BEA Tuxedo

Programming a BEA Tuxedo
Application Using TXRPC

BeEA Tuxedo Release 7.1
Document Edition 7.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Programming a BEA Tuxedo Application Using TxRPC

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1.

Introducing TXRPC
WHEE 1S TXRPC.....ccvovvveevesesssssssssss s ssssssssssessssssssss 11

Using the Interface Definition Language (IDL)

REFEIENCES ...ttt bbb e e e e 2-1
Using uuidgen to Create an IDL Template........cooeeevereie e e 2-2
Changes in the LanQUAGE.ccereruereiereeeeie ettt et se e s snesresee s 2-3
Changes Based on the TXRPC Specification............ccooovoerenrininieeie e 2-4
Enhancements to the Language...........ccocoeeoeirnrieee s e 2-4

Enhancements that May Limit Portability ..o 2-6
UNSUPPOITEH FEBIUIES.ceiieeie ettt ettt e s e e e e anesnesre e 2-7
Using tidl, the IDL COMPITEN.......coeiiieieeieeeie et 2-8

Writing RPC Client and Server Programs

Handling REMOLENESS.........couiie ittt 31
Handling Status and EXception REtUMNS..........cccoiieriiieie e 3-2
Using Stub SUpPOrt FUNCLIONS........cocir et e 3-3
USiNg RPC HEAE! FlES.......ocueeeecee ettt st s s 35
Portability Of COOEcceiieiieiceece e e e e 3-6
Interacting With ATMI ..o e s 3-10
Interacting With TX ...ttt e 311

Building RPC Client and Server Programs

Prerequisite KNOWIBAGE..........ooviieeie ittt st e 4-1
BUIlAING @N RPC SEIVEY ..ottt ettt st sree e sae e 4-2
Building an RPC ClIiENtcccooiiiiiieieie et eaae s 4-3
Building a Windows Workstation RPC Client...........ccccceeveieee e e e 4-3

Programming a BEA Tuxedo Application Using TXRPC iii

iv

USING Gttt sttt sttt ettt e e st re e bes e e e et enees e e e e enees e senneeen 4-4

Interoperating With DCE/RPC............ooiiiiie et s 4-5
BEA Tuxedo Requester to DCE Service viaBEA Tuxedo Gateway 4-6
Setting the DCE LOgin CONLEXLcc.ciereereeeiriereeie e seeeeee s 4-7
Using DCE Binding HaNAIEScooi i 4-8
AUthenticated RPC ..o e 4-9
TrANSACHIONSviveceiieteeet ettt e e et e b 4-9
DCE Requester to BEA Tuxedo Service Using BEA Tuxedo Gateway 4-9
BEA Tuxedo Requester to DCE Service Using DCE-only...........cc........ 4-11
DCE Requester to BEA Tuxedo Service Using BEA Tuxedo-only......... 4-12
Building Mixed DCE/RPC and BEA Tuxedo TXxRPC Clients and Servers....
4-13

5. Running the Application

Prerequisite KNOWIEAGE........coo ittt 51
Configuring the ApPliCatIONco i 5-2
Booting and Shutting Down the Applicationccocceeieieieneneiece e 5-2
Administering the APPlICELIONcoo i e 5-3
Using Dynamic Service AQVErtiSEMENtcccoooeiireieenereeee e e 5-3

. A Sample Application

APPENAIX CONEENES ...ttt ee et e e aese e seene s enee e A-1
= o D1 (=SSR A-1
Building the rpcsimp AppliCatioN..........cccoeeriiieee e A-2
Step 1: Create an Application DIr€CtOryccooeverencieieieee e A-2
Step 2: Set Environment Variables...........ooeoeiiiiiie i A-2
SteP 3: COPY FIlES .. e A-3
Step 4: List the FIlES...c.o et e e A-3

IDL Input File - SIMP.idlcooiee e A-4

The Client Source Code - ClIENt.C....ccovvveeieiieeceeeee e A-4

The Server Source Code - SEIVEN.C.....ooevrieeirieire e s A-6
MaKefile - IPCSIMPLMK ..ot e A-7

The Configuration File - ubbconfigcccceeeeieicie e, A-8

DOS and Windows Makefile - rpcsimp.makcooceeeeeenneneecinniene A-9
Windows Definition files - wclient.def and wsimpldll.def A-13

Programming a BEA Tuxedo Application Using TXRPC

Step 5: Modify the Configurationccooeee e se e A-14

Step 6: Build the Application ... ieineie e A-14
Step 7: Load the Configurationc.ceeoeeeeseerienie e A-14
Step 8: Boot the Configuration...........cc.eeioreeeieeniee e A-15
Step 9: RUNThe CLIENt ..o s A-15
Step 10: Monitor the RPC SEIVENooviee e A-15
Step 11: Shut Down the Configurationccceeeeeeeeesenene e A-16
Step 12: Clean Up the Created Files.......ooooieiiiiieeeieee e A-17

B. A DCE-Gateway Application

APPENAIX CONLENES ...ttt eee e e e e e e e e eneeneeneas B-1
PrEr@OUISITES ...ttt sttt e et ae e e e seeseeneeneene e B-1
What |sthe DCE-Gateway AppliCationccucerireeiriniene e e B-2
Installing, Configuring, and Running the rpcsimp Applicationcccceeee. B-2
Step 1: Create an Application DIreCLOrYcooeeiiereeeieineee e B-2
Step 2: Set Y our ENVIFONMENT ...t B-3
Step 3: Copy the FlES ... s B-3
StEP 4 LisSt the FIlES. ..o e B-3
IDL ACF File - SImPACE.aCtcoeoieiriieie e B-4

Binding Function - dcebind.C..........coeeecieiie e B-5

Entry Point VEeCtor - dCEEPV.C....oiiririiiirie e e B-6

DCE Manager - dCEMQI.C ..c.ccuuruireeieniirieneie et et B-7

DCE SErVEr - JCESEIVEL.C ..ottt sttt ettt ere e ber e B-9
Makefile - IPCSIMPMK ... e e e B-11

Step 5: Modify the Configuration ..o B-13
Step 6: Build the Application ... B-13
Step 7: Load the Configurationcuereeeoeeennnie e B-13
Step 8: Configuring DCEoooiiiieeeeeeiren et e B-14
Step 9: Boot the Configuration............cceeereeeeiinine e e B-15
Step 10: RUN the CHIENT ... e B-15
Step 11: Shut Down the Configurationcocoeveneieenenieee e B-15
Step 12: Clean Up the Created Files ... B-15

Programming a BEA Tuxedo Application Using TXRPC %

Vi Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

1 Introducing TXRPC

m What IsTXxRPC

What Is TXRPC

The TXRPC feature allows programmers to use a remote procedure call (RPC)
interface, such that aclient process can call aremotefunction (that is, aremote service)
in another process using alocal function call. The application writer must specify the
operations (that is, procedures) and data types that are used as parameters to those
operations via an Interface Definition Language (IDL). Operations are grouped
together in an interface. An IDL compiler is used to generate substitute procedures
called stubs which allow the operation to be remote. An important concept to
understand from the beginning isthat there are two fundamental levels of naming: the
interface has a name and within an interface, one or more operations are named. At
runtime, the interface is made avail able, which meansthat any of the operationsin the
interface can be called; an individual operation within an interface cannot be made
available (if you need this, define the operation in its own interface).

The following illustrates how an RPC is made to look like alocal procedure call.

Programming a BEA Tuxedo Application Using TXRPC 1-1

1

Introducing TxRPC

1-2

Figure1-1 RPC Communication

App Apparent Data Path App
Client ol W SErver
Code Caode
Client Server
Stub Stub
TUXEDO TUXEDO
Runtime Runtime

Input parameters T

Eeturn and output parameters

Artual Data Path

The client application code calls one of the operations (functions) defined in the IDL
file. Instead of calling the actual function, which resides on the server side, the client
stubiscalled. Theclient stub isgenerated by the IDL compiler based on the IDL input
file, which defines the data types and operations. For each operation, the input
parameters, return type, and output parameters are defined. The client stub takes the
input parameters and converts them into a single buffer of data, sends the data to the
server and waits for a response, and unpacks the buffer of data sent back from the
server (thereturn value and output parameters). The communication between the client
and server processes, whether intra-machine or inter-machineis handled by the BEA
Tuxedo system runtime.

On the server side, the runtime call s the server stub for the interface, also generated by
theIDL compiler. This stub unpacks the data buffer that containstheinput parameters,
in some casesit allocates space needed for output parameters of the operation, callsthe
operation and waits for it to return, packs the return value and output parameters into
abuffer and sends the response back to the client.

From the application perspective, it appearsthat asimplelocal procedure cal is done.
The stubs and the runtime hide the calling of aremote procedure in anon-local address
space (process).

The steps for building an application using remote procedure callsisvery similar to
building one without these calls. Most of the time will be spent writing the application
code for the client and the server (where the real application work is done). The BEA
Tuxedo system runtime frees the application programmer from worrying about

Programming a BEA Tuxedo Application Using TXRPC

What Is TXRPC

communications, translation of the data from the format used on the client machine to
the format used on the server machine, and so forth. TXRPC may also be used to
communicate between servers.

In addition to the steps needed for building a monolithic application, it is necessary to
completely define the interface between the client and server. As stated earlier, the
interface contains the definition of data types and operations used for the remote
procedure calls. Normally, the name of the file containing the definition hasia
suffix; using this convention makes the file type self-documenting.

Every interface must have its own unique identifier. This “Universal Unique

Identifier” (UUID) consists of 128-bits that uniquely identify the interface among all
interfaces. The job of generating a UUID is done for the application programmer by
theuui dgen program. By running theui dgen program with thei option, it

generates an interface template that contains a new UUID. You can look at A Sample
Application. for a complete example (including code) for the development of a simple
RPC application; the first step illustrates how to runuhiedgen command and the
resulting output. More information about other options of this command are given in
theuui dgen(1) manual page.

The UUID is used at runtime to ensure that the client stub matches the server stub on
the receiving side. That is, the UUID is sent from the client to the server for validation
by the runtime BEA Tuxedo system, transparent to the application programmer.

Besides matching on the UUID, each interface also has a version number associated
with it. The version consists of a major and minor number. If a version number is not
specified as part of the interface definition, it defaults to 0.0. Thus, there may be
multiple versions of the same interface available. The client requests a particular
version of an interface by invoking the RPC in the stub generated from a particular
interface version. Different versions imply that data types or operation parameters or
returns have changed, or operations have been added to or deleted from the interface.
Thus, the client and server UUID’s and versions must match for a successful RPC. The
application programmer must ensure that versions of the interface that have the same
version numbers do provide the same (or a compatible) interface.

Once the template IDL is generatediny dgen, the application program must provide

a definition of all data types and operations in the interface. The language looks very
much like the declarative parts of C or C++ (without the procedural statements). Data
types are declared vigrpedef statements, and the operations are declared via
function prototypes. Additional information is provided via |Bttributes. Attributes
appear in the language within square brackets, for example, [in]. These provide
information about such things as pointer types (for example, whether or not a pointer

Programming a BEA Tuxedo Application Using TXRPC 1-3

1

Introducing TxRPC

1-4

can be NULL at runtime), about parameters (for example, whether a parameter is for
input, output, or both), and much more. The IDL language and the associated compiler
are discussed further in Using the Interface Definition Language (IDL).

Inadditiontothe IDL file, an optional Attribute Configuration File (ACF) may also be
provided to give additional attributes of the interface. Most important is the definition
of statusvariablesinthe operations for returning the status of each RPC operation. The
use of status variables will be discussed further in Writing RPC Client and Server
Programs. Attributes in the ACF file do not affect the communications between the
client and server (as do attributes in the IDL file), but generally have an impact on the
interface between the application code and the generated stubs.

When using the BEA Tuxedo system runtime, the management of the binding
(connection) between the client and server is done transparently. Thereis no
information provided by the client or server application code to manage the
client/server binding. (In contrast, when using the OSF DCE runtime, considerable
effort by the programmer must be given to binding management. BEA Tuxedo runtime
does not support the OSF DCE runtime functions and ignores binding attributesin IDL
and ACFfiles))

The IDL and optional ACF files are “compiled” using the IDL compiler. The compiler
first generates a header file that contains all of the type definitions and function
prototypes for the operations defined in the IDL file. This header file can be included
in application code that makes RPC calls defined in the interface. If the input files are
file.idl andfile.acf, then the default header file namé ig e. h. The compiler
generates stub code for both the client and server (for exampke,cst ub. ¢ and
file_sstub. c). These stub files were described earlier and contain the data
packaging and communications for the RPC. By default, the IDL compiler invokes the
C compiler to generate client and server stub object files (for exafiple, cst ub. o
andfi/l e_sstub. o) and the stub source files are removed. There are various IDL
compiler options to request, limit generation of, and keep source and object files, an
change the output file names and directories. Seeittig(1) reference page for

further details.

After completing the interface definition, the major portion of work is writing the
application code. The client code will call the operations defined in the interface, anc
the server code must implement the operations (note that a server can also act as a
client by calling an RPC). Further considerations regarding writing the application are
discussed in Using the Interface Definition Language (IDL).

Programming a BEA Tuxedo Application Using TXRPC

What Is TXRPC

When the application code is completed, it's time to compile and link it together with
the BEA Tuxedo system runtime. Two programs are provided to simplify this process:
bui | dser ver for the server, anblui | dcl i ent for the client. These programs

compile any source files and link the object and library files with the BEA Tuxedo
runtime to produce the executable files. These programs allow for alternate compilers
and compilation options to be specified. Seebthid dser ver (1) and

bui I dcl i ent (1) reference pages for further details.

The complete process for building a server and client are shown in the following two
figures. More details about building client and server programs on different platforms
are provided in Building RPC Client and Server Programs.

Figure1-2 Building an RPC Server

Step 1

TUXEDO
runtime

Step 3

The preceding figure illustrates the process for building a server is illustrated.

1. Runuui dgen to generate a skeleton IDL filei(mp. i dI) with auul D. Edit the
template IDL file to define the interface between the client and server using the
interface definition language.

2. Run the IDL compilert(i dI) usingsi np. i dl and optionaki np. acf to
generate the interface header file and the server stub object file.

3. After writing the server application codee(ver. c), runbui | dser ver to
compile it and link it with the server stub, BEA Tuxedo runtime, and TXxRPC
runtime to generate an executable server.

Programming a BEA Tuxedo Application Using TXRPC 1-5

1 Introducing TxRPC

Figure 1-3 Building an RPC Client

TUXEDO
runtime

" buildclient

Step 5

| [smm]

client.c

The preceding figure illustrates the process for building a client.

4. UsingthelDL file created in Step 1, run the IDL compiler (ti dl) to generate the
interface header file and the client stub object file.

5. After writing the client application code (cl i ent . ¢), runbui | dcl i ent to
compileit and link it with the client stub, BEA Tuxedo runtime, and TXRPC
runtime to generate an executable client.

After building the application client and server, the application can be configured and
booted, and the client run. This is discussed in Running the Application.

1-6 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

2 Using the Interface
Definition Language
(IDL)

m Using uuidgen to Create an IDL Template
m Changesinthe Language

m Changes Based on the TXRPC Specification
m Enhancementsto the Language

m Unsupported Features

m Using tidl, the IDL Compiler

References

BEA Tuxedo TxRPC supports the IDL grammar and associated functionality as
described in Chapter 3 (“Interface Definition Language"D@E: REMOTE
PROCEDURE CALL (Doc Code: P312 ISBN 1-872630-95-2). This book is available
from the following.

X/OPEN Company Ltd (Publications)
P O Box 109
Penn

Programming a BEA Tuxedo Application Using TXRPC 2-1

2 Using the Interface Definition Language (IDL)

High Wycombe
Bucks HP10 8NP
United Kingdom

Tel: +44 (0) 494 813844
Fax: +44 (0) 494 814989

The X/OPEN document is the ultimate authority on the language and rules adhered to

for the BEA Tuxedo product. Note that the X/OPEN TxRPC IDL-only interfaceis
supported (parts of the document concerning the DCE binding and runtime do not

apply). The X/OPEN document is based on the OSF DCE AES/RPC document. There

are several books containing tutorials and programmer’s guides that can be used,
although most will not contain the latest features. The programmer’s guide available
from OSF isOSF DCE Application Development Guide, published by Prentice-Hall
(Englewood Cliffs, New Jersey, 07632).

The X/OPEN Preliminary Specification for TXRPC Communication Application
Programming Interface is also available from X/OPEN (see above). TXRPC adds
transaction support for RPCs to the original XOPEN RPC interface.

Using uuidgen to Create an IDL Template

A Universal Unique Identifier (UUID) is used to uniquely identify an interface. The
uui dgen command is used to generate UUIDs. The output might look something like
the following.

$ uuidgen -i > sinp.idl

$ cat sinp.idl

[uui d(816A4780- A76B- 110F- 9B3F- 930269220000)]
i nterface | NTERFACE

{
}

This template is then used to create the IDL input file for the application (adding type
definitions, constants, and operations).

If both the BEA Tuxedo and DCHhui dgen(1) commands are available, the DCE
command can and should be used to generate the template (the DCE version will ma
likely have a machine-specific approach to getting the node address, as described
below).

2-2 Programming a BEA Tuxedo Application Using TXRPC

Changes in the Language

The BEA Tuxedo system uui dgen command is similar to the DCE command with the
exception that the - s option (which generatesa UUID string as an initialized C
structure), and the - t option (which tranglates an old style UUID string to the new
format) are not supported. See the uui dgen(1) reference page for details of the
interface.

Theuui dgen command requires a48-bit node addressasdescribed in | SO/I EC 8802-3
(ANSI/IEEE 802.3). There is no platform-independent way to determine this value,
and it may not be available at all on some machines (aworkstation, for example). The
following approach is used for the BEA Tuxedo system uui dgen command:

m |f the NADDR environment variable is set to a value of the form
num num num num num numwhere numis between 0 and 255, inclusive, it is
taken to be an Internet-style address and converted to a 48-bit node address. This
allows conformance with the use of the 8802-3 node address. It also alows users
who do not have access to this address to use another value, most likely the
Internet address (which is not the same as the 8802-3 address). If the Internet
address is used, the last num numshould be 0.0 (because Internet addresses are
only 32-bit addresses).

m |f the NADDR environment variable is not set and if the WSBNADDR environment
variableis set to avalue of the form 0xnnnnnnnnnnnnnnnn it istaken to be a
hexadecimal network address, as used in Workstation. Again note that thisis not
the 8802-3 address, and the last 16 bits will be treated as zeros.

m |f neither the NADDR nor the WBNADDR environment variable is set (and if not
DOS, Windows, or 0S/2), the unane for the machine is used to look up the
machine entry in/ et ¢/ host s to get the Internet-style address.

m |f thefirst three choices are not available, awarning is printed and
00.00.00.00.00.00 isused. Thisis not desirable because it reduces the chance of
generating a unique UUID.

Changes in the Language

The IDL compiler recognizesthe IDL grammar and generates stub functions based on
the input. The grammar and its semantics are fully described in both the X/OPEN and
OSF/DCE references listed earlier in this chapter. The grammar will be recognized in
its entirety with some changes as described in the following sections.

Programming a BEA Tuxedo Application Using TXRPC 2-3

2 Using the Interface Definition Language (IDL)

Changes Based on the TXRPC Specification

Thefollowing are changesto the base X/OPEN RPC specification that are defined by
the X/OPEN TxRPC Specification:

m The most important enhancement from the TXRPC specification is the addition
of the[transaction_optional] and[transacti on_mandat ory] attributes
in the interface and operation attributesin the IDL file.
[transaction_optional] indicatesthat if the RPC is donewhilein a
transaction, the remote service is done as part of the transaction. The
[transaction_mandat ory] attribute requires that the RPC be done within a
transaction. Without these attributes, the remote serviceis not part of any
transaction of which the client may be part.

m Binding types and attributes are not required by X/OPEN TxRPC IDL-only. The
binding attributes are [handl e] , [endpoi nt], [aut o_handl e] ,
[inplicit_handle],and[explicit_handl e]. They arerecognized by
tidl (1) but not supported (these attributes are ignored). Also the handl e_t
typeis not treated specially (it is transmitted as any other defined typeis
transmitted, without treatment as a handle).

m Pipes are not required by X/OPEN TXRPC IDL-only. ti dI supports pipes only
in[1ocal] mode; that is, they can be specified for header file, but not stub,
generation.

m The[idenpotent], [maybe], and[broadcast] attributesare not required by
X/OPEN TXRPC IDL-only. They areignored by ti dI (1) .

Enhancements to the Language

Thefollowing are enhancements to the X/OPEN RPC specification. In most cases, the
language has been enhanced to more closely follow the C language, simplifying the
porting of existing interfaces (converting from ANSI Cto IDL prototypes).

m Inthe X/OPEN Specification, character constants and character strings are
limited to the portable set, that is space (0x20) through ti | de (0x7€). Other

2-4 Programming a BEA Tuxedo Application Using TXRPC

Enhancements to the Language

charactersin the character set (0x01 through 0xff) are allowed, asin OSF DCE
RPC.

Asin C, the following operators are treated as punctuators.
[| & ? | & _ == 1= = << > <=>=< >+ - %! ~

This means that white space need not follow or precede identifiers or numbers if
preceded or followed by one of these tokens. (The IDL specification requires
white space, asin’a = b + 3’, instead of allowing 'a=b+3’.) This aso seemsto
be the behavior of the OSF DCE IDL compiler.

The published X/OPEN specification restricts field and parameter names from
matching type names. This restriction effectively puts all names in asingle name
space. Thisrestriction does not match C, C++, or the OSF IDL compiler, and is
not enforced.

The X/OPEN specification does not allow anonymous enumerations as
parameter or function results and does not allow anonymous structures or unions
as the targets of pointers. Each of these is alowed by the OSF DCE IDL
compiler. These restrictions are not enforced; in each case, a name, based on the
interface name and version, is generated for use during marshalling.

Enumeration values (constants) may be used in integer constant expressions (as
in C). This also seemsto be the behavior of the DCE IDL compiler.

Ascurrently defined in the X/OPEN RPC specification, the grammar does not
allow for apointer in front of an operation declaration, for example,

I ong *op(void);

nor doesit allow for structure or union returns. While this could be considered
correct (everything could be hidden in a defined type), the DCE IDL compiler
and, of course, C compiler allow amuch richer operation return. The supported
grammar will be the following.

[operation_attributes] <type spec> <decl ar at or>

where <dec! ar at or > must contain a<f uncti on_decl arator>. (If a
<function_decl ar at or> does not exist, then avariable is declared, which
results in an error.) Declaring an array of operations or an operation returning an
array (both allowed by this grammar) will be detected and flagged as an error.

The <ACS type_decl! ar at i on> takes <ACS naned_t ype> values, just asthe
IDL <t ype decl ar at i on> takes alist of declarators. This seemsto be the
behavior of the DCE IDL compiler.

Programming a BEA Tuxedo Application Using TXRPC 2-5

2 Using the Interface Definition Language (IDL)

m Fielded buffers created and manipulated with the Field Manipulation L anguage

(FML) are an integral part of many BEA Tuxedo applications. Fielded buffers
are supported as a new basetypein the IDL. They are indicated by the keywords
FBFR for 16-bit buffers and FBFR32 for 32-hit buffers and must always be
defined as a pointer (for example, FBFR * or FBFR32 *). A fielded buffer
cannot be defined as the base type in at ypedef . They can be used in structure
fields and as parameters. They can be used as the base type in an array or pointer
(either full or reference pointer). However, conformant and varying arrays of
fielded buffers are not supported.

There are severa restrictions in the OSF IDL compiler that are not documented
inthe AES or X/OPEN RPC specification. These are enforced in the BEA
Tuxedo IDL compiler:

e A transmitted type used in [t ransni t _as()] cannot have the
[represent _as] attribute.

e A union arm may not be or contain a[r ef | pointer.

e |f aconformant and/or varying array appears in astructure, the array size
attribute variable may not be apointer (that is, it must be a non-pointer,
integer element within the structure).

Enhancements that May Limit Portability

2-6

There are four additional BEA Tuxedo enhancements to the X/OPEN RPC
specification that, while making the specification more C-like, are not supported in the
OSF DCE IDL compiler and thus havethe effect of limiting portability of theIDL file:

m String concatenation is supported (asin ANSI C). That is,

const char *str = “abc” “def”;

istreated the same as

const char *str = “abcdef”;

Escaped newlines are allowed in string constants. That is,

const char *str = “abc\
def”;

istreated the same as

const char *str = “abcdef”;

Programming a BEA Tuxedo Application Using TXRPC

Unsupported Features

Enumeration values may also be used in union cases and are treated as integers
(that is, automatic conversion is provided asin C).

The restriction that the type of each <uni on_case_I abel > must be that
specified by the<swi t ch_t ype_spec> will not be enforced. Instead, the type
will be coerced as is done with case statements in a C switch statement.

Unsupported Features

The following seven features are not supported inthet i di compiler:

The migration attributes[v1_struct],[v1l_enuni,[vl_string],and
[v1l_array] arerecognized but not supported (these appear in the OSF IDL
specification but not the X/OPEN specification).

Function pointers (defined in the OSF/DCE document) are supported only in
[l ocal] mode (asin OSF/DCE).

An exact match is required on interface version minor between the client and the
server (the X/OPEN RPC specification allows for the server version minor to be
greater than or equal to the version minor specified by the client).

On machines with 32-bit longs, integer literal values are limited to -2**31 to
2**31. This means that unsigned long integer values in the range 2**31+1 to
2**32-1 are not supported. This also seems to be the behavior of the DCE IDL
compiler.

Context handles are supported only in[| ocal] mode. Interfaces cannot be
written that use context handles to maintain state across operations.

The[out - of - 1i ne] ACSattribute isignored. Thisfeatureis not defined in a
way that will support interoperation between different implementations (e.g.,
with the OSF IDL compiler).

The[heap] ACSattributeisignored.

Programming a BEA Tuxedo Application Using TXRPC 2-7

2 Using the Interface Definition Language (IDL)

Using tidl, the IDL Compiler

Theinterface for the IDL compiler is not specified in any X/OPEN specification.

For DCE application portability, the BEA Tuxedo system IDL compiler hasa similar
interface to the DCE IDL compiler, with the following exceptions:

The command nameisti dl instead of i dI so an application can easily
reference either when both appear in the same environment.

The - bug option, which generates buggy behavior for interoperability with
earlier versions of the software, has no effect. The - no_bug option also has no
effect.

The - space_opt option, which optimizes the code for space, isignored. Space
isaways optimized.

A new option, - use_const , issupported. - use_const generates ANSI C

const statementsinstead of #def i ne statementsfor constant definitions. This
gets around an annoying problem where a constant defined in the IDL file
collides with another name in the file using a C-preprocessor definition, but is
properly in another name space when defined as a C constant. Use of this feature
will limit portability of the IDL file.

On DOS and OS/2, the - keep obj ect option isnot supported and the - keep

al | option will generate C source code only. By default, the IDL compiler
generates C source code for the stubs and then compiles them automatically. The
automatic compilation of the stubs is not done on DOS and OS/2 (the equivalent
of - keep c_sour ce dueto memory limitations on these platforms. Also, only
the client stub is generated; server stub generation is not supported on DOS and
0S/2 (to reduce the size of theti dl executable).

By default, /1i b/ cpp, /usr/ccs/1ib/ cpp,or/usr/lib/cpp (whicheveris
found first) is the command used to preprocess the input IDL and ACF files. On
DOS and 0S/2, the default is to not pre-process IDL and ACSfiles.

By default, the IDL compiler takesaninput DL file and generatesthe client and server
stub object files. The - keep c¢_sour ce option generates only the C sourcefiles, and
the - keep al | option keeps both the C source and object files. The sample RPC
application, listed in Appendix A, “A Sample Application,” usestkeep obj ect
option to generate the object files.

2-8 Programming a BEA Tuxedo Application Using TXRPC

Using tidl, the IDL Compiler

By default, at most 50 errorsare printed by t i dl . If you want to see them all (and have
more than 50 errors), usethe - err or al | option. Theerror output is normally printed
tothest der r, butis printed on the standard output on DOS and OS/2 platforms (since
thereis no standard mechanism to redirect the standard error on these platforms).

Seetidl (1) in BEA Tuxedo Command Reference for details on the many other
options that are available.

Programming a BEA Tuxedo Application Using TXRPC 2-9

2 Using the Interface Definition Language (IDL)

2-10 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

3 Writing RPC Client and
Server Programs

m Handling Remoteness

m Handling Status and Exception Returns
m Using Stub Support Functions

m Using RPC Header Files

m Portability of Code

m Interacting with ATMI

m Interacting with TX

Note: Sample client and server source files are provided in Appendix A, “A Sample
Application.”.

Handling Remoteness

The goal of TXRPC is to provide procedure calls transparently between a client in one
address space and a server in another address space, potentially on different machines.
However, because the client and server are not in the same address space, there are
some things to remember:

m Because the client and server are in different address spaces, potentially on
different machines, memory is not assumed to be shared. Program state (for

Programming a BEA Tuxedo Application Using TXRPC 31

3 Writing RPC Client and Server Programs

example, open file descriptors) and global variables are not shared between the
client and server. Any state information required must be passed from the client
to the server and then back to the client for subsequent calls.

m Thedivision of labor between the client and server has some advantages, such as
providing more modularity of the software and the ability to do the work near
the resources required to do the work. However, it may also mean more
complexity in dealing with issues related to distributed processing, such as
communication problems, independent unavailability of either the client or
server, and so forth. Errorsresulting from the increased complexity may require
different handling from those in an interface designed for local procedure calls.
The handling of errorsinvolved in communications and/or the remote processis
covered in the next topic.

Handling Status and Exception Returns

In the X/OPEN RPC specification, non-application errors are returned via status
parameters or a status return. A f aul t _st at us valueis returned if thereis an RPC
server failure and aconm st at us valueis returned if there is acommunications
failure. Status returns are specified by defining an operation return value or an [out]
parameter of typeerror_status_t inthelDL file, and declaring the same operation
or parameter to havethe [f aul t _st at us] and/or [conm st at us] attribute in the
ACFfile.

For example, an operation defined in an IDL fileas:

error_status_t op([in,out]long *parml, [out]error_status_t *conmstat);
with a definition in the corresponding ACF file as:
[fault_status]op([conm st atus]conmnstat);

returns an error from the server viathe operation return, and an error in
communications via the second parameter. Its use in the client code could be as
follows:

if (op(&parnl, &commstat) !=0 || commstat !=0) /* handle error */

The advantage of using status returns is that the error can be handled immediately at
the point of failure for fine-grained error recovery.

3-2 Programming a BEA Tuxedo Application Using TXRPC

Using Stub Support Functions

The disadvantage of using status returns is that the remote function has additional
parameters that the local version of the function does not have. Additionally,
fine-grained error recovery can be tedious and error prone (for example, some cases
may be missing).

DCE defines a second mechanism called exception handling. It is similar to C++
exception handling.

Theapplication delimitsablock of C or C++ codeinwhich an exception may be raised
with the TRY, CATCH, CATCH_AL L, and ENDTRY statements. TRY indicates the beginning
of the block. CATCH is used to indicate an exception-handling block for a specific
exception, and CATCH_ALL isused to handle any exceptions for which thereis not a
CATCH statement. ENDTRY ends the block. TRY blocks are nested such that if an
exception cannot be handled at alower level, the exception can be raised to a higher
level block using the RERAI SE statement. If an exception israised out of any exception
handling block, the program writes a message to the log and exits. Details of the
exception handling macros and an example are described in TRY(3c) inthe BEA
Tuxedo C Function Reference.

In addition to exceptions generated by the communi cations and server for an RPC call,
exceptions are also generated for lower level exceptions, specifically operating system
signals. These exceptions are documented within TRY(3c) in the BEA Tuxedo C
Function Reference.

Using Stub Support Functions

There are alarge number of run-time support functions (over 100) defined in the
X/OPEN RPC specification. These functions need not all be supported in an X/OPEN
TXRPC IDL-only environment. Most of these functions relate to binding and
management which are done transparently for BEA Tuxedo clients and servers.

One area that affects application portability is the management of memory allocated
for stub input and output parametersand return values. The Stub Memory Management
routines are supported in TXRPC runtime with the exception of the two routinesto
handle threads. The status-returning functions include:

m rpc_smallocate

m rpc_smclient _free

Programming a BEA Tuxedo Application Using TXRPC 3-3

3 Writing RPC Client and Server Programs

rpc_smdi sabl e_all ocate
rpc_smenabl e_al |l ocate
rpc_smfree

rpc_smset _client_alloc_free
rpc_smset_server_alloc_free

rpc_smswap_client_alloc_free

The equivalent exception-returning functions include:

rpc_ss_allocate

rpc_ss client _free
rpc_ss_disabl e_all ocate
rpc_ss_enable_all ocate
rpc_ss free

rpc_ss _set _client_alloc_free
rpc_ss_set_server_alloc_free

rpc_ss _swap_client_alloc_free

Refer to BEA Tuxedo C Function Reference for more information on these functions.

Theruntime functions are contained in | i bt r pc; building RPC clients and serversis
discussed in the next topic.

Here are afew tips regarding memory management.

When a BEA Tuxedo client calls aclient stub, it usesmal | oc and f r ee by
default. All space will be freed on return from the client stub except space
allocated for [out] pointers (including implicit [out] pointersin the return
value of the operation). To make freeing of [out] pointers easier, call
rpc_ss_enabl e_al l ocate(),and setal | oc/free torpc_ss_al | oc()/

r pc_ss_f ree() before calling the RPC by calling
rpc_ss_set_client_alloc_free(). Thenrpc_ss_di sabl e_al | ocat e() can
be used to free al of the allocated memory. For example, to simplify freeing
space returned from a client stub the following could be used.

rpc_ss_set _client_alloc _free(rpc_ss_allocate, rpc_ss free);
ptr = renpote_call _returns_pointer();

3-4 Programming a BEA Tuxedo Application Using TXRPC

Using RPC Header Files

/* use returned pointer here */
rpc_ss _disable_ allocate(); /* this frees ptr */

m When a BEA Tuxedo server stub is executed that calls an application operation,
memory alocation using r pc_ss_al | ocat e is always enabled in the server
stub. The[enabl e_al | ocat e] attribute in the ACF file has no effect. All
memory will be freed in the server before returning the response to the client. (In
DCE, memory allocation is enabled only if [pt r] fields or parameters exist, or
the programmer explicitly specifies[enabl e_al | ocate] .)

m When aserver stub calls an application operation which in turn callsa client
stub (that is, when aserver acts as aclient by calling an RPC), the
rpc_ss_set_client_alloc_free() function must be called to set up
allocation such that any space allocated will be freed when the operation returns.
Thisis done by calling

rpc_ss_set _client_alloc_free(rpc_ss _allocate, rpc_ss free);

m When callingrpc_ss_al | ocat e() or rpc_sm al | ocat e(), remember to cast
the output to match the data type of the pointer being set. For example

long *ptr;
ptr = (long *)rpc_ss_all ocate(sizeof (long));

Using RPC Header Files

To ensure that stubs from both DCE/RPC and TXRPC can be compiled in the same
environment, different header file names are used in the TXRPC implementation. This
should not affect the application programmer sincethese header files are automatically
included in the interface header file generated by the IDL compiler. However, an
application program may wish to view these headers to see how atype or function is
defined. The new header file names are listed here.

B dce/ nbase. h,dce/ nbase. i dl -renamedrpc/tbase. handrpc/tbase.idl.
Contain the declarations for pre-declared typeserror _stat us_t,
I SO LATIN 1,1 SO MULTI LI NGUAL, and | SO_UCS.

m dce/idl base. h-renamedr pc/ti dl base. h. Containsthe IDL base types, as
defined in the specification (for example, i dl _bool ean, i dl _I ong_int), and
the function prototypes for the stub functions.

Programming a BEA Tuxedo Application Using TXRPC 3-5

3 Writing RPC Client and Server Programs

m dce/ pt hread_exc. h - renamedr pc/t exc. h. Contains the TRY/ CATCH
exception handling macros.

m dce/rpcsts. h-renamedrpc/trpcsts. h. Contains the exception and status
value definitions for the RPC interface.

These header files are located in $TUXDI R/ i ncl ude/ r pc. The TXRPC IDL compiler
will look in $TUXDI R/ i ncl ude by default as the “system IDL directory.”

Portability of Code

The output from the IDL compiler is generated in a way to allow it to be compiled in
a large number of environments (see the next chapter for a discussion of compilation
However, there are some constructs that don't work in various environments. Here ar
a few known problems.

When compiling with Classic (hnon-ANSI) C, “pointers to arrays” are not allowed. For
example:

typedef long array[10][10];
func()

array t1;

array *t?2;

t2 = &t 1; /* & ignored, invalid assignment */
func2(&t1); /* & ignored */

}

This will make it difficult to pass “pointers to arrays” to operations as parameters in a
portable fashion.

When using an array of strings where the string attribute is applied to a multi-byte
structure, the results will not be as desired if the compiler pads the structure. This is
not the normal case (most compilers do not pad a structure that contains only charact
fields), but at least one occurrence is known to exist.

Constant values are, by default, implemented by generatidgfa ne for each

constant. This means that names used for constants should not be used for any oth
names in the IDL file or any imported IDL files. A TXRPC-specific option on thi
compiler,- use_const, may be used to get around this problem in an ANSI C
environment. This option will causenst declarations instead afief i ne

3-6 Programming a BEA Tuxedo Application Using TXRPC

Portability of Code

definitionsto be generated. The constant valueswill be declared intheclient and server
stubs, and any other sourcefile including the header file will ssimply get ext ern
const declarations. Note that this has the restriction that the client and server stubs
may not be compiled into the same executable file (or duplicate definition errors will
occur).

There are several restrictions in the C++ environment:

m Do not use the same name for at ypedef and astructure or union tag, unlessthe
t ypedef name matchesthestruct or uni on name.

struct t1 {
I ong s1;

}
typedef struct tl1 tl; /* ok */
typedef long t1; /* error */

m Do not hide a structure or union tag declaration inside another structure or union
declaration and then reference it outside.

struct t1 {
struct t2 {
long s2;
} sy
Pty
typedef struct t3 {
struct t2 s3; /* t2 undefined error */
}t3;

m Some compiler warnings may be generated. These include the following:
e Warnings that automatic variables are declared but not used

e Warningsthat avariable is used before being set when referenced in
si zeof () asin the following case.

long *ptr;
ptr = (long *)mal |l oc(sizeof (*ptr) * 4);

When coding the client and server application software, you should use the data types
generated by the IDL compiler, asdefined in r pc/ ti dl base. h (listed as Emitted
Macro in the following table). For instance, if you use al ong instead of

i dl _I ong_i nt, then the data type may be 32 bits on some platforms and 64 bits on
others; i dl _l ong_i nt will be 32 bitson all platforms. Here is atable that lists the
generated data types.

Programming a BEA Tuxedo Application Using TXRPC 3-7

3 Writing RPC Client and Server Programs

3-8

IDL Type Size Emitted Macro C Type
boolean 8 hits i dl _bool ean unsigned char
char 8 hits i dl _char unsigned char
byte 8 hits idl _byte unsigned char
small 8 bits idl _small _int char
short 16 hits idl _short_int short
long 32 hits idl _long_int Machines with 32-bit long: | ong
Machines with 64-bit long: i nt
hyper 64 bits idl _hyper_int Machines with 32-bit long:
Big Endian
struct
{
| ong hi gh;
unsi gned | ong | ow,
}
Little Endian
struct
{
unsi gned | ong | ow,
| ong hi gh;
}
Machines with 64-bit long:
| ong
unsigned 8 hits idl _usmall _int unsigned char
small
unsigned 16 bits idl _ushort _int short
short
unsigned 32 hits idl _ulong_int Machines with 32-bit long: | ong
long Machines with 64-bit long: i nt

Programming a BEA Tuxedo Application Using TXRPC

Portability of Code

IDL Type Size Emitted Macro C Type
unsigned 64 bits idl _uhyper _int M achines with 32-bit long:
hyper Big Endian

struct

{

unsi gned | ong hi gh;
unsi gned | ong | ow,
}
Little Endian
struct

{unsi gned long | ow;
unsi gned | ong hi gh;
}
M achines with 64-bit long:

unsi gned | ong

float 32 bits idl _short_fI oat fl oat
double 64 bits idl_long_fl oat doubl e
void * pointer idl_void_p_t voi d *
handle t pointer handl e_t handl e_t

Asin C, there are several classes of identifiersin the IDL. Names within each class
(that is, scope or name space) must be unique:

m Constant, typedef, operation, and enumeration member names are in one name
space.

m Structure, union, and enumeration tags are in another name space.

m Structure and union member names at the same level must be unique within the
structure or union in which they are defined.

m Parameter names within the operation prototype in which they are defined must
be unique.

Note that an anonymous structure or union (without atag and not defined as part of a
typedef) cannot be used for an operation return or a parameter.

Programming a BEA Tuxedo Application Using TXRPC 39

3 Writing RPC Client and Server Programs

Interacting with ATMI

3-10

The TXRPC executabl es use the BEA Tuxedo system to do the RPC communications.
Other BEA Tuxedo interfaces and communications mechanisms can be used within
the same clients and servers that are using the RPC calls. Thus, it ispossible to have a
single client making Request/Response calls (for example t pcal | (3c),

t pacal | (3c),andt pgetr pl y(3c)), making conversationa calls (t pconnect (3c),
t psend(3c),tprecv(3c), andt pdi scon(3c)), and accessing the stable queue

(t penqueue(3c) andt pdequeue(3c)). Whenaclient makesthefirst call to the BEA
Tuxedo software, either an RPC call, any of these other communications calls, or any
other ATMI call (such asacall for buffer allocation or unsolicited notification), the
client automatically joins the application. However, if the application is running with
security turned on or if the client must run as part of a particular resource manager
group, then t pi ni t (3c) must be called explicitly to join the application. Refer to

t pi nit (3c) in BEA Tuxedo C Function Reference for further details, and alist of
optionsthat can be explicitly set. When an application completeswork using the BEA
Tuxedo system, t pt er m(3c) should be called explicitly to leave the application and
free up any associated resources. If thisis not done for native (non-Workstation)
clients, the monitor detectsthis, printsawarningin theuser1 og(3c) , and freesup the
resources. In the case of Workstation clients, the resources may not be freed up and
eventually the Workstation Listener or Handler will run out of resourcesto accept new
clients.

Aswith clients, servers can use any of the communication paradigms in the role of
client. However, a server cannot provide (advertise) both conversational services and
RPC serviceswithin the same server; asdescribed later, an RPC server must be marked
asnon-conversational. Although it ispossibleto mix ATMI request/response and RPC
serviceswithin the same server, thisis not recommended. Onefurther restriction isthat
RPC operations cannot call t pr et urn(3c) ort pf or war d(3c) . Instead, RPC
operations must return as they would if called locally. Any attempt to call

t preturn(3c) ortpforward(3c) froman RPC operation will beintercepted and an
error will be returned to the client (exceptionr pc_x_f aul t _unspec or status
rpc_s_fault _unspec).

Two functions available to servers but not to clientsaret psvrini t (3c) and

t psvrdone(3c) , which are called when the server starts up and when it is shut down.
Since the server must call t x_open(3c) before receiving any TXRPC operation
requests, t psvri ni t () isagood place to call it. The default t psvrinit () function
already callst x_open() .

Programming a BEA Tuxedo Application Using TXRPC

Interacting with TX

Interacting with TX

The TX functions provide an interface for transaction demarcation. t x_begi n(3c)
andtx_comni t (3c) ortx_rol | back(3c) encapsulate any work, including
communications, within atransaction. Other primitives are provided to set transaction
timeout, declare the transaction as chained or unchained, and retrieve transaction
information. These are discussed in detail in the XOPEN TX Specification, and
reviewed in the X/OPEN TXRPC Specification. The X/OPEN TxRPC Specification
indicates the interactions between TX and RPC. These are summarized as follows:

An interface or an operation can havethe[tr ansacti on_opti onal] atribute
which indicates that if the RPC is called within atransaction, the work donein
the called operation will be part of the transaction.

An interface or an operation can have the[tr ansact i on_nandat or y] attribute
which indicates that the RPC must be called within atransaction or the
txrpc_x_not _in_transacti on exception is returned.

If neither of these attributesis specified, then the work in the called operation is
not part of any transaction that may be active in the caller.

If a TXRPC operation is called in the server and t x_open(3c) has not been
called, at xr pc_x_no_t x_open_done exception is returned to the caller.

TXRPC allowst x_r ol | back(3c) to be called from an operation to mark the
transaction as rollback-only, such that any work performed on behalf of the
transaction will be ultimately rolled back. It is recommended in this case that the
application also return an application-level error to the caller indicating that the
transaction will be rolled back.

Other changes or restrictions for the IDL defined by the TXRPC specification have
been described earlier in the discussion about the IDL itself.

Programming a BEA Tuxedo Application Using TXRPC 31

3 Writing RPC Client and Server Programs

3-12 Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

4 Building RPC Client
and Server Programs

m Prerequisite Knowledge

m Building an RPC Server

m Building an RPC Client

m Building a Windows Workstation RPC Client
m Using C++

m Interoperating with DCE/RPC

Prerequisite Knowledge

The BEA Tuxedo TxRPC programmer should be familiar with the C compilation
system and building BEA Tuxedo clients and servers. Information on building BEA
Tuxedo clientsand serversis provided in the Programming a BEA Tuxedo Application
Using C, Programming a BEA Tuxedo Application Using COBOL, and Programming
a BEA Tuxedo Application Using FML. Building workstation clients is provided in
Using the BEA Tuxedo Workstation Component.

Programming a BEA Tuxedo Application Using TXRPC 4-1

4 Building RPC Client and Server Programs

Building an RPC Server

RPC servers are built and configured in much that same way that ATMI
Request/Response servers are. In fact, the service name space for RPC and
Request/Response serversis the same. However, the names advertised for RPC
services are different. For Request/Response servers, a service name is mapped to a
procedure. For RPC servers, a service nameis mapped to an IDL interface name. The
RPC service advertised will be <i nt er f ace>v<maj or>_<mni nor>, where

<i nt er face> isthe interface name, and <nmj or > and <mi nor > are the major and
minor numbers of the version, as specified (or defaulted to 0.0) in the interface
definition. Because the service nameis limited to 15 characters, this limits the length
of the interface name to 13 characters minus the number of digitsin the major and
minor version numbers. This also impliesthat an exact match is used on magjor AND
minor version numbers because of the way hame serving is done in the BEA Tuxedo
system. Note that the interface, and not individual operations, are advertised (similar
to DCE/RPC). The server stub automatically takes care of calling the correct operation
within the interface.

RPC serversarebuilt usingthebui | dser ver (1) command. Werecommend using the

- s option to specify the service (interface) names at compilation time. The server can
then be booted using the - A option to get the services automatically advertised. This
approach is used in the sample application, as shown in Appendix A, “A Sample
Application.”

Thebui | dserver (1) command automatically links in the BEA Tuxedo libraries.
However, the RPC runtime must be linked in explicitly. This is done by specifying the
-f -1trpc option after any application files on thei | dserver line. Normally, the
output of the i dI (1) command is a server stub object file. This can be passed directly
to thebui | dserver command. Note that the server stub and the application source,
object, and library files implementing the operations should be specified ahead of ths
runtime library, also using th& option. See the makefilgpcsi np. nk, in

Appendix A, “A Sample Application,” for an example.

4-2 Programming a BEA Tuxedo Application Using TXRPC

Building an RPC Client

Building an RPC Client

A native RPC client is built using the bui I dcl i ent (1) command. This command
automatically linksin the BEA Tuxedo libraries. However, the RPC runtime must be
linked in explicitly. Thisis done by specifyingthe-f -1 trpc option after any
application fileson the bui | dcl i ent command line. Generally, the output of the
tidl (1) command isaclient stub object file. This can be passed directly to the

bui | dcl i ent command. Note that the client stub and the application source, object,
and library files executing the remote procedure calls should be specified ahead of the
runtime library, also using the - f option. For an example, see the makefile

rpcsi np. nk in Appendix A, “A Sample Application.”

To build a UNIX Workstation client, simply add the option to thébui | dcl i ent (1)
command line so that the Workstation libraries are linked in instead of the native
libraries.

Building a Windows Workstation RPC Client

Compilation of the client stub for Windows is similar to the DOS compilation, but
requires the D_TM W N definition as a compilation option. This ensures that the
correct function prototypes for the TXRPC and BEA Tuxedo system runtime functions
are used. While the client stub source is the same, it must be compiled specially to
handle the fact that the text and data segments for the DLL will be different from the
code calling it. The header file and stub are automatically generated to allow for the
declarations to be changed easily, using C pre-processor definitions. The definition
_TMF (for “far”) appears before all pointers in the header file_andF is automatically
defined as “far” if _TM W Nis defined.

In most cases, using standard librariespthie dcl t (1) command can be used to link
the client. The library to be usediisr pc. 1i b. Appendix A, “A Sample Application,”
shows a case wheb&i | dcl t cannot be used because non-standard (QuickWin)
libraries are being used.

Programming a BEA Tuxedo Application Using TXRPC 4-3

4 Building RPC Client and Server Programs

The sample also shows how to create aDynamic Link Library (DLL) using the client
stub. This usage will be very popular when used with avisua application builder that
requiresDLL use (wherethe application code cannot be statically linked in). Windows
functions are traditionally declared to have the _pascal calling convention. The

header file and stub are automatically generated to allow for the declarations to be
changed easily, using C pre-processor definitions. _TMX (for “eXport”) appears before
all declared functions. By default, this definition is defined to nothing. When
compiling a stub for inclusion in a DLL,TMX should be defined tof ar _pascal .
Also, the files to be included in the DLL must be compiled with the large memory
model. Because usingascal automatically converts the function names to upper
case in the library, itis a good idea to run with-ther t case option turned on, which
does additional validation to see if two declared names differ only in case.

A complete example of building a Windows DLL is shown in Appendix A, “A Sample
Application.”

Note: A compilation error may occur if a TXRPC client includgésndows. h, due to
a duplicateuui d_t definition. It will be necessary for the application to either
not includew ndows. h (because it is included already) or to include it within
a different file in the application.

Using C++

Clients and servers can be built using C or C++, interchangeably. The header files ar
generated stub source files are defined in such a way that all Stub Support functions
and generated operations allow for complete interoperability between C++ and C.
They are declared with C linkage, that is, as extern “C,” so that name mangling is
turned off.

The stub object files can be built using C++ by specifgiag ¢ for the-cc_cnd

option ofti dI (1) . ThecCcommand can be used to compile and link client and server
programs by setting and exporting tt@environment variable before running

bui | dcli ent (1) andbui | dserver (1) . For example:

tidl -cc_cmd “CC -c” -keep all t.idl
CC=CC buildserver -o server -s tvl 0 -f “I. t_sstub.o server.c -ltrpc”

4-4 Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

Inthe Windows environment, C++ compilation isnormally accomplished viaaflagon
the compilation command line or a configuration option rather than a different
command name. Use the appropriate options to get C++ compilation.

Interoperating with DCE/RPC

The BEA Tuxedo TXRPC compiler usesthe same IDL interface as OSF/DCE but the
generated stubsdo not use the same protocol. Thus, aBEA Tuxedo TxRPC stub cannot
directly communicate with a stub generated by the DCE IDL compiler.

However, it is possible to have the following interoperations between DCE/RPC and
BEA Tuxedo TXRPC:

m Client side stubs from both DCE and BEA Tuxedo TxRPC can be called from
the same program (either client or server).

m A BEA Tuxedo server stub can call application code that calls a DCE client stub
(aswell asaBEA Tuxedo TxRPC client stub).

m A DCE server (manager) can call application code that calls aBEA Tuxedo
TxRPC client stub.

The following sections show possible interactions between BEA Tuxedo TxRPC and
OSF/DCE. In each case, the originator of the request is called the requester. Thisterm

is used instead of “client” because the requester could, in fact, be a DCE or BEA
Tuxedo service making a request of another service. The terms “client” and “server”
refer to the client and server stubs generated by the IDL compilers (eitherdD (1

or BEA Tuxedat i dI (1)); these terms are used for consistency with the DCE and
TXRPC terminology. Finally, the term “application service” is used for the application
code that implements the procedure that is being called remotely (it is generally
transparent whether the invoking software is the server stub generated by DCE or BEA
Tuxedo).

Programming a BEA Tuxedo Application Using TXRPC 4-5

4 Building RPC Client and Server Programs

BEA Tuxedo Requester to DCE Service via BEA Tuxedo

Gateway

Figure4-1 BEA Tuxedo Requester to DCE Servicevia BEA Tuxedo Gateway

T T - T DCE |) DCE |Application
Regquester | Client Server Client Server Service

The first approach uses a “gateway” such that the BEA Tuxedo client stub invokes &
BEA Tuxedo server stub, via TXRPC, that has a DCE client stub linked in (instead o
the application services) that invokes the DCE services, via DCE RPC. The advantag
to this approach is that it is not necessary to have DCE on the client platform. In fact
the set of machines running BEA Tuxedo and the set of machines running DCE coul
be disjoint except for one machine where all such gateways are running. This also
provides a migration path with the ability to move services between BEA Tuxedo anc
DCE. A sample application that implements this approach is described in Appendix B
“A DCE-Gateway Application.”

In this configuration, the requester is built as a normal BEA Tuxedo client or server.
Similarly, the server is built as a normal DCE server. The additional step is to build the
gateway process which acts as a BEA Tuxedo server using a TXRPC server stub ant
DCE client using a DCE/RPC client stub.

The process of running the two IDL compilers and linking the resultant files is
simplified with the use of thiel ds_dce(1) command, which builds a BEA Tuxedo
server with DCE linked in.

The usage fobl ds_dce is as follows.

bl ds_dce [-0 output _file] [-i idl_options] [-f firstfiles] [-| lastfile] \
]

[idl _file .

The command takes as input one or more IDL files so that the gateway can handle or
or more interfaces. For each one of these filiedl, is run to generate a server stub and
i dl is run to generate a client stub.

This command knows about various DCE environments and provides the necessary
compilation flags and DCE libraries for compilation and linking. If you are developing
in a new environment, it may be necessary to modify the command to add the optior
and libraries for your environment.

4-6 Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

This command compiles the source files in such away (with -DTVDCEGWdefined) that
memory allocation is always done using r pc_ss_al | ocat e(3c) and
rpc_ss_free(3c), asdescribed in the BEA Tuxedo C Function Reference. This
ensures that memory is freed on return from the BEA Tuxedo server. The use of
-DTMDCEGWal so includes DCE header filesinstead of BEA Tuxedo TxRPC header
files.

The IDL output object files are compiled, optionally with specified application files
(using the -f and -I options), to generate a BEA Tuxedo server using

bui | dser ver (1) . The name of the executable server can be specified with the -o
option.

When running this configuration, the DCE server would be started first in the
background, then the BEA Tuxedo configuration including the DCE gateway would
be booted, and then the requester would be run. Note that the DCE gateway is
single-threaded so you will need to configure and boot as many gateway serversasyou
want concurrently executing services.

There are several optional things to consider when building this gateway.

Setting the DCE Login Context

First, asaDCE client, it isnormal that the process runs as some DCE principa. There

are two approaches to getting a login context. One approach is to “log in” to DCE. In
some environments, this occurs simply by virtue of logging into the operating system.
In many environments, it requires runnitdge_| ogi n. If the BEA Tuxedo server is
booted on the local machine, then it is possible taltien| ogi n, then run nboot (1)

and the booted server will inherit the login context. If the server is to be booted on a
remote machine which is done indirectly via st en(1), it is necessary to run

dce_l ogi n before starting 1 i st en. In each of these cases, all servers booted in the
session will be run by the same principal. The other drawback to this approach is that
the credentials will eventually expire.

The other alternative is to have the process set up and maintain its own login context.
Thetpsvrinit(3c) function provided for the server can set up the context and then
start a thread that will refresh the login context before it expires. Sample code to do
this is provided in$TUXDI R/ | i b/ dceser ver. c; it must be compiled with the

-DTPSVRI NI T option to generate a simplesvri ni t () function. (It can also be used

as themai n() for a DCE server, as described in the following section.) This code is
described in further detail in Appendix B, “A DCE-Gateway Application.”

Programming a BEA Tuxedo Application Using TXRPC 4-7

4 Building RPC Client and Server Programs

Using DCE Binding Handles

BEA Tuxedo TxRPC does not support binding handles. When sending an RPC from

the requester’s client stub to the server stub within the gateway, the BEA Tuxedo
system handles all of the name resolution and choosing the server, doing load
balancing between available servers. However, when going from the gateway to the
DCE server, it is possible to use DCE binding. If this is done, it is recommended tha
two versions of the IDL file be used in the same directory or that two different
directories be used to build the requester, and the gateway and server. The former
approach of using two different file names is shown in the example with the IDL file
linked to a second name. In the initial IDL file, no binding handles or binding attributes
are specified. With the second IDL file, which is used to generate the gateway and
DCE server, there is an associated ACF file that specifies [explicit_handle] such that
binding handle is inserted as the first parameter of the operation. From the BEA
Tuxedo server stub in the gateway, a NULL handle will be generated (because handle
aren’t supported). That means that somewhere between the BEA Tuxedo server stu
and the DCE client stub in the gateway, a valid binding handle must be generated.

This can be done by making use of the manager entry point vector. By default, the IDI
compiler defines a structure with a function pointer prototype for each operation in the
interface, and defines and initializes a structure variable with default function names
based on the operation names. The structure is defined as

<I NTERF>_v<naj or>_<m nor>_epv_t <I NTERF>_v<nmj or>_<m nor>_s_epv

4-8

where</ NTERF> is the interface name ardaj or>. <m nor> is the interface version.
This variable is dereferenced when calling the server stub functions. The IDL compile
option,- no_nepv, inhibits the definition and initialization of this variable, allowing

the application to provide it in cases where there is a conflict or difference in function
names and operation names. In the case where an application wants to provide expli
or implicit binding instead of automatic binding, theo_mepv option can be

specified, and the application can provide a structure definition that points to function:
taking the same parameters as the operations but different (or static) names. The
functions can then create a valid binding handle that is passed, either explicitly or
implicitly, to the DCE/RPC client stub functions (using the actual operation hames).

This is shown in the example in Appendix B, “A DCE-Gateway Application.” The file
dcebi nd. ¢ generates the binding handle, and the entry point vector and associated
functions are shown inlceepv. c.

Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

Note that to specify the- no_nepv option when using thebl ds_dce, the-i - no_nepv
option must be specified so that the option is passed through to the IDL compiler. This
is shown in the makefile, r pcsi np. nk, in Appendix B, “A DCE-Gateway
Application.”

Authenticated RPC

Transactions

Now that we have a login context and a handle, it is possible to use authenticated RPC
calls. As part of setting up the binding handle, it is also possible to annotate the binding
handle for authentication by callingc_bi ndi ng_set _aut h_i nf o(), as described in

the BEA Tuxedo C Function Reference. This is shown as part of generating the binding
handle indcebi nd. ¢ in Appendix B, “A DCE-Gateway Application.” This sets up

the authentication (and potentially encryption) between the gateway and the DCE
server. If the requester is a BEA Tuxedo server, then it is guaranteed to be running as
the BEA Tuxedo administrator. For more information about authentication for BEA
Tuxedo clients, seAdministering the BEA Tuxedo System.

OSF/DCE does not support transactions. That means that if the gateway is running in
a group with a resource manager and the RPC comes into the BEA Tuxedo client stub
in transaction mode, the transaction will nat r ay to the DCE server. There is not
much you can do to solve this; just be aware of it.

DCE Requester to BEA Tuxedo Service Using BEA Tuxedo

Gateway

Figure4-2 DCE Requester to BEA Tuxedo Service Using BEA Tuxedo Gateway

DCE DCE || DCE IT - IT Application
Regquester | Client Server Client Server Service

In the preceding figure, the DCE requester uses a DCE client stub to invoke a DCE
service which calls the BEA Tuxedo client stub (instead of the application services),
which invokes the BEA Tuxedo service (via TXRPC). Note that in this configuration,
the client has complete control over the DCE binding and authentication. The fact that
the application programmer builds the middle server means that the application also

Programming a BEA Tuxedo Application Using TXRPC 4-9

4 Building RPC Client and Server Programs

controls the binding of the DCE server to BEA Tuxedo service. This approach would
be used in the case where the DCE requester does not want to directly link in and call
the BEA Tuxedo system.

The mai n() for the DCE server should be based on the code provided in
$TUXDI R/ | i b/ dceser ver . c. If you already have your own template for the mai n()
of a DCE server, there are afew things that may need to be added or modified.

First,t pi ni t (3c) should be called to jointhe BEA Tuxedo application. If application
security isconfigured, then additional information may be needed inthe TPI NI T buffer
such as the user name and application password. Prior to exiting, t pt er n{ 3c) should
be called to cleanly terminate participation in the BEA Tuxedo application. If you look
at dceserver . ¢, you will seethat by compiling it with -DTCLI ENT, code is included
that callst pi nit andt pt er m The code that sets up the TPI NI T buffer must be
modified appropriately for your application. To provide more information with respect
to administration, it might be hel pful to indicate that the clientisaDCE client in either
the user or client name (the example sets the client name to DCECLI ENT). This
information shows up when printing client information from the administration
interface.

Second, since the BEA Tuxedo system software is not thread-safe, the threading level
passed to r pc_ser ver _| i st en must be set to one. In the sample dceser ver . ¢, the
threading level is set to 1 if compiled with -DTCLI ENT and to the default,
rpc_c_listen_max_cal | s_def aul t, otherwise. (For more information, refer to
BEA Tuxedo C Function Reference.)

In thisconfiguration, the requester is built asanormal DCE client or server. Similarly,
the server is built as a normal BEA Tuxedo server. The additional step isto build the
gateway process, which actsasa BEA Tuxedo client using a TXRPC client stub, and a
DCE server, using a DCE/RPC server stub.

The process of running the two IDL compilers and linking the resultant files is
simplified with the use of the bl dc_dce(1) command which builds a BEA Tuxedo
client with DCE linked in.

The usage for bl dc_dce isasfollows.

bl dc_dce [-0 output _file] [-W [-i idl _options] [-f firstfiles] \
]

[-1

4-10

lastfiles] [idl _file .

The command takes asinput one or more IDL files so that the gateway can handle one
or moreinterfaces. For each one of thesefiles, ti dl isrunto generateaclient stub and
i dl isrun to generate a server stub.

Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

This command knows about various DCE environments and provides the necessary
compilation flags and DCE libraries. If you are developing in a new environment, it
may be necessary to modify the command to add the options and libraries for your
environment. The source is compiled in such away (with -DTMDCEGWdefined) that
memory allocation is always doneusingrpc_ss_al | ocate andrpc_ss_free
(described in BEA Tuxedo C Function Reference) to ensure that memory isfreed on
return. The use of -DTMDCEGWal so includes DCE header filesinstead of BEA Tuxedo
TXRPC header files.

The IDL output object files are compiled, optionally with specified application files
(using the -f and -1 options), to generate a BEA Tuxedo client using

bui | dcl i ent (1) . Note that one of the filesincluded should be the equivalent of the
dceserver . o, compiled with the -DTCLI ENT option.

The name of the executable client can be specified with the -o option.

When running this configuration, the BEA Tuxedo configuration must be booted
before starting the DCE server so that it can join the BEA Tuxedo application before
listening for DCE requests.

BEA Tuxedo Requester to DCE Service Using DCE-only

Figure4-3 BEA Tuxedo Requester to DCE Service Using DCE-only

T DCE | . DCE |Application
Requester | Client Server Service

The approach assumes that the DCE environment isdirectly available to theclient (this
can be arestriction or disadvantage in some configurations). The client program has
direct control over the DCE binding and authentication. Note that thisis presumably a
mixed environment in which the requester is either aBEA Tuxedo service that calls
DCE services, or aBEA Tuxedo client (or server) that calls both BEA Tuxedo and
DCE services.

When compiling BEA Tuxedo TXRPC code that will be used mixed with DCE code,
the code must be compiled such that DCE header files are used instead of the TXRPC
header files. Thisis done by defining -DTVDCE at compilation time, both for client and
server stub files and for your application code. If you are generating object files from

Programming a BEA Tuxedo Application Using TXRPC ~ 4-11

4 Building RPC Client and Server Programs

tidl (1), youmustaddthe-cc_opt - DTMDCE option to the command line. The
alternativeisto generatec_sour ce fromthe IDL compiler and pass this C source (hot
object files) to bl dc_dce or bl ds_dce asin the following examples.

tidl -keep c_source -server none t.idl

idl -keep c_source -server none dce.idl

bl dc_dce -0 output file -f client.c -f t_cstub.c -f dce_cstub.c
or

bl ds_dce -0 output file -s service -f server.c -f t_cstub.c -f dce_cstub.c

In this example, we are not building a gateway processso . i di files cannot be
specified to the bui | d commands. Also note that the bl ds_dce command cannot
figure out the service name associated with the server so it must be supplied on the
command line using the -s option.

DCE Requester to BEA Tuxedo Service Using BEA
Tuxedo-only

Figure4-4 DCE Reguester to BEA Tuxedo Service Using BEA Tuxedo-only

DCE T Ll T | Appli cati on|
Requester | Client Server Service

In thisfinal case, the DCE requester calls the BEA Tuxedo client stub directly.

Again, -DTVDCE must be used at compilation time, both for client and server stub files
and for your application code. In this case the requester must bea BEA Tuxedo client.

tidl -keep c_source -client none t.idl
bl dc_dce -0 output file -f -DTCLIENT -f dceserver.c -f t_cstub.c

Note that dceser ver . ¢ should call t pi ni t (3c) to join the application and
t pt erm(3c) to leave the application, as was discussed earlier.

4-12 Programming a BEA Tuxedo Application Using TXRPC

Interoperating with DCE/RPC

Building Mixed DCE/RPC and BEA Tuxedo TxRPC Clients
and Servers

This section summarizes the rules to follow if you are compiling a mixed client or
server without using the bl dc_dce(1) or bl ds_dce(1) commands:

m When compiling the generated client and server stubs, and compiling the client
and server application software that includes the header file generated by
tidl (1), TMDCE must be defined (for example, - DTMDCE=1). This causes some
DCE header files to be used instead of the BEA Tuxedo TXRPC header files.
Also, some versions of DCE have a DCE compilation shell that adds the proper
directories for the DCE header files and ensures the proper DCE definitions for
the local environment. This shell should be used instead of directly using the C
compiler. The DCE/RPC compiler and TM DCE definition can be specified using
the - cc_cnd option onti dl . For example,

tidl -cc_cmd “/opt/dce/bin/cc -c -DTMDCE=1" simp.idI
or

tidl -keep ¢_source simp.idl
Jopt/dce/bin/cc -DTMDCE=1 -c -I. -I$TUXDIR/include simp_cstub.c
lopt/dce/bin/cc -DTMDCE=1 -c -I. -I$STUXDIR/include client.c

On a system without such acompiler shell, it might look like the following:

cc < DCE options>-DTMDCE=1 -c -I. -I1$(TUXDI Rlinclude \
-l/usr/include/dce simp_cstub.c

Refer to the DCE/RPC documentation for your environment.
m If the server makes an RPC call, then set_client_alloc_free() should be

called to set the use of rpc_ss_allocate() and rpc_ss_free() , asdescribed
earlier. (For more information, refer to BEA Tuxedo C Function Reference.)

m When linking the executable, use-ldrpc instead of -ltrpc to get aversion of
the BEA Tuxedo TxRPC run-time that is compatible with DCE/RPC. For
example,

buildclient -o client -f client.o -f simp_cstub.o -f dce_cstub.o \
-f-Idrpc -f-Idce -f-Ipthreads -f-Ic_r

or

CC=/opt/dce/bin/cc buildclient -d “ “ -f client.o -f simp_cstub.o \
-f dce_cstub.o -f -Idrpc -o client

Programming a BEA Tuxedo Application Using TXRPC ~ 4-13

4 Building RPC Client and Server Programs

4-14

Assume that si np_cst ub. o wasgenerated by ti dl (1) and dce_cst ub. o was
generated by i dI . The first example shows building the client without a DCE
compiler shell; in this case, the DCE library (-1 dce), threads library

(-1 pt hreads), and re-entrant C library (- 1 c_r) must be explicitly specified.
The second example shows the use of a DCE compiler shell which transparently
includes the necessary libraries. In some environments, the libraries included by
bui | dser ver and bui | dcl i ent for networking and XDR will conflict with the
libraries included by the DCE compiler shell (there may be reentrant versions of
these libraries). In this case, the bui | dser ver (1) and bui | dcl i ent (1)
libraries may be modified using the - d option. If alink problem occurs, trying
using-d““ toleave out the networking and XDR libraries, as shown in the
example above. If thelink still fails, try running the command without the -d
option and with the -v option to determine the libraries that are used by default;
then usethe -d option to specify asub-set of the librariesif there is more than
one. The correct combination of libraries is environment-dependent because the
networking, XDR, and DCE libraries vary from one environment to another.

Note: Mixing DCE and BEA Tuxedo TXRPC stubsis not currently supported on

DOS, Windows, or OS/2.

Programming a BEA Tuxedo Application Using TXRPC

CHAPTER

5 Running the
Application

m Prerequisite Knowledge

m Configuring the Application

m Booting and Shutting Down the Application
m Administering the Application

m Using Dynamic Service Advertisement

Prerequisite Knowledge

The BEA Tuxedo system administrator modifying the configuration to add RPC
servers should be familiar with creating an ASCI| configuration file (the format is
described in UBBCONFI G 5)) and loading the binary configuration using

tm oadcf (1) . These activities are described in Administering the BEA Tuxedo
System.

Programming a BEA Tuxedo Application Using TXRPC 5-1

5 Running the Application

Configuring the Application

When configuring an RPC server, it is configured the same as a Request/Response
server. One entry is needed in the SERVERS page for each RPC server or group of RPC
servers. (MAX can be set to avalue greater than one to configure multiple RPC servers
with one entry.) An RQADDR can optionally be specified so that multiple instances of
an RPC server share the same request queue (multiple servers, single queue
configuration). The CONV parameter must be not specified or must be set to N (for
example, CONV=N). See the sample configuration file in Appendix A, “A Sample
Application.”

If a server will be part of a transaction, then it must be in a group on a machine that ha
aTLOGDEVI CE. The GROUPS entry must be configured withT&/SNAVE and an
OPENI NFO string that are used to access the associated resource manager.

It is optional to specif{sERVI CES entries. If specified, the service name must be the
name described in the previous chapter, based on the interface name and version
number. This entry is needed only if you want to give a specific load, priority, or
transaction time that is different than the defaults. It can also be used to turn on the
AUTOTRAN feature, which ensures that a transaction is automatically started for the
service if the in-coming request is not in transaction mode. Do not use the service ent
to specify buffer typeBUFTYPE since the only buffer type handleddsrrAY. Also,

do not specifyROUTI NG because routing is not supported for RPC requests.

Thet m oadcf (1) command is used to load the ASCII configuration file into a binary
TUXCONFI Gfile before the application is booted.

Note that entries for RPC servers can be added to a booted application using the
t nconf i g command, as describedtinconfi g, wtnconfi g(1) in theBEA Tuxedo
Command Reference.

Booting and Shutting Down the Application

When the configuration has been modified, boot the application ustgpt (1) .
The application is shut down usingshut down(1) . See the example in Appendix A,
“A Sample Application.”

5-2 Programming a BEA Tuxedo Application Using TXRPC

Administering the Application

The RPC servers are booted and shut down in the same way that Request/Response
servers are. They can be booted or shut down as part of the entire configuration with
the - y option, as part of a group with the - g option, as part of alogical machine with
the -1 option, or by server name with the - s option.

Administering the Application

RPC servers appear as Request/Response servers in the administration interfaces. As
mentioned above, t ntonf i g can be used for dynamic reconfiguration of RPC servers

and services, asdescribed int nconfi g, wt nconfi g(1) inthe BEA Tuxedo

Command Reference. Thet madni n(1) command can be used to monitor RPC servers.

The RPC server name and associated run-time information (for example, services or
operations run, load, and so forth) can be printed using the t madni n pri nt server
command. The RPC services (interfaces) that are avail able can be printed using

pri nt servi ce. For samples of the output, see the example in Appendix A, “A Sample
Application.”

Using Dynamic Service Advertisement

RPC services can be dynamically controlled in the same way that Request/Response
services can be controlled. Remember that the service name is not the operation name,
but the interface name and version number, as described earlier. Generally, the service
name is specified at the time thati | dser ver (1) is run using thes option and
automatically advertised when the server is booted with Atmption. Service

(interface) names can be dynamically advertised either fratini n using theadv
command or from within the server using theadverti se(3c) function. Service
(interface) names can be dynamically unadvertised eithertfn@am n using the

unadv command or from within the server using tip@nadver ti se(3c) function.

Service names can also be temporarily suspended and unsuspended (resumed) from
t madmi n(1) . Note that unadvertising or suspending a service name makes all
operations defined in the associated interface unavailable.

Programming a BEA Tuxedo Application Using TXRPC 5-3

5 Running the Application

5-4 Programming a BEA Tuxedo Application Using TXRPC

APPENDIX

A A Sample Application

m Appendix Contents
m Prerequisites

m Building the rpcsimp Application

Appendix Contents

Thisappendix containsadescription of al-client, 1-server application called r cpsi np
that uses TXRPC. The source files for this interactive application are distributed with
the BEA Tuxedo software, except they are not included in the RTK binary delivery.

Prerequisites

Before you can run this sample application, the BEA Tuxedo software must be
installed so that the files and commands referred to in this chapter are available.

Programming a BEA Tuxedo Application Using TXRPC A-1

A A Sample Application

Building the rpcsimp Application

r pcsi np isavery basic BEA Tuxedo application that uses TXRPC. It has one
application client and one server. The client calls the remote procedure calls
(operations) t o_upper () andt o_I ower (), which areimplemented in the server. The
operationt o_upper () convertsastring from lower case to upper case and returnsit
to the client, whilet o_I ower () converts astring from upper case to lower case and
returns it to the client. When each procedure call returns, the client displays the string
output on the user’s screen.

What follows is a procedure to build and run the example.

Step 1: Create an Application Directory

1. Make a directory forpcsi np andcd to it.

nkdi r rpcsinpdir
cd rpcsinmpdir

Note: This is suggested so you will be able to see clearly ghei np files you
have at the start and the additional files you create along the way. Use the
standard shell @i n/ sh) or the Korn shell; do not use the C shelK).

Step 2: Set Environment Variables

1. Set and export the necessary environment variables.

TUXDI R=<pat hnane of the BEA Tuxedo System root directory>
TUXCONFI G=<pat hnanme of your present working di rectory> TUXCONFI G
PATH=$PATH. $TUXDI R/ bi n

SVR4, Uni xwar e

LD LI BRARY_PATH=$LD LI BRARY_PATH $TUXDIR/li b

HPUX

SHLI B_PATH=$LD_LI BRARY_PATH. $TUXDI R/ l'i b

RS6000

LI BPATH=$LD LI BRARY_PATH $TUXDI R/ |i b

export TUXDI R TUXCONFI G PATH LD LI BRARY_PATH SHLI B_PATH LI BPATH

A-2 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Note: You need TUXDI R and PATHto be able to access filesin the BEA Tuxedo
directory structure and to execute BEA Tuxedo commands. Y ou need to
set TUXCONFI Gto be able to load the configuration file. It may also be
necessary to set an environment variable (for example,

LD_LI BRARY_PATH) if shared objects are being used.

Step 3: Copy files

1. Copy ther pcsi np filesto the application directory.
cp $TUXDI R/ apps/r pcsi np/ *

You will be editing some of the files and making them executable, so it is best to
begin with a copy of the files rather than the originals delivered with the
software.

Step 4: List the Files

1. Listthefiles.

$1s
client.c
rpcsi np. nak
rpcsi np. nk
server.c

si np. i dl
ubbconfig
wel i ent . def
wsi npdl | . def
$

Note: Thislist does not includefiles that are used in the DCE-Gateway example
described in Appendix B, “A DCE-Gateway Application.”

The files that make up the application are described in the following sections.

Programming a BEA Tuxedo Application Using TXRPC A-3

A A Sample Application

IDL Input File - simp.idl

Listing A-1 simp.idl

[uui d(C996A680- 9FC2- 110F- 9AEF- 930269370000), version(1.0)]

i nterface changecase

{

/* change a string to upper case */
void to_upper([in, out, string] char *str);

/* change a string to | ower case */
void to_lower([in, out, string] char *str);

}

Thisfile defines a single interface, changecase version 1.0, with two operations,

t o_upper andt o_| ower . Each of the operations takes a NUL L -terminated character
string, that is both an input and output parameter. Because no ACF file is provided,
status variables are not used and the client program must be able to handle exceptions.
Each operation hasavoid return indicating that no return valueisgenerated. si np. i dI
is used to generate the stub functions (see below).

The Client Source Code - client.c

Listing A-2 client.c

#i ncl ude <stdi o. h>
#i nclude "sinp.h"
#include "atm . h"

mai n(argc, argv)

int argc;

char **argv;

{
idl_char str[100];
unsi gned char error_text[100];
int status;

if (argc > 1) {/* use command |ine argunent if it exists */
(void) strncpy(str, argv[1l], 100);

A-4 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

str[99] = '"\0’;
}
el se
(void) strcpy(str, "Hello, world");

TRY
to_upper(str);
(void) fprintf(stdout, "to_upper returns: %\n", str);
to | ower(str);
(void) fprintf(stdout, "to_|ower returns: %\n", str);
/* control flow continues after ENDTRY */
CATCH ALL
exc_report(THI S _CATCH); /* print to stderr */
(void) tpterm();
exit(1);
ENDTRY

(void) tpterm();
exit(0);

The header, si np. h, whichisgenerated by the IDL compiler based on si np. i dI , has
the function prototypes for the two operations. The si np. h header aso includesthe
header filesfor the RPC runtime functions (none appear in thisexample) and exception
handling. The at i . h header file isincluded because t pt er m(3c) iscalled. If an
argument is provided on the command line, then it isused for the conversion to upper
and lower case (the default beirtg:l'l o wor | d”). Exception handling is used to
catch any errors. For example, exceptions are generated for unavailable servers,
memory allocation failures, communication failures, and so forth. TRveblock
encapsulates the two remote procedure calls. If an error occurs, the execution will jump
to theCATCH_ALL block which converts the exceptiofH S_CATCH) into a string,
prints it to the standard error output usénxg _r eport , and exits. Note that in both the
abnormal and normal executian di (1) is called to leave the application gracefully.
If this is not done, a warning is printed in tser | og(3c) for non-workstation
clients, and resources are tied up (until the connection times out, for workstation
clients).

Programming a BEA Tuxedo Application Using TXRPC A-5

A A Sample Application

The Server Source Code - server.c

Listing A-3 server.c

#i nclude <stdi o. h>
#i ncl ude <ctype. h>
#include "tx.h"

#i nclude "sinp.h"

int

tpsvrinit(argc, argv)
int argc;

char **argv;

if (tx_open() '= TX OK) {
(void) userlog("tx_open failed");
return(-1);
}
(void) userlog("tpsvrinit() succeeds.");
return(l);
}
voi d
to_upper(str)
idl_char *str;

i dl _char *p;
for (p=str; *p !'="\0"; p++)
*p = toupper ((int)*p);
return;
}
voi d

to | ower(str)
idl_char *str;

i dl _char *p;

for (p=str; *p !'="\0"; p++)
*n = tolower((int)*p);

return;

}

Aswithclient. c, thisfileincludessi np. h.

A-6 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

It alsoincludest x. h because t x_open(3c) iscalled (asrequired by the X’ OPEN
TxRPC Specification, even if no resource manager is accessed). A t psvri nit (3c)
functionis provided to ensurethat t x_open() iscalled once at boot time. On failure,
- 1 isreturned and the server failsto boot. This is done automatically, so you may not
need to supply it.

The two operation functions are provided to do the application work, in this case,
converting to upper and lower case.

Makefile - rpcsimp.mk

Listing A-4 rpcsimp.mk

CC=cc

CFLAGS=

TI DL=$(TUXDI R) / bi n/ ti dl
LI BTRPC=-1trpc

all: «client server

Tuxedo client
client: sinp.h sinp_cstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXD R)/bi n/buildclient \
-oclient -fclient.c -fsinp_cstub.o -f$(LIBTRPC

Tuxedo server
server: sinp.h sinp_sstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXD R)/bi n/buil dserver \
-oserver -s changecasevl 0 -fserver.c -fsinp_sstub.o \
- f $(LI BTRPC)

sinp_cstub.o sinmp_sstub.o sinp.h: sinp.idl
$(TIDL) -cc_cnmd "$(CC) $(CFLAGS) -c" sinp.idl
#
TH S PART OF THE FI LE DEALI NG W TH THE DCE GATEWAY | S OW TTED
#

Cl eanup
cl ean::

rm-f *.o0 server $(ALL2) ULOG * TUXCONFI G

rm-f stderr stdout *stub.c *.h sinpdce.idl gwinit.c
cl obber: clean

Programming a BEA Tuxedo Application Using TXRPC A-7

A A Sample Application

The makef i | e builds the executable client and server programs.

The part of the makef i | e dealing with the DCE Gateway (described in Appendix B,
“A DCE-Gateway Application,” is omitted from the figure.

The client is dependent on thienp. h header file and the client stub object file.
bui | dcl i ent is executed to create the output client executable, using thkat . ¢
source file, the client stub object file, and ther pc RPC runtime library.

The server is dependent on thiewp. h header file and the server stub object file.
bui | dser ver is an output server executable, usingstever . ¢ source file, the
server stub object file, and thet r pc RPC runtime library.

The client and server stub object files andshep. h header file are all created by
running theti dl compiler on the IDL input file.

Thecl ean target removes any files that are created while building or running the
application.

The Configuration File - ubbconfig

The following is a sample ASCII configuration file. The machine nardeCONFI G,
TUXDI R, andAPPDI R must be set based on your configuration.

Listing A-5 ubbconfig

* RESOURCES

| PCKEY 187345
MODEL SHM
MASTER SI TE1
PERM 0660

* MACH NES

<UNAME> LM D=SI TE1
TUXCONFI G=" < TUXCONFI G
TUXDI R=" < TUXDI R>"
APPDI R=" <APPDI R>"

MAXWSCLI ENTS=10

* CROUPS

GROUP1 LM D=SI TE1 GRPNC=1
* SERVERS

server SRVGRP=GROUP1 SRVI D=1

#WEL SRVGRP=GROUP1 SRVI D=2 RESTART=Y GRACE=0

CLOPT="-A -- -n <address> -x 10 -m1 -M 10 -d <device>"
#

A-8 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Tuxedo-t o- DCE Gat eway

#si npgw SRVGRP=GROUP1 SRVI D=2
* SERVI CES

* ROUTI NG

The lines for MAXWSCLI ENTS and WL would be uncommented and are used for a
Workstation configuration. Theliteral <addr ess> for the Workstation listener must
be set as described in WEL(5) in the BEA Tuxedo File Formats and Data Descriptions
Reference.

DOS and Windows Makefile - rpcsimp.mak

Listing A-6 rpcsimp.mak

Model for dos client
MODEL =L

W NMODEL=M

Generate MS-DCS Cient
dos: client. exe

sinmp.c: sinp.lDL
TIDL -cstub sinp.c -keep c_source -server none sinp.|DL
client.obj: client.c

CL -I. -c -A$(MXDEL) client.c
sinp.obj: sinp.c
CL -1. -c -A$(MXDEL) sinp.c

client.exe: sinp.obj client.obj
buildclt -v -n(MODEL) -cm -0 client.exe -f "/ST: 15000 /CO" \
-f client.obj -f sinp.obj -f$(MODEL)trpc.lib -I$(MODEL) \
l'ibsock.lib

CGenerate Wndows client using MSC Qui ckW n
win: weclient.exe

wsi mp. C: sinp. | DL
TIDL -cstub wsinp.c -keep c_source -server none sinp.|DL
welient.c: client.c

copy client.c welient.c
welient.obj: welient.c

CL /mQ -A$(WNMODEL) -I. -DTMWN -Od -¢c welient.C
wWsi np. obj : wsinp. c
CL /mQ -A$(WNMODEL) -I. -DTMWN -Od -¢ wsinp.C

wel i ent. exe: wsinp.obj wclient. obj

Programming a BEA Tuxedo Application Using TXRPC A-9

A A Sample Application

link welient.obj wsinp.obj, wclient.exe , NUL, /NOD wtrpc \
wtuxws |ibw $(W NMODEL) | i bcewg Wi bsock, wel i ent . def

CGenerate DLL
Must be built with |arge node
dil: Wl MPDLL. DLL
sinmpdl | . C sinp. 1 DL
TIDL -cstub sinpdll.c -keep c_source -server none sinp.|DL
sinmpdl1.0BJ: sinpdll.C
CL -D TMX=" _far _pascal" -AL -1. -Aw -&swx -Zp -D TMWN -Od \
-c sinmpdll.C

WSl MPDLL. DLL: sinpdl . OBJ
LINK sinpdl|.0OBJ , WSl MPDLL. DLL /CO /ALIGN: 16, NUL, /NOD \
WL BTRPC WTUXWS W.I BSCCK LI BW LDLLCEW W&l MPDLL. DEF
RC - K WSl MPDLL. DLL
I MPLI B WSl MPDLL. LI B W8I MPDLL. DLL

cl ean:

if exist resptnp del resptnp

if exist sinmp.c del sinp.c

if exist sinmp.h del sinp.h

if exist wsinp.c del wsinp.c

if exist welient.c del wclient.c

if exist sinmpdll.c del sinpdll.c

del *. obj

del *.exe

if exist wsimpdl|.lib del wsinpdll.
I

ib
if exist wsinmpdll.dll del wsinpdll.dl

Building DOS and Windows clients is different enough from native clients that a
separate makefile is desirable. This makef i | e builds an executable DOS client, a
quick Windows client using Microsoft QuickWin, and a Windows Dynamic Link
Library (DLL).

TheDOStarget buildsan DOSclient. Thefirst stepistoexecutet i di onthelDL input
file (the same one that is used for native clients and servers), listed above. Due to the
filename limitations, the - cst ub option isused to renametheoutput filesi np. c. Also
note that the - ser ver none option is used to inhibit output of the server stub.

Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Theclient stubissimply compiled into an object file, si np. obj . Theexampleusesthe
“large” memory model and the Microsoft C compiler, but the model could be “large”
and a different compiler could be used. Theoption is used to include the generated
headersi np. h, in the current directory. Similarly, the client application program,
client.c,is compiled to the object fil i ent . obj .

Finally, bui | dcl t is called to link object files and libraries to form the executable,
cl i ent. exe. The-v option prints out the commands being executed, tf@ption is
used to specify the large memory model, and theption is used to specify the
Microsoft C compiler (sekui | dcl t (1) for further details). The firstf option sets the
stack size, the second and thifdoptions include the object files, amidr pc. I i b (the
RPC runtime library) is also included usingfaoption. The networking library,

m i bsock. | i b (Novell's Lan Workplace for DOS), is included usinglaoption.

Before running this client, the application must be booted (as described below) and the
WSNADDR environment variable must be set. (Sksng the BEA Tuxedo Workstation
Component for further details.)

Thewi n target builds a Windows client using the Microsoft QuickWin feature.
(Borland’s Easy Win provides similar functionality.) It allows a character-based C
program to be compiled and run as a Windows program, without modification. The
client stub is generated, as above, with a “w” prefii (p. c). The client code is

copied to a new name and compiled. The compilation option invokes the

QuickWin feature, as does the use oflthecewq library on thd i nk command line.

It is important to remember that when compiling any Windows program that uses the
BEA Tuxedo software,D_ TM W N must be defined. Theui dcl t command cannot

be used because non-standard libraries are being used the link the executable. The
I i nk command line contains the client stub and application object files, the RPC and
BEA Tuxedo system libraries, and the Windows, QuickWin, and networking libraries.
The definition fileycl i ent . def , is listed below; it simply sets a valid heap and stack
size.

Thenakef i | e does not demonstrate building OS/2 programs. Compilation is similar
to the DOS example above, but with the correct options for these platforms. Remember
to use the D TM 0S2 when compiling for OS/2. See thenkapp sample application
under$TUXDI R/ apps/ ws for examples of complete applications for these platforms.

Thenakef il e does include a more interesting feature not shown ihahkeapp
sample, the creation of a DLL. One common use of the TxRPC interface operations is
to create one or more interfaces for use in applications via a dynamic link library. Use

Programming a BEA Tuxedo Application Using TXRPC ~ A-11

A A Sample Application

A-12

of aDLL is necessary for most visual builders (such as Visual Basic, Gupta SQL
Windows, and others) where the programmer simply indicates the name of aDLL,
specifies afunction prototype, and calls the function directly from the application.

The makef i | e takes the output of the IDL compiler and createsaDLL,

wsi npdl | . dl | (the source for the client application, assumed to be written with a
visud builder, isnot provided). The client stub is generated exactly the same asfor the
native and DOS clients (in the makef i | e, itisrenamed si npdl | . ¢ to differentiate it
from the DOS client). Special Windows options (for Microsoft C, for example, - Aw

- @swx - Zp) are used to generatethe DLL object file, and the - D_TM W N option is
used for BEA Tuxedo Workstation.

Because the DLL always has a different data segment and text segment from the
application code calling it, all pointers provided to and returned from the operations
must be declared asfar (4-byte) pointers. Similarly, functionsaredeclared asfar. Also,
Windowsfunctions aretraditionally declared to havethe _pascal calling convention.
Theheader fileand stub are automatically generated to easily allow for the declarations
to be changed, using C pre-processor definitions. The definition _TMF (for far) appears
before all pointers in the header file and is automatically defined as_far when
compiling for Windows or OS/2. Similarly, _TMX (for eXpor t) appears before all
declared functions. By default, _TMX is defined to nothing. When compiling a stub for
inclusioninaDLL, _TMX should be defined using -D_TMX="_far _pascal’ . Also,
thefiles to beincluded in the DLL must be compiled with the large memory model.

Once the simpdll.obj object fileis created using the compiler, the DLL,
WSIMPDLL.DLL, iscreated using thelinker, including the object file, the RPC and BEA
Tuxedo system libraries, the Windows library, the networking library, and the
definition file, wsimpdil.def ~ (listed below). The resource compiler isrun on the
resulting DLL, andimplib isexecuted to generatethe output library, WSIMPDLL.LIB,
used for linking with applications.

Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Windows Definition files - wclient.def and wsimpldil.def

Listing A-7 wclient.def

NAME W NDOWAPI

EXETYPE W NDOWS 3. 0

CODE PRELOAD MOVEABLE DI SCARDABLE
DATA PRELOAD MOVEABLE

HEAPSI ZE 1024
STACKSI ZE 8096

This definition file is used when linking the Windows client program.

Listing A-8 wsimpdIl.def

LI BRARY WSI MPDLL
PROTMCDE
DESCRI PTI ON * TUXEDO / RPC SAMPLE DLL’
CODE PRELOAD MOVEABLE Di SCARDABLE
DATA PRELOAD SI NGLE
HEAPSI ZE 1024
SEGMVENTS WEPSEG PRELOAD FI XED
: EXETYPE W NDOWS
EXPORTS
TO UPPER @
TO LONER @

This definition file is used when linking the DLL file. Note that it lists the two
operation names. They are upper case because functions declared with the _pascal
modifier are converted to upper case.

Programming a BEA Tuxedo Application Using TXRPC ~ A-13

A A Sample Application

Step 5: Modify the Configuration

Edit the ASCII ubbconf i g configuration fileto provide location-specific information
(for example, your own directory pathnames and machine name), as described in the
next step. The text to be replaced isenclosed in angle brackets. Y ou need to substitute
the full pathname for TUXDI R, TUXCONFI G, and APPDI R, and the name of the machine
on which you are running. Here is asummary of the required values.

TUXDI R
Thefull pathname of the root directory of the BEA Tuxedo software, as set
above.

TUXCONFI G
Thefull pathname of the binary configuration file, as set above.

APPDI R
Thefull pathname of the directory in which your application will run.

UNANME
The machine name of the machine on which your application will run; thisis
the output of the UNIX command unane -n.

For aWorkstation configuration, the MAXWSCLI ENTS and WaL lines must be
uncommented and the <addr ess> must be set for the Workstation Listener. (See
WL (5) for further details.)

Step 6: Build the Application

Build the client and server programs by running the following.

make -f rpcsinp. nk TUXDI R=$TUXDI R

Step 7: Load the Configuration

L oad the binary TUXCONFI G configuration file by running the following.

tm oadcf -y ubbconfig

A-14 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Step 8: Boot the Configuration

Boot the application by running the following.

tnboot -y

Step 9: Run the Client

1. The native client program can be run by optionally specifying a string to be
converted first to upper case, and then to lower case, as shown in the following.

$ client HelLlO

to_upper returns: HELLO
to_lower returns: hello
$

2. When running on Workstation, set the WSNADDR environment variable to match
the address specified for the WSL program. The DOS client program can be run
in exactly the same manner as the native client. The Windows client can be run
by executing

>wi n wel i ent

Note: The dynamic link library may be used in a separately developed
application such as avisual builder.

Step 10: Monitor the RPC Server

Y ou can monitor the RPC server usingt madni n(1). Inthefollowing example, psr and

psc are used to view the information for the ser ver program. Note that the length of

the RPC service name causes it to be truncated in terse mode (indicated by the “+");
verbose mode can be used to get the full name.

Programming a BEA Tuxedo Application Using TXRPC ~ A-15

A A Sample Application

Listing A-9 tmadmin psr and psc Output

$ tmadmin
> psr
a.out Name Queue Nane G p Nane | D RgDone Load Done Current Service

BBL 587345 SI TE1 0 0 0 (IDLE)
server 00001. 00001 GROUP1 1 2 100 (IDLE)
> psc

Service Nanme Routine Nane a.out Nanme Grp Nanme I D Machine # Done Status

ADJUNCTBB ADJUNCTBB BBL SI TE1 0 SI TEL 0 AVAI L
ADJUNCTADM N ADJUNCTADM N BBL SI TE1 0 SITEL 0 AVAI L
changecasev+ changecasev+ server GROUPL 1 SI TE1 2 AVAI L
> verbose

Ver bose now on.

> psc -g GROUP1
Servi ce Nanme: changecasevl 0O
Servi ce Type: USER
Rout i ne Name: changecasevl 0O
a.out Nane: /hone/sdf/trpc/rpcsinp/server
Queue Name: 00001. 00001
Process | D: 8602, Machine ID SITEL
Goup ID: GROUPL, Server ID 1
Qurrent Load: 50
Current Priority: 50
Current Trantine: 30
Requests Done: 2
Current status: AVAILABLE
> quit

Step 11: Shut Down the Configuration

Shut down the application by running the following.

t mshut down -y

A-16 Programming a BEA Tuxedo Application Using TXRPC

Building the rpcsimp Application

Step 12: Clean Up the Created Files

Clean up the created files by running the following.

make -f rpcsinp.nk clean

Programming a BEA Tuxedo Application Using TXRPC ~ A-17

A A Sample Application

A-18 Programming a BEA Tuxedo Application Using TXRPC

APPENDIX

B A DCE-Gateway
Application

m Appendix Contents
m Prerequisites
m What |sthe DCE-Gateway Application

m Installing, Configuring, and Running the rpcsimp Application

Appendix Contents

Thisappendix builds onther cpsi np application described in A Sample Application.
The server is changed to be an OSF/DCE server and agateway isused so that the BEA
Tuxedo client can communicate with the server using explicit binding and
authenticated RPCs. The source files for this interactive application are distributed
with the BEA Tuxedo software development kit.

Prerequisites

Thistopic requires knowledge about DCE, and a DCE tutorial is beyond the scope of
this document. For further reading, try Guide to Writing DCE Applications by John
Shirley, et. al., published by O’'Reilly and Associates, Inc.

Programming a BEA Tuxedo Application Using TXRPC B-1

B A DCE-Gateway Application

What Is the DCE-Gateway Application

Thisapplicationisan extensionto ther pcsi np application. As before, the client calls
the remote procedure calls (operations) t o_upper () and t o_I ower ().

In this case, the RPC goes from the BEA Tuxedo client to the DCE Gateway process
that forwards the request to a DCE server. To make this example more realitic, the
communications from the Gateway process to the DCE server use explicit binding
instead of automatic binding and an authenticated RPC.

What followsis a procedure to build and run the example. The client can run on any
platform described in A Sample Application. There is no difference in building or
running the client and it will not be described further in this chapter. The gateway and
DCE server must run on a POSIX platform that also has DCE softwareinstalled onit.
This chapter will not discuss installation or compilation of the clients on the
Workstation platforms.

The sample programs have been tested on HP’s “DCE/9000” and DEC's “Digital DCE
for DCE OSF/1 AXP.” It should work on other platforms that conform to OSF/DCE
software standards.

Installing, Configuring, and Running the
rpcsimp Application

The following steps provide you with the instructions for installing, configuring, and
running the sample application.

Step 1: Create an Application Directory

Make a directory for pcsi np andcd to it.

nkdi r rpcsanpdir
cd rpcsanpdir

B-2 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

Note: Thisissuggested so you will beableto seeclearly ther pcsi np filesyou have
at the start and the additional filesyou create along the way. Use the standard
shell (/ bi n/ sh) or the Korn shell; do not use the C shell (csh).

Step 2: Set Your Environment

Set and export the necessary environment variables.

TUXDI R=<pat hnanme of the BEA Tuxedo root directory>

TUXCONFI G=<pat hnanme of your present working directory>tuxconfig
PATH=$PATH: $TUXDI R/ bi n

SVR4, Uni xware

LD _LI BRARY_PATH=$LD LI BRARY_PATH: $TUXDIR/ I i b

HPUX

SHLI B_PATH=$LD LI BRARY_PATH: $TUXDIR/ | i b

RS6000

LI BPATH=$LD LI BRARY_PATH: $TUXDI R/l i b

export TUXDI R TUXCONFI G PATH LD LI BRARY_PATH SHLI B_PATH LI BPATH

Y ou need TUXDI R and PATH o be able to accessfilesin the BEA Tuxedo directory
structure and to execute BEA Tuxedo commands. Y ou heed to set TUXCONFI Gto be
able to load the configuration file. It may & so be necessary to set an environment
variable (for example, LD _LI BRARY_PATH) if shared objects are being used.

Step 3: Copy the Files

Copy ther pcsi np filesto the application directory.
cp $TUXDI R/ apps/rpcsinmp/* .

Y ou will be editing some of the files and making them executable, soit isbest to begin
with a copy of the files rather than with the originals delivered with the software.

Step 4: List the Files

List the files.

Programming a BEA Tuxedo Application Using TXRPC B-3

B A DCE-Gateway Application

$1s
client.c
dcebind. c
dceepv.c
dcengr.c
dceserver.c
rpcsi np. nk
sinp.idl

si nmpdce. acf
ubbconfig
$

(Somefiles that are not referenced in this section are omitted).

Thefiles that make up the application are described in the following sections. The
client.c,sinp.idl,andubbconfig files(describedin A Sample Application) are
not discussed further.

IDL ACF File - simpdce.acf

Listing B-1 simpdce.acf

[explicit_handl e]interface changecase

{
}

Thesinp.idl fileusedin the earlier example will be used to build the gateway and
the DCE server. However, since it is being compiled by both the DCE and BEA
Tuxedo IDL compilers, two different versions of the si np. h header file are being
generated with the same name. Additionally, we wish to use an ACF filein this
exampl e so that we can specify explicit binding for the server, but not for the client.
The recommended approach isto link the IDL file to a second file name within the
same directory, using one for TXRPC without binding and one for DCE/RPC with an
explicit handle. In this case, si np. i dl isrenamed si npdce. i dl and the associated
ACFfileissi npdce. acf . The makefile creates si npdce. i dl and when the IDL
compiler is executed, it also will find si npdce. acf . Note that the ACF fileis used
simply toindicate that all operationsin theinterface will use explicit handles. Because
the operations are defined in the IDL file without [handl€] parameters as the first
parameter, one will be added automatically to the function prototype and to the stub
function calls.

B-4 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

Binding Function - dcebind.c

Intheinterest of space, the source code for dcebi nd. ¢ isnot included here but can be
found in $TUXDI R/ apps/ r pcsi np.

Thisfile has afunction, dobi nd(), that does the following three things:

It gets a binding handle for the DCE server with the desired interface
specification and gets the associated endpoint for a fully resolved handle.

It does some authentication of the server by getting the principal name for the
server and checking the Security registry to seeif the principal is amember of a
specified group.

It also annotates the binding handle so that an authenticated RPC is done. The
protection level is packet level integrity (mutual authentication on every call
with a packet checksum) using DCE private key authentication and DCE
PAC-based authorization.

The following things need to be modified in dcebi nd. c:

<HQOST> needs to be changed to the name of the host machine where the DCE
server will berun. Thisis part of the service name that is put into the directory
and follows the convention that the service name ends with _host . You may
choose to get rid of the suffix entirely (if you do, the same change needsto be
made in dceser ver . c).

<SERVER_PRI NCI PAL_GROUP> must be changed to the group associated with the
DCE principal running the server. It is used as part of the mutual authentication.

The server principal group must be created by runningrgy_edit as

cel | _admi n, the server principal must be created, an account must be added for
the principal with the group, and a key table must be created for the server. You
must also create aprincipal and account for yourself to run the client. An
example script to create these DCE entitiesis shown in Step 8: Configuring
DCE.

Programming a BEA Tuxedo Application Using TXRPC B-5

B A DCE-Gateway Application

Entry Point Vector - dceepv.c

Listing B-2 dceepv.c

#i ncl ude <sinpdce. h> /* header generated by |IDL conpiler */
#i ncl ude <dce/rpcexc. h> /* RAlI SE macro */

static void myto_upper(rpc_binding handle_ t hdl, idl _char *str);
static void myto_| ower(rpc_binding handle_ t hdl, idl _char *str);

/*
* A manager entry point vector is defined so that we can generate
* a valid DCE binding handle to go to the DCE server
* Note that the input handle to entry point functions will always
* be NULL since Tuxedo TxRPC doesn’t support handl es
*

/

/* Manager entry point vector with two operations */
changecase_ vl 0 epv_t changecase vl 0 s epv = {

nyt o_upper,

myto_| ower

b
i nt dobi nd(rpc_binding handl e t *hdl)

voi d
myt o_upper (rpc_binding handl e t hdl, idl _char *str)
{

rpc_bi ndi ng_handl e_t handl g;

if (dobind(&handle) 0) { /* get binding handl e for server */
userl og("binding failed");
RAI SE(rpc_x_i nval i d_bi ndi ng) ;

}

to_upper (handl e, str); /* call DCE client stub */

}

voi d
myt o_| ower (rpc_bi ndi ng_handl e_t hdl, idl _char *str)

rpc_bi ndi ng_handl e_t handl e;

i f (dobind(&handle) 0) { /* get binding handl e for server */
userl og("binding failed");
RAI SE(rpc_x_i nval i d_bi ndi ng) ;

}

to_| ower(handl e, str); /* call DCE client stub */

}

B-6 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

dceepv. ¢ contains the manager entry point vector used in the gateway. It is called by
the BEA Tuxedo server stub and calls the DCE client stub. The data type for the
structureisdefined in si npdce. h, whichisincluded indceepv. ¢, anditisinitialized
with the local functionsnyt o_upper () and myt o_| ower () . Each of these functions
simply calls dobi nd() to get the binding handle that has been annotated for
authenticated RPC and calls the associated client stub function.

DCE Manager - dcemgr.c

Listing B-3 dcemgr.c

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i ncl ude "si npdce. h" /* header generated by IDL conpiler */

#i ncl ude <dce/rpcexc.h> /[/* RAISE macro */

#i ncl ude <dce/dce_error.h> /* required to call dce_error_inqg_text */
#i ncl ude <dce/binding.h> /* binding to registry */

#i ncl ude <dce/ pgo. h> /* registry i/f */

#i ncl ude <dce/secidmap. h> /* translate gl obal nane -> princ nanme */
voi d

checkaut h(rpc_bi ndi ng_handl e_t handl e)

{

int error_stat;
static unsigned char error_string[dce _c_error_string_len];

sec_id _pac_t *pac; /* client pac */

unsi gned_char _t *server_princi pal _name; /* requested server principal */
unsi gned32 protection_|evel; /* protection |evel */

unsi gned32 aut hn_svc; /* authentication service */

unsi gned32 aut hz_svgc; /* authorization service */

sec_rgy_handl e_t rgy_handl e;

error_status_t status;

/*
* Check the authentication parameters that the client
* selected for this call.

*/
rpc_binding_ing_auth_client(
handl e, /* input handle */
(rpc_authz_handle t *)&ac, /* returned client pac */
&server _princi pal _nane, /* returned requested server princ */
&protection_level, /* returned protection |evel */
&aut hn_svc, /* returned authentication service */
&ut hz_svc, /* returned authorization service */
&stat us);
if (status !'=rpc_s_ok) {

Programming a BEA Tuxedo Application Using TXRPC B-7

B A DCE-Gateway Application

dce_error_ing_text(status, error_string, &error_stat);
fprintf(stderr, "% %\n", "ing_auth_client failed",
error_string);
RAI SE(rpc_x_i nval i d_bi ndi ng) ;
return;
}
/*
* Make sure that the caller has specified the required
* |l evel of protection, authentication, and authorization.
*/

if (protection_level != rpc_c_protect_|evel _pkt_integ ||
authn_svc != rpc_c_aut hn_dce_secret ||
authz_svc !'= rpc_c_authz_dce) {

fprintf(stderr, "not authorized");
RAI SE(r pc_x_i nval i d_bi ndi ng);
return;

}

return;

}

voi d
to_upper (rpc_bindi ng_handl e _t handle, idl_char *str)

idl_char *p;
checkaut h(handl e) ;

/* Any ACL or reference nonitor checking could be done here */

/* Convert to upper case */

for (p=str; *p 1= '\0 '; p++)
*p = toupper ((int)*p);
return;
}
voi d

to_| ower (rpc_bindi ng_handl e t handle, idl_char *str)
idl_char *p;
checkaut h(handl e) ;
/* Any ACL or reference nonitor checking could be done here */

/* Convert to |ower case */

for (p=str; *p !'="'\0"; p++)
*p = tolower ((int)*p);
return;

B-8 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

dcenygr . ¢ hasthe manager code for the DCE server. The checkaut h() functionisa
utility function to check the authentication of the client (level of protection,
authentication, and authorization). Each of the operations, t o_upper andt o_| ower,
calls this function to validate the client and then does the operation itself. In an
application using Access Control Lists, the ACL checking would be done after the
authentication checking and before the work of the operation.

DCE Server - dceserver.c

In the interest of space, the source code for dceser ver . ¢ is not included here. There
are several modifications needed for this file based on your environment:

B <HOST> needs to be changed to the name of the host machine where the DCE
server will berun. Thisis part of the service name that is put into the directory
and follows the convention that the service names ends with _host. You may
choose to get rid of the suffix entirely (if you do, the same change needsto be
made in dcebi nd. c).

m <Dl RECTORY> needs to be set to the full pathname of the directory where you
will create the server key table. The key tableis created by executing the
following.

rgy_edit

ktadd -p SERVER PRI NCl PAL - pw PASSWORD -f SERVER KEYTAB
q

where SERVER PRI NCI PAL isthe DCE principa under which the server will be run,
PASSUORDIs the password associated with the principal, and SERVER KEYTABisthe
name of the server key table.

<PRI NCI PAL> must be changed to the name of the DCE principa under which the
server will be run.

The ANNOTATI ON can be changed to an annotation to be stored in the directory entry
for the server.

dceserver. c isactually used twice in the application: once as the mai n() for the
DCE server and again (linked to gwi ni t . ¢ and compiled with -DTPSVRI NI T in the
makefile) asthet psvri ni t () for the DCE gateway.

Programming a BEA Tuxedo Application Using TXRPC B-9

B A DCE-Gateway Application

When compiled without extra macro definitions, this file generates a mai n() (with
argc and ar gv command line options) for a DCE server that does the following:

m Registersitsinterfaces
m Createsits server binding information and endpoints

m Edstablishesits DCE login context for the server principal using information in
the server key table

m Registersits authentication information

m Getsitsbindings and registers the information in the endpoint map

m Exportsthe binding information to the directory name space

m Optionaly, addsits name to a group in the name space

m Listensfor requests

m Cleansup after rpc_server _| i sten returns

The program could be modified to look at and use its command line options.

When compiled with -DTCLI ENT, thisfile generatesa mai n() asabove but calls

t pi ni t () tojoin the BEA Tuxedo application asaclient, and calst pt er n() before
exiting. Thiswould be used for a DCE gateway for calls coming from DCE to BEA
Tuxedo (such that the processisa DCE server and a BEA Tuxedo client).

When compiled with -DTPSVRI NI T, thisfile generatesat psvri ni t () (withar gc and
ar gv server command line options) for aBEA Tuxedo server that does the following:

m Establishesits DCE login for the principal using the information in the server
key table

m Registersits authentication information
m Callst x_open to open any resource managers associated with the server
The program could be modified to look at and use its command line options.

In each of these cases, the login context is established by calling

est abl i sh_i denti ty, which getsthe network identity for the server, usesthe

server’s secret key from the key table file to unseal the identity, and sets the login
context for the process. Two threads are started: one to refresh the login context jus
before it expires, and a second thread to periodically change the server’s secret key

B-10 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

Makefile - rpcsimp.mk

Listing B-4 rpcsimp.mk

CC=cc
CFLAGS=
TI DL=$(TUXDI R) / bi n/ ti dI
LI BTRPC=-1trpc
all: client server
Tuxedo cli ent
client: sinp.h sinp_cstub.o
CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDIR)/bin/buildclient -oclient \
-fclient.c -fsinp_cstub.o -f$(LI BTRPC)
#
OM T Tuxedo server
#

Tuxedo Gat eway exanple
Uses Tuxedo client above plus a gateway server and a DCE server
#

#
Al pha FLAGS/LIBS
#DCECFLAGS=- D_SHARED LI BRARI ES - Dal pha - D_REENTRANT -w -1. \

-1/usr/include/dce -1$(TUXDI R)/incl ude

#DCELI BS=-1dce -lpthreads -lc_r -lmach -Im

#

#

HPUX FLAGS/ LI BS

#DCECFLAGS=- Aa - D_HPUX_SOURCE - D _REENTRANT -1. \
-1/usr/include/reentrant -1${TUXD R}/incl ude

#DCELI BS=- W, - Bi nmedi ate -W, -Bnonfatal -ldce -lc_r -Im

#

| DL=i dI

ALL2=cl i ent sinpgw dceserver
all2: $(ALL2)

TUXEDO t o- DCE Gat eway
si npdce.idl: sinp.idl
rm-f sinpdce.idl
I'n sinp.idl sinpdce.idl

gwinit.c: dceserver.c

rm-f gwinit.c
I n dceserver.c gwinit.c

Programming a BEA Tuxedo Application Using TXRPC ~ B-11

B A DCE-Gateway Application

gwinit.o: gwinit.c
$(CC) -c $(DCECFLAGS) -DTPSVRINIT gwinit.c

dceepv. o: dceepv.c sinpdce.h
$(CC) -c $(DCECFLAGS) dceepv.c

dcebi nd. o: dcebi nd. c sinpdce.h
$(CC) -c $(DCECFLAGS) dcebind.c

simpgw. sinpdce.idl gwi nit.o dcebind.o dceepv.o
bl ds_dce -i -no_nepv -o sinpgw -f -g -f gwinit.o -f \
dcebind.o -f dceepv.o sinpdce.idl

DCE server
si mpdce_sst ub. o si nmpdce. h: sinpdce.idl
$(IDL) -client none -keep object sinpdce.idl

dceserver.o: dceserver.c sinpdce.h
$(CC) -c $(DCECFLAGS) dceserver.c

dcengr.o: dcengr.c sinpdce.h
$(CC) -c $(DCECFLAGS) dcengr.c

dceserver: sinpdce_sstub.o dceserver.o dcengr.o
$(CC) dceserver.o sinpdce sstub.o dcengr.o -o dceserver \
$(DCELI BS)

Cl eanup
clean::
rm-f *.0 server $(ALL2) ULOG * TUXCONFI G
rm-f stderr stdout *stub.c *.h sinpdce.idl gwinit.c

cl obber: clean

The makef i | e builds the executable client, gateway, and DCE server programs.

Before building the software, r pcsi nmp. nk must be modified to set the correct options
and librariesfor building the DCE server. Assent out, the makefile containsthe proper
settings for several platforms. Based on the platform that you are using, uncomment
(delete the pound sign) in front of the correct pair of DCECFLAGS and DCELI BS
variables, or add your own definitions for a different platform.

Briefly reviewing the makefile, the client is built in the same fashion asin A Sample
Application. The DCE gateway is built by passingsi npdce. i dl tobl ds_dce, which
builds aBEA Tuxedo server that acts as a gateway to DCE. Also included are

gwi nit.o (aversionof dceserver. c compiled with -DTPSVRI NI T), dobi nd. o (to
get the binding handle for the DCE server), and dceepv. o (the manager entry point

B-12 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

vector). Notethat -i - no_nepv isspecified so that the IDL compiler does not
generate its own manager entry point vector. The DCE server is built compiling
si npdce. i dI withthe DCE IDL compiler, and including dceser ver . o and
dcengr. o.

Step 5: Modify the Configuration

1. Modify the ASCII ubbconf i g configuration file as described in A Sample
Application. (This step is mandatory.)

2. Inthe SERVERS section, comment out the ser ver line by putting apound sign (#)
at the beginning of the line. (Do not comment out the dceser ver line.)

Step 6: Build the Application
1. Beforebuilding the software, you must modify r pcsi np. mk to set the correct

options and libraries for building the DCE server, as described above.

2. Build the client and server programs by running the following.

make -f rpcsinp. mk TUXDI R=$TUXDI R al | 2

Step 7: Load the Configuration

L oad the binary TUXCONFI G configuration file by running the following.

tm oadcf -y ubbconfig

Programming a BEA Tuxedo Application Using TXRPC ~ B-13

B A DCE-Gateway Application

Step 8: Configuring DCE

To set up DCE entities for running this example, as described earlier, you must
customize (for your environment) identifiersin all capital letters.

m If you already have a DCE principal for yourself, you do not need to create
MYGROUP, MYPRI NCI PAL, or the associated account.

m Thisexample assumesthat thecel | _adni n password is the default - dce. (You
can change this password as hecessary.)

m The SERVER PRI NCI PAL must be the same as the BEA Tuxedo administrator
identifier, because the server must be booted as the BEA Tuxedo administrator
and the server must be able to read the server key table.

Listing B-5 DCE Configuration

dce_login cell_admn -dce-

rgy_edit

domai n group

add SERVER PRI NCI PAL_GROUP

add MYGROUP

domai n princi pal

add SERVER PRI NCI PAL

add MYPRI NCI PAL

domai n account

add SERVER PRI NCI PAL -g SERVER PRI NCI PAL_GROUP -0 none -pw \
SERVERPASSWORD - np -dce-

add MYPRI NCI PAL -g MYGROUP -0 none - pw MYPASSWORD - np -dce-

kt add -p SERVER PRI NCI PAL -pw SERVERPASSWORD -f SERVER KEYTAB

VVVVVVYVYV®HSH

q
chown SERVER PRI NCl PAL SERVER_KEYTAB
chmod 0600 SERVER KEYTAB

$HBHV VYV

B-14 Programming a BEA Tuxedo Application Using TXRPC

Installing, Configuring, and Running the rpcsimp Application

Step 9: Boot the Configuration

1. Loginas SERVER PRI NG PAL (the owner of the server key table).

2. Start the DCE server by running the following.
dceserver &

The message Ser ver ready isdisplayed just before the DCE server starts
listening for requests.

3. Boot the BEA Tuxedo application by running the following.
tnboot -y

Step 10: Run the Client

The client program can be run by optionally specifying a string to be converted, first
to upper case, and then to lower case.

$ client HeLlIO

to_upper returns: HELLO

to_lower returns: hello

$

Step 11: Shut Down the Configuration

1. Shut down the application by running the following.

t nshut down -y

2. Stop the DCE server.

Step 12: Clean Up the Created Files

Clean up the created files by running the following.

make -f rpcsinp.nk clean

Programming a BEA Tuxedo Application Using TXRPC ~ B-15

B A DCE-Gateway Application

B-16 Programming a BEA Tuxedo Application Using TXRPC

	Copyright
	Contents
	1 Introducing TxRPC
	What Is TxRPC

	2 Using the Interface Definition Language (IDL)
	References
	Using uuidgen to Create an IDL Template
	Changes in the Language
	Changes Based on the TxRPC Specification
	Enhancements to the Language
	Enhancements that May Limit Portability

	Unsupported Features
	Using tidl, the IDL Compiler

	3 Writing RPC Client and Server Programs
	Handling Remoteness
	Handling Status and Exception Returns
	Using Stub Support Functions
	Using RPC Header Files
	Portability of Code
	Interacting with ATMI
	Interacting with TX

	4 Building RPC Client and Server Programs
	Prerequisite Knowledge
	Building an RPC Server
	Building an RPC Client
	Building a Windows Workstation RPC Client
	Using C++
	Interoperating with DCE/RPC
	BEA Tuxedo Requester to DCE Service via BEA Tuxedo Gateway
	DCE Requester to BEA Tuxedo Service Using BEA Tuxedo Gateway
	BEA Tuxedo Requester to DCE Service Using DCE-only
	DCE Requester to BEA Tuxedo Service Using BEA Tuxedo-only
	Building Mixed DCE/RPC and BEA Tuxedo TxRPC Clients and Servers

	5 Running the Application
	Prerequisite Knowledge
	Configuring the Application
	Booting and Shutting Down the Application
	Administering the Application
	Using Dynamic Service Advertisement

	A A Sample Application
	Appendix Contents
	Prerequisites
	Building the rpcsimp Application
	Step 1: Create an Application Directory
	Step 2: Set Environment Variables
	Step 3: Copy files
	Step 4: List the Files
	Step 5: Modify the Configuration
	Step 6: Build the Application
	Step 7: Load the Configuration
	Step 8: Boot the Configuration
	Step 9: Run the Client
	Step 10: Monitor the RPC Server
	Step 11: Shut Down the Configuration
	Step 12: Clean Up the Created Files

	B A DCE-Gateway Application
	Appendix Contents
	Prerequisites
	What Is the DCE-Gateway Application
	Installing, Configuring, and Running the rpcsimp Application
	Step 1: Create an Application Directory
	Step 2: Set Your Environment
	Step 3: Copy the Files
	Step 4: List the Files
	Step 5: Modify the Configuration
	Step 6: Build the Application
	Step 7: Load the Configuration
	Step 8: Configuring DCE
	Step 9: Boot the Configuration
	Step 10: Run the Client
	Step 11: Shut Down the Configuration
	Step 12: Clean Up the Created Files

