-4
Py

o®%%,

o
¥
h ila

BEA Tuxedo

Administering a BEA Tuxedo
Application at Run Time

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights L egend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Administering a BEA Tuxedo Application at Run Time

Document Edition Date Software Version

8.0 June 2001 BEA Tuxedo Release 8.0

Contents

About This Document

What Y OU NEed t0 KINOWcccoeiuiiiiiieeeetie sttt ettt Xii
E-00CSWED SItO....oeiieeeee et r e e sreeaaeerea Xii
HoW to Print the DOCUMENL..........coui ettt e Xii
Related INfOrmMation.........cocueeieeiiee et st s s eaae s Xiii
(©70 g1 =t AU LS SRR Xiii
Documentation CONVENLIONSccecuieiuecieie e eree e sree s XV

1. Starting Up and Shutting Down an Application

The Tasks Involved in Starting Up and Shutting Down an Application........... 1-2
HOW t0 Set Y our ENVIFONMENTc.ooieviieriieeeiee et 1-2
How to Create the TUXCONFIG File........ccocoiiiiecece e 1-4
How to Propagate the BEA Tuxedo System Software...........ccoceveveneeneeinennens 1-5
How to Create a TLOG DEVICE.......ccucuiieeiieriie et 1-6
How to Start tlisten at All SItES......coeiiiire e 1-7
tlisten CommaNd OPLIONS.......ccueeiriiieeirierere e et 1-7
How t0 BOOt the APPliCaLiON.......cooiieeieere et e s 1-9
Sequence of tmboot Tasks for a 2-Machine Configuration 1-10
Sequence of tmboot Tasks for Large Applications (Over 50 Machines). 1-11
How to Shut Down Y our APPliCatioNcoeiereereeie s 1-11
RUNNIiNG tMSULAOWN ...t e e 1-12

Using the IPC Tool When an Application Failsto Shut Down Properly. 1-13

2. Monitoring Your BEA Tuxedo Application

Ways to Monitor Y our APpliCatioN...........coeeeerieieir et 2-2
System and Application Data That Y ou Can MONitorccceeeeeeeeeereneeenens 2-4
MONItOriNg SYStEM Data......cccuevveieie e e e 2-4

Administering a BEA Tuxedo Application a Run Time iii

Monitoring Dynamic and Static Administrative Data............ccoceeeverenenne 2-5

Common Startup and Shutdown Problems............cccoi e 2-7
Common Startup ProblemMS..........ooii e 2-7
Common Shutdown Problems...........ccceiii e 2-8

Selecting Appropriate Monitoring TOOIS........cccuiiiiieie e 2-8

Using the BEA Administration Console to Monitor Y our Application............. 2-9
Using the Toolbar to Monitor ACHVItIES........ccccecveie e, 2-10

Using Command-line Utilities to Monitor Your Applicationcc.cccuene.. 2-10
Inspecting Y our Configuration Using tmadmin............cccceeveveneiieienenns 2-11
Generating Reports on Servers and Services Using tXrptcccceveeene. 2-12

How atmadmin SeSSion WOFKS.........ccovirririieee et 2-13
Monitoring Y our System Using tmadmin Commands...........c.ccccceevenenns 2-14

Using EventBroker to Monitor Your Application.........cocccceeeeereneseeneienenes 2-15

Using Log Filesto Monitor ACHVILYccccceieiiiiceccc e e e 2-16

What Isthe Transaction Log (TLOG)? ...c.uecveeiieveiiieieeieeesee et steeseesreeee e 2-17

What Isthe User LOG (ULOG)?....cuiiiceeceeeeceee ettt st st 2-17

Detecting Errors USING LOGScoveiuieieie e es e eenae st sree e e 2-18
Analyzing the Transaction LOg (TLOG)cccccveieiieeieeicieseesiee s 2-18
Analyzingthe User Log (ULOG).....ccooviieiiiiiieiiie e 2-19
Analyzing tlisten Messagesin the ULOG..........ccccceceeveviciece e, 2-20

Estimating Service Workload Using the Application ServiceLog................. 2-21

Using the MIB to Monitor Y our AppliCationccccvvneenennneee e 2-22
Limiting Your MIB QUETIES.......ccccueeiecie ettt eeraesne e 2-22
Querying Global and Local Data...........cccccveveeevieseieiecieie e 2-23
Using tmadmcall to Access Informationcccceeeveevecececcescecccesceenn, 2-24

Querying and Updating the MIB with ud32.........cccocovevevieie e, 2-24

Using the Run-time Tracing ULilitycccooiviiiiiiis e 2-25

Managing Errors Using the DBBL and BBLS.........cccccoeevveiiiivieciece e, 2-26

Using the ATMI to Handle System and Application Errors...........ccceeeeuneee. 2-28
Using Configurable Timeout Mechanisms..........cccccccveeveeiieniecveene e, 2-28
Configuring Redundant Serversto Handle Failures............cccccovevueeneeee. 2-29

Monitoring Multithreaded and Multicontexted Applications............c..ccc.c....... 2-30
How to Retrieve Data About a M ultithreaded/M ulticontexted Application

USING TNEIMIB ...t e e 2-31

iv Administering a BEA Tuxedo Application a Run Time

3. Dynamically Modifying an Application

Dynamic Modification Methods...........cocooieireriene e 31

Tools for Modifying Your Application...........coceeoeeeiinenieie e 32
Using tmconfig to Make Permanent Changesto Y our Configuration............... 3-5

HOW tMCONfig WOIKS........ooeeeeee et e e 3-6

How Results of atmconfig Task Are Displayed.........ccccovoeveicienniccennen 39
HOW t0 RUN tMCONFIQ ...ttt e 311

How to Set Environment Variables for tmconfig.........coceeeiiiieeccienine 311

How to Conduct atmconfig Walkthrough Session...........cocccoeeevrneeeee 3-12

tmconfig Input Buffer Considerations.............coueoeoeeeriniene e 3-14
Making Temporary Modificationsto Y our Configuration with tmconfig....... 3-15
How to Add aNew Machine.........c.oooiiininiee e s 3-16
HOW tO Add @ SEIVEY ...ttt et e 3-19
How to Activate a Newly Configured Machinge..........cccooevevevieseciciiec 3-21
HOW tO Add @ NEW GFOUP.....c.eiieiienieiieer ettt et s se e 3-24
How to Change Data-dependent Routing (DDR) for an Application.............. 3-25
How to Change Factory-based Routing (FBR) for an Interface...................... 3-26
How to Change Application-wide Parameters...........ccceverreeescnieneseeneeenns 3-28
How to Change an Application Password..........c.ccoccveieeneneeieeinnene e 3-31
Limitations on Dynamic Modification Using tmconfig..........cccceevevievecnnne, 3-33

Tasks That Cannot Be Performed on a Running System.............cvc...... 3-34
Making Temporary Modificationsto Y our Configuration with tmadmin...... 3-35

How to Set Environment Variables for tmadmin............cccoovoeiiiennnenn 3-36
How to Suspend Tuxedo ATMI ServiceS or SErVErScocvereveenenieseereeeenns 3-36
How to Resume Tuxedo ATMI Services OF SEIVErS......cooceirerieeeseereenenens 3-37
How to AdVertise SErviCeS OF SEIVEIS.coviieeririiie et 3-38
How to Unadvertise ServiCes OF SEIVErS.......cooerreirierere e s 3-38
How to Change Service Parameters for Tuxedo ATMI Servers................... 3-38
How to Change Interface Parameters for Tuxedo CORBA Servers............... 3-39
How to Changethe Timeout ValUe.........c.coueeeecieieccieeeeseecee e e 3-40
How to Suspend Tuxedo CORBA Interfaces........cccocevvvveeveeveveese e 3-40
How to Resume Tuxedo CORBA INterfaces...........ccoeverereneeneeie s 341

4. Managing the Network in a Distributed Application
Running a Network for a Distributed Application...........ccocooeoiiiinieiiencnee 4-1

Administering a BEA Tuxedo Application a Run Time %

Vi

Compressing Data Over a NetWOrKceooioeeirinieie e 4-2

How to Set the Compression LeVE! ..o 4-2
Selecting Data Compression Thresholds...........cocevereicennieeiecee e 4-3
Balancing Network Request LOaAScccureereeeeeireenee e 4-4
How to Use Data-Dependent ROULINGcoeoeeeieireneie e 4-5
Example of Data-dependent Routing with a Horizontally-partitioned
DALADASEeeveeeeee et 4-6
Example of Data-dependent Routing with Rule-based Servers................. 4-7
How to Change Y our Network Configurationc.ccocceoveieieienecinienenee 4-9
About the EventBroker
What 1S @N EVENE?. ...ttt e e 5-1
Differences Between Application-defined and System-defined Events............ 5-2
What 1Sthe EVENtBIOKEI?........c.ooviiieieetiieet s e 5-3
How the EVENtBIroKer WOFKSc.coeirieeirieie e e 5-4
Event Notification MethOSc.covre i 5-5
Severity Levels of System EVENES.........coecieiece e 5-6
What Are the Benefits of Brokered EVENtS?........coociieinenne s 5-6

Subscribing to Events

Process of Using the EVENEBIOKESceiiieeiriiee e 6-1
How to Configure EVENtBroker SEIVErS....... oo iererene e 6-2
How to Set the Polling INterval ..o 6-3
Subscribing, Posting, and Unsubscribing to Events with the ATMI and the
EVENT _MIB ..ottt sttt st st sb e snan s senenans 6-3
Identifying Event Categories Using eventexpr and filter............cccceeeene. 6-4
Accessing the EVENtBIOKESccoooiiiiieieicceseeeeece et e 6-5
How to Select aNotification Methodccccoeivieiviiieciececee e 6-6
How to Cancel a Subscription to an Bventccoeieieieneieie e 6-8
How to Use the EventBroker with Transactions..........ccccceeeeveeiece e ce e, 6-8
How Transactions Work with the EventBrokerccccovevveiecvcie e, 6-9

Migrating Your Application

What [SMIQratioN?........ccueieieeie ettt n e 7-1
Performing aMaster Migration...........cooeoe e einene e 7-2
Migrating & SEIVEr GrOUP.........coeuereereereeuie e reeeeeereeseseeseeseeseseeseeneeseeseens 7-3

Administering a BEA Tuxedo Application a Run Time

Migrating MaChineScccoi i e 7-4

Performing a Scheduled Migrationccccoveeeeiennceee e 7-4
MiQration OPLIONScccoueririeie et eee s e e e e s eaeseeseeeenseneeneas 7-6
How to Switch the Master and Backup Machines...........ccoocooeoiininiciencnene 7-7

Examples of Switching MASTER and BACKUP Machines..................... 7-7
HOW tO Migrate SErVEr GrOUPScoocoueeeereenieieseereeeesesseseeseseessesaeseeseeeesensenneas 7-8

How to Migrate a Server Group When the Alternate Machine Is Accessible

from the Primary Maching............ccooooeiiiiiinieeee e e 7-9

How to Migrate a Server Group When the Alternate Machine Is Not

Accessible from the Primary Maching...........ccccceeeeieieciecie e, 7-10

Examples of Migrating a Server Groupooooeeeeereeneeresees e eee e 7-10
How to Migrate Server Groups from One Machine to Another...........c.cc..... 7-12

How to Migrate Machines When the Alternate Machine |s Accessible from

the Primary Maching.........ocoovei et 7-12

How to Migrate Machines When the Alternate Machine Is Not Accessible

from the Primary Maching.........ccccooevveviniesicie e e e 7-13

Examples of Migrating aMachine...........ccccoerriiinienniene e 7-14
How to Cancel aMigrationcceeceeiecieie e 7-15

Example of aMigration Cancellationccoceeirinieniene e 7-15
How to Migrate Transaction Logs to a Backup Machine...........c.ccoccveeeennnenn. 7-16

Tuning a BEA Tuxedo ATMI Application

Maximizing Y our Application RESOUICES..........cccevereeieieirieee et 8-2
When to Use MSSQ SELS......ccoiiiieiiiiee ettt sttt s se e st srae 8-2
How to Enable Load BalanCing.........c.cceeveroee e seenece e 8-4
How to Measure Service Performance TimMe...........ccoeieee e neeneein e 8-5
How to Assign Prioritiesto Interfaces or SErVices........cooveveee e ceciccieceenen 8-5
Example of USiNg Priorties. ... 8-6
Using the PRIO Parameter to Enhance Performance...........ccccoveeecvvenneee. 8-6
Bundling SErviCeS iNtO SEIVENSccveiiecie ettt v e 8-7
When t0 BUNAIE SEIVICES.....c.oouiiiee et 8-7
Enhancing Overall System Performance............cooooeeerineieseineene e 8-8
Service and Interface Caching.........ccecoeiecieiiececcere e e 8-8
Removing Authorization and Auditing Security.........ccoccvveveeieve e 8-9
Turning Off Multithreaded Processingccccoceevveeieenesieveeseseeeie e 8-10
Turning Off XA TranSaCtioNSccccee e vieie s srenrae s 8-10

Administering a BEA Tuxedo Application a Run Time Vii

Enhancing Efficiency with Application Parameters...........ccocooveieienecieenenne. 8-11
Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and

MAXSERVICES Par@meters..........courueuerierererinesesesesie e s s 8-11
Setting the MAXGTT, MAXBUFTY PE, and MAXBUFSTY PE Parameters
8-12
Tuning with the SANITY SCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters.........cooeeiieeeneereessee e s 8-12
Recommended Values for Tuning-related Parameters...........cccceveeeeennen. 8-13
Determining Y our System IPC ReqUIrements..........cccooveeererieneseeseenieee s 8-13
Measuring SYyStem TraffiCcooeoeeie e e e 8-15
Example of Detecting a System Bottleneckcocooeeveiveneiencncienen. 8-16
Detecting Bottlenecks on UNIX Platforms..........ccccooeevveieiiecveenecceceenne, 8-16
Detecting Bottlenecks on Windows 2000 Platforms.............ccccevvvviennenns 8-18

9. Troubleshooting a BEA Tuxedo Application

Determining TYPeS Of FAlUrES..........ooeueiiiiieeerr e 9-2
How to Determine the Cause of an Application Failure............ccccccveeeneee. 9-2
How to Determine the Cause of a BEA Tuxedo System Failure............... 9-3

How to Broadcast an Unsolicited MeSSage.......c.ccceveereiereeneeieie e 9-4

Maintaining Y our SYysStem Fil€S........coo i 9-5
How to Print the Universal Device List (UDL).....cccooveneinennnecireeee 9-5
How to Print VTOC INfOrMationccceceviieeieeiniie e 9-6
How to Reinitialize aDEVICE.......cccoe it 9-6
How to Create aDeViCe List ..o 9-7
How to Destroy aDeviCe LiSt.....ooicieie et e 9-7

Repairing Partitioned NetWOrkSccoooiiiiiiiie e 9-8
Detecting a Partitioned NEtWOTKcoocuiiviiiiiiicieceeseese e 9-8
Restoring a Network CONNECLIONcccveeecieie e 9-10

Restoring Failed MachingsS.........c.ooieieie et s 9-11
How to Restore a Failed MASTER Machine.........c.cccoveieiennneeinincene. 9-11
How to Restore a Failed Nonmaster Machine............cccccevenenenieneninnnn. 9-12

How to Replace System COMPONENESc.overeeeiiirieneie e 9-13

How to Replace Application COMPONENEScccoeirirereseereenee e 9-13

Cleaning Up and Restarting Servers Manuallyccoccooeeenenienevenecneienene 9-14
How to Clean Up Resources Associated with Dead Processes................ 9-14
How to Clean Up Other RESOUICEScccuevireereeuiriineee et 9-15

Viii Administering a BEA Tuxedo Application a Run Time

How to Check the Order in Which BEA Tuxedo CORBA Servers Are

(27070 11< o TR 9-15
How to Check the Hostname Format and Capitalization of BEA Tuxedo CORBA

SEIVEIS ... ettt ettt ettt ettt ettt et et et et ee e e e et eb e e e et ene eheenbeeaeenaenean 9-16
Why Some BEA Tuxedo CORBA Clients Fail to BOOt.........c.ccoenreeenienenne 9-17
Aborting or Committing TranSaCtioNS...........cceevevierieeiieeieesree et 9-18

HOW t0 ADOrt @ TranSaCtioN..........coccoereirieiee e e 9-18

How to Commit @ TranSaCtioNcc.coereeiueiererieeiee e e 9-18
How to Recover from Failures When Transactions Are Used........c.cccoceuenee. 9-19
How to Use the IPC Tool When an Application Fails to Shut Down

PIOPEITY et ettt et eee e e s 9-20
Troubleshooting Multithreaded/

Multicontexted APPliCaLIONS........cociiririree e e e 9-21

Debugging Multithreaded/Multicontexted Applications............cccceeue.. 9-21

Limitations of Protected Mode in a Multithreaded Application 9-21

Administering a BEA Tuxedo Application a Run Time iX

X

Administering a BEA Tuxedo Application a Run Time

About This Document

This document explains how to administer the BEA Tuxedo® system, for either a
data-dependent Tuxedo ATMI environment or an object-oriented Tuxedo CORBA
environment.

This document covers the following topics:

m Chapter 1, “Starting Up and Shutting Down an Application,” describes how to
start up and shut down BEA Tuxedo applications.

m Chapter 2, “Monitoring Your BEA Tuxedo Application,” describes how to
monitor the resources, activities, and potentia problems in your configuration.

m Chapter 3, “Dynamicaly Modifying an Application,” explains how to make
changesto your configuration without shutting it down.

m Chapter 4, “Managing the Network in a Distributed Application,” describes how
to manage your network environment in order to support a distributed BEA
Tuxedo application.

m Chapter 5, “About the EventBroker,” provides an overview of the EventBroker,
atool that provides asynchronous routing of application events among the
processes running in a BEA Tuxedo application.

m Chapter 6, “Subscribing to Events,” describes how to configure EventBroker
servers.

m Chapter 7, “Migrating Your Application,” describes how to migrate BEA
Tuxedo servers to a configured backup or alternate machine.

m Chapter 8, “Tuning a BEA Tuxedo ATMI Application,” describes how to ensure
the smooth performance of your application in a Tuxedo ATMI environment.

m Chapter 9, “Troubleshooting a BEA Tuxedo Application,” describes how to
perform various troubleshooting procedures within the BEA Tuxedo system.

Administering a BEA Tuxedo Application a Run Time Xi

What You Need to Know

This document is intended mainly for administrators who configure operational
parameters that support mission-critical BEA Tuxedo systems. It assumesafamiliarity
with the BEA Tuxedo platform.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument isavailable on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). Y ou can open the
PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Xii Administering a BEA Tuxedo Application at Run Time

Related Information

The following documents provide related information about BEA Tuxedo software.

Installing the BEA Tuxedo System—paper copy distributed with the CD
m BEA Tuxedo Release Notes—paper copy distributed with the CD

m Setting Up a BEA Tuxedo Application—available through the BEA Tuxedo
Online Documentation CD, this guide describes how to set up and administer the
BEA Tuxedo system.

m Using the BEA Tuxedo Domains Component—avail able through the BEA
Tuxedo Online Documentation CD, this guide describes how to configure and
manage BEA Tuxedo domains.

m Scaling, Distributing, and Tuning CORBA Applications—available through the
BEA Tuxedo Online Documentation CD, this guide describes how to tune and
scale CORBA applications that run in the BEA Tuxedo CORBA environment.

For more information about configuring and administering BEA Tuxedo ATMI and
BEA Tuxedo CORBA environments, refer to the CORBA Bibliography at
http://edocs.bea.com/.

Contact Us!

Y our feedback on the BEA Tuxedo documentation isimportant to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Y our commentswill be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo

documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

Administering a BEA Tuxedo Application a Run Time Xiii

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. Y ou can also contact Customer Support by using the
contact information provided on the Customer Support Card, which isincluded in the
product package.

When contacting Customer Support, be prepared to provide the following information:
m Your hame, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Xiv Administering a BEA Tuxedo Application at Run Time

Convention

Item

nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
.doc
t ux. doc
Bl TVAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
text void comit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Administering a BEA Tuxedo Application a Run Time XV

XVi

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Administering a BEA Tuxedo Application at Run Time

CHAPTER

1

Starting Up and

Shutting Down an
Application

Thistopic includes the following sections:

The Tasks Involved in Starting Up and Shutting Down an Application
How to Set Your Environment

How to Create the TUXCONFIG File

How to Manually Propagate the Application-Specific Directories and Files
How to Create a TLOG Device

How to Start tlisten at All Sites

How to Boot the Application

How to Shut Down Your Application

Administering a BEA Tuxedo Application a Run Time 1-1

1 Starting Up and Shutting Down an Application

The Tasks Involved in Starting Up and
Shutting Down an Application

Thefollowing flowchart illustrates the tasks required to start up and shut down your
BEA Tuxedo application.

Click on each of the following tasks for instructions on completing that task.

Figure1-1 Startup and Shutdown Tasks

Set environment v ariables
I

Create the tuxcontig file

hWanually propagate the
application-specific files

Create a TLO device

otarnt tlisten at all stes

Boot the application

Shut down the application

1-2 Administering a BEA Tuxedo Application at Run Time

How to Set Your Environment

How to Set Your Environment

Being ableto access the BEA Tuxedo executables and data libraries is essential to the
job of managing a BEA Tuxedo application. For example, the commands needed to
start up or shut down an application are located in $TUXDI R/ bi n on a UNIX host
machine, and in %rUXDI R4 bi n on a Windows 2000 host machine.

OnaUNIX host machine, set and export the following environment variablesto set up
your environment:

TUXCONFI G=pat h_nane_of TUXCONFIG file

TUXDI R=pat h_nane_of BEA Tuxedo_systemroot _directory

APPDI R=pat h_nanme_of BEA Tuxedo_application_root_directory
PATH=$APPDI R: $TUXDI R/ bi n: / bi n: $PATH

LD LI BRARY_PATH=$APPDI R $TUXDI R/ i b:/1i b:/usr/lib: $LD LI BRARY_PATH
export TUXCONFI G TUXDI R APPDI R PATH LD LI BRARY_PATH

On ThisPlatform... MakeThisChange...

HP-UX on the HP 9000 Use SHLI B_PATHinstead of LD_LI BRARY_PATH

Replace the substitutabl e strings (italicized) with the absol ute pathnames appropriate
for your installation.

Note: The application administrator defines the TUXCONFI G, TUXDI R, and APPDI R
environment variablesin the MACHI NES section of the UBBCONFI Gfile or the
T_MACH NE class of the TM_M B for each machinein an application. See the
UBBCONFI (5) or TM M B(5) reference page for a description of these
environment variables.

On a Windows 2000 host machine, enter the following commands at the command
prompt to set up your environment:

set TUXCONFI G=pat h_nanme_of TUXCONFI G file

set TUXDI R=pat h_name_of BEA Tuxedo_system root directory

set APPDI R=pat h_name_of BEA Tuxedo_applicati on_root_directory
set PATH=%APPDI R% % UXDI R% bi n; %PATHY%

Replace the substitutabl e strings (italicized) with the absol ute pathnames appropriate
for your installation.

Administering a BEA Tuxedo Application a Run Time 1-3

1 Starting Up and Shutting Down an Application

Windows 2000 accesses the required dynamically loadable library files through its
PATH variable setting. Specifically, Windows 2000 searches for dynamically loadable
library filesin the following order:

1. Thedirectory from which the BEA Tuxedo application was loaded

2. Thecurrent directory

3. TheWindows system directory (for example, C: \ W n2000\ Syst en82)
4. TheWindows directory (for example, C: \ W n2000)

5. Thedirectories listed in the PATH environment variable

How to Create the TUXCONFIG File

Thet m oadcf (1) command convertsthetext configuration fileto abinary file called
t uxconfi g and writes the new file to the location given in the TUXCONFI G variable.
Run the command as follows:

$ tmoadcf [-n] [-y] [-c] [-b blocks] {ubbconfig file | - }

Note: Youmust belogged in on the MASTER machine and have the effective user ID
of the configuration file owner.

The options shown here perform the following functions:
m - n performs asyntax check only; reports errors
m -y overwrites the existing TUXCONFI Gfile without asking

m - c calculates minimum interprocess communication (1PC) resources of the
configuration

m - Db limitsthe size of the TUXCONFI Gfile

The - ¢ and - n options do not load the TUXCONFI Gfile. IPC resources are platform
specific. If you use the - ¢ option, check the data sheet for your platform in the BEA
Tuxedo I nstall ation Guide to judge whether you must make changes. If you do want to
change IPC resources, check the administration documentation for your platform. If
the- n option checksfor syntax errorsinthe configuration file, correct the errorsbefore
you proceed. (For ubbconfi g_fi | e, substitute the fully qualified name of your
configuration file.)

1-4 Administering a BEA Tuxedo Application at Run Time

How to Manually Propagate the Application-Specific Directories and Files

How to

The - b option takes an argument that limits the number of blocks used to store the
TUXCONFI Gfile. Useit if you are installing TUXCONFI G on araw disk device that has
not beeninitialized. The optionisnot recommended if TUXCONFI Gisstoredinaregular
UNIX system file.

Manually Propagate the

Application-Specific Directories and Files

TUXCONFI Gis propagated automatically to all machinesin your configuration by the
BEA Tuxedo system when you run t nboot (1) . There are, however, other files that
you need to propagate manually. Followingisalist of thefiles and directoriesthat you
needto create for anetworked application. First, install the BEA Tuxedo system on the
machine.

Table 1-1 Directoriesand Filesto Propagate

Directory/File

Description

APPDI R

Y ou must create the directory named in the APPDI R variable on each node. It iseasier
if this directory has the same pathname on all nodes.

Executables

Y ou must build one set of application serversfor each platform, and manually
propagatethe appropriate set to all machinesrunning on each platform (that is, the BEA
Tuxedo system does not do thisautomatically). Store the executablesin APPDI R, or in
adirectory specified in a PATHvariable in ENVFI LES in the MACHI NES section of
your configuration file.

Field tables
VI EWtables

If FML or VI EWS buffer types are used, field tables and VI EWdescription files must be
manually propagated to the machines where they are used, and then recompiled. Use
nkf | dhdr, nkfl dhdr32(1) to make aheader file out of afield tablefile; use

vi ewc, viewc32(1) tocompileaVl EWfile. The FML field tables and VI EW
description files should be available through the environment variables FLDTBLDI R,
FI ELDTBLS, VI EWDI R, and VI EWFI LES, or their 32-bit equivalents.

Administering a BEA Tuxedo Application a Run Time 1-5

1 Starting Up and Shutting Down an Application

Directory/File Description

tlisten Thet i st en process must be started on each machine of a networked BEA Tuxedo
application beforethe applicationisbooted. Refer tothet | i st en(1) reference page.

Y ou must define TUXDI R, TUXCONFI G, APPDI R, and other relevant environment
variables before startingt | i st en.

How to Create a TLOG Device

To create distributed transaction processing, you must have created a global
transaction log (TLOG) on each participating machine. To define aTLOG complete the
following steps.

1. Youmust first set several parametersin the MACHI NES section of the configuration
file: TLOGDEVI CE, TLOGOFFSET, TLOGNAME, and TLOGSI ZE.

2. You must aso create a universal device list entry (UDL) for the TLOGDEVI CE on
each participating machine. (You can do this task before or after loading
t uxconfi g, but you must do so before booting the system.) To create an entry in
the UDL for the TLOG device, invoket madni n - ¢ on the MASTER machine with
the application inactive. (The - ¢ option invokest madni n in configuration mode.)

3. Enter the command:
crdl -z config -b bl ocks

where -z confi g specifiesthe full pathname for the device on which the UDL
should be created (that is, where the TLOG will reside) and - b bl ocks specifies
the number of blocks to be allocated on the device. The value of conf i g should
match the value of the TLOGDEVI CE parameter in the MACHI NES section. The
blocks must be larger than the TLOGSI ZE. If -z is not specified, the val ue of
conf i g defaults to the value of the variable FSCONFI G (which points to the
application’s databases).

4. Repeat steps 1 and 2 on each machine in your application that will use global
transactions.

1-6 Administering a BEA Tuxedo Application at Run Time

How to Start tlisten at All Sites

If the TLOGDEVI CE is mirrored between two machines, step 4 is not required on the
paired machine. To be recoverable, the TLOG should reside on a device that can be
mirrored. Becausethe TLOGistoo small (typically, 100 pages) to warrant the all ocation
of awhole disk partition, the TLOG is commonly stored on the same raw disk slice as
the BEA Tuxedo /Q database.

How to Start tlisten at All Sites

For a networked application, alistener process must be running on each machine. A
networked application is an application that runs on more than one machine, as
established by the MODEL MP parameter in the RESOURCES section of the application’s
UBBCONFI Gfile.

Note: You must define TUXDI R, TUXCONFI G, APPDI R, and other relevant
environment variables before starting t | i st en.

The port on which the processislistening must be the same as the port specified for
NL SADDR in the NETWORK section of the configuration file. On each machine, use the
tlisten(1) command, asfollows:

tlisten [-d device] -1 nlsaddr [-u {uid-# | uid-name}] [-z bits] [-Z bits]

Example:tlisten -1 //machinel: 6500

tlisten Command Options

m -d devi ce—thefull pathname of the network device. For BEA Tuxedo release
6.4 or later, this option is not required. For earlier versions of the BEA Tuxedo
system (up to release 6.3), some network providers (for example, TCP/I1P)
require this information.

m -1 nl saddr—network address at which the process listens for connections.
TCP/IP addresses may be specified in the following forms:

"/ / host nane: port_nunber"

[#. #. #. #:port_nunmber”

Administering a BEA Tuxedo Application a Run Time 1-7

1

Starting Up and Shutting Down an Application

1-8

In the first example, t1i st en finds an address for host name using thelocal
name resolution facilities (usually DNS). host nane must be the local machine,
and the local name resol ution facilities must unambiguously resolve host nane
to the address of the local machine.

In the second example, the #. #. #. # isin dotted decimal format. In dotted
decimal format, each # should be a number from O to 255. This dotted decimal
number represents the | P address of the local machine. In both of the above
formats, port _nunber isthe TCP port number at which thet i st en process
listens for incoming requests. por t _nunber can either be a number between 0
and 65535 or aname. If port _nunber isaname, then it must be found in the
network services database on your local machine. The address can also be
specified in hexadecimal format when preceded by the characters 0x. Each
character after theinitial 0x isanumber between 0 and 9 or aletter between A
and F (case insensitive). The hexadecimal format is useful for arbitrary binary
network addresses such as | PX/ SPX or TCP/ | P. The address can also be
specified as an arbitrary string.The value should be the same as that specified for
the NLSADDR parameter in the NETWORK section of the configuration file.

t m oadcf (1) printsan error if nl saddr ismissing from any entry—except the
entry for the MASTER LM D, for which it will print awarning. However, if

nl saddr ismissing from the MVASTER LM D entry, t mradni n(1) cannot berun in
administrator mode on remote machines; it is limited to read-only operations.
This also means that a backup site is unable to reboot the MASTER site after
failure.

-u uid-#oruid-name—used torunthetli st en process as the indicated user.
Thisoption isrequired if thet I i st en(1) command isrun by root on a remote
machine.

-z [bi t s] —specifiesthe minimum level of encryption regquired when
establishing a network link between a BEA Tuxedo system administrative
processandt | i st en. Zero (0) means no encryption, while 56 and 128 specify
the length (in bits) of the encryption key. If thisminimum level of encryption
cannot be met, link establishment fails. The default is zero.

- Z [bi t s] —specifies the maximum level of encryption allowed when
establishing a network link between a BEA Tuxedo system administrative
processandt | i st en. Zero (0) means no encryption, while 56 and 128 specify
the length (in bits) of the encryption key. The default is 128. The -z and - Z
options are available only if either the International or U.S. and Canada BEA
Tuxedo Security licenseisinstalled.

Administering a BEA Tuxedo Application at Run Time

How to Boot the Application

How to Boot the Application

Once all prerequisites have been completed successfully, you can bring up the
application using t nboot . Only the administrator who created the TUXCONFI Gfile can
execute t mboot (1).

The application is generally booted from the machine designated as MASTER in the
RESOURCES section of the configuration file or the BACKUP acting as the MASTER. The
- b option allows some deviation from thisrule. For t mboot to find executables, BEA
Tuxedo system processes such as the Bulletin Board Liason (BBL) must be located in
$TUXDI R/ bi n. Application servers should be in the directory defined by the APPDI R
variable, as specified in the configuration file.

When booting application servers, t nboot uses the CLOPT, SEQUENCE, SRVGRP,

SRVI D, and M N parametersfrom the configuration file. Application serversare booted
in the order specified by the SEQUENCE parameter, if SEQUENCE is used. If SEQUENCE
is not specified, servers are booted in the order in which they appear in the
configuration file. The command line should ook something like the following:

$ tnboot [-g grpnane] [-o sequence] [-S] [-A [-Y]

Table 1-2 tmboot Options

ThisOption

Performs This Function

-g grpnane

Boots al TMS and application serversin groups using thisgr pnane parameter.

-0 sequence

Boots all serversin the order shown in the SEQUENCE parameter.

-s server-nane Boots an individual server.

-S Boots all serverslisted in the SERVERS section.

-A Boots all administrative serversfor machines listed in the MACHI NES section. This
option ensures that the DBBL, BBL, and BRI DGE processes are started in the proper
order.

-y Provides an automatic “yes” response to the prompt that askswhether all administrative

and application servers should be booted. This prompt is displayed only if no options
that limit the scope of the command (- g gr pnane, for example) are specified.

Note: For acompletelist of t mboot options, seethet nboot (1) reference page.

Administering a BEA Tuxedo Application a Run Time 1-9

1 Starting Up and Shutting Down an Application

Sequence of tmboot Tasks for a 2-Machine Configuration

To boot the entire configuration, enter the following command:
pronpt > t nboot -y

t nboot performs the following tasks:

Figure 1-2 Default Boot Sequence for a Small Application

FProcesses TUXCOMFIE file on
MASTER site.

|
Boots DBBL and BBL (creating
shared memonysd on MASTER
machine.

|
Bootz BRIDGE on MASTER
machine (setting up listening
address).

Sets up connection with remote
site tlisten process; propragates
TUWACOMNFIG to remote site

|
Boots BSBRIDGE (zets up
connection to BRIDGE
process on MASTER)

|
Boots 3 BBL (creates local BB
and sends request to DBBL
wia BSBRIDGE to register it as
asencer), DBBL reply contains
copy of MASTER BB used by
BEL to update it= BE.

|
Boots 3 BRIDGE (sets up a
connection back to BRIDGE on
MASTER and tells BEBRIDGE
itisno longer needed.

|
Boots local application
servers and then remote
application semers.

1-10 Administering a BEA Tuxedo Application at Run Time

How to Shut Down Your Application

Sequence of tmboot Tasks for Large Applications (Over
50 Machines)

For relatively large applications (that is, those consisting of over 50 machines),

t mboot boots entire machinesin asingle step rather than performing al the steps used
to boot two machinesin the default sequence. Following is the optimized sequence of
tasks.

Figure 1-3 Boot Sequencefor aLarge Application

Buoots entire HASTERm achine
uszing - -1,

Boots entire remote machine
uszing -B -1.

Note: Theboot sequenceismuch faster for large applications because the number of
system messages is far smaller. This method generally reduces boot time by
50%. Inaconfiguration running on aslow network, boot time can beimproved
by booting machines with higher speed connections to the MASTER machine
first.

How to Shut Down Your Application

Usethet mshut down(1) command to shut down all or part of a BEA Tuxedo
application. The rules for running this command are similar to those for running
t mboot (1) ; t nshut down istheinverse of t mboot .

When the entire application is shut down, t nshut down removes the interprocess
communication (IPC) resources associated with the BEA Tuxedo system. The options
used by t mboot for partial booting (-A, -g, -1, -S, -s, -l , -M -B) are supported in

t mshut down. The-b option (allowingt mboot to be used from anon-MASTER machine)
isnot supported for t mshut down; you must enter thet nshut down command from the
MASTER (Or BACKUP MASTER) machine.

Administering a BEA Tuxedo Application at Run Time 1-11

1

Starting Up and Shutting Down an Application

To migrate servers, use the -R option. This option shuts down the servers without
removing bulletin board entries for them. If amachineis partitioned, runt nshut down
with the -P LM D option on the partitioned machine to shut down the servers on that
machine.

t mshut down does not shut down the administrative server BBL on amachineto which
clients are attached. Y ou can use the -c option to override thisfeature. Y ou need this
option for occasions when you must bring down a machine immediately and you
cannot contact the clients.

Y ou can usethe -wdel ay option to force a hard shutdown after del ay seconds. This
option suspendsall serversimmediately so that additional work cannot be queued. The
value of del ay should allow time for requests already queued to be serviced. After
del ay seconds, a Sl GKI LL signal is sent to the servers. This option enables the
administrator to shut down servers that are looping or blocked in application code.

Running tmshutdown

1-12

Only the administrator who has written the TUXCONFI Gfile can execute

t mshut down(1) . The application can be shut down only from the machine designated
asMASTERin the configuration file. When the BACKUP acts as MASTER, it is considered
to be the MASTER for shutdown purposes. (The only exception to thisruleisa
partitioned machine. By using the -p option, an administrator can run thet mshut down
command from a partitioned machine to shut down the application at that site.)

The order in which application servers are shut down is the reverse of the order
specified by the SEQUENCE parameter for them, or the reverse order in which they are
listed in the configuration file. If some servers have SEQUENCE numbers and others do
not, the unnumbered servers are thefirst to be shut down, followed by the application
servers with SEQUENCE numbers (in reverse order). Finally, administrative servers are
shut down.

When an application is shut down, all the | PC resources allocated by the BEA Tuxedo
system are removed; t nshut down does not remove | PC resources allocated by the
DBMS.

Administering a BEA Tuxedo Application at Run Time

How to Shut Down Your Application

Using the IPC Tool When an Application Fails to Shut
Down Properly

I PC resources are operating system resources, such as message queues, shared
memory, and semaphores. When a BEA Tuxedo application shuts down properly with
thet mshut down command, all 1PC resources used by the BEA Tuxedo application are
removed from the system. In some cases, however, an application may fail to shut
down properly and stray |PC resources may remain on the system. When this happens,
it may not be possible to reboot the application.

Oneway to addressthis problem isto remove | PC resources with a script that invokes
the system | PCS command and scan for al IPC resources owned by a particular user
account. However, with this method, it is difficult to distinguish among different sets
of IPC resources; some may belong to aparticular BEA Tuxedo application; and others
to applications unrelated to the BEA Tuxedo system. It is important to be able to
distinguish among these sets of resources; unintentional removal of | PC resources can
severely damage an application.

The BEA Tuxedo IPCtool (that is, thet m pcr m(1) command) enablesyou to remove
I PC resources allocated by the BEA Tuxedo system (that is, for core BEA Tuxedo and
Workstation components only) in an active application.

The command to remove | PC resources, t mi pcr (1) , resides in TUXDI R/ bi n. This
command reads the binary configuration file (TUXCONFI G), and attaches to the bulletin
board using the information in thisfile. t m pcr mworks only on the local server
machine; it does not clean up IPC resources on remote machinesin a BEA Tuxedo
configuration.

To run this command, enter it as follows on the command line:
tmpecrm[-y] [-n] [tuxconfig file]

ThelPCtool listsall IPC resources used by the BEA Tuxedo system and gives you the
option of removing them.

Note: Thiscommandwill not work unlessyou have set the TUXCONFI Genvironment
variable correctly or specified the appropriate TUXCONFI Gfile on the
command line.

To remove /Q IPC resources, use the gmadni n(1) i pcr mcommand.

Administering a BEA Tuxedo Application a Run Time 1-13

1 Starting Up and Shutting Down an Application

1-14 Administering a BEA Tuxedo Application at Run Time

CHAPTER

2 Monitoring Your BEA
Tuxedo Application

Thistopic includes the following sections:

m Waysto Monitor Your Application

m Selecting Appropriate Monitoring Tools

m Using the BEA Administration Console to Monitor Your Application
m Using Command-line Utilities to Monitor Your Application
m Using EventBroker to Monitor Your Application

m Using Log Filesto Monitor Activity

m Using the MIB to Monitor Your Application

m Using the Run-time Tracing Utility

m Managing Errors Using the DBBL and BBLS

m Using the ATMI to Handle System and Application Errors

m Monitoring Multithreaded and Multicontexted A pplications

Administering a BEA Tuxedo Application a Run Time

2-1

2 Monitoring Your BEA Tuxedo Application

Ways to Monitor Your Application

As an administrator, you must ensure that once an application is up and running, it
continues to meet the performance, availability, and security requirements set by your
company. To perform this task, you need to monitor the resources (such as shared
memory), activities (such as transactions), and potential problems (such as security
breaches) in your configuration, and take any necessary corrective actions.

To help you meet this responsibility, the BEA Tuxedo system provides severa
methods for monitoring system and application events, and dynamically reconfiguring
your system to improve performance. The BEA Administration Console,
command-line utilities, log files, the ATMI, the MIB, and arun-time tracing facility
offer an excellent view of how a system isworking. They help make your application
capable of responding quickly and efficiently to changing business needs or failure
conditions. Y ou can use these tools to keep your application performing fast, well, and

securely.

Figure2-1 Monitoring Tools

¥

MIB AP Cnmm_gn_d-Line Administration EventBraker
Litilities Console

| | I | ’_l

MIB Events

TLOG Board

BU+E“I"I LD

2-2 Administering a BEA Tuxedo Application at Run Time

Ways to Monitor Your Application

See Also

The BEA Tuxedo system offers the following tools to monitor your application:

m BEA Administration Console—a Web-based graphical user interface you can use
to observe the behavior of the application, and to dynamically configure its
operation. You can display and change configuration information, determine the
state of each component of the system, and obtain statistical information about
items such as executed requests, and queued requests.

m Command-line utilities—a set of commands (for example, t nboot (1),
t madmi n(1), and t nshut down(1)) you can use to activate, deactivate,
configure, and manage your application.

m EventBroker—a mechanism that informs administrators of system faults and
exceptiona happenings such as network failures. When an event is posted by
clients or servers, the EventBroker matches the name of the posted event to alist
of subscribers for that event, and takes appropriate action, determined by each
subscription.

m Logfiles—aset of filesthat make up arepository for error and warning
messages, debugging messages, and informational messages helpful in tracking
and resolving problemsin the system.

m MIB—aninterface to a set of procedures for accessing and modifying
information in the MIBs. Using the MIB, you can write programs that enable
you to monitor your run-time application.

m Run-time tracing facility—software that tracks the execution of an application,
thus providing information that is helpful in resolving system problems.

m “System and Application Data That You Can Monitor” on page 2-4
m “Selecting Appropriate Monitoring Tools” on page 2-8

m “Using the BEA Administration Console to Monitor Your Application” on page
2-9

m “Using the BEA Administration Console” on page 3-4 in Introducing BEA
Tuxedo ATMI

m “Using Command-line Utilities to Monitor Your Application” on page 2-10

Administering a BEA Tuxedo Application a Run Time 2-3

2 Monitoring Your BEA Tuxedo Application

“Using EventBroker to Monitor Your Application” on page 2-15

“Using Log Files to Monitor Activity” on page 2-16

“Using the ATMI to Handle System and Application Errors” on page 2-28
“Using the MIB to Monitor Your Application” on page 2-22

“Managing Operations Using the MIB” on page 3-10 in Introducing BEA Tuxedo
ATMI

“Using the Run-time Tracing Utility” on page 2-25

t mshut down(1) inthe BEA Tuxedo Command Reference

System and Application Data That You Can

Monitor

The BEA Tuxedo system enables you to monitor system and application data.

Monitoring System Data

To help you monitor arunning system, your BEA Tuxedo system maintains parameter
settings and generates statistics for the following system components:

Clients
Conversations
Groups

M essage queues
Networks

Servers

2-4 Administering a BEA Tuxedo Application at Run Time

System and Application Data That You Can Monitor

m Services
m CORBA Interfaces
m Transactions

Y ou can access these components using the MIB or t madni n. Y ou can set up your
system so that it can use the statistics in the bulletin board to make decisions and to
modify system components dynamically, without your intervention. With proper
configuration, your system can perform the following tasks (when bulletin board
statistics indicate that they are required):

m Turn on load balancing
m Start anew copy of aserver
m Shut down servers that are not being used

By monitoring the administrative data for your system, you can prevent and resolve
problemsthat threaten the performance, availability, and security of your application.

Where the System Data Resides

To ensure that you have the information necessary to monitor your system, the BEA
Tuxedo system provides the following three data repositories:

m Bulletin board—a segment of shared memory (on each machine in your
network) to which your system writes statistics about the components and
activities of your configuration

m Log files—filesto which your system writes messages

m UBBCONFI G—atext file in which you define the parameters of your system and
application

Monitoring Dynamic and Static Administrative Data

Y ou can monitor two types of administrative data that are available on every running
BEA Tuxedo system: static and dynamic.

Administering a BEA Tuxedo Application a Run Time 2-5

2 Monitoring Your BEA Tuxedo Application

What Is Static Data?

Static data about your configuration consists of configuration settings that you assign
when you first configure your system and application. These settings are never
changed without intervention (either in realtime or through a program you have
provided). Examples include system-wide parameters (such as the number of
machines used) and the amount of interprocess communication (1PC) resources (such
as shared memory) all ocated to your system on your local machine. Static datais kept
in the UBBCONFI Gfile and in the bulletin board.

Checking Static Data

At timesyou may need to check static data about your configuration. For example, you
may want to add alarge number of machines without exceeding the maxi mum number
of machines allowed in your configuration (or allowed in the machine tables of the
bulletin board). Y ou can look up the maximum number of machines allowed by
checking the current values of the system-wide parameters for your configuration (one
of which is MAXMACHI NES).

Y ou may be able to improve the performance of your application by tuning your
system. To determine whether tuning is required, you need to check the amount of
local 1PC resources currently available.

What Is Dynamic Data?

Dynamic data about your configuration consists of information that changesin
realtime, that is, while an application is running. For example, the load (the number of
reguests sent to a server) and the state of various configuration components (such as
servers) change frequently. Dynamic datais kept in the bulletin board.

Checking Dynamic Data

Dynamic configuration data is useful in resolving many administrative problems, as
demonstrated by two examples.

In the first example, suppose your throughput is suffering and you want to know
whether you have enough servers running to accommodate the number of clients
currently connected. Check the number of running servers and connected clients, and
the load on one or more servers. These numbers help you determine whether adding
more servers will improve performance.

2-6 Administering a BEA Tuxedo Application at Run Time

Common Startup and Shutdown Problems

In the second exampl e, suppose you receive multiple complaints about slow response
from users when making particular requests of your application. By checking load
statistics, you can determine whether increasing the val ue of the BLOCKTI MVE parameter
would improve response time.

Common Startup and Shutdown Problems

When eva uating whether your BEA Tuxedo system is operating normally, you might
want to consider the following list of common startup and shutdown problems, and
monitor your system periodically.

Common Startup Problems

m Application server failed or dumped core during initialization
m Application server file not found or not executable

m Automatic migration of server group

m Default boot sequence may not be optimal

m Environment variable not set or not set properly

m | PCKEY isaready in use

m Invalid network address

m Met upper bound limits specified in the UBBCONFI Gfile
m Network port isin use already

m Reached limit on system resources

m Server boot dependency

m TLOGfileis not created

Administering a BEA Tuxedo Application a Run Time 2-7

2 Monitoring Your BEA Tuxedo Application

Common Shutdown Problems

m Clients still attached
m Dead servers

m Shutdown sequence

Selecting Appropriate Monitoring Tools

To monitor arunning application, you need to keep track of the dynamic aspects of
your configuration and sometimes check the static data. In other words, you need to be
able to watch the bulletin board on an ongoing basis and consult the UBBCONFI Gfile
when necessary. The method you choose depends on the following factors:

m Your BEA Tuxedo system administration experience: If you have alot of
experience as an administrator, as well as shell programming expertise, you may
prefer to write programs that automate your most frequently run commands.

m Your operating system experience: If you are inexperienced, you may be more
comfortable using the BEA Administration Console.

m Which information you want to view: If you decide to monitor your application
by examining the RESOURCES section of the UBBCONFI Gfile through the
t madm n command, you will have access to only the current values.

The following table describes how to use each monitoring method.

Use This Method... By...

BEA Administration Console Using agraphical interface.

Command-line utilities, such ~ Entering commands after a prompt.
ast xrpt andt madni n

EventBroker Subscribing to BEA Tuxedo system events, such as servers
dying, and network failures.

2-8 Administering a BEA Tuxedo Application at Run Time

Using the BEA Administration Console to Monitor Your Application

Use ThisMethod... By...

Log files (for example, ULOG, Viewing the ULOGwith any text editor; checking the ULOG

TLOG) fortl i st en messages,; and converting the TLOG (abinary
file) to atext file by running t madm n dunpt | og which
downloads a TLOGto atext file.

M B Writing programs that monitor your run-time application.
Run-time tracing utility Specifying atracing expression that contains a category, a

filtering expression, and an action, and enabling the
TMI'RACE environment variable. For more information, see
“Using the Run-time Tracing Utility” on page 2-25.

Using the BEA Administration Console to
Monitor Your Application

The BEA Administration Console isagraphical user interface to the MIB that enables
you to tune and modify your application. It is accessed through the World Wide Web
and used through a Web browser. Any administrator with a supported browser can
monitor a BEA Tuxedo application.

Using the Toolbar to Monitor Activities

Thetoolbar isarow of 12 buttonsthat allow you to run toolsfor frequently performed
administrative and monitoring functions. All buttons are labeled with both icons and
names. The following buttons are available for monitoring:

m Logfile—displaysthe ULOG file from a particular machine in the active
domain.

m Event Tool—helps you monitor system events. When you click the Event Tool
button, awindow displays four options: subscribe—to reguest notification of
specified system events, unsubscribe—to reject further notification of specified
system events, snapshot—to create arecord of the data currently held by the

Administering a BEA Tuxedo Application a Run Time 2-9

2 Monitoring Your BEA Tuxedo Application

Event Tool, and select format—to choose parameters for the information being
collected by the Event Tool.

m Stats—to display agraphical representation of BEA Tuxedo system activity.

m Search—to look for a particular object class or object in the Tree.

See Also

m “Using the BEA Administration Console” on page 3-4 in Introducing BEA
Tuxedo ATMI

Using Command-line Utilities to Monitor
Your Application

To monitor your application through the command-lineinterface, usethet madni n(1)
or t xrpt (1) command.

Inspecting Your Configuration Using tmadmin

Thet madni n command isan interpreter for 53 commands that enable you to view and
modify abulletin board and its associated entities. Using thet madni n commands, you
can monitor statistical information in the system such as the state of services, the
number of requests executed, the number of queued requests, and so on.

Using the t madm n commands, you can also dynamically modify your BEA Tuxedo
system. Y ou can, for example, perform the following types of changes while your
system is running:

m Suspend and resume services
m Advertise and unadvertise services

m Change service parameters

2-10 Administering a BEA Tuxedo Application at Run Time

Using Command-line Utilities to Monitor Your Application

m Change the AUTOTRAN timeout value

Whenever you start at madni n session, you can choose the following operating modes
for that session: the default operating mode, read-only mode, or configuration mode:

m Indefault operating mode, you can view and change bulletin board data during a
t madm n session, if you have administrator privileges (that is, if your effective
UID and GID arethose of the administrator).

m Inread-only mode, you can view the datain the bulletin board, but you cannot
make any changes. The advantage of working in read-only mode is that your
administrator process is not tied up by t madni n; thet madni n process attaches
to the bulletin board as a client, leaving your administrator slot available for
other work.

m In configuration mode, you can view the data in the bulletin board and, if you
are the BEA Tuxedo application administrator, you can make changes. You can
start at madmi n session in configuration mode on any machine, including an
inactive machine. On most inactive machines, configuration mode is required in
order to runt madni n. (The only inactive machine on which you can start a
t madmi n session without requesting configuration mode is the MASTER
machine.)

Note: You can also generate areport of the BEA Tuxedo version and license
numbers.

Generating Reports on Servers and Services Using txrpt

Thet xr pt command analyzes the standard error output of aBEA Tuxedo server and
providesasummary of service processing time within the server. Thereport showsthe
number of times each service was dispatched and the average amount of time it took
for each serviceto process arequest during the specified period. t xr pt takesitsinput
from the standard input or from a standard error file redirected asinput. To create
standard error files, have your serversinvoked with the-r option from the

ser vopt s(5) selection; you can namethefile by specifying it withthe - e servopt s
option. Multiple files can be concatenated into a single input stream for t xr pt .

Over time, information about service X and server Y (on which service X resides) is
accumulated in afile. t xr pt processes the file and provides you with a report about
the service access and timing characteristics of the server.

Administering a BEA Tuxedo Application at Run Time 2-11

2 Monitoring Your BEA Tuxedo Application

See Also

m “Waysto Monitor Your Application” on page 2-2
m “How atmadmin Session Works’ on page 2-13
m “Monitoring Your System Using tmadmin Commands’ on page 2-14

m “Performing Dynamic Operations Using tmadmin(1)” on page 3-26 in
Introducing BEA Tuxedo ATMI

m “Using Command-line Utilities’ on page 3-12 in Introducing BEA Tuxedo ATMI

2-12 Administering a BEA Tuxedo Application at Run Time

How a tmadmin Session Works

How a tmadmin Session Works

The t madni n command isan interpreter for 53 commandsthat enableyou to view and
modify abulletin board and its associated entities. The following illustration shows
you how atypical t madni n session works.

Figure2-2 Typical tmadmin Session

Administratar types tmadnin ata
prampt
ftmadmin
[operating mods option]
>

|

twaduin verifies the configuration is
running. If not, this message is
displayed:
No bulletin board exists.
Entering boot mode
=

|

If canfiguration is running, toadmin
checks TUXCONFIG {pathname) and
TIOFF3ET (offzef) environment
variahles to get [ocation of the
configuration file

The BEA Tuxedo system checks
the operating mode option
specified with tmadmin

v |frno aption ar -c {configuration You can request configuration

mode)was entered, tnadmin mode an any machine whether
enters the bulltin board as an active or inactive

administrative process

v f -r (read-only mode)was
entered, twadnin entersthe
bulletin board as a client

If a persan other than an administrator
enters -r option, and security is turned

on, a password is reguired.
|

Wihen = is displayed, an administrator || #vailable tmadmin commands depend an:
cah enter any tnadwin command * The mode of the current session

v Current state of the configuration

v Type of machine anwhich vou are working

Administering a BEA Tuxedo Application at Run Time 2-13

2 Monitoring Your BEA Tuxedo Application

Monitoring Your System Using tmadmin Commands

Following isalist of run-time system functions that you can monitor with t madni n

commands:

m Number of serversinstalled in aservice

m Appropriate load distribution

m If aparticular serviceis doing any work

m |nactive clients

m |f distribution of work isflowing smoothly through the system

m If aclientistying up aconnection and preventing a server from doing any work

See Also

for another client
Stability of network
If you must manually commit or abort a transaction

Sufficient operating system resources (such as shared memory and semaphores)
on alocal machine

“Performing Dynamic Operations Using tmadmin(1)” on page 3-26 in
Introducing BEA Tuxedo ATMI

t madmi n(1) inthe BEA Tuxedo Command Reference

2-14 Administering a BEA Tuxedo Application at Run Time

Using EventBroker to Monitor Your Application

Using EventBroker to Monitor Your
Application

See Also

The BEA Tuxedo EventBroker monitorsarunning application for events(for example,
astatechangeinaMIB object, such asthetransition of aclient from activetoinactive).
When the EventBroker detects an event, it reports or posts the event, and then notifies
relevant subscribers that the event has occurred. Y ou can be informed automatically
when eventsoccur inthe M1B by receiving FM_ data buffersrepresenting M1B objects.
To post the event and report it to subscribers, the EventBroker uses thet ppost (3c)
function. Both administrators and application processes can subscribe to events.

The EventBroker recognizes over 100 meaningful state transitionsto aMIB object as
system events. A posting for a system event includes the current MIB representation
of the object on which the event occurred, and some event-specific fieldsthat identify
the event that occurred. For example, if a machine is partitioned, an event is posted
with the following:

m The name of the affected machine, as specified inthe T_MACH NE cl ass, with
all the attributes of that machine

m Some event attributes identifying the event as machine partitioned

To use the EventBroker, you simply subscribe to system events.

m “Managing System Events Using EventBroker” on page 3-14 in Introducing
BEA Tuxedo ATMI

Administering a BEA Tuxedo Application at Run Time 2-15

2 Monitoring Your BEA Tuxedo Application

Using Log Files to Monitor Activity

To help you identify error conditions quickly and accurately, the BEA Tuxedo system
provides the following log files:

m Transaction log (TLOG)—a binary file that is not normally read by you (the
administrator), but that is used by the Transaction Manager Server (TMS). A
TLOGIs created only on machines involved in BEA Tuxedo global transactions.

m User log (ULOG)—alog of messages generated by the BEA Tuxedo system
while your application is running.

These logs are maintained and updated constantly while your application is running.

See Also

m “What Isthe Transaction Log (TLOG)?" on page 2-17

m “What Isthe User Log (ULOG)?" on page 3-62 in Introducing BEA Tuxedo
ATMI

m “Waysto Monitor Your Application” on page 2-2
m “Detecting Errors Using Logs’ on page 2-18
m “Estimating Service Workload Using the Application Service Log” on page 2-21

2-16 Administering a BEA Tuxedo Application at Run Time

What Is the Transaction Log (TLOG)?

What Is the Transaction Log (TLOG)?

Thetransaction log (TLOG) keepstrack of global transactions during the commit phase.
At the end of the first phase of a2-phase commit protocol, the participantsin a global
transaction issue a reply to the question of whether to commit or roll back the
transaction. Thisreply is recorded in the TLOG.

The TLOGfileisused only by the Transaction Manager Server (TMS) that coordinates
global transactions. It is not read by the administrator. The location and size of the
TLOG are specified by four parameters that you set in the MACH NES section of the
UBBCONFI Gfile.

We recommend that you create a TLOG on each machine that participates in global
transactions.

See Also

m “Detecting Errors Using Logs’ on page 2-18

What Is the User Log (ULOG)?

The user log (ULOG) is afileto which all messages generated by the BEA Tuxedo
system—error messages, warning messages, information messages, and debugging
messages—are written. Application clients and servers can also write to the user log.
A new log is created every day and there can be a different log on each machine.
However, a ULOG can be shared by multiple machines when aremote file system is
being used.

The ULOG provides an administrator with arecord of system events from which the
causes of most BEA Tuxedo system and application failures can be determined. Y ou
can view the ULQG, atext file, with any text editor. The ULOG also contains messages
generated by thet | i st en process. Thet | i st en process provides remote service
connectionsfor other machines in an application. Each machine, including the master
machine, should have at | i st en process running on it.

Administering a BEA Tuxedo Application at Run Time 2-17

2 Monitoring Your BEA Tuxedo Application

Detecting Errors Using Logs

The BEA Tuxedo log files can help you detect failures in both your application and
your system by:

m “Analyzing the Transaction Log (TLOG)" on page 2-18
m “Analyzing the User Log (ULOG)” on page 2-19

m “Analyzing tlisten Messagesin the ULOG” on page 2-20

Analyzing the Transaction Log (TLOG)

TheTLOGisabinary filethat contains only messages about global transactionsthat are
in the process of being committed. To view the TLOG, you must first convert it to text
format so that it is readable. The BEA Tuxedo system providestwo t madni n
operationsto do this:

m dunptl og (dI) downloads (or dumps) the TLOG (abinary file) to atext file.

m | oadt! og uploads (or loads) an text version of the TLOGinto an existing TLOG (a
binary file).

Thedunpt | og and | oadt | og commands are also useful when you need to move the
TLOG between machines as part of a server group migration or machine migration.

Detecting Transaction Errors

Y ou can detect TLOGerrorsusing the M B to obtain the status of atransaction. Y ou can
also run thet madm n command di spl ay transacti on to detect any errorsin
transactions.

2-18 Administering a BEA Tuxedo Application at Run Time

Detecting Errors Using Logs

Analyzing the User Log (ULOG)

On each active machinein an application, the BEA Tuxedo system maintainsalogfile
that contains BEA Tuxedo system error messages, warning messages, debugging
messages, or other helpful information. Thisfileiscalled the user log or ULOG. The
uLoG simplifies the job of finding errors returned by the BEA Tuxedo ATMI, and
provides a central repository in which the BEA Tuxedo system and applications can
store error information.

Y ou can use the information in the ULOG to identify the cause of system or application
failures. M ultiple messages about a given problem can be placed in the user log.
Generally, earlier messages provide more useful diagnostic information than later

messages.

ULOG Message Example
In the following example, message 358 from the LI BTUX_CAT catalog identifies the

cause of the trouble reported in subsequent messages, namely, that there are not
enough UNIX system semaphores to boot the application.

Listing 2-1 Sample ULOG M essages

151550. gunby! BBL. 28041. 1. 0: LI BTUX _CAT: 262: std main starting

151550. gunby! BBL. 28041. 1. 0: LI BTUX CAT: 358: reached UNIX Iinmt on semaphore ids
151550. gunby! BBL. 28041. 1. 0: LI BTUX CAT: 248: fatal: systeminit function ..
151550. gunby! BBL. 28040. 1. 0: CMDTUX_CAT: 825: Process BBL at SITEL failed ..
151550. gunby! BBL. 28040. 1. 0: WARNING No BBL avail able on site SITEL

W1l not attenpt to boot server processes on that site.

Note: System Messages contains complete descriptions of user log messages and
recommendations for any actionsthat should be taken to resolve the problems
indicated.

Administering a BEA Tuxedo Application at Run Time 2-19

2 Monitoring Your BEA Tuxedo Application

Analyzing tlisten Messages in the ULOG

Part of the ULOG records error messagestothet | i st en process. Y ou can view
t1i st en messages using any text editor. Each machine, including the MASTER
machine contains a separatet | i st en process. Though separatet| i st en logsare
maintained in the ULOG on each machine, they can be shared across remote file
systems.

TheULOGrecordst | i st en processfailures.t i st en isused, during the boot process,
by t mboot and, while an application is running, by t mradmi n. t 1 i st en messages are
created assoon asthet | i st en processisbooted. Whenever at | i st en processfailure
occurs, amessage isrecorded in the ULOG.

Note: Application administrators are responsible for analyzing thet 1 i st en
messages in the ULOG, but programmers may also find it useful to check these
messages.

The BEA Tuxedo System Messages CMDTUX Catalog contains the following
information about t 1 i st en messages:

m Descriptions of all messages

m Recommended actions that you (or a programmer) can take to resolve the error
conditions reported in these messages

tlisten Message Example
Consider the following example of at | i st en message in the ULOG
121449. gunby! si npserv. 27190. 1. 0: LI BTUX CAT: 262: std main starting
A ULOG message consists of atag and text. The tag consists of the following:

m A 6-digit string (hhmmss) representing the time of day (in terms of hour, minute,
and second).

m The name of the machine (as returned, on UNIX systems, by theunanme -n
command).

m Thename and process identifier of the process that is logging the message. (This
process ID can optionally include atransaction ID.) Also included isathread ID
(1) and a context ID (0).

2-20 Administering a BEA Tuxedo Application at Run Time

Estimating Service Workload Using the Application Service Log

Note: Placeholders are printed inthet hr ead_I D and cont ext _I Dfield of
entries for single-threaded applications. (Whether an application is
multithreaded is not apparent until more than one thread is used.)

The text consists of the following:

m The name of the message catalog
m The message number

m The BEA Tuxedo system message

Note: You can find this message in the BEA Tuxedo System Messages LIBTUX
Catalog.

See Also

m “How to Create a TLOG Device” on page 1-6

m “What Isthe User Log (ULOG)?" on page 3-62 in Introducing BEA Tuxedo
ATMI

m “How to Start tlisten a All Sites’ on page 1-7
m “Managing Transactions’ on page 3-34 in Introducing BEA Tuxedo ATMI

m “Using Transactions” on page 1-18 in Tutorials for Developing BEA Tuxedo
ATMI Applications

Estimating Service Workload Using the
Application Service Log

A BEA Tuxedo application server can generate alog of the service requestsit handles.
Thelog is displayed on the server’s standard output (st dout). Each record contains a
service name, start time, and end time.

Administering a BEA Tuxedo Application at Run Time 2-21

2 Monitoring Your BEA Tuxedo Application

Y ou can request such alog when a server is activated. Thet xr pt facility produces a
summary of the time spent by the server, thus giving you away to analyze the log
output. Using this data, you can estimate the rel ative workload generated by each
service, which will help you set workload parameters appropriately for the
corresponding servicesin the MIB.

Using the MIB to Monitor Your Application

There are essentially two operations you can perform using the MIB: you can get
information fromtheMIB (aget operation) or you can updateinformationintheMIB
(aset operation) at any time using a set of ATMI functions (for example,
tpalloc(3c),tprealloc(3c),tpcall(3c),tpacall (3c),tpgetrply(3c),

t penqueue(3c), and t pdequeue(3c)).

When you query the MIB with aget operation, the MIB respondsto your reply with
anumber of matches, and indicates how many more objects match your request. The
MIB returnsahandle (that is, the cursor) that you can use to get the remaining objects.
The operation you use to get the next set of objectsis called get next . The third
operation occurs when queries span multiple buffers.

Limiting Your MIB Queries

When you query the MIB, whichisavirtual database, you are selecting aset of records
from the database table. Y ou can control the size of the database table in two ways: by
controlling the number of objects about which you want information, or by controlling
the amount of information about each object. Using key fields and filters, you can limit
the scope of your request to data that is meaningful for your needs. The more limits
you specify, the lessinformation is requested from the application, and the faster the
datais provided to you.

2-22 Administering a BEA Tuxedo Application at Run Time

Using the MIB to Monitor Your Application

Querying Global and Local Data

Datain the MIB is stored in a number of different places. Some datais replicated on
more than one machine in a distributed application. Other dataisnot replicated, but is
local to particular machines based on the nature of the data or the object represented.

What Is Global Data?

Global dataisinformation about application components such as servers that is
replicated on every machine in an application. Most of the data about a server, for
example, such as information about its configuration and state, is replicated globally
throughout an application, specifically in every bulletin board. A BEA Tuxedo
application can access this information from anywhere.

For example, from any machine in an application called Customer Orders, the
administrator can find out that server B6 belongs to Group 1, runs on machine
CustOrdA, and is active.

What Is Local Data?

Other information is not replicated globally, but islocal to an entity, such as statistics
for aserver. An exampleof alocal attributeis TA_ TOTREQC, which defines the number
of times services have been processed in aspecified server. Thisstatistic isstored with
the server on its host machine. When the server accepts and processes a service
request, the counter is incremented. Because this kind of information is managed
locally, replicating it would inhibit your system’s performance.

There are dso classesin the MIB that are exclusively local, such as clients. When a
client logsin, the BEA Tuxedo system creates an entry for it in the bulletin board, and
records all tracking information about the client in that entry. The MIB can determine
the state of the client at anytime by checking this entry.

Administering a BEA Tuxedo Application at Run Time 2-23

2 Monitoring Your BEA Tuxedo Application

Using tmadmcall to Access Information

See Also

The BEA Tuxedo system provides aprogramming interface that offers direct accessto
the MIB whileyour application isnot running. Thisinterface, thet padncal | function,
gives the application direct access to the data upon which the MIB is based.

t padncal | alows you access to a subset of information that islocal to your process.

Uset padntal | when you need to query the system or make administrative changes
whileyour system isnot running. t padncal | queriesthe TUXCONFI Gfile on behalf of
your request. Data buffersthat you put in, and databuffersthat you receive (containing
your queries and the replies to them) are exactly the same.

m “Managing Operations Using the MIB” on page 3-10 in Introducing BEA Tuxedo
ATMI

m M B(5) inFile Formats, Data Descriptions, MIBs, and System Processes
Reference

m “Querying and Updating the MIB with ud32" on page 2-24

Querying and Updating the MIB with ud32

ud32 isaclient program delivered with the BEA Tuxedo system that reads input
consisting of text representation of FM_ buffers. Y ou can useud32 for ad hoc queries
and updates to the MIB. It creates an FM_32 buffer, makes a service call with the
buffer, receivesareply (alsoinan FM_32 buffer) from the service call, and displaysthe
results on screen or in afilein text format.

ud32 builds an FM_32-type buffer with the FM_ fields and values that you represent in
text format, makes a service call to the identified service in the buffer, and waits for
the reply. The reply then comes back in FM_32 format as a report. Now, because the
MIB is FM_32-based, ud32 becomes the scripting tool for the MIB.

2-24 Administering a BEA Tuxedo Application at Run Time

Using the Run-time Tracing Utility

For example, suppose you write asmall file that contains the following text:
service nane=.tmb and ta_operation=get, TACLASSES=T_ SERVER

When you typethisfileinto ud32, you receive an FML output buffer listing all the data
in the system about the servers.

Using the Run-time Tracing Utility

The BEA Tuxedo system provides arun-time tracing facility that enables you to track
the execution of distributed business applications. The system hasa set of built-intrace
points that mark callsto functionsin different categories, such as ATMI functions
issued by the application or XA functionsissued by the BEA Tuxedo system to an
X/Open compliant resource manager.

To enable tracing, you must specify atracing expression that contains a category, a
filtering expression, and an action. The category indicatesthetype of function (such as
ATMI) to be traced. The filtering expression specifies which particular functions
trigger an action. The action indicates the response to the specified functions by the
BEA Tuxedo system. The system may, for example, write arecord in the ULOG,
execute a system command, or terminate a trace process. A client process can also
propagate the tracing facility with its requests. This capability is called dyeing; the
trace dye colors all servicesthat are called by the client.

There are two ways to specify atracing expression: by setting the TMTRACE
environment variable, or by specifying the expression in a server environment.

m For asimpletracing expression, define TMTRACE=on in the environment of the
client. This expression enables tracing of ATMI functions on the client and on
any server that performs a service on behalf of that client. The trace records are
written to the ULOG file.

m You can aso specify atracing expression in the environment of a server. For
example, you might enter the following: TMIRACE=at i : / t pser vi ce/ ul og. If
you export this setting within the environment of the server, arecord will be
generated in the ULOGfile each time a service isinvoked on that server.

Administering a BEA Tuxedo Application at Run Time 2-25

2 Monitoring Your BEA Tuxedo Application

Y ou can activate or deactivate the tracing option using the changet r ace command of
t madm n. This command enables you to overwrite the tracing expression on active
client or server processes. Administrators can enable global tracing for al clientsand
servers, or for a particular machine, group, or server.

See Also

m “Waysto Monitor Your Application” on page 2-2

m tntrace(5) inFile Formats, Data Descriptions, MIBs, and System Processes
Reference

Managing Errors Using the DBBL and BBLs

The BEA Tuxedo system uses the following two administrative servers to distribute
the information on the bulletin board to all active machinesin the application:

m DBBL—the Distinguished Bulletin Board Liaison server propagates global
changes to the M1B and maintains the static part of the MIB. Specifically, the
DBBL:

e Resides (only one DBBL per application) on the MASTER machine and
provides periodic status requeststo all BBLs

e Coordinates bulletin board updates, the state of different machines, and
queries with the BBL s

e Coordinates migration of servers

e Can be migrated to other machines for fault resiliency

m BBL—the Bulletin Board Liaison server maintains the bulletin board on its host
machine, coordinating changes to the local MIB, and verifying the integrity of
application programs active on its machine. Specifically, the bulletin board:

e Resideson each BEA Tuxedo machine in an application, carries out requests
from the DBBL, and administers timeouts for service requests, replies to
reguesters, and transactions

2-26 Administering a BEA Tuxedo Application at Run Time

Managing Errors Using the DBBL and BBLs

e Detects server failures, initiates user-defined recovery, and automatically
restarts servers

e Detects client failures
e Cleans up client and server entries, and conversations on the bulletin board

e Detects and recovers DBBL failures (if it isthe BBL residing on the MASTER
machine)

Figure2-3 Diagnosis and Repair Using the DBBL and BBLs

Master {DBBL queries BBLs on Site 1 (BBL finds stopped server,
all machines) removes it, and starts a new server)
DEBL BBL BBL
Client Servers Client \SBTVBTS
o BB o BB
P Servers o Servers
@\é‘éf?ép Services "r@@%{ﬁﬁ Services
& &
- Doamain=
anms BridgE Bridge pracoTes
Network
X Site 2
Bridge BHL
Domain=
ProcoTsos
. BB
Client Servers Servers
& Senvices
o+
S0
&

Both servers have arole in managing faults. The DBBL coordinates the state of other
active machinesin the application. Each BBL communicates state changesinthe MIB,
and sometimes sends a message to the DBBL indicating all is OK on its host machine.

Administering a BEA Tuxedo Application a Run Time 2-27

2 Monitoring Your BEA Tuxedo Application

The BEA Tuxedo run-time system records events, along with system errors, warnings,
and tracing events, in the user log (ULOG). Programmers can use the ULOG to debug
their applications or notify administrators of special conditions or states found (for
example, an authorization failure).

Using the ATMI to Handle System and
Application Errors

Using the ATMI, a programmer controls some of the more global aspects of
communications. The ATMI provides functions for handling both application and
system-related errors. When a service routine encounters an application error, such as
an invalid account number, the client knows the service performed its task but could
not fulfill its request because of an application error.

With a system failure, such as a server crashing while performing a request, the client
knows the service routine did not perform its task because of an underlying system
error. The BEA Tuxedo system notifies programs of system errorsthat occur as it
monitors the application’s behavior and its own behavior.

Using Configurable Timeout Mechanisms

At times, a service may get stuck in an infinite loop while processing a request. The
client waits, but no reply isforthcoming. To protect a client from endless waiting, the
BEA Tuxedo system has two types of configurable timeout mechanisms: blocking
timeouts and transaction timeouts.

A blocking timeout is a mechanism that ensures a blocked program waits no longer
than the specified timeout value for something to occur. Once atimeout is detected, the
waiting program is alerted with a system error informing it that a blocking timeout has
occurred. The blocking timeout defines the duration of service requests, or how long
the application iswilling to wait for areply to a service request. The timeout valueis
aglobal value defined in the BLOCKTI Ve field of the RESOURCES section of the
TUXCONFI Gfile.

2-28 Administering a BEA Tuxedo Application at Run Time

Using the ATMI to Handle System and Application Errors

A transaction timeout is another type of timeout that can occur because active
transactions tend to be resource-intensive. A transaction timeout defines the duration
of atransaction, which may involve severa service requests. The timeout valueis
defined when the transaction is started (with t pbegi n(3c)). Transaction timeouts are
useful when maximizing resources. For example, if database locks are held while a
transaction progresses, an application programmer may want to limit the amount of
time that the application’ s transaction resources are held up. A transaction timeout
always overrides a blocking timeout.

Configuring Redundant Servers to Handle Failures

See Also

Y ou can handle some failure situations by configuring an application with redundant
servers and the automatic restart capability. Redundant servers provide high
availability, and can be used to handle large amounts of work, server failures, or
machine failures. The BEA Tuxedo system continually checks the status of active
servers, and when it detectsthefailure of arestartable server, the system automatically
creates a new instance of that server.

By configuring servers with the automatic restart property, you can handle individual
server failures.Y ou can also specify the number of restartsthat the system will provide.
This capahility can prevent arecurring application error by limiting the number of
times a server is restarted.

The BEA Tuxedo system frequently checksthe availability of each active machine. A
machine is marked as partitioned when it cannot be reached by the system. If this
occurs, a system event is generated. A partition can occur dueto a network failure,
machine failure, or severe performance degradation.

m “Development View: What You Can Do Using the ATMI” on page 3-37 in
Introducing BEA Tuxedo ATMI

m “System and Application Data That You Can Monitor” on page 2-4

m “Monitoring Dynamic and Static Administrative Data’ on page 2-5

Administering a BEA Tuxedo Application at Run Time 2-29

2 Monitoring Your BEA Tuxedo Application

Monitoring Multithreaded and
Multicontexted Applications

2-30

m While monitoring a multithreaded application, keep in mind that individual

threads are not visible to an administrator.

You can get MIB statistical reports for various aspects of your multithreaded
and/or multicontexted application by running thet mradni n(1) command
interpreter. Here are afew examples of the information you can request for a
multithreaded application:

e Count of client contexts per client process and a separate entry for each
client context (obtained by running thet madni n pcl t command).

e Count of dispatched services per server process and, optionally, information
about each context (obtained by running t madmi n/psr, optionaly in verbose
mode).

When the BBL checks clients, it verifies that a processisalive. If a process has
died, the BBL detects the process death. If an individual thread within a process
has died, however, the death of the thread is not detected by the BBL.

Therefore application programmers should keep in mind the possibility that
individual threads within a process may die. If one thread dies and a signal is
issued, the whole process to which the thread belongs usually dies, and that
death is detected by the BBL.

If athread dies asthe result of an erroneous call to athread exit function,
however, no signal is generated. If thistype of death occurs before the thread
calst pt er m() , then the BBL cannot detect the death and does not deall ocate
the registry table sot for the context associated with the dead thread. (It would
not be proper for the BBL to deallocate this registry table slot even if it could
detect the death of the thread because, in some application models, another
thread might subsequently choose to associate itself with that context.)

Thereis no solution for thislimitation so it isimportant for programmers to keep
it in mind and design their applications accordingly.

Administering a BEA Tuxedo Application at Run Time

Monitoring Multithreaded and Multicontexted Applications

How to Retrieve Data About a Multithreaded/
Multicontexted Application Using the MIB

Note: Theinformation presented here appliesto all multithreaded and/or

multicontexted applications, regardless of which administrative tools are
being used. The functionality is discussed from the point of view of an
administrator using MIB calls, but is the same for an administrator using an
interface to the MIB, whether that interface ist madmi n(1) or the BEA
Administration Console.

Y ou can obtain information about a multithreaded or multicontexted application by:

m Issuing callsto the MIB

m [Issuing selected t madmi n commands

Information is available in the following locations:

m The client section of the bulletin board registry provides an entry for each
context. (An entry is created automatically by the BEA Tuxedo system whenever
anew context is created through acall to t pi ni t () in TPMULTI CONTEXTS
mode.)

m The T_SERVERCTXT class of the TM M B provides multiple instances of 14 fields
if multiple server dispatch threads are active simultaneously. Specifically, the
T_SERVERCTXT section includes an instance of each of the following fields for
each active sever dispatch thread:

TA_CONTEXTI D (key field)
TA_SRVGRP (key field)
TA_SRVI D (key field)

TA CLTLM D

TA CLTPI D

TA _CLTREPLY
TA_COMIRET

TA_CURCONV

TA_CURREQ
TA_CURRSERVI CE

Administering a BEA Tuxedo Application a Run Time 2-31

2 Monitoring Your BEA Tuxedo Application

e TA LASTCGRP

e TA SVCTI MEQUT
e TA TI MELEFT

e TA TRANLEV

For example, if 12 server dispatch threads are active simultaneously, then the
T_SERVERCTXT class of the MIB for this application will include 12 occurrences
of the TA_CONTEXTI Dfield, 12 occurrences of the TA_SRVGRP field, and so on.

When multiple instances of T_SERVER class fields contain multiple values for
different contexts of a multicontexted server, a“dummy” valueis specified in
the T_SERVER class field and the T_SERVERCTXT field contains an actual value
for each context.

See Also

® trmadni n(1) inthe BEA Tuxedo Command Reference

m TM M B(5) inthe File Formats, Data Descriptions, MIBs, and System Processes
Reference

m “Programming a Multithreaded and Multicontexted ATMI Application” on page
10-1 in Programming BEA Tuxedo ATMI Applications Using C

2-32 Administering a BEA Tuxedo Application at Run Time

CHAPTER

3 Dynamically Modifying
an Application

Thistopic includes the following sections:

m Dynamic Modification Methods

m Using tmconfig to Make Permanent Changes to Your Configuration

m How to Run tmconfig

m Making Temporary Modificationsto Your Configuration with tmconfig
m Limitations on Dynamic Modification Using tmconfig

m Making Temporary Modificationsto Your Configuration with tmadmin

Dynamic Modification Methods

Asan administrator, you must ensure that once an application is up and running, it
continuesto meet the performance, availability, and security requirements set by your
company. The BEA Tuxedo system allowsyou to make changesto your configuration
without shutting it down. Without inconveniencing your users, you can do the
following:

m Modify existing entries in your configuration file, that is, make changesto
TUXCONFI G

Administering a BEA Tuxedo Application a Run Time 31

3 Dynamically Modifying an Application

m Add components to your application by adding entries for them to your
configuration file.

m Make temporary changes to an application by advertising, unadvertising,
suspending, or resuming services, and changing service parameters (such as
LQAD and PRI ORI TY).

Note: Tomodify the configuration filefor arunning application, you must do one of
the following:

= Shut down your application first (and reboot it after revising the
configuration file).

m Runthet ntonfi g(1) command (described on thet nconfi g,
wt nconfi g(1) reference page), which alows you to modify your
configuration file dynamically.

Thus, you can adjust your system to reflect either current or expected conditions by
making either permanent or temporary changesto an application. Temporary changes
arereflected in the bulletin board only. Permanent changes are made by modifying the
TUXCONFI Gfile. Because TUXCONFI Gisabinary file, however, you cannot edit it
through a simple text editor.

Tools for Modifying Your Application

To help you dynamically modify your application, the BEA Tuxedo system provides
the following three methods: the BEA Administration Console, command-line
utilities, and the Management Information Base (MIB) API. These tools help you
respond quickly and efficiently to the need for changes in your application resulting
from changing business needs or failure conditions. Use them to keep your application
performing fast, well, and securely.

3-2 Administering a BEA Tuxedo Application at Run Time

Dynamic Modification Methods

Figure3-1 Dynamic Modification Tools

/

Administration Cnmm_gnd-Lme MIB AP
Console Litilitie s

MIB

BU*ET"‘I ULOE

TLOG Board

m BEA Administration Console—a Web-based graphical user interface (GUI) you
can use to dynamically configure your application. You can display and change
configuration information, determine the state of each component of the system,
and obtain statistical information about items such as executed requests and
queued requests.

m Command-line utilities—most of the functionality needed for dynamic
modification is provided by two commands: t madni n and t nconfi g. t madmi n
is ashell-level command with over 70 subcommands for performing various
administrative tasks, including dynamic system modification. t ntonfi g isa
shell-level command that you can use to add and modify configuration entries
while your system is running.

m MIB APl—aManagement Information Base API that enables you to write your
own programs to monitor your system and make dynamic changes to your
system.

Y ou always have the choice of these three tools for any administrative task. For
dynamic modification or reconfiguration, however, we recommend the BEA
Administration Console for its ease of use. Full descriptions of al the featuresin the
Administration Consol e are available through the Help utility provided with the GUI.

Administering a BEA Tuxedo Application a Run Time 3-3

Dynamically Modifying an Application

If you prefer to work on the command line, however, simply run thet madmni n or
t mconf i g command.

Note: For lists of configuration parameters and reconfiguration restrictions, see
tnconfig, wtnconfig(1) inthe BEA Tuxedo Command Reference and
TM M B(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference.

See Also
m “Using tmconfig to Make Permanent Changes to Your Configuration” on page
3-5
m “Using the BEA Administration Console” on page 3-4 in Introducing BEA
Tuxedo ATMI
m “Managing Operations Using the MIB” on page 3-10 in Introducing BEA Tuxedo
ATMI
® APPQ M B(5),DM M B(5),M B(5), and TM M B(5) inthe File Formats, Data
Descriptions, MIBs, and System Processes Reference
3-4 Administering a BEA Tuxedo Application at Run Time

Using tmconfig to Make Permanent Changes to Your Configuration

Using tmconfig to Make Permanent Changes
to Your Configuration

Thet nconfi g command enables you to browse and modify your configuration file
(TUXCONFI G on the MASTER machine) and its associated entities, and to add new
components (such as machines and servers) to your application while it is running.
When you modify your configuration file (TUXCONFI G on the MASTER machine),

t mconfi g enables you to perform the following tasks:

Update the TUXCONFI Gfile on all machinesthat are currently booted in the
application.

Propagate the TUXCONFI G file automatically to new machines as they are booted.

Note: Thet nconfi g command runs as a BEA Tuxedo system client.

Becauset ntonfi g runsasaBEA Tuxedo client, it is characterized by the following
conditions:

tmconfi g failsif it cannot allocate a TPI NI T typed buffer.

The user name associated with the client is the login name of the user.
(t mconfi g failsif the user’slogin name cannot be determined.)

For a secure application (that is, an application for which the SECURI TY
parameter has been set in the configuration file), t nconf i g prompts for the
application password. If the application password is not provided, t nconfi g
fails.

If t mconf i g cannot register as a client, an error message containing t perrno is
displayed and t nconf i g exits. If this happens, check the user log to determine
the cause. The most likely causes for this type of failure are:

e The TUXCONFI G environment variable was not set correctly.

e The system was not booted on the machine on which t nconfi g is being run.
t mconfi g ignores all unsolicited messages.

The client name for the t nconf i g processthat is displayed in the output from
printclient (atmadni n command) ist psysadm

Administering a BEA Tuxedo Application a Run Time 3-5

3 Dynamically Modifying an Application

How tmconfig Works

Whenyoutypet nconf i g onacommand line, you arelaunching thedisplay of aseries
of menus and prompts through which you can request an operation such as the display
or modification of a configuration file record. t nconf i g collects your menu choices,
performsthe requested operation, and promptsyou (by displaying another set of menu
choices) to request another operation. It repeatedly offers to perform operations (by
repeatedly displaying the menus) until you exit the session by selecting QUI T from a
menu.

Thefollowing listing showsthe menusand promptsthat are displayed onceyou launch
at nconfi g command session.

Note: Thelinesin thelisting are numbered in this example for your convenience;

during an actual t nconf i g session, these numbers are not displayed.

Listing 3-1 Menusand Prompts Displayed in a tmconfig Session

©Coo~NOOOP,WNE

$ tnconfig

Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS
5)SERVI CES 6) NETWORK 7) ROUTING q) QU T 9) WBL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]:

Qperation: 1) FIRST 2) NEXT 3) RETRI EVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

Enter editor to add/nodify fields [n]?

Perform operation [y]?

As shown, you are asked to answer four questions:

In which section of the configuration file do you want to view, add, or modify a
record?

For the section of the configuration file you have just specified, which operation
do you want to perform?

Do you want to enter atext editor now to add or modify fields for the record?

Do you want t nconf i g to perform the requested operation now?

3-6 Administering a BEA Tuxedo Application at Run Time

Using tmconfig to Make Permanent Changes to Your Configuration

How to Select a Section of the Configuration File

When you start at nconf i g session, the following menu is displayed Each item isa
section of TUXCONFI G, the configuration file for the application.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5) SERVI CES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]:

Note: For detail sabout these sections (including alist of configurable parametersfor
each section), see TM_M B(5) in the File Formats, Data Descriptions, MIBs,
and System Processes Reference. TM_M B includes the names of fieldsthat are
displayed during at nconf i g command session, the range of values for each
field, the key fields for each section, and any restrictions or updates to the
fields in each section.

m To select a section, enter the appropriate number after the menu prompt. For
example, to select the MACHI NES section, enter 2, asfollows.
10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]: 2

m The default section is the RESOURCES section, in which parameters that apply to
your entire application are defined. To accept the default selection (which is
displayed within square brackets), simply press the Enter key.

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]:

How to Select a tmconfig Task

A menu of tasksthat t nconf i g can perform is displayed after you select a section of
the configuration file.

Qperation: 1) FIRST 2) NEXT 3) RETR EVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUI T [1]:

To select an operation, enter the appropriate number at the menu prompt. For example,
to select the CLEAR BUFFER section, enter 6, as follows.

6) CLEAR BUFFER 7) QUIT [1]: 6
The following table defines each task.

Administering a BEA Tuxedo Application a Run Time 3-7

3 Dynamically Modifying an Application

Table 3-1 tmconfig tasks

ThisMenu Called
Item

Performsthe Following Activities

1 FI RST

Displays the first record from the specified section. No key fields are
needed. If any arein the input buffer, they are ignored.

Using the FI RST operation can reduce the amount of typing that is
needed. When adding a new record to a section, instead of typing all the
required field names and values, use the FI RST operation to retrieve an
existing record for the UBBCONFI G section. Then, select the ADD
operation and use the text editor to modify the parameter valuesin the
newly created record.

2 NEXT

Displays the next record from the specified section, based on the key
fieldsin the input buffer.

3 RETRI EVE

Displays the requested record (specified with the appropriate key fields)
from the specified section.

Addstheindicated record to the specified section. For any optional fields
that are not specified, the defaults specifiedin TM_M B(5) areused. (All
defaults and validations used by t M oadcf (1) areenforced.) The
current values for all fields are returned in the output buffer. This
operation can be done only by the BEA Tuxedo application
administrator.

5 UPDATE

Updates the record specified in the input buffer in the selected section.
Any fields not specified in the input buffer remain unchanged. (All
defaults and validations used by t M oadcf (1) areenforced.) The
current valuesfor al fieldsarereturned in theinput buffer. Thisoperation
can be done only by the BEA Tuxedo application administrator.

6 CLEAR BUFFER

Clearstheinput buffer. (All fields are deleted.) After this operation,
t rconf i g immediately prompts for the specified section again.

7 QUT

Exitst ntonfi g gracefully: the client is terminated. Y ou can also exit
trconf i g at any time by entering q at any prompt.

3-8 Administering a BEA Tuxedo Application at Run Time

Using tmconfig to Make Permanent Changes to Your Configuration

How Results of a tmconfig Task Are Displayed

After t ntonfi g completes atask, the results—a return value and the contents of the
output buffer—are displayed on the screen.

m |f the operation was successful but no update was done, the following message is
displayed:
Return val ue TAXK
The message in the TA_STATUS field is”

Operation conpl eted successful ly.

m |f the operation was successful and an update was done, the following message
is displayed:

Ret urn val ue TAUPDATED
The message in the TA_STATUS field is:
Updat e conpl et ed successful ly.
m |f the operation failed, an error message is displayed:

e |f thereisa problem with permissions or a BEA Tuxedo system
communications error (rather than with the configuration parameters), one of
the following return values is displayed: TAEPERM, TAECS, TAESYSTEM, or
TAETI ME.

e |f there isa problem with a configuration parameter of the running
application, the name of that parameter is displayed as the value of the
TA_BADFLDNAME file, and the problem isindicated in the value of the
TA_STATUS field in the output buffer. If this type of problem occurs, one of
the following return values is displayed: TAERANGE, TAEI NCONSI S,
TAECONFI G, TAEDUPLI CATE, TAENOTFOUND, TAEREQUI RED, TAESI ZE,
TAEUPDATE, or TAENOSPACE.

tmconfig Error Message Conditions

The following list describes the conditions indicated by both sets of error messages.

TAEPERM
The UPDATE or ADD operation was selected but t nconf i g isnot being run by
the BEA Tuxedo application administrator.

Administering a BEA Tuxedo Application a Run Time 39

3 Dynamically Modifying an Application

TAESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
recorded in the user log. See user | og(3c) inthe BEA Tuxedo ATMI C
Function Reference.

TAECS
An operating system error has occurred. The exact nature of the error is
written to the user log.

TAETI ME
A blocking timeout has occurred. The output buffer is not updated so no
information is returned for retrieval operations. The status of update
operations can be checked by retrieving the record that was being updated.

TAERANCE
A field valueis either out of range or invalid.

TAEI NCONSI S
For example, an existing RQADDR value or one SRVGRP/SERVERNANE entry
may be specified for a different SRVGRP/SERVERNANME entry.

TAECONFI G
An error occurred while the TUXCONFI Gfile was being read.

TAEDUPLI CATE
The operation attempted to add a duplicate record.

TAENOTFOUND
Therecord specified for the operation was not found.

TAEREQUI RED
A field value isrequired but is not present.

TAESI ZE
A vauefor astring field istoo long.

TAEUPDATE
The operation attempted to do an update that is not allowed.

TAENGCSPACE
The operation attempted to do an update but there was not enough space in
the TUXCONFI Gfile and/or the bulletin board.

3-10 Administering a BEA Tuxedo Application at Run Time

How to Run tmconfig

How to Run tmconfig

Torunt nconfi g properly, you must set the required environmental variables. Also,
if you have not runt nconf i g, we recommend that you walk through a generic
t mconfi g session, during which you modify entriesin your configuration file.

How to Set Environment Variables for tmconfig

Beforeyou can start at nconfi g session, you must set the required environment
variables and permissions. For your convenience, you may a so want to select a text
editor other than the default editor.

Completethefollowing procedureto set up your working environment properly before
running t mconfi g.

1. Loginasthe BEA Tuxedo application administrator if you want to add entriesto
TUXCONFI G or modify existing entries. (You do not need to log in as the
administrator if you only want to view existing configuration file entries without
changing or adding to them.)

2. Assign values to two mandatory environment variables: TUXCONFI G and TUXDI R.

e Thevaue of TUXCONFI Gmust be the full pathname of the binary
configuration file on the machine on which t nconfi g is being run.

e Thevaue of TUXDI R must be the full pathname of the root directory for the
BEA Tuxedo system binary files. (t nconf i g must be able to extract field
names and identifiers from $TUXDI R/ udat aobj / t padmi n.)

3. You may also set the EDI TOR environment variable; this step is optional. The
value of EDI TOR must be the name of the text editor you want to use when
changing parameter values, the default is ed (a UNIX system command-line
editor).

Note: Many full-screen editors do not function properly unless the TERM
environment variable is also set.

Administering a BEA Tuxedo Application at Run Time 3-11

3 Dynamically Modifying an Application

How to Conduct a tmconfig Walkthrough Session

Thefollowing procedure leads you through asamplet nconfi g session.

1. Entertnctonfi g after ashell prompt.
$ tnconfig

Note: You can end asession at any time by entering g (short for quit) after the
Section menu prompt.

A menu of sectionsin the TUXCONFI Gfile is displayed.

Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS
5) SERVI CES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]:

2. Select the section that you want to change by entering the appropriate menu
number, such as 2 for the MACHI NES section. The default choice isthe
RESOURCES section, represented by [1] at the end of the list of sections shown in
Step 1. If you specify a section (instead of accepting the default), that section
becomes the new default choice and remains so until you specify another section.

A menu of possible operations is displayed.

Operation: 1) FIRST 2) NEXT 3) RETRI EVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

Each operation listed here is available to be performed on one record at atime of
one section of the configuration file. The names of most operations (FI RST and
NEXT) are self-explanatory. When you select FI RST, you are asking to have the
first record (in the specified section of the configuration file) displayed on the
screen. When you select NEXT, you are asking to have the contents of the buffer
replaced by the second record in the specified section, and to have the new
buffer contents displayed on the screen. By repeatedly choosing NEXT, you can
view all the records in a given section of the configuration file in the order in
which they are listed.

3. Select the operation that you want to have performed.

The default choice is the FI RST operation, represented by [1] at the end of the
list of operations shownin step 2.

3-12 Administering a BEA Tuxedo Application at Run Time

How to Run tmconfig

A prompt is displayed, asking whether you want to enter a text editor to start
making changes to the TUXCONFI G section you specified in step 2.

Enter editor to add/nodify fields [n]?

4. Selecty or n (for yesor no, respectively). The default choice (shown at the end of
the prompt) isn.

If you select yes (y), the specified editor isinvoked and you can start adding or
changing fields. The format of each field is:

field_name<tabs>field_val ue
where the name and value of thefield are separated by one or more tabs.

In most cases, the field name is the same as the corresponding KEYWORD in the
UBBCONFI Gfile, prefixed with TA .

Note: For details about valid input, see “tmconfig Input Buffer Considerations’
on page 3-14. For descriptions of the field names associated with each
section of the UBBCONFI Gfile, see TM M B(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

When you finish editing the input buffer, t nconf i g readsit. If any errors are
found, a syntax error isdisplayed and t nconf i g prompts you to decide whether
to correct the problem.

Enter editor to correct?
5. Selectnory.

If you decide not to correct the problem (by entering n), the input buffer contains
no fields; otherwise, the editor is executed again.

When you finish editing the input buffer, a prompt is displayed, asking whether
you want to have the operation you specified (in step 3) performed now.

Perform operation [y]?
6. Select n ory. The default choice (shown at the end of the prompt) isy.
e |f you select no, the menu of sectionsis displayed again. Return to step 2.

e |f youselectyes, t nconf i g executes the requested operation and displays
the following confirmation message.

Ret urn val ue TAK

The results of the operation are displayed on the screen.

Administering a BEA Tuxedo Application a Run Time 3-13

3 Dynamically Modifying an Application

You have completed an operation on one section of TUXCONFI G, you may
now start another operation on the same section or on another section. To

allow you to start a new operation, t nconf i g displays, again, the menu of
the TUXCONFI G sections displayed in step 1.

Note: All output buffer fields are available in the input buffer unless the input
buffer is cleared.

Continue your t nconf i g session by requesting more operations, or quit the
session.

e To continue requesting operations, return to step 2.

e Toend your t nconfi g session, select QUI T from the menu of operations (as
shown in step 3).

After you end your t nconf i g session, you can make a backup copy, in text
format, of your newly modified TUXCONFI Gfile. In the following example, the
administrator chooses the default response to the offer of a backup (yes) and
overrides the default name of the backup file (UBBCONFI G) by specifying another
name (backup).

Unl oad TUXCONFIG file into ASCII backup [y]?
Backup filenanme [UBBCONFI G ? backup
Configuration backed up in backup

tmconfig Input Buffer Considerations

3-14

Thefollowing considerations apply to the input buffer used with t nconf i g:

If the value that you are typing into a field extends beyond one line, you may
continue it on the next line if you insert one or more tabs at the beginning of the
second line. (The tab characters are dropped when your input is read into
TUXCONFI G)

A line that contains only a single newline character isignored.

If morethan onelineis provided for aparticular field, the first occurrence is
used and other occurrences are ignored.

Administering a BEA Tuxedo Application at Run Time

Making Temporary Modifications to Your Configuration with tmconfig

m To enter an unprintable character as part of the value of afield, or to enter atab
asthefirst character in afield, enter a backslash, followed by the two-character
hexadecimal representation of the desired character. (For a mapping of ASCII to
hexadecimal characters, see ASCI | (5) in a UNIX system reference manual.)
Here are afew examples:

e Toinsert ablank space, type:
\ 20

e To insert a backdash, type:
\\

Making Temporary Modifications to Your
Configuration with tmconfig

Many aspects of your configuration can be changed dynamically. This section
provides instructions for performing the tasks cited in the following list:

m “How to Add aNew Machine” on page 3-16

m “How to Add a Server” on page 3-19
m “How to Activate a Newly Configured Machine’ on page 3-21
m “How to Add aNew Group” on page 3-24

m “How to Change Data-dependent Routing (DDR) for an Application” on page

3-25
m “How to Change Factory-based Routing (FBR) for an Interface” on page 3-26
m “How to Change Application-wide Parameters’ on page 3-28

m “How to Change an Application Password” on page 3-31

Administering a BEA Tuxedo Application at Run Time 3-15

3 Dynamically Modifying an Application

How to Add a New Machine

0.

Enter t nconfi g.

To specify the MACHI NES section of the configuration file, enter 2 after the
prompt following the list of sections. (Refer to lines 2-4 in the following sample
listing.)

Press the Enter key to accept the default operation to be performed. The default is
1) FI RST, an operation that displays the first record in the designated section. In
this case, the first record is for the first machine appearing in the MACHI NES
section. (Refer to line 6.)

Press the Enter key to accept the default choices regarding whether to enter the
text editor (no) and whether to have the specified operation performed (yes). As
reguested, the first record in the MACHI NES section is now displayed, which is the
record for amachine named SI TE1 in the following sample listing. (Refer to lines
10-35in the following listing.)

Select the MACHI NES section again, by pressing the Enter key after the menu of
sections. (Refer to lines 36-38.)

Select the ADD operation by entering 4 after the menu of operations. (Refer to
lines 39-40.)

Enter the text editor by entering y at the prompt. (Refer to line 41.)

Change pathnames as appropriate and specify new values for four key fields:
e TA TLOGSI ZE (refer to lines 50-51)

e TA PM D (refer to lines 52-53)

e TA LM D (refer to lines 54-55)

e TA TYPE (refer to lines 56-57)

Write (that is, save) your input and quit the editor. (Refer to lines 58-60.)

10. Direct t nconf i g to perform the operation (add the machine) by entering y at the

prompt. (Refer to line 61.)

3-16 Administering a BEA Tuxedo Application at Run Time

How to Add a New Machine

The following sample listing illustrates at nconf i g session in which amachineis
being added.

Listing 3-2 Adding a Machine

$ tntonfig
Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS
5) SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WAL
10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]: 2
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:
Enter editor to add/nodify fields [n]?
Per form operation [y]?
Return val ue TAXK

Buf fer contents:

TA_OPERATI ON 4

TA_SECTI ON 1

TA_OCCURS 1

TA_PERM 432

TA_MAXACCESSERS 40

TA_MAXGTT 20

TA_MAXCONV 10

TA_MAXWBCLI ENTS 0

TA _TLOGSI ZE 100

TA U D 4196

TA G D 601

TA_TLOGOFFSET 0

TA_TUXOFFSET 0

TA _STATUS LI BTUX_CAT: 1137: Operation conpleted successfully
TA PM D nchnl

TA LMD SI TE1

TA_TUXCONFI G / home/ apps/ bank/ t uxconfig
TA TUXDI R / hone/ t uxr oot

TA_STATE ACTI VE

TA_APPDI R / home/ apps/ bank

TA_TYPE 3B2

TA_TLOGDEVI CE / homre/ apps/ bank/ TLOG
TA_TLOGNAME TLOG

TA_ULOGPFX / homre/ apps/ bank/ ULOG
TA_ENVFI LE / homre/ apps/ bank/ ENVFI LE

Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS
5) SERVICES 6) NETWORK 7) ROUTING q) QU T 9) WsL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [2]:

Qperation: 1) FIRST 2) NEXT 3) RETRI EVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]: 4

Enter editor to add/nodify fields [n]? vy

491

Administering a BEA Tuxedo Application a Run Time 3-17

3 Dynamically Modifying an Application

43
44
45

3-18

g/ hone/s//usr/p
TA TUXCONFI G

TA TUXDI R

TA _APPDI R

TA TLOGDEVI CE

TA ULOGPFX

TA ENVFI LE

/ 100/ s// 150/ p

TA TLOGSI ZE

/ mchnl/s// mchn2/ p
TA PM D

/ SITEL/ s/ /SITE3/ p
TA LM D

/ 3B2/ s/ | SPARC/ p
TA TYPE

w

412

q

Perform operation [y]?
Ret urn val ue TAUPDATED

Buf fer contents:
TA OPERATI ON

TA SECTI ON

TA OCCURS

TA PERM

TA NMAXACCESSERS
TA MAXGIT

TA NMAXCONV

TA MAXWBCLI ENTS
TA TLOGSI ZE
TA U D

TA @D

TA TLOGOFFSET
TA TUXOFFSET

TA STATUS

TA PM D

TA LM D

TA TUXCONFI G
TA TUXDI R

TA STATE

TA APPDI R

TA TYPE

TA TLOGDEVI CE
TA TLOGNAVE

TA ULOGPFX

TA ENVFI LE

/usr/ apps/ bank/ tuxconfig
/usr/ tuxroot

/usr/ apps/ bank

[usr/ apps/ bank/ TLOG

[usr/ apps/ bank/ ULOG
/usr/ apps/ bank/ ENVFI LE

150
nchn2
SI TE3

SPARC

2

1

1

432

40

20

10

0

150

4196

601

0

0

LI BTUX_CAT: 1136: Update conpl eted successful |y
nchn2

SI TE3

/usr/ apps/ bank/tuxconfig
[usr/ tuxroot

NEW

/usr/ apps/ bank

SPARC

/usr/ apps/ bank/ TLOG
TLOG

/usr/ apps/ bank/ ULOG

[usr/ apps/ bank/ ENVFI LE

Administering a BEA Tuxedo Application at Run Time

How to Add a Server

How to Add a Server

~No o~ WNBE

1. Entertntonfi g.

2. To specify the SERVERS section of the configuration file, enter 4 after the menu of
sections. (Refer to line 3 in the following sample listing.)

3. Request the CLEAR BUFFER operation by entering 6 after the menu of operations.
(Refer to line 5 in the following sample listing.)

4. Pressthe Enter key to accept the default section: SERVERS. (Refer to lines 7-9in
the following sample listing.)

5. Request the ADD operation by entering 4 after the menu of operations. (Refer to
lines 10-11 in the listing.)

6. Enter the text editor by entering y at the prompt. (Refer to line 12.)

7. Specify new values for three key fields:
e TA SERVERNAME (refer to line 15)
e TA SRVGRP (refer to line 16)
e TA SRV D (refertoline17)
8. Write (that is, save) your input and quit the editor. (Refer to lines 19-21.)

9. Directt nconfi g to perform the operation (add the server) by entering y at the
prompt. (Refer to line 22.)

Thefollowing samplelisting illustratesat nconf i g session in which aserver isbeing
added.

Listing 3-3 Adding a Server

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5) SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WL

10) NETGROUPS 11) NETMAPS 12) I NTERFACES [1]: 4
Qperation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [4]: 6

Buf fer cleared

Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS

Administering a BEA Tuxedo Application at Run Time 3-19

3 Dynamically Modifying an Application

3-20

5) SERVICES 6) NETWORK 7) ROUTING q) QU T 9) WAL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [4]:

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [6]: 4

Enter editor to add/nodify fields [n]? vy

1
C
TA_SERVERNAME
TA_SRVGRP
TA_SRVI D

w

28

q

Perform operation [y]?

Ret urn val ue TACK
Buf fer contents:
TA OPERATI ON

TA SECTI ON

TA OCCURS

TA SRVID

TA SEQUENCE
TA M N

TA MAX

TA RQPERM

TA RPPERM

TA NMAXGEN

TA GRACE

TA STATUS

TA SYSTEM ACCESS
TA ENVFI LE

TA SRVGRP

TA SERVERNAME
TA CLOPT

TA CONV

TA RQADDR

TA REPLYQ

TA RCMD

TA RESTART

XFER
BANKB1
5

PPRPOUORFR,WW

432

432

5

86400

LI BTUX_CAT: 1137: Qperation conpl eted successful ly
FASTPATH

BANKB1
XFER
-A

N

Y

Y

Administering a BEA Tuxedo Application at Run Time

How to Activate a Newly Configured Machine

How to Activate a Newly Configured

Machine

9.

Enter t nconfi g.

To specify the MACHI NES section of the configuration file, enter 2 after the menu
of sections. (Refer to lines 1-3 in the following sample listing.)

In order to select the appropriate record in the MACHI NES section, you need to
toggle through the list of machine records. To view the first machine record,
select the FI RST operation by pressing the Enter key after the menu of
operations. (Refer to lines 4-5 in the following samplelisting.) If you do not want
the first machine record, select the NEXT operation to view the next machine
record by entering 2 after the menu of operations.

Press the Enter key to accept the default choices regarding whether to enter the
text editor (no) and whether to have the specified operation performed (yes). The
requested record in the MACHI NES section is now displayed, which isthe record
for a machine named SI TE3 in the following sample listing. (Refer to lines 9-34
in the following listing.)

Select the MACHI NES section again, by pressing the Enter key after the menu of
sections. (Refer to lines 35-37.)

Select the UPDATE operation by entering 5 after the menu of operations. (Refer to
lines 38-39.)

Enter the text editor by entering y at the prompt. (Refer to line 40.)

Change the value of the TA_STATE field from NEwto ACTI VE. (Refer to lines
42-45))

Write (that is, save) your input and quit the editor. (Refer to lines 46-48.)

10. Direct t nconf i g to perform the operation (activate the newly configured

machine) by entering y at the prompt. (Refer to line 49.)

Administering a BEA Tuxedo Application at Run Time 3-21

3 Dynamically Modifying an Application

11. t nconf i g displaysthe revised record for the specified machine so that you can
review your change and, if necessary, edit it.

12.1f the revised entry is acceptable, select 7 after the menu of operationsto end the
t nconf i g session.

Thefollowing sasmplelistingillustrates at nconf i g session in which a server is being
activated.

Listing 3-4 Activating a New Server

1 Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS
2 5) SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]: 2
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [1]:

6 Enter editor to add/nodify fields [n]?

7 Performoperation [y]?

8 Return val ue TACK

9 Buffer contents:

10 TA _OPERATI ON 4

11 TA SECTION 1

12 TA OCCURS 1

13 TA PERM 432

14 TA NMAXACCESSERS 40

15 TA MAXGTT 20

16 TA MAXCONV 10

17 TA _MAXWSCLI ENTS 0

18 TA TLOGSI ZE 150

19 TAUD 4196

20 TAGD 601

21 TA TLOGOFFSET 0

22 TA TUXOFFSET 0

23 TA STATUS LI BTUX_CAT: 1175: Qperation conpl eted successful ly
24 TA PMD nthn2

25 TALMD S| TE3

26 TA _TUXCONFI G /usr/ apps/ bank/tuxconfig
27 TA TUXDI R /usr/tuxroot

28 TA STATE NEW

29 TA APPD R /usr/ apps/ bank

30 TA TYPE SPARC

31 TA TLOGDEVI CE /usr/ apps/ bank/ TLOG

32 TA TLOGNAME TLOG

33 TA ULOGPFX /usr/ apps/ bank/ ULOG

34 TA ENVFI LE /usr/ apps/ bank/ ENVFI LE

35 Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS

3-22 Administering a BEA Tuxedo Application at Run Time

How to Activate a Newly Configured Machine

5) SERVICES 6) NETWORK 7) ROUTING q) QU T 9) WAL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [2]:

Qperation: 1) FIRST 2) NEXT 3) RETRI EVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]: 5

Enter editor to add/nodify fields [n]? vy

491

/| TA _STATE

TA STATE

s/ NEW ACTI VE

TA STATE

w

412

q

Perform operation [y]?
Return val ue TAUPDATED
Buf fer contents:

NEW

ACTI VE

Administering a BEA Tuxedo Application a Run Time

3-23

3 Dynamically Modifying an Application

How to Add a New Group

1. Entertnctonfig.

2. To specify the GROUPS section of the configuration file, enter 3 after the prompt
following the list of sections. (Refer to lines 1-3 in the following sample listing.)

3. Reqguest the CLEAR BUFFER operation by entering 6 after the menu of operations.
(Refer to line 5in the following sample listing.)

4. Accept the default section, GROUPS, by pressing the Enter key. (Refer to lines 7-9
in the following sample listing.)

5. Request the ADD operation by entering 4 after the menu of operations. (Refer to
lines10-11 in thelisting.)

6. Enter the text editor by entering y at the prompt. (Refer to line 12.)

7. Specify new vaues for three key fields:
e TA LM D (refer to line 15)
e TA SRVGRP (refer to line 16)
e TA GRPNO(refer toline 17)

Thefollowing samplelisting illustratesat nconf i g session in which agroup isbeing
added.

Listing 3-5 Adding a Group

Section: 1) RESOURCES, 2) MACH NES, 3) GROUPS 4) SERVERS

5) SERVICES 6) NETWORK 7) ROUTING q) QU T 9) WSL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]: 3

Operation: 1) FIRST 2) NEXT 3) RETR EVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [4]: 6

Buffer cleared

Section: 1) RESOURCES, 2) MACH NES, 3) GROUPS 4) SERVERS

5) SERVICES 6) NETWORK 7) ROUTING q) QU T 9) WSL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [3]:

10 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

11 6) CLEAR BUFFER 7) QUIT [6]: 4

12 Enter editor to add/nodify fields [n]? vy

©CooO~NOOOA~, WNPE

3-24 Administering a BEA Tuxedo Application at Run Time

How to Change Data-dependent Routing (DDR) for an Application

13 1

14 c

15 TA LMD SI TE3
16 TA SRVGRP GROUP3
17 TA GRPNO 3

19 w

20 42

21 q

22 Perform operation [y]?
23 Return val ue TAUPDATED
24 Buffer contents:

25 TA OPERATI ON 2

26 TA_SECTI ON 2

27 TA_OCCURS 1

28 TA_GRPNO 3

29 TA TMSCOUNT 0

30 TA STATUS LI BTUX_CAT: 1136: Update conpl et ed successfully
31 TALMD S| TE3

32 TA_SRVGRP GROUP3

33 TA_TNMSNAME
34 TA_OPENI NFO
35 TA _CLOSEI NFO

How to Change Data-dependent Routing
(DDR) for an Application

To change the data-dependent routing for an application, complete the following steps:
1. Entertnconfi g.

2. To specify the ROUTI NG section of the configuration file, enter 7 after the prompt
following thelist of sections.

3. Toggle through the list of entries for the ROUTI NG section by selecting the FI RST
and NEXT operations, which display the first and subsequent entries, respectively.
Select the entry for which you want to change the DDR.

4. Select 5) UPDATE from the menu of operations.

Administering a BEA Tuxedo Application a Run Time 3-25

3 Dynamically Modifying an Application

5. Enter the text editor by entering y at the prompt.
Do you want to edit(n)? vy

6. Change the values of relevant fields to the values shown in the “Sample Value’
column of the following table.

Field Sample Value M eaning

TA ROUTI NGNAME account _routing Name of the routing section

TA_BUFTYPE FML Buffer type
TA FI ELD account _ID Name of the routing field
TA_RANGES 1-10: groupl, *: * The routing criteria being used. If, as shown here, the value of

account _| Disbetween 1 and 10 (inclusive), requests are
sent to the serversin group 1. Otherwise, requests are sent to
any other server in the configuration.

Note: For details, seet nconfi g, wt nconfig(1) inthe BEA Tuxedo Command
Reference.

How to Change Factory-based Routing (FBR)
for an Interface

Note: For detailed information about factory-based routing for a distributed BEA
Tuxedo CORBA application, refer to the Scaling, Distributing, and Tuning
CORBA Applications guide.

To change the factory-based routing for a CORBA interface, complete the following
steps:

1. Start atnctonfi g session.

2. Select the ROUTI NG section of the configuration file (choice #7 on the menu of
configuration file sections).

3-26 Administering a BEA Tuxedo Application at Run Time

How to Change Factory-based Routing (FBR) for an Interface

3. Using the FI RST and NEXT operations, select the entry for which you want to
change the FBR.

4. Select the UPDATE operation.
5. Entery (for yes) when prompted to say whether you want to start editing.
Do you want to edit(n)? vy

6. Changethe relevant fields to values such as those shown in the middle column in
the following table:

Field Sample Value M eaning

TA ROUTI NGNAMVE STU ID Name of the routing section.

TA FI ELD student _id The value of thisfield is subject to the
criterion (specified in the TA_ RANGES
field); that is, the value of thisfield
determines the routing result.

TA RANGES 100001- 100050: ORA_GRP1, Therouting criterion being used.

100051- *: ORA_GRP2

Thevalueof the TA_ RANGES field istherouting criterion. For example, assumethat our
modest student enrollment before the update allowed for arouting criterion of student
I Ds between 100001—-100005 to ORA_GRP1, and 100006—100010 to ORA_GRP2. Inthe
change shown in the preceding table, if the value of st udent _i d isbetween 100001—
100050 (inclusive), requests are sent to the serversin ORA_GRP1. Other requests are
sent to ORA_GRP2.

Note: Dynamic changesthat you make to arouting parameter with t nconfi g take
effect on subsequent invocations and do not affect outstanding invocations.

Y ou can also dynamically change the TA_ FACTORYROUTI NG assignment in the
I NTERFACES section. For example:

1. Start at nconfi g session.

2. Select the | NTERFACES section of the configuration file (choice #12 on the menu
of configuration file sections).

Administering a BEA Tuxedo Application a Run Time 3-27

3 Dynamically Modifying an Application

3. Using the FI RST and NEXT operations, select the interface entry for which you
want to change the FBR. For example, if you defined a new factory-based routing
criterion named CAVPUS in the ROUTI NG section, you could reassign a Registrar
interface to this criterion.

4. Select the UPDATE operation.

5. Entery (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? vy

How to Change Application-wide
Parameters

Some run-time parameters are relevant to all the components (machines, servers, and
so on) of your configuration. These parameters are listed in the RESOURCES section of
the configuration file.

An easy way to familiarize yourself with the parameters in the RESOURCES section is
to display the first entry in that section. To do so, complete the following procedure.

1. Entertnctonfig.

2. Select the RESOURCES section, which is the default, by pressing the Enter key
after thelist of sections. (Refer to lines 1-3 in the following sample listing.)

3. Request the FI RST operation, which is the default, by pressing the Enter key after
the menu of operations. (Refer to lines 4-5.)

4. When asked whether you want to edit, accept the default (n) by pressing the
Enter key.

Do you want to edit(n)?

5. When asked whether you want the specified operation (FI RST) to be performed,
accept the default (y) by pressing the Enter key.

Per f orm operation [y]?

3-28 Administering a BEA Tuxedo Application at Run Time

How to Change Application-wide Parameters

©Co~NOOP~,WNE

Thefollowing samplelisting showsat nconf i g session in which thefirst entry in the
RESQOURCES section is displayed.

Listing 3-6 Displayingthe First Entry in the RESOURCES Section

Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS
5) SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]:

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

Enter editor to add/nodify fields [n]?

Per form operation [y]?

Ret urn val ue TAXK

Buf fer contents:
TA_OPERATI ON 1
TA_SECTI ON 0
TA_STATUS Operation conpl eted successful ly
TA_OCCURS 1
TA_PERM 432
TA_BBLQUERY 30
TA_BLOCKTI ME 6
TA _DBBLWAI T 2
TA G D 10
TA_| PCKEY 80997
TA_LI CMAXUSERS 1000000
TA_MAXACCESSERS 100
TA_MAXBUFSTYPE 32
TA_MAXBUFTYPE 16
TA_MAXCONV 10
TA_MAXDRT 0
TA_MAXGROUPS 100
TA_MAXGTT 25
TA_MAXMACHI NES 256
TA_MAXQUEUES 36
TA_NMAXRFT 0
TA_MAXRTDATA 8
TA_MAXSERVERS 36
TA_MAXSERVI CES 100
TA_M BMASK 0
TA_SANI TYSCAN 12
TA_SCANUNI T 10
TA U D 5469
TA_MAXACL GROUPS 16384
TA_MAXNETGROUPS 8
TA_MAXI NTERFACES 150
TA_MAXOBJECTS 1000

Administering a BEA Tuxedo Application at Run Time 3-29

3 Dynamically Modifying an Application

42 TA STATE ACTI VE

43 TA _SI GNATURE AHEAD

44 TA AUTHSVC

45 TA CMIRET COVWPLETE
46 TA DOVAI NI D

47 TA LDBAL Y

48 TA LI CEXPI RE 1998-09- 15
49 TA LI CSERI AL 1234567890
50 TA NMASTER SI TE1

51 TA MODEL SHMV

52 TA _NOTI FY DI PI N

53 TA_OPTI ONS

54 TA SECURI TY NONE

55 TA SYSTEM ACCESS FASTPATH
56 TA _USI GNAL SI GUSR2

57 TA PREFERENCES

58 TA COVPONENTS TRANSACTI ONS, QUEUE, TDOVAI NS, TxRPC,

59 EVENTS, WEBGUI , WSCOVPRESS! ON, TDOMCOVPRESSI ON
60 TA S| GNATURE_REQUI RED

61 TA_ENCRYPTI ON_REQUI RED

62 TA_SEC PRI NCI PAL_NAVE

63 TA SEC PRI NCI PAL_LOCATI ON

64 TA SEC PR NCl PAL_PASSVAR

3-30 Administering a BEA Tuxedo Application at Run Time

How to Change an Application Password

How to Change an Application Password

©CoOoO~NOOOA, WNE

10
11
12
13
14

$ tntonfig

8.

Enter t nconfi g.

Select the RESOURCES section, which isthe default, by pressing the Enter key
following the list of sections. (Refer to lines 2-4 in the following sample listing.)

Request the CLEAR BUFFER operation by entering 6 after the menu of operations.
(Refertoline 6.)

Sel ect the RESOURCES section again, by pressing the Enter key after the menu of
sections. (Refer to lines 8-10.)

Select the UPDATE operation by entering 5 after the menu of operations. (Refer to
lines 11-12.)

Enter the text editor by entering y at the prompt. (Refer to line 13.)

Enter (in the buffer):
TA PASSWORD new password

Write (that is, save) your input and quit the editor. (Refer to lines 18-20.)

The following sample listing shows at nconfi g session in which an application
password is changed to nept une.

Listing 3-7 Changing an Application Password

Section: 1) RESOURCES, 2) MACHI NES, 3) GROUPS 4) SERVERS
5) SERVI CES 6) NETWORK 7) ROUTING q) QUIT 9) WBL
10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]:

Operati on:

1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

6) CLEAR BUFFER 7) QU T [4]: 6

Buf fer cleared

Section: 1) RESQURCES, 2) MACHI NES, 3) CGROUPS 4) SERVERS

5) SERVI CES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

10) NETGROUPS 11) NETMAPS 12) | NTERFACES [1]:

1) FIRST 2) NEXT 3) RETRI EVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [6]: 5

Enter editor to add/nodify fields [n]? vy

Oper ati on:

1

Administering a BEA Tuxedo Application at Run Time 3-31

3 Dynamically Modifying an Application

15 ¢

16 TA PASSWORD nept une
17 .

18 w

19 49

20 q

21 Perform operation [y]?

22 Return val ue TAUPDATED

23 Buffer contents:

24 TA _OPERATI ON 1

25 TA _SECTI ON 0

26 TA STATUS Operation conmpl eted successfully
27 TA_OCCURS 1

28 TA_PERM 432

29 TA BBLQUERY 30

30 TA BLOCKTI ME 6

31 TA DBBLWAI T 2

32 TAGD 10

33 TA_ I PCKEY 80997

34 TA_LI CMAXUSERS 1000000
35 TA_MAXACCESSERS 100

36 TA_MAXBUFSTYPE 32

37 TA_NMAXBUFTYPE 16

38 TA_MAXCONV 10

39 TA_ NMAXDRT 0

40 TA_NAXGROUPS 100

41 TA NAXGIT 25

42 TA_NAXMACHI NES 256

43 TA_NAXQUEUES 36

44 TA NAXRFT 0

45 TA MAXRTDATA 8

46 TA_MAXSERVERS 36

47 TA_NAXSERVI CES 100

48 TA_M BMASK 0

49 TA_SANI TYSCAN 12

50 TA SCANUNI T 10

51 TAUD 5469

52 TA_ MAXACLGROUPS 16384

53 TA_ MAXNETGROUPS 8

54 TA MAXI NTERFACES 150

55 TA MAXOBJECTS 1000

56 TA PASSWORD nept une
57 TA _STATE ACTI VE
58 TA AUTHSVC

59 TA CMIRET COVPLETE
60 TA DOVAI NI D

61 TA LDBAL Y

62 TA LI CEXPI RE 1998-09- 15
63 TA LI CSERI AL 1234567890
3-32 Administering a BEA Tuxedo Application at Run Time

Limitations on Dynamic Modification Using tmconfig

64 TA _MASTER SI TE1

65 TA_ MODEL SHM

66 TA _NOTI FY D PIN

67 TA_OPTI ONS

68 TA SECURI TY NONE

69 TA_SYSTEM ACCESS FASTPATH

70 TA_USI GNAL S| GUSR2

71 TA PREFERENCES

72 TA_COVPONENTS TRANSACTI ONS, QUEUE, TDOVAI NS, TxRPC, EVENTS, WEBGUI ,
73 WSCOVPRESSI ON, TDOMCOVPRESSI ON

Limitations on Dynamic Modification Using
tmconfig

Keep in mind the following restrictions when modifying your application dynamically
using t nconf i g. Be careful about setting parameters that cannot be changed easily.

m Associated with each section is a set of key fields that are used to identify the
record upon which operations are performed. (For details, seet nconfi g,
wt nconfi g(1) inthe BEA Tuxedo Command Reference.) Key field values
cannot be changed while an application is running. Normally, it is sufficient to
add a new entry, with anew key field, and use it instead of the old entry. When
thisis done, only the new entry is used; the old entry in the configuration is not
booted by the administrator.

m Generally speaking, you cannot update a parameter while the configuration
component with which it is associated is booted. For example, you cannot
change an entry in the MACHI NES section while the machine associated with that
entry is booted. Specifically:

e |f any server in agroup is booted, you cannot change the entry for that
group.

e |f aserver isbooted, you cannot change its name, type (conversational or
not), or parameters related to its message queue. (You can change other
server parameters at any time but your changes do not take effect until the
next time the server is booted.)

Administering a BEA Tuxedo Application at Run Time 3-33

3 Dynamically Modifying an Application

e You can change a SERVI CES entry at any time, but your changes do not take
effect until the next time the service is advertised.

e Updatesto the RESOURCES section are restricted by the following conditions:
the Ul D, G D, PERM MAXACCESSERS, MAXGT T, and MAXCONV parameters
cannot be updated in the RESOURCES section but can be updated on a
per-machine basis; and the | PCKEY, MASTER, MODEL, OPTI ONS, US| GNAL,
MAXSERVERS, MAXSERVI CES, MAXBUFTYPE, and MAXBUFSTYPE parameters
cannot be changed dynamically.

m Carefully track the section of the configuration file in which you are working;
t nconf i g does not warn against performing an operation in the incorrect
section. For example, if you try to update the ENVFI LE parameter (in the
MACHI NES section) while you are working in the RESOURCES section, the
operation appears to succeed (that is, t ntonf i g returns TAOK), but the change
does not appear in your unloaded UBBCONFI Gfile. You can be sure an update is
done only when the TAUPDATED status message is displayed.

In a multiple-machine configuration, always perform the following tasks:

m Specify abackup for the MASTER machine, along with the M GRATE option (even
if aneed for application server migration is not anticipated).

m For MAXSERVERS, MAXSERVI CES, and other parameters that define maximum
limits, assign settings that are high enough to alow for sufficient growth. If your
application isinitially deployed on only one machine, but is expected to grow to
a multiple-machine configuration, use the MP model, specifying the LAN option
and a network entry for the initial machine.

m Set the parametersin the MACHI NES section carefully because updating them
reguires shutting down the machine (and switching the MASTER to the backup in
the case of the MASTER machine).

Tasks That Cannot Be Performed on a Running System

Most elements of the BEA Tuxedo system can be changed dynamically, through either
manual intervention or automatic processes. For example, new servers can be
spawned, new machines can be added, timeout parameters can be changed, and so on.
A few parameters, however, cannot be changed while a system is operational:

3-34 Administering a BEA Tuxedo Application at Run Time

Making Temporary Modifications to Your Configuration with tmadmin

m Any parameter that affects the size of the bulletin board is not dynamic. Most of
these parameters begin with the string MAX, such as MAXGTT, which defines the

maximum number of in-flight transactions allowed within the BEA Tuxedo

system at any time.

The name of a machine being used in arunning application is not dynamic. New

machines (that is, machines with new names) can be added, but an existing

machine name cannot be changed.

Once server executables are assigned to run on both master and backup
machines, the assignment of the master and backup cannot be changed.

Note: Y ou can configure new copies of a server executable to run on additional
machines, but you cannot change existing servers with unique identifiers.

Making Temporary Modifications to Your

Configuration with tmadmin

When you use thet nconf i g command to update the TUXCONFI Gfile and any bulletin
board entries associated with it, the changes you make are permanent; they persist after
the system is shut down and rebooted.

In some situations, however you may want to make temporary changes to a running
application. For example, you may want to:

Suspend Tuxedo ATMI services or servers
Resume Tuxedo ATMI services or servers
Advertise services or servers

Unadvertise services or servers

Change ATMI service parameters

Change CORBA interface parameters

Change the timeout value

Administering a BEA Tuxedo Application a Run Time

3-35

3 Dynamically Modifying an Application

m Suspend CORBA interfaces
m Resume CORBA interfaces

Y ou can perform these tasks with the t madni n command, as specified in the
procedures provided in this section.

How to Set Environment Variables for tmadmin

Before you can start at madmi n session, you must set your environment variables and
any required permissions. For your convenience, you may also want to select a text
editor other than the default editor.

Completethefollowing procedureto set up your working environment properly before
running t madmi n.

1. Login asthe BEA Tuxedo application administrator if you want to add entries to
TUXCONFI G or to modify existing entries. Thisstep isnot required if you only want
to view existing configuration file entries without changing or adding to them.

2. Assign valuesto two mandatory environment variables: TUXCONFI G and TUXDI R.

e Thevalue of TUXCONFI G must be the full path name of the binary
configuration file on the machine on which t nconf i g isbeing run.

e Thevalue of TUXDI R must be the root directory for the BEA Tuxedo system
binary files. (t rconf i g must be able to extract field names and identifiers
from $TUXDI R/ udat aobj / t padmi n.)

How to Suspend Tuxedo ATMI Services or
Servers

To suspend a Tuxedo ATMI server or aservice, enter thet madmi n and susp (short for
suspend) commands, as follows:

$ tmadm n
> susp

3-36 Administering a BEA Tuxedo Application at Run Time

How to Resume Tuxedo ATMI Services or Servers

The suspend command marks one of the following as inactive:

m Oneservice

m All services of aparticular queue

m All services of aparticular group ID or server ID combination

After you suspend a service or aserver, any requestsfor it that remain on the queue are
handled, but no new service requests are routed to the suspended server. If agroup ID
or server ID combination is specified and it is part of an MSSQ set, all serversin that
M SSQ set become inactive for the services specified.

How to Resume Tuxedo ATMI Services or
Servers

To have a Tuxedo ATMI server or a service resume, enter thet madni n and r esune
(or r es) commands, as follows:

$ tmadm n
> res

Ther esune command undoes the effect of the suspend command; it marks as active
for the queue one of the following:

m Oneservice
m All services of aparticular queue
m All services of aparticular group ID/server ID combination

If, inthisstate, the group ID or the server ID is part of an MSSQ set, all serversin that
M SSQ set become active for the services specified.

Administering a BEA Tuxedo Application at Run Time 3-37

3 Dynamically Modifying an Application

How to Advertise Services or Servers

To advertise a service or server, enter the following commands:

$ tmadmin
> adv [{[-q queue_nane] | [-g grpid] [-i srvid]}] service

Although aservice must be suspended before it may be unadvertised, you do not need
to unsuspend a service before readvertising it. If you simply advertise a service that
was unadvertised earlier, and is currently suspended, the service is unsuspended.

How to Unadvertise Services or Servers

To unadvertise a service or server, you must suspend it by entering the following
commands:

$ tmadmin
> unadv [{[-qg queue_nane] | [-g grpid] [-i srvid]}] service

Unadvertising a service has more drastic results than suspending it. When you
unadvertise a service, the service table entry for it is deall ocated and the cleared space
in the service table becomes available to other services.

How to Change Service Parameters for
Tuxedo ATMI Servers

Thet madm n command allows you to change, dynamically, the values of service
parameters for a specific group ID/server ID combination or for a specific queue.

3-38 Administering a BEA Tuxedo Application at Run Time

How to Change Interface Parameters for Tuxedo CORBA Servers

The following table liststhe t madni n commands available for changing service
parameters defined in this way.

To Change... Enter the Following Commands...

Load value (LOAD) $tmadm n
>chl -s service_nanme

Dequeueing priority (PRI O) $tmadm n
>chp -s service_nane

Transaction timeout value $t madni n
>chtt -s service_nane

The - s option must be specified, either onthet madmni n def aul t command line or on
thet madni n chl , chp, or chtt command line. Because it is possible to set the - s
option on thedef aul t command line, the- s optionisconsidered optional onthechl ,
chp, and cht t command lines.

How to Change Interface Parameters for
Tuxedo CORBA Servers

Thet madni n command allows you to change, dynamically, the values of interface
parameters for a specific group ID/server ID combination or for a specific queue.

The following table liststhe t madni n commands available for changing interface
parameters defined in this way.

To Change... Enter the Following Commands...
Load value (LOAD) $tmadm n

>chl -1 interface_nane
Dequeueing priority (PRI O) $tmadm n

>chp -1 interface_nane

Administering a BEA Tuxedo Application at Run Time 3-39

3 Dynamically Modifying an Application

To Change... Enter the Following Commands...
Transaction timeout value $t madmi n
>chtt -1 interface_nane

The- I option must be specified, either on thet madm n def aul t command line or on
thet madni n chl , chp, or chtt command line. Because it is possible to set the - |
option onthedef aul t command line, the- 1 optionisconsidered optional onthechl ,
chp, and chtt command lines.

How to Change the Timeout Value

To change the transaction timeout (TRANTI ME) for an interface or service with the
AUTOTRAN flag set, run the changet r anti ne (cht t) command, asfollows:

$ tmadmin
chtt [-m machine] {-q qgaddress [-g groupnane] [-i srvid]
[-s service] | -g groupnanme -i srvid -s service |

-1 interface [-g groupnane]} newtlim

Y ou cannot change transaction timeouts begun by application clients using
t pbegin() ortx_set _transaction_tineout().

How to Suspend Tuxedo CORBA Interfaces

Note: The execution of the suspend commands has minimal impact on the BEA
Tuxedo system resources when compared with the resources gained by
suspending a server.

To suspend an interface, enter the suspend (or susp) command. For example:

t madm n
>susp -i | DL: beasys.conf Sinple:1.0

3-40 Administering a BEA Tuxedo Application at Run Time

How to Resume Tuxedo CORBA Interfaces

If an interface is suspended, a client will not be able to invoke a method on that
interface until the interface is resumed.

How to Resume Tuxedo CORBA Interfaces

Note: The execution of the r esume command has minimal impact on the BEA
Tuxedo system resources when compared with the resources gained by
suspending a server.

To resume an interface, enter ther esune (or r es) command. For example:

t madm n
>res -i |DL:beasys.conlSinple:1.0

If a suspended interface is resumed, clients will be able to invoke methods on that
interface.

Administering a BEA Tuxedo Application at Run Time 3-41

3 Dynamically Modifying an Application

3-42 Administering a BEA Tuxedo Application at Run Time

CHAPTER

4 Managing the Network

In a Distributed
Application

Thistopic includes the following sections:

m Running a Network for a Distributed Application
m Compressing Data Over a Network

m Balancing Network Request Loads

m How to Use Data-Dependent Routing

m How to Change Your Network Configuration

Running a Network for a Distributed
Application

Most of the work associated with running the network for a distributed application is
done in the configuration or setup phase. Once you have defined the network and
booted the application, the software automatically runs the network for you.

Thistopic describes how the BEA Tuxedo system moves data through a network, and
explains how to set the configuration file parameters that control network operations.

Administering a BEA Tuxedo Application a Run Time 4-1

4 Managing the Network in a Distributed Application

Compressing Data Over a Network

The BEA Tuxedo system allows you to compress data being sent from one application
process to another. Data compression is useful in most applications and is vital in
supporting large configurations. Y ou can use data compression when the sender and
receiver of a message are on the same machine (local data compression), or when the
sender and receiver of amessage are on different machines (remote data compression).
Both forms of compression provide advantages:

m Because messages are sent over interprocess communication (IPC) queues, the
advantage of local data compression isthat it results in lower utilization of 1PC
resources.

m Because messages are sent over a network, the advantage of remote data
compression isthat it resultsin lower utilization of network bandwidth.

How to Set the Compression Level

If you decide to use data compression, you must set the CVPLI M T parameter in the
MACHI NES section of the configuration file, as follows:

CMPLIM T=string_val uel[,string val ue2]

The stringsthat make up the value of this parameter specify thethreshold message size
for messages bound to remote processes (st ri ng_val uel) and local processes
(string_val ue2). Only thefirst string is required. The default for both strings isthe
value of the MAXLONG parameter.

In addition, you have the option of setting the TMCOMPPRFM parameter to establish an
appropriate balance between compression and CPU performance. Higher and slower
compression results in more efficient network bandwidth; lower but faster
compression yields less CPU utilization.

4-2 Administering a BEA Tuxedo Application at Run Time

Compressing Data Over a Network

Selecting

To specify the desired level of compression, complete the following procedure.

1. Set the compression threshold using the CMPLI M T parameter in the UBBCONFI G
configuration file.

2. (Optional step) Set the TMCMPPRFM environment variable. The value of
TMCMPPRFMmMust be a single digit between 1 and 9; the default is 1.

A value of 1 specifiesthe lowest level of compression with the fastest
performance; 9 represents the highest level of compression with the slowest
performance. The lower the number, the more quickly the compression routine is
executed.

For more information on setting the TMCMPPRFMvariable, refer to t uxenv(5) inthe
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Data Compression Thresholds

Y ou can desighate acompression thr eshol d for messages: any messages larger than the
threshold you specify are compressed. To designate a compression threshold, set the
CMPLI M T parameter. For instructions, see “How to Set the Compression Level” on

page 4-2.
When choosing data compression thresholds, keep in mind the following criteria:

m Consider using remote data compression if your sites are running BEA Tuxedo
release 4.2.1 or later. Your setting depends on the speed of your network. You
may want to assign different settings, for example, to an Ethernet network
(which is a high-speed network) and an X.25 network (which is alow-speed
network).

e For ahigh-speed network, consider setting remote data compression to the
lowest limit for file transfers generated by the BEA Tuxedo system. (See the
note about file transfers provided later in thislist.) In other words, compress
only messages that are large enough to be candidates for file transfer on
either the sending site or the receiving site. Note that each machinein an
application may have a different limit. If this is the case, choose the lowest
limit possible for each machine.

e For alow-speed network, consider setting remote data compression to zero
on al machines; that is, compress all application and system messages.

Administering a BEA Tuxedo Application a Run Time 4-3

4 Managing the Network in a Distributed Application

See Also

m Consider using local data compression for sites running BEA Tuxedo release

4.2.1 or later, even if they are interoperating with pre-release 4.2.1 sites. This
resultsin lower utilization of IPC resources. This setting also enables you to
avoid file transfers in many situations that might otherwise require a transfer
and, when file transfers cannot be avoided, this setting greatly reduces the size
of the files used. For more information, refer to “ Message Queues and
Messages’ on page 1-13 in Installing the BEA Tuxedo System.

For local data compression, you can assign a different threshold to each machine
in an application. If thisis the case, always choose the lowest limit possible for
each machine.

Note: For high-traffic applications that involve alarge volume of timeouts and
discarding of messages due to |PC queue blocking, you may want to lower
the demand of the application on the IPC queuing subsystem by having
local compression done at all times.

Because compression depends on the type of data being transmitted, we strongly
recommend that you try different settingsin your environment to determine which one
yields the best results.

DMCONFI G(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

m tuxenv(5) inthe File Formats, Data Descriptions, MIBs, and System Processes

Reference

“What |s Data Compression?’ on page 2-30 in Introducing BEA Tuxedo ATMI

Balancing Network Request Loads

If load balancing isturned on (that is, if LDBAL isset to Y in the RESOURCES section of
the application configuration file), the BEA Tuxedo system attemptsto balance
reguests across the network. Because |oad information is not updated globally, each
site has a unique view of the load at remote sites.

4-4 Administering a BEA Tuxedo Application at Run Time

How to Use Data-Dependent Routing

See Also

Use the NETLOAD parameter in the MACHI NES section of the configuration file (or the
TMNETLOAD environment variable) to force more requests to be sent to local queues.
The value of this parameter isanumber that is added to theload for remote queues, so
the remote queues appear to have more work than they do. As aresult, even if load
balancingisturned on, local requestsare sent tolocal queues more often than to remote
queues.

Asan example, assume servers A and B offer a service with load factor 50. Server A
isrunning on the same machine asthe calling client (local), and server B isrunning on
adifferent machine (remote). If NETLQAD s set to 100, approximately three requests
will be sent to A for every one sent to B.

Another mechanism that affects load balancing islocal idle server preference.
Requests are always sent to a server on the same machine as the client, assuming that
the server offers the desired service and isidle. This decision overrides any load

bal ancing considerations, because the local server is known to be available
immediately.

m “What IsLoad Balancing?’ on page 2-39 in Introducing BEA Tuxedo ATMI

How to Use Data-Dependent Routing

Data-dependent routing is useful when clients issue service requests to:
m Horizontally-partitioned databases
m Rule-based servers

A horizontally-partitioned database is an information repository that is divided into
segments, each of which is used to store a different category of information. This
arrangement issimilar to alibrary in which each shelf of abookcase holds books for a
different category (for example, biography, fiction, and so on).

Administering a BEA Tuxedo Application a Run Time 4-5

4 Managing the Network in a Distributed Application

A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based
servers are useful when you want to handl e requests that are almost identical by taking
dlightly different actions for business reasons.

Note: For detailed information about factory-based routing for a distributed BEA
Tuxedo CORBA application, refer to the Scaling, Distributing, and Tuning
CORBA Applications guide.

Example of Data-dependent Routing with a
Horizontally-partitioned Database

Suppose two clients in a banking application issue requests for the current balance in
two accounts: Account 3 and Account 17. If data-dependent routing is being used in
the application, then the BEA Tuxedo system performs the following actions:

1. Getsthe account numbers for the two service requests (3 and 17).

2. Checksthe routing tables on the BEA Tuxedo bulletin board that show which
servers handle which range of data. (In this example, server 1 handles all requests
for Accounts 1 through 10, and server 2 handles all requests for Accounts 11
through 20.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request about Account 3 to server 1, and the request about Account 17 to
server 2.

Thefollowing figureillustrates this process.

4-6 Administering a BEA Tuxedo Application at Run Time

How to Use Data-Dependent Routing

Figure4-1 Data-dependent Routing with a Horizontally-partitioned Database

Machine
Server 1 Server 2
Dstabaze Databaze
scct1-10 ™ Service & Service A ™ Acct11-20
Invake Inwoke
Acct=5 Acct=17
Cliert or

Server

Example of Data-dependent Routing with Rule-based
Servers

A banking application includes the following rules:
m Customers can withdraw up to $500 without entering a specia password.
m Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If
data-dependent routing is enabled to support the withdrawal rules, then the BEA
Tuxedo system performs the following actions:

1. Getsthe amount specified for withdrawal in the two service requests ($100 and
$800).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle requests for the amount being requested. (In this example, server 1
handles all requests to withdraw amounts up to $500; server 2 handles all
requests to withdraw amount over $500.)

Administering a BEA Tuxedo Application a Run Time 4-7

4 Managing the Network in a Distributed Application

See Also

3. Sends each request to the appropriate server. Specifically, the system forwards
the request for $100 to server 1 and the request for $800 to server 2.

Thefollowing figureillustrates this process.

Figure4-2 Data-dependent Routing with Rule-based Servers

Machine
Server 1 Server 2
Databaze Databaze
Acctzs =F3a00 Acctz =F300
wyithiout - Service & | | Service & > password-
passyword reguired
Withdrawe $100 Withdrawe $300
Cliert or

Server

m “What Is Data-dependent Routing?’ on page 2-31 in Introducing BEA Tuxedo
ATMI

m Chapter 7, “Distributing ATMI Applications Across a Network,”in Setting Up a
BEA Tuxedo Application

m Chapter 8, “Creating the Configuration File for a Distributed ATMI
Application,”in Setting Up a BEA Tuxedo Application

m Chapter 9, “ Setting Up the Network for a Distributed Application,” in Setting Up
a BEA Tuxedo Application

m Scaling, Distributing, and Tuning CORBA Applications

4-8 Administering a BEA Tuxedo Application at Run Time

How to Change Your Network Configuration

How to Change Your Network Configuration

See Also

To change configuration parameters while your application is running, run the
tnconfi g(1) command. Thiscommand is ashell-level interface to the BEA Tuxedo
System Management Information Base (MIB).

Using t ntonfi g, you can browse and modify the TUXCONFI G file without bringing
down your system. For example, you can add new components, such as machinesand
servers, while your application is running.

m “Using tmconfig to Modify Your Configuration” on page 3-21 in Introducing
BEA Tuxedo ATMI

m tnconfig, wnconfig(1l) inthe BEA Tuxedo Command Reference

m M B(5) intheFile Formats, Data Descriptions, MIBs, and System Processes
Reference

m TM M B(5) inthe File Formats, Data Descriptions, MIBs, and System Processes
Reference

m “Administering Link-Level Encryption” on page 2-35 in Using Security in
CORBA Applications

m “Administering Public Key Security” on page 2-42 in Using Security in CORBA
Applications

Administering a BEA Tuxedo Application a Run Time 4-9

4 Managing the Network in a Distributed Application

4-10 Administering aBEA Tuxedo Application at Run Time

CHAPTER

5 About the EventBroker

Thistopic includes the following sections:

m What Isan Event?

m Differences Between Application-defined and System-defined Events
m What Isthe EventBroker?

m How the EventBroker Works

m What Are the Benefits of Brokered Events?

What Is an Event?

An event is a state change or other occurrence in arunning application (such as a
network connection being dropped) that may require intervention by an operator, an
administrator, or the software. The BEA Tuxedo system reports two types of events:

m System-defined events—which are situations (primarily failures) defined by the
BEA Tuxedo system, such as the exceeding of certain system capacity limits,
server terminations, security violations, and network failures.

m Application-defined events—which are situations defined by a customer
application, such as the ones listed in the following table.

Inan application for this An occurrence of this situation may be defined as
typeof business.. . . an “event” ...

Stock brokerage A stock istraded at or above a specified price.

Administering a BEA Tuxedo Application a Run Time 5-1

5 About the EventBroker

Inan application for this An occurrence of thissituation may be defined as

typeof business. .. an “event” . ..

Banking A withdrawal or deposit above a specified amount is made.
The cash availablein an ATM machine drops below a
specified amount.

Manufacturing Anitemisout of stock.

Application events are occurrences of application-defined events, and system events
are occurrences of system-defined events. Both application and system events are
received and distributed by the BEA Tuxedo EventBroker component.

Differences Between Application-defined
and System-defined Events

Application-defined events are defined by application designers and are therefore
application specific. Any of the events defined for an application may be tracked by
the client and server processes running in the application.

System-defined events are defined by the BEA Tuxedo system code and are generally
associated with objects defined in TM_ M B(5) . A complete list of system-defined
events is published on the EVENTS(5) reference page. Any of these events may be
tracked by users of the BEA Tuxedo system.

The BEA Tuxedo EventBroker posts both application-defined and system-defined
events, and an application can subscribe to events of both types. The two types of
events can be distinguished by their names: the names of system-defined events begin
with adot (.); the names of application-specific events cannot begin with adot (.).

5-2 Administering a BEA Tuxedo Application at Run Time

What Is the EventBroker?

What Is the EventBroker?

The BEA Tuxedo EventBroker is atool that provides asynchronous routing of
application events among the processes running in a BEA Tuxedo application. It also
distributes system events to whichever application processes want to receive them.

The EventBroker performs the following tasks:

m Monitors events and notifies subscribers when events are posted via
tppost(3c).

m Keepsan administrator informed of changesin an application.

m Provides a system-wide summary of events.

m Provides atool through which an event can trigger a variety of notification
activities.

m Provides afiltering capability, providing additional conditions to the posted
event’s buffer.

Note: For asample application that you can copy and run as a demo, see “ Tutorial
for bankapp, a Full C Application” on page 3-1 in Tutorials for Developing
BEA Tuxedo ATMI Applications.

The EventBroker recognizes over 100 meaningful state transitionsto aMIB object as
system events. A posting for a system event includes the current MIB representation
of the object on which the event occurred and some event-specific fields that identify
the event that occurred. For example, if a machine is partitioned, an event is posted
with the following:

m The name of the affected machine, as specified inthe T_MACH NE cl ass, with
all the attributes of that machine

m Some event attributes that identify the event as machine partitioned

Y ou can use the EventBroker simply by subscribing to system events. Then, instead of
having to query for MIB records, you can be informed automatically when events
occur inthe MIB by receiving FM. data buffers representing M1B objects.

Administering a BEA Tuxedo Application a Run Time 5-3

5 About the EventBroker

How the EventBroker Works

The BEA Tuxedo EventBroker isatool through which an arbitrary number of
suppliers of event notifications can post messages for an arbitrary number of
subscribers. The suppliers of such notifications may be application or system
processes operating as clients or servers. The subscribers of such notifications may be
administrators or application processes operating as clients or servers.

Client and server processes using the EventBroker communicate with one another
based on a set of subscriptions. Each process sends one or more subscription requests
to the EventBroker, identifying the event types that the process wants to receive. The
EventBroker, in turn, acts like a newspaper delivery person who delivers newspapers
only to customers who have paid for a subscription. For these reasons, the paradigm
on which the EventBroker is based is described as publish-and-subscribe
communication.

Event suppliers (either clients or servers) notify the EventBroker of events as they
occur. Werefer to this type of notification as posting an event. Once an event supplier
posts an event, the EventBroker matches the posted event with the subscribers that
have subscribed for that event type. Subscribers may be administrators or application
processes. When the EventBroker finds a match, it takes the action specified for each
subscription; subscribersare notified and any other actions specified by subscribersare
initiated.

Thefollowing diagram shows how the EventBroker handles event subscriptions and
postings.

Figure5-1 Posting and Subscribing to an Event

Event EFvent
Subscription Posting 4
Client or Server ———»| Event =~ = | Clientor Server
Broker
B ——
Event
Hotification

As the administrator for your BEA Tuxedo application, you can enter subscription
reguests on behalf of client and server processes through callsto the
T_EVENT_COWMAND class of the EVENT_M B(5) . You can aso invoke the

t psubscri be(3c) function to subscribe, programmatically, to an event by using the
EventBroker.

5-4 Administering a BEA Tuxedo Application at Run Time

How the EventBroker Works

Event Notification Methods

The EventBroker subscription specifies one of the notification methods shown in the
following diagram.

Figure5-2 Supported Notification Methods

EventBroker

-
tpsubscribe ()

Motify a
client Wirite to
userlog

Invake a service | Engueue Execute a
to queue comimand

tpposti)

m Notify aclient—the EventBroker keeps track of aclient’sinterest in particular
events and notifies the client, without being prompted, when such an event
occurs. For this reason, this method is called unsolicited notification.

m Invoke a service—if a subscriber wants event notifications to be passed to
service calls, the subscriber process should invoke the t psubscri be() function
to provide the name of the service to be called.

m Enqueue message to stable-storage queues—for subscriptions with requests to
send event notifications to stable-storage queues, the EventBroker will obtain a
gueue space, queue name, and correlation identifier. A subscriber specifies a
gueue name when subscribing to an event. The correlation identifier can be used
to differentiate among multiple subscriptions for the same event expression and
filter rule, that are destined for the same queue.

m Execute acommand—when an event is posted, the buffer associated with it is
transformed into a system command that is then executed. For example, the
buffer may be changed to a system command that sends an e-mail message. This
process must be executed through the MIB.

Administering a BEA Tuxedo Application a Run Time 5-5

5 About the EventBroker

m Write messages to the user log—when events are detected and matched by the
EventBroker, the specified messages are written to the user log, or ULOG This
process must be executed through the MIB.

Severity Levels of System Events

The EventBroker assignsone of threelevels of severity to system events such as server
terminations or network failure.

Thelevel of

severity is. . . When the EventBroker isinformed of . ..

ERROR An abnormal occurrence, such as a server being terminated or a
network connection being dropped.

I NFO (short for A state change resulting from a process or a change in the

“Information”) configuration.

WARN (short for The fact that a client has not been allowed to join the application

“Warning”) because it failed authentication. A configuration change that

threatens the performance of the application has occurred.

What Are the Benefits of Brokered Events?

m Anonymous communication—the Event Broker enables BEA Tuxedo programs
to subscribe to eventsin which they are interested and it keepstrack of all
subscriptions. Therefore, a subscriber to one event does not need to know which
programs subscribe to the same event, and a poster of an event does not need to
know which other programs subscribe to that event. This anonymity allows
subscribers to come and go without synchronizing with posters.

m Decoupling of exception conditions—a publish-and-subscribe communication
model allows the software detecting an exception condition to be decoupled
from the software handling the exception condition.

5-6 Administering a BEA Tuxedo Application at Run Time

What Are the Benefits of Brokered Events?

See Also

m Tight integration with the BEA Tuxedo system—the EventBroker retains

functionality such as message buffers, messaging paradigms, distributed
transactions, and ACL permission checks for event postings.

Variety of notification methods—when a client or server subscribesto a system
event (such as the termination of a server) or an application event (such as an
ATM machine running out of money), it specifies an action that the EventBroker
should take when it is notified that the target event has occurred.

If the subscriber is a BEA Tuxedo client, it can do one of the following at the
time it subscribes:

e Request unsolicited notification
¢ Name aservice routine that should be invoked

¢ Name an application queue in which the EventBroker should store the data
for later processing

If the subscriber is a BEA Tuxedo server, it can do one of the following at the
time it subscribes:

e Specify a service request
¢ Name an application queue in which the EventBroker should store the data

“Subscribing to Events’ on page 6-1

“Subscribing, Posting, and Unsubscribing to Events with the ATMI and the
EVENT_MIB” on page 6-3 in Introducing BEA Tuxedo ATMI

EVENT_M B(5) inthe File Formats, Data Descriptions, MIBs, and System
Processes Reference

t psubscri be(3c) inthe BEA Tuxedo ATMI C Function Reference

t punsubscri be(3c) inthe BEA Tuxedo ATMI C Function Reference

Administering a BEA Tuxedo Application a Run Time 5-7

5 About the EventBroker

5-8 Administering a BEA Tuxedo Application at Run Time

CHAPTER

O Subscribing to Events

Thistopic includes the following sections:

Process of Using the EventBroker
How to Configure EventBroker Servers
How to Set the Polling Interval

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the
EVENT_MIB

How to Select a Notification Method
How to Cancel a Subscription to an Event

How to Use the EventBroker with Transactions

Process of Using the EventBroker

Use of the EventBroker requires the completion of several preparatory steps. The

following flowchart lists these steps and indicates whether each step should be
performed by an application administrator or programmer.

Administering a BEA Tuxedo Application a Run Time

6-1

6 Subscribing to Events

Configure senvers and identify machines
an which they will run

|
Set up the polling interval adrinistrator task

Select a notification method and
subscribe to an event with that method

Canecel 3 subseription to the event programmer tasi

aafministrator task

programmer task

For instructions on any of these tasks, click on the appropriate box in the flowchart.

Note: A good way to learn how the EventBroker works is by running bankapp, the
sample application delivered with the BEA Tuxedo system. To find out how
to copy bankapp and run it as a demo, see “ Tutorial for bankapp, a Full C
Application” on page 3-1 in Tutorials for Developing BEA Tuxedo ATMI
Applications.

How to Configure EventBroker Servers

A client accesses the EventBroker through either of two servers provided by the BEA
Tuxedo system: TMUSREVT(5) , which handles application events, and TMSYSEVT(5) ,
which handles system events. Both servers process events and trigger the sending of
notification to subscribers.

To set up the BEA Tuxedo EventBroker on your system, you must configure either or
both of these serversin the SERVERS section of the UBBCONFI Gfile, as shown in the
following example.

* SERVERS
TMBYSEVT SRVGRP=ADM N1 SRVI D=100 RESTART=Y GRACE=900 MAXGEN=5
CLOPT="-A --"
TMBYSEVT SRVGRP=ADM N2 SRVI D=100 RESTART=Y GRACE=900 MAXGEN=5
CLOPT="-A -- -S -p 90"

TMUSREVT SRVGRP=ADM N1 SRVI D=100 RESTART=Y
MAXGEN=5 GRACE=3600
CLOPT="-A --"

6-2 Administering a BEA Tuxedo Application at Run Time

How to Set the Polling Interval

TMUSREVT SRVGRP=ADM N2 SRVI D=100 RESTART=Y
MAXGEN=5 GRACE=3600
CLOPT="-A -- -S -p 120"

We recommend that you assign the principal server to the MASTER site, even though
either server can reside anywhere on your network.

Note: Y ou can reducethe network traffic caused by event postings and notifications
by assigning secondary serversto other machines in your network.

How to Set the Polling Interval

Periodically, the secondary server pollsthe primary server to obtain the current
subscription list, which includes filtering and notification rules. By default, polling is
done every 30 seconds. If necessary, however, you can specify adifferent interval.

Y ou can configure the polling interval (represented in seconds) with the - p
command-line option in TMUSREVT(5) or TMSYSEVT(5) entriesin the configuration
file, asfollows:

-p poll _seconds

It may appear that event messages are lost while subscriptions are being added and
secondary servers are being updated.

Subscribing, Posting, and Unsubscribing to
Events with the ATMI and the EVENT_MIB

Asthe administrator for your BEA Tuxedo application, you can enter subscription
requests on behalf of aclient or server process through callsto the T_EVENT_COMVAND
classof the EVENT_M B(5) . Y ou can also useinvokethet psubscri be(3c) function
to subscribe, programmatically, to an event.

Administering a BEA Tuxedo Application a Run Time 6-3

6 Subscribing to Events

The following figure shows how clients and servers use the EventBroker to subscribe
to events, to post events, and to unsubscribe to events.

Figure6-1 Subscribingto an Event

Event Event
Subscription Posting ;
Client or Server ——————» Bvent |~ Client or Server
Broker
B T
Event
Hotification

|dentifying Event Categories Using eventexpr and filter

Clients or servers can subscribe to events by calling t psubscri be(3c) . The

t psubscri be() function takes one required argument: event expr . The value of
event expr canbeawildcard string that identifiesthe set of event names about which
the user wants to be notified. Wildcard strings are described on the r econp,

remat ch(3c) reference page in the BEA Tuxedo ATMI C Function Reference.

As an example, auser on a UNIX system platform who wantsto be notified of al
events related to the category of networking can specify the following value of
event expr:

\. SysNet wor k. *

The backslash preceding the period (.) indicates that the period isliteral . (Without the
preceding backslash, the period (.) would match any character except the end-of-line
character.) The combination . * at theend of \ . SysNet wor k. * matches zero or more
occurrences of any character except the end-of-line character.

In addition, clients or servers can filter event data by specifying the optional fi | t er
argument when callingt psubscri be() . Thevalueof fi | t er isastring containing a
Boolean filter rule that must be evaluated successfully before the EventBroker posts
the event.

As an example, auser who wants to be notified only about system events having a
severity level of ERROR can specify the following value of filter:

"TA_EVENT_SEVERI TY=" ERROR' "

6-4 Administering a BEA Tuxedo Application at Run Time

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB

When an event name is posted that evaluates successfully against event expr , the
EventBroker tests the posted data against thefilter rule associated with event expr . If
the data passes the filter rule or if there is no filter rule for the event, the subscriber
receives a notification along with any data posted with the event.

Accessing the EventBroker

Y our application can access the EventBroker through either the ATMI or the
EVENT_M B(5) . The following table describes both methods.

M ethod

Function

Pur pose

ATMI

t ppost (3c)

Notifies the EventBroker, or posts an event and any
accompanying data. The event is named by the event nanme
argument and thedat a argument, if not NULL, pointstothe data.
The posted event and data are dispatched by the BEA Tuxedo
EventBroker to al subscribers with subscriptions that
successfully evaluate against event nane and optional filter
rules that successfully evaluate against dat a.

t psubscri be(3c)

Subscribesto an event or a set of events named by event expr .
Subscriptions are maintained by the BEA Tuxedo EventBroker,
and are used to notify subscribers when events are posted via

t ppost () . Each subscription specifies one of the following
notification methods: client notification, service calls, message
engueuing to stable-storage queues, executing of commands, and
writing to the user log. Notification methods are determined by
the subscriber’s process type (that is, whether the processis a
client or aserver) and thearguments passed tot psubscr i be() .

t punsubscri be(3c)

Removes an event subscription or a set of event subscriptions
from the BEA Tuxedo EventBroker’s list of active subscriptions.
subscri pti on isan event subscription handle returned by

t psubscri be() . Setting subscri pti on to the wildcard
value, - 1, directst punsubscri be to unsubscribe to all
nonpersi stent subscriptions previously made by the calling
process. Nonpersi stent subscriptions are those made without the
TPEVPERSI ST bit setting inthect | - >f | ags parameter of

t psubscri be() . Persistent subscriptions can be deleted only
by using the handle returned by t psubscri be() .

Administering a BEA Tuxedo Application a Run Time 6-5

6 Subscribing to Events

Method

Function Purpose

EVENT_M B(5)

N/A The EVENT_M B is a management information base (MIB) that
stores subscription information and filtering rules. In your own
application, you cannot define new events for the BEA Tuxedo
EventBroker using EVENT_M B, but you can customize the
EventBroker to track eventsand notify subscribers of occurrences
of specia interest to the application.

Y ou can use the EVENT_M B to subscribe to an event, or to
modify or cancel a subscription.

Note: tppost(3c),tpsubscribe(3c),andt punsubscri be(3c) areC functions.
Equivalent routines (TPPOST(3cbl) , TPSUBSCRI BE(3cbl), and
TPUNSUBSCRI BE(3cbl)) are provided for COBOL programmers. See the
BEA Tuxedo ATMI C Function Reference and the BEA Tuxedo ATMI COBOL
Function Reference for details.

How to Select a Notification Method

The EventBroker supports avariety of methods for notifying subscribers of events, as
shown in the following diagram.

Figure6-2 Notification M ethods Supported by the EventBroker

EventBroker

- -
tpsubscribe ()

Nptiﬁ,r a
client Wirite to
userlog

Invoke a service | Engueue Execute a
to gqueue cammand

thpost()

6-6 Administering a BEA Tuxedo Application at Run Time

How to Select a Notification Method

Whichever notification method you choose, the procedure for implementing it is the
same: inyour call tot psubscri be(), specify an argument that refersto astructure of
type TPEVCTL.

If the value of the argument is NULL, the EventBroker sends an unsolicited message
to the subscriber. Two of these methods, having the notification sent to a service and
having it sent to a queue in stable storage, cannot be requested directly by aclient.
Instead, a client must invoke a service routine to subscribe on its behalf.

For each subscription, you can select any of the following notification methods. The
EventBroker can:

Notify the client—the EventBroker keepstrack of eventsin which the client is
interested and sends unsolicited notifications to the client when they occur. Some
events are anonymously posted. A client can join an application, regardl ess of
whether any other clients have subscribed, and post events to the EventBroker.
The EventBroker matches these events against its database of subscriptions and
sends an unsolicited notification to the appropriate clients. (See the definition of
the T_EVENT_CLI ENT classin the EVENT_M B(5) entry in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.)

Invoke a service—if a subscriber wants event notifications to be sent to service
cals, thenthe ct | parameter must point to avalid TPEVCTL structure. (See the
definition of the T_EVENT_SERVI CE classin the EVENT_M B(5) entry in theFile
Formats, Data Descriptions, MIBs, and System Processes Reference.)

Enqueue messages to stable-storage queues—for subscriptions to stable-storage
gueues, a queue space, queue name, and correlation identifier are specified, in
addition to valuesfor event expr and fi | t er, so that matching can be
performed. The correlation identifier can be used to differentiate among several
subscriptions characterized by the same event expression and filter rule, and
destined for the same queue. (See the definition of the T_EVENT_QUEUE classin
the EVENT_M B(5) entry in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.)

Execute commands—using the T_EVENT_COMVAND class of the EVENT_M B,
subscribers can invoke an executable process. When a match is found, the datais
used as the name of the executable process and any required options. (See the
definition of the T_EVENT_COMMAND classin the EVENT_M B(5) entry in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.)

Write messages to the user log (ULOG) —using the T_EVENT_USERL OG class of
the EVENT_M B, subscribers can write system USERLOG messages. When events

Administering a BEA Tuxedo Application a Run Time 6-7

6 Subscribing to Events

are detected and matched, they are written to the USERLOG (See the definition of
the T_EVENT_USERLOG classin the EVENT_M B(5) entry in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.)

How to Cancel a Subscription to an Event

When aclient leaves an application by callingt pt er n{ 3c) , all of itssubscriptions are
canceled unless the subscription is specified as persistent. (If persistent, the
subscription continues to receive postings even after aclient performsat pt er n() .) If
the client later rejoins the application and wants to renew those subscriptions, it must
subscribe again.

A well-behaved client unsubscribesbefore calling t pt er n() . Thisisaccomplished by
issuing at punsubscri be(3c) call beforeleaving an application.

How to Use the EventBroker with
Transactions

Specia handling is needed to use the EventBroker with transactions.

m Before you can use the EventBroker with transactions, you must configure the
NULL_TNs parameter with the TMUSREVT(5) server for the server groupsin
which the EventBroker is running.

m Theadvantage of posting an event in atransaction isthat all of the work,
including work not related to the posting, is guaranteed to be complete if the
transaction is successful. If any work performed within the transaction fails, it is
guaranteed that all the work done within the transaction will be rolled back. The
disadvantage is that the poster takes arisk that something may cause the
transaction to be aborted, and the posting will be lost.

6-8 Administering a BEA Tuxedo Application at Run Time

How to Use the EventBroker with Transactions

m To specify that a subscription is part of atransaction, use the TPEVTRAN flag
with t psubscri be(3c) . If the subscription is made transactionally, the action
taken in response to an event will be part of the caller’s transaction.

Note: Thismethod can be used only for subscriptions that cause a BEA Tuxedo
serviceto beinvoked, or that cause arecord to be enqueued on a permanent
queue.

How Transactions Work with the EventBroker

If both a poster and a subscriber agree to link their transactions, they create a form of
voting. The poster makes an assertion that something is true and infects the message
with this transaction. (In other words, the message that |eaves the originating process
is marked as being associated with the transaction.) The transaction goesto the
EventBroker.

The EventBroker’s actions, such as calling the service or putting a message in the
queue for the subscriber, are also part of the same transaction. If a service routine that
iS running encounters an error, it can fail the transaction, rolling back everything,
including all other transactional subscriptions and the poster’s original transaction,
which might have invoked other services and performed other database work. The
poster makes an assertion (“I’m about to do this"), provides data, and links the datato
its transaction.

A number of anonymous subscribers, that is, subscribers about which the poster knows
nothing, are invoked transactionally. If any subscriber failsto link its work with the
poster’swork, the whole transaction is rolled back. All transactional subscribers must
agreeto link their work with the poster’ swork, or all thework isrolled back. If aposter
has not allowed the posting to participate in its transaction, the EventBroker starts a
separate transaction, and gathers all the transactional subscriptionsinto that
transaction. If any of these transactionsfail, all the work done on behalf of the
transactional subscriptionsisrolled back, but the poster’ s transaction is not rolled
back. This process is controlled by the TPEVTRAN flag.

Example of Using the EventBroker with Transactions

A stock trade is about to be completed by a brokerage application. A number of
database records have been updated by various services during the trade transaction. A
posting states that the trade is about to happen.

Administering a BEA Tuxedo Application a Run Time 6-9

6 Subscribing to Events

An application responsible for maintaining an audit trail of such trades has subscribed
to thisevent. Specifically, the application has requested the placement of arecordin a
specified queuewhenever an event of thistypeis posted. A serviceroutineresponsible
for determining whether trades can be performed, also subscribesto thistype of event;
it, too, is notified whenever such atrade is proposed.

If all goeswell, the trade is completed and an audit trail is made.

If an error occursin the queue and no audit trail can be made, the entire stock tradeis
rolled back. Similarly, if the service routine fails, the transaction isrolled back. If all
is successful, the trade is made and the transaction is committed.

See Also

m “What Isthe EventBroker?’ on page 5-3
m “How the EventBroker Works’ on page 2-10 in Introducing BEA Tuxedo ATMI
m “What Isan Event?’ on page 3-15 in Introducing BEA Tuxedo ATMI

m “Using Event-based Communication” on page 1-14 in Tutorials for Developing
BEA Tuxedo ATMI Applications

m reconp, rematch(3c),tppost(3c),tpsubscribe(3c),and
t punsubscri be(3c) inthe BEA Tuxedo ATMI C Function Reference

m TPPOST(3chl), TPSUBSCRI BE(3chl), and TPUNSUBSCRI BE(3cbl) in the BEA
Tuxedo ATMI COBOL Function Reference

m EVENT_M B(5), EVENTS(5) , TMSYSEVT(5) , and TMUSREVT(5) intheFile
Formats, Data Descriptions, MIBs, and System Processes Reference

6-10 Administering a BEA Tuxedo Application at Run Time

CHAPTER

{ Migrating Your
Application

Thistopic includes the following sections:

m What Is Migration?

m Migration Options

m How to Switch the Master and Backup Machines

m How to Migrate Server Groups

m How to Migrate Server Groups from One M achine to Another
m How to Cancel aMigration

m How to Migrate Transaction Logsto a Backup Machine

What Is Migration?

Under normal circumstances, an administrator performs daily administrative tasks on
the configured MASTER machine. The DBBL on the MASTER machine monitors other
machinesin a configuration, handles configuration updates, and broadcasts dynamic
changestothe TM B. If the MASTER machinefails, for example, dueto amachine crash,
database corruptions, BEA Tuxedo system problems, network partitioning, or
application faults, the application does not stop running. Clients can still join the

Administering a BEA Tuxedo Application a Run Time 7-1

4 Migrating Your Application

application, serverscan still servicerequests, and namingisstill available on eachlocal
machine. However, until the MASTER machine isrestored, servers cannot be activated
or deactivated, and an administrator cannot dynamically reconfigure the system.

Similarly, application servers are configured to run on specific machinesto service
client requests. However, if amachine fails or must be brought down to be serviced,
the servers on that machine become unavailable. In each case, you can migrate the
servers to a configured BACKUP or alternate machine.

An administrator who performs a migration in preparation for shutting down a
machine for service or upgrading, does not face the problems inherent in a machine
failure. Therefore an administrator in this situation has arelatively high degree of
control over migration activities.

Performing a Master Migration

A master migration is the process of moving the DBBL from the configured MASTER
machine to the configured BACKUP machine so that servers can continue to be serviced
while the configured MASTER machine is down. To start a migration, an administrator
reguests that the configured BACKUP assume therole of acting MASTER, and the
configured MASTER, the role of acting BACKUP. The acting MASTER then performs all
administrative functions: it begins monitoring other machinesin the configuration and
accepts any dynamic reconfiguration changes.

In the following illustration, Machine 2, the configured BACKUP machine, assumesthe
role of MASTER, while Machine 1, the configured MASTER, assumes the role of acting

BACKUP. When the configured MASTER isavailable again, it can bereactivated from the
acting MASTER (that is, the configured BACKUP). The configured MASTER then regains
control as acting MASTER.

7-2 Administering a BEA Tuxedo Application at Run Time

What Is Migration?

Before Migration

Machine 1 {MASTER) Machine 2 {(BACKUP)

T

DBBL BBL BBL

After Migration
Machine 1 {Acting BACKUP) Machine 2 {(Acting MASTER)

BBL . DpBBL BBL

Migrating a Server Group

For each group of servers, an administrator specifies a primary machine and an
alternate machine. The process of migrating a server group involves activating the
server group on the aternate machine.

In the following illustration, GroupA is assighed to Machine 1 (that is, Machine 1 is
configured asthe primary machine); Machine 2 is configured as the aternate machine
for GroupA. After migration, GroupA is activated on Machine 2, which meansthat all
serversin this group and the services associated with them, are available on Machine
2 (the acting primary).

Administering a BEA Tuxedo Application a Run Time 7-3

4 Migrating Your Application

Before Migration

Machine 1 {Primary} Machine 2 (Alternate)
Server Groups: BBL "‘Z.._, EBL
Depasi Service
Tramlar Service

iy ihdrawal Sardice

After Migration

Machine 1 (Acting Alternate) Machine 2 (Acting Primary)
Server Grouph
BBL -‘z-__ BBL Diaprl Sarvice "
Tramlar Sansica

Wikhdrawal Service

Migrating Machines

Whileit is sometimes useful to migrate only a single server group, it is more often
necessary to migrate an entire machine. This type of migration may be necessary, for
example, when a computer fails. Migrating a machine involves migrating each of the
server groups running on the machine. An alternate machine must be configured for
each server group.

Performing a Scheduled Migration

In a controlled situation, such as when a computer needs to be offline for awhile, or
needs to be upgraded, an administrator can preserve information about the current
configuration for servers and services, and use that information when activating
servers on aternate machines. Such use of configuration information is possible
because server entries are retained on a primary machine, even after the servers are
deactivated and become unavailable in response to a request for amigration.

7-4 Administering a BEA Tuxedo Application at Run Time

What Is Migration?

Y ou can migrate an entire server group or an entire machine. Migration of an entire
machine is possible when the same machine is configured as the alternate for all the
server groups on a primary machine. When that is not the case (that is, when different
alternate machines are configured for different server groups on a primary machine),
then the servers must be migrated by group, rather than by machine.

In the following illustration, Machine 1 is the configured MASTER and the primary
machine for GroupB; Machine 2 is the configured BACKUP. Server GroupB is
configured with Machine 1 as its primary machine and Machine 3 asits alternate. If
Machine 1 istaken down, Machine 2 becomes the acting MASTER, and Server GroupB
is deactivated, migrated to its alternate (Machine 3), and reactivated.

Before Migration

Machine 1 (MASTER, Machine 2 (BACKUP) Machine 3 (alternate
primary) DBBEL GroupB)

Server Groupb: "'Z_ BBL -z'- BBL

Buy Sarvica

Sall Serice BBL

After Migration

I'u'Ia[:_hine 1 Machine 2 Machine 3 {primary
(Acting BACKUP, {Acting MASTER) GroupB)
alternate) Server GraupB:
BBL ‘z" DEEL BBL BBL | g sonice
Sell Service

After deactivating all the serversin agroup, you can migrate the group from the acting
primary to the acting alternate. Y ou do not need to specify which servers are running,
which services are currently advertised, or which, if any, dynamic configuration
changes are being made. The configured alternate machine obtains this information
from the configuration information for the servers that is available on the configured
primary machine, when the servers are deactivated. If data-dependant routing is being
used and will continue to be used on the alternate machine, services are routed on the
basis of the target group name, instead of the target machine name.

Administering a BEA Tuxedo Application a Run Time 7-5

4 Migrating Your Application

Whether you need to migrate an entire application or only portions of it, be sure to
make the necessary changes with minimal service disruption. The integrity of all
machines, networks, databases, and other components of your application must remain
intact. The BEA Tuxedo system provides away to migrate an application while
preserving the integrity of all its components.

Migration Options

7-6

The BEA Tuxedo system alows you to migrate:

m A MASTER machine to a BACKUP machine, and vice-versa

m A server group from its primary machine to its alternate machine
m All server groups on a primary machine to an alternate machine
m A transaction log

Y ou can aso cancel a migration.

By migrating a combination of the application components listed here, and using the
system utilitiesfor recovering a partitioned network, you can migrate entire machines.

Administering a BEA Tuxedo Application at Run Time

How to Switch the Master and Backup Machines

How to Switch the Master and Backup
Machines

When a MASTER machine must be shut down for maintenance, or is no longer
accessible due to an unanticipated problem (such as a partitioned network), then you
must transfer the work of the MASTER to a configured BACKUP machine.

Note: Before you can migrate the MASTER, both the MASTER and BACKUP machines
must be running the same release of the BEA Tuxedo system software.

Thistype of switchingisdone by migrating the DBBL from the MASTERto the BACKUP.
To migrate the DBBL, enter the following command:

tmadm n nast er

In most cases, you need to migrate application serversto alternate sites, or restore the
MASTER machine. For more detail about thet madnmi n command, seethet nadmi n(1)

reference page in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Examples of Switching MASTER and BACKUP Machines

Thefollowing two samplet madni n sessions show how to switch MASTER and BACKUP
machines regardless of whether the MASTER machine is accessible from the BACKUP
machine. In the first example, the MASTER machine is accessible, so the DBBL process
is migrated from the MASTER to the BACKUP.

Administering a BEA Tuxedo Application a Run Time 7-7

4 Migrating Your Application

Listing 7-1 Switching MASTER and BACKUP When MASTER IsAccessible
from BACKUP

$ tmadmin

tmadm n - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
> mast er

are you sure? [y,n] y

M grating active DBBL from SITEL to SITE2, please wait...

DBBL has been migrated from SITEL to SITE2

>q
In the second example, because the MASTER machineis not accessibl e from the BACKUP
machine, the DBBL process is created on the BACKUP machine.
Listing 7-2 Switching MASTER and BACKUP When MASTER IsNot
Accessiblefrom BACKUP

$ tmadmin

tmadm n - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
TMADM N_CATT: 199: Cannot becone administrator. Limted set of commands avai |l abl e.
> mast er

are you sure? [y,n] vy

Creating new DBBL on SI TE2, please wait... New DBBL created on SI TE2

>q

How to Migrate Server Groups

1. Configure an aternate location in the LM D parameter (for the server group being
migrated) in the GROUPS section of the UBBCONFI Gfile. Serversin the group must
specify RESTART=Y and the M GRATE option must be specified in the RESOURCES
section of the UBBCONFI Gfile.

7-8 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups

2. If you are planning to migrate a group of servers, shut down each server in the
group by issuing the following command:

tnmshut down -R -g groupnane
3. Start at madni n session by entering the following command:
t madm n
4. Atthet madni n prompt, enter one of the following commands:
e To migrate all the serversin asingle group, enter:
m grat egroup(m gg)
This command takes the name of a single server group as an argument.

e To migrate all the server groups on amachine (as specified by an LMID),
enter:

m gratemach(m gn

5. If transactions are being logged for a server being migrated as part of a group,
you may need to move the TLOGto the BACKUP machine, load it, and “warm start”
it.

How to Migrate a Server Group When the Alternate
Machine Is Accessible from the Primary Machine

To migrate a server group when the alternate machine is accessible from the primary
machine, complete the following procedure.

1. Shut down the MASTER machine by entering the following command:
tnmshut down -R -g groupnane

2. Onthe primary machine, start at madni n session by entering the following
command:

tmadmin
3. Migrate the appropriate group by entering the following command:

m gr at egroup groupnane

Administering a BEA Tuxedo Application a Run Time 7-9

4 Migrating Your Application

4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.

How to Migrate a Server Group When the Alternate
Machine Is Not Accessible from the Primary Machine

To migrate a server group when the alternate machine is not accessible from the
primary machine, switch the MASTER and BACKUP machines, if necessary.

1. Ontheadternate machine, start at madni n session by entering the following
command:

tmadm n

2. Request cleanup and restart of any servers on the primary machine that require
these operations by entering the following command:

pcl ean prinmary_machine

3. Transfer the appropriate server group to a configured alternate machine by
entering the following command:

m grate groupnane
4. Boot the newly migrated server group by entering the following command:

boot -g groupname

Examples of Migrating a Server Group

Thefollowing two sample sessions show how you can migrate a server group,
regardless of whether the alternate machine is accessible from the primary machine. In
the first example, the alternate machine is accessible from the primary machine.

7-10 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups

Listing 7-3 Migratinga Group When the Alternate Machine Is Accessible from
the Primary M achine

$ tnshutdown -R -g GROUP1

Shutting down server processes...

Server ID=1 Goup ID = GROUPL machi ne = SI TELl: shutdown succeeded
1 process stopped.

$ tnadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.

> m gg GROUPL

m gg successful ly conpl et ed

>q

In the second example, the alternate machine is not accessible from the primary
machine.

Listing 7-4 Migrating a Group When the Alternate M achine Is Not Accessible
from the Primary Machine

$ tnadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> pcl ean SITEL

Cl eaning the DBBL.

Pausi ng 10 seconds waiting for systemto stabilize.
3 SITELl servers renoved frombul l etin board

> m gg GROUPL

m gg successful ly conpl et ed.

> boot -g GROUP1

Booti ng server processes ...

exec sinpserv -A :

on SITE2 -> process id=22699 ... Started.
1 process started.
>q

Administering a BEA Tuxedo Application at Run Time 7-11

4 Migrating Your Application

How to Migrate Server Groups from One
Machine to Another

1. Usethe LM D parameter to name the processor on which the server group(s) have
been running. The alternate location must be the same for all server groups on the
LM D.

2. Inthe RESOURCES section of the UBBCONFI Gfile, set the following parameters:
e Set RESTART=Y for each server on the machine indicated by the LM D.

e Specify the M GRATE options.

3. Shut down all server groups and mark the serversin the groups as restartable by
entering the following command:

t nshut down -R

4. Usethet madm n(1) migrat emach (ni gnm) command to migrate all server
groups from one machine to another when the primary machine must be shut
down for maintenance or when the primary machine is no longer accessible. (The
command takes one logical machine identifier as an argument.)

How to Migrate Machines When the Alternate Machine Is
Accessible from the Primary Machine

To migrate a machine when the aternate machine is accessible from the primary
machine, complete the following procedure.

1. Shut down the MASTER machine by entering the following command on that
machine:

tmshutdown -R -1 primary_nmachi ne

2. On the MASTER machine, start at madni n session by entering the following
command:

tmadm n

7-12 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups from One Machine to Another

3. Atthet madni n prompt, migrate the appropriate machine by entering the
following command:

m gratemach pri mary_nachi ne
4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.

How to Migrate Machines When the Alternate Machine Is
Not Accessible from the Primary Machine

To migrate a machine when the alternate machine is not accessible from the primary
machine, switch the MASTER and BACKUP machines, if necessary.

1. Onthe alternate machine, start at madni n session by entering the following
command:

tmadnmi n

2. Request cleanup and restart of the primary machine that require these operations
by entering the following command:

pcl ean primary_machi ne

3. Transfer the appropriate server group to a configured alternate machine by
entering the following command:

m gratemach pri mary_nachi ne

4. Boot the newly migrated server group by entering the following command:

boot -1 alternate_nachine

Administering a BEA Tuxedo Application at Run Time 7-13

4 Migrating Your Application

Examples of Migrating a Machine

The following sample session shows how to migrate machines. In the first example,
the aternate machine is accessible from the primary machine.

Listing 7-5 Migrating a Machine When the Alternate Machine I s Accessible
from the Primary Machine

$ tnmshutdown -R -1 SITEL

Shutti ng down server processes...

Server ID=1 Goup ID = GROUPL machine = SITELl: shut down
succeeded 1 process stopped.

$ tmadmin

tmadm n - Copyright © 1987-1990 AT&T; 1991- 1993 USL.

> mi gm S| TE1

m gm successfully conpl et ed

> q

In the second example, the aternate machine is not accessible from the primary
machine.

Listing 7-6 Migrating a MachineWhen the Alternate M achinelsNot Accessible
from the Primary Machine

$ tmadmin

tmadm n - Copyright © 1987-1990 AT&T; 1991- 1993 USL.
>pcl ean SI TEL

Cl eani ng the DBBL.

Pausing 10 seconds waiting for systemto stabili ze.
3 SITEL1 servers renoved from bulletin board

> m gm SI TEL

m gm successful |y conpl et ed.

> boot -1 SITELl

Booti ng server processes ...

exec sinpserv -A :

on SITE2 -- process id=22782 ... Started.
1 process started.
>q

7-14 Administering a BEA Tuxedo Application at Run Time

How to Cancel a Migration

How to Cancel a Migration

If you decide, after deactivating a server group or machine, that you do not want to
continue, you can cancel the migration before reactivating the server group or
machine. All the information in the name server for the deactivated servers and
servicesis deleted.

To cancel amigration after a shutdown but before issuing the mi gr at e command,
enter one of the following commands.

ToCancdl ... Enter ThisCommand . .. AsaResult ...

Server migration tmadnmi n m grat egroup -cancel Server entries are deleted
from the bulletin board.

Y ou must reboot the
servers once the migration
procedure is canceled.

or
tmadnmi n m gg -cancel

Machine tmadmi n mi gr at emach -cancel The migration is stopped.
migration or

tmadnmi n m gm - cancel

Example of a Migration Cancellation

Thefollowing samplet nadni n session shows how a server group and a machine can
be migrated between their respective primary and aternate machines.

Administering a BEA Tuxedo Application at Run Time 7-15

4 Migrating Your Application

Listing 7-7 Canceling a Server Group Migration for GROUP1

$t madmi n
tmadm n - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> psr -g GROUP1L

a.out Name Queue Nanme G p Name | D RgDone Ld Done Current Service

si npserv 00001. 00001 GROUP1 1 - - (DEAD M GRATI NG
> psr -g GROUP1L

TMADM N_CAT: 121: No such server

m gg -cancel GROUP1

>boot -g GROUP1

Booting server processes...

exec sinpserv -A

on SITEL ->process id 27636 ... Started. 1 process started.

> psr -g GROUP1

a.out Nanme Queue Nane G p Name | D RgDone Ld Done Current Service

si npserv 00001. 00001 GROUP1 1 - - (-)
>q

How to Migrate Transaction Logs to a
Backup Machine

To migrate atransaction log to a BACKUP machine, complete the following procedure.

1. Start at madni n session by entering the following command:

tmadm n

2. Shut down the serversin all the groups that write to the log, to prevent them from
writing further entries.

7-16 Administering a BEA Tuxedo Application at Run Time

How to Migrate Transaction Logs to a Backup Machine

. Dump the TLOG into atext file by running the following command:
dunptlog [-z config] [-0 offset] [-n filenane] [-g groupnane]

Note: TheTLOGisspecified by theconfi g andof f set arguments. The value of
of f set defaultsto 0; name defaultsto TLOG. If the - g option is chosen,
only those records coordinated by the TMs from gr oupname are dumped.

. Copy fi | enane to the BACKUP machine.

. Read the fileinto the existing TLOG for the specified machine by entering the
following command:

| oadtl og - m machi ne fil enane
. Force awarm start of the TLGOG by entering the following command:
| ogstart machi ne

The system reads the information in the TLOG and usesiit to create an entry in the
transaction table in shared memory.

. Migrate the servers to the BACKUP machine.

Administering a BEA Tuxedo Application a Run Time 7-17

4 Migrating Your Application

7-18 Administering a BEA Tuxedo Application at Run Time

CHAPTER

8

Tuning a BEA Tuxedo
ATMI Application

Thistopic includes the following sections:

Maximizing Your Application Resources

When to Use MSSQ Sets

How to Enable Load Balancing

How to Measure Service Performance Time

How to Assign Priorities to I nterfaces or Services
Bundling Servicesinto Servers

Enhancing Overall System Performance
Enhancing Efficiency with Application Parameters
Determining Your System IPC Requirements
Measuring System Traffic

Note: For detailed information about tuning your applications in the BEA Tuxedo

CORBA environment, refer to the Scaling, Distributing, and Tuning CORBA
Applications guide.

Administering a BEA Tuxedo Application a Run Time 8-1

8 Tuning a BEA Tuxedo ATMI Application

Maximizing Your Application Resources

Making correct decisions in response to critical issuesis the first step in ensuring the
smooth performance of your BEA Tuxedo application. When making decisions about
critical issues, consider including the following mechanisms as part of your strategy to
improve the functioning of your system:

m Using MSSQ sets

m Enabling load balancing

m Measuring service performance time

m Assigning prioritiesto interfaces and/or services
m Bundling servicesinto servers

m Setting application parameters

m Tuning operating system |PC parameters

m Eliminating bottlenecks

Therest of this section explains how to use these mechanisms and approaches to
improve your system.

When to Use MSSQ Sets

Note: Multiple Servers, Single Queue (MSSQ) sets are not supported in BEA
Tuxedo CORBA servers.

The MSSQ scheme offers additional 1oad balancing in BEA Tuxedo ATMI
environments. One queue is accommodated by several servers offering identical
services at al times. If the server queue to which arequest is sent is part of an MSSQ
set, the message is dequeued to the first available server. Thus load balancing is
provided at the individual queue level.

8-2 Administering a BEA Tuxedo Application at Run Time

When to Use MSSQ Sets

When a server is part of an M SSQ set, it must be configured with its own reply queue.
When the server makes requests to other servers, the replies must be returned to the
original requesting server; they must not be dequeued by other serversin the MSSQ
set.

Y ou can configure MSSQ sets to be dynamic so they automatically spawn and
eliminate servers based upon a queue load.

The following table specifies when it is beneficial to use MSSQ sets.

You Should Use MSSQ Setslif ... You Should Not Use MSSQ Setsif ...
Y ou have between 2 and 12 servers. There are many servers. (A compromise isto use many
MSSQ sets.)

Buffer sizes are not too large, that is, large enough Buffer sizes are large enough to exhaust one queue.
to exhaust a queue.

All servers offer identical sets of services. Each server offers different services.

M essages are relatively small. L arge messagesare being passed to the services, causing the
queue to be exhausted. When a queue is exhausted, either
nonblocking sends fail or blocking sends block.

Optimization and consistency of service
turnaround time are paramount.

The following two ana ogies illustrate when it is beneficia to use MSSQ sets.

m A situation analogous to the appropriate use of M SSQ sets can be found in a
bank at which several tellers performing identical services handle a single line of
customers. The next available teller always takes the next person in line. In this
scenario, each teller must be able to perform all customer services. In aBEA
Tuxedo environment, al servers set up to share a single queue must offer an
identical set of services at all times. The advantage of MSSQ sets is that they
offer a second form of load balancing at the individual queue level.

m A supermarket at which different cashiers accept different forms of payment
(some accept credit cards, while others accept only cash) is similar to aBEA
Tuxedo application in which M SSQ sets should not be used.

Administering a BEA Tuxedo Application a Run Time 8-3

8 Tuning a BEA Tuxedo ATMI Application

How to Enable Load Balancing

To alleviate the performance degradation resulting from heavy system traffic, you may
want to implement aload balancing algorithm on your entire application. With load
balancing, aload factor is applied to each service within the system, and you can track
the total load on every server. Every service request is sent to the qualified server that
isleast |oaded.

To implement system-wide load balancing, complete the following procedure.
1. Runyour application for an extended period of time.

2. Notethe average amount of time it takes for each service to be performed.
3. Inthe RESOURCES section of the configuration file:

e SetLDBALtOY.

e AssignalLoaD value of 50 (LOAD=50) to any service that takes approximately
the average amount of time.

e For any servicetaking longer than the average amount of time, set LOAD>50;
for any service taking less than the average amount of time, set LOAD<50.

Note: Thisalgorithm, although effective, isexpensive and should be used only when
necessary, that is, only when aserviceis offered by serversthat use more than
one queue. Services offered by only one server, or by multiple servers, all of
which belong to the same MSSQ (Multiple Server, Single Queue) set, do not
need |oad balancing.

8-4 Administering a BEA Tuxedo Application at Run Time

How to Measure Service Performance Time

How to Measure Service Performance Time

Y ou can measure service performancetime in either of two ways:

m Administratively—in the configuration file, you can arrange to have alog of

services that are performed to be written to standard error. In the SERVI CES
section, specify:

ser VOpt S -r
To analyze theinformation in the log, run thet xr pt (1) command.

For details about ser vopt s(5) andt xr pt (1) , see the File Formats, Data
Descriptions, MIBs, and System Processes Reference and BEA Tuxedo Command
Reference, respectively.

Programmatically—insert acall toti me() at the beginning and end of a service
routine. Services that take the longest time receive the highest load; those that
take the shortest time receive the lowest load. (For detailsabout t i ne() , seethe
documentation for your C language libraries.)

How to Assign Priorities to Interfaces or

Services

Assigning priorities enablesyou to exert significant control over the flow of datain an
application, provide faster service to the most important requests, and provide slower
service to the lessimportant requests. Y ou can a so give priority to specific users—at
all times or in specific circumstances.

Y ou can assign prioritiesto BEA Tuxedo servicesin either of two ways:

Administratively—in the SERVI CES section of the configuration file, specify the
PRI O parameter for each service named.

Programmatically—add callsto thet pspri o() function to the appropriate client
and server applications, to allow designated clients and servers to change a

Administering a BEA Tuxedo Application a Run Time 8-5

8

Tuning a BEA Tuxedo ATMI Application

priority dynamically. Only preferred clients should be able to increase the
service priority. In a system on which servers perform service requests, the
server can call t pspri o() toincrease the priority of itsinterface or service calls
so the user does not wait in line for every interface or service request that is
required.

Example of Using Priorities

Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority of 50;
Interface C, apriority of 70. Aninterface requested for C isalways dequeued before a
request for A or B. Reguests for A and B are dequeued equally with respect to one
another. The system dequeues every tenth request in first-in, first-out (FIFO) order to
prevent a message from waiting indefinitely on the queue.

Using the PRIO Parameter to Enhance Performance

8-6

The PRI O parameter determines the priority of an interface or a service on a server’s
gueue. It should be used cautiously. Once priorities are assigned, it may takelonger for
some messages to be dequeued. Depending on the order of messages on the queue (for
example, A, B, and C), some (such as A and B) are degqueued only one in ten times
when there are more than 10 requests for C. This means reduced performance and
potentia slow turnaround time for some services.

When you are deciding whether to use the PRI O parameter, keep the following
implications in mind:

m Because higher priorities get first preference, a higher priority should usually be
assigned only to an interface or service that is not called frequently.

m A message with alower priority does not remain enqueued indefinitely; every
tenth message is retrieved on a FIFO basis. Before you assign alow priority to
an interface or service you should be sure that response time for that interface or
service is not important.

Administering a BEA Tuxedo Application at Run Time

Bundling Services into Servers

Bundling Services into Servers

The easiest way to package services into serversisto avoid packaging them at all.
Unfortunately, if you do not package services, the number of servers, message queues,
and semaphores rises beyond an acceptable level. Thusthereisatrade-off between no
bundling and too much bundling.

When to Bundle Services

We recommend that you bundle services if you have one of the situations or
requirements described in the following list.

Functional similarity—if multiple services play a similar role in the application,
you can bundle them in the same server. The application can offer all or none of
them at agiven time. In the bankapp application, for example, the W THDRAWY
DEPOSI T, and | NQUI RY services are all operations that can be grouped together
in a“bank teller operations’ server. Administration of servicesissimplified
when functionally similar services are bundled.

Similar libraries—less disk space isrequired if you bundle services that use the
same libraries. For example, if you have three services that use the same 100K
library and three services that use different 100K libraries, bundling the first
three services saves 200K . Functionally equivalent services often use similar
libraries.

Filling the queue—bundle only as many services into a server as the queue can
handle. Each service added to an unfilled MSSQ set may add relatively littleto
the size of an executable, and nothing to the number of queues in the system.
Once the queueisfilled, however, system performance is degraded and you must
create more executables to compensate.

Do not put two or more services that call each other, that is, call-dependent services,
in the same server. If you do so, the server issues a call to itself, causing a deadl ock.

Administering a BEA Tuxedo Application a Run Time 8-7

8 Tuning a BEA Tuxedo ATMI Application

Enhancing Overall System Performance

The following performance enhancement controls can be applied to BEA Tuxedo
release 8.0 or later.

m Service and Interface Caching
m Removing Authorization and Auditing Security
m Turning Off Multithreaded Processing

m Turning Off XA Transactions

Service and Interface Caching

BEA Tuxedo release 8.0 or later allows you to cache service and interface entries, and
to use the cached copies of the service or interface without locking the bulletin board.
This feature represents a significant performance improvement, especially in systems
with large numbers of clients and only afew services.

The SI CACHEENTRI ESMAX option has been added to the MACHI NCES and SERVERS
sections of the configuration file to allow you to define the maximum number of
service cache entries that any process and/or server can hold.

Since caching may not be useful for every client or every application, the

TVBI CACHEENTRI ESMAX environment variable has been added to control the cache size.
The default value for TMSI CACHEENTRI ESMAX is preconfigured so that no
administrative changes are necessary when upgrading from previous releases.

TVBI CACHEENTRI ESMVAX can also control the number of cache entries, sinceit is not
desirable for clientsto grow too large.

Service Caching Limitations

Thefollowing limitations apply to the caching feature:

m |f there arerouting criteriaon a service, then the service will not be cached.

8-8 Administering a BEA Tuxedo Application at Run Time

Enhancing Overall System Performance

m |f there are buffer type restrictions on a service, then the service will not be
cached.

m |f the group of aserviceis predetermined (that is, TMS services), then the
service will not be cached.

m |f the number of service entriesis zero, no caching will be done.

Notes: For more information about the SI CACHEENTRI ESMAX option, refer to the
ubbconfi g(5) and TM_ M B(5) sectionsin the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

For more information about the TVSI CACHEENTRI ESMAX variable, refer to the
t uxenv(5) section in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Removing Authorization and Auditing Security

For BEA Tuxedo release 7.1, the AAA (authentication, authorization, and auditing)
security features were added so that implementations using the AAA plug-in functions
would not need to base security onthe BEA Tuxedo administrative option. Asaresult,
the BEA Engine AAA security functions are always called in the main BEA Tuxedo
7.1 code path. Since many applications do not use security, they should not pay the
overhead price of these BEA Engine security calls.

For BEA Tuxedo release 8.0 or |ater, the NO_AA option has been added to the OPTI ONS
parameter in the RESOURCES section of the configuration file. The NO_AA option will
circumvent the calling of the authorization and auditing security functions. Since most
applications need authentication, this feature cannot be turned off.

If the NO_AA option is enabled, the following SECURI TY parameters may be affected:

m The parameters NONE, APP_PW and USER_AUTH parameters will continue to work
properly—except that no authorization or auditing will be done.

m The ACL and MANDATORY_ACL parameters will continue to work properly, but
will only use the default BEA security mechanism.

Note: For moreinformation about the NO_AA option, refer to the ubbconf i g(5) and
TM M B(5) sectionsin the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

Administering a BEA Tuxedo Application a Run Time 8-9

8

Tuning a BEA Tuxedo ATMI Application

Turning Off Multithreaded Processing

For BEA Tuxedo release 7.1, a generalized threading feature was added. Due to the
generality of the architecture, all ATMI callsmust call mutexing functionsin order to
protect sensitive stateinformation. Furthermore, thelayering of the engine and caching
schemes used in the libraries cause more mutexing. For applications that do not use
threads, turning them off can result in significant performance improvements without
making changes to the application code.

To turn off multi-threaded processing, the TMNOTHREADS environment variable has
been implemented for BEA Tuxedo release 8.0 or later. With thisfeature, individual
processes can turn threads on and off without introducing a new API or flag in order
to do so.

If the TMNOTHREADS variable is set to “yes” , then the calls to the mutexing functions
are avoided.

Note: For moreinformation about TMNOTHREADS, refer to thet uxenv(5) sectionin
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Turning Off XA Transactions

8-10

Although not all BEA Tuxedo applications use XA transactions, all processes pay the
cost of transactional semantics by calling internal transactional verbs. To boost
performance for applications that don’t use XA transactions for BEA Tuxedo release
8.0 or later, the NO_XA flag has been has been added to the OPTI ONS parameter in the
RESOURCES section of the configuration file.

No XA transactionsare allowed whenthe NO_XA flagisset. Itisimportant to remember
though, that any attempt to configure TM S services in the GROUPS section will fail if
the NO_XA option has been specified.

Note: For more information about the NO_XA option, refer to theubbconf i g(5) and
TM M B(5) sectionsin the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

Administering a BEA Tuxedo Application at Run Time

Enhancing Efficiency with Application Parameters

Enhancing Efficiency with Application
Parameters

The following application parameters enable you to enhance the efficiency of your
system:

MAXACCESSERS, MAXSERVERS, MAXI NTERFACES, and MAXSERVI CES
MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
SANI TYSCAN, BLOCKTI ME, and individual transaction timeouts

BBLQUERY and DBBLWAI T

Setting the MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters

The MAXACCESSERS, MAXSERVERS, MAXI NTERFACES, and MAXSERVI CES parameters
increase semaphore and shared memory costs, so you should carefully weigh these
costs against the expected benefits before using these parameters, and choose the
values that best satisfy the needs of your system. Y ou should take into account any
increased resources your system may requirefor apotential migration. Y ou should a so
allow for variation in the number of clients accessing the system simultaneously.
Defaults may be appropriate for a generous allocation of IPC resources; however, it is
prudent to set these parameters to the lowest appropriate values for the application.

Administering a BEA Tuxedo Application at Run Time 8-11

8 Tuning a BEA Tuxedo ATMI Application

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters

Todeterminewhether the default is adequate for your application, multiply the number
of clientsin the system timesthe percentage of time they are committing atransaction.
If the product of this multiplication is close to 100, you should increase the value of
the MAXGTT parameter. As aresult of increasing MAXGT T:

m Your system may require a greater number of clients, depending on the speed of
commits.

m You should also increase TLOGSI ZE accordingly for every machine.

m You should set MAXGTT to O for applications in which distributed transactions are
not used.

To limit the number of buffer types and subtypes allowed in the application, set the
MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default for
MAXBUFTYPE is 16. If you plan to create eight or more user-defined buffer types, you
should set MAXBUFTYPE to a higher value. Otherwise, you do not need to specify this
parameter; the default value is used.

The current default for MAXBUFSTYPE is 32. Y ou may want to set this parameter to a
higher value if you intend to use many different Vi Ewsubtypes.

Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY,
and DBBLWAIT Parameters

If asystem isrunning on slow processors (for example, due to heavy usage), you can
increase the timing parameters: SANI TYCAN, BLOCKTI ME, and individual transaction
timeouts.

If networking is slow, you can increase the value of the BLOCKTI Mg, BBLQUERY, and
DBBLWAI T parameters.

8-12 Administering a BEA Tuxedo Application at Run Time

Determining Your System IPC Requirements

Recommended Values for Tuning-related Parameters

In the following table are recommended values for the parameters availablefor tuning
an application.

Use These Parameters. . .

To...

MAXACCESSERS, MAXSERVERS,
MAXI NTERFACES, and MAXSERVI CES

Set the smallest satisfactory value because of
IPC cogt. (Allow for extraclients.)

MAXGTT, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGT T for many clients; set
MAXGTT to O for nontransactional
applications.

Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.

Increase the value of MAXBUFSTYPE if you
use many different VI EWsubtypes.

BLOCKTI ME, TRANTI ME, and
SANI TYSCAN

Increase the values if the system is slow.

BLOCKTI ME, TRANTI ME, BBLQUERY, and
DBBLWAI T

Increase the values if networking is dow.

Determining Your System IPC Requirements

The IPC requirements for your system are determined by the values of several system
parameters:

MAXACCESSERS
REPLYQ

RQADDR
MAXSERVERS

Administering a BEA Tuxedo Application a Run Time

8-13

8 Tuning a BEA Tuxedo ATMI Application

m MAXSERVI CES
m MAXGIT

Y ou can usethe t mboot - ¢ command to display the minimum IPC requirements of
your configuration.

The following table describes these system parameters.

Table 8-1 Parametersfor Tuning |PC Resour ces

Par ameter (s) Description

MAXACCESSSERS Equals the number of semaphores.

Number of message queuesis almost equal to MAXACCESSERS +
number of servers with reply queues (number of serversin MSSQset *
number of MSSQsets).

MAXSERVERS, While MAXSERVERS, MAXSERVI CES, MAXGI T, and the overall size of
MAXSERVI CES, the ROUTI NG, GROUP, and NETWORK sections affect the size of shared
and MAXGTT memory, an attempt to devise formulas that correlate these parameters

can become complex. Instead, smply runt mboot -c ortm oadcf
- ¢ to calculate the minimum IPC resource requirements for your
application.

8-14 Administering a BEA Tuxedo Application at Run Time

Measuring System Traffic

Table 8-1 Parametersfor Tuning I PC Resources (Continued)

Parameter(s) Description

Queue-related Need to be tuned to manage the flow of buffer traffic between clients

kernel parameters and servers. The maximum total size (in bytes) of aqueue must be large
enough to handle the largest message in the application. A typical queue
is not morethan 75 to 85 percent full. Using a smaller percentage of a
queue is wasteful; using alarger percentage causes message sends to
block too frequently.

Set the maximum size for amessageto handl e the largest buffer that the
application sends.

The maximum queue length (the largest number of messages that are
alowed to sit on aqueue at once) must be adequate for the application’s
operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This process may require alot of trial and
error; you may need to estimate values for your tunabl es before running
the application, and then adjust them after running under performance
analysis.

For alarge system, analyze the effects of parameter settings on the size
of the operating system kernel. If they are unacceptable, reduce the
number of application processes or distribute the application across
more machines to reduce MAXACCESSERS.

Measuring System Traffic

Ason any road that supportsalot of traffic, bottlenecks can occur in your system. On
ahighway, cars can be counted with a cable strung across the road, that causes a
counter to be incremented each time a car drives over it.

Y ou can use a similar method to measure service traffic. For example, when a server
isstarted (that is, when t psvri ni t () isinvoked), you caninitialize aglobal counter
and record a starting time. Subsequently, each time a particular serviceis called, the
counter isincremented. When the server is shut down (through the t psvr done()
function), thefinal count and the ending timearerecorded. Thismechanism allowsyou
to determine how busy a particular service is over a specified period of time.

Administering a BEA Tuxedo Application a Run Time 8-15

8 Tuning a BEA Tuxedo ATMI Application

In the BEA Tuxedo system, bottlenecks can originate from problematic data flow
patterns. The quickest way to detect bottlenecks is to measure the amount of time
reguired by relevant services from the client’s point of view.

Example of Detecting a System Bottleneck

Client 1 requires 4 seconds to display the results. Callstoti ne() determine that the
t pcal I to service A isthe culprit with a 3.7-second delay. Service A is monitored at
the top and bottom and takes 0.5 seconds. Thisfinding implies that a queue may be
clogged, a situation that can be verified by running the pg command in t madni n.

On the other hand, suppose service A takes 3.2 seconds. Theindividual partsof service
A can be bracketed and measured. Perhaps service A issues at pcal | to service B,
which requires 2.8 seconds. Knowing this, you should then be able to isolate queue
time or message send blocking time. Once the relevant amount of time has been
identified, the application can be retuned to handle the traffic.

Using ti me() , you can measure the duration of the following:
m An entireclient program

m A singleclient service request

m An entire service function

m A service function making a service reguest (if any)

Detecting Bottlenecks on UNIX Platforms

The UNIX system sar (1) command provides valuable performance information that
can be used to find system bottlenecks. Y ou can run sar (1) to do the following:

m Sample cumulative activity counters in the operating system at predetermined
intervals

m Extract datafrom a system file

8-16 Administering a BEA Tuxedo Application at Run Time

Measuring System Traffic

The following table describes the sar (1) command options.

Use This Option... To...

-u Gather CPU utilization numbers, including percentages of time
during which the system: runsin user mode, runsin system mode,
remains idle with some process waiting for block 1/0O, and
otherwise remainsidle.

-b Report buffer activity, including number of data transfers, per
second, between system buffers and disk (or other block devices).

-C Report activity of system calls of all types, as well as specific
system calls, such asf or k(2) and exec(2).

-wW Monitor system swapping activity, including the number of
transfers for swapins and swapouts.

-q Report average queue lengths while queues are occupied, and the
percentage of time they are occupied.

-m Report message and system semaphore activities, including the
number of primitives per second.

-p Report paging activity, including the number of addresstranslation
page faults, page faults and protection errors, and valid pages
reclaimed for freelists.

-r Report the number of unused memory pages and disk blocks,
including the average number of pages available to user processes
and disk blocks available for process swapping.

Note: Some flavors of the UNIX system do not support the sar (1) command, but
offer equivalent commands, instead. BSD, for example, offersthei ost at (1)
command; Sun offers per f met er (1).

Administering a BEA Tuxedo Application at Run Time 8-17

8 Tuning a BEA Tuxedo ATMI Application

Detecting Bottlenecks on Windows 2000 Platforms

On Windows 2000 platforms, you can use the Performance Monitor to collect system
information and detect bottlenecks. To open the Performance Monitor, select the
following options from the Start menu:

Start —> Prograns —> Administrati on Tools —> Performance Monitor

See Also

m “Creating the Configuration File for a Distributed ATMI Application” on page
8-1in Setting Up a BEA Tuxedo Application

m “Setting Up the Network for a Distributed Application” on page 9-1 in Setting
Up a BEA Tuxedo Application

m “Managing the Network in a Distributed Application” on page 4-1
m Scaling, Distributing, and Tuning CORBA Applications

8-18 Administering a BEA Tuxedo Application at Run Time

CHAPTER

O Troubleshooting a BEA
Tuxedo Application

Thistopic includes the following sections:

m Determining Types of Failures

m How to Broadcast an Unsolicited Message

m Maintaining Your System Files

m Repairing Partitioned Networks

m Restoring Failed Machines

m How to Replace System Components

m How to Replace Application Components

m Cleaning Up and Restarting Servers Manually

m Aborting or Committing Transactions

m How to Recover from Failures When Transactions Are Used
m How to Usethe IPC Tool When an Application Fails to Shut Down Properly
m Troubleshooting Multithreaded/ Multicontexted Applications

Administering a BEA Tuxedo Application a Run Time 9-1

9 Troubleshooting a BEA Tuxedo Application

Determining Types of Failures

Thefirst step in troubleshooting is determining problem areas. In most applications
you must consider six possible sources of trouble:

Application

BEA Tuxedo system

Database management software
Network

Operating system

Hardware

Once you have determined the problem area, you must then work with the appropriate
administrator to resolve the problem. If, for example, you determine that thetroubleis
caused by a networking problem, you must work with the network administrator.

How to Determine the Cause of an Application Failure

Thefollowing steps will help you detect the source of an application failure.

1

Check any BEA Tuxedo system warnings and error messagesin the user log
(ULOOG).

Select the messages you think most likely reflect the current problem. Note the
catalog name and the number of each of message, so you can look up the
message in System Messages. The manual entry provides:

e Details about the error condition indicated by the message

e Recommendations for recovery actions

Check any application warnings and error messages in the ULOG

9-2 Administering a BEA Tuxedo Application at Run Time

Determining Types of Failures

4. Check any warnings and errors generated by application servers and clients. Such
messages are usually sent to the standard output and standard error files (named,
by default st dout and st der r, respectively).

e Thestdout andstderr filesarelocated in the directory defined by the
APPDI R variable.

e Thestdout andstderr filesfor your clients and servers may have been
renamed. (You can rename the st dout and st der r files by specifying - e
and - o in the appropriate client and server definitionsin your configuration
file. For details, seeservopt s(5) inthe File Formats, Data Descriptions,
MIBs, and System Processes Reference.)

5. Look for any core dumpsin the directory defined by the APPDI Rvariable. Use a
debugger such as dbx to get a stack trace. If you find core dumps, notify your
application developer.

6. Check your system activity reports (for example, by running the sar (1)
command) to determine why your system is not functioning properly. Consider
the following reasons:

e The system may be running out of memory.

e Thekernel might not be tuned correctly.

How to Determine the Cause of a BEA Tuxedo System
Failure

The following steps will help you detect the source of a system failure.

1. Check any BEA Tuxedo system warnings and error messages in the user log
(ULCG):

e TPEGS messages indicate errors in the operating system.
e TPESYSTEMmMessagesindicate errors in the BEA Tuxedo system.

2. Select the messages you think most likely reflect the current problem. Note the
catalog name and number of each of message, so you can look up the message in
System Messages. The manual entry provides:

Administering a BEA Tuxedo Application a Run Time 9-3

9 Troubleshooting a BEA Tuxedo Application

e Details about the error condition flagged by the message.

e Recommendations for recovery actions.

3. Prepare for debugging in the following ways:
e Shut down the suspend service.

e Usetnboot -n -s(server) -di.(Thiswill not boot the server, but prints
the command line used to boot the server by the BEA Tuxedo system.) Use
that command line with a debugger such as dbx.

How to Broadcast an Unsolicited Message

The EventBroker enhances troubleshooting by providing a system-wide summary of
events and a mechanism whereby an event triggers notification. The EventBroker
provides detail sabout BEA Tuxedo system events, such as serversdying and networks
failing, or application events, such asan ATM machine running out of money. A BEA
Tuxedo client that receives unsolicited notification of an event, can name a service
routine to be invoked, or name an application queue in which data should be stored for
later processing. A BEA Tuxedo server that receives unsolicited notification can
specify a service request or name an application queue to store data.

1. To send an unsolicited message, enter the following command:
broadcast (bcst) [-m machine] [-u usrnanme] [-c cltnane] [text]
Note: By default, the message is sent to all clients.
2. You can limit distribution to one of the following recipients:
e Onemachine (- m machi ne)
e Oneclientgroup (-c client _group)

e Oneuser (-u user)

The text may not include more than 80 characters. The system sends the message in a
STRI NG type buffer, which means the client’ s unsolicited message handling function
(specified by t pset unsol (0)) must be able to handle this type of message. The

t pt ypes() function may be useful in this case.

9-4 Administering a BEA Tuxedo Application at Run Time

Maintaining Your System Files

See Also

m “What IsUnsolicited Communication?’ on page 2-17 in Introducing BEA
Tuxedo ATMI

m “Managing System Events Using EventBroker” on page 3-14 in Introducing
BEA Tuxedo ATMI

Maintaining Your System Files

Periodically, you may need to perform the following tasks to maintain your file
system:

m Print the Universal DeviceList
m Print VTOC information

m Reinitialize adevice

m Createadevicelist

m Destroy adevicelist

Note: Thisfileformat isused for TUXCONFI G, TLOG, and /Q.

How to Print the Universal Device List (UDL)

To print aUDL, complete the following procedure:
1. Runtmadnin -c.

2. Enter the following command:
lidl

Administering a BEA Tuxedo Application a Run Time 9-5

9 Troubleshooting a BEA Tuxedo Application

3. To specify the device from which you want to obtain the UDL, you have a choice
of two methods:

e Specify thedeviceonthel i di command line:
-z device_nane [devindx]

e Set the environment variable FSCONFI G to the name of the desired device.

How to Print VTOC Information

To print VTOC information, complete the following procedure.

1. Runtnmadnin -c.

2. Togetinformation about al VTOC table entries, enter the following command:
livtoc

3. To specify the device from which you want to obtain the VTOC, you have a
choice of two methods:

e Specify thefollowing onthel i dl command line:
-z device nane [devindx]

e Set the environment variable FSCONFI G to the name of the desired device.

How to Reinitialize a Device

Toreinitialize adevicethat isincluded on adevicelist, complete the following
procedure.

1. Runtmadnin -c.

2. Enter the following command:
initdl [-z devicenane] [-yes] devindx

Note: Thevalue of devi ndx istheindex to the file to be destroyed.

9-6 Administering a BEA Tuxedo Application at Run Time

Maintaining Your System Files

3.

4.

You can specify the device by:
e Entering its name after the - z option (as shown here), or

e Setting the environment variable FSCONFI Gto the device name

If you include the - yes option on the command line, you are not prompted to
confirm your intention to destroy thefile before the file is actually destroyed.

How to Create a Device List

To create adevice list, complete the following procedure.

1
2.

Runtmadnin -c.

Enter the following command:
crdl [-z devicenane] [-b bl ocks]

e Thevaue of devi cenane [devi ndx] isthe desired device name. (Another
way to assign a name to a new device is by setting the FSCONFI G
environment variable to the desired device name.)

e Thevaueof bl ocks isthe number of blocks needed. The default is 1000
blocks.

Note: Because 35 blocks are needed for the administrative overhead associated
with a TLOG, be sure to assign a value higher than 35 when you create a
TLOG.

How to Destroy a Device List

To destroy adevicelist with index devi ndx, complete the following procedure.

1
2.

Runtmadnin -c.

Enter the following command:
dsdl [-z devicenane] [yes] [devindx]

Note: Thevaue of devi ndx isthe index to the file to be destroyed.

Administering a BEA Tuxedo Application a Run Time 9-7

9

Troubleshooting a BEA Tuxedo Application

3. You can specify the device by:
e Entering its name after the - z option (as shown here), or

e Setting the environment variable FSCONFI Gto the device name

4. If you include the yes option on the command line, you are not prompted to
confirm your intention to destroy the file before the file is actually destroyed.

Repairing Partitioned Networks

This topic provides instructions for troubleshooting a partition, identifying its cause,
andtaking actiontorecover fromit. A network partition existsif one or more machines
cannot access the MASTER machine. As the application administrator, you are
responsible for detecting partitions and recovering from them.

A network partition may be caused by any the following failures:

m A network failure—either atransient failure, which corrects itself in minutes, or
a severe failure, which requires you to take the partitioned machine out of the
network

m A machine failure on either the MASTER machine or the nonmaster machine
m A BRI DGE failure

The procedure you follow to recover from a partitioned network depends on the cause
of the partition.

Detecting a Partitioned Network

9-8

Y ou can detect a network partition in one of the following ways:

m Check the user log (ULOG) for messages that may shed light on the origin of the
problem.

m Gather information about the network, server, and service, by running the
tmadmin commands provided for this purpose.

Administering a BEA Tuxedo Application at Run Time

Repairing Partitioned Networks

How to Check the ULOG

When problems occur with the network, BEA Tuxedo system administrative servers
start sending messages to the ULOG. If the ULOGis set up over aremote file system, all
messages are written to the same log. In this scenario, you can run thet ai | (1)
command on one file and check the failure messages displayed on the screen.

If, however, the remote file system is using the network in which the problem has
occurred, the remote file system may no longer be available.

Listing 9-1 Example of aULOG Error Message

151804. gunby! DBBL. 28446: ... : ERROR BBL partitioned, machine=SI TE2

How to Gather Information About the Network, Server, and Service

The following is an example of at madmi n session in which information is being
collected about a partitioned network, a server, and a service on that network. Three
t madni n commands are run:

m pnw(thepri nt net wor k command)
m psr (theprintserver command)

m psc (theprint servi ce command)

Administering a BEA Tuxedo Application a Run Time 9-9

9 Troubleshooting a BEA Tuxedo Application

Listing 9-2 Exampletmadmin Session

$ tmadm n
> pnw SI TE2
Coul d not retrieve status from Sl TE2

> psr -m SI TEL1

a.out Name Queue Nane G p Name ID Rq Done Load Done Current Service
BBL 30002. 00000 SITE1 0 - - (-)
DBBL 123456 S| TE1 0 121 6050 MASTERBB
si npserv 00001. 00001 GROUPL 1 - - (-)
BRI DGE 16900672 S| TE1 0 - - (DEAD)
>psc -m SI TEL

Service Name Routine Nane a.out Grp Nanme | D Machi ne # Done Status
ADJUNCTADM N ADJUNCTADM N BBL SI TE1 0 SI TE1 - PART

ADJUNCTBB ADJUNCTBB BBL SI TE1 0 SI TE1 - PART

TOUPPER TOUPPER si npserv GROUP1 1 SI TE1 - PART

BRI DGESVCNM BRI DGESVCNM BRI DGE ~ SI TE1 1 SI TE1 - PART

Restoring a Network Connection

This topic provides instructions for recovering from transient and severe network
failures.

How to Recover from Transient Network Failures

Because the BRI DGE tries, automatically, to recover from any transient network
failures and reconnect, transient network failures are usually not noticed. If, however,
you need to perform amanual recovery from atransient network failure, complete the
following procedure.

1. Onthe MASTER machine, start at madmi n(1) session.

2. Runthereconnect command (r co), specifying the names of nonpartitioned and
partitioned machines:

rco non-partioned_nodel partioned_node2

9-10 Administering a BEA Tuxedo Application at Run Time

Restoring Failed Machines

How to Recover from Severe Network Failures

To recover from severe network failure, complete the following procedure.

1
2.

On the MASTER machine, start at madmi n session.
Run the pcl ean command, specifying the name of the partitioned machine:
pcl partioned_machi ne

Migrate the application servers or, once the problem has been corrected, reboot
the machine.

Restoring Failed Machines

The procedureyoufollow to restore afailed machine depends on whether that machine
was the MASTER machine.

How to Restore a Failed MASTER Machine

To restore a failed MASTER machine, complete the following procedure.

1
2.

Make sure that all 1PC resources for the BEA Tuxedo processes that are removed.
Start at madni n session on the ACTI NG MASTER (S| TE2):

tmadmi n

Boot the BBL on the MASTER (SI TEL) by entering the following command:

boot -B SI TE1l

(The BBL does not boot if you have not executed pcl ean on SI TEL.)

Still in t madni n, start aDBBL running again on the MASTER site (SI TE1) by
entering the following:

MASTER

If you have migrated application servers and data off the failed machine, boot
them or migrate them back.

Administering a BEA Tuxedo Application at Run Time 9-11

9 Troubleshooting a BEA Tuxedo Application

How to Restore a Failed Nonmaster Machine

To restore afailed nonmaster machine, complete the following procedure.
1. On the MASTER machine, start at madni n session.

2. Run pcl ean, specifying the partitioned machine on the command line.
3. Fix the machine problem.
4

. Restore the failed machine by booting the Bulletin Board Liaison (BBL) for the
machine from the MASTER machine.

5. If you have migrated application servers and data from the failed machine, boot
them or migrate them back.

In the following list, SI TE2, anonmaster machine, is restored.

Listing 9-3 Example of Restoring a Failed Nonmaster M achine

$ tmadmin
tmadm n - Copyright © 1987-1990 AT&T; 1991-1993 USL. Al rights reserved

> pclean SI TE2
Cl eani ng the DBBL.

Pausing 10 seconds waiting for systemto stabili ze.
3 SITE2 servers renoved from bulletin board

> boot -B SITE2
Booting adm n processes ...

Exec BBL -A :

on SITE2 -> process id=22923 ... Started.
1 process started.

> q

9-12 Administering a BEA Tuxedo Application at Run Time

How to Replace System Components

How to Replace System Components

To replace BEA Tuxedo system components, compl ete the following procedure.

1
2.

Install the BEA Tuxedo system software that is being replaced.

Shut down those parts of the application that will be affected by the changes:

e TheBEA Tuxedo system servers may need to be shut down if libraries are
being updated.

e Application clients and servers must be shut down and rebuilt if relevant
BEA Tuxedo system header files or static libraries are being replaced.
(Application clients and servers do not need to be rebuilt if the BEA Tuxedo
system message catal ogs, system commands, administrative servers, or
shared objects are being replaced.)

If relevant BEA Tuxedo system header files and static libraries have been
replaced, rebuild your application clients and servers.

Reboot the parts of the application that you shut down.

How to Replace Application Components

To replace components of your application, complete the following procedure.

1

Install the application software. This software may consist of application clients,
application servers, and various administrative files, such as the FML field tables.

Shut down the application servers being replaced.
If necessary, build the new application servers.

Boot the new application servers.

Administering a BEA Tuxedo Application at Run Time 9-13

9 Troubleshooting a BEA Tuxedo Application

Cleaning Up and Restarting Servers
Manually

By default, the BEA Tuxedo system cleans up resources associated with dead
processes (such as queues) and restarts restartable dead servers from the Bulletin
Board (BB) at regular intervals during BBL scans. Y ou may, however, request
cleaning at other times.

How to Clean Up Resources Associated with Dead
Processes

To request an immediate cleanup of resources associated with dead processes,
complete the following procedure.

1. Start atmadni n session.
2. Enter bbcl ean machi ne.

Thebbcl ean command takes one optional argument: the name of the machine to be

cleaned.
If You Specify... Then...
No machine The resources on the default machine are cleaned.
A machine The resources on the specified machine are cleaned.
DBBL The resources on the Distinguished Bulletin Board Liaison

(DBBL) and the bulletin boards at all sites are cleaned.

9-14 Administering a BEA Tuxedo Application at Run Time

How to Check the Order in Which BEA Tuxedo CORBA Servers Are Booted

How to Clean Up Other Resources

To clean up other resources, complete the following procedure.
1. Startat nadni n session.

2. Enter pcl ean nmachi ne.

Note: You must specify avalue for machi ne; it isarequired argument.

If the Specified Machinels Then

Not partitioned pcl ean will invoke bbcl ean.

Partitioned pcl ean will remove all entries for serversand
services from all nonpartitioned bulletin boards.

Thiscommand is useful for restoring order to a system after partitioning has occurred
unexpectedly.

How to Check the Order in Which BEA
Tuxedo CORBA Servers Are Booted

If aBEA Tuxedo CORBA application failsto boot, open the application’s UBBCONFI G
file with atext editor and check whether the servers are booted in the correct order in
the SERVERS section. The following is the correct order in which to boot the serversin
aBEA Tuxedo CORBA environment. A BEA Tuxedo CORBA application will not
boot if this order is not adhered to.

Boot the serversin the following order:

1. The system EventBroker, TMSYSEVT.

Administering a BEA Tuxedo Application at Run Time 9-15

9 Troubleshooting a BEA Tuxedo Application

2. The TMFFNAME server with the - N option and the - Moption, which startsthe
NameManager service (asa MASTER). This service maintains a mapping of
application-supplied names to object references.

3. The TMFENANE server with the - N option only, to start a slave NameManager
service.

4. The TMFFNAME server with the - F option, to start the FactoryFinder.
5. Theapplication serversthat are advertising factories.

For adetailed example, see the section “Required Order in Which to Boot CORBA
C++ Servers’ on page 3-71 in Setting Up a BEA Tuxedo Application.

How to Check the Hosthname Format and
Capitalization of BEA Tuxedo CORBA Servers

The network address that is specified by programmers in the Bootstrap object
constructor or in TOBJADDR must exactly match the network address in the server
application’'s UBBCONFI Gfile. The format of the address aswell as the capitalization
must match. If the addresses do not match, the call to the Bootstrap object constructor
will fail with a seemingly unrelated error message:

ERROR Unofficial connection fromclient at
<tcp/ip address>/<port-nunber>:

For example, if the network address is specified as// TRI XI E: 3500 in the ISL
command-line option string (in the server application’s UBBCONFI Gfil€), specifying
either//192.12. 4. 6: 3500 0r// trixi e: 3500 inthe Bootstrap object constructor or
in TOBJADDR Will cause the connection attempt to fall.

On UNIX systems, use the uname -n command on the host system to determine the
capitalization used. On Windows 2000 systems, see the host system’ s Network control
panel to determine the capitalization used.

9-16 Administering a BEA Tuxedo Application at Run Time

Why Some BEA Tuxedo CORBA Clients Fail to Boot

Why Some BEA Tuxedo CORBA Clients Falil to
Boot

Y ou may want to perform the following steps on a Windows 2000 server that is
running a BEA Tuxedo CORBA application, if the following problem occurs: some
Internet Inter-ORB Protocol (I10P) clients boot, but some clients fail to create a
Bootstrap object and return an | nval i dDomai n message, even though the

/1 host : port addressis correctly specified. (For related information, see the section
“How to Check the Hosthame Format and Capitalization of BEA Tuxedo CORBA
Servers’ on page 9-16.)

1. Startregedt 32, the Registry Editor.
2. Gotothe HKEY_LOCAL_MACHI NE on Local Machi ne window.
3. Sdlect:

HKEY LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Ser vi ces\ Af d\ Par anet er s

4. Add the following values by using the Edit —> Add Value menu option:
Dynam cBackl ogGrowt hDel ta: REG DWORD : Oxa
Enabl eDynam cBackl og: REG DWORD: 0x1
Maxi munmDynami cBackl og: REG DWORD: 0x3e8
M ni munDynam cBackl og: REG DWORD: 0x14

5. Restart the Windows 2000 system for the changes to take effect.

These values replace the static connection queue (that is, the backlog) of five pending
connections with a dynamic connection backlog, that will have at least 20 entries
(minimum 0x14), at most 1000 entries (maximum 0x3e8), and will increase from the
minimum to the maximum by steps of 10 (growth delta Oxa).

These settings only apply to connectionsthat have been received by the system, but are
not accepted by an I1OP Listener. The minimum value of 20 and the delta of 10 are
recommended by Microsoft. The maximum value depends on the machine. However,
Microsoft recommends that the maximum value not exceed 5000 on aWindows 2000
server.

Administering a BEA Tuxedo Application a Run Time 9-17

9 Troubleshooting a BEA Tuxedo Application

Aborting or Committing Transactions

This topic provides instructions for aborting and committing transactions.

How to Abort a Transaction

To abort atransaction, complete the following procedure.

1. Enter the following command:

aborttrans (abort) [-yes] [-g groupnane] trani ndex

2. Todetermine the value of t r ani ndex, runtheprinttrans command (a
t madm n command).

3. If groupnane is specified, amessage is sent to the TMS of that group to mark as
“aborted” the transaction for that group. If agroup is not specified, a message is
sent, instead, to the coordinating TM S, requesting an abort of the transaction.
You must send abort messages to all groups in the transaction to control the abort.

This command is useful when the coordinating site is partitioned or when the client
terminates before calling acommit or an abort. If the timeout is large, the transaction
remains in the transaction table unless it is aborted.

How to Commit a Transaction

To commit atransaction, complete the following procedure.

1. Enter the following command:
committrans (commit) [-yes] [-g groupnane] tranindex

Note: Both gr oupnane andt r ani ndex are required arguments.

The operation failsif the transaction is not precommitted or has been marked aborted.
This message should be sent to all groups to fully commit the transaction.

9-18 Administering a BEA Tuxedo Application at Run Time

How to Recover from Failures When Transactions Are Used

Cautions About Using the committrans Command

Be careful about using the comi t t r ans command. The only time you need to run it
is when both of the following conditions apply:

m The coordinating TM S has gone down before all groups got the commit
message.

m The coordinating TM S will not be able to recover the transaction for some time.

Also, aclient may be blocked ont pcomni t () , which will be timed out. If you are
going to perform an administrative commit, be sureto inform this client.

How to Recover from Failures When
Transactions Are Used

When the application you are administering includes database transactions, you may
need to apply an after-image journal (AlJ) to arestored database following a disk
corruption failure. Or you may need to coordinate the timing of this recovery activity
with your site’ s database administrator (DBA). Typically, the database management
software automatically performs transaction rollback when an error occurs. When the
disk containing database files has become corrupted permanently, however, you or the
DBA may need to step in and perform the rollforward operation.

Assume that a disk containing portions of a database is corrupted at 3:00 P.M. on a
Wednesday. For this example, assume that a shadow volume (that is, you have disk
mirroring) does not exist.

1. Shut down the BEA Tuxedo application. (For instructions, see“ Starting Up and
Shutting Down an Application” on page 1-1 in Setting Up a BEA Tuxedo
Application.)

2. Obtain the last full backup of the database and restore the file. For example,
restore the full backup version of the database from last Sunday at 12:01 A.M.

3. Apply the incremental backup files, such as the incrementals from Monday and
Tuesday. For example, assume that this step restores the database up until 11:00
PM. on Tuesday.

Administering a BEA Tuxedo Application at Run Time 9-19

9

Troubleshooting a BEA Tuxedo Application

4. Apply the AlJ, or transaction journal file, that contains the transactions from
11:15 PM. on Tuesday up to 2:50 PM. on Wednesday.

5. Open the database again.
6. Restart the BEA Tuxedo application.

Refer to the documentation for the resource manager (database product) for specific
instructions on the database rollforward process.

How to Use the IPC Tool When an
Application Fails to Shut Down Properly

9-20

Inter-process communication (1PC) resources are operating system resources, such as
message queues, shared memory, and semaphores. When a BEA Tuxedo application
shuts down properly with the t nshut down command, all IPC resources are removed
from the system. In some cases, however, an application may fail to shut down
properly and stray | PC resources may remain on the system. When this happens, it may
not be possible to reboot the application.

One way to address this problem isto remove | PC resources with a script that invokes
the system | PCS command and scan for all IPC resources owned by a particular user
account. However, with this method, it is difficult to distinguish among different sets
of IPC resources; some may belong to the BEA Tuxedo system; some to a particular
BEA Tuxedo application; and others to applications unrelated to the BEA Tuxedo
system. It is important to be able to distinguish among these sets of resources;
unintentional removal of IPC resources can severely damage an application.

The BEA Tuxedo IPCtool (that is, thet m pcr mcommand) enablesyou toremove | PC
resources alocated by the BEA Tuxedo system (that is, for core BEA Tuxedo and
Workstation components only) in an active application.

The command to remove | PC resources, t mi pcr m resides in TUXDI R/ bi n. This
command reads the binary configuration file (TUXCONFI G), and attachesto the bulletin
board using the information in thisfile. t m pcr mworks only on the local server
machine; it does not clean up IPC resources on remote machinesin a BEA Tuxedo
configuration.

Administering a BEA Tuxedo Application at Run Time

Troubleshooting Multithreaded/ Multicontexted Applications

To run this command, enter it as follows on the command line:
tmpecrm[-y] [-n] [tuxconfig_ file]

ThelPCtool listsall IPC resources used by the BEA Tuxedo system and gives you the
option of removing them.

Note: Thiscommandwill not work unlessyou have set the TUXCONFI Genvironment
variable correctly or specified the appropriate TUXCONFI Gfile on the
command line.

Troubleshooting Multithreaded/
Multicontexted Applications

Debugging Multithreaded/Multicontexted Applications

Multithreaded applications can be much more difficult to debug than single-threaded
applications. As the administrator, you may want to establish a policy governing
whether such multithreaded applications should be created.

Limitations of Protected Mode in a Multithreaded
Application

When running in protected mode, an application attachesto shared memory only when
an ATMI call isbeing executed. Protected modeisused to guard agai nst problemsthat
arise when BEA Tuxedo shared memory is accidentally overwritten by stray
application pointers.

If your multithreaded application is running in protected mode, some threads may be
executing application code while others are attached to the BEA Tuxedo Bulletin

Board's shared memory within a BEA Tuxedo function call. Therefore, aslong as at
least one thread is attached to the bulletin board in an ATMI call, the use of protected

Administering a BEA Tuxedo Application at Run Time 9-21

9 Troubleshooting a BEA Tuxedo Application

mode cannot guard against stray application pointersin threads executing application
code, which may overwrite the BEA Tuxedo shared memory. As aresult, the
usefulness of protected mode is relatively limited in multithreaded applications.

Thereis no solution to this limitation. We simply want to warn you that when running
amultithreaded application you cannot rely on protected mode as much as you do
when running a single-threaded application.

9-22 Administering a BEA Tuxedo Application at Run Time

	Copyright
	About This Document
	1 Starting Up and Shutting Down an Application
	The Tasks Involved in Starting Up and Shutting Down an Application
	How to Set Your Environment
	How to Create the TUXCONFIG File
	How to Manually Propagate the Application-Specific Directories and Files
	How to Create a TLOG Device
	How to Start tlisten at All Sites
	tlisten Command Options

	How to Boot the Application
	Sequence of tmboot Tasks for a 2-Machine Configuration
	Sequence of tmboot Tasks for Large Applications (Over 50 Machines)

	How to Shut Down Your Application
	Running tmshutdown
	Using the IPC Tool When an Application Fails to Shut Down Properly

	2 Monitoring Your BEA Tuxedo Application
	Ways to Monitor Your Application
	System and Application Data That You Can Monitor
	Monitoring System Data
	Monitoring Dynamic and Static Administrative Data

	Common Startup and Shutdown Problems
	Common Startup Problems
	Common Shutdown Problems

	Selecting Appropriate Monitoring Tools
	Using the BEA Administration Console to Monitor Your Application
	Using the Toolbar to Monitor Activities

	Using Command-line Utilities to Monitor Your Application
	Inspecting Your Configuration Using tmadmin
	Generating Reports on Servers and Services Using txrpt

	How a tmadmin Session Works
	Monitoring Your System Using tmadmin Commands

	Using EventBroker to Monitor Your Application
	Using Log Files to Monitor Activity
	What Is the Transaction Log (TLOG)?
	What Is the User Log (ULOG)?
	Detecting Errors Using Logs
	Analyzing the Transaction Log (TLOG)
	Analyzing the User Log (ULOG)
	Analyzing tlisten Messages in the ULOG

	Estimating Service Workload Using the Application Service Log
	Using the MIB to Monitor Your Application
	Limiting Your MIB Queries
	Querying Global and Local Data
	Using tmadmcall to Access Information

	Querying and Updating the MIB with ud32
	Using the Run-time Tracing Utility
	Managing Errors Using the DBBL and BBLs
	Using the ATMI to Handle System and Application Errors
	Using Configurable Timeout Mechanisms
	Configuring Redundant Servers to Handle Failures

	Monitoring Multithreaded and Multicontexted Applications
	How to Retrieve Data About a Multithreaded/ Multicontexted Application Using the MIB

	3 Dynamically Modifying an Application
	Dynamic Modification Methods
	Tools for Modifying Your Application

	Using tmconfig to Make Permanent Changes to Your Configuration
	How tmconfig Works
	How Results of a tmconfig Task Are Displayed

	How to Run tmconfig
	How to Set Environment Variables for tmconfig
	How to Conduct a tmconfig Walkthrough Session
	tmconfig Input Buffer Considerations

	Making Temporary Modifications to Your Configuration with tmconfig
	How to Add a New Machine
	How to Add a Server
	How to Activate a Newly Configured Machine
	How to Add a New Group
	How to Change Data-dependent Routing (DDR) for an Application
	How to Change Factory-based Routing (FBR) for an Interface
	How to Change Application-wide Parameters
	How to Change an Application Password
	Limitations on Dynamic Modification Using tmconfig
	Tasks That Cannot Be Performed on a Running System

	Making Temporary Modifications to Your Configuration with tmadmin
	How to Set Environment Variables for tmadmin

	How to Suspend Tuxedo ATMI Services or Servers
	How to Resume Tuxedo ATMI Services or Servers
	How to Advertise Services or Servers
	How to Unadvertise Services or Servers
	How to Change Service Parameters for Tuxedo ATMI Servers
	How to Change Interface Parameters for Tuxedo CORBA Servers
	How to Change the Timeout Value
	How to Suspend Tuxedo CORBA Interfaces
	How to Resume Tuxedo CORBA Interfaces

	4 Managing the Network in a Distributed Application
	Running a Network for a Distributed Application
	Compressing Data Over a Network
	How to Set the Compression Level
	Selecting Data Compression Thresholds

	Balancing Network Request Loads
	How to Use Data-Dependent Routing
	Example of Data-dependent Routing with a Horizontally-partitioned Database
	Example of Data-dependent Routing with Rule-based Servers

	How to Change Your Network Configuration

	5 About the EventBroker
	What Is an Event?
	Differences Between Application-defined and System-defined Events
	What Is the EventBroker?
	How the EventBroker Works
	Event Notification Methods
	Severity Levels of System Events

	What Are the Benefits of Brokered Events?

	6 Subscribing to Events
	Process of Using the EventBroker
	How to Configure EventBroker Servers
	How to Set the Polling Interval
	Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
	Identifying Event Categories Using eventexpr and filter
	Accessing the EventBroker

	How to Select a Notification Method
	How to Cancel a Subscription to an Event
	How to Use the EventBroker with Transactions
	How Transactions Work with the EventBroker

	7 Migrating Your Application
	What Is Migration?
	Performing a Master Migration
	Migrating a Server Group
	Migrating Machines
	Performing a Scheduled Migration

	Migration Options
	How to Switch the Master and Backup Machines
	Examples of Switching MASTER and BACKUP Machines

	How to Migrate Server Groups
	How to Migrate a Server Group When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate a Server Group When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Server Group

	How to Migrate Server Groups from One Machine to Another
	How to Migrate Machines When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate Machines When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Machine

	How to Cancel a Migration
	Example of a Migration Cancellation

	How to Migrate Transaction Logs to a Backup Machine

	8 Tuning a BEA Tuxedo ATMI Application
	Maximizing Your Application Resources
	When to Use MSSQ Sets
	How to Enable Load Balancing
	How to Measure Service Performance Time
	How to Assign Priorities to Interfaces or Services
	Example of Using Priorities
	Using the PRIO Parameter to Enhance Performance

	Bundling Services into Servers
	When to Bundle Services

	Enhancing Overall System Performance
	Service and Interface Caching
	Removing Authorization and Auditing Security
	Turning Off Multithreaded Processing
	Turning Off XA Transactions

	Enhancing Efficiency with Application Parameters
	Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters
	Recommended Values for Tuning-related Parameters

	Determining Your System IPC Requirements
	Measuring System Traffic
	Example of Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX Platforms
	Detecting Bottlenecks on Windows 2000 Platforms

	9 Troubleshooting a BEA Tuxedo Application
	Determining Types of Failures
	How to Determine the Cause of an Application Failure
	How to Determine the Cause of a BEA Tuxedo System Failure

	How to Broadcast an Unsolicited Message
	Maintaining Your System Files
	How to Print the Universal Device List (UDL)
	How to Print VTOC Information
	How to Reinitialize a Device
	How to Create a Device List
	How to Destroy a Device List

	Repairing Partitioned Networks
	Detecting a Partitioned Network
	Restoring a Network Connection

	Restoring Failed Machines
	How to Restore a Failed MASTER Machine
	How to Restore a Failed Nonmaster Machine

	How to Replace System Components
	How to Replace Application Components
	Cleaning Up and Restarting Servers Manually
	How to Clean Up Resources Associated with Dead Processes
	How to Clean Up Other Resources

	How to Check the Order in Which BEA Tuxedo CORBA Servers Are Booted
	How to Check the Hostname Format and Capitalization of BEA Tuxedo CORBA Servers
	Why Some BEA Tuxedo CORBA Clients Fail to Boot
	Aborting or Committing Transactions
	How to Abort a Transaction
	How to Commit a Transaction

	How to Recover from Failures When Transactions Are Used
	How to Use the IPC Tool When an Application Fails to Shut Down Properly
	Troubleshooting Multithreaded/ Multicontexted Applications
	Debugging Multithreaded/Multicontexted Applications
	Limitations of Protected Mode in a Multithreaded Application

