
B E A T u x e d o R e l e a s e 7 . 1
D o c um e n t E d i t i o n 7 . 1

M a y 2 0 00

BEA Tuxedo

COBOL Function Reference

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA Tuxedo COBOL Function Reference

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

..5

..36

...37

....39

...41

..43

...47

...49

...51

...54

...59

..60

...61

....63

...64

...67

...71

...81

...83

...94

...97

...99

.100

.104

..106
Contents

. Section 3(cbl) - COBOL Functions

Introduction to the COBOL Application-Transaction Monitor Interface

FINIT, FINIT32(3cbl) ...

FVFTOS, FVFTOS32(3cbl)...

FVSTOF(3cbl)...

TPABORT(3cbl) ..

TPACALL(3cbl)..

TPADVERTISE(3cbl)..

TPBEGIN(3cbl)..

TPBROADCAST(3cbl)..

TPCALL(3cbl) ...

TPCANCEL(3cbl)..

TPCHKAUTH(3cbl) ...

TPCHKUNSOL(3cbl) ..

TPCLOSE(3cbl) ..

TPCOMMIT(3cbl) ...

TPCONNECT(3cbl) ...

TPDEQUEUE(3cbl) ...

TPDISCON(3cbl) ...

TPENQUEUE(3cbl) ...

TPFORWAR(3cbl)...

TPGETCTXT(3cbl)..

TPGETLEV(3cbl) ..

TPGETRPLY(3cbl) ..

TPGETUNSOL(3cbl)...

TPGPRIO(3cbl) ...
BEA Tuxedo COBOL Function Reference iii

08

116

117

120

123

125

. 128

.. 129

. 133

. 138

. 140

. 144

. 146

150

. 152

. 154

. 156

. 162

164

167

168

. 170

171

173

176

. 178

180

182

. 184

86

88

190

192

. 194
TPINITIALIZE(3cbl) ... 1

TPKEYCLOSE(3cbl) ...

TPKEYGETINFO(3cbl)...

TPKEYOPEN(3cbl) ...

TPKEYSETINFO(3cbl) ...

TPNOTIFY(3cbl) ...

TPOPEN(3cbl)...

TPPOST(3cbl) ..

TPRECV(3cbl) ..

TPRESUME(3cbl) ...

TPRETURN(3cbl) ...

TPSCMT(3cbl) ..

TPSEND(3cbl)...

TPSETCTXT(3cbl) ..

TPSETUNSOL(3cbl)...

TPSPRIO(3cbl)..

TPSUBSCRIBE(3cbl) ...

TPSUSPEND(3cbl) ...

TPSVCSTART(3cbl)..

TPSVRDONE(3cbl) ...

TPSVRINIT(3cbl) ..

TPTERM(3cbl) ..

TPUNADVERTISE(3cbl) ..

TPUNSUBSCRIBE(3cbl) ..

TXBEGIN(3cbl) ...

TXCLOSE(3cbl)..

TXCOMMIT(3cbl) ...

TXINFORM(3cbl) ..

TXOPEN(3cbl) ..

TXROLLBACK(3cbl).. 1

TXSETCOMMITRET(3cbl) .. 1

TXSETTRANCTL(3cbl) ..

TXSETTIMEOUT(3cbl) ..

USERLOG(3cbl) ...
iv BEA Tuxedo COBOL Function Reference

Section 3(cbl) - COBOL

Functions

BEA Tuxedo COBOL Functions

Name Description

Introduction to the COBOL
Application-Transaction Monitor Interface

Provides an introduction to the COBOL ATMI

FINIT, FINIT32(3cbl) Initializes fielded buffer

FVFTOS, FVFTOS32(3cbl) Copies from fielded buffer to COBOL structure

FVSTOF(3cbl) Copies from C structure to fielded buffer

TPABORT(3cbl) Abort current BEA Tuxedo system transaction

TPACALL(3cbl) Routine to send a message to a service asynchronously

TPADVERTISE(3cbl) Routine for advertising service names

TPBEGIN(3cbl) Routine to begin a BEA Tuxedo system transaction

TPBROADCAST(3cbl) Broadcasts notification by name

TPCALL(3cbl) Routine to send a message to a service synchronously

TPCANCEL(3cbl) Cancels a communication handle for an outstanding reply

TPCHKAUTH(3cbl) Checks if authentication required to join a BEA Tuxedo system
application

TPCHKUNSOL(3cbl) Checks for unsolicited message
BEA Tuxedo COBOL Function Reference 1

Section 3(cbl) - COBOL Functions

ne

TPCLOSE(3cbl) Closes the BEA Tuxedo system resource manager

TPCOMMIT(3cbl) Commits current BEA Tuxedo system transaction

TPCONNECT(3cbl) Establishes a conversational connection

TPDEQUEUE(3cbl) Routine to dequeue a message from a queue

TPDISCON(3cbl) Takes down a conversational connection

TPENQUEUE(3cbl) Routine to enqueue a message

TPFORWAR(3cbl) Forwards a BEA Tuxedo system service request to another routi

TPGETCTXT(3cbl) Retrieves a context identifier for the current application
association

TPGETLEV(3cbl) Checks if a BEA Tuxedo system transaction is in progress

TPGETRPLY(3cbl) Gets reply from asynchronous message

TPGETUNSOL(3cbl) Gets unsolicited message

TPGPRIO(3cbl) Gets service request priority

TPINITIALIZE(3cbl) Joins a BEA Tuxedo system application

TPKEYCLOSE(3cbl) Closes a previously opened key handle

TPKEYGETINFO(3cbl) Gets information associated with a key handle

TPKEYOPEN(3cbl) Opens a key handle for digital signature generation, message
encryption, or message decryption

TPKEYSETINFO(3cbl) Sets optional attribute parameters associated with a key handle

TPNOTIFY(3cbl) Sends notification by client identifier

TPOPEN(3cbl) Opens the BEA Tuxedo system resource manager

TPPOST(3cbl) Posts an event

TPRECV(3cbl) Receives a message in a conversational connection

BEA Tuxedo COBOL Functions

Name Description
2 BEA Tuxedo COBOL Function Reference

TPRESUME(3cbl) Resumes a global transaction

TPRETURN(3cbl) Returns from a BEA Tuxedo system service routine

TPSCMT(3cbl) Sets when TPCOMMIT should return

TPSEND(3cbl) Routine to send a message in a conversational connection

TPSETCTXT(3cbl) Sets a context identifier for the current application association

TPSETUNSOL(3cbl) Sets method for handling unsolicited messages

TPSPRIO(3cbl) Sets service request priority

TPSUBSCRIBE(3cbl) Subscribes to an event

TPSUSPEND(3cbl) Suspends a global transaction

TPSVCSTART(3cbl) Starts a BEA Tuxedo system service

TPSVRDONE(3cbl) Routine to terminate a BEA Tuxedo system server

TPSVRINIT(3cbl) Routine to initialize a BEA Tuxedo system server

TPTERM(3cbl) Leaves an application

TPUNADVERTISE(3cbl) Routine for unadvertising service names

TPUNSUBSCRIBE(3cbl) Unsubscribes to an event

TXBEGIN(3cbl) Begins a global transaction

TXCLOSE(3cbl) Closes a set of resource managers

TXCOMMIT(3cbl) Commits a transaction

TXINFORM(3cbl) Returns global transaction information

TXOPEN(3cbl) Opens a set of resource managers

TXROLLBACK(3cbl) Rolls back a transaction

TXSETCOMMITRET(3cbl) Sets commit_return characteristic

BEA Tuxedo COBOL Functions

Name Description
BEA Tuxedo COBOL Function Reference 3

Section 3(cbl) - COBOL Functions

TXSETTRANCTL(3cbl) Sets transaction_control characteristic

TXSETTIMEOUT(3cbl) Sets transaction_timeout characteristic

USERLOG(3cbl) Writes a message to the BEA Tuxedo system central event log

BEA Tuxedo COBOL Functions

Name Description
4 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

n as

 to
ke

ams

tional.
ciated
 the

tine).
 along

d the
vice
rn

rvice
eater

OL,

Introduction to the COBOL

Application-Transaction Monitor Interface

Description The application-transaction monitor interface provides the interface between the
COBOL application and the transaction processing system. This interface is know
ATMI and these pages specify its COBOL language binding. It provides routines
open and close resources, manage transactions, manage record types, and invo
request/response and conversational service calls.

Communication

Paradigms

The routines described in the ATMI reference pages imply a particular model of
communication. This model is expressed in terms of how client and server progr
can communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversa
Request/response services are invoked by service requests along with their asso
data. Request/response services can receive exactly one request (upon entering
service routine) and send at most one reply (upon returning from the service rou
Conversational services, on the other hand, are invoked by connection requests
with a means of referring to the open connection (that is, a handle used in calling
subsequent connection routines). Once the connection has been established an
service routine invoked, either the connecting program or the conversational ser
can send and receive data as defined by the application until the connection is to
down.

Note that a program can initiate both request/response and conversational
communication, but cannot accept both request/response and conversational se
requests. The following sections describe the two communication paradigms in gr
detail.

Note: In various parts of the BEA Tuxedo documentation we refer to threads.
Because the BEA Tuxedo system does not support multithreading in COB
COBOL programmers may assume that the term thread refers to an entire
process or context, depending on the circumstances. For example:

� A multithreaded/multicontexted C client with three threads associated
with three contexts maps to a multicontexted COBOL client with three
contexts.
BEA Tuxedo COBOL Function Reference 5

Section 3(cbl) - COBOL Functions

 that
ts nor
lies
. In

vice
rking

called
 client

erver.
s not
ly to
ester

ork

ndled
hen

nd a

er
quest

n the
ample,
 reply

ontext

 in the
� A multithreaded/single-context C client with three threads associated
with a single context maps to a non-threaded, single-context COBOL
client.

BEA Tuxedo

Request/

Response

Paradigm for

Client/Server

With regard to request/response communication, a client is defined as a program
can send requests and receive replies. By definition, clients cannot receive reques
send replies. A client can send any number of requests, and can wait for the rep
synchronously or receive (some limited number of) the replies at its convenience
certain cases, a client can send a request that has no reply. TPINITIALIZE() and
TPTERM() allow a client to join and leave a BEA Tuxedo system application.

A request/response server is a program that can receive one (and only one) ser
request at a time and send at most one reply to that request. While a server is wo
on a particular request, it can act like a client by initiating request/response or
conversational requests and receiving their replies. In such a capacity, a server is
a requester. Note that both client and server programs can be requesters (in fact, a
can be nothing but a requester).

A request/response server can forward a request to another request/response s
Here, the server passes along the request it received to another server and doe
expect a reply. It is the responsibility of the last server in the chain to send the rep
the original requester. Use of the forwarding routine ensures that the original requ
ultimately receives its reply.

Servers and service routines offer a structured approach to writing BEA Tuxedo
system applications. In a server, the application writer can concentrate on the w
performed by the service rather than communications details such as receiving
requests and sending replies. Because many of the communication details are ha
by the BEA Tuxedo system, the application must adhere to certain conventions w
writing a service routine. At the time a server finishes its service routine, it can se
reply using TPRETURN() or forward the request using TPFORWAR(). A service is not
allowed to perform any other work nor is it allowed to communicate with any oth
program after this point. Thus, a service performed by a server is started when a re
is received and ended when either a reply is sent or the request is forwarded.

Concerning request and reply messages, there is an inherent difference betwee
two: a request has no associated context before it is sent, but a reply does. For ex
when sending a request, the caller must supply addressing information, whereas a
is always returned to the program that originated the request, that is, addressing c
is maintained for a reply and the sender of the reply can exert no control over its
destination. The differences between the two message types manifest themselves
parameters and descriptions of the routines described in TPCALL() .
6 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

ects
ne with
so

orities

ity

t can

e the
ecting
the
ture
 up
ved”

ster by
onse
s, a
d and

text
sent
en the

t

TMI

ion
When a request message is sent, it is sent at a particular priority. The priority aff
how a request is dequeued: when a server dequeues requests, it dequeues the o
the highest priority. To prevent starvation, the oldest request is dequeued every
often regardless of priority. By default, a request’s priority is associated with the
service name to which the request is being sent. Service names can be given pri
at configuration time (see UBBCONFIG(5)). A default priority is used if none is defined.
In addition, the priority can be set at runtime using a routine (TPSPRIO()) described
in TPCALL() . By doing so, the caller can override the configuration or default prior
when the message is sent.

BEA Tuxedo

System

Conversational

Paradigm for

Client/Server

With regard to conversational communication, a client is defined as a program tha
initiate a conversation but cannot accept a connection request.

A conversational server is a program that can receive connection requests. Onc
connection has been established and the service routine invoked, either the conn
program or the conversational service can send and receive data as defined by
application until the connection is torn down. The conversation is half-duplex in na
such that one side of the connection has control and can send data until it gives
control to the other side. While the connection is established, the server is “reser
such that no other program can establish a connection with the server.

As with a request/response server, the conversational server can act as a reque
initiating other requests or connections with other servers. Unlike a request/resp
server, a conversational server can not forward a request to another server. Thu
conversational service performed by a server is started when a request is receive
ended when the final reply is sent via TPRETURN().

Once the connection is established, the communications handle implies any con
needed regarding addressing information for the participants. Messages can be
and received as needed by the application. There is no inherent difference betwe
request and reply messages and no notion of priority of messages.

BEA Tuxedo

System Queued

Message Model

The BEA Tuxedo system queued message model allows for enqueuing a reques
message to stable storage for subsequent processing without waiting for its
completion, and optionally getting a reply via a queued response message. The A
functions that queue messages and dequeue responses are TPENQUEUE() and
TPDEQUEUE(). They can be called from any type of BEA Tuxedo system applicat
processes: client, server, or conversational.

The queued message facility is an XA-compliant resource manager. Persistent
messages are enqueued and dequeued within transactions to ensure reliable
one-time-only processing.
BEA Tuxedo COBOL Function Reference 7

Section 3(cbl) - COBOL Functions

ntax
tion
nal

rk
ic unit

ded
e

ne is
ether
r the

 can
n the
 one
rvice

led a
d to
ion

hat
ATMI

Transactions

The BEA Tuxedo system supports two sets of mutually exclusive functions for
defining and managing transactions: the BEA Tuxedo system’s ATMI transaction
demarcation functions (the names of which include the prefix TP) and X/Open’s TX
Interface functions (the names of which include the prefix TX_). Because X/Open used
ATMI’s transaction demarcation functions as the base for the TX Interface, the sy
and semantics of the TX Interface are quite similar to those of the ATMI. This sec
is an overview of ATMI transaction concepts. The next section introduces additio
concepts about the TX Interface.

In the BEA Tuxedo system, a transaction is used to define a single logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allows wo
performed in many processes, possibly at different sites, to be treated as an atom
of work. The initiator of a transaction normally uses TPBEGIN() and either
TPCOMMIT() or TPABORT() to delineate the operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing
TPSUSPEND(). Another process may take over the role of the initiator of a suspen
transaction by issuing TPRESUME(). As a transaction initiator, a program must call on
of the following: TPSUSPEND(), TPCOMMIT(), or TPABORT(). Thus, one program can
start a transaction that another may finish.

If a program calling a service is in transaction mode, then the called service routi
also placed in transaction mode on behalf of the same transaction. Otherwise, wh
the service is invoked in transaction mode or not depends on options specified fo
service in the configuration file. A service that is not invoked in transaction mode
define multiple transactions between the time it is invoked and the time it ends. O
other hand, a service routine invoked in transaction mode can participate in only
transaction, and work on that transaction is completed upon termination of the se
routine. Note that a connection cannot be upgraded to transaction mode: if TPBEGIN()
is called while a conversation exists, the conversation remains outside of the
transaction (as if TPCONNECT() had been called with the TPNOTRAN setting).

A service routine joining a transaction that was started by another program is cal
participant. A transaction can have several participants. A service can be invoke
do work on the same transaction more than once. Only the initiator of a transact
(that is, a program calling either TPBEGIN() or TPRESUME()) can call TPCOMMIT() or
TPABORT(). Participants influence the outcome of a transaction by using TPRETURN()
or TPFORWAR(). These two calls signify the end of a service routine and indicate t
the routine has finished its part of the transaction.
8 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

ed
n
uire
s or
le

rtable

s for

ace
tine

 are

n. By
tive

tion

e

rrent
TX Transactions Transactions defined by the TX Interface are practically identical with those defin
by the ATMI functions. An application writer may use either set of functions whe
writing clients and service routines. In fact, the BEA Tuxedo system does not req
all client and server programs within a single application to use one set of function
the other. However, the two function sets may not be used together within a sing
program (that is, a program cannot call TPBEGIN() and later call TXCOMMIT()).

The TX Interface has two calls for opening and closing resource managers in a po
manner, TXOPEN() and TXCLOSE(), respectively. Transactions are started with
TXBEGIN() and completed with either TXCOMMIT() or TXROLLBACK(). TXINFORM()
is used to retrieve transaction information, and there are three calls to set option
transactions: TXSETCOMMITRET(), TXSETTRANCTL(), and TXSETTIMEOUT(). The TX
Interface has no equivalents to ATMI’s TPSUSPEND() and TPRESUME().

In addition to the semantics and rules defined for ATMI transactions, the TX Interf
has some additional semantics that are worth introducing here. First, service rou
writers wanting to use the TX Interface must supply their own TPSVRINIT() routine
that calls TXOPEN(). The default BEA Tuxedo system-supplied TPSVRINIT() calls
TPOPEN(). The same rule applies for TPSVRDONE(): if the TX Interface is being used,
then service routine writers must supply their own TPSVRDONE() that calls
TXCLOSE().

Second, the TX Interface has two additional semantics not found in ATMI. These
chained and unchained transactions, and transaction characteristics.

Chained and

Unchained

Transactions

The TX Interface supports chained and unchained modes of transaction executio
default, clients and service routines execute in the unchained mode; when an ac
transaction is completed, a new transaction does not begin until TXBEGIN() is called.

In the chained mode, a new transaction starts implicitly when the current transac
completes. That is, when TXCOMMIT() or TXROLLBACK() is called, the BEA Tuxedo
system coordinates the completion of the current transaction and initiates a new
transaction before returning control to the caller. (Certain failure conditions may
prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling
TXSETTRANCTL(). Transitions between the chained and unchained mode affect th
behavior of the next TXCOMMIT() or TXROLLBACK() call. The call to
TXSETTRANCTL() does not put the caller into or take it out of transaction mode.

Since TXCLOSE() cannot be called when the caller is in transaction mode, a caller
executing in chained mode must switch to unchained mode and complete the cu
transaction before calling TXCLOSE().
BEA Tuxedo COBOL Function Reference 9

Section 3(cbl) - COBOL Functions

ction

 The

rent

with

ins
er of

A

 can
um

ode.
ith

e

eout
ut
action
, the
ly.
Transaction

Characteristics

A client or a service routine may call TXINFORM() to obtain the current values of their
transaction characteristics and to determine whether they are executing in transa
mode.

The state of an application program includes several transaction characteristics.
caller specifies these by calling TXSET* functions. When a client or a service routine
sets the value of a characteristic, it remains in effect until the caller specifies a diffe
value. When the caller obtains the value of a characteristic via TXINFORM() , it does not
change the value.

Timeouts There are three types of timeouts in the BEA Tuxedo system: one is associated
the duration of a transaction from start to finish. A second is associated with the
maximum length of time a blocking call will remain blocked before the caller rega
control. The third is a service timeout and occurs when a call exceeds the numb
seconds specified in the SVCTIMEOUT parameter in the SERVICES section of the
configuration file.

The first kind of timeout is specified when a transaction is started with TPBEGIN() (see
TPBEGIN() for details). The second kind of timeout can occur when using the BE
Tuxedo system communication routines defined in TPCALL() . Callers of these
routines typically block when awaiting a reply that has yet to arrive, although they
also block trying to send data (for example, if request queues are full). The maxim
amount of time a caller remains blocked is determined by a BEA Tuxedo system
configuration file parameter. (See the BLOCKTIME parameter in UBBCONFIG(5) for
details.)

Blocking timeouts are performed by default when the caller is not in transaction m
When a client or server is in transaction mode, it is subject to the timeout value w
which the transaction was started and is not subject to the blocking timeout valu
specified in the UBBCONFIG file.

When a transaction timeout occurs, replies to asynchronous requests made in
transaction mode become invalid. That is, if a program is waiting for a particular
asynchronous reply for a request sent in transaction mode and a transaction tim
occurs, the handle for that reply becomes invalid. Similarly, if a transaction timeo
occurs, an event is generated on the connection handle associated with the trans
and that handle becomes invalid. On the other hand, if a blocking timeout occurs
handle is still valid and the waiting program can re-issue the call to await the rep
10 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

that
eout

ocess

on is

 when
time,

ltiple
r the
haring

gram

ned
n
 the
 it
ntains
types
 and

Note,
. For

itor

ord).
en
he

ay
ta,
The service timeout mechanism provides a way for the system to kill processes
may be frozen by some unknown or unexpected system error. When a service tim
occurs in a request/response service, the BEA Tuxedo system kills the server pr
that is executing the frozen service and returns error code TPESVCERR. If a service
timeout occurs in a conversational service, the TPEV_SVCERR event is returned.

If a transaction has timed out, the only valid communications before the transacti
aborted are calls to TPACALL() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

Dynamic

Service

Advertisements

By default, a server’s services are advertised when it is booted and unadvertised
it is shut down. If a server needs to control the set of services that it offers at run
it can do so by calling TPADVERTISE() and TPUNADVERTISE(). These routines affect
only the services offered by the calling server unless that server belongs to a mu
server, single queue (MSSQ) set. Because all servers in an MSSQ set must offe
same set of services, these routines also affect the advertisements of all servers s
the caller’s MSSQ set.

Typed Records In order to send data to another application program, the sending application pro
first places the data in a record . The ATMI interface supports the notion of a typed

record . A typed record is really a pair of COBOL records. The data record is defi
in static storage and contains application data to be passed to another applicatio
program. An auxiliary type record accompanies the data record and it identifies to
BEA Tuxedo system the interpretation and translation rules of the data record as
passes across heterogeneous machine boundaries. The auxiliary type record co
the data record’s type, its optional subtype, and its optional length. Some record
require further specification via a subtype (for example, a particular record layout)
those of variable length require a length to be specified.

The application programmer may choose one of the six supported typed records.
the BEA Tuxedo system provides a method for adding user-specific typed records
details, refer to the “Introduction to the C Language Application-Transaction Mon
Interface” in the BEA Tuxedo C Function Reference. REC-TYPE in TPTYPE-REC selects
which record type the application wishes to send or receive. SUB-TYPE in TPTYPE-REC
must also be given when further classification is required (for example, a view rec
When sending, LEN in TPTYPE-REC indicates the number of bytes to be sent and wh
receiving the number of bytes to move into the user’s record. The following are t
supported REC-TYPEs.

CARRAY
The CARRAY record type allows an arbitrary number of characters which m
contain LOW-VALUE characters anywhere in the record. When sending da
LEN must contain the number of bytes to be transferred.
BEA Tuxedo COBOL Function Reference 11

Section 3(cbl) - COBOL Functions

ay
 of

e

L

e

cified
s

. For

e or

ccess

iation
STRING
The STRING record type allows an arbitrary number of characters which m
not contain LOW-VALUE characters within the record but may be at the end
the record. When sending data, LEN must contain the number of bytes to be
transferred.

VIEW
This record type describes a COBOL record that was generated using th
viewc() compiler. When using a VIEW, SUB-TYPE must contain the name of
the view. When sending a VIEW type, LEN must contain the number of bytes
to be transferred or set NO-LENGTH which will send the length of the view.

Two of the above record types have synonyms: X_OCTET is a synonym for CARRAY, and
X_COMMON is a synonym for VIEW. X_COMMON supports a subset of the data types
supported by VIEW: longs (PIC S9(9) COMP-5) , shorts (PIC S9(4) COMP-5) ,
and characters (PIC X(n)) . X_COMMON should be used when both C and COBO
programs are communicating.

In all three cases, after a successful transfer, LEN contains the number of bytes
transferred. When receiving data, LEN must contain the maximum number of bytes th
data area contains. After a successful call, LEN contains the number of bytes moved
into the data area. If the size of the incoming message is larger than the size spe
in LEN, only LEN amount of data is moved into the data area; the remaining data i
discarded.

Buffer Type

Switch

The BEA Tuxedo system provides a method for adding user specific record types
details, see the “Buffer Type Switch” section in Introduction to the C Language
Application-Transaction Monitor Interface.

Single or

Multiple

Application

Context per

Process

The BEA Tuxedo system allows client programs to create an association with on
more applications per process. If TPINITIALIZE() is called with the
TP-MULTI-CONTEXTS setting of CONTEXTS-FLAG in TPINFDEF-REC, then multiple
client contexts are allowed. If TPINITIALIZE() is called implicitly or the
CONTEXTS-FLAG is not set to TP-MULTI-CONTEXTS, then only a single application
association is allowed.

In single-context mode, if TPINITIALIZE() is called more than once (that is, if it is
called after the client has already joined the application), no action is taken and su
is returned.

In multi-context mode, each call to TPINITIALIZE() creates a new application
association. The program can obtain a handle representing this application assoc
by calling TPGETCTXT() and it can call TPSETCTXT() to set its context.
12 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

d.

s

t as

ess,
t
Once an application has chosen single-context mode, all calls to TPINITIALIZE()
must specify single-context mode until all application associations are terminate
Similarly, once an application has chosen multi-context mode, all calls to
TPINITIALIZE() must specify multi-context mode until all application association
are terminated.

Server programs can be associated with only a single application and cannot ac
clients.

Note: In addition to allowing multiple application contexts per process, the BEA
Tuxedo system allows multiple application threads per process.
Multithreading is supported, however, only in the C language interface.

The following state table shows the transitions that may occur, within a client proc
among the following states: the uninitialized state, the initialized in single-contex
mode state, and the initialized in multi-context mode state.

Per-Process Context Modes

Function States

Uninitialized
S0

Initialized
Single-context Mode

S1

Initialized
Multi-context Mode

S2

TPINITIALIZE()
without
TP-MULTI-CONTEXTS

S1 S1 S2 (error)

TPINITIALIZE() with
TP-MULTI-CONTEXTS

S2 S1 (error) S2

implicit
TPINITIALIZE()

S1 S1 S2 (error)

TPTERM() - not last
association

S2

TPTERM() - last
association

S0 S0

TPTERM() - no
association

S0
BEA Tuxedo COBOL Function Reference 13

Section 3(cbl) - COBOL Functions

st

ts
nts are

he
d

hat

ed
Unsolicited

Notification

There are two methods for sending messages to application clients outside the
boundaries of the client/server interaction defined above. The first is the broadca
mechanism supported by TPBROADCAST(). This function allows application clients,
servers, and administrators to broadcast typed record messages to a set of clien
selected on the basis of the names assigned to them. The names assigned to clie
determined in part by the application (specifically, by the information passed in t
TPINFDEF-REC data structure at TPINITIALIZE time) and in part by the system (base
on the processor through which the client accesses the application).

The second is the notification of a particular client as identified from an earlier or
current service request. Each service request contains a unique client identifier t
identifies the originating client for the service request. Calls to the TPCALL() and
TPFORWAR() functions from within a service routine do not change the originating
client for that chain of service requests. Client identifiers can be saved and pass
between application servers. The TPNOTIFY() function is used to notify clients
identified in this manner.

COBOL

Language ATMI

Return Codes

and Other

Definitions

The following return code and setting definitions are used by the ATMI routines.

*
* TPSTATUS.cbl
*
05 TP-STATUS PIC S9(9) COMP-5.
 88 TPOK VALUE 0.
 88 TPEABORT VALUE 1.
 88 TPEBADDESC VALUE 2.
 88 TPEBLOCK VALUE 3.
 88 TPEINVAL VALUE 4.
 88 TPELIMIT VALUE 5.
 88 TPENOENT VALUE 6.
 88 TPEOS VALUE 7.
 88 TPEPERM VALUE 8.
 88 TPEPROTO VALUE 9.
 88 TPESVCERR VALUE 10.
 88 TPESVCFAIL VALUE 11.
 88 TPESYSTEM VALUE 12.
 88 TPETIME VALUE 13.
 88 TPETRAN VALUE 14.
 88 TPEGOTSIG VALUE 15.
 88 TPERMERR VALUE 16.
 88 TPEITYPE VALUE 17.
 88 TPEOTYPE VALUE 18.
 88 TPERELEASE VALUE 19.
 88 TPEHAZARD VALUE 20.
 88 TPEHEURISTIC VALUE 21.
 88 TPEEVENT VALUE 22.
14 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

ata.

EA
 88 TPEMATCH VALUE 23.
 88 TPEDIAGNOSTIC VALUE 24.
 88 TPEMIB VALUE 25.
 88 TPEMAXVAL VALUE 26.
05 TPEVENT PIC S9(9) COMP-5.
 88 TPEV-NOEVENT VALUE 0.
 88 TPEV-DISCONIMM VALUE 1.
 88 TPEV-SENDONLY VALUE 2.
 88 TPEV-SVCERR VALUE 3.
 88 TPEV-SVCFAIL VALUE 4.
 88 TPEV-SVCSUCC VALUE 5.
05 TPSVCTIMOUT PIC S9(9) COMP-5.
 88 TPED-NOEVENT VALUE 0.
 88 TPEV-SVCTIMEOUT VALUE 1.
 88 TPEV-TERM VALUE 2.
05 APPL-RETURN-CODE PIC S9(9) COMP-5.

The TPTYPE COBOL structure is used whenever sending or receiving application d
REC-TYPE indicates the type of data record that is to be sent. SUB-TYPE indicates the
name of the view if a VIEW REC-TYPE is specified. LEN indicates the amount of data to
send and the amount received.

*
* TPTYPE.cbl
*
05 REC-TYPE PIC X(8).
 88 X-OCTET VALUE "X_OCTET".
 88 X-COMMON VALUE "X_COMMON".
05 SUB-TYPE PIC X(16).
05 LEN PIC S9(9) COMP-5.
 88 NO-LENGTH VALUE 0.
05 TPTYPE-STATUS PIC S9(9) COMP-5.
 88 TPTYPEOK VALUE 0.
 88 TPTRUNCATE VALUE 1.

The TPSVCDEF data structure is used by functions to pass settings to and from the B
Tuxedo system.

*
* TPSVCDEF.cbl
*
05 COMM-HANDLE PIC S9(9) COMP-5.
05 TPBLOCK-FLAG PIC S9(9) COMP-5.
 88 TPBLOCK VALUE 0.
 88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
 88 TPTRAN VALUE 0.
 88 TPNOTRAN VALUE 1.
BEA Tuxedo COBOL Function Reference 15

Section 3(cbl) - COBOL Functions
05 TPREPLY-FLAG PIC S9(9) COMP-5.
 88 TPREPLY VALUE 0.
 88 TPNOREPLY VALUE 1.
05 TPACK-FLAG PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.
 88 TPNOACK VALUE 0.
 88 TPACK VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
 88 TPTIME VALUE 0.
 88 TPNOTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
05 TPGETANY-FLAG PIC S9(9) COMP-5.
 88 TPGETHANDLE VALUE 0.
 88 TPGETANY VALUE 1.
05 TPSENDRECV-FLAG PIC S9(9) COMP-5.
 88 TPSENDONLY VALUE 0.
 88 TPRECVONLY VALUE 1.
05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
 88 TPCHANGE VALUE 0.
 88 TPNOCHANGE VALUE 1.
05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.
 88 TPREQRSP VALUE IS 0.
 88 TPCONV VALUE IS 1.
*
05 APPKEY PIC S9(9) COMP-5.
05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.
05 SERVICE-NAME PIC X(15).

The TPINFDEF data structure is used by TPINITIALIZE() to join the application.

*
* TPINFDEF.cbl
*
05 USRNAME PIC X(30).
05 CLTNAME PIC X(30).
05 PASSWD PIC X(30).
05 GRPNAME PIC X(30).
05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
 88 TPU-SIG VALUE 1.
 88 TPU-DIP VALUE 2.
 88 TPU-IGN VALUE 3.
05 ACCESS-FLAG PIC S9(9) COMP-5.
 88 TPSA-FASTPATH VALUE 1.
 88 TPSA-PROTECTED VALUE 2.
05 CONTEXTS-FLAG PIC S9(9) COMP-5.
 88 TP-SINGLE-CONTEXT VALUE 0.
 88 TP-MULTI-CONTEXTS VALUE 1.
05 DATALEN PIC S9(9) COMP-5.
16 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

with
The TPCONTEXTDEF data structure is used by TPGETCTXT() and TPSETCTXT() to
manipulate program contexts.

 *

 * TPCONTEXTDEF.cbl

 *

 05 CONTEXT PIC S9(9) COMP-5.

The TPQUEDEF data structure is used to pass and retrieve information associated
enqueuing the message.

*
* TPQUEDEF.cbl
*
05 TPBLOCK-FLAG PIC S9(9) COMP-5.
 88 TPNOBLOCK VALUE 0.
 88 TPBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
 88 TPNOTRAN VALUE 0.
 88 TPTRAN VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
 88 TPNOTIME VALUE 0.
 88 TPTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
 88 TPNOCHANGE VALUE 0.
 88 TPCHANGE VALUE 1.
05 TPQUE-ORDER-FLAG PIC S9(9) COMP-5.
 88 TPQDEFAULT VALUE 0.
 88 TPQTOP VALUE 1.
 88 TPQBEFOREMSGID VALUE 2.
05 TPQUE-TIME-FLAG PIC S9(9) COMP-5.
 88 TPQNOTIME VALUE 0.
 88 TPQTIME-ABS VALUE 1.
 88 TPQTIME-REL VALUE 2.
05 TPQUE-PRIORITY-FLAG PIC S9(9) COMP-5.
 88 TPQNOPRIORITY VALUE 0.
 88 TPQPRIORITY VALUE 1.
05 TPQUE-CORRID-FLAG PIC S9(9) COMP-5.
 88 TPQNOCORRID VALUE 0.
 88 TPQCORRID VALUE 1.
05 TPQUE-REPLYQ-FLAG PIC S9(9) COMP-5.
 88 TPQNOREPLYQ VALUE 0.
 88 TPQREPLYQ VALUE 1.
BEA Tuxedo COBOL Function Reference 17

Section 3(cbl) - COBOL Functions
05 TPQUE-FAILQ-FLAG PIC S9(9) COMP-5.
 88 TPQNOFAILUREQ VALUE 0.
 88 TPQFAILUREQ VALUE 1.
05 TPQUE-MSGID-FLAG PIC S9(9) COMP-5.
 88 TPQNOMSGID VALUE 0.
 88 TPQMSGID VALUE 1.
05 TPQUE-GETBY-FLAG PIC S9(9) COMP-5.
 88 TPQGETNEXT VALUE 0.
 88 TPQGETBYMSGIDOLD VALUE 1.
 88 TPQGETBYCORRIDOLD VALUE 2.
 88 TPQGETBYMSGID VALUE 3.
 88 TPQGETBYCORRID VALUE 4.
05 TPQUE-WAIT-FLAG PIC S9(9) COMP-5.
 88 TPQNOWAIT VALUE 0.
 88 TPQWAIT VALUE 1.
05 TPQUE-DELIVERY-FLAG PIC S9(9) COMP-5.
 88 TPQNODELIVERYQOS VALUE 0.
 88 TPQDELIVERYQOS VALUE 1.
05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
 88 TPQQOSDELIVERYDEFAULTPERSIST VALUE 0.
 88 TPQQOSDELIVERYPERSISTENT VALUE 1.
 88 TPQQOSDELIVERYNONPERSISTENT VALUE 2.
05 TPQUE-REPLY-FLAG PIC S9(9) COMP-5.
 88 TPQNOREPLYQOS VALUE 0.
 88 TPQREPLYQOS VALUE 1.
05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.
 88 TPQQOSREPLYDEFAULTPERSIST VALUE 0.
 88 TPQQOSREPLYPERSISTENT VALUE 1.
 88 TPQQOSREPLYNONPERSISTENT VALUE 2.
05 TPQUE-EXPTIME-FLAG PIC S9(9) COMP-5.
 88 TPQNOEXPTIME VALUE 0.
 88 TPQEXPTIME-ABS VALUE 1.
 88 TPQEXPTIME-REL VALUE 2.
 88 TPQEXPTIME-NONE VALUE 3.
05 TPQUE-PEEK-FLAG PIC S9(9) COMP-5.
 88 TPQNOPEEK VALUE 0.
 88 TPQPEEK VALUE 1.
05 DIAGNOSTIC PIC S9(9) COMP-5.
 88 QMEINVAL VALUE -1.
 88 QMEBADRMID VALUE -2.
 88 QMENOTOPEN VALUE -3.
 88 QMETRAN VALUE -4.
 88 QMEBADMSGID VALUE -5.
 88 QMESYSTEM VALUE -6.
 88 QMEOS VALUE -7.
 88 QMEABORTED VALUE -8.
 88 QMEPROTO VALUE -9.
 88 QMEBADQUEUE VALUE -10.
 88 QMENOMSG VALUE -11.
18 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

 88 QMEINUSE VALUE -12.
 88 QMENOSPACE VALUE -13.
 88 QMERELEASE VALUE -14.
 88 QMEINVHANDLE VALUE -15.
 88 QMESHARE VALUE -16.
05 DEQ-TIME PIC S9(9) COMP-5.
05 EXP-TIME PIC S9(9) COMP-5.
05 PRIORITY PIC S9(9) COMP-5.
05 MSGID PIC X(32).
05 CORRID PIC X(32).
05 QNAME PIC X(15).
05 QSPACE-NAME PIC X(15).
05 REPLYQUEUE PIC X(15).
05 FAILUREQUEUE PIC X(15).
05 CLIENTID OCCURS4 TIMES PIC S9(9) COMP-5.
05 APPL-RETURN-CODE PIC S9(9) COMP-5.
05 APPKEY PIC S9(9) COMP-5.

The TPSVCRET data structure is used by TPRETURN() to indicate the status of the
transaction.

*
* TPSVCRET.cbl
*
05 TP-RETURN-VAL PIC S9(9) COMP-5.
 88 TPSUCCESS VALUE 0.
 88 TPFAIL VALUE 1.
 88 TPEXIT VALUE 2.
05 APPL-CODE PIC S9(9) COMP-5.

The TPTRXDEF data structure is used by TPBEGIN() to set transaction timeouts, and by
TPSUSPEND() and TPRESUME() to get and set, respectively, transaction identifiers.

*
* TPTRXDEF.cbl
*
05 T-OUT PIC S9(9) COMP-5 VALUE IS 0.
05 TRANID OCCURS 6 TIMES PIC S9(9) COMP-5.

The TPCMTDEF data structure is used by TPSCMT() to set the commit level
characteristics.

*
* TPCMTDEF.cbl
*
05 CMT-FLAG PIC S9(9) COMP-5.
 88 TP-CMT-LOGGED VALUE 1.
 88 TP-CMT-COMPLETE VALUE 2.
05 PREV-CMT-FLAG PIC S9(9) COMP-5.
BEA Tuxedo COBOL Function Reference 19

Section 3(cbl) - COBOL Functions
 88 PREV-TP-CMT-LOGGED VALUE 1.
 88 PREV-TP-CMT-COMPLETE VALUE 2.

The TPAUTDEF data structure is used by TPCHKAUTH() to check if authentication is
required.

* TPAUTDEF.cbl
*
05 AUTH-FLAG PIC S9(9) COMP-5.
 88 TPNOAUTH VALUE 0.
 88 TPSYSAUTH VALUE 1.
 88 TPAPPAUTH VALUE 2.

The TPPRIDEF data structure is used by TPSPRIO() and TPGPRIO() to manipulate
message priorities.

*
* TPPRIDEF.cbl
*
05 PRIORITY PIC S9(9) COMP-5.
05 PRIO-FLAG PIC S9(9) COMP-5.
 88 TPABSOLUTE VALUE 0.
 88 TPRELATIVE VALUE 1.

The TPTRXLEV data structure is used by TPGETLEV() to receive transaction level
setting.

*
* TPTRXLEV.cbl
*
05 TPTRXLEV-FLAG PIC S9(9) COMP-5.
 88 TP-NOT-IN-TRAN VALUE 0.
 88 TP-IN-TRAN VALUE 1.

The TPBCTDEF data structure is used by TPNOTIFY() and TPBROADCAST() to send
notifications.

*
* TPBCTDEF.cbl
*
05 TPBLOCK-FLAG PIC S9(9) COMP-5.
 88 TPBLOCK VALUE 0.
 88 TPNOBLOCK VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
 88 TPTIME VALUE 0.
 88 TPNOTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
20 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface
05 LMID PIC X(30).
05 USERNAME PIC X(30).
05 CLTNAME PIC X(30).

The FML-INFO data structure is used by FINIT() , FVSTOF() , and FVFTOS() to deal
with FML buffers.

*
* FMLINFO.cbl
*
05 FML-STATUS PIC S9(9) COMP-5.
 88 FOK VALUE 0.
 88 FALIGNERR VALUE 1.
 88 FNOTFLD VALUE 2.
 88 FNOSPACE VALUE 3.
 88 FNOTPRES VALUE 4.
 88 FBADFLD VALUE 5.
 88 FTYPERR VALUE 6.
 88 FEUNIX VALUE 7.
 88 FBADNAME VALUE 8.
 88 FMALLOC VALUE 9.
 88 FSYNTAX VALUE 10.
 88 FFTOPEN VALUE 11.
 88 FFTSYNTAX VALUE 12.
 88 FEINVAL VALUE 13.
 88 FBADTBL VALUE 14.
 88 FBADVIEW VALUE 15.
 88 FVFSYNTAX VALUE 16.
 88 FVFOPEN VALUE 17.
 88 FBADACM VALUE 18.
 88 FNOCNAME VALUE 19.
 88 FEBADOP VALUE 20.
*
05 FML-LENGTH PIC S9(9) COMP-5.
*
05 FML-MODE PIC S9(9) COMP-5.
 88 FUPDATE VALUE 1.
 88 FCONCAT VALUE 2.
 88 FJOIN VALUE 3.
 88 FOJOIN VALUE 4.
*
05 VIEWNAME PIC X(33).

The TPEVTDEF data structure is used by TPPOST() , TPSUBSCRIBE(), and
TPUNSUBSCRIBE() to handle event postings and subscriptions.

*
* TPEVTDEF.cbl
*

BEA Tuxedo COBOL Function Reference 21

Section 3(cbl) - COBOL Functions

05 TPBLOCK-FLAG PIC S9(9) COMP-5.
 88 TPBLOCK VALUE 0.
 88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
 88 TPTRAN VALUE 0.
 88 TPNOTRAN VALUE 1.
05 TPREPLY-FLAG PIC S9(9) COMP-5.
 88 TPREPLY VALUE 0.
 88 TPNOREPLY VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
 88 TPTIME VALUE 0.
 88 TPNOTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
05 TPEV-METHOD-FLAG PIC S9(9) COMP-5.
 88 TPEVNOTIFY VALUE 0.
 88 TPEVSERVICE VALUE 1.
 88 TPEVQUEUE VALUE 2.
05 TPEV-PERSIST-FLAG PIC S9(9) COMP-5.
 88 TPEVNOPERSIST VALUE 0.
 88 TPEVPERSIST VALUE 1.
05 TPEV-TRAN-FLAG PIC S9(9) COMP-5.
 88 TPEVNOTRAN VALUE 0.
 88 TPEVTRAN VALUE 1.
*
05 EVENT-COUNT PIC S9(9) COMP-5.
05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.
05 NAME-1 PIC X(31).
05 NAME-2 PIC X(31).
05 EVENT-NAME PIC X(31).
05 EVENT-EXPR PIC X(255).
05 EVENT-FILTER PIC X(255).

The TPKEYDEF data structure is used by TPKEYCLOSE(), TPKEYGETINFO(),
TPKEYOPEN(), and TPKEYSETINFO() to manage public-private keys for performing
message-based digital signature and encryption operations.

*
* TPKEYDEF.cbl
*

05 KEY-HANDLE PIC S9(9) COMP-5.
05 PRINCIPAL-NAME PIC X(512).
05 LOCATION PIC X(1024).
05 IDENTITY-PROOF PIC X(2048).
05 PROOF-LEN PIC S9(9) COMP-5.
05 CRYPTO-PROVIDER PIC X(128).
05 SIGNATURE-FLAG PIC S9(9) COMP-5.
 88 TPKEY-NOSIGNATURE VALUE 0.
22 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface
 88 TPKEY-SIGNATURE VALUE 1.
05 DECRYPT-FLAG PIC S9(9) COMP-5.
 88 TPKEY-NODECRYPT VALUE 0.
 88 TPKEY-DECRYPT VALUE 1.
05 ENCRYPT-FLAG PIC S9(9) COMP-5.
 88 TPKEY-NOENCRYPT VALUE 0.
 88 TPKEY-ENCRYPT VALUE 1.
05 AUTOSIGN-FLAG PIC S9(9) COMP-5.
 88 TPKEY-NOAUTOSIGN VALUE 0.
 88 TPKEY-AUTOSIGN VALUE 1.
05 AUTOENCRYPT-FLAG PIC S9(9) COMP-5.
 88 TPKEY-NOAUTOENCRYPT VALUE 0.
 88 TPKEY-AUTOENCRYPT VALUE 1.
05 ATTRIBUTE-NAME PIC X(64).
05 ATTRIBUTE-VALUE-LEN PIC S9(9) COMP-5.

COBOL

Language TX

Return Codes

and Other

Definitions

The following return code and setting definitions are used by the TX routines.

*
* TXSTATUS.cbl
*
05 TX-STATUS PIC S9(9) COMP-5.
 88 TX-NOT-SUPPORTED VALUE 1.
* Normal execution
 88 TX-OK VALUE 0.
* Normal execution
 88 TX-OUTSIDE VALUE -1.
* Application is in an RM local transaction
 88 TX-ROLLBACK VALUE -2.
* Transaction was rolled back
 88 TX-MIXED VALUE -3.
* Transaction was partially committed and partially
* rolled back
 88 TX-HAZARD VALUE -4.
* Transaction may have been partially committed and
* partially rolled back
 88 TX-PROTOCOL-ERROR VALUE -5.
* Routine invoked in an improper context
 88 TX-ERROR VALUE -6.
* Transient error
 88 TX-FAIL VALUE -7.
* Fatal error
 88 TX-EINVAL VALUE -8.
* Invalid arguments were given
 88 TX-COMMITTED VALUE -9.
* The transaction was heuristically committed
 88 TX-NO-BEGIN VALUE -100.
* Transaction committed plus new transaction could not
* be started
BEA Tuxedo COBOL Function Reference 23

Section 3(cbl) - COBOL Functions

that

erver,
 88 TX-ROLLBACK-NO-BEGIN VALUE -102.
* Transaction rollback plus new transaction could not
* be started
 88 TX-MIXED-NO-BEGIN VALUE -103.
* Mixed plus new transaction could not be started
 88 TX-HAZARD-NO-BEGIN VALUE -104.
* Hazard plus new transaction could not be started
 88 TX-COMMITTED-NO-BEGIN VALUE -109.
* Heuristically committed plus transaction could not
* be started

The TXINFDEF record defines a data structure where the result of the TXINFORM() call
will be stored.

*
* TXINFDEF.cbl
*
05 XID-REC.
* XID record
10 FORMAT-ID PIC S9(9) COMP-5.
* A value of -1 in FORMAT-ID means that the XID is null
10 GTRID-LENGTH PIC S9(9) COMP-5.
10 BRANCH-LENGTH PIC S9(9) COMP-5.
10 XID-DATA PIC X(128).
05 TRANSACTION-MODE PIC S9(9) COMP-5.
* Transaction mode settings
 88 TX-NOT-IN-TRAN VALUE 0.
 88 TX-IN-TRAN VALUE 1.
05 COMMIT-RETURN PIC S9(9) COMP-5.
* Commit_return settings
 88 TX-COMMIT-COMPLETED VALUE 0.
 88 TX-COMMIT-DECISION-LOGGED VALUE 1.
05 TRANSACTION-CONTROL PIC S9(9) COMP-5.
* Transaction_control settings
 88 TX-UNCHAINED VALUE 0.
 88 TX-CHAINED VALUE 1.
05 TRANSACTION-TIMEOUT PIC S9(9) COMP-5.
* Transaction_timeout value
 88 NO-TIMEOUT VALUE 0.
05 TRANSACTION-STATE PIC S9(9) COMP-5.
* Transaction_state information
 88 TX-ACTIVE VALUE 0.
 88 TX-TIMEOUT-ROLLBACK-ONLY VALUE 1.
 88 TX-ROLLBACK-ONLY VALUE 2.

ATMI State

Transitions

The BEA Tuxedo system keeps track of the state for each program and verifies
legal state transitions occur for the various function calls and options. The state
information includes the program type (request/response server, conversational s
24 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

ent

 the

rvers,

e
or client), the initialization state (uninitialized or initialized), the resource managem
state (closed or open), the transaction state of the program, and the state of all
asynchronous request/response and connection handles. When an illegal state
transition is attempted, the called function fails, setting TPSTATUS-REC to
TPEPROTO(). The legal states and transitions for this information are described in
following tables.

The table below indicates which functions may be called by request/response se
conversational servers, and clients. Note that TPSVRINIT() and TPSVRDONE() are not
included in this table because they are not called by applications (that is, they ar
application-supplied functions that are invoked by the BEA Tuxedo system).

Available Functions

Function Process Type

Request/response
Server

Conversational
Server

Client

TPABORT() Y Y Y

TPACALL() Y Y Y

TPADVERTISE() Y Y N

TPBEGIN() Y Y Y

TPBROADCAST() Y Y Y

TPCALL() Y Y Y

TPCANCEL() Y Y Y

TPCHKAUTH() Y Y Y

TPCHKUNSOL() N N Y

TPCLOSE() Y Y Y

TPCOMMIT() Y Y Y

TPCONNECT() Y Y Y

TPDEQUE() Y Y Y

TPDISCON() Y Y Y
BEA Tuxedo COBOL Function Reference 25

Section 3(cbl) - COBOL Functions
TPENQUEUE() Y Y Y

TPFORWAR() Y N N

TPGETCTXT() Y Y Y

TPGETLEV() Y Y Y

TPGETRPLY() Y Y Y

TPGPRIO() Y Y Y

TPINITIALIZE() N N Y

TPNOTIFY() Y Y Y

TPOPEN() Y Y Y

TPPOST() Y Y Y

TPRECV() Y Y Y

TPRESUME() Y Y Y

TPRETURN() Y Y N

TPSCMT() Y Y Y

TPSEND() Y Y Y

TPSETCTXT() N N Y

TPSETUNSOL() N N Y

TPSPRIO() Y Y Y

TPSUBSCRIBE() Y Y Y

TPSUSPEND() Y Y Y

TPTERM() N N Y

Available Functions

Function Process Type

Request/response
Server

Conversational
Server

Client
26 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

ted.
ervers

ine

lized
se of
xt
r

s
A

main
The remaining state tables are for both clients and servers, unless otherwise no
Keep in mind that because some functions cannot be called by both clients and s
(for example, TPINITIALIZE()), certain state transitions shown below may not be
possible for both program types. The above table should be consulted to determ
whether the program in question is allowed to call a particular function.

The following state table indicates whether or not a client program has been initia
and registered with the transaction manager. Note that this table assumes the u
TPINITIALIZE() , which is optional in single-context mode. That is, a single-conte
client may implicitly join an application by issuing one of many ATMI functions (fo
example, TPACALL() or TPCALL()). A client must use TPINITIALIZE() when one of
the following is true:

� Application authentication is required. (See TPINITIALIZE() and the
description of the SECURITY keyword in UBBCONFIG(5) for details.)

� The client wants to access an XA-compliant resource manager directly. (See
TPINITIALIZE(3cbl) for details.)

� The client wants to create multiple application associations.

A server is placed in the initialized state by the BEA Tuxedo dispatcher before it
TPSVRINIT() function is invoked, and it is placed in the uninitialized state by the BE
Tuxedo dispatcher after its TPSVRDONE() function has returned. Note that in all of the
state tables shown below, an error return from a function causes the program to re
in the same state, unless otherwise noted.

TPUNADVERTISE() Y Y N

TPUNSUBSCRIBE() Y Y Y

Available Functions

Function Process Type

Request/response
Server

Conversational
Server

Client
BEA Tuxedo COBOL Function Reference 27

Section 3(cbl) - COBOL Functions

er a

r or
The remaining state tables assume a precondition of state I (regardless of wheth
process arrived in this state via TPINITIALIZE() , TPSETCTXT() , or the BEA Tuxedo
service dispatcher).

The following table indicates the state of a client or server with respect to whethe
not a resource manager associated with the process has been initialized.

Initialization States

Function States

Uninitialized
I0

Initialized
I1

TPCHKAUTH() I0 I1

TPGETCTXT() I0 I1

TPINITIALIZE() I1 I1

TPSETCTXT()
set to a non-null
context

I1 I1

TPSETCTXT() with
TPNULLCONTEXT set

I0 I0

TPSETUNSOL() I0 I1

TPTERM() I0 I0

All other ATMI
functions

I1

Resource Management States

Function States

Closed
R0

Open
R1

TPOPEN() R1 R1
28 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

or not
The following state table indicates the state of a process with respect to whether
the process is associated with a transaction. For servers, transitions to states T1 and T2

assume a precondition of state R1 (for example, TPOPEN() has been called with no
subsequent call to TPCLOSE() or TPTERM()).

TPCLOSE() R0 R0

TPBEGIN() R1

TPCOMMIT() R1

TPABORT() R1

TPSUSPEND() R1

TPRESUME() R1

TPSVCSTART() with
TPTRAN

R1

All other ATMI
functions

R0 R1

Transaction State of Application Association

Function State

Not in transaction
T0

Initiator
T1

Participant
T2

TPBEGIN()

TPABORT() T0

TPCOMMIT() T0

Resource Management States

Function States

Closed
R0

Open
R1
BEA Tuxedo COBOL Function Reference 29

Section 3(cbl) - COBOL Functions

y
The following state table indicates the state of a single request handle returned b
TPACALL() .

SPSUSPEND() T0

TPRESUME() T0

TPSVCSTART() with TPTRAN T2

TPSVCSTART()
(not in transaction mode)

T0

TPRETURN() T0 T0

TPFORWAR() T0 T0

TPCLOSE() R0

TPTERM() I0 T0

All other ATMI functions T0 T1 T2

Asynchronous Request Descriptor States

Function States

No Descriptor
A0

Valid Descriptor
A1

TPACALL() A1

TPGETRPLY() A0

TPCANCEL() A0
a

TPABORT() A0 A0
b

Transaction State of Application Association

Function State

Not in transaction
T0

Initiator
T1

Participant
T2
30 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

ler’s

y

l
Note: a This state change occurs only if the descriptor is not associated with the
caller’s transaction.

b This state change occurs only if the descriptor is associated with the cal
transaction.

c If the descriptor is associated with the caller’s transaction, then
TPSUSPEND() returns a protocol error.

The following state table indicates the state of a connection descriptor returned b
TPCONNECT() or provided by a service invocation in the TPSVCINFO structure. For
primitives that do not take a connection descriptor, the state changes apply to al
connection descriptors, unless otherwise noted.

The states are as follows.

C0 - No handle

C1 - TPCONNECT handle send-only
C2 - TPCONNECT handle receive-only

C3 - TPSVCDEF handle send-only

C4 - TPSVCDEF handle receive-only

TPCOMMIT() A0 A0
b

TPSUSPEND() A0 Ac

TPRETURN() A0 A0

TPFORWAR() A0 A0

TPTERM() I0 I0

All other ATMI
functions

A0 A1

Asynchronous Request Descriptor States

Function States

No Descriptor
A0

Valid Descriptor
A1
BEA Tuxedo COBOL Function Reference 31

Section 3(cbl) - COBOL Functions
Connection Request Handle States

Function/Event States

C0 C1 C2 C3 C4

TPCONNECT() with TPSENDONLY C1
a

TPCONNECT() with TPRECVONLY C2
a

TPSVCSTART() with flag TPSENDONLY C3
b

TPSVCSTART() with flag TPRECVONLY C4
b

TPRECV() /no event C2 C4

TPRECV()/TPEV_SENDONLY C1 C3

TPRECV()/TPEV_DISCONIMM C0 C0

TPRECV()/TPEV_SVCERR C0

TPRECV()/TPEV_SVCFAIL C0

TPRECV()/TPEV_SVCSUCC C0

TPSEND() /no event C1 C3

TPSEND() with flag TPRECVONLY C2 C4

TPSEND()/TPEV_DISCONIMM C0 C0

TPSEND()/TPEV_SVCERR C0

TPSEND()/TPEV_SVCFAIL C0

TPTERM() (client only) C0 C0

TPCOMMIT() (originator only) C0 C0
c C0 c

TPSUSPEND() (originator only) C0 C0
d C0

d

TPABORT() (originator only) C0 C0
 c C0

c

32 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

hen
ition

lure
ries.

l
Note: a If the program is in transaction mode and TPNOTRAN is not specified, the
connection is in transaction mode.

b If the TPTRAN flag is set, the connection is in transaction mode.

c If the connection is not in transaction mode, no state change.

d If the connection is in transaction mode, then TPSUSPEND() returns a
protocol error.

TX State

Transitions

BEA Tuxedo ensures that a process calls the TX functions in a legal sequence. W
an illegal state transition is attempted (that is, a call from a state with a blank trans
entry), the called function returns TX_PROTOCOL_ERROR. The legal states and
transitions for the TX functions are shown in the table below. Calls that return fai
do not make state transitions, except where described by specific state table ent
Any BEA Tuxedo client or server is allowed to use the TX functions.

The states are defined below:

S0
No RMs have been opened or initialized. A process cannot start a globa
transaction until it has successfully called TXOPEN().

S1
A process has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX-UNCHAINED.

TPDISCON() C0 C0

TPRETURN() (CONV server) C0 C0 C0 C0

TPFORWAR() (CONV server) C0 C0 C0 C0

All other ATMI functions C0 C1 C2 C3 C4

Connection Request Handle States

Function/Event States

C0 C1 C2 C3 C4
BEA Tuxedo COBOL Function Reference 33

Section 3(cbl) - COBOL Functions
S2
A process has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX-CHAINED.

S3
A process has opened its RM and is in a transaction. Its
transaction_control characteristic is TX-UNCHAINED.

S4
A process has opened its RM and is in a transaction. Its
transaction_control characteristic is TX-CHAINED.

TX State Transitions

Function States

S0 S1 S2 S3 S4

TXBEGIN() S3 S4

TXCLOSE() S0 S0 S0

TXCOMMIT() -> TX_SET1 S1 S4

TXCOMMIT() -> TX_SET2 S2

TXINFORM() S1 S2 S3 S4

TXOPEN() S1 S1 S2 S3 S4

TXROLLBACK() -> TX_SET1 S1 S4

TXROLLBACK() -> TX_SET2 S2

TXSETCOMMITRET() S1 S2 S3 S4

TXSETTRANCTL()

 control = TX-CHAINED

S2 S2 S4 S4

TXSETRRANCTL()

 control = TX-UNCHAINED

S1 S1 S3 S3

TXSETTIMEOUT() S1 S2 S3 S4
34 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

the
� TX_SET1 denotes any of the following: TX_OK, TX_ROLLBACK, TX_MIXED,
TX_HAZARD, or TX_COMMITTED. TX_ROLLBACK is not returned by
tx_rollback() and TX_COMMITTED is not returned by tx_commit() .

� TX_SET2 denotes any of the following: TX_NO_BEGIN,
TX_ROLLBACK_NO_BEGIN, TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or
TX_COMMITTED_NO_BEGIN. TX_ROLLBACK_NO_BEGIN is not returned by
tx_rollback() and TX_COMMITTED_NO_BEGIN is not returned by
tx_commit() .

� If TX_FAIL is returned on any call, the application process is in an undefined
state with respect to the above table.

� When tx_info() returns either TX_ROLLBACK_ONLY or
TX_TIMEOUT_ROLLBACK_ONLY in the transaction state information, the
transaction is marked rollback-only and is rolled back, regardless of whether
application program calls tx_commit() or tx_rollback() .

See Also buffer(3c) , TPINITIALIZE(3cbl) , TPADVERTISE(3cbl) , TPBEGIN(3cbl) ,
TPCALL(3cbl) , TPCONNECT(3cbl) , TPGETCTXT(3cbl) , TPKEYCLOSE(3cbl) ,
TPKEYGETINFO(3cbl) , TPKEYOPEN(3cbl) , TPKEYSETINFO(3cbl) ,
TPOPEN(3cbl) , TPSETCTXT(3cbl) , TPSVCSTART(3cbl) , tuxtypes(5) ,
typesw(5)
BEA Tuxedo COBOL Function Reference 35

Section 3(cbl) - COBOL Functions

oth
as

am

L”
FINIT, FINIT32(3cbl)

Name FINIT() , FINIT32() - initialize fielded buffer

Synopsis 01 FML-BUFFER.
 05 FML-ALIGN PIC S9(9) USAGE IS COMP.
 05 FML-DATA PIC X(applen).

01 FML-REC
 COPY FMLINFO.

CALL "FINIT" USING FML-BUFFER FML-REC.

CALL "FINIT32" USING FML-BUFFER FML-REC.

Description FINIT() can be called to initialize a fielded buffer. FML-BUFFER is the record to be
used for the fielded buffer; it should be aligned on a 4-byte boundary to work with b
FML16 and FML32. This can be accomplished by defining two record elements
shown in the synopsis above. FML-LENGTH IN FML-REC is the length of the record. The
internal structure is set up for a fielded buffer with no fields; the application progr
should not interpret the record, other than to pass it to FINIT() , FVFTOS() , or
FVSTOF() , or an ATMI call that takes a typed record (in this case, the type is “FM
and there is no subtype).

FINIT32() is used with 32-bit FML.

Return Values Upon successful completion, FINIT() sets FML-STATUS in FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.

Errors Under the following conditions, FINIT() fails and sets FML-STATUS in FML-REC to:

[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOSPACE]
“no space in fielded buffer”
The buffer size specified is too small for a fielded buffer.

Example The correct was to reinitialize a buffer to have no fields is: Finit (frfr ,
(FLDLEN)Fsizeof (fbfr));

See Also Introduction to FML Functions
36 BEA Tuxedo COBOL Function Reference

FVFTOS, FVFTOS32(3cbl)

nt
has
The

fined
nces
nd, if
ment,

ith
FVFTOS, FVFTOS32(3cbl)

Name FVFTOS() , FVFTOS32() - copy from fielded buffer to COBOL structure

Synopsis 01 DATA-REC.
COPY User data.

01 FML-BUFFER.
 05 FML-ALIGN PIC S9(9) USAGE IS COMP.
 05 FML-DATA PIC X(applen).

01 FML-REC COPY FMLINFO.

CALL "FVFTOS" USING FML-BUFFER DATA-REC FML-REC.

CALL "FVFTOS32" USING FML-BUFFER DATA-REC FML-REC.

Description The FVFTOS() function transfers data from a fielded buffer to a COBOL record.
FML-BUFFER is a pointer to a fielded buffer initialized with FINIT() . DATA-REC is a
pointer to a C structure. VIEWNAME IN FML-REC is the name of the view describing the
COBOL record.

Fields are copied from the fielded buffer into the structure based on the element
descriptions in VIEWNAME. If a field in the fielded buffer has no corresponding eleme
in the COBOL record, it is ignored. If an element specified in the COBOL record
no corresponding field in the fielded buffer, a null value is copied into the element.
null value used is definable for each element in the view description.

To store multiple occurrences in the COBOL record, the record element should de
with OCCURS. If the buffer has fewer occurrences of the field than there are occurre
of the element, the extra element slots are assigned null values. On the other ha
the buffer has more occurrences of the field than there are occurrences of the ele
the surplus occurrences are ignored.

FVFTOS32() is used for views defined with view32 typed buffers for larger views w
more fields.

Return Values Upon successful completion, FVFTOS32() sets FML-STATUS IN FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.

Errors Under the following conditions, FVFTOS() fails and sets FML-STATUS to:
BEA Tuxedo COBOL Function Reference 37

Section 3(cbl) - COBOL Functions
[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD]
“buffer not fielded”
The buffer is not a fielded buffer or has not been initialized by FINIT() .

[FEINVAL]
“invalid argument to function”
One of the arguments to the function invoked was invalid.

[FBADACM]
“ACM contains negative value”
An Associated Count Member should not be a negative value while
transferring data from a COBOL record to a fielded buffer.

[FBADVIEW]
“cannot find or get view”
The view description VIEWNAME was not found in the files specified by
VIEWDIR or VIEWFILES.

See Also Introduction to FML Functions, viewfile(5)
38 BEA Tuxedo COBOL Function Reference

FVSTOF(3cbl)

e
FVSTOF(3cbl)

Name FVSTOF() - copy from C structure to fielded buffer

Synopsis 01 DATA-REC.
 COPY User data.

01 FML-BUFFER.
 05 FML-ALIGN PIC S9(9) USAGE IS COMP.
 05 FML-DATA PIC X(applen).

01 FML-REC
 COPY FMLINFO.

CALL "FVSTOF" USING FML-BUFFER DATA-REC FML-REC.

CALL "FVSTOF32" USING FML-BUFFER DATA-REC FML-REC.

Description FVSTOF() transfers data from a C structure to a fielded buffer. FML-BUFFER is a record
containing the fielded buffer. DATA-REC is the COBOL record. VIEWNAME IN
FML-REC is the name of the view describing the COBOL record. FML-MODE IN
FML-REC specifies the manner in which the transfer is made. FML-MODE has four
possible values:

FUPDATE
FOJOIN
FJOIN
FCONCAT

The action of these modes are the same as that described in Fupdate,

Fupdate32(3fml) , Fojoin, Fojoin32(3fml) , Fjoin, Fjoin32(3fml) , and
Fconcat, Fconcat32(3fml) . One can even think of FVSTOF() as the same as these
functions, except that where they specify a source buffer, FVSTOF() specifies a
COBOL record. Bear in mind that FUPDATE does not move record elements that hav
null values.

FVSTOF32() is used for views defined with view32() typed buffers for larger views
with more fields.

Return Values Upon successful completion, FVSTOF32() sets FML-STATUS IN FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.

Errors Under the following conditions, FVSTOF() fails and sets FML-STATUS to:
BEA Tuxedo COBOL Function Reference 39

Section 3(cbl) - COBOL Functions
[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD]
“buffer not fielded”
The buffer is not a fielded buffer or has not been initialized by FINIT() .

[FEINVAL]
“invalid argument to function”
One of the arguments to the function invoked was invalid.

[FBADACM]
“ACM contains negative value”
An Associated Count Member should not be a negative value while
transferring data from a COBOL record to a fielded buffer.

[FBADVIEW]
“cannot find or get view”
The view description VIEWNAME was not found in the files specified by
VIEWDIR or VIEWFILES.

See Also Introduction to FML Functions, viewfile(5)
40 BEA Tuxedo COBOL Function Reference

TPABORT(3cbl)

l

rvice

,
tions

tions

trol

as
TPABORT(3cbl)

Name TPABORT() - abort current BEA Tuxedo system transaction

Synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC.

Description TPABORT() signifies the abnormal end of a transaction. When this call returns, al
changes made to resources during the transaction are undone. Like TPCOMMIT(), this
routine can be called only by the initiator of a transaction. Participants (that is, se
routines) can express their desire to have a transaction aborted by calling TPRETURN()
with TPFAIL() .

If TPABORT() is called while communication handles exist for outstanding replies
then upon return from the routine, the transaction is aborted and those communica
handles associated with the caller’s transaction are no longer valid. Communica
handles not associated with the caller’s transaction remain valid.

For each open connection to a conversational server in transaction mode, TPABORT()
will send a TPEV-DISCONIMM event to the server, whether or not the server has con
of a connection. Connections opened before TPBEGIN() or with the TPNOTRAN setting
(that is, not in transaction mode) are not affected.

The TPABORT() argument, TPTRXDEF-REC, is reserved for future use.

Return Values Upon successful completion, TPABORT() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPABORT() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given. The caller’s transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction w
partially committed and partially aborted.
BEA Tuxedo COBOL Function Reference 41

Section 3(cbl) - COBOL Functions

ve

nt).

 is

urce
s
[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could ha
been heuristically completed.

[TPEPROTO]
TPABORT() was called in an improper context (for example, by a participa

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using TPBEGIN() , TPCOMMIT() and TPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either TPCOMMIT() or TPABORT.

See Also TPBEGIN(3cbl) , TPCOMMIT(3cbl) , TPGETLEV(3cbl)
42 BEA Tuxedo COBOL Function Reference

TPACALL(3cbl)

t

ied,

tion
 the
this
TPACALL(3cbl)

Name TPACALL() - routine to send a message to a service asynchronously

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPACALL() sends a request message to the service named by SERVICE-NAME IN
TPSVCDEF-REC. The request is sent out at the priority defined for SERVICE-NAME
unless overridden by a previous call to TPSPRIO() . DATA-REC is a message to be sen
and LEN IN TPTYPE-REC specifies the amount of data in DATA-REC that should be sent.
Note that if DATA-REC is a record of a type that does not require a length to be specif
then LEN is ignored (and may be 0). If REC-TYPE IN TPTYPE-REC is SPACES,
DATA-REC and LEN are ignored and a request is sent with no data portion. If REC-TYPE
is STRING and LEN is 0, then the request is sent with no data portion. The REC-TYPE
and SUB-TYPE of DATA-REC must match one of the REC-TYPE and SUB-TYPEs
recognized by SERVICE-NAME. Note that for each request sent while in transaction
mode, a corresponding reply must ultimately be received.

The following is a list of valid settings in TPSVCDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAME is invoked, it is not performed on behalf of the caller’s
transaction. If SERVICE-NAME belongs to a server that does not support
transactions, then this setting must be used when the caller is in transac
mode. A caller in transaction mode that uses this setting is still subject to
transaction timeout (and no other). If a service fails that was invoked with
setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN
must be set.
BEA Tuxedo COBOL Function Reference 43

Section 3(cbl) - COBOL Functions

.

ting

rnal

ks
king

ts
.

tem
TPTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAME is invoked, it is performed on behalf of the caller’s
transaction. This setting is ignored if the caller is not in transaction mode
Either TPNOTRAN or TPTRAN must be set.

TPNOREPLY
Informs TPACALL() that a reply is not expected. When TPNOREPLY is set, the
routine returns [TPOK] on success and sets COMM-HANDLE IN TPSVCDEF-REC
to 0, an invalid communications handle. When the caller is in transaction
mode, this setting cannot be used when TPTRAN is also set. Either TPNOREPLY
or TPREPLY must be set.

TPREPLY
Informs TPACALL() that a reply is expected. When TPREPLY is set, the
routine returns [TPOK] on success and sets COMM-HANDLE to a valid
communications handle. When the caller is in transaction mode, this set
must be used when TPTRAN is also set. Either TPNOREPLY or TPREPLY must
be set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the inte
buffers into which the message is transferred are full). Either TPNOBLOCK or
TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or bloc
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.
44 BEA Tuxedo COBOL Function Reference

TPACALL(3cbl)

tem

d

n

 or

ich
e
TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

Return Values Upon successful completion, TPACALL() sets TP-STATUS to [TPOK]. In addition, if
TPREPLY was set in TPSVCDEF-REC, then TPCALL() returns a valid communications
handle in COMM-HANDLE that can be used to receive the reply of the request sent.

Errors Under the following conditions, TPACALL() fails and sets TP-STATUS to (unless
otherwise noted, failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

[TPENOENT]
Can not send to SERVICE-NAME because it does not exist or is not a
request/response service (that is, it is a conversational service).

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and
sub-types that SERVICE-NAME accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN]
SERVICE-NAME belongs to a server that does not support transactions an
TPTRAN was set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and both TPBLOCK and TPTIME were specified. If
a transaction timeout occurred, then any attempts to send new requests
receive outstanding replies will fail with [TPETIME] until the transaction has
been aborted.

[TPETIME] may also indicate that a service failed inside a transaction, wh
is now in the TX_ROLLBACKONLY state. As long as a transaction remains in th
TX_ROLLBACKONLY state, any calls to TPACALL() return [TPETIME].
BEA Tuxedo COBOL Function Reference 45

Section 3(cbl) - COBOL Functions

 is
[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPACALL() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPCALL(3cbl) , TPCANCEL(3cbl) , TPGETRPLY(3cbl) , TPGPRIO(3cbl) ,
TPSPRIO(3cbl)
46 BEA Tuxedo COBOL Function Reference

TPADVERTISE(3cbl)

, a

e
ents

e

rvice
is

es
TPADVERTISE(3cbl)

Name TPADVERTISE() - routine for advertising service names

Synopsis 01 SVC-NAME PIC X(15).
01 PROGRAM-NAME PIC X(32).
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPADVERTISE" USING SVC-NAME PROGRAM-NAME TPSTATUS-REC.

Description TPADVERTISE() allows a server to advertise the services that it offers. By default
server’s services are advertised when it is booted and unadvertised when it is
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer th
same set of services. These routines enforce this rule by affecting the advertisem
of all servers sharing an MSSQ set.

TPADVERTISE() advertises SVC-NAME for the server (or the set of servers sharing th
caller’s MSSQ set). SVC-NAME should be 15 characters or less, but cannot be SPACES.
(See SERVICES section of UBBCONFIG(5)) Longer names are truncated to 15
characters. Users should make sure that truncated names do not match other se
names. PROGRAM-NAME is the name of a BEA Tuxedo system service program. Th
program will be invoked whenever a request for SVC-NAME is received by the server.
PROGRAM-NAME cannot be SPACES.

If SVC-NAME is already advertised for the server and PROGRAM-NAME matches its
current program, then TPADVERTISE() returns success (this includes truncated nam
that match already advertised names). However, if SVC-NAME is already advertised for
the server but PROGRAM-NAME does not match its current program, then an error is
returned (this can happen if truncated names match already advertised names).

Return Values TPADVERTISE() Upon successful completion, TPADVERTISE() sets TP-STATUS to
[TPOK].

Errors Under the following conditions, TPADVERTISE() fails and sets TP-STATUS to:

[TPEINVAL]
Either SVC-NAME or PROGRAM-NAME is SPACES, or PROGRAM-NAME is not a
name of a valid program.
BEA Tuxedo COBOL Function Reference 47

Section 3(cbl) - COBOL Functions

an

 is

not
[TPELIMIT]
SVC-NAME cannot be advertised because of space limitations. (See
MAXSERVICES in the RESOURCES section of UBBCONFIG(5))

[TPEMATCH]
SVC-NAME is already advertised for the server but with a program other th
PROGRAM-NAME. Although TPADVERTISE() fails, SVC-NAME remains
advertised with its current program (that is, PROGRAM-NAME does not replace
the current program).

[TPEPROTO]
TPADVERTISE() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability On AIX on the RS6000, any services provided in the first COBOL object file are
available in the symbol table; their names must be specified using the -s option on the
buildserver command so that they can be advertised at run-time using
TPADVERTISE() .

See Also TPUNADVERTISE(3cbl)
48 BEA Tuxedo COBOL Function Reference

TPBEGIN(3cbl)

ork
rk

an

(of
rt of
. A
tiator

e

t it

ore
long
TPBEGIN(3cbl)

Name TPBEGIN() - routine to begin a BEA Tuxedo system transaction

Synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

Description A transaction in the BEA Tuxedo system is used to define a single logical unit of w
that either wholly succeeds or has no effect whatsoever. A transaction allows wo
being performed in many processes, at possibly different sites, to be treated as
atomic unit of work. The initiator of a transaction uses TPBEGIN() and either
TPCOMMIT() or TPABORT() to delineate the operations within a transaction. Once
TPBEGIN() is called, communication with any other program can place the latter
necessity, a server) in “transaction mode” (that is, the server’s work becomes pa
the transaction). Threads of control that join a transaction are called participants
transaction always has one initiator and can have several participants. Only the ini
of a transaction can call TPCOMMIT() or TPABORT(). Participants can influence the
outcome of a transaction by the settings in TPSVCDEF-REC they use when they call
TPRETURN(). Once in transaction mode, any service requests made to servers ar
processed on behalf of the transaction (unless the requester explicitly specifies
otherwise).

Note that if a program starts a transaction while it has any open connections tha
initiated to conversational servers, these connections will not be upgraded to
transaction mode. It is as if the TPNOTRAN setting had been specified on the
TPCONNECT() call.

T-OUT specifies that the transaction should be allowed at least T-OUT seconds before
timing out. Once a transaction times out it must be aborted. If T-OUT is 0, then the
transaction is given the maximum number of seconds allowed by the system bef
timing out (that is, the timeout value equals the maximum value for an unsigned
as defined by the system).

Return Values Upon successful completion, TPBEGIN() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPBEGIN() fails and sets TP-STATUS to:
BEA Tuxedo COBOL Function Reference 49

Section 3(cbl) - COBOL Functions

red

 is

urce
as

tions
on.
[TPEINVAL]
Invalid arguments were given.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occur
starting the transaction.

[TPEPROTO]
TPBEGIN() was called in an improper context (for example, the caller is
already in transaction mode).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using TPBEGIN() , TPCOMMIT() and TPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA0 interface (and is linked to the caller appropriately) h
transactional properties. All other operations performed in a transaction are not
affected by either TPCOMMIT() or TPABORT(). See buildserver(1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA Tuxedo system transacti

See Also TPABORT(3cbl) , TPCOMMIT(3cbl) , TPGETLEV(3cbl) , TPSCMT(3cbl)
50 BEA Tuxedo COBOL Function Reference

TPBROADCAST(3cbl)

red

s.

hat

ength.

rnal
TPBROADCAST(3cbl)

Name TPBROADCAST() - broadcast notification by name

Synopsis 01 TPBCTDEF-REC.
 COPY TPBCTDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC
TPSTATUS-REC.

Description TPBROADCAST() allows a client or server to send unsolicited messages to registe
clients within the system. The target client set consists of those clients matching
identifiers passed to TPBROADCAST(). Wildcards can be used in specifying identifier

LMID, USRNAME and CLTNAME, all in TPBCTDEF-REC, are logical identifiers used to
select the target client set. A SPACES value for any logical identifiers constitutes a
wildcard for that argument. A wildcard argument matches all client identifiers for t
field. Each identifier must meet the size restrictions defined for the system to be
considered valid, that is, each identifier must be between 0 and 30 characters in l

The data portion of the request is identified by DATA-REC and LEN in TPTYPE-REC
specifies how much of DATA-REC to send. Note that if DATA-REC is a record of a type
that does not require a length to be specified, then LEN is ignored (and may be 0). If
REC-TYPE in TPTYPE-REC is SPACES, in which case DATA-REC and LEN are ignored
and a request is sent with no data portion.

The following is a list of valid settings in TPBCTDEF-REC.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the inte
buffers into which the message is transferred are full). Either TPNOBLOCK or
TPBLOCK must be set.
BEA Tuxedo COBOL Function Reference 51

Section 3(cbl) - COBOL Functions

 or

ts
.

tem

tem

TPBLOCK
If a blocking condition exists, the caller blocks until the condition subsides
a timeout occurs (either transaction or blocking timeout). Either TPNOBLOCK
or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Upon successful return from TPBROADCAST(), the message
has been delivered to the system for forwarding to the selected clients.
TPBROADCAST() does not wait for the message to be delivered to each
selected client. Either TPNOSIGRSTRTor TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

Return Values Upon successful completion, TPBROADCAST() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPBROADCAST() sends no broadcast messages to
application clients and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given. Note that use of an illegal LMID will cause
TPBROADCAST() to fail and return TPEINVAL() . However, non-existent user
or client names will simply successfully broadcast to no one.

[TPETIME]
A blocking timeout occurred and both TPBLOCK and TPTIME were specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.
52 BEA Tuxedo COBOL Function Reference

TPBROADCAST(3cbl)

 is

 due
t it is

and

tion
.

e

il,
[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPBROADCAST() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability The interfaces described in TPNOTIFY() are supported on native site UNIX-based
processors. In addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as
the routine TPSETUNSOL() are supported on UNIX and MS-DOS workstation
processors.

Usage Clients that select signal-based notification may not be signal-able by the system
to signal restrictions. When this occurs, the system generates a log message tha
switching notification for the selected client to dip-in and the client is notified then
thereafter via dip-in notification. (See UBBCONFIG(5) description of the RESOURCES
NOTIFY parameter for a detailed discussion of notification methods.)

Because signaling of clients is always done by the system, the behavior of notifica
is always consistent, regardless of where the originating notification call is made
Therefore to use signal-based notification:

� A native client must be running as an application administrator

� A Workstation client is not required to be running as the application
administrator

The ID for the application administrator is identified in the configuration file for th
application.

If signal-based notification is selected for a client, then certain ATMI calls can fa
returning TPGOTSIG() due to receipt of an unsolicited message if TPSIGRSTRT is not
specified. See UBBCONFIG(5) and TPINITIALIZE(3cbl) for more information on
notification method selection.

See Also TPINITIALIZE(3cbl) , TPNOTIFY(3cbl) , TPTERM(3cbl) , UBBCONFIG(5)
BEA Tuxedo COBOL Function Reference 53

Section 3(cbl) - COBOL Functions

e is

 to
TPCALL(3cbl)

Name TPCALL() - routine to send a message to a service synchronously

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 ITPTYPE-REC.
 COPY TPTYPE.

01 IDATA-REC.
 COPY User data.

01 OTPTYPE-REC.
 COPY TPTYPE.

01 ODATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCALL" USING TPSVCDEF-REC ITPTYPE-REC IDATA-REC OTPTYPE-REC
ODATA-REC TPSTATUS-REC.

Description TPCALL() sends a request and synchronously awaits its reply. A call to this routin
the same as calling TPACALL() immediately followed by TPGETRPLY(). TPCALL()
sends a request to the request/response service named by SERVICE-NAME in
TPSVCDEF-REC. The request is sent out at the priority defined for SERVICE-NAME
unless overridden by a previous call to TPSPRIO() . The data portion of a request is
specified by IDATA-REC and LEN in ITPTYPE-REC specifies how much of IDATA-REC
to send. Note that if IDATA-REC is a record of a type that does not require a length
be specified, then LEN in ITPTYPE-REC is ignored (and may be 0). If REC-TYPE in
ITPTYPE-REC is SPACES, IDATA-REC and LEN in ITPTYPE-REC are ignored and a
request is sent with no data portion. If REC-TYPE in ITPTYPE-REC is STRING and LEN
in ITPTYPE-REC is 0, then the request is sent with no data portion. The REC-TYPE in
ITPTYPE-REC and SUB-TYPE in ITPTYPE-REC must match one of the REC-TYPEs and
SUB-TYPEs recognized by SERVICE-NAME.

ODATA-REC specifies where a reply is read into, and, on input LEN in OTPTYPE-REC
indicates the maximum number of bytes that should be moved into ODATA-REC. If the
same record is to be used for both sending and receiving, ODATA-REC should be
54 BEA Tuxedo COBOL Function Reference

TPCALL(3cbl)

 If

ion

t
tion
 the
this

.

e

e.
REDEFINED to IDATA-REC. Upon successful return from TPCALL() , LEN in
OTPTYPE-REC contains the actual number of bytes moved into ODATA-REC. REC-TYPE
and SUB-TYPE in OTPTYPE-REC contain the replies type and sub-type respectively.
the reply is larger than ODATA-REC, then ODATA-REC will contain only as many bytes
as will fit in the record. The remainder of the reply is discarded and TPCALL() sets
TPTRUNCATE().

If LEN in OTPTYPE-REC is 0 upon successful return, then the reply has no data port
and ODATA-REC was not modified. It is an error for LEN in OTPTYPE-REC to be 0 on
input.

The following is a list of valid settings in TPSVCDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAME is invoked, it is not performed on behalf of the caller’s
transaction. If the SERVICE-NAME belongs to a server that does not suppor
transactions then this setting must be used when the caller is in transac
mode. A caller in transaction mode that sets this to true is still subject to
transaction timeout (and no other). If a service fails that was invoked with
setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN
must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAME is invoked, it is performed on behalf of the caller’s
transaction. The setting is ignored if the caller is not in transaction mode
Either TPNOTRAN or TPTRAN must be set.

TPNOCHANGE
When this setting is used, the type of ODATA-REC is not allowed to change.
That is, the type and sub-type of the replied record must match REC-TYPE IN
OTPTYPE-REC and SUB-TYPE IN OTPTYPE-REC, respectively, so long as the
receiver recognizes the incoming record type. Either TPNOCHANGE or
TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the reply record is allowed to differ from thos
specified in REC-TYPE IN OTPTYPE-REC and SUB-TYPE IN OTPTYPE-REC,
respectively, so long as the receiver recognizes the incoming record typ
Either TPNOCHANGE or TPCHANGE must be set.
BEA Tuxedo COBOL Function Reference 55

Section 3(cbl) - COBOL Functions

rnal
ting

ks
king

ts
.

tem

tem
TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the inte
buffers into which the message is transferred are full). Note that this set
applies only to the send portion of TPCALL() : the routine may block waiting
for the reply. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or bloc
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted and the routine fails. Either TPNOSIGRSTRT or
TPSIGRSTRT must be set.

Return Values Upon successful completion, TPCALL() sets TP-STATUS to [TPOK]. When TP-STATUS
is set to TPOK or TPESVCFAIL, APPL-RETURN-CODE IN TPSTATUS-REC contains an
application defined value that was sent as part of TPRETURN().

If the size of the incoming message was larger then the size specified in LEN on input,
TPTRUNCATE() is set and only LEN amount of data was moved to ODATA-REC, the
remaining data is discarded.

Errors Under the following conditions, TPCALL() fails and sets TP-STATUS to (unless
otherwise noted, failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, SERVICE-NAME is SPACES or
settings in TPSVCDEF-REC are invalid).
56 BEA Tuxedo COBOL Function Reference

TPCALL(3cbl)

s

d

n

end

’s

med
alls

ts
o

 the
[TPENOENT]
Cannot send to SERVICE-NAME because it does not exist or is not a
request/response service (that is, it is a conversational service).

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and
sub-types that SERVICE-NAME accepts.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set and the REC-TYPE and SUB-TYPE in ODATA-REC do not
match the type and sub-type of the reply sent by the service. Neither
ODATA-REC nor LEN in OTPTYPE-REC are changed. If the service request wa
made on behalf of the caller’s current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPETRAN]
SERVICE-NAME belongs to a server that does not support transactions an
TPTRAN was set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and both TPBLOCK and TPTIME were specified. In
either case, neither ODATA-REC nor OTPTYPE-REC are changed. If a
transaction timeout occurred, then with one exception, any attempts to s
new requests or receive outstanding replies will fail with TPETIME until the
transaction has been aborted.

[TPESVCFAIL]
The service routine sending the caller’s reply called TPRETURN() with
TPFAIL() . This is an application-level failure. The contents of the service
reply, if one was sent, is available in ODATA-REC. If the service request was
made on behalf of the caller’s current transaction, then the transaction is
marked abort-only. Note that regardless of whether the transaction has ti
out, the only valid communications before the transaction is aborted are c
to TPACALL() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

[TPESVCERR]
An error was encountered either in invoking a service routine or during i
completion in TPRETURN() (for example, bad arguments were passed). N
reply data is returned when this error occurs (that is, neither ODATA-REC nor
OTPTYPE-REC are changed). If the service request was made on behalf of
BEA Tuxedo COBOL Function Reference 57

Section 3(cbl) - COBOL Functions

med
alls

 is
caller’s transaction (that is, TPNOTRAN was not set), then the transaction is
marked abort-only. Note that regardless of whether the transaction has ti
out, the only valid communications before the transaction is aborted are c
to TPACALL() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

[TPEBLOCK]
A blocking condition was found on the send portion of TPCALL() and
TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPCALL() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPACALL(3cbl) , TPFORWAR(3cbl) , TPGPRIO(3cbl) , TPRETURN(3cbl) ,
TPSPRIO(3cbl)
58 BEA Tuxedo COBOL Function Reference

TPCANCEL(3cbl)

 is
TPCANCEL(3cbl)

Name TPCANCEL() - cancel a communication handle for an outstanding reply

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCANCEL" USING TPSVCDEF-REC TPSTATUS-REC.

Description TPCANCEL() cancels a communication handle, COMM-HANDLE IN TPSVCDEF-REC,
returned by TPACALL() . It is an error to attempt to cancel a communication handle
associated with a transaction.

Upon success, COMM-HANDLE is no longer valid and any reply received on behalf of
COMM-HANDLE will be silently discarded.

Return Values Upon successful completion, TPCANCEL() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPCANCEL() fails and sets TP-STATUS to:

[TPEBADDESC]
COMM-HANDLE is an invalid communication handle.

[TPETRAN]
COMM-HANDLE is associated with the caller’s transaction. COMM-HANDLE
remains valid and the caller’s current transaction is not affected.

[TPEPROTO]
TPCANCEL() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPACALL(3cbl)
BEA Tuxedo COBOL Function Reference 59

Section 3(cbl) - COBOL Functions

.

 is
TPCHKAUTH(3cbl)

Name TPCHKAUTH()—check if authentication required to join a BEA Tuxedo system
application

Synopsis 01 TPAUTDEF-REC.
 COPY TPAUTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

 CALL "TPCHKAUTH" USING TPAUTDEF-REC TPSTATUS-REC.

Description TPCHKAUTH() checks if authentication is required by the application configuration
This is typically used by application clients prior to calling TPINITIALIZE() to
determine if a password should be obtained from the user.

Return Values Upon successful completion, TPCHKAUTH() sets TP-STATUS to [TPOK] and sets one of
the following values in TPAUTDEF-REC.

TPNOAUTH
indicates that no authentication is required.

TPSYSAUTH
indicates that only system authentication is required.

TPAPPAUTH
indicates that both system and application specific authentication are
required.

Errors Under the following conditions, TPCHKAUTH() fails and sets TP-STATUS to:

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability The interfaces described in TPCHKAUTH() are supported on UNIX System and
MS-DOS operating systems.

See Also TPINITIALIZE(3cbl)
60 BEA Tuxedo COBOL Function Reference

TPCHKUNSOL(3cbl)

alls

n

 is

 due
t it is

and
TPCHKUNSOL(3cbl)

Name TPCHKUNSOL() - check for unsolicited message

Synopsis 01 MSG-NUM PIC S9(9) COMP-5.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCHKUNSOL" USING MSG-NUM TPSTATUS-REC.

Description TPCHKUNSOL() is used by a client to trigger checking for unsolicited messages. C
to this routine in a client using signal-based notification do nothing and return
immediately. Calls to this routine can result in calls to an application-defined
unsolicited message handling routine by the BEA Tuxedo system libraries.

Return Values Upon successful completion, TPCHKUNSOL() sets TP-STATUS to [TPOK] and returns
the number of unsolicited messages dispatched in MSG-NUM.

Errors Under the following conditions, TPCHKUNSOL() fails and sets TP-STATUS to:

[TPEPROTO]
TPCHKUNSOL() was called in an improper context (for example, from withi
a server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability The interfaces described in TPNOTIFY() are supported on native site UNIX-based
processors. In addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as
the routine TPSETUNSOL() are supported on UNIX and MS-DOS workstation
processors.

Clients that select signal-based notification may not be signal-able by the system
to signal restrictions. When this occurs, the system generates a log message tha
switching notification for the selected client to dip-in and the client is notified then
thereafter via dip-in notification. (See UBBCONFIG(5) description of the RESOURCES
NOTIFY parameter for a detailed discussion of notification methods.)
BEA Tuxedo COBOL Function Reference 61

Section 3(cbl) - COBOL Functions

ation
.

or

il,
Because signaling of clients is always done by the system, the behavior of notific
is always consistent, regardless of where the originating notification call is made
Therefore to use signal-based notification:

� A native client must be running as an application administrator

� A Workstation client is not required to be running as the application
administrator

The ID for the application administrator is identified as part of the configuration f
the application.

If signal-based notification is selected for a client, then certain ATMI calls can fa
returning TPGOTSIG() due to receipt of an unsolicited message if TPSIGRSTRT is not
specified. See UBBCONFIG(5) and TPINITIALIZE(3cbl) for more information on
notification method selection.

See Also TPBROADCAST(3cbl) , TPINITIALIZE(3cbl) , TPNOTIFY(3cbl) ,
TPSETUNSOL(3cbl)
62 BEA Tuxedo COBOL Function Reference

TPCLOSE(3cbl)

ger to

ng
ating

ler

 is
TPCLOSE(3cbl)

Name TPCLOSE() - close the BEA Tuxedo system resource manager

Synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCLOSE" USING TPSTATUS-REC.

Description TPCLOSE() tears down the association between the caller and the resource mana
which it is linked. Since resource managers differ in their close semantics, the
specific information needed to close a particular resource manager is placed in a
configuration file.

If a resource manager is already closed (that is, TPCLOSE() is called more than once),
no action is taken and success is returned.

Return Values Upon successful completion, TPCLOSE() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPCLOSE() fails and sets TP-STATUS to:

[TPERMERR]
A resource manager failed to close correctly. More information concerni
the reason a resource manager failed to close can be obtained by interrog
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTO]
TPCLOSE() was called in an improper context (for example, while the cal
is in transaction mode).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPOPEN(3cbl)
BEA Tuxedo COBOL Function Reference 63

Section 3(cbl) - COBOL Functions

l to

 they

ll

ged

n

nts can
stent

her or
TPCOMMIT(3cbl)

Name TPCOMMIT() - commit current BEA Tuxedo system transaction

Synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC

Description TPCOMMIT() signifies the end of a transaction, using a two-phase commit protoco
coordinate participants. TPCOMMIT() can be called only by the initiator of a
transaction. If any of the participants cannot commit the transaction (for example,
call TPRETURN() with TPFAIL()), then the entire transaction is aborted and
TPCOMMIT() fails. That is, all of the work involved in the transaction is undone. If a
participants agree to commit their portion of the transaction, then this decision is
logged to stable storage and all participants are asked to commit their work.

Depending on the setting of the TP-COMMIT-CONTROL characteristic (see TPSCMT()),
TPCOMMIT() can return successfully either after the commit decision has been log
or after the two-phase commit protocol has completed. If TPCOMMIT() returns after the
commit decision has been logged but before the second phase has completed
(TP-CMT-LOGGED), then all participants have agreed to commit the work they did o
behalf of the transaction and should fulfill their promise to commit the transaction
during the second phase. However, because TPCOMMIT() is returning before the
second phase has completed, there is a hazard that one or more of the participa
heuristically complete their portion of the transaction (in a manner that is not consi
with the commit decision) even though the routine has returned success.

If the TP-COMMIT-CONTROL characteristic is set such that TPCOMMIT() returns after
the two-phase commit protocol has completed (TP-CMT-COMPLETE), then its return
value reflects the exact status of the transaction (that is, whether the transaction
heuristically completed or not).

Note that if only a single resource manager is involved in a transaction, then a
one-phase commit is performed (that is, the resource manager is not asked whet
not it can commit; it is simply told to commit). In this case, the TP-COMMIT-CONTROL
characteristic has no bearing and TPCOMMIT() will return heuristic outcomes if
present.
64 BEA Tuxedo COBOL Function Reference

TPCOMMIT(3cbl)

s,

les

y

that
tion

 the
 is

as

ve
If TPCOMMIT() is called while communication handles exist for outstanding replie
then upon return from TPCOMMIT(), the transaction is aborted and those handles
associated with the caller’s transaction are no longer valid. Communication hand
not associated with the caller’s transaction remain valid.

TPCOMMIT() must be called after all connections associated with the caller’s
transaction are closed (otherwise [TPEABORT] is returned, the transaction is aborted
and these connections are disconnected in a disorderly fashion with a
TPEV-DISCONIMM event). Connections opened before TPBEGIN() or with the
TPNOTRAN setting (that is, connections not in transaction mode) are not affected b
calls to TPCOMMIT() or TPABORT().

Currently, TPCOMMIT()’s argument, TPTRXDEF-REC, is reserved for future use.

Return Values Upon successful completion, TPCOMMIT() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPCOMMT() fails and sets TP-STATUS to:

[TPEINVAL]
TPTRXDEF-REC is not equal to 0. The caller’s transaction is not affected.

[TPETIME]
The transaction timed out and the status of the transaction is unknown (
is, it can have been either committed or aborted). Note that if the transac
timed out and its status is known to be aborted, then [TPEABORT] is returned.

[TPEABORT]
The transaction could not commit because either the work performed by
initiator or by one or more of its participants could not commit. This error
also returned if TPCOMMIT() is called with outstanding replies or open
conversational connections.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction w
partially committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could ha
been heuristically completed.

[TPEPROTO]
TPCOMMIT() was called in an improper context (for example, by a
participant).
BEA Tuxedo COBOL Function Reference 65

Section 3(cbl) - COBOL Functions

 is

urce
s

tions
on.
[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using TPBEGIN() , TPCOMMIT(), and TPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either TPCOMMIT() or TPABORT(). See buildserver(1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA Tuxedo system transacti

See Also TPABORT(3cbl) , TPBEGIN(3cbl) , TPCONNECT(3cbl) , TPGETLEV(3cbl) ,
TPRETURN(3cbl) , TPSCMT(3cbl)
66 BEA Tuxedo COBOL Function Reference

TPCONNECT(3cbl)

nal

 the

at
en

s

TPCONNECT(3cbl)

Name TPCONNECT() - establish a conversational connection

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
TPSTATUS-REC.

Description TPCONNECT() allows a program to set up a half-duplex connection to a conversatio
service, SERVICE-NAME in TPSVCDEF-REC. The name must be one of the
conversational service names posted by a conversational server.

As part of setting up a connection, the caller can pass application defined data to
receiving service routine. If the caller chooses to pass data, then DATA-REC contains
the data and LEN in TPTYPE-REC specifies how much of the record to send. Note th
if DATA-REC is a record of a type that does not require a length to be specified, th
LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is SPACES, DATA-REC and
LEN are ignored (no application data is passed to the conversational service).
REC-TYPE and SUB-TYPE in TPTYPE-REC must match one of the types and sub-type
recognized by SERVICE-NAME.

Because the conversational service receives DATA-REC and LEN upon successful return
from TPSVCSTART(), the service does not call TPRECV() to get the data sent by
TPCONNECT().

The following is a list of valid settings in TPSVCDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAME is invoked, it is not performed on behalf of the caller’s
transaction. If SERVICE-NAME belongs to a server that does not support
BEA Tuxedo COBOL Function Reference 67

Section 3(cbl) - COBOL Functions

tion
 the
this

.

end
lly

ce

e is

ks
king

ts
he
transactions, then this setting must be used when the caller is in transac
mode. A caller in transaction mode that uses this setting is still subject to
transaction timeout (and no other). If a service fails that was invoked with
setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN
must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAME is invoked, it is performed on behalf of the caller’s
transaction. This setting is ignored if the caller is not in transaction mode
Either TPNOTRAN or TPTRAN must be set.

TPSENDONLY
The caller wants the connection to be set up initially such that it can only s
data and the called service can only receive data (that is, the caller initia
has control of the connection). Either TPSENDONLY or TPRECVONLY must be
specified.

TPRECVONLY
The caller wants the connection to be set up initially such that it can only
receive data and the called service can only send data (that is, the servi
being called initially has control of the connection). Either TPSENDONLY or
TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking
condition exists (for example, the data buffers through which the messag
sent are full). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or bloc
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts will still affect t
program. Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.
68 BEA Tuxedo COBOL Function Reference

TPCONNECT(3cbl)

e

ing

nd

n

sages
TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
When TPNOSIGRSTRT is specified and a signal interrupts a system call, th
call fails and TP-STATUS is set to TPGOTSIG() . Either TPNOSIGRSTRT or
TPSIGRSTRT must be set.

Return Values Upon successful completion, TPCONNECT() sets TP-STATUS to [TPOK] and returns a
communications handle in COMM-HANDLE in TPSVCDEF-REC that is used to refer to the
connection in subsequent calls.

Errors Under the following conditions, TPCONNECT() fails and sets TP-STATUS to (unless
otherwise noted, failure does not affect the caller’s transaction, if one exists).

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

[TPENOENT]
Can not initiate a connection to SERVICE-NAME because it does not exist or is
not a conversational service.

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and
sub-types that SERVICE-NAME accepts.

[TPELIMIT]
The connection was not sent because the maximum number of outstand
connections has been reached.

[TPETRAN]
SERVICE-NAME belongs to a program that does not support transactions a
TPNOTRAN was not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and both TPBLOCK and TPTIME were specified. If
a transaction timeout occurred, then any attempts to send or receive mes
on any connections or to start a new connection will fail with [TPETIME] until
the transaction has been aborted.
BEA Tuxedo COBOL Function Reference 69

Section 3(cbl) - COBOL Functions

 is
[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPCONNECT() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPDISCON(3cbl) , TPRECV(3cbl) , TPSEND(3cbl)
70 BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3cbl)

ges on
rticular

ssage

the

TPDEQUEUE(3cbl)

Name TPDEQUEUE() - routine to dequeue a message from a queue

Synopsis 01 TPQUEDEF-REC.
 COPY TPQUEDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY STATDEF.

CALL "TPDEQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC
TPSTATUS-REC.

Description TPDEQUEUE() takes a message for processing from the queue named by QNAME in the
QSPACE-NAME queue space.

By default, the message at the top of the queue is dequeued. The order of messa
the queue is defined when the queue is created. The application can request a pa
message for dequeuing by specifying its message identifier using MSGID or

correlation identifier using CORRID . TPQUEDEF-REC settings can also be used
to indicate that the application wants to wait for a message, in the case when a me
is not currently available. It is possible to use the TPQUEDEF-REC structure to look at a
message without removing it from the queue or changing its relative position on
queue. See the section below describing this record.

DATA-REC specifies where a dequeued message is to be read into, and, on input LEN
indicates the maximum number of bytes that should be moved into DATA-REC. Upon
successful return, LEN contains the actual number of bytes moved into DATA-REC.
REC-TYPE and SUB-TYPE contain the replies type and sub-type respectively. If the
reply is larger than DATA-REC, then DATA-REC will contain only as many bytes as will
fit in the record. The remainder of the reply is discarded and TPDEQUEUE() fails
returning [TPTRUNCATE].

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC
was not modified. It is an error for LEN to be 0 on input.
BEA Tuxedo COBOL Function Reference 71

Section 3(cbl) - COBOL Functions

e and

 the
a
n the
 is not
n.

 not

s not
 sets
age
 is

 is
d if

 the

e

,
ned
I

til

The message is dequeued in transaction mode if the caller is in transaction mod
TPTRAN is set. This has the effect that if TPDEQUEUE returns successfully and the
caller’s transaction is committed successfully, then the message is removed from
queue. If the caller’s transaction is rolled back either explicitly or as the result of
transaction timeout or some communication error, then the message will be left o
queue (that is, the removal of the message from the queue is also rolled back). It
possible to enqueue and dequeue the same message within the same transactio

The message is not dequeued in transaction mode if either the caller is not in
transaction mode, or TPNOTRAN is set. When not in transaction mode, if a
communication error or a timeout occurs, the application will not know whether or
the message was successfully dequeued and the message may be lost.

The following is a list of valid settings in TPQUEDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message i
dequeued within the caller’s transaction. A caller in transaction mode that
this to true is still subject to the transaction timeout (and no other). If mess
dequeuing fails that was invoked with this setting, the caller’s transaction
not affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, the message
dequeued within the same transaction as the caller. The setting is ignore
the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If TPNOBLOCK is
set and a blocking condition exists such as the internal buffers into which
message is transferred are full, the call fails and TP-STATUS is set to
TPEBLOCK. If TPNOBLOCK is set and a blocking condition exists because th
target queue is opened exclusively by another application, the call fails,
TP-STATUS is set to TPEDIAGNOSTIC, and the DIAGNOSTIC field of the
TPQUEDEF record is set to QMESHARE. In the latter case, the other application
which is based on a BEA product other than the BEA Tuxedo system, ope
the queue for exclusive read and/or write using the Queuing Services AP
(QSAPI). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks un
the condition subsides or a timeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
72 BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3cbl)

ts
.

om

g

call

call

ntifier
relate
vered
he
itself if the TPQWAIT setting is specified. Either TPNOBLOCK or TPBLOCK must
be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPNOCHANGE
When this setting is used, the type of DATA-REC is not allowed to change. That
is, the type and sub-type of the dequeued message must match REC-TYPE IN
TPTYPE-REC and SUB-TYPE IN TPTYPE-REC, respectively, so long as the
receiver recognizes the incoming record type. Either TPNOCHANGE or
TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the dequeued message is allowed to differ fr
those specified in REC-TYPE IN TPTYPE-REC and SUB-TYPE IN
TPTYPE-REC, respectively, so long as the receiver recognizes the incomin
record type. Either TPNOCHANGE or TPCHANGE must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system
is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system
is not restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

If TPDEQUEUE() returns successfully, the application can retrieve additional
information about the message using the TPQUEDEF-REC structure. The information
may include the message identifier for the dequeued message; a correlation ide
that should accompany any reply or failure message so that the originator can cor
the message with the original request; the quality of service the message was deli
with; the quality of service any replies to the message should be delivered with; t
BEA Tuxedo COBOL Function Reference 73

Section 3(cbl) - COBOL Functions

which
These

n

eued,

queue
alue

).
name of a reply queue if a reply is desired; and the name of the failure queue on
the application can queue information regarding failure to dequeue the message.
are described below.

Control

Structure

TPQUEDEF-REC is used by the application program to pass and retrieve informatio
associated with dequeuing the message. The settings in TPQUEDEF-REC are used to
indicate what other elements in the structure are valid.

On input to TPDEQUEUE(), the following elements may be set in the TPQUEDEF-REC:

05 MSGID PIC X(32).
05 CORRID PIC X(32).

The following is a list of valid settings in TPQUEDEF-REC controlling input information
for TPDEQUEUE().

TPQGETNEXT

Setting this value requests that the next message on the queue be dequ
using the default queue order. One of the following must be set: TPQGETNEXT,
TPQGETBYMSGID, or TPQGETBYCORRID.

TPQGETBYMSGID

Setting this value requests that the message identified by MSGID be dequeued.
The message identifier may be acquired by a prior call to TPENQUEUE(). Note
that the message identifier changes if the message has moved from one
to another. Note also that the entire 32 bytes of the message identifier v
are significant, so the value identified by MSGID must be completely
initialized (for example, padded with spaces).

One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or
TPQGETBYCORRID.

TPQGETBYCORRID

Setting this value requests that the message identified by CORRID be
dequeued. The correlation identifier is specified by the application when
enqueuing the message with TPENQUEUE(). Note that the entire 32 bytes of
the correlation identifier value are significant, so the value identified by
CORRID must be completely initialized (for example, padded with spaces

One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or
TPQGETBYCORRID.
74 BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3cbl)

ue is
t

ess
s is

nd

 is
e
d.

ct

e
s
letes.

 time
udes
nd
TPQWAIT
Setting this value indicates that an error should not be returned if the que
empty. Instead, the process should wait until a message is available. Se
TPQNOWAIT to not wait until a message is available. If TPQWAIT is set in
conjunction with TPQGETBYMSGID or TPQGETBYCORRID, it indicates that an
error should not be returned if no message with the specified message
identifier or correlation identifier is present in the queue. Instead, the proc
should wait until a message meeting the criteria is available. The proces
still subject to the caller’s transaction timeout, or, when not in transaction
mode, the process is still subject to the timeout specified on the TMQUEUE
process by the -t option.

If a message matching the desired criteria is not immediately available a
the configured action resources are exhausted, TPDEQUEUE fails, TP-STATUS
is set to TPEDIAGNOSTIC, and DIAGNOSTIC is set to QMESYSTEM.

Note that each TPDEQUEUE() request specifying the TPQWAIT control
parameter requires that a queue manager (TMQUEUE) action object be available
if a message satisfying the condition is not immediately available. If one
not available, the TPDEQUEUE() request fails. The number of available queu
manager actions are specified when a queue space is created or modifie
When a waiting dequeue request completes, the associated action obje
associated is made available for another request.

TPQPEEK
If TPQPEEK is set, the specified message is read but not removed from th
queue. The TPNOTRAN flag must be set. It is not possible to read message
enqueued or dequeued within a transaction before the transaction comp

When a thread is non-destructively dequeuing a message using TPQPEEK, the
message may not be seen by other non-blocking dequeuers for the brief
the system is processing the non-destructive dequeue request. This incl
dequeuers using specific selection criteria (such as message identifier a
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

On output from TPDEQUEUE(), the following elements may be set in TPQUEDEF-REC:

05 PRIORITY PIC S9(9) COMP-5.
05 MSGID PIC X(32).
05 CORRID PIC X(32).
05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.
05 REPLYQUEUE PIC X(15).
BEA Tuxedo COBOL Function Reference 75

Section 3(cbl) - COBOL Functions

n

 value

or the

 the

e

05 FAILUREQUEUE PIC X(15).
05 DIAGNOSTIC PIC S9(9) COMP-5.
05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5
05 APPL-RETURN-CODE PIC S9(9) COMP-5.
05 APPKEY PIC S9(9) COMP-5.

The following is a list of valid settings in TPQUEDEF-REC controlling output
information from TPDEQUEUE(). For any of these settings, if the setting is true whe
TPDEQUEUE() is called, the associated element in the record is populated with the
value provided when the message was queued, and the setting remains true. If the
is not available (that is, no value was provided when the message was queued)
setting is not true when TPDEQUEUE() is called, TPDEQUEUE() completes with the
setting not true.

TPQPRIORITY
If this value is set, the call to TPDEQUEUE() is successful, and the message
was queued with an explicit priority, then the priority is stored in PRIORITY.
The priority is in the range 1 to 100, inclusive, and the higher the number,
higher the priority (that is, a message with a higher number is dequeued
before a message with a lower number). If TPQNOPRIORITY is set, the priority
is not available.

Note that if no priority was explicitly specified when the message was
queued, the priority for the message is 50.

TPQMSGID

If this value is set and the call to TPDEQUEUE() is successful, the message
identifier is stored in MSGID. The entire 32 bytes of the message identifier
value are significant. If TPQNOMSGID is set, the message identifier is not
available.

TPQCORRID

If this value is set, the call to TPDEQUEUE() is successful, and the message
was queued with a correlation identifier, then the correlation identifier is
stored in CORRID. The entire 32 bytes of the correlation identifier value ar
significant. Any BEA Tuxedo /Q provided reply to a message has the
correlation identifier of the original message. If TPQNOCORRID is set, the
correlation identifier is not available.

TPQDELIVERYQOS

If this value is set, the call to TPDEQUEUE() is successful, and the message
was queued with a delivery quality of service, then the flag—
TPQQOSDELIVERYDEFAULTPERSIST, TPQQOSDELIVERYPERSISTENT, or
TPQQOSDELIVERYNONPERSISTENT—specified by
76 BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3cbl)

e
tates

if the
at

eued,

ed in
eue

tored
ue
TPQUEQOS-DELIVERY-FLAG indicates the delivery quality of service. If
TPQNODELIVERYQOS is set, the delivery quality of service is not available.

Note that if no delivery quality of service was explicitly specified when th
message was queued, the default delivery policy of the target queue dic
the delivery quality of service for the message.

TPQREPLYQOS

If this value is set, the call to TPDEQUEUE() is successful, and the message
was queued with a reply quality of service, then the flag—
TPQQOSREPLYDEFAULTPERSIST, TPQQOSREPLYPERSISTENT, or
TPQQOSREPLYNONPERSISTENT—specified by TPQUEQOS-REPLY-FLAG
indicates the reply quality of service. If TPQNOREPLYQOS is set, the reply
quality of service is not available.

Note that if no reply quality of service was explicitly specified when the
message was queued, the default delivery policy of the REPLYQUEUE queue
dictates the delivery quality of service for any reply. The default delivery
policy is determined when the reply to a message is enqueued. That is,
default delivery policy of the reply queue is modified between the time th
the original message is enqueued and the reply to the message is enqu
the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this value is set, the call to TPDEQUEUE() is successful, and the message
was queued with a reply queue, then the name of the reply queue is stor
REPLYQUEUE. Any reply to the message should go to the named reply qu
within the same queue space as the request message. If TPQNOREPLYQ is set,
the reply queue is not available.

TPQFAILUREQ
If this value is set, the call to TPDEQUEUE() is successful, and the message
was queued with a failure queue, then the name of the failure queue is s
in FAILUREQUEUE. Any failure message should go to the named failure que
within the same queue space as the request message. If TPQNOFAILUREQ is
set, the failure queue is not available.

The remaining settings in TPQUEDEF-REC are set to the following values when
TPDEQUEUE() is called: TPQNOTOP, TPQNOBEFOREMSGID, TPQNOTIME_ABS,
TPQNOTIME_REL, TPQNOEXPTIME_ABS, TPQNOEXPTIME_REL, and
TPQNOEXPTIME_NONE.
BEA Tuxedo COBOL Function Reference 77

Section 3(cbl) - COBOL Functions

TT).

n

 this
ains

out

If the call to TPDEQUEUE() fails and TP-STATUS is set to TPEDIAGNOSTIC, a value
indicating the reason for failure is returned in DIAGNOSTIC. The possible values are
defined below in the DIAGNOSTICS section.

Additionally on output, if the call to TPDEQUEUE() is successful, APPKEY is set to the
application authentication key, CLIENTID is set to the identifier for the client
originating the request, and APPL-RETURN-CODE is set to the user-return code value
that was set when the message was enqueued.

Return Values Upon successful completion, TPDEQUEUE() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPDEQUEUE() fails and sets TP-STATUS to the
following values (unless otherwise noted, failure does not affect the caller’s
transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, QSPACE-NAME is SPACES or
settings in TPQUEDEF-REC are invalid).

[TPENOENT]
Cannot access the QSPACE-NAME because it is not available (that is, the
associated TMQUEUE(5) server is not available), or cannot start a global
transaction due to the lack of entries in the Global Transaction Table (G

[TPEOTYPE]
Either the REC-TYPE and SUB-TYPE of the dequeued message are not know
to the caller; or, TPNOCHANGE was set and the REC-TYPE and SUB-TYPE do not
match the type and sub-type of the dequeued message. Neither DATA-REC nor
TPTYPE-REC are changed. When the call is made in transaction mode and
error occurs, the transaction is marked abort-only, and the message rem
on the queue.

[TPTRUNCATE]
The size of the incoming message is larger than the size specified in LEN.
Only LEN amount of data was moved to DATA-REC, the remaining data is
discarded.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction time
occurred and the transaction is marked abort-only; otherwise, a blocking
timeout occurred and both TPBLOCK and TPTIME were specified. In either
case, neither DATA-REC nor TPTYPE-REC are changed. If a transaction
78 BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3cbl)

he

 is

.

ilure

.

age.
timeout occurred, any attempts to call TPDEQUEUE() or TPENQUEUE() will
fail with TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPBLOCK was set.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was set.

[TPEPROTO]
TPDEQUEUE() was called improperly. There is no effect on the queue or t
transaction.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue

[TPEDIAGNOSTIC]
Dequeuing a message from the specified queue failed. The reason for fa
can be determined by the diagnostic value returned via TPQUEDEF-REC.

Diagnostics The following diagnostic values are returned during the dequeuing of a message

[QMEINVAL]
An invalid setting was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with TPNOTRAN set and an
error occurred trying to start a transaction in which to dequeue the mess
This diagnostic is not returned by a queue manager from BEA Tuxedo
Release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified for dequeuing.
BEA Tuxedo COBOL Function Reference 79

Section 3(cbl) - COBOL Functions

 is

the

e
 the
 the

er,

e 7.1

e is
ed
eue

.

[QMESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction,
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO]
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid, deleted, or reserved queue name was specified.

[QMENOMSG]
No message was available for dequeuing. Note that it is possible that th
message exists on the queue and another application process has read
message from the queue. In this case, the message may be put back on
queue if that other process rolls back the transaction.

[QMEINUSE]
When dequeuing a message by message identifier or correlation identifi
the specified message is in use by another transaction. Other wise all
messages currently on the queue are in use by other transactions. This
diagnostic is not returned by a queue manager from BEA Tuxedo Releas
or later.

[QMESHARE]
When dequeuing a message from a specified queue, the specified queu
opened exclusively by another application. The other application is one bas
on a BEA product other than the BEA Tuxedo system that opened the qu
for exclusive read and/or write using the Queuing Services API (QSAPI)

See Also qmadmin(1) , TPENQUEUE(3cbl) , TMQUEUE(5)
80 BEA Tuxedo COBOL Function Reference

TPDISCON(3cbl)

ion is

t.
ction
Also,
TPDISCON(3cbl)

Name TPDISCON() - take down a conversational connection

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

Description TPDISCON() immediately tears down the connection specified by COMM-HANDLE in
TPSVCDEF-REC, the communications handle, and generates a TPEV-DISCONIMM event
on the other end of the connection.

TPDISCON() can only be called by the initiator of the conversation. TPDISCON() can
not be called within a conversational service on the communications handle with
which it was invoked. Rather, a conversational service must use TPRETURN() to
signify that it has completed its part of the conversation. Similarly, even though a
program communicating with a conversational service can issue TPDISCON() , the
preferred way is to let the service tear down the connection in TPRETURN(); doing so
ensures correct results. If the initiator of the connection is a server, then TPRETURN()
can also be used to cause an orderly disconnection. If the initiator of the connect
in a transaction, then TPCOMMIT() or TPABORT() can be used to cause an orderly
disconnection.

TPDISCON() causes the connection to be torn down immediately (that is, abortive
rather than orderly). Any data that has not yet reached its destination may be los
TPDISCON() can be issued even when the program on the other end of the conne
is participating in the caller’s transaction. In this case, the transaction is aborted.
the caller does not need to have control of the connection when TPDISCON() is called.

Return Values Upon successful completion, TPDISCON() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPDISCON() fails and sets TP-STATUS to:

[TPEBADDESC]
COMM-HANDLE is invalid or is the communications handle with which a
conversational service was invoked.
BEA Tuxedo COBOL Function Reference 81

Section 3(cbl) - COBOL Functions

 is

 no
[TPETIME]
A timeout occurred. The communications handle is no longer valid.

[TPEPROTO]
TPDISCON() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file. The communications handle is no longer valid.

[TPEOS]
An operating system error has occurred. The communications handle is
longer valid.

See Also TPABORT(3cbl) , TPCOMMIT(3cbl) , TPCONNECT(3cbl) , TPRECV(3cbl) ,
TPRETURN(3cbl) , TPSEND(3cbl)
82 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

e
name.
is

 reliable
es
me but

TPENQUEUE(3cbl)

Name TPENQUEUE() - routine to enqueue a message

Synopsis 01 TPQUEDEF-REC.
 COPY TPQUEDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPENQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC
TPSTATUS-REC.

Description TPENQUEUE() stores a message on the queue named by QNAME in the QSPACE-NAME
queue space. A queue space is a collection of queues, one of which must be QNAME.

When the message is intended for a BEA Tuxedo system server, the QNAME matches
the name of a service provided by the server. The system provided server,
TMQFORWARD(5), provides a default mechanism for dequeuing messages from th
queue and forwarding them to servers that provide a service matching the queue
If the originator expects a reply, then the reply to the forwarded service request
stored on the originator’s queue unless otherwise specified. The originator will
dequeue the reply message at a subsequent time. Queues can also be used for a
message transfer mechanism between any pair of BEA Tuxedo system process
(clients and/or servers). In this case, the queue name does not match a service na
some agreed upon name for transferring the message.

The data portion of a message is specified by DATA-REC and LEN in TPTYPE-REC
specifies how much of DATA-REC to enqueue. Note that if DATA-REC is a record of a
type that does not require a length to be specified, then LEN is ignored (and may be 0).
If REC-TYPE in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and a message
is enqueued with no data portion. The REC-TYPE and SUB-TYPE, both in TPTYPE-REC,
must match one of the REC-TYPEs and SUB-TYPEs recognized by QSPACE-NAME.

The message is queued at the priority defined for QSPACE-NAME unless overridden by
a previous call to TPSPRIO() .
BEA Tuxedo COBOL Function Reference 83

Section 3(cbl) - COBOL Functions

o be
olled
tion

he
queue

ction

 not

ation

s not
 sets
age
 is

 is
d if

 the

e

,
ned
If the caller is within a transaction and TPTRAN is set, the message is queued in
transaction mode. This has the effect that if TPENQUEUE() returns successfully and the
caller’s transaction is committed successfully, then the message is guaranteed t
available subsequent to the transaction completing. If the caller’s transaction is r
back either explicitly or as the result of a transaction timeout or some communica
error, then the message will be removed from the queue (that is, the placing of t
message on the queue is also rolled back). It is not possible to enqueue then de
the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transa
mode, or TPNOTRAN is set. Once TPENQUEUE() returns successfully, the submitted
message is guaranteed to be in the queue. When not in transaction mode, if a
communication error or a timeout occurs, the application will not know whether or
the message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the applic
via TPQUEDEF-REC as described below; the default queue ordering is set when the
queue is created.

The following is a list of valid settings in TPQUEDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message i
enqueued within the caller’s transaction. A caller in transaction mode that
this to true is still subject to the transaction timeout (and no other). If mess
enqueuing fails that was invoked with this setting, the caller’s transaction
not affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, the message
enqueued within the same transaction as the caller. The setting is ignore
the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If TPNOBLOCK is
set and a blocking condition exists such as the internal buffers into which
message is transferred are full, the call fails and TP-STATUS is set to
TPEBLOCK. If TPNOBLOCK is set and a blocking condition exists because th
target queue is opened exclusively by another application, the call fails,
TP-STATUS is set to TPEDIAGNOSTIC, and the DIAGNOSTIC field of the
TPQUEDEF record is set to QMESHARE. In the latter case, the other application
which is based on a BEA product other than the BEA Tuxedo system, ope
84 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

I

til

ts
.

call

call

ssage;

e; the
s to
ilure

d be
ueued.

n
ents in
the queue for exclusive read and/or write using the Queuing Services AP
(QSAPI). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks un
the condition subsides or a timeout occurs (either transaction or blocking
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system
is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system
is not restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

Additional information about queuing the message can be specified via
TPQUEDEF-REC. This information includes values to override the default queue
ordering placing the message at the top of the queue or before an enqueued me
an absolute or relative time after which a queued message is made available; an
absolute or relative time when a message expires and is removed from the queu
quality of service for delivering the message; the quality of service that any replie
the message should use; a correlation identifier that aids in correlating a reply or fa
message with the queued message; the name of a queue to which a reply shoul
enqueued; and the name of a queue to which any failure message should be enq

Control

Parameter

TPQUEDEF-REC is used by the application program to pass and retrieve informatio
associated with enqueuing the message. Settings are used to indicate what elem
the record are valid.

On input to TPENQUEUE(), the following elements may be set in TPQUEDEF-REC:
BEA Tuxedo COBOL Function Reference 85

Section 3(cbl) - COBOL Functions

e
d
ng

e

t, so

d by

ed

e the

 the
05 DEQ-TIME PIC S9(9) COMP-5.
05 PRIORITY PIC S9(9) COMP-5.
05 MSGID PIC X(32).
05 CORRID PIC X(32).
05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.
05 EXP-TIME PIC S9(9) COMP-5.
05 REPLYQUEUE PIC X(15).
05 FAILUREQUEUE PIC X(15).
05 APPL-RETURN-CODE PIC S9(9) COMP-5.

The following values indicate what values are set in the TPQUEDEF-REC.

TPQTOP

Setting this value indicates that the queue ordering be overridden and th
message placed at the top of the queue. This request may not be grante
depending on whether or not the queue was configured to allow overridi
the queue ordering. Set TPQDEFAULT to use default queue ordering. TPQTOP,
TPQBEFOREMSGID, or TPQDEFAULT must be set.

TPQBEFOREMSGID

Setting this value indicates that the queue ordering be overridden and th
message placed in the queue before the message identified by MSGID. This
request may not be granted depending on whether or not the queue was
configured to allow overriding the queue ordering. Set TPQDEFAULT to use
default queue ordering. TPQTOP, TPQBEFOREMSGID, or TPQDEFAULT must be
set.

Note that the entire 32 bytes of the message identifier value are significan
the value identified by MSGID must be completely initialized (for example,
padded with spaces).

TPQTIME-ABS
If this value is set, the message is made available after the time specifie
DEQ-TIME. DEQ-TIME is an absolute time value as generated by time (2) or
mktime (3C) (the number of seconds since 00:00:00 Universal Coordinat
Time—UTC, January 1, 1970). Set TPQNOTIME if neither an absolute or
relative time value is set. TPQTIME-ABS, TPQTIME-REL, or TPQNOTIME must
be set. The absolute time is determined by the clock on the machine wher
queue manager process resides.

TPQTIME-REL
If this value is set, the message is made available after a time relative to
completion of the enqueuing operation. DEQ-TIME specifies the number of
86 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

ssage

d is
e
er
s not

ation

nt,
,

eue

 the

inal
seconds to delay after the enqueuing completes before the submitted me
should be available. Set TPQNOTIME if neither an absolute or relative time
value is set. TPQTIME-ABS, TPQTIME-REL, or TPQNOTIME must be set.

TPQPRIORITY
If this value is set, the priority at which the message should be enqueue
stored in PRIORITY. The priority must be in the range 1 to 100, inclusive. Th
higher the number, the higher the priority (that is, a message with a high
number is dequeued before a message with a lower number). For queue
ordered by priority, this value is informational. If TPQNOPRIORITY is set, the
priority for the message is 50 by default.

TPQCORRID
If this value is set, the correlation identifier value specified in CORRID is
available when a message is dequeued with TPDEQUEUE(). This identifier
accompanies any reply or failure message that is queued so that an applic
can correlate a reply with a particular request. Set TPQNOCORRID if a
correlation identifier is not available.

Note that the entire 32 bytes of the correlation identifier value are significa
so the value specified in CORRID must be completely initialized (for example
padded with spaces).

TPQREPLYQ
If this value is set, a reply queue named in REPLYQUEUE is associated with the
queued message. Any reply to the message is queued to the named qu
within the same queue space as the request message. Set TPQNOREPLYQ if a
reply queue name is not available.

TPQFAILUREQ
If this value is set, a failure queue named in FAILUREQUEUE is associated with
the queued message. If (1) the enqueued message is processed by
TMQFORWARD(), (2) TMQFORWARD was started with the -d option, and (3) the
service fails and returns a non-null reply, a failure message consisting of
reply and its associated APPL-RETURN-CODE in the TPSTATUS record is
enqueued to the named queue within the same queue space as the orig
request message. Set TPQNOFAILUREQ if a failure queue name is not
available.

TPQDELIVERYQOS

TPQREPLYQOS
If TPQDELIVERYQOS is set, the flags specified by
TPQUEQOS-DELIVERY-FLAG control the quality of service for message
BEA Tuxedo COBOL Function Reference 87

Section 3(cbl) - COBOL Functions

t
That
e
e is

e

stent
ese
r
delivery. One of the following mutually exclusive flags must be set:
TPQQOSDELIVERYDEFAULTPERSIST, TPQQOSDELIVERYPERSISTENT, or
TPQQOSDELIVERYNONPERSISTENT. If TPQDELIVERYQOS is not set,
TPQNODELIVERYQOS must be set. When TPQNODELIVERYQOS is set, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

If TPQREPLYQOS is set, the flags specified by TPQUEQOS-REPLY-FLAG control
the quality of service for reply message delivery for any reply. One of the
following mutually exclusive flags must be set:
TPQQOSREPLYDEFAULTPERSIST, TPQQOSREPLYPERSISTENT, or
TPQQOSREPLYNONPERSISTENT. The TPQREPLYQOS flag is used when a reply
is returned from messages processed by TMQFORWARD. Applications not using
TMQFORWARD to invoke services may use the TPQREPLYQOS flag as a hint for
their own reply mechanism.

If TPQREPLYQOS is not set, TPQNOREPLYQOS must be set. When
TPQNOREPLYQOS is set, the default delivery policy of the REPLYQUEUE queue
dictates the delivery quality of service for any reply. Note that the defaul
delivery policy is determined when the reply to a message is enqueued.
is, if the default delivery policy of the reply queue is modified between th
time that the original message is enqueued and the reply to the messag
enqueued, the policy used is the one in effect when the reply is finally
enqueued.

The valid TPQUEQOS-DELIVERY-FLAG and TPQUEQOS-REPLY-FLAG flags
are:

TPQQOSDELIVERYDEFAULTPERSIST

TPQQOSREPLYDEFAULTPERSIST
These flags specify that the message is to be delivered using th
default delivery policy specified on the target or reply queue.

TPQQOSDELIVERYPERSISTENT

TPQQOSREPLYPERSISTENT
These flags specify that the message is to be delivered in a persi
manner using the disk-based delivery method. When specified, th
flags override the default delivery policy specified on the target o
reply queue.
88 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

d;

d

ued
s

s the

here

ed

e
e
age

r the
re

ueue

ued
nds.

he
e is
TPQQOSDELIVERYNONPERSISTENT

TPQQOSREPLYNONPERSISTENT
These flags specify that the message is to be delivered in a
non-persistent manner using the memory-based delivery metho
the message is queued in memory until it is dequeued. When
specified, these flags override the default delivery policy specifie
on the target or reply queue.

If the caller is transactional, non-persistent messages are enque
within the caller’s transaction, however, non-persistent message
are lost if the system is shut down or crashes or the IPC shared
memory for the queue space is removed.

TPQEXPTIME-ABS
If this value is set, the message has an absolute expiration time, which i
absolute time when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine w
the queue manager process resides.

The absolute expiration time is specified by the value stored in EXP-TIME.
EXP-TIME must be set to an absolute time generated by time (2) or
mktime (3C) (the number of seconds since 00:00:00 Universal Coordinat
Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueu
operation, the operation succeeds, but the message is not counted for th
purpose of calculating thresholds. If the expiration time is before the mess
availability time, the message is not available for dequeuing unless eithe
availability or expiration time is changed so that the availability time is befo
the expiration time. In addition, these messages are removed from the q
at expiration time even if they were never available for dequeuing. If a
message expires during a transaction, the expiration does not cause the
transaction to fail. Messages that expire while being enqueued or deque
within a transaction are removed from the queue when the transaction e
There is no acknowledgment that the message has expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQEXPTIME-REL
If this value is set, the message has a relative expiration time, which is t
number of seconds after the message arrives at the queue that the messag
BEA Tuxedo COBOL Function Reference 89

Section 3(cbl) - COBOL Functions

lue

e is
 is

ion,
they
 a
le
ueue
e has

You
tive

 the

tifier.
removed from the queue. The relative expiration time is specified by the va
stored in EXP-TIME.

If the expiration time is before the message availability time, the messag
not available for dequeuing unless either the availability or expiration time
changed so that the availability time is before the expiration time. In addit
these messages are removed from the queue at expiration time even if
were never available for dequeuing. The expiration of a message during
transaction does cause the transaction to fail. Messages that expire whi
being enqueued or dequeued within a transaction are removed from the q
when the transaction ends. There is no acknowledgment that the messag
expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQEXPTIME-NONE
Setting this value indicates that the message should not expire. This flag
overrides any default expiration policy associated with the target queue.
can remove a message by dequeuing it or by deleting it via an administra
interface. One of the following must be set: TPQEXPTIME-ABS,
TPQEXPTIME-REL, TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQNOEXPTIME
Setting this value specifies that the default expiration time associated with
target queue applies to the message. One of the following must be set:
TPQEXPTIME-ABS, TPQEXPTIME-REL, TPQEXPTIME-NONE, or
TPQNOEXPTIME.

Additionally, APPL-RETURN-CODE can be set with a user-return code. This value is
returned to the application that dequeues the message.

On output from TPENQUEUE(), the following elements may be set in TPQUEDEF-REC:

05 MSGID PIC X(32).
05 DIAGNOSTIC PIC S9(9) COMP-5.

The following is a valid setting in TPQUEDEF-REC controlling output information from
TPENQUEUE(). If this setting is true when TPENQUEUE() is called, the /Q server
TMQUEUE(5) populates the associated element in the record with a message iden
If this setting is not true when TPENQUEUE() is called, TMQUEUE() does not populate
the associated element in the record with a message identifier.
90 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

used
nt.

TT).

out

.

TPQMSGID
If this value is set and the call to TPENQUEUE() is successful, the message
identifier is stored in MSGID. The entire 32 bytes of the message identifier
value are significant, so the value stored in MSGID is completely initialized
(for example, padded with null characters). The actual padding character
for initialization varies between releases of the BEA Tuxedo /Q compone
If TPQNOMSGID is set, the message identifier is not available.

The remaining members of the control structure are not used on input to
TPENQUEUE().

If the call to TPENQUEUE() failed and TP-STATUS is set to TPEDIAGNOSTIC, a value
indicating the reason for failure is returned in DIAGNOSTIC. The possible values are
defined below in the DIAGNOSTICS section.

Return Values Upon successful completion, TPENQUEUE() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPENQUEUE() fails and sets TP-STATUS to the
following values (unless otherwise noted, failure does not affect the caller’s
transaction, if one exists).

[TPEINVAL]
Invalid arguments were given (for example, QSPACE-NAME is SPACES or
settings in TPQUEDEF-REC are invalid).

[TPENOENT]
Cannot access the QSPACE-NAME because it is not available (that is, the
associated TMQUEUE(5) server is not available), or cannot start a global
transaction due to the lack of entries in the Global Transaction Table (G

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction time
occurred and the transaction is marked abort-only; otherwise, a blocking
timeout occurred and both TPBLOCK and TPTIME were specified. If a
transaction timeout occurred, any attempts to call TPDEQUEUE() or
TPENQUEUE() will fail with TPETIME until the transaction has been aborted

[TPEBLOCK]
A blocking condition exists and TPBLOCK was set.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was set.
BEA Tuxedo COBOL Function Reference 91

Section 3(cbl) - COBOL Functions

he

 is

.

ilure

.

e

 log
[TPEPROTO]
TPENQUEUE() was called improperly. There is no effect on the queue or t
transaction.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue

[TPEDIAGNOSTIC]
Enqueuing a message from the specified queue failed. The reason for fa
can be determined by the diagnostic value returned via TPQUEDEF-REC.

Diagnostic

Values

The following diagnostic values are returned during the enqueuing of a message

[QMEINVAL]
An invalid setting was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with the TPNOTRAN setting
and an error occurred trying to start a transaction in which to enqueue th
message. This diagnostic is not returned by a queue manager from BEA
Tuxedo Release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a
file.

[QMEOS]
An operating system error has occurred.
92 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

the

ssage
was

to the
o the
tions
t the

 (6)
the

s from
ure.

e is
ed
eue
.

[QMEABORTED]
The operation was aborted. When executed within a global transaction,
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO]
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid, deleted, or reserved queue name was specified.

[QMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the me
with its required quality of service (persistent or non-persistent storage)
not enqueued. QMENOSPACE is returned when any of the following configured
resources is exceeded: (1) the amount of disk (persistent) space allotted
queue space, (2) the amount of memory (non-persistent) space allotted t
queue space, (3) the maximum number of simultaneously active transac
allowed for the queue space, (4) the maximum number of messages tha
queue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or
the maximum number of authenticated users that may concurrently use
Queuing Services component.

[QMERELEASE]
An attempt was made to enqueue a message to a queue manager that i
a version of the BEA Tuxedo system that does not support a newer feat

[QMESHARE]
When enqueuing a message from a specified queue, the specified queu
opened exclusively by another application. The other application is one bas
on a BEA product other than the BEA Tuxedo system that opened the qu
for exclusive read and/or write using the Queuing Services API (QSAPI)

See Also qmadmin(1) , TPDEQUEUE(3cbl) , TPSPRIO(3cbl) , TMQFORWARD(5), TMQUEUE(5)
BEA Tuxedo COBOL Function Reference 93

Section 3(cbl) - COBOL Functions

ice

sure

 not

rns to
 that
arded

f the
ction
TPFORWAR(3cbl)

Name TPFORWAR() - forward a BEA Tuxedo system service request to another routine

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

COPY TPFORWAR REPLACING TPSVCDEF-REC BY TPSVCDEF-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DATA-REC
 TPSTATUS-REC BY TPSTAUS-REC

Description TPFORWAR() allows a service routine to forward a client’s request to another serv
routine for further processing. Since TPFORWAR() contains an EXIT PROGRAM
statement, it should be called from within the same routine that was invoked to en
correct return of control to the BEA Tuxedo system dispatcher (that is, TPFORWAR()
should not be invoked in a sub-program of the service routine since control would
return to the BEA Tuxedo system dispatcher). TPFORWAR() cannot be called from
within a conversational service.

This routine forwards a request to the service named by SERVICE-NAME in
TPSVCDEF-REC using data contained in DATA-REC. A service routine forwarding a
request receives no reply. After the request is forwarded, the service routine retu
the BEA Tuxedo system dispatcher and the server is free to do other work. Note
because no reply is expected from a forwarded request, the request may be forw
without error to any service routine in the same executable as the service which
forwarded the request.

If the service routine is in transaction mode, this routine puts the caller’s portion o
transaction in a state where it may be completed when the originator of the transa
issues either TPCOMMIT() or TPABORT(). If a transaction was explicitly started with
TPBEGIN() while in a service routine, the transaction must be ended with either
94 BEA Tuxedo COBOL Function Reference

TPFORWAR(3cbl)

uest

ests
ill

uest

d.

 or in
 reply
r the
iled

or

ing

ta.
TPCOMMIT() or TPABORT() before calling TPFORWAR(). Thus, all services in a
“forward chain” are either all started in transaction mode or none are started in
transaction mode.

The last server in a forward chain sends a reply back to the originator of the req
using TPRETURN(). In essence, TPFORWAR() transfers to another server the
responsibility of sending a reply back to the awaiting requester.

TPFORWAR() should be called after receiving all replies expected from service requ
initiated by the service routine. Any outstanding replies which are not received w
automatically be dropped by the BEA Tuxedo system dispatcher upon receipt. In
addition, the communications handle for those replies become invalid and the req
is not forwarded to SERVICE-NAME.

DATA-REC is the record to be sent and LEN in TPTYPE-REC specifies the amount of data
in DATA-REC that should be sent. Note that if DATA-REC is a record of a type that does
not require a length to be specified, then LEN is ignored (and may be 0). If REC-TYPE
in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and a request with zero
length data is sent. If REC-TYPE is STRING and LEN is 0, then the request is sent with
no data portion.

Since the service routine writer does not regain control after calling TPFORWAR(), a
blocking send with signal restart is used (that is, TPSIGRSTRT is implied). Currently,
settings in TPSVCDEF-REC are reserved for future use and any specified are ignore

Return Values A service routine does not return any value to its caller, the BEA Tuxedo system
dispatcher. Thus, TP-STATUS is not set.

Errors If any errors occur either in the handling of the parameters passed to the routine
its processing, a “failed” message is sent back to the original requester (unless no
is to be sent). The existence of outstanding replies or subordinate connections, o
caller’s transaction being marked abort-only, qualify as failures which generate fa
messages. Failed messages are detected by the requester with the TPESVCERR() error
indication. When such an error occurs, the caller’s data is not sent. Also, this err
causes the caller’s current transaction to be marked abort-only.

If a transaction timeout occurs either while in the service routine or while forward
the request, the requester waiting for a reply with either TPCALL() , or TPGETRPLY()
will get a TPETIME error return. Also, the waiting requester will not receive any da
Service routines, however, are expected to terminate using either TPRETURN() or
TPFORWAR(). A conversational service routine must use TPRETURN(), and cannot use
TPFORWAR().
BEA Tuxedo COBOL Function Reference 95

Section 3(cbl) - COBOL Functions

ing
at the

g
If a service routine returns without using either TPRETURN() or TPFORWAR() or
TPFORWAR() is called from a conversational server, the server will print a warning
message in a log file and return a service error to the original requester. All open
connections to subordinates will be disconnected immediately, and any outstand
asynchronous replies will be marked stale. If the server was in transaction mode
time of failure, the transaction is marked abort-only. Note also that if either
TPRETURN() or TPFORWAR() are used outside of a service routine (for example, in
clients, or in TPSVRINIT() or TPSVRDONE()), then these routines simply return havin
no effect.

See Also TPCONNECT(3cbl) , TPRETURN(3cbl)
96 BEA Tuxedo COBOL Function Reference

TPGETCTXT(3cbl)

 and

ext

TPGETCTXT(3cbl)

Name TPGETCTXT() - retrieves a context identifier for the current application association

Synopsis 01 TPCONTEXTDEF-REC.
 COPY TPCONTEXTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPGETCTXT" USING TPCONTEXTDEF-REC TPSTATUS-REC.

Description TPGETCTXT() retrieves an identifier that represents the current application context
places that identifier in CONTEXT in TPCONTEXTDEF-REC. Typically, a COBOL
application

1. Calls TPINITIALIZE() with the TP-MULTI-CONTEXTS flag set.

2. Calls TPGETCTXT() and saves the TPCONTEXTDEF-REC.

3. Calls TPINITIALIZE() , again with the TP-MULTI-CONTEXTS flag.

4. Calls TPGETCTXT() again and saves the returned context.

5. Calls TPSETCTXT() to switch back to the first context.

TPGETCTXT() may be called in single-context applications as well as in multicont
applications.

Return Values Upon successful completion, TPGETCTXT sets TP-STATUS to [TPOK] and places the
program’s context identifier in CONTEXT in TPCONTEXTDEF-REC. CONTEXT is set to the
current context ID, which may be represented by either:

� An actual context ID

� TPNULLCONTEXT, indicating that this program is not currently associated with a
context

Note: TPINVALIDCONTEXT cannot be returned in COBOL programs because this
value is possible only in multithreaded programs.

Errors Upon failure, TPGETCTXT sets TP-STATUS to one of the following values.
BEA Tuxedo COBOL Function Reference 97

Section 3(cbl) - COBOL Functions

 has
[TPEINVAL]
Invalid arguments have been given.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
been written to a log file.

[TPEOS]
An operating system error has occurred.

See Also Introduction to the COBOL Application-Transaction Monitor Interface,
TPSETCTXT(3cbl)
98 BEA Tuxedo COBOL Function Reference

TPGETLEV(3cbl)

 is

urce
s

tions
on.
TPGETLEV(3cbl)

Name TPGETLEV() - check if a BEA Tuxedo system transaction is in progress

Synopsis 01 TPTRXLEV-REC.
 COPY TPTRXLEV.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC.

Description TPGETLEV() returns to the caller the current transaction level. Currently, the only
levels defined are TP-NOT-IN-TRAN and TP-IN-TRAN .

Return Values Upon successful completion, TPGETLEV() sets TP-STATUS to [TPOK] and sets values
in TPTRXLEV-REC to either a TP-NOT-IN-TRAN to indicate that no transaction is in
progress, or TP-IN-TRAN to indicate that a transaction is in progress.

Errors Under the following conditions, TPGETLEV() fails and sets TP-STATUS to:

[TPEPROTO]
TPGETLEV() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using TPBEGIN() , TPCOMMIT(), and TPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either TPCOMMIT() or TPABORT(). See buildserver(1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA Tuxedo system transacti

See Also TPABORT(3cbl) , TPBEGIN(3cbl) , TPCOMMIT(3cbl) , TPSCMT(3cbl)
BEA Tuxedo COBOL Function Reference 99

Section 3(cbl) - COBOL Functions

th

n

,

TPGETRPLY(3cbl)

Name TPGETRPLY() - get reply from asynchronous message

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
TPSTATUS-REC.

Description TPGETRPLY() returns a reply from a previously sent request. TPGETRPLY() either
returns a reply for a particular request, or it returns any reply that is available. Bo
options are described below.

DATA-REC specifies where the reply is to be read into and, on input, LEN in
TPTYPE-REC indicates the maximum number of bytes that should be moved into
DATA-REC. Also, REC-TYPE in TPTYPE-REC must be specified. Upon successful retur
from TPGETRPLY(), LEN contains the actual number of bytes moved into DATA-REC,
REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the data’s type and sub-type
respectively. If the reply is larger than DATA-REC, then DATA-REC will contain only as
many bytes as will fit in the record. The remainder of the reply is discarded and
TPGETRPLY() sets TPTRUNCATE().

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC
was not modified. It is an error for LEN to be 0 on input.

The following is a list of valid settings in TPSVCDEF-REC.

TPGETANY
This setting signifies that TPGETRPLY() should ignore the communications
handle indicated by COMM-HANDLE in TPSVCDEF-REC, return any reply
available and set COMM-HANDLE to the communications handle for the reply
100 BEA Tuxedo COBOL Function Reference

TPGETRPLY(3cbl)

,

he

ly
 still

tem
returned. If no replies exist, TPGETRPLY() can wait for one to arrive. Either
TPGETANY or TPGETHANDLE must be set.

TPGETHANDLE
This setting signifies that TPGETRPLY() should use the communications
handle identified by COMM-HANDLE and return a reply available for that
COMM-HANDLE. If no replies exist, TPGETRPLY() can wait for one to arrive.
Either TPGETANY or TPGETHANDLE must be set.

TPNOCHANGE
When this value is set, the type of DATA-REC is not allowed to change. That
is, the type and sub-type of the reply record must match REC-TYPE and
SUB-TYPE, respectively. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the reply record differs from REC-TYPE and
SUB-TYPE, respectively, so long as the receiver recognizes the incoming
record type. Either TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK
TPGETRPLY() does not wait for the reply to arrive. If the reply is available
then TPGETRPLY() gets the reply and returns. Either TPNOBLOCK or TPBLOCK
must be set.

TPBLOCK
When TPBLOCK is specified and no data is available, the caller blocks until t
reply arrives or a timeout occurs (either transaction or blocking timeout).
Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely for its rep
and wants to be immune to blocking timeouts. Transaction timeouts may
occur. Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.
BEA Tuxedo COBOL Function Reference 101

Section 3(cbl) - COBOL Functions

tem

d in

rred

ce

n

e.
ts or
TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

Except as noted below, COMM-HANDLE is no longer valid after its reply is received.

Return Values Upon successful completion, TPGETRPLY() sets TP-STATUS to [TPOK]. When
TP-STATUS is set to TPOK() or TPESVCFAIL() , APPL-RETURN-CODE in
TPSTATUS-REC contains an application defined value that was sent as part of
TPRETURN(). If the size of the incoming message was larger then the size specifie
LEN on input, TPTRUNCATE() is set and only LEN amount of data was moved to
DATA-REC, the remaining data is discarded.

Errors Under the following conditions, TPGETRPLY() fails and sets TP-STATUS as indicated
below. Note that if TPGETHANDLE is set, then COMM-HANDLE is invalidated unless
otherwise stated. If TPGETANY is set, then COMM-HANDLE identifies the
communications handle for the reply on which the failure occurred; if an error occu
before a reply could be retrieved, then COMM-HANDLE is 0. Also, the failure does not
affect the caller’s transaction, if one exists, unless otherwise stated.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set and the REC-TYPE and SUB-TYPE do not match the type
and sub-type of the reply sent by the service. Neither DATA-REC nor
TPTYPE-REC are changed. If the reply was to be received on behalf of the
caller’s current transaction, then the transaction is marked abort-only sin
the reply is discarded.

[TPEBADDESC]
COMM-HANDLE contains an invalid communications handle.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and both TPBLOCK and TPTIME were specified. In
either case, neither DATA-REC nor TPTYPE-REC are changed. If TPGETHANDLE
was set, COMM-HANDLE remains valid unless the caller is in transaction mod
If a transaction timeout occurred, then any attempts to send new reques
102 BEA Tuxedo COBOL Function Reference

TPGETRPLY(3cbl)

’s

o

r’s
ss of
fore

 is
receive outstanding replies will fail with [TPETIME] until the transaction has
been aborted.

[TPESVCFAIL]
The service routine sending the caller’s reply called TPRETURN() with
TPFAIL() . This is an application-level failure. The contents of the service
reply, if one was sent, is available in DATA-REC. APPL-RETURN-CODE
contains an application defined value that was sent as part of TPRETURN(). If
the reply was received on behalf of the caller’s transaction, then the
transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the
transaction is aborted are calls to TPACALL() with TPNOREPLY, TPNOTRAN,
and TPNOBLOCK set.

[TPESVCERR]
An error was encountered by a service routine during its completion in
TPRETURN() or TPFORWAR() (for example, bad arguments were passed). N
reply data is returned when this error occurs (that is, neither DATA-REC nor
TPTYPE-REC are changed). If the reply was received on behalf of the calle
transaction, then the transaction is marked abort-only. Note that regardle
whether the transaction has timed out, the only valid communications be
the transaction is aborted are calls to TPACALL() with TPNOREPLY,
TPNOTRAN, and TPNOBLOCK set.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. COMM-HANDLE
remains valid.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPGETRPLY() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPACALL(3cbl) , TPCANCEL(3cbl) , TPRETURN(3cbl)
BEA Tuxedo COBOL Function Reference 103

Section 3(cbl) - COBOL Functions

er.

of
TPGETUNSOL(3cbl)

Name TPGETUNSOL() - get unsolicited message

Synopsis 01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPGETUNSOL() gets unsolicited messages that were sent via TPBROADCAST() or
TPNOTIFY() . This routine may only be called from an unsolicited message handl

Upon successful return, LEN IN TPTYPE_REC contains the actual number of bytes
moved into DATA-REC. REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the
data’s type and sub-type, respectively. If the message is larger than DATA-REC, then
DATA-REC will contain only as many bytes as will fit in the record. The remainder
the message is discarded and sets TPTRUNCATE(). If LEN is 0, upon successful
completion, then the message has no data portion and DATA-REC was not modified.

It is an error for LEN to be 0 on input.

Return Values Upon successful completion, TPGETUNSOL() sets TP-STATUS to [TPOK]. If the size of
the incoming message was larger then the size specified in LEN on input,
TPTRUNCATE() is set and only LEN amount of data was moved to DATA-REC, the
remaining data is discarded.

Errors Under the following conditions, TPGETUNSOL() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPEPROTO]
TPGETUNSOL() was called improperly.
104 BEA Tuxedo COBOL Function Reference

TPGETUNSOL(3cbl)

 is

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPSETUNSOL(3cbl)
BEA Tuxedo COBOL Function Reference 105

Section 3(cbl) - COBOL Functions

nge

est

ests
TPGPRIO(3cbl)

Name TPGPRIO() - get service request priority

Synopsis 01 TPPRIDEF-REC.
 COPY TPPRIDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Description TPGPRIO() returns the priority for the last request sent or received. Priorities can ra
from 1 to 100, inclusive, with 100 being the highest priority. TPGPRIO() may be called
after TPCALL() or TPACALL() , (also TPENQUEUE() or TPDEQUEUE(), assuming the
queued management facility is installed), and the priority returned is for the requ
sent. Also, TPGPRIO() may be called within a service routine to find out at what
priority the invoked service was sent. TPGPRIO() may be called any number of times
and will return the same value until the next request is sent.

Since the conversation primitives are not associated with priorities, issuing TPSEND()
or TPRECV() has no effect on the priority returned by TPGPRIO() . Also, there is no
priority associated with a conversational service routine unless a TPCALL() or
TPACALL() is done within that service.

Return Values Upon successful completion, TPGPRIO() sets TP-STATUS to [TPOK] and returns a
request’s priority in PRIORITY in TPPRIDEF-REC.

Errors Under the following conditions, TPGPRIO() fails and sets TP-STATUS to:

[TPENOENT]
TPGPRIO() was called and no requests (via TPCALL() or TPACALL()) have
been sent, or it is called within a conversational service for which no requ
have been sent.

[TPEPROTO]
TPGPRIO() was called improperly.
106 BEA Tuxedo COBOL Function Reference

TPGPRIO(3cbl)

 is

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPACALL(3cbl) , TPCALL(3cbl) , TPDEQUEUE(3cbl) , TPENQUEUE(3cbl) ,
TPSPRIO(3cbl)
BEA Tuxedo COBOL Function Reference 107

Section 3(cbl) - COBOL Functions

 a
ust

in

g

ed

e

e
ned.
TPINITIALIZE(3cbl)

Name TPINITIALIZE() - joins a BEA Tuxedo system application

Synopsis 01 TPINFDEF-REC.
 COPY TPINFDEF.

01 USER-DATA-REC PIC X(any-length).

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPINITIALIZE" TPINFDEF-REC USER-DATA-REC TPSTATUS-REC.

Description TPINITIALIZE() allows a client to join a BEA Tuxedo system application. Before
client can use any of the BEA Tuxedo communication or transaction routines, it m
first join a BEA Tuxedo system application. TPINITIALIZE() has two modes of
operation: single-context mode and multi-context mode, which will be discussed
greater detail below. Because calling TPINITIALIE() is optional when in
single-context mode, a single-context client may also join an application by callin
many ATMI routines (for example, TPACALL() or TPCALL()) which transparently call
TPINITIALIZE() with default values for the members of TPINFDEF-REC. A client
may want to call TPINITIALIZE() directly so that it can set the parameters describ
below. In addition, TPINITIALIZE() must be used when multicontext mode is
required or when application authentication is required (see the description of th
SECURITY keyword in UBBCONFIG(5)). After TPINITIALIZE() successfully returns,
the client can initiate service requests and define transactions.

In single-context mode, if TPINITIALIZE() is called more than once (that is, after th
client has already joined the application), no action is taken and success is retur

Description of the TPINFDEF-REC Record

The TPINFDEF-REC record includes the following members.

05 USRNAME PIC X(30).
05 CLTNAME PIC X(30).
05 PASSWD PIC X(30).
05 GRPNAME PIC X(30).
05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
 88 TPU-SIG VALUE 1.
 88 TPU-DIP VALUE 2.
108 BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

s

ive

oup
ger

ext
 one

e
ned.

do
ns,
t’s
uxedo
t be
 88 TPU-IGN VALUE 3.
05 ACCESS-FLAG PIC S9(9) COMP-5.
 88 TPSA-FASTPATH VALUE 1.
 88 TPSA-PROTECTED VALUE 2.
05 CONTEXTS-FLAG PIC S9(9) COMP-5.
 88 TP-SINGLE-CONTEXT VALUE 0.
 88 TP-MULTI-CONTEXTS VALUE 1.
05 DATALEN PIC S9(9) COMP-5.

USRNAME is a name representing the caller. CLTNAME is a client name whose semantic
are application defined. The value sysclient is reserved by the system for the
CLTNAME field. The USRNAME and CLTNAME fields are associated with the client at
TPINITIALIZE() time and are used for both broadcast notification and administrat
statistics retrieval. PASSWD is an application password in unencrypted format that is
used for validation against the application password. The PASSWD is significant up to
30 characters. GRPNAME is used to associate the client with a resource manager gr
name. If GRPNAME is SPACES, then the client is not associated with a resource mana
and is in the default client group.

Single-context Mode versus Multicontext Mode

TPINITIALIZE() has two modes of operation: single-context mode and multi-cont
mode. In single-context mode, a process may join at most one application at any
time. Single-context mode is specified by calling TPINITIALIZE() with the
TP-SINGLE-CONTEXT setting of CONTEXTS-FLAG or by calling another function that
invokes TPINITIALIZE() implicitly.

In single-context mode, if TPINITIALIZE() is called more than once (that is, after th
client has already joined the application), no action is taken and success is retur

Multi-context mode is entered by calling TPINITIALIZE() with the
TP-MULTI-CONTEXTS setting of CONTEXTS-FLAG. In multi-context mode, each call to
TPINITIALIZE() results in the creation of a separate application association.

An application association is a context that associates a process and a BEA Tuxe
application. A client may have associations with multiple BEA Tuxedo applicatio
and may also have multiple associations with the same application. All of a clien
associations must be made to applications running the same release of the BEA T
system, and either all associations must be native clients or all associations mus
workstation clients.
BEA Tuxedo COBOL Function Reference 109

Section 3(cbl) - COBOL Functions

, the

t

n

tting

ation
For native clients, the value of the TUXCONFIG environment variable is used to identify
the application to which the new association will be made. For workstation clients
value of the WSNADDR or WSENVFILE environment variable is used to identify the
application to which the new association will be made. The context for the curren
COBOL process is set to the new association.

In multi-context mode the application can get a handle for the current context, by
calling TPGETCTXT(), and pass that handle as a parameter to TPSETCTXT() , thus
setting the context in which a particular COBOL process will operate.

Mixing single-context mode and multi-context mode is not allowed. Once an
application has chosen one of these modes, calling TPINITIALIZE() in the other
mode is not allowed unless TPTERM() is first called for all application associations.

TPINFDEF-REC Record Descriptions

The settings of TPINFDEF-REC are used to indicate both the client specific notificatio
mechanism and the mode of system access. These settings may override the
application default; however, in the event that they cannot, TPINITIALIZE() will
print a warning in a log file, ignore the setting and return the application default se
in TPINFDEF-REC upon return from TPINITIALIZE() . For client notification, the
possible settings are as follows:

TPU-SIG
Select unsolicited notification by signals. This setting is not allowed in
conjunction with the TP-MULTI-CONTEXTS setting of CONTEXTS-FLAG.

TPU-DIP
Select unsolicited notification by dip-in.

TPU-IGN
Ignore unsolicited notification.

Only one of the above can be used at a time. If the client does not select a notific
method, then the application default method will be set upon return from
TPINITIALIZE() .

For setting the mode of system access, the possible settings are as follows:

TPSA-FASTPATH
Set system access to fastpath.

TPSA-PROTECTED
Set system access to protected.
110 BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

ation
 set

ce.

n to

ilure

 is
Only one of the above can be used at a time. If the client does not select a notific
method or a system access mode, then the application default method(s) will be
upon return from TPINITIALIZE() . See UBBCONFIG(5) for details on both client
notification methods and system access modes.

DATALEN is the length of the application specific data that will be sent to the servi
A SPACES value for USRNAME and CLTNAME is allowed for applications not making use
of the application authentication feature of the BEA Tuxedo system. Currently,
GRPNAME must be SPACES. Clients using this option will get defined in the BEA
Tuxedo system with the following: default values for USRNAME, CLTNAME, and
GRPNAME; default settings; and no application data.

Return Values Upon successful completion, TPINITIALIZE() sets TP-STATUS to [TPOK]. Upon
failure, TPINITIALIZE() leaves the calling process in its original context, returns -1 ,
and sets TP-STATUS to indicate the error condition.

Errors Upon failure, TPINITIALIZE() sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were specified.

[TPENOENT]
The client cannot join the application because of space limitations.

[TPEPERM]
The client cannot join the application because it does not have permissio
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, fa
to pass application specific authentication or use of restricted names.

[TPEPROTO]
TPINITIALIZE() was called improperly. For example: (a) the caller is a
server; (b) the TP-MULTI-CONTEXTS setting was specified in single-context
mode; or (c) the TP-MULTI-CONTEXTS setting was not specified in
multi-context mode.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.
BEA Tuxedo COBOL Function Reference 111

Section 3(cbl) - COBOL Functions

 on

e

et in

 this

olve

cal
Portability The interfaces described in TPINITIALIZE() are supported on UNIX System and
MS-DOS operating systems. However, signal-based notification is not supported
MS-DOS. If it is selected at TPINITIALIZE() time, then a USERLOG() message is
generated and the method is automatically set to dip-in.

Environment

Variables

TUXCONFIG
is used within TPINITIALIZE() when invoked by a non-workstation native
client. It indicates the application to which the client should connect. Not
that this environment variable is referenced only when TPINITIALIZE() is
called. Subsequent calls make use of the application context.

WSENVFILE
is used within TPINITIALIZE() when invoked by a workstation client. It
indicates a file containing environment variable settings that should be s
the caller’s environment. See compilation(5) for more details on
environment variable settings necessary for workstation clients. Note that
file is processed only when TPINITIALIZE() is called and not before.

WSNADDR
is used within TPINITIALIZE() when invoked by a workstation client. It
indicates the network address(es) of the workstation listener that is to be
contacted for access to the application. This variable is required for
Workstation clients and is ignored for native clients.

TCP/IP addresses may be specified in the following forms:

"//host.name:port_number"
"//#.#.#.#:port_number"

In the first format, the domain finds an address for hostname using the local
name resolution facilities (usually DNS). hostname must be the local
machine, and the local name resolution facilities must unambiguously res
hostname to the address of the local machine.

In the second example, the "#.#.#.# " is in dotted-decimal format. In dotted-
decimal format, each # should be a number from 0 to 255. This
dotted-decimal number represents the IP address of the local machine.

In both of the above formats, port_number is the TCP port number at which
the domain process will listen for incoming requests. port_number can
either be a number between 0 and 65535 or a name. If port_number is a
name, then it must be found in the network services database on your lo
machine.
112 BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

d by
een
l
 or

ld be

ses.

ing:

 it

s

eed

tener
. Use

ting
ith
The address can also be specified in hexadecimal format when precede
the characters “0x”. Each character after the initial “0x” is a number betw
0 and 9 or a letter between A and F (case insensitive). The hexadecima
format is useful for arbitrary binary network addresses such as IPX/SPX
TCP/IP.

The address can also be specified as an arbitrary string. The value shou
the same as that specified for the NLSADDR parameter in the NETWORKS section
of the configuration file.

More than one address can be specified if desired by specifying a
comma-separated list of pathnames for WSNADDR. Addresses are tried in order
until a connection is established. Any member of an address list can be
specified as a parenthesized grouping of pipe-separated network addres
For example,

 WSNADDR="(//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050"

For users running under Windows, the address string looks like the follow

set WSNADDR=(//m1.acme.com:3050^|//m2.acme.com:3050),//m3.acme.com:3050

Because the pipe symbol (|) is considered a special character in Windows,
must be preceded by a carat (^)—an escape character in the Windows
environment—when it is specified on the command line. However, if
WSNADDR is defined in an envfile, the BEA Tuxedo system gets the value
defined by WSNADDR through the tuxgetenv(3c) function. In this context,
the pipe symbol (|) is not considered a special character, so you do not n
to escape it with a carat (^).

The BEA Tuxedo system randomly selects one of the parenthesized
addresses. This strategy distributes the load randomly across a set of lis
processes. Addresses are tried in order until a connection is established
the value specified in the application configuration file for the workstation
listener to be called. If the value begins with the characters “0x”, it is
interpreted as a string of hex-digits, otherwise it is interpreted as ASCII
characters.

WSFADDR

Used within TPINITIALIZE() when invoked by a workstation client. It
specifies the network address used by the workstation client when connec
to the workstation listener or workstation handler. This variable, along w
the WSFRANGE variable, determines the range of TCP/IP ports to which a
workstation client will attempt to bind before making an outbound
BEA Tuxedo COBOL Function Reference 113

Section 3(cbl) - COBOL Functions

f the
/IP

will

.

le is
ain
; for

le is

at
 to
he

r
connection. This address must be a TCP/IP address. The port portion o
TCP/IP address represents the base address from which a range of TCP
ports can be bound by the workstation client. The WSFRANGE variable
specifies the size of the range. For example, if this address is
//mymachine.bea.com:30000 and WSFRANGE is 200, then all native
processes attempting to make outbound connections from this LMID will bind
a port on mymachine.bea.com between 30000 and 30200. If not set, this
variable defaults to the empty string, which implies the operating system
chooses a local port randomly.

WSFRANGE

Used within TPINITIALIZE() when invoked by a workstation client. It
specifies the range of TCP/IP ports to which a workstation client process
attempt to bind before making an outbound connection. The WSFADDR
parameter specifies the base address of the range. For example, if the
WSFADDR parameter is set to //mymachine.bea.com:30000 and WSFRANGE
is set to 200, then all native processes attempting to make outbound
connections from this LMID will bind a port on mymachine.bea.com
between 30000 and 30200. The valid range is 1-65535. The default is 1

WSDEVICE
is used within TPINITIALIZE() when invoked by a workstation client. It
indicates the device name to be used to access the network. This variab
used by workstation clients and ignored for native clients. Note that cert
supported transport level network interfaces do not require a device name
example, sockets and NetBIOS. Workstation clients supported by such
interfaces need not specify WSDEVICE.

WSTYPE
is used within TPINITIALIZE() when invoked by a workstation client to
negotiate encode/decode responsibilities with the native site. This variab
optional for workstation clients and ignored for native clients.

WSRPLYMAX
is used by TPINITIALIZE() to set the maximum amount of core memory th
should be used for buffering application replies before they are dumped
file. The default value for this parameter varies with each instantiation. T
instantiation specific programmer’s guide should be consulted for furthe
information.
114 BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

 to

ing
8”

hat
 due

 a log
lient

ation
.

e

il,
TMMINENCRYPTBITS
is used to establish the minimum level of encryption required to connect
the BEA Tuxedo system. “0” means no encryption, while “56” and “128”
specify the encryption key length (in bits). If this minimum level of
encryption cannot be met, link establishment will fail. The default is “0”

TMMAXENCRYPTBITS
is used to negotiate the level of encryption up to this level when connect
to the BEA Tuxedo system. “0” means no encryption, while “56” and “12
specify the encryption length (in bits). The default value is “128.”

Warning Signal-based notification is not allowed in multicontext mode. In addition, clients t
select signal-based notification may not be able to receive signals from the system
to signal restrictions. When clients cannot receive signals, the system generates
message that it is switching notification for the selected client to dip-in and the c
is notified then and thereafter via dip-in notification. See the description of the NOTIFY
parameter in the RESOURCES section of UBBCONFIG(5) for a detailed discussion of
notification methods.

Because signaling of clients is always done by the system, the behavior of notific
is always consistent, regardless of where the originating notification call is made
Therefore to use signal-based notification:

� A native client must be running as an application administrator

� A Workstation client is not required to be running as the application
administrator

The ID for the application administrator is identified in the configuration file for th
application.

If signal-based notification is selected for a client, then certain ATMI calls may fa
returning TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not
specified.

See Also TPGETCTXT(3cbl) , TPSETCTXT(3cbl) , TPTERM(3cbl)
BEA Tuxedo COBOL Function Reference 115

Section 3(cbl) - COBOL Functions

iated
om
TPKEYCLOSE(3cbl)

Name TPKEYCLOSE() - close a previously opened key handle

Synopsis 01 TPKEYDEF-REC.
 COPY TPKEYDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPKEYCLOSE" USING TPKEYDEF-REC TPSTATUS-REC.

Description TPKEYCLOSE() releases a previously opened key handle and all resources assoc
with it. Any sensitive information, such as the principal’s private key, is erased fr
memory.

The calling process must supply KEY-HANDLE in TPKEYDEF-REC. KEY-HANDLE is a key
identifier returned by a previous call to TPKEYOPEN().

Return Values Upon successful completion, TPKEYCLOSE() sets TP-STATUS in TPSTATUS-REC to
[TPOK].

Errors Upon failure, TPKEYCLOSE() sets TP-STATUS in TPSTATUS-REC to one of the
following values.

[TPEINVAL]
Invalid arguments were given. For example, KEY-HANDLE in TPKEYDEF-REC
is not set correctly.

 [TPESYSTEM]
An error occurred. Consult the system error log file for details.

See Also TPKEYGETINFO(3cbl) , TPKEYOPEN(3cbl) , TPKEYSETINFO(3cbl)
116 BEA Tuxedo COBOL Function Reference

TPKEYGETINFO(3cbl)

s a

core

e

TPKEYGETINFO(3cbl)

Name TPKEYGETINFO() - get information associated with a key handle

Synopsis 01 TPKEYDEF-REC.
 COPY TPKEYDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPKEYGETINFO" USING TPKEYDEF-REC TPSTATUS-REC.

Description TPKEYGETINFO() reports information about a key handle. A key handle represent
specific principal’s key and the information associated with it.

The calling process must supply KEY-HANDLE in TPKEYDEF-REC, which is a key
identifier returned by a previous call to TPKEYOPEN().

The attribute for which information is desired is identified by ATTRIBUTE-NAME in
TPKEYDEF-REC. The attribute name may be padded with SPACES or LOW-VALUES.
Some attributes are specific to a cryptographic service provider, but the following
set of attributes should be supported by all providers.

Attribute Value

PRINCIPAL The name identifying the principal associated with the key (key
handle), represented as a null-terminated character string.

PKENCRYPT_ALG An ASN.1 Distinguished Encoding Rules (DER) object identifier of
the public key algorithm used by the key for public key encryption.

The object identifier for RSA is identified in the following table,
“Mapping of Algorithm Object Identifiers to Algorithms.”

PKENCRYPT_BITS The key length of the public key algorithm (RSA modulus size). Th
value must be within the range of 512 to 2048 bits, inclusive.

SIGNATURE_ALG An ASN.1 DER object identifier of the digital signature algorithm
used by the key for digital signature.

The object identifiers for RSA and DSA are identified in the following
table, “Mapping of Algorithm Object Identifiers to Algorithms.”
BEA Tuxedo COBOL Function Reference 117

Section 3(cbl) - COBOL Functions

).

e.
The ASN.1 DER algorithm object identifiers supported by the default public key
implementation are given in the following table.

SIGNATURE_BITS The key length of the digital signature algorithm (RSA modulus size
The value must be within the range of 512 to 2048 bits, inclusive.

ENCRYPT_ALG An ASN.1 DER object identifier of the symmetric key algorithm used
by the key for bulk data encryption.

The object identifiers for DES, 3DES, and RC2 are identified in the
following table, “Mapping of Algorithm Object Identifiers to
Algorithms.”

ENCRYPT_BITS The key length of the symmetric key algorithm. The value must be
within the range of 40 to 128 bits, inclusive.

When an algorithm with a fixed key length is set in ENCRYPT_ALG,
the ENCRYPT_BITS value is automatically set to the fixed key length.
For example, if ENCRYPT_ALG is set to DES, the ENCRYPT_BITS
value is automatically set to 56.

DIGEST_ALG An ASN.1 DER object identifier of the message digest algorithm used
by the key for digital signature.

The object identifiers for MD5 and SHA-1 are identified in the
following table, “Mapping of Algorithm Object Identifiers to
Algorithms.”

PROVIDER The name of the cryptographic service provider.

VERSION The version number of the cryptographic service provider’s softwar

Mapping of Algorithm Object Identifiers to Algorithms

ASN.1 DER Algorithm Object Identifier Algorithm

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05 } MD5

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a } SHA1

{ 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01 } RSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x0c } DSA

Attribute Value
118 BEA Tuxedo COBOL Function Reference

TPKEYGETINFO(3cbl)

ory

ified

to be
Return Values Upon successful completion, TPKEYGETINFO() sets TP-STATUS in TPSTATUS-REC to
[TPOK].

The information associated with the specified attribute will be stored in the mem
location indicated by ATTRIBUTE-VALUE in TPKEYDEF-REC, padded at the end with
SPACES. The maximum amount of data that can be stored at this location is spec
by the caller in ATTRIBUTE-LEN in TPKEYDEF-REC.

After TPKEYGETINFO() completes, ATTRIBUTE-LEN is set to the size of the data
actually returned (not including padding values). If the number of bytes that need
returned exceeds ATTRIBUTE-LEN, TPKEYGETINFO() fails (with the TPELIMIT error
code) and sets ATTRIBUTE-LEN to the required amount of space.

Errors Upon failure, TPKEYGETINFO() sets TP-STATUS in TPSTATUS-REC to one of the
following values.

[TPEINVAL]
Invalid arguments were given. For example, KEY-HANDLE is not a valid key.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

[TPELIMIT]
Insufficient space was provided to hold the requested attribute value.

[TPENOENT]
The requested attribute is not associated with this key.

See Also TPKEYCLOSE(3cbl) , TPKEYOPEN(3cbl) , TPKEYSETINFO(3cbl)

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x07 } DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07 } 3DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02 } RC2

Mapping of Algorithm Object Identifiers to Algorithms

ASN.1 DER Algorithm Object Identifier Algorithm
BEA Tuxedo COBOL Function Reference 119

Section 3(cbl) - COBOL Functions

tent
 be
 to

he

e

TPKEYOPEN(3cbl)

Name TPKEYOPEN() - open a key handle for digital signature generation, message
encryption, or message decryption

Synopsis 01 TPKEYDEF-REC.
 COPY TPKEYDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPKEYOPEN" USING TPKEYDEF-REC TPSTATUS-REC.

Description TPKEYOPEN() makes a key handle available to the calling process. A key handle
represents a specific principal’s key and the information associated with it.

A key may be used for one or more of the following purposes:

� Automatically generating a digital signature, which protects a message’s con
and proves that a specific principal originated the message. (A principal may
a person or a process.) This type of key is a private key and is available only
the key’s owner.

Calling TPKEYOPEN() with the principal’s name and the TPKEY-SIGNATURE and
TPKEY-AUTOSIGN settings returns a handle to the principal’s public key and
enables signature generation in AUTOSIGN mode. The public key software
generates and attaches the digital signature to the message just before the
message is sent.

� Verifying a digital signature, which proves that a message’s content remains
unaltered and that a specific principal originated the message.

Signature verification does not require a call to TPKEYOPEN(); the verifying
process uses the public key specified in the digital certificate accompanying t
digitally signed message to verify the signature.

� Automatically encrypting a message destined for a specific principal. This typ
of key is available to any process with access to the principal's public key and
digital certificate.

Calling TPKEYOPEN() with the principal’s name and the TPKEY-ENCRYPT and
TPKEY-AUTOENCRYPT settings returns a handle to the principal’s public key (via
the principal’s digital certificate) and enables encryption in AUTOENCRYPT mode.
120 BEA Tuxedo COBOL Function Reference

TPKEYOPEN(3cbl)

elope

rrent

a

r

set
e,
The public key software encrypts the message and attaches an encryption
envelope to the message just before the message is sent; the encryption env
enables the receiving process to decrypt the message.

� Decrypting a message intended for a specific principal. This type of key is a
private key and is available only to the key’s owner.

Calling TPKEYOPEN() with the principal’s name and the TPKEY-DECRYPT setting
returns a handle to the principal’s private key and digital certificate.

The key handle returned by TPKEYOPEN() is stored in KEY-HANDLE in TPKEYDEF-REC.

The calling process must supply PRINCIPAL-NAME in TPKEYDEF-REC, which specifies
the key owner’s identity. This name may be padded at the end with SPACES or
LOW-VALUES. If PRINCIPAL-NAME is all SPACES or LOW-VALUES, a default identity is
assumed. The default identity may be based on the current login session, the cu
operating system account, or another attribute such as a local hardware device.

The calling process may have to supply LOCATION in TPKEYDEF-REC, which specifies
the location of a key owner’s identity. If the underlying provider does not require
location field, this field may be populated with SPACES or LOW-VALUES.

To authenticate the identity of PRINCIPAL-NAME, proof material such as a password o
pass phrase may be required. If required, the proof material should be stored in
IDENTITY-PROOF in TPKEYDEF-REC. Otherwise, this field may be populated with
SPACES or LOW-VALUES.

The length of the proof material (in bytes) is specified by PROOF-LEN in
TPKEYDEF-REC. If PROOF-LEN is 0,IDENTITY-PROOF is assumed to be a character
string padded at the end with SPACES or LOW-VALUES, in which case trailing SPACES
or LOW-VALUES are not considered part of the proof material.

There may be a choice of cryptographic service providers, based on the local
machine’s configuration and operating environment. If you need to choose one,
CRYPTO-PROVIDER in TPKEYDEF-REC to the name of the required provider. Otherwis
set this field to SPACES or LOW-VALUES, and a default provider will be assumed.

The type of key access required for a key’s mode of operation is determined by
specifying one or more of the following settings in TPKEYDEF-REC.

TPKEY-SIGNATURE:
This private key is available to generate digital signatures.
BEA Tuxedo COBOL Function Reference 121

Section 3(cbl) - COBOL Functions

s the

age.

rypts

ption

is

 not

cess
TPKEY-AUTOSIGN:
Whenever this process transmits a message, the public key software use
signer’s private key to generate a digital signature and then attaches the
digital signature to the message.

TPKEY-ENCRYPT:
This public key is available to identify the recipient of an encrypted mess

TPKEY-AUTOENCRYPT:
Whenever this process transmits a message, the public key software enc
the message, uses the recipient’s public key to generate an encryption
envelope, and then attaches the encryption envelope to the message.

TPKEY-DECRYPT:
This private key is available for decryption.

Various combinations of these settings are allowed. If a key is used only for encry
(TPKEY-ENCRYPT and TPKEY-AUTOENCRYPT), IDENTITY-PROOF is not required.

Return Values Upon successful completion, TPKEYOPEN() sets TP-STATUS in TPSTATUS-REC to
[TPOK]. In addition, KEY-HANDLE in TPKEYDEF-REC is set to a value that represents th
key, for use by other functions such as TPKEYGETINFO().

Errors Upon failure, TPKEYOPEN() sets TP-STATUS in TPSTATUS-REC to one of the following
values.

[TPEINVAL]
Invalid arguments were given. For example, the settings (flag) values are
set correctly.

[TPEPERM]
Permission failure. The cryptographic service provider was not able to ac
a private key for this principal, given the proof information and current
environment.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

See Also TPKEYCLOSE(3cbl) , TPKEYGETINFO(3cbl) , TPKEYSETINFO(3cbl)
122 BEA Tuxedo COBOL Function Reference

TPKEYSETINFO(3cbl)

dle

e
TPKEYSETINFO(3cbl)

Name TPKEYSETINFO() - set optional parameters associated with a key handle

Synopsis 01 TPKEYDEF-REC.
 COPY TPKEYDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPKEYSETINFO" USING TPKEYDEF-REC TPSTATUS-REC.

Description TPKEYSETINFO() sets an optional attribute parameter for a key handle. A key han
represents a specific principal’s key and the information associated with it.

The key for which information is to be modified is identified by KEY-HANDLE in
TPKEYDEF-REC. KEY-HANDLE is a key identifier returned by a previous call to
TPKEYOPEN().

The attribute for which information is to be modified is identified by
ATTRIBUTE-NAME in TPKEYDEF-REC. The attribute name may be padded with SPACES
or LOW-VALUES. Some attributes may be specific to a certain cryptographic servic
provider, but the core set of attributes presented on the TPKEYGETINFO(3cbl)
reference page should be supported by all providers.

The information to be associated with ATTRIBUTE-NAME is stored in the memory
location indicated by ATTRIBUTE-VALUE in TPKEYDEF-REC. If the data content of
ATTRIBUTE-VALUE is self-describing, ATTRIBUTE-LEN in TPKEYDEF-REC is ignored
(and may be 0). Otherwise, ATTRIBUTE-LEN must contain the length of data in
ATTRIBUTE-VALUE.

Return Values Upon successful completion, TPKEYSETINFO() sets TP-STATUS in TPSTATUS-REC to
[TPOK].

Errors Upon failure, TPKEYSETINFO() sets TP-STATUS in TPSTATUS-REC to one of the
following values.

[TPEINVAL]
Invalid arguments were given. For example, KEY-HANDLE is not set correctly.

[TPESYSTEM]
An error occurred. Consult the system error log file for more details.
BEA Tuxedo COBOL Function Reference 123

Section 3(cbl) - COBOL Functions

vice
[TPELIMIT]
The attribute value provided is too large.

[TPENOENT]
The requested attribute is not recognized by the key’s cryptographic ser
provider.

See Also TPKEYCLOSE(3cbl) , TPKEYGETINFO(3cbl) , TPKEYOPEN(3cbl)
124 BEA Tuxedo COBOL Function Reference

TPNOTIFY(3cbl)

t.

th

.

nt has

rnal
TPNOTIFY(3cbl)

Name TPNOTIFY() - send notification by client identifier

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
TPSTATUS-REC.

Description TPNOTIFY() allows a server to send an unsolicited message to an individual clien

CLIENTID in TPSVCDEF-REC contains a client identifier saved from the
TPSVCDEF-REC of a previous or current service invocation.

DATA-REC is the record to be sent and LEN in TPTYPE-REC specifies how much of
DATA-REC should be sent. If DATA-REC is a record of type that does not require a leng
to be specified, then LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is
SPACES, DATA-REC and LEN are ignored and a request is sent with no data portion

Upon successful return from TPNOTIFY() , the message has been delivered to the
system for forwarding to the identified client. If TPACK() was set, then a successful
return means the message has been received by the client. Furthermore, if the clie
registered an unsolicited message handler, the handler will have been called.

The following is a list of valid settings in TPSVCDEF-REC.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the inte
buffers into which the message is transferred are full). Either TPNOBLOCK or
TPBLOCK must be set.
BEA Tuxedo COBOL Function Reference 125

Section 3(cbl) - COBOL Functions

king

ts
.

tem

tem

nt
TPBLOCK
If a blocking condition exists in sending the notification, the caller blocks
until the condition subsides or a timeout occurs (either transaction or bloc
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

TPACK
This setting signifies that the caller will block waiting for an acknowledgme
from the client. Either TPNOACK() or TPACK() must be set.

TPNOACK
This setting signifies that the caller will not block waiting for an
acknowledgment from the client. Either TPNOACK() or TPACK() must be set.

Return Values Upon successful completion, TPNOTIFY() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPNOTIFY() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPENOENT]
The target client does not exist and TPACK() was set.
126 BEA Tuxedo COBOL Function Reference

TPNOTIFY(3cbl)

nd

t).

 is

of
ocol.
[TPETIME]
A blocking timeout occurred and both TPBLOCK and TPTIME were specified,
or TPACK() and TPTIME were set and no acknowledgment was received. a
TPTIME was specified.

[TPEBLOCK]
A blocking condition was found on sending the notification and TPNOBLOCK
was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPNOTIFY() was called in an improper context (for example, within a clien

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

[TPERELEASE]
When TPACK() is specified and the target is a client from a prior release
the BEA Tuxedo system that does not support the acknowledgment prot

See Also TPBROADCAST(3cbl) , TPCHKUNSOL(3cbl) , TPINITIALIZE(3cbl) ,
TPSETUNSOL(3cbl) , TPTERM(3cbl)
BEA Tuxedo COBOL Function Reference 127

Section 3(cbl) - COBOL Functions

ource
ay
 the

gating
e the

g
ating

as

 is
TPOPEN(3cbl)

Name TPOPEN() - open the BEA Tuxedo system resource manager

Synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPOPEN" USING TPSTATUS-REC.

Description TPOPEN() opens the resource manager to which the caller is linked. At most one
resource manager can be linked to the caller. This routine is used in place of res
manager-specific open() calls and allows a service routine to be free of calls that m
hinder portability. Since resource managers differ in their initialization semantics,
specific information needed to open a particular resource manager is placed in a
configuration file.

If a resource manager is already open (that is, TPOPEN() is called more than once), no
action is taken and success is returned.

Return Values Upon successful completion, TPOPEN() sets TP-STATUS to [TPOK]. More information
concerning the reason a resource manager failed to open can be gotten by interro
the resource manager in its own specific manner. Note that any calls to determin
exact nature of a resource manager’s error hinder portability.

Errors Under the following conditions, TPOPEN() fails and sets TP-STATUS to:

[TPERMERR]
A resource manager failed to open correctly. More information concernin
the reason a resource manager failed to open can be obtained by interrog
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTO]
TPOPEN() was called in an improper context (for example, by a client that h
not joined a BEA Tuxedo system server group).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPCLOSE(3cbl)
128 BEA Tuxedo COBOL Function Reference

TPPOST(3cbl)

t is

roker

ter for

th

 by the
event
d
TPPOST(3cbl)

Name TPPOST() - post an event

Synopsis 01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPPOST" USING TPEVTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description The caller uses TPPOST() to post an event and any accompanying data. The even
named by EVENT-NAME in TPEVTDEF-REC and DATA-REC contains the data to be
posted. The posted event and its data are dispatched by the BEA Tuxedo EventB
to all subscribers whose subscriptions successfully evaluate against EVENT-NAME and
whose optional filter rules successfully evaluate against DATA-REC.

EVENT-NAME must be 31 characters or less, but cannot be SPACES. EVENT-NAME’s first
character cannot be a dot (“.”) as this character is reserved as the starting charac
all events defined by the BEA Tuxedo system itself.

DATA-REC is the typed record to be posted and LEN in TPTYPE-REC specifies the
amount of data in DATA-REC that should be posted with the event. Note that if
DATA-REC is a record of a type that does not require a length to be specified, thenLEN
is ignored (and may be 0). If DATA-REC is a record of a type that does require a leng
to be specified, then LEN must not be 0 (if it is 0, no data will be posted). If REC-TYPE
in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and the event is posted
with no data.

When TPPOST() is used within a transaction, the transaction boundary can be
extended to include those servers and/or stable-storage message queues notified
EventBroker. When a transactional posting is made, some of the recipients of the
posting are notified on behalf of the poster’s transaction (for example, servers an
queues), while some are not (for example, clients).
BEA Tuxedo COBOL Function Reference 129

Section 3(cbl) - COBOL Functions

ster’s

t

 not

t
d if

de,

If the poster is within a transaction and TPTRAN is set, the posted event goes to the
EventBroker in transaction mode such that it dispatches the event as part of the po
transaction. The broker dispatches transactional event notifications only to those
service routine and stable-storage queue subscriptions that had TPEVTRAN set in
TPEVTDEF-REC when the subscription was made. Client notifications, and those
service routine and stable-storage queue subscriptions that had TPEVNOTRAN set in
TPEVTDEF-REC when the subscription was made, are also dispatched by the
EventBroker but not as part of the posting process’ transaction.

The following is a list of valid settings in TPEVTDEF-REC:

TPNOTRAN
If the caller is in transaction mode and this setting is used, then the even
posting is not made on behalf of the caller’s transaction. A caller in
transaction mode that uses this setting is still subject to the transaction
timeout (and no other). If the event posting fails, the caller’s transaction is
affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, then the even
posting is made on behalf of the caller’s transaction. This setting is ignore
the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPNOREPLY
Informs TPPOST() not to wait for the EventBroker to process all
subscriptions for EVENT-NAME before returning. When TPNOREPLY is set,
EVENT-COUNT in TPEVTDEF-REC is set to zero regardless of whether
TPPOST() returns successfully or not. When the caller is in transaction mo
this setting cannot be used when TPTRAN is also set. Either TPNOREPLY or
TPREPLY must be set.

TPREPLY
Informs TPPOST() to wait for all subscriptions to be processed before
returning. When TPREPLY is set, the routine returns [TPOK] on success and
sets EVENT-COUNT in TPEVTDEF-REC to the number of event notifications
dispatched by the EventBroker on behalf of EVENT-NAME. When the caller is
in transaction mode, this setting must be used when TPTRAN is also set. Either
TPNOREPLY or TPREPLY must be set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition
occurs, the call fails and sets TP-STATUS to [TPEBLOCK]. Either TPNOBLOCK
or TPBLOCK must be set.
130 BEA Tuxedo COBOL Function Reference

TPPOST(3cbl)

ks
ing

ts
.

tem

tem

e
TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or block
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either
TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values Upon successful completion, TPPOST() sets TP-STATUS to [TPOK]. In addition,
EVENT-COUNT contains the number of event notifications dispatched by the
EventBroker on behalf of EVENT-NAME (that is, postings for those subscriptions whos
event expression evaluated successfully against EVENT-NAME and whose filter rule
evaluated successfully against DATA-REC). Upon return where TP-STATUS is set to
[TPESVCFAIL], EVENT-COUNT contains the number of non-transactional event
notifications dispatched by the EventBroker on behalf of EVENT-NAME.

Errors Under the following conditions, TPPOST() fails and sets TP-STATUS to one of the
following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, EVENT-NAME is SPACES).

[TPENOENT]
Cannot access the BEA Tuxedo User EventBroker.
BEA Tuxedo COBOL Function Reference 131

Section 3(cbl) - COBOL Functions

s

n
ing

ither

 this

pon
ot

tion

 is
[TPETRAN]
The caller is in transaction mode, TPTRAN was set, and TPPOST() contacted
an EventBroker that does not support transaction propagation (that is,
TMUSREVT(5) is not running in a BEA Tuxedo system group that support
transactions).

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is to be aborted; otherwise, a block
timeout occurred and both TPBLOCK and TPTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
[TPETIME] until the transaction has been aborted.

[TPESVCFAIL]
The EventBroker encountered an error posting a transactional event to e
a service routine or to a stable storage queue on behalf of the caller’s
transaction. The caller’s current transaction is marked abort-only. When
error is returned, EVENT-COUNT contains the number of non-transactional
event notifications dispatched by the EventBroker on behalf of EVENT-NAME;
transactional postings are not counted since their effects will be aborted u
completion of the transaction. Note that so long as the transaction has n
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller’s transac
will be aborted upon transaction completion (that is, for subsequent
communication to have any lasting effect, it should be done with TPNOTRAN
set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPPOST() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPSUBSCRIBE(3cbl) , TPUNSUBSCRIBE(3cbl) , EVENTS(5) , TMSYSEVT(5),
TMUSREVT(5)
132 BEA Tuxedo COBOL Function Reference

TPRECV(3cbl)

,

d

TPRECV(3cbl)

Name TPRECV() - receive a message in a conversational connection

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPRECV() is used to receive data sent across an open connection from another
program. COMM-HANDLE, specifies on which open connection to receive data.
COMM-HANDLE is a communications handle returned from either TPCONNECT() or
TPSVCSTART(). DATA-REC specifies where the message is read into, and, on input, LEN
indicates the maximum number of bytes that should be moved into DATA-REC.

Upon successful and for several event types, LEN contains the actual number of bytes
moved into DATA-REC. REC-TYPE and SUB-TYPE contain the data’s type and sub-type
respectively. If the message is larger than DATA-REC, then DATA-REC will contain only
as many bytes as will fit in the record. The remainder of the reply is discarded an
TPRECV() sets TPTRUNCATE.

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC
was not modified. It is an error for LEN to be 0 on input.

TPRECV() can be issued only by the program that does not have control of the
connection.

The following is a list of valid settings in TPSVCDEF-REC.

TPNOCHANGE
When this setting is used, the type of DATA-REC is not allowed to change. That
is, the type and sub-type of the message received must match REC-TYPE and
SUB-TYPE, respectively. Either TPNOCHANGE or TPCHANGE must be set.
BEA Tuxedo COBOL Function Reference 133

Section 3(cbl) - COBOL Functions

m

ve,

ts
he

tem

 the
e
TPCHANGE
The type and/or sub-type of the message received is allowed to differ fro
those specified in REC-TYPE and SUB-TYPE, respectively, so long as the
receiver recognizes the incoming record type. Either TPNOCHANGE or
TPCHANGE must be set.

TPNOBLOCK
TPRECV() does wait for data to arrive. If data is already available to recei
then TPRECV() gets the data and returns. Either TPNOBLOCK or TPBLOCK must
be set.

TPBLOCK
When TPBLOCK is specified and no data is available to receive, the caller
blocks until data arrives. Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts will still affect t
program. Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts the underlying receive system call, then the call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

If an event exists for the communications handle, COMM-HANDLE, then
TPRECV() will return setting TP-STATUS to TPEEVENT(). The event type is
returned in TPEVENT() . Data can be received along with the TPEV-SVCSUCC,
TPEV-SVCFAIL , and TPEV-SENDONLY events. Valid events for TPRECV() are
as follows.

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that
originator of the conversation has issued an immediate disconnect on th
134 BEA Tuxedo COBOL Function Reference

TPRECV(3cbl)

d
o
e to
re).

l of
 not

e

fully.

s to
ed

n and

e

s

. As
ion.

e
connection via TPDISCON() , or an error occurred when the originator issue
TPRETURN() or TPCOMMIT() with the connection still open. This event is als
returned to the originator or subordinate when a connection is broken du
a communications error (for example, a server, machine, or network failu
Because this is an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. If the two programs were
participating in the same transaction, then the transaction is marked
abort-only. COMM-HANDLE is no longer valid.

TPEV-SENDONLY
The program on the other end of the connection has relinquished contro
the connection. The recipient of this event is allowed to send data but can
receive any data until it relinquishes control.

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that th
subordinate of the conversation has issued TPRETURN(). TPRETURN()
encountered an errors that precluded the service from returning success
For example, bad arguments may have been passed to TPRETURN() or
TPRETURN() may have been called while the service had open connection
other subordinates. Due to the nature of this event, any application defin
data or return code are not available. The connection has been torn dow
COMM-HANDLE is no longer valid. If this event occurred as part of the
recipient’s transaction, then the transaction is marked as abort-only.

TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that th
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it called TPRETURN()
with TPFAIL() or TPEXIT()). If the subordinate service was in control of thi
connection when TPRETURN() was called, then it can pass an application
defined return value and a record back to the originator of the connection
part of ending the service routine, the server has torn down the connect
Thus, COMM-HANDLE is no longer valid. If this event occurred as part of the
recipient’s transaction, then the transaction is marked abort-only.

TPEV-SVCSUCC
Received by the originator of a conversation, this event indicates that th
subordinate service on the other end of the conversation has finished
successfully as defined by the application (that is, it called TPRETURN() with
TPSUCCESS()). As part of ending the service routine, the server has torn
down the connection. Thus, COMM-HANDLE is no longer valid. If the recipient
BEA Tuxedo COBOL Function Reference 135

Section 3(cbl) - COBOL Functions

 or

f
d in

e

f the

n

t
ctions
is in transaction mode, then it can either commit (if it is also the initiator)
abort the transaction causing the work done by the server (if also in
transaction mode) to either commit or abort.

Return Values Upon successful completion, TPRECV() sets TP-STATUS to [TPOK]. When TP-STATUS
is set to [TPEEVENT] and TPEVENT() is either TPEV-SVCSUCC or TPEV-SVCFAIL,
APPL-RETURN-CODE contains an application defined value that was sent as part o
TPRETURN(). If the size of the incoming message was larger then the size specifie
LEN on input, TPTRUNCATE() is set and only LEN amount of data was moved to
DATA-REC, the remaining data is discarded.

Errors Under the following conditions, TPRECV() fails and sets TP-STATUS to (unless
otherwise noted, failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid.

[TPEOTYPE]
Either the type of sub-type of the incoming message are not known to th
caller, or TPNOCHANGE was set and REC-TYPE and SUB-TYPE do not match the
type and sub-type of the incoming message. If the conversation is part o
caller’s transaction, then the transaction is marked abort-only since the
incoming message is discarded.

[TPEBADDESC]
COMM-HANDLE contains an invalid communications handle.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, DATA-REC was not changed. If a transaction timeou
occurred, then any attempts to send or receive messages on any conne
or to start a new connection will fail with TPETIME until the transaction has
been aborted.

[TPEEVENT]
An event occurred and its type is available in TPEVENT() .

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.
136 BEA Tuxedo COBOL Function Reference

TPRECV(3cbl)

n

 is

lling
[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPRECV() was called in an improper context (for example, the connectio
was established such that the calling program can only send data).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Usage A server can pass an application defined return value and typed record when ca
TPRETURN(). The return value is available in APPL-RETURN-CODE and the record is
available in DATA-REC.

See Also TPCONNECT(3cbl) , TPDISCON(3cbl) , TPSEND(3cbl)
BEA Tuxedo COBOL Function Reference 137

Section 3(cbl) - COBOL Functions

tion.

tion

tion

ady
d.

ause

fore
e
TPRESUME(3cbl)

Name TPRESUME() - resume a global transaction

Synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPRESUME" USING TPTRXDEF-REC TPSTATUS-REC.

Description TPRESUME() is used to resume work on behalf of a previously suspended transac
Once the caller resumes work on a transaction, it must either suspend it with
TPSUSPEND(), or complete it with one of TPCOMMIT() or TPABORT() at a later time.

The caller must ensure that its linked resource managers have been opened (via
TPOPEN()) before it can resume work on any transaction.

TPRESUME() places the caller in transaction mode on behalf of the global transac
identifier contained in TRANID() .

Return Value Upon successful completion, TPRESUME() sets [TPOK].

Errors Under the following conditions, TPRESUME() fails and sets TP-STATUS to:

[TPEINVAL]
Either TRANID() contains a non-existent transaction identifier (including
previously completed or timed-out transactions), or it contains a transac
identifier that the caller is not allowed to resume. The caller’s state with
respect to the transaction is not changed.

[TPEMATCH]
TRANID() contains a transaction identifier that another program has alre
resumed. The caller’s state with respect to the transaction is not change

[TPETRAN]
The BEA Tuxedo system is unable to resume the global transaction bec
the caller is currently participating in work outside any global transaction
with one or more resource managers. All such work must be completed be
a global transaction can be resumed. The caller’s state with respect to th
local transaction is unchanged.
138 BEA Tuxedo COBOL Function Reference

TPRESUME(3cbl)

n

 is

 the

chine
he
ical
.

[TPEPROTO]
TPRESUME() was called in an improper context (for example, the caller is
already in transaction mode). The caller’s state with respect to transactio
mode is unchanged.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Notes XA-compliant resource managers must be successfully opened to be included in
global transaction. (See TPOPEN() for details.)

A program resuming a suspended transaction must reside on the same logical ma
(LMID) as the program that suspended the transaction. For a workstation client, t
workstation handler (WSH) to which it is connected must reside on the same log
machine as the handler for the workstation client that suspended the transaction

See Also TPABORT(3cbl) , TPCOMMIT(3cbl) , TPOPEN(3cbl) , TPSUSPEND(3cbl)
BEA Tuxedo COBOL Function Reference 139

Section 3(cbl) - COBOL Functions

ne

ce

e

e

d
TPRETURN(3cbl)

Name TPRETURN() - returns from a BEA Tuxedo system service routine

Synopsis 01 TPSVCRET-REC.
 COPY TPSVCRET.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC

 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DATA-REC T
 PSTATUS-REC BY TPSTATUS-REC.

Description TPRETURN() indicates that a service routine has completed. Since TPRETURN()
contains an EXIT PROGRAM statement, it should be called from within the same routi
that was invoked to ensure correct return of control to the BEA Tuxedo system
dispatcher (that is, TPRETURN() should not be invoked in a sub-program of the servi
routine since control would not return to the BEA Tuxedo system dispatcher).

TPRETURN() is used to send a service’s reply message. If the service receiving th
reply is waiting in either TPCALL() , TPGETRPLY(), or TPRECV(), then after a
successful call to TPRETURN(), the reply is available in the receiver’s record.

For conversational services, TPRETURN() also tears down the connection. That is th
service routine cannot call TPDISCON() directly. To ensure correct results, the
program that connected to the conversation service should not call TPDISCON() ;
rather, it should wait for notification that the conversational service has complete
(that is, it should wait for one of the events, like TPEV-SVCSUCC or TPEV-SVCFAIL.
sent by TPRETURN()).
140 BEA Tuxedo COBOL Function Reference

TPRETURN(3cbl)

n the
ame

ice
ped
ions

ice.

ver

tiate,
hould

sent

its.

ny
ice
If a service routine was in transaction mode, TPRETURN() places the service’s portion
of the transaction in a state from which it may be either committed or aborted whe
transaction is completed. A service may be invoked multiple times as part of the s
transaction so it is not necessarily fully committed nor aborted until either
TPCOMMIT() or TPABORT() is called by the originator of the transaction.

TPRETURN() should be called after receiving all replies expected from
request/response service requests initiated by the service routine. Otherwise,
depending on the nature of the service, either a [TPESVCERR] status or a TPEV-SVCERR
event will be returned to the program that initiated communications with the serv
routine. Any outstanding replies which are not received will automatically be drop
by the BEA Tuxedo system dispatcher upon receipt. In addition, the communicat
handle for those replies become invalid.

TPRETURN() should also be called after closing all connections initiated by the serv
Otherwise, depending on the nature of the service, either a [TPESVCERR] status or a
TPEV-SVCERR event will be returned to the program that initiated communications
with the service routine. Also, an immediate disconnect event (that is,
TPEV-DISCONIMM) is sent over all open connections to subordinates.

Concerning control of a connection, if the service routine does not have control o
the connection with which it was invoked when it issued TPRETURN(), then two
outcomes are possible. First, if the service routine calls TPRETURN() with
TP-RETURN-VAL IN TPSVCRET-REC set to TPFAIL() and REC-TYPE IN TPTYPE-REC
set to SPACES (that is, no data is sent), then a TPEV-SVCFAIL event is sent to the
originator of this conversation. Second, if any other invocation of TPRETURN() is used,
a TPEV-SVCERR event is sent to the originator.

Since a conversational service has only one open connection which it did not ini
the server knows over which communications handle the data (and any event) s
be sent. For this reason, a communication handle is not passed to TPRETURN().

The following is a description of the TPRETURN() arguments. TP-RETURN-VAL can be
set to one of the following.

TPSUCCESS
The service has terminated successfully. If data is present, then it will be
(barring any failures processing the return). If the caller is in transaction
mode, then TPRETURN() places the caller’s portion of the transaction in a
state such that it can be committed when the transaction ultimately comm
Note that a call to TPRETURN() does not necessarily finalize an entire
transaction. Also, even though the caller indicates success, if there are a
outstanding replies or open connections, if any work done within the serv
BEA Tuxedo COBOL Function Reference 141

Section 3(cbl) - COBOL Functions

 sent

 in

t. An
 to

y be
r’s
en a
e

,
the
erver

f
e

e a

that
ted,

eturn
caused its transaction to be marked abort-only, then a failed message is
(that is, the recipient of the reply receives a TPESVCERR() indication or a
TPEV-SVCERR event). Note that if a transaction becomes abort-only while
the service routine for any reason, then TP-RETURN-VAL should be set to
TPFAIL() . If TPSUCCESS() is specified for a conversational service, a
TPEV-SVCSUCC event is generated.

TPFAIL
The service has terminated unsuccessfully from an application standpoin
error will be reported to the program receiving the reply. That is, the call
get the reply will fail and the recipient receives a [TPSVCERR] indication or a
TPEV-SVCERR event. If the caller is in transaction mode, then TPRETURN()
marks the transaction as abort-only (note that the transaction may alread
marked abort-only). Barring any failures in processing the return, the calle
data is sent, if present. One reason for not sending the caller’s data is wh
transaction timeout has occurred. In this case, the program waiting for th
reply will receive an error of [TPETIME].

TPEXIT
This value is the same as TPFAIL() , with respect to completing the service
but the server will exit after the transaction is marked as abort-only and
reply is sent back to the requester. If the server is restartable, then the s
will automatically be restarted.

If TP-RETURN-VAL is not set to one of these three values, then it defaults to TPFAIL() .

An application defined return code, APPL-CODE in TPSVCRET-REC, may be sent to the
program receiving the service reply. This code is sent regardless of the setting o
TP-RETURN-VAL as long as a reply can be successfully sent (that is, as long as th
receiving call returns success or [TPESVCFAIL], or receives one of the events
TPEV-SVCSUCC or TPEV-SVCFAIL). The value of APPL-CODE is available in the
receiver in the variable, APPL-RETURN-CODE in TPSTATUS-REC.

DATA-REC is a record to be sent and LEN specifies the amount of DATA-REC that should
be sent. Note that if DATA-REC is a record of type and sub-type that does not requir
length to be specified, then LEN is ignored (and may be 0). If REC-TYPE is SPACES,
DATA-REC and LEN are ignored. In this case, if a reply is expected by the program
invokes the service, then a reply is sent with no data portion. If no reply is expec
then TPRETURN() ignores any data passed to it and returns sending no reply. If
REC-TYPE is STRING and LEN is 0, then the request is sent with no data portion.

If the service is conversational, there are several cases in which the application r
code and the data portion are not transmitted:
142 BEA Tuxedo COBOL Function Reference

TPRETURN(3cbl)

r
e
e,

ed.

ns

e

ped.
rked
,
� If the connection has been terminated when the call is made (that is, the calle
has received TPEV-DISCONIMM on the connection), then this call simply ends th
service routine and rolls back the current transaction, if one exists. In this cas
the caller’s data record cannot be transmitted.

� If the caller does not have control of the connection, either TPEV-SVCERR or
TPEV-SVCFAIL is sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data record is transmitt
If the originator receives the TPEV_SVCFAIL event, however, the return code is
available in the originator’s APPL-RETURN-CODE in TPSTATUS-REC.

Return Values Because TPRETURN() contains an EXIT PROGRAM statement, no value is returned to
the caller, nor does control return to the service routine. If a service routine retur
without using TPRETURN() (that is, it uses an EXIT PROGRAM statement directly or just
simply “falls out of the service routine”), the server will return a service error to th
service requester. In addition, all open connections to subordinates will be
disconnected immediately, and any outstanding asynchronous replies will be drop
If the server was in transaction mode at the time of failure, the transaction is ma
abort-only. Note also that if TPRETURN() is used outside of a service routine (that is
by routines that are not services), then it returns having no effect.

Errors Errors encountered either in handling arguments or in processing cause TP-STATUS to
be set to [TPESVCERR] for a program receiving the service’s outcome via either
TPCALL() or TPGETRPLY(), and cause the event, TPEV-SVCERR, to be sent over the
conversation to a program using TPSEND() or TPRECV().

See Also TPCALL(3cbl) , TPCONNECT(3cbl) , TPFORWAR(3cbl)
BEA Tuxedo COBOL Function Reference 143

Section 3(cbl) - COBOL Functions

call
ller

ons

ram
tion

e to

ocol
r
TPSCMT(3cbl)

Name TPSCMT() - set when TPCOMMIT should return

Synopsis 01 TPCMTDEF-REC.
 COPY TPCMTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSCMT" USING TPCMTDEF-REC TPSTATUS-REC.

Description TPSCMT() sets the TP-COMMIT-CONTROL characteristic to the value specified in
TPCMTDEF-REC. The TP-COMMIT-CONTROL characteristic affects the way
TPCOMMIT() behaves with respect to returning control to its caller. A program can
TPSCMT() regardless of whether it is in transaction mode or not. Note that if the ca
is participating in a transaction that another program must commit, then its call to
TPSCMT() does not affect that transaction. Rather, it affects subsequent transacti
that the caller will commit.

In most cases, a transaction is committed only when a BEA Tuxedo system prog
calls TPCOMMIT(). There is one exception: when a service is dispatched in transac
mode because the AUTOTRAN variable in the SERVICES section of the UBBCONFIG file
is enabled, then the transaction completes upon calling TPRETURN(). If TPFORWAR()
is called, then the transaction will be completed by the server ultimately calling
TPRETURN(). Thus, the setting of the TP-COMMIT-CONTROL characteristic in the
service that calls TPRETURN() determines when TPCOMMIT() returns control within a
server. If TPCOMMIT() returns a heuristic error code, the server will write a messag
a log file.

When a client joins a BEA Tuxedo system application, the initial setting for this
characteristic comes from a configuration file. (See the CMTRET variable in the
RESOURCES section of UBBCONFIG(5))

The following are the valid settings for TPCMTDEF-REC.

TP-CMT-LOGGED
This setting indicates that TPCOMMIT() should return after the commit
decision has been logged by the first phase of the two-phase commit prot
but before the second phase has completed. This setting allows for faste
response to the caller of TPCOMMIT() although there is a risk that a
144 BEA Tuxedo COBOL Function Reference

TPSCMT(3cbl)

ller

n).
irst
y
e

ng

 is

urce
s

tions
on.
transaction participant might decide to heuristically complete (that is,
aborted) its work due to timing delays waiting for the second phase to
complete. If this occurs, there is no way to indicate this situation to the ca
since TPCOMMIT() has already returned (although BEA Tuxedo writes a
message to a log file when a resource manager takes a heuristic decisio
Under normal conditions, participants that promise to commit during the f
phase will do so during the second phase. Typically, problems caused b
network or site failures are the sources for heuristic decisions being mad
during the second phase.

TP-CMT-COMPLETE
This setting indicates that TPCOMMIT() should return after the two-phase
commit protocol has finished completely. This setting allows for
TPCOMMIT() to return an indication that a heuristic decision occurred duri
the second phase of commit.

Return Values Upon successful completion, TPSCMT() sets TP-STATUS to [TPOK] and returns the
previous value of the TP-COMMIT-CONTROL characteristic.

Errors Under the following conditions, TPSCMT() fails and sets TP-STATUS to:

[TPEINVAL]
TPCMTDEF-REC is not set to TP-CMT-LOGGED or TP-CMT-COMPLETE.

[TPEPROTO]
TPSCMT() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using TPBEGIN() , TPCOMMIT(), and TPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either TPCOMMIT() or TPABORT(). See buildserver(1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA Tuxedo system transacti

See Also TPABORT(3cbl) , TPBEGIN(3cbl) , TPCOMMIT(3cbl) , TPGETLEV(3cbl)
BEA Tuxedo COBOL Function Reference 145

Section 3(cbl) - COBOL Functions

he

.
ied,

 grant

p

 data
TPSEND(3cbl)

Name TPSEND() - routine to send a message in a conversational connection

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPSEND() is used to send data across an open connection to another program. T
caller must have control of the connection. COMM-HANDLE specifies the open
connection to send data over. COMM-HANDLE is a communications handle returned from
either TPCONNECT() or TPSVCSTART().

DATA-REC contains the data to be sent and LEN specifies how much of the data to send
Note that if DATA-REC is a record of a type that does not require a length to be specif
then LEN is ignored (and may be 0). If REC-TYPE is SPACES, DATA-REC and LEN are
ignored and a message is sent with no data (this might be done, for instance, to
control of the connection without transmitting any data).

The following is a list of valid settings in TPSVCDEF-REC.

TPRECVONLY
This setting signifies that, after the caller’s data is sent, the caller gives u
control of the connection (that is, the caller can not issue any more TPSEND()
calls). When the receiver on the other end of the connection receives the
sent by TPSEND(), it will also receive an event (TPEV-SENDONLY) indicating
that it has control of the connection (and can not issue more any TPRECV()
calls). Either TPRECVONLY or TPSENDONLY must be set.

TPSENDONLY
This setting signifies that the caller wants to remain in control of the
connection. Either TPRECVONLY or TPSENDONLY must be set.
146 BEA Tuxedo COBOL Function Reference

TPSEND(3cbl)

ither

ks
ing

ts
he

ll is

tem

 the
e

ed

e).
TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for
example, the data buffers through which the message is sent are full). E
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or block
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts will still affect t
program. Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted ca
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT
must be set.

If an event exists for COMM-HANDLE, then TPSEND() will return without sending the
caller’s data. The event type is returned in TPEVENT() . Valid events for TPSEND() are
as follows.

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that
originator of the conversation has issued an immediate disconnect on th
connection via TPDISCON() , or the originator of the connection issued
TPRETURN() with open subordinate connections. This event is also return
to the originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failur
BEA Tuxedo COBOL Function Reference 147

Section 3(cbl) - COBOL Functions

e

e

 (that

t-only.

s

n

sages
TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that th
subordinate of the conversation has issued TPRETURN() without having
control of the conversation. In addition. TPRETURN() was issued with
TPFAIL() set and no data record (that is, the REC-TYPE passed to
TPRETURN() was set to SPACES)

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that th
subordinate of the conversation has issued TPRETURN() without having
control of the conversation. In addition, TPRETURN() was issued in a manner
different from that described for TPEV-SVCFAIL below.

Because each of these events indicates an immediate disconnection notification
is, abortive rather than orderly), data in transit may be lost. The communications
handle used for the connection is no longer valid. If the two programs were
participating in the same transaction, then the transaction has been marked abor

Return Values Upon successful completion, TPSEND() sets TP-STATUS to [TPOK]. If an event exists
and no errors were encountered, TPSEND() sets TP-STATUS to [TPEEVENT]. When
TP-STATUS is set to [TPEEVENT] and TP-EVENT is either TPEV-SVCSUCC or
TPEV-SVCFAIL , APPL-RETURN-CODE contains an application-defined value that wa
sent as part of TPRETURN().

Errors Under the following conditions, TPSEND() fails and sets TP-STATUS to (unless
otherwise noted, failure does not affect caller’s transaction, if one exits):

[TPEINVAL]
Invalid arguments were given.

[TPEBADDESC]
COMM-HANDLE contains an invalid communications handle.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, neither DATA-REC nor TPTYPE-REC are changed. If
a transaction timeout occurred, then any attempts to send or receive mes
on any connections or to start a new connection will fail with [TPETIME] until
the transaction has been aborted.
148 BEA Tuxedo COBOL Function Reference

TPSEND(3cbl)

n

 is
[TPEEVENT]
An event occurred and its type is available in TPEVENT() . DATA-REC is not
sent when this error occurs.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPSEND() was called in an improper context (for example, the connectio
was established such that the calling program can only receive data).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPCONNECT(3cbl) , TPDISCON(3cbl) , TPRECV(3cbl)
BEA Tuxedo COBOL Function Reference 149

Section 3(cbl) - COBOL Functions

A

ts

s
TPSETCTXT(3cbl)

Name TPSETCTXT() - sets a context identifier for the current application association

Synopsis 01 TPCONTEXTDEF-REC.
 COPY TPCONTEXTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSETCTXT" USING TPCONTEXTDEF-REC TPSTATUS-REC.

Description TPSETCTXT() defines the context in which the current program operates.
(Multithreaded COBOL applications are not currently supported.) Subsequent BE
Tuxedo calls reference the application indicated by CONTEXT in TPCONTEXTDEF-REC.
The value of CONTEXT in TPCONTEXTDEF-REC should have been provided by a
previous call to TPGETCTXT(). If the value of CONTEXT is TPNULLCONTEXT, then the
program is disassociated from any BEA Tuxedo context. TPINVALIDCONTEXT is not a
valid input value for CONTEXT in TPCONTEXTDEF-REC.

Return Values Upon successful completion, TPSETCTXT() sets TP-STATUS to [TPOK].

Upon failure, TPSETCTXT() leaves the calling process in its original context and se
TP-STATUS to indicate the error condition.

Errors Upon failure, TPSETCTXT() sets TP-STATUS to one of the following values.

[TPEINVAL]
Invalid arguments have been given.

[TPENOENT]
The value of CONTEXT in TPCONTEXTDEF-REC is not a valid context.

[TPEPROTO]
TPSETCTXT() has been called in an improper context. For example, it ha
been called in a process that has not called TPINITIALIZE() or that has
called TPINITIALIZE() without specifying the TP-MULTI-CONTEXTS
setting.
150 BEA Tuxedo COBOL Function Reference

TPSETCTXT(3cbl)

 has

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error
been written to a log file.

[TPEOS]
An operating system error has occurred.

See Also Introduction to the COBOL Application-Transaction Monitor Interface,
TPGETCTXT(3cbl)
BEA Tuxedo COBOL Function Reference 151

Section 3(cbl) - COBOL Functions

an
 first
tem

y
,

tion
TPSETUNSOL(3cbl)

Name TPSETUNSOL() - sets method for handling unsolicited messages

Synopsis 01 CURR-ROUTINE PIC S9(9) COMP-5.

01 PREV-ROUTINE PIC S9(9) COMP-5.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC.

Description TPSETUNSOL() allows a client to identify the routine that should be invoked when
unsolicited message is received by the BEA Tuxedo system libraries. Before the
call to TPSETUNSOL(), any unsolicited messages received by the BEA Tuxedo sys
libraries on behalf of the client are logged and ignored. A call to TPSETUNSOL() with
a function number, CURR-ROUTINE, set to 0 has the same effect. The method used b
the system for notification and detection is determined by the application default
which can be overridden on a per-client basis (see TPINITIALIZE(3cbl)).

The routine number passed, in CURR-ROUTINE, on the call to TPSETUNSOL() selects
one of 16 predefined routines. The routine names must be _tm_dispatch1 through
_tm_dispatch8 for C routines that provide unsolicited message handling and
TMDISPATCH9 through TMDISPATCH16 for COBOL routines that provide the same
message handling. The C functions (_tm_dispatch1 through _tm_dispatch8) must
conform to the parameter definition described in tpsetunsol(3c) . The COBOL
routines (TMDISPATCH9 through TMDISPATCH16) must use TPGETUNSOL() to receive
the data.

Processing within the unsolicited message handling routine in a C application is
restricted to the following BEA Tuxedo functions: tpalloc() , tpfree() ,
tpgetctxt() , tpgetlev() , tprealloc() , and tptypes() .

Processing within the unsolicited message handling routine in a COBOL applica
is restricted to the following BEA Tuxedo functions: TPGETLEV() and TPGETCTXT().

Return Values Upon successful completion, TPSETUNSOL() sets TP-STATUS to [TPOK] and returns
the previous setting for the unsolicited message handling routine (0 in PREV-ROUTINE
is a successful return indicating that no message handling routine had been set
previously).
152 BEA Tuxedo COBOL Function Reference

TPSETUNSOL(3cbl)

n

 is

that
Errors Under the following conditions, TPSETUNSOL() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given (for example, CURR-ROUTINE is not a valid
routine value).

[TPEPROTO]
TPSETUNSOL() was called in an improper context (for example, from withi
a server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability The interfaces described in TPNOTIFY() are supported on native site UNIX-based
processors. In addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as
the routine TPSETUNSOL() are supported on UNIX and MS-DOS workstation
processors.

TPSETUNSOL() is not supported on Windows, OS/2, and RS6000 due to the way
Dynamic Link Libraries and Shared Libraries work in these environments;
TPEPROTO() will be returned if called on these platforms. Use the C-language
interface tpsetunsol() to set up a handler function in these environments.

See Also TPGETCTXT(3cbl) , TPGETUNSOL(3cbl) , TPINITIALIZE(3cbl) , TPTERM(3cbl)
BEA Tuxedo COBOL Function Reference 153

Section 3(cbl) - COBOL Functions

t
ed or

um
or a
ault

of

is

f
TPSPRIO(3cbl)

Name TPSPRIO() - set service request priority

Synopsis 01 TPPRIDEF-REC.
 COPY TPPRIDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Description TPSPRIO() sets the priority for the next request sent or forwarded. The priority se
affects only the next request sent. (Priority can also be set for messages enqueu
dequeued by TPENQUEUE() or TPDEQUEUE() if the queued management facility is
installed.) By default, the setting of PRIORITY in TPPRIDEF-REC increments or
decrements a service’s default priority up to a maximum of 100 or down to a minim
of 1 depending on its sign, where 100 is the highest priority. The default priority f
request is determined by the service to which the request is being sent. This def
may be specified administratively (see UBBCONFIG(5)), or take the system default of
50. TPSPRIO() has no effect on messages sent via TPCONNECT() or TPSEND().

The following is a list of valid settings in TPPRIDEF-REC.

TPABSOLUTE
The priority of the next request should be sent out at the absolute value
PRIORITY. The absolute value of PRIORITY must be within the range 1 and
100, inclusive, with 100 being the highest priority. Any value outside of th
range causes a default value to be used.

TPRELATIVE
The priority of the next request should be sent out at the relative value o
PRIORITY.

Return Values Upon successful completion, TPSPRIO() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPSPRIO() fails and sets TP-STATUS to:

[TPEINVAL]
TPPRIDEF-REC settings are invalid.
154 BEA Tuxedo COBOL Function Reference

TPSPRIO(3cbl)

 is
[TPEPROTO]
TPSPRIO() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPACALL(3cbl) , TPCALL(3cbl) , TPDEQUEUE(3cbl) , TPENQUEUE(3cbl) ,
TPGPRIO(3cbl)
BEA Tuxedo COBOL Function Reference 155

Section 3(cbl) - COBOL Functions

ted
ne

on,

ted

t
g an
sted

ation
. The
TPSUBSCRIBE(3cbl)

Name TPSUBSCRIBE() - subscribe to an event

Synopsis 01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPQUEDEF-REC.
 COPY TPQUEDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSUBSCRIBE" USING TPEVTDEF-REC TPQUEDEF-REC TPSTATUS-REC.

Description The caller uses TPSUBSCRIBE() to subscribe to an event or set of events named by
EVENT-EXPR in TPEVTDEF-REC. Subscriptions are maintained by the BEA Tuxedo
EventBroker, TMUSREVT(), and are used to notify subscribers when events are pos
via TPPOST() . Each subscription specifies a notification method which can take o
of three forms: client notification, service calls, or message enqueuing to
stable-storage queues. Notification methods are determined by the subscriber’s
process type and the setting of the TPEV-METHOD-FLAG in TPEVTDEF-REC.

The event or set of events being subscribed to is named by the regular expressi
EVENT-EXPR in TPEVTDEF-REC, and cannot be SPACES. Regular expressions are of
the form specified in recomp, rematch(3c) . For example, if EVENT-EXPR is
"\e\e..*" , the caller is subscribing to all system-generated events; if EVENT-EXPR is
"\e\e.SysServer.*" , the caller is subscribing to all system-generated events rela
to servers. If EVENT-EXPR is "[A-Z].*" , the caller is subscribing to all user events
starting with A-Z; if EVENT-EXPR is ".*(ERR|err).*" , the caller is subscribing to all
user events containing either the substring "ERR" or the substring "err " in the event
name (for example, "account_error " and "ERROR_STATE" events would both
qualify).

EVENT-FILTER in TPEVTDEF-REC is a string containing a boolean filter rule that mus
be evaluated successfully before the EventBroker posts the event. Upon receivin
event to be posted, the EventBroker applies the filter rule, if one exists, to the po
event’s data. If the data passes the filter rule, the EventBroker invokes the notific
method; otherwise, the broker does not invoke the associated notification method
caller can subscribe to the same event multiple times with different filter rules.
156 BEA Tuxedo COBOL Function Reference

TPSUBSCRIBE(3cbl)

nd
sion

e

nt

 an
ive

r
ee

at

nt is

d by

e
o
Filter rules are specific to the typed records to which they are applied. For FML a
view records, the filter rule is a string that can be passed to each boolean expres
compiler (see Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml)) and
evaluated against the posted record (see Fboolev, Fboolev32, Fvboolev,

Fvboolev32(3fml)). For STRING records, the filter rule is a regular expression of th
form specified in recomp, rematch(3c) . All other record types require customized
filter evaluators (see buffer(3c) and typesw(5) for details on adding customized
filter evaluators). If no filter rule is associated with EVENT-EXPR, then EVENT-FILTER
must be SPACES.

If the subscriber is a BEA Tuxedo system client process and TPEVNOTIFY in
TPEVTDEF-REC is set, then the EventBroker sends an unsolicited message to the
subscriber when the event to which it subscribed is posted. That is, when an eve
name is posted that evaluates successfully against EVENT-EXPR, the EventBroker tests
the posted data against the filter rule associated with EVENT-EXPR. If the data passes
the filter rule or if there is no filter rule for the event, then the subscriber receives
unsolicited notification along with any data posted with the event. In order to rece
unsolicited notifications, the client must register (via TPSETUNSOL()) an unsolicited
message handling routine. If a BEA Tuxedo system server process calls
TPSUBSCRIBE() with TPEVNOTIFY set, then TPSUBSCRIBE() fails and sets
TP-STATUS in TPSTATUS-REC to [TPEPROTO].

Clients receiving event notification via unsolicited messages should remove thei
subscriptions from the EventBroker’s list of active subscriptions before exiting (s
TPUNSUBSCRIBE() for details). Using TPUNSUBSCRIB()’s wildcard handle, -1, clients
can conveniently remove all of their “non-persistent” subscriptions which include
those associated with the unsolicited notification method (see the description of
TPEVPERSIST below for subscriptions and their associated notification methods th
persist after a process exits). If a client exits without removing its non-persistent
subscriptions, then the EventBroker will remove them when it detects that the clie
no longer accessible.

When TPEVNOTIFY is set, TPEVNOTRAN and TPEVNOPERSIST must also be set;
otherwise TPSUBSCRIBE() fails and sets TP-STATUS to [TPEINVAL]. That is, an event
subscription for a client having the unsolicited notification method cannot be
transactional nor can it be persistent.

If the subscriber (regardless of process type) sets TPEVSERVICE() in TPEVTDEF-REC,
then event notifications are sent to the BEA Tuxedo system service routine name
NAME-1 in TPEVTDEF-REC. That is, when an event name is posted that evaluates
successfully against EVENT-EXPR, the EventBroker tests the posted data against th
filter rule associated with EVENT-EXPR. If the data passes the filter rule or if there is n
BEA Tuxedo COBOL Function Reference 157

Section 3(cbl) - COBOL Functions

n is
ata.

it will

s (see

.

r

name
hich

 of

 that it

 such

e to
a
filter rule for the event, then a service request is sent to NAME-1 along with any data
posted with the event. The service name in NAME-1 can be any valid BEA Tuxedo
system service name and it may or may not be active at the time the subscriptio
made. Service routines invoked by the EventBroker should return with no reply d
That is, they should call TPRETURN() with REC-TYPE in TPTYPE-REC set to SPACES.
Any data passed to TPRETURN() will be dropped.

If TPEVTRAN in TPEVTDEF-REC is also set, then if the process calling TPPOST() is in
transaction mode, the EventBroker calls the subscribed service routine such that
be part of the poster’s transaction. Both the EventBroker, TMUSREVT(), and the
subscribed service routine must belong to server groups that support transaction
UBBCONFIG(5) for details). If TPEVNOTRAN is set, then the EventBroker calls the
subscribed service routine such that it will not be part of the poster’s transaction

If the subscriber (regardless of process type) sets TPEVQUEUE() in TPEVTDEF-REC,
then event notifications are enqueued to the queue space named by NAME-1 in
TPEVTDEF-REC and the queue named by NAME-2 in TPEVTDEF-REC. That is, when an
event name is posted that evaluates successfully against EVENT-EXPR, the EventBroker
tests the posted data against the filter rule associated with EVENT-EXPR. If the data
passes the filter rule or if there is no filter rule for the event, then the EventBroke
enqueues a message to the queue space named by NAME-1 and the queue named by
NAME-2 along with any data posted with the event. The queue space and queue
can be any valid BEA Tuxedo system queue space and queue name, either of w
may or may not exist at the time the subscription is made.

TPQUEDEF-REC can contain options further directing the EventBroker’s enqueuing
the posted event. If the caller has no options to specify, then TPQUEDEF-REC should be
set to LOW-VALUE. Otherwise, options can be set as described in the “Control
Parameter” subsection of the TPENQUEUE() reference page (specifically, see the
section describing the valid list of settings controlling input information for
TPENQUEUE()).

If TPEVTRAN in TPEVTDEF-REC is also set, then if the process calling TPPOST() is in
transaction mode, the EventBroker enqueues the posted event and its data such
will be part of the poster’s transaction. The EventBroker, TMUSREVT(), must belong to
a server group that supports transactions (see UBBCONFIG(5) for details). If
TPEVNOTRAN is set, then the EventBroker enqueues the posted event and its data
that it will not be part of the poster’s transaction.

By default, the BEA Tuxedo EventBroker deletes subscriptions when the resourc
which it is posting is not available (for example, the EventBroker cannot access
service routine and/or a queue space/queue name associated with an event
158 BEA Tuxedo COBOL Function Reference

TPSUBSCRIBE(3cbl)

ce will
for

e, or

of

t, the

at

n

e

d

g
he

r.

 the
subscription). Setting TPEVPERSIST in TPEVTDEF-REC indicates that the subscriber
wants this subscription to persist across such errors (usually because the resour
become available again in the future). Persistent subscriptions are allowed only
TPEVSERVICE() and TPEVQUEUE() notification methods. TPEVPERSIST cannot be
used when TPEVNOTIFY is set; otherwise, the function fails and sets TP-STATUS to
[TPEINVAL]. When TPEVNOPERSIST is used, the EventBroker will remove this
subscription if it encounters an error accessing either the client, the service nam
queue space/queue name designated in this subscription.

If TPEVPERSIST is used with TPEVTRAN and the resource is not available at the time
event notification, then the EventBroker will return to the poster such that its
transaction must be aborted. That is, even though the subscription remains intac
resource’s unavailability will cause the poster’s transaction to fail.

If the EventBroker’s list of active subscriptions already contains a subscription th
matches the one being requested by TPSUBSCRIBE(), then the function fails setting
TP-STATUS to [TPEMATCH]. For a subscription to match an existing one, both
EVENT-EXPR and EVENT-FILTER must match those of a subscription already in the
EventBroker’s active list of subscriptions. In addition, depending on the notificatio
method, other criteria are used to determine matches.

If TPEVNOTIFY is set, then the caller’s system-defined client identifier (known as a
CLIENTID) is also used to detect matches. That is, TPSUBSCRIBE() fails if
EVENT-EXPR, EVENT-FILTER , and the caller’s CLIENTID match those of a
subscription already known to the EventBroker.

If TPEVSERVICE() is set, then TPSUBSCRIBE() fails if EVENT-EXPR, EVENT-FILTER ,
and the service name set in NAME-1 match those of a subscription already known to th
EventBroker.

If TPEVQUEUE() is set, then EventBroker uses the queue space, queue name, an
correlation identifier, in addition to EVENT-EXPR and EVENT-FILTER , when
determining matches. The correlation identifier can be used to differentiate amon
several subscriptions for the same event expression and filter rule, destined for t
same queue. Thus, if the caller has set both TPEVQUEUE() and TPQNOCOORID(), then
TPSUBSCRIBE() fails if EVENT-EXPR, EVENT-FILTER , the queue space name set in
NAME-1, and the queue name set in NAME-2 match those of a subscription (which also
does not have a correlation identifier specified) already known to the EventBroke
Further, if TPQCOORID() is set, then TPSUBSCRIBE() fails if EVENT-EXPR,
EVENT-FILTER , NAME-1, NAME-2 , and CORRID in TPQUEDEF-REC match those of a
subscription (which has the same correlation identifier specified) already known to
EventBroker.
BEA Tuxedo COBOL Function Reference 159

Section 3(cbl) - COBOL Functions

ion

ks
king

ts
.

tem

tem

 the
his

The following is a list of settings in TPEVTDEF-REC.

TPNOBLOCK
The subscription is not made if a blocking condition exists. If such a condit
occurs, the call fails and sets TP-STATUS to [TPEBLOCK]. Either TPNOBLOCK
or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or bloc
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either
TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values Upon successful completion, TPSUBSCRIBE() sets TP-STATUS to [TPOK]. In addition,
TPSUBSCRIBE() sets SUBSCRIPTION-HANDLE in TPEVTDEF-REC to the handle for this
subscription. SUBSCRIPTION-HANDLE can be used when calling TPUNSUBSCRIBE() to
remove this subscription from the EventBroker’s list of active subscriptions. Either
subscriber or any other process is allowed to use the returned handle to delete t
subscription.

Errors Under the following conditions, TPSUBSCRIBE() fails and sets TP-STATUS to one of
the following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, EVENT-EXPR is SPACES).
160 BEA Tuxedo COBOL Function Reference

TPSUBSCRIBE(3cbl)

n
ing

 is
[TPENOENT]
Cannot access the BEA Tuxedo EventBroker.

[TPELIMIT]
The subscription failed because the EventBroker’s maximum number of
subscriptions has been reached.

[TPEMATCH]
The subscription failed because it matched one already listed with the
EventBroker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is to be aborted; otherwise, a block
timeout occurred and both TPBLOCK and TPTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
[TPETIME] until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPSUBSCRIBE() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also buffer(3c) , recomp, rematch(3c) , TPENQUEUE(3cbl) , TPPOST(3cbl) ,
TPSETUNSOL(3cbl) , TPUNSUBSCRIBE(3cbl) , Fboolco, Fboolco32, Fvboolco,

Fvboolco32(3fml) , Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml) ,
EVENTS(5) , EVENT_MIB(5) , TMSYSEVT(5), TMUSREVT(5), tuxtypes(5) ,
typesw(5) , UBBCONFIG(5)
BEA Tuxedo COBOL Function Reference 161

Section 3(cbl) - COBOL Functions

ciated
ction,

In the

 the
g

l
TPSUSPEND(3cbl)

Name TPSUSPEND() - suspend a global transaction

Synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSUSPEND" USING TPTRXDEF-REC TPSTATUS-REC.

Description TPSUSPEND() is used to suspend the transaction active in the caller’s program. A
transaction begun with TPBEGIN() may be suspended with TPSUSPEND(). Either the
suspending program or another program may use TPRESUME() to resume work on a
suspended transaction. When TPSUSPEND() returns, the caller is no longer in
transaction mode. However, while a transaction is suspended, all resources asso
with that transaction (such as database locks) remain active. Like an active transa
a suspended transaction is susceptible to the transaction timeout value that was
assigned when the transaction first began.

For the transaction to be resumed in another process, the caller of TPSUSPEND() must
have been the initiator of the transaction by explicitly calling TPBEGIN() .
TPSUSPEND() may also be called by a process other than the originator of the
transaction (for example, a server that receives a request in transaction mode).
latter case, only the caller of TPSUSPEND() may call TPRESUME() to resume that
transaction. This case is allowed so that a process can temporarily suspend a
transaction to begin and do some work in another transaction before completing
original transaction (for example, to run a transaction to log a failure before rollin
back the original transaction).

TPSUSPEND() populates TRANID with the transaction identifier being suspended.

To ensure success, the caller must have completed all outstanding transactiona
communication with servers before issuing TPSUSPEND(). That is, the caller must
have received all replies for requests sent with TPACALL() that were associated with
the caller’s transaction. Also, the caller must have closed all connections with
conversational services associated with the caller’s transaction (that is, TPRECV() must
have returned the TPEV-SVCSUCC event). If either rule is not followed, then
TPSUSPEND() fails, the caller’s current transaction is not suspended and all
162 BEA Tuxedo COBOL Function Reference

TPSUSPEND(3cbl)

f

dles

s
ode

 is
transactional communication handles remain valid. Communication handles not
associated with the caller’s transaction remain valid regardless of the outcome o
TPSUSPEND().

Return Value Upon successful completion, TPSUSPEND() sets [TPOK] .

Errors Under the following conditions, TPSUSPEND() fails and sets TP-STATUS to:

[TPEABORT]
The caller’s active transaction has been aborted. All communication han
associated with the transaction are no longer valid.

[TPEPROTO]
TPSUSPEND() was called in an improper context (for example, the caller i
not in transaction mode). The caller’s state with respect to transaction m
is unchanged.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPACALL(3cbl) , TPBEGIN(3cbl) , TPRECV(3cbl) , TPRESUME(3cbl)
BEA Tuxedo COBOL Function Reference 163

Section 3(cbl) - COBOL Functions

ine

rom

ith at
tion.

n. The
ion

tion if
e
 not
TPSVCSTART(3cbl)

Name TPSVCSTART() - start a BEA Tuxedo system service

Synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
TPSTATUS-REC.

Description TPSVCSTART() is the first BEA Tuxedo system routine to be called when writing a
service routines. In fact, it is an error to issue any other call within a service rout
before calling TPSVCSTART(). TPVCSTART() is used to retrieve the service’s
parameters and data. This routine is used for services that receive requests via
TPCALL() or TPACALL() routines as well as by services that communicate via
TPCONNECT(), TPSEND(), and TPRECV() routines.

Service routines processing requests made via either TPCALL() , TPACALL() , or
TPFORWAR() receive at most one incoming message (upon successfully returning f
TPSVCSTART) and send at most one reply (upon exiting the service routine with
TPRETURN()).

Conversational services, on the other hand, are invoked by connection requests w
most one incoming message along with a means of referring to the open connec
Upon successfully returning from TPSVCSTART(), either the connecting program or
the conversational service may send and receive data as defined by the applicatio
connection is half-duplex in nature meaning that one side controls the conversat
(that is, it sends data) until it explicitly gives up control to the other side of the
connection.

Concerning transactions, service routines can participate in at most one transac
invoked in transaction mode. As far as the service routine writer is concerned, th
transaction ends upon returning from the service routine. If the service routine is
164 BEA Tuxedo COBOL Function Reference

TPSVCSTART(3cbl)

ine.

e

ive
invoked in transaction mode, then the service routine may originate as many
transactions as it wants using TPBEGIN() , TPCOMMIT(), and TPABORT(). Note that
TPRETURN() is not used to complete a transaction. Thus, it is an error to call
TPRETURN() with an outstanding transaction that originated within the service rout

DATA-REC specifies where the service’s data is read into, and, on input, LEN in
TPTYPE-REC indicates the maximum number of bytes that should be moved into
DATA-REC. Upon successful return from TPSVCSTART, LEN contains the actual number
of bytes moved into DATA-REC. REC-TYPE and SUB-TYPE, both in TPTYPE-REC,
contain the data’s type and sub-type, respectively. If the message is larger than
DATA-REC, then DATA-REC will contain only as many bytes as will fit in the record. Th
remainder of the message is discarded and TPSVCSTART() sets TPTRUNCATE().

If LEN is 0 upon successful return, then the service has no incoming data and DATA-REC
was not modified. It in an error for LEN to be 0 on input.

Upon successful return, SERVICE-NAME in TPSVCDEF-REC is populated with the
service name that the requesting program used to invoke the service.

The following are the possible settings in TPSVCDEF-REC upon return of
TPSVCSTART().

TPREQRSP
The service was invoked with either TPCALL() or TPACALL() . This setting is
mutually exclusive with TPCONV.

TPCONV
The service was invoked with TPCONNECT(). The communications handle for
the conversation is available in COMM-HANDLE in TPSVCDEF-REC. This setting
is mutually exclusive with TPREQRSP.

TPNOTRAN
The service routine is not in transaction mode. This setting is mutually
exclusive with TPTRAN.

TPTRAN
The service routine is in transaction mode. This setting is mutually exclus
with TPNOTRAN.

TPNOREPLY
The program invoking the service routine is not expecting a reply. This
setting is meaningful only when TPREQRSP is set. This setting is mutually
exclusive with TPREPLY.
BEA Tuxedo COBOL Function Reference 165

Section 3(cbl) - COBOL Functions

g is

nd the
tting

tion
etting

ent
ed
vice
gh
level

 is
TPREPLY
The program invoking the service routine is expecting a reply. This settin
meaningful only when TPREQRSP is set. This setting is mutually exclusive
with TPNOREPLY.

TPSENDONLY
The service is invoked such that it can send data across the connection a
program on the other end of the connection can only receive data. This se
is meaningful only when TPCONV is set. This setting is mutually exclusive
with TPRECVONLY.

TPRECVONLY
The service is invoked such that it can only receive data from the connec
and the program on the other end of the connection can send data. This s
is meaningful only when TPCONV is set. This setting is mutually exclusive
with TPSENDONLY.

APPKEY in TPSVCDEF-REC is set to the application key assigned to the requesting cli
program by the application defined authentication service. This key value is pass
along with any and all service requests made while within this invocation of the ser
routine. APPKEY will have a value of -1 for originating clients that do not pass throu
the application authentication service. This includes clients of an earlier release
interoperating with a security application.

Return Values Upon successful completion, TPSVCSTART() sets TP-STATUS to [TPOK]. If the size of
the incoming message was larger then the size specified in LEN on input,
TPTRUNCATE() is set and only LEN amount of data was moved to DATA-REC, the
remaining data is discarded.

Errors Under the following conditions, TPSVCSTART() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPEPROTO]
TPSVCSTART() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also buildserver(1) , TPBEGIN(3cbl) , TPCALL(3cbl) , TPCONNECT(3cbl) ,
TPINITIALIZE(3cbl) , TPOPEN(3cbl) , TPSVRDONE(3cbl) , TPSVRINIT(3cbl)
166 BEA Tuxedo COBOL Function Reference

TPSVRDONE(3cbl)

erver
A
ed in
s
se
e

n
TPSVRDONE(3cbl)

Name TPSVRDONE() - BEA Tuxedo system server termination routine

Synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS.
PROCEDURE DIVISION.
* User code
EXIT PROGRAM.

Description The BEA Tuxedo system server abstraction calls TPSVRDONE() after it has finished
processing service requests but before it exits. When this routine is invoked, the s
is still part of the system but its own services have been unadvertised. Thus, BE
Tuxedo system communication can be performed and transactions can be defin
this routine. However, if TPSVRDONE() returns with open connections, asynchronou
replies pending or while still in transaction mode, the BEA Tuxedo system will clo
its connections, ignore any pending replies and rollback the transaction before th
server exits.

If an application does not provide this routine in a server, then the default versio
provided by the BEA Tuxedo system is called instead. The default TPSVRDONE() calls
TPCLOSE() and USERLOG() to announce that the server is about to exit.

Usage If either TPRETURN() or TPFORWAR() are called in TPSVRDONE(), then these routines
simply return having no effect.

See Also TPCLOSE(3cbl) , TPSVRINIT(3cbl)
BEA Tuxedo COBOL Function Reference 167

Section 3(cbl) - COBOL Functions

fore
be

lies

n

ue

TPSVRINIT(3cbl)

Name TPSVRINIT() - BEA Tuxedo system server initialization routine

Synopsis LINKAGE SECTION.

01 CMD-LINE.
 05 ARGC PIC 9(4) COMP-5.
 05 ARGV.
 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC .
01 TPSTATUS-REC.
 COPY TPSTATUS.
PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC.
* User code
EXIT PROGRAM

Description The BEA Tuxedo system server abstraction calls TPSVRINIT() during its
initialization. This routine is called after the program has become a server but be
it handles any service requests; thus, BEA Tuxedo system communication may
performed and transactions may be defined in this routine. However, if TPSVRINIT()
returns with open connections, asynchronous replies pending or while still in
transaction mode, the BEA Tuxedo system will close the connections, ignore rep
pending, abort the transaction, and the server will exit gracefully.

If an application does not provide this routine in a server, then the default versio
provided by the BEA Tuxedo system is called instead. The default TPSVRINIT() calls
TPOPEN() and USERLOG() to announce that the server has successfully started.

Application-specific options can be passed into a server and processed in
TPSVRINIT() (see servopts(5)). The options are passed through ARGC and ARGV.
ARGC contain the number of arguments that have been passed and ARGV contains the
arguments (in character format) separated by a single SPACE character. getopt() is
used in a BEA Tuxedo system.

If successful TPSVRINIT() , returns [TPOK] in TP-STATUS and the service can start
accepting requests. If an error occurs in TPSVRINIT , the application can cause the
server to exit gracefully (and not take any service requests) by returning any val
except [TPOK] in TP-STATUS.

Return Values If either TPRETURN() or TPFORWAR() are used outside of a service routine (for
example, in clients, or in TPSVRINIT() or TPSVRDONE()), then these routines return
having no effect.
168 BEA Tuxedo COBOL Function Reference

TPSVRINIT(3cbl)
Usage If either TPRETURN() or TPFORWAR() are called in TPSVRINIT() , these routines
simply return having no effect.

See Also TPOPEN(3cbl) , TPSVRDONE(3cbl)
BEA Tuxedo COBOL Function Reference 169

Section 3(cbl) - COBOL Functions

 in

y

ady

 is
TPTERM(3cbl)

Name TPTERM() - leaves an application

Synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPTERM" USING TPSTATUS-REC.

Description TPTERM() removes a client from a BEA Tuxedo system application. If the client is
transaction mode, then the transaction is rolled back. When TPTERM() returns
successfully, the caller can no longer perform BEA Tuxedo client operations. An
outstanding conversations are immediately disconnected.

If TPTERM() is called more than once (that is, if it is called after the caller has alre
left the application), no action is taken and success is returned.

Multicontexting Issues

After invoking TPTERM(), a program is placed in the TPNULLCONTEXT context. Most
ATMI functions invoked by a program in the TPNULLCONTEXT context perform an
implicit TPINITIALIZE() . Whether or not the call to TPINITIALIZE() succeeds
depends on the usual determining factors, unrelated to context-specific issues.

Return Values Upon successful completion, TPTERM() sets TP-STATUS to [TPOK]. Upon success in a
multicontexted application, the application’s current context is changed to
TPNULLCONTEXT. It is the user’s responsibility to use TPSETCTXT() to change the
context subsequently, as desired.

Upon failure, TPTERM() returns -1 and sets TP-STATUS to indicate the error condition.

Errors Upon failure, TPTERM() sets TP-STATUS to one of the following values.

[TPEPROTO]
TPTERM() was called in an improper context (for example, the caller is a
server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPINITIALIZE(3cbl)
170 BEA Tuxedo COBOL Function Reference

TPUNADVERTISE(3cbl)

t, a
n it is

e
ents

e

are
TPUNADVERTISE(3cbl)

Name TPUNADVERTISE() - routine for unadvertising service names

Synopsis 01 SVC-NAME PIC X(15).
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPUNADVERTISE" USING SVC-NAME TPSTATUS-REC.

Description TPUNADVERTISE() allows a server to unadvertise a service that it offers. By defaul
server’s services are advertised when it is booted and they are unadvertised whe
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer th
same set of services. These routines enforce this rule by affecting the advertisem
of all servers sharing an MSSQ set.

TPUNADVERTISE() removes SVC-NAME as an advertised service for the server (or th
set of servers sharing the caller’s MSSQ set). SVC-NAME cannot be SPACES. Also,
SVC-NAME should be 15 characters or less. (See the SERVICES section of
UBBCONFIG(5)). Longer names will be accepted and truncated to 15 characters. C
should be taken such that truncated names do not match other service names.

Return Values Upon successful completion, TPUNADVERTISE() sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPUNADVERTISE() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given (for example SVC-NAME is SPACES).

[TPENOENT]
SVC-NAME is not currently advertised by the server.

[TPEPROTO]
TPUNADVERTISE() was called in an improper context (for example, by a
client).
BEA Tuxedo COBOL Function Reference 171

Section 3(cbl) - COBOL Functions

 is

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPADVERTISE(3cbl)
172 BEA Tuxedo COBOL Function Reference

TPUNSUBSCRIBE(3cbl)

t

y

de

e

ess
that
de by

ks
ing

ts
.
TPUNSUBSCRIBE(3cbl)

Name TPUNSUBSCRIBE() - unsubscribe to an event

Synopsis 01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPUNSUBSCRIBE" USING TPEVTDEF-REC TPSTATUS-REC.

Description The caller uses TPUNSUBSCRIBE() to remove an event subscription or a set of even
subscriptions from the BEA Tuxedo EventBroker’s list of active subscriptions.
SUBSCRIPTION-HANDLE in TPEVTDEF-REC is an event subscription handle returned b
TPSUBSCRIBE(). Setting SUBSCRIPTION-HANDLE to the wildcard value, -1, directs
TPUNSUBSCRIBE() to unsubscribe to all non-persistent subscriptions previously ma
by the calling process. Non-persistent subscriptions are those made with
TPEVNOPERSIST set when TPSUBSCRIBE() was called. Persistent subscriptions can b
deleted only by using the handle returned by TPSUBSCRIBE().

Note that the -1 handle removes only those subscriptions made by the calling proc
and not any made by previous instantiations of the caller (for example, a server
dies and restarts cannot use the wildcard to unsubscribe to any subscriptions ma
the original server).

The following is a list of valid settings in TPEVTDEF-REC.

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a
condition occurs, the call fails and sets TP-STATUS to [TPEBLOCK]. Either
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or block
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wan
to be immune to blocking timeouts. Transaction timeouts may still occur
Either TPNOTIME or TPTIME must be set.
BEA Tuxedo COBOL Function Reference 173

Section 3(cbl) - COBOL Functions

tem

tem

rd
tions

r’s

n
ing
TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. Either TPNOTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is not restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either
TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values Upon successful completion, TPUNSUBSCRIBE() sets TP-STATUS to [TPOK]. In
addition, TPUNSUBSCRIBE() sets EVENT-COUNT in TPEVTDEF-REC to the number of
subscriptions deleted (zero or greater) from the EventBroker’s list of active
subscriptions. EVENT-COUNT may contain a number greater than 1 only when the
wildcard handle, -1, is used. Also, EVENT-COUNT may contain a number greater than
0 even when TPUNSUBSCRIBE() completes unsuccessfully (that is, when the wildca
handle is used, the EventBroker may have successfully removed some subscrip
before it encountered an error deleting others).

Errors Under the following conditions, TPUNSUBSCRIBE() fails and sets TP-STATUS to one
of the following values. (Unless otherwise noted, failure does not affect the calle
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, SUBSCRIPTION-HANDLE is an
invalid subscription handle).

[TPENOENT]
Cannot access the BEA Tuxedo EventBroker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is to be aborted; otherwise, a block
timeout occurred and both TPBLOCK and TPTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
[TPETIME] until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.
174 BEA Tuxedo COBOL Function Reference

TPUNSUBSCRIBE(3cbl)

 is
[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPUNSUBSCRIBE() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPPOST(3cbl) , TPSUBSCRIBE(3cbl) , EVENTS(5) , EVENT_MIB(5) , TMSYSEVT(5),
TMUSREVT(5)
BEA Tuxedo COBOL Function Reference 175

Section 3(cbl) - COBOL Functions

ed (via

n.

 the
al

with

s
n
TXBEGIN(3cbl)

Name TXBEGIN() - begin a global transaction

Synopsis 01 TX-RETURN-STATUS.
 COPY TXSTATUS.
CALL "TXBEGIN" USING TX-RETURN-STATUS.

Description TXBEGIN() is used to place the calling thread of control in transaction mode. The
calling thread must first ensure that its linked resource managers have been open
TXOPEN()) before it can start transactions. TXBEGIN fails (with a TX-STATUS value of
[TX-PROTOCOL-ERROR]) if the caller is already in transaction mode or TXOPEN() has
not been called.

Once in transaction mode, the calling thread must call TXCOMMIT() or TXROLLBACK()
to complete its current transaction. There are certain cases related to transaction
chaining where TXBEGIN() does not need to be called explicitly to start a transactio
See TXCOMMIT() and TXROLLBACK() for details. TX-RETURN-STATUS is the record
used to return a value.

Optional Set-up TXSETTIMEOUT()

Return Value Upon successful completion, TXBEGIN() returns TX-OK, a non-negative return value.

Errors Under the following conditions, TXBEGIN() fails and returns one of these negative
values:

[TX-OUTSIDE]
The transaction manager is unable to start a global transaction because
calling thread of control is currently participating in work outside any glob
transaction with one or more resource managers. All such work must be
completed before a global transaction can be started. The caller’s state
respect to the local transaction is unchanged.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller i
already in transaction mode). The caller’s state with respect to transactio
mode is unchanged.
176 BEA Tuxedo COBOL Function Reference

TXBEGIN(3cbl)

s
error
error

s
ction
rform
 not

 the
[TX-ERROR]
Either the transaction manager or one or more of the resource manager
encountered a transient error trying to start a new transaction. When this
is returned, the caller is not in transaction mode. The exact nature of the
is written to a log file.

[TX-FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. When this error is returned, the caller is
in transaction mode. The exact nature of the error is written to a log file.

See Also TXCOMMIT(3cbl) , TXOPEN(3cbl) , TXROLLBACK(3cbl) , TXSETTIMEOUT(3cbl)

Warnings XA-compliant resource managers must be successfully opened to be included in
global transaction. (See TXOPEN for details.)
BEA Tuxedo COBOL Function Reference 177

Section 3(cbl) - COBOL Functions

n is
n
rs

s to

en

g

 in
TXCLOSE(3cbl)

Name TXCLOSE() - close a set of resource managers

Synopsis DATA DIVISION.
 * Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
PROCEDURE DIVISION.
CALL "TXCLOSE" USING TX-RETURN-STATUS.

Description TXCLOSE() closes a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

TXCLOSE() closes all resource managers to which the caller is linked. This functio
used in place of resource-manager-specific “close” calls and allows an applicatio
program to be free of calls which may hinder portability. Since resource manage
differ in their termination semantics, the specific information needed to “close” a
particular resource manager must be published by each resource manager.

TXCLOSE() should be called when an application thread of control no longer wishe
participate in global transactions. TXCLOSE() fails (returning [TX-PROTOCOL-ERROR])
if the caller is in transaction mode. That is, no resource managers are closed ev
though some may not be participating in the current transaction.

When TXCLOSE() returns success (TX-OK), all resource managers linked to the callin
thread are closed.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXCLOSE() returns TX-OK, a non-negative value.

Errors Under the following conditions, TXCLOSE() fails and returns one of these negative
values.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is
transaction mode). No resource managers are closed.
178 BEA Tuxedo COBOL Function Reference

TXCLOSE(3cbl)

s
 log

s
ction
rform
to a
[TX-ERROR]
Either the transaction manager or one or more of the resource manager
encountered a transient error. The exact nature of the error is written to a
file. All resource managers that could be closed are closed.

[TX-FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. The exact nature of the error is written
log file.

See Also TXOPEN(3cbl)
BEA Tuxedo COBOL Function Reference 179

Section 3(cbl) - COBOL Functions

ad

n

ew

.

tion

TXCOMMIT(3cbl)

Name TXCOMMIT() - commit a transaction

Synopsis DATA DIVISION.
* Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
PROCEDURE DIVISION.
CALL "TXCOMMIT" USING TX-RETURN-STATUS.

Description TXCOMMIT() is used to commit the work of the transaction active in the caller’s thre
of control.

If the transaction_control characteristic (see TXSETTRANCTL()) is
TX-UNCHAINED, then when TXCOMMIT() returns, the caller is no longer in transactio
mode. However, if the transaction_control characteristic is TX-CHAINED, then
when TXCOMMIT() returns, the caller remains in transaction mode on behalf of a n
transaction (see the RETURN VALUE and ERRORS sections below).

TX-RETURN-STATUS is the record used to return a value.

Optional Set-up � TXSETCOMMITRET()

� TXSETTRANCTL()

� TXSETTIMEOUT()

Return Value Upon successful completion, TXCOMMIT() returns TX-OK, a non-negative return value

Errors Under the following conditions, TXCOMMIT() fails and returns one of these negative
values.

[TX-NO-BEGIN]
The current transaction committed successfully; however, a new transac
could not be started and the caller is no longer in transaction mode. This
return value may occur only when the transaction_control characteristic
is TX-CHAINED.

[TX-ROLLBACK]
The current transaction could not commit and has been rolled back. In
addition, if the transaction_control characteristic is TX-CHAINED, a new
transaction is started.
180 BEA Tuxedo COBOL Function Reference

TXCOMMIT(3cbl)

 new

nd
nly

ave
 the

ave
 new

 not
s not

s
ction
rform
to a
[TX-ROLLBACK-NO-BEGIN]
The transaction could not commit and has been rolled back. In addition, a
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

[TX-MIXED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if the transaction_control
characteristic is TX-CHAINED, a new transaction is started.

[TX-MIXED-NO-BEGIN]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started a
the caller is no longer in transaction mode. This return value can occur o
when the transaction_control characteristic is TX-CHAINED.

[TX-HAZARD]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, if
transaction_control characteristic is TX-CHAINED, a new transaction is
started.

[TX-HAZARD-NO-BEGIN]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, a
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is
in transaction mode). The caller’s state with respect to transaction mode i
changed.

[TX-FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. The exact nature of the error is written
log file. The caller’s state with respect to the transaction is unknown.

See Also TXBEGIN(3cbl) , TXSETCOMMITRET(3cbl) , TXSETTIMEOUT(3cbl) ,
TXSETTRANCTL(3cbl)
BEA Tuxedo COBOL Function Reference 181

Section 3(cbl) - COBOL Functions

n

e,

 the
r’s

.

TXINFORM(3cbl)

Name TXINFORM() - return global transaction information

Synopsis DATA DIVISION.
 * Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
01 TX-INFO-AREA.
 COPY TXINFDEF.
PROCEDURE DIVISION.
CALL "TXINFORM" USING TX-INFO-AREA, TX-RETURN-STATUS .

Description TXINFORM() returns global transaction information in TX-INFO-AREA . In addition,
this function returns a value indicating whether the caller is currently in transactio
mode or not.

TXINFORM() populates the TX-INFO-AREA record with global transaction information.
The contents of the TX-INFO-AREA record are described under INTRO() .

If TXINFORM is called in transaction mode, then TX-IN-TRAN is set, XID-REC will be
populated with a current transaction branch identifier and TRANSACTION-STATE will
contain the state of the current transaction. If the caller is not in transaction mod
TX-NOT-IN-TRAN is set and XID-REC will be populated with the null XID (see
TXINTRO for details). In addition, regardless of whether the caller is in transaction
mode, COMMIT-RETURN, TRANSACTION-CONTROL, and TRANSACTION-TIMEOUT
contain the current settings of the commit_return and transaction_control
characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when
next transaction is started. Thus, it may not reflect the timeout value for the calle
current global transaction since calls made to TXSETTIMEOUT() after the current
transaction was begun may have changed its value.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXINFORM() returns TX-OK, a non-negative return value

Errors Under the following conditions, TXINFORM() fails and returns one of these negative
values.
182 BEA Tuxedo COBOL Function Reference

TXINFORM(3cbl)

as

ror is
f of
[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller h
not yet called TXOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the er
such that the transaction manager can no longer perform work on behal
the application. The exact nature of the error is written to a log file.

See Also TXOPEN(3cbl) , TXSETCOMMITRET(3cbl) , TXSETTIMEOUT(3cbl) ,
TXSETTRANCTL(3cbl)

Warnings Within the same global transaction, subsequent calls to TXINFORM are guaranteed to
provide an XID with the same gtrid component, but not necessarily the same bqual
component.
BEA Tuxedo COBOL Function Reference 183

Section 3(cbl) - COBOL Functions

alls
y.

 each

e
essed

ss,
TXOPEN(3cbl)

Name TXOPEN() - open a set of resource managers

Synopsis DATA DIVISION.
 * Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
PROCEDURE DIVISION.
CALL "TXOPEN" USING TX-RETURN-STATUS.

Description TXOPEN() opens a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

TXOPEN() attempts to open all resource managers that have been linked with the
application. This function is used in place of resource-manager-specific “open” c
and allows an application program to be free of calls which may hinder portabilit
Since resource managers differ in their initialization semantics, the specific
information needed to “open” a particular resource manager must be published by
resource manager.

If TXOPEN() returns TX-ERROR, then no resource managers are open. If TXOPEN()
returns TX-OK, some or all of the resource managers have been opened. Resourc
managers that are not open will return resource-manager-specific errors when acc
by the application. TXOPEN() must successfully return before a thread of control
participates in global transactions.

Once TXOPEN() returns success, subsequent calls to TXOPEN (before an intervening
call to TXCLOSE()) are allowed. However, such subsequent calls will return succe
and the TM will not attempt to re-open any RMs.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXOPEN() returns TX-OK, a non-negative return value.

Errors Under the following conditions, TXOPEN() fails and returns one of these negative
values.
184 BEA Tuxedo COBOL Function Reference

TXOPEN(3cbl)

s
ct

s
ction
rform
to a
[TX-ERROR]
Either the transaction manager or one or more of the resource manager
encountered a transient error. No resource managers are open. The exa
nature of the error is written to a log file.

[TX-FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. The exact nature of the error is written
log file.

See Also TXCLOSE(3cbl)
BEA Tuxedo COBOL Function Reference 185

Section 3(cbl) - COBOL Functions

s

e

t be
may

TXROLLBACK(3cbl)

Name TXROLLBACK() - roll back a transaction

Synopsis DATA DIVISION.
 * Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
PROCEDURE DIVISION.
CALL "TXROLLBACK" USING TX-RETURN-STATUS.

Description TXROLLBACK() is used to roll back the work of the transaction active in the caller’
thread of control.

If the transaction_control characteristic (see TXSETTRANCTL()) is
TX-UNCHAINED, then when TXROLLBACK() returns, the caller is no longer in
transaction mode. However, if the transaction_control characteristic is
TX-CHAINED, then when TXROLLBACK() returns, the caller remains in transaction
mode on behalf of a new transaction (see the RETURN VALUE and ERRORS sections
below).

TX-RETURN-STATUS is the record used to return a value.

Optional Set-up � TXSETTRANCTL()

� TXSETTIMEOUT()

Return Value Upon successful completion, TXROLLBACK() returns TX-OK, a non-negative return
value.

Errors Under the following conditions, TXROLLBACK() fails and returns one of these negativ
values.

[TX-NO-BEGIN]
The current transaction rolled back; however, a new transaction could no
started and the caller is no longer in transaction mode. This return value
occur only when the transaction_control characteristic is TX-CHAINED.

[TX-MIXED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if the transaction_control
characteristic is TX-CHAINED, a new transaction is started.
186 BEA Tuxedo COBOL Function Reference

TXROLLBACK(3cbl)

nd
nly

ave
 the

ave
 new

 In

 In
er in

 not

s
ction
rform
to a
[TX-MIXED-NO-BEGIN]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started a
the caller is no longer in transaction mode. This return value can occur o
when the transaction_control characteristic is TX-CHAINED.

[TX-HAZARD]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, if
transaction_control characteristic is TX-CHAINED, a new transaction is
started.

[TX-HAZARD-NO-BEGIN]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, a
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

[TX-COMMITTED]
The work done on behalf of the transaction was heuristically committed.
addition, if the transaction_control characteristic is TX-CHAINED, a new
transaction is started.

[TX-COMMITTED-NO-BEGIN]
The work done on behalf of the transaction was heuristically committed.
addition, a new transaction could not be started and the caller is no long
transaction mode. This return value can occur only when the
transaction_control characteristic is TX-CHAINED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is
in transaction mode).

[TX-FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. The exact nature of the error is written
log file. The caller’s state with respect to the transaction is unknown.

See Also TXBEGIN(3cbl) , TXSETTIMEOUT(3cbl) , TXSETTRANCTL(3cbl)
BEA Tuxedo COBOL Function Reference 187

Section 3(cbl) - COBOL Functions

ged

t
onse

l
this

g
le,

f
ay
TXSETCOMMITRET(3cbl)

Name TXSETCOMMITRET() - set commit_return characteristic

Synopsis DATA DIVISION.
 * Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
*
01 TX-INFO-AREA.
 COPY TXINFDEF.
PROCEDURE DIVISION.
CALL "TXSETCOMMITRET" USING TX-INFO-AREA TX-RETURN-STATUS.

Description TXSETCOMMITRET() sets the commit_return characteristic to the value specified in
COMMIT-RETURN. This characteristic affects the way TXCOMMIT() behaves with
respect to returning control to its caller. TXSETCOMMITRET() may be called regardless
of whether its caller is in transaction mode. This setting remains in effect until chan
by a subsequent call to TXSETCOMMITRET().

The initial setting for this characteristic is TX-COMMIT-COMPLETED.

The following are the valid settings for COMMIT-RETURN.

TX-COMMIT-DECISION-LOGGED
This flag indicates that TXCOMMIT() should return after the commit decision
has been logged by the first phase of the two-phase commit protocol bu
before the second phase has completed. This setting allows for faster resp
to the caller of TXCOMMIT(). However, there is a risk that a transaction wil
have a heuristic outcome, in which case the caller will not find out about
situation via return codes from TXCOMMIT(). Under normal conditions,
participants that promise to commit during the first phase will do so durin
the second phase. In certain unusual circumstances however (for examp
long-lasting network or node failures) phase 2 completion may not be
possible and heuristic results may occur.

TX-COMMIT-COMPLETED
This flag indicates that TXCOMMIT() should return after the two-phase
commit protocol has finished completely. This setting allows the caller o
TXCOMMIT() to see return codes that indicate that a transaction had or m
have had heuristic results.
188 BEA Tuxedo COBOL Function Reference

TXSETCOMMITRET(3cbl)

as

ror is
f of
TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXSETCOMMITRET() returns TX-OK, a non-negative
return value.

Errors Under the following conditions, TXSETCOMMITRET() does not change the setting of
the commit_return characteristic and returns one of these negative values:

[TX-EINVAL]
COMMIT-RETURN is not one of TX-COMMIT-DECISION-LOGGED or
TX-COMMIT-COMPLETED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller h
not yet called TXOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the er
such that the transaction manager can no longer perform work on behal
the application. The exact nature of the error is written to a log file.

See Also TXBEGIN(3cbl) , TXCOMMIT(3cbl) , TXINFORM(3cbl) , TXOPEN(3cbl) ,
TXROLLBACK(3cbl)
BEA Tuxedo COBOL Function Reference 189

Section 3(cbl) - COBOL Functions

am
t call

TXSETTRANCTL(3cbl)

Name TXSETTRANCTL() - set transaction_control characteristic

Synopsis DATA DIVISION.
 * Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
01 TX-INFO-AREA.
 COPY TXINFDEF.
PROCEDURE DIVISION.
CALL "TXSETTRANCTL" USING TX-INFO-AREA TX-RETURN-STATUS.

Description TXSETTRANCTL() sets the transaction_control characteristic to the value
specified in TRANSACTION-CONTROL. This characteristic determines whether
TXCOMMIT() and TXROLLBACK() start a new transaction before returning to their
caller. TXSETTRANCTL() may be called regardless of whether the application progr
is in transaction mode. This setting remains in effect until changed by a subsequen
to TXSETTRANCTL().

The initial setting for this characteristic is TX-UNCHAINED.

The following are the valid settings for TRANSACTION-CONTROL.

TX-UNCHAINED
This flag indicates that TXCOMMIT() and TXROLLBACK() should not start a
new transaction before returning to their caller. The caller must issue
TXBEGIN() to start a new transaction.

TX-CHAINED
This flag indicates that TXCOMMIT() and TXROLLBACK() should start a new
transaction before returning to their caller.
TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXSETTRANCTL() returns TX-OK, a non-negative return
value.

Errors Under the following conditions, TXSETTRANCTL() does not change the setting of the
transaction_control characteristic and returns one of these negative values.

[TX-EINVAL]
TRANSACTION-CONTROL is not one of TX-UNCHAINED or TX-CHAINED.
190 BEA Tuxedo COBOL Function Reference

TXSETTRANCTL(3cbl)

as

ror is
f of
[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller h
not yet called TXOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the er
such that the transaction manager can no longer perform work on behal
the application. The exact nature of the error is written to a log file.

See Also TXBEGIN(3cbl) , TXCOMMIT(3cbl) , TXOPEN(3cbl) , TXROLLBACK(3cbl) ,
TXINFORM(3cbl)
BEA Tuxedo COBOL Function Reference 191

Section 3(cbl) - COBOL Functions

e
at is,

ode
es

ue up

e
TXSETTIMEOUT(3cbl)

Name TXSETTIMEOUT() - set transaction_timeout characteristic

Synopsis DATA DIVISION.
 * Include TX definitions.
01 TX-RETURN-STATUS.
 COPY TXSTATUS.
*
01 TX-INFO-AREA.
 COPY TXINFDEF.
PROCEDURE DIVISION.
CALL "TXSETTIMEOUT" USING TX-INFO-AREA TX-RETURN-STATUS.

Description TXSETTIMEOUT() sets the transaction_timeout characteristic to the value
specified in TRANSACTION-TIMEOUT. This value specifies the time period in which th
transaction must complete before becoming susceptible to transaction timeout; th
the interval between the AP calling TXBEGIN() and TXCOMMIT() or TXROLLBACK().
TXSETTIMEOUT() may be called regardless of whether its caller is in transaction m
or not. If TXSETTIMEOUT() is called in transaction mode, the new timeout value do
not take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

TRANSACTION-TIMEOUT specifies the number of seconds allowed before the
transaction becomes susceptible to transaction timeout. It may be set to any val
to the maximum value for an S9(9) COMP-5 as defined by the system. A
TRANSACTION-TIMEOUT value of zero disables the timeout feature.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXSETTIMEOUT() returns TX-OK, a non-negative return
value.

Errors Under the following conditions, TXSETTIMEOUT() does not change the setting of the
transaction_timeout characteristic and returns one of these negative values.

[TX-EINVAL]
The timeout value specified is invalid.

[TX-PROTOCOL-ERROR]
The function was called improperly. For example, it was called before th
caller called TXOPEN().
192 BEA Tuxedo COBOL Function Reference

TXSETTIMEOUT(3cbl)

 such
e
[TX-FAIL]
The transaction manager encountered an error. The nature of the error is
that the transaction manager can no longer perform work on behalf of th
application. The exact nature of the error is written to a log file.

See Also TXBEGIN(3cbl) , TXCOMMIT(3cbl) , TXINFORM(3cbl) , TXOPEN(3cbl) ,
TXROLLBACK(3cbl)
BEA Tuxedo COBOL Function Reference 193

Section 3(cbl) - COBOL Functions

l

d

is

 a

USERLOG(3cbl)

Name USERLOG() - write a message to the BEA Tuxedo system central event log

Synopsis 01 LOG-REC.
 COPY User data.
01 LOGREC-LEN PIC S9(9) COMP-5.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC.

Description USERLOG() places LOG-REC into a fixed output file—the BEA Tuxedo system centra
event log.

The central event log is an ordinary UNIX file whose pathname is composed as
follows:

� If the shell variable ULOGPFX is set, its value is used as the prefix for the
filename. If ULOGPFX is not set, ULOG is used. The prefix is determined the first
time USERLOG() is called.

� Each time USERLOG() is called the date is determined, and the month, day, an
year are concatenated to the prefix as mmddyy to set the name for the file.

� The first time a process writes to the userlog, it first writes an additional
message indicating the associated BEA Tuxedo version.

The message is then appended to the file. With this scheme, processes that call
USERLOG() on successive days will write into different files.

� Messages are appended to the log file with a tag made up of the time (hhmmss),
system name, process name, and process-id of the calling process. The tag
terminated with a colon (:).

� BEA Tuxedo system-generated error messages in the log file are prefixed by
unique identification string of the form:

catalog>:number>:

� This string gives the name of the internationalized catalog containing the
message string, plus the message number. By convention, BEA Tuxedo
system-generated error messages are used only once, so the string uniquely
identifies a location in the source code.
194 BEA Tuxedo COBOL Function Reference

USERLOG(3cbl)

e
stems;

mode,
sist of

s the
es,
l event
de,

e
� If the last character of the format specification is not a newline character,
USERLOG() appends one.

� If the first character of the shell variable ULOGDEBUG is 1 or y, the message sent
to USERLOG() is also written to the standard error of the calling process.

� USERLOG() is used by the BEA Tuxedo system to record a variety of events.

� The USERLOG mechanism is entirely independent of any database transaction
logging mechanism.

Portability The USERLOG interface is supported on UNIX and MS-DOS operating systems. Th
system name produced as part of the log message is not available on MS-DOS sy
therefore, the value PC is used as the system name for MS-DOS systems.

Examples If the variable ULOGPFX is set to /application/logs/log and if the first call to
USERLOG() occurred on 9/7/90, the log file created is named
/application/logs/log.090790 . If the call:

01 LOG-REC PIC X(15) VALUE “UNKNOWN USER”.
01 LOGREC-LEN PIC S9(9) VALUES IS 13.
CALL “USERLOG” USING LOG-REC LOGREC-LEN TPSTATUS-REC.

is made at 4:22:14pm on the UNIX named logsys by the program whose process

ID is 23431 , the following line appears in the log file:

162214.logsys!security.23431: UNKNOWN USER

If the message is sent to the central event log while the process is in transaction
the user log entry has additional components in the tag. These components con
the literal gtrid followed by three PIC S9(9) COMP-5 hexadecimal values. The
values uniquely identify the global transaction and make up what is referred to a
global transaction identifier. This identifier is used mainly for administrative purpos
but it does make an appearance in the tag that prefixes the messages in the centra
log. If the foregoing message is written to the central event log in transaction mo
the resulting log entry will look like this.

162214.logsys!security.23431: gtrid x2 x24e1b803 x239: UNKNOWN USER

If the shell variable ULOGDEBUG has a value of y , the log message is also written to th
standard error of the program named security .

Errors USERLOG() hangs if the message sent to it is larger than BUFSIZ as defined in stdio.h
BEA Tuxedo COBOL Function Reference 195

Section 3(cbl) - COBOL Functions

ile.

s
l
Diagnostics USERLOG() returns values include the inability to open, or write to the current log f
Inability to write to the standard error, when ULOGDEBUG is set, is not considered an
error.

Notices It is recommended that applications’ use of USERLOG messages be limited to message
that can be used to help debug application errors; flooding the log with incidenta
information can make it hard to spot actual errors.
196 BEA Tuxedo COBOL Function Reference

	Copyright
	Contents
	Section 3(cbl) - COBOL Functions
	Introduction to the COBOL Application-Transaction Monitor Interface
	FINIT, FINIT32(3cbl)
	FVFTOS, FVFTOS32(3cbl)
	FVSTOF(3cbl)
	TPABORT(3cbl)
	TPACALL(3cbl)
	TPADVERTISE(3cbl)
	TPBEGIN(3cbl)
	TPBROADCAST(3cbl)
	TPCALL(3cbl)
	TPCANCEL(3cbl)
	TPCHKAUTH(3cbl)
	TPCHKUNSOL(3cbl)
	TPCLOSE(3cbl)
	TPCOMMIT(3cbl)
	TPCONNECT(3cbl)
	TPDEQUEUE(3cbl)
	TPDISCON(3cbl)
	TPENQUEUE(3cbl)
	TPFORWAR(3cbl)
	TPGETCTXT(3cbl)
	TPGETLEV(3cbl)
	TPGETRPLY(3cbl)
	TPGETUNSOL(3cbl)
	TPGPRIO(3cbl)
	TPINITIALIZE(3cbl)
	TPKEYCLOSE(3cbl)
	TPKEYGETINFO(3cbl)
	TPKEYOPEN(3cbl)
	TPKEYSETINFO(3cbl)
	TPNOTIFY(3cbl)
	TPOPEN(3cbl)
	TPPOST(3cbl)
	TPRECV(3cbl)
	TPRESUME(3cbl)
	TPRETURN(3cbl)
	TPSCMT(3cbl)
	TPSEND(3cbl)
	TPSETCTXT(3cbl)
	TPSETUNSOL(3cbl)
	TPSPRIO(3cbl)
	TPSUBSCRIBE(3cbl)
	TPSUSPEND(3cbl)
	TPSVCSTART(3cbl)
	TPSVRDONE(3cbl)
	TPSVRINIT(3cbl)
	TPTERM(3cbl)
	TPUNADVERTISE(3cbl)
	TPUNSUBSCRIBE(3cbl)
	TXBEGIN(3cbl)
	TXCLOSE(3cbl)
	TXCOMMIT(3cbl)
	TXINFORM(3cbl)
	TXOPEN(3cbl)
	TXROLLBACK(3cbl)
	TXSETCOMMITRET(3cbl)
	TXSETTRANCTL(3cbl)
	TXSETTIMEOUT(3cbl)
	USERLOG(3cbl)

