctly. Also, any changein
the way groups are configured in an application must be reflected in the ROUTI NG
section.

Note: The Production sample application packaged with the BEA Tuxedo software
is configured to run entirely on one machine. However, you can easily
configure this application to run on multiple machines by specifying the other
machinesinthe LM D parameter. This step assumesthat you specify the MODEL
MP parameter in the RESOURCES section.

See Also

m “How to Create the SERVERS Section of the Configuration File” on page 3-62

Specifying a Group Name, Number, and
LMID

The group name, which isthe basis for a GROUPS section entry, is an a phanumeric
name by which the group is identified; it specifies the logical name (st ri ng_val ue)
of the group. It is given amandatory, unigque group number (GRPNO). Each group must
reside wholly on one logical machine (LM D).

The LM D specifies that this group of servers resides on the machine symbolically
named by st ri ng_val uel in the MACH NES section.

3-48 Setting Up aBEA Tuxedo Application

Specifying a Group Name, Number, and LMID

Characteristics of the Group Name, Group Number, and

LMID

Parameter

Characteristics

Group_nane required_
paraneters[optional _
par anet er s]

Itisrequired.
It is an alphanumeric name by which the group isidentified.
It is unique and specifies the logical name of the group.

GRPNO (Group Number)

Itisrequired and is unique.

LM D=string_val uel
[, string_val ue2]

It isrequired.

Each LMID value must be an a phanumeric string
containing 30 or fewer characters.

Up to two logical machine names can be specified. If a
second logical name is given and server group migration is
enabled, the machine with which the server group is
associated can be migrated.

See Also

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System

Processes Reference

m “How to Create the NETWORK Section of the Configuration File’ on page 3-53

Setting Up a BEA Tuxedo Application 3-49

3

Creating the Configuration File

Indicating a Transaction Manager Server
Name and Numbers per Group

The name of the transaction manager server (TMS) must be specified in the entry for
any group with serversthat will participate in distributed transactions (transactions
across multiple resource managers—and possibly machines). To specify aTMS, set
the TMSNANME parameter. This parameter specifiesthefile (st ri ng_val ue) to be
executed by t mboot (1) when booting the server group.

The value TMSisreserved to indicate use of the null XA interface. Thisinterface can
be used for server groups that do not have resource managers. If you do not have a
resource manager, you may not need a TMS. This server group may be infected with
transactional messages. If a non-empty value other than TMSis specified, then a
TLOGDEVI CE must be specified for the machine(s) associated with the LM D value(s)
for thisentry. A unigue server identifier is selected automatically for each TM server.
Servers are restartable an unlimited number of times.

If TMSNAME is specified, TMSCOUNT=nunber must also be specified to indicate the
number of transaction manager serversto start for the associated group. Thedefault for
TMBCOUNT is 3. If specified and the value is non-zero, the minimum valueis 2 and the
maximum value is 256. The servers are set up in an MSSQ set automatically.

|dentifying the Environment File Location
for Servers in a Group

3-50

If the value of the ENVFI LE environment variable (ENVFI LE=st ri ng_val ue) isan
invalid filename, no values are added to the environment. Lines must be of the form
i dent =val ue wherei dent contains only underscores or alphanumeric characters.

Within val ue, strings of the form ${env} are expanded when thefile is processed
using variables already defined for the environment. (Forward referencing is not
supported. If avalueisnot set, thevariableis replaced with an empty string.) Y ou can

Setting Up a BEA Tuxedo Application

Defining Information Needed When Opening and Closing the Resource Manager

useaback slash (\) to escape dollar signs and other back slashes. All other shell quoting
and escape mechanisms are ignored and the expanded value is placed in the
environment.

Environment files are provided in at least two sections of the configuration file. The
BEA Tuxedo system reads them in the following order:

1. MACH NES section ENVFI LE
2. GROUPS section ENVFI LE
3. SERVERS section ENVFI LE (Optional)

Values in the SERVERS section override values in the GROUPS section. Values in the
GROUPS section override values in the MACHI NES section.

Defining Information Needed When
Opening and Closing the Resource Manager

The values of both the OPENI NFO and CLOSEl NFO parameters must be alphanumeric
stringsthat contain amaximum of 256 characters, and are enclosed in doubl e quotation
marks. These settings specify the resource manager dependent information needed
when opening and closing the resource manager for this group (that is, for this group
name).

Thisvalueisignored if the TMSNANME parameter for thisgroup isnot set or is set to TVS.
If the TMBNAME parameter is set to a value other than TVS but the OPENI NFO string is
set to the null string (" ") or is not specified, a resource manager exists for the group
but does not require any information for executing an open operation. If the TVSNAVE
parameter is set to a value other than TVS but the CLOSEI NFO string is set to the null
string (" ") or is not specified, aresource manager exists for the group but does not
require any information for executing a close operation.

The format of the OPENI NFO string is dependent on the requirements of the vendor
providing the underlying resource manager. The information required by the vendor
must be prefixed with the published name of the vendor’ stransaction (XA) interface,
followed immediately by a colon (:).

Setting Up a BEA Tuxedo Application 3-51

3

Creating the Configuration File

3-52

For BEA Tuxedo /Q databases, the format of OPENI NFOis as follows:

m On UNIX
OPENI NFO =" TUXEDO' QM gntonfi g: qspace”

m On Windows 2000
OPENI NFO =" TUXEDO' QM gntonfi g; gspace"

In all these settings, TUXEDO' QMis the published name of the BEA Tuxedo /Q XA
interface, gnconfi g is replaced with the name of the QUCONFI G (see gmadni n(1) in
the BEA Tuxedo Command Reference) on which the queue space resides, and gspace
isreplaced with the name of the queue space. For Windows 2000, the separator after
gneonf i g must be asemicolon (;).

Note: The CLOSEI NFOstring is hot used for BEA Tuxedo /Q databases.

For other vendors' databases, the format of the OPENI NFO string is specific to the
particular vendor providing the underlying resource manager. As an example, the
following OPENI NFOstring demonstratesthe type of information needed when opening
the Oracle resource manager.

OPENI NFO=" Or acl e_XA:
Oracl e_XA+Acc=P/ Scott/*****+SesTm=30+LogDi t =/ t np"

O acl e_XAisthe published name of the Oracle XA interface. The series of five
asterisks (*) in the OPENI NFOstring pertains to the encrypting of apassword, whichis
described in the paragraphs that follow.

Passwords passed to aresource manager in the OPENI NFOstring can be stored in either
clear text or encrypted form. To encrypt a password, first enter a series of five or more
continuous asterisks in the OPENI NFOstring at the place where you want the password
to go. Then load the UBBCONFI Gfile by running t ml oadcf (1) . When t ml oadcf ()
encounters the string of asterisks, it prompts you to create a password. For example:

tm oadcf -y /usr5/apps/ bankapp/ nyubbconfi g
Password for OPEN NFO (SRVGRP=BANKB3) :
password

t m oadcf () storesthe password inthe TUXCONFI Gfilein encrypted form. If you then
regenerate the UBBCONFI Gfile from the TUXCONFI Gfile using t munl oadcf (1) , the
password is printed in the regenerated UBBCONFI Gfile in encrypted form with @@as
delimiters. For example:

OPENI NFO="Or acl e_XA:
O acl e_XA+Acc=P/ Scot t / @A0986F7733D4 @@ SesTm=30+LogDi t =/t np"

Setting Up a BEA Tuxedo Application

How to Create the NETWORK Section of the Configuration File

When t m oadcf () encountersan encrypted password in a UBBCONFI Gfile generated
by t nunl oadcf (), it does not prompt the user to create a password.

How to Create the NETWORK Section of the

Configuration File

If you have more than one machine in your distributed application, you need to create
aNETWORK section in your configuration file. This section sets up communications

among your machines. Y ou can configure network groupsin both the NETGROUPS and
NETWORK sections of an application’s UBBCONFI Gfile.

For each parameter in the NETWORK section, the following table provides adescription
and links to reference pages and additional information.

To Specify ThisInformation in the NETWORK
Section

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

The device name to be used by the BRI DGE process placed
on that LM Dto access the network.

BRI DGE (Optional)

BRI DGE device name

The complete network address to be used by the BRI DGE
process; that is, the listening address on the LM D.

NADDR (Required)

BRI DGE network
address

The minimum level of encryption required when anetwork
link to this machine is being established.

M NENCRYPTBI TS
(Optional)

Encryption levels

The maximum level of encryption allowed when a network
link is being established.

MAXENCRYPTBI TS
(Optional)

Encryption levels

The network group associated with this network entry. If
unspecified, then the default, DEFAULTNET, is assumed. (If
not set to DEFAULTNET, this parameter must be defined as
agroup name in the NETGROUPS section.)

NETGROUP (Optional)

Network group

The network address used by thet | i st en(1) process
servicing the network on the node identified by the LM D.

NLSADDR (Optional)

tli st en network
address

Setting Up a BEA Tuxedo Application

3-53

3 Creating the Configuration File

Sample NETWORK Section

Thefollowing configuration file excerpt shows a NETWORK section for atwo-site
configuration.
* NETWWORK
SI TE1 NADDR="// machl: 80952"
NLSADDR="// machl: serve"

SI TE2 NADDR="// mach386: 80952"
NLSADDR="// mach386: serve"

See Also

m UBBCONFI G 5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

m “How to Create the NETGROUPS Section of the Configuration File” on page
3-58

Specifying a Device Name for the BRIDGE
Process

To specify the device name to be used by the BRI DGE process placed on the LM D to
access the network, set the BRI DGE parameter as follows:

BRI DGE=st ri ng_val ue

If you are using TCP/IP, you do not need to specify the device name for the BRI DGE.
The pathname for the network transport endpoint file has the following form:

/ dev/ provi der _name

3-54 Setting Up aBEA Tuxedo Application

Assigning a BRIDGE Network Address

Assigning a BRIDGE Network Address

To specify the complete network address to be used by the BRI DGE process placed on
the LM D asits listening address, set the NADDR parameter as follows:

NADDR = string_val ue

The listening address for a BRI DGE is the location at which it is contacted by other
BRI DGE processes participating in the application.

Thelistening addressfor a BRI DGE may also be specified in one of the following three
forms:
® //host. nane: port_nunber

W //#. #. #. # port_nunber
m Oxhex-digitsor\\xhex-digits

In the first of these formats, host . nane isresolved to the address of the TCP/IP host
address at the time the address is bound. This format is based on locally configured
name resolution facilities accessed via an operating system command. The value of
por t _nunber can be a symbolic name or a decimal number.

In the second format, the string #. #. #. # represents four decimal numbers (each of
which is between 0 and 255), separated by periods. The value of por t _nunber isa
decimal number in the range 0 to 65,535 (the hexadecimal representations of the string
specified). The value of port _nunber can be asymbolic name or a decimal number.

Inthethird format, the string Oxhex- di gi t s or\ \ xhex- di gi t s must containan even
number of valid hex digits. A string in either of theseformsistranslated internally into
acharacter array containing TCP/IP addresses.

Note: On some platformslower numbers may be reserved for the system.

Setting Up a BEA Tuxedo Application 3-55

3 Creating the Configuration File

Assigning Encryption Levels

Example

See Also

To set up the minimum level of encryption required when establishing a network link
to the machine, set the M NENCRYPTBI TS parameter. Valid values are 0, 56, and 128.
0 means no encryption, while 56, and 128 specify the encryption key length (in bits).
If thisminimum level of encryption cannot bemet, link establishment fails. Thedefault
isO.

To set up amaximum level of encryption when establishing a network link, set the
MAXENCRYPTBI TS parameter. Valid values are 0, 56, and 128. 0 means no encryption,
while 56, and 128 specify the encryption key length (in bits). The default is 128.

MAXENCRYPTBI TS=128
M NENCRYPTBI TS=0

m “Link-Level Encryption” on page 1-23 in Using Security in CORBA
Applications

Assigning a tlisten Network Address

To specify the network addressused by thet | i st en(1) process servicing thenetwork
on the machine identified by the LM D, set the NLSADDR parameter as follows:

NLSADDR=stri ng_val ue

Thevaueof stri ng isanetwork address in the same format as that specified for the
NADDR parameter.

3-56 Setting Up a BEA Tuxedo Application

Assigning a tlisten Network Address

Thet!i st en address for NLSADDR may be specified in one of the following three
forms:

® //host. nane: port_nunber

W //#. #. #. # port_nunber
m Oxhex-digitsor\\xhex-digits

In the first of these formats, host . nane isresolved to the address of the TCP/IP host
address at the time the address is bound. This format is based on locally configured
name resolution facilities accessed via an operating system command. The value of
por t _nunber can be a symbolic name or a decimal number.

In the second format, the string #. #. #. # represents four decimal numbers (each of
which is between 0 and 255), separated by periods. The value of por t _nunber isa
decimal number intherange0to 65,535 (the hexadecimal representations of thestring
specified). The value of port _nunber can be asymbolic name or adecima number.

Inthethird format, the string Oxhex- di gi t s or\ \ xhex- di gi t s must containan even
number of valid hex digits. A string in either of theseformsistranslated internally into
acharacter array containing TCP/IP addresses.

tm oadcf (1) printsan error if NLSADDR is missing from an entry for any machine
besides the MASTER LM D, for which it printsawarning. If NLSADDR is missing from
the MASTERLM D, t madmi n(1) cannot run in administrator mode on remote machines;
it is limited to read-only operations. In addition, the backup site cannot reboot the
MASTER site after failure.

Setting Up a BEA Tuxedo Application 3-57

3 Creating the Configuration File

How to Create the NETGROUPS Section of
the Configuration File

The NETGROUPS section of the UBBCONFI Gfile describes the network groups available
to an application in aLAN environment. Thereis no limit to the number of network
groups to which you can assign a pair of machines. The method of communication to
be used by members of different networks in a network group is determined by the
priority mechanism (NETPRI O).

Every LM D must be a member of the default network group (DEFAULTNET). The
network group number for this group (that is, the value of NETGRPNO) must be zero.
However, you can modify the default priority of DEFAULTNET. Networksdefined in the
BEA Tuxedo system prior to release 6.4 are assigned to the DEFAULTNET network

group.

For each parameter in the NETGROUPS section, the following table provides a
description and links to reference pages and additional information.

To Specify ThisInformation in theNETGROUPS Set This Parameter For More

Section (Optional) (Required/Optional) Information, Click
the Following

Allow more netgroups to be defined than the default (8). MAXNETGROUPS Maximum netgroups

Thisvalueis specified in the RESOURCES section. (Optional)

The maximum size of data waiting for the network to MAXPENDI NGBYTES Message space limits

becomeavailable. Thisvalueis specified inthe MACHI NES ~ (Optional)

section.

The network group associated with this network entry. NETGROUP (Required) Network group name

A unique network group number that you must assigntouse NETGRPNO (Required) Network group

in failover and failback situations. number

The priority of this network group. NETPRI O (Optional) Network group
priority

3-58 Setting Up a BEA Tuxedo Application

How to Create the NETGROUPS Section of the Configuration File

Sample Network Groups Configuration

Y ou can associate network addresses with a network group. The following example
illustrates how this capability may be useful.

First State Bank has a network of five machines (A-E). Each machine belongs to two
or three of four netgroups that you have defined in the following way:

m DEFAULTNET (the default network, which is the corporate WAN)
m MAGENTA GROUP (aLAN)
m BLUE GROUP (aLAN)

m GREEN_GROUP (aprivate LAN that provides high-speed, fiber, point-to-point
links between member machines)

Every machine belongs to DEFAULTNET (the corporate WAN). In addition, each
machine is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally,
some machinesin the MAGENTA_GROUP LAN also belong to the private GREEN GROUP.
Thefollowing illustration shows machines A through E in the networksfor which they
have addresses.

Figure 3-3 Example of a Network Grouping

MAGENTA_GROUP BLUE_GROUP
NETPRIO=200 NETPRIO=200
A B c D E
GREEN_GROUP
NETPRIO=300

DEFAULTNET{CORPORATE WAN)
NETPRIO==100

Setting Up a BEA Tuxedo Application 3-59

3 Creating the Configuration File

The following table shows which machines have addresses for which groups.

ThisMachine Has Addressesfor These Groups

AandB DEFAULTNET (the corporate WAN)
MAGENTA_GROUP (LAN)
GREEN_GROUP (LAN)

C DEFAULTNET (the corporate WAN)
MAGENTA_GROUP (LAN)

DandE DEFAULTNET (the corporate WAN)
BLUE_GROUP (LAN)

Note: Becausethe local area networks are not routed among locations, machine D
(in the BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP
LAN) only by using the single address they have in common: the corporate
WAN network address.

Configuring a Sample UBBCONFIG File with Netgroups

To set up the configuration just described, the First State Bank system administrator
defines each group in the NETGROUPS section of the UBBCONFI Gfile, as shown in the
following configuration file sample.

Listing3-1 Sample NETGROUPS and NETWORK Sections

* NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRI O = 100 #defaul t
BLUE_GROUP NETGRPNO = 9 NETPRI O = 200
MAGENTA_GROUP NETGRPNO = 125 NETPRI O = 200
GREEN_GROUP NETGRPNO = 13 NETPRI O = 300

* NETVWORK

A NETGROUP=DEFAULTNET NADDR="// A_CORPORATE: 5723"
A NETGROUP=MAGENTA_GROUP NADDR="// A_NMAGENTA: 5724"

A NETGROUP=GREEN_GROUP NADDR="// A_GREEN: 5725"

3-60 Setting Up aBEA Tuxedo Application

Assigning a Name to a Network Group

B NETGROUP=DEFAULTNET NADDR="// B_CORPCORATE: 5723"
B NETGROUP=MAGENTA_GROUP NADDR="// B_MAGENTA: 5724"

B NETGROUP=GREEN_GROUP NADDR="// B_GREEN: 5725"

C NETGROUP=DEFAUL TNET NADDR="// C_CORPCORATE: 5723"
C NETGROUP=MAGENTA_GROUP NADDR="// C_MAGENTA: 5724"

D NETGROUP=DEFAUL TNET NADDR="// D_CORPORATE: 5723"
D NETGROUP=BLUE_GROUP NADDR="//D BLUE: 5726"

E NETGROUP=DEFAULTNET NADDR="// E_CORPORATE: 5723"
E NETGROUP=BLUE_GROUP NADDR="// E_BLUE: 5726"

See Also

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

m “How to Create the SERVERS Section of the Configuration File” on page 3-62

m “Setting Up the Network for a Distributed Application” on page 9-1

Assigning a Name to a Network Group

To assign anameto a network group, set the NETGROUP parameter as follows:
NETGROUPrequi red_paranmeters [optional _paranet ers]

If you set NETGROUP to DEFAULTNET, then the entry describes the default network
group. All network entrieswith a NETGROUP parameter of DEFAULTNET arerepresented
in the T_MACH NE class of the TM_M B, while NETWORK entries associated with any
other NETGROUP are represented in the T_NETMAP class of the TM M B, so they can
interoperate with previous releases.

Setting Up a BEA Tuxedo Application 3-61

3 Creating the Configuration File

Assigning a Network Group Number

To accommodate circumstances in which you may need to use failover and failback,
you must set the NETGRPNO parameter as follows:

NETGRPNO=nuneri c_val ue

If this entry describes DEFAULTNET, the value of NETGRPNO must be zero.

Assigning a Priority to the Network Group

A pair of machines in multiple network groups of the same priority can communicate
simultaneously over the circuits with the highest priority. To assign network group
priorities, use the NETPRI O parameter. If al network circuits of a certain priority are
torn down by an administrator or by network conditions, the next lower priority circuit
isused. Retries of the higher priority circuits are attempted. The value of the NETPRI O
parameter must be a number greater than zero and less than 8,192. The default is 100.

How to Create the SERVERS Section of the
Configuration File

The SERVERS section of the configuration file contai ns information specific to aserver
process. While this section is not required, an application without this section has no
application serversand little functionality. Each entry in thissection represents aserver
process to be booted in the application and includes the following information:

m Thename, group, and numeric identifier for a server (SRVGRP, SRVI D)

m Server command-line options defined by ser vopt s (CLOPT)

3-62 Setting Up aBEA Tuxedo Application

How to Create the SERVERS Section of the Configuration File

m Parameters to determine the booting order and number of servers to boot

(SEQUENCE, M N, MAX)

m A server-specific environment file (ENVFI LE)

m Server queue-related information (RQADDR, RQPERM REPLYQ, RPPERM)

m Restart information (RESTART, RCVD, MAXGEN, GRACE)

m Designation as a conversational server (CONV)

m Overriding of system-wide shared memory access (SYSTEM ACCESS)

m Setting security parameters for I1OP Listener (1SL) servers

Note: Command-line options supported by the BEA Tuxedo system are described in
servopt s(5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference.

For each parameter in the SERVERS section, the following table provides adescription
and links to reference pages and additional information.

To Specify ThisInformation in the
SERVERS Section (Optional)

Set ThisParameter For More
(Required/Optional) Infor mation, Click
the Following

Whether the server is a conversational
server. Connections can be made only to
conversational servers, andr pc requests
(viat pacal | (3c) ort pcal | (3c)) can be
made only to non-conversational servers.

CONV (optional run-time parameter) Conversational server

Principal name of the process used for
identification, location of theprincipa user’s
private key, and the environment variable
containing the password

SEC_PRI NCl PAL_NAME, Security attributes
SEC_PRI NCl PAL_LOCATI ON,
SEC_PRI NCl PAL_PASSVAR

When this server should be booted or shut
down relative to other servers.

SEQUENCE (Optional boot parameter) Server boot order

The minimum number of occurrences of the
server to be booted by t mboot .

M N (Optional boot parameter) Server boot order

Setting Up a BEA Tuxedo Application 3-63

3 Creating the Configuration File

To Specify ThisInformation in the
SERVERS Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

The maximum number of occurrences of the
server that can be booted.

MAX (Optiond boot parameter)

Server boot order

A ligt of ser vopt s(5) options to be passed
to aserver process a boot time. If none are
specified, thedefaultis- A.stri ng_val ue
may contain up to 256 characters.

CLOPT (Optional boot parameter)

Server command-line
options

A request for the addition of thevaluesin this
file to the environment of the server during
itsinitialization. If aserver isassociated with
aserver group that can be migrated to a
second machine, the ENVFI LE must bein
the same location on both machines.

ENVFI LE (Optional run-time
parameter)

Server environment
file

The name of the group inwhich the serveris SRVGRP (Required) Server group

torun. stri ng_val ue must bethelogical

name associated with a server group in the

GROUPS section.

An integer that uniquely identifiesaserver ~ SRVI D (required) Server ID

withinagroup. Identifiers must be between 1

and 30,000 inclusive.

The symbolic name of the request queue for RQADDR (Optional run-time parameter) Server queue

the process. information

The numeric permissions on the request RQPERM (Optional run-time parameter) Server queue

queue. information

Whether areply queue should beestablished REPLYQ (Optiona run-time parameter) Server queue

for the process. information

The numeric permissionsonthereply queue. RPPERM (Optional run-time parameter) Server queue
information

The command that should be executed when RCMD (Optional run-time parameter) Server restart

the process abnormally terminates, if the information

processis restartable.

3-64 Setting Up aBEA Tuxedo Application

How to Create the SERVERS Section of the Configuration File

To Specify ThisInformation in the
SERVERS Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

The maximum number minus one time that
the process can be restarted within the period
specified by GRACE, if the processis
restartable.

MAXGEN (Optiond run-time parameter)

Server restart
information

A parameter that specifies that the process
can have up to MAXGEN lives within the
specified number of seconds, if the processis
restartable.

GRACE (Optional run-time parameter)

Server restart
information

Whether the processisrestartable. Default is
N. If server migration is specified, RESTART
must besetto Y. (A server terminated with a
S| GTERMsignal must be rebooted.)

RESTART (Optional run-time
parameter)

Server restart
information

The default mode used by BEA Tuxedo
system librarieswithin application processes
to gain access to BEA Tuxedo system
internal tables.

SYSTEM ACCESS (Optiond run-time
parameter)

System access to
servers

The minimum number of server dispatch
threads started on initial server boot. The
separate dispatched thread that is used when
MAXDI SPATCHTHREADS>1 is hot counted
as part of the MAXDI SPATCHTHREADS
value. Itisrequired that

M NDI SPATCHTHREADS<=

MAXDI SPATCHTHREADS. The default for
this parameter is 0.

M NDI SPATCHTHREADS

Threads

The maximum number of concurrently
dispatched threads that each server process
may spawn. |f MAXDI SPATCHTHREADS>1,
then a separate dispatcher thread is used and
does not count against thislimit. It is
required that M NDI SPATCHTHREADS<=
MAXDI SPATCHTHREADS. The default for
this parameter is 1.

MAXDI SPATCHTHREADS

Threads

Setting Up a BEA Tuxedo Application

3-65

3 Creating the Configuration File

To Specify ThisInformation in the
SERVERS Section (Optional)

Set This Parameter For More
(Required/Optional) Information, Click
the Following

The stack sizein bytesfor each server thread
after theinitial thread. If not specified or
specified as0, the operating system default is
used. This option has an affect on the server
only when avaue greater than 1is specified
for MAXDI SPATCHTHREADS.

THREADSTACKSI ZE threads

Sample SERVERS Section

Following is a sample SERVERS section of a configuration file.

* SERVERS
DEFAULT:

RI NGUP1

RI NGUP2

RESTART=Y MAXGEN=5 GRACE=3600
REPLYQ=N CLOPT="-A"

ENVFI LE="/ usr/ hone/ envfil e”
SYSTEM ACCESS=PROTECTED

SRVGRP=GROUP1 SRVI D=1 M N=3
RQADDR="ri ng1"
SRVGRP=GROUP1 SRVI D=4 M N =3
RQADDR="ri ng2"

Note: Omitted from this sample are SEQUENCE (the order of booting is 1 to 6),
REPL YQ and RPPERM (the server does not receive replies), RCVD (no special

commands are

desired on restart), and CONV (servers are not conversational).

Defaults are applied to all serversunless a different setting is specified for a

specific server.

Sample SERVERS Section Parameters

In the preceding sample SERVERS section, the following parameters and values are

specified.
Par ameter Meaning
RESTART=Y (default) Restart the servers.
3-66 Setting Up aBEA Tuxedo Application

How to Create the SERVERS Section of the Configuration File

Parameter

M eaning

MAXGEN=5 (def ault)

The MAXGEN parameter specifies anumber greater than 0 and less
than 256 that controls the number of times a server can be started
within the period specified by the GRACE parameter. The default is
1. If the server is to be restartable, MAXGEN must be >= 2. The
number of restartsis at most nunber - 1 times. RESTART must
be Y or MAXGEN isignored.

GRACE=3600 (default)

If RESTART isY, the GRACE parameter specifiesthetime period (in
seconds) during which thisserver can berestarted as MAXGEN - 1
times. The number assigned must be equal to or greater than 0. The
maximum is2,147,483,648 seconds (or alittle more than 68 years).
If GRACE is not specified, the default is 86,400 seconds (24 hours).
As soon as one GRACE period isover, the next grace period begins.
Setting the grace period to 0 removesall limitations; the server can
be restarted an unlimited number of times.

REPLYQ=N (default)

Thereis no reply queue.

CLOPT="- A" (default)

Specify - A on the command line of each server.

ENVFI LE="/ usr/ hone/ envfil e”
(default)

Read environment settings from the file ENVFI LE.

SYSTEM ACCESS=PROTECTED (default)

Deny access to internal tables outside system code.

RI NGUP1

Sample name of the first server to be booted.

SRVGRP=GROUP1 SRVl D=1 M N=3
RQADDR="r i ng1"

Three instances of the sample server will be booted in group
GROUP1 with server IDs of 1, 2, and 3, respectively. The three
servers will form an MSSQ set and will read requests from queue
ringl.

Note: RQADDR assigns a symbolic name to the request queue of
this server. MSSQ sets are established by using the same
symbolic queue name for more than one server, aswell as
same executable name for all the servers (and by
specifying avalue greater than 1 for M N).

RI NGUP2

Name of the second sample server to be booted.

Setting Up a BEA Tuxedo Application 3-67

3 Creating the Configuration File

See Also

m UBBCONFI G 5) in theFile Formats, Data Descriptions, MIBs, and System
Processes Reference

m “How to Create the SERVICES Section of the Configuration File” on page 3-81

Specifying a Server as Conversational

If aserver is conversational (that is, if it establishes atwo-way connection between a
client and a dedicated server), the CONV parameter isrequired and must besettoy. The
default is N, indicating that the server will not be part of a conversation.

Characteristics of the CONV Parameter

The CONV parameter has the following characteristics:

m A Yvaueindicates aserver isconversational; an Nvalue indicates aserver is
not conversational.

m A Yvdueisrequired if the server isto receive conversational requests.

m ThedefaultisN.

Setting the Order in Which Servers Are
Booted

To specify the sequence of serversto be booted, set the SEQUENCE parameter for each
server. The value of SEQUENCE can be any number between 1 and 10,000. A server
with a smaller SEQUENCE value is booted before a server with alarger value. If the

3-68 Setting Up a BEA Tuxedo Application

Setting the Order in Which Servers Are Booted

SEQUENCE parameter is not set for any servers, the servers are booted in the order in
whichthey arelisted in the SERVERS section. If some, but not all serversare sequenced,
the sequenced servers are booted first. The order in which servers are shut down isthe
reverse of the order in which they were booted.

The SEQUENCE parameter isoptiona. It may be helpful in alarge application in which
control over boot order isimportant.

Warning: In CORBA environments, there isa strict order in which the system
EventBroker, the FactoryFinder object, and the application factories must
be booted. A CORBA application program will not boot if the order is
changed. See the section “ Required Order in Which to Boot CORBA C++
Servers’ on page 3-69 for details.

To boot multiple servers, set the M N parameter, which provides a shortcut to booting.
All servers share the same options. If you specify RQADDR, the serversform an M SSQ
set. The default for M Nis1.

To specify the maximum number of serversthat can be booted, set the MAX parameter.
Thet nboot (1) command boots M N servers at run time. Additional servers can be
booted up to MAX. The defaultisM N.

The M Nand MAX parameters are helpful in keeping the size of the configuration files
for large applications manageable. Allowancesfor MAX values must be madein the IPC
resources. The M N and MAX parameters are also used for conversational services and
automatic server spawning.

Required Order in Which to Boot CORBA C++ Servers

The following is the correct order in which to boot the servers In a BEA Tuxedo
CORBA environment. A CORBA application program will not boot if the order is
changed.

1. The system EventBroker, TMSYSEVT.

2. The TMFFNAME server with the - N option and the - Moption, which starts the
NameManager service (as a Master). This service maintains a mapping of
application-supplied names to object references.

3. The TMFFNAME server with the - N option only, to start a Slave NameM anager
service.

Setting Up a BEA Tuxedo Application 3-69

3 Creating the Configuration File

4. The TMFFNAME server with the - F option, to start the FactoryFinder object.
5. Theapplication C++ serversthat are advertising factories.

Listing 3-2 shows the order in which servers are booted for the BEA Tuxedo CORBA
University Basic application, which isone of the sample applicationsincluded with the
BEA Tuxedo software. This SERVERS section is excerpted from an edited version of
theubb_b. nt configuration file.

Listing 3-2 Edited SERVERS Section from a University Sample UBBCONFIG

* SERVERS
By default, restart a server if it crashes, up to 5 tines
in 24 hours.

#

DEFAULT:
RESTART =Y
MAXGEN =5

Start the BEA Tuxedo System EventBroker. This event broker
must be started before any servers providing the
NaneManager Service

#

TMSYSEVT
SRVCRP = SYS _CRP
SRviD =1

TMFENAME is a BEA Tuxedo CORBA provided server that
runs the NaneManager and FactoryFi nder services.

The NaneManager service is a BEA Tuxedo CORBA-specific
service that mai ntains a mappi ng of application-supplied nanes
to object references.

Start the NaneManager Service (-N option). This name
manager is being started as a Master (-Moption).

#
TMFENAMVE
SRVGRP = SYS GRP
SRVID =2
CLOPT ="-A-- -N-M
Start a sl ave NaneManager Service
#
TMFENAMVE

SRVCRP = SYS _CRP

3-70 Setting Up aBEA Tuxedo Application

Setting the Order in Which Servers Are Booted

SRViID =3
CLOPT ="-A-- -N'
Start the FactoryFinder (-F) service
#
TMFFENAME
SRVGRP = SYS GRP
SRVID =4
CLOPT ="-A-- -F"
Start the interface repository server
#
TM FRSVR
SRVGRP = SYS GRP
SRVID =5
Start the university server
#
uni vb_server
SRVGRP = ORA GRP
SRVID =6
RESTART = N

Start the listener for 110OP clients

#

Specify the host name of your server machine as
well as the port. A typical port nunber is 2500

#
I SL
SRVGRP = SYS GRP
SRID =7
CLOPT ="-A-- -n //TRIXIE: 2500"

In the example, after the TMSYSEVT and TMFFNANE servers are started, servers are
started for:

m AnInterface Repository. For information about this feature and the
command-line options (CLOPT parameter), see Chapter 6, “Managing CORBA
Interface Repositories.”

m Theuni vb_server, for the University Basic sample application. For details
about the sampl e applications, see the Guide to the CORBA University Sample
Applications.

Setting Up a BEA Tuxedo Application 3-71

3 Creating the Configuration File

m An Internet Inter-ORB Protocol (I10P) Server Listener (also knownasan ISL).
For information about this feature and the CLOPT parameter, refer to Chapter 12,
“Managing Remote BEA Tuxedo CORBA Client Applications.”

Note: When migrating or shutting down and restarting groups or machines for any
reason, if there are active slave NameManagers in other groups, be sure to
organize your UBBCONFI Gfile so that a FactoryFinder or aslave
NameManager is never restarted before the master NameManager is active.
For example, if you have a FactoryFinder in the same group as the master
NameM anager, arrange the order of these serversin the UBBCONFI Gfile so the
master NameManager is started first.

Characteristics of the SEQUENCE, MIN, and
MAX Parameters

Par ameter Characteristics

SEQUENCE It isan optiona parameter with a numeric range of 1 - 10,000.
Smaller values are booted before larger values.

Serversfor which thisparameter is not set are booted in theorder inwhich
they are listed in the SERVERS section.

All sequenced servers are booted before any unsequenced servers.

M N It represents the minimum number of serversto boot during run time.
If RQADDR s specified and M N>1, an MSSQ set is created.
All instances have the same server options.
The range of valuesis 0 to 1000.
The default is 1.

VAX It represents the maximum number of serversto boot.

The range of values for MAX is 0 to 1000. If MAX s not specified, the
default is the value of M N.

3-72 Setting Up aBEA Tuxedo Application

Specifying Server Command-line Options

Specifying Server Command-line Options

The BEA Tuxedo system allows you to specify options that are used when a server
processes a request. These options are defined in ser vopt s, which lists the run-time
options for server processes. The server may need to obtain information from the
command line. The CLOPT parameter allowsyou to specify command-line optionsthat
can change some defaults in the server, or pass user-defined optionsto the
tpsvrinit() function.

The standard mai n() of aserver parsesone set of options ending with the argument --,
and passestheremaining optionsto t psvri ni t () . Thedefault for CLOPT is- A, which
tells the server to advertise all the services built into it with bui | dserver (1) or
bui | dobj server (1) . The following table provides a partia list of the available

options.
Use This Option To
-o fil enane Redirect standard output to filef i | enane.
-e fil enane Redirect standard error to filef i | enane.
-S services Advertise services. For example, - s x,y,z to advertise services

X,Y,and z.

-s X,Y,z:funcnane Advertiseservicesx,y, and z, but process requests for those
serviceswith function f uncnane. Thisiscalled aliasing a
function name.

-r Specify that the server should log the services performed.
-V Print out the list of the service name/function name to standard
output.

This option cannot be used in the CLOPT in the UBBCONFI G. It
must be used when manually invoking the server.

Note: Youcanfind other standard mai n() optionslistedonser vopt s(5) intheFile
Formats, Data Descriptions, MIBs, and System Processes Reference.

Setting Up a BEA Tuxedo Application 3-73

3 Creating the Configuration File

Characteristics of the CLOPT Parameter

See Also

m Thesyntax iSCLOPT="servopts -- application_opts”.

m Thisisan optional parameter with a default of - A.

m Both main() and tpsvrinit() useserver command-line options.

m servopts(5) optionsare passed to mai n().

m Application options are passed to t psvrinit().

In the BANKAPP sampl e application, command-line options are specified as follows:
CLOPT="-A -- -T 10"

The server is given the option of advertising all services (- A) and teller ID of 10 so it
can update a specific teller record with each operation. The use of this option,
especially the options passed to t psvri ni t (), require communication between the
system administrator and the application programmer.

m servopts(5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

|dentifying the Location of the Server
Environment File

Use the ENVFI LE parameter in the MACHI NES section to specify environment settings.
Y ou can a so specify the same parameter for a specific server process; the semantics
are the same. If both the MACHI NES section ENVFI LE and the SERVERS section

ENVFI LE are specified, both go into effect. For any overlapping variable defined in
both the MACHI NES and SERVERS sections, the setting in the SERVERS section prevails.

3-74 Setting Up aBEA Tuxedo Application

Defining Server Name, Group, and ID

Characteristics of the Server Environment File

ENVFI LE, the parameter that defines the server environment file, has the following
characteristics:

m Itisan optiona parameter that contains the same semantics as the ENVFI LE
parameter in the MACHI NES section, but defines only one server.

m For overlapping variables, the setting in the SERVERS section ENVFI LE overrides
the setting in the MACHI NES and GROUPS sections ENVFI LE.

Defining Server Name, Group, and ID

You initially assign anameto a server in the SERVERS section. The hame you specify
must be the name of an executable file built with one of the following commands:

m buil dserver (1) for ATMI applications
m bui | dobj server (1) for CORBA C++ server applications

Y ou must also specify a group identifier (SRVGRP) for each server. The value of
SRVGRP must be the name specified in the beginning of a GROUPS section entry.
Finally, you must also provide each server processin a given group with a unique
numeric identifier (SRVI D). Every server entry must include the SRVGRP and SRVI D
parameters. Because the entries describe machines to be booted and not just
applications, it is possible that in some cases the same server name will be displayed
in many entries.

Setting Up a BEA Tuxedo Application 3-75

3 Creating the Configuration File

Characteristics of the Server Name, SRVGRP, and SRVID
Parameters

Par ameter Characteristics

Server _nane It identifies the executable to be booted.
Itisbuilt with bui | dserver (1) for ATMI.
It isbuilt with bui | dobj server (1) for CORBA.
It is required, but may not be unique within a server group.

SRVGRP (Server Group) It identifies the group affiliation.
The group name begins with a GROUPS section entry.
It isrequired.

SRVI D (Server ID) It is numeric.

It is required and unique within a server group.

ldentifying Server Queue Information

Server queue information controls the creation and access of server message queues.
On aBEA Tuxedo system, you can create Multiple Server, Single Queue (M SSQ) sets
by using the RQADDR parameter. For any given server, you can set this parameter to an
alphanumeric value. By specifying the same value for RQADDR on all serversthat offer
the same services, you can consolidate those services under one message queue, thus
creating an M SSQ set and establishing load balancing.

MSSQ Example

An MSSQ set issimilar to abank staff. Four tellers may be available to handle the
business requests of many customers who wait in asingle line. All customers are
assured of an equitablewait in line. Understandably, aloan officer is not included in

3-76 Setting Up aBEA Tuxedo Application

Identifying Server Queue Information

the group of tellers handling requests from customers in that line. The loan officer
cannot handle reguests for deposits and withdrawals (as the tellers can), and not all
customers want loans. Similarly, a server cannot join an MSSQ set if the services it
offers are not the same as the services offered by the serversin an MSSQ set.

The RQPERMparameter allowsyou to specify the permissionsfor server request queues,
along the lines of the UNIX system convention (for example, 0666). This setting
allows services to control access to the request queue.

If the service routines within an MSSQ server perform service requests, they must
receive repliesto their requests on areply queue. Y ou can set up such areply queue by
specifying REPLYQ=Y. By default, REPLYQissettoN. If REPLYQissettoY, you can also
assign permissionsto it with the RPPERM parameter.

Characteristics of the RQADDR, RQPERM, REPLYQ, and
RPPERM Parameters

Parameter Characteristics

RQADDR It is an aphanumeric value that alows MSSQ sets to be created. The
value is the same for all members of an MSSQ set. All members of an
M SSQ set must offer the same set of services and the serversinan MSSQ
set should have the same executable name. In order to boot multiple
servers, set the value greater than 1 for M n parameter.

RQPERM Represents the permissions on arequest queue. If no parameter is
specified, the permissions of the bulletin board, as specified by PERMin
the RESOURCES section, are used. If no valueis specified there, the
default of 0666 is used. When the default is used, your application is
available to anyone with alogin on the system.

Setting Up a BEA Tuxedo Application 3-77

3

Creating the Configuration File

Par ameter Characteristics

REPLYQ Specifieswhether areply queue, separate from the request queue, isto be
set up for thisserver. If only one server isusing the request queue, replies
can be picked up from the request queue without causing problems. On a
BEA Tuxedo system, if the server is amember of an M SSQ set and
contains services programmed to receive reply messages, REPLYQ
should be set to Y so that an individud reply queue is created for this
server. If not, thereply is sent to the request queue shared by all servers
of the MSSQ set, and there isno way of assuring that it will be picked up
by the server that iswaiting for it. Multithreaded servers automatically
create REPLY@s even if this parameter is not set.

RPPERM Assigns permissions to the reply queue. This parameter is useful only
when REPLYQ=Y. If requests and replies are read from the same queue,
only RQPERMis needed; RPPERMis ignored.

Defining Server Restart Information

3-78

A properly debugged server should not terminate on its own. By default, servers that
do terminate while the application is running are not restarted by the BEA Tuxedo
system. Y ou can set the RESTART parameter to Y if you want the server to restart. The
RCMVD, MAXGEN, and GRACE parameters are relevant to a server if RESTART=Y.

The RCVD parameter lets you specify a command to be performed in parallel with
restarting aserver. For example, you may want to have e-mail sent to the developer of
the server or to someone who is auditing such activity.

The MAXGEN parameter representsthe total number of livesto which aserver isentitled
within the period specified by GRACE. The server can then be restarted MAXGEN- 1 times
during GRACE seconds. If GRACE is set to zero, there is no limit on server restarts.
MAXGEN defaultsto 1 and may not exceed 256. GRACE must be greater than or equal to
zero and must not exceed 2,147,483,647 (231 - 1).

Note: A fully debugged server should not need to be restarted. RESTART and
associated parameters should have two settings: one for the testing phase, and
another for production.

Setting Up a BEA Tuxedo Application

Defining Server Access to Shared Memory

Characteristics of the RESTART, RCMD, MAXGEN, and

GRACE Parameters

Parameter

Characteristics

RESTART

A setting of Y enables a server to restart.
The defaultis N.

RCVD

Specifies an executable file to be run at restart time.
Allows you to take an action when a server is restarted.

MAXCGEN

Represents the maximum number of server lives in a specific interval.
The default is 1; the maximum is 256.

GRACE

Represents the interval used by MAXGEN.

Zero represents unlimited restart.

It must be between 0 and 2147,483,647 (231 - 1).
The default is 24 hours.

Defining Server Access to Shared Memory

The SYSTEM ACCESS parameter determines whether a server process may attach to
shared memory and thus have accessto internal tables outside system code. During
application development, we recommend that such access be denied (PROTECTED).
When the application is fully tested, you can change the value of SYSTEM ACCESS to
FASTPATH to yield better performance.

This parameter setting overrides the value specified in the RESOURCES section unless
the NO_OVERRI DE value has been specified. Inthis case, the parameter isignored. The
NO_OVERRI DE vaue may not be used in this section.

Setting Up a BEA Tuxedo Application 3-79

3

Creating the Configuration File

Characteristics of the SYSTEM_ACCESS Parameter

The SYSTEM ACCESS parameter has the following characteristics:

m A value of PROTECTED indicates that the server may not attach to shared
memory outside of system code.

m A vaueof FASTPATH indicatesthat the server will attach to shared memory at
all times.

m If NO OVERRI DEis specified in the RESOURCES section, this parameter is
ignored.

m Thedefault isthe value of the SYSTEM ACCESS parameter in the RESOURCES
section.

m TheBEA Tuxedo system runs more slowly when avalue of PROTECTEDis set.

Defining the Server Dispatch Threads

3-80

MAXDI SPATCHTHREADS is the maximum number of concurrently dispatched threads
that each server process may spawn. If MAXDI SPATCHTHREADS>1, then a separate
dispatcher thread is used and does not count against this limit. It is required that

M NDI SPATCHTHREADS<=MAXDI SPATCHTHREADS. If not specified, the default for this
parameter is 1.

M NDI SPATCHTHREADS is the minimum number of server dispatch threads started on
initial server boot. The separate dispatched thread that is used when

MAXDI SPATCHTHREADS>1 is hot counted as part of the MAXDI SPATCHTHREADS value.
Itisrequired that M NDI SPATCHTHREADS<=MAXDI SPATCHTHREADS. The default for
this parameter is 0.

Y ou must specify the stack size in bytesfor each server thread after the initia thread.
If not specified or specified as 0, the operating system default is used. Thisoption has
an affect on the server only when avalue greater than 1 is specified for

MAXDI SPATCHTHREADS.

Setting Up a BEA Tuxedo Application

Setting Security Parameters for ISL Servers

Setting Security Parameters for ISL Servers

In CORBA environments the [1OP Listener (1SL) process listens for remote clients
requesting a connection. The ISL processis specified in one entry as a server supplied
by the BEA Tuxedo system.

The Secure Socket L ayer (SSL) protocol defines how processes can communicatein a
secure manner over 11OP. Use the - s option on the ISL command to set the required
parameters. Y ou only need to set these parameters if you are using the SSL protocaol,
which isinstalled in the BEA Tuxedo Security Pack.

Table 3-1 liststhe SSL parameters characteristics.

Table3-1 ISL and SSL Parameter s Char acteristics

Parameter

Characteristics

SEC_PRI NCI PAL_NAME Specifiesthe identity of the I|OP Listener/Handler.

SEC_PRI NCI PAL_LOCATI ON Specifiesthe location of the private key for the IIOP Listener/Handler.

SEC_PRI NCI PAL_ PASSWORD Specifies the phrase for the private key of the [IOP Listener/Handler.

For more information about setting these parameters, see Using Security in CORBA
Applications.

How to Create the SERVICES Section of the
Configuration File

Detailed information about the services in your application can be entered in the
SERVI CES section of the configuration file. For nontransactional, nondistributed
applications, such information isrelatively simple. The SERVI CES section includesthe
following types of information:

m Load balancing information (SRVGRP)

m Assignment of priorities to services

Setting Up a BEA Tuxedo Application 3-81

3 Creating the Configuration File

m Different service parameters for different server groups

m Buffer type checking information (BUFTYPE)

Thereare no required parametersfor services. You need to list servicesonly if you are
setting optional parameters.

For each parameter in the SERVI CES section, thefollowing table provides adescription

and links to reference pages and additional information.

To Specify ThisInformation in the
SERVICES Section

Set This Parameter
(Required/Optional)

For More I nformation,
Click the Following

Whether atransaction should be started
automatically when arequest message is
received that is not already in transaction
mode.

AUTOTRAN (For DTP
applications only)

Automatic startsfor
transactions

A list of types and subtypes of data buffers
accepted by this service. This parameter
may contain up to 256 characters with a
maximum of 32 type/subtype
combinations.

BUFTYPE (Optional)

Buffer types

A load factor to be imposed on the system
by SVCNAM

LOAD (Optional)

Load balancing

The name of the routing criteria used for
thisservicewhen data- dependent routingis
used.

ROUTI NG (Optional)

Routing criterianame

The name of the sever group from which
SVCNAMgets all group parameter settings.

SRVGRP (Optional)

Server group parameters

The dequeuing priority of SVCNM

PRI O (Optional)

Service priorities

The amount of time, in seconds, that is
alowed for processing of the indicated
service.

SVCTI MEOUT (Optional)

Service processing time

The default timeout interval, in seconds, for
a transaction automatically started for the
associated service.

TRANTI ME (For DTP
applications only)

Timeout valuesfor transactions

3-82 Setting Up aBEA Tuxedo Application

Specifying Automatic Starts and Timeout Intervals for Transactions

Sample SERVICES Section

See Also

Following is a sample of the SERVI CES section of a configuration file.

*SERVI CES

#

DEFAULT: LOAD=50 PRI O=50

Rl NGUP BUFTYPE="VI EW r i ngup”

In this example, the default load and priority of a service are 50; the one service
declared isa Rl NGUP service that accepts a Rl NGUP VI Ewas its required buffer type.

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

m “How to Create the ROUTING Section of the Configuration File” on page 3-95

Specifying Automatic Starts and Timeout
Intervals for Transactions

Y ou can determine whether a transaction should be started automatically if a request
message is already in transaction mode by coding the AUTOTRAN ={ Y| N} parameter.
The default isN.

Y ou can specify atimeout interval between thetime at which atransaction for aservice
begins and the time at which it isrolled back if not completed. To specify atimeout
interval that will be used automatically, set the TRANTI ME parameter as follows:

TRANTI ME=nunber

The default is 30 seconds. A value of 0, the maximum timeout val ue for the computer,
means atransaction will never time out.

Setting Up a BEA Tuxedo Application 3-83

3 Creating the Configuration File

Specifying a List of Allowable Buffer Types
for a Service

With the BUFTYPE parameter, you can tune a service to check buffer types
independently of the service code. Set this parameter with alist of allowable buffer
types for aservice in the following format:

type[: subtype[, subtype]]
To alow all subtypes, set the value of subt ype to *.

If the value of the BUFTYPE parameter for a serviceis ALL, this service accepts all
buffer types. The default is ALL.

Examples of the BUFTYPE Parameter

BUFTYPE Example M eaning

BUFTYPE="FM.; VI EW aud, aud2" FM. andVI EWbuffer typeswith subtypesaud and
aud? are allowed.

BUFTYPE="FM.; VI EW *” All FML and VI EWbuffer types are allowed.

BUFTYPE=ALL All buffer types are allowed (the default).

3-84 Setting Up aBEA Tuxedo Application

Designating How Much Time to Process a Request

Designating How Much Time to Process a
Request

Sometimes an unexpected system error occurs, freezing a service or causing it to run
out of control whileit is processing a request. Obviously, it isa good ideato remove
these processes, but it is difficult to detect them or determine how they devel oped
errors. The BEA Tuxedo system provides a mechanism for terminating such processes
even when you cannot identify them. To use this mechanism, set the SVCTI MEQUT
parameter.

The SVCTI MEQUT parameter allowsyou to designate an amount of time (in seconds) in
which a service should be able to process arequest. If the interval defined by this
parameter elapses and a service has not finished processing a request, the process for
that request is killed. In essence, the service timeout mechanism acts like a scavenger
for frozen or out of control application servers. By default, the BEA Tuxedo system
does not terminate any service process; you must set the SVCTI MEQUT parameter to
activate thisfeature.

Y ou can assign a value to the SVCTI MEQUT parameter in the UBBCONFI Gfile or by
dynamically changing the TA_SVCTI MEQUT attribute in TM_M B. We recommend that
you set the value of SVCTI MEQUT or TA_SVCTI MEQUT to at least two to three timesthe
number of seconds it takes for your longest running service to process a request.
Setting the service timeout in this way guarantees that the BEA Tuxedo system
removes only frozen processes.

This section describes the causes and results of service timeout errors, and explains
how the BEA Tuxedo system reports such errors. Advice about how to handle errors
is aso provided.

What Happens When a Timeout Occurs

When atimeout occurs, the BEA Tuxedo system terminatesthe server process running
the frozen service (but not its child processes, if any). It then returns a TPESVCERR
error, indicating that an unknown problem occurred during processing. In a
conversational service, the conversation event TPEV_SVCERR is returned.

Setting Up a BEA Tuxedo Application 3-85

3

Creating the Configuration File

How a Service Timeout Is Reported

The BEA Tuxedo system reports a service timeout through the following three
mechanisms:

m TPED SVCTI MEOUT—timeout error detail that provides moreinformation than
tpstrerror(3c)

® . SysServi ceTi meout —asystem event
m ULOGinformation about . SysServi ceTi neout

Because the SVCTI MEQUT value is configurable, it isimportant for clientsto be able to
easily distinguish between a TPESVCERR caused by exceeding the value set for

SVCTI MEOUT, and a TPESVCERR caused by other situations. Although the ULOG
containsthisinformation, itisdifficult for client programsto extract it. To differentiate
a service timeout TPESVCERR from others, a program can include acall to the

t per rordet ai | (3c) routine (after a TPESVCERR has been detected), which yields
TPED_SVCTI MEQUT when a service timeout occurs.

In addition, a system event, . SysSer vi ceTi meout , is generated when a service
timeout occurs. Whena. SysSer vi ceTi meout event occurs, itisreflected inthe ULOG
in the following way:

ERROR. . SysServi ceTi meout: %A SERVERNAME, group %A SRVGRP, id
%A SRVI D server killed due to a service tinmeout

How to Control a Service Timeout

3-86

m Application administrators may control the service timeout by changing the
SVCTI MEOQUT parameter in the SERVI CES section of the UBBCONFI Gfile, or by
modifying the TA_SVCTI MEQUT attribute of the T_SERVER or T_SERVI CE class of
the TM_M B. They may also monitor the ULOGfile for service timeout activity.

m |naddition to monitoring the ULOG file for service timeout activity, application
operators can subscribe to the . SysSer vi ceTi meout event, which aerts them
when a service timeout occurs.

m Application programmers can use thet per r or det ai | (3c) and
t pstrerrordet ail (3c) functions, and the TPED_SVCTI MEOUT error detail
code. They may want to add one or more subscriptions to
the. SysSer vi ceTi meout system event, which is generated when a service
timeout occurs.

Setting Up a BEA Tuxedo Application

Enabling Load Balancing

Enabling Load Balancing

To activate |oad balancing, set the RESOURCES section parameter LDBAL to Y. A load
factor isassigned to each service performed (via the LOAD parameter) and the BEA
Tuxedo system keepstrack of thetotal load of servicesthat each server has performed.
Each service request is routed to the server with the smallest total 1oad. The routing of
that request causes the server’ stotal to be increased by the LQAD factor of the service
requested.

Load information is stored only on the site originating the service request. It would be
inefficient for the BEA Tuxedo system to make continuous attempts to propagate | oad
information to al sitesin a distributed application. When performing load balancing
in such an environment, each site knows only about theload it originated and performs
load balancing accordingly. This meansthat each site has different load statisticsfor a
given server (or queue). The server perceived as being the least busy differsfrom site
to site.

When load balancing is not activated, and multiple servers offer the same service, the
first available queue receives the request.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:
m Load balancing isused if the RESOURCES LDBAL parameter isset to Y.
m Theload factor is added to a server’s total load.

m Theload isrelative to other services.

Setting Up a BEA Tuxedo Application 3-87

3 Creating the Configuration File

Defining the Name of the Routing Criteria

When using data-dependent routing, you need to specify the routing criteriato be used
for aservice. To specify such criteria, set the ROUTI NG parameter as follows:

ROUTI NG=string_val ue
If this parameter is not set, the service does not perform data-dependent routing.

The maximum value of st ri ng is 15 characters. No more than one value may be
assigned to the ROUTI NG parameter for a given service. Even if you have multiple
entriesfor one service and those entries contain different SRVGRP parameters, the value
of ROUTI NGmust be the same in all entries.

Specifying Service Parameters for Different
Server Groups

Y ou can assign the same service to multiple groups and assign different valuesto the
various service-specific parameters you set for the service entries for the different
groups. To do this, create a separate entry for the service for each group, specifying a
group-specific value for the SRVGRP parameter.

Controlling the Flow of Data by Service
Priority

Y ou can exert significant control over the flow of datain an application by assigning
service priorities using the PRI O parameter. The value of PRIO must be a number
between 0 and 100. The higher the number, the higher the priority of the service to
which it isassigned. Higher priority services are dequeued before lower priority
services, but the system dequeues every tenth request in FIFO order to prevent a
message from waiting indefinitely on the queue.

3-88 Setting Up aBEA Tuxedo Application

Indicating Service Processing Time

For instance, Server 1 offers ServicesA, B, and C. Services A and B haveapriority of
50 and Service C hasapriority of 70. A service requested for C will always be
dequeued before arequest for A or B. Requestsfor A and B are degqueued equally with
respect to one another.

Note: A priority can aso be changed dynamically with the t pspri o() call.

Characteristics of the PRIO Parameter

The PRI O parameter has the following characteristics:

m It determines the priority of aservice on the server’s queue.
m The highest assigned priority getsfirst preference.

m Every tenth request is dequeued FIFO.

Sample SERVICES Section Using Different Priorities

The following sample from the SERVI CES section of a configuration file shows how
priorities are assigned to services:

*SERVI CES
A SRVGRP=GRP1 PRI O=50 LOAD=60
A SRVGRP=GRP2 PRI O=70 LOAD=30

In this example, different service-specific parameters are assigned to two server
groups. Service A is assigned a priority of 50 and aload of 60 in server group GRP1,
and a priority of 70 and aload of 30 in server group GRP2.

Indicating Service Processing Time

Toindicate the maximum amount of time, in seconds, allowed for processing aservice,
set the SVCTI MEQUT parameter as follows:

SVCTI MEQUT=nunber

The value must be greater than or equal to 0. A value of 0 indicates that the service will
be timed out: the server processing the server request will be terminated with a
Sl &KI LL signal. The default for this parameter is 0.

Setting Up a BEA Tuxedo Application 3-89

3 Creating the Configuration File

How to Create the INTERFACES Section of
the Configuration File

Note: This section applies only to the CORBA environments.in BEA Tuxedo.

The I NTERFACES section in the configuration file is used to define parameters for
CORBA environmentsin the BEA Tuxedo system. In this section, you define
application-wide default parameters for CORBA interfaces used by the application.
For a CORBA interface participating in factory-based routing, you define the interface
names and specify the name of the routing criteria that the Tuxedo CORBA
environment should apply to each interface. Factory-based routing is afeaturethat lets
you distribute processing to specific server groups.

In addition to defining the | NTERFACES section, you must specify routing criteriain
the ROUTI NG section and the names of groups in the GROUPS section when you
implement factory-based routing. For details about the parameters and more
information about factory-based routing, see the section “How to Create the
ROUTING Section of the Configuration File” in this chapter.

Specifying CORBA Interfaces in the INTERFACES Section

Y ou indicate specific information about CORBA interfaces used by your application
inthe | NTERFACES section of the configuration file. There are no required parameters.
CORBA interfaces need not be listed if no optional parameters are desired. The

I NTERFACES section includes the following types of information:

m Whether transactions should be started automatically (AUTOTRAN) (CORBA
only)

m Therouting criteriato be used for factory-based routing for this CORBA
interface (FACTORYROUTI NG) (CORBA only)

m L oad balancing information (LOAD)
m Assignment of priorities to interfaces (PRI O)

m Different service parameters for different server groups (SRVGRP)

3-90 Setting Up aBEA Tuxedo Application

How to Create the INTERFACES Section of the Configuration File

m Timeout value for transactions associated with this CORBA interface
(TRANTI MNE)

m Timeout value for processing a method for this CORBA interface (TI MEQUT)

Table 3-2liststhe AUTOTRAN, FACTCRYROUTI NG, LOAD, PRI O, SRVGRP, TRANTI ME, and
TI MEOUT parameters characteristics.

Table 3-2 INTERFACES Section Parameter s Char acteristics

Parameter

Characteristic

AUTOTRAN = {Y | N}

For each CORBA interface, set AUTOTRAN to Y if you want atransaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no
effect if the interface is already in transaction mode. The default is N.

The effect of specifying avalue for AUTOTRAN is dependent on the transactional
policy specified by the system designer in the implementation configuration file
(ICF) or Server Description File (XML) for the interface. This transactional policy
will become the transactiond policy attribute of the associated T_| FQUEUE M B
object at run time. The only time this value actually affects the behavior of the
application isif the system designer specified a transaction policy of optional.

Note: To work properly, thisfeature may be dependent on personal
communication between the system designer and the system
administrator. If the system administrator setsthisvalueto Y without prior
knowledge of the ICF or XML parameters set by the programmer, the
actual run-time effort of the parameter might be unknown.

FACTORYROUTI NG =
criterion-nane

Specify the name of therouting criteriato be used for factory-based routing for this
CORBA interface. You must specify a FACTORYROUT| NG parameter for
interfaces requesting factory-based routing.

LOAD

nunber

Thisisan arbitrary number between 1 and 100 that represents the rel ative load that
the CORBA interfaceis expected to impose on the system. The numbering scheme
isrelative to the LOAD numbers assigned to other CORBA interfaces used by this
application. The default is 50. The number is used by the BEA Tuxedo system to
select the best server to route the request.

PRI O

nunber

Specify thedequeui ng priority number for all methods of the CORBA interface.
The value must be greater than 0 and less than or equal to 100. 100 is the highest
priority. The default is 50.

Setting Up a BEA Tuxedo Application 3-91

3 Creating the Configuration File

Table 3-2 INTERFACES Section Parameters Characteristics (Continued)

Parameter

Characteristic

SRVGRP =
server-group-nane

Use SRVGRP to indicate that any parameter defined in this portion of the

| NTERFACES section appliesto the interface within the specified server group. For
agiven CORBA interface, thisfeature lets you define different parameter valuesin
different server groups.

TRANTI ME = nunber

If AUTOTRANis set to Y, you must set the TRANTI ME parameter, which isthe
transaction timeout in seconds, for the transactionsto be computed. The value must
be greater than or equal to zero and must not exceed 2,147,483,647 (231 - 1), or
about 70 years. A value of 0 (zero) implies there is no timeout for the transaction.
(The default is 30 seconds.)

TI MEQUT=nunber

The amount of time, in seconds, to allow for processing of a method for this
CORBA interface. The values must be greater than or equal to 0. A value of 0
indicates that the interface cannot time out. A timed-out method causes the server
processing the method for the interface to terminate with a Sl GKI LL event. You
should consider specifying atimeout value for the longest-running method for the
interface.

Specifying FACTORYROUTING Criteria

For each CORBA interface, the | NTERFACES section specifies what kinds of criteria
the interface routes on. The | NTERFACES section specifies the routing criteriaviaan
identifier, FACTORYRQUTI NG.

University Sample

The University Production sample application demonstrates how to code
factory-based routing (see Listing 3-3). Y ou can find the UBBCONFI Gfiles (ubb_p. nt
or ubb_p. nk) for this sample in the directory where the BEA Tuxedo software is
installed. Look in the\ sanpl es\ cor ba\ uni versi t y\ producti on subdirectory.

3-92 Setting Up aBEA Tuxedo Application

How to Create the INTERFACES Section of the Configuration File

Listing 3-3 Production Sample INTERFACES Section

*| NTERFACES

"I DL: beasys. coni Uni versi tyP/ Registrar: 1.0"
FACTORYROUTI NG = STU I D

"I DL: beasys. coniBillingP/ Teller:1.0"
FACTORYROUTI NG = ACT_NUM

The preceding example showsthefully qualified interface namesfor thetwo interfaces
in the University Production sample. The FACTORYROUTI NGidentifier specifiesthe
names of the routing values, which are STU_| Dand ACT_NUM respectively.

To understand the connection between the | NTERFACES FACTORYROUTI NG parameter
and the ROUTI NG section, see the section “CORBA Factory-based Routing in the
University Production Sample Application” on page 3-100.

Bankapp Sample

Listing 3-4 shows how factory-based routing is specified in the Bankapp sample
application.

Listing 3-4 Bankapp Sample Factory-based Routing

*| NTERFACES
"I DL: BankApp/ Tel l er: 1. 0"
FACTORYROUTI NG=at ml D

* ROUTI NG
atm D

TYPE = FACTORY

FIELD = "atm D'

FI ELDTYPE = LONG

RANGES = "1-5: BANK_GROUPL,

6-10: BANK GROUPZ2,

*: BANK_GROUP1

Setting Up a BEA Tuxedo Application 3-93

3

Creating the Configuration File

In this example, the | DL: Bankapp/ Tel | er interface uses a factory-based routing
scheme called at ml D, as defined in the ROUTI NG section. In the ROUTI NG section, the
sample indicates that the processing will be distributed across two groups.
BANK_GROUP1 processes interfaces used by the application when the at m Dfield is
between 1 and 5, or greater than 10. BANK_GROUP2 processes interfaces used by the
application when the at ni Dfield is between 6 and 10, inclusive.

Enabling Load Balancing

In BEA Tuxedo CORBA environments, load balancing is aways enabled.

A LoaDfactor isassigned to each CORBA interface invoked, which keepstrack of the
total load of CORBA interfaces that each server process has performed. Each interface
request is routed to the server with the smallest total load. The routing of that request
causes the server’ s total to be increased by the LOAD factor of the CORBA interface
reguested. When load balancing is not activated, and multiple servers offer the same
CORBA interface, the first available queue receives the request.

For more information about load balancing in BEA Tuxedo CORBA environments,
refer to “ Enabling System-controlled Load Balancing,” in the Scaling, Distributing,
and Tuning CORBA Applications manual.

Support for parallel objectsin CORBA environments has been added for release 8.0 of
BEA Tuxedo, which introduces |oad balancing across multiple serversin alocal
domain. For more information about parallel objectsin BEA Tuxedo CORBA
environments, refer to the “Using Parallel Objects’ section in Scaling, Distributing,
and Tuning CORBA Applications.

Controlling the Flow of Data by Interface Priority

3-94

Y ou can control the flow of datain a BEA Tuxedo client or server application by
assigning interface priorities using the PRI O parameter. For instance, Server 1 offers
Interfaces A, B, and C. Interfaces A and B have a priority of 50 and Interface C has a
priority of 70. An interface requested for C will always be dequeued before a request
for A or B. Requestsfor A and B are dequeued equally with respect to one another.
The system dequeues every tenth request in FI FO order to prevent a message from
waiting indefinitely on the queue.

Setting Up a BEA Tuxedo Application

How to Create the ROUTING Section of the Configuration File

The PRI O parameter has the following characteristics:
m |t determines the priority of a CORBA interface on the server’s queue.
m The highest assigned priority getsfirst preference.

m Every tenth request is dequeued FI FO.

Specifying Different Interface Parameters for Different
Server Groups
Y ou can specify different load, priority, or other interface-specific parameters for

different server groups. To do this, you should repeat the interface’ s entry for each
group with different values for the SRVGRP parameter.

How to Create the ROUTING Section of the
Configuration File

The ROUTI NG section of UBBCONFI G allows you to provide afull definition of the
routing criterianamed in the SERVI CES section (for ATMI data-dependent routing) or
in the | NTERFACES section (for CORBA factory-based routing).

Note: For more information about configuring factory-based routing for CORBA
environments, refer to the Scaling, Distributing, and Tuning CORBA
Applications guide.

For each parameter in the ROUTI NG section, the following table provides adescription
and links to reference pages and additional information.

Setting Up a BEA Tuxedo Application 3-95

3 Creating the Configuration File

To Specify ThisInformation in the ROUTING
Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

Ranges and associated server groups for the routing field.

RANGES (Required)

Range criteria

The value must be a string with a maximum length of 15
characters.

For ATMI, the routing criteria name specified as the value
of the ROUTI NG parameter in the SERVI CES section for
data-dependent routing.

For CORBA, the routing criteria name specified in the

| NTERFACES section asthe FACTORYROUT| NGparameter
factory-based routing.

criterion_name
(required)

Specifies the routing type.

For ATMI, the default is TYPE=SERVI CE to ensure that
existing UBBCONFI Gfiles used in Tuxedo ATMI
environments continue to work properly.

For CORBA, use TYPE=FACTORY when implementing
factory-based routing for a CORBA interface.

TYPE

Name of the routing field, which is assumed to be an FML
buffer, XML element or element attribute, view field name
identified in an FML field table (using FLDTBLDI R and

FI ELDTBLS environment variables), or an FML view table
(using the VI EWDI R and VI EWFI LES environment
variables), respectively. Thisinformation is used to obtain
the associated field value for data-dependent routing when
sending a message.

In CORBA factory-based routing, this value specifies the
name of the routing field. The maximum length is 30
characters. It must correspond to a field name specified for
factory-based routing in afactory’s call to:

TP: :create_object _reference (C++) or

com beasys. Tobj . TP: : cr eat e_obj ect _

ref er ence (Java) for the interface.

FI ELD (Required)

Routing buffer field
and type

3-96 Setting Up aBEA Tuxedo Application

Defining the Routing Buffer Field and Field Type

To Specify ThisInformation in the ROUTING Set ThisParameter For More
Section (Optional) (Required/Optional) Information, Click
the Following

A list of types and subtypes of data buffers for which this BUFTYPE (required) Buffer types and
routing entry isvalid. This parameter may contain up to 256 subtypes
characters with a maximum of 32 type/subtype

combinations.

ROUTING Section Example

The following is a sample ROUTI NG section from a configuration file:

BRNCH FI ELD=B_FLD
RANGES="0- 2: DBG1, 3- 5: DB&2, 6- 9: DBG3"
BUFTYPE="FM."

Defining the Routing Buffer Field and Field
Type

The following table describes the routing buffer field and field type.

Setting Up a BEA Tuxedo Application 3-97

3 Creating the Configuration File

Parameter

Characteristics

FI ELD

The name of the buffer field on which therouting is performed. It may contain up to 30 characters.

In BEA Tuxedo data-dependent routing, the value of this parameter is one of the following: the
name of an FML field (for FML buffers); an XML element or attribute; aVI EWfield nameidentified
inan FM field table (using the FLDTBLDI Rand FI ELDTBLS environment variables); or an FML
view table (usingtheVl EWDI Rand VI EWFI LES environment variables). Thisinformationisused
to obtain the associated field value for data-dependent routing during message processing. If a
fieldinan FML32 buffer isused for routing, it must have afield number |essthan or equal to 8191.

In routing XML documents, the FI ELD syntax contains either arouting element type (or name) or
arouting element attribute name. Y ou must define the FI ELD parameter with the following
syntax:

root _elenent[/child elenent][/child elenment][/.

][/ @ttribute_nane]

The element is assumed to be an element type (or name) or an element attribute name of an XML
document or datagram. This information is used to obtain the associated element content or
element attribute value for data-dependent routing when a document or datagram is being sent.
Because indexing is not supported, the BEA Tuxedo system recognizes only the first occurrence
of agiven e ement type when processing an XML buffer for data-dependent routing.

In CORBA factory-based routing, thisvalue specifies the name of the routing field. The maximum
length is 30 characters. It must correspond to afield name specified for factory-based routing in a
factory’s call to:

TP: : create_object_reference (C++) or
com beasys. Tobj . TP: : creat e_obj ect _r ef erence (Java) for the interface.

FI ELDTYPE

This parameter is used only for routing XML buffers. It indicates the type of the routing field
specified in FI ELD.The syntax is as follows:

Fl ELDTYPE=t ype
wheret ype isone of thefollowing: st ri ng, char, short, | ong, fl oat, or doubl e.
The default type of the routing fieldisst ri ng.

3-98 Setting Up aBEA Tuxedo Application

Specifying Range Criteria

Specifying Range Criteria

The RANGES parameter allows you to map field values to a group name as follows:
RANGES="[val 1[-val 2] : groupl] [,val 3[-val 4]:group2]...[,*:groupn]”

whereval 1, val 2, and so on, are values of afield and gr oupn may be either a group
name or the wildcard character (*) denoting that any group may be selected. The *
character occupying the place of val attheendisacatch-all choice, that is, it specifies
if the datadoesnot fall into any range that has been specified then it goes to the default
group on the other hand if the datafall into the range but there is no viable server in
the group associated with the range entry, then the service request is forwarded to the
default group specified on the wildcard “*” range entry. The value of val 1 may be:

m A number (when it isused in a numeric field)
m A STRI NGor CARRAY buffer (enclosed in single quotation marks)
m M Nor MAX, to show a machine minimum or maximum data value

Thereisnolimit to the number of rangesthat may be specified, but routing information
incurs a cost because it is stored in shared memory.

Note: Overlapping ranges are allowed, but values that belong to both ranges map to
the first group. For example, if RANGES is specified as
RANGES="0- 5: G oup1l, 3-5: Gr oup2", then arange value of 4 routesto
G oupl.

Defining Buffer Types

For BEA Tuxedo data-dependent routing, the BUFTYPE parameter determines the
buffer type allowed. This parameter issimilar to its SERVI CES section counterpart in
that it restricts the routing criteriato a specific set of buffer types and subtypes. Only
FML, XM and VI EWtypes can be used for routing. The syntax isthe same as the syntax
in the SERVI CES section, a semicolon-separated list of t ype: subt ype[, subt ype] .
Y ou can specify only one type for routing criteria. This restriction limits the number
of buffer types allowed in routing services.

Setting Up a BEA Tuxedo Application 3-99

3 Creating the Configuration File

CORBA Factory-based Routing in the
University Production Sample Application

The CORBA University Production sample application demonstrates how to
implement factory-based routing in BEA Tuxedo. Y ou can find the ubb_p. nt or
ubb_p. nk UBBCONFI Gfilesfor this sample in the directory where the BEA Tuxedo
softwareisinstalled. Look inthe\ sanpl es\ cor ba\ uni ver si t y\ producti on
subdirectory.

Thefollowing | NTERFACES, ROUTI NG, and GROUPS sections from the ubb_b. nt
configuration file show how you can implement factory-based routing in a CORBA
application in BEA Tuxedo.

Thel NTERFACES section liststhe names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies what kinds of criteria
the interface routes on. This section specifies the routing criteria via an identifier,
FACTORYROUTI NG, asin the example in Listing 3-5.

Listing 3-5 Production Sample INTERFACES Section

* | NTERFACES

"1 DL: beasys. conf Uni versityP/ Regi strar: 1. 0"
FACTORYROUTI NG = STU I D

"1 DL: beasys.conm BillingP/ Teller: 1.0"
FACTORYROUTI NG = ACT_NUM

The preceding example showsthefully qualified interface namesfor thetwo interfaces
in the Production sample in which factory-based routing is used. The

FACTORYROUTI NG identifier specifies the names of the routing values, which are
STU_I Dand ACT_NUM respectively.

The ROUTI NG section specifies the following data for each routing value:

3-100 Setting Up a BEA Tuxedo Application

CORBA Factory-based Routing in the University Production Sample Application

m The TYPE parameter, which specifies the type of routing. In the Production
sample, the type of routing is factory-based routing. Therefore, this parameter is
defined to FACTORY.

m The FI ELD parameter, which specifies the variable name that the factory inserts
as the routing value. In the Production sample, the field parameters are
st udent _i d and account _nunber , respectively.

m The FI ELDTYPE parameter, which specifies the data type of the routing value. In
the Production sample, the field typesfor st udent _i d and account _nunber
arelong.

m The RANGES parameter, which associates a server group with a subset of the
valid ranges for each routing value.

Listing 3-6 shows the ROUTI NG section of the UBBCONFI Gfile used in the Production
sample application.

Listing 3-6 Production Sample ROUTING Section

* ROUTI NG
STU ID
FI ELD = "student _id"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "100001-100005: ORA_GRP1, 100006- 100010: ORA GRP2"
ACT_NUM
FI ELD = "account _numrber"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "200010-200014: APP_GRP1, 200015- 200019: APP_GRP2"

The preceding example showsthat Registrar objects for studentswith IDsin onerange
are instantiated to one server group, and Registrar objects for students with IDsin
another range are instantiated in another group. Likewise, Teller objects for accounts
in one range are instantiated to one server group, and Teller objects for accountsin
another range are instantiated in another group.

Setting Up a BEA Tuxedo Application 3-101

3 Creating the Configuration File

OPENI NFO

OPENI NFO

The groups specified by the RANGES identifier in the ROUTI NG section of the
UBBCONFI Gfile need to be identified and configured. For example, the Production
sample specifiesfour groups: ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2. These
groups need to be configured, and the machines where they run need to be identified.

Listing 3-7 shows the GROUPS section of the Production sample UBBCONFI Gfile.
Notice how the names in the GROUPS section match the group names specified in the
ROUTI NG section; thisis critical for factory-based routing to work correctly.
Furthermore, any change in the way groups are configured in an application must be
reflected in the ROUTI NG section. (Note that the Production sample packaged with the
BEA Tuxedo softwareis configured to run entirely on one machine. However, you can
easily configure this application to run on multiple machines.)

Listing 3-7 Production Sample GROUPS Section

* CROUPS

APP_GRP1
LMD = SI TEL
GRPNO = 2
TVBNAME = TMB

APP_GRP2
LMD = SI TEL
GRPNO = 3
TMVBNAME = TMB

ORA_GRP1
LMD = SI TEL
GRPNO = 4

"ORACLE_XA: Oracl e_XA+Acc=P/ scott/tiger+SesTm=100+LogDi r =. +MaxCur =5"

CLOSEINFO = ""
TVBNAME = " TMS_ORA"

ORA_GRP2
LMD = SI TEL
GRPNO = 5

"ORACLE_XA: Oracl e_XA+Acc=P/ scott/tiger+SesTm=100+LogDi r =. +MaxCur =5"

CLOCSEI NFO = "
TVBNAME = " TMS_ORA"

3-102 Setting Up a BEA Tuxedo Application

CORBA Factory-based Routing in the Bankapp Sample Application

CORBA Factory-based Routing in the
Bankapp Sample Application

Listing 3-8 shows how the | NTERFACES section extends the Bankapp sample
application to use factory-based routing. The sample included with the BEA Tuxedo
software does not contain these parameter settings.

Listing 3-8 Bankapp Sample INTERFACES Section

*| NTERFACES
"I DL: BankApp/ Tel l er: 1. 0"
FACTORYROUTI NG=at ml D

* ROUTI NG
atnm D
TYPE = FACTORY
FIELD = "atm D'
FI ELDTYPE = LONG
RANGES = "1-5: BANK_GROUPL,
6-10: BANK GROUPZ2,
*: BANK_GROUP1
* GROUPS
SYS GRP
LMD = SITEL
GRPNO =1
BANK GROUP1
LMD = SITE1
GRPNO =2
BANK _GROUP2
LMD = SITE1
GRPNO =3

Inthisexample, thel DL: Bankapp/ Tel | er interface employs afactory-based routing
scheme called at m D, as defined in the ROUTI NG section. The example indicates that
the processing will be distributed across the following two server groups:

m BANK_GROUP1 processes interfaces used by the application when the at ni D
field is between 1 and 5 (inclusive), or greater than 10.

Setting Up a BEA Tuxedo Application 3-103

3 Creating the Configuration File

m BANK_GROUP2 processes interfaces used by the application when theat m D is
between 6 and 10, inclusive.

How to Configure the BEA Tuxedo System to
Take Advantage of Threads

To configure amulticontexted application, edit your UBBCONFI Gfile as usual and add
those parameters, listed in the following table, that are needed for your application.
Use atext editor or the BEA Administration Console.

Table 3-3 Setting Parametersin the Configuration Fileto Use Threads

In This Section Set These Parameters With These Consider ations.

RESOURCES MAXACCESSERS Optional parameter, but you must
assignavaluetoit you want morethan
50 accessers (the default number).

Each context of a multicontexted
client is counted separately for
licensing purposes.

NOTI FY Optional parameter that defines the
default method to be used for
unsolicited notification. Valid values
for multicontexted applications are:

s DIPIN
= THREAD
= | GNORE

3-104 Setting Up a BEA Tuxedo Application

How to Configure the BEA Tuxedo System to Take Advantage of Threads

Table 3-3 Setting Parametersin the Configuration File to Use Threads (Continued)

In This Section Set These Parameters

With These Consider ations.

MACHI NES MAXACCESSERS

Optional parameter, but you must
assign avaluetoit youwant morethan
50 accessers (the default number).

Each context of a multi contexted

client is counted separately for
licensing purposes.

MAXWSCLI ENTS

Optional parameter.

Each context of a multicontexted
Workstation client is counted
separately for licensing purposes.
BecausethedefaultisO, thisparameter
must be set if any Workstation clients
are to access the system viathe
machine being defined.

Setting Up a BEA Tuxedo Application 3-105

3 Creating the Configuration File

Table 3-3 Setting Parametersin the Configuration Fileto Use Threads (Continued)

In This Section Set These Parameters

With These Consider ations.

SERVERS M NDI SPATCHTHREADS

Optional parameter.

MAXDI SPATCHTHREADS

Required parameter in multithreaded
servers.

When making an existing server
multithreaded, an experienced
programmer must verify that the
source code for the server has been
written in athread-safe manner. In
other words, it is not possible to
convert a single-threaded server,
written with static variables, to a
multithreaded server simply by
increasing the value of

MAXDI SPATCHTHREADS in the
configuration file. This server must
a so be built for multithreading.

THREADSTACKSI ZE

Optional parameter.

You may need to set it if your server
dispatch threads require an especially
large stack.

The default, 0, should be sufficient for
most applications. (Keep in mind that
when 0 is passed to the operating
system, the operating system invokes
its own default.)

3-106 Setting Up a BEA Tuxedo Application

How to Compile a Configuration File

How to Compile a Configuration File

Compiling a configuration file means generating a binary version of thefile
(TUXCONFI G) from the text version (UBBCONFI G). To compile aconfiguration file, run
thet nl oadcf command. t m oadcf parses aUBBCONFI Gfile and loadsthe binary file.

tm oadcf readsafile (or standard input written in UBBCONFI G syntax), checks the
syntax, and optionally loads a binary configuration file called TUXCONFI G. The
TUXCONFI G and (optionally) TUXOFFSET environment variables point to the
TUXCONFI Gfileand (optional) offset where the information should be stored. Y ou can
runt m oadcf only onthe machine designated asMASTER in the RESOURCES section of
the UBBCONFI Gfile, unlessthe -c or -n option is specified.

Notes: Theuser identifier (Ul D) of the person runningt m oadcf must matchtheul D,
if specified, in the RESOURCES section of the UBBCONFI Gfile.

The pathname specified for the TUXCONFI G environment variable must match
exactly (including case) the pathname specified for TUXCONFI G parameter
within the MACHI NES section of the UBBCONFI Gfile. Otherwise, t ml oadcf (1)
cannot be run successfully.

Setting Up a BEA Tuxedo Application 3-107

3 Creating the Configuration File

3-108 Setting Up a BEA Tuxedo Application

CHAPTER

4 About Transactions

Thistopic includes the following sections:

What |s a Transaction?

Benefits of Using Transactions

Example of a Global Transaction

What |sthe BEA Tuxedo Transaction Manager (TM)?
How the System Tracks Distributed Transaction Processing

How the System Uses a Two-Phase Commit to Commit Transactions

Note: For information about using transactions in a BEA Tuxedo CORBA

environment, refer to Using CORBA Transactions.

What Is a Transaction?

A transaction isaset of related actions. A global transaction is aset of related actions
that span multiple programs and resource managers. In thistopic, whenever we use the
term transaction, we are referring to a global transaction.

Setting Up a BEA Tuxedo Application 4-1

4 About Transactions

A simple example of atransaction isawithdrawal from abank account, which can be
described as a set of actions that changes the state of an account balance (by reducing
it). For this transaction, the system must execute a procedure that consists of three
operations.

Procedure for Any Transaction Procedurefor Bank Withdrawal Example
1. Verify the activity to be performed 1. Verify that awithdrawal will be made
2. Perform the work of the transaction 2. Withdraw a specified amount from the account

3. Create a permanent record of the completed work 3. Update the record of the balance of the account

These steps are performed by a discrete software module created expressly for the
purpose of executing this transaction. The module must also include or use code that
launches and ends the transaction. If the code sections that launch and end the
transaction are not part of the main transaction software modul e, then they are usually
packaged together in a separate module.

A transaction coordinator is a software module that executes the logic to manage a
transaction among all participating resources.

What Are the ACID Properties?

4-2

When atransaction such as abank withdrawal is performed, itisimperativethat al its
constituent operations either succeed or fail together. Consider the problems that can
occur if one operation in a transaction succeeds while another operation in the same
transaction fails: abank that allows a customer to withdraw money without recording
the reduced balance in an updated account record will not stay in business for long!

A transaction that adheresto the rule that all constituent operations either succeed or
fail is characterized by atomicity. The BEA Tuxedo system requiresall transactionsto
be characterized by atomicity and three related attributes: consistency, isolation, and
durability. These four attributes are known collectively asthe ACID properties of
transactions performed within the BEA Tuxedo system.

Setting Up a BEA Tuxedo Application

What Is a Transaction?

Table4-1 ACID Properties of BEA Tuxedo Transactions

ThisProperty . ..

MeansThat ...

Atomicity

A transaction isadiscrete unit of work: all constituent operations
must either succeed or fail. These operations may include
gueuing messages, updating databases, and displaying the results
of atransaction on a screen.

Consistency

A transaction must either (a) leave the system in a correct state or
(b) abort. If atransaction cannot achieve a stable state, it must
return to itsinitial state.

Isolation

Thebehavior of atransactionisnot affected by other transactions
being executed simultaneously. A transaction must serialize all
access to shared resources and guarantee that concurrent
programs do not corrupt each other’ s operations.

Durability

The effects of acommitted transaction are permanent. Even if the
system fails, the changes resulting from a transaction are
permanent and durable.

How a Transaction Succeeds or Fails

Whether atransaction succeeds or fails depends on the requirements of atomicity.

If...

Then...

Any operation within the

transaction fails for any reason

m Thetransaction aborts, that is, it terminates abruptly.

m Thetransaction rolls back, that is, it undoesits own
work and restores the state of the enterprise to its
pre-transaction state. For example, after an attempt to
withdraw money from abank account failsandisrolled
back, the bank account contains the same amount of
money it contained before the transaction, and the
record of the account balance shows the same amount
that it showed before the transaction.

Setting Up a BEA Tuxedo Application 4-3

4 About Transactions

If... Then ...
All operations within the The client commits the transaction. In other words, it
transaction succeed formally signasthat it isready to terminate and the effects

of the transaction should be preserved: the order database
is updated permanently and the order sent to the shipping
department is kept as a permanent record in that
department’ s queue.

Benefits of Using Transactions

The BEA Tuxedo system, including its communication APIs and protocols, is
designed to support the use of transactions. The BEA Tuxedo communication calls,
which make it easy to create transactions, are indispensable tools for writing
distributed applications.

By using transactions you can:
m Create distributed applications easily
m Commit the effects of your communications as a single unit

m Quickly manage potential problemsthat may occur in adistributed environment,
such as machine, program, or network failures

m Undo work, when errors occur, in asimple, programmatic way

Example of a Global Transaction

An e-retailer uses a service called CUST_ORDER. When a customer places an order
through the company’ s Web site, the CUST_ORDER service performs two operations:

m |t updates the company’s database of orders.

4-4 Setting Up a BEA Tuxedo Application

What Is the BEA Tuxedo Transaction Manager (TM)?

m |t sends the new order to the shipping department, where it is put on a queue,
awaiting fulfillment.

The company wants to be sure that the CUST_ORDER service adheresto the principle of
atomicity: whenever CUST_ORDER is executed, both the database update and the
enqueueing of the customer request on the shipping department queue must be
completed successfully. To make sure that the CUST_ORDER service always handles
customer orders with atomicity, the client that invokes CUST_ORDER associates its
request with a global transaction.

To associate a service with aglobal transaction, a client:
1. Calstpbegin() tobegin the transaction

2. lIssues a service request

3. Cdlstpcommit () toend thetransaction

Aspart of aglobal transaction, the operation is performed as a single unit of work.
When the CUST_ORDER service is invoked, the server is propagated with the client’s
transaction. The two resulting operations, accessing the order database and enqueuing
the order to the shipping queue, become part of the client’ s transaction.

If either operation fails for any reason, whether due to a system error or an application
error, the work of the transaction is undone or rolled back. In other words, the
transaction is returned to its initial state.

If both operations succeed, however, the client commits the transaction. In other words,
it formally signalsthat the effects of the transaction should be made permanent: the
order database is updated permanently and the order sent to the shipping department is
kept in that department’ s queue.

What Is the BEA Tuxedo Transaction
Manager (TM)?

A resource manager (RM) isadatarepository, such asadatabase management system
or the Application Queuing Manager, with tools for accessing the data. The BEA
Tuxedo system uses one or more RMs to maintain the state of an application. For

Setting Up a BEA Tuxedo Application 4-5

4 About Transactions

example, bank records in which account balances are maintained are kept in an RM.
When the state of the application changes through a service that allows a customer to
withdraw money from an account, the new balance in the account is recorded in the
appropriate RM.

The BEA Tuxedo system hel ps you manage transactions involving resource managers
that support the XA interface. To coordinate all the operations performed and all the
modul es affected by atransaction, the BEA Tuxedo system plays the role of the
Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. Local
resource managers (RMs) are responsible for individual resources. The Transaction
Manager Server (TMS) begins, commits, and aborts transactions involving multiple
resources. The application code uses the normal embedded SQL interface to the RM
to perform reads and updates. The TM S uses the XA interface to the RM to perform
the work of aglobal transaction.

The following table summarizes the actions taken by the Transaction Manager on
behalf of each transaction.

Table 4-2 Actions Performed by the Transaction M anager

When ... The Transaction Manager . ..
The application launches a Assignsaglobal transaction identifier (GTRI D) tothe
transaction transaction.

Other processes communicate with Tracks those communication partners.
the process that launched the
transaction

The RM is accessed as part of the Passes the appropriate GTRI D to the RM so the RM
work of the transaction can monitor which database records are being
accessed for the transaction.

The application signas that a Performs atwo-phase commit protocol. Specificaly,
transaction is to be committed it:
(a) contacts communication partners during Phase 1,
(b) logs the successful outcome of Phase 1, and
(c) contacts partnersin Phase 2.

The application indicates that the Executes arollback procedure.
transaction is to be aborted

A failure occurs Executes arecovery procedure.

4-6 Setting Up a BEA Tuxedo Application

How the System Tracks Distributed Transaction Processing

How the System Tracks Distributed
Transaction Processing

BEA Tuxedo transactions can be used in a distributed architecture: alocal machine
involved in atransaction can communicate with aremote machine which may, in turn,
communicate with another remote machine. The work of transactions executed in this
type of arrangement is referred to as distributed transaction processing.

Because the system must constantly maintain enough information about a transaction
tobeabletoroll it back (that is, to restoreit to itsinitial state) at any moment, tracking
distributed transaction processing (DTP) can be a complex task. To perform this task
successfully, the BEA Tuxedo system stores tracking information about all the
participants in atransaction in a dedicated file called atransaction log, or TLOG.

The following diagram shows an application in which two Transaction Managers
(TMs) are being used. Both TMsrecord tracking data in the same TLOG.

Figure4-1 Transaction Management

Yes 7 Mo
W TR
Transaction T i
Y ar N7 ransaction varwe
Manager — Ves Manager — > Ves
Commit the Yes Roll Back the Ve
Transaction Transaction

Before committing a transaction, the TM must repeatedly answer the question of
whether to proceed. If necessary, the TM makes the decision to roll back.

Setting Up a BEA Tuxedo Application 4-7

4 About Transactions

How the System Uses Global Transaction ldentifiers
(GTRIDs) for Tracking

The BEA Tuxedo system tracks the flow of all transactions being executed within a
distributed system, including those being executed concurrently. When it istime to
commit a transaction, the coordinator must know which RMs have participated in the
transaction and, therefore, needs to be ableto distinguish among transactions. For this
reason the BEA Tuxedo system assigns a global transaction identifier, or GTRI Dto
each transaction.

The BEA Tuxedo system communicates with any RM accessed by an application
through the XA interface. The RMstrack transactions by assigning local transaction
identifiers, and map globa identifiersto local identifiers.

How the System Uses a Transaction Log (TLOG) for

Tracking

A global transaction is recorded in the transaction log (TLOG) only when it isin the
process of being committed. At the end of the first phase of atwo-phase commit
protocol, the TLOG records the reply from the global transaction participants.

Theexistence of aTLOGrecordindicatesthat aglobal transaction should be committed;
no TLOGrecords are written for transactions that are to be rolled back.

Inthefirst“ pre-commit” phase, each resource manager must commit to performing the
transaction request. If all parties commit, transaction management performsthe second
phase: it commits and completes the transaction. If either task fails because of an
application or system failure, both tasks fail and the work performed is undone or
“rolled back” toitsinitia state.

The TVs that coordinates global transactions uses the TLOG file. Each machine should
have its own TLOG.

If you are using the Domains component in your application, keep in mind that the
Domains gateway performs the functions of the TMs in Domains groups. However,
Domains uses its own transaction log containing information similar to that recorded
in the TLOG, in addition to Domains-specific information.

4-8 Setting Up a BEA Tuxedo Application

How the System Uses a Two-Phase Commit to Commit Transactions

How the System Uses a Two-Phase Commit
to Commit Transactions

A two-phase commit is an algorithm used to ensure the integrity of a committing
transaction.

To understand how this algorithm works, consider the following sample scenario. A
group of six friends wants to rent a house for a one-week vacation. No member of the
group can afford to pay more than one sixth of the rent; if any of the six cannot
participate, then the house cannot be rented.

1

In Phase 1 of this project, the organizer of the vacation contacts each person to
verify availability and collect a sixth of the rent. If the organizer learns that even
one person cannot participate, she contacts every member of the group,
individually, to notify him or her that the house cannot be rented. If, however, each
member of the group confirmsavailability and paysonesixth of the rent, the Phase
1 concludes successfully.

In Phase 2 of the project, the organizer notifies each member of the group that the
vacation will take place as planned.

A two-phase transaction commit worksin much the sasmeway asthe vacation planning
project.

1

In Phase 1, the transaction coordinator contacts potentia participantsin the
transaction. The participants all agree to make the results of the transaction
permanent, but do not do so immediately. The participants log information to disk
to ensure they can complete Phase 2. If al the participants agree to commit, the
coordinator logs that agreement and the outcome is decided. The recording of this
agreement in the log ends Phase 1.

In Phase 2, the coordinator informs each participant of the decision, and they
permanently update their resources.

Setting Up a BEA Tuxedo Application 4-9

4 About Transactions

How the System Handles Transaction Infection

Any application module called by another modul e to participatein atransactionis said
to be transactionally infected. Once an application module isinfected, the BEA
Tuxedo system tracks all participants to determine which of them should be involved
in the two-phase commit. The following figure shows how the system tracks
participants.

Figure4-2 Transactional | nfection

Server i

Serwvice AQ)

Client 1 1 i
tpreturnil;
tpbegin (. . .)7 2 }
tpoall ("Serwvice AV, . . 3;/ Server B
tprall {("Serwvice B", _ . _): 3 -
tprcall ("Serwvice C", . . _.)1-f " Bervice Bl
{
tpoonmit () 7 4 S
tpreturnil;
2 }
Server C

Service Cif)
{
tpreturni);

}

In the preceding figure, Client 1 beginsthe transaction and calls three services: A, B,
and C. Because they have been called into the transaction, Services A, B, and C are
transactionally infected. All work performed by servers A, B, and C is part of the
transaction begun by Client 1. All work is performed as one unit; either it isperformed
together and is successful, or it fails and isrolled back by calling t pabort . If the
transaction fails, it returnsto itsinitial state and its effects of the transaction on
resource managers are undone. (Resource managersthat are not transactionally aware
and those that are accessed from outside the transaction cannot be rolled back.)

4-10 Setting Up aBEA Tuxedo Application

How the System Uses a Two-Phase Commit to Commit Transactions

How the ATMI Protects a Transaction’s Integrity Before a
Two-Phase Commit

All work performed by each resource involved in a transaction must be completed
before atwo-phase commit is begun. The ATMI ensures that al the work of the
transaction is stopped when it is time for the two-phase commit protocol to begin.

The following step-by-step description of atransaction shows how the ATMI stops a
transaction process before a two-phase commit.

1. Client_1 initiates (witht pbegi n()) atransaction.
2. Client_1 invokes (witht pcal I ()) Service A, which:
a Isinfected with the transaction
b. Executes its operations
c. Cdlstpreturn()
d. Completesits work for the transaction
3. Client_1 invokes (witht pcal I ()) Service B, which:
a Isinfected with the transaction
b. Executes its operations
c. Cdlstpreturn()
d. Completesits work for the transaction
4. Client_1 invokes (witht pcal I ()) Service_C, which:
a Isinfected with the transaction
b. Executes its operations
c. Cdlstpreturn()
d. Completesits work for the transaction

5. Client_1 initiates (with t pconmi t ()) the commitment process.

Setting Up a BEA Tuxedo Application 4-11

4 About Transactions

See Also

If, during the transaction, an invoked service is performing another service, or is
involved in an open conversation, the ATMI tracks that activity and preventsthe
application from proceeding to the commitment process until the activity is complete.

The ATMI guarantees that the transaction is committed only if all invoked services
have performed their transaction work successfully. When all work has been
performed successfully, the Transaction Manager informs the resource managers that
all updates made during the transaction are permanent.

“Modifying the UBBCONFIG File to Accommodate ATMI Transactions” on
page 5-2

“Modifying the Domains Configuration File to Support Transactions’ on page
5-10

“Example: A Distributed Application with Transactions’ on page 5-12

“Writing Global Transactions’ on page 9-1 in Programming BEA Tuxedo ATMI
Applications Using C

“What You Can Do Using the ATMI” on page 2-4 in Introducing BEA Tuxedo
ATMI

For more information about using transactions in a BEA Tuxedo CORBA
environment, refer to Using CORBA Transactions

4-12 Setting Up aBEA Tuxedo Application

CHAPTER

5

Configuring Your ATMI

Application to Use
Transactions

Thistopic includes the following sections:

Modifying the UBBCONFIG Fileto Accommodate ATMI Transactions
Specifying Global Transaction Parametersin the RESOURCES Section
Creating a Transaction Log (TLOG) in the MACHINES Section

Defining Resource Managers and the Transaction Manager Server in the
GROUPS Section

Enabling a Service to Begin a Transaction in the SERVICES Section
Modifying the Domains Configuration File to Support Transactions

Example: A Distributed Application with Transactions

Note: For information about using transactions in a BEA Tuxedo CORBA

environment, refer to Using CORBA Transactions.

Setting Up a BEA Tuxedo Application

5-1

5 Configuring Your ATMI Application to Use Transactions

Modifying the UBBCONFIG File to
Accommodate ATMI Transactions

To accommodate transactions, you must modify the RESOURCES, MACHI NES, GROUPS,
and SERVI CES sections of the application’s UBBCONFI Gfile in the following ways.

In ThisSection ... Specify. ..

RESOURCES The number of transactions all owed in the application, and the value
of the commit control flag.

MACHI NES The TLOGinformation for each machine.

GROUPS Information about each resource manager, and about the Transaction
Manager Server.

SERVI CES Enabling of the automatic transaction option.

5-2 Setting Up a BEA Tuxedo Application

Specifying Global Transaction Parameters in the RESOURCES Section

Specifying Global Transaction Parameters in
the RESOURCES Section

The following table describes the transaction-related parameters in the RESOURCES

section.

Set This
Parameter . ..

To...

MAXGTT

Limit the total number of global transaction identifiers (GTRI Ds)
alowed on one machine at one time. The maximum value alowed is
2048; theminimum, O; and the default, 100. Y ou can override thevalue
of MAXGTT on a per-machine basis in the MACHI NES section.

Entries remain in the table only while aglobal transaction is active, so
this parameter has the effect of setting alimit on the number of
simultaneous transactions.

CMIRET

Indicate the initial setting of the TP_COVM T_CONTROL characteristic
as one of the following:

m LOGGED—the TP_COWM T_CONTROL characteristic is set to
TP_CMI_LOGGED, which meansthat t pconmi t () returns when
all the participants have successfully pre-committed.

m COVPLETE—the TP_COVWM T_CONTROL characteristic is set to
TP_CMI_COMPLETE, which meansthat t pconmi t () does not
return until al the participants have successfully committed.

The default is COVPLETE.

To determine the appropriate setting, consult your resource manager
(RM) vendors. If any RM in the application uses the late commit
implementation of the XA standard, the setting should be COVPLETE. If
al RMs use the early commit implementation, the setting should be
LOGGED for performance reasons. (Y ou can override this setting with
tpscmt().)

Setting Up a BEA Tuxedo Application 5-3

5

Configuring Your ATMI Application to Use Transactions

Creating a Transaction Log (TLOG) in the
MACHINES Section

To create a TLOG, complete the following tasks:
m Create aUniversal Device List (UDL).
m Define transaction-related parameters in the MACHI NES section.

m Create a Domains transaction log.

Creating the UDL

5-4

The Universal Device List (UDL) isamap of the BEA Tuxedo filesystem. The UDL
gets loaded into shared memory when an application is booted. The TLOG refersto a
log in which information about transactionsis kept until the transaction is completed.
To create an entry in the UDL for the TLOG device, create a UDL on each machine
using global transactions. (If the TLOGDEVI CE is mirrored between two machines, itis
unnecessary to do this on the paired machine.) The Bulletin Board Liaison (BBL) then
initializes and opens the TLOG during the boot process.

To create aUDL, enter the following command before the application is booted:

tmadmn -c crdl -z config -b bl ocks
Note: Thecommand falsif the device already exists.

Thevaueof confi g must bethefull pathname of the device on which you create the
UDL. It should match the val ue of the TLOGDEVI CE parameter in the MACHI NES section
of the configuration file. The value of bl ocks must be the number of blocks to be
allocated on the device.

Note: If the value of bl ocks islessthan the value of TLOGSI ZE, you risk a
performance degradation. Therefore, you should specify avalue for bl ocks
that is greater than that of TLOGSI ZE. For example, if TLOGSI ZE is specified
as 200 blocks, specifying - b 500 does not cause a degradation.

Setting Up a BEA Tuxedo Application

Creating a Transaction Log (TLOG) in the MACHINES Section

For more information about storing the TLOG, see Installing the BEA Tuxedo System.

Defining Transaction-related Parameters in the

MACHINES Section

To define aglobal transaction log (TLOG), you must set several parametersin the
MACH NES section of the UBBCONFI Gfile.

For one of these parameters, TLOGDEVI CE, you must manually create adevicelist entry
for the TLOGDEVI CE on each machine where aTLOG s needed. Y ou can do this either
before or after TUXCONFI Ghas been loaded, but you must completethis step before the

system is booted.

The following table describes the transaction-related parameters in the MACH NES

section.

Set ThisParameter . ..

To Specify . ..

TLOGNAME

The name of the DTP transaction log for the machine.

TLOGDEVI CE

The BEA Tuxedo filesystem that containsthe DTP transaction
log (TLQG) for the machine. If this parameter is not specified,
it is assumed that there isno TLOGon the machine. The value
may contain a maximum of 64 characters.

TLOGS| ZEE

The size, in physical pages, of the TLOGfile. The value must
be between 1 and 2048; the default, 100. Assign ava ue that
islarge enough to hold the number of outstanding transactions
on the machine a a given time. One transaction is logged per
page. The default should be enough for most applications.

TLOGOFFSET

The offset, in pages, from the beginning of the TLOGDEVI CE
to the start of the VTOCthat contains the transaction log for the
machine.The value must be greater than or equal to 0, and less
than the number of pages on the device. The default is 0.

TLOGOFFSET israrely necessary. However, if two VTOCs
share the samedevice, or if aVTOCisstored on adevice (such
as afilesystem) that is shared with another application, you
can use TLOGOFFSET to indicate astarting addressrel ative to
the address of the device.

Setting Up a BEA Tuxedo Application 5-5

5 Configuring Your ATMI Application to Use Transactions

Creating the Domains Transaction Log

Before starting a Domains gateway group, you must create aDomainstransaction log.
Specifically, you must create aDomains transaction log for the named local domain on
the current machine (that is, the machine on which DMADMI s running). To create alog,
enter the following command:

dmadm n crdm og crdlog -d | ocal _donmi n_nane

The command uses the parameters specified in the DMCONFI Gfile. Thiscommand fails
if the named local domain is active on the current machine or if alog already exists. If
atransaction log has not been created, the Domains gateway group creates one when
that group starts.

See Also

m “What Isthe Transaction Log (TLOG)?" on page 2-17 in Administering a BEA
Tuxedo Application at Run Time

Defining Resource Managers and the
Transaction Manager Server in the GROUPS
Section

The parameters avail able for GROUPS section entries allow you to define the attributes
of transaction manager servers (TM Ss) and resource managers (RMs) for a particular

group.

m For aTMS, aserver that performs most of the work that controls global
transactions, you can define the following parameters:

e TMBNAME contains the name of the executable for the transaction manager
server associated with the group defined in the entry. The BEA Tuxedo
system provides a null transaction manager server called TMS, which is used

5-6 Setting Up a BEA Tuxedo Application

Defining Resource Managers and the Transaction Manager Server in the GROUPS

by groups that participate in transactions, but do not use an RM. ThisTMS
server does not communicate with any resource manager; it simply manages
transactions without communicating with an RM.

e TMSCOUNT contains the number of TM Ssto be booted (minimum of 2,
maximum of 10, default of 3).

m For each resource manager you can define the OPENI NFO and CLOSEI NFO
parameters. The value of each is a string that contains information needed to
open or close a resource manager, respectively. Appropriate values for these
parameters are supplied by RM vendors. For example, if you are using an Oracle
database as your RM, you might supply the value shown in the following entry:

OPENI NFO=" ORACLE_XA:
O acl e_XA+Acc=P/ Scot t/ *****+SesTm=30+LogDi t =/ t np”

Sample of the GROUPS Section

The following sample entry is from the GROUPS section in bankapp, the sample
banking application you received with the BEA Tuxedo system.

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPEN NFO=" TUXEDQ' SQL: APPDI R/ bankdl 1: bankdb: readw it e”

Description of Transaction Values in the Sample GROUPS Section

Thistable describes the transaction values shown in the sample GROUPS entry.

Transaction Value Purpose

BANKB1 GRPNO=1 Contains the name of the transaction manager

TVBNAME=TMS_SQL TMSCOUNT=2 server (TMs_SQL), and the number (2) of these
servers to be booted in the group BANKB1

TUXEDO SQL Published name of the resource manager

APPDI R/ bankdl 1 Device name

bankdb Database name

readwite Access mode

Setting Up a BEA Tuxedo Application 5-7

5 Configuring Your ATMI Application to Use Transactions

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters

Thefollowing tableliststhe characteristics of the TMSNAME, TMSCOUNT, OPENI NFO, and
CLOSEI NFO parameters.

Set This

Parameter ... To Specify the. ..

TVSNAMVE Name of the transaction manager server executable.
Required parameter for applications with transactions.
TMS isanull transactional manager server.

TMSCOUNT Number of transaction manager servers (must be between 2 and 10).
Default is 3. This parameter is optional.

OPEN NFO, Information needed to open or close a resource manager.

CLGCSEI NFO

Content depends on the resource manager.
Value starts with the name of the resource manager.
Omission means the RM needs no information to open or close.

Enabling a Service to Begin a Transaction in
the SERVICES Section

In certain situations, you may want to set three transaction-rel ated parameters—
AUTOTRAN, TRANTI ME, and ROUTI NG—in the SERVI CES section.

m If you want atransaction to be started by a service instead of a client, you must
set the AUTOTRAN flag to Y. This setting is useful if a service is not needed as part
of any larger transaction, and if the application wants to relieve the client of
making transaction decisions. If the serviceis called when a transaction already
exists, this call becomes part of it. (The default isN.)

Note: Generally, clients are the best initiators of transactions because a service
can participate in alarger transaction.

5-8 Setting Up a BEA Tuxedo Application

Enabling a Service to Begin a Transaction in the SERVICES Section

m |f AUTOTRANIS Set to Y, you must set the TRANTI ME parameter, which isthe
length of the timeout for transactions to be created. The value must be greater
than or equal to 0, and must not exceed 2, 147, 483, 647 (that is, 2°1 - 1, or about
70 years). A vaue of zero implies there is no timeout for the transaction. (The
default is 30 seconds.)

m You must define the ROUTI NG parameter for transactions that use data-dependent

routing.

Characteristics of the AUTOTRAN, TRANTIME, and
ROUTING Parameters

Thefollowing tableliststhe characteristics of the AUTOTRAN, TRANTI ME, and ROUTI NG

parameters.

Set This
Parameter . ..

To...

AUTOTRAN

Make a service the initiator of a transaction.

To work properly, may be dependent on personal communication
between the appli cati on designer and the application administrator. If the
administrator sets this value to Y without prior knowledge of the ICF
parameters set by the devel oper, the wrong application behavior, or
failure of the application might be observed.

If atransaction already exists, a new oneis not started.

Default is N.

TRANTI ME

Specify the length of the timeout for the AUTOTRAN transactions.
Valid values are between 0 and 231 - 1, inclusive.

0 represents no timeout.

Default is 30 seconds.

ROUTI NG

Point to an entry in the ROUTI NG section where data-dependent routing
is specified for transactions that request this service.

Setting Up a BEA Tuxedo Application 5-9

5

Configuring Your ATMI Application to Use Transactions

Modifying the Domains Configuration File
to Support Transactions

To enable transactions across domains, you need to set parametersin both the

DM _LOCAL_DOVAI NS and the DM_REMOTE_SERVI CES sections of the Domains
configuration file (DMCONFI G). Entriesin the DM_LOCAL_DOMAI NS section definelocal
domain characteristics. Entries in the DM REMOTE_SERVI CES section define services
that are imported, or available from remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

5-10

The DM_LOCAL_DOMAI NS section of the Domains configuration file identifies local
domains and the gateway groups associated with them. For each gateway group (Local
Domain), you must create an entry that specifies the parametersrequired for the
Domains gateway processes running in that group.

The following table describes the five transaction-rel ated parameters in this section:
DMTLOGDEV, DMILOGNANME, DMILOGSI ZE, MAXRDTRAN, and MAXTRAN.

Set This
Parameter ... To Specify ...
DMTLOGDEV The BEA Tuxedo filesystem that contains the Domains transaction log

(DMrLQG) for this machine. The DMTLOGi s stored as a BEA Tuxedo
VTCC table on the TLOGDEVI CE (a BEA Tuxedo filesystem). If this
parameter is not specified, the Domains gateway group is not allowed to
process requestsin transaction mode. L ocal domains running on the same
machine can share the same DMTL OGDEV filesystem, but aseparatelog (a
table in the DMTL OGDEV) must be created for each local domain. The
name of each log is determined by the DMTLOGNAME parameter.

Setting Up a BEA Tuxedo Application

Modifying the Domains Configuration File to Support Transactions

Set This
Parameter ... To Specify ...

DMTL OGNAVE The name of the Domains transaction log for this domain. If thisdomain
resides on the same filesystem as other local domains (as reflected by a
common value for DMILOGDEYV), then the value of DMTL OGNAVE must
be unique for each log. The value may contain a maximum of 30
characters. The default is DMILOG.

DMILOGSI ZE The size, in pages, of the Domains transaction log for this machine. The
value must be greater than zero and less than the amount of available
space on the BEA Tuxedo filesystem. The default is 100 pages.

Note: The number of domainsin a transaction determines the number
of pages you must specify in the DMILOGS| ZE parameter.
There is no one-to-one mapping between transactions and log

pages.

MAXRDTRAN The maximum number of domains that can be involved in atransaction.
It must be greater than zero and less than 32,768. The default is 16.

MAXTRAN The maximum number of simultaneous global transactions allowed in
thislocal domain. It must be greater than or equal to zero, and less than
or equal to the MAXGTT parameter (which is defined in the configuration
file). The default is the value of MAXGTT.

Characteristics of the AUTOTRAN and TRANTIME
Parameters

The DM_REMOTE_SERVI CES section of the Domains configuration file provides
information about services that areimported and thus available from remote domains.
Each remote service is associated with a particular remote domain.

Y ou have the option of setting two parameters in the DM_REMOTE_SERVI CES section
that support transactions: AUTOTRAN and TRANTI ME. The following table describes
these parameters.

Setting Up a BEA Tuxedo Application 51

5 Configuring Your ATMI Application to Use Transactions

This

Parameter ... IsUsed...

AUTOTRAN By gateways to automatically start and terminate transactions for remote
services. This capability isrequired if you want to enforce reliable
network communi cation with remote services. To request this capability,
set the AUTOTRAN parameter to Y in the entry for the appropriate remote
service.

TRANTI ME To specify the default timeout, in seconds, for atransaction automatically

started for the service being defined. The value must be greater than or
equd to zero, and less than 2147483648. A value of zero impliesthe
maximum timeout value for the machine. The default is 30 seconds.

Example: A Distributed Application with
Transactions

This section provides sample entries from a configuration file that defines bankapp as
an application that supports transactions and is distributed over three sites. The
application is characterized by the following:

m Data-dependent routing on ACCOUNT_I D

m Datadistributed over three databases

m BRI DGE processes communicating with the system viathe ATM interface
m Application administration from one site

Thefileincludes seven sections: RESOURCES, MACHI NES, GROUPS, NETWORK, SERVERS,
SERVI CES, and ROUTI NG.

5-12 Setting Up a BEA Tuxedo Application

Example: A Distributed Application with Transactions

Sample RESOURCES Section

The following listing shows a sample RESOURCES section.

Listing5-1 Sample RESOURCES Section

* RESOURCES
#

| PCKEY

ubD

G D

PERM
MAXACCESSERS
MAXSERVERS
MAXSERVI CES
MAXGTT
MASTER
SCANUNI T
SANI TYSCAN
BBLQUERY
BLOCKTI ME
DBBLWAI T
OPTI ONS
MODEL

LDBAL

99999

1

0

0660

25

25

40

20

SI TE3, SITE1l
10

12

180

30

6

LAN, M GRATE
P

Y

In the preceding listing, note the following:

® MAXSERVERS, MAXSERVI CES, and MAXGTT are set to values that are smaller than
the defaults, which reduces the size of the bulletin board.

m The MASTERis SI TE3 and the backup master is Sl TEL.

m Itispossibleto use anetworked configuration with migration because MODEL is
set to MP and OPTI ONS is set to LAN, M GRATE

m Because BBLQUERY isset to 180 and SCANUNI T is set to 10, the DBBL will check
the remote BBLS every 1800 seconds (that is, every half hour).

Setting Up a BEA Tuxedo Application

5-13

5 Configuring Your ATMI Application to Use Transactions

Sample MACHINES Section

Thefollowing listing shows a sample MACHI NES section.

Listing 52 Sample MACHINES Section

* MACHI NES

giselle LM D=SI TEL
TUXDI R="/ usr/ t uxedo”
APPDI R="/ usr/ hone”
ENVFI LE="/ usr / hone/ ENVFI LE’
TLOGDEVI CE="/ usr/ hone/ TLOG'
TLOGNAME=TLOG
TUXCONFI G="/ usr/ hone/ t uxconfi g”
TYPE=" 3B600"

roneo LM D=SI TE2
TUXDI R="/usr/tuxedo”
APPDI R="/ usr/ hone”
ENVFI LE="/ usr/ home/ ENVFI LE"
TLOGDEVI CE="/ usr/ hone/ TLOG'
TLOGNAME=TLOG
TUXCONFI G="/ usr/ hone/ t uxconfi g”
TYPE=" SEQUENT”

juliet LM D=SI TE3
TUXDI R="/usr/ tuxedo”
APPDI R=" / usr/ hone”
ENVFI LE="/ usr/ home/ ENVFI LE”
TLOGDEVI CE="/ usr/ honme/ TLOG'
TLOGNAME=TLOG
TUXCONFI G="/ usr/ hone/ t uxconfi g”
TYPE=" ANDAHL"

In the preceding listing, note the following:

m TLOGDEVI CE and TLOGNAME are specified, which implies that transactions will be
done.

m The TYPE parameters are all different, which indicates that all messages sent
between machines will be encoded and decoded.

5-14 Setting Up aBEA Tuxedo Application

Example: A Distributed Application with Transactions

Sample GROUPS and NETWORK Sections

The following listing shows sample GROUPS and NETWORK sections.

Listing 5-3 Sample GROUPS and NETWORK Sections

* GROUPS
DEFAULT: TVSNAMVE=TMS_SQL TNMSCOUNT=2
BANKB1 LM D=SI TE1 GRPNO=1
OPENI NFO=" TUXEDQO SQL: / usr/ hone/ bankdl 1: bankdb: readwi te”
BANKB2 LM D=SI TE2 GRPNO=2
OPENI NFO=" TUXEDQO SQL: / usr/ hone/ bankdl 2: bankdb: readwi te”
BANKB3 LM D=SI TE3 GRPNO=3
OPENI NFO=" TUXEDQO SQL: / usr/ hone/ bankdl 3: bankdb: readw i te”
* NETWORK
SI TE1 NADDR=" 0X0002ab117B2D4359"
BRI DGE="/ dev/tcp”
NLSADDR="0X0002ab127B2D4359"
S| TE2 NADDR=" 0X0002ab117B2D4360"
BRI DGE="/ dev/tcp”
NL SADDR="0X0002ab127B2D4360"
S| TE3 NADDR=" 0X0002ab117B2D4361"

BRI DGE="/ dev/tcp”
NLSADDR="0X0002ab127B2D4361"

In the preceding listing, note the following:

m The TMSCOUNT isset to 2, which meansthat only two TMS_SQL transaction
manager servers will be booted per group.

m The OPENI NFOstring indicates that the application will perform database access.

Setting Up a BEA Tuxedo Application 5-15

5

Configuring Your ATMI Application to Use Transactions

Sample SERVERS, SERVICES, and ROUTING Sections

5-16

Thefollowing listing shows sample SERVERS, SERVI CES, and ROUTI NG sections.

Listing 54 Sample SERVERS, SERVICES, and ROUTING Sections

* SERVERS

DEFAULT: RESTART=Y NMAXGEN=5 REPLYQ=N CLOPT="- A"

TLR SRVGRP=BANKB1 SRVI D=1 CLOPT="-A -- -T 100"
TLR SRVGRP=BANKB2 SRVI D=3 CLOPT="-A -- -T 400"
TLR SRVGRP=BANKB3 SRVI D=4 CLOPT="-A -- -T 700"
XFER SRVGRP=BANKB1 SRVI D=5 REPLYQ=Y

XFER SRVGRP=BANKB2 SRVI D=6 REPLYQ=Y

XFER SRVGRP=BANKB3 SRVI D=7 REPLYQ=Y

*SERVI CES

DEFAULT: AUTOTRAN=N

W THDRAW ROUTI NG=ACCOUNT_I D

DEPCSI T ROUTI NG=ACCOUNT_I D

TRANSFER ROUTI NG=ACCOUNT_I D

I NQUI RY ROUTI NG=ACCOUNT_| D

*ROUTI NG

ACCOUNT_I D FI ELD=ACCOUNT_I D BUFTYPE=" FM."

RANGES="MON - 9999: *,
10000 - 39999: BANKB1
40000 - 69999: BANKB2
70000 - 100000: BANKB3

wn

In the preceding listing, note the following:

m Callstothetpsvrinit () function by TLR serverswill include a number (100,
400, or 700) specified with the - T option.

m All service requests are routed on the ACCOUNT _I Dfield.

m No services are performed in AUTOTRAN mode.

Setting Up a BEA Tuxedo Application

Example: A Distributed Application with Transactions

See Also

“What Isa Transaction?’ on page 4-1

“Writing Global Transactions” on page 9-1 in Programming BEA Tuxedo ATMI
Applications Using C

“What You Can Do Using the ATMI” on page 2-4 in Introducing BEA Tuxedo
ATMI

For more information about using transactions in a BEA Tuxedo CORBA
environment, refer to Using CORBA Transactions

Setting Up a BEA Tuxedo Application 5-17

5 Configuring Your ATMI Application to Use Transactions

5-18 Setting Up aBEA Tuxedo Application

CHAPTER

6 Managing CORBA
Interface Repositories

Thistopic, which is specific to BEA Tuxedo CORBA environments, includes the
following sections:

m Administration Considerations
m Using Administration Commands to Manage I nterface Repositories

m Configuring the UBBCONFIG File to Start One or More Interface Repository
Servers

An Interface Repository contains the interface descriptions of the CORBA objectsthat
are implemented within the BEA Tuxedo domain. Administration of the Interface
Repository is done using tools specific to BEA Tuxedo CORBA servers. Thesetools
allow you to create an Interface Repository, populate it with definitions specified in
Object Management Group I nterface Definition Language (OMG IDL), and then
delete interfaces. Y ou may need to configure the system to include an Interface
Repository server by adding entriesin the application’s UBBCONFI Gfile.

For related programming information, see the CORBA Programming Reference.

Setting Up a BEA Tuxedo Application 6-1

6 Managing CORBA Interface Repositories

Administration Considerations

6-2

As an administrator, you need to determine whether an Interface Repository is
required. Not al systemsrequireit. If an Interface Repository isrequired, you need to
create and populate a repository database. The repository database is created and
populated using thei dI 2i r command.

If an Interface Repository is required, you need to answer the following questions:
m How many Interface Repository servers will be required?

m Will the Interface Repository database(s) be replicated?

m Will there be shared access to the Interface Repository database(s)?

m What procedures will be followed for updating the I nterface Repository?

Y ou can configure the system to have one or more Interface Repository servers. At
least one Interface Repository server needs to be configured if any of the clients use
Dynamic Invocation Interface (DI1) or ActiveX.

There are two reasons to have more than one server: performance and fault tolerance.
From a performance point of view, the number of Interface Repository serversisa
function of the number of DIl and ActiveX clients. From a fault tolerance point of
view, the number of Interface Repository servers needed is determined by the
configuration of the system, and the degree of failure protection required.

In systems with more then one Interface Repository server, you must decide whether
to have replicated databases, shared databases, or a combination of thetwo. There are
advantages and disadvantages to each configuration. Replicated Interface Repository
databases allow for local file accessthat can potentially increase performance.

The main problem with replicated databases is updating them. All the databases must
beidentical and thisrequiresthe starting and stopping of Interface Repository servers.
Having the I nterface Repository database mounted and shared eliminates this problem,
but this has performance implications and introduces a single point of failure. A
combination of the two alternativesis also possible.

Setting Up a BEA Tuxedo Application

Using Administration Commands to Manage Interface Repositories

Using Administration Commands to Manage
Interface Repositories

Use the following commands to manage the Interface Respository for aBEA Tuxedo
domain:

m oidl2ir
m ir2idl

m irdel

Prerequisites

Before executing a command, you must ensure the bi n directory isin your defined
path, asfollows:

On Windows 2000:

set pat h=9aTUXDI R% bi n; %pat h%

On UNIX:

For c shell (csh): set path = ($TUXDI R/ bin $pat h)

For Bourne (sh) or Korn (ksh): PATH=$TUXDI R/ bi n: $PATH
export PATH

To set environment variables:

On Windows 2000:

set var=val ue
On UNIX:
For c shell:

setenv var val ue

Setting Up a BEA Tuxedo Application 6-3

6 Managing CORBA Interface Repositories

For Bourne and Korn (sh/ksh):

var =val ue
export var

Creating and Populating an Interface Respository

Usethei dl 2i r command to create an Interface Repository and load interface
definitionsinto it. If no repository file exists, the command createsit. If the repository
file does exists, the command loads the specified interface definitionsinto it. The
format of the command is as follows:

idl2ir [options] definition-filename-|ist

For a detailed description of this command, see the File Formats, Data Descriptions,
MIBs, and System Processes Reference in the BEA Tuxedo online documentation.

Note: If you want changesto be visible, you must restart the Interface Repository
servers.

Displaying or Extracting the Content of an Interface
Repository

6-4

Usetheir 2i dI command to display the content of an Interface Repository. Y ou can
also extract the OMG | DL statements of one or more interfacesto afile. The format of
the command is as follows:

ir2idl [options] [interface-nane]

For a detailed description of this command, see the File Formats, Data Descriptions,
MIBs, and System Processes Reference in the BEA Tuxedo online documentation.

Setting Up a BEA Tuxedo Application

Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

Deleting an Object from an Interface Repository

Usethei rdel command to delete the specified object from the Interface Repository.
Only interfaces not referenced from another interface can be deleted. By default, the
repository fileisreposi tory.ifr. Theformat of thecommand isasfollows:

irdel [-f repository-nane] [-i id] object-nane

For a detailed description of this command, see the File Formats, Data Descriptions,
MIBs, and System Processes Reference in the BEA Tuxedo online documentation.

Note: If you want changesto be visible, you must restart the I nterface Repository
servers.

Configuring the UBBCONFIG File to Start
One or More Interface Repository Servers

For each application that uses one or more Interface Repositories, you must start one
or more of the Interface Repository servers provided by Tuxedo CORBA. The server
nameis TM FRSVR. Y ou can add one or more entries for TM FRSVR to the SERVERS
section of the application’s UBBCONFI Gfile.

By default, the TM FRSVR server uses the Interface Repository filer eposi tory.ifr
in the first pathname specified in the APPDI R environment variable. Y ou can override
this default setting by specifying the-f fi | ename option on the command-line
options (CLOPT) parameter.

The following example shows a SERVERS section from a sample UBBCONFI Gfile.
Instead of using the default filer eposi t ory. i fr inthe default directory ($APPDI R)
where the application resides, the example specifies an aternate file and location,
/usr/repoman/ nyrepo.ifr.

Note: Other server entries are shown in the following sample to emphasize that the
order in which servers are started for BEA Tuxedo CORBA applicationsis
critical. A BEA Tuxedo CORBA application will not boot if the order is
changed.

Setting Up a BEA Tuxedo Application 6-5

6 Managing CORBA Interface Repositories

6-6

For more information, see the section “Required Order in Which to Boot
CORBA C++ Servers’ on page 3-69 in Chapter 3, “Creating the
Configuration File.”

Noticethat the TM FRSVRInterface Repository server isthe fifth server started.
* SERVERS

Start the BEA Tuxedo System Event Broker

TMSYSEVT
SRVCRP = SYS _CRP
SRviD =1

Start the NanmeManager (master)

SRVCRP = SYS _CGRP
SRVID =2
CLOPT ="-A-- -N-M

Start the NaneManager (sl ave)

TMFENAME
SRVCRP = SYS _CRP
SRVID =3
CLOPT ="-A-- -N

Start the FactoryFinder (-F)

TMFFENAVE
SRVGRP = SYS GRP
SRVID =4
CLOPT ="-A-- -F

Start the interface repository server
TM FRSVR
SRVGRP
SRVI D
RESTART=Y
MAXGEN=5
GRACE=3600
CLOPT="-A -- -f [usr/repoman/ nyrepo.ifr"

SYS GRP
5

For adescription of the TM FRSVR-f fi | ename parameter, refer to the File Formats,
Data Descriptions, MIBs, and System Processes Reference. |n addition to the CLOPT
-f fil ename parameter, the TM FRSVR parameter can contain other parameters
(those that are not specific to the BEA Tuxedo system) in the SERVERS section of an
application’'s UBBCONFI G configuration file.

Setting Up a BEA Tuxedo Application

Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

See the section “How to Create the SERV ERS Section of the Configuration File” on
page 3-62 in Chapter 3, “ Creating the Configuration File,” for details about parameters
such as SRVGRP, SRVI D, RESTART, MAXGEN, and GRACE.

Setting Up a BEA Tuxedo Application 6-7

6 Managing CORBA Interface Repositories

6-8 Setting Up a BEA Tuxedo Application

CHAPTER

[Distributing ATM!

Applications Across a
Network

Thistopic includes the following sections:
m What IsaDistributed ATMI Application?

m Why Distribute an ATMI Application Across a Network?

Note: For detailed information about distributing BEA Tuxedo CORBA applications
across a network, refer to the Scaling, Distributing, and Tuning CORBA
Applications guide.

What Is a Distributed ATMI Application?

A distributed application consists of one or more local or remote clients that
communicate with one or more serverson several machines linked through a network.
With this type of application, business operations can be conducted from any
geographical location. For example, a corporation may distribute the following types
of operations across alarge region, or even across international boundaries:

m Forecasting sales

m Ordering supplies

Setting Up a BEA Tuxedo Application 7-1

4 Distributing ATMI Applications Across a Network

m Manufacturing, shipping, and billing for goods
m Updating corporate databases

State of the art telecommunications and data networks are making distributed
operationsof thissort increasingly common. A pplicationsdevel oped toimplement this
type of strategy allow businesses to reduce costs and enhance their offerings of
services to customers around the world.

The BEA Tuxedo system supports this type of architecture by simplifying the task of
managing a distributed application. Whether an application comprises only one
computer or thousands of computersworking together over anetwork, al the elements
of that application, including clients, servers, and the networks that connect them, are
managed through a single BEA Tuxedo configuration file.

7-2 Setting Up a BEA Tuxedo Application

What Is a Distributed ATMI Application?

Example of a Distributed Application

The following diagram illustrates the basic parts of an application distributed across

three machines.

Figure7-1 Sample of a Distributed Application

Machine 1 (Master)

DBBL BBL
Client BB
Application SRIVErS
Coda .
T Services
EEA
TUXEDD

Application

TUXEDO

Machine 2
BBL
Server Client Server
BEA Application BB BEA
TUXEDO Coda Senvers TUXEDD
ATMI ATMI Services ATMI
WVilithd EEA Wfith draw
Inquiry TUXEDD Inguiny
Bridge Bridge

N

Machine 3

Network
BBL
Bridge
) BB
Client Servers Server
Senvices BEA
Code TUXEDD
ATl AT
BEA Wliithdraw
Ingquiny

Setting Up a BEA Tuxedo Application

7-3

4 Distributing ATMI Applications Across a Network

Implementing a Distributed Application

A distributed application isimplemented on a hetwork defined in the NETWORK (and
optionally NETGROUPS) section(s) of the configuration file. It frequently uses
data-dependent routing, defined in the ROUTI NG section of the configuration file. A
critical part of the design of adistributed application isthe arrangement between server
groups, processes, transaction manager servers (TMSs), and resource managers
(RMs).

To set up adistributed application over a network, the application administrator must
work with the network administrator. |n most instances, the application administrator
writes the configuration file for a distributed application (defining parametersin the

RESOURCES, MACHI NES, GROUPS, SERVI CES, and ROUTI NG sections), and the network
administrator or MIS representative writes or contributes to the networking sections.

See Also

m “Creating the Configuration File for a Distributed ATMI Application” on page
8-1

m “Setting Up the Network for a Distributed Application” on page 9-1

m “Managing the Network in a Distributed Application” on page 4-1 in
Administering a BEA Tuxedo Application at Run Time

m Scaling, Distributing, and Tuning CORBA Applications

7-4 Setting Up a BEA Tuxedo Application

Why Distribute an ATMI Application Across a Network?

Why Distribute an ATMI Application Across a
Network?

Distributed applications provide severa important benefits. Early business
applications were devel oped to run on one large mainframe computer. Because all
computing was performed on a single machine, a failure could bring down an entire
system. With theincreasing popul arity of distributed applications, thisthreat of system
failureis declining.

Another advantage is that by distributing an application, you can group parts of an
application logically and position these logical groupsin the most effective locations.
By creating groups of servers, for example, you can partition a large application into
separate, business-specific components of manageable size and optimal |ocation.

A distributed application allows you to do the following:

Perform data-dependent partitioning

Manage multiple resources

Enlarge the client and/or server model

Obtain transparent access to BEA Tuxedo system services
Establish multiple server groups

Use multiple computers simultaneously to do the work of one application,
providing better throughput and response time

Provide for replicated resources for increased availability

Setting Up a BEA Tuxedo Application 7-5

4 Distributing ATMI Applications Across a Network

Features of a Distributed Application

m Coordination of autonomous actions—autonomous actions are actions that
involve multiple server groups and/or multiple resource manager interfaces. The
BEA Tuxedo system enables you to coordinate autonomous actions among
separate applications as asingle logical unit of work.

m Resilience—when one of many machinesfails, the remaining machines continue
to operate. Similarly, when one server in a server group fails, the remaining
servers continue the work.

m Scalability—application load or capacity can be increased by:
e Placing more serversin agroup.

e Adding machinesto an application and redistributing groups across
machines.

e Replicating a server group that resides on one machine, on other machines,
and using load balancing.

e Segmenting a database using data-dependent routing for groups that meet
specific criteria

See Also

m “What Is a Multiple-machine (Distributed) Configuration?’ on page 3-43in
Introducing BEA Tuxedo ATMI

m “What Is Load Balancing?’ on page 2-39 in Introducing BEA Tuxedo ATMI

m “What Is Data-dependent Routing?’ on page 2-31 in Introducing BEA Tuxedo
ATMI

m Scaling, Distributing, and Tuning CORBA Applications

7-6 Setting Up a BEA Tuxedo Application

CHAPTER

8

Creating the

Configuration File for a
Distributed ATM|
Application

This section includes the following topics:

Configuration File Requirements for a Distributed BEA Tuxedo ATMI
Application

Creating the RESOURCES Section

Creating the MACHINES Section

Creating the GROUPS Section

Creating the SERVICES Section

Creating the ROUTING Section

Example Configuration File for a Distributed Application

Modifying the Domain Gateway Configuration File to Support Routing

Note: For detailed information about creating a configuration file for a distributed

BEA Tuxedo CORBA application, refer to the Scaling, Distributing, and
Tuning CORBA Applications guide.

Setting Up a BEA Tuxedo Application 8-1

8

Creating the Configuration File for a Distributed ATMI Application

Configuration File Requirements for a
Distributed BEA Tuxedo ATMI Application

8-2

A distributed BEA Tuxedo ATMI application consists of one or more local or remote
clientsthat communicate with one or more serversresiding on several machineslinked
through anetwork, all of which are administered asasingle entity in one BEA Tuxedo
configuration file. To set up a distributed configuration, you must create a
configuration file that includes the following sections:

RESOURCES section

MACHI NES section

GROUPS section

NETGROUPS section (optional)
NETWORK section

SERVI CES section

ROUTI NG section (if data-dependent routing is used)

If your configuration spans multiple domains and uses data-dependent routing, you
must also modify the domain gateway configuration file (DMCONFI G) to support
routing functionality.

Setting Up a BEA Tuxedo Application

Creating the RESOURCES Section

Creating the RESOURCES Section

In the RESOURCES section you define governing parametersfor system-wide resources,
such as the maximum number of servers allowed in the application. All parameter
settings in this section apply to the entire application.

Note: The parameters described in the tables in this topic are used only for
distributed applications. For a description of the basic parameters that are
available for any kind of BEATuxedo application, see UBBCONFI G 5) in the
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Table 8-1 RESOURCES Section Parameters

Parameter

Description

BBLQUERY (Optional)

BBLQUERY sets a multiplier of the basic SCANUNI T between
status checks by the DBBL of all BBLs. The DBBL checksto
ensure that all BBLs have reported in within the BBLQUERY
cycle. If aBBL has not been heard from, the DBBL sends a
message to that BBL asking for status. If no reply is received,
the BBL is partitioned.

Thevalue of BBLQUERY must be greater than O. If this parameter
isnot specified, the default is set so that (SCANUNI T *
BBLQUERY) is approximately 300 seconds.

BLOCKT! ME (Optional)

BLOCKT! ME sets amultiplier of the basic SCANUNI T after
which ablocking call (for example, receiving areply) times out.

The value of BLOCKTI ME must be greater than 0. If this
parameter is not specified, the default is set so that (SCANUNI T *
BLOCKT! ME) is approximately 60 seconds.

DBBLWAI T (Optional)

DBBLWAI T setsamultiplier of the basic SCANUNI T for the
maximum amount of wall time aDBBL should wait for replies
from all its BBLs before timing out. Every time the DBBL
forwards arequest to its BBLs, it waits for all of them to reply
with apositive acknowledgment beforereplying to therequester.
This option can be used for detecting dead or insane BBLsin a
timely manner.

Thevalue of DBBLWAI T must be greater than O. If this parameter

isnot specified, the default is set so that (SCANUNI T *
DBBLWAI T) isthe greater of SCANUNI T or 20 seconds.

Setting Up a BEA Tuxedo Application 8-3

8

Creating the Configuration File for a Distributed ATMI Application

8-4

Table 8-1 RESOURCES Section Parameter s (Continued)

Parameter

Description

| PCKEY (Required)

| PCKEY specifies the numeric key for the bulletin board. Ina
single-processor environment, this key names the bulletin board.
In a multiprocessor environment, this key names the message
queue of the DBBL. Thiskey isalso used as a basis for deriving
the names of resources other than this well-known address, such
as the names for bulletin boards throughout a multiprocessor.

The value of | PCKEY must be greater than 32,768 and less than
262,143.

MASTER (Required)

MASTER (string_val uel[, string_val ue2]) specifies
the LMID of the machine on which the master copy of
TUXCONFI Gislocated. Also, if the application isrunin MP
mode, MASTER indicates the machine on which the DBBL isrun.
st ri ng_val ue2 namesanalternate LMID location used during
process relocation and booting. If the primary location is not
available, the DBBL is booted at the alternate |ocation and the
aternate TUXCONFI Gfile found thereis used.

Thevalue of bothstring_valuel andstring_ val ue2
must be LMIDs of machines defined in the MACHI NES section.
Each string may contain up to 30 characters.

MAXGROUPS (Optional) MAXGROUPS specifiesthe maximum number of configured server
groups to be accommodated in the group table of the bulletin
board.

The value of MAXGROUPS must be greater than or equal to 100
and less than 32,768. The default is 100.
MAXSERVERS MAXSERVERS specifies the maximum number of serversto be
(Optional) accommodated in the server table of the bulletin board.
The value of MAXSERVERS must be greater than 0 and less than
8192. The default is 50.
MAXSERVI CES MAXSERVI CES specifies the maximum number of servicesto be
(Optional) accommodated in the services table of the bulletin board.

The value of MAXSERVI CES must be greater than 0 and lessthan
32,768. The default is 100.

Setting Up a BEA Tuxedo Application

Creating the MACHINES Section

Table 8-1 RESOURCES Section Parameters (Continued)

Parameter Description
SANI TYSCAN SANI TYSCAN sets amultiplier of the basic SCANUNI T between
(Optional) sanity checks of the system.

Thevalue of SCANUNI T must be greater than 0. The default is set
so that (SCANUNI T * SANI TYSCAN) is approximately 120
seconds.

Sanity checks are performed on servers aswell as on the bulletin
board data structure itself.

SCANUNI T (Optional) SCANUNI T setsthe time interval (in seconds) between scans by
the bulletin board liaison for timed-out transactions and blocking
calls within service requests. Thisvalueis used asthe basic unit
of scanning by the BBL. It affects the granularity with which
transaction timeout values can be specified ont pbegi n(3c) and
the blocking timeout value specified with the BLOCKTI ME
parameter. The SANI TYSCAN, BBLQUERY, DBBLWAI T, and
BLOCKT! ME parameters are multipliers of this unit for other
timed operations within the system.

The value of SCANUNI T must be a multiple of 5 greater than 0
and less than or equa to 60 seconds. The default is 10 seconds.

Creating the MACHINES Section

Inthe MACHI NES section you assign logical namesto all the physical machinesin your
configuration (including all the processing el ements in multiprocessor machines) and
define other parameters for individual machines. The following table describes the
parameters available for defining machine names and other machine-specific
parameters for each machine that participates in a distributed application.

Setting Up a BEA Tuxedo Application 8-5

8

Creating the Configuration File for a Distributed ATMI Application

8-6

Table 8-2 MACHINES Section Parameters

Parameter

Description

ENVFI LE (Optional)

ENVFI LE specifiesafilethat definesthe environment with which
al clients and servers on the machine are to be executed.
Linesmust beintheformi dent =val ue wherei dent contains
only underscoresand/or al phanumeric characters, and beginswith
an underscore or aletter of the al phabet.

If the value of ENVFI LE is an invalid filename, no values are
added to the environment.

MAXACCESSERS
(Optional)

MAXACCESSERS specifies the maximum number of processes
that can access the bulletin board on this processor at any one
time. When calculating the appropriate number, you are not
required to count system administration processes, such as the
BBL and t madmni n, but you must count all application servers
and clients, and TM S servers.

The value of MAXACCESSERS must be greater than 0 and less

than 32,768. The default isthe value specified in the RESOURCES
section.

MAXCONV (Optional)

MAXCONV specifies the maximum number of simultaneous
conversations allowed for processes on a particular machine.

The value of MAXCONV must be greater than 0 and less than
32,768. The maximum number of Simultaneous conversations per
server is64. The default isthe value specified in the RESOURCES
section.

MAXWSCLI ENTS
(Optional)

MAXWSCL | ENTS specifies the number of accesser entries on this
processor to be reserved for Workstation clients only. This
parameter is used only when the BEA Tuxedo System
Workstation component is used. This number takes a portion of
the total accesser dots specified with MAXACCESSERS. The
appropriate setting of thisparameter helps conserve | PC resources
because Workstation client access to the system is multiplexed
through a BEA Tuxedo system-supplied surrogate, the
workstation handler.

The value of MAXWSCLI ENTS must be greater than or equal to O,
and less than 32,768; it may not be greater than the value of
MAXACCESSERS. (Assigning avalue to MAXWSCLI ENTS that is
higher than the value of MAXACCESSERS isan error.) Thedefault
isO.

Setting Up a BEA Tuxedo Application

Creating the GROUPS Section

Creating the GROUPS Section

In the GROUPS section you identify each server group in your application so that the
BEA Tuxedo system can route requests to the member servers of specific groups.

The GROUPS section is populated with the number of server groups required for the
application. Server groups can all reside on the same site (SHMmode) or, in a
distributed application, they can reside on different sites (MP mode).

Parametersin the GROUPS section implement two important aspects of distributed
transaction processing:

m They associate agroup of serverswith aparticular LM D and a particular
instance of a resource manager.

m By allowing asecond LM D to be associated with the server group, they name an
alternate machine to which a group of servers can be migrated if the M GRATE
option is specified.

The following table describes the parameters in the GROUPS section.

Table 8-3 GROUPS Section Parameters

Parameter Description

ENVFI LE ENVFI LE specifiesafilethat definesthe environment with which
all serversin the group are executed.

Linesmust beintheformi dent =val ue wherei dent contains
only underscores and/or alphanumeric characters.

If the value of ENVFI LE isan invalid filename, no values are
added to the environment.

GRPNO (Required) GRPNOassociates a number with a particular server group.

The number must be greater than 0 and | ess than 30,000. It must
be unique among entries in the GROUPS section.

Setting Up a BEA Tuxedo Application 8-7

8

Creating the Configuration File for a Distributed ATMI Application

Table 8-3 GROUPS Section Parameter s (Continued)

Par ameter Description

LM D (Required) LM D identifies the machine on which the server group being
defined runs. A second LM D value can be specified (separated
from thefirst by acomma) for an alternate machine to which this
server group can be migrated if the M GRATE option has been
specified. Serversin the group can be migrated if RESTART=Y to
migrate is specified in the GROUPS section.

The values of LM D must be the values assigned to the LM D
parameter in the MACHI NES section.

Creating the SERVICES Section

8-8

The SERVI CES section contains parameters that determine how application services
arehandled. Every line of every entry in this section is associated with aservice by its
identifier name.

You must identify the service provided by each server group in the SERVI CES section.
Because the same service can be link edited with more than one server, the SRVGRP
parameter is provided to tie the parameters for an instance of a service to a particular
group of servers.

The following table describes the parameters in the SERVI CES section that are
available for defining distributed applications.

Table 8-4 SERVICES Section Parameters

Par ameter Description
LOAD (Optional) LOAD specifies the size of the load imposed by SVCNMon the
system.

The value of LOAD must be a number between 1 and 32,767,
inclusive. A higher number indicates agreater load. The default is
50.

Setting Up a BEA Tuxedo Application

Creating the SERVICES Section

Table 8-4 SERVICES Section Parameters (Continued)

Parameter

Description

PRI O(Optional)

PRI O specifies the dequeuing priority of SVCNM

The value of PRI Omust be greater than 0 and less than or equal
to 100, with 100 being the highest priority. The default is 50.

ROUTI NG (optional)

ROUTI NG specifies the name of the routing criteria used for this
service when data-dependent routing is being performed. If this
parameter is not specified, data-dependent routing is not
performed for this service.

The value of ROUTI NG may contain up to 15 characters. If
multiple entries exist for the same service name but with different
SRVGRP parameters, the ROUTI NG parameter must be the same
for all entries.

SRVGRP (Optional)

SRVGRP specifiesthe host server group for the service that is
specified by SYCNMand controlled by the parameters set in this
section.

By setting SRVGRP, you can assign different parameter settingsto
the same service when it is offered by different server groups. For
example, suppose your application provides two server groups,
GROUP1 and GROUP2, that offer a service called W THDRAW By
setting SRVGRP you can assign different | oad factors to each copy
of the service, asfollows:

W THDRAW RQOUTI NG=123 LOAD=60 SRVGRP=GROUP1
W THDRAW RQUTI NG=123 LOAD=60 SRVCGRP=GROUP2

The value of SRVGRP may contain up to 30 characters.

SVCTI MEQUT
(Optional)

SVCTI MEQUT specifies the amount of time, in seconds, that is
allowed for processing of the indicated service. A timed-out
service causes the server processing the service request to be
terminated with a SI GKI LL signal.

The value of SVCTI MEOUT must be greater than or equal to 0. A
value of 0 indicates that the service will not be timed out. The
default is 0.

If your application includes transaction processing, you may also want to set three
other parametersin the SERVI CES section: AUTOTRAN, ROUTI NG, and TRANTI ME. These
parameters are described in “Configuring Y our ATMI Application to Use
Transactions” on page 5-1.

Setting Up a BEA Tuxedo Application 8-9

8

Creating the Configuration File for a Distributed ATMI Application

Thefollowing listing shows a sample of the SERVI CES section.
* SERVI CES

W THDRAW ROUTI NG=ACCOUNT_I D
DEPCSI T ROUTI NG=ACCOUNT_I D
OPEN_ACCT ROUTI NG=BRANCH_| D

Creating the ROUTING Section

8-10

In the ROUTI NG section you specify the criteriato be used when data-dependent routing
isperformed. If aserviceislisted in multiple entries, each with a different SRVGRP
parameter, the ROUTI NG section must be set with the samevalue in all entries.
Otherwise, routing cannot be done consistently for that service. Because a service can
be routed on onefield only, the value of that field must be the samein al entries for
the same service.

Y ou can add a ROUTI NG section to the configuration file to show mappings between
data ranges and groups. The information in this section enables the system to send a
reguest to a server in a specific group. Each ROUTI NG section item contains an
identifier that is used in the SERVI CES section.

Lines within the ROUTI NG section have the following form.
CRI TERI ON_NAME r equi red_paraneters

where CRI TERI ON_NAME is the name of the routing entry specified in the SERVI CES
section for data-dependent routing. The value of CRI TERI ON_NANME must be a string
with amaximum of 15 characters.

Setting Up a BEA Tuxedo Application

Creating the ROUTING Section

See Also

The following table describes the parameters in the ROUTI NG section.

Table 8-5 ROUTING Section Parameters

Parameter Description
RANGES Ranges and associated server groups for the routing field.
FI ELD Name of the routing field, which is assumed to be one of the

following: an FML buffer, an XML element or element attribute, a
view field nameidentified in an FM_ field table (using the
FLDTBLDI Rand FI ELDTBLS environment variables), or an FM_
view table (using the VI EWDI Rand VI EWFI LES environment
variables). Thisinformation is used to obtain the associated field
value for data-dependent routing when sending a message.

BUFTYPE A list of types and subtypes of data buffersfor which this routing
entry isvdid.

The value of thisparameter may contain up to 256 characterswith
amaximum of 32 type/subtype combinations.

m “What IsaMultiple-machine (Distributed) Configuration?’ on page 3-43 in
Introducing BEA Tuxedo ATMI

m “How to Create the Configuration File for a Multiple-machine (Distributed)
Application” on page 3-3

m UBBCONFI G 5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

m Scaling, Distributing, and Tuning CORBA Applications

Setting Up a BEA Tuxedo Application 811

8 Creating the Configuration File for a Distributed ATMI Application

Example Configuration File for a Distributed
Application

The following excerpt from a sample UBBCONFI Gfile shows the GROUPS, SERVI CES,
and ROUTI NG sections, which support data-dependent routing in a BEA Tuxedo

application.

* GROUPS

BANKB1 GRPNO=1

BANKB2 GRPNO=2

BANKB3 GRPNO=3

#

* SERVI CES

W THDRAW RQUTI NG=BY_ACCOUNT_I D

DEPCSI T RQUTI NG=BY_ACCOUNT_I D

I NQUI RY ROUTI NG=BY_ACCOUNT | D

OPEN_ACCT ROUTI NG=BY_BRANCH_| D

CLOSE_ACCT RQUTI NG=BY_BRANCH I D

#

* ROUTI NG

BY_ACCOUNT_I D FI ELD=ACCOUNT_I| D BUFTYPE="FM."

RANGES="M N - 9999: *,

10000- 49999: BANKB1,
50000- 79999: BANKB2,
80000- 109999: BANKB3,
* . kM

BY_BRANCH_I D FI ELD=BRANCH_| D BUFTYPE="FM."

RANGES="M N - 0: *,

1- 4: BANKBL,
5-7: BANKB2,
8-10: BANKB3,

P 2

8-12 Setting Up aBEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing

Modifying the Domain Gateway
Configuration File to Support Routing

All domain gateway configuration information is stored in a binary file called
BDMOONFI G Thisfileis created by first writing atext configuration file called
DMCONFI G and then compiling it into a binary version called BDMCONFI G. The
compiled BDMCONFI Gfile can be updated while the system is running by using the
dmadmi n(1) command. Although the BEA Tuxedo documentation refers to these
configuration files as DMCONFI G and BDMCONFI G, you can give these files any names.

Y ou must have one BDMCONFI Gfile for each BEA Tuxedo application to which you
want to add Domains functionality. System access to the BDMOONFI Gfile is provided
through the Domains administrative server, DVADM5). When a gateway group is
booted, the gateway administrative server, GAADM5), requests from the DVADM server
a copy of the configuration required by that group. The GAADM server and the DMADM
server aso ensure that run-time changes to the configuration are reflected in the
corresponding domain gateway groups.

Note: For more information about the DMOONFI Gfile, refer to DMOONFI G(5) inthe
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Description of ROUTING Section Parameters in
DMCONFIG

The DM_ROUTI NG section provides information for data-dependent routing of service
requests using FML, XM, VI EW X_C TYPE, and X_COMMON typed buffers. Lines within
the DM_ROUTI NG section have the following form.

CRI TERI ON_NAME requi red_par aneters

where CRI TERI ON_NAME is the name of the routing entry specified in the SERVI CES
section. The value of CRI TERI ON_NANME must be a string with a maximum of 15
characters.

Setting Up a BEA Tuxedo Application 8-13

8 Creating the Configuration File for a Distributed ATMI Application

The following table describes the parameters in the DM_ROUTI NG section.

Par ameter Description

FI ELD (Optional) Specifies the name of the routing field, which is assumed to be
one of the following: an FM_ buffer, an XM element or element
attribute, aview field name identified in an FML field table
(using the FLDTBLDI Rand FI ELDTBLS environment
variables), or an FM. view table (using the VI EWDI Rand
VI EWFI LES environment variables). Thisinformationisusedto
obtain the associated field value for data-dependent routing
when sending a message.

If afield in an FML32 buffer is used for routing, it must have a
field number less than or equal to 8191.

8-14 Setting Up aBEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing

Parameter

Description

RANGES (Optional)

Specifies the ranges and associated remote domain names
(RDQM for the routing field. The value of RANGES must be a
string enclosed in double quotes. The enclosed string, in turn,
must consi st of acomma-separated ordered list of r ange/ RDOM
pairs.

The value of r ange may be either asingle vaue (asigned
numeric value or acharacter string enclosed in single quotes), or
arange of theform | ower - upper (wherel ower and upper
are both signed numeric values or character stringsin single
quotes).

The value of | ower must be less than or equd to upper . A
single quote embedded in a character string value, asin
“O’'Brien,” for example, must be preceded by two back slashes:
“O\Brien”.

Use M Nto indicate the minimum value for the data type of the
associated FI ELD. For strings and carrays, it is the null string;
for character fields, it isO; for numeric values, it isthe minimum
numeric value that can be stored in the field.

Use MAX to indicate the maximum value for the data type of the
associated FI ELD. For strings and carrays, it is effectively an
unlimited string of octal-255 characters; for a character field, it
isasingle octal-255 character; for numeric vaues, it is the
maximum numeric value that can be stored in the field. Thus,
M N - -5 isall numberslessthanor equal to- 5,and 6 - MAX
isall numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of arange
indicates any va ues not covered by other ranges previoudy seen
inthe entry. Only one wildcard range is allowed per entry and it
should belisted last (ranges following it are ignored).

Setting Up a BEA Tuxedo Application 8-15

8

Creating the Configuration File for a Distributed ATMI Application

Par ameter Description

BUFTYPE (Optional) BUFTYPE provides a list of types and subtypes of data buffers

for which thisrouting entry isvalid. Valid typesare FM_, VI EW
X_C _TYPE, and X_COMMON. No subtype can be specified for
type FM_, and subtypes are required for the other types (* isnot
allowed). Duplicate type/subtype pairs cannot be specified for
the same routing criteria name; more than one routing entry can
have the same criterianame as long as the type/subtype pairs are
unique.

If multiple buffer types are specified for a single routing entry,
the data types of the routing field for each buffer type must be
the same. If the field value is not set (for FML buffers), or does
not match any specific range, and awildcard range has not been
specified, an error isreturned to the application process that
requested the execution of the remote service.

Routing Field Description

8-16

Thevalueintherouting field can be any datatype supported in FM. or VI EW it may be
anumeric range or astring range. The following rules apply to string range values for
string, carray, and character field types:

m They must be enclosed by single quotation marks and cannot be preceded by a

plus or minus sign.

A short or long integer value must be a string of digits, optionally preceded by a
plus or minus sign.

Floating point numbers must be written in the form required by the C compiler
or at of () : aplus or minus sign, followed by a string of digits (optionally
containing adecimal point), then an optional e or E followed by an optional sign
or space, followed by an integer.

When afield value matches a range, the associated RDOMval ue specifies the
remote domain to which the request should be routed. An RDOMvalue of *
indicates that the request may be sent to any remote domain known by the
gateway group. Within ar ange/ RDOM pair, the range must be separated from
the RDOMby a: (colon).

Setting Up a BEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing

Example of a 5-Site Domain Configuration Using Routing

The following sample configuration file defines a two-domain application distributed
acrossfive sites. The five sitesinclude a Central Bank Office and four bank branches.
Three of the branches belong to a BEA Tuxedo domain. The fourth branch belongs to
another TP domain, and OSI-TPis used to communicate with that domain.

The example shows the BEA Tuxedo system domain gateway configuration file from
the Central Bank point of view. In the DM_TDOVAI N section, this example shows a
mirrored gateway for b01.

Listing 8-1 Domains Configuration Filefor Five Sites

TUXEDO DOVAI N CONFI GURATI ON FI LE FOR THE CENTRAL BANK

#
#

*DM_LOCAL_ DOVAI NS
|l ocal _domai n_name Gateway_G oup_nanme donai n_type donmain_| D | og_devi ce

HHHHH

#
#

[audit |og] [blocktine]

[log nane] [log offset] [log size]
[maxrdon] [maxrdtran] [maxtran]

[maxdat al en] [security]

[tuxconfig] [tuxoffset]

DEFAULT: SECURI TY = NONE

c0l

c02

#

GWGRP = bankgl

TYPE = TDOVAI N

DOVAI NI D = " BA. CENTRALO1"

DMILOGDEV = "/ usr/apps/bank/ DMILOG'
DMILOGNAME = " DMTLG _CO1"

GWGRP = bankg2

TYPE = CSI TP

DOVAI NI D = " BA. CENTRALO1"

DMILOGDEV = "/ usr/apps/ bank/ DMILOG'
DMILOGNAME = " DMTLG _C02"

NWDEVI CE = " Csl TP"

URCH = " ABCD"

* DM_REMOTE_DOVAI NS
#renmot e_donai n_nane donai n_type donain_I D

#
b01

TYPE = TDOVAI N
DOVAI NI D = " BA. BANKO1"

Setting Up a BEA Tuxedo Application 8-17

8 Creating the Configuration File for a Distributed ATMI Application

b02 TYPE = TDOVAI N

DOVAI NI D = " BA. BANKO2"
b03 TYPE = TDOVAI N

DOVAI NI D = " BA. BANKO3"
b04 TYPE = OSI TP

DOVAI NI D = " BA. BANKO4"
URCH = " ABCD"'

#

*DM_TDOVAI N

#

| ocal _or _renote_donmai n_nanme networ k_address [nwdevi ce]

#

Local network addresses

c01 NWADDR = "//newyor k. acrme. com 65432" NWDEVI CE ="/ dev/t cp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVI CE ="/ dev/tcp"

Renote network addresses: second b0l specifies a mirrored gateway

b0o1 NWADDR = "//192.11.109. 5: 1025" NWDEVI CE = "/dev/tcp"
b0o1 NWADDR = "//194.12.110.5: 1025" NWDEVI CE = "/dev/tcp"
b02 NWADDR = "//dal | as. acnme. com 65432" NWDEVI CE = "/dev/tcp"
b03 NWADDR = "//192.11.109. 156: 4244" NWDEVI CE = "/dev/tcp"
#
*DM OSI TP
#
#l ocal _or _renpnte_domai n_name apt aeq
[aet] [acn] [apid] [aeid]
[profile]
#
c02 APT = "BA. CENTRALO1"

AEQ = "TUXEDO. R. 4. 2. 1"

AET = "{1.3.15.0.3},{1}"

ACN = "XATM "
b04 APT = "BA. BANKO4"

AEQ = "TUXEDO. R. 4. 2. 1"

AET = "{1.3.15.0.4},{1}"

ACN = "XATM "
* DM_LOCAL_SERVI CES
#servi ce_nane [Local _Domai n_name] [access_control] [exported_svcnane]

[i nbuftype] [outbuftype]

#

open_act ACL = branch

cl ose_act ACL = branch

credit

debi t

bal ance

| oan LDOM = c02 ACL = | oans

* DM_REMOTE_SERVI CES

#servi ce_namne [Renot e_domai n_nane] [l ocal _domai n_nane]
[renpte_svcnane] [routing] [conv]

[trantime] [inbuftype] [outbuftype]

8-18 Setting Up aBEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing

#
tlr_add LDOM = c01 ROUTI NG = ACCOUNT
tlr_bal LDOM = c01 ROUTI NG = ACCOUNT

tlr_add RDOM = b04 LDOM = c02 RNAME ="TPSU002"

tlr_bal RDOM = b04 LDOM = c02 RNAME =" TPSU003"

*DM_RQUTI NG

routing criteria field typed_buffer ranges

#

ACCOUNT FI ELD = branchid BUFTYPE ="VI EW account”
RANGES ="M N - 1000: b01, 1001-3000: b02, *:b03"

*DM_ACCESS_CONTRCL

#acl _name Renot e_domai n_| i st

#

branch ACLI ST

| oans ACLI ST

b01, b02, b03
b04

See Also

m “What Isthe Domains Configuration File?’ on page 1-19 in Using the BEA
Tuxedo Domains Component

m “Configuring a Domains Environment” on page 2-18 in Using the BEA Tuxedo
Domains Component

m Scaling, Distributing, and Tuning CORBA Applications

Setting Up a BEA Tuxedo Application 8-19

8 Creating the Configuration File for a Distributed ATMI Application

8-20 Setting Up aBEA Tuxedo Application

CHAPTER

O Setting Up the Network

for a Distributed
Application

Thistopic includes the following sections:

Configuring the Network for a Distributed Application

How Data Moves Over a Network

How Data Moves Over Parallel Networks

Example of a Network Configuration for a Simple Distributed Application
How Failover and Failback Work in Scheduling Network Data

Example Configuration of Multiple Netgroups

Configuring the Network for a Distributed
Application

A distributed application is an application that runs on multiple computers, each of
which supports an installation of the BEA Tuxedo system. These computers are
connected and can communicate with each other through a network that includes

Setting Up a BEA Tuxedo Application 9-1

9 Setting Up the Network for a Distributed Application

hardware, software, access methods, and communication protocols. The BEA Tuxedo
system encodes, routes, and decodes messages, and uses the network to ship those
messages between machines. The system performs these tasks automatically.

To configure the networking functionality required to support a distributed
application, include the following entries in the configuration file.

In This Set This To...
Section . . . Parameter . ..
RESOURCES MODEL (Required) MP. This parameter enablesall other networking parameters. Itis

used only for networked machines. SHMis used for a
single-machine configuration, even if the machineisa
multi processor.

OPTI ONS (Required) LAN(Local Area Network) to indicate that communication will
take place between separate machines, rather than between
separate processes on the same machine.

MAXNET GROUPS Designate alimit on the number of NETGROUPS that can be
(Optional) defined. The default is 8; the upper limit, 8192.

9-2 Setting Up a BEA Tuxedo Application

Configuring the Network for a Distributed Application

In This Set This To...

Section . .. Parameter . ..

MACHI NES TYPE=string Determine whether encoding is required when messages are
(Optional) exchanged by two machines. The TYPE parameter specifies the

datarepresentation being used on each machine being defined. If
amessage is being sent from a machine on which one type of
data representation is being used to a machine on which a
different type of data representation is being used, the message
to be sent must be encoded before transmission and decoded
upon arrival.

If the machines in question both use the same type of data
representation, however, the system skips the
encoding/decoding process.

Example 1

LMD 1 TYPE = “abc”
LMD 2 TYPE = “abc”

Encoding is not used in this case.

Example 2

LMD 1 TYPE = “HP”
LMD 2 TYPE = “SUN’

Encoding is used in this case.

Y ou do not need to set this parameter if the same type of data
representation is used on al machines that will exchange
messages. The parameter must be set only for a machine on
which adifferent type is used. For example, if you have nine
SPARC machines and one HP machine, you must specify
TYPE=st ri ng only for the HP. For the SPARC machines, the
default null string identifies them as the same type.

Setting Up a BEA Tuxedo Application 9-3

9

Setting Up the Network for a Distributed Application

In This Set This
Section . .. Parameter . ..

To...

CMPLI M T=r enpot e
[,1 ocal] (Optional)

NETLQAD=numnber
(Optional)

Specify the compression threshold, that is, the minimum byte
size for amessage to be compressed before being sent to a
remote and/or local destination. The value of bothr enot e and
| ocal isanumber between 0 and MAXLONG. If CVPLI M T is
set to only onevalue, it is assumed that the specified valueisthe
r enot e argument and that messages sent to local destinations
are never compressed.

For example, if you set CMPLI M T=1024, than any message
greater than 1024 bytes bound for aremote location is
compressed.

Compression thresholds can also be specified with the variable
TMCVPLI M T. Seethe discussion, int uxenv (5), about the
variable TMCMPPRFM which sets the degree of compressionina
range of 1t0 9.

Add an application-specific number to the value of LOAD for a
remote service. The result is used by the system to evaluate
whether arequest should be processed locally or sent to aremote
machine. A higher NETLQAD results in less traffic being sent to
aremote machine.

NETGROUPS NETGROUP
(Optional) (Required)

NETGRPNO=nunber
(Required)

NETPRI C=nunber
(Optional)

Specify the name assigned by the application to a particular
group of machines. The name may contain up to 30 characters.
One group, consisting of all the machines on the network, must
be named DEFAUL TNET.

Specify anumber by which the system can identify a group of
machines. The value can be any number between 1 and 8192. For
DEFAULTNET, the value of NETGRPNO must be 0.

Assign apriority to aNETGROUP. This parameter helps the
system determine which network connection to use. The number
must be between 0 and 8192. Assign a higher priority to your
faster circuits; give your lowest priority to DEFAULTNET.

9-4

Setting Up a BEA Tuxedo Application

How Data Moves Over a Network

In This Set This To...

Section . . . Parameter . ..

NETWORK LM D (Required) Map the specified machine to one of the entries in the
(Optional) MACHI NES section.

NADDR=stri ng
(Required)

NLSADDR=st ri ng
(Required)

NETGROUP=stri ng
(Optional)

Specify the listening address for the BRI DGE process on this
LM D. There are four valid formats for specifying this network
address. See the NETWORK section of UBBCONFI G(5) for details.

Specify the network address for thet | i st en process on this
LM D. Valid formats are the same asthe valid formats for
NADDR.

Specify a NETWORK group name. Thevalue of st ri ng must be
agroup name specified in the NETGROUPS section. The default
is DEFAULTNET.

How Data Moves Over a Network

In adistributed application, datais sent across the network as follows:

m At the sending end—the BRI DGE sends a message to dest i nat i on_nachi ne by
writing the message to avirtua circuit and delegating, to the operating system,
responsibility for sending it. The operating system retains a copy of every
pending message. If anetwork error occurs, however, pending messages are lost.

m At thereceiving end—the BRI DGE process listens on a particul ar network
address for incoming messages.

Setting Up a BEA Tuxedo Application 9-5

9

Setting Up the Network for a Distributed Application

How Data Moves Over Parallel Networks

9-6

In adistributed application there are several advantagesto using parallel data circuits
for sending data across the network:

m By listening at more than one address, the BRI DGE achieves higher availability.

m By sending data simultaneously on parallel data circuits, the BRI DGE can achieve
a higher throughput, if the network was the limiting factor before.

m When you configure parallel data circuits, the software does not necessarily fail
to deliver amessage if the original destination circuit is busy. The system
attempts to schedule traffic over the circuit with the highest network group
number (NETGRPNO). If this circuit is busy, the traffic is automatically scheduled
over the circuit with the next (that is, the second highest) network group number.
When all circuits are busy, datais queued until a circuit is available.

Before making a decision to use parallel data circuits, however, you should determine
whether it will be important, in your application, for messages to be kept in sequence.
The system guarantees that conversational messages are kept in the correct sequence
by binding the conversation connection to one particular data circuit.

If your application will require all messagesto be kept in sequence, you must program
the application to keep track of the sequence for nonconversational messages. If you
are using this approach, you may not want to configure parallel data circuits.

The following figure describes how data flows when one machine tries to contact
another. Thefigure is based on asample scenario involving two machines: machine A
and machine B. Firgt, the BRI DGE identifies the network groups that are common to
both machines: the MAGENTA GROUP, the GREEN_GROUP, and the DEFAUL TNET.

Dataflowsin parallel on network groups with the same priority (that is, groups for
which the same value is assigned to the NETPRI O parameter). Network groups with
different priorities are used for failover.

Setting Up a BEA Tuxedo Application

How Data Moves Over Parallel Networks

Figure9-1 Flow of Data over the BRIDGE

List netgroups in
priority order.

la

Are Magenta group
and Green group
circuits available?

Flow data
over hoth links.

k

Mo Close any lower
+ priority groups
that were used.

Periodically try to
connect the Magenta
group and/or Green

group circuit.

Magenta group or
Green group circuits
availahle?

Flow data
over availahle circuit.

No

¥

All higher priority
groups unavailable:
Can we connect to
lower priority group,

Defaultnet (100} ?

N|u
¥
Periodically try all
circuits again.

Flow data
over availahle circuit.

Yes —»

¥

Setting Up a BEA Tuxedo Application 9-7

9

Setting Up the Network for a Distributed Application

Example of a Network Configuration for a
Simple Distributed Application

The following example shows how to configure a simple network:

The follow ng configuration file excerpt shows a NETWORK
section for a 2-site configuration.

* NETWORK
SI TE1L NADDR="// machl: 80952"
NLSADDR="// mach1: serve"

SI TE2 NADDR="// mach386: 80952"
NLSADDR="// mach386: ser ve"

How Failover and Failback Work in
Scheduling Network Data

9-8

Data flows over the highest available priority circuit. If all network groups have the
samepriority, datatravelsover all networks simultaneously. If al circuitsat the current
priority fail, datais sent over the next lower priority circuit. This processis called
failover. When failover occurs, the failed connections are retried periodically.

When higher priority network connections are reestablished, failback occurs and no
further datais scheduled for the lower priority connection. The lower priority
connection is disconnected in an orderly fashion.

If attempts to connect to al network addresses have been made and have failed, new
attempts to connect are made the next time application or system data needsto be sent
between machines.

Setting Up a BEA Tuxedo Application

Example Configuration of Multiple Netgroups

Example Configuration of Multiple
Netgroups

The hypothetical First State Bank has a network of five machines (A-E). These
machines are configured in four network groups and each machine is used in two or
three groups.

Note: The hardware and system software prerequisites for configuring multiple
network groups (NETGROUPS) are beyond the scope of this document. For
example, machinesare frequently required to bel ong to more than one physical
network. Each TCP/IP symbolic addressmust beidentifiedinthe/ et c/ host s
file or in the DNS (Domain Name Services).

In the following example, it is assumed that in addresses written in the form
/1 A_CORPORATE: 5345, the string A_CORPORATE is specified in the
/et c/ host s fileorin DNS.

The four groups in the First State Bank network include:

m DEFAULTNET (the default network, which is the corporate WAN)
m MAGENTA GROUP (aLAN)

m BLUE GROUP (aLAN)

m GREEN_GROUP (aprivate LAN that provides high-speed, fiber, point-to-point
links between member machines)

All machines belong to DEFAULTNET (the corporate WAN). In addition, each machine
is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some
machinesin the MAGENTA_GROUP also belong to the GREEN_GROUP. The following
diagram illustrates group assignments for the network.

Setting Up a BEA Tuxedo Application 9-9

9 Setting Up the Network for a Distributed Application

Figure9-2 Example Network Groups

MAGENTA GROUP BLUE_GROUP

GREEN GROTUP

CORPORATE_WAN

In this example, machines A and B have addresses for the following:
m DEFAULTNET (the corporate WAN)

m NMAGENTA GROWP (LAN)

®m GREEN GROWP (LAN)

Machine C has addresses for the following:

m DEFAULTNET (the corporate WAN)

m NMAGENTA GROWP (LAN)

Machines D and E have addresses for the following:

m DEFAULTNET (the corporate WAN)

m BLUE_GROUP (LAN)

Because the local area networks are not routed to all locations, machine D (in the
BLUE_GROUP LAN) may contact machine A (inthe GREEN_GROUP LAN) only by using
the single address they have in common: the corporate WAN network address.

9-10 Setting Up aBEA Tuxedo Application

Example Configuration of Multiple Netgroups

Configuration File for the Sample Network

To set up the configuration described in the preceding section, the First State Bank
administrator defines each group in the NETGROUPS and NETWORK sections of the
UBBCONFI Gfile as follows:

* NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRI O = 100 #def aul t
BLUE_GROUP NETGRPNO = 9 NETPRI O = 200
MAGENTA_GROUP NETGRPNO = 125 NETPRI O = 200

GREEN_GROUP NETGRPNO = 13 NETPRI O = 300

*NETVORK

A NETGROUP=DEFAULTNET NADDR="// A_CORPCORATE: 5723"
A NETGROUP=MAGENTA_GROUP NADDR="// A_MAGENTA: 5724"

A NETGROUP=GREEN_GROUP NADDR="// A _GREEN: 5725"

B NETGROUP=DEFAULTNET NADDR="// B_CORPORATE: 5723"
B NETGROUP=MAGENTA_GROUP NADDR="// B_MAGENTA: 5724"

B NETGROUP=GREEN_GROUP NADDR="// B_GREEN: 5725"

C NETGROUP=DEFAULTNET NADDR="// C_CORPORATE: 5723"
C NETGROUP=MAGENTA_GROUP NADDR="// C_MAGENTA: 5724"

D NETGROUP=DEFAULTNET NADDR="// D_CORPORATE: 5723"
D NETGROUP=BLUE_GROUP NADDR="// D _BLUE: 5726"

E NETGROUP=DEFAULTNET NADDR="// E_CORPORATE: 5723"
E NETGROUP=BLUE_GROUP NADDR="// E_BLUE: 5726"

Assigning Priorities for Each Network Group

Assigning priorities appropriately for each NETGROUP enables you to maximize the
capability of network BRI DGE processes. When determining NETGROUP priorities,
keep in mind the following considerations:

m Dataflows over only the highest available priority circuit.
m If al network groups have the same priority, data travels over al circuits

simultaneously.

Setting Up a BEA Tuxedo Application 9-11

9 Setting Up the Network for a Distributed Application

m If all circuits at the current priority fail, datais sent over the next lower priority
circuit.

m When ahigher priority circuit becomes available, data flows over it.
m All unavailable higher priority circuits are retried periodically.

m After connections to all network addresses have been tried and have failed,
connections are tried again the next time data needs to be sent between
machines.

m Thedefault value of NETPR Ois 100.

Example Assignment of Priorities to Network Groups

Thefollowing diagram shows how the First State Bank administrator assignspriorities
to the available network groups.

Figure9-3 Assigning Prioritiesto Network Groups

MAGENTA_GROUP BLUE_GROUP
NETPRIO=200 NETPRIO=200
A B 04 D E
GREEN_GROUP
NETPRIDO=300

DEFAULTNET({CORPORATE WAN])
NETPRIO==100

Thefollowing priorities are assigned:
m BLUE_GROUP=200

m DEFAULTNET=100

m GREEN GROUP=300

m MAGENTA GROUP=200

9-12 Setting Up aBEA Tuxedo Application

Example Configuration of Multiple Netgroups

Example NETGROUP and NETWORK Sections

The lowest priority among network groups is reserved for the default network group,
that is, the group that is not used unless all others are unavailable. Therefore, if you
want to limit the use of a particular network, such as a satellite link for which
per-minute fees are incurred, designate that network as the default network group.

Y ou can assign a network priority to the default network group by setting the NETPRI O
parameter for DEFAULTNET just as you do for any other group. If you do not specify a
priority for DEFAULTNET, a default of 100 is used, as shown in the following example:

*NETGROUP
DEFAULTNET NETGRPNO = 0 NETPRI O = 100

For DEFAULTNET, the value of the network group number (NETGRPNO) must be zero;
any other number isinvalid. The value of NETGRPNO must be unique for each entry.

On the other hand, the same value of NETPRI O may be assighed to multiple network
groups. For example, in the First State Bank configuration file, the same network
priority (NETPRI O=200) is assigned to both the MAGENTA_GROUP and the
GREEN_GROUP.

Each network address (NETWORK) is associated by default with the DEFAULTNET
network group. This parameter may be specified explicitly for either of two reasons:
to maintain uniformity among entries, or to associate the network address being
defined with a second network group.

*NETVORK
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE: 5726"

Setting Up a BEA Tuxedo Application 9-13

9 Setting Up the Network for a Distributed Application

9-14 Setting Up aBEA Tuxedo Application

CHAPTER

10 About Workstation
Clients

Thistopic includes the following sections:
m What Is the Workstation Component?
m Sample Application with Four Workstation Clients

m How the Workstation Client Connects to an Application

What Is the Workstation Component?

The Workstation component of the BEA Tuxedo system allows application clientsto
reside on amachine that does not have afull server-side installation, that is, amachine
that does not support any administration or application servers. All communication
between the client and the application servers takes place over the network.

A Workstation client process can run on a Windows 98, Windows 2000, or UNIX
platform. The client has access to the ATMI. The networking behind requestsis
transparent to the user. The Workstation client registers with the system through a
Workstation handler (WSH) and has access to the same capabilities as a hative client.

All communication between a Workstation client and application server is done
through a Workstation handler (WSH) process.

Workstation clients can perform almost all the same functions that can be performed
by network clients. They can, for example:

Setting Up a BEA Tuxedo Application 10-1

10 About Workstation Clients

m Send and receive messages
m Begin, end, or commit transactions
m Send and receive unsolicited messages

m Take full advantage of any security mechanism offered to BEA Tuxedo clients

Sample Application with Four Workstation
Clients

Thefollowing figure shows an example of an application with four Workstation
clients.

Figure 10-1 Bank Application with Four Workstation Clients

BEA Tuxedo Application Site 1

LN Workstation BEL

Mlative

Warkstation Client .
Sliant Bulletin S 1
Board —. C=mErlS
Workstation
Client /

ERIDGE

M ative
Client
Site 2
Windows YWaorkstation BRIDGE BEL DEEL
Warkstation \ 1
Client Bulletin
Board — Serverf:

Workstation

WS H
e \ i ///
WWEH ;

WSL

10-2 Setting Up a BEA Tuxedo Application

Sample Application with Four Workstation Clients

Two workstation clients are running on a UNIX system; another two Workstation
clients, on Windows 2000. All workstation clientsinitially joined the application
through the Workstation listener (WSL), which del egates subsequent communication
toaWorkstation handler. This processdiffersfrom the processthat occurswhen native
clientsjoin an application: in the latter case, the native clients attach directly to the
bulletin board upon joining.

Administrative servers and application servers are located on SI TE1 and SI TE2. Any
service request by a Workstation client to the application is sent over the network to
the WSH. Thisprocessforwardsthe request to the appropriate server, getsareply from
the server, and sends the reply to the Workstation client.

Note: Theterm resource manager refersto an implementation of the XA standard
interfacesthat provides transaction capabilities and permanence of actionsfor
aBEA Tuxedo application. The most common exampl e of aresource manager
isadatabase. A resource manager is accessed and controlled within a global
transaction.

Because the application is distributed across two machines in this example, it is
running in MP mode. The Workstation client sends a request to one Workstation
handler, the Workstation handler forwards the request to a BRI DGE process, and the
BRI DGE process, in turn, forwards the request to the correct machine.

Setting Up a BEA Tuxedo Application 10-3

10 About Workstation Clients

How the Workstation Client Connects to an
Application

10-4

Thefollowing flowchart shows how a Workstation client connects to an application.

YWorkstation Client
calls tpinit () or
tpochkauthi)

Client connects to | Initiated with
WSL using known | tpchkauthi)

netwark address or tpiniti)
|
YWSL assigns
appropriate WWSH Performed by
for client BEA Tuxedo
| systern an behalf
WSL returns of the application
address of a WSH
to the client

1
WWSL connects to All communication

WS H between the YWSL and
j the application takes

tpinit () or place through the WSH

tpochkauthi)

returns control to

application

The client connects to the WSL process using a known network address. The process
for establishing this connection is initiated when the client callst pchkaut h() or

t pi nit (). TheWSL returnsthe address of aWSH to the client, and then notifies the
Workstation handler process of the connection request. The WSC connects to the
WSH. All further communication between the WSC and the application takes place
through the WSH.

Setting Up a BEA Tuxedo Application

CHAPTER

11 Setting Up Workstation
Clients

Thistopic includes the following sections:

m Defining Workstation Clients

m Specifying the Maximum Number of Workstation Clients
m Defining a Workstation Listener (WSL) asa Server

m Detecting Network Failures

m Sample Configuration File That Supports Workstation Clients

Defining Workstation Clients

Before a Workstation client can join aBEA Tuxedo application, the application
environment must be prepared to accommodate it. The BEA Tuxedo system provides
the variables described in the following table for setting up your environment. Two
(TUXDI Rand WBNADDR) are required; therest are optional. Defaults are availablefor all
parameters except WSENVFI LE.

Setting Up a BEA Tuxedo Application -1

11 Setting Up Workstation Clients

11-2

To Specify . ..

Set This Environment
Variable. ..

The application password. (Useful only for applicationsin
which security isimplemented through password usage.)
Clients that run from scripts can get the application password
from this variable.

APP_PW(Optional)

The maximum number of significant bits of the encryption key
for link-level encryption. Value can be O (if no encryptionis
used), or 40, 56, or 128 (if the number specified isthe number
of significant bits in the encryption key).

TMVAXENCRYPTBI TS
(Optional)

The minimum number of significant bits of the encryption key
for link-level encryption. Vaue can be O (if no encryptionis
used), or 40, 56, or 128 (if the number specified isthe number
of significant bits in the encryption key).

TMM NENCRYPTBI TS
(Optional)

The directory inwhich repliesare stored when the WSRPL YMAX
limit has been reached. The default is the working directory.

TMPDI R (Optional)

The location of the BEA Tuxedo system software on this
workstation. The client cannot connect unlessthis environment
variableis set.

TUXDI R (Required)

The network deviceto be used. The default is an empty string.

WSDEVI CE (Optional)

The name of thefilein which all environment variablesmay be
set. Thereis no default for this variable.

WSENVFI LE (Optional)

The network address used by the Workstation client when
connecting to the Workstation listener or Workstation handler.
This variable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a Workstation client
attempts to bind before making an outbound connection. This
address must be a TCP/IP address

WSFADDR (Optional)

The range of TCP/IP portsto which a Workstation client
process attempts to bind before making an outbound
connection. The WSFADDR parameter specifiesthe base address
of the range.

WSFRANGE (Optional)

Setting Up a BEA Tuxedo Application

Specifying the Maximum Number of Workstation Clients

To Specify . . . Set This Environment
Variable. ..

A list of one or more network addresses of the WSL that the WSNADDR (Required)
client wants to contact. This address must match the address of
aWSL process in the application configuration file.

The amount of core memory to be used for buffering WSRPL YMAX (Optional)
application replies. The default is 256,000 bytes.

Themachinetype. If the value of WSTYPE matchesthevaueof WSTYPE (Optional)
TYPE in the configuration file for the WSL machine, no

encoding/decoding is performed. The default is the empty

string.

Specifying the Maximum Number of
Workstation Clients

To enable Workstation clients to join an application, you must specify the
MAXWSCLI ENTS parameter in the MACHI NES section of the UBBCONFI Gfile.

MAXWSCLI ENTS isthe only parameter that has specia significance for the Workstation
feature. MAXWSCLI ENTS tellsthe BEA Tuxedo system at boot time how many accesser
dotsto reserve exclusively for Workstation clients. For native clients, each accesser
dlot requires one semaphore. However, the Workstation handler process (executing on
the native platform on behalf of Workstation clients) multiplexes Workstation client
accesses through a single accesser slot and, therefore, requires only one semaphore.
Thiscapability isan additiona benefit of the Workstation component. By putting more
clientsonworkstationsinstead of onthe native platform, an application reducesits IPC
resource requirements.

MAXWSCLI ENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. Thisisimportant to remember when specifying MAXWSCLI ENTS;
enough slots must be left to accommodate native clients as well as servers. If you
specify avalue for MAXWSCLI ENTS greater than that of MAXACCESSERS, native clients
and serversfail at t pi ni t () time. The following table describes the MAXWSCLI ENTS
parameter.

Setting Up a BEA Tuxedo Application 11-3

11 Setting Up Workstation Clients

Par ameter Description

MAXWSCLI ENTS Specifies the maximum number of WSCs that may connect to a
machine.

The syntax is MAXWSCLI ENTS=nunber . The defaultis 0.

If MAXWSCLI ENTS is not specified, WSCs may not connect to the
machine being described.

Defining a Workstation Listener (WSL) as a
Server

Workstation clients access your application through a WSL process and one or more
WSH processes. The WSL can support multiple Workstation clients. It acts as the
single point of contact for all the Workstation clients connected to your application at
the network address specified onthe WSL command line. Thelistener scheduleswork
for one or more Workstation handler processes.

A WSH process acts as a surrogate within the administrative domain of your
application for clients on remote workstations. The WSH uses a multiplexing scheme
to support multiple Workstation clients concurrently.

To join Workstation clients to an application, you must specify the Workstation
listener (WSL) processesin the SERVERS section of the UBBCONFI Gfile. Usethe same
syntax you use to specify a server.

Passing Information to a WSL Process

To pass information to a WSL process, you can use the command-line option string,
CLOPT. The format of the CLOPT parameter is as follows:

CLOPT="[-A] [servopts_options] -- -n netaddr [-d device]

[-w WsHnhane] [-t timeout_factor][-T Cient_tinmeout]
[-mmnh][-Mmaxh] [-x nmpx_factor]

11-4 Setting Up a BEA Tuxedo Application

Defining a Workstation Listener (WSL) as a Server

[-p minwshport][-P maxwshport]

[-1 init_timeout][-c conpression_threshol d]

[-k conpression_threshol d]

[-z bits][-Z bits][-H external netaddr]

[-N network_timeout][-K{client]|handler|both|none}]"

The- Aoption requeststhat the WSL offer all itsserviceswhen it isbooted. Thisoption
isincluded by default, but it is shown here to emphasi ze the distinction between
system-supplied servers and application servers. When application servers are booted,
they sometimes offer only a subset of their available services.

Thedouble-dash (- -) marksthe beginning of alist of parametersthat is passed to the
WSL after it has been booted.

Using Command-line Options Set with CLOPT

Y ou can specify any of the following command-line options in the CLOPT string after
the double-dash string (- -).

Note: For acompletelist of the CLOPT command-line options, see ser vopt s(5) in
the File Formats, Data Descriptions, MIBs, and System Processes Reference.

Use ThisCommand-line To Specify . ..

Option . ..

-n net addr The network address used by WSCs to contact the listener.

(Required) The WSC must set the appropriate environment variable
(WBNADDR) to the value specified after - n.

[-d device] Specify the network device name.

(Required for some transport ~ Thisisan optional parameter because only some transport

interfaces) interfaces reguireit. Sockets, for example, does not require

this parameter.

Setting Up a BEA Tuxedo Application 11-5

11 Setting Up Workstation Clients

11-6

Use This Command-line
Option . ..

To Specify . . .

[-t tinmeout]

The amount of time to alow for aclient to connect to the
WSH.

To calculate the total amount of time to allow for this
purpose, the system multiplies the value of timeout by the
value of the SCANUNI T parameter.

The default is 3in anonsecure application, and 6 in a secure
application. In this context we refer to an application as
secureif one of the following parametersis set:

USER_AUTH
ACL
MANDATCRY_ACL
APP_PW

[-wname]

The name of the WSH process that should be booted for this
listener. Thedefault isWSH, which isthe name of the handler
provided. If another handler processis built with the

bui | dwsh(1) command, that name is specified here.

[-m nunber]

The minimum number of handlers that should be booted and
aways available. The default is 0.

[- Mnunber] The maximum number of handlers that can be booted. The
default is the value of MAXWSCLI ENTS for the machine
being configured, divided by the multiplexing value
(specified with - x).

[- x nunber] The maximum number of clientsthat a WSH can multiplex

at onetime. The value must be greater than 0. The default is
10.

[-T client_timeout]

Theamount of time (in minutes) that aclient can remainidle
without being disconnected. If aclient does not make any
requests within this time period, the WSH disconnects the
client. If thisargument is not given or is set to 0, the timeout
isinfinite.

[-p mi nwshport]and[-P
maxwshport]

The range for port numbers available for use by WSHs
associated with thislistener server. Port numbers must fall in
the range between 0 and 65535. The default is 2048 for

m nwshport and 65535 for maxwshport .

Setting Up a BEA Tuxedo Application

Detecting Network Failures

See Also

Use This Command-line
Option . ..

To Specify . ..

[-z] and[- Z]

The range of bits that can be used, on the WSL side, for
link-level encryption: use - z to specify the minimum
number of bits, and - Z to specify the maximum number of
bits.

[-Nnet wor k_ti meout]

The minimum amount of time (in seconds) that a
Workstation client is allowed to wait to receive a response
from the WSL/WSH. A value of 0 indicates no network
timeout.

[-K{client |handl er |
bot h | none}]

The viability of a network connection between the
Workstation handler and a Workstation client if no traffic
has occurred over that connection within a specified period
of time.

Processes Reference

m servopts(5) intheFile Formats, Data Descriptions, MIBs, and System

Detecting Network Failures

The Workstation component provides two administrative optionsto WL that enable
you to avoid hanging indefinitely when a network connection islost. Specifically,
these options allow you to:

m Check client connections periodically (keep-alive option)

m Limit the amount of time that a client waits for a response from a WsH before

dropping the connection to that WsH (network timeout option)

Setting Up a BEA Tuxedo Application n-7

11 Setting Up Workstation Clients

Using the Keep-alive Option

11-8

Keep-aliveisanetworking operation that periodically checksthe viability of anetwork
connection between the Workstation handler and a Workstation client if no traffic has
occurred over that connection within a specified period of time.

Y ou can request the keep-alive option by adding the - K option to the WsL CLOPT entry
in the SERVERS section of the UBBCONFI Gfile. The - K option accepts the following
arguments: cl i ent , handl er, bot h, or none.

Use This Option... To..

-K client Generate keep-alive messages from the client machines. If the
keep-alive message is not acknowledged, the client machine
considers the network down. Subsequent ATMI callsfail with a
t per r no of TPESYSTEM

-K handl er Generate keep-alive messages from the handler machine. If the
keep-alive message is not acknowledged, the handler machine
considers the network down. The handler then cleans up the
entry associated with the client that does not respond. This
reduces the possihility that the handler will exhaust the number
of clients that aworkstation can multiplex at one time (as
specified by - x) with stale clients.

-K both Generate keep-alive message from both the client and handler
machines. The availability and timeout thresholds for this
component are determined by tunable parametersin the
operating system.

-K none Turn off the keep-alive option. Using this setting has the same
effect as not specifying - K at all.

Y our entry in the UBBCONFI Gfile should look like the following:

WL SRVGRP="WSLGRP" SRVI D=1000 RESTART=Y GRACE=0
CLOPT="-A -- -n //ws. beasys.com 5120 -d /dev/tcp -K both"

Inthe example, - Kturnson keep-alive checking on both the Workstation client and the
server.

Setting Up a BEA Tuxedo Application

Using the Keep-alive Option

For details about the format of aWsL entry in UBBCONFI G, see WsL(5) inthe File
Formats, Data Descriptions, MIBs, and System Processes Reference.

Note: Any timeout period that you specify appliesto the entire system. If you specify
atimeout with one application in mind, and you later change the amount of
time specified, all applications that use keep-alive are also affected.

Limitations When Using the Keep-alive Option

The keep-alive option is supported only on platforms for which the BEA Tuxedo
system uses sockets:

m True4 UNIX
m HPUX
® Windows

Y ou cannot use this option on any other platform. The BEA Tuxedo system letsyou
specify the - K option for any server machine, but it will not executeit properly on any
platform other than those previously listed. If you try to perform akeep-alive operation
on any other platform, your attempt fails and a message is written to the userlog (once
per process for the WsH). Processing continues normally.

Note: The keep-alive operation works only for TCP/IP communications.

Setting Up a BEA Tuxedo Application 11-9

11 Setting Up Workstation Clients

Using the Network Timeout Option

Network timeout is an option that lets you decide how long you are willing to wait for
an operation in aWorkstation client before your request for that operation is canceled
(timed out) on a network.

Y ou can request the network timeout function through an administrative option to the
WBL: - N. The - N option uses a hetwork timeout to receive data in the Workstation
client.

How Network Timeout Works

The network timeout option establishes a waiting period (in seconds) for any BEA
Tuxedo operation in the Workstation client that receives data from the network. If the
period is exceeded, the operation fails and the client is disconnected from the
application. A value of 0 (the default) indicates no timeout.

Note: Setting this value too low may cause too many disconnects.

Each ATMI function returns an error whenever atimeout occurs. When alink times
out, the application is notified. An existing error code isused. (Additional error detail
on the specific error can be retrieved by acall to t perror det ai | (3c) .) Once a
network timeout occurs, the status of outstanding operationsisin doubt: transactions
cannot be compl eted; incoming replies can be lost, and so on. The only safe action is
to terminate the connection to the application by doing the equivalent of at pt er m(3c)
without communicating with the WsH.

By the time the operation returns, the client is no longer part of the BEA Tuxedo
application. The client can rejoin the application in either of two ways:

m By calingt pi ni t (3c)

m By using an implicit connection (if security is not configured)

11-10 Setting Up a BEA Tuxedo Application

Sample Configuration File That Supports Workstation Clients

Limitations When Using the Network Timeout Option

m Network timeout does not handle network send operations.

m If the value of the network timeout is less than the value of the transaction
timeout or the block time, then the client may be disconnected before the
processing of the request is complete.

m Network timeout disconnects the Workstation client after timeout even though
the connection may still be viable.

Setting the Network Timeout Option

To usethe network timeout option in your BEA Tuxedo application, add the- N option
to the WL CLOPT argument.

Sample Configuration File That Supports
Workstation Clients

The following excerpt from a sample configuration file shows how you can add the
Workstation component to the bankapp application. It contains modifications to the
MACH NES and SERVERS sections.

Listing 11-1 Sample UBBCONFIG File Supporting Workstation Clients

*MACHI NES
SI TE1

MAXWSCLI ENTS=150

SI TE2

Setting Up a BEA Tuxedo Application 11-11

11 Setting Up Workstation Clients

MAXWSCLI ENTS=0

* SERVERS

WSL SRVGRP="BANKB1" SRVI D=500 RESTART=Y
CLOPT="-A -- -n //ws. beasys.com5120 -m5 -M 30 -x 5"

Modifying the MACHINES and SERVERS Sections

Thefollowing changes are shown in the MACHI NES and SERVERS sections:

m |nthe MACHI NES section, the default for MAXWSCLI ENTS is overridden in the
entries for two sites. For SI TE1, the default israised to 150, whileit is lowered
to O for SI TE2, because no Workstation clients will be connected to that site.

m Inthe SERVERS section, aWSL process is specified for group BANKB1. The WSL
has a server ID of 500 and it is marked as restartable.

m The command-line options show the following:
e TheWSL will advertise all of its services (- A).
e TheWSL will listen at network address/ / ws. beasys. com 5120 (- n).
e A minimum of five WSHs will be booted (- m).
e A maximum of 30 WSHswill be booted (- M.

e Each handler will be allowed a maximum of five clients connected at any
onetime (- x).

11-12 Setting Up a BEA Tuxedo Application

CHAPTER

12 Managing Remote BEA

Tuxedo CORBA Client

Applications

This chapter explains how to configure connections from remote BEA Tuxedo

CORBA client applicationsto CORBA objects via the standard Internet Inter-ORB
Protocol (110P). This chapter is specific to BEA Tuxedo CORBA servers.

Thistopic includes the following sections:

CORBA Object Terminology

Remote CORBA Client Overview

Setting Environment Variables for Remote CORBA Clients

Setting the Maximum Number of Remote CORBA Clients
Configuring a Listener for aRemote CORBA Client

Modifying the Configuration File to Support Remote CORBA Clients
Configuring Outbound 11OP for Remote Joint Client/Servers

Using the ISL Command to Configure Outbound 110OP Support

Setting Up a BEA Tuxedo Application

12-1

12 Managing Remote BEA Tuxedo CORBA Client Applications

CORBA Object Terminology

12-2

Thefollowing terms are used in this chapter.

DLL
Dynamic Link Libraries. A DLL isacollection of functions grouped into a
load module that is dynamically linked with an executable program at run
time for a Windows application.

[IOP
Internet Inter-ORB Protocol (I1OP). 110P isbasically TCP/IP with some
CORBA -defined message exchanges that serve as acommon backbone
protocol.

ISH
[1OP Server Handler. Thisisa client process running on an application site
that acts as a surrogate on behalf of the remote client.

ISL
[1OP Server Listener. Thisis a server process running on an application site
that listens for remote clients requesting connection.

Server
A server hosted on amachinein a BEA Tuxedo domain. A BEA Tuxedo
CORBA server isbuilt with the BEA Tuxedo CORBA bui | dobj ser ver
command. CORBA Serversimplement BEA Tuxedo functionality, such as
security, transactions, and object state management. Servers can make
invocations on any server, inside or outside a BEA Tuxedo domain..

Native Client
A client located within a BEA Tuxedo domain, using the CORBA ORB to
make invocationson objectseither inside or outsidethe BEA Tuxedo domain.
A native client’s host contains the BEA Tuxedo administrative and
infrastructure components, such ast madni n, FactoryFinder, and I SL/ISH.
Native clients use the environmental objectsto access CORBA objects. You
build native C++ clientswith the bui | dobj cl i ent command or native Java
clients using the tools provided by the third-party ORB.

Setting Up a BEA Tuxedo Application

CORBA Object Terminology

Remote Client
A client not located within aBEA Tuxedo domain. A remote client can use
the CORBA ORB to make invocations on objects either inside or outside the
BEA Tuxedo domain. A remote client’s host does not contain BEA Tuxedo
administrative and infrastructure components, such ast madni n,
FactoryFinder, and I SL/ISH; it does contain supporting software (the
CORBA ORB) that allows remote clients to invoke objects. Remote clients
use the environmental objects to access CORBA objects. Y ou build remote
C++ clients with the bui | dobj ¢l i ent command or remote Java clients
using the tools provided by the third-party ORB.

Native Joint Client/ser ver
A process that has two purposes: (1) execute code acting as the starter for
some business actions and (2) execute method code for invocations on
objects. A joint client/server located within aBEA Tuxedo domain. Y ou build
native joint C++ client/serverswith the bui | dobj cl i ent command. Java
native joint client/servers are not supported.

Note: The server role of the nativejoint client/server is considerably less robust
than that of a server. It has none of the BEA Tuxedo CORBA
administrative and infrastructure components, such as tmadmin,
FactoryFinder, and I SL/ISH (hence none of BEA Tuxedo’ s scalability and
reliability attributes), it does not usethe BEA Tuxedo TP Framework, and
it requires more direct interaction between the client and the ORB.

Remote Joint Client/server
A process that has two purposes: (1) execute code acting as the starter for
some business actions and (2) execute method code for invocations on
objects. A joint client/server located outsideaBEA Tuxedo domain. Thejoint
client/server does not use the BEA Tuxedo TP Framework and reguires more
direct interaction between the Client and the ORB. Y ou build remote joint
C++ client/servers with the bui | dobj cl i ent command or remote Java
client/servers using the tools provided by the third-party ORB.

Note: A joint client/server isdifferent from aserver that actsasaclient as part of
its server role. Once the server completes processing of an invocation, it
returns to dormancy. A joint client/server is always in the active mode,
executing code not related to a server role; the server role temporarily
interrupts the active client role, but the client role is always resumed.

Note: The server role of the remotejoint client/server is considerably |ess robust
than that of a server. Neither the client nor the server has any of the BEA
Tuxedo administrative and infrastructure components, such as tmadmin,

Setting Up a BEA Tuxedo Application 12-3

12 Managing Remote BEA Tuxedo CORBA Client Applications

FactoryFinder, and I SL/ISH (hence, none of BEA Tuxedo’ sscalability and
reliability attributes).

BEA Tuxedo CORBA object
A CORBA object that is implemented using TP Framework and that
implements security, transactions, and object state management. CORBA
objects are implemented in BEA Tuxedo CORBA servers,; that is, they are
part of aBEA Tuxedo domain and use the BEA Tuxedo infrastructure.

Callback Object
A CORBA object supplied asa parameter in aclient’sinvocation on atarget
object. The target object can make invocations on the callback object either
during the execution of the target object or at some later time (even after the
invocation on the target object has been completed). A callback object might
be located inside or outside a BEA Tuxedo domain.

Remote CORBA Client Overview

12-4

In this section, the term “remote client” representsa CORBA client applicationthat is
deployed on systems that do not have the full BEA Tuxedo CORBA server software
installed. This means that no administration or application servers are running there
and that no bulletin board is present. All communication between the client and the
application takes place over the network.

Thetypes of clients are:
m CORBA C++ client
m CORBA Javaclient
m ActiveX client

A client process can run on UNIX or Microsoft Windows. The client has access to the
CORBA ORB interface. The networking behind the callsistransparent to the user. The
client process registers with the system and has the same status as a native client.

The client can do the following:

m Invoke methods on remote CORBA objects

Setting Up a BEA Tuxedo Application

Remote CORBA Client Overview

m Begin, roll back, or commit transactions

m Berequired to pass application security

Note: A client process communicates with the native domain through the | SH.

[llustration of an Application with Remote CORBA
Clients

Figure 12-1 shows an example of an application with remote clients connected. Any
request by aremote client to access the CORBA server application is sent over the
network to the ISH. This process sends the request to the appropriate server and sends
the reply back to the remote client.

Figure12-1 Bank Application with Remote Clients

Client Application
| Bootstrap Object

Server Application

IOP List i
Harﬁuz?er L[Bootstrap Object |
Client Application .
j I
Bootstrap Object \ BEA Tuxedo S

[
| Domain

- - IIOP Listener/
Client Application Handler
\‘ Transaction

Bootstrap Object l Coordinator

Interface Repository

I
|
Development Took |
|
|

Setting Up a BEA Tuxedo Application 12-5

12 Managing Remote BEA Tuxedo CORBA Client Applications

How the Remote Client Connects to an Application

The client connectsto the I SL processin the I1OP Listener/Handler using aknown
network address. Thisis initiated when the client calls the Bootstrap object
constructor. The ISL process uses afunction that is specific to the operating system to
passthe connection directly to the selected | SH process. To the client application, there
is only one connection. The client application does not know, or need to know, that it
isnow connected to the ISH process.

Setting Environment Variables for Remote
CORBA Clients

For CORBA C++ clients, environment variables can be used to passinformation to the
system, as follows:

m TUXDI R—the location of the BEA Tuxedo CORBA client software on this
remote client. It must be set for the client to connect.

m TOBJADDR—the network address of the ISL that the client wantsto contact. This
must match the address of an ISL process as specified in the application
configuration file.

Note: The network address that is specified by programmers in the Bootstrap
constructor or in TOBJADDR must exactly match the network addressin the
server application’s UBBCONFI Gfile. The format of the address aswell as
the capitalization must match. If the addresses do not match, the call to the
Bootstrap constructor will fail with a seemingly unrelated error message:

ERROR Unofficial connection fromclient at
<tcp/ip address>/<port-nunber>:

For example, if the network addressis specifiedas// TR Xl E: 3500 in the
I SL command line option string (in the server application’s UBBCONFI G
file), specifying either // 192. 12. 4. 6: 3500 or / / t ri xi e: 3500 in the
Bootstrap constructor or in TOBJADDRwill cause the connection attempt to
fail.

12-6 Setting Up a BEA Tuxedo Application

Setting the Maximum Number of Remote CORBA Clients

On UNIX systems, use the uname - n command on the host system to
determine the capitalization used. On Windows 2000 systems, see the host
system’s Network control panel to determine the capitalization used. Or
use the environment variable COVPUTERNAME. For example:

echo %COVPUTERNAMVE%

Setting the Maximum Number of Remote
CORBA Clients

Tojoin remote clients to an application, you must specify the MAXWSCLI ENTS
parameter in the MACHI NES section of the UBBCONFI Gfile.

MAXWSCLI ENTS tells the BEA Tuxedo system at boot time how many accesser slotsto
reserve exclusively for remote clients. For native clients, each accesser slot requires
one semaphore. However, the | SH process (executing on the native platform on behal f
of remote clients) multiplexes remote client accessers through a single accesser slot
and, therefore, requires only one semaphore. This points out an additional benefit of
the remote extension. By putting more clients out on remote systems and taking them
off the native platform, an application reducesits | PC resource requirements.

MAXWSCLI ENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. Thisisimportant to remember when specifying MAXWSCLI ENTS;
enough slots must remain to accommodate native clients as well as servers. Do not
specify avalue for MAXWSCLI ENTS greater than MAXACCESSERS. The following table
describes the MAXWSCLI ENTS parameter.

Parameter Description
MAXWSCLI ENTS Specifiesthe maximum number of remoteclientsthat may connect to
amachine.

The default is 0. If avalueis not specified, remote clients may not
connect to the machine being described.

The syntax is MAXWSCLI ENTS=nunber .

Setting Up a BEA Tuxedo Application — 12-7

12 Managing Remote BEA Tuxedo CORBA Client Applications

Configuring a Listener for a Remote CORBA
Client

Remote clients access your application through the services of an ISL process and one
or more |SH processes. The ISL is specified in one entry as a server supplied by the
BEA Tuxedo system. The ISL can support multiple remote clients and acts as the
single point of contact for al the remote clients connected to your application at the
network address specified on the ISL command line. The listener schedules work for
one or more remote handler processes. An I SH process acts as a surrogate within the
administrative domain of your application for remote clients on remote systems. The
ISH uses a multiplexing scheme to support multiple remote clients concurrently.

Tojoinremoteclientsto an application, you must list the | SL processesin the SERVERS
section of the UBBCONFI G file. The processes follow the same syntax for listing any
server.

Format of the CLOPT Parameter

Y ou usethefollowing I SL command-line options (CLOPT) to pass information to the
ISL process for remote clients. The format of the CLOPT parameter is as follows:

| SL SRVGRP="identifier”
SRVI D=" nunber"
CLOPT="[-A] [servopts options] -- -n netaddr
[-C {detect]|warn|none}]
[-d device]
[-K {client]handler]|both|none}]
[-mmnh]
[-M nmaxh]
[-T client-tinmeout]
[-x npx-factor]
[-H external - netaddr”

For adetailed description of the CLOPT command line options, see the ISL command
in the BEA Tuxedo Command Reference.

12-8 Setting Up a BEA Tuxedo Application

Modifying the Configuration File to Support Remote CORBA Clients

Modifying the Configuration File to Support
Remote CORBA Clients

Listing 12-1 shows a sample UBBCONFI Gfile to support remote clients, as follows:

m The MACH NES section shows the default MAXWSCLI ENTS as being overridden for
two sites. For SI TE1, the default is raised to 150, whileit is lowered to O for
SI TE2, which does not have remote clients connected to it.

m The SERVERS section shows an |SL process listed for group BANKBL. Its server
ID is500 and it is marked as restartable.

m The command line options show the following:

The [1OP Listener/Handler will advertise all of its services (- A).
The I1OP Listener/Handler will listen at host TRI XI E on port 2500.
The network provider is/dev/tcp (- d).

The minimum number of I1SH processes to boot is5 (- m).

The maximum number of I1SH processes to boot is 30 (- M.

Each handler can have a maximum of 5 clients connected at any onetime

(- x).

Listing 12-1 Sample UBBCONFIG File Configuration

* MACHI NES
SI TEL
MAXVECLI ENTS=150
SI TE2 o
MAXVWECLI ENTS=0
* SERVERS o

| SL SRVGRP="BANKB1" SRVl D=500 RESTART=Y

CLOPT="-A -- -n // TRIXIE 2500 -d /dev/tcp

Setting Up a BEA Tuxedo Application 12-9

12 Managing Remote BEA Tuxedo CORBA Client Applications

-m5 -M30 -x 5"

Configuring Outbound I1OP for Remote
Joint Client/Servers

Support for outbound 110P provides native clients and servers acting as native clients
the ability to invoke on aremote object reference outside of the BEA Tuxedo domain.
This means that calls can be invoked on remote clients that have registered for
callbacks, and objects in remote servers can be accessed.

Administrators are the only userswho interact directly with the outbound I1OP support
components. Administrators are responsible for booting the I SLs with the correct
startup parametersto enable outbound I10OP to objects not located in aconnected client.
Administrators may need to adjust the number of 1SL s they boot and the various
startup parameters to obtain the best configuration for their installation’ s specific
workload characteristics.

Administrators have the option of booting the I SLs with the default parameters.
However, the default BEA Tuxedo ISL startup parameters do not enable use of
outbound 11OP.

Note: Outbound I1OP is not supported for transactions or security.

Functional Description

Outbound 110OP support is required to support client callbacks. In BEA WebL ogic
Enterprise versions 4.0 and 4.1, the ISL/ISH was an inbound half-gateway. Outbound
[1OP support adds the outbound half-gateway to the ISL/ISH. (See Figure 12-2.)

There are three types of outbound 11OP connections available, depending on the
version of GIOP supported by the native server and the remote joint client/server
application:

12-10 Setting Up a BEA Tuxedo Application

Configuring Outbound IIOP for Remote Joint Client/Servers

m Bidirectional—outbound 110P reusing the same connection (supported only for
BEA WebL ogic Enterprise release 4.2 or later C++ GIOP 1.2 servers, clients,
and joint client/servers)

m Asymmetric—outbound 11OP via a second connection (supported for GIOP 1.0,
GIOP 1.1, and GIOP 1.2 servers, clients, and joint client/server applications)

m Dual-paired connection—outbound | 1OP (supported for GIOP 1.0, GIOP 1.1,
and GIOP 1.2 servers, clients, and joint client/server applications)

Note: GIOP1.2issupported only by BEA Webl ogic Enterpriserelease 4.2 (and
later) and BEA Tuxedo release 8.0 (and later) C++ clients, servers, and
joint client/servers. BEA WebL ogic Enterprise releases 4.0 and 4.1 C++
clients and servers support GIOP versions 1.0 and 1.1, but not GIOP 1.2.
Java clients, servers, and joint client/servers only support GIOP 1.0.

Bi-directional and dual-paired connection outbound I10OP provides outbound 110P to
object references located in joint client/servers connected to an ISH. Asymmetric
outbound 110OP provides outbound 110P to object references not located in ajoint
client/server connected to an ISH, and also allows BEA Tuxedo CORBA clientsto
invoke on any object reference, not only object references located in clients currently
connected to an ISH.

Each type of outbound 110OP is described in more detail in the following sections.

Setting Up a BEA Tuxedo Application 12-11

12 Managing Remote BEA Tuxedo CORBA Client Applications

Figure 12-2 Joint Client/Server |1 OP Connections Supported

CORBA
Native Client

(GIOP 1.1)

Server
(GIOP 1.2)

Bidirectional Outbound I[IOP

With bidirectional outbound I10P, the following operations are executed (see
Figure 12-3):

1. A client creates an object reference and invokes on aBEA Tuxedo CORBA server.
Theclient ORB identifies the connection as being bidirectional using the service
context. The service context travels with the message to the BEA Tuxedo CORBA
server.

2. When unmarshaling the object reference, the BEA Tuxedo CORBA server
compares the host/port in the service context with the host/port in the object
reference. If they match, the ORB adds the ISH client information needed for
routing to the ISH. This client information travels with the object reference
whenever it is passed to other BEA Tuxedo CORBA servers.

3. At some point in time, a BEA Tuxedo CORBA server or native client invokeson
the object reference, and the routing code invokes on the appropriate | SH, given
the client information.

12-12 Setting Up a BEA Tuxedo Application

Configuring Outbound IIOP for Remote Joint Client/Servers

6.

The ISH sends the request to the client over the same client connection.

The client executes the method and sends the reply back to the ISH viathe client
connection.

The ISH receivesthe reply and sends it to the BEA Tuxedo CORBA server.

Figure 12-3 Bidirectional Connection

C++ Joint
Client/
Server

{(GIOP 1.2)

Bidirectional
Connection

Native C++
Client

(GIOP 1.2)
ISL
C++ Server
(GIOP 1.2)
- ISH

C++ Server
(GIOP 1.2)

Asymmetric Outbound I10P

With asymmetric outbound I1OP, the following operations are executed (see
Figure 12-4):

1

A server gets an object reference from some source. It could be a naming service,
astring_to_obj ect, orit could be passed in through a client, but not located in
that client. Sincethe object referenceisnot located in aclient connected to an ISH,
the outgoing call cannot be made using the bidirectional method. The BEA Tuxedo
CORBA server invokes on the object reference.

On the first invoke, the routing code invokes a service in the ISL and passesin
the host/port.

Setting Up a BEA Tuxedo Application 12-13

12 Managing Remote BEA Tuxedo CORBA Client Applications

3. ThelSL selects an ISH to handle the outbound invoke and returns the ISH
information to the BEA Tuxedo CORBA server.

4. TheBEA Tuxedo CORBA server invokes on the |SH.

5. ThelSH determines which outgoing connection to use to send the request to the
client. If none is connected, the ISH creates a connection to the host/port.

6. Theclient executes the method and sends the reply back to the ISH.

7. ThelSH receives the reply and sends it to the BEA Tuxedo CORBA server.

Figure 12-4 Asymmetric Outbound I10OP

CORBA
Native Client

ISL 1@

ISH |
|

ISH

@ CORBA
Server

Servers and native clients can
be GIOP 1.0, 1.1 0r 1.2

Asymmetric
Connection

Dual-paired Connection Outbound I10P

With dual-paired connection outbound I1OP, the following operations are executed
(see Figure 12-5):

1. A client creates an object reference and calls the Bootstrap function
(regi ster_cal | back_port) and passes the object reference.

2. ThelSH getsthe host/port from the IOR and storesit with the client context.

12-14 Setting Up a BEA Tuxedo Application

Configuring Outbound IIOP for Remote Joint Client/Servers

. Theclient invokes on aBEA Tuxedo CORBA server and passes the object
reference. From ther egi st er _cal | back_port call, the ISH creates a service
context containing the host/port. The service context travel s with the message to
the BEA Tuxedo CORBA server.

. When unmarshaling the object reference, the BEA Tuxedo CORBA server
compares the host/port in the service context with the host/port in the object
reference. If they match, the ORB adds the ISH client information to the object
reference. This client information travels with the object reference whenever it is
passed to other BEA Tuxedo CORBA servers.

. At some point in time, a BEA Tuxedo CORBA server or native client invokes on
the object reference. The routing code invokes on the appropriate | SH, passing
the client information.

. The ISH creates a second connection to the client. It sends the request to the
client over the second connection.

. The client executes the method and sends the reply back to the ISH viathe first
client connection.

. TheISH receivesthe reply and sendsit to the BEA Tuxedo CORBA server. If the
client disconnects from the | SH, the second connection is al so disconnected.

Setting Up a BEA Tuxedo Application 12-15

12 Managing Remote BEA Tuxedo CORBA Client Applications

Figure 12-5 Dual-paired Connections Outbound 110OP

Native Client

JointClient
Server

{GIOP 1.0

or 1.1}

¥

O
®

NO.
1 /II
Dual-Paired
Connections

Servers and Native Clients
can be GIOP 1.0, 1.1, or 1.2

How the Routing Code Finds an ISL

The stepsto finding an ISL are as follows:
1. A serviceisadvertisedin each ISL.

2. Therouting code invokes on that service name.

Note: Normal BEA Tuxedo routing is used to find an ISL.

3. AnidlelSL onthe same machineis always chosen, if available. If not available,
NETLOAD ensuresthat alocal ISL is chosen most often.

Note: Some invokes may be made to I SLs on nonlocal machines.

12-16 Setting Up a BEA Tuxedo Application

Using the ISL Command to Configure Outbound IIOP Support

Using the ISL Command to Configure
Outbound I1OP Support

Outbound 110P support is used when a native C++ or Javaclient, or aserver acting as
anative client, invokes on an object reference that is aremote object reference. The
routing code recognizes that the object reference is from anon-BEA Tuxedo CORBA
ORB or from aremote BEA Tuxedo CORBA joint client/server.

Types of Object References

There are two kinds of remote object references:

m Object references created by BEA Tuxedo CORBA remote joint client/servers
outside of the BEA Tuxedo domain

m Object references created by other vendors' servers.

Both are detected by the routing code and sent to the outbound 110P support for
handling.

User Interface

The user interface to outbound |1 OP support is the command-line interface for booting
the ISL process(es). New command-line optionsto configure the outbound I10OP
processing were added to the ISL command in this release of the BEA Tuxedo
software. These options enable support for asymmetric |10P to object references not
located in clients connected to an I SH.

Setting Up a BEA Tuxedo Application 12-17

12 Managing Remote BEA Tuxedo CORBA Client Applications

TheISL command syntax listed below shows the new options for outbound I10P
support:

I SL SRVGRP="identifier"

SRVI D=" nunber"

CLOPT="[-A] [servopts options] -- -n netaddr
[-C {detect]|warn|none}]
[-d device]
[-K {client]handler|both|none}]
[-mmnh]
[-Mnmaxh]
[-T dient-tinmeout]
[-x npx-factor]
[-H external - netaddr]
#NEW opt i ons for outbound |1 COP
[-T
[-0 out bound- max- connect i ons]
[-s Server-tinmeout]
[-u out-npx-users]

For a detailed description of the CLOPT command-line options, see the ISL command
in the BEA Tuxedo Command Reference.

12-18 Setting Up a BEA Tuxedo Application

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Administrative Tasks and Tools
	Tasks an Administrator Performs
	Setup Tasks
	Run-time Tasks
	See Also
	Differences Between the BEA Tuxedo ATMI and CORBA Environments

	Planning the Design of Your Application
	1. How many machines will be used? ____________________
	2. Will client applications reside on machines that are remote from the server applications? ____...
	3. For ATMI, which services will your application offer? __...
	4. For CORBA, which interfaces will your client or server application use? ______________________...
	5. What resource managers (database) will the application use and where will they be located? ___...
	6. What “open” strings will the resource managers need? ___...
	7. What setup information will be needed for an RDBMS? __...
	8. Will transactions be distributed? ________________
	9. Will the application use global transactions? ________________
	10. What buffer types will be used? __
	11. Will data be distributed across machines? ___...
	12. To which external domains will the application export services? From which external domains w...
	13. Will factory-based or data-dependent routing be used in your application? ___________________...
	14. What are the names of the CORBA interfaces or ATMI services? ________________________________...
	15. In what order of priority should the interfaces or services be available? ___________________...
	16. What are the reliability requirements? Will redundant listener and handler ports be needed? W...
	17. For CORBA environments, will the domain need an Interface Repository (IR) database? If so, wi...
	18. Are there any conversational services? What resource managers do they access? What buffer typ...
	See Also

	Tools to Help You Administer Your Application
	Figure 1�1 Administration Tools
	See Also

	2 About the Configuration File
	What Is the Configuration File?
	Text and Binary Versions of the Configuration File

	Contents of the Configuration File
	CORBA Administrative Requirements and Performance
	Configuring NameManager
	Reliability Requirements
	Managing Factory Entries
	Configuring Multiple NameManagers and FactoryFinders
	Designating a Master NameManager

	Performance Hint
	See Also

	3 Creating the Configuration File
	How to Create a Configuration File
	See Also

	How to Create the Configuration File for a Single-machine Application
	1. Create the RESOURCES section of the configuration file
	2. Create the MACHINES section of the configuration file
	3. Create the GROUPS section of the configuration file
	4. Create the SERVERS section of the configuration file
	5. Create the SERVICES section of the configuration file
	6. Create the INTERFACES section of the configuration file (CORBA only)
	7. Create the ROUTING section of the configuration file

	How to Create the Configuration File for a Multiple-machine (Distributed) Application
	1. Create the RESOURCES section of the configuration file
	2. Create the MACHINES section of the configuration file
	3. Create the GROUPS section of the configuration file
	4. Create the NETWORK section of the configuration file
	5. Create the NETGROUPS section of the configuration file
	6. Create the SERVERS section of the configuration file
	7. Create the SERVICES section of the configuration file
	8. Create the ROUTING section of the configuration file (optional)

	How to Create the Configuration File for a Multiple-domain Application
	Figure 3�1 Configuration Tasks for a Sample Multiple-domain Application
	Figure 3�2 Configuring a Multiple-domain Application
	See Also

	How to Create the RESOURCES Section of the Configuration File
	Sample RESOURCES Section
	See Also

	Defining the Application Type
	Characteristics of the MODEL and OPTIONS Parameters
	Example Settings

	Controlling the Number of Buffer Types and Subtypes
	Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters
	Example Settings

	Controlling the Number of Conversations
	Characteristics of the MAXCONV Parameter
	Example Setting

	Defining IPC Limits
	Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES, MAXINTERFACES, and MAXOBJECTS Parameters
	Example Settings

	Enabling Load Balancing
	Characteristics of the LDBAL Parameter
	Example Settings
	See Also

	Identifying the Master Machine
	Characteristics of the MASTER Parameter
	Example Settings

	Specifying the Maximum Number of Network Groups
	Specifying the Number of Sanity Checks and Blocking Timeouts
	Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters
	Timeouts for Blocking ATMI Operations
	Example Settings

	Establishing Operating System-level Security
	Characteristics of the UID, GID, and PERM Parameters

	Specifying the Security Level
	Characteristics of the SECURITY and AUTHSVC Parameters
	See Also

	Defining the Security Attributes of a Server
	See Also

	Protecting Shared Memory
	Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters
	Example Settings

	Setting the Address of the System Resources for an Application
	Characteristics of the IPCKEY Parameter
	Example Settings

	Specifying How Clients Receive Unsolicited Notification
	Characteristics of the NOTIFY and USIGNAL Parameters

	How to Create the MACHINES Section of the Configuration File
	Sample MACHINES Section
	Sample MACHINES Parameters
	How to Customize the Sample MACHINES Section

	See Also

	Specifying the Maximum Number of ACL Entries in the Cache
	Defining an Additional Service Request Load
	See Also

	Reserving the Physical Address and Machine ID
	Characteristics of the Address and the LMID Parameter

	Setting the Number of Lock Spins
	Characteristics of the SPINCOUNT Parameter

	Specifying Machines as Types
	Characteristics of the TYPE Parameter

	Identifying the Location of the Configuration File
	Characteristics of the TUXCONFIG Parameter

	Indicating the Size of the DTP Transaction Log
	Defining the DTP Transaction Log Name
	Specifying Environment Variable Settings
	Characteristics of the ENVFILE Parameter

	Defining the BEA Tuxedo Filesystem Containing the TLOG
	Specifying a Machine’s Maximum Number of Simultaneous Global Transactions
	Defining the Number of Accesser Entries on a Workstation Client
	Defining Space Limits for Messages Transmitted by the BRIDGE
	Indicating the Offset for the DTP Transaction Log
	Defining the Offset for TUXCONFIG
	Characteristics of the TUXOFFSET Parameter

	Identifying the Locations of the System Software and Application Server Software
	Characteristics of the APPDIR and TUXDIR Parameters

	Indicating a Threshold Message Size for Compression
	Example

	Specifying the Pathname for the ULOG
	Characteristics of the ULOGPFX Parameter
	See Also

	How to Create the GROUPS Section of the Configuration File
	Sample GROUPS Section for ATMI
	##EVBGRP1 LMID=SITE1 GRPNO=104
	DEFAULT:TMSNAME=TMS_SQL TMSCOUNT=2 LMID=SITE1 BANKB1GRPNO=1 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl1:...

	Sample GROUPS Section for CORBA
	*GROUPS APP_GRP1 LMID = SITE1 GRPNO = 2 TMSNAME = TMS APP_GRP2 LMID = SITE1 GRPNO = 3 TMSNAME = T...
	OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
	CLOSEINFO = "" TMSNAME = "TMS_ORA" ORA_GRP2 LMID = SITE1 GRPNO = 5
	OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
	CLOSEINFO = "" TMSNAME = "TMS_ORA"

	See Also

	Specifying a Group Name, Number, and LMID
	Characteristics of the Group Name, Group Number, and LMID
	See Also

	Indicating a Transaction Manager Server Name and Numbers per Group
	Identifying the Environment File Location for Servers in a Group
	1. MACHINES section ENVFILE
	2. GROUPS section ENVFILE
	3. SERVERS section ENVFILE (Optional)

	Defining Information Needed When Opening and Closing the Resource Manager
	How to Create the NETWORK Section of the Configuration File
	Sample NETWORK Section
	See Also

	Specifying a Device Name for the BRIDGE Process
	Assigning a BRIDGE Network Address
	Assigning Encryption Levels
	Example
	See Also

	Assigning a tlisten Network Address
	How to Create the NETGROUPS Section of the Configuration File
	Sample Network Groups Configuration
	Figure 3�3 Example of a Network Grouping

	Configuring a Sample UBBCONFIG File with Netgroups
	Listing 3-1 Sample NETGROUPS and NETWORK Sections

	See Also

	Assigning a Name to a Network Group
	Assigning a Network Group Number
	Assigning a Priority to the Network Group
	How to Create the SERVERS Section of the Configuration File
	Sample SERVERS Section
	Sample SERVERS Section Parameters

	See Also

	Specifying a Server as Conversational
	Characteristics of the CONV Parameter

	Setting the Order in Which Servers Are Booted
	Required Order in Which to Boot CORBA C++ Servers
	1. The system EventBroker, TMSYSEVT.
	2. The TMFFNAME server with the -N option and the -M option, which starts the NameManager service...
	3. The TMFFNAME server with the -N option only, to start a Slave NameManager service.
	4. The TMFFNAME server with the -F option, to start the FactoryFinder object.
	5. The application C++ servers that are advertising factories.
	Listing 3-2 Edited SERVERS Section from a University Sample UBBCONFIG

	Characteristics of the SEQUENCE, MIN, and MAX Parameters
	Specifying Server Command-line Options
	Characteristics of the CLOPT Parameter
	See Also

	Identifying the Location of the Server Environment File
	Characteristics of the Server Environment File

	Defining Server Name, Group, and ID
	Characteristics of the Server Name, SRVGRP, and SRVID Parameters

	Identifying Server Queue Information
	MSSQ Example
	Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

	Defining Server Restart Information
	Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

	Defining Server Access to Shared Memory
	Characteristics of the SYSTEM_ACCESS Parameter

	Defining the Server Dispatch Threads
	Setting Security Parameters for ISL Servers
	:
	Table 3�1 ISL and SSL Parameters Characteristics

	How to Create the SERVICES Section of the Configuration File
	Sample SERVICES Section
	See Also

	Specifying Automatic Starts and Timeout Intervals for Transactions
	Specifying a List of Allowable Buffer Types for a Service
	Examples of the BUFTYPE Parameter

	Designating How Much Time to Process a Request
	What Happens When a Timeout Occurs
	How a Service Timeout Is Reported
	How to Control a Service Timeout

	Enabling Load Balancing
	Characteristics of the LDBAL Parameter

	Defining the Name of the Routing Criteria
	Specifying Service Parameters for Different Server Groups
	Controlling the Flow of Data by Service Priority
	Characteristics of the PRIO Parameter
	Sample SERVICES Section Using Different Priorities

	Indicating Service Processing Time
	How to Create the INTERFACES Section of the Configuration File
	Specifying CORBA Interfaces in the INTERFACES Section
	Table 3�2 INTERFACES Section Parameters Characteristics�

	Specifying FACTORYROUTING Criteria
	University Sample
	Listing 3-3 Production Sample INTERFACES Section

	Bankapp Sample
	Listing 3-4 Bankapp Sample Factory-based Routing

	Enabling Load Balancing
	Controlling the Flow of Data by Interface Priority
	Specifying Different Interface Parameters for Different Server Groups

	How to Create the ROUTING Section of the Configuration File
	ROUTING Section Example

	Defining the Routing Buffer Field and Field Type
	Specifying Range Criteria
	Defining Buffer Types
	CORBA Factory-based Routing in the University Production Sample Application
	Listing 3-5 Production Sample INTERFACES Section
	Listing 3-6 Production Sample ROUTING Section
	Listing 3-7 Production Sample GROUPS Section
	OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
	OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

	CORBA Factory-based Routing in the Bankapp Sample Application
	Listing 3-8 Bankapp Sample INTERFACES Section

	How to Configure the BEA Tuxedo System to Take Advantage of Threads
	Table 3�3 Setting Parameters in the Configuration File to Use Threads�

	How to Compile a Configuration File
	Notes: The user identifier (UID) of the person running tmloadcf must match the UID, if specified,...

	4 About Transactions
	What Is a Transaction?
	What Are the ACID Properties?
	Table 4�1 ACID Properties of BEA Tuxedo Transactions

	How a Transaction Succeeds or Fails

	Benefits of Using Transactions
	Example of a Global Transaction
	1. Calls tpbegin() to begin the transaction
	2. Issues a service request
	3. Calls tpcommit() to end the transaction

	What Is the BEA Tuxedo Transaction Manager (TM)?
	Table 4�2 Actions Performed by the Transaction Manager

	How the System Tracks Distributed Transaction Processing
	Figure 4�1 Transaction Management
	How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking
	How the System Uses a Transaction Log (TLOG) for Tracking

	How the System Uses a Two-Phase Commit to Commit Transactions
	1. In Phase 1 of this project, the organizer of the vacation contacts each person to verify avail...
	2. In Phase 2 of the project, the organizer notifies each member of the group that the vacation w...
	1. In Phase 1, the transaction coordinator contacts potential participants in the transaction. Th...
	2. In Phase 2, the coordinator informs each participant of the decision, and they permanently upd...
	How the System Handles Transaction Infection
	Figure 4�2 Transactional Infection

	How the ATMI Protects a Transaction’s Integrity Before a Two-Phase Commit
	1. Client_1 initiates (with tpbegin()) a transaction.
	2. Client_1 invokes (with tpcall()) Service_A, which:
	a. Is infected with the transaction
	b. Executes its operations
	c. Calls tpreturn()
	d. Completes its work for the transaction
	3. Client_1 invokes (with tpcall()) Service_B, which:
	a. Is infected with the transaction
	b. Executes its operations
	c. Calls tpreturn()
	d. Completes its work for the transaction
	4. Client_1 invokes (with tpcall()) Service_C, which:
	a. Is infected with the transaction
	b. Executes its operations
	c. Calls tpreturn()
	d. Completes its work for the transaction
	5. Client_1 initiates (with tpcommit()) the commitment process.

	See Also

	5 Configuring Your ATMI Application to Use Transactions
	Modifying the UBBCONFIG File to Accommodate ATMI Transactions
	Specifying Global Transaction Parameters in the RESOURCES Section
	Creating a Transaction Log (TLOG) in the MACHINES Section
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log
	See Also

	Defining Resource Managers and the Transaction Manager Server in the GROUPS Section
	Sample of the GROUPS Section
	Description of Transaction Values in the Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	Enabling a Service to Begin a Transaction in the SERVICES Section
	Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

	Modifying the Domains Configuration File to Support Transactions
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters

	Example: A Distributed Application with Transactions
	Sample RESOURCES Section
	Listing 5-1 Sample RESOURCES Section

	Sample MACHINES Section
	Listing 5-2 Sample MACHINES Section

	Sample GROUPS and NETWORK Sections
	Listing 5-3 Sample GROUPS and NETWORK Sections

	Sample SERVERS, SERVICES, and ROUTING Sections
	Listing 5-4 Sample SERVERS, SERVICES, and ROUTING Sections

	See Also

	6 Managing CORBA Interface Repositories
	Administration Considerations
	Using Administration Commands to Manage Interface Repositories
	Prerequisites
	Creating and Populating an Interface Respository
	Displaying or Extracting the Content of an Interface Repository
	Deleting an Object from an Interface Repository

	Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

	7 Distributing ATMI Applications Across a Network
	What Is a Distributed ATMI Application?
	Example of a Distributed Application
	Figure 7�1 Sample of a Distributed Application

	Implementing a Distributed Application
	See Also

	Why Distribute an ATMI Application Across a Network?
	Features of a Distributed Application
	See Also

	8 Creating the Configuration File for a Distributed ATMI Application
	Configuration File Requirements for a Distributed BEA Tuxedo ATMI Application
	Creating the RESOURCES Section
	Table 8�1 RESOURCES Section Parameters�

	Creating the MACHINES Section
	Table 8�2 MACHINES Section Parameters

	Creating the GROUPS Section
	Table 8�3 GROUPS Section Parameters�

	Creating the SERVICES Section
	Table 8�4 SERVICES Section Parameters�

	Creating the ROUTING Section
	Table 8�5 ROUTING Section Parameters
	See Also

	Example Configuration File for a Distributed Application
	Modifying the Domain Gateway Configuration File to Support Routing
	Description of ROUTING Section Parameters in DMCONFIG
	Routing Field Description
	Example of a 5-Site Domain Configuration Using Routing
	Listing 8-1 Domains Configuration File for Five Sites
	# TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK # # *DM_LOCAL_DOMAINS # local_domain_name...

	See Also

	9 Setting Up the Network for a Distributed Application
	Configuring the Network for a Distributed Application
	How Data Moves Over a Network
	How Data Moves Over Parallel Networks
	Figure 9�1 Flow of Data over the BRIDGE

	Example of a Network Configuration for a Simple Distributed Application
	How Failover and Failback Work in Scheduling Network Data
	Example Configuration of Multiple Netgroups
	Figure 9�2 Example Network Groups
	Configuration File for the Sample Network
	Assigning Priorities for Each Network Group
	Example Assignment of Priorities to Network Groups
	Figure 9�3 Assigning Priorities to Network Groups

	Example NETGROUP and NETWORK Sections

	10 About Workstation Clients
	What Is the Workstation Component?
	Sample Application with Four Workstation Clients
	Figure 10�1 Bank Application with Four Workstation Clients

	How the Workstation Client Connects to an Application

	11 Setting Up Workstation Clients
	Defining Workstation Clients
	Specifying the Maximum Number of Workstation Clients
	Defining a Workstation Listener (WSL) as a Server
	Passing Information to a WSL Process
	Using Command-line Options Set with CLOPT
	See Also

	Detecting Network Failures
	Using the Keep-alive Option
	Limitations When Using the Keep-alive Option

	Using the Network Timeout Option
	How Network Timeout Works
	Limitations When Using the Network Timeout Option
	Setting the Network Timeout Option
	Sample Configuration File That Supports Workstation Clients
	Listing 11-1 Sample UBBCONFIG File Supporting Workstation Clients
	Modifying the MACHINES and SERVERS Sections

	12 Managing Remote BEA Tuxedo CORBA Client Applications
	CORBA Object Terminology
	The following terms are used in this chapter.
	DLL
	IIOP
	ISH
	ISL
	Server
	Native Client
	Remote Client
	Native Joint Client/server
	Remote Joint Client/server
	BEA Tuxedo CORBA object
	Callback Object

	Remote CORBA Client Overview
	Illustration of an Application with Remote CORBA Clients
	Figure 12�1 Bank Application with Remote Clients

	How the Remote Client Connects to an Application

	Setting Environment Variables for Remote CORBA Clients
	Setting the Maximum Number of Remote CORBA Clients
	Configuring a Listener for a Remote CORBA Client
	Format of the CLOPT Parameter

	Modifying the Configuration File to Support Remote CORBA Clients
	Listing 12-1 Sample UBBCONFIG File Configuration

	Configuring Outbound IIOP for Remote Joint Client/Servers
	Functional Description
	Figure 12�2 Joint Client/Server IIOP Connections Supported
	Bidirectional Outbound IIOP
	1. A client creates an object reference and invokes on a BEA Tuxedo CORBA server. The client ORB ...
	2. When unmarshaling the object reference, the BEA Tuxedo CORBA server compares the host/port in ...
	3. At some point in time, a BEA Tuxedo CORBA server or native client invokes on the object refere...
	4. The ISH sends the request to the client over the same client connection.
	5. The client executes the method and sends the reply back to the ISH via the client connection.
	6. The ISH receives the reply and sends it to the BEA Tuxedo CORBA server.
	Figure 12�3 Bidirectional Connection

	Asymmetric Outbound IIOP
	1. A server gets an object reference from some source. It could be a naming service, a string_to_...
	2. On the first invoke, the routing code invokes a service in the ISL and passes in the host/port.
	3. The ISL selects an ISH to handle the outbound invoke and returns the ISH information to the BE...
	4. The BEA Tuxedo CORBA server invokes on the ISH.
	5. The ISH determines which outgoing connection to use to send the request to the client. If none...
	6. The client executes the method and sends the reply back to the ISH.
	7. The ISH receives the reply and sends it to the BEA Tuxedo CORBA server.
	Figure 12�4 Asymmetric Outbound IIOP

	Dual-paired Connection Outbound IIOP
	1. A client creates an object reference and calls the Bootstrap function (register_callback_port)...
	2. The ISH gets the host/port from the IOR and stores it with the client context.
	3. The client invokes on a BEA Tuxedo CORBA server and passes the object reference. From the regi...
	4. When unmarshaling the object reference, the BEA Tuxedo CORBA server compares the host/port in ...
	5. At some point in time, a BEA Tuxedo CORBA server or native client invokes on the object refere...
	6. The ISH creates a second connection to the client. It sends the request to the client over the...
	7. The client executes the method and sends the reply back to the ISH via the first client connec...
	8. The ISH receives the reply and sends it to the BEA Tuxedo CORBA server. If the client disconne...
	Figure 12�5 Dual-paired Connections Outbound IIOP

	How the Routing Code Finds an ISL
	1. A service is advertised in each ISL.
	2. The routing code invokes on that service name.
	3. An idle ISL on the same machine is always chosen, if available. If not available, NETLOAD ensu...

	Using the ISL Command to Configure Outbound IIOP Support
	Types of Object References
	User Interface

