ov,
2
P [4

7 hea
BEA Tuxedo

Using BEA Tuxedo
Security

BEA Tuxedo Release 7.1
Document Edition 7.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using BEA Tuxedo Security

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1.

Introducing Security

What SECUIMLY MEANScoiitiiiiiiiiiiii ettt e 1-1
SECUNLY PIUG-INS ottt et e s sabne e e 1-2
SeCUrity CapabilitI®S........cvuiiiiiiiiie i 1-3
Operating System (OS) SECUILYueeei it 1-6
AUNENTICATION .. 1-7
Authentication Plug-in ArchiteCtureccooevieiiiiie e 1-7
Understanding Delegated Trust Authentication.............ccoceveviiiveiniineeeene 1-7
EStablisShing @ SESSIONoiiiiiiiii i 1-9
Getting Authorization and Auditing TOKeNScccccoeeiviiiie e 1-10
Replacing Client Tokens with Server TOKENS..........ccocevviiiiiieniiiiee e, 1-11
Implementing Custom Authenticationccooveeee i 1-12
AULNOTIZALION ... e 1-12
Authorization Plug-in ArchiteCturecccoeiiiiiiiniicci e 1-13
How the Authorization Plug-in WOrKS..........coccoiiiiiieiiie e 1-15
Implementing Custom AUthOriZation..........c.occceeiriiiiiin e 1-18
AUTITING et 1-18
Auditing Plug-in ArChiteCIUreccuviiiiiiiii e 1-19
How the Auditing Plug-in WOIKS.........cccoiiiiiiiiii e 1-20
Implementing Custom AUItINGccooiiiiiiii e 1-23
LiNK-LeVel ENCIYPLONiiiiiiiii ittt et see e 1-23
HOW LLE WOTKS ...ttt 1-24
Encryption Key Size Negotiation...........cceeeiiiiiiiniiiiie e 1-24
Backward Compatibility Of LLE..........cooiiiiiiiiiii e 1-26
WSL/WSH Connection Timeout During Initialization............................ 1-27
LLE Installation and LICENSINGccoiivriieiriiiie et 1-28

Using BEA Tuxedo Security iii

iv

PUDIIC KBY SECUNILY ...t e 1-2

PKCS-7 COMPIANT.....eiiiiiiiiie it 1-2¢
Supported Algorithms for Public Key Security...........cccocovvieiiiiieecnineen. 1-30
Public Key Installation and LiCeNSING.........cocovueiiiiiiiiiiiiiee e 1-32
Message-based Digital SIgNaturecoceeeeiiiiiiiiiiiie e 1-
Digital CertifiCaAteS.ceiiiiieiiiiiiiie e e 1-3€
Certification AULNOTILYevveiiiiii e 1-36
Certificate REPOSILONESueviieiiiiiiei ittt 1-3
Public-Key INfrastruCtureoooviiiiiiiiiie e 1-37
Message-based ENCIYPLONoooiiiiiii ettt 1-
Public Key Implementation ... 1-4:
Public Key INtialization ... 1-42
Key Management..........cooooiiiiiiiiiii e 1-4
Certificate LOOKUPcoiitiiiii ettt 1-42
Certificate ParSiNgcooi it 1-4
Certificate Validation ... 1-43
Proof Material Mappingccooouviiiiiiiiiie e 1-43
Implementing Custom Public Key SECUNtYccooviiiiiiiiiiieeeniiieeee 1-43
Default Public Key Implementation ... 1-43
Default Authentication and Authorizationccccce e, 1-44
ClENT NAMING ..teiiiitiee et e e e b e 1-4°
User, Group, and ACL FileS........coiiiiiiiiiiiie e 1-5(
Optional and Mandatory ACLScoooiviiiiiiiiiie et 1-52
Security Interoperability ... 1-5.
Interoperating with Pre-Release 7.1 Software.........cccccccoviiiieiiiniiien e, 1-5
Interoperability for Link-Level ENCryption...........cccceeriiieeiniiieeciiiien. 1-56
Interoperability for Public K&y SeCUNtYccceveiiiiiiieiiiiienee e 1-56
Security ComPatibDility.........eueeiriiii e 1-5¢
Mixing Default/Custom Authentication and Authorization..................... 1-59
Mixing Default/Custom Authentication and Auditing...........cccevveeinnneen. 1-59
Compatibility Issues for Public Key SeCUritycccocceriiiieiiiiiiicninn, 1-60

Administering Security
What Administering Security MEANScceeeiiiiiiiiieiiiie e 2-!
Security AdMINISTratioN TASKScuviieiiiiiiiee e 2-

Using BEA Tuxedo Security

Setting the BEA TUXedO REGISIY ...couuiiiiiiiiiii it 2-3

Purpose of the BEA TUXEAO REQISIIYcccoiiuiiiiiiiiiiiiee it 2-4
ReQiIStering PIUG-INSeeiiiii e 2-4
Configuring an Application for SECUIYcceiriiiiiiiini e 2-5
Editing the Configuration File............ccooiiiiiiii e 2-6
Changing the TM_MIBccouiiiiiiiiiiie et 2-6
Using the BEA Administration CONSOIEcccveeiiiiiieiiiiieeee e 2-6
Setting Up the Administration ENVIFONMENTtccviviiiiiieiniiiee e 2-7
Administering Operating System (OS) SECUNLYcuvveiiiiiieiriiiiies e 2-8
Recommended Practices for OS SECUItYeeeeeriiriiiniiiiein e 2-8
Administering AuthentiCation ..ot 2-9
Specifying PrinCipal NAMESooiiiiiiii e 2-11
How System Processes Acquire CredentialS..........ccoeevveveeeniiieeeiniineeenns 2-12
Why System Processes Need CredentialScoovviiieiniiiiieniiieee e, 2-14
Example UBBCONFIG Entries for Principal Names...........ccccceeevvvneeenne 2-15
Mandating Interoperability POICY............coooiiiiiiiiiiii e 2-15
Establishing an Identity for an Older Client............cccccviiiiiiieenieeeee 2-20
Summarizing How the CLOPT -t Option WOrKS.........ccccocveeiniiiiecniiennn, 2-21
Example UBBCONFIG Entries for Interoperability...........cccccooviivieennn 2-23
Establishing a Link Between DOM@AINS.........c.cuviiiiiiiieeniiieeen e 2-24
Example DMCONFIG Entries for Establishing a Linkcccceeens 2-27
SettiNg ACL POIICY...c. it 2-29
Impersonating the Remote Domain Gatewayccoceeerivreeenniineeennnns 2-32
Example DMCONFIG Entries for ACL POlICYc.ceeviviiiiieiiiiie e 2-33
Administering AUtNOFZAtIONooiiiiiiii e 2-34
Administering Link-Level ENCrYPLioNocovviiiiiiiiieieniieee e 2-35
Understanding min and max Valuescoccooeiiniiiiieninniie e 2-35
Verifying the Installed LLE Version.........cccccoviiiiiiinniiii e 2-36
How to Configure LLE on Workstation Client LINKS...........ccccoeeveveeenns 2-36
How to Configure LLE on Bridge LinkScoooiiiiiiiiiiee e 2-37
How to Configure LLE on tlisten LinkS.........ccccooiiiiiiiiiniieeee 2-38
How to Configure LLE on Domain Gateway Linksccccooivieennnnen 2-39
Administering Public KeY SECUItYcoiiiiiiiiiiiiie e 2-41
Recommended Practices for Public Key Security..........ccccoeiviiiinieennnee. 2-41
Assigning Public-Private Key Pairsccocooiiiiiiieiiiees e 2-42

Using BEA Tuxedo Security %

Vi

Setting Digital Signature POIICYccvviiiiiiiiiiiii e 2-47

Setting ENCryption POICYc.uvuiiiiiiiiiiiiiie et 2-47
Initializing Decryption Keys Through the PIug-inscccccviiiieenne. 2-50
Failure Reporting and AUItiNgc.ouveeeiiiiiiiiniee e 2-54
Administering Default Authentication and Authorizationc.ccccccoovne. 2-56
Designating a Security LEVel............ocoiiiiiiiiii e 2-5¢
Configuring the Authentication Servercccccveeiiiiieie e 2-57
How to Enable Application Password SECUTtYc..eeeriiiiiiiiiiineeeniiieeens 2-5¢
How to Enable User-Level Authentication SEeCUritycccccovvvviericiiee e, 2-6C
Setting Up the UBBCONFIG File......ccoiiiiiiiiiiieiiee e 2-60
Setting Up the User and Group FileS.........ooviiioiiiiiieiiiii e 2-6
Enabling Access COoNtrol SECUNILYccoiiviiiiiiiiiie et 2-6
How to Enable Optional ACL SECUNLY........cceeiiiiiiiiiiiiiieciiee e 2-65
How to Enable Mandatory ACL SECUILYccuveeeeiiiieeeiiiiieeeeeieee e 2-68
Programming Security
What Programming Security MEANS.........ccueiiiiiiiiiieiiiie et 3-
Programming an Application wWith SECUIItYccccviiiiiiiieeriiie e, 3-G
Setting Up the Programming ENVIrONMENTtcocoiiiiiiiiiiiieienieee e 3-
Writing Security Code So Client Programs Can Join the Application.............. 3-4
Getting SECUIMLY DALAueeeiiiiiiii ittt 3-
JoiNING the APPIICALIONeeeiie it -
Transferring the Client Security Data...........ccceeiiiiiieiniiieienee e 3-11
Calling a Service Request Before Joining the Application 3-14
Writing Security Code to Protect Data Integrity and Privacyccceee.e. 3-15
ATMI for Public KeY SECUILYceiiiiiiiiie e 3-16
Recommended Uses of Public Key Security..........cccvieiiiiiieiiiniiieeene 3-2.
Sending and Receiving Signed MESSAgESccoviiieiiriiiiiie e 3-
Writing Code to Send Signed MESSAJESuuveeeiiiiiiiiiiiiin e 3-2
How a Signed Message IS ReCEIVEd..........cooceevieriiiiiiiiiiii e 3-3
Sending and Receiving Encrypted MeSSagesccvvveeriviieeniiiiie e 3-
Writing Code to Send Encrypted MeSSagEeScovvvvveeeiieiieeriiieee e 3-3
Writing Code to Receive Encrypted MeSSagesoevvevviiveeeniiieeen i, 34
Examining Digital Signature and Encryption Information.............c.cccccevneeen. 3-52
What Happens When an Originating Process Calls tpenvelope............... 3-5

Using BEA Tuxedo Security

What Happens When a Receiving Process Calls tpenvelope................... 3-54

Understanding the Composite Signature Status...........cccoocvveeeiiiiieeeenenn, 3-56
Example Code for tpenVeIopecooiiiiiiiiiiiee e 3-57
Externalizing Typed Message BUFfers ... 3-59
How to Create an Externalized Representation...........c.ccccccviiiiiviennnneenn. 3-60
How to Convert an Externalized Representationcccccovcevviiiiinneenn. 3-60
Example Code for tpexport and tpimport.........cccccoevviee e 3-60

Using BEA Tuxedo Security Vi

viii Using BEA Tuxedo Security

CHAPTER

1 Introducing Security

m What Security Means

m Security Plug-ins

m Security Capabilities

m Default Authentication and Authorization

m Security Interoperability

What Security Means

Security refers to techniques for ensuring that data stored in a computer or passed
between computers is not compromised. Most security measures ipasdseords
anddata encryptionwhere a password is a secret word or phrase that gives a user
access to a particular program or system, and data encryption is the translation of data
into a form that is unintelligible without a deciphering mechanism.

Distributed applications such as those used for electronic commerce (e-commerce)
offer many access points for malicious people to intercept data, disrupt operations, or
generate fraudulent input; the more distributed a business becomes, the more
vulnerable it is to attack. Thus, the distributed computing software, or middleware,
upon which such applications are built must provide security.

The BEA Tuxedo system provides several security capabilities, most of which can be
customized for your particular needs.

Using BEA Tuxedo Security 1-1

1 introducing Security

See Also

m “Security Plug-ins” on page 1-2
m “Security Capabilities” on page 1-3
m “What Administering Security Means” on page 2-1

m “What Programming Security Means” on page 3-1

Security Plug-ins

As shown in the following figure, all but one of the security capabilities available with
the BEA Tuxedo system are implemented througlug-in interface which allows

BEA Tuxedo customers to independently define and dynamically add their own
securityplug-ins A security plug-in is a code module that implements a particular
security capability.

Figure 1-1 BEA Tuxedo Plug-in Security Architecture

Authentication

; . | - | Link-Level | Public Key
| Authorization | Auditing | Encryption | Security
BEA Tuxedo Security
Link-Level
Encryption

Plug-in Interface

Default
Authentication

| Custom

Default Default Default
Authorization Auditing Public Key Security
| Custom | Custom Custom

Security Plug-ins

1-2 Using BEA Tuxedo Security

Security Capabilities

See Also

The specifications for the security plug-in interface are not generally available, but are
available to third-party security vendors who have entered into a special agreement
with BEA Systems. BEA Tuxedo customers who want to customize a security
capability must contact one of these vendors. For example, a BEA Tuxedo customer
who wants a custom implementationpafblic key securitynust contact a third-party
security vendor who can provide the appropriate plug-ins.

For more information about security plug-ins, including installation and configuration
procedures, see your BEA account executive.

m “Security Capabilities” on page 1-3

Security Capabilities

The BEA Tuxedo system can enforce security in a number of ways, which includes
using the security features of the host operating system to control access to files,
directories, and system resources. The following table describes the security
capabilities available with the BEA Tuxedo system.

Table 1-1 BEA Tuxedo Security Capabilities

Security Capability Description Plug-in Interface Default Implementation
Operating system Controls access to files, N/A N/A
security directories, and system

resources.

Using BEA Tuxedo Security ~ 1-3

1 introducing Security

Table 1-1 BEA Tuxedo Security Capabilities

Security Capability

Description Plug-in Interface

Default Implementation

Authentication

Proves the stated identity of
users or system processes;
safely remembers and
transports identity information;
and makes identity information
available when needed.

Implemented as a
single interface

Thedefault authentication
plug-in provides security at
three levelsno
authenticationapplication
password anduser-level
authentication This plug-in
works the same way the BEA
Tuxedo implementation of
authentication has worked
since it was first made
available with the BEA
Tuxedo system.

Authorization

Controls access to resources Implemented as a
based on identity or other single interface
information.

Thedefault authorization
plug-in provides security at
two levels:optional access
control listsandmandatory
access control listsThis
plug-in works the same way
the BEA Tuxedo
implementation of
authorization has worked
since it was first made
available with the BEA
Tuxedo system.

Auditing

Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented by the BEA
Tuxedo EventBroker and
userlog ULOG features.

Link-level encryption

1-4

Usessymmetrickey encryption N/A
to establish data privacy for
messages moving over the
network links that connect the
machines in a BEA Tuxedo
application.

Using BEA Tuxedo Security

RC4 symmetric key
encryption.

Security Capabilities

Table 1-1 BEA Tuxedo Security Capabilities

Public key security

Security Capability Description Plug-in Interface Default Implementation
Uses public key (aesymmetric Implemented asix ~ Default public key security
key) encryption to establish interfaces supports the following
end-to-end digital signing and algorithms:
data privacy between BEA m RSA public key
Tuxedo application clients and algorithm

servers. Complies with the

PKCS-7 standard. = RSAandDSAdigital

signature algorithms

m DES-CBGtwo-key
triple-DES andRC2
symmetric key
algorithms

= MD5 andSHA-1
message digest
algorithms

See Also

“Operating System (OS) Security” on page 1-6
“Authentication” on page 1-7

“Authorization” on page 1-12

“Auditing” on page 1-18

“Link-Level Encryption” on page 1-23

“Public Key Security” on page 1-29

Using BEA Tuxedo Security 1-5

1 introducing Security

Operating System (0S) Security

See Also

On host operating systems with underlying security features, such as file permission:
the operating-system level of security is the first line of defense. An application
administrator can use file permissions to grant or deny access privileges to specific
users or groups of users.

Most BEA Tuxedo applications are managed by an application administrator who
configures the application, starts it, and monitors the running application dynamically,
making changes as necessary. Because the application is started and run by the
administrator, server programs are run with the administrator’s permissions and are
therefore considered secure or “trusted.” This working method is supported by the
login mechanism and the read and write permissions on the files, directories, and
system resources provided by the underlying operating system.

Client programs are run directly by users with the users’ own permissions. In addition
users running native clients (that is, clients running on the same machine on which th
server program is running) have access tdJBBCONFIonfiguration file and
interprocess communication (IPC) mechanisms such dmithegin board(a reserved
piece of shared memory in which parameters governing the application and statistic
about the application are stored).

For applications running on platforms that support greater security, a more secure
approach is to limit access to the files and IPC mechanisms to the application
administrator and to have “trusted” client programs run with the permissions of the
administrator (using theestuid command on a UNIX host machine or the equivalent
command on another platform). For the most secure operating system security, alloy
only Workstation clients to access the application; client programs should not be
allowed to run on the same machines on which application server and administrative
programs run.

m “Security Administration Tasks” on page 2-3

m “Administering Operating System (OS) Security” on page 2-8

1-6 Using BEA Tuxedo Security

Authentication

m “About the Configuration File” on page 2-1 and “Creating the Configuration
File” on page 3-1 irSetting Up a BEA Tuxedo Application

m UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Authentication

Authentication allows communicating processes to mutually prove identification. The
BEA Tuxedo authentication plug-in interface can accommodate various
security-provider authentication plug-ins using various authentication technologies,
including shared-secret passwardne-time passworahallenge-responsand

Kerberos The interface closely follows the generic security service (GSS) application
programming interface (API) where applicable; the GSSAPI is a published standard of
the Internet Engineering Task Force. The authentication plug-in interface is designed
to make integration of third-party vendor security products with the BEA Tuxedo
system as easy as possible, assuming the security products have been written to the
GSSAPI.

Authentication Plug-in Architecture

The underlying plug-in interface for authentication security is implemented as a single
plug-in. The plug-in may be the default authentication plug-in or a custom
authentication plug-in.

Understanding Delegated Trust Authentication

Direct end-to-end mutual authentication in a distributed enterprise middleware
environment such as the BEA Tuxedo system can be prohibitively expensive,
especially when accomplished with security mechanisms optimized for long-duration
connections. It is not efficient for clients to establish direct network connections with
each server process, nor is it practical to exchange and verify multiple authentication
messages as part of processing each service request. Instead, the BEA Tuxedo system
implements alelegated trusauthentication model, as shown in the following figure.

Using BEA Tuxedo Security ~ 1-7

1 introducing Security

Figure 1-2 Delegated Trust Authentication Model

— — T~
-
~ e

7 N
Trusted Server Computing Base

/ — T~
\
\
\
Workstation Client /
(
> Server \
\
Initiator Target |
(Client) \ (Trusted Gateway) /
\ @ @
~ /
- — /
\ —~
\ _ /
AN ~
—_

A Workstation client authenticates tdrasted system gateway procete

Workstation Handler (WSH), at initialization time. A native client authenticates within
itself, as explained later in this discussion. After a successful authentication, the
authentication software assigns a secuakgnto the client. A token is an opaque data
structure suitable for transfer between processes. The WSH safely stores the token f
the authenticated Workstation client, or the authenticated native client safely stores th
token for itself.

As a client request flows through a trusted gateway, the gateway attaches the client
security token to the request. The security token travels with the client’s request
message, and is delivered to the destination server process(es) for authorization
checking and auditing purposes.

In this model, the gateway trusts that the authentication software will verify the
identity of the client and generate an appropriate token. Servers, in turn, trust that th
gateway process will attach the correct security token. Servers also trust that any oth
servers involved in the processing of a client request will safely deliver the token.

1-8 Using BEA Tuxedo Security

Authentication

Establishing a Session

The following figure shows the control flow inside the BEA Tuxedo system while a
session is being established between a Workstation client and the WSH. The
Workstation client and WSH are attempting to establish a long-term mutually
authenticated connection by exchanging messages.

Figure 1-3 Client-WSH Authentication

Initiate Connection

Application Communication
Client Protocol

il { -
BEA Tuxedo Library s 2 WSH Process

Mt T et
BEA Tuxedo T / BEA Tuxedo v

' (Exchange of Session v

Security Tokens) Security
Authentication v Authentication
Plug-in (1) Plug-in (1)
Obtain a Session Obtain a Session Accept Received Session Obtain a Session
Credential Handle Context Handle and Token and Return Credential Handle
a Session Token a Session Token (at Startup)

Theinitiator process(may be thought of as a middleware client process) creates a
session contexty repeatedly calling the BEA Tuxedo “initiate security context”
function until a return code indicates success or failure. A session context associates
identity information with an authenticated user.

When a Workstation client caliginit(3c) for C orTPINITIALIZE(3cbl) for

COBOL to join an application, the BEA Tuxedo system begins its response by first
calling the internal “acquire credentials” function to obtain a session credential handle,
and then calling the internal “initiate security context” function to obtain a session
context. Each invocation of the “initiate security context” function takes an input
session tokefwhen one is available) and returns an ousgssion tokerA session

token carries a protocol for verifying a user’s identity. The initiator process passes the
output session token to the sessidarget proces§WSH), where it is exchanged for
another input token. The exchange of tokens continues until both processes have
completed mutual authentication.

Using BEA Tuxedo Security 1-9

1

Introducing Security

A security-provider authentication plug-in defines the content of the session context
and session token for its security implementation, so BEA Tuxedo authentication
security must treat the session context and session token as opaque objects. The
number of tokens passed back and forth is not defined, and may vary based on the
architecture of the authentication system.

For a native client initiating a session, the initiator process and the target process ar
the same; the process may be thought of as a middleware client process. The
middleware client process calls the security provider’'s authentication plug-in to
authenticate the native client.

Getting Authorization and Auditing Tokens

1-10

After a successful authentication, the trusted gateway calls two BEA Tuxedo interna
functions that retrieve asuthorizationtokenand arauditingtokenfor the client,

which the gateway stores for safekeeping. Together, these tokens represent the use
identity of a security context. The tesacurity tokemefers collectively to the
authorization and auditing tokens.

When default authentication is used, the authorization token carries two pieces of
information:

m principal name—the name of an authenticated user

m application key—a 32-bit value that uniquely identifies the client initiating the
request message. See “Application Key” on page 1-48 for more detail.

In addition, when default authentication is used, the auditing token carries the same
two pieces of informatiorprincipal nameandapplication key

Like the session token, the authentication and auditing tokens are opaque; their
contents are determined by the security provider. The authorization token can be use
for performing authorization (permission) checks. The auditing token can be used fo
recording audit information. In some applications, it is useful to keep separate user
identities for authorization and auditing.

Using BEA Tuxedo Security

Authentication

Replacing Client Tokens with Server Tokens

As shown in the following diagram, there are situations where a client service request
forwarded by a server takes on the identity of the server. The server replaces the client
tokens attached to the request with its own tokens and then forwards the service request
to the destination service.

Figure 1-4 Server Permission Upgrade—Example

Server

Service

Client
I:l tpcall (“TOLOWER?, ...)
— tpecall (“.TMIB", ...) > TMIB
[=1
L\ tpcall (“TRANSFER”, ...)

Service Request Sent With Client’s Authorization and Auditing Tokens

Service Request Sent With Server’s Authorization and Auditing Tokens

The feature demonstrated in the preceding diagram is knosareer permission
upgrade which operates in the following manner: whenever a server adlsarvice

(a system-supplied service having a beginning period in its name—saeh&$, the
service request takes on the identity of the server and thus acquires the access
permissions of the server. A server's access permissions are those of the application
(system) administrator. Thus, certain requests that would be denied if the client called
the dot service directly would be allowed if the client sent the requests to a server, and

Using BEA Tuxedo Security 1-11

1 introducing Security

the server forwarded the requests to the dot service. For more information about do
services, see th&MIB service description on thelB(5) reference page iIBEA
Tuxedo File Formats and Data Descriptions Reference

Implementing Custom Authentication

You can provide authentication for your application by using the default plug-in or a
custom plug-in. You choose a plug-in by configuring the BEA Tuxedistry, a tool
that controls all security plug-ins.

If you want to use the default authentication plug-in, you do not need to configure the
registry. If you want to use a custom authentication plug-in, however, you must
configure the registry for your plug-in before you can install it. For more detail about
the registry, see “Setting the BEA Tuxedo Registry” on page 2-3.

See Also

m “Default Authentication and Authorization” on page 1-44
m “Security Administration Tasks” on page 2-3

m “Administering Authentication” on page 2-9

m “Programming an Application with Security” on page 3-3

m “Writing Security Code So Client Programs Can Join the Application” on page
3-4

Authorization

Authorization allows administrators to control access to BEA Tuxedo applications.
Specifically, an administrator can use authorization to allow or disaltmwipals
(authenticated users) to use resources or facilities in a BEA Tuxedo application.

1-12 Using BEA Tuxedo Security

Authorization

Authorization Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are
connected. As shown in the following diagram, the authorization plug-in interface is
implemented as a fanout.

Figure 1-5 Authorization Plug-in Architecture

Plug-in Interface

Fanout Plug-in

Default Custom Custom
Authorization Authorization oo e Authorization
Plug-in Plug-in Plug-in

The default authorization implementation consists of a fanout plug-in and a default
authorization plug-in. A custom implementation consists of the fanout plug-in, the
default authorization plug-in, and one or more custom authorization plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout
plug-in passes the request to each of the subordinate plug-ins, and receives a response
from each. Finally, the fanout plug-in forms a composite response from the individual
responses, and sends the composite response to the caller.

The purpose of an authorization request is to determine whether a client operation
should be allowed or whether the results of an operation should beria@nged
Each authorization plug-in returns one of three respopsesiit, deny orabstain The
abstainresponse gives writers of authorization plug-ins a graceful way to handle
situations that are not accommodated by the original plug-in, such as names of
operations that are added to the system after the plug-in is installed.

Using BEA Tuxedo Security 1-13

1

Introducing Security

1-14

The authorization fanout plug-in forms a composite response as described in the
following table. For default authorization, the composite response is determined solely
by the default authorization plug-in.

Table 1-2 Authorization Composite Responses

If Plug-ins Return . . . The Composite Response is . . .

All permitor a combination of permit
permitandabstain

At least onadeny deny

All abstain deny
if the SECURITY parameter in the application’s
UBBCONFIJile is set toMANDATORY_ACL

permit
if the SECURITY parameter isot set in the
application’sUBBCONFIJile or is set to any value
other tharMANDATORY_ACL

As an example of custom authorization, consider a banking application in which a use
is identified as a member of tikastomer group, and the following conditions are in
effect:

m The default authorization plug-in allows any user inGhstomer group to
withdraw money from a particular account.

m A custom authorization plug-in allows any user in tuetomer group to
withdraw money from a particular account but only on Monday through Friday
between 9 AM and 5 PM.

m A second custom authorization plug-in allows any user ilCtke®mer group
to withdraw money from a particular account but only if the amount being
withdrawn is less than $10,000.

So, if a user in theustomer group attempts to withdraw $500.00 on Monday at 10
AM, the operation is allowed. If the same user attempts the same withdrawal on
Saturday morning, the operationnist allowed.

Many other custom authorization scenarios are possible. Feel free to improvise; defin
the conditions that best serve the needs of your business.

Using BEA Tuxedo Security

Authorization

How the Authorization Plug-in Works

Authorization decisions are based partly on user identity, which is stored in an
authorization tokenBecause authorization tokens are generated by the authentication
security plug-in, providers of authentication and authorization plug-ins need to ensure
that these plug-ins work together.

A BEA Tuxedo system process or server (such as /Q SEM@UEUE(5)or

EventBroker serveTMUSREVT(5)) calls the authorization plug-in when it receives a
client request. In response, the authorization plug-in performs a pre-operation check
and returns whether the operation should be allowed.

m If allowed, the system carries out the client request.
m If not allowed, the system does not carry out the client request.

If the client operation is allowed, the BEA Tuxedo system process or server may call
the authorization plug-in after the client operation completes. In response, the
authorization plug-in performs a post-operation check and returns whether the results
of the operation are acceptable.

m If acceptable, the system accepts the operation results.

m If not unacceptable, the system either modifies the operation results or rolls back
(reverses) the operation.

These calls are system-level calls, not application-level calls. A BEA Tuxedo
application cannot call the authorization plug-in.

The authorization process is somewhat different for (1) users of the default
authorization plug-in provided by the BEA Tuxedo system and (2) users of one or
more custom authorization plug-ins. The default plug-in does not support
post-operation checks. If the default authorization plug-in receives a post-operation
check request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation checks.

Default Authorization
When default authorization is called by a BEA Tuxedo process to perform a

pre-operation check in response to a client request, the authorization plug-in performs
the following tasks.

Using BEA Tuxedo Security 1-15

1

Introducing Security

1. Getsinformation from the client’s authorization token by calling the authentication
plug-in.
Because the authorization token is created by the authentication plug-in, the
authorization plug-in has no record of the token’s content. This information is
necessary for the authorization process.

2. Performs a pre-operation check.

The authorization plug-in determines whether that operation should be allowed
by examining the client’s authorization token, the BEA Tuxedo access control
list (ACL), and the configured security level (optional or mandatory ACL) of the
application.

3. Issues a decision about whether the operation will be performed.

The authorizatiofianoutplug-in receives a decisiopérmitor deny) from the
default authorization plug-in and operates on its behalf.

¢ |If the decision is to permit the client operation, the fanout plug-in returns
permitto the calling process. The system carries out the client request.

¢ |If the decision is to deny the operation, the fanout plug-in retlengto the
calling process. The system does not carry out the client request.

Custom Authorization

1-16

Users of one or more custom authorization plug-ins may take advantage of additions
functionality offered by the BEA Tuxedo system. Specifically, the custom plug-ins
may perform an additional check after an operation occurs.

When custom authorization is called by a BEA Tuxedo process to perform a
pre-operation check in response to a client request, the authorization plug-in perform
the following tasks.

1. Getsinformation from the client’s authorization token by calling the authentication
plug-in.
2. Performs a pre-operation check.

The authorization plug-in determines whether the operation should be allowed
by examining the operation, the client’s authorization token, and associated data
“Associated data” may include user data and the security level of the application.

Using BEA Tuxedo Security

Authorization

If necessary, in order to satisfy authorization requirements, the authorization
plug-in may modify the user data before the operation is performed.

3. Issues a decision about whether the operation will be performed.

The authorizatiofianoutplug-in makes the ultimate decision by checking the
individual responsegpérmit, deny abstain of its subordinate plug-ins.

e If the fanout plug-in allows the client operation, it retupesmitto the
calling process. The system carries out the client request.

e If the fanout plug-in does not allow the operation, it retutersyto the
calling process. The system does not carry out the client request.

If the client operation is allowed, custom authorization may be called by the BEA
Tuxedo process to perform a post-operation check after the client operation completes.
If so, the authorization plug-in performs the following tasks.

1. Getsinformation from the client’'s authorization token by calling the authentication
plug-in.
2. Performs a post-operation check.

The authorization plug-in determines whether the operation results are
acceptable by examining the operation, the client’s authorization token, and
associated data. “Associated data” may include user data and the security level
of the application.

3. Issues a decision about whether the operation results are acceptable.

The authorizatiofianoutplug-in makes the ultimate decision by checking the
individual responsegpérmit, deny abstain of its subordinate plug-ins.

¢ |If the fanout plug-in decides that the operation results are acceptable, it
returnspermitto the calling process. The system accepts the operation
results.

e If the fanout plug-in does not allow the operation, it retutersyto the
calling process. The system either modifies the operation results or rolls back
(reverses) the operation.

A post-operation check is useful for label-based security models. For example,
suppose that a user is authorized to access CONFIDENTIAL documents but performs
an operation that retrieves a TOP SECRET document. (Often, a document’s

Using BEA Tuxedo Security 1-17

1 introducing Security

classification label is not easily determined uatter the document has been
retrieved.) In this case, the post-operation check is an efficient means to either deny tt
operation or modify the output data by expunging any restricted information.

Implementing Custom Authorization

See Also

You can provide authorization for your application by using the default plug-in or
adding one or more custom plug-ins. You choose a plug-in by configuring the BEA
Tuxedoregistry, a tool that controls all security plug-ins.

If you want to use the default authorization plug-in, you do not need to configure the
registry. If you want to add one or more custom authorization plug-ins, however, yot
must configure the registry for your additional plug-ins before you can install them.

For more detail about the registry, see “Setting the BEA Tuxedo Registry” on page 2-

m “Default Authentication and Authorization” on page 1-44
m “Security Administration Tasks” on page 2-3
m “Administering Authorization” on page 2-34

m “Programming an Application with Security” on page 3-3

Auditing

Auditing provides a means to collect, store, and distribute information about operating
requests and their outcomes. Audit-trail records may be used to determine which
principals performed, or attempted to perform, actions that violated BEA Tuxedo
security. They may also be used to determine which operations were attempted, whic
ones failed, and which ones successfully completed.

How auditing is done (that is, how information is collected, processed, protected, an
distributed) depends on the auditing plug-in.

1-18 Using BEA Tuxedo Security

Auditing

Auditing Plug-in Architecture

A fanout is an umbrella plug-in to which individual plug-in implementations are
connected. As shown in the following diagram, the auditing plug-in interface is
implemented as a fanout.

Figure 1-6 Auditing Plug-in Architecture

Plug-in Interface

Fanout Plug-in

Default Custom Custom
Auditing Auditing e e Auditing
Plug-in Plug-in Plug-in

The default auditing implementation consists of a fanout plug-in and a default auditing
plug-in. A custom implementation consists of the fanout plug-in, the default auditing
plug-in, and one or more custom auditing plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout
plug-in passes the request to each of the subordinate plug-ins, and receives a response
from each. Finally, the fanout plug-in forms a composite response from the individual
responses, and sends the composite response to the caller.

The purpose of an auditing request is to record an event. Each auditing plug-in returns
one of two responsesuccessgthe audit succeeded—Ilogged the evenfaiure (the

audit failed—did not log the event). The auditing fanout plug-in forms a composite
response in the following manner: if all responsesaceessthe composite response

is successotherwise, the composite responstaikire.

For default auditing, the composite response is determined solely by the default
auditing plug-in. For custom auditing, the composite response is determined by the
fanout plug-in after collecting the responses of the subordinate plug-ins. For more
insight into how fanouts work, see “Authorization Plug-in Architecture” on page 1-13.

Using BEA Tuxedo Security 1-19

1

Introducing Security

How the Auditing Plug-in Works

Auditing decisions are based partly on user identity, which is storedadnditing

token Because auditing tokens are generated by the authentication security plug-in,
providers of authentication and auditing plug-ins need to ensure that these plug-ins
work together.

A BEA Tuxedo system process or server (such as /Q SEM@UEUE(5)or

EventBroker serveTMUSREVT(5)) calls the auditing plug-in when it receives a client
request. Because it is called before an operation begins, the auditing plug-in can auc
operation attempts and store data if that data will be needed later for a post-operatio
audit. In response, the auditing plug-in performs a pre-operation audit and returns
whether the audit succeeded.

The BEA Tuxedo system process or server may call the auditing plug-in after the clien
operation is performed. In response, the auditing plug-in performs a post-operation
audit and returns whether the audit succeeded.

In addition, a BEA Tuxedo system process or server may call the auditing plug-in
when a potential security violation occurs. (Suspicion of a security violation arises
when a pre-operation or post-operatirnthorizationcheck fails, or when an attack on
security is detected.) In response, the auditing performs a post-operation audit and
returns whether the audit succeeded.

These calls are system-level calls, not application-level calls. A BEA Tuxedo
application cannot call the auditing plug-in.

The auditing process is somewhat different for (1) users of the default auditing plug-ir
provided by the BEA Tuxedo system and (2) users of one or more custom auditing
plug-ins. The default plug-in does not support pre-operation audits. If the default
auditing plug-in receives a pre-operation audit request, it returns immediately and doe
nothing.

The custom plug-ins support both pre-operation and post-operation audits.

Default Auditing

1-20

The default auditing implementation consists of the BEA Tuxedo EventBroker
component and userlogl(OG. These utilities report only security violations; they do
not report which operations were attempted, which ones failed, and which ones
successfully completed.

Using BEA Tuxedo Security

Auditing

When default auditing is called by a BEA Tuxedo process to perform a post-operation

audit when a security violation is suspected, the auditing plug-in performs the

following tasks.

1. Gets information from the client’s auditing token by calling the authentication
plug-in.

Because the auditing token is created by the authentication plug-in, the auditing
plug-in has no record of the token’s content. This information is necessary for
the auditing process.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token and the security
violation delivered in the post-operation audit request.

3. lIssues a decision about whether the post-operation audit succeeded.

The auditinganoutplug-in receives a decisioaucces®r failure) from the
default auditing plug-in and operates on its behalf.

e |If the decision isuccessthe post-operation audit succeeded. The auditing
fanout plug-in returnsuccesso the calling process and logs the security
violation.

e |If the decision idailure, the post-operation audit failed. The auditing fanout
returnsfailure to the calling process.

Custom Auditing

Users of one or more custom auditing plug-ins may take advantage of additional
functionality offered by the BEA Tuxedo system. Specifically, the custom plug-ins
may perform an additional audit before an operation occurs.

When custom auditing is called by a BEA Tuxedo process to perform a pre-operation
audit in response to a client request, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication
plug-in.
2. Performs a pre-operation audit.

The auditing plug-in examines the client’s auditing token and may store user
data if that data will be needed later for a post-operation audit.

Using BEA Tuxedo Security 1-21

1 introducing Security

3. lIssues a decision about whether the pre-operation audit succeeded.

The auditingfanoutplug-in makes the ultimate decision by checking the
individual responses(cces®r failure) from its subordinate plug-ins.

e If the composite decision miccessthe pre-operation audit succeeded. The
auditing fanout plug-in returrsuccesso the calling process and logs the
client’s attempt to perform the operation.

¢ If the composite decision failure, the pre-operation audit failed. The
auditing fanout returnfailure to the calling process.

Custom auditing may be called by the BEA Tuxedo process to perform a
post-operation audit after the client operation is performed. If so, the auditing plug-in
performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication
plug-in.

2. Performs a post-operation audit.
The auditing plug-in examines the client’s auditing token, the completion status

delivered in the post-operation audit request, and any data stored during the
pre-operation audit.

3. lIssues a decision about whether the post-operation audit succeeded.

The auditingfanoutplug-in decides if the post-operation audit succeeded or
failed by checking the individual responsesdces®r failure) from its
subordinate plug-ins.

¢ |If the composite decision miccessthe post-operation audit succeeded. The
auditing fanout plug-in returrsuccesgo the calling process and logs the
completion status of the operation.

¢ |If the composite decision failure, the post-operation audit failed. The
auditing fanout returnfailure to the calling process.

An operation is considered successful if it passes both pre- and post-operation audit
and the operation itself is successful. Some companies collect and store both pre- a
post-operation auditing data, even though such data can occupy a lot of disk space.

1-22 Using BEA Tuxedo Security

Link-Level Encryption

Implementing Custom Auditing

You can provide auditing for your application by using the default plug-in or adding
one or more custom plug-ins. You choose a plug-in by configuring the BEA Tuxedo
registry, a tool that controls all security plug-ins.

If you want to use the default auditing plug-in, you do not need to configure the
registry. If you want to add one or more custom auditing plug-ins, however, you must
configure the registry for your additional plug-ins before you can install them. For
more detail about the registry, see “Setting the BEA Tuxedo Registry” on page 2-3.

Link-Level Encryption

Link-level encryption (LLE) establishes data privacy for messages moving over the
network links that connect the machines in a BEA Tuxedo application. It employs the
symmetric key encryption technique (specifically, RC4), which uses the same key for
encryption and decryption.

When LLE is being used, the BEA Tuxedo system encrypts data before sending it over
a network link and decrypts it as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For this
reason, LLE is referred to as a point-to-point facility.

LLE can be used on the following types of BEA Tuxedo links:
m Workstation client to Workstation Handler (WSH)

m Bridge to Bridge

m Administrative utility (such asnboot ortmshutdown) to tlisten
m Domain gateway to domain gateway

There are three levels of LLE security: 0-bit (no encryption), 56-bit (International), and
128-bit (United States and Canada). The International LLE version allows 0-bit and
56-bit encryption. The United States and Canada LLE version allows 0, 56, and 128-bit
encryption.

Using BEA Tuxedo Security 1-23

1

Introducing Security

How LLE Works

LLE control parameters and underlying communication protocols are different for
various link types, but the setup is basically the same in all cases:

m An initiator process begins the communication session.
m A targetprocess receives the initial connection.

m Both processes are aware of the link-level encryption feature, and have two
configuration parameters.

The first configuration parameter is thenimumencryption level that a process
will accept. It is expressed as a key length: 0, 56, or 128 bits.

The second configuration parameter isteximumencryption level a process
can support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denotediasrfax) in the discussion that
follows. For example, the values “(56, 128)” for a process mean that the process
accepts at least 56-bit encryption but can support up to 128-bit encryption.

Encryption Key Size Negotiation

When two processes at the opposite ends of a network link need to communicate, the
must first agree on the size of the key to be used for encryption. This agreement is
resolved through a two-step process of negotiation.

1. Each process identifies its owrin-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values

1-24

When either of the two processes starts up, the local BEA Tuxedo software (1) check
the bit-encryption capability of the installed LLE version by checking the LLE
licensing information in théc.txt file and (2) checks the LLkin-maxvalues for

the particular link type as specified in the two configuration files. The local software
then proceeds as follows:

Using BEA Tuxedo Security

Link-Level Encryption

m |If the configuredmin-max values accommodate the installed LLE version, then
the local software assigns those values agithemaxvalues for the process.

m |If the configuredmin-max values danot accommodate the installed LLE version,
for example, if the International LLE version is installed but the configured
min-maxvalues are (0, 128), then the local software issues a run-time error;
link-level encryption iot possible at this point.

m If there are nonin-max values specified in the configurations for a particular
link type, then the local software assigns 0 as the minimum value and assigns the
highest bit-encryption rate possible for the installed LLE versions as the
maximum value, that is, (0, 128) for the United States and Canada LLE version.

Finding a Common Key Size

After themin-maxvalues are determined for the two processes, the negotiation of key
size begins. The negotiation process need not be encrypted or hidden. Once a key size
is agreed upon, it remains in effect for the lifetime of the network connection.

The following table shows which key size, if any, is agreed upon by two processes
when all possible combinations ofin-maxvalues are negotiated. The header row
holds themin-maxvalues for one process; the far left column holdsithemaxvalues

for the other.

Table 1-3 Inter-process Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56,128) (128, 128)
(0, 0) 0 0 0 ERROR ERROR ERROR
(0, 56) 0 56 56 56 56 ERROR
(0, 128) 0 56 128 56 128 128
(56, 56) ERROR 56 56 56 56 ERROR
(56, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

Using BEA Tuxedo Security 1-25

1 introducing Security

Backward Compatibility of LLE

The BEA Tuxedo system offers some backward compatibility for LLE.

Interoperating with Release 6.5 BEA Tuxedo Software

The following table shows which key size, if any, is agreed upon by two BEA Tuxedo
processes when one of them is running under Release 6.5 and the other under Rele.
7.1 or later. The header row holds th&a-max values for the process running under
Release 7.1 or later; the far left column holdsrtire-max values for the process

running under Release 6.5.

Table 1-4 Negotiation Results When Interoperating with Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56,128) (128, 128)
(0, 0) 0 0 0 ERROR ERROR ERROR
(0, 40) 0 56 56 56 56 ERROR
(0, 128) 0 56 128 56 128 128
(40, 40) ERROR 56 56 56 56 ERROR
(40, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

If your current BEA Tuxedo installation is configured for (0, 56), (0, 128), (56, 56), or
(56, 128), and you want to interoperate with a Release 6.5 BEA Tuxedo system that i
configured for a maximum LLE level of 40 bits, then any negotiation results in an
automatic upgrade to 56.

The negotiation result in this case is the same as the negotiation result for two sites
running Release 6.5 and configured for a maximum LLE level of 40 bits. In both
scenarios, the negotiation results in an automatic upgrade to 56.

1-26 Using BEA Tuxedo Security

Link-Level Encryption

Interoperating with Pre-Release 6.5 BEA Tuxedo Software

The following table shows which key size, if any, is agreed upon by two BEA Tuxedo
processes when one of them is running under pre-Release 6.5 and the other under
Release 7.1 or later. The header row holdsithhemax values for the process running

under Release 7.1 or later; the far left column hold#themaxvalues for the process
running under pre-Release 6.5.

Table 1-5 Negotiation Results When Interoperating with Pre-Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56,128) (128, 128)
(0, 0) 0 0 0 ERROR ERROR ERROR
(0, 40) 0 40 40 ERROR ERROR ERROR
(0, 128) 0 40 128 ERROR 128 128
(40, 40) ERROR 40 40 ERROR ERROR ERROR
(40, 128) ERROR 40 128 ERROR 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

If your current BEA Tuxedo installation is configured for (0, 56) or (0, 128), and you
want to interoperate with a pre-Release 6.5 BEA Tuxedo system that is configured for
a maximum LLE level of 40 bits, then the result of any negotiation is 40.

If your current BEA Tuxedo installation is configured for (56, 56), (56, 128), or
(128, 128), then your systetannotinteroperate with a pre-Release 6.5 BEA Tuxedo

system that is configured for a maximum LLE level of 40 bits. Attempts to negotiate a
common key size fail.

WSL/WSH Connection Timeout During Initialization

The length of time a Workstation client can take for initialization is limited. By default,
this interval is 30 seconds in an application not using LLE, and 60 seconds in an
application using LLE. The 60-second interval includes the time needed to negotiate
an encrypted link. This time limit can be changed when LLE is configured by changing

Using BEA Tuxedo Security 1-27

1

Introducing Security

the value of theMAXINITTIME parameter for the Workstation Listener (WSL) server
in the UBBCONFIdile, or the value of th&A_MAXINITTIME attribute in ther_ WsL
class of thevs_MIB(5) .

LLE Installation and Licensing

1-28

As part of the BEA Tuxedo system, LLE software is delivered on the BEA Tuxedo
CD-ROM. If you have a BEA Tuxedo Release 7.1 license to use LLE in the United
States and Canada, you can use 56-bit or 128-bit encryption. If you have a license t
use LLE on a BEA Tuxedo system outside the United States and Canada, you can u
56-bit encryption.

All BEA Tuxedo licenses are stored in thBUXDIR/udataobj/lic.txt file on a
UNIX host machine, or in thTUXDIR%\udataobj\lic.txt file on a Windows NT
host machine.

The following listing is an excerpt from a sample license file for running LLE in the
United States and Canada.

[BEA Tuxedo]

VERSION=7.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

EXPIRATION=2000-01-31

SIGNATURE=TXmtx+AhQdJgr3sjjznBqRB7SP9Jgr3UzAKctjz+e6RmsFSAhUASH]
znBQdL9n=

[LINK ENCRYPTION]

VERSION=7.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

STRENGTH=128

EXPIRATION=2000-01-31

SIGNATURE=TXUAhSPnx2C9kMCOCFG+e6Rgr3UzmsFKRBPdJASAhU7KctjznBqFQsj
jznBdhOh=

Using BEA Tuxedo Security

Public Key Security

See Also

m “Security Administration Tasks” on page 2-3
m “Administering Link-Level Encryption” on page 2-35

m “Distributing Applications Across a Network” on page 6-1 and “Creating the
Configuration File for a Distributed Application” on page 7-Sktting Up a
BEA Tuxedo Application

Public Key Security

Public key security provides two capabilities that make end-to-end digital signing and
data encryption possible:

m Message-based digital signature
m Message-based encryption

Message-based digital signature allows the recipient (or recipients) of a message to
identify and authenticate both the sender and the sent message. Digital signature
provides solid proof of the originator and content of a message; a sender cannot falsely
repudiate responsibility for a message to which that sender’s digital signature is
attached. Thus, for example, Bob cannot issue a request for a withdrawal from his bank
account and later claim that someone else issued that request.

In addition, message-based encryption protects the confidentiality of messages by
ensuring that only designated recipients can decrypt and read them.

PKCS-7 Compliant

Informal but recognized industry standards for public key software have been issued
by a group of leading communications companies, led by RSA Laboratories. These
standards are called “Public-Key Cryptography Standards,” or PKCS. BEA Tuxedo
public key software complies with the PKCS-7 standard.

Using BEA Tuxedo Security 1-29

1

Introducing Security

PKCS-7 is ahybrid cryptosysterarchitecture. Assymmetric key algorithwith a
randomsession keig used to encrypt a message, apdlalic key algorithnis used to
encrypt the random session key. A random number generator creates a new session |
for each communication, which makes it difficult for a would-be attacker to reuse
previous communications.

Supported Algorithms for Public Key Security

All the algorithms on which public key security is based are well known and
commercially available. To select the algorithms that will best serve your application,
consider the following factors: speed, degree of security, and licensing restrictions (fo
example, the United States government restricts the algorithms that it allows to be
exported to other countries).

Public Key Algorithms

BEA Tuxedo public key security supports any public key algorithms supported by the
underlying plug-ins, including RSA, ElGamal, and Rabin. (RSA stands for Rivest,
Shamir, and Adelman, the inventors of the RSA algorithm.) All these algorithms can
be used for digital signatures and encryption.

Public key (orasymmetric kéyalgorithms such as RSA are implemented through a
pair of different but mathematically related keys:

m A public key (which is distributed widely) for verifying a digital signature or
transforming data into a seemingly unintelligible form.

m A private key (which is always kept secret) for creating a digital signature or
returning the data to its original form.

Digital Signature Algorithms

1-30

BEA Tuxedo public key security supports any digital signature algorithms supported
by the underlying plug-ins, including RSA, ElGamal, Rabin, and Digital Signature
Algorithm (DSA). With the exception of DSA, all these algorithms can be used for
digital signatures and encryption. DSA can be used for digital signatures but not for
encryption.

Using BEA Tuxedo Security

Public Key Security

Digital signature algorithms are simply public key algorithms used to provide digital
signatures. DSA is also a public key algorithm (implemented through public-private
key pairs), but it can only be used to provide digital signatures, not encryption.

Symmetric Key Algorithms

Public key security supports the following three symmetric key algorithms:

m DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-bit keys (8 parity bits are stripped from the full 64-bit key) and is
exportable outside the United States.

m Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit
key) and isnot exportable outside the United States.

For some time it has been common practice to protect and transport a key for
DES encryption with triple-DES, which means that the input data (in this case
the single-DES key) is encrypted, decrypted, and then encrypted again (an
encrypt-decrypt-encrypt process). The same key is used for the two encryption
operations.

m RC2 (Rivest's Cipher 2)

RC2 is a variable key-size block cipher with a key size range of 40 to 128 bits. It
is faster than DES and is exportable with a key size of 40 bits. A 56-bit key size
is allowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC2 can be used with keys of virtually
unlimited length, although BEA Tuxedo public key security restricts the key
length to 128 bits.

BEA Tuxedo customers cannot expand or modify this list of algorithms.

In symmetric key algorithms, the same key is used to encrypt and decrypt a message.
The public key encryption system uses symmetric key encryption to encrypt a message
sent between two communicating entities. Symmetric key encryption operates at least
1000 times faster than public key cryptography.

Using BEA Tuxedo Security 1-31

1

Introducing Security

A block cipher is a type of symmetric key algorithm that transforms a fixed-length
block of plaintext(unencrypted text) data into a blockayphertext(encrypted text)

data of the same length. This transformation takes place in accordance with the valt
of a randomly generated session key. The fixed length is called the block size.

Message Digest Algorithms

Public key security supports any message digest algorithms supported by the
underlying plug-ins, including MD5, SHA-1 (Secure Hash Algorithm 1), and many
others. Both MD5 and SHA-1 are well known, one-way hash algorithms. A one-way
hash algorithm takes a message and converts it into a fixed string of digits, which is
referred to as emessage digest hash value

MDS5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1
offers more security by using a 160-bit hash, but is slower than MD5.

Public Key Installation and Licensing

1-32

As part of the BEA Tuxedo system, the software for message-based digital signatur
and message-based encryption is delivered on the BEA Tuxedo CD-ROM, but cannc
be used without a separate license. All BEA Tuxedo licenses are in the
$TUXDIR/udataobj/lic.txt file on a UNIX host machine, or in the
%TUXDIRY\udataobij\lic.txt file on a Windows NT host machine.

The following listing is an excerpt from a sample license file for message-based digita
signature and message-based encryption.

[BEA Tuxedo]

VERSION=7.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

EXPIRATION=2000-01-31

SIGNATURE=TXmtx+AhQdJgr3sjjznBqRB7SP9Jgr3UzAKctjz+e6RmsFSAhUASH]
znBQdL9n=

[PK ENCRYPTION]
VERSION=7.1

Using BEA Tuxedo Security

Public Key Security

See Also

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

STRENGTH=128

EXPIRATION=2000-01-31

SIGNATURE=TX0CFHkaBpKpAIXGEtQqi+/jJvMo1VBIAhUAUAKizwsgYefRWQJIDNTF
0205b1ik=

[PK SIGNATURE]

VERSION=7.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

STRENGTH=128

EXPIRATION=2000-01-31

SIGNATURE=TXO0CIqA5FCAXJFXUEGVAKi+gL+i09eRep9hYdshS/8a70MIJQChUAKY
zIAhUIH4=

m “Message-based Digital Signature” on page 1-34

m “Message-based Encryption” on page 1-39

m “Public Key Implementation” on page 1-41

m “Security Administration Tasks” on page 2-3

m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Using BEA Tuxedo Security 1-33

1

Introducing Security

Message-based Digital Signature

1-34

Message-based digital signatures enhance BEA Tuxedo security by allowing a
message originator to prove its identity, and by binding that proof to a specific messag
buffer. Mutually authenticated and tamper-proof communication is considered
essential for most applications that transport data over the Internet, either between
companies or between a company and the general public. It also is critical for
applications deployed over insecure internal networks.

The scope of protection for a message-based digital signature is end-to-end: a messe
buffer is protected from the time it leaves the originating process until the time it is
received at the destination process. It is protected at all intermediate transit points,
including temporary message queues, disk-based queues, and system processes, ¢
during transmission over inter-server network links.

The following figure shows how end-to-end message-based digital signature works.

Using BEA Tuxedo Security

Message-based Digital Signature

Figure 1-7 BEA Tuxedo PKCS-7 End-to-End Digital Signing

tpsign()
From Signer To Recipient
— — ~ — T
Clear Data Buffer - ~ < . . ~ Clear Data
Public Key Security
/ \
/ o . N
1 _ Digital Signature Algorithm No
- | Discard<«—o p N\
4 - <G> T \
/ ! \
/ : » Store
| i (. |
Compare /
\ .

Signer's Signer’s \
/ Private Key : Public Key

l . Digest

\ Signer’s Assigned Public Key Pair /

~ | /
Message Digest Algorithm —~ —

Message-based digital signature involves generating a digital signature by computing
a message digest on the message, and then encrypting the message digest with the
sender’s private key. The recipient verifies the signature by decrypting the encrypted
message digest with the signer’s public key, and then comparing the recovered
message digest to an independently computed message digest. The signer’s public key
either is contained in @igital certificateincluded in the signer information, or is
referenced by an issuer-distinguished name and issuer-specific serial number that
uniquely identify the certificate for the public key.

Using BEA Tuxedo Security 1-35

1 introducing Security

Digital Certificates

Digital certificates are electronic files used to uniquely identify individuals and
resources over networks such as the Internet. A digital certificate securely binds the
identity of an individual or resource, as verified by a trusted third party known as a
Certification Authority to a particular public key. Because no two public keys are ever
identical, a public key can be used to identify its owner.

Digital certificates allow verification of the claim that a specific public key does in fact
belong to a specific subscriber. A recipient of a certificate can use the public key listet
in the certificate to verify that the digital signature was created with the corresponding
private key. If such verification is successful, this chain of reasoning provides
assurance that the corresponding private key is held by the subscriber named in the
certificate, and that the digital signature was created by that particular subscriber.

A certificate typically includes a variety of information, such as:

m The name of the subscriber (holder, owner) and other identification information
required to uniquely identify the subscriber, such as the URL of the Web server
using the certificate, or an individual’'s email address

m The subscriber’s public key
m The name of the Certification Authority that issued the certificate
m A serial number

m The validity period (or lifetime) of the certificate (defined by a start date and an
end date)

The most widely accepted format for certificates is defined by the ITU-T X.509
international standard. Thus, certificates can be read or written by any application
complying with X.509. BEA Tuxedo public key security recognizes certificates that
comply with X.509 Version 3, or X.509v3.

Certification Authority

Certificates are issued by a Certification Authority, or CA. Any trusted third-party
organization or company that is willing to vouch for the identities of those to whom it
issues certificates and public keys can be a CA. When it creates a certificate, the C/

1-36 Using BEA Tuxedo Security

Message-based Digital Signature

signs the certificate with its private key, to obtain a digital signature. The certification
authority then returns the certificate with the signature to the subscriber; these two
parts—the certificate and the CA’s signature—together form a valid certificate.

The subscriber and others can verify the issuing CA’s digital signature by using the
CA’s public key. The CA makes its public key readily available by publicizing that key
or by providing a certificate from a higher-level CA attesting to the validity of the
lower-level CA’s public key. The second solution gives rise to hierarchies of CAs.

The recipient of an encrypted message can develop trust in the CA’s private key
recursively if the recipient has a certificate containing the CA’s public key signed by

a superior CA whom the recipient already trusts. In this sense, a certificate is a stepping
stone in digital trust. Ultimately, it is necessary to trust only the public keys of a small
number of top-level CAs. Through a chain of certificates, trust in a large number of
users’ signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a
signature can be trusted only to the extent that the public key for verifying the signature
can be trusted.

Note that BEA Systems has no plans to become a CA. By offering a public key plug-in
interface, BEA Systems extends the opportunity to all BEA Tuxedo customers to
select a CA of their choice.

Certificate Repositories

To make a public key and its identification with a specific subscriber readily available
for use in verification, the digital certificate may be published in a repository or made
available by other means. Repositories are databases of certificates and other
information available for retrieval and use in verifying digital signatures. Retrieval can
be accomplished automatically by having the verification program directly request
certificates from the repository as needed.

Public-Key Infrastructure

The Public-Key Infrastructure (PKI) consists of protocols, services, and standards
supporting applications of public key cryptography. Because the technology is still
relatively new, the term PKI is somewhat loosely defined: sometimes “PKI” simply

Using BEA Tuxedo Security 1-37

1

Introducing Security

1-38

refers to a trust hierarchy based on public key certificates; in other contexts, it
embraces digital signature and encryption services provided to end-user application
as well.

There is no single standard public key infrastructure today, though efforts are
underway to define one. It is not yet clear whether a standard will be established or
multiple independent PKIs will evolve with varying degrees of interoperability. In this
sense, the state of PKI technology today can be viewed as similar to local and
wide-area network technology in the 1980s, before there was widespread connectivit
via the Internet.

The following services are likely to be found in a PKI:

m Key registration: for issuing a new certificate for a public key

m Certificate revocation: for canceling a previously issued certificate
m Key selection: for obtaining a party’s public key

m Trust evaluation: for determining whether a certificate is valid and which
operations it authorizes

The following diagram shows the PKI process flow.

Figure 1-8 PKI Process Flow

Certification - . .
Authority 3 Repository
Subscriber (4) > Recipient

Subscriber applies to Certification Authority (CA) for digital certificate.
CA verifies identity of subscriber and issues digital certificate.

CA publishes certificate to repository.

P W d PR

Subscriber digitally signs electronic message with private key to ensure sender
authenticity, message integrity, and non-repudiation, and then sends message to
recipient.

Using BEA Tuxedo Security

Message-based Encryption

5. Recipient receives message, verifies digital signature with subscriber’s public
key, and goes to repository to check status and validity of subscriber’s certificate.

6. Repository returns results of status check on subscriber’s certificate to recipient.

Note that BEA Systems has no plans to become a PKI vendor. By offering a public key
plug-in interface, BEA Systems extends the opportunity to all BEA Tuxedo customers
to use a PKI security solution with the PKI software from their vendor of choice.

See Also

m “Public Key Implementation” on page 1-41

m “Security Administration Tasks” on page 2-3

m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Message-based Encryption

Message-based encryption keeps data private, which is essential for most applications
that transport data over the Internet, whether between companies or between a
company and its customers. Data privacy is also critical for applications deployed over
insecure internal networks.

Message-based encryption also helps ensure message integrity, because it is more
difficult for an attacker to modify a message when the content is obscured.

The scope of protection provided by message-based encryption is end-to-end: a
message buffer is protected from the time it leaves the originating process until the
time it is received at the destination process. It is protected at all intermediate transit
points, including temporary message queues, disk-based queues, and system
processes, and during transmission over inter-server network links.

Using BEA Tuxedo Security 1-39

1 introducing Security

The following figure shows how end-to-end message-based encryption works.

Figure 1-9 BEA Tuxedo PKCS-7 End-to-End Encryption

tpseal()
From Sender To Recipient
Clear Data —»| Buffer T T~) LT T T Buffer |—> Clear Data
Public Key Security ‘
/ \ -
7 Symmetric Key Algorithm S
/ g | \
\

Public Key Algorithm

(
| ! : /
\ \ 4’@@ | | ’E@i <

// 4>| EncTrypt DecTrypt }7 \
(' \

Session Recipients ' Recipient’s |

| Key Public Key + Private Key)
\ !
N : /
~ _ /
— \ Recipient’s Assigned Public Key Pair -
\ - o~ /
- - N J
N 7
— — —

The message is encrypted by a symmetric key algorithm and a session key. Then, tl
session key is encrypted by the recipient’s public key. Next, the recipient decrypts th
encrypted session key with the recipient’s private key. Finally, the recipient decrypts
the encrypted message with the session key to obtain the message content.

Note: The figure does not show two other steps in this process: (1) the data is
compressed immediately before the message is encrypted; and (2) the data
uncompressed immediately after the message is decrypted.

1-40 Using BEA Tuxedo Security

Public Key Implementation

Because the unit of encryption is a BEA Tuxedo message buffer, message-based
encryption is compatible with all existing BEA Tuxedo programming interfaces and
communication paradigms. The encryption process is always the same, whether it is
being performed on messages shipped between two processes in a single machine, or
on messages sent between two machines through a network.

See Also

m “Public Key Implementation” on page 1-41

m “Security Administration Tasks” on page 2-3

m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Public Key Implementation

The underlying plug-in interface for public key security consists of six component
interfaces, each of which requires one or more plug-ins. By instantiating these
interfaces with your preferred plug-ins, you can bring custom message-based digital
sighature and message-based encryption to your applications.

The six component interfaces are:
m Public key initialization

m Key management

m Certificate lookup

m Certificate parsing

m Certificate validation

m Proof material mapping

Using BEA Tuxedo Security 1-41

1 introducing Security

Public Key Initialization

The public key initialization interface allows public key software to open public and
private keys. For example, gateway processes may need to have access to a specif
private key in order to decrypt messages before routing them. This interface is
implemented as fanout

Key Management

The key management interface allows public key software to manage and use publi
and private keys. Note that message digests and session keys are encrypted and
decrypted using this interface, but no bulk data encryption is performed using public
key cryptography. Bulk data encryption is performed using symmetric key

cryptography.

Certificate Lookup

The certificate lookup interface allows public key software to retrieve X.509v3
certificates for a giveprincipal. Principals are authenticated users. The certificate
database may be stored using any appropriate tool, such as Lightweight Directory
Access Protocol (LDAP), Microsoft Active Directory, Netware Directory Service
(NDS), or local files.

Certificate Parsing

The certificate parsing interface allows public key software to associate a simple
principal name with an X.509v3 certificate. The parser analyzes a certificate to
generate a principal name to be associated with the certificate.

1-42 Using BEA Tuxedo Security

Public Key Implementation

Certificate Validation

The certificate validation interface allows public key software to validate an X.509v3
certificate in accordance with specific business logic. This interface is implemented as
afanout which allows BEA Tuxedo customers to use their own business rules to
determine the validity of a certificate.

Proof Material Mapping

The proof material mapping interface allows public key software to access the proof
materials needed to open keys, provide authorization tokens, and provide auditing
tokens.

Implementing Custom Public Key Security

You can provide public key security for your application by wsing custom plug-ins.
You choose a plug-in by configuring the BEA Tuxedoregistry, atool that controls
all security plug-ins.

If you want to use custom public key plug-ins, you must configure the registry for
your public key plug-ins before you can install them. For more detail about the
registry, see“ Setting the BEA Tuxedo Registry” on page 2-3.

Default Public Key Implementation

The default public key implementation supports the following algorithms:
m Public key algorithms: RSA
m Digital signature algorithms: RSA and DSA

m Symmetric key algorithms:
¢ DES-CBC

Using BEA Tuxedo Security 1-43

1 introducing Security

e Two-key triple-DES
e RC2

m Message digest algorithms:
e MD5
¢ SHA-1

See Also

m “Public Key Security” on page 1-29

m “Security Administration Tasks” on page 2-3

m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Default Authentication and Authorization

The default authentication and authorization plug-ins provided by the BEA Tuxedo
system work in the same manner that the BEA Tuxedo implementations of
authentication and authorization have worked since they were first made available
with the BEA Tuxedo system.

An application administrator can use the default authentication and authorization
plug-ins to configure an application with one of five levels of security. The five levels
are:

m No authentication
m Application password security

m User-level authentication

1-44 Using BEA Tuxedo Security

Default Authentication and Authorization

m Optional access control list (ACL) security
m Mandatory ACL security

At the lowest level, no authentication is provided. At the highest level, an access
control checking feature determines which users can execute a service, post an event,
or enqueue (or dequeue) a message on an application queue. The security levels are
briefly described in the following table.

Table 1-6 Security Levels for Default Authentication and Authorization

Security Level Description

No authentication Clients do not have to be verified before joining the application.

When joining an application at this security level, a user has
access to all application resources.

Application password The application administrator defines a single password for the
entire application, and clients must provide the password to join
the application.

When successfully joining an application at this security level,
a user has access to all application resources.

User-level authentication In addition to the application password, each client must
provide a valid user name and user-specific data, such as a
password, to join the application.

When successfully joining an application at this security level,
a user has access to all application resources.

Optional ACL security Clients must provide the application password, a user name,
and user-specific data such as a password.

For a user who successfully joins an application at this security
level, access to application resources is restricted in the
following way. The ACL database contains a list of application
resources and, for each resource, a list of users with permission
to use it. A user who isotincluded in the list for a particular
resource isiot allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If there is no entry in the ACL database for a resource and the
security level for the application is set to optional ACL security,
all usersare permitted to access the resource.

Using BEA Tuxedo Security 1-45

1 introducing Security

Table 1-6 Security Levels for Default Authentication and Authorization

Security Level Description

Mandatory ACL security Clients must provide the application password, a user name,
and user-specific data such as a password.

For a user who successfully joins an application at this security
level, access to application resources is restricted in the
following way. The ACL database contains a list of application
resources and, for each resource, a list of users with permission
to use it. A user who isotincluded in the list for a particular
resource isi0t allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If there is no entry in the ACL database for a resource and the
security level for the application is set to mandatory ACL
security, users aneot permitted to access the resource.

Note: The ternclientis synonymous withlient processmeaning a specific instance
of a client program in execution. A BEA Tuxedo client program can exist in
active memory in any number of individual instances.

An application administrator can designate a security level by settirBF¢eRITY
parameter in theBBCONFIGonfiguration file to the appropriate value.

For this security level Set SECURITY parameterto . . .
No authentication NONE

Application password security APP_PW

User-level authentication USER_AUTH

Optional ACL security ACL

Mandatory ACL security MANDATORY_ACL

The default iSNONE If SECURITYis set tdUSER_AUTHACL, or MANDATORY_AGthen
the application administrator must configure a system-supplied authentication serve
namedAUTHSVRAUTHSVRoerforms per-user authentication.

1-46 Using BEA Tuxedo Security

Default Authentication and Authorization

An application developer can replaggTHSVRwith an authentication server that has
logic specific to the application. For example, a company may want to develop a
custom authentication server so that it can use the popular Kerberos mechanism for
authentication.

Client Naming

Upon joining an application, a client process has two names: a combined user-client
name and a unique client identifier known aspplication key

m The user-client name consists afiser namend aclient nameand is used for
security, administration, and communications.

m The application key is a 32-bit value that is called on behalf of the client and
used by the access control checking feature.

Two client names are reserved for special semampggadm andtpsysop .
tpsysadm is treated as the BEA Tuxedo application administratort@sydop is
treated as the BEA Tuxedo application operator.

User-Client Names

When an authenticated client joins an application, it passes a user name and client
name tapinit(3c) in aTPINIT buffer if the application is written in C, or to
TPINITIALIZE(3chl) in aTPINFDEF-REC record if the application is written in

COBOL. The user name and client name, as well as other security-related fields in the
TPINIT buffer/ TPINFDEF-REC record, are described in the following table.

Table 1-7 Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record
TPINIT TPINFDEF-REC Description

usrname USRNAME A user name consisting of a string of up to 30
characters. Required for security leUSER_AUTH
ACL orMANDATORY_ACThe user name represents
the caller.

* The binary equivalent of théBBCONFIile.
** Usually a user password.

Using BEA Tuxedo Security 1-47

1

Introducing Security

Table 1-7 Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record
TPINIT TPINFDEF-REC Description

cltname CLTNAME A client name consisting of a string of up to 30
characters. Required for security leUSER_AUTH
ACL, or MANDATORY_ACT[he client name
represents the client program.

passwd PASSWD Application password. Required for security level
APP_PWUSER_AUTHACL, or MANDATORY_ACL
tpinit() or TPINITIALIZE() validates this
password by comparing it to the configured
application password stored in theXCONFIGile.*

datalen DATALEN Length of the user-specific data** that follows.

data N/A User-specific data.** Required for security level
USER_AUTHACL, or MANDATORY_ACL
tpinit() or TPINITIALIZE() forwards the
user-specific data to the authentication server for
validation. The authentication serve ASTHSVR

* The binary equivalent of tHeBBCONFIile.
* Usually a user password.

For an authenticated security leveBER_AUTHACL, or MANDATORY_A(Lthe user
name, client name, and user-specific data are transferradrtasVRwithout
interpretation by the BEA Tuxedo system. The only manipulation of this information
is its encryption when transmitted over the network from a Workstation client.

Application Key

1-48

Every time a client joins an application, it is assigned a 32-bit application key by the
BEA Tuxedo system. The client cannot reset the key other than by terminating its
association and joining the application as a different user.

The assigned application key is the client’s security credential. The client provides it:
application key with every service invocation as part oftr&/CINFOstructure in the
appkey field. (Seepservice(3c) in BEA Tuxedo C Function Refererfoe more
information abouTPSVCINFQ)

Using BEA Tuxedo Security

Default Authentication and Authorization

The following table shows how the application key is set for various security levels and
clients. All application key assignments are hardcoded except the last item in the table.

Table 1-8 Application Key Assignments

At this security level

Messages of this type Are assigned the following
application key

Any security level

Messages from native BEA 0x80000000
Tuxedo-provided clients that must be rur{(application key of the administrator)
by the administrator (likemadmin(1))

NONBor APP_PW

Messages from native clients that call 0x80000000

tpinit() [/ TPINITIALIZE() witha (application key of the administrator)
client name ofpsysadm and are run by

the administrator

Messages from native clients that call 0xC0000000

tpinit() / TPINITIALIZE() witha (application key of the operator)
client name ofpsysop and are run by

the administrator

Messages from any client other than -1
tpsysadm or tpsysop

USER_AUTHACL, or
MANDATORY_ACL

Messages from native clients that call 0x80000000

tpinit() [/ TPINITIALIZE() witha (application key of the administrator)
client name ofpsysadm and are run by

the administrator anlypass

authentication

Messages fromauthenticatedtlients that 0x80000000
call tpinit() / TPINITIALIZE() (application key of the administrator)
with a client name dfpsysadm

Messages fromauthenticatedtlients that 0xC0000000
call tpinit() / TPINITIALIZE() (application key of the operator)
with a client name dfpsysop

Messages fromauthenticatedtlients that application key =useridentifier

call tpinit() / TPINITIALIZE() (UID) in the lower 17 bits angroup

with a client name other thapsysadm identifier (GID) in the next higher

or tpsysop 14 bits; remaining upper bit is 0.
AUTHSVReturns this application key
value.

Using BEA Tuxedo Security 1-49

1

Introducing Security

In addition, any message that originates fitpserinit(3c) ortpsvrdone(3c) in

a C programTPSVRINIT(3cbl) or TPSVRDONE(3cbl) in COBOL) is assigned the
application key of the administrator: 0x80000000. The application key of the client is
assigned to messages that pass through a server but originate at a client; an except
to this rule is described in “Replacing Client Tokens with Server Tokens” on page
1-11.

A user identifier (UID) is an integer, between 0 and 128K, that is used by the
application to refer to a particular user. A group identifier (GID) is an integer, between
0 and 16K, that is used by the application to refer to an application group.

User, Group, and ACL Files

1-50

To use access control, an application administrator must maintain lists of (1) users, (-
groups, and (3) and mappings of groups to application entities (such as services,
events, and application queues). The third type of list, a mapping of groups to
application entities, is known as the access control list (ACL).

When a client tries to access an application resource, such as a service, the system
checks the client’s application key and thus identifies the group to which the user
belongs. Next, the system checks the ACL for the target resource and determines
whether the client’s group has access permission. The application administrator,
application operator, and processes or service requests running with the privileges c
the application administrator or operator g subject to ACL permission checking.

The user, group, and ACL files are located indbyication_root directory, where
application _root is the first path name defined for thePDIR variable. The
following figure identifies these files and specifies the administrative commands
available for controlling each list.

Using BEA Tuxedo Security

Default Authentication and Authorization

Figure 1-10 Default User, Group, and ACL Files

application_root

tpusr tparp tpacl

Administrative Commands Administrative Commands Administrative Commands

for User File for Group File for ACL File
m tpusradd(1) m tpgrpadd(1) m tpacladd(1)
m tpusrdel(1) m tpgrpdel(1) m tpacldel(1)
m tpusrmod(1) m tpgrpmod(1) m tpacimod(1)

Note: ForaBEA Tuxedo system running on the Compaq VMS operating system, the
names of the user, group, and ACL files halae extensionstpusr.dat
tpgrp.dat , andtpacl.dat

The files are colon-delimited, flat text files that can be read and written only by the
application administrator—the owner of theXCONFIGile referenced by the
TUXCONFIGvariable. The format of the files is irrelevant, since the files are fully
administered with a set of dedicated commands. Only the application administer is
allowed to use these commands.

An application administer can use thaclcvt(1) command to convert security data
files to the format needed by the ACL checking feature. For example, on a UNIX host
machine, an administrator can ugeclcvt to convert theetc/password file and

store the converted version in tipasr file. The same administrator can use

tpaclcvt to convert theetc/group file and store the converted version in tgp

file.

The AUTHSVRserver uses the user information stored inghe file to authenticate
users who want to join the application.

Using BEA Tuxedo Security 1-51

1 introducing Security

Optional and Mandatory ACLs

See Also

The ACLandMANDATORY_AGiecurity levels constitute the default authorization
implementation for the BEA Tuxedo system.

When the security level i5CL, if there is no entry in thpacl file associated with the
target application entity, the client is permitted to access the entity. This security leve
enables an administrator to configure access for only those resources that need mo
security. That is, there is no need to add entries tpsloe file for services, events,

or application queues that are open to everyone.

When the security level MANDATORY_ACIf there is no entry in thipacl file

associated with the target application entity, the clienbipermitted to access the
entity. For this reason, this level is call®@ndatory There must be an entry in the
tpacl file for each and every application entity that the client needs to access.

For both theACL andMANDATORY_ACiecurity levels, if an entry for an application
entity exists in thepacl file and the client attempts to access that entity, the user
associated with that cliemustbe a member of a group that is allowed to access that
entity; otherwise, permission is denied.

For some applications, it may be necessary to use both system-level and
application-level authorization. An entry in tipacl file can be used to control which
users can access a service, and application logic can control data-dependent access,
example, which users can handle transactions for more than a million dollars.

Note that there is no ACL permission checking for administrative services, events, an
application queues with names that begin with a dot (.). For example, any client can
subscribe to administrative events suchsgsMachineBroadcast

.SysNetworkConfig , and.SysServerCleaning . In addition, there is no ACL
permission checking for the application administrator, application operator, or
processes or service requests running with the privileges of the application
administrator or operator.

= “What Administering Security Means” on page 2-1

m “Security Administration Tasks” on page 2-3

1-52 Using BEA Tuxedo Security

Security Interoperability

“Administering Authentication” on page 2-9
“Administering Authorization” on page 2-34

“What Programming Security Means” on page 3-1
“Programming an Application with Security” on page 3-3

“Writing Security Code So Client Programs Can Join the Application” on page
3-4

“About the Configuration File” on page 2-1 and “Creating the Configuration
File” on page 3-1 irSetting Up a BEA Tuxedo Application

UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

AUTHSVR(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Security Interoperability

Application developers and administrators must be aware of certain security issues
when configuring applications to interoperate with BEA Tuxedo pre-Release 7.1 (6.5
or earlier) software.

Interoperability, as defined in this discussion, is the ability of the current release of
BEA Tuxedo software to communicate over a network with a previous release of BEA
Tuxedo software. Specificallynter-domain interoperabilitgndintra-domain
interoperabilityhave the following meanings:

Inter-domain interoperability

Involves one BEA Tuxedo application running BEA Tuxedo Release 7.1 or later
software, and another BEA Tuxedo application running BEA Tuxedo
pre-Release 7.1 software. See the diagram “Inter-Domain Interoperability” on
page 1-54 for clarification.

Intra-domain interoperability

Involves one machine in a multiple-machine BEA Tuxedo application running
BEA Tuxedo Release 7.1 or later software, and another machine in the same

Using BEA Tuxedo Security 1-53

1 introducing Security

application running BEA Tuxedo pre-Release 7.1 software. See the diagram
“Intra-Domain Interoperability” on page 1-55 for clarification.

Figure 1-11 Inter-Domain Interoperability

. RN — - N 7T ~ - ™ N
Application 1 Running Application 2 Running
BEA Tuxedo Release 7.1 or Later Software BEA Tuxedo Pre-Release 7.1 Software
/ BN
/ N /
([
\ owTpomaN | l
/ / \
/ \
| Voo
\ Workstation - Native } |
\ Client p= Client / \
N - 7
- - \ 4 Network /
N S~ _ / Connection (Link) \ RN g
~ / \ s

1-54 Using BEA Tuxedo Security

Security Interoperability

Figure 1-12 Intra-Domain Interoperability

Same BEA Tuxedo Application

Machine 1 Running BEA Tuxedo
Release 7.1 or Later Software

Machine 2 Running BEA Tuxedo
Pre-Release 7.1 Software

Native
Client

Native
Client

_l Workstation
Client

Network Workstation _l
Connection (Link) Client m—

Interoperating with Pre-Release 7.1 Software

Interoperating with BEA Tuxedo pre-Release 7.1 software is allowed or disallowed at
theauthenticatiorsecurity level. Authentication, as implemented by BEA Tuxedo
Release 7.1 or later software, allows communicating processes to mutually prove their

identities.

By default, interoperability with a machine running BEA Tuxedo pre-Release 7.1
software is not allowed. To change the default, an application administrator can use the
CLOPT -t option to allow Workstation Handlers (WSHSs), domain gateways
(GWTDOMAINs and servers in the Release 7.1 or later application to interoperate with
BEA Tuxedo pre-Release 7.1 software. “Mandating Interoperability Policy” on page
2-15 provides instructions for using ta8eOPT -t option as well as the security
ramifications for authentication and authorization when uSirt@PT -t .

Using BEA Tuxedo Security 1-55

1 introducing Security

Interoperability for Link-Level Encryption

Whenever a network link is established between machines running BEA Tuxedo
software, link-level encryption may be used to encrypt data before sending it over the
network link, and decrypt it as it comes off the link. Of course, link-level encryption is
possible only if LLE is installed on both the sending and receiving machines.

LLE interoperability with BEA Tuxedo pre-Release 7.1 software is described in
“Backward Compatibility of LLE” on page 1-26.

Interoperability for Public Key Security

The following interoperability rules for public key security apply to a machine running
Release 7.1 or later BEA Tuxedo software that is configured to interoperate with a
machine running BEA Tuxedo pre-Release 7.1 software. To clarify the rules, each rul
has an accompanying example scenario involving a Workstation client running BEA
Tuxedo pre-Release 7.1 software.

Table 1-9 Interoperability Rules for Public Key Security

Interoperability Rule Example Comments

Encrypted outgoing message buffers Encrypted outgoing message buffers “Encrypted” refers to public
destined for a machine running BEA destined for a pre-Release 7.1 key message-based
Tuxedo pre-Release 7.1 softwaremoe Workstation client are not transmitted encryption, not link-level
transmitted to the machine. to the Workstation client. encryption.

Incoming message buffers from a Incoming message buffers from a See “Setting Encryption
machine running a BEA Tuxedo pre-Release 7.1 Workstation client doPolicy” on page 2-47 for a
pre-Release 7.1 software aret not have encryption envelopes description of the
accepted if routed to a process requiringttached, and are not accepted if routetNCRYPTION_REQUIRED
encryption. to a process requiring encryption. configuration parameter.

1-56 Using BEA Tuxedo Security

Security Interoperability

Table 1-9 Interoperability Rules for Public Key Security

Interoperability Rule Example Comments

For outgoing message buffers destinedigital signatures are verified and thent is assumed that the
for the machine running BEA Tuxedo removed from outgoing message outgoing message buffer is
pre-Release 7.1 software, any digital buffers destined for a pre-Release 7.1digitally signed buhot

signaturesre verified and then removedWorkstation client. encrypted. If the outgoing
before the message buffers are message buffer is digitally
transmitted to the older machine. signed and encrypted, the

message is not decrypted,
the digital signatures are not
verified, and the message is
not transmitted to the older

machine.
Incoming message buffers from a Incoming message buffers from a See “Setting Digital
machine running BEA Tuxedo pre-Release 7.1 Workstation client doSignature Policy” on page
pre-Release 7.1 software aret not have digital signatures attached, 2-42 for a description of the
accepted if routed to a process requiringnd are not accepted if routedtoa SIGNATURE_REQUIRED
digital signatures. process requiring digital signatures. configuration parameter.

For inter-domain interoperability, Release 7.1 or later domain gateS¥ayOMAN
processes enforce the interoperability rules for public key security.

For intra-domain interoperability, Release 7.1 or later native clients, Workstation
Handlers (WSHSs), or server processes communicating with the local bridge process
enforce the interoperability rules for public key security, as shown in the following
diagram. A bridge process operates only asrauit it doesnot decrypt message

buffer content or verify digital signatures.

Using BEA Tuxedo Security 1-57

1

Introducing Security

Figure 1-13 Enforcing Intra-Domain Interoperability Rules for Public Key Security

Same BEA Tuxedo Application

Machine 1 Running BEA Tuxedo Machine 2 Running BEA Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software
@ Local Bridge

Bridge

Enforcers

Native
Client

Native
Client

Workstation Network Workstation _l

Client Connection (Link) Client \g:ﬁ‘

Note: Typically, a Release 7.1 or later WSH does not verify digital signatures. But
when routing a digitally signed message buffer to a process running BEA
Tuxedo pre-Release 7.1 software, the WSH verifies any digital signatures
before removing them.

See Also
m “Security Compatibility” on page 1-59
m “Mandating Interoperability Policy” on page 2-15
m “Setting Digital Signature Policy” on page 2-42
m “Setting Encryption Policy” on page 2-47

1-58 Using BEA Tuxedo Security

Security Compatibility

Security Compatibility

For an application running BEA Tuxedo Release 7.1 or later software, it is possible to
have any combination of default or custom authentication, authorization, auditing, and
public key security. In addition, any combination of these four security capabilities is
compatible with link-level encryption.

Mixing Default/Custom Authentication and Authorization

It is possible to have default authentication and custom authorization, or custom
authentication and default authorization, as long as the application developer is aware
of the following restriction: thauthorization security tokemust carry at a minimum

(1) an authenticated user nameponcipal nameand (2) an application key value as
defined in “Application Key” on page 1-48.

Authorization decisions are based partly on user identity, which is stored in an
authorization tokenBecause authorization tokens are generated by the authentication
security plug-in, providers of authentication and authorization plug-ins need to ensure
that these plug-ins work together. (See “Authentication” on page 1-7 and
“Authorization” on page 1-12 for more detail.)

Mixing Default/Custom Authentication and Auditing

It is possible to have default authentication and custom auditing, or custom
authentication and default auditing, as long as the application developer is aware of the
following restriction: theauditing security tokemust carry at a minimum (1) an
authenticated user name pomcipal nameand (2) an application key value as defined

in “Application Key” on page 1-48.

Auditing decisions are based partly on user identity, which is storedanditing

token Because auditing tokens are generated by the authentication security plug-in,
providers of authentication and auditing plug-ins need to ensure that these plug-ins
work together. (See “Authentication” on page 1-7 and “Auditing” on page 1-18 for
more detail.)

Using BEA Tuxedo Security 1-59

1

Introducing Security

Compatibility Issues for Public Key Security

Public key security is compatible with all features and processes supported by BEA
Tuxedo Release 7.1 or later software except the compression feature. Encrypted
message buffersannotbe compressed using the compression feature. But, because
the public key software compresses the message content just before it encrypts the
message buffer, any size savings are still achieved.

This topic describes the compatibility/interaction of public key security with the
following BEA Tuxedo features and processes:

m Data-dependent routing

m Threads

m EventBroker

m /Q

m Transactions

m Domain gateway§GWTDOMAINs

m Other vendors’ gateways

Compatibility/Interaction with Data-dependent Routing

1-60

Central to the data-dependent routing feature is the ability of a process to examine tt
content of incoming message buffers. If an incoming message buffer is encrypted, ¢
process configured for data-dependent routing must have opened a recipient’s priva
key so that the public key software can use that key to decrypt the message buffer. F
data-dependent routing, the public key software do¢serify digital signatures.

If a decryption key isiot available, the routing operation fails. The system generates
an ERRORuserlog(3c) message to report the failure.

If a decryption key is available, the process makes a routing decision based on a
decryptedcopyof the encrypted message buffer. The chain of events is as follows:

1. The public key software makes a copy of the encrypted message buffer and use
the decryption key to decrypt the buffer.

Using BEA Tuxedo Security

Security Compatibility

2. The process reads the resultatgintext(unencrypted text) message content to
make the routing decision.

3. The public key software overwrites the plaintext message content with zero
values to preserve privacy.

The system then transmits the original encrypted message buffer in accordance with
the routing decision.

Compatibility/Interaction with Threads

Public-private keys are represented and manipulateldardles A handle has data
associated with it that is used by the public key application programming interface
(API) to locate or access the item named by the handle. A process dgnisaandle
for digital signature generation, message encryption, or message decryption.

A key handle is a process resource; it is not bound to any specific thread or context.
Any BEA Tuxedo communication necessary to open a key is performed within the
thread’s currently active context. Thereafter, the key is available to any context in the
process, whether or not the context is associated with the same BEA Tuxedo
application.

A key’s internal data structures aheead safeAs such, a key may be accessed
concurrently by multiple threads.

Compatibility/Interaction with the EventBroker

In general, ZMUSREVT(5) system server handles encrypted message buffers without
decrypting them, that is, both digital signatures and encryption envelopes remain intact
as messages flow through the BEA Tuxedo EventBroker component. However, the
following cases require that the EventBroker component decrypt posted message
buffers:

¢ To evaluate subscription filter expressions based on message content.

If the EventBroker does not have access to a suitable decryption key, the
subscription’s filter expression is assumed to be false, and the subscription is not
considered anatch

¢ To perform subscription notification actions that require access to message
contentuuserlog(3c) processing or system command execution.

Using BEA Tuxedo Security 1-61

1

Introducing Security

If the EventBroker does not have access to a suitable decryption key, the
subscription’s notification action fails, and the system generates an ERROR
userlog(3c) message to report the failure.

¢ To perform subscription notification actions that, based on system
configurations, need to access message content for data-dependent routing.

If the EventBroker does not have access to a suitable decryption key, the
subscription’s notification action fails, and the system generates an ERROR
userlog() message to report the failure.

For a transactional subscription, the system also marks the transaction as
rollback-only

¢ To comply with an administrative system policy requiring encryption (as
explained in “Setting Encryption Policy” on page 2-47).

If the EventBroker does not have access to a suitable decryption key, the
tppost(3c) operation fails, and the system generates an ERR@MRg()
message to report the failure.

¢ To verify that a posted encrypted message has a valid digital signature attached,
if required to do so by an administrative system policy requiring digital
signatures (as explained in “Setting Digital Signature Policy” on page 2-42).

If the EventBroker does not have access to a suitable decryption key, the
tppost(3c) operation fails, and the system generates an ERR@MRg()
message to report the failure.

Compeatibility/Interaction with /Q

1-62

In general, &MQUEUE(5) or TMQFORWARD(5ystem server handles encrypted
message buffers without decrypting them, that is, both signatures and encryption
envelopes remain intact as messages flow through the BEA Tuxedo /Q component.
However, the following cases require that the /Q component decrypt enqueued
message buffers:

¢ To performTMQFORWARIperations that, based on system configurations, need
to access message content for data-dependent routing.

If TMQFORWARIDeS not have access to a suitable decryption key, the forward
operation fails. The system returns the message to the queue and generates an
ERRORuserlog(3c) message to report the failure.

Using BEA Tuxedo Security

Security Compatibility

After a number of periodic retry attempt8QFORWARDIght place the
unreadable message on an error queue.

¢ To comply with an administrative system policy requiring encryption (as
explained in “Setting Encryption Policy” on page 2-47).

If the /Q component does not have access to a suitable decryption key, the
tpenqueue(3c) operation fails, and the system generates an ERROR
userlog() message to report the failure.

¢ To verify that an enqueued encrypted message has a valid signature attached, if
required to do so by an administrative system policy requiring digital signatures
(as explained in “Setting Digital Signature Policy” on page 2-42).

If the /Q component does not have access to a suitable decryption key, the
tpenqueue(3c) operation fails, and the system generates an ERROR
userlog() message to report the failure.

A non-transactionabdequeue(3c) operation has the side effect of destroying an
encrypted queued message if the invoking process does not hold a valid decryption
key.

If a message with an invalid signature is placed in a queue (or if the message is
corrupted or tampered with while on the queue), any attempt to dequeue it fails. A
non-transactionapdequeue() operation has the side effect of destroying such a
message. A transactionptlequeue() operation causes transaction rollback, and all
future transactional attempts to dequeue the message will continue to fail.

Compatibility/Interaction with Transactions

Public key security operations—opening and closing keys, requesting a digital
signature, or requesting encryption—are not transactional, and are not undone by
transaction rollback. However, transactions might rollback due to failure conditions
associated with the following public key operations:

¢ If atransactional request or reply message cannot be decrypted, its associated
transaction is rolled back.

¢ If atransactional request or reply message is discarded because of an invalid or
missing digital signature, its associated transaction is rolled back.

¢ If atransactional request or reply message is rejected because it violates an
administrative system policy requiring encryption or digital signatures, its
associated transaction is rolled back.

Using BEA Tuxedo Security 1-63

1 introducing Security

Compatibility/Interaction with Domain Gateways

Domain gateway@WTDOMANorocesses connecting two BEA Tuxedo applications
running BEA Tuxedo Release 7.1 or later software preserve digital signatures and
encryption envelopes. In addition, the domain gateway processes verify digital
signatures and enforce administrative system policies regarding digital signatures an
encryption.

The following diagram is an aid to understanding how domain gateway processes
interact with local and remote BEA Tuxedo applications. The table following the
diagram describes how Release 7.1 or later domain gateway processes handle digita
signed and encrypted message buffers.

Figure 1-14 Communication Between BEA Tuxedo Applications

// -7 A 4 T~ \\
BEA Tuxedo Application 1 BEA Tuxedo Application 2

/ h N g \

[\f \
\ N /

) GWTDOMAIN / \ GWTDOMAIN (
/ () \
[\4/ \
| inbound ||| outbound |

E— —

\ Workstation outbound / |\ inbound _I Workstation /
\ Client = I:>/ S == Client /
\v/\ /\/Network\/\ /\v/
\ S / Connection (Link) \ N y
N / N e

1-64 Using BEA Tuxedo Security

Security Compatibility

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type

Condition

Resulting Operation

Inbound message—
originating from a
remote process and
received over a
network connection

Has encryption envelope andThe domain gateway process accepts the message and
may or may not have digital forwards it in encrypted form.

signature

If the data-dependent routing feature applies and the
domain gateway process doest have a suitable
decryption key, the gateway process rejects the
message. (See “Compatibility/Interaction with
Data-dependent Routing” on page 1-60 for
clarification.)

Inbound message

Does not have encryption If the domain gateway process is running within a
envelope or digital signaturedomain, machine, or groupquiring encryption, the

gateway process rejects the message. If a service
advertised by the domain gatewayguiresencryption,

the gateway process rejects the message. (See “Setting
Encryption Policy” on page 2-47 for clarification.)

If the domain gateway doe®trequire encryption, the
gateway process accepts and forwards the message.

Inbound message

Has digital signature but isThe domain gateway process verifies the digital

not encrypted

signature and forwards the message with digital
signature attached.

Inbound message

Does not have digital
signature and is not
encrypted

If the domain gateway process is running within a
domain, machine, or groupquiring digital signatures,
the gateway process rejects the message. If a service
advertised by the domain gatewayuiresdigital
signatures, the gateway process rejects the message.
(See “Setting Digital Signature Policy” on page 2-42 for
clarification.)

If the domain gateway doe®t require digital
signatures, the gateway process accepts and forwards
the message.

Using BEA Tuxedo Security 1-65

1 introducing Security

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Outbound message— Has encryption envelope andThe domain gateway process accepts the message and
originating from alocal may or may not have digital forwards it in encrypted form over the network.

process and signature If the data-dependent routing feature applies and the
transmitted over a domain gateway process daest have a suitable
network connection decryption key, the gateway process rejects the

message. (See “Compatibility/Interaction with
Data-dependent Routing” on page 1-60 for
clarification.)

If the encrypted message is destined for a process
running BEA Tuxedo pre-Release 7.1 (6.5 or eatrlier)
software, the domain gateway process rejects the
message. (See “Interoperating with Pre-Release 7.1
Software” on page 1-55 and “Interoperability for Public
Key Security” on page 1-56 for clarification.)

Outbound message Does not have encryption|f the domain gateway process is running within a
envelope or digital signaturedomain, machine, or groupquiring encryption, the
gateway process rejects the message. If a service
advertised by the domain gatewaguiresencryption,
the gateway process rejects the message. (See “Setting
Encryption Policy” on page 2-47 for clarification.)

If the domain gateway doe®t require encryption, the
gateway process accepts the message and forwards it
over the network.

Outbound message Has digital signature but iSThe domain gateway process verifies the digital
not encrypted signature and forwards the message with digital
signature attached over the network.

If the message is destined for a process running BEA
Tuxedo pre-Release 7.1 softwared assuming
interoperability with BEA Tuxedo pre-Release 7.1
software is allowedthe domain gateway process
verifies and then removes the digital signature before
forwarding the message over the network. (See
“Interoperating with Pre-Release 7.1 Software” on page
1-55 and “Interoperability for Public Key Security” on
page 1-56 for clarification.)

1-66 Using BEA Tuxedo Security

Security Compatibility

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Outbound message Does not have digital If the domain gateway process is running within a
signature and is not domain, machine, or groupquiring digital signatures,
encrypted the gateway process rejects the message. If a service

advertised by the domain gatewayguiresdigital
signatures, the gateway process rejects the message.
(See “Setting Digital Signature Policy” on page 2-42 for
clarification.)

If the domain gateway doe®t require digital

signatures, the gateway process accepts the message
and forwards it over the network.

Compatibility/Interaction with Other Vendors’ Gateways

A domain gateway@WTDOMAINprocess connecting a Release 7.1 or later BEA
Tuxedo application to another vendor’s gateway process operateghmund
message buffers as follows:

1. Decrypts encrypted messages.
2. Verifies digital signatures (if any) and then removes digital signatures.

3. Transmits messages in plaintext format over the network to the vendor’s gateway
process.

In addition, the domain gateway process enforces the administrative system policies
regarding encryption and digital signatures for the BEA Tuxedo application. As an
example, if encryption and/or digital signatures are required at the domain level for the
BEA Tuxedo application, the local domain gateway process rejects any message
coming from the other vendor’s gateway process.

Using BEA Tuxedo Security 1-67

1 introducing Security

See Also

m “Security Interoperability” on page 1-53
m “Mandating Interoperability Policy” on page 2-15
m “Setting Digital Signature Policy” on page 2-42

m “Setting Encryption Policy” on page 2-47

1-68 Using BEA Tuxedo Security

CHAPTER

2 Administering Security

m What Administering Security Means

m Security Administration Tasks

m Setting the BEA Tuxedo Registry

m Configuring an Application for Security

m Setting Up the Administration Environment

m Administering Default Authentication and Authorization

What Administering Security Means

Administering security for a BEA Tuxedo application involves setting and enforcing
security policies for the components of the application, including its clients, server
machines, and gateway links. The application administrator sets the security policies
for the application, and the BEA Tuxedo system upon which the application is built
enforces those policies.

The BEA Tuxedo system offers the following security capabilities:
m Authentication

m Authorization

= Auditing

m Link-level encryption

m Public key security

Using BEA Tuxedo Security 2-1

2 Administering Security

All but one of the security capabilities can be configured by the application
administrator. The exception is auditing, which cannot be configured, as shown in the
following diagram.

Figure 2-1 Administering BEA Tuxedo Security

Application Administration

Commands API GUI

l l l

Management Information Base (MIB)

BEA Tuxedo Library

| |
| o | . Link-Level Public Key
Authentication Authorization Encryption Security

b | I ‘

BEA Tuxedo Security

Link-Level
Encryption

Plug-in Interface

Default Default Default Default
Authentication Authorization Auditing Public Key Security
| Custom | Custom | Custom Custom

Security Plug-ins

See Also

m “Security Administration Tasks” on page 2-3

m “What Security Means” on page 1-1

2-2 Using BEA Tuxedo Security

Security Administration Tasks

m “What Programming Security Means” on page 3-1

Security Administration Tasks

Security administration consists of the following tasks:
m Setting the BEA Tuxedo registry

m Configuring an application for security

m Setting up the administration environment

m Administering operating system (OS) security

m Administering authentication

m Administering authorization

m Administering link-level encryption

m Administering public key security

See Also

m “Setting the BEA Tuxedo Registry” on page 2-3

Setting the BEA Tuxedo Registry

The application administrator needs to know about the BEA Tuxedo registry if the
application is to be configured with one or more custom security capabilities. On the
other hand, if the application is to be configured only with default security, the BEA
Tuxedo registry does not need to be changed.

Using BEA Tuxedo Security ~ 2-3

2 Administering Security

The BEA Tuxedo registry is a disk-based repository for storing information related to
plug-in modules. Initially, this registry holds registration information about the default
security plug-ins.

Purpose of the BEA Tuxedo Registry

Most BEA middleware products use a common transaction processing (TP)
infrastructure that consists of a set of core services, such as security. The TP
infrastructure is available to BEA Tuxedo applications through well defined interfaces.
These interfaces allow application administrators to change the default behavior of th
TP infrastructure by loading and linking their own service code modules, referred to
asplug-in module®r simplyplug-ins

The first step in loading a plug-in is to register the plug-in with the host operating
system. Registering a plug-in adds an entry for the plug-in to the BEA Tuxedo registry
which is a set of binary files that stores information about active plug-ins. There is one
registry per BEA Tuxedo installation.

m On a UNIX host machine, the BEA Tuxedo registry is in the
$TUXDIR/udataobj directory.

m On a Windows NT host machine, the BEA Tuxedo registry is in the
%TUXDIR%\udatacbj directory.

Every Workstation client and server machine in a BEA Tuxedo application must use
the same set of plug-in modules.

Registering Plug-ins

2-4

The administrator of an application in which custom plug-ins will be used is
responsible for registering those plug-ins and performing other registry related tasks
An administer can register plug-ins in the BEA Tuxedo registily from the local
machine. That is, an administrator cannot register plug-ins while logged on to the hos
machine from a remote location.

Three commands are available for administering plug-ins:

m epifreg —for registering a plug-in

Using BEA Tuxedo Security

Configuring an Application for Security

See Also

m epifunreg —for unregistering a plug-in
m epifregedt —for editing registry information

Instructions for using these commands are availab®&uide to Providing Security
Services for BEA Product§lhis document contains the specifications for the security
plug-in interface, and describes the BEA Tuxplim-in frameworKeature that makes

the dynamic loading and linking of security plug-in modules possible.) Also, when
installing custom plug-ins, the supplying third-party security vendor should provide
instructions for using these commands to set up the BEA Tuxedo registry to access the
custom plug-ins.

For more information about security plug-ins, including installation and configuration
procedures, see your BEA account executive.

m “Configuring an Application for Security” on page 2-5

Configuring an Application for Security

An application administrator configures security for the application oMASTER
machine when the application is inactive. The underlying BEA Tuxedo system
propagates the configuration information to the other machines in the application when
the application is booted.

As the administrator, you can configure security for your application by:
m Editing the configuration fileBBCONFIG

m Changing th&M_MIB or

m Using the BEA Administration Console

The set of security parameters involved depends upon the security capability
(authentication, authorization, link-level encryption, or public key) and whether you
are using the default or custom security software.

Using BEA Tuxedo Security ~ 2-5

2 Administering Security

Editing the Configuration File

You can edit th&JBBCONFIGconfiguration file to set security policies for a BEA
Tuxedo application. TheBBCONFIGconfiguration file may have any file name, as
long as the content of the file conforms to the format described arBBEONFIG(5)
reference page iIBEA Tuxedo File Formats and Data Descriptions Reference

For more details abowtBBCONFIGand its binary equivalentjyXCONFIG see “About
the Configuration File” on page 2-1 and “Creating the Configuration File” on page 3-1
in Setting Up a BEA Tuxedo Application

Changing the TM_MIB

TheTM_MIB defines a set of classes through which the fundamental aspects of a BE/
Tuxedo application may be configured and managed. Separate classes are designa
for machines, servers, networks, and so on. You should use the reference page
TM_MIB(5) in combination with the generic Management Information Base (MIB)
reference pag®IB(5) to format administrative requests and interpret administrative
replies. The MIB reference pages are defineBlE#A\ Tuxedo File Formats and Data
Descriptions Reference

Other component MIBs, including thecL_MIB, DM_MIB andwS_MIB also play a role
in managing security for a BEA Tuxedo application. The referenceAgeviB(5)
defines theACL_MIB, the reference padg@m_MIB(5) defines thedM_MIB and the
reference page/s_MIB(5) defines thevs_mIB

For more information about BEA Tuxedo MIBs, start witiB(5) in BEA Tuxedo File
Formats and Data Descriptions Referenaso, see “Managing Operations Using the
MIB” on page 3-10 irintroducing the BEA Tuxedo System

Using the BEA Administration Console

You can also use the BEA Administration Console to change security policies for a
BEA Tuxedo application. The BEA Administration Console is a Web-based tool used
to configure, monitor, and dynamically re-configure an application.

2-6 Using BEA Tuxedo Security

Setting Up the Administration Environment

For details about the BEA Administration Console, see “Using the BEA
Administration Console” on page 3-4limtroducing the BEA Tuxedo System

See Also

m “Setting Up the Administration Environment” on page 2-7

Setting Up the Administration Environment

The application administrator defines certain environment variables for a BEA Tuxedo
application as part of configuring the application. The values defined for the variables
are absolute path names that reference BEA Tuxedo executables and data libraries.

Being able to find such files is essential to the job of administering a BEA Tuxedo
application. For example, all commands needed to manage application security are
located insTUXDIR/bin on a UNIX host machine, and #iTUXDIR%\bin on a

Windows NT host machine.

For details on setting up the administration environment, see “How to Set Your
Environment” on page 1-2 iddministering a BEA Tuxedo Application at Run Time

See Also

m “Administering Operating System (OS) Security” on page 2-8
m “Administering Authentication” on page 2-9

m “Administering Authorization” on page 2-34

m “Administering Link-Level Encryption” on page 2-35

m “Administering Public Key Security” on page 2-41

m “Security Administration Tasks” on page 2-3

Using BEA Tuxedo Security ~ 2-7

2 Administering Security

Administering Operating System (0S)
Security

In addition to BEA Tuxedo system security, the application administrator needs to tak
full advantage of the security features of the host operating system to control access
files, directories, and system resources.

Most BEA Tuxedo applications are managed by an application administrator who
configures and boots the application, monitors the running application, and makes
changes to it dynamically, as necessary. Because the application is started and run
the administrator, server programs are run with the administrator’'s permissions and al
therefore considered secure or “trusted.” This working method is supported by the
login mechanism and the read and write permissions on the files, directories, and
system resources provided by the underlying operating system.

Clients, on the other hand, are not started by the administrator. Instead, they are rur
directly by users with their own permissions. As a result, clients are not trusted.

In addition, users running native clients (that is, clients running on the same machin
on which the server is running) have access to the configuration file and interproces:
communication (IPC) mechanisms such ashihiéetin board(in shared memory).

Users running native clients always have such access, even when additional BEA
Tuxedo system security is configured.

Recommended Practices for OS Security

2-8

As the administrator, you can improve operating system security by observing the
following general rules:

m Limit access to files and IPC resources to the application administrator.

m Have “trusted” client programs run only with the permissions of the
administrator (using setuid utility).

Using BEA Tuxedo Security

Administering Authentication

m For maximum security on your operating system, allow only Workstation clients
to access the application; client programs should not be allowed to run on the
same machines on which application servers and administrative programs run.

m Combine all of these practices with BEA Tuxedo system security so that the
application can identify any client making a request.

See Also

m “Operating System (OS) Security” on page 1-6

m “Security Administration Tasks” on page 2-3

Administering Authentication

Authentication allows communicating processes to prove their identities. It is the
foundation for most other security capabilities.

Except for the configuration instructions identified in this topic, the procedures for
administering authentication depend upon the underlying authentication system of the
application. For procedures to administer a custom authentication system, see the
documentation for that system. For procedures to administer the default authentication
system, see “Administering Default Authentication and Authorization” on page 2-56.

The following diagram demonstrates the use ofdflegated trust authentication
modelby applications running BEA Tuxedo Release 7.1 or later software. Workstation
Handlers (WSHs) and domain gatewa@sVTDOMAINsare known agrusted system
gateway processes the delegated trust authentication model, which is described in
“Understanding Delegated Trust Authentication” on page 1-7.

Using BEA Tuxedo Security 2-9

2 Administering Security

Figure 2-2 Mutual Authentication in the Delegated Trust Authentication Model

PN — ~ o~ PN

BEA Tuxedo Application 1 BEA Tuxedo Application 2

Network
Connection (Link)

—_— = Mutual Authentication

Note: Mutual authentication is not used for a native client, which authenticates with
itself.

The following topics provide the instructions needed to set up the configuration showr
in the preceding diagram. All of the topics involve authentication and the
authentication plug-in.

m Specifying principal names
m Mandating interoperability policy
m Establishing a link between domains

m Setting ACL policy

See Also

m “Authentication” on page 1-7

m “Default Authentication and Authorization” on page 1-44

2-10 Using BEA Tuxedo Security

Specifying Principal Names

m “Administering Default Authentication and Authorization” on page 2-56

m “Security Administration Tasks” on page 2-3

m “Security Interoperability” on page 1-53

m “Security Compatibility” on page 1-59

m “What Is a Domain” on page 4-18 introducing the BEA Tuxedo System

Specifying Principal Names

As the administrator, you use the following configuration parameters to specify
principal names for the Workstation Handler (WSH), domain gate@asrpDOMAN
and server processes running in your Release 7.1 or later BEA Tuxedo application.

Parameter Name

Description

Setting

SEC_PRINCIPAL_NAMEn
UBBCONFIG
(TA_SEC_PRINCIPAL_NAMEN
T™M_MIB)

During application booting, each
WSH, domain gateway, and server
process in the application calls the
authentication plug-in to acquire
security credentials for treecurity
principal namespecified in
SEC_PRINCIPAL_NAME

1 - 511 characters. If not
specified at any level in the
configuration hierarchy, the
security principal name defaults
to theDOMAINIDstring
specified in theJBBCONFIG
file.

CONNECTION_PRINCIPAL_NAME
for local domain access point in
DMCONFIG
(TA_DMCONNPRINCIPALNAMé&r
LACCESSPOINTin DM_MIB**

During application booting, each
domain gateway process in the
application calls the authentication
plug-in a second time to acquire
security credentials for thonnection
principal namespecified in
CONNECTION_PRINCIPAL_NAME

1 - 511 characters. If not
specified, the connection
principal name defaults to the
DOMAINID string for the local
domain access point specified
in the DMCONFIGile.

* The topics that follow explain how the system processes acquire credentials and why they need them.

*%

The local domain access point is also known ag B@Mpronounced “el dom”) or simplpcal domain

Using BEA Tuxedo Security 2-11

2 Administering Security

SEC_PRINCIPAL_NAMHBNay be specified any of the following four levels in the
configuration hierarchy:

m RESOURCESection inUBBCONFIGr T_DOMAINclass inTM_MIB
®m MACHINESsection inUBBCONFIGr T_MACHINEClass inTM_MIB
m GROUPSection inUBBCONFIGr T_GROURlass inTM_MIB

m SERVERSsection inUBBCONFIGor T_SERVERclass inTM_MIB

A security principal name at a particular configuration level can be overridden at a
lower level. For example, suppose you configere as the principal name for
machinemach1, andjohn as the principal name for sensaarvl running onmachl.
The processes anachl behave as follows:

m All WSH, domain gateway, and server processesiauhl exceptservl
processes ugerri as a principal name.

m All servl processes ugehn as a principal name.

How System Processes Acquire Credentials

During application booting, each WSH, domain gateway, and server process in the
application includes itsecurity principal names an argument when calling the
authentication plug-in to (1) acquire security credentials and (2) get authorization anc
auditing tokens for itself. The following diagram demonstrates the procedure.

2-12 Using BEA Tuxedo Security

Specifying Principal Names

Figure 2-3 Acquiring Credentials and Tokens During Application Booting

Myubbconfig

*RESOURCES
SEC_PRINCIPAL_NAME “Tommy”
SECURITY USER_AUTH

tmloadcf -y myubbconfig (User Input)
Enter New Application Password: (System Response)
password (User Input)
Re-enter New Application Password: (System Response)
password (User Input)

Mytuxconfig l

v f

Call tmboot()

BEA Tuxedo Library Tokens for WSH,
Domain Gateway,
or Server
“Tommy” A
Length of APP_PW, - >
APP_PW ‘ 5 - - -
Credentials %
1. Call “acquire 2. Call “initiate 3. Call “accept 4. Call “get 5. Call “get
credentials” security context” security context” authorization token” auditing token”
Function Function Function Function Function
BEA Tuxedo Security . L . L

—H—H—H—H

Authentication Plug-in

Each domain gateway process in the application calls the authentication plug-in a

second time to acquire credentials and tokens for its assipmeection principal
name

Using BEA Tuxedo Security 2-13

2 Administering Security

Why System Processes Need Credentials

2-14

A WSH needs credentials so that it can authenticate Workstation clients that want tc
join the application, and to get authorization and auditing tokens for the authenticate
Workstation clients. A WSH needs its own authorization and auditing tokens when
handling requests from pre-Release 7.1 clients (clients running BEA Tuxedo
Release 6.5 or earlier software) so that it can call the authentication plug-in to establis
identities for the older clients. This behavior is described in “Mandating
Interoperability Policy” on page 2-15.

A domain gateway needs one set of credentials so that it can authenticate remote
domain gateways for the purpose of establishing links between BEA Tuxedo
applications, as described in “Establishing a Link Between Domains” on page 2-24.
(No authorization or auditing tokens are assigned to authenticated remote domain
gateways.) A domain gateway acquires these credentials for the principal name
specified in theCONNECTION_PRINCIPAL_NAMparameter.

A domain gateway needs a second set of credentials so that it can handle requests fr
pre-Release 7.1 clients, which involves calling the authentication plug-in to establist
identities for the older clients. This behavior is described in “Mandating
Interoperability Policy” on page 2-15. It also needs these credentials to establish
identities when enforcing the local access control list (ACL) policy, as described in
“Setting ACL Policy” on page 2-29. A domain gateway acquires these credentials for
the principal name specified in tB€C_PRINCIPAL_NAMBparameter.

A system or application server needs its own authorization and auditing tokens whe
handling requests from pre-Release 7.1 clients so that it can call the authentication
plug-in to establish identities for the older clients. This behavior is described in
“Mandating Interoperability Policy” on page 2-15.

A server also needs its own tokens when performisgreer permission upgrade

which occurs when the authorization and auditing tokens of the server are assigned
messages that pass through the server but originate at a client. The service upgrade
capability is described in “Replacing Client Tokens with Server Tokens” on page 1-11

Note: An application server cannot call the authentication plug-in itself. It is the
underlying system code that calls the authentication plug-in for the application
server.

Using BEA Tuxedo Security

Mandating Interoperability Policy

Example UBBCONFIG Entries for Principal Names

The following example pertains to specifying security principal names in the
UBBCONFIdile using theSEC_PRINCIPAL_NAMBparameter. For an example of
specifying connection principal names in thi@CONFIdile using the
CONNECTION_PRINCIPAL_NAMparameter, see “Example DMCONFIG Entries for
Establishing a Link” on page 2-27.

*RESOURCES
SEC_PRINCIPAL_NAME "Tommy"

*SERVERS

"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1
CLOPT="-t -s secsdb:TMQUEUE"
SEC_PRINCIPAL_NAME="TOUPPER"

See Also

m “Mandating Interoperability Policy” on page 2-15
m “Establishing a Link Between Domains” on page 2-24
m “Setting ACL Policy” on page 2-29

m “Security Administration Tasks” on page 2-3

Mandating Interoperability Policy

As the administrator, you use tbeOPT -t option in theUBBCONFIile to allow
WSH, domain gatewayGWWTDOMAN and server processes in your application to
interoperate with machines running BEA Tuxedo pre-Release 7.1 (6.5 or earlier)
software. In addition, you use teSALLOWPRE7nvironment variable to allow

Using BEA Tuxedo Security 2-15

2 Administering Security

Workstation clients to interoperate with machines running BEA Tuxedo pre-Release
7.1 software. The following four figures show what interoperability means for these
processes.

Figure 2-4 WSH Operating with Older Workstation Client

. 7N —~
Application Running

BEA Tuxedo Release 7.1 or Later Software

4 -~
/ N
[|
\ GWTDOMAIN /
/ /
/ \
| \
\ 1 l
- S
AN \‘: L S — -
|
|

Workstation Client Running
BEA Tuxedo Pre-Release 7.1 Software

In the preceding figure, the WSH authenticates with the Workstation client using an
older (pre-Release 7.1) authentication protocol, calls the internal “impersonate user’
function to get authorization and auditing tokens for the client, and attaches the toker
to the client request. If theLOPT -t option is not specified for the Workstation
Listener (WSL) that controls the WSH, no communication is possible between the
newer WSH and the older Workstation client.

Note: The “impersonate user” functiagmvolves calling the authentication plug-in to
establish an identity for the older client. See “Establishing an Identity for an
Older Client” on page 2-20 for details.

2-16 Using BEA Tuxedo Security

Mandating Interoperability Policy

Figure 2-5 Older WSH Operating with Workstation Client

, RN _ — ~
Application Running

BEA Tuxedo Pre-Release 7.1 Software

- BN
/ AN
[|
\ GWTDOMAIN ’
/ /
/ WSH \
| . J \
|
\ : Native l
\ : Client /
~ !+ \ /o= -
|
|

=== BEA Tuxedo Release 7.1 or Later Software

WSALLOWPRE71=Y Workstation Client Running

In the preceding figure, the WSH authenticates with the Workstation client using an
older (pre-Release 7.1) authentication protocol; the client requeshdireseive
authorization and auditing tokens. If ttSALLOWPRE& Nvironment variable is not

set at the Workstation client or is seNano communication is possible between the
older WSH and the newer Workstation client.

Using BEA Tuxedo Security 2-17

2 Administering Security

Figure 2-6 Server Interoperating with Older BEA Tuxedo Application

TN TN s~ 2N
Application 1 Running Application 2 Running
BEA Tuxedo Release 7.1 or Later S_oftware BEA Tuxedo Pre-Release 7.1 Software
4 N a \
AN / \
| [)
I U Gwrpomain /
/o N N et \
\ / \
\ [|
I \ Native Workstation l
/ \ Client Client /
N
— /
\ / Network \\ / ~ _
Connection (Link)
N /S~ — -\ Yy,
~ / AN s

In the preceding figure, the local domain gatewayw{DOMAINN application 1
authenticates with the remote domain gateway in application 2 using an older
(pre-Release 7.1) authentication protocol. Upon receiving a request from a remote
client, the local domain gateway calls the internal “impersonate user” function to get
authorization and auditing tokens for the remote client and then attaches the tokens
the client request. For any outbound client request (client request originating in
application 1 and destined for application 2), the local domain gateway strips the
tokens from the request before sending the request along with the cgpittation

keyto the older application. (See “Application Key” on page 1-48 for a description of
the application key.)

If the CLOPT -t option is not specified for the domain gateway, ho communication is
possible between the newer application and the older application.

2-18 Using BEA Tuxedo Security

Mandating Interoperability Policy

Figure 2-7 Server Interoperating with Older BEA Tuxedo System

Same BEA Tuxedo Application

Machine 1
Running BEA Tuxedo Release 7.1 or Later Software

Running BEA Tuxedo Pre-Release 7.1 Software

Machine 2

Native
Client

|| workstation Network
— Connection (Link)

Client

T
Workstation _|
Client ==

In the preceding figure, the destination server on machine 1 calls the internal
“impersonate user” function to get authorization and auditing tokens for the remote
client on machine 2, attaches the tokens to the client request, and then performs the
requestissuminghe client passes any authorization checks. IEtt@PT -t option is

not specified for the server, no communication is possible between the newer server

and the older client.

Note: Also, in the preceding figure, if the WSH on machine 1 receives a client
request destined for a server on machine 2, the WSH strips the tokens from the
request before sending the request along with the client’s application key to the
older system. Similarly, if the native client on machine 1 sends a request to a
server on machine 2, the native client strips the tokens from the request before
sending the request along with the client’s application key to the older system.
See “Application Key” on page 1-48 for a description of the application key.

Using BEA Tuxedo Security 2-19

2 Administering Security

Establishing an Identity for an Older Client

For a WSH, domain gatewag\WTDOMAINor server process to establish an identity
for an older client, the process calls the internal “impersonate user” function to obtair
authorization and auditing tokens for the older client. The following diagram
demonstrates the procedure.

Figure 2-8 Obtaining Authorization and Auditing Tokens for an Older Client

WSH, Domain Gateway, or Server Process

1. Name of Older Client or LOCAL_PRINCIPAL_NAME
Configured for Remote Domain Access Point

2. WSH/ Domain Gateway/ Server Authorization Token, Tokens for
3. WSH/ Domain Gateway/ Server Auditing Token Older Client

W

Call “impersonate user” Function

BEA Tuxedo Security
I

Authentication Plug-in

How the WSH Establishes an Identity for an Older Client

2-20

When theCLOPT -t option is specified, the WSH establishes an identity for an older
client using thaisrname field of theTPINIT buffer for C, or theJSRNAMEeld of the
TPINFDEF-REC record for COBOL(The WSH receives 8PINIT buffer/

TPINFDEF-REC record from a client when the client attempts to join the application, as
described in “Joining the Application” on page 3-8.) The WSH includes the user name
as the principal name when calling the “impersonate user” function.

For default authentication plug-ins, the “impersonate user” function finds the user
name and its associated application key (user identifier, group identifier combination
in the locakpusr file, and then includes the user name and application key in both the

Using BEA Tuxedo Security

Mandating Interoperability Policy

authorization and auditing tokens created for the older clienttplibre file is briefly
described in “Setting Up the User and Group Files” on page 2-61.

How the Domain Gateway Establishes an Identity for an Older Client

When theCLOPT-t option is specified, the domain gateway establishes an identity for
an older client using theOCAL_PRINCIPAL_NAMEString configured for the remote
domain access point. (The domain gateway searchesAtREMOTE_DOMAISBction

of the localBDMCONFIdile—the binary equivalent of theMCONFIG(5) file—to find

the LOCAL_PRINCIPAL_NAMEstring for the remote domain access point. If not
specified, the identity defaults to tb@MAINID string for the remote domain access
point.) The domain gateway uses tl@CAL_PRINCIPAL_NAMEString as the principal
name when calling the “impersonate user” function.

For default authentication plug-ins, the “impersonate user” function finds the
LOCAL_PRINCIPAL_NAMEString and its associated application key in the lgeat
file, and then includes that string (identity) and application key in both the
authorization and auditing tokens created for the older client.

How the Server Establishes an Identity for an Older Client

When theCLOPT -t option is specified, the server establishes an identity for an older
client using the client’s assigned application key. (The client request received by the
server contains the client’s assigned application key.) The server finds the application
key and its associated name in the lapadr file, and then includes the name as the
principal name when calling the “impersonate user” function.

For default authentication plug-ins, the “impersonate user” function finds the name
and its associated application key in the lagadr file, and then includes the name

and application key in both the authorization and auditing tokens created for the older
client.

Summarizing How the CLOPT -t Option Works

The following table summarizes the functionality of WSH, domain gateway, and
server processes when interoperabitand isnot allowed using th€LOPT -t
option.

Using BEA Tuxedo Security 2-21

2 Administering Security

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability
Is and Is Not Allowed

Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed
Workstation If the WSH receives a request from a If the WSH receives a request from a
Handler (WSH) pre-Release 7.1 Workstation client to join the pre-Release 7.1 Workstation client to

application, the WSH authenticates the client join the application, the WSH rejects
using a pre-Release 7.1 authentication protoctile request. No communication is

and calls the “impersonate user” function to ggtossible between the newer WSH and
authorization and auditing tokens for the clienthe older Workstation client.

based on the user name given in the request

When the WSH receives a service request from
the authenticated Workstation client, it attaches
the tokens to the client request and forwards the
request to the destination server.

Domain gateway
(GWTDOMAIN

When the domain gateway sets up a connectidime domain gateway doest set up a

to a pre-Release 7.1 remote domain gateway,cibnnection to a pre-Release 7.1 remote
authenticates the remote domain gateway usimigmain gateway. No communication is
a pre-Release 7.1 authentication protocol andpossible between the newer and older
then sets up the network connection. domains.

When the domain gateway receives a client
request from the older domain, the domain
gateway calls the “impersonate user” function
to get authorization and auditing tokens for the
clientbased on the
LOCAL_PRINCIPAL_NAMHdefaults to
DOMAINID) identity configured for the remote
domain access poinattaches the tokens to the
client request, and then forwards the request to
the destination server. The client has the same
access permissions as the
LOCAL_PRINCIPAL_NAMEHdentity.

For any outbound client request, the domain
gateway strips the tokens from the request
before sending the request along with the
client’s application key to the older domain.

2-22 Using BEA Tuxedo Security

Mandating Interoperability Policy

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability
Is and Is Not Allowed

Process

Interoperability Allowed (CLOPT -t) Interoperability Not Allowed

System or

If the server receives a request from a remotelf the server receives a request from a

application server client running BEA Tuxedo pre-Release 7.1 remote client running BEA Tuxedo

software, the server calls the “impersonate usepte-Release 7.1 software, the server
function to get authorization and auditing rejects the client request. No

tokens for the clienbased on the client’s communication is possible between the
assigned application kegnd then performs the newer server and the older client.
client request assuming the client passes any

authorization checks.

Example UBBCONFIG Entries for Interoperability

See Also

In the following example, all WSHSs controlled by the Workstation Listener (WSL) are
configured for interoperability.

*SERVERS
WSL SRVGRP=ygroup_name " SRVID= server_number
CLOPT="-A-t.."

m “Specifying Principal Names” on page 2-11

m “Establishing a Link Between Domains” on page 2-24
m “Setting ACL Policy” on page 2-29

m “Security Administration Tasks” on page 2-3

m “Security Interoperability” on page 1-53

m “Setting Up Security in Domains” on page 2-35 and “Configuring the
Connections Between Your Domains” on page 2-48simg the BEA Tuxedo
Domains Component

Using BEA Tuxedo Security 2-23

2 Administering Security

Establishing a Link Between Domains

When a domain gatewag{VTDOMANattempts to establish a network link with
another domain gateway, the following major events occur.

1. Theinitiator domain gateway and thargetdomain gateway exchange link-level
encryption (LLE)min-maxvalues to be used to set up LLE on the link between the
gateways. LLE is described in “Link-Level Encryption” on page 1-23.

2. Theinitiator and target domain gateways authenticate one another through the
exchange of security tokeassuminghat both gateways are running BEA
Tuxedo Release 7.1 or later software.

If one or both of the domain gateways are running BEA Tuxedo pre-Release 7.1
software, the gateway processes use an older (pre-Release 7.1) authentication
protocol when setting up the connection.

2-24 Using BEA Tuxedo Security

Establishing a Link Between Domains

As the administrator, you use the following configuration parameter to establish a link
between domain gateways running BEA Tuxedo Release 7.1 or later software.

Parameter Name

Description Setting

CONNECTION_PRINCIPAL_NAME When this parameter appears in the 1-511 characters. If

in DMCONFIG
(TA_DMCONNPRINCIPALNAME
DM_MIB

DM_LOCAL_DOMAINS&ection of th®©MCONFIG not specified, the
file, its value becomes the principal name of theprincipal name
local domain access point when setting up a defaults to the
connection with a remote domain access point. DOMAINIDstring for

For default authentication plug-ins, if a value is the local domain
assigned t€ONNECTION_PRINCIPAL_NAME &ccess point.
for the local domain access point, it must be the

same as the value assigned toD@MAINID

parameter for the local domain access point. If

these values do not match, the local domain

gateway process witiotboot, and the system will

generate the followingserlog(3c) message:

ERROR: Unable to acquire

credentials
When this parameter appears in the 1-511 characters. If
DM_REMOTE_DOMAINBS8ction of the not specified, the

DMCONFIGile for a particular remote domain principal name
access point, its value becomes the principal nardefaults to the

of the remote domain access point when settind OMAINIDstring for
up a connection with the local domain access the remote domain
point. access point.

For default authentication plug-ins, if a value is
assigned t€ONNECTION_PRINCIPAL_NAME
for a remote domain access point, it must be the
same as the value assigned toD@MAINID
parameter for the remote domain access point. If
these values do not match, any attempt to set up a
connection between the local domain gateway
and the remote domain gateway will fail, and the
system will generate the following

userlog(3c) messageERROR: Unable to
initialize administration key for

domain domain_name .

* The local domain access point is also known asBr@Mpronounced “el dom”) or simplpcal domain A
remote domain access point is also known aRR@Mpronounced “are dom”) or simphgmote domain

Using BEA Tuxedo Security 2-25

2 Administering Security

The following diagram demonstrates how a link is established between domains usin
default authentication plug-ins.

Figure 2-9 Establishing a Link Between Domains Using Default Authentication

— Part of BEA Tuxedo Application 1 — — Part of BEA Tuxedo Application 2 —

dmconfigl dmconfig2

*DM_LOCAL_DOMAINS *DM_LOCAL_DOMAINS

c01 GWGRP=bankgl b01 GWGRP=auth

TYPE=TDOMAIN TYPE=TDOMAIN
DOMAINID="BA.CEN1" DOMAINID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1" CONNECTION_PRINCIPAL_NAME="BA.BK1"
SECURITY=DM_PW SECURITY=DM_PW

*DM_REMOTE_DOMAINS *DM_REMOTE_DOMAINS

b0l TYPE=TDOMAIN c01 TYPE=TDOMAIN
DOMAINID="BA.BK1" DOMAINID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.BK1" CONNECTION_PRINCIPAL_NAME="BA.CEN1"

dmloadcf -y dmconfigl dmloadcf -y dmconfig2
bdmconfigl ‘ bdmconfig2 ‘

: l

Initiator Domain Gateway (GWTDOMAIN) DM_PW | Target Domain Gateway (GWTDOMAIN)

password
(encrypt) "BA.BK1"
Credentials "BA.CEN1" | Credentials
| i o & b
“acquire 1. Call “initiate Network Link 2. Call “accept “acquire
credentials” security context” security context” credentials”
Function Function Function Function
BEA Tuxedo Security | BEA Tuxedo Security . 1
Authentication Plug-in Authentication Plug-in

2-26 Using BEA Tuxedo Security

Establishing a Link Between Domains

Note: The “Credentials” shown in the preceding diagram were acquired by each
domain gateway process at application booting using the
CONNECTION_PRINCIPAL_NAMEdentity configured for the local domain
access point.

In the preceding diagram, notice that the information exchanged between the initiator
and target domain gateways involves G@NNECTION_PRINCIPAL_NAMEtrings

configured for the domain gateways, as specified irBth/@CONFIdiles. Each
authentication plug-in uses the password assigned to the remote domain access point
(as defined in themM_PASSWORBection of th&8DMCONFIdile) to encrypt the string

before transmitting it over the network, and uses the password assigned to the local
domain access point (as defined intive PASSWORB®ction of th@DMCONFIdile)

to decrypt the received string. The encryption algorithm used is 56-bit DES, where
DES is an acronym for the Data Encryption Standard.

For the encryption/decryption operation to succeed, the assigned password for the
remote domain access point in the I®BaMCONFIdile must be the same as the
assigned password for the local domain access point in the rBpa@ONFIdile.
(Similarly, if the domain security level is setABP_PWthe application passwords in

the respectivd UXCONFIGiles must be identical for the encryption/decryption
operation to succeed.) For the authentication process to succeed, the received string
must match th€ ONNECTION_PRINCIPAL_NAMEtring configured for the sender.

When the domain gateways pass the security checks, the link is established, and the
gateways can forward service requests and receive replies over the established link.

Example DMCONFIG Entries for Establishing a Link

In the following example, the configurations shown in the los&tONFIdile are used
when establishing a connection through the local domain access@iahnd the
remote domain access poftl .

*DM_LOCAL_DOMAINS
<LDOM name> <Gateway Group name> <domain type>
<domain id> [<connection principal name>] [<security>]...
c01 GWGRP=bankg1l
TYPE=TDOMAIN
DOMAINID="BA.CENTRALO1"
CONNECTION_PRINCIPAL_NAME="BA.CENTRALO1"
SECURITY=DM_PW

Using BEA Tuxedo Security 2-27

2 Administering Security

*DM_REMOTE_DOMAINS

<RDOM name> <domain type> <domain id>

[<connection principal name>]...

b01 TYPE=TDOMAIN
DOMAINID="BA.BANKO1"
CONNECTION_PRINCIPAL_NAME="BA.BANKO01"

See Also

m “Specifying Principal Names” on page 2-11

m “Mandating Interoperability Policy” on page 2-15
m “Setting ACL Policy” on page 2-29

m “Security Administration Tasks” on page 2-3

m “How to Set Up Domains Authentication” on page 2-39Bing the BEA
Tuxedo Domains Component

2-28 Using BEA Tuxedo Security

Setting ACL Policy

Setting ACL Policy

As the administrator, you use the following configuration parameters to set and control
the access control list (ACL) policy between applications running BEA Tuxedo
Release 7.1 or later software.

Parameter Name Description Setting

ACL_POLICYin DMCONFIG May appear in th®M_REMOTE_DOMAINS LOCALor GLOBAL

(TA_DMACLPOLICYNDM_MIB section of theDMCONFIGile for each remote Default isSLOCAL
domain access point. Its value for a particular | ocALmeans modify
remote domain access point determines wheth@fe igentity of service
or not the local domain gateway modifies the requests, anGLOBAL
identity of service requests received from the |,aans pass service

remote domain.* requests with no change.

LOCAL_PRINCIPAL_NAMEN May appear in th®M_REMOTE_DOMAINS 1- 511 characters. If not

DMCONFIG section of theOMCONFIGile for each remote specified, the principal
(TA_DMLOCALPRINCIPALNAM domain access point. If theCL_POLICY name defaults to the
E in DM_MIB parameter is set (or defaulted)4OCALfor a DOMAINIDstring for the

particular remote domain access point, the locatmote domain access
domain gateway modifies the identify of serviceoint.

requests received from the remote domain to the

principal name specified in

LOCAL_PRINCIPAL_NAME

* A remote domain access point is also known aR@Mpronounced “are dom”) or simplgmote domain

The following three figures show how theL_POLICY configuration affects the
operation of local domain gatewa@WTDOMANrocesses.

Using BEA Tuxedo Security 2-29

2 Administering Security

Figure 2-10 Establishing a Local ACL Policy

~ - N
N — ~ Vi 7/
Application 1 Running Application 2 Running
BEA Tuxedo Release 7.1 or Later Software BEA Tuxedo Release 7.1 or Later Software
/ N/ \
[ACL_POLICY=LOCAL) [ACL_POLICY=LOCAL \

(Default) I (Default)

\ \
GWTDOMAIN / \ GWTDOMAIN

/ () \
[\4/ \
[inbound ||| outbound |
\ Workstation _l outbound | |\ inbound _l Workstation /

\ Client p= :{>/ L == Client /

— N —
h — \ / Net_/vork) \ / i 4
\ /o~ J/ Connection (Link) N N y
N / AN e

In the preceding figure, each domain gatewayw{DOMAMNModifiesinboundclient
requests (requests originating from the remote application and received over the
network connection) so that they take on teAL_PRINCIPAL_NAMHEdentity
configured for the remote domain access point and thus have the same access
permissions as that identity. Each domain gateway pass$iesundclient requests
without change.

In this configuration, each application has an ACL database containing entyiéws
users in its own domain. One such user i th@AL_PRINCIPAL_NAMHEdentity
configured for the remote domain access point.

Note: The preceding description also applies to applications running BEA Tuxedo
pre-Release 7.1 software except that the system usBOEMINID identity
configured for the remote domain access point. Essentially, the local ACL
policy is hardcoded in BEA Tuxedo Release 6.5 or earlier software.

2-30 Using BEA Tuxedo Security

Setting ACL Policy

BEA Tuxedo Release 7.1 or Later Software

Figure 2-11 Establishing a Global ACL Policy

- — - ~
N - N i 7/
Application 1 Running Application 2 Running
BEA Tuxedo Release 7.1 or Later Software

AN /
ACL_POLICY=GLOBA\, [ACL_POLICY=GLOBAL
(Pass-through) I (Pass-through)

\ \
GWTDOMAIN / \ GWTDOMAIN

(\
\4/ \
inbound ||| outbound |
\ Workstation _l Native) outbound /|| inbound _l Workstation /
. — Client I::>/ \:> [i—y\ Client /

— N — s

\ / Network \ / -
~ / Connection (Link) \ ~
\ /T - -7 /
N / A e

In the preceding figure, each domain gatewayw{DOMANpasses inbound and
outbound client requests without change. In this configuration, each application has an
ACL database containing entries for users in its own doamimell asusers in the

remote domain.

Using BEA Tuxedo Security 2-31

2 Administering Security

Figure 2-12 Establishing a One-Way Local and One-Way Global ACL Policy

~ - N
AN - N\ s /
Application 1 Running Application 2 Running
BEA Tuxedo Release 7.1 or Later Software BEA Tuxedo Release 7.1 or Later Software
/ N/ \
[ACL_POLICY=LOCAL) [ACL_POLICY=GLOBAL \
(Default) | | (Pass-through)

GWTDOMAIN / \ GWTDOMAIN

/ () \
[\4/ \
| inbound ||| outbound |
\ Workstation _l Native\ outbound ||\ inbound (Native _l Workstation /

\ Client = Client :>/ \:> Client = Client /

— N — s
S /\ / Network \ /\ —
~ / Connection (Link) \ -
\ /T - -7 /
~ / AN e

In the preceding figure, the domain gatewayfDOMAINN application 1 modifies
inbound client requests so that they take orLth@AL_PRINCIPAL_NAMHdentity
configured for the remote domain access point for application 2 and thus have the san
access permissions as that identity; the domain gateway passes outbound client
requests without change. The domain gateveyTDOMAINN application 2 passes
inbound and outbound client requests without change.

In this configuration, application 1 has an ACL database containing eofiefor

users in its own domain; one such user isLth€AL_PRINCIPAL_NAMHdentity

configured for the remote domain access point for application 2. Application 2 has ar
ACL database containing entries for users in its own doaminell asisers in
application 1.

Impersonating the Remote Domain Gateway

If the domain gateway receives a client request from a remote domain for which the
ACL_POLICY parameter is set (or defaulted)LtoCALIn the locaDMCONFIdile, the
domain gateway performs the following tasks.

2-32 Using BEA Tuxedo Security

Setting ACL Policy

1. Calls the internal “impersonate user” function to get authorization and auditing
tokens for the cliertased on theOCAL_PRINCIPAL_NAMEHdentity configured for
the remote domain access point

2. Uses these tokens to overwrite the tokens already attached to the client request
3. Forwards the request to the destination server

For more detail on the “impersonate user” function, see “Establishing an Identity for
an Older Client” on page 2-20.

Example DMCONFIG Entries for ACL Policy

In the following example, the connection through the remote domain accesisgoint
is configured for global ACL in the locaIMCONFIdile, meaning that the domain
gateway process for domain access paint passes client reque$tem andto

domain access poibdl without change. For global ACL, the
LOCAL_PRINCIPAL_NAMEentry for domain access pobsil is ignored.

*DM_LOCAL_DOMAINS
<LDOM name> <Gateway Group name> <domain type> <domain id>
[<connection principal name>] [<security>]...
c01 GWGRP=bankg1l
TYPE=TDOMAIN
DOMAINID="BA.CENTRALO1"
CONNECTION_PRINCIPAL_NAME="BA.CENTRALO1"
SECURITY=DM_PW

*DM_REMOTE_DOMAINS
<RDOM name> <domain type> <domain id> [<ACL policy>]
[<connection principal name>] [<local principal name>]...
b01 TYPE=TDOMAIN
DOMAINID="BA.BANKO1"
ACL_POLICY=GLOBAL
CONNECTION_PRINCIPAL_NAME="BA.BANKO1"
LOCAL_PRINCIPAL_NAME="BA.BANKO01.BOB"

Using BEA Tuxedo Security 2-33

2 Administering Security

See Also

m “Specifying Principal Names” on page 2-11
m “Mandating Interoperability Policy” on page 2-15
m “Establishing a Link Between Domains” on page 2-24

m “Security Administration Tasks” on page 2-3

Administering Authorization

Authorization enforces limitations on user access to resources or facilities within a
BEA Tuxedo application in accordance with application-specific rules. Only when
users are authenticated to join an application does authorization go into effect.

The procedures for administering authorization depend upon the underlying
authorization system of the application. For procedures to administer a custom
authorization system, see the documentation for that system. For procedures to
administer the default authorization system, see “Administering Default
Authentication and Authorization” on page 2-56.

See Also

m “Authorization” on page 1-12

m “Default Authentication and Authorization” on page 1-44

m “Administering Default Authentication and Authorization” on page 2-56
m “Security Administration Tasks” on page 2-3

m “Security Compatibility” on page 1-59

2-34 Using BEA Tuxedo Security

Administering Link-Level Encryption

Administering Link-Level Encryption

Link-level encryption establishes data privacy for messages moving over the network
links that connect the machines in a BEA Tuxedo application. There are three levels of
link-level encryption (LLE) security: 0-bit (no encryption), 56-bit (International), and
128-bit (United States and Canada). The International LLE version allows 0-bit and
56-bit encryption. The United States and Canada LLE version allows 0, 56, and 128-bit
encryption.

LLE applies to the following types of BEA Tuxedo links:
m Workstation client to Workstation Handler (WSH)

m Bridge to Bridge

m Administrative utility (such asnboot) to tlisten

m Domain gateway to domain gateway

Understanding min and max Values

Before you can configure LLE for your application, you need to be familiar with the
LLE notation: (min, max. The defaults for these parameters are:

m Formin: 0

m Formax Number of bits that indicates the highest level of encryption possible
for the installed LLE version

For example, the defaultin andmaxvalues for the United States and Canada LLE
version are (0, 128). If you want to change the defaults, you can do so by assigning new
values tomin andmaxin theUBBCONFIdile for your application.

For more information, see “How LLE Works” on page 1-24 and “Encryption Key Size
Negotiation” on page 1-24.

Using BEA Tuxedo Security 2-35

2 Administering Security

Verifying the Installed LLE Version

You can verify the LLE version installed on a machine by runningnthémin
command irverbose mode.

tmadmin -v

Key lines from the local BEA Tuxed.txt file will appear on your computer
screen, similar to the sample display shown below. The sampleSaIREBNGTH=128
indicates a United States and Canada LLE version.

[BEA Tuxedo] VERSION=7.1
[LINK ENCRYPTION] VERSION=7.1
STRENGTH=128

All BEA Tuxedo licenses are in tirUXDIR/udataobj/lic.txt file on a UNIX
host machine, or in th TUXDIR%\udataobj\lic.txt file on a Windows NT host
machine.

How to Configure LLE on Workstation Client Links

2-36

If Workstation clients are included in an application, the administrator must configure
one or more Workstation Listeners (WSLs) to listen for connection requests from
Workstation clients. Each WSL uses one or more associated Workstation Handlers
(WSHSs) to handle the Workstation client workload. Each WSH can manage multiple
Workstation clients by multiplexing all requests and replies with a particular
Workstation client over a single connection.

As the administrator, you enable Workstation client access to the application by
specifying a WSL server in ttRERVERSection of the application\$BBCONFIile.

You need to specify the and-z command-line options for the WSL server if you
want to override the defaults for the Llskin andmax parameters. (See
“Understanding min and max Values” on page 2-35 for details.) Of course, link-level
encryption is possible only if LLE is installed on both the local machine and the
Workstation client.

Using BEA Tuxedo Security

Administering Link-Level Encryption

Note: At the Workstation client end of a network connection, you use environment
variableSTMINENCRYPTBITSandTMAXENCRYPTBIT$0 override the defaults
for the LLE min andmax parameters.

To configure LLE on Workstation client links, follow these steps.

1. Ensure that you are working on the applicatit®8 TERMmachine and that the
application is inactive.

2. OpenuUBBCONFIGwith a text editor and add the following lines to 8#RVERS
section.

*SERVERS
WSL SRVGRP=ygroup_name " SRVID= server_number
CLOPT="-A -- -z min -Z max..."

3. Load the configuration by runningloadcf(1) . Thetmloadcf command
parsesJBBCONFIGNd loads the binarfuXCONFIGile to the location referenced
by theTUXCONFIGvariable.

In the preceding example, wheaboot(1) starts the application, it passes'the-

-z min -Z max' command-line options to the WSL server. When establishing a
network link between a Workstation client and the WSH, the Workstation client and
WSL negotiate the key size until they agree on the largest key size supported by both.

SeewsL(5), WS_MIB(5) , andUBBCONFIG(5) in BEA Tuxedo File Formats and Data
Descriptions Referender additional information.

How to Configure LLE on Bridge Links

The BEA Tuxedo system architecture optimizes network communications by
establishing a multiplexechannelamong the machines in a multiple-machine
application. BEA Tuxedo messages flow in both directions over this channel, and the
message traffic is managed by a specialized BEA Tuxedo server known as a Bridge
server.

As the administrator, you place an entry inkiETWORKection of th&JBBCONFIdile

for each machine in a BEA Tuxedo application on which a Bridge server resides. You
need to specify thRIINENCRYPTBITSandMAXENCRYPTBIT®ptional run-time
parameters for the Bridge server if you want to override the defaults for thenloLE

Using BEA Tuxedo Security 2-37

2 Administering Security

andmaxparameters. (See “Understanding min and max Values” on page 2-35 for
details.) Of course, Bridge-to-Bridge link-level encryption is possible only if LLE is
installed on the machines where the Bridge servers reside.

To configure LLE on Bridge links, follow these steps.

1. Ensure that you are working on the applicatM®¥sTERmachine and that the
application is inactive.

2. OpenuUBBCONFIQwith a text editor and add the following lines to E&TWORK
section.

*NETWORK

LMID NADDR="bridge_network_address" BRIDGE="bridge_device"
NLSADDR="listen_network_address"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

LMID is the logical machine where the Bridge server resides; it has direct access
to the network device specified in tRRIDGE parameter.

3. Load the configuration by runningloadcf(1) . Thetmloadcf command
parsesJBBCONFIGNd loads the binafuUXCONFIGile to the location referenced
by theTUXCONFIGvariable.

In the preceding example, wheiboot(1) starts the application, the Bridge server
reads thEUXCONFIGile to access various parameters, inCluMIYENCRYPTBITS
andMAXENCRYPTBITSWhen establishing a network link with a remote Bridge server,
the local and remote Bridge servers negotiate the key size until they agree on the
largest key size supported by both.

SeeTM_MIB(5) andUBBCONFIG(5) in BEA Tuxedo File Formats and Data
Descriptions Referender additional information.

How to Configure LLE on tlisten Links

2-38

tlisten(1) is a network-independetfistenerprocess that provides connections
between nodes of a multiple-machine application, on which administrative utilities
such asmboot(l) can run. The application administrator instélésen on all
machines defined in theETWORKection of theJBBCONFIdile.

Using BEA Tuxedo Security

Administering Link-Level Encryption

To configure LLE ortlisten links, follow the steps given in the previous topic,
“How to Configure LLE on Bridge Links” on page 2-37. If you so desire, you can start
a separate instance tiften on the local machine by entering a command such as:

tlisten -l nlsaddr [-z min-Z maXx

Thenisaddr value must be the same as that specified foNtisADDRparameter for
this machine in thelETWORKection of theJBBCONFIdile. Seetlisten(1) in BEA
Tuxedo Command ReferenaadT™M_MIB(5) andUBBCONFIG(5) in BEA Tuxedo File
Formats and Data Descriptions Refererfoeadditional information.

How to Configure LLE on Domain Gateway Links

A domain gateway is @WTDOMAIRrocess that relays service requests and service
replies between two or more BEA Tuxedo applications. It provides interoperability
through a specially designed transaction processing (TP) protocol that flows over
network transport protocols such as TCP/IP.

A domain gateway belongs talamain gateway groygor which a separate Domains
configuration file is required. A domain gateway group consists of a local domain
access point. ooy and the remote domain access poiRBBEMswith which theLDOM
communicates. Like the application configuration fileBBCONFIGandTUXCONFIG

a Domains configuration file is created in text format and then converted to binary
format. The text and binary files are referred tORELONFIGINABDMCONFIG
respectively. Th®@MCONFIGiIndBDMCONFIdiles, and the environment variables
associated with them, are described onDEONFIG(5) reference page IBEA

Tuxedo File Formats and Data Descriptions Reference

As the administrator, you must place an entry indtkle TDOMAINection of the
DMCONFIdile for each local domain access point that will accept requests for local
services from remote domain access points. You must also create an entry for each
remote domain access point accessible by a defined local domain access point. You
need to specify thRIINENCRYPTBITSandMAXENCRYPTBIT®ptional run-time

parameters for each domain access point for which you want to override the defaults
for the LLE min andmax parameters. (See “Understanding min and max Values” on
page 2-35 for details.) Of course, domain-to-domain link-level encryption is possible
only if LLE is installed on the machines where the domains reside.

Using BEA Tuxedo Security 2-39

2 Administering Security

2-40

To configure LLE on domain gateway links, follow these steps.

1. Ensure that you are working on the applicatix8TERmachine and that the
application is inactive.

2. OpenDMCONFI@vith a text editor and add the following lines to @ TDOMAIN
section.

*DM_TDOMAIN

Local network addresses

LDOM NWADDR=/ocal domain_network address "
NWDEVICE=local_domain_device "
MINENCRYPTBITSin
MAXENCRYPTBITSmax

Remote network addresses

RDOM NWADDR=temote _domain_network address "
NWDEVICE=temote_domain_device "
MINENCRYPTBITSin
MAXENCRYPTBITSmax

LDOMs a local domain access point identifier, &@DMs a remote domain
access point identifier.

3. Load the configuration by runninnloadcf(1) . Thedmloadcf command
parseDMCONFIGnNd loads the binaBDMCONFIdile to the location referenced
by theBDMCONFIvariable.

In the preceding example, wheiboot(1) starts the application, each domain
gateway reads thBDMCONFIGile to access various parameters, including
MINENCRYPTBITSandMAXENCRYPTBITSand propagates those parameters to its local
and remote domains. When the local domain is establishing a network link with a
remote domain, the two domains negotiate the key size until they agree on the large
key size supported by both.

SeeDMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Referémice
additional information. Also, see “Setting Up Security in Domains” on page 2-35"in
Using the BEA Tuxedo Domains Component

Using BEA Tuxedo Security

Administering Public Key Security

See Also

m “Link-Level Encryption” on page 1-23
m “Security Administration Tasks” on page 2-3
m “Security Interoperability” on page 1-53

m “Security Compatibility” on page 1-59

Administering Public Key Security

The most effective way to make a distributed application secure is to combine
link-level encryption with public key encryption. Public key encryption is the
framework on which public key security is built.

Public key security allows you to incorporate message-based digital signatures and
message-based encryption into your BEA Tuxedo applications. Together, these
capabilities provide data integrity and privacy, which are especially important when an
application interacts with other BEA Tuxedo applications or Workstation clients from
outside the company.

Recommended Practices for Public Key Security

m The application’s operating environment largely determines the level of security
achieved. For maximum safety, install hardware devices that protect private key
information.

m Establish policies regarding key expiration intervals and key renewal procedures.
Expiration of a Certification Authority’s certificate might have a dramatic impact
on system operation, and should be anticipated so updated user certificates can
be issued in advance.

Using BEA Tuxedo Security 2-41

2 Administering Security

Assigning Public-Private Key Pairs

Application administrators and developers need to choose a Certification Authority to

p

rovide public-private key pairs and the digital certificates associated with them. Ther

they must decide how to assign the key pairs to the application. There are many optiol
for assigning key pairs. An administrator can assign one or more of the following:

One public-private key to an entire application

A public-private key pair to each machine in an application
A public-private key pair to each server in an application
A public-private key pair to each service in an application

A public-private key pair to each end user

Application administrators and developers are responsible for choosing a method of

a

ssigning key pairs and assigning them. Once key pairs are assigned, however, no

more administrative work is required; the plug-ins for public key security distribute

a

nd manage the keys.

Setting Digital Signature Policy

As the administrator, you use the following configuration parameters to set the digita

signature policy for your application.
Parameter Name Description Setting
SIGNATURE_AHEAIN Maximum permissible time 1-2147483647
UBBCONFIG difference between (1) the seconds. Default is
(TA_SIGNATURE_AHEAIN timestamp value attached to a 3600 seconds (one
TM_MIB) digitally signed message buffer anchour).

(2) the time at which the message
buffer is received. If the signature
timestamp is too far into the future,
the receiving process rejects the
message buffer.

2-42 Using BEA Tuxedo Security

Administering Public Key Security

Parameter Name Description Setting
SIGNATURE_BEHINDN Maximum permissible time 1-2147483647
UBBCONFIG difference between (1) the time at seconds. Default is
(TA_SIGNATURE_BEHINDNn which a digitally signed message 604800 seconds
TM_MIB) buffer is received and (2) the (one week).

timestamp value attached to the
message buffer. If the signature
timestamp is too far into the past,
the receiving process rejects the
message buffer.

SIGNATURE_REQUIREIN Determines whether a receiving Y (yes—digital

UBBCONFIG process will accepinly message signature is

(TA_SIGNATURE_REQUIRED buffers that are digitally signed. required) oN (no—

in TM_MIB) digital signature is
not required).
Default isN.

Setting a Postdated Limit for Signature Timestamps

SIGNATURE_AHEAIs specified at the domain-wide level of the configuration
hierarchy, meaning that the value you assign to it applies to all processes running in
the application. Domain-wide parameters are set iiRE8OURCESection in the
UBBCONFIdile, and ther_DOMAINclass in th@M_MIB

The SIGNATURE_AHEAParameter establishes the maximum permissible time
difference between (1) the timestamp attached to the incoming message buffer and (2)
the current time shown on the verifying system’s local clock. The minimum value is 1
second; the maximum, 2147483647 seconds. The default is 3600 seconds (one hour).

If the attached timestamp shows a time too far into the future, the signature is
considered invalid. This parameter is useful for rejecting signatures that are postdated,
while allowing a certain amount of leeway for unsynchronized local clocks.

Example UBBCONFIG Entries for Postdated Limit

*RESOURCES
SIGNATURE_AHEAD 2400

Using BEA Tuxedo Security 2-43

2 Administering Security

Setting a Predated Limit for Signature Timestamps

SIGNATURE_BEHINDOSs specified at the domain-wide level of the configuration
hierarchy, meaning that the value you assign to it applies to all processes running in
the application. Domain-wide parameters are set iIRE®OURCESection in the
UBBCONFIdile, and theT_DOMAINclass in th&M_MIB.

The SIGNATURE_BEHINDparameter establishes the maximum permissible time
difference between (1) the current time shown on the verifying system’s local clock
and (2) the timestamp attached to the incoming message buffer. The minimum valus
is 1 second; the maximum, 2147483647 seconds. The default is 604800 seconds (o
week).

If the attached timestamp shows a time too far into the past, the signature is consider
invalid. This parameter is useful for resisting replay attacks, in which a valid signed
buffer is injected into the system a second time. However, in a system with
asynchronous communication—for example, in a system in which disk-based queue
are used—buffers signed a long time ago may still be considered valid. So, in a syste
with asynchronous communication, you may want to increass@ENATURE_BEHIND
setting.

Example UBBCONFIG Entries for Predated Limit

*RESOURCES
SIGNATURE_BEHIND 300000

Enforcing the Signature Policy for Incoming Messages

2-44

SIGNATURE_REQUIREINnay be specified any of the following four levels in the
configuration hierarchy:

m RESOURCESection inUBBCONFIGr T_DOMAINclass inTM_MIB
®m MACHINESsection inUBBCONFIGr T_MACHINEClass inTM_MIB
m GROUPSection inUBBCONFIGr T_GROURlass inTM_MIB

m SERVICESsection inUBBCONFIGOr T_SERVICE class inTM_MIB

SettingSIGNATURE_REQUIREIDY (yes) at a particular level means that signatures are
required for all processes running at that level or below. For example, setting
SIGNATURE_REQUIRERD Y for a machine nameadachl means that all processes
running onmach1 will accept only incoming messages that are digitally signed.

Using BEA Tuxedo Security

Administering Public Key Security

Qualifier

Example

m Set at the domain-wide leveRESOURCESection ofT_DOMAINclass), this
parameter covers all application services advertised within the domain, including
those advertised by gateway processes. The default is

m Set at the machine levelACHINESsection orT_MACHINEclass), this parameter
covers all application services advertised on a particular machine, including
those advertised by gateway processes. The default is

m Set at the group leveEROUPSection ofiT_GROURlass), this parameter covers
all application services advertised by a particular group, including those
advertised by gateway processes. The defauilt is

m Set at the service leve$ERVICESSsectionT_SERVICE class), this parameter
covers all instances of a particular service advertised within the domain,
including those advertised by gateway processes. The default is

You may specify botlsIGNATURE_REQUIRED=#ndENCRYPTION_REQUIRED=Y
togetherat the domain-wide level, machine level, group level, or service level. See
“Enforcing the Encryption Policy for Incoming Messages” on page 2-47 for a
description ofENCRYPTION_REQUIRED

The enforcement policy f@IGNATURE_REQUIRERpplies only to application
services, application events, and application enqueue requests. It does not apply to
system-generated service invocations and system event postings.

To configureSIGNATURE_REQUIREDr a machine namedachi, follow these steps.

1. Ensure that you are working on the applicati®8 TERMmachine and that the
application is inactive.

2. OpenuUBBCONFIGwith a text editor and add the following lines to EMCHINES
section.

*MACHINES

machl LMID=" machine_logical_name
TUXCONFIG="absolute_path_name_to_tuxconfig_file "
TUXDIR=" absolute_path_name_to BEA Tuxedo_directory
APPDIR=" absolute_path_name_to_application_directory
SIGNATURE_REQUIRED=Y

Using BEA Tuxedo Security 2-45

2 Administering Security

3. Load the configuration by runningloadcf(1) . Thetmloadcf command
parsesJBBCONFIGnNd loads the binauUXCONFIGile to the location referenced
by theTUXCONFIGvariable.

In the preceding example, whemnboot(1) starts the application, it passes the
SIGNATURE_REQUIRED=parameter to the machine namesth1. At that point, all
application services advertised fbgch1, including those advertised by gateway
processes, are allowed to accept only messages that include valid digital signatures.
a process controlled byachl receives a message that donesinclude a valid digital
signature, the system takes the following actions:

m Generates aserlog(3c) message (severigyARN

m Discards the buffer as if it were never received by the process

Note: A NULL (empty) buffer cannot be digitally signed, meaning that the system
rejects any NULL buffer received by a process requiring digital signatures, in
the manner stated in the preceding bullet list.

How the EventBroker Signature Policy Is Enforced

2-46

When digital signatures are attached to a posted message buffer, these signatures
preserved and forwarded along with the message buffer to subscribers for the releva
event.

If the TMUSREVT(5) system server is running in a domain, machine, or server group
that requires digital signatures, it rejects any incoming posting withoRSESN_OK
composite signature status—see “Understanding the Composite Signhature Status” c
page 3-56.

Possible subscription notification actions thatThi&SREVEBerver might take include
invoking a service or enqueuing a message. If the target service or queue requires ¢
valid digital signature, but one is not attached to the posted message, the subscriptic
notification action fails.

System events (events that are posted by the system itself and processed by the
TMSYSEVTerver) may be digitally signed. The administrative policies regarding
digital signature dmot apply to theTMSYSEVT(5) server.

Using BEA Tuxedo Security

Administering Public Key Security

How the /Q Signature Policy Is Enforced

When digital signatures are attached to a queued buffer, the signatures are preserved
in the queue and forwarded to the dequeuing process. Also, if a message is processed
by TMQFORWARD (S invoke a service, signatures are preserved.

If the TMQUEUE(5)system server is running in a domain, machine, or server group that
requires digital signatures, it rejects any incoming enqueue request without a
TPSIGN_OKcomposite signature status—see “Understanding the Composite Signature
Status” on page 3-56. In addition, theQUEUBerver requires a digital signature if

such a policy is in effect for the service name associated with the queue space.

How the Remote Client Signature Policy Is Enforced

If the Workstation Handler (WSH) is running in a domain, machine, or server group
that requires digital signatures, it rejects any incoming message buffer containing
application data without 3PSIGN_OKcomposite signature status—see
“Understanding the Composite Signature Status” on page 3-56.

Setting Encryption Policy

As the administrator, you use the following configuration parameter to set the
encryption policy for your application.

Parameter Name Description Setting
ENCRYPTION_REQUIRED Determines whether a receiving Y (yes—encryption
UBBCONFIG process will accepinly message is required) oN
(TA_ENCRYPTION_REQUIRED buffers that are encrypted. (no—encryption is
in TM_MIB) not required).
Default isN.

Enforcing the Encryption Policy for Incoming Messages

ENCRYPTION_REQUIREMay be specified at any of the following four levels in the
configuration hierarchy:

Using BEA Tuxedo Security 2-47

2 Administering Security

Qualifier

Example

2-48

m RESOURCESection inUBBCONFIGr T_DOMAINclass inTM_MIB
m MACHINESsection inUBBCONFIGr T_MACHINEClass inTM_MIB
m GROUPSection inUBBCONFIGr T_GROURlass inTM_MIB

m SERVICESsection inUBBCONFIGr T_SERVICE class inTM_MIB

SettingENCRYPTION_REQUIRE Y (yes) at a particular level means that encryption
is required for all processes running at that level or below. For example, setting
ENCRYPTION_REQUIRE Y for a machine namedachl means that all processes
running onmach1 will accept only incoming messages that are encrypted.

m Set at the domain-wide leve®ESOURCESection off_DOMAINclass), this
parameter covers all application services advertised within the domain, including
those advertised by gateway processes. The default is

m Set at the machine levelACHINESsection ofT_MACHINEclass), this parameter
covers all application services advertised on a particular machine, including
those advertised by gateway processes. The default is

m Set at the group leveGROUPSection ofT_GROURlass), this parameter covers
all application services advertised by a particular group, including those
advertised by gateway processes. The defauilt is

m Set at the service levedERVICESSsectionT_SERVICE class), this parameter
covers all instances of a particular service advertised within the domain,
including those advertised by gateway processes. The default is

You may specify botlENCRYPTION_REQUIRED=8NdSIGNATURE_REQUIRED=Y
togetherat the domain-wide level, machine level, group level, or service level. See
“Enforcing the Signature Policy for Incoming Messages” on page 2-44 for a
description ofSIGNATURE_REQUIRED

The enforcement policy f&NCRYPTION_REQUIREBRpplies only to application
services, application events, and application enqueue requests. It does not apply to
system-generated service invocations and system event postings.

To configureENCRYPTION_REQUIREfr a server group nama&d DGRPfollow these
steps.

Using BEA Tuxedo Security

Administering Public Key Security

1. Ensure that you are working on the applicatit®s TERMmachine and that the
application is inactive.

2. OpenuBBCONFIGwith a text editor and add the following lines to GROUPS
section.

*GROUPS

STDGRP LMID="machine_logical_name
GRPNO=5%erver_group_number
ENCRYPTION_REQUIRED=Y

3. Load the configuration by runningloadcf(1) . Thetmloadcf command
parsesJBBCONFIGNd loads the binarfuXCONFIGile to the location referenced
by theTUXCONFIGvariable.

In the preceding example, whenboot(1) starts the application, it passes the
ENCRYPTION_REQUIRED=arameter to the server group narsgdGRP At that

point, all application services advertised3WDGRPincluding those advertised by
gateway processes, are allowed to accept only messages protected by an encryption
envelope. If a process controlled 8yDGRRAeceives an unencrypted message, the
system takes the following actions:

m Generates aserlog(3c) message (severigRROR

m Discards the buffer as if it were never received by the process

Note: A NULL (empty) buffer cannot be encrypted, meaning that the system rejects
any NULL buffer received by a process requiring encryption, in the manner
stated in the preceding bullet list.

How the EventBroker Encryption Policy Is Enforced

When a posted message buffer is encrypted, encryption envelopes are preserved and
forwarded, along with the encrypted message content, to subscribers for the relevant
event.

If the TMUSREVT(5) system server is running in a domain, machine, or server group
that requires encryption, it rejects any incoming posting message that is not encrypted.

Possible subscription notification actions thatthSREVBerver might take include
invoking a service or enqueuing a message. If the target service or queue requires
encrypted input, but the posted message is not encrypted, the subscription natification
action fails. Also, if the subscriber does not possess an appropriate decryption key, the
event notification action fails.

Using BEA Tuxedo Security 2-49

2 Administering Security

System events (events that are posted by the system itself and processed by the
TMSYSEVBerver) may be encrypted. The administrative policies regarding encryption
do notapply to theTMSYSEVT(5) server.

How the /Q Encryption Policy Is Enforced

When a queued message buffer is encrypted, this status is preserved in the queue, :
the buffer is forwarded, in encrypted form, to the dequeuing process. Also, if a
message is processed TMQFORWARD(5)0 invoke a service, encryption status is
preserved.

If the TMQUEUE(5)system server is running in a domain, machine, or server group that
requires encryption, it rejects any incoming enqueue request that is not encrypted. I
addition, theTMQUEUBerver requires encryption if such a policy is in effect for the
service name associated with the queue space.

How the Remote Client Encryption Policy Is Enforced
If the Workstation Handler (WSH) is running in a domain, machine, or server group

that requires encryption, it rejects any incoming message buffer containing an
unencrypted application data buffer.

Initializing Decryption Keys Through the Plug-ins

As the administrator, you use the following configuration parameters to specify
principal names and decryption keys for the system processes running in your

application.
Parameter Name Description Setting
SEC_PRINCIPAL_NAMEN The name of the target 1 - 511 characters.
UBBCONFIG principal, which becomes the
(TA_SEC_PRINCIPAL_NAMEN identity of one or more
TM_MIB) system processes.
SEC _PRINCIPAL_LOCATIONINn The location of the file or 1- 511 characters.
UBBCONFIG device where the decryption If not specified,
(TA_SEC_PRINCIPAL_LOCATION (private) key for the target defaults to &NULL
in TM_MIB) principal resides. (zero length) string.

2-50 Using BEA Tuxedo Security

Administering Public Key Security

Parameter Name Description Setting
SEC_PRINCIPAL_PASSVARN The variable in which the 1 - 511 characters.
UBBCONFIG password for the target If not specified,
(SEC_PRINCIPAL_PASSVARN principal is stored. defaults to aNULL
TM_MIB) (zero length) string.

This trio of configuration parameters can be specified at any of the following four
levels in the configuration hierarchy:

m RESOURCESection inUBBCONFIGor T_DOMAINclass inTM_MIB
m MACHINESsection inUBBCONFIGor T_MACHINEclass inTM_MIB
m GROUPSection inUBBCONFIGOr T_GROURlass inTM_MIB

m SERVERSsection inUBBCONFIGor T_SERVERCclass inTM_MIB

A principal name and decryption key at a particular configuration level can be
overridden at a lower level. For example, suppose you configure a principal name and
decryption key for machineach1, and a principal name and decryption key for a
server calledervl running onmachl. The processes onachl behave as follows:

m All processes omachl exceptervl processes use the decryption key assigned
to machl to decrypt any received message buffer that is encrypted.

m All servl processes use the decryption key assignedrta to decrypt any
received message buffer that is encrypted.

Configured decryption keys are automatically opened when an application is booted.
The following figure demonstrates how the process works.

Using BEA Tuxedo Security 2-51

2 Administering Security

Figure 2-13 How a Decryption Key Is Initialized—Example

Myubbconfig

*RESOURCES

SEC_PRINCIPAL_NAME “Tommy”
SEC_PRINCIPAL_LOCATION “/homel..."
SEC_PRINCIPAL_PASSVAR “TOMMY_VAR"

tmloadcf -y myubbconfig
Enter password for Tommy:
password

(User Input)
(System Response)
(User Input)

Re-enter password for Tommy: (System Response)

password

Mytuxconfig l

tmboot()

'

BEA Tuxedo Library

y

BEA Tuxedo Security

(User Input)

Public Key Security Plug-in Interface

A A

]

Proof Material Mapping

map_proof

Public Key Initialization

PKi_init

L

2-52 Using BEA Tuxedo Security

l

tpkey_open(key_handle, “Tommy”, “/home/..."”,
“password’, password_len, TPKEY_DECRYPT

|

Decryption Key Handle for Tommy

Administering Public Key Security

The following is a detailed description of how the operation shown in the preceding
figure is performed.

1. The administrator define€®=C_PRINCIPAL_NAMESEC_PRINCIPAL_LOCATION
andSEC_PRINCIPAL_PASSVARat a particular level in the application’s
UBBCONFIdile.

2. The administrator loads the configuration by runninigadcf(1) . The
tmloadcf command parsa$BBCONFIGand loads the binaryjuXCONFIGile to
the location referenced by th&/XCONFIGvariable.

3. When prompted, the administrator enters and then re-enters the password for the
target principal.

4. The administrator enters thmeboot(1) command to boot the application.

5. During the boot process, thep_proof plug-in readSEC_PRINCIPAL_NAME
SEC_PRINCIPAL_LOCATION andSEC_PRINCIPAL_PASSVARanalyzes their
values, and then determines whether the calling process has proven its right to
access the requested decryption key. (Having access to a decryption key, or
private key, is equivalent to possessing the principal’s identity.)

6. If the password associated wWBEC_PRINCIPAL_PASSVARmMatches the assigned
password for the principal specified$EC_PRINCIPAL_NAME themap_proof
plug-in passes the name, location, and password of the principalR&itiret

plug-in.

7. ThePKi_init plug-in callstpkey_open(3c) with the name, location, and
password of the principal as arguments. It returns a decryption key handle for the
principal.

Each time you invokenloadcf to load the configuration, you are prompted to enter
the password for each of the decryption keys configured with
SEC_PRINCIPAL_PASSVARIf you want to avoid having to enter each password
manually, you can write a script that automatically enters the passwords. The script
must include a definition of each password variable, and it must end with the following
line:

tmloadcf -y ubbconfig_name < /dev/null

No application process has permission to close a decryption key opened during
application booting. The decryption keys stay open until you rumngi@itdown(1)
command to shut down the application.

Using BEA Tuxedo Security 2-53

2 Administering Security

Example UBBCONFIG Entries for Principal Names and Decryption Keys

*RESOURCES

SEC_PRINCIPAL_NAME "Tommy"
SEC_PRINCIPAL_LOCATION "/home/jhn/secsapp/cert/tommy.pvk"
SEC_PRINCIPAL_PASSVAR "TOMMY_VAR"

*SERVERS

"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1
CLOPT="-s secsdb:TMQUEUE"
SEC_PRINCIPAL_NAME= "TOUPPER"
SEC_PRINCIPAL_LOCATION="/home/jhn/secsapp/cert TOUPPER.pvk"
SEC_PRINCIPAL_PASSVAR= "TOUPPER_VAR"

Failure Reporting and Auditing

This topic explains how the system manages errors found through digital signatures
and message encryption.

Digital Signature Error Handling

2-54

If message tampering is detected (that is, if the composite signature status is either
TPSIGN_TAMPERED_MESSAGETPSIGN_TAMPERED_CER¥see “Understanding the
Composite Signature Status” on page 3-56), the system takes the following actions:

m Generates aserlog(3c) message (severigRROR
m Discards the buffer as if it were never received by the process

If any individual signature associated with an expired certificate, revoked certificate,
expired signature, or postdated signature is detected, the system takes the following
actions:

m Generates aserlog() message (severityARN

m Discards the buffer as if it were never received by the pragdessthe buffer’s
composite signature statusTiBSIGN_OKor TPSIGN_UNKNOWN

Using BEA Tuxedo Security

Administering Public Key Security

If a process that requires a valid digital signature (based on the
SIGNATURE_REQUIRED=%etting) receives a message with the composite signature
statusTPSIGN_UNKNOWIthe system takes the following actions:

m Generates aserlog() message (severityARN

m Discards the buffer as if it were never received by the process

Encryption Error Handling

See Also

If a process receives an encrypted message but does not possess an open decryption
key matching one of the message’s encryption envelopes, the system takes the
following actions:

m Generates aserlog(3c) message (severigRROR
m Discards the buffer as if it were never received by the process

If a process that requires encrypted input (based oBENB®YPTION_REQUIRED=Y
setting) receives an unencrypted message, the system takes the following actions:

m Generates aserlog() message (severigRROR

m Discards the buffer as if it were never received by the process

m “Public Key Security” on page 1-29

m “Public Key Implementation” on page 1-41
m “Security Administration Tasks” on page 2-3
m “Security Interoperability” on page 1-53

m “Security Compatibility” on page 1-59

Using BEA Tuxedo Security 2-55

2 Administering Security

Administering Default Authentication and
Authorization

Default authentication and authorization work in the same manner that BEA Tuxedo
authentication and authorization have worked since they were first made available
with the BEA Tuxedo system.

Default authentication provides three levels of security: no authentic atGmey
application passworddPP_P\), and user-level authenticatiodER_AUTH Default
authorization provides two levels of security: optional access controA@is} &nd
mandatory access control liMANDATORY_AQLOnly when users are authenticated to
join an application does the access control list become active.

Designating a Security Level

As the administrator, you can use one of three ways to designate a security level for
application: by editing theBBCONFIGconfiguration file, by changing them_MIB, or
by using the BEA Administration Console.

Establishing Security by Editing the Configuration File

2-56

In your UBBCONFIGile, set theSECURITY parameter to the appropriate value.
SECURITY {NONE | APP_PW | USER_AUTH | ACL | MANDATORY_ACL}

The default iSNONE If SECURITYis set tdUSER_AUTHACL, or MANDATORY_AGthen
a system-supplied authentication server naagtHSVRs invoked to perform
per-user authentication.

If you select any value other thal®NE make sure that the value of thePDIR

variable is unique for each BEA Tuxedo application running om&&TERSIte.

Multiple applications cannot share the same application directory if security features
are being used.

Using BEA Tuxedo Security

Administering Default Authentication and Authorization

Establishing Security by Changing the TM_MIB

To designate a security level through e MIB, you must assign a value to the
TA_SECURITYattribute in ther_DOMAINclass. When an application is inactive, the
administrator casET the value offA_SECURITYto any of the values that are valid in
UBBCONFIGTo complete this task, run the administrative interfpagmcall(3c)

Establishing Security by Using the BEA Administration Console

You can also designate a security level through the BEA Administration Console. The
BEA Administration Console is a Web-based tool used to configure, monitor, and
dynamically re-configure an application.

Configuring the Authentication Server

The BEA Tuxedo server calledUTHSVRprovides a single serviceRUTHSVCwhich
performs authenticatiomUTHSVAds advertised by theUTHSVRserver asAUTHSVC
when the security level is setA@L or MANDATORY_ACL

To addAUTHSVQo an application, you need to defingTHSVCas the authentication
service anchUTHSVRas the authentication server in th@BCONFIdile. For example:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

*SERVERS
AUTHSVR SRVGRP=roup_name " SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

If you omit the parameter-value entky THSVC AUTHSVQhe system callsUTHSVC
by default.

As another example:
*RESOURCES

SECURITY ACL
AUTHSVC .AUTHSVC

Using BEA Tuxedo Security 2-57

2 Administering Security

*SERVERS
AUTHSVR SRVGRP=group_name " SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

If you omit the parameter-value en#y THSVC ..AUTHSVG, the system calls
..AUTHSVC by default.

AUTHSVRmay be replaced with an authentication server that implements logic specific
to the application. For example, a company may want to develop a custom
authentication server so that it can use the popular Kerberos mechanism for
authentication.

To add a custom authentication service to an application, you need to define your
authentication service and server in tBBCONFIdile. For example:

*RESOURCES

SECURITY USER_AUTH
AUTHSVC KERBEROS

*SERVERS
KERBEROSSVR SRVGRPgltoup_name " SRVID=1 RESTART=Y GRACE=600
MAXGEN=2 CLOPT="-A"

See Also

m “How to Enable Application Password Security” on page 2-59

m “How to Enable User-Level Authentication Security” on page 2-60
m “Enabling Access Control Security” on page 2-64

m “Default Authentication and Authorization” on page 1-44

m “Security Administration Tasks” on page 2-3

m AUTHSVR(5) in theBEA Tuxedo File Formats and Data Descriptions Reference

2-58 Using BEA Tuxedo Security

How to Enable Application Password Security

How to Enable Application Password
Security

See Also

Default authentication offers application passwordecurity level that you invoke

by specifyingSECURITY APP_PWin your configuration file. This level requires that
every client provide an application password as part of the process of joining the
application. The administrator defines a single password for the entire application and
gives the password only to authorized users.

To enable thaPP_PWsecurity level, follow these steps.

1.

Ensure that you are working on the applicaWM®sTERNMachine and that the
application is inactive.

Set theSECURITY parameter in thBESOURCESection of theJBBCONFIdile to
APP_PW

Load the configuration by runningloadcf(1) . Thetmloadcf command
parsesJBBCONFIGand loads the binarfuXCONFIGfile to the location referenced
by theTUXCONFIGvariable.

The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect
until you change it by using thgsswd command ofmadmin .

Distribute the application password to authorized users of the application through
an off-line means such as telephone or letter.

“Default Authentication and Authorization” on page 1-44
“Administering Default Authentication and Authorization” on page 2-56

“Security Administration Tasks” on page 2-3

Using BEA Tuxedo Security 2-59

2 Administering Security

How to Enable User-Level Authentication
Security

Default authentication offersuser-level authenticatiogecurity level that you invoke

by specifyingSECURITY USER_AUTHN your configuration file. This security level
requires that in addition to the application password, each client must provide a valic
user name and user-specific data, such as a password, to join the application. The
per-user password must match the password associated with the combination
user-client name stored in a file nampgkr . The checking of per-user password
against the password and user-client nameuin is carried out by the authentication
serviceAUTHSVGwhich is provided by the authentication sera&THSVR

To enable th&JSER_AUTHsecurity level, follow these steps.
1. Set up th&)BBCONFIdile.
2. Set up the user and group files.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensure that you are working on the applicat®¥sTERmachine and that the
application is inactive.

2. OpenuUBBCONFIGwith a text editor and add the following lines to HESOURCES
andSERVERSsections.

*RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

*SERVERS
AUTHSVR SRVGRP=roup_name "SRVID=1RESTART=Y GRACE=600MAXGEN=2
CLOPT="-A"

2-60 Using BEA Tuxedo Security

How to Enable User-Level Authentication Security

CLOPT="-A" causesmboot(1) to pass only the default command-line options
(invoked by"-A") to AUTHSVRVhentmboot starts the application. By default,
AUTHSVRuses the client user information in a file nanmedr to authenticate
clients that want to join the applicatiapusr resides in the directory
referenced by the first path name defined in the applicathk®PDIR variable.

3. Load the configuration by runningloadcf(1) . Thetmloadcf command
parsesJBBCONFIGNd loads the binarfuXCONFIGile to the location referenced
by theTUXCONFIGvariable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect
until you change it by using thgsswd command ofmadmin .

5. Distribute the application password to authorized users of the application through
an off-line means such as telephone or letter.

Setting Up the User and Group Files

AUTHSVRand the access control checking feature available with the default
authorization system require a user file nanpedr , which contains a list of client
users allowed to join the applicatiapusr is maintained by the application
administrator using thgusradd(l) ,tpusrdel(1) , andtpusrmod(l) commands.
The AUTHSVRserver takes as input the client user information stored tpdke file;
it uses this information to authenticate clients that want to join the application.

The following display is a sample entry in thesr file.

user name password user identifier group identifier client name
[I [[[T I

smith: 86V7BzAdwrNVs: 9: 156: TPCLTNM,*::
AUTHSVRand the access control checking feature also require a group file named
tpgrp , which contains a list of groups associated with the client users allowed to join
the applicationtpgrp is maintained by the application administrator using the
tpgrpadd(1) , tpgrpdel(1) , andtpgrpmod(1) commands.

AUTHSV@ssigns an authenticated client useaplication keywhich contains a user
identifier and associated group identifier for d&ER_AUTHACL, or MANDATORY_ACL
security level. (See “Application Key” on page 1-48 for more information about
application keys.)

Using BEA Tuxedo Security 2-61

2 Administering Security

The following display is a sample entry in tipgrp file.

group name group identifier
[[|

Administrators:: 156:
As the administrator, you must define lists of users and groupstiguthhe andtpgrp
files, both of which are located in the directory referenced by the first path name
defined in the application’aPPDIR variable. The files are colon-delimited, flat text
files, readable and writable only by the application’s administrator.

Converting System Security Data Files to BEA Tuxedo User and Group Files

2-62

You may already have files containing lists of users and groups on your host systen
You can use them as the user and group files for your application, but only after
converting them to the format required by the BEA Tuxedo system. To convert your
files, run thepaclevt(1) command, as shown in the following sample procedure.
The sample procedure is written for a UNIX host machine.

1. Ensure that you are working on the applicatix8TERmachine and that the
application is inactive.

2. To convert theetc/password file into the format needed by the BEA Tuxedo
system, enter the following command.

tpaclcvt -u /etc/password

This command creates thgisr file and stores the converted data in it. If the
tpusr file already existspaclevt adds the converted data to the file, but it
doesnotadd duplicate user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to
enter a password for each user in the file.

3. To convert theetc/group file into the format needed by the BEA Tuxedo
system, enter the following command.

tpaclevt -g /etc/group

This command creates thgyrp file and stores the converted data in it. If the
tpgrp file already existstpaclcvt adds the converted data to the file, but it
doesnotadd duplicate group information to the file.

Using BEA Tuxedo Security

How to Enable User-Level Authentication Security

Adding, Modifying, or Deleting Users and Groups

The BEA Tuxedo system requires that you maintain a list of your application users in
a file namedpusr , and a list of groups, in a file namgdrp . There are two methods

of modifying the entries in these files: by issuing commands or by changing the values
of the appropriate attributes in taeL_MIB.

Changing Entries for Users and Groups through Commands

You can add, modify, or delete entries in ther andtpgrp files at any time by
running a BEA Tuxedo command provided for that purpose.

Run. .. To... An entry in this file
tpusradd(1) Add tpusr

tpusrmod(1) Modify

tpusrdel(1) Delete

tpgrpadd(1) Add tparp

tpgrpmod(1) Modify

tpgrpdel(1) Delete

To run any of these commands, follow these steps.

1. For an inactive application, make sure you are working from the application
MASTERmMachine. For an active application, you may work from any machine in the
configuration.

2. For specific instructions on running a command, see the entry for that command
in theBEA Tuxedo Command Reference

Changing Entries for Users and Groups through the ACL_MIB

If you prefer not to use the command-line interface, you can add, modify, or delete user
entries inpusr by changing the appropriate attribute values infth&CLPRINCIPAL

class in theaCL_MIB(5) . This method is more efficient than the command-line
interface if you want to add several user entries simultaneously,tgisesid(1)

allows you to add only one user at a time.

Using BEA Tuxedo Security 2-63

2 Administering Security

Similarly, you can add, modify, or delete group entriesgmp by changing the
appropriate attribute values in theACLGROURIass in th&CL_MIB(5) . This method

is more efficient than the command-line interface if you want to add several group
entries simultaneously, singgrpadd(1) allows you to add only one group at a time.

Of course, the easiest way to accessviieis via the BEA Administration Console.

See Also

m “Default Authentication and Authorization” on page 1-44
m “Administering Default Authentication and Authorization” on page 2-56

m “Security Administration Tasks” on page 2-3

Enabling Access Control Security

Default authorization consists of an access control checking feature that determines
which users can execute a service, post an event, or enqueue (or dequeue) a mess
on an application queue. There are two levels of access control security: optional
access control listACL) and mandatory access control IFBNDATORY_AGLOnly

when users are authenticated to join an application does the access control list becor
active.

By using an access control list, an administrator can organize users into groups and
associate the groups with objects that the member users have permission to access
Access control is done at the group level for the following reasons:

m System administration is simplified. It is easier to give a group of people access
to a new service than it is to give individual users access to the service.

m Performance is improved. Because access permission needs to be checked for
each invocation of an entity, permission should be resolved quickly. Because
there are fewer groups than users, it is quicker to search through a list of
privileged groups than it is to search through a list of privileged users.

2-64 Using BEA Tuxedo Security

Enabling Access Control Security

The access control checking feature is based on three files that are created and
maintained by the application administrator:

m tpusr contains a list of users
m tpgrp contains a list of groups

m tpacl contains a list of mappings of groups to application entities (such as
services) known as the access control list (ACL)

By parsing the client’application keywhich contains information identifying the

client as a valid user and valid group member, an entity (such as a service, event, or
application queue) can identify the group to which the user belongs; by checking the
tpacl file, an entity can determine whether the client’s group has access permission.

The application administrator, application operator, and processes or service requests
running with the privileges of the application administrator/operatan@rgubject to
ACL permission checking.

If user-level ACL entries are needed, they may be implemented by creating a group for
each user, and then mapping the group to the appropriate application entities in the
tpacl file.

How to Enable Optional ACL Security

Default authentication offers aptional ACL(ACL) security level that you invoke by
specifyingSECURITY ACL in your configuration file. This security level requires that
each client provide an application password, a user name, and user-specific data, such
as a password, to join the application. If there is no entry itpsloe file associated

with the target application entity, the user is permitted to access the entity.

This security level enables an administrator to configure access for only those
resources that need more security. That is, there is no need to add entrigsato the

file for services, events, or application queues that are open to everyone. Of course, if
thereis an entry in thepacl file associated with the target application entity and a
user attempts to access that entity, the omestbe a member of a group that is allowed

to access that entity; otherwise, permission is denied.

Using BEA Tuxedo Security 2-65

2 Administering Security

To enable the\CL security level, follow these steps.
1. Set up the&JBBCONFIdile.
2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

1. Ensure that you are working on the applicatM®¥sTERmachine and that the
application is inactive.

2. OpenuUBBCONFIGwith a text editor and add the following lines to HESOURCES
andSERVERSsections.

*RESOURCES
SECURITY ACL
AUTHSVC AUTHSVC

*SERVERS
AUTHSVR SRVGRP=roup_name "SRVID=1RESTART=Y GRACE=600MAXGEN=2
CLOPT="-A"

CLOPT="-A" causesmboot(1) to pass only the default command-line options
(invoked by"-A") to AUTHSVRwhentmboot starts the application. By default,
AUTHSVRuUses the client user information in a file namedr to authenticate
clients that want to join the applicatiapusr resides in the directory
referenced by the first path name defined in the applicatkPDIR variable.

3. Load the configuration by runningloadcf(l) . Thetmloadcf command
parsesJBBCONFIGNd loads the binauUXCONFIGile to the location referenced
by theTUXCONFIGvariable.

4. The system prompts you for a password. The password you enter may be up to :
characters long. It becomes the password for the application and remains in effec
until you change it by using thasswd command ofmadmin .

5. Distribute the application password to authorized users of the application througt
an off-line means such as telephone or letter.

2-66 Using BEA Tuxedo Security

Enabling Access Control Security

Setting Up the ACL File

The access control checking feature requires a user file n@osed, a group file
namedpgrp , and an ACL file nametpbacl . The ACL file contains mappings of
groups to application entities. An entity may be a service, event, or application queue.

The following display is a sample entry in theacl file.

entity name entity type group identifiers
[I [|

TOLOWER: SERVICE: 156,281,282,305:
As the administrator, you must define the entries ingh@ file, which is located in
the directory referenced by the first path name defined in the applicatieRtsR
variable. The file is a colon-delimited, flat text file, readable and writable only by the
application’s administrator.

There are two methods of modifying the ACL entries intphel file: by issuing
commands or by changing the values of the appropriate attributesAgithiiB.
Changing ACL Entries through Commands

You can add, modify, or delete ACL entries in theel file at any time by running a
BEA Tuxedo command provided for that purpose.

Run. .. To...
tpacladd(1) Add an entry
tpacimod(1) Modify an entry
tpacldel(1) Delete an entry

To run any of these commands, follow these steps.

1. For an inactive application, make sure you are working from the application
MASTERmachine. For an active application, you may work from any machine in the
configuration.

2. For specific instructions on running a command, see the entry for that command
in theBEA Tuxedo Command Reference

Using BEA Tuxedo Security 2-67

2 Administering Security

Changing ACL Entries through the ACL_MIB

If you prefer not to use the command-line interface, you can add, modify, or delete
ACL entries intpacl by changing the appropriate attribute values inmtheCLPERM
class in theaCL_MIB(5) . This method is more efficient than the command-line
interface if you want to add several ACL entries simultaneously, giaciadd(1)

allows you to add only one ACL entry at a time.

Of course, the easiest way to accessmiteis via the BEA Administration Console.

How to Enable Mandatory ACL Security

Default authentication offersrmandatory AClsecurity level that you invoke by
specifyingSECURITY MANDATORY_AdIn your configuration file. This security level
requires that each client provide an application password, a user name, and
user-specific data, such as a password, to join the application. If there is no entry in tt
tpacl file associated with the target application entity, the clienotpermitted to
access the entity. In other words, an entiystexist in thepacl file for every
application entity that a client needs to access. For this reason, this level is called
mandatory

Of course, if therés an entry in thepacl file associated with the target application
entity and a user attempts to access that entity, thenustbe a member of a group
that is allowed to access that entity; otherwise, permission is denied.

To enable th&1ANDATORY_AGiecurity level, follow these steps.
1. Set up th&BBCONFIdile.
2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File

2-68

1. Ensure that you are working on the applicatM®¥sTERmachine and that the
application is inactive.

2. OpenuUBBCONFIGwith a text editor and add the following lines to HESOURCES
andSERVERSsections.

Using BEA Tuxedo Security

Enabling Access Control Security

*RESOURCES
SECURITY MANDATORY_ACL
AUTHSVC .. AUTHSVC

*SERVERS
AUTHSVR SRVGRP=group_name "SRVID=1RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causesmboot(1) to pass only the default command-line options
(invoked by'-A") to AUTHSVRVhentmboot starts the application. By default,
AUTHSVRuses the client user information in a file nanmedr to authenticate
clients that want to join the applicatiapusr resides in the directory
referenced by the first path name defined in the applicatiEPP®IR variable.

3. Load the configuration by runningloadcf(1) . Thetmloadcf command
parsesJBBCONFIGNd loads the binarfuXCONFIGile to the location referenced
by theTUXCONFIGvariable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect
until you change it by using thgsswd command ofmadmin .

5. Distribute the application password to authorized users of the application through
an off-line means such as telephone or letter.

Setting Up the ACL File

See “Setting Up the ACL File” on page 2-67.

See Also

m “Default Authentication and Authorization” on page 1-44
m “Administering Default Authentication and Authorization” on page 2-56

m “Security Administration Tasks” on page 2-3

Using BEA Tuxedo Security 2-69

2 Administering Security

2-70 Using BEA Tuxedo Security

CHAPTER

3 Programming Security

m What Programming Security Means
m Programming an Application with Security
m Writing Security Code So Client Programs Can Join the Application

m Writing Security Code to Protect Data Integrity and Privacy

What Programming Security Means

Programming security is the task of writing security code for BEA Tuxedo
applications. In addition to the code that expresses the logic of the program, application
programmers use the Application-to-Transaction Monitor Interface (ATMI) to link
their application code with the BEA Tuxedo transaction monitor. The ATMI
programming interfaces enable communication among application clients and servers
running under the control of the BEA Tuxedo transaction monitor. C and COBOL
implementations of the ATMI are available.

As shown in the following figure, application programmers have access to the ATMI
functions for authenticating users and controlling user access, and for incorporating
public key encryption techniques into their applications. Also shown is the absence, at
the application level, of ATMI functions for auditing or link-level encryption.

Auditing is accessed at the BEA Tuxedo system level, and link-level encryption is
configured by the application administrator.

Using BEA Tuxedo Security ~ 3-1

3 Programming Security

Figure 3-1 Programming BEA Tuxedo Security

Application

ATMI for Clients to
Join Application

ATMI for Public Key
Security

!

BEA Tuxedo Library

o . Public Key
Autherltlcat/on Authoti/zat/on Security

BEA Tuxedo Security

Link-Level
Encryption

Plug-in Interface

Default Default Default
Authentication Authorization Auditing
| Custom | Custom | Custom
Security Plug-ins

3-2

Using BEA Tuxedo Security

“What Security Means” on page 1-1

“What Administering Security Means” on page 2-1

Default
Public Key Security
Custom

“Programming an Application with Security” on page 3-3

Programming an Application with Security

Programming an Application with Security

The BEA Tuxedo system offers various ATMI functions for different security needs.

If you are writing security code for... Then you use the ATMI functions
available for . . .

Client programs so that clients can join a Clients joining an application, which in turn

BEA Tuxedo application and access invoke system-level calls to the
application services authentication and authorization plug-ins
Both client and server programs to protect theublic key security, which supports
integrity and privacy of the data they end-to-end digital signing and data
exchange encryption

See Also

m “Setting Up the Programming Environment” on page 3-3

Setting Up the Programming Environment

To be able to write security code, an application programmer needs:
m Access to BEA Tuxedo libraries and commands

m Read and execute permissions on the directories and files in the BEA Tuxedo
system directory structure

To obtain access to the required libraries and commands, you mustBeXG@NFIG
TUXDIR, APPDIR, and other environment variables in your environment. For details,
see “How to Set Your Environment” on page 1-2Anministering a BEA Tuxedo
Application at Run Time

Using BEA Tuxedo Security ~ 3-3

3 Programming Security

See Also

The application administrator is responsible for setting the permissions on directorie:
and files. See your administrator to get the permissions you need.

m “Writing Security Code So Client Programs Can Join the Application” on page
3-4

m “Writing Security Code to Protect Data Integrity and Privacy” on page 3-15

Writing Security Code So Client Programs
Can Join the Application

3-4

Client programs are responsible for gathering data from outside the application or
computer, bundling the data into messages, and forwarding the messages to servers
processing. Client programs are made available to users through devices such as
automatic teller machines (ATMs), data entry terminals, and graphics devices.

For default authentication and authorization, application security may be set to one c
five levels. At the lowest level, no authentication is performed. At the highest level, an
access control checking feature determines which users can execute a service, post
event, or enqueue (or dequeue) a message on an application queue. Setting the sect
level for an application is the responsibility of the application administrator.

An application programmer needs to perform two tasks so that a client program can
join a BEA Tuxedo application:

m Get the security data for the specific client process
m Pass that data to the BEA Tuxedo system

The following pseudo-code summarizes the operation of a basic client program. The
security-related statements are highlighted in bold.

Using BEA Tuxedo Security

Writing Security Code So Client Programs Can Join the Application

See Also

Listing 3-1 Pseudo-code for a Client

main()

call tpchkauth() to check security level of application
get usrname, clthame
prompt for application password
prompt for per-user password
allocate a TPINIT buffer
place initial client identification into TPINIT buffer
call tpinit() to enroll as a client of the application
allocate buffer
do while true {
place user input in buffer
send service request
receive reply
pass reply to user }
leave application

Most of the statements in the preceding listing are implemented by ATMI functions in
either C or COBOL. The preceding listing shows only the C language implementation.

A client program written in C usesinit(3c) to comply with the level of security
set for the application and to join the application. The argumepihitg) is a
pointer to arPINIT buffer. To perform the same tasks in a COBOL application, a
client program callSPINITIALIZE(3cbl) , specifying a pointer to BPINFDEF-REC
record as an argument.

m “Getting Security Data” on page 3-6
m “Joining the Application” on page 3-8

= “Writing Clients” on page 4-1 iffrogramming a BEA Tuxedo Application Using
C andProgramming a BEA Tuxedo Application Using COBOL

® tpinit(3c) in BEA Tuxedo C Function Reference

m TPINITIALIZE(3cbl) in BEA Tuxedo COBOL Function Reference

Using BEA Tuxedo Security ~ 3-5

3 Programming Security

m “Administering Public Key Security” on page 2-41
m “Administering Authorization” on page 2-34
m “Default Authentication and Authorization” on page 1-44

m “Programming an Application with Security” on page 3-3

Getting Security Data

3-6

For general-purpose client programs that are written to work with a variety of

applications, the BEA Tuxedo system provides an ATMI function that enables a client
to determine the level of security required by the application that the client is trying to

join. This ATMI function, implemented aschkauth(3c) for C and
TPCHKAUTH(3cbl) for COBOL, is designed to work with applications using default
authentication and authorization. Thehkauth() ~ andTPCHKAUTH()functions can

also be used in applications in which custom authentication and/or authorization is
used. How they are used, however, depends on how the custom security features a
implemented. For the most part, this discussion focuses on default authentication ar

authorization.

An application programmer writing in C ugpshkauth() to check the application’s
security level before callinginit(3c) , SO that the client program can prompt for
the application password and the user authentication data neededtforitthe

call; tpchkauth() is called without arguments.

An application programmer writing in COBOL useRCHKAUTH() for the same
purpose before callingPINITIALIZE(3cbl) . The syntax and functionality of
TPCHKAUTH(3cbhl) andTPINITIALIZE(3cbl) are the same as those of
tpchkauth(3c) andtpinit(3c)

Thetpchkauth() function (orTPCHKAUTH() routine) returns one of the following
values.

TPNOAUTH
Nothing is required beyond the normal operating system login and file
permission securitytPNOAUTHs returned for security levelONE

Using BEA Tuxedo Security

Getting Security Data

See Also

TPSYSAUTH

An application password is required. The client program should prompt the
user to provide the password, and should put it in the password field of the
TPINIT buffer for C, orTPINFDEF-REC record for COBOLTPSYSAUTHS
returned for security leveélPP_Pw

The application administrator informs users of the application password, and
the application programmer writes client-program code to prompt users for
the application password and to put the user-supplied password, as plaintext,
in the password field of thEPINIT buffer orTPINFDEF-REC record. The
password should not be displayed on the user’s screen.

BEA Tuxedo system-supplied client programs, sualasud(1) , prompt
for an application passwordd() allows fielded buffers to be read from
standard input and sent to a service.

TPAPPAUTH

The application password is required. The client is expected to provide a
value to be passed to the authentication service in the data fieldrefithe
buffer for C, or therPINFDEF-REC record for COBOLTPAPPAUTHS
returned for security lev@lSER_AUTHACL, or MANDATORY_ACL

The application programmer writes client-program code to furnish additional
information for the application authentication service, which is provided by
the AUTHSVRserver for default authentication and authorizatltTHSVRS
configured by the administrator to validate the per-user authentication
information with client and user names, indicating whether the client program
is allowed to join the application.

“Joining the Application” on page 3-8

“Writing Clients” on page 4-1 iffrogramming a BEA Tuxedo Application Using
C andProgramming a BEA Tuxedo Application Using COBOL

tpinit(3c) andtpchkauth(3c) in BEA Tuxedo C Function Reference

TPINITIALIZE(3cbl) andTPCHKAUTH(3cbl) in BEA Tuxedo COBOL
Function Reference

Using BEA Tuxedo Security ~ 3-7

3 Programming Security

m “Default Authentication and Authorization” on page 1-44

m “Programming an Application with Security” on page 3-3

Joining the Application

In a secure BEA Tuxedo application, it is necessary to pass security information to th
BEA Tuxedo system via ®PINIT buffer for C, or a&PINFDEF-REC record for

COBOL. TheTPINIT buffer is a special typed buffer used by a client program to pass
client identification and authentication information to the system as the client attempt:
to join the application. ThePINFDEF-REC record serves the same purpose in a

COBOL application.

TPINIT is defined in thetmi.h

header file, an@PINFDEF-REC is defined in the

COBOL copYfile. They have the following structures.

TPINIT Structure

TPINFDEF-REC Structure

char usrname[MAXTIDENT+2];
char clthname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];
long flags;

long datalen;

long data;

Note: MAXTIDENT may contain up to 30
characters.

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
88 TPU-SIG VALUE 1.
88 TPU-DIP VALUE 2.
88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 DATLEN PIC S9(9) COMP-5.

3-8 Using BEA Tuxedo Security

Joining the Application

The fields in thaPINIT buffer/TPINFDEF-REC record are described in the following
table.

Table 3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT Fields TPINFDEF-REC Fields Description
usrname USRNAME User name.* A null-terminated string of up to 30
characters.

The user name represents the caller; writers of client
programs might use the same login names used to
log in to the host operating system.

cltname CLTNAME Client name.* A null-terminated string of up to 30
characters.

The client name represents the client program;
writers of client programs might use this field to
indicate the job function or role of the user when
executing the client program.

passwd PASSWD Application password.* A null-terminated string of
up to eight characters.
tpinit() or TPINITIALIZE() validates this
password by comparing it to the configured
application password stored in tReXCONFIG
file.**

grpname GRPNAME Group name. A null-terminated string of up to 30
characters. This field is not related to security.

The group name allows a client to be associated with
a resource manager group that is defined in the
UBBCONFIGile.

* This field is required for the)SER_AUTHACL, andMANDATORY_ACiecurity levels provided by default
authentication and authorization.

** The binary equivalent of thdBBCONFIdile; created usingmloadcf(1)
*** Usually a user password.

Using BEA Tuxedo Security ~ 3-9

3 Programming Security

Table 3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT Fields TPINFDEF-REC Fields Description
flags NOTIFICATION-FLAG Notification and access flags. This field is not
TPU-SIG related to security.
TPU-DIP The flag settings specify the notification mechanism
TPU-IGN and system access mode to be used for the client.
ACCESS-FLAG Selections _override (with some (_exceptions) the
values set in thRESOURCESection of the
TPSA-FASTPATH UBBCONFIGile.
TPSA-PROTECTED
datalen DATALEN Length of the user-specific data*** that follows.*
To get a size value for this field, writers of client
programs written in C can calPINITNEED with
the number of bytes of user-specific data expected to
be sentTPINITNEED is a macro provided in the
atmi.h header file.
data N/A User-specific data*** of no fixed length.*

tpinit() or TPINITIALIZE() forwards the
user-specific data to the authentication server for
validation. For default authentication, the
authentication server BUTHSVR

* This field is required for thelSER_AUTHACL, andMANDATORY_ACiecurity levels provided by default

authentication and authorization.

** The binary equivalent of thdBBCONFICile; created usingmloadcf(1)

** Usually a user password.

The client program callpalloc(3c)
sample code prepares to pass eight bytes of application-specific ghéa(o

to allocate @aPINIT buffer. The following
and

enables the client to join a BEA Tuxedo application.

Listing 3-2 Allocating a TPINIT Buffer and Joining a BEA Tuxedo Application

TPINIT *tpinfo;

3-10 Using BEA Tuxedo Security

Joining the Application

if ((.tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,
TPINITNEED(8))) == (TPINIT *)NULL){
Error Routine

tpiﬁit(tpinfo) /* join a BEA Tuxedo application */

When a Workstation client calls tiynit() function or theTPINITIALIZE()
routine to join an application, the following major events occur.

1. Theinitiator Workstation client and tharget Workstation Listener (WSL)
exchange link-level encryption (LLE)in-maxvalues to be used to set up LLE on
the link between the initiator Workstation client and tdrget WSH. LLE is
described in “Link-Level Encryption” on page 1-23.

2. The initiator Workstation client and target WSH authenticate one another through
the exchange of security tokens. For default authentication, a successful
authentication ends with the transfer of client security data fromringT
buffer orTPINFDEF-REC record to the target WSH.

3. After a successful authentication, the initiator Workstation client sends another
buffer to the target WSH containing the values ofufr@ame , cltname , and
flags fields, to ensure that the target WSH receives this information for the
authenticated Workstation client.

When a native client calls thginit() function or theTPINITIALIZE() ~ routine to
join an application, only authentication occurs. In essence, the native client
authenticates with itself.

Transferring the Client Security Data

The following diagram demonstrate the transfer of data frormrhdT buffer for a
Workstation client. The transfer of data from ftReNFDEF-REC record is similar to
what is shown in the diagram.

Using BEA Tuxedo Security 3-11

3 Programming Security

Figure 3-2 Transferring Data from the TPINIT Buffer for a Workstation Client

Workstation Client — Application Client Running on Workstation Machine
TPINIT Buffer

usrname | cltname | passwd | grpname | flags | datalen | data

Y ‘]
Call tpinit() Information Sent for Default Authentication
! ! ”| usrname | cltname | grpname | flags | datalen | data
| | "
1 1 Information Sent for Custom Authentication
1 l ,—= usrname | datalen | data custom data
BEA Tuxedo Library 41 Workstation Handler (WSH)
usrname, passwd Credentials
datalen, (encrypt)
data - > >
% Credentials % > ‘ W W
1. Call “acquire 2. Call “initiate Network Link 3. call “accept 4. call “get 5. Call “get
credentials” security context” security context” authorization token” auditing token”
Function Function Function Function Function
BEA Tuxedo Security | . BEA Tuxedo Security o .
Authentication Plug-in Authentication Plug-in

3-12 Using BEA Tuxedo Security

Joining the Application

Note: The authorization procedure shown in the preceding diagram is essentially the
same for a native client attempting to join an application except that no
network link or WSH is involved. A native client authenticates with itself.

In the preceding diagram, notice that the information sent to the BEA Tuxedo system
differs between default and custom authentication. For default authentication, the
values of thelltname , grpname , andflags fields are delivered to the default
authentication plug-in at the Workstation client by a mesherthan through the

plug-in interface. However, for custom authentication, writers of client programs can
include these values as well as any other values they so choose in the variable length
data field.

For a Workstation clierand assuming default authentication, the authentication

plug-in at the Workstation client uses esswd / PASSWield to encrypt the

information when transmitting the information over the network. The encryption
algorithm used is 56-bit DES, where DES is an acronym for the Data Encryption
Standard. The authentication plug-in at the target WSH uses the application password
stored in th@ UXCONFIdile to decrypt the information. For a native client, the system
simply compares theasswd / PASSWIfield with the application password stored in the
TUXCONFIGile.

Note: At the Workstation client, thpasswd / PASSWield is delivered to the
authentication plug-in by a meaatherthan through the authentication
plug-in interface. At the WSH, the application password imtheCONFIGile
is delivered to the authentication plug-in through the authentication plug-in
interface during application booting.

After a successful authentication of a Workstation clientipihi() function ends

with the sending of another buffer to the WSH containing the values ortizene ,

cltname , andflags fields, to ensure that the WSH receives this information for the
authenticated Workstation client. Similarly, theiNITIALIZE() ~ routine ends with

the sending of another buffer containing the same information. A custom
authentication plug-in might not send this information to the WSH during the
authentication procedure, and the WSH needs this information for reporting purposes,
that is, during an invocation of th@admin(1) printclient (pclt) command.

When a Workstation or native client passes the security check, it may initiate service
requests and receive replies.

Using BEA Tuxedo Security 3-13

3 Programming Security

Calling a Service Request Before Joining the Application

See Also

If a client calls a service request (or any ATMI function) before invoting() or
TPINITIALIZE() andassuming theéECURITYconfiguration for the target application
isnotset or is set tdONEthe BEA Tuxedo system automatically invokgisit) /
TPINITIALIZE() with aNULL parameter. This behavior has the following
consequences:

m TheTPINIT / TPINFDEF-REC feature cannot be used.

m Default values are used for client naming, unsolicited notification type, and
system access mode.

m The client cannot be associated with a resource manager group.
m An application password cannot be specified.

If a client calls a service request (or any ATMI function) before invotping() or
TPINITIALIZE() andassuming th6éECURITYconfiguration for the target application
is set toAPP_PWUSER_AUTHACL, or MANDATORY_AGlthe BEA Tuxedo system
rejects the service request.

m “Writing Clients” on page 4-1 iProgramming a BEA Tuxedo Application Using
C andProgramming a BEA Tuxedo Application Using COBOL

® tpinit(3c) andtpalloc(3c) in BEA Tuxedo C Function Reference
®m TPINITIALIZE(3cbl) in BEA Tuxedo COBOL Function Reference
m “Default Authentication and Authorization” on page 1-44

m “Programming an Application with Security” on page 3-3

3-14 Using BEA Tuxedo Security

Writing Security Code to Protect Data Integrity and Privacy

Writing Security Code to Protect Data
Integrity and Privacy

Public key security comprises end-to-end digital signing and data encryption. Both
features are supported by BEA Tuxedo ATMI functions. Applications protected by
public key security are much safer for use across the Internet than programs in which
this type of security is not used.

The capabilities that make end-to-end digital signing and data encryption possible are
message-based digital signature and message-based encryption. Both capabilities are
built upon thePKCS-7 standardwhich is one of a set of Public-Key Cryptography
Standards (PKCS) developed by RSA Laboratories in cooperation with several other
leading communications companies.

Message-based digital signature ensures data integrity and non-repudiation by having
the sending party bind proof of its identity to a specific message buffer. Message-based
encryption protects the confidentiality of messages; only parties for whom messages

are intended can decrypt and read them.

Because the unit of digital signing and encryption is a BEA Tuxedo message buffer,
both capabilities are compatible with existing BEA Tuxedo programming interfaces
and communication paradigms. It is possible for a message buffer to be both signed
and encrypted. There is no required relationship between the number of digital
signatures and the numberasfcryption envelopeassociated with a message buffer.

Note: Each encryption envelope identifies a recipient of the message, and contains
information needed by the recipient to decrypt the message.

Using BEA Tuxedo Security 3-15

3 Programming Security

ATMI for Public Key Security

3-16

The ATMI for public key security is a compact set of functions used to:

Open and close key resources
View and change key optional parameters
Sign and seal (encrypt) message buffers

Access the digital signature and encryption information associated with a
message buffer

Convert a typed message buffer into an exportable, machine-independent string
representation, which includes the generation of any digital signatures or
encryption envelopes associated with the buffer

The ATMI for public key security is available in both C and COBOL implementations.
The BEA Tuxedo COBOL language binding, however, does not supgssage

buffers thus, explicit signature, encryption, and query operations on individual buffers
cannot be used in a COBOL application. However, key management interfaces do
have a COBOL language binding, which enables signature generatioAumhsIGN
mode and encryption-envelope generation inMhEOENCRYPMode. All operations
related to automatic signature verification or automatic decryption apply to COBOL
client and server processes.

Note: The COBOLTPKEYDERecord is used to manage public-private keys for

performing message-based digital signature and encryption operations. See
“COBOL Language ATMI Return Codes and Other Definitions” in the
introduction part oBEA Tuxedo COBOL Function Referefmea description

of theTPKEYDEFRecord.

Using BEA Tuxedo Security

Writing Security Code to Protect Data Integrity and Privacy

The following tables summarize the ATMI for public key security. Each function is
also documented iIBEA Tuxedo C Function Referend@EA Tuxedo COBOL
Function Reference

Table 3-2 C Functions in ATMI for Public Key Security

Use this function . . .

To...

tpkey_open(3c)

Open a key handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI to locate or access the item named by the
handle.

A key may play one or more of the following roles:

m Signature Generation
The key identifies the calling process as being authorized to generate a digital
signature under therincipal's identity. (A principal may be a person or a
process.) Callingpkey_open() with the principal’s name and either the
TPKEY_SIGNATURBr TPKEY_AUTOSIGNIag returns a handle to the
principal’s private key and digital certificate.

m Signature Verification
The key represents the principal associated with a digital signature. Signature
verification does not require a calltfikey_open() ; the verifying process uses
the public key specified in the digital certificate accompanying the digitally signed
message to verify the signature.

m Encryption
The key represents the intended principal of an encrypted message. Calling
tpkey_open() with the principal’s name and either theKEY_ENCRYP®r
TPKEY_AUTOENCRYHIRg returns a handle to the principal’s public key via the
principal’s digital certificate.

m Decryption
The key identifies the calling process as being authorized to decrypt a private
message for the intended principal. Callipgey_open() with the principal’s
name and th&@ PKEY_DECRYPTlag returns a handle to the principal’s private
key and digital certificate.

Using BEA Tuxedo Security 3-17

3 Programming Security

Table 3-2 C Functions in ATMI for Public Key Security

Use this function . . .

To...

tpkey_getinfo(3c)

3-18

Get information associated with a key handle. Some information is specific to a

cryptographic service provider, but the following set of attributes is supported by all
providers:

PRINCIPAL

The name of therincipal associated with the specified key (key handle). A
principal may be a person or a process, depending on how an application
developer sets up public key security. Any principal specified in an application’s
UBBCONFIdile using theSEC_PRINCIPAL_NAMEBparameter become the
identity of one or more system processes. (See “Specifying Principal Names” on
page 2-11 and “Initializing Decryption Keys Through the Plug-ins” on page 2-50
for more detail.)

PKENCRYPT_ALG

An ASN.1 Distinguished Encoding Rules (DE®Yject identifierof the public

key algorithm used by the key for public key encryption. See the
tpkey_getinfo(3c) reference page for details.

PKENCRYPT_BITS

The key length of the public key algorithm (RSA modulus size). The value must
be within the range of 512 to 2048 bits, inclusive.

SIGNATURE_ALG

An ASN.1 DERobject identifierof the digital signature algorithm used by the key
for digital signature. See thpkey_getinfo(3c) reference page for detalils.
SIGNATURE_BITS

The key length of the digital signature algorithm (RSA modulus size). The value
must be within the range of 512 to 2048 bits, inclusive.

ENCRYPT_ALG

An ASN.1 DERobject identifierof the symmetric key algorithm used by the key
for bulk data encryption. See tlpkey_getinfo(3c) reference page for
details.

ENCRYPT_BITS

The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 bits, inclusive.

DIGEST_ALG

An ASN.1 DERobject identifierof the message digest algorithm used by the key
for digital signature. See thpkey_getinfo(3c) reference page for details.
PROVIDER

The name of the cryptographic service provider.

VERSION

The version number of the cryptographic service provider’s software.

Using BEA Tuxedo Security

Writing Security Code to Protect Data Integrity and Privacy

Table 3-2 C Functions in ATMI for Public Key Security

Use this function . . .

To...

tpkey_setinfo(3c)

Set optional attribute parameters associated with a key handle. A core set of key
handle attributes is identified in the preceding descriptidpkafy _getinfo()

Other attributes, specific to a certain cryptographic service provider, may also be
available.

tpkey_close(3c)

Close a previously opened key handle. A key handle may be opened explicitly using
tpkey_open() , or implicitly (automatically) usingpenvelope()

tpsign(3c) Mark a typed message buffer for digital signature. The public key software generates
the digital signature just before the message is sent.
tpseal(3c) Mark a typed message buffer for encryption. The public key software encrypts the

message just before the message is sent.

tpenvelope(3c)

Access the digital signature and encryption information associated with a typed
message buffetpenvelope() returns status information about the digital

signatures and encryption envelopes attached to a particular message buffer. It also
returns the key handle associated with each digital signature or encryption envelope.
The key handle for a digital signature identifies the signer, and the key handle for an
encryption envelope identifies the recipient of the message.

tpexport(3c)

Convert a typed message buffer into an exportable, machine-independent
(externalized) string representatigpexport() generates any digital signatures or
encryption envelopes associated with a typed message buffer just before it converts
that buffer into an externalized string representation.

An externalized string representation can be transmitted between processes, machines,
or domains through any communication mechanism. It can be archived on permanent
storage.

tpimport(3c)

Convert an externalized string representation back into a typed message buffer.
During the conversionpimport() decrypts the message, if necessary, and verifies
any associated digital signatures.

Using BEA Tuxedo Security 3-19

3 Programming Security

Table 3-3 COBOL Routines in ATMI for Public Key Security

Use this routine . . .

To...

TPKEYOPEN(3chl)

Open a key handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI to locate or access the item named by the
handle.

A key may play one or more of the following roles:

m Signature Generation

The key identifies the calling process as being authorized to generate a digital
signature under therincipal's identity. (A principal can be a person or a

process.) Calling PKEYOPEN() with the principal’s name and the
TPKEY-SIGNATUREandTPKEY-AUTOSIGNsettings returns a handle to the
principal’s public key and enables signature generatigtwinOSIGNmode. The

public key software generates and attaches the digital signature to the message
just before the message is sent.

Signature Verification

The key represents the principal associated with a digital signature. Signature
verification does not require a call TEKEYOPEN(), the verifying process uses
the public key specified in the digital certificate accompanying the digitally
signed message to verify the signature.

Encryption

The key represents the intended principal of an encrypted message. Calling
TPKEYOPEN() with the principal’'s name and ti¢eKEY-ENCRYPT&nd
TPKEY-AUTOENCRYP3ettings returns a handle to the principal’s public key

(via the principal’s digital certificate) and enables encryptiochUnf OENCRYPT
mode. The public key software encrypts the message and attaches an encryptior
envelope to the message; the encryption envelope enables the receiving proces:
to decrypt the message.

Decryption

The key identifies the calling process as being authorized to decrypt a private
message for the intended principal. CallifRKEYOPEN() with the principal’s
name and th& PKEY-DECRYPBetting returns a handle to the principal’s
private key and digital certificate.

3-20 Using BEA Tuxedo Security

Writing Security Code to Protect Data Integrity and Privacy

Table 3-3 COBOL Routines in ATMI for Public Key Security

Use this routine . . .

To...

TPKEYGETINFO(3cbl)

Get information associated with a key handle. Some information is specific to a
cryptographic service provider, but the following set of attributes is supported by all
providers:

m PRINCIPAL
The name of therincipal associated with the specified key (key handle). A
principal may be a person or a process, depending on how an application
developer sets up public key security. Any principal specified in an application’s
UBBCONFIdile using theSEC_PRINCIPAL_NAMBparameter become the
identity of one or more system processes. (See “Specifying Principal Names” on
page 2-11 and “Initializing Decryption Keys Through the Plug-ins” on page 2-50
for more detail.)

m PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DE#Yject identifierof the public
key algorithm used by the key for public key encryption. See the
TPKEYGETINFO(3chl) reference page for details.

m PKENCRYPT_BITS
The key length of the public key algorithm (RSA modulus size). The value must
be within the range of 512 to 2048 bits, inclusive.

m SIGNATURE_ALG
An ASN.1 DERobjectidentifierof the digital signature algorithm used by the key
for digital signature. See ti®®KEYGETINFO(3cbl) reference page for details.

m SIGNATURE_BITS
The key length of the digital signature algorithm (RSA modulus size). The value
must be within the range of 512 to 2048 bits, inclusive.

m ENCRYPT_ALG
An ASN.1 DERobject identifierof the symmetric key algorithm used by the key
for bulk data encryption. See thi@KEYGETINFO(3cbl) reference page for
details.

m ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 bits, inclusive.

m DIGEST_ALG
An ASN.1 DERobject identifierof the message digest algorithm used by the key
for digital signature. See tHKEYGETINFO(3cbhl) reference page for details.

= PROVIDER
The name of the cryptographic service provider.

= VERSION
The version number of the cryptographic service provider’s software.

Using BEA Tuxedo Security 3-21

3 Programming Security

Table 3-3 COBOL Routines in ATMI for Public Key Security

Use this routine . .

. To...

TPKEYSETINFO(3chl) Set optional attribute parameters associated with a key handle. A core set of key

handle attributes is identified in the preceding descriptionP6fEY GETINFO().
Other attributes, specific to a certain cryptographic service provider, may also be
available.

TPKEYCLOSE(3cbl)

Close a key handle previously opened udiRtkEYOPEN()

Recommended Uses of Public Key Security

See Also

3-22 Using BEA

Usetpkey_close() to release key handles used for digital signature generation
or for data decryption as soon as they are no longer needed.

To inhibit replay attacks, generate digital signatures only on message buffers tha
contain details identifying a specific operation. For example, a buffer that
contains the message “Your deposit is confirmed” is dangerously vague. An
attacker who intercepts such a message can easily re-use it. On the other hand,
message that contains many operation-specific details is much safer. An attacke
who intercepts a message such as the one that follows will not be able to re-use
it easily: “John Smith’s deposit of $100.00, account 987654321, confirmation
code 123456789, 7/31/2001, is confirmed.”

“Sending and Receiving Signed Messages” on page 3-23

“Sending and Receiving Encrypted Messages” on page 3-34
“Examining Digital Signature and Encryption Information” on page 3-52
“Externalizing Typed Message Buffers” on page 3-59

“Public Key Security” on page 1-29

“Administering Public Key Security” on page 2-41

“Programming an Application with Security” on page 3-3

Tuxedo Security

Sending and Receiving Signed Messages

Sending and Receiving Signed Messages

Message-based digital signature provides end-to-end authentication and message
integrity protection. For a diagram that illustrates how it works, see the figure “BEA
Tuxedo PKCS-7 End-to-End Digital Signing” on page 1-35.

To add a digital signature to a BEA Tuxedo message buffer, the originating process or
user signs the message buffer. This signature contains a cryptographically secure
checksum of the message buffer’s content and a timestamp based on the signer’s local
clock.

Any party with access to the message buffer can verify that the signing party’s
signature is authentic, that the message buffer content is unchanged, and that the
timestamp is within a configured tolerance of the verifier's local clock. In addition,
time-independent verification by a third party guarantees non-repudiation: the
originating process or user cannot later deny authorship or claim the message was
altered.

Writing Code to Send Signed Messages

The following flowchart provides the procedure for writing code to send signed
messages.

Using BEA Tuxedo Security 3-23

3 Programming Security

Figure 3-3 Procedure for Sending Signed Messages

Start) (Continue)

A 4

A 4

1. Open key handle for signer to receive 6. Send message in buffer by calling
a key handle to signer’s private key and tpsend() , tpcall() e
digital certificate. tpsend()
tpkey_open()
A

2. (optional): Get information about Just before message is sent, public key
signer’s key handle. software performs the following tasks:

tpkey_getinfo() 1. Encodes message buffer data, buffer

type string, and buffer subtype string.
2. Adds timestamp from local system’s

v clock.
3. (optional): Change information 3. Computes hash value using message
associated with signer’s key handle. digest algorithm.
tpkey_setinfo() 4. Encrypts hash value, using signer’s

private key and digital signature
algorithm, to create a digital signature.

v 5. Attaches timestamp, digital signature
(encrypted hash value), signer’s digital
certificate, message digest algorithm,
and digital signature algorithm to

4. Allocate a typed message buffer and
put message in buffer.

tpalloc() message.
A A4
5. Mark the message buffer for digital 7. Close signer’s key handle to release
signature, thus attaching a copy of the key handle and all resources associated
signer’s key handle to the message buffer. with it.
tpsign() tpkey_close()

\ 4

Continue) End

3-24 Using BEA Tuxedo Security

Sending and Receiving Signed Messages

For details about these steps and insight into how the system signs a message buffer,
see the following topics.

Step 1: Opening a Key Handle for Digital Signature

Call thetpkey _open(3c) function orTPKEYOPEN(3cbl) routine to make the private

key and the associated digital certificate of the signer available to the originating
process. The private key is highly protected, and possession of it is equivalent to
possessing the signer’s identity.

In order to access the signer’s private key, the originating process must prove its right
to act as the signer. Proof requirements depend on the implementation of the public key
plug-in interface. The default public key implementation requires a secret password
from the calling process.

When the originating process cafigey_open() to open the key handle, it specifies
either theTPKEY_SIGNATURBr TPKEY_AUTOSIGNIag to indicate that the handle will
be used to digitally sign a message buffer. Typically, a client makes this call after
callingtpinit() , and a server makes this call as part of initializing through
tpsvrinit()

Opening a key handle with ti®@KEY_AUTOSIGNIag enables automatic signature
generation: subsequently, the originating process signs message buffers automatically
whenever they are sent. Using tfRKEY_AUTOSIGNlag is beneficial for three

reasons:

m Less work is required from application programmers because fewer ATMI calls
are required when operating in a secure application.

m Existing applications can leverage digital signature technology with minimal
coding changes.

m The possibility of programming errors that might result in an unsigned buffer
being sent over an insecure network is reduced.

The following example code shows how to open a signer’s key hairRKeYis a
special data type defined in theni.h header file.

Using BEA Tuxedo Security 3-25

Programming Security

Listing 3-3 Opening a Signer’s Key Handle—Example

main(argc, argv)
int argc;

char *argv(];
#endif

TPKEY sdo_key;
char *sdo_location;

if (tpkey_open(&sdo_key, “sdo”, sdo_location,
NULL, 0, TPKEY_SIGNATURE) ==-1) {
(void) fprintf(stderr, “tpkey_open sdo failed
tperrno=%d(%s)\n”, tperrno, tpstrerror(tperrno));
exit(1);
}

Step 2 (Optional): Getting Key Handle Information

3-26

You may want to get information about a signer’s key handle to establish the validity
of the key. To do so, call thgkey_getinfo(3c) function orTPKEYGETINFO(3chl)
routine. While some of the information returned may be specific to a cryptographic
service provider, a core set of attributes is common to all providers.

The default public key implementation supports the following signature modes for
computing signatures on a message buffer:

m MD5 message digest algorithm with RSA public key signature
m SHA-1 message digest algorithm with RSA public key signature

The message digest algorithm is controlled byti&EST_ALGkey attribute, and the
public key signature is controlled by tB&SNATURE_ALCkey attribute. Public key
sizes from 512 to 2048 bits are supported, to allow a wide range of safety and
performance options. The public key size is controlled bysStB&IATURE_BITSkey
attribute.

Using BEA Tuxedo Security

Sending and Receiving Signed Messages

The default public key implementation recognizes only those digital certificate
signatures that are created with these algorithm and key size choices.

The following example code shows how to get information about a signer’s key
handle.

Listing 3-4 Getting Information About a Signer’s Key Handle—Example

main(argc, argv)
int argc;

char *argv([];
#endif

{
TPKEY sdo_key;

char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;

if (tpkey_getinfo(sdo_key, “PRINCIPAL",
principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information
about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

exit(1);

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with a signer’s key handle, call the
tpkey_setinfo(3c) function orTPKEYSETINFO(3cbl) routine. Key handle
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with a
signer’s key handle.

Using BEA Tuxedo Security 3-27

3 Programming Security

Listing 3-5 Changing Information Associated with a Signer's Key Handle—
Example

main(argc, argv)
int argc;

char *argv(];
#endif

{
TPKEY sdo_key;

static const unsigned char shal_objid[] = {
0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, Ox1la

kh

if (tpkey_setinfo(sdo_key, “DIGEST_ALG”, (void *) shal_obijid,
sizeof(shal_objid), 0) == -1) {
(void) fprintf(stderr, “tpkey_setinfo failed
tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));
return(1);

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To allocate a typed message buffer, calltpatoc(3c) function. Then put a
message in the buffer.

Step 5: Marking the Buffer for Digital Signature

To mark, or register, the message buffer for digital signature, capdige(3c)

function. By calling this function, you attach a copy of the signer’s key handle to the
message buffer. If you open the key withTR&EY_AUTOSIGNlag, each message that
you send is automatically marked for digital signature without an explicit call to
tpsign() ; signature parameters are stored and associated with the buffer for later us

Note: In COBOL applications, use th&JTOSIGNsettings member to create a digital
signature. SeEPKEYOPEN(3chl) .

3-28 Using BEA Tuxedo Security

Sending and Receiving Signed Messages

The following example code shows how to mark a message buffer for digital signature.

Listing 3-6 Marking a Message Buffer For Digital Signature—Example

main(argc, argv)
int argc;

char *argv([];
#endif

TPKEY sdo_key;
char *sendbuf, *rcvbuf;

if (tpsign(sendbuf, sdo_key, 0) == -1) {

(void) fprintf(stderr, “tpsign failed tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));

tpfree(rcvbuf);

tpfree(sendbuf);

tpterm();

(void) tpkey_close(sdo_key, 0);

exit(1);

Step 6: Sending the Message

After the message buffer has been marked for digital signature, transmit the message
buffer using one of the following C functions or COBOL routines:

e tpcal) Or TPCALL

e tpbroadcast() or TPBROADCAST
e tpconnect() or TPCONNECT

e tpenqueue() Or TPENQUEUE

e tpforward()

e tpnotify() or TPNOTIFY

Using BEA Tuxedo Security 3-29

3 Programming Security

e tppost() Or TPPOST
e tpreturn() or TPRETURN

e tpsend() oOr TPSEND

Step 7: Closing the Signer’s Key Handle

Call thetpkey_close(3c) function orTPKEYCLOSE(3chl) routine to release the
signer’s key handle and all resources associated with it.

How the System Generates a Digital Signature

Just before a message buffer is sent, the public key software digitally signs the
message. If a signed buffer is transmitted more than once, the software generates an
signature for each communication. This process makes it possible to modify a messag
buffer after marking the buffer to be digitally signed.

The public key software generates a digital signature by performing the following
three-step procedure.

1. digest[message buffer_data + buffer_type_string + buffer_subtype_string] =
hash1

2. digest[hashl + local_timestamp + PKCS-7_message_type] = hash2
3. {hash2}signer’s_private_key = encrypted_hash2 = digital_signature

The notatiordigesfsomethingmeans that a hash value has been computed for
somethingusing a message digest algorithm—in this case, MD5 or SHA-1. The
notation {somethingkeymeans thatomethindas been encrypted or decrypted using
key: In this case, the computed hash value is encrypted using the signer’s private ke

Signature Timestamp

3-30

A digital signature includes a timestamp from the local system’s clock. Inclusion of
such a timestamp ensures that any tampering with the timestamp value will be detects
when the recipient verifies the signature. In addition, a copy of the timestamp
accompanies the digitally signed message when the message is routed to its
destination.

Time resolution is to the second. Timestamps are stored in PKSZfs#@yTime
format.

Using BEA Tuxedo Security

Sending and Receiving Signed Messages

Multiple Signatures

More than one signature can be associated with a message buffer, which means that
any number of signers can sign a message buffer in parallel. A signer can be a person
or a process. Each signer signs the message buffer using his, her, or its private key.

Different signatures may be based on different message digest or digital signature
algorithms. If two signers use the same message digest and digital signature algorithm,
the hash value is computed for only one of them.

Signed Message Content

A digitally signed message buffer is represented in the PKCS-7 format as a version 1
SignedData content type. TheignedData content type, as used by the BEA Tuxedo
system, consists of the following items:

m One or more digital signatures, each with its own set of signer-specific
information, such as:

e Signer’s X.509v3 certificate
¢ Message digest and digital signature algorithm identifiers

e Timestamp based on the local clock

m Message content, which is a composite of message buffer data, buffer type
string, and buffer subtype string represented in the BEA Tuxedo encoded format.
The encoded format allows a message buffer’s signature to be verified on any
machine architecture.

As shown in the following figure, the message content is envelop&wdidData
content type.

Figure 3-4 SignedData Content Type

SignedData Content Type
(Signing Operation—Contains Digital Signatures and Associated Signer-Specific Information)

TUXBUF Content Type

(Message Content—Contains Composite Encoded Data)

Using BEA Tuxedo Security 3-31

3 Programming Security

How a Signed Message Is Received

3-32

No application code is needed to receive a signed message buffer. The public key
software automatically verifies the attached digital signatures and passes the messa
to the receiving process.

Upon receiving a signed message buffer, the public key software, operating on beha
of the receiving process, performs the following tasks.

1. Reads the digital signature information attached to the received message, includir
the signer’s digital certificate, message digest algorithm, digital signature
algorithm, and signature timestamp.

2. Decrypts the attached digital signature (encrypted hash value) using the signer’s
public key (found in the signer’s digital certificate) and the digital signature
algorithm.

3. Re-computes the hash value for the received message, as shown in the followin
two-step procedure.

a. digest[message_buffer_data + buffer_type_string + buffer_subtype_string] =
hash1

b. digest[hashl + received_timestamp + PKCS-7_message_type] = hash2

The notatiordigesfsomethingmeans that a hash value has been computed for
somethingusing a message digest algorithm—in this case, MD5 or SHA-1.

4. Compares the re-computed hash value with the received hash value; if the two
are not identical, discards the message buffer.

5. Compares the received timestamp with the local system’s clock; if the timestamp
is not within a configured tolerance, discards the message buffer.

6. If the message buffer successfully passes the checks performed in Steps 4 and
the public key software decodes the message buffer data, buffer type string, and
buffer subtype string, and then passes the message to the receiving process. Th
step reverses the encoding performed by the originating process. (The BEA
Tuxedo encoded format allows a message buffer’s signature to be verified on an
machine architecture.)

Using BEA Tuxedo Security

Sending and Receiving Signed Messages

Note: If none of the attached digital signatures can be verified, the receiving process
doesnotreceive the message buffer. Moreover, the receiving process has no
knowledge of the message buffer.

Verifying Digital Signatures

The public key software automatically verifies digital signatures whenever a signed
message buffer enters a client process, server process, or any system process that needs
to access the content of the message buffer. If a system process is actiogasita

(that is, if it is not reading the content of the message), then the attached digital
signatures need not be verified. Bridges and Workstation Handlers (WSHSs) are
examples of system processes acting as conduits.

The signature timestamp is based on an unsynchronized clock, and therefore cannot be
fully trusted, especially if the signature is performed on a PC or personal workstation.
However, a server may reject requests with timestamps that are too old or dated too far
into the future. The capability to reject a request based on the timestamp provides a
measure of protection against replay attacks.

Verifying and Transmitting an Input Buffer’s Signatures

If a message buffer is passed to an ATMI function (suchaasll()) as an input
parameter, the public key software verifies any signatures previously attached to the
message and then forwards the message. This behavior enables a secure, verified
transfer of information with signatures from multiple processes.

If a server modifies a received message buffer and then forwards the buffer, the
original signature is no longer valid. In this case, the public key software detects the
invalid signature and silently discards it. For an example of the process, see
“Discarding an Input Buffer's Encryption Envelopes” on page 3-49.

Replacing an Output Buffer’s Signatures

If a message buffer is passed to an ATMI function (suchgaseply()) as an

output parameter, the public key software deletes any signature information associated
with the buffer. This information includes apgndingsignatures and signatures from
previous uses of the buffer. (A pending signature is a signature that is registered with
a message buffer.)

Using BEA Tuxedo Security 3-33

3 Programming Security

New signature information might be associated with the new buffer content after
successful completion of this operation.

See Also

m “Sending and Receiving Encrypted Messages” on page 3-34

m “Examining Digital Signature and Encryption Information” on page 3-52
m “Externalizing Typed Message Buffers” on page 3-59

m “Public Key Security” on page 1-29

m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

Sending and Receiving Encrypted Messages

Message-based encryption provides end-to-end data privacy. For a diagram that
illustrates how it works, see the figure “BEA Tuxedo PKCS-7 End-to-End Encryption”
on page 1-40.

A message is encrypted just before it leaves the originating process, and remains
encrypted until it is received by the final destination process. It is opaque at all
intermediate transit points (including operating system message queues, system
processes, and disk-based queues) and during network transmission over inter-sen
network links.

Writing Code to Send Encrypted Messages

The following flowchart provides the procedure for writing code to send encrypted
messages.

3-34 Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

Figure 3-5 Procedure for Sending Encrypted Messages

(Start)

A 4

(Continue)

A

1. Open key handle for target recipient to
receive a key handle to recipient’s digital
certificate.

tpkey_open()

6. Send message in buffer by calling
tpsend() , tpcall() e

tpsend()

A 4

2. (optional): Get information about
encryption key handle.

tpkey_getinfo()

A 4

3. (optional): Change information
associated with encryption key handle.

tpkey_setinfo()

\ 4

4. Allocate a typed message buffer and
put message in buffer.

tpalloc()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Generates digital signatures (if any).

3. Compresses message and digital
signatures (if any) using Deflate
compression algorithm.

4. Encrypts compressed message and
digital signatures (if any) using
random session key and symmetric
key algorithm.

5. Encrypts session key using recipient’s
public key (found in recipient’s digital
certificate) and public key algorithm.

6. Includes encrypted session key and
recipient’s name in a digital
encryption envelope.

7. Attaches encryption envelope to
encrypted message.

\ 4

A

5. Mark the message buffer for encryp-
tion, thus attaching a copy of the encryp-
tion key handle to the message buffer.

tpseal()

7. Close encryption key handle to
release key handle and all resources
associated with it.

tpkey_close()

A 4

(Continue)

End

Using BEA Tuxedo Security 3-35

3 Programming Security

For details about these steps and insight into how the system encrypts a message
buffer, see the following topics.

Step 1: Opening a Key Handle for Encryption

3-36

Call thetpkey_open(3c) function orTPKEYOPEN(3cbl) routine to make the digital
certificate of the target recipient available to the originating process. The target
recipient might be a client, a service, a server group, a gateway group, a server
machine, or an entire domain of servers.

When the originating process caflgey_open() to open the key handle, it specifies
either theTPKEY_ENCRYPOr TPKEY_AUTOENCRYHiag to indicate that the handle

will be used to encrypt a message buffer. Typically, a client makes this call after calling
tpinit() , and a server makes this call as part of initializing thrapsghinit()

Opening a key handle with tH®KEY_AUTOENCRYHiag enables automatic
encryption: subsequently, the originating process encrypts message buffers
automatically whenever they are sent. UsingTthiEY_AUTOENCRYHTag is
beneficial for three reasons:

m Less work is required from application programmers because fewer ATMI calls
are required when operating in a secure application.

m Existing applications can leverage encryption technology with minimal coding
changes.

m The possibility of programming errors that might result in an unencrypted
(plaintext) buffer being sent over an insecure network is reduced.

The following example code shows how to open an encryption key hardleyis a
special data type defined in theni.h header file.

Listing 3-7 Opening an Encryption Key Handle—Example

main(argc, argv)
int argc;

char *argv(];
#endif

TPKEY tu_key;

Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

if (tpkey_open(&tu_key, “TOUPPER”, NULL,
NULL, 0, TPKEY_ENCRYPT) ==-1) {
(void) fprintf(stderr, “tpkey_open tu failed
tperrno=%d(%s)\n”, tperrno, tpstrerror(tperrno));
exit(1);
}

Step 2 (Optional): Getting Key Handle Information

You may want to get information about an encryption key handle to establish the
validity of the key. To do so, call thekey_getinfo(3c) function or
TPKEYGETINFO(3cbl) routine. While some of the information returned may be
specific to a cryptographic service provider, a core set of attributes is common to all
providers.

The default public key implementation supports three algorithms for bulk data
encryption of message content:

m DES (DES-CBC)—A 64-bit block cipher run in Cipher Block Chaining (CBC)
mode. It provides 56-bit keys (8 parity bits are stripped from the full 64-bit key)
and is exportable outside the United States. (DES stands for the Data Encryption
Standard.)

m 3DES (two-key triple-DES)—A 128-bit block cipher run in
Encrypt-Decrypt-Encrypt (EDE) mode. 3DES provides two 56-bit keys (in
effect, a 112-bit key) and i®t exportable outside the United States.

m RC2—A variable key-size block cipher with a key size range of 40 to 128 bits.
It is faster than DES and is exportable with a key size of 40 bits. A 56-bit key
size is allowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC2 can be used with keys of virtually
unlimited length, but the public key software restricts the key length to 128 bits.
(RC2 stands for Rivest's Cipher 2.)

Using BEA Tuxedo Security 3-37

3 Programming Security

Encryption strength is controlled by tBSICRYPT_BITSkey attribute, and the
algorithm is controlled by thENCRYPT_ALGey attribute. When an algorithm with
fixed key length is set iIENCRYPT_ALGthe value oENCRYPT_BITSis automatically
adjusted to match.

The following example code shows how to get information about an encryption key
handle.

Listing 3-8 Getting Information About an Encryption Key Handle—Example

main(argc, argv)
int argc;

char *argv([];
#endif

{
TPKEY tu_key;

char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;

if (tpkey_getinfo(tu_key, “PRINCIPAL”,
principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information
about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

exit(1);

3-38 Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with an encryption key handle, call the
tpkey_setinfo(3c) function orTPKEYSETINFO(3cbl) routine. Key handle
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with an
encryption key handle.

Listing 3-9 Changing Information Associated with an Encryption Key Handle—
Example

main(argc, argv)
int argc;

char *argv(];
#endif

{
TPKEY tu_key;

static const unsigned char rc2_objid[] = {
0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02
h

if (tpkey_setinfo(tu_key, “ENCRYPT_ALG", (void *) rc2_objid,
sizeof(rc2_obijid), 0) == -1) {
(void) fprintf(stderr, “tpkey_setinfo failed
tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));
return(1);

}

Step 4: Allocating a Buffer and Putting a Message in the Buffer

To allocate a typed message buffer, calltfaioc(3c) function. Then put a
message in the buffer.

Using BEA Tuxedo Security 3-39

3 Programming Security

Step 5: Marking the Buffer for Encryption

To mark, or register, the message buffer for encryption, caip¢hal(3c) function.

By calling this function, you attach a copy of the encryption key handle to the messag
buffer. If you open the key with tHePKEY_AUTOENCRYHTag, each message that you
send is automatically marked for encryption without an explicit cafiskal()

Note: In COBOL applications, use th&JTOENCRYP3ettings member to encrypt a
message buffer. SE®KEYOPEN(3chl) .

The following example code shows how to mark a message buffer for encryption.

Listing 3-10 Marking a Message Buffer For Encryption—Example

main(argc, argv)
int argc;

char *argv(];
#endif

TPKEY tu_key;
char *sendbuf, *rcvbuf;

if (tpseal(sendbuf, tu_key, 0) == -1) {
(void) fprintf(stderr, “tpseal failed tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));
tpfree(rcvbuf);
tpfree(sendbuf);
tpterm();
(void) tpkey_close(tu_key, 0);
exit(1);

3-40 Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

Step 6: Sending the Message

After the message buffer has been marked for encryption, transmit the message buffer
using one of the following C functions or COBOL routines:

e tpcal) Or TPCALL

e tpbroadcast() or TPBROADCAST
e tpconnect() or TPCONNECT

e tpenqueue() Or TPENQUEUE

e tpforward()

e tpnotify() or TPNOTIFY

e tppost() Or TPPOST

e tpreturn() or TPRETURN

e tpsend() Or TPSEND

Step 7: Closing the Encryption Key Handle

Call thetpkey_close(3c) function orTPKEYCLOSE(3cbl) routine to release the
encryption key handle and all resources associated with it.

How the System Encrypts a Message Buffer

Just before a message buffer is sent, the public key software encrypts the message and
attaches an encryption envelope; the encryption envelope enables the target recipient
to decrypt the message. If a sealed buffer is transmitted more than once, encryption is
performed for each transmission. This process makes it possible to modify a message
buffer after marking the buffer to be encrypted.

The public key software encrypts the content of the message buffer and generates an
encryption envelope for the recipient of the encrypted message by performing the
following two-step procedure.

1. {message_buffer_data + buffer_type_string + buffer_subtype_string}session_key
= encrypted_message

2. {session_key}recipient’s_public_key = encrypted_session_key =
encryption_envelope_for_recipient

Using BEA Tuxedo Security 3-41

3 Programming Security

The notation §omethingkeymeans thasomethinghas been encrypted or decrypted
usingkey In Step 1, a message buffer is encrypted using the session key, and in Step
the session key is encrypted using the recipient’s public key.

Multiple Message Redipients

More than one encryption envelope can be associated with a message buffer, whict
means that multiple recipients, with different private keys, can receive and decrypt a
encrypted message. A recipient can be a person or a process. When a message is
encrypted for multiple recipients, it is encrypted only once, but the session key is
encrypted with the public key of each recipient. All encryption envelopes are attachec
to the encrypted message.

If several encryption envelopes are associated with one message buffer, all of them
must use the same symmetric key algorithm and the same key size for that algorithr

Encrypted Message Content

3-42

An encrypted message buffer is represented in the PKCS-7 format as a version 0
EnvelopedData content type. ThEnvelopedData content type, as used by the BEA
Tuxedo system, consists of the following items:

m A list of recipients (in plaintext) that can be read by any BEA Tuxedo process
m Encryption envelopes for one or more recipients

m Public key algorithm (and any associated parameters) under which the session
key was encrypted

m Symmetric key algorithm (and any associated parameters) under which the bulk
data was encrypted

m Encrypted bulk data, which is a composite of message buffer data, buffer type
string, buffer subtype string, and digital signatures (if any) that have undergone
the following transformations:

e Conversion of the message buffer data, buffer type string, and buffer subtype
string into the BEA Tuxedo encoded format to form the composite encoded
data. (The BEA Tuxedo encoded format allows a message buffer to be
decrypted on any machine architecture.)

Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

e Compression of the composite encoded data and digital signatures (if any)
using the Deflate compression algorithm to form the composite compressed
data.

e Encryption of the composite compressed data under a randomly generated
session key and symmetric key algorithm (identified earlier in this list) to
form the encrypted bulk data.

The following figure shows the envelope hierarchy forgthnelopedData content
type. TheSignedData content type is part of the hierarcbglyif the message to
which it belongs has one or more associated digital signatures.

Figure 3-6 EnvelopedData Content Type

EnvelopedData Content Type
(Encrypting Operation)

CompressedData Content Type
(Compressing Operation)

SignedData Content Type
(Signing Operation)

TUXBUF Content Type

(Message Content)

As shown in the preceding figure, a message buffer may be both signed and encrypted.
No relationship is required between the number of digital signatures and the number
of encryption envelopes associated with a message buffer.

When both processes are performed on a message buffer, signatures are generated first,
on unencrypted data. The number of attached signatures and the identity of signing
parties are then obscured by the bulk data encryption.

Using BEA Tuxedo Security 3-43

3 Programming Security

Note: A suitable decryption key must be available to access message data before
signatures can be verified.

Writing Code to Receive Encrypted Messages

The procedure for writing code to receive encrypted messages consists of the
following steps.

1. Calltpkey_open() to open a key handle for the target recipigikey_open
returns a key handle to the recipient’s private key and digital certificate.

2. (Optional): Caltpkey_getinfo() to get information about the decryption key
handle.

3. (Optional): Callpkey_setinfo() to change information associated with the
decryption key handle.

4. Calltpkey_close() to close the decryption key handigkey close()
releases the key handle and all resources associated with it.

For details about these steps and insight into how the system decrypts a message
buffer, see the following topics.

Step 1: Opening a Key Handle for Decryption

3-44

Call thetpkey_open(3c) function orTPKEYOPEN(3cbl) routine to make the private
key and the associated digital certificate of the target recipient available to the
receiving process. The receiving process might be a client, a service, a server group
gateway group, a server machine, or an entire domain of servers.

An application administrator can configure the applicatioBCONFIdile such that
decryption key handles are opened automatically when the application is booted. Nc
more than one decryption key handle per server may be used with this method. See
“Initializing Decryption Keys Through the Plug-ins” on page 2-50 for details.

If an application is not configured to open a decryption key handle for the receiving
process during booting, the receiving process initiates itegkepn open() call. Or,

if the receiving process wants to open another decryption key handle, the receiving
process makes an additiomaltey open() call.

Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

In order to access the target recipient’s private key, the receiving process must prove
its right to act as the target recipient. Proof requirements depend on the implementation
of the public key plug-in interface. The default public key implementation requires a
secret password from the calling process.

When the receiving process capgey open() to open the key handle, it specifies
theTPKEY_DECRYPTlag to indicate that the handle will be used to decrypt a message
buffer. Typically, a client makes this call after callipgit) , and a server makes
this call as part of initializing throughsvrinit()

The following example code shows how to open a decryption key hamwikEeyis a
special data type defined in theni.h header file.

Listing 3-11 Opening a Decryption Key Handle—Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;

char **argv;

#endif

{

char *tu_location;

if (tpkey_open(&tu_key, “TOUPPER?”, tu_location,
NULL, 0, TPKEY_DECRYPT) ==-1) {
userlog(“Unable to open private key: %d(%s)”,
tperrno, tpstrerror(tperrno));
return(-1)

Using BEA Tuxedo Security 3-45

3 Programming Security

Step 2 (Optional): Getting Key Handle Information

3-46

You may want to get information about a decryption key handle to establish the
validity of the key. To do so, call thgkey_getinfo(3c) function or
TPKEYGETINFO(3cbl) routine. While some of the information returned may be
specific to a cryptographic service provider, a core set of attributes is common to all
providers.

The following example code shows how to get information about a decryption key
handle.

Listing 3-12 Getting Information About a Decryption Key Handle—Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;

char **argv;

#endif

{
char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;

if (tpkey_getinfo(tu_key, “PRINCIPAL”,
principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information
about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

exit(1);

Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

Step 3 (Optional): Changing Key Handle Information

To set optional attributes associated with a decryption key handle, call the
tpkey_setinfo(3c) function orTPKEYSETINFO(3cbl) routine. Key handle
attributes vary, depending on the cryptographic service provider.

The following example code shows how to change information associated with a
decryption key handle.

Listing 3-13 Changing Information Associated with a Decryption Key Handle—
Example

TPKEY tu_key;

tpsvrinit(argc, argv)
int argc;

char **argyv;

#endif

TM32U mybits = 128;

if (tpkey_setinfo(tu_key, “ENCRYPT_BITS”, &mybits,
sizeof(mybits), 0) == -1) {
(void) fprintf(stderr, “tpkey_setinfo failed
tperrno=%d(%s)\n”,
tperrno, tpstrerror(tperrno));
return(1);

}

Step 4: Closing the Decryption Key Handle

Call thetpkey_close(3c) function orTPKEYCLOSE(3cbl) routine to release the
decryption key handle and all resources associated with it.

Using BEA Tuxedo Security 3-47

3 Programming Security

How the System Decrypts a Message Buffer

3-48

The public key software automatically decrypts an encrypted message buffer
whenever it enters a BEA Tuxedo client process, server process, or any system proce
that needs to access the content of the message buffer. For automatic decryption to
succeed, the receiving process must have opened a decryption key (type
TPKEY_DECRYPjTcorresponding to a recipient identified in one of the attached
encryption envelopes.

Upon receiving an encrypted message, the public key software, operating on behalf
the receiving process, performs the following tasks.

1.
2.

Reads the target recipient’'s name on the attached encryption envelope.

To recover the session key, decrypts the recipient’s encryption envelope using th
recipient’s private key and the public key algorithm.

Decrypts the message using the recovered session key and the symmetric key
algorithm.

Uncompresses the message.

Verifies digital signatures if any. (See “How a Signed Message Is Received” on
page 3-32.)

If the message buffer successfully passes the check performed in Step 5, the
public key software decodes the message buffer data, buffer type string, and
buffer subtype string, and then passes the plaintext message to the receiving
process. This step reverses the encoding performed by the originating process.
(The BEA Tuxedo encoded format allows a message buffer to be decrypted on
any machine architecture.)

Note: If none of the attached digital signatures can be verified or the message buffe

cannot be decrypted, the receiving process doésceive the message
buffer. Moreover, the receiving process has no knowledge of the message
buffer.

If a system process is acting asomduit(that is, if it is not reading the content of the
message), then the message need not be decrypted. Bridges and Workstation Handl
(WSHSs) are examples of system processes acting as conduits.

Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

The WSH is a special example of a conduit. If a WSH is configured for data-dependent
routing, it needs to read the received message buffer to determine how to route the
buffer. The public key software makes a copy of the received message buffer, decrypts
the copy, and then passes the decrypted copy to the WSH. The WSH analyzes the
decrypted copy to determine how to route the buffer, and then routes the original
message buffeunchangedo the appropriate server. (For more detail about the
interaction between data-dependent routing and public key security, see
“Compatibility/Interaction with Data-dependent Routing” on page 1-60.)

Discarding an Input Buffer’s Encryption Envelopes

If a message buffer is passed to an ATMI function (suchagall)) as an input
parameter, the public key software discards any encryption envelopes previously
attached to the message. This behavior prevents the target recipients for the original
message from receiving any modifications made by an intermediate process.

As an example of this process, consider the scenario shown in the following figure.

Figure 3-7 Forwarding a Signed and Encrypted Message—Example

Workstation
Client
=® > Server
/I— v
Employee (Data-dependent Routing) Manager Purchasing
Decrypt, Read, Decrypt, Read, Sign, Seal, Decrypt &

Encrypt Message

EnvelopedData

Encrypt Env 2

Encrypt Env 1

Sig 1

Message

& Forward Encrypted Message & Forward Encrypted Message Read Message

EnvelopedData EnvelopedData EnvelopedData
= = =

Using BEA Tuxedo Security 3-49

3 Programming Security

3-50

A server process namethnager receives a signed and encrypted message buffer from
a client process naméthployee , decrypts and reads the received message buffer,
signs and seals it for a service narracthasing , and then forwards the message to
Purchasing

The following is a detailed description of how this operation is performed.

1. The Workstation Handler (WSH) receives the signed and encrypted message buff
from the employee and forwardsas is

The WSH process is configured for data-dependent routing, which is briefly
described in “How the System Decrypts a Message Buffer” on page 3-48. The
public key software uses a decryption key previously opened for the WSH
process to decrypt a copy of the received message buffer, and then passes the
decrypted copy to the WSH. After analyzing the decrypted copy, the WSH
routes the received message buffer toMheager processs is

If the WSH process isot configured for data-dependent routing, Engployee
process does not needtpeeal() the message buffer for the WSH process,
and the WSH process does not need to open a decryption key.

Regardless of how it is configured, the WSH does not verify digital signatures.

2. When the message buffer arrives atMlaeager process, the public key
software:

a. Decrypts the message buffer using a decryption key previously opened for thi
Manager process

b. Verifies the employee’s signature

c. Passes the messagighoutdigital signature or encryption information to the
Manager

When a process receives a message buffer, it recaiethe message content.
Any digital signatures or encryption envelopes associated with the message
buffer are not included.

3. TheManager callstpenvelope() repeatediyto find out about the digital
signature and encryption information associated with the message buffer.
tpenvelope() returns:

Using BEA Tuxedo Security

Sending and Receiving Encrypted Messages

¢ Digital signature information, including the signer’s public key and a
digital-signature status giPSIGN_OK

e Encryption information, including the public keys of the WSH process and
theManager process itself

4. TheManager callstpkey_getinfo() with the signer’s public key as an
argument, to obtain more information about the signer, including the signer’s
principal name.

5. If theManager determines that the signer is a known employee and that the
employee’s request (as stated in the message content) is valithritger
proceeds as follows.

a. Callstpsign() to mark the message buffer for digital signature by the
Manager.

a. Callstpseal() to mark the message buffer to be encryptedrfochasing

b. Callstpforward() (or some other function used to transmit data) to send the
message teurchasing

Just before the message is transmitted, the public key software performs the following
tasks.

1. Generates a digital signature for tanager

2. Verifies the employee’s digital signature

3. Encrypts the message content and associated digital signatures
4

. Creates an encryption envelope Farchasing

Repladng an Output Buffer's Encryption Envelopes

If a message buffer is passed to an ATMI function (sugtyasply()) as an output
parameter, the public key software deletes any encryption information associated with
the buffer. This information includes apgndingseals, or seals from previous uses of

the buffer. (A pending seal is a recipient’s seal that is registered with a message buffer.)

New encryption information might be associated with the new buffer content after
successful completion of the operation.

Using BEA Tuxedo Security 3-51

3 Programming Security

See Also

m “Examining Digital Signature and Encryption Information” on page 3-52
m “Externalizing Typed Message Buffers” on page 3-59

m “Public Key Security” on page 1-29

m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

Examining Digital Signature and Encryption
Information

The public key software maintains the order in which:

m Digital-signature registration requests and digital signatures are attached to a
message buffer

m Encryption registration requests and encryption envelopes are attached to a
message buffer

A process obtains this information by calling thenvelope() ~ function with the
target message buffer as an argumipativelope() is described on the
tpenvelope(3c) reference page IBEA Tuxedo C Function Reference

There may be multiple occurrences of digital-signature registration requests, digital
signatures, encryption registration requests, and encryption envelopes associated wi
a message buffer. The occurrences are stored in sequence, with the first item at the z
position and subsequent items in consecutive positionsoctheence input

parameter fotpenvelope() indicates which item is being requested. When the value
of occurrence is beyond the position of the last itetpgnvelope() fails with the
TPENOENTrror condition. A process can examine all items by catlfiagvelope()
repeatedly untirPENOENTS returned.

3-52 Using BEA Tuxedo Security

Examining Digital Signature and Encryption Information

In an originating process, digital signature and encryption information is generally in
a pending state, waiting until the message is sent. In a receiving process, digital
signatures have already been verified, and encryption and decryption have already
been performed.

What Happens When an Originating Process Calls
tpenvelope

When an originating process capisnvelope() with the originating message buffer
as an argumentpenvelope() reports:

m Any digital signature requeskplicitly registered with the message buffer as
being in theTPSIGN_PENDINGstate. The originating process explicitly registers
a digital signature request by calling thsign(3c) function.

m Any digital signature requestplicitly registered with the message buffer as
also being in th@PSIGN_PENDINGstate. The originating process implicitly
registers a digital signature request by caltpi@y_open(3c) with the
TPKEY_AUTOSIGNlag specified.

m Any encryption (seal) requeskplicitly registered with the message buffer as
being in theTPSEAL_PENDINGstate. The originating process explicitly registers
an encryption request by calling tipgeal(3c) function.

m Any encryption (seal) requeishplicitly registered with the message buffer as
also being in th@PSEAL_PENDINGstate. The originating process implicitly
registers an encryption request by callipkey_open() with the
TPKEY_AUTOENCRYHTag specified.

In addition to the statugyenvelope() returns the key handle associated with a
digital signature or encryption registration request. A process can call the
tpkey_getinfo(3c) function with the key handle as an argument, to get more
information about the key handle.

Using BEA Tuxedo Security 3-53

3 Programming Security

What Happens When a Receiving Process Calls
tpenvelope

3-54

When a process receives a message buffer, it recaighe message content. Any
digital signatures or encryption envelopes associated with the message buffer are n
included. The receiving process must gathvelope() to obtain information about

any attached digital signatures or encryption envelopes.

When a receiving process capenvelope() with the received message buffer as an
argumenttpenvelope() reports:

m Any digital signature attached to the message buffer. A digital signature has one
of the following states:

e TPSIGN_OK
Digital signature has been verified.
e TPSIGN_TAMPERED_MESSAGE

Digital signature is not valid because the content of the message buffer has
been altered.

e TPSIGN_TAMPERED_CERT

Digital signature is not valid because the signer’s digital certificate has been
altered.

e TPSIGN_REVOKED_CERT

Digital signature is not valid because the signer’s digital certificate has been
revoked.

e TPSIGN_POSTDATED
Digital signature is not valid because its timestamp is too far into the future.
e TPSIGN_EXPIRED_CERT

Digital signature is not valid because the signer’s digital certificate has
expired.

e TPSIGN_EXPIRED

Digital signature is not valid because its timestamp is too old.

Using BEA Tuxedo Security

Examining Digital Signature and Encryption Information

e TPSIGN_UNKNOWN

Digital signature is not valid because the signer’s digital certificate was
issued by an unknown Certification Authority (CA).

m Any encryption envelope attached to the message buffer. An encryption
envelope has one of the following states:

e TPSEAL_OK
Encryption envelope is valid.
e TPSEAL TAMPERED_CERT

Encryption envelope is not valid because the target recipient’s digital
certificate has been altered. (Target recipient molireceive the message
buffer.)

e TPSEAL_REVOKED_CERT

Encryption envelope is not valid because the target recipient’s digital
certificate has been revoked. (Target recipientmatireceive the message
buffer.)

e TPSEAL_EXPIRED_CERT

Encryption envelope is not valid because the target recipient’s digital
certificate has expired. (Target recipient witlit receive the message buffer.)

e TPSEAL_UNKNOWN

Encryption envelope is not valid because the target recipient’s digital
certificate was issued by an unknown CA. (Target recipientnwilfeceive
the message buffer.)

In addition to the statugyenvelope() returns the key handle associated with a
digital signature or encryption envelope. A process can calpkbg getinfo(3c)

function with the key handle as an argument, to get more information about the key
handle.

If a receiving process calissign() to register a digital signature request after
receiving the message bufferenvelope() reports the status of the registration as
TPSIGN_PENDING Similarly, if a receiving process caliseal() to register an
encryption (seal) request after receiving the message bievelope() reports
the status of the registration BBSEAL_PENDING

Using BEA Tuxedo Security 3-55

3 Programming Security

If a receiving process modifies the content sfgnedmessage buffer after receiving
it, the attached signatures are no longer valid. As a rgsiltelope() cannot verify
the signatures, and reports a signature statiBSIsN_TAMPERED_MESSAGE

Understanding the Composite Signature Status

For a message buffer with multiple digital signatures, the public key software calls ar
internal function equivalent tpenvelope() to examine the state of each digital
signature. Then, by observing certain rules, the public key software famonsposite
signature statusThe rules for forming a composite signature status are shown in the
following table.

Table 3-4 Composite Signature Status

If any status is . . . And there is no status of . . . Then the composite status is . . .
TPSIGN_TAMPERED_MESSAGE. . . TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT TPSIGN_TAMPERED_MESSAGE TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT TPSIGN_TAMPERED_MESSAGIPSIGN_REVOKED_CERT

TPSIGN_TAMPERED_CERT

TPSIGN_POSTDATED TPSIGN_TAMPERED_MESSAGHEPSIGN_POSTDATED
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT

TPSIGN_EXPIRED_CERT TPSIGN_TAMPERED_MESSAGHEPSIGN_EXPIRED_CERT
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED

TPSIGN_OK TPSIGN_TAMPERED_MESSAGH PSIGN_OK
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT

3-56 Using BEA Tuxedo Security

Examining Digital Signature and Encryption Information

Table 3-4 Composite Signature Status

If any statusis . . . And there is no status of . . . Then the composite status is . . .

TPSIGN_EXPIRED TPSIGN_TAMPERED_MESSAGHPSIGN_EXPIRED
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK

TPSIGN_UNKNOWN TPSIGN_TAMPERED_MESSAGESIGN_UNKNOWN
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK
TPSIGN_EXPIRED

Any incoming message bufferithouta composite signature statustTéfSIGN_OKor
TPSIGN_UNKNOWIN discarded as if it were never received. If the
SIGNATURE_REQUIREPparameter is set to(yes) in the application'sBBCONFIdile,
then any incoming message buffathouta composite signature statusTelSIGN_OK
is discarded as if it were never received. See “Enforcing the Signature Policy for
Incoming Messages” on page 2-44 for more detail.

An exception to the handling of signed message buffers described in the previous
paragraph is thgpimport(3c) function. Theipimport(3c) function delivers an
incoming message buffer regardless of the composite signature status.

Example Code for tpenvelope

The following example code shows how to y&@velope() to examine the digital
signature and encryption information associated with a message buffer.

Using BEA Tuxedo Security 3-57

3 Programming Security

Listing 3-14 Using tpenvelope—Example

main(argc, argv)
int argc;

char *argv(];
#endif

{
TPKEY tu_key;
TPKEY sdo_key;
TPKEY output_key;
char *sendbuf, *rcvbuf;
int ret;
int occurrence = 0;
long status;
char principal_name[PNAME_LEN];
long pname_len = PNAME_LEN;
int found = 0O;

output_key = NULL;
ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,
&status, NULL, 0);

while (ret !=-1) {
if (status == TPSIGN_OK) {

if (tpkey_getinfo(output_key, “PRINCIPAL”,
principal_name, &pname_len, 0) == -1) {
(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,
tperrno, tpstrerror(tperrno));

tpfree(sendbuf);
tpfree(rcvbuf);
tpterm();
(void) tpkey_close(tu_key, 0);
(void) tpkey_close(sdo_key, 0);
(void) tpkey_close(output_key, 0);
exit(1);

}

/* Do not forget to free resources */
(void) tpkey_close(output_key, 0);
output_key = NULL;

found = 1;

break;

3-58 Using BEA Tuxedo Security

Externalizing Typed Message Buffers

/* Do not forget to free resources */
(void) tpkey_close(output_key, 0);
output_key = NULL;

occurrence++;
ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,
&status, NULL, 0);

See Also

m “Externalizing Typed Message Buffers” on page 3-59
m “Public Key Security” on page 1-29
m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

Externalizing Typed Message Buffers

An externalized representation is a message buffer thahdoelude any BEA

Tuxedo header information that is normally added to a message buffer just before the
buffer is transmitted. An externalized representation of a signed message buffer
enables “pass through” transmission of signed data and long-term storage of the signed
buffer for non-repudiation. It also enables an encrypted message buffer to be
transported through intermediate processes without access to a decryption key.

Using BEA Tuxedo Security 3-59

3 Programming Security

How to Create an Externalized Representation

A process converts a typed message buffer into an externalized representation by
calling thetpexport(3c) function. Pending signatures associated with a message
buffer are generated at the tinpexport() is called, just as if the buffer were being
transmitted to another process by an ATMI function. Similarly, pending seals
associated with a message buffer are generated at thgpdbmert() is called, just

as if the buffer were being transmitted to another process by an ATMI communicatior
function.

The externalized representation of a message buffer is stored in the PKCS-7 format
which is a binary format. If a string format is required, the calling process must call
tpexport() with theTPEX_STRINGflag specified.

Note: The ability to create an externalized representation of a typed message buffer is not
unique to public key security. A process may tmgkport() to externalize a typed
message buffer regardless of whether a message buffer is marked for digital signatur
or encryption.

How to Convert an Externalized Representation

A receiving process calls thgmport(3c) function to convert the externalized
representation of a message buffer into a typed message buffepinTguet()

function also performs decryption, if necessary, and verifies any associated digital
signatures.

Example Code for tpexport and tpimport

The following example code shows how to yseport() to convert a typed
message buffer into an externalized representation, and howtignyset() to
convert the externalized representation back into a typed message buffer.

3-60 Using BEA Tuxedo Security

Externalizing Typed Message Buffers

Listing 3-15 Using tpexport and tpimport—Example

static void hexdump _((unsigned char *, long));
#define MAX_BUFFER 80000

main(argc, argv)
int argc;

char *argv([];
#endif

{
char *databuf;
char exportbuffMAX_BUFFER];
long exportbuf_size = 0;
char *importbuf = NULL;
long importbuf_size = 0;
intgo_on=1;

exportbuf_size = 0;
while (go_on == 1) {
if (tpexport(databuf, 0, exportbuf, &exportbuf_size, 0)
==-1){
if (tperrno == TPELIMIT) {
printf(“%d tperrno is TPELIMIT, exportbuf_size=%ld\n”,
__LINE__, exportbuf_size);
if (exportbuf_size > MAX_BUFFER) {

return(1);
}
}
else {
printf(“tpexport(%d) failed: tperrno=%d(%s)\n”,
__LINE__, tperrno, tpstrerror(tperrno));
return(1);
}
}
else {
go_on =0;
}

hexdump((unsigned char *) exportbuf, (long) exportbuf_size);

Using BEA Tuxedo Security 3-61

3 Programming Security

if (tpimport(exportbuf, exportbuf_size, &importbuf,
&importbuf_size, 0) == -1) {
printf(“tpimport(%d) failed: tperrno=%d(%s)\n”",
__LINE__, tperrno, tpstrerror(tperrno));
return(1);

}

See Also

m “Public Key Security” on page 1-29
m “Administering Public Key Security” on page 2-41

m “Programming an Application with Security” on page 3-3

3-62 Using BEA Tuxedo Security

	Copyright
	Contents
	1 Introducing Security
	What Security Means
	Security Plug-ins
	Security Capabilities
	Operating System (OS) Security
	Authentication
	Authentication Plug-in Architecture
	Understanding Delegated Trust Authentication
	Establishing a Session
	Getting Authorization and Auditing Tokens
	Replacing Client Tokens with Server Tokens
	Implementing Custom Authentication

	Authorization
	Authorization Plug-in Architecture
	How the Authorization Plug-in Works
	Implementing Custom Authorization

	Auditing
	Auditing Plug-in Architecture
	How the Auditing Plug-in Works
	Implementing Custom Auditing

	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Backward Compatibility of LLE
	WSL/WSH Connection Timeout During Initialization
	LLE Installation and Licensing

	Public Key Security
	PKCS-7 Compliant
	Supported Algorithms for Public Key Security
	Public Key Installation and Licensing

	Message-based Digital Signature
	Digital Certificates
	Certification Authority
	Certificate Repositories
	Public-Key Infrastructure

	Message-based Encryption
	Public Key Implementation
	Public Key Initialization
	Key Management
	Certificate Lookup
	Certificate Parsing
	Certificate Validation
	Proof Material Mapping
	Implementing Custom Public Key Security
	Default Public Key Implementation

	Default Authentication and Authorization
	Client Naming
	User, Group, and ACL Files
	Optional and Mandatory ACLs

	Security Interoperability
	Interoperating with Pre-Release 7.1 Software
	Interoperability for Link-Level Encryption
	Interoperability for Public Key Security

	Security Compatibility
	Mixing Default/Custom Authentication and Authorization
	Mixing Default/Custom Authentication and Auditing
	Compatibility Issues for Public Key Security

	2 Administering Security
	What Administering Security Means
	Security Administration Tasks
	Setting the BEA Tuxedo Registry
	Purpose of the BEA Tuxedo Registry
	Registering Plug-ins

	Configuring an Application for Security
	Editing the Configuration File
	Changing the TM_MIB
	Using the BEA Administration Console

	Setting Up the Administration Environment
	Administering Operating System (OS) Security
	Recommended Practices for OS Security

	Administering Authentication
	Specifying Principal Names
	How System Processes Acquire Credentials
	Why System Processes Need Credentials
	Example UBBCONFIG Entries for Principal Names

	Mandating Interoperability Policy
	Establishing an Identity for an Older Client
	Summarizing How the CLOPT -t Option Works
	Example UBBCONFIG Entries for Interoperability

	Establishing a Link Between Domains
	Example DMCONFIG Entries for Establishing a Link

	Setting ACL Policy
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Administering Authorization
	Administering Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed LLE Version
	How to Configure LLE on Workstation Client Links
	How to Configure LLE on Bridge Links
	How to Configure LLE on tlisten Links
	How to Configure LLE on Domain Gateway Links

	Administering Public Key Security
	Recommended Practices for Public Key Security
	Assigning Public-Private Key Pairs
	Setting Digital Signature Policy
	Setting Encryption Policy
	Initializing Decryption Keys Through the Plug-ins
	Failure Reporting and Auditing

	Administering Default Authentication and Authorization
	Designating a Security Level
	Configuring the Authentication Server

	How to Enable Application Password Security
	How to Enable User-Level Authentication Security
	Setting Up the UBBCONFIG File
	Setting Up the User and Group Files

	Enabling Access Control Security
	How to Enable Optional ACL Security
	How to Enable Mandatory ACL Security

	3 Programming Security
	What Programming Security Means
	Programming an Application with Security
	Setting Up the Programming Environment
	Writing Security Code So Client Programs Can Join the Application
	Getting Security Data
	Joining the Application
	Transferring the Client Security Data
	Calling a Service Request Before Joining the Application

	Writing Security Code to Protect Data Integrity and Privacy
	ATMI for Public Key Security
	Recommended Uses of Public Key Security

	Sending and Receiving Signed Messages
	Writing Code to Send Signed Messages
	How a Signed Message Is Received

	Sending and Receiving Encrypted Messages
	Writing Code to Send Encrypted Messages
	Writing Code to Receive Encrypted Messages

	Examining Digital Signature and Encryption Information
	What Happens When an Originating Process Calls tpenvelope
	What Happens When a Receiving Process Calls tpenvelope
	Understanding the Composite Signature Status
	Example Code for tpenvelope

	Externalizing Typed Message Buffers
	How to Create an Externalized Representation
	How to Convert an Externalized Representation
	Example Code for tpexport and tpimport

