
Using CORBA ActiveX

D o c u m e n t E d i t i o n 8 . 0
J u n e 2 0 0 1

BEA Tuxedo

B E A T u x e d o R e l e a s e 8 . 0

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using CORBA ActiveX

Document Edition Date Software Version

8.0 June 20001 BEA Tuxedo 8.0

Using CORBA ActiveX iii

Contents

About This Online Help
How to Use the Online Help .. vii

What if the Help System Doesn’t Display Properly?.. viii

Make Sure You Are Using an Up-to-Date Browser ix

Customize the Font Size so the Help Is Easy to Read ix

Important Considerations About the BEA Builder Installed Browserx

Using Your Favorite Web Browser ... xi

e-docs Web Site ... xi

How to Print the Document.. xii

Related Information.. xii

Contact Us! .. xiii

Documentation Conventions ... xiv

1. Overview
What Is ActiveX? .. 1-1

Views and Bindings ... 1-2

How It Works .. 1-2

Naming Conventions for ActiveX Views.. 1-3

OMG IDL .. 1-4

Interface Repository .. 1-5

Domains... 1-5

Environmental Objects .. 1-6

Bootstrap Object... 1-7

Factories and the FactoryFinder Object ... 1-8

Naming Conventions and BEA Tuxedo Extensions to the FactoryFinder
Object .. 1-9

SecurityCurrent Object... 1-11

iv Using CORBA ActiveX

TransactionCurrent Object ... 1-12

InterfaceRepository Object... 1-13

2. Creating ActiveX Client Applications
Summary of the Development Process for ActiveX Client Applications 2-2

The BEA Application Builder ... 2-3

Step 1: Loading the Automation Environmental Objects into the Interface
Repository... 2-5

Step 2: Loading the CORBA Interfaces into the Interface Repository 2-5

Step 3: Starting the Interface Repository Server Application 2-6

Step 4: Creating ActiveX Bindings for the CORBA Interfaces 2-7

Step 5: Loading the Type Library for the ActiveX Bindings 2-8

Step 6: Writing the ActiveX Client Application ... 2-9

Including Declarations for the Automation Environmental Objects, Factories,
and ActiveX Views of CORBA Objects ... 2-9

Establishing Communication with the BEA Tuxedo Domain 2-10

Obtaining References to the FactoryFinder Object 2-11

Using a Factory to Get an ActiveX View... 2-11

Invoking Operations on the ActiveX View .. 2-12

Creating an Automation Server for Callbacks.. 2-13

Creating Instances of the COM Objects.. 2-14

Step 7: Deploying the ActiveX Client Application ... 2-15

3. Application Builder Main Window
Application Builder Main Window ... 3-1

Services Window ... 3-3

Workstation Views Window ... 3-3

Application Builder Objects .. 3-4

Menu Options .. 3-6

File Menu Options.. 3-6

Edit Menu Options ... 3-6

View Menu Options ... 3-7

Tools Menu Options ... 3-8

Window Menu Options .. 3-8

Help Menu Options .. 3-9

Toolbar Buttons ... 3-10

Using CORBA ActiveX v

4. Tasks
Loading CORBA Interfaces into the Interface Repository 4-1

Starting Application Builder.. 4-2

Creating ActiveX Bindings for CORBA Interfaces .. 4-3

Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces 4-4

Creating Deployment Packages... 4-6

Changing the Directory Location for Deployment Packages............................ 4-7

Changing the Default Directory Locations.. 4-7

Filtering Objects Displayed in the Main Window... 4-8

Displaying Properties .. 4-9

5. Using Security
Overview of BEA Tuxedo Security .. 5-1

Summary of the Development Process for Security.. 5-2

Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object 5-2

Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent
Object ... 5-3

Step 3: Obtaining the Authentication Level .. 5-3

Step 4: Logging On to the BEA Tuxedo Domain with Proper Authentication. 5-4

Step 5: Logging Off the BEA Tuxedo Domain... 5-5

6. Using Transactions
Overview of Transactions.. 6-1

Summary of the Development Process for Transactions 6-1

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object.. 6-2

Step 2: Using the TransactionCurrent Methods .. 6-3

7. Command-Line Options

Glossary

Index

vi Using CORBA ActiveX

Using CORBA ActiveX vii

About This Online Help

This help guide describes how to use the BEA Application Builder to develop ActiveX
client applications.

This document includes the following sections:

n How to Use the Online Help

n What if the Help System Doesn’t Display Properly?

n Important Considerations About the BEA Builder Installed Browser

n Using Your Favorite Web Browser

n e-docs Web Site

n How to Print the Document

n Related Information

n Contact Us!

n Documentation Conventions

How to Use the Online Help

You need to open Application Builder to get Help on using the application.

To bring up Help on a main topic, choose Help on the Application Builder main
window and select any of the following menu topics:

viii Using CORBA ActiveX

n Overview—explains what Rose Expert is and gives an overview of the
application development tasks you can accomplish with the Rose Expert
Application Builder GUI.

n Creating ActiveX Client Applications—a procedural view of building ActiveX
client applications using Application Builder.

n Application Builder Main Window—an explanation of the various components
of the Application Builder Main Window.

n Tasks—explains how to use the various task windows. (You can also access this
help information for a particular window by pressing F1 while that window is
open.)

n Using Security—describes how to use security in ActiveX client applications.

n Using Transactions—describes how to use transactions in ActiveX client
applications.

n Command-line Options—describes the command-line version of the Application
Builder.

n Glossary—provides an explanation of relevant BEA Tuxedo, BEA Builder,
Application Builder, ActiveX and object oriented development terms.

n About Application Builder—provides version and copyright information.

You can also click the Help button on any task window that is currently open.

What if the Help System Doesn’t Display
Properly?

The Help system relies on the Netscape Navigator for its functionality. Therefore,
display problems are generally related to what version of the Netscape browser is
active on your system, and the font size preference settings on that browser.
Additionally, some specific problems on UNIX platforms (such as Help not displaying
or the search feature not working) are generally related to incomplete user PATH and
CLASSPATH environment variable settings.

Using CORBA ActiveX ix

The following topics provide some troubleshooting tips on problems that can affect
various aspects of Help start-up and display:

n Make Sure You Are Using an Up-to-Date Browser

n Customize the Font Size so the Help Is Easy to Read

Make Sure You Are Using an Up-to-Date Browser

The context-sensitive Help system requires that Netscape Navigator version 4.0 or
above be present on the local system and in use. If you are using an earlier version of
the Netscape browser, you will get an error message when you try to use the Find or
Print buttons.

Note that even if you have Navigator 4.0 installed, you can still get this error if you
also have earlier versions of the Netscape browser and one of these earlier versions
was the last browser used. The remedy for this problem is to close out of the current
BEA Builder application, close any earlier versions of the Netscape browser (if you
have some open) and open Navigator 4.0. (You can close Navigator 4.0 as soon as you
have opened it.)

When you restart the Builder application, the Help system should work properly.

Note: If you want to view the online help information in a Web browser, keep in
mind that older versions of browsers may not support some of the features
built into the HTML Help files. Therefore, we recommend using Internet
Explorer version 4.0 or above, Netscape Navigator version 4.0 or above, or
other browsers with equivalent HTML support. For information on how to
access the Help information in any Web browser, see the section Using Your
Favorite Web Browser.

Customize the Font Size so the Help Is Easy to Read

The context-sensitive Help system relies on your Netscape browser font preference
settings. If the information shown in the Help system is difficult to read because the
print is too small (or too large), you can change the font size. To do this, simply reset
your font preferences in the Netscape Navigator browser. The fonts sizes and styles
you set in the browser also will show up in the Help system.

x Using CORBA ActiveX

If you have more than one version of the Netscape browser on your system, make sure
you set the font preferences in the active browser (which is preferably the most
up-to-date browser). The Help system uses the last active browser. If you might be
using more than one browser version to view Help files, set preferences in all browsers
for optimal readability.

For more information about why it is important to use an up-to-date browser, refer to
the section Make Sure You Are Using an Up-to-Date Browser.

Important Considerations About the BEA
Builder Installed Browser

If you did not have the Netscape Navigator on your system when you installed the BEA
Builder products, it is likely that you have a BEA Builder installed version of this
browser.

The context-sensitive Help system requires that Netscape Navigator version 4.0 or
above be present on the local system. So, the BEA Builder product installation checks
to see if the Netscape Navigator 4.0 browser is already present on the target system.
On Windows systems, if the appropriate version of the browser is not found; the install
script gives you the option of installing it as a part of the BEA Builder product
installation to support the online Help system.

The Netscape Navigator 4.0 that gets installed during the BEA Builder product
installation contains a level of encryption that is allowed to be exported from the
United States. If you use this browser for anything other than the Help system, please
note that this is not the most secure version of the Netscape Navigator.

Note: This consideration does not apply to UNIX systems because the BEA product
installation for UNIX does not automatically install the right version of the
browser. You have to do this manually on UNIX systems.

Using CORBA ActiveX xi

Using Your Favorite Web Browser

The ActiveX Application Builder graphical user interface (GUI) is designed and
configured to use Netscape NetHelp as an HTML-based, context-sensitive Help
solution.

However, you can also view the online Help for BEA Tuxedo ActiveX Client with the
Microsoft Internet Explorer 4.0 browser, Netscape Navigator or Communicator 4.0, or
any other Web browser that supports HTML 3.0 and above. If you choose to use the
Internet Explorer (or some other browser) to view the Builder documentation, the
primary difference is that you will not get the context-sensitive menu and dialog access
that you do when you view the Help by means of the GUIs. You may find some
discrepancies in display since browsers other than the Netscape NetHelp viewer are
not officially supported for this documentation set.

To view the BEA Tuxedo ActiveX Client documentation with a Web browser, open
the following file in the browser:

YourDrive:tuxdir\help\AppBuilderHtm\default.htm (Windows)

Note: Older versions of browsers may not support some of the features built into the
HTML help files. Therefore, we recommend using Internet Explorer version
4.0 or above, Netscape Navigator version 4.0 or above, or other browsers with
equivalent HTML support.

e-docs Web Site

BEA Tuxedo online documentation is available on the BEA corporate Web site. From
the BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com/.

xii Using CORBA ActiveX

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser. (Be sure to first click anywhere within
the HTML content frame you want to print, so that that frame is selected.)

The information in this online help is also available as the Using CORBA ActiveX
document in the BEA Tuxedo online documentation. Using CORBA ActiveX is
available as a PDF file. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format. To access the PDFs, open the BEA
Tuxedo documentation Home page, click the PDF files button and select the document
you want to print.

Also, a PDF version of this online Help is made available on your system in the
following location:

YourDrive:tuxdir\help\app_builder_help.pdf (Windows)

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following documentation will be helpful in understanding the BEA Tuxedo
system. BEA Tuxedo documentation is shipped with your BEA Tuxedo software on a
separate documentation CD and is also available on the BEA Web site at
http://e-docs.beasys.com/.

n Getting Started with BEA Tuxedo CORBA Applications. This document
introduces BEA Tuxedo CORBA—components and APIs and how to get started
with the application development process.

n Creating CORBA Server Applications. Describes how C++ programmers can
implement key features in the BEA Tuxedo product to design and implement
scalable, high-performance CORBA C++ server applications that run in a BEA
Tuxedo domain.

Using CORBA ActiveX xiii

n CORBA Programming Reference. Provides reference material about the CORBA
programming environment, including the OMG IDL syntax, the Interface
Configuration File, and the buildobjserver command.

n Guide to the CORBA University Sample Applications. Provides information on
building and running the University sample client and server applications
included with BEA Tuxedo.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA BEA Tuxedo, contact BEA Customer Support through
BEA WebSUPPORT at http://www.bea.com. You can also contact Customer Support
by using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

xiv Using CORBA ActiveX

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

Using CORBA ActiveX xv

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xvi Using CORBA ActiveX

Using CORBA ActiveX 1-1

CHAPTER

1 Overview

This Help topic provides an overview of the ActiveX client application development
process and the concepts that you need to understand before you develop ActiveX
client applications for the BEA Tuxedo CORBA environment.

The following sections are included:

n What Is ActiveX?

n How It Works

n Naming Conventions for ActiveX Views

n OMG IDL

n Interface Repository

What Is ActiveX?

ActiveX is a set of technologies from Microsoft that enables software components to
interact with one another in a networked environment, regardless of the language in
which the components were created. ActiveX is built on the Component Object Model
(COM) and integrates with Object Linking and Embedding (OLE). OLE provides an
architecture for document embedding. Automation is the part of COM that allows
applications such as Visual Basic, Delphi, and PowerBuilder to manipulate
Automation objects, ActiveX controls, and ActiveX documents.

The BEA ActiveX Client provides interoperability between the BEA Tuxedo and
COM object systems. The ActiveX Client transforms the interfaces of CORBA objects
in a BEA Tuxedo domain into methods on Automation objects.

1 Overview

1-2 Using CORBA ActiveX

Views and Bindings

ActiveX client applications use views of CORBA interfaces. Views represent the
CORBA interfaces in a BEA Tuxedo domain locally as Automation objects. To use an
ActiveX view of a CORBA object (referred to as an ActiveX view), you need to create
a binding for ActiveX. The binding describes the interface of a CORBA object to
ActiveX. The interfaces of the CORBA objects are loaded into the Interface
Repository. You then use the BEA ActiveX Application Builder to create Automation
bindings for the interfaces.

The combination of the ActiveX client application and the generated binding creates
the ActiveX view of the object.

How It Works

The BEA ActiveX Client makes it possible for ActiveX client applications to interact
with CORBA objects in a BEA Tuxedo domain. The ActiveX client application uses
the Automation environmental objects to access CORBA objects in the BEA Tuxedo
domain. The ActiveX Client creates ActiveX views of the CORBA objects. The
ActiveX views of CORBA objects convert and forward all requests they receive from
ActiveX client applications to the appropriate CORBA object in the BEA Tuxedo
domain.

The Application Builder is a development tool that you use along with a client
development tool (such as Visual Basic) to select which CORBA objects in a BEA
Tuxedo domain you want your ActiveX client application to interact with.

The Application Builder is the primary user interface to the ActiveX Client. The
Application Builder can be used to select which CORBA objects are available to
desktop applications, to create ActiveX views of the CORBA objects, and to create
packages for deploying ActiveX views of CORBA objects to client computers.

Figure 1-1 illustrates how the ActiveX Client works.

Naming Conventions for ActiveX Views

Using CORBA ActiveX 1-3

Figure 1-1 How the ActiveX Client Works

Naming Conventions for ActiveX Views

Naming conventions describe an algorithm for mapping CORBA interfaces to
ActiveX to avoid type and variable name conflicts. Naming conventions also indicate
how to use a given object. The names of all ActiveX methods begin with DI.

The ActiveX Client observes this naming convention when it creates Automation
bindings for CORBA interfaces. If a CORBA interface has the name Account, the
Automation binding for that interface has the name DIAccount.

CORBA interface names are often scoped within nested levels known as modules;
however, in ActiveX, there is no scoping. To avoid name conflicts, the ActiveX Client
exposes a CORBA interface into ActiveX with the name of the different scopes
prepended to the name of the interface.

For example, a CORBA interface named Account is defined in the OMG IDL file as:

module University
{
 module Student

CORBAInterface.idl

Interface
Repository

Application Builder
DICORBAInterface.tlb

(binding)

ActiveX Client
Application

1 Overview

1-4 Using CORBA ActiveX

 {
 interface Account
 {//Operations and attributes of the Account interface
 };
 };

};

In CORBA, this interface is named University::Student::Account. The ActiveX
Client translates this name to DIUniversity_Student_Account for ActiveX.

ActiveX client applications use OLE Automation environmental objects to access
CORBA objects in a BEA Tuxedo domain. ActiveX client applications use the BEA
ActiveX Client to process requests to CORBA objects. You use the ActiveX
Application Builder to select the CORBA interfaces that are available to ActiveX
client applications, to create ActiveX views of the CORBA interfaces, and to create
packages for deploying ActiveX views of CORBA interfaces to client machines. These
client applications are built using an automation development tool such as Visual Basic
or PowerBuilder.

OMG IDL

With any distributed application, the client/server application needs some basic
information to communicate. For example, the client application needs to know which
operations it can request, and the arguments to the operations.

You use the Object Management Group (OMG) Interface Definition Language (IDL)
to describe available CORBA interfaces to client applications. An interface definition
written in OMG IDL completely defines the CORBA interface and fully specifies each
operation’s arguments. OMG IDL is a purely declarative language. This means that it
contains no implementation details. Operations specified in OMG IDL can be written
in and invoked from any language that provides CORBA bindings.

Generally, the application designer provides the OMG IDL files for the available
CORBA interfaces and operations to the programmer who creates the client
applications.

Interface Repository

Using CORBA ActiveX 1-5

Interface Repository

The Interface Repository contains descriptions of a CORBA object’s interfaces and
operations. The information stored in the Interface Repository is equivalent to the
information defined in an OMG IDL file, but the information is accessible
programmatically at run time.

ActiveX client applications are not aware that they are using the Interface Repository.
The BEA ActiveX Client uses CORBA operations to obtain information about
CORBA objects from the Interface Repository.

You use the following BEA Tuxedo development commands to manage the Interface
Repository:

n The idl2ir command populates the Interface Repository with CORBA
interfaces. This command creates an Interface Repository if an Interface
Repository does not exist. Also use this command to update the CORBA
interfaces in the Interface Repository.

n The ir2idl command creates an OMG IDL file from the contents of the
Interface Repository.

n The irdel command deletes CORBA interfaces from the Interface Repository.

Domains

A domain is a way of grouping objects and services together as a management entity.
A BEA Tuxedo domain has at least one IIOP Server Listener/Handler (ISL/ISH) and
is identified by a name. One client application can connect to multiple BEA Tuxedo
domains using different Bootstrap objects. For each BEA Tuxedo domain, a client
application can get a FactoryFinder object, an InterfaceRepository object, a
SecurityCurrent object, and a TransactionCurrent object, which correspond to the
services offered within the BEA Tuxedo domain. For a description of the Bootstrap
object, the FactoryFinder object, the InterfaceRepository object, the SecurityCurrent
object, and the TransactionCurrent object, see “Environmental Objects” in this
chapter.

1 Overview

1-6 Using CORBA ActiveX

Note: Only one TransactionCurrent object and one SecurityCurrent object can exist
at the same time, and they must be associated with the same Bootstrap object.

Figure 1-2 illustrates how an BEA Tuxedo domain works.

Figure 1-2 How a BEA Tuxedo Domain Works

Environmental Objects

The BEA Tuxedo software provides a set of environmental objects that set up
communication between client applications and server applications in a particular
BEA Tuxedo domain. The BEA Tuxedo software provides the following
environmental objects:

n Bootstrap

This object establishes communication between a client application and a BEA
Tuxedo domain. It also obtains object references for the other environmental
objects in the BEA Tuxedo domain.

n FactoryFinder

This CORBA object locates a factory, which in turn can create object references
for CORBA objects.

Bootstrap 1
//host1:port1

Client Application Domain 1

IIOP
Server

Listener/
Handler

//host1:port1

InterfaceRepository
Object

FactoryFinder
Object

SecurityCurrent
Object

TransactionCurrent
Object

Bootstrap 1
//host1:port1

Client Application Domain 1

IIOP
Server

Listener/
Handler

//host1:port1

InterfaceRepository
Object

FactoryFinder
Object

SecurityCurrent
Object

TransactionCurrent
Object

Environmental Objects

Using CORBA ActiveX 1-7

n SecurityCurrent

This object can be used to log a client application into a BEA Tuxedo domain
with the proper security. The BEA Tuxedo software provides an implementation
of the CORBAservices Security Service.

n TransactionCurrent

This object allows a client application to participate in a transaction. The BEA
Tuxedo software provides an implementation of the CORBAservices Object
Transaction Service (OTS).

n UserTransaction

This object allows a client application to participate in a transaction. The BEA
Tuxedo software provides an implementation of the Sun Microsystems, Inc. Java
Transaction Application Programming Interface (JTA API). This object is
supported with Java client and server applications only.

n InterfaceRepository

This CORBA object contains interface definitions for all the available CORBA
interfaces and the factories used to create object references to the CORBA
interfaces.

The BEA Tuxedo software provides environmental objects for the Automation
programming environment.

Bootstrap Object

The client application creates a Bootstrap object. A list of ISLs/ISHs can be supplied
either as a parameter or via the TOBJADDR environmental variable or Java property. A
single ISL/ISH is specified as follows:

//host:port

For example, //myserver:4000

Once the Bootstrap object is instantiated, the resolve_initial_references
method is invoked, passing in a string ID, to obtain a reference to an available object.
The valid values for the string ID are FactoryFinder, TransactionCurrent,
SecurityCurrent, and InterfaceRepository.

1 Overview

1-8 Using CORBA ActiveX

Figure 1-3 illustrates how the Bootstrap object works in a BEA Tuxedo domain.

Figure 1-3 How the Bootstrap Object Works

Factories and the FactoryFinder Object

Client applications get object references to CORBA objects from a factory. A factory
is any CORBA object that returns an object reference to another CORBA object and
registers itself with the FactoryFinder object.

To use a CORBA object, the client application must be able to locate the factory that
creates an object reference for the CORBA object. The BEA Tuxedo software offers
the FactoryFinder object for this purpose. The factories available to client applications
are those that are registered with the FactoryFinder object by BEA Tuxedo server
applications at startup.

The client application uses the following sequence of steps to obtain a reference to a
CORBA object:

Client
Application

Domain

IIOP
Listener/Handler

Bootstrap
Object

FactoryFinder
Object Reference

TransactionCurrent
Object Reference

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

FactoryFinder
Object

TransactionCurrent
Object

SecurityCurrent
Object

InterfaceRepository
Object

resolve_initial_references

Environmental Objects

Using CORBA ActiveX 1-9

1. Once the Bootstrap object is created, the resolve_initial_references method
is invoked to obtain the reference to the FactoryFinder object.

2. Client applications query the FactoryFinder object for object references to the
desired factory.

3. Client applications call the factory to obtain an object reference to the CORBA
object.

Figure 1-4 illustrates the client application interaction with the FactoryFinder object.

Figure 1-4 How Client Applications Use the FactoryFinder Object

Naming Conventions and BEA Tuxedo Extensions to the
FactoryFinder Object

The factories available to client applications are those that are registered with the
FactoryFinder object by the BEA Tuxedo server applications at startup. Factories are
registered using a key consisting of the following fields:

n The Interface RepositoryId of the factory’s interface

n An object reference to the factory

Client Application

M3 Domain

Bootstrap
Object

FactoryFinder
Object

Factory

CORBA Object

Get FactoryFinder object.

FactoryFinder
Object

FactoryFinder object returns
factory for CORBA object.

Factory
Factory gets CORBA object.

Server Application

1 Overview

1-10 Using CORBA ActiveX

The FactoryFinder object used by the BEA Tuxedo software is defined in the
CORBAservices Life Cycle Service. The BEA Tuxedo software implements
extensions to the COS::LifeCycle::FactoryFinder interface that make it easier for
client applications to locate a factory using the FactoryFinder object.

The CORBAservices Life Cycle Service specifies the use of names as defined in the
CORBAservices Naming Service to locate factories with the
COS::LifeCycle::FactoryFinder interface. These names consist of a sequence of
NameComponent structures, which consist of ID and kind fields.

The use of CORBA names to locate factories is cumbersome for client applications; it
involves many calls to build the appropriate name structures and assemble the Naming
Service name that must be passed to the find_factories method of the
COS::LifeCycle::FactoryFinder interface. Also, since the method can return
more than one factory, client applications must manage the selection of an appropriate
factory and the disposal of unwanted object references.

The FactoryFinder object is designed to make it easier for client applications to locate
factories by extending the interface with simpler method calls.

The extensions are intended to provide the following simplifications for the client
application:

n Let the client application locate factories by ID, using a simple string parameter
for the ID field. This reduces the work needed by the client application to build
name structures.

n Permit the FactoryFinder object to implement a load balancing scheme by
choosing from a pool of available factories.

n Provide methods that return one object reference to a factory, instead of a
sequence of object references. This eliminates the need for client applications to
provide code to handle the selection of a single factory from a sequence, and
then dispose of the unneeded references.

The most straightforward application design can be achieved by using the
Tobj::FactoryFinder::find_one_factory_by_id method in client applications.
This method accepts a simple string for factory ID as input and returns one factory to
the client application. The client application is freed from the necessity of
manipulating name components and selecting among many factories.

To use the Tobj::FactoryFinder::find_one_factory_by_id method, the
application designer must establish a naming convention for factories that client
applications can use to easily locate factories for specific CORBA object interfaces.

Environmental Objects

Using CORBA ActiveX 1-11

Ideally, this convention should establish some mnemonic types for factories that
supply object references for certain types of CORBA object interfaces. Factories are
then registered using these conventions. For example, a factory that returns an object
reference for Student objects might be called StudentFactory.

It is recommended that you either use the actual interface ID of the factory in the OMG
IDL file, or specify the factory ID as a constant in the OMG IDL file. This technique
ensures naming consistency between the client application and the server application.

SecurityCurrent Object

The SecurityCurrent object is a BEA Tuxedo implementation of the CORBAservices
Security Service. The BEA Tuxedo security model is based on authentication. You use
the SecurityCurrent object to specify the appropriate level of security. The following
levels of authentication are provided:

n TOBJ_NOAUTH

No authentication is needed; however, the client application can still authenticate
itself, and must specify a username and a client name, but no password is
required.

n TOBJ_SYSAUTH

The client application must authenticate itself to the BEA Tuxedo domain, and
must specify a username, client name, and client application password.

n TOBJ_APPAUTH

The client application must provide information in addition to that which is
required by TOBJ_SYSAUTH. If the default BEA Tuxedo CORBA authentication
service is used in the BEA Tuxedo domain configuration, the client application
must provide a user password; otherwise, the client application provides
authentication data that is interpreted by the custom authentication service in the
BEA Tuxedo domain.

Note: If a client application is not authenticated and the security level is
TOBJ_NOAUTH, the ISL/ISH of the BEA Tuxedo domain registers the client
application with the username and client application name sent to the ISL/ISH.

In the BEA Tuxedo CORBA, only the PrincipalAuthenticator and Credentials
properties on the SecurityCurrent object are supported. For information about using
the SecurityCurrent object in client applications, see Chapter 5, “Using Security.”

1 Overview

1-12 Using CORBA ActiveX

TransactionCurrent Object

The TransactionCurrent object is a BEA Tuxedo implementation of the
CORBAservices Object Transaction Service. The TransactionCurrent object
maintains a transactional context for the current session between the client application
and the server application. Using the TransactionCurrent object, the client application
can perform transactional operations, such as initiating and terminating a transaction
and getting the status of a transaction.

Transactions are used on a per-interface basis. During design, the application designer
decides which interfaces within a BEA Tuxedo application will handle transactions. A
transaction policy for each interface is then defined in an Implementation
Configuration File (ICF). The transaction policies are:

n Never

This interface is not transactional. Objects created for this interface can never be
involved in a transaction. The BEA Tuxedo software generates an exception
(INVALID_TRANSACTION) if an implementation with this policy is involved in a
transaction. An AUTOTRAN policy specified in the UBBCONFIG file for the
interface is ignored.

n Optional (The is the default transaction_policy.)

This interface may be transactional. Objects can be involved in a transaction if
the request is transactional. If the AUTOTRAN parameter is specified in the
UBBCONFIG file for the interface, AUTOTRAN is on.

n Always

This interface must always be part of a transaction. If the interface is not part of
a transaction, a transaction will be automatically started by the TP framework.
The transaction is committed when the method ends. (This is the same behavior
that results from specifying AUTOTRAN for an object with the optional
transaction policy, except that no administrative configuration is necessary to
achieve this behavior, and it cannot be overridden by administrative
configuration.)

n Ignore

This interface is not transactional. This interface can be included in a
transaction, however, the AUTOTRAN policy specified for this implementation in
the UBBCONFIG file is ignored.

Environmental Objects

Using CORBA ActiveX 1-13

For information about using the TransactionCurrent object in client applications,
see Chapter 6, “Using Transactions.”

InterfaceRepository Object

The InterfaceRepository object returns information about the Interface Repository in
a specific BEA Tuxedo domain. The InterfaceRepository object is based on the
CORBA definition of an Interface Repository. It offers the proper set of CORBA
interfaces as defined by the Common Request Broker Architecture and Specification,
Version 2.2.

ActiveX client applications are not aware they are using the InterfaceRepository
object. ActiveX client applications use the Bootstrap object to obtain a reference to the
InterfaceRepository object.

1 Overview

1-14 Using CORBA ActiveX

Using CORBA ActiveX 2-1

CHAPTER

2 Creating ActiveX Client
Applications

This Help topic includes the following sections:

n Summary of the Development Process for ActiveX Client Applications

n The BEA Application Builder

n Step 1: Loading the Automation Environmental Objects into the Interface
Repository

n Step 2: Loading the CORBA Interfaces into the Interface Repository

n Step 3: Starting the Interface Repository Server Application

n Step 4: Creating ActiveX Bindings for the CORBA Interfaces

n Step 5: Loading the Type Library for the ActiveX Bindings

n Step 6: Writing the ActiveX Client Application

n Step 7: Deploying the ActiveX Client Application

For a description of the concepts you need to understand before developing an ActiveX
client application, see Chapter 1, “Overview.”

2 Creating ActiveX Client Applications

2-2 Using CORBA ActiveX

Summary of the Development Process for
ActiveX Client Applications

The steps for creating an ActiveX client application are as follows:

Each step in the process is explained in detail in the following sections.

Step Description

1 Load the Automation environmental objects into the Interface
Repository.

2 Verify that the CORBA interfaces you want to access from
your ActiveX client application are loaded in the Interface
Repository. If necessary, load the Object Management Group
(OMG) Interface Definition Language (IDL) definitions for the
CORBA interfaces into the Interface Repository.

3 Start the server application process for the Interface
Repository.

4 Use the BEA Application Builder to create ActiveX bindings
for the interfaces of the CORBA object.

5 Load the type library for the ActiveX binding in your
development tool.

6 Write the ActiveX client application. This chapter describes
creating a basic client application. You can also implement
security and transactions in your ActiveX client applications.

n For information about implementing security in your
ActiveX client application, see Chapter 5, “Using
Security.”

n For information about using transactions in your ActiveX
client application, see Chapter 6, “Using Transactions.”

7 Create a deployment package for the ActiveX client
application.

The BEA Application Builder

Using CORBA ActiveX 2-3

The BEA Tuxedo development environment for ActiveX client applications includes
the following:

n The idl2ir command, which loads interface definitions defined in OMG IDL
into the Interface Repository.

n The Application Builder, which creates ActiveX bindings for the interfaces of
CORBA objects and creates deployment packages for the interfaces.

n The Automation environmental objects, which provide access to ActiveX views
of CORBA objects (referred to as ActiveX views) in a BEA Tuxedo domain and
the services provided by the ActiveX views.

The BEA Application Builder

The Application Builder is the development tool that creates ActiveX views of
CORBA objects. The Application Builder is the primary user interface to the BEA
ActiveX Client. It can be used to select which CORBA objects are available to desktop
applications, to create ActiveX views of the CORBA objects, and to create packages
for deploying ActiveX views of CORBA objects to client machines.

To use an ActiveX view, you load the interfaces of the CORBA objects into the
Interface Repository. You then create an ActiveX binding for the CORBA interface.
The binding describes the interface of a CORBA object to ActiveX. The combination
of the ActiveX client application and the generated binding creates the view of the
object.

For information on how to invoke Application Builder, see Starting Application
Builder in Chapter 4, “Tasks.”

As shown in Figure 2-1, the Application Builder main window is partitioned into two
parts: the Services window and the Workstation Views window.

2 Creating ActiveX Client Applications

2-4 Using CORBA ActiveX

Figure 2-1 Application Builder Main Window

The Services window presents all the CORBA modules, interfaces, and operations
contained in the Interface Repository in the local BEA Tuxedo domain (referred to as
the M3 domain in the BEA Application Builder software that is installed as part of the
BEA Tuxedo software kit). You can create bindings for all the interfaces in the
Interface Repository.

At the top of the Services window are entries for each object system that is available
from the BEA Tuxedo domain. The ActiveX Client supports only the BEA Tuxedo
object system. The objects are displayed in the same hierarchical format used in the
Interface Repository, that is, as modules, interfaces, operations, and the parameters
contained in operations. The [+] symbol indicates an object that can be expanded to
display the other objects.

The Workstation Views window presents all the ActiveX bindings that have been
created for CORBA interfaces. To create a binding for a CORBA interface, you drag
an entry from the Services window and into the Workstation Views window.

Step 1: Loading the Automation Environmental Objects into the Interface Repository

Using CORBA ActiveX 2-5

For a better description of the Application Builder Main Window, see Chapter 3,
“Application Builder Main Window.”

The steps below refer to the University sample applications shipped with BEA Tuxedo.
For more information on the sample applications, see the Guide to the CORBA
University Sample Applications in the BEA Tuxedo online documentation.

Step 1: Loading the Automation
Environmental Objects into the Interface
Repository

Load the Automation environmental objects into the Interface Repository so that the
interface definitions for the objects are available to ActiveX client applications. From
the MS-DOS prompt, enter the following command to load the OMG IDL file
(TOBJIN.idl) into the Interface Repository:

prompt> idl2ir -D _TOBJ -I drive:\tuxdir\include drive:\tuxdir\include\tobjin.idl

Step 2: Loading the CORBA Interfaces into
the Interface Repository

Before you can create an ActiveX view for a CORBA object, the interfaces of the
CORBA object need to be loaded into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they do not appear in the
Services window of the Application Builder. If a desired CORBA interface does not
appear in the Services window, use the idl2ir command to load the OMG IDL that
defines the CORBA into the Interface Repository. The syntax for the idl2ir
command is as follows:

idl2ir [repositoryfile.idl] file.idl

2 Creating ActiveX Client Applications

2-6 Using CORBA ActiveX

For a complete description of the idl2ir command, see the BEA Tuxedo Command
Reference in the BEA Tuxedo online documentation.

For example, if the University sample application OMG IDL file has been loaded into
the interface repository, the following CORBA interfaces should appear in the
Application Builder window:

n RegistrarFactory

n Registrar

n CourseSynopsisEnumerator

Step 3: Starting the Interface Repository
Server Application

ActiveX client applications read the interface definitions for CORBA objects from the
Interface Repository dynamically at run time and translate them to Automation
objects. Therefore, the server application for the Interface Repository needs to be
started so that the interface definitions are available. Use the UBBCONFIG file to start
the server application process for the Interface Repository.

Note: In some cases, the system administrator may have performed this step.

In the UBBCONFIG file for the BEA Tuxedo domain, check that TMIFRSVR, the server
application for the Interface Repository, is started. The following entry should appear
in the UBBCONFIG file:

Option Description

repositoryfile Directs the command to load the OMG IDL files for the
CORBA interface into the specified Interface Repository.
Specify the name of the Interface Repository in the BEA
Tuxedo domain that the ActiveX client application will access.

file.idl Specifies the OMG IDL file containing definitions for the
CORBA interface.

Step 4: Creating ActiveX Bindings for the CORBA Interfaces

Using CORBA ActiveX 2-7

TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 6
 RESTART = Y
 MAXGEN = 5
 GRACE = 3600

In addition, make sure that the ISL parameter to start the ISL/ISH is specified. The
following entry should appear in the UBBCONFIG file:

 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -n //TRIXIE:2500"

 where TRIXIE is the name of the host (server) system and 2500 is the port number.

For more information about starting server applications and specifying the ISL
parameter, see Setting Up a BEA Tuxedo Application in the BEA Tuxedo online
documentation.

Step 4: Creating ActiveX Bindings for the
CORBA Interfaces

For an ActiveX client application to access a CORBA object, you must generate
ActiveX bindings for the interfaces of the CORBA object. You use the Application
Builder to create the ActiveX bindings for CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the BEA Tuxedo (C++) program group.

The Domain logon window appears.

2. Enter the host name and port number that you specified in the ISL parameter in
the UBBCONFIG file in the logon window. You must match exactly the
capitalization used in the UBBCONFIG file.

The Application Builder logon window appears.

2 Creating ActiveX Client Applications

2-8 Using CORBA ActiveX

3. Highlight the desired CORBA interface in the Services window and drag it to the
Workstation Views window, or cut the CORBA interface from the Services
window and paste it into the Workstation Views window.

The Application Builder:

l Creates a type library. By default, the type library is placed in
\tuxdir\TypeLibraries.

The type library file is named: DImodulename_interfacename.tlb

l Creates a Windows system registry entry, including unique Program IDs for
each object type, for the CORBA interface.

You can now use the ActiveX view from an ActiveX client application.

Step 5: Loading the Type Library for the
ActiveX Bindings

Before you start writing your ActiveX client application, you need to load the type
library that describes the ActiveX binding for the CORBA interface in your
development tool. Follow your development product’s instructions for loading type
libraries.

For example, in Visual Basic version 5.0, you use the References option on the Project
menu to get a list of available type libraries. You then select the desired type libraries
from the list.

By default, the Application Builder places all generated type libraries in
\tuxdir\TypeLibraries. The type library for the ActiveX binding of the CORBA
interface has the following format:

DImodulename_interfacename.tlb

Step 6: Writing the ActiveX Client Application

Using CORBA ActiveX 2-9

Step 6: Writing the ActiveX Client
Application

The ActiveX client application must do the following:

1. Include declarations for the Automation environmental objects, the factory for the
ActiveX view, and the ActiveX view.

2. Establish communication with the BEA Tuxedo domain.

3. Use the Bootstrap object to obtain a reference to the FactoryFinder object.

4. Use a factory to obtain an object reference to an ActiveX view.

5. Invoke operations on the ActiveX view.

6. Creating an Automation Server for Callbacks.

7. Deploy the ActiveX client application.

The following sections use portions of the ActiveX client applications in the Basic
University sample application to illustrate the steps.

Including Declarations for the Automation
Environmental Objects, Factories, and ActiveX Views of
CORBA Objects

To prevent errors at run time, you need to declare the object types of:

n The Automation environmental objects

n The factories that create the ActiveX views of the CORBA objects

n The ActiveX views

2 Creating ActiveX Client Applications

2-10 Using CORBA ActiveX

The following example is Visual Basic code that declares the Bootstrap and
FactoryFinder objects, the factory for the ActiveX view of the Registrar object, and the
ActiveX view of the Registrar object:

\\Declare Bootstrap object\\
 Public objBootstrap As DITobj_Bootstrap
\\Declare FactoryFinder object\\
 Public objFactoryFinder As DITobj_FactoryFinder
\\Declare factory object for Registrar Object\\
 Public objRegistrarFactory As DIUniversityB_RegistrarFactory
\\Declare the ActiveX view of the Registrar object\\
 Public objRegistrar As DIUniversityB_Registrar

Establishing Communication with the BEA Tuxedo
Domain

When writing an ActiveX client application, there are two steps to establishing
communication with the BEA Tuxedo domain:

1. Create the Bootstrap object.

2. Initialize the Bootstrap object.

The following Visual Basic example illustrates using the CreateObject operation to
create a Bootstrap object:

Set objBootstrap = CreateObject(“Tobj.Bootstrap”)

You then initialize the Bootstrap object. When you initialize the Bootstrap object, you
supply the host and port of the ISL/ISH of the desired BEA Tuxedo domain, as
follows:

objBootstrap.Initialize “//host:port”

The host and port combination for the ISL/ISH is defined in the ISL parameter of the
UBBCONFIG file. The host and port combination that is specified for the Bootstrap
object must exactly match the ISL parameter. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not match,
the call to the Bootstrap object will fail and the following message appears in the log
file:

Error: Unofficial connection from client at <tcp/ip address>/<portnumber>

Step 6: Writing the ActiveX Client Application

Using CORBA ActiveX 2-11

For example, if the network address is specified as //TRIXIE::3500 in the ISL
parameter in the UBBCONFIG file, specifying either //192.12.4.6.:3500 or
//trixie:3500 in the Bootstrap object will cause the connection attempt to fail.

A BEA Tuxedo domain can have multiple ISL/ISHs. If you are accessing a BEA
Tuxedo domain with multiple ISL/ISHs, you supply a list of host:port combinations
to the Bootstrap object. The Bootstrap object walks through the list until it connects to
a BEA Tuxedo domain. The list of ISL/ISHs can also be specified in the TOBJADDR
environmental variable.

If you want to access multiple BEA Tuxedo domains, you must create a Bootstrap
object for each BEA Tuxedo domain you want to access.

Obtaining References to the FactoryFinder Object

The client application must obtain initial references to the objects that provide services
for the application. The Bootstrap object is used to obtain references to the
FactoryFinder object, SecurityCurrent object, and TransactionCurrent object. The
argument passed to the operation is a string containing the progid of the desired
object. You have to get references only for the objects that you plan to use in your
ActiveX client application.

The following Visual Basic example shows how to use the Bootstrap object to obtain
a reference to the FactoryFinder object:

Set objFactoryFinder = objBootstrap.CreateObject(“Tobj.FactoryFinder”)

Using a Factory to Get an ActiveX View

ActiveX client applications get interface pointers to ActiveX views of CORBA objects
from factories. A factory is any CORBA object that returns an object reference to
another CORBA object. The ActiveX client application invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. To use
factories, the ActiveX client application must be able to locate the factory it needs. The
FactoryFinder object serves this purpose.

2 Creating ActiveX Client Applications

2-12 Using CORBA ActiveX

Use the CreateObject function to create the FactoryFinder object, and then use one
of the FactoryFinder object methods to find a factory. The FactoryFinder object has the
following methods:

n find_factories()

Returns a sequence of factories that match the input key exactly.

n find_one_factory()

Returns one factory that matches the input key exactly.

n find_factories_by_id()

Returns a sequence of factories whose ID field in the name component matches
the input argument.

n find_one_factory_by_id()

Returns one factory whose ID field in the factory’s CORBA name component
matches the input argument.

n list_factories()

Lists factory objects currently registered with the FactoryFinder.

The following Visual Basic example shows how to use the FactoryFinder
find_one_factory_by_id() method to get a factory for the Registrar object used in
the client application for the BEA Tuxedo University sample applications:

Set objRegistrarFactory =
 objBsFactoryFinder.find_one_factory_by_id (“RegistrarFactory”)
Set objRegistrar = RegistrarFactory.find_registrar

Invoking Operations on the ActiveX View

Invoke operations on the ActiveX view by passing it a pointer to the factory and any
arguments that the operation requires.

The following Visual Basic example shows how to invoke operations on an ActiveX
view:

‘Get course details from the Registrar object’
aryCourseDetails =
 objRegistrar.get_course_details(aryCourseNumbers)

Step 6: Writing the ActiveX Client Application

Using CORBA ActiveX 2-13

Creating an Automation Server for Callbacks

In some application development scenarios, it may be desirable to allow the ActiveX
client application to respond to requests from the CORBA server application.
Rationales for callbacks from the CORBA server might include notifying the client
application when a certain event has occurred, validating security, or obtaining
additional information from the client. For example, a client application that tracks
stock prices might request of a CORBA server that it be notified when a specified stock
changes value. The client might do this by passing a notification object reference to the
CORBA server, which the server then uses to call back to notify the client when the
stock has changed price. The following description of the process for developing an
ActiveX client application that can function as a COM server assumes you are
developing the ActiveX client in Visual Basic.

To develop an ActiveX application that can act as a COM server in relation to a
CORBA application, you follow the six steps described above. In addition, however,
you implement the COM server functionality for a CORBA interface in Visual Basic
by creating an appropriate Visual Basic class.

One way to do this is to start by selecting the Add Class option in the Visual Basic
Project menu. Add an Implements clause to the class naming the Automation view
of the CORBA interface, as it appears in the type library that you created using
Application Builder. (See Step 4: Creating ActiveX Bindings for the CORBA
Interfaces.) For example:

Implements ChatClient_Listener

This example is taken from the chatroom Visual Basic client sample that is packaged
with BEA Tuxedo. The chatroom sample is by default located at:

tuxdir\samples\corba\chatroom

In this example, ChatClient_Listener is the name of the interface. You would then
write private Visual Basic subroutines to implement each of the methods included in
the interface. For example:

Private Sub ChatClient_Listener_post(ByVal from As String,
ByVal output_line As String, Optional exceptionInfo As Variant)
MsgBox “User “ + from + “: “ + output_line
End Sub

2 Creating ActiveX Client Applications

2-14 Using CORBA ActiveX

Creating Instances of the COM Objects

Now that you have implemented the COM object, you can create instances of it in your
ActiveX client application and pass those instances to CORBA services. You create
instances of these COM objects in exactly the same way that you create instances of
any COM object. For example:

Dim aListener as ChatClient_Listener
Set aListener = New MyListener

The call to New creates the instance, where ChatClient_Listener is the name of the
interface and MyListener is the name of the class you created to implement it. Once
an instance exists, it can be specified as a parameter to a CORBA method. For
example:

aModerator.signon “Hansel”, aListener

where aModerator is a CORBA object and aListener is the COM object that the
CORBA object will call back to as necessary.

Step 7: Deploying the ActiveX Client Application

Using CORBA ActiveX 2-15

Step 7: Deploying the ActiveX Client
Application

To distribute ActiveX client applications to other client machines, you need to create
a deployment package. A deployment package contains all the data needed by the
client application to use ActiveX views of CORBA objects, including the bindings, the
type libraries, and the registration information. The deployment package is a
self-registering ActiveX control with the file extension.ocx.

To create a deployment package for an ActiveX view:

1. Select an ActiveX view from the Workstation Views window.

2. Click Tools->Deploy Modules, or click the right mouse button on the desired
view and choose the Deploy Modules option from the menu. A confirmation
window is displayed.

3. Click Create to create the deployment package.

By default, the deployment package is placed in \tuxdir\Packages.

2 Creating ActiveX Client Applications

2-16 Using CORBA ActiveX

Using CORBA ActiveX 3-1

CHAPTER

3 Application Builder
Main Window

This Help topic includes the following sections:

n Application Builder Main Window

n Services Window

n Workstation Views Window

n Application Builder Objects

n Menu Options

n Toolbar Buttons

Application Builder Main Window

As shown in Figure 3-1, the Application Builder main window is divided into two
parts: the Services window and the Workstation Views window.

3 Application Builder Main Window

3-2 Using CORBA ActiveX

Figure 3-1 Application Builder Main Window

When you start the Application Builder, the main window displays one Services
window and one Workstation Views window. You can use the New option on the File
menu to create additional Services and Workstation Views windows. You can also use
the Window Menu options to change the arrangement of the Services and Workstation
Views windows.

Services Window

Using CORBA ActiveX 3-3

Services Window

The Services window presents all the CORBA modules, interfaces, and operations
contained in the Interface Repository in the local BEA Tuxedo domain. You can create
bindings for all the items in the Interface Repository.

At the top of the Services window are entries for each object system that is available
from the BEA Tuxedo domain. This release of the ActiveX Client supports only the
BEA Tuxedo object system. The objects are displayed in the same hierarchical format
used in the Interface Repository, that is, as modules, interfaces, methods, and the
parameters contained in methods. The [+] symbol indicates an object that can be
expanded to display the other objects.

The Services window also can be used to display other kinds of Interface Repository
definitions such as attributes, methods, and data types. Use the options on the Display
tab page on the Options window to select which kinds of Interface Repository
definitions are displayed in the Services window. (For information about the Display
tab page, see Filtering Objects Displayed in the Main Window.)

To open an additional Services window from within the Application Builder, choose
File->New->Services Window.

Workstation Views Window

The Workstation Views window presents all the ActiveX bindings that have been
created for CORBA interfaces. To create a binding for a CORBA interface, you drag
an entry in the Services window and drop it into the Workstation Views window.

The ActiveX object system does not support a hierarchical module structure; therefore,
the tree structure of the ActiveX bindings in the Workstation Views window does not
necessarily match the tree structure in the Services window. The Application Builder
alters the names of the bindings to ensure uniqueness and to conform with the naming
convention of the ActiveX object model.

3 Application Builder Main Window

3-4 Using CORBA ActiveX

The Workstation Views window also can be used to display other kinds of Interface
Repository definitions such as attributes, methods, and data types. Use the options on
the Display tab page on the Options Window to select which kinds of Interface
Repository definitions are displayed in the Workstation Views window. (For more
information about the Display tab page, see Filtering Objects Displayed in the Main
Window.)

To open an additional Workstation Views window from within the Application
Builder, choose File->New->Workstation Views Window.

Application Builder Objects

Table 3-1 explains the objects represented in the Application Builder main window.

Table 3-1 Explanation of Objects in the Application Builder

Icons Description

Indicates the available object systems such as
BEA Tuxedo and ActiveX. For this release of
the ActiveX Client, only the BEA Tuxedo
system is supported.

An argument that is passed as a parameter to a
method. An argument is based on a single data
type (for example, integer, floating point,
character) or a structure (for example, float,
string, enumerator).

An input argument.

An output argument.

Application Builder Objects

Using CORBA ActiveX 3-5

An input/output argument.

A data structure (for example, float, string,
enumerator).

An exception.

An interface which is a set of methods and
properties.

A method which is an operation that can be
invoked on an object.

A module which is a group of one or more
interfaces.

A property which is a data attribute associated
with an object.

Indicates that this ActiveX view is a server
application that can be a source of objects.

Table 3-1 Explanation of Objects in the Application Builder (Continued)

Icons Description

3 Application Builder Main Window

3-6 Using CORBA ActiveX

Menu Options

This Help describes the menu options in the Application Builder.

File Menu Options

Figure 3-2 shows the File menu options.

Figure 3-2 Expanded File Menu

From the File menu, you can use:

n The New->Services Window option to open an additional Services window.

n The New->Workstation Views Window option to open an additional Workstation
Views window.

n The Exit option to end the Application Builder session.

Edit Menu Options

Figure 3-3 shows the Edit menu options.

Menu Options

Using CORBA ActiveX 3-7

Figure 3-3 Expanded Edit Menu

From the Edit menu, you can use:

n The Copy option to copy a CORBA object from the Services window to the
clipboard. You can then paste the CORBA object into the Workstation Views
window to create a view of the CORBA object. You can also use the CTRL+C
keyboard shortcut to perform the copy action. The Copy option is not enabled
from the Workstation Views window.

n The Paste option to copy a CORBA object from the Services window to the
Workstation Views window. You can also use the CTRL+V keyboard shortcut to
perform this paste action. Pasting the CORBA object into the Workstation Views
window creates an ActiveX view of the CORBA object.

View Menu Options

Figure 3-4 shows the View menu options.

Figure 3-4 Expanded View Menu

From the View menu, you can use:

n The Toolbar option to hide or display the toolbar of shortcuts.

n The Status Bar option to hide or display the status window at the bottom of the
Application Builder main window.

3 Application Builder Main Window

3-8 Using CORBA ActiveX

n The Properties option to view the characteristics of a CORBA object or an
ActiveX view of a CORBA object.

n The Refresh option to update all the windows with new data from the Interface
Repository.

Tools Menu Options

Figure 3-5 shows the Tools menu options.

Figure 3-5 Expanded Tools Menu

From the Tools menu, you can use the Options option to open the Options window
which has the following dialog windows:

n Workstation Bindings—use this window to control the default settings used
when creating bindings.

n Deployment Packages—use this window to change the default directory location
for the deployment packages.

n Display—use this window to determine the types of objects displayed in the
Services window and the Workstation Views window.

Window Menu Options

Figure 3-6 shows the Window menu options.

Menu Options

Using CORBA ActiveX 3-9

Figure 3-6 Expanded Window Menu

From the Window menu, you can use:

n The New option to open either a new Services or Workstation Views window.
The Application Builder creates a new window of the same type as the active
window.

n The Cascade option to arrange the open Services and Workstation Views
windows in an overlapping titled pattern.

n The Tile option to arrange the open Services and Workstation Views windows in
a nonoverlapping titled pattern.

The bottom half of the menu lists the open Services and Workstation Views windows.
A check mark indicates the active window.

Help Menu Options

The Help menu options direct you to categories of the Application Builder component
descriptions.

Figure 3-7 shows the Help Menu options.

3 Application Builder Main Window

3-10 Using CORBA ActiveX

Figure 3-7 Expanded Help Menu

From the Help menu, you can bring up descriptions of the Application Builder
windows and features.

Toolbar Buttons

Figure 3-8 shows the Application Builder toolbar.

Figure 3-8 Application Builder Toolbar

The toolbar is located below the menu bar on the main window. The toolbar buttons,
from left to right, perform the following functions:

n Opens a new Services window

n Opens a new Workstation Views window

n Copies the selected interface to the clipboard

n Pastes the contents of the clipboard to the designated window

n Displays the properties of the selected interface or view

Toolbar Buttons

Using CORBA ActiveX 3-11

n Refreshes the active window

n Creates a deployment package for the selected interface

n Provides information about the product, version number, and copyright

n Provides context-sensitive help

3 Application Builder Main Window

3-12 Using CORBA ActiveX

Using CORBA ActiveX 4-1

CHAPTER

4 Tasks

This Help topic includes the following sections:

n Loading CORBA Interfaces into the Interface Repository

n Starting Application Builder

n Creating ActiveX Bindings for CORBA Interfaces

n Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces

n Creating Deployment Packages

n Changing the Directory Location for Deployment Packages

n Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces

n Changing the Default Directory Locations

n Filtering Objects Displayed in the Main Window

n Displaying Properties

Loading CORBA Interfaces into the Interface
Repository

Before you can create an ActiveX view of a CORBA object, you need to load the
interfaces of the CORBA object into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they are not displayed in the
Services window. If a desired CORBA interface is not displayed in the Services

4 Tasks

4-2 Using CORBA ActiveX

window, use the idl2ir command to load the Object Management Group (OMG)
Interface Definition Language (IDL) for the CORBA interface into the Interface
Repository. The syntax for the idl2ir command is as follows:

idl2ir -f repository-name file.idl

The following table describes the options for the idl2ir command.

For a complete description of the idl2ir command, see the CORBA Programming
Reference in the BEA Tuxedo online documentation.

Starting Application Builder

To start the Application Builder:

1. Click the BEA Application Builder icon in the BEA BEA Tuxedo System program
group.

A logon window appears.

2. Enter the host name and port number that is specified in the ISL parameter in the
UBBCONFIG file. You must match exactly the capitalization used in the
UBBCONFIG file. See Figure 4-1.

Option Description

-f repository-name Loads the OMG IDL files for the CORBA interface into the
Interface Repository. Specify the Interface Repository that is in
the same BEA Tuxedo domain as the ActiveX client
application.

file.idl Specifies the OMG IDL file containing definitions for the
CORBA interface.

Creating ActiveX Bindings for CORBA Interfaces

Using CORBA ActiveX 4-3

Figure 4-1 Connecting to the IIOP Listener

The Application Builder window appears. All the CORBA interfaces loaded in
the Interface Repository appear in the Services window of the Application
Builder.

Creating ActiveX Bindings for CORBA
Interfaces

To create an ActiveX binding for a CORBA interface:

1. In the Application Builder window, highlight the desired CORBA interface in the
Services window.

2. Drag the desired CORBA interface to the Workstation Views window, or cut the
CORBA interface from the Services window and paste it into the Workstation
Views window.

The Confirm View Creation window appears.

4 Tasks

4-4 Using CORBA ActiveX

3. To create an ActiveX binding for the CORBA interface, click Create.

The Application Builder creates the following:

l A type library. By default, the type library is placed in
\tuxdir\TypeLibraries.

The type library file is named: DImodulename_interfacename.tlb.

l A Windows system registry entry, including unique Program IDs for each
object type, for the CORBA interface.

You can now use the ActiveX view of a CORBA object from an ActiveX client
application.

Changing the Settings for Creating ActiveX
Bindings for CORBA Interfaces

Use the Workstation Bindings tab page on the Options window to change the settings
used to create ActiveX bindings for the interfaces of CORBA objects. To get to the
Workstation Bindings tab page, click Tools->Options.

Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces

Using CORBA ActiveX 4-5

Table 4-1 describes the options on the Workstation Bindings tab page.

Table 4-1 Workstation Bindings Tab Page Options

Option Description

Workstation Bindings Options Lists the types of bindings that can be created for the
interfaces of CORBA objects. A check mark appears
next to the type of bindings to be created.

Generate COM Views on
Workstation Drop

Creates COM bindings for the interfaces of CORBA
objects. This release of the ActiveX Client does not
support COM views of CORBA objects in a BEA
Tuxedo domain.

Generate OLE Automation Views
on Workstation Drop

Creates ActiveX bindings for the interfaces of CORBA
objects.

Create ActiveX Controls for OLE
Automation Views

Adds the necessary interfaces to a CORBA object so
that the CORBA object can be used as an ActiveX
control. It also registers the CORBA object as an
ActiveX control. The CORBA object can then be used
in ActiveX Control container applications.

Output Folders Specifies a directory location for the bindings that are
created for the interfaces of a CORBA object.

C++ Headers C++ header files need to be located in your computer’s
defined path so that they are compiled properly. By
default, the files are placed in:

\tuxdir\Include

You can click the Browse button to search for a
directory location.

MIDL/ODL Files Microsoft Definition Language (MIDL) and Object
Definition Language (ODL) files are for reference only
and can be placed anywhere on your computer. By
default, the files are placed in:

\tuxdir\TypeLibraries

You can click the Browse button to search for a
directory location.

4 Tasks

4-6 Using CORBA ActiveX

Creating Deployment Packages

To distribute client applications to other client computers, you need to create a
deployment package. A deployment package contains all the data the client application
needs to have to use ActiveX views of CORBA objects, including the bindings, type
libraries, and registration information. The deployment package is a self-registering
ActiveX control with the file extension .ocx.

To create a deployment package for an ActiveX view of a CORBA object:

1. Select an ActiveX view from the Workstation Views window.

2. Click Tools->Deploy Modules or click the right mouse button on the desired
view and select the Deploy Modules option from the menu.

The Confirm Deployment window is displayed.

Type Libraries Type libraries are registered with a complete directory
path and can be placed in any directory that is always
available to a client computer. By default, the files are
placed in:

\tuxdir\TypeLibraries

You can click the Browse button to search for a
directory location.

Table 4-1 Workstation Bindings Tab Page Options (Continued)

Option Description

Changing the Directory Location for Deployment Packages

Using CORBA ActiveX 4-7

3. Click Create to create the deployment package.

By default, the deployment package is placed in \tuxdir\Packages.

Changing the Directory Location for
Deployment Packages

Use the Deployment Packages tab page on the Options window to change the directory
location for deployment packages for ActiveX views of CORBA objects. To access the
Deployment Packages tab page, click Tools->Options. The current directory location
for the deployment packages is displayed. The default location is \tuxdir\Packages.

Changing the Default Directory Locations

The Application Builder provides default directory locations for C++ header files,
MIDL and ODL files, and type libraries. You can change those directory locations.

To change the directory locations:

1. From the Tools menu, select the Options option.

The Options window is displayed.

4 Tasks

4-8 Using CORBA ActiveX

2. Choose the Workstation Bindings tab on the Options window.

The default directory location is displayed in the C++ Headers, MIDL/ODL
Files, and Type Libraries fields.

3. Select the specification for the desired output directory and delete it.

4. Either enter a new directory specification or click the Browse button to search for
a new directory.

5. Click OK to save the change.

Filtering Objects Displayed in the Main
Window

Use the Display tab page on the Options window to filter the types of objects displayed
in the Application Builder main window. By default, CORBA interfaces and modules
are displayed.

Displaying Properties

Using CORBA ActiveX 4-9

You have the option of also displaying the following types of information:

n Data types

n Methods

n Arguments

n Properties

n Exceptions

Use the Include System Objects option to enable the display of a specific set of
definitions in the Interface Repository, for example, CosTransactions.

To display additional information in the Application Builder main window, click the
desired options and click OK.

Displaying Properties

Use the Properties window to display one or more pages listing the properties of the
selected adapter, module, or interface. The content of the Properties window is object
specific.

Table 4-2 describes the possible properties.

4 Tasks

4-10 Using CORBA ActiveX

Table 4-2 Description of Properties

Property Description

Interface->Name The name of the selected CORBA interface.

Interface->Type The type of object. For example, interface, module, or
exception.

Adapter->Name The name of the object system. For this release, this option
appears as BEA Tuxedo version 8.0.

Adapter->Vendor The name of the vendor of the object system. For this
release, this option appears as BEA Systems.

Adapter->Platform The version of the object system. This option appears as
version 8.0.

Exposure Describes the source object system of the object. For
example, BEA Tuxedo.

Using CORBA ActiveX 5-1

CHAPTER

5 Using Security

This Help topic describes how to use security in ActiveX client applications for the
BEA Tuxedo software.

For an overview of the SecurityCurrent object, see Chapter 1, “Overview.”

Overview of BEA Tuxedo Security

ActiveX client applications use security to authenticate themselves to the BEA Tuxedo
domain. Authentication is the process of verifying the identity of a client application.
By entering the correct logon information, the client application authenticates itself to
the BEA Tuxedo domain. The BEA Tuxedo software uses authentication as defined in
the CORBAservices Security Service and provides extensions for ease of use.

A client application must provide security information according to the security level
defined in the desired BEA Tuxedo domain. This information is defined by the BEA
Tuxedo system administrator in the UBBCONFIG file for the BEA Tuxedo domain.
When creating client applications, you must work with the BEA Tuxedo system
administrator to obtain the correct security information (such as the username and user
password) for the BEA Tuxedo domain you want to access from the client application.

5 Using Security

5-2 Using CORBA ActiveX

Summary of the Development Process for
Security

The steps for adding security to a client application are as follows:

The following sections describe these steps and use portions of the client applications
in the Security University sample application to illustrate the steps.

Step 1: Using the Bootstrap Object to Obtain
the SecurityCurrent Object

Use the Bootstrap object to obtain an object reference to the SecurityCurrent object for
the specified BEA Tuxedo domain. The SecurityCurrent object is a
SecurityLevel2::Current object as defined by the CORBAservices Security
Service.

Step Description

1 Use the Bootstrap object to obtain a reference to the
SecurityCurrent object in the specified BEA Tuxedo domain.

2 Get the PrincipalAuthenticator object from the SecurityCurrent
object.

3 Use the get_auth_type operation of the
PrincipalAuthenticator object to return the type of
authentication expected by the BEA Tuxedo domain.

4 Log on to the BEA Tuxedo domain using the required security
information.

5 Log off the BEA Tuxedo domain.

Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent Object

Using CORBA ActiveX 5-3

The following Visual Basic example illustrates how the Bootstrap object is used to
return the SecurityCurrent object:

Set objSecurityCurrent =
 objBootstrap.CreateObject(“Tobj.SecurityCurrent”)

Step 2: Getting the PrincipalAuthenticator
Object from the SecurityCurrent Object

The SecurityCurrent object returns a reference to the PrincipalAuthenticator for the
BEA Tuxedo domain. The PrincipalAuthenticator is used to get the authentication
level required for a BEA Tuxedo domain.

The following Visual Basic example illustrates how to obtain the
PrincipalAuthenticator for a BEA Tuxedo domain:

Set objPrincAuth = objSecurityCurrent.principal_authenticator

Step 3: Obtaining the Authentication Level

Use the Tobj::PrincipalAuthenticator::get_auth_type() method to get the
level of authentication required by the BEA Tuxedo domain.

The following Visual Basic example illustrates how to obtain the
PrincipalAuthenticator for a BEA Tuxedo domain:

AuthorityType = objPrinAuth.get_auth_type

5 Using Security

5-4 Using CORBA ActiveX

Step 4: Logging On to the BEA Tuxedo
Domain with Proper Authentication

Use the Tobj::PrincipalAuthenticator::logon() method to log your client
application into the desired BEA Tuxedo domain. The method requires the following
arguments:

n user_name

The BEA Tuxedo username. This information is required for TOBJ_SYSAUTH and
TOBJ_APPAUTH authentication levels. This information may be supplied for the
TOBJ_NOAUTH authentication level; however, it is not required. The system
designer decides this name at design time.

n client_name

The BEA Tuxedo client application name. This information is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels. This information may
be supplied for the TOBJ_NOAUTH authentication level; however, it is not
required. Obtain this information from the system administrator.

n system_password

The BEA Tuxedo password. This information is required for TOBJ_SYSAUTH and
TOBJ_APPAUTH authentication levels. Obtain this information from the system
administrator.

n user_password

The user password for the BEA Tuxedo authentication service. This information
is required for the TOBJ_APPAUTH authentication level.

n user_data

Application-specific data for authentication. This information is required when
the BEA Tuxedo domain the client application is accessing is not using the
authentication service provided with the BEA Tuxedo software.

The user_password and user_data arguments are mutually exclusive, depending
on the authentication service used in the configuration of the BEA Tuxedo software. If
you are using an authentication service other than an authentication service provided
by the BEA Tuxedo software, provide the information required for logon in the

Step 5: Logging Off the BEA Tuxedo Domain

Using CORBA ActiveX 5-5

user_data argument. The Tobj::PrincipalAuthenticator::logon() method
raises a CORBA::BAD_PARAM exception if both user_password and user_data are
set.

If a BEA Tuxedo domain has a TOBJ_NOAUTH authentication level, the client
application is not required to supply a user_name or client_name when logging on
to the BEA Tuxedo domain. If the client application does not log on with a user_name
and client_name, the IIOP Server Listener/Handler (ISL/ISH) of the BEA Tuxedo
domain registers the client application with the user_name and the client_name set
for the ISL/ISH in the UBBCONFIG file. However, the client application can log on with
any user_name and client_name.

The logon() method returns one of the following:

n Security::AuthenticationStatus::SecAuthSuccess if the authentication
succeeded

n Security::AuthenticationStatus::SecAuthFailure if the authentication
failed or if the client application was already authenticated and did not log off
the BEA Tuxedo domain

The following Visual Basic example illustrates how to use the
Tobj::PrincipalAuthenticator::logon() method:

If AuthorityType = TOBJ_APPAUTH Then logonStatus =
 oPrincAuth.Logon(
 UserName,ClientName,SystemPassword,_
 UserPassword,UserData)
End If

Step 5: Logging Off the BEA Tuxedo Domain

The client application must log off the current BEA Tuxedo domain before it can log
on as another user in the same BEA Tuxedo domain. Use the
Tobj::PrincipalAuthenticator::logoff() method to discard the BEA Tuxedo
current authentication context and credentials. This method does not close the network
connections to the BEA Tuxedo domain. After logging off the BEA Tuxedo domain,
calls using the existing authentication fail if the authentication type is not
TP_NOAUTH.

5 Using Security

5-6 Using CORBA ActiveX

Using CORBA ActiveX 6-1

CHAPTER

6 Using Transactions

This Help topic describes how to use transactions in ActiveX client applications for the
BEA Tuxedo CORBA.

For an overview of the TransactionCurrent object, see Chapter 1, “Overview.”

Overview of Transactions

Client applications use transaction processing to ensure that data remains correct,
consistent, and persistent. The transactions in BEA Tuxedo CORBA allow client
applications to begin and terminate transactions and to get the status of transactions.
The BEA Tuxedo software uses transactions as defined in the CORBAservices Object
Transaction Service, with extensions for ease of use.

Transactions are defined on interfaces. The application designer decides which
interfaces within a BEA Tuxedo client/server application will handle transactions.
Transaction policies are defined in the Implementation Configuration File (ICF) for
C++ server applications. Generally, the ICF file or the Server Description file for the
available interfaces is provided to the client programmer by the application designer.

Summary of the Development Process for
Transactions

The steps for adding transactions to a client application are as follows:

6 Using Transactions

6-2 Using CORBA ActiveX

The following sections describe these steps and use portions of the client applications
in the Transactions University sample application to illustrate the steps. For
information about the Transactions University sample application, see the Guide to the
CORBA University Sample Applications in the BEA Tuxedo online documentation.
The Transactions University sample application is located in the following directory
on the BEA Tuxedo software kit:

 drive:\tuxdir\samples\corba\university\transactions

Step 1: Using the Bootstrap Object to Obtain
the TransactionCurrent Object

Use the Bootstrap object to obtain an object reference to the TransactionCurrent object
for the specified BEA Tuxedo domain. For a complete description of the
TransactionCurrent object, see the CORBA Programming Reference in the BEA
Tuxedo online documentation.

The following Visual Basic example illustrates how the Bootstrap object is used to
return the TransactionCurrent object:

Set objTransactionCurrent =
 objBootstrap.CreateObject(“Tobj.TransactionCurrent”)

Step Description

1 Use the Bootstrap object to obtain a reference to the
TransactionCurrent object in the specified BEA Tuxedo
domain.

2 Use the methods of the TransactionCurrent object to include
the interface of a CORBA object in a transaction operation.

Step 2: Using the TransactionCurrent Methods

Using CORBA ActiveX 6-3

Step 2: Using the TransactionCurrent
Methods

The TransactionCurrent object has methods that allow a client application to manage
transactions. These methods can be used to begin and end transactions and to obtain
information about the current transaction. The TransactionCurrent object provides the
following methods:

n begin()

Creates a new transaction. Future operations take place within the scope of this
transaction. When a client application begins a transaction, the default
transaction timeout is 300 seconds. You can change this default, using the
set_timeout method.

n commit()

Ends the transaction successfully. Indicates that all operations on this client
application have completed successfully.

n rollback()

Forces the transaction to roll back.

n rollback_only ()

Marks the transaction so that the only possible action is to roll back. Generally,
this method is used only in server applications.

n suspend()

Suspends participation in the current transaction. This method returns an object
that identifies the transaction and allows the client application to resume the
transaction later.

n resume()

Resumes participation in the specified transaction.

n get_status()

Returns the status of a transaction with a client application.

n get_transaction_name()

6 Using Transactions

6-4 Using CORBA ActiveX

Returns a printable string describing the transaction.

n set_timeout()

Modifies the timeout period associated with transactions. The default transaction
timeout value is 300 seconds. If a transaction is automatically started instead of
explicitly started with the begin() method, the timeout value is determined by
the value of the TRANTIME parameter in the UBBCONFIG file. For more
information about setting the TRANTIME parameter, see Administering a BEA
Tuxedo Application at Run Time in the BEA Tuxedo online documentation.

n get_control()

Returns a control object that represents the transaction.

A basic transaction works in the following way:

1. A client application begins a transaction using the
Tobj::TransactionCurrent::begin() method. This method does not return a
value.

2. The operations on the CORBA interface execute within the scope of a
transaction. If a call to any of these operations raises an exception (either
explicitly or as a result of a communications failure), the exception can be caught
and the transaction can be rolled back.

3. Use the Tobj::TransactionCurrent:commit() method to commit the
current transaction. This method ends the transaction and starts the processing of
the operation. The transaction is committed only if all of the participants in the
transaction agree to commit.

The association between the transaction and the client application ends when the
client application calls the Tobj::TransactionCurrent:commit() method or
the Tobj::TransactionCurrent:rollback() method.The following Visual
Basic example illustrates using a transaction to encapsulate the operation of a
student registering for a class:

’ Begin the transaction
’
objTransactionCurrent.begin
’
’ Try to register for courses
’
NotRegisteredList = objRegistrar.register_for_courses(mStudentID,
 CourseList, exception)
’

Step 2: Using the TransactionCurrent Methods

Using CORBA ActiveX 6-5

If exception.EX_majorCode = NO_EXCEPTION then
 ’ Request succeeded, commit the transaction
 ’
 Dim report_heuristics As Boolean
 report_heuristics = True
 objTransactionCurrent.commit report_heuristics
Else
 ’ Request failed, Roll back the transaction
 ’
 objTransactionCurrent.rollback
 MsgBox "Transaction Rolled Back"
End If

6 Using Transactions

6-6 Using CORBA ActiveX

Using CORBA ActiveX 7-1

CHAPTER

7 Command-Line
Options

This Help topic describes the command-line version of the Application Builder.

The BEAAppBuilder command is a command-line version of the Application
Builder. The command is used in a makefile, in batch command files, or interactively
from the command line. Before using this command, make sure the ISL parameter in
the UBBCONFIG is set to the host and port of your server computer.

Format

BEAAppBuilder -v toAdpaterPath, sourcePath [,sourcePath...], -i directorypath, -t
directorypath, -o directorypath

Parameters

-v

Creates ActiveX bindings for the CORBA interface.

toAdapterPath

Specifies the adapter to be used to create the bindings. For this release of the
Application Builder, the toAdapterPath path is OLEAutomation.

sourcePath

Specifies one or more CORBA interfaces for which bindings are to be created. You
can also specify a module.

-i directorypath

7 Command-Line Options

7-2 Using CORBA ActiveX

Specifies the directory location for the C++ header files generated from the command.
The default location is \tuxdir\Include. If you do not specify this option, the
Application Builder uses the last defined values.

-t directorypath

Specifies the directory location for the type libraries generated from this command.
The default location is \tuxdir\TypeLibraries. If you do not specify this option, the
Application Builder uses the last defined values.

-o directorypath

Specifies the directory location for the MIDL/ODL files generated from this
command. The default location is \tuxdir\TypeLibraries. If you do not specify this
option, the Application Builder uses the last defined values.

Example

The following command creates ActiveX bindings for the Registrar and
RegistrarFactory interfaces:

BEAAppBuilder -v OLEAutomation, Registrar, RegistarFactory, -i
c:\tuxdir\Include, -t c:\tuxdir\TypeLibraries

Using CORBA ActiveX G-1

Glossary

activation

The process of preparing an object for execution.

activation policy

The policy that determines the in-memory activation duration for a CORBA ob-
ject.

ActiveX

A set of technologies from Microsoft that enables software components to interact
with one another in a networked environment, regardless of the language in which
the components were created. ActiveX is built on the Component Object Model
(COM) and includes OLE functionality, such as OLE Automation.

ActiveX view

A representation of a CORBA object that conforms to the ActiveX standards, in-
cluding implementations of all the interfaces and mapping of data types to those
data types supported by ActiveX.

API

See application programming interface.

application

In the BEA Tuxedo CORBA system, a single computer program designed to do a
certain type of work.

applications development environment (ADE)

A set of tools (often presented or accessed via a GUI) to help programmers build
applications.

G-2 Using CORBA ActiveX

application programming interface (API)

The verbs and environment that exist at the application level to support a particu-
lar system software product. A set of well-defined programming interfaces (that
is, entry points, calling parameters, and return values) by which one software pro-
gram uses the services of another.

Application-to-Transaction Monitor Interface (ATMI)

A UNIX international standard interface that BEA Tuxedo application programs
can use to start and commit global transactions, send and receive messages, main-
tain corrections, manage typed buffers, and perform similar tasks. The ATMI in-
terface is supported by all BEA Tuxedo-based systems and is the basis of the
X/Open TX and XATMI interfaces.

asynchronous process

A process that executes independently of another process. When a request is pro-
cessed asynchronously, the client application continues to perform other opera-
tions while it waits for the service request to be filled.

asynchronous request

A request that lets the client do other work while the request is being processed,
enhancing parallelism within an application.

ATMI

See application to transaction monitor interface.

attribute

An identifiable association between an object and a value.

authenticate

To reliably determine a user’s or processor’s identity, often using a password or
series of passwords. Once authenticated, an identity can be mapped against the au-
thorization tables of services and objects. This mapping generally takes place in
the access control list.

authentication

A method consisting of application passwords and security services that is used to
verify users and allow users to join applications.

Using CORBA ActiveX G-3

BEA ActiveX Client

The component of BEA Tuxedo CORBA that provides interoperability between a
BEA Tuxedo domain and the ActiveX object system. The ActiveX Client trans-
lates into ActiveX methods the interfaces of CORBA objects that are located in
the BEA Tuxedo domain.

BEA Tuxedo application

One or more Tuxedo domains cooperating to support a single business function.

BEA Tuxedo client application

A program that was written to be used with BEA Tuxedo CORBA and that re-
quests services from other applications.

BEA Tuxedo CORBA server application

A program that was written to be used with BEA Tuxedo CORBA and that per-
forms a task requested of it by a client application.

BEA Tuxedo CORBA TP framework

A run-time library of default implementations that the BEA Tuxedo CORBA serv-
er application build procedure links to the server application executable image.
The TP (transaction processing) framework consists of a set of convenience func-
tions that make it easy for you to write code that does the following:

a. Initializes the server application and executes startup and shutdown routines.

b. Ties the server application to BEA Tuxedo domain resources.

c. Manages objects, bringing them into memory when needed, flushing them from
memory when no longer needed, and managing reading and writing of data for
persistent objects.

d. Performs object housekeeping.

BEA Tuxedo domain

For CORBA applications, a collection of servers, services, and associated re-
source managers defined by a single UBBCONFIG file.

For ATMI applications, a specific instance of the BEA Tuxedo system, plus cus-
tomer server applications, plus a single UBBCONFIG file to configure the BEA Tux-
edo domain.

G-4 Using CORBA ActiveX

BEA Tuxedo foreign client application

A client application that is implemented on an ORB that is not a product of BEA
Systems, Inc., such as Netscape Navigator. The ActiveX Client component of
BEA Tuxedo CORBA is not a foreign client application; although the ORB is im-
plemented on a Microsoft product, the ORB is provided by BEA Systems, Inc.

BEA Tuxedo native client application

A client application that invokes operations defined in OMG IDL statements to
talk to BEA Tuxedo CORBA server applications. Remote and native client appli-
cations are the same. Their requests are handled transparently and differently de-
pending on whether or not the applications are co-located on a machine that is
running in he BEA Tuxedo domain. BEA Tuxedo remote client applications are
typically not located on a machine that is running in the BEA Tuxedo domain. The
ActiveX Client component of BEA Tuxedo CORBA is a remote client applica-
tion.

BEA Tuxedo remote client application

A client application that invokes operations defined in OMG IDL statements to
talk to remote BEA Tuxedo CORBA server applications using IIOP. Remote and
native client applications are the same. Their requests are handled transparently
and differently depending on whether or not the applications are co-located on a
machine that is running in the BEA Tuxedo domain. The ActiveX Client compo-
nent of BEA Tuxedo CORBA is a remote client application.

BEA Tuxedo software

The BEA Tuxedo product as the customer receives it from BEA Systems, Inc.

BEA Tuxedo system

The BEA Tuxedo software and the hardware on which the BEA Tuxedo software
is running.

binding

The association of the interface of a CORBA object to another object system, such
as an ActiveX object system.

broadcast

To send the same message to every node on a network.

Using CORBA ActiveX G-5

business object

An application-level component that can be used in unpredictable combinations.
A business object is independent of any single application and represents a recog-
nizable, ordinary entity, such as a document processor. It is a self-contained deliv-
erable that has a user interface state, and that can cooperate with other separately
developed business objects to perform a desired task.

C++

An object-oriented programming language developed at AT&T Bell Laboratories
in the early 1980s. C++ is a “hybrid” language based on the non-object-oriented
C language.

call

An instruction that is used by an application program to request services.

class

A template for an object containing variables and methods representing behavior
and attributes. Class can inherit public and protected variables and methods from
other classes.

client

(1) Software that asks a server to perform a task. In client/server terminology, a
client application typically contains the user interface, and the server application
typically stores and manipulates the data. A software program that makes a re-
quest for a service in a client/server architecture. (2) A process that generates ser-
vice requests handled by BEA Tuxedo software and receives responses to those
requests from BEA Tuxedo software.

client/server

A programming model in which application programs are structured as clients or
servers. A client program is an application program that requests services to be
performed. A server program is an entity that dispatches service routines to satisfy
requests from client programs. A service routine is an application program module
that performs one or more specific functions on behalf of client programs.

client stub

A file created by the IDL compiler when you compile an application’s OMG IDL
statements. The client stub contains code that is generated during the client appli-
cation build process. The client stub maps OMG IDL operation definitions for an

G-6 Using CORBA ActiveX

object type to the methods in the server application that the BEA Tuxedo domain
calls when it is invoking a request. The code is used to send the request to the serv-
er application.

command-line interface

A style of user interface that allows user interaction by entering command strings
at a system prompt.

commit

(1) Complete a transaction so that changes are recorded and stable. Protected re-
sources are released. (2) The declaration or process of making a transaction’s up-
dates and messages visible to other transactions. When a transaction commits, all
its effects become public and durable. After commitment, the effects of a transac-
tion cannot be reversed automatically.

Component Object Model (COM)

The object model used on Microsoft platforms. COM is different from CORBA in
many ways. For example, there are differences in the mechanisms by which ob-
jects are referenced, and in the process by which objects are created.

COM view

A representation of an object that conforms to the Component Object Model
(COM) standards, including implementation of all necessary interfaces.

constructor

A pseudo-method that creates an object. In Java, constructors are instance meth-
ods with the same name as their class. Java constructors are invoked using the new
keyword.

conversational server

A server whose services conduct conversations with requesters.

conversational service

A service routine that is invoked by means of conversational communication from
a client program. When the connection is established and the service is invoked,
the client and service exchange data in a manner specific to the application. When
the service returns, the connection ends.

Using CORBA ActiveX G-7

CORBA

Common Object Request Broker Architecture. A multivendor standard published
by the Object Management Group for distributed object-oriented computing.

CORBA facilities

The adopted OMG Common Facilities. Common Facilities provide horizontal end
user-oriented frameworks that are applicable to most domains, and defined in
OMG IDL.

CORBA interface

A set of operations and attributes. A CORBA interface is defined by using OMG
IDL statements to create an interface definition. The definition contains opera-
tions and attributes that can be used to manipulate an object.

CORBA object

An entity that complies with the CORBA standard upon which operations are per-
formed. An object is defined by its interface.

CORBA ORB

Any Object Request Broker (ORB) that complies with the CORBA standard. A
CORBA ORB is a communications intermediary between client and server appli-
cations that typically are distributed across a network. The BEA Tuxedo ORB is
a CORBA ORB.

core class

A public class (or interface) that is a standard member of the Java platform. The
intent is that the Java core classes, at a minimum, are available on all operating
systems where the Java platform runs.

daemon

A system process that processes and runs in the background.

database

A collection of interrelated or independent data items stored together without re-
dundancy to serve one or more applications.

database management system (DBMS)

A program or set of programs that let users structure and manipulate the data in
the tables of a database. A DBMS ensures privacy, recovery, and integrity of data
in a multiuser environment.

G-8 Using CORBA ActiveX

data-dependent routing

Routing that directs a request to be processed by a particular group based on the
value in a data field of the message.

DBMS

See database management system.

deployment package

In ActiveX Client, a self-registering OLE custom control executable that contains
the type libraries, Windows registration entries, and application needed to use an
ActiveX view of a CORBA object in a client application.

design pattern

A document that encapsulates, in structured format, solutions to design problems.
These patterns are essentially the articulation of rules and forms that have proved
useful in the context of object-oriented application design.

desktop client

A client application that operates on a Microsoft desktop platform, such as Win-
dows 2000 or Windows 98. Desktop client applications use the Component Object
Model (COM) and communicate with the BEA Tuxedo domain by using the Ac-
tiveX Client to translate between COM and CORBA.

distributed application

An application that is separated into two or more parts (such as a client and a serv-
er) on different computers that communicate through a network.

distributed application framework

A middleware suite for building and managing client/server applications. The
framework also includes products providing connectivity across multiple operat-
ing environments, development services, and management.

distributed transaction

A transaction involving multiple transaction managers. In a distributed transaction
environment, a client application may send requests to several servers resulting in
resource updates at multiple resource managers. To complete the transaction, the
transaction manager for each participant (client, servers, and resource managers)
must be polled to coordinate the commit process for each participant within its do-
main.

Using CORBA ActiveX G-9

distributed transaction processing (DTP)

A form of processing in which multiple application programs update multiple re-
sources (such as databases) in a coordinated manner. Programs and resources can
reside on one or more computers access a network.

domain

See BEA Tuxedo domain.

dynamic link libraries (DLL)

A collection of functions grouped into a load module that is dynamically linked
with an executable program at run time for a Windows or OS/2 application.

environmental object

Any support object that provides independence from the underlying environment
(for example, independence from the operating system). The Bootstrap object is
an environmental object.

event

The occurrence of a condition, state change, or the availability of some informa-
tion, that is of interest to one or more modules.

exception

An abnormal condition, such as an I/O error encountered in processing or data set
or a file, or using any resource.

factory

Any CORBA object that returns an object reference to other CORBA objects. A
factory is located in the server application.

factory finder

The object that locates the factories that an application needs. Both client applica-
tions and server applications can use a factory finder.

framework

The software environment tailored to the needs of a specific application domain.
Frameworks include a collection of software components that programmers use to
build applications for the domain the framework addresses. Frameworks can con-
tain specialized APIs, services, and tools, which reduce the knowledge a user or
programmer needs to have to accomplish a specific task.

G-10 Using CORBA ActiveX

garbage collection

The automatic detection and freeing of memory that is no longer in use. The Java
run-time system performs garbage collection so that programmers never explicitly
free objects.

global transaction

(1) A transaction that spans one or more resource managers comprising local
transactions. The Transaction Manager name for a transaction that uses multiple
servers or multiple resource manager interfaces and is coordinated as an atomic
unit of work. (2) The BEA Tuxedo name for a transaction that uses multiple serv-
ers or multiple resource manager interfaces and is coordinated as an atomic unit
of work.

graphical user interface (GUI)

A high-level interface that uses windows and menus with graphic symbols instead
of typed system commands to provide an interactive environment for a user.

GUI

See graphical user interface.

host

A computer that is attached to a network and provides services other than acting
as a communication switch.

identifier

The name of an item in a Java program.

IDL

See OMG IDL.

IDL interface

A declaration in OMG IDL of an interface to a CORBA object. The interface dec-
laration contains IDL operations and attributes. The OMG IDL interface declara-
tion is used to generate stubs and skeletons for BEA Tuxedo CORBA objects.

See also Java interface.

Using CORBA ActiveX G-11

IIOP

Internet Inter-ORB Protocol. A protocol specified by the Object Management
Group (OMG). The IIOP enables two or more Object Request Brokers (ORBs) to
cooperate to deliver requests to the proper object.

See also CORBA ORB.

IIOP Listener/Handler

The BEA Tuxedo CORBA feature that enables client applications to communi-
cate with the BEA Tuxedo domain, and the reverse. The IIOP listener/handler re-
ceives a request from a client application via the IIOP protocol, and then sends that
request to the appropriate server application within the BEA Tuxedo domain.

implementation code

The method code that you write that satisfies the client application’s request on a
specific object. The interface defines the operation and is implemented in the
method.

implementation file

The file that contains, among other data, method declarations for each operation
defined in your OMG IDL statements. You need to implement the method with
your business logic. When you build the server application, you provide this im-
plementation file to the BEA Tuxedo CORBA build procedure.

inheritance

The ability to pass along the capabilities and behaviors of one object to another
object. When an object inherits behavior from a single interface, it is called single
inheritance. When an object inherits behavior from more than one interface, it is
called multiple inheritance.

instance

An object instance in C++. Object instances are used as servants for CORBA ob-
jects in BEA Tuxedo CORBA.

Interface Repository

An online database that contains the definitions of the interfaces that determine the
CORBA contracts between client and server applications.

G-12 Using CORBA ActiveX

Interoperable Object Reference (IOR)

The entity that associates a collection of tagged profiles with object references. An
ORB must create an IOR from an object reference whenever an object reference
is passed across ORBs.

Java

An object-oriented programming language modeled after C++ designed to be
small, simple and portable across platforms and operating systems.

Java Development Kit (JDK)

A package of software for Java developers that includes the Java interpreter, Java
classes, and Java development tools: compiler, debugger, disassembler, applet-
viewer, stub file generator, and documentation generator.

Java interface

A declaration used in the Java language to define an abstract interface. Since Java
does not have multiple inheritance, a Java class can implement one or more inter-
faces to provide mix-in functionality.

See also IDL interface.

Java Runtime Environment (JRE)

A subset of the Java Development Kit for end users and programmers who want
to redistribute the JRE. The JRE consists of the Java Virtual Machine, the Java
core classes, and supporting files.

Java Virtual Machine

The part of the Java Runtime Environment responsible for interpreting Java byte-
codes.

JDK

See Java Developer’s Kit.

legacy application

An existing application that needs to be modified or wrapped so that it can gain
access to the BEA Tuxedo domain.

logical machine (LMID)

A processing element used in a transaction manager application and given a logi-
cal name in the configuration file.

Using CORBA ActiveX G-13

makefile

A file, referenced by the make command, that tells the make command how to cre-
ate each of the files needed to generate a complete program. The makefile contains
a list of source files, object files, and dependency information.

managed object

An entity (such as a process, a piece of hardware, or system performance) that is
defined in the MIB and is controlled by a management device.

management information base (MIB)

(1) A BEA Tuxedo system component that provides a complete definition of the
object classes and their attributes that together comprise the BEA Tuxedo system.
(2) A virtual storage database that uses ASN.1 notation. The MIB contains an ob-
ject that represents each attribute that the system manager software monitors and
controls. These objects are defined in ASN.1 notation. Each attribute has an object
identifier (OID) that guarantees uniqueness within a standard registration hierar-
chy.

mapping

The relationship between OMG IDL statements and the programming language
code that results when the OMG IDL statements are compiled. For example, a
C++ IDL compiler maps OMG IDL statements into C++ language bindings.

method

A method of a C++ or Java class. User-written methods of C++ or Java classes
provide implementation of IDL operations for BEA Tuxedo CORBA distributed
objects.

MIB

See management information base.

MIB group

A group of objects, represented by the name or object identifier of an object in the
OID tree, that contains a collection of managed objects.

middleware

A set of services for building distributed client/server applications, such as servic-
es for locating other programs in the network, establishing communication with
those programs, and passing information between applications. Middleware ser-

G-14 Using CORBA ActiveX

vices can also be used to resolve disparities between different computing plat-
forms and to provide a uniform authorization model in multivendor and
multioperating system networks.

model

A simplified representation of something. The representation is simplified in the
sense that some of the details have been abstracted.

modeling

A design technique used in developing architecture, simulations, and computer
systems.

multithreading

Use of a process by several transactions.

naming context

An object that contains a set of name associations in which each name is unique.

object

An entity defined by its state, behavior, and identity. These attributes (also known
as properties) are defined by the object’s object system.

See also CORBA object.

object ID (OID)

A value that uniquely identifies a distributed object of a given interface.

object implementation

The code you write that implements the operations defined for an interface.

object interface

The interface of an object, as defined in an application’s OMG IDL statements.
The object interface identifies the set of operations that can be performed on an
object, such as withdrawals, deposits, and transfers.

object model

The model that represents as objects the overall object-oriented design of an ap-
plication or system.

Using CORBA ActiveX G-15

object reference

An identifier that associates an object definition with an instance of the object,
such as an employee identification number.

object system

A software system that stores, manipulates, and uses a collection of objects ac-
cording to a set of system-specific standards. An object system specifies how in-
formation is exchanged between objects, and how objects are implemented in
accordance with an object model, such as CORBA or COM.

octet

A byte that consists of eight bits.

OLE

Object linking and embedding. A set of Microsoft technologies that address prob-
lems in software development, ranging from embedding documents from one ap-
plication into another application to more complex problems. OLE enables the
linking of clients and servers in a manner that is transparent to the user.

OLE Automation

A technology that lets software packages expose their unique features to scripting
tools and other applications. OLE Automation uses the OLE Component Object
Model (COM), but may be implemented independently from other OLE features.

OMG IDL

Object Management Group Interface Definition Language. A definition language
specified by the OMG for describing an object’s interface (that is, the characteris-
tics and behavior of an object, including the operations that can be performed on
the object).

operation

An action that can be performed by an object.

Portable Object Adapter (POA)

A run time library of functions that are built in to the server application executable
image. The POA creates and manages object references to all objects used by the
application. In addition, the POA managers object state and provides the infra-
structure for support of persistent objects and the portability of object implemen-
tations between different ORB products. The BEA Tuxedo server application

G-16 Using CORBA ActiveX

procedure automatically builds the POA into the server application. The BEA
Tuxedo CORBA TP framework automatically handles all the server application
interactions with the POA.

request

A message sent by a client application that identifies an operation to be performed.
The message is sent to the Object Request Broker (ORB) and is relayed to the ap-
propriate server application, which fulfills the request.

resource manager

An interface and associated software that provides access to a collection of infor-
mation and processes; for example, a database management system. Resource
managers provide transaction capabilities and permanence of actions; they are the
entities accessed and controlled within a global transaction.

rollback

(1) Terminate a transaction such that all resources updated within a transaction re-
vert to the original state before the transaction started. (2) The event that ends a
transaction and nullifies or undoes all changes to resources that were specified
during that transaction.

scalability

The extent to which developers can apply a solution to problems of different sizes.
Ideally, a solution should work well across the entire range of complexity. In prac-
tice, however, there are usually simpler solutions for problems of lower complex-
ity.

security

The protection of information from unauthorized modification or disclosure and
the protection of resources from unauthorized use.

SecurityCurrent

The object that provides access to the security features of the system.

servant

The instance of the class that implements the interface defined in an application’s
OMG IDL statements. A servant contains the method code that implements the
operations of one or more CORBA objects.

Using CORBA ActiveX G-17

server

See BEA Tuxedo server application.

server group

A collection of servers on a machine, often associated with a resource manager. A
server group is an administrative unit used for booting, shutting down, and migrat-
ing servers.

Server object

 The object that performs server application initialization functions, creates one or
more servants, and performs server application shutdown and cleanup procedures.

skeleton

The BEA Tuxedo CORBA Object Request Broker (ORB) component that is spe-
cific to the object interface and that assists an Object Adapter in passing requests
to particular methods. The skeleton is produced by the IDL compiler and is used
at run time by the BEA Tuxedo ORB to invoke specific methods to satisfy re-
quests.

state

A description (typically in memory) of the current situation of an object.

stateless application

An application that flushes state information from memory after a service or an
operation has been fulfilled.

subscriber

An application program that subscribes to an event or set of events, and declares
what action should take place when an event is posted.

thread

A unit of execution or an execution context. An executing sequence of instructions
and the memory they manipulate.

three-tier client/server

An implementation of n-tier client/server.

TM

See transaction manager.

G-18 Using CORBA ActiveX

transaction

(1) A complete unit of work that transforms a database from one consistent state
to another. In DTP, a transaction can include multiple units of work performed on
one or more systems. (2) A logical construct through which applications perform
work on shared resources (e.g., databases). The work done on behalf of the trans-
action conforms to the four ACID Properties: atomicity, consistency, isolation,
and durability.

transaction coordinator

A system software component that provides the infrastructure that guarantees the
integrity and consistency of an operation and the data involved in a transaction.

TransactionCurrent

The object that is used to manage transactions. The TransactionCurrent object
supports APIs to open and close the resource manager.

transaction manager

A system software component that manages global transactions on behalf of ap-
plication programs. A transaction manager coordinates commands from applica-
tion programs and communication resource managers to start and complete global
transactions by communicating with all resource managers that are participating
in those transactions. When resource managers fail during global transactions,
transaction managers help resource managers decide whether to commit or roll-
back pending global transactions.

See also transaction coordinator.

transaction policy

The policy that determines the TP framework’s interaction between the client re-
quest (which may be associated with a transaction) and the servant’s transaction
context.

TUXCONFIG

The binary version of the configuration file for a BEA Tuxedo application. This
file is accessed by all BEA Tuxedo processes for all configuration information.

two-phase commit (2PC)

A method of coordinating a single transaction across more than one DBMS (or
other resource manager). It guarantees data integrity by ensuring that transactional
updates are committed in all of the participating databases, or are fully rolled back
out of all of the databases, reverting to the state prior to the start of the transaction.

Using CORBA ActiveX G-19

two-tier client/server

An application development approach that splits an application into two parts and
divides the processing between a desktop workstation and a server machine.

type library

A shared code repository represented by a single file. It stores data types and in-
terface types.

UBBCONFIG

An ASCII version of the configuration file for a BEA Tuxedo application. This is
the ASCII representation of the TUXCONFIG file.

use case

Text that describes how a user will interact with the application that is being de-
signed. The use case reflects the processes the user will follow.

UserTransaction environmental object

The object that connects the client application to the BEA Tuxedo CORBA trans-
action subsystem, wherein the client application can perform operations within the
context of a transaction. The UserTransaction object exists only with Java client
applications.

view

A representation of a CORBA object in the BEA Tuxedo domain that resides in
another object system, such as ActiveX.

See also CORBA object and BEA Tuxedo domain.

wrap

To enclose an application in a software layer to make the application available to
other applications

wrapper

The enclosure that is used to wrap a legacy application to make the legacy appli-
cation available as an implementation to BEA Tuxedo CORBA client applica-
tions.

G-20 Using CORBA ActiveX

XML

Extensible Markup Language. A language written by the World Wide Web Con-
sortium (W3C) organized by Sun Microsystems, Inc. to put SGML on the World
Wide Web.

Using CORBA ActiveX I-1

Index

A
accessing

CORBA objects 1-2
ActiveX 1-1

concepts
bindings 1-2
views 1-2

naming conventions 1-3
ActiveX Client

overview 1-2
ActiveX client applications

creating
bindings 2-7
views 2-7

defining security 5-2
deploying views 2-15
development process 2-2
establishing communication with the

domain 2-10
invoking operations on objects 2-11
ISL parameter 2-7
loading environmental objects into the

Interface Repository 2-5
loading interfaces into the Interface

Repository 2-5
resolving initial references to objects

2-11
starting a server application for the

Interface Repository 2-6
using factories 2-11
using security 5-2

using the Interface Repository 1-5
using transactions 6-1
using views 1-2
writing 2-9

Application Builder
creating

bindings 2-7
deployment packages 2-15
type libraries 2-8
views 2-7

description 1-2
how it works 1-2
ISL parameter 2-7
main user tasks 1-2
main window 3-1
overview 1-1, 1-2
windows 2-3

authentication levels
getting

C++ 5-3
Java 5-3
Visual Basic 5-3

in client applications 5-3
supported in the BEA Tuxedo software

1-11
TOBJ_APPAUTH 1-11
TOBJ_NOAUTH 1-11
TOBJ_SYSAUTH 1-11

Automation environmental objects
loading into the Interface Repository 2-5
TOBJIN.IDL 2-5

I-2 Using CORBA ActiveX

writing declarations for 2-9
automation server, creating 2-13

B
bindings

creating 2-7
deploying 2-15
description 1-2

Bootstrap object
declaration

Visual Basic 2-10
description 1-7
getting SecurityCurrent object 5-2
getting TransactionCurrent object 6-2
resolving initial references

Visual Basic 2-10
buttons

toolbar 3-10

C
C++ 5-5

code examples
logging on to the domain 5-5
PrincipalAuthenticator object

C++ 5-3
SecurityCurrent object 5-3
TransactionCurrent object 6-2
transactions 6-4

C++ Header files
directory location 4-4

changing the default directory locations 4-7
client applications

using security 5-1
using transactions 6-4

code examples
Bootstrap object

Visual Basic 2-10
declarations

Visual Basic 2-10

factories
Visual Basic 2-11

FactoryFinder object
Visual Basic 2-11

invoking operations
Visual Basic 2-11, 2-12

logging on to the BEA Tuxedo domain
5-5

Visual Basic 2-10
logging on to the domain 5-5
logging on to the Tuxedo domain

C++ 5-4
Java 5-4

PrincipalAuthenticator object
C++ 5-3
Java 5-3
Visual Basic 5-3

SecurityCurrent object
C++ 5-3
Java 5-3
Visual Basic 5-3

TransactionCurrent object
C++ 6-2
Visual Basic 6-2

transactions
C++ 6-4
Visual Basic 6-4

COM objects, creating instances of 2-14
CORBA C++ client applications

defining security 5-2
using security 5-2
using the Interface Repository 1-5
using transactions 6-1

CORBA interfaces
creating bindings for 2-7
loading into the Interface Repository 2-5

CORBA Java client applications
defining security 5-2
using security 5-2
using the Interface Repository 1-5
using transactions 6-1

Using CORBA ActiveX I-3

CORBAservices Object Transaction Service
6-1

CORBAServices Security service 5-1
creating

deployment packages 4-6
customer support contact information xiii

D
deploying applications 4-6
deployment package

description 2-15
directory location 2-15

Deployment Packages window 3-8
description 1-1
development commands

idl2ir 1-5
ir2idl 1-5
irdel 1-5

development process
ActiveX client applications 2-2
security 5-2
transactions 6-1

directory location
deployment package 2-15
type libraries 2-8

Display window 3-8
documentation, where to find it xi
domains

authentication level 5-3
defining security for 5-1
description 1-5
establishing communication with

ActiveX client applications 2-10
figure 1-5
logging off 5-5
logging on with PrincipalAuthenticator

object 5-4

E
Edit menu 3-6
environmental objects 1-6

Automation 1-6, 2-3
Bootstrap 1-6
C++ 1-6
description 1-6
FactoryFinder 1-6
Interface Repository 1-6
Java 1-6
SecurityCurrent 1-6
TransactionCurrent 1-6

F
factories

code examples
Visual Basic 2-11

creating CORBA objects 1-8
declaration

Visual Basic 2-10
description 1-8
naming conventions 1-9
writing declarations for 2-9

FactoryFinder object
code examples

Visual Basic 2-11
declaration

Visual Basic 2-10
description 1-8
illustrated 1-8

File menu 3-6

H
Help menu 3-9

I
ICF file

defining transaction policies 6-1

I-4 Using CORBA ActiveX

idl2ir command
description 1-5
loading automation environmental

objects into the Interface
Repository 2-5

loading interfaces into the Interface
Repository 2-5

populating the Interface Repository 1-5
syntax 2-5
using with ActiveX client applications

2-3
Interface Repository

commands
idl2ir 1-5
ir2idl 1-5
irdel 1-5

description 1-5
information stored in 1-5
loading

automation environmental objects
2-5

loading CORBA interfaces into 4-1
starting server application 2-6

InterfaceRepository object
description 1-13

ir2idl command
creating an OMG IDL file 1-5
description 1-5

irdel command
deleting CORBA interfaces from the

Interface Repository 1-5
description 1-5

ISL parameter 2-7
using in ActiveX client applications 2-10
using with the Application Builder 2-7

J
Java

code examples
PrincipalAuthenticator object

Java 5-3
SecurityCurrent object 5-3

L
Loading CORBA interfaces into the Interface

Repository 4-1

M
main window

Services window 3-1
Workstation Views window 3-1

menu options, description of 3-6
methods

TransactionCurrent object 6-3
MIDL files

directory location 4-4

N
naming conventions

ActiveX 1-3
factories 1-9

O
objects

on the Application Builder GUI 3-4
ODL files

directory location 4-5
OMG IDL

description 1-4
online help

printing xii
using vii
window viii

options
Edit menu 3-6
File menu 3-6
Help menu 3-9
View menu 3-7, 3-8

Using CORBA ActiveX I-5

Windows menu 3-8

P
PDF location

of online help xii
PrincipalAuthenticator object

arguments 5-4
code examples

C++ 5-3
Java 5-3
Visual Basic 5-3

getting the authentication level 5-3
logging on to the domain 5-4
using in client applications 5-3

printing product documentation xii

R
related information xii
relationship to domains 1-6

S
sample applications

Security 5-2
Transactions 6-2

security
configuring 5-1
getting the PrincipalAuthenticator object

5-3
getting the SecurityCurrent object 5-2
logging off the domain 5-5
logging on to the domain 5-4
obtaining the authentication level 5-3
overview 5-1
supported authentication levels 1-11

SecurityCurrent object
code examples

C++ 5-3
Java 5-3

Visual Basic 5-3
description 1-11
properties

Credentials 1-11
PrincipalAuthenticator 1-11

using in client applications 5-3
Services window 3-3

description 3-1
starting the Application Builder 4-2
support

technical xiii

T
tasks

changing the default directory locations
4-7

creating
ActiveX views of CORBA objects

4-3
creating Deployment Packages 4-6
loading CORBA interfaces into the

Interface Repository 4-1
starting the Application Builder 4-2

TOBJ_APPAUTH
description 1-11
required arguments 5-4

TOBJ_NOAUTH
description 1-11
required arguments 5-4

TOBJ_SYSAUTH
description 1-11
required arguments 5-4

toolbar 3-10
Tools menu 3-8
transaction policies

defining in ICF file 6-1
description 1-12

TransactionCurrent object
methods 6-3
transaction policies 1-12

I-6 Using CORBA ActiveX

transactions
getting the TransactionCurrent object

6-2
in client applications 6-4
overview 6-1

type libraries
creating with Application Builder 2-8
directory location 2-8, 4-4
loading bindings into development tool

2-8
naming conventions 2-8

U
UBBCONFIG file

defining
security 5-1

starting server application for Interface
Repository 2-6

V
View menu

options 3-7
views

creating 2-7
definition 1-2
deploying 2-15
description 1-2
invoking operations on 2-11, 2-12
writing declarations for 2-9

Visual Basic 5-5
code examples

Bootstrap object 2-10
factories 2-11
FactoryFinder object 2-11
invoking operations 2-11, 2-12
logging on to the domain 5-5
PrincipalAuthenticator object 5-3
SecurityCurrent object 5-3
TransactionCurrent object 6-2

transactions 6-4
declarations for 2-10

Bootstrap object 2-10
FactoryFinder object 2-10

loading type libraries for bindings 2-8
Visual Basic samples

chat room sample 2-13

W
windows

Services 3-3
Workstation Bindings 4-4
Workstation Views 3-3

Windows menu 3-8
Workstation Bindings window 3-8, 4-4
Workstation Views window 3-3

description 3-1

	Copyright
	About This Online Help
	How to Use the Online Help
	What if the Help System Doesn’t Display Properly?
	Make Sure You Are Using an Up-to-Date Browser
	Customize the Font Size so the Help Is Easy to Read
	Important Considerations About the BEA Builder Installed Browser
	Using Your Favorite Web Browser
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Contents
	1 Overview
	What Is ActiveX?
	Views and Bindings

	How It Works
	Naming Conventions for ActiveX Views
	OMG IDL
	Interface Repository
	Domains
	Environmental Objects
	Bootstrap Object
	Factories and the FactoryFinder Object
	Naming Conventions and BEA Tuxedo Extensions to the FactoryFinder Object
	SecurityCurrent Object
	TransactionCurrent Object
	InterfaceRepository Object

	2 Creating ActiveX Client Applications
	Summary of the Development Process for ActiveX Client Applications
	The BEA Application Builder
	Step 1: Loading the Automation Environmental Objects into the Interface Repository
	Step 2: Loading the CORBA Interfaces into the Interface Repository
	Step 3: Starting the Interface Repository Server Application
	Step 4: Creating ActiveX Bindings for the CORBA Interfaces
	Step 5: Loading the Type Library for the ActiveX Bindings
	Step 6: Writing the ActiveX Client Application
	Including Declarations for the Automation Environmental Objects, Factories, and ActiveX Views of ...
	Establishing Communication with the BEA Tuxedo Domain
	Obtaining References to the FactoryFinder Object
	Using a Factory to Get an ActiveX View
	Invoking Operations on the ActiveX View
	Creating an Automation Server for Callbacks

	Step 7: Deploying the ActiveX Client Application

	3 Application Builder Main Window
	Application Builder Main Window
	Services Window
	Workstation Views Window
	Application Builder Objects
	Menu Options
	File Menu Options
	Edit Menu Options
	View Menu Options
	Tools Menu Options
	Window Menu Options
	Help Menu Options

	Toolbar Buttons

	4 Tasks
	Loading CORBA Interfaces into the Interface Repository
	Starting Application Builder
	Creating ActiveX Bindings for CORBA Interfaces
	Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces
	Creating Deployment Packages
	Changing the Directory Location for Deployment Packages
	Changing the Default Directory Locations
	Filtering Objects Displayed in the Main Window
	Displaying Properties

	5 Using Security
	Overview of BEA Tuxedo Security
	Summary of the Development Process for Security
	Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object
	Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent Object
	Step 3: Obtaining the Authentication Level
	Step 4: Logging On to the BEA Tuxedo Domain with Proper Authentication
	Step 5: Logging Off the BEA Tuxedo Domain

	6 Using Transactions
	Overview of Transactions
	Summary of the Development Process for Transactions
	Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
	Step 2: Using the TransactionCurrent Methods

	7 Command-Line Options
	Glossary
	Index

