2o®%%,

7 hea
BEA Tuxedo

COBOL Function Reference

BEA Tuxedo Release 7.1
Document Edition 7.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
BEA Tuxedo COBOL Function Reference

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

Section 3(cbl) - COBOL Functions

Introduction to the COBOL Application-Transaction Monitor Interface 5
FINIT, FINITB2(3CDI) covvvviveceeeee e en s 36
FVFTOS, FVFTOS32(BCDI)......cvveeereiieeie s ee e es e ereeeese e se s nes s en s 37
FVSTOR(BCDI) ..ottt n e en e ne e, 39
TPABORT(BCDI) ¢ et en e an e 41
TPACALL(BCD).... oo en e 43
TPADVERTISE(CDI) ...vvoeceee e ere e en s 47
TPBEGIN(BCDI......cvveeceeeecee et ene e s an s 49
TPBROADCAST(3CDI) ..o oot 51
TPCALL(BCDI) v an e 54
TPCANCEL(BCDI) ..o eneee e 59
TPCHKAUTH(BCDI) ...vcvveeeeee et 60
TPCHKUNSOL(BCDI) oot an s 61
TPCLOSE(3CBI) ..ottt e e et ae e e arae e e 63
TPCOMMIT(3CDI) ... e vt er e en s 64
TPCONNECT(BCDI) ...cvveeeeeeeee e ee et sn e en s 67
TPDEQUEUE(BCDI)cvoveeeeeeeeeee e es e enene e en s 71
TPDISCON(BCDI) ..o e en e e s 81
TPENQUEUE(BCDI) ..o eee et sen e e 83
TPFORWAR(BCDI) ... cve oo ee et en s 94
TPGETCTXT(BCDI) vt 97
TPGETLEV(BCDI) ..ot en e 99
TPGETRPLY(BCDI) ..ot 100
TPGETUNSOL(BCDI).c..ocvoieeieieee oot 104
TPGPRIO(BCDI) ..ot en s 106

BEA Tuxedo COBOL Function Reference i

iv

TPINITIALIZE(BCDI) .ttt 108

TPKEYCLOSE(BCOI) ... vt 116
TPKEYGETINFO(BCDI) ..o 117
TPKEYOPEN(3CDI) ...t 120
TPKEYSETINFO(BCDI ..ot 122
TPNOTIEY (BCDI) vttt 12t
TPOPEN(BCDI). ..ottt 12
TPPOST(BCDI) ..ot 12
TPRECV(BCDI) ..ot ee e 13
TPRESUME(BCDI) ..ot 13
TPRETURN(BCDI ...ttt 14
TPSCMT(BCDI) ...t 14
TPSEND(BCDI). ..ot 14
TPSETCTXT(BCHI) oo 15(
TPSETUNSOL(BCDI). ... 15
TPSPRIO(BCDI ... oot 15
TPSUBSCRIBE(3CDI) ..o 15
TPSUSPEND(3CDI) ...evoveeeeeeeee e 16
TPSVCSTART(BCDI) ..ot 16
TPSVRDONE(BCD) ..ottt 16
TPSVRINIT(BCDI) .ot 16¢
TPTERM(BCDI) ..ot 17
TPUNADVERTISE(3CDI) ..ot 171
TPUNSUBSCRIBE(3CDI) ... 17:
TXBEGIN(BCDI) ..ot 17¢€
TXCLOSE(BCDI) ..ottt 17:
TXCOMMIT(BCDIY vt ee e 180
TXINFORM(BCDI) ..ot 182
TXOPEN(BCDI) ..ot 18
TXROLLBACK(BCDI) ..o 186
TXSETCOMMITRET(ZCDI) ..o, 188
TXSETTRANCTL(BCDI) ..o 190
TXSETTIMEOUT(BCDI ..o 192
USERLOG(BCDI) ..ot 19.

BEA Tuxedo COBOL Function Reference

Section 3(cbl) - COBOL

Functions

BEA Tuxedo COBOL Functions

Name

Description

Introduction to the COBOL
Application-Transaction Monitor Interface

Provides an introduction to the COBOL ATMI

FINIT, FINIT32(3cbl)

Initializes fielded buffer

FVFTOS, FVFTOS32(3chl)

Copies from fielded buffer to COBOL structure

FVSTOF(3chl) Copies from C structure to fielded buffer
TPABORT(3chl) Abort current BEA Tuxedo system transaction
TPACALL(3chl) Routine to send a message to a service asynchronously

TPADVERTISE(3chl)

Routine for advertising service names

TPBEGIN(3cbl)

Routine to begin a BEA Tuxedo system transaction

TPBROADCAST (3chl) Broadcasts notification by name

TPCALL(3chl) Routine to send a message to a service synchronously

TPCANCEL(3chl) Cancels a communication handle for an outstanding reply

TPCHKAUTH(3cbl) Checks if authentication required to join a BEA Tuxedo system
application

TPCHKUNSOL(3cbl) Checks for unsolicited message

BEA Tuxedo COBOL Function Reference 1

Section 3(cbl) - COBOL Functions

BEA Tuxedo COBOL Functions

Name

Description

TPCLOSE(3cbl)

Closes the BEA Tuxedo system resource manager

TPCOMMIT(3cbl)

Commits current BEA Tuxedo system transaction

TPCONNECT(3cbl)

Establishes a conversational connection

TPDEQUEUE(3chl)

Routine to dequeue a message from a queue

TPDISCON(3cbl)

Takes down a conversational connection

TPENQUEUE(3chl) Routine to enqueue a message

TPFORWAR(3chbl) Forwards a BEA Tuxedo system service request to another routine

TPGETCTXT(3chl) Retrieves a context identifier for the current application
association

TPGETLEV(3chbl) Checks if a BEA Tuxedo system transaction is in progress

TPGETRPLY/(3chl) Gets reply from asynchronous message

TPGETUNSOL(3chbl) Gets unsolicited message

TPGPRIO(3chl)

Gets service request priority

TPINITIALIZE(3cbl)

Joins a BEA Tuxedo system application

TPKEYCLOSE(3cbl)

Closes a previously opened key handle

TPKEYGETINFO(3chl)

Gets information associated with a key handle

TPKEYOPEN(3chl)

Opens a key handle for digital signature generation, message
encryption, or message decryption

TPKEYSETINFO(3chl)

Sets optional attribute parameters associated with a key handle

TPNOTIFY(3cbl)

Sends notification by client identifier

TPOPEN(3cbl) Opens the BEA Tuxedo system resource manager

TPPOST(3chl) Posts an event

TPRECV(3chl) Receives a message in a conversational connection
2 BEA Tuxedo COBOL Function Reference

BEA Tuxedo COBOL Functions

Name Description

TPRESUME(3chl) Resumes a global transaction

TPRETURN(3cbl) Returns from a BEA Tuxedo system service routine
TPSCMT(3chl) Sets wherTPCOMMITshould return

TPSEND(3chl) Routine to send a message in a conversational connection
TPSETCTXT(3cbl) Sets a context identifier for the current application association
TPSETUNSOL(3chl) Sets method for handling unsolicited messages

TPSPRIO(3cbl)

Sets service request priority

TPSUBSCRIBE(3cbl)

Subscribes to an event

TPSUSPEND(3cbl) Suspends a global transaction
TPSVCSTART(3cbl) Starts a BEA Tuxedo system service
TPSVRDONE(3cbhl) Routine to terminate a BEA Tuxedo system server

TPSVRINIT(3cbl)

Routine to initialize a BEA Tuxedo system server

TPTERM(3chl)

Leaves an application

TPUNADVERTISE(3cbl)

Routine for unadvertising service names

TPUNSUBSCRIBE(3cbl)

Unsubscribes to an event

TXBEGIN(3cbl)

Begins a global transaction

TXCLOSE(3cbl)

Closes a set of resource managers

TXCOMMIT(3cbl)

Commits a transaction

TXINFORM(3chl)

Returns global transaction information

TXOPEN(3chl)

Opens a set of resource managers

TXROLLBACK(3cbl)

Rolls back a transaction

TXSETCOMMITRET(3cbl)

Setscommit_return characteristic

BEA Tuxedo COBOL Function Reference

Section 3(cbl) - COBOL Functions

BEA Tuxedo COBOL Functions

Name Description

TXSETTRANCTL(3chl) Setstransaction_control characteristic

TXSETTIMEOUT (3chl) Setstransaction_timeout characteristic

USERLOG(3chl) Writes a message to the BEA Tuxedo system central event log

4 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Introduction to the COBOL
Application-Transaction Monitor Interface

Description

Communication
Paradigms

The application-transaction monitor interface provides the interface between the
COBOL application and the transaction processing system. This interface is known as
ATMI and these pages specify its COBOL language binding. It provides routines to
open and close resources, manage transactions, manage record types, and invoke
request/response and conversational service calls.

The routines described in the ATMI reference pages imply a particular model of
communication. This model is expressed in terms of how client and server programs
can communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversational.
Request/response services are invoked by service requests along with their associated
data. Request/response services can receive exactly one request (upon entering the
service routine) and send at most one reply (upon returning from the service routine).
Conversational services, on the other hand, are invoked by connection requests along
with a means of referring to the open connection (that is, a handle used in calling
subsequent connection routines). Once the connection has been established and the
service routine invoked, either the connecting program or the conversational service
can send and receive data as defined by the application until the connection is torn
down.

Note that a program can initiate both request/response and conversational
communication, but cannot accept both request/response and conversational service
requests. The following sections describe the two communication paradigms in greater
detail.

Note: In various parts of the BEA Tuxedo documentation we reférreads
Because the BEA Tuxedo system does not support multithreading in COBOL,
COBOL programmers may assume that the tdmmadrefers to an entire
process or context, depending on the circumstances. For example:

= A multithreaded/multicontexted C client with three threads associated
with three contexts maps to a multicontexted COBOL client with three
contexts.

BEA Tuxedo COBOL Function Reference 5

Section 3(cbl) - COBOL Functions

6

BEA Tuxedo
Request/
Response
Paradigm for
(lient/Server

= A multithreaded/single-context C client with three threads associated
with a single context maps to a non-threaded, single-context COBOL
client.

With regard to request/response communication, a client is defined as a program th
can send requests and receive replies. By definition, clients cannot receive requests r
send replies. A client can send any nhumber of requests, and can wait for the replies
synchronously or receive (some limited number of) the replies at its convenience. In
certain cases, a client can send a request that has nomrIpifIALIZE() and
TPTERM() allow a client to join and leave a BEA Tuxedo system application.

A request/response server is a program that can receive one (and only one) service
request at a time and send at most one reply to that request. While a server is workir
on a particular request, it can act like a client by initiating request/response or
conversational requests and receiving their replies. In such a capacity, a server is call
arequester. Note that both client and server programs can be requesters (in fact, a cli
can be nothing but a requester).

A request/response server can forward a request to another request/response serve
Here, the server passes along the request it received to another server and does nc
expect a reply. It is the responsibility of the last server in the chain to send the reply t
the original requester. Use of the forwarding routine ensures that the original request:
ultimately receives its reply.

Servers and service routines offer a structured approach to writing BEA Tuxedo
system applications. In a server, the application writer can concentrate on the work
performed by the service rather than communications details such as receiving
requests and sending replies. Because many of the communication details are handl
by the BEA Tuxedo system, the application must adhere to certain conventions whe
writing a service routine. At the time a server finishes its service routine, it can send :
reply usingTPRETURN() or forward the request usimgFORWAR() A service is not
allowed to perform any other work nor is it allowed to communicate with any other
program after this point. Thus, a service performed by a server is started when a reque
is received and ended when either a reply is sent or the request is forwarded.

Concerning request and reply messages, there is an inherent difference between th
two: a request has no associated context before itis sent, but a reply does. For examy
when sending a request, the caller must supply addressing information, whereas a ref
is always returned to the program that originated the request, that is, addressing conte
is maintained for a reply and the sender of the reply can exert no control over its
destination. The differences between the two message types manifest themselvesin
parameters and descriptions of the routines describeRidALL() .

BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

BEA Tuxedo
System
Conversational
Paradigm for
Client/Server

BEA Tuxedo
System Queued
Message Model

When a request message is sent, it is sent at a particular priority. The priority affects
how a request is dequeued: when a server dequeues requests, it dequeues the one with
the highest priority. To prevent starvation, the oldest request is dequeued every so
often regardless of priority. By default, a request’s priority is associated with the

service name to which the request is being sent. Service names can be given priorities
at configuration time (sed@BBCONFIG(5)). A default priority is used if none is defined.

In addition, the priority can be set at runtime using a routireégRIO()) described

in TPCALL() . By doing so, the caller can override the configuration or default priority
when the message is sent.

With regard to conversational communication, a client is defined as a program that can
initiate a conversation but cannot accept a connection request.

A conversational server is a program that can receive connection requests. Once the
connection has been established and the service routine invoked, either the connecting
program or the conversational service can send and receive data as defined by the
application until the connection is torn down. The conversation is half-duplex in nature
such that one side of the connection has control and can send data until it gives up
control to the other side. While the connection is established, the server is “reserved”
such that no other program can establish a connection with the server.

As with a request/response server, the conversational server can act as a requester by
initiating other requests or connections with other servers. Unlike a request/response
server, a conversational server can not forward a request to another server. Thus, a
conversational service performed by a server is started when a request is received and
ended when the final reply is sent FiRRETURN().

Once the connection is established, the communications handle implies any context
needed regarding addressing information for the participants. Messages can be sent
and received as needed by the application. There is no inherent difference between the
request and reply messages and no notion of priority of messages.

The BEA Tuxedo system queued message model allows for enqueuing a request
message to stable storage for subsequent processing without waiting for its
completion, and optionally getting a reply via a queued response message. The ATMI
functions that queue messages and dequeue responsegRGEIEUE()and

TPDEQUEUE() They can be called from any type of BEA Tuxedo system application
processes: client, server, or conversational.

The queued message facility is an XA-compliant resource manager. Persistent
messages are enqueued and dequeued within transactions to ensure reliable
one-time-only processing.

BEA Tuxedo COBOL Function Reference 7

Section 3(cbl) - COBOL Functions

8

ATMI
Transactions

The BEA Tuxedo system supports two sets of mutually exclusive functions for
defining and managing transactions: the BEA Tuxedo system’s ATMI transaction
demarcation functions (the names of which include the pr@jxand X/Open’s TX
Interface functions (the names of which include the prefixY. Because X/Open used
ATMI’s transaction demarcation functions as the base for the TX Interface, the synta
and semantics of the TX Interface are quite similar to those of the ATMI. This section
is an overview of ATMI transaction concepts. The next section introduces additional
concepts about the TX Interface.

In the BEA Tuxedo system teansactionis used to define a single logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allows work
performed in many processes, possibly at different sites, to be treated as an atomic u
of work. The initiator of a transaction normally ug&BEGIN() and either

TPCOMMIT() or TPABORT() to delineate the operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing
TPSUSPEND(). Another process may take over the role of the initiator of a suspended
transaction by issUiINBPRESUME() As a transaction initiator, a program must call one
of the following: TPSUSPEND(), TPCOMMIT(), or TPABORT(). Thus, one program can
start a transaction that another may finish.

If a program calling a service is in transaction mode, then the called service routine i
also placed in transaction mode on behalf of the same transaction. Otherwise, wheth
the service is invoked in transaction mode or not depends on options specified for th
service in the configuration file. A service that is not invoked in transaction mode can
define multiple transactions between the time it is invoked and the time it ends. On th
other hand, a service routine invoked in transaction mode can participate in only one
transaction, and work on that transaction is completed upon termination of the servic
routine. Note that a connection cannot be upgraded to transaction mMRBEGHIN()

is called while a conversation exists, the conversation remains outside of the
transaction (as ifPCONNECT()had been called with thHEPNOTRAetting).

A service routine joining a transaction that was started by another program is called
participant A transaction can have several participants. A service can be invoked to
do work on the same transaction more than once. Only the initiator of a transaction
(that is, a program calling eith&PBEGIN() or TPRESUME() can callTPCOMMIT() or
TPABORT(). Participants influence the outcome of a transaction by TSiRETURN()

or TPFORWAR() These two calls signify the end of a service routine and indicate that
the routine has finished its part of the transaction.

BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

TX Transactions

Chained and
Unchained
Transactions

Transactions defined by the TX Interface are practically identical with those defined
by the ATMI functions. An application writer may use either set of functions when
writing clients and service routines. In fact, the BEA Tuxedo system does not require
all client and server programs within a single application to use one set of functions or
the other. However, the two function sets may not be used together within a single
program (that is, a program cannot G®BEGIN() and later calf XCOMMIT()).

The TX Interface has two calls for opening and closing resource managers in a portable
manner,TXOPEN() andTXCLOSE(), respectively. Transactions are started with
TXBEGIN() and completed with eith@XCOMMIT() or TXROLLBACK(). TXINFORM)()

is used to retrieve transaction information, and there are three calls to set options for
transactionsSTXSETCOMMITRET() TXSETTRANCTL(), andTXSETTIMEOUT(). The TX
Interface has no equivalents to ATMIr®SUSPEND() andTPRESUME()

In addition to the semantics and rules defined for ATMI transactions, the TX Interface
has some additional semantics that are worth introducing here. First, service routine
writers wanting to use the TX Interface must supply their BR&VRINIT() routine

that callsTXOPEN(). The default BEA Tuxedo system-supplig®lSVRINIT() calls
TPOPEN(). The same rule applies foPSVRDONE() if the TX Interface is being used,
then service routine writers must supply their oMA$VRDONE()that calls

TXCLOSE().

Second, the TX Interface has two additional semantics not found in ATMI. These are
chained and unchained transactions, and transaction characteristics.

The TX Interface supports chained and unchained modes of transaction execution. By
default, clients and service routines execute in the unchained mode; when an active
transaction is completed, a new transaction does not begimXBHGIN() is called.

In the chained mode, a new transaction starts implicitly when the current transaction
completes. That is, wherXCOMMIT() or TXROLLBACK() is called, the BEA Tuxedo
system coordinates the completion of the current transaction and initiates a new
transaction before returning control to the caller. (Certain failure conditions may
prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling
TXSETTRANCTL(). Transitions between the chained and unchained mode affect the
behavior of the neXxtXCOMMIT() or TXROLLBACK() call. The call to

TXSETTRANCTL() does not put the caller into or take it out of transaction mode.

SinceTXCLOSE() cannot be called when the caller is in transaction mode, a caller
executing in chained mode must switch to unchained mode and complete the current
transaction before callinGKCLOSE().

BEA Tuxedo COBOL Function Reference 9

Section 3(cbl) - COBOL Functions

Transaction

Characteristics

10

Timeouts

A client or a service routine may cakINFORM() to obtain the current values of their
transaction characteristics and to determine whether they are executing in transactic
mode.

The state of an application program includes several transaction characteristics. The
caller specifies these by callinggSET* functions. When a client or a service routine
sets the value of a characteristic, it remains in effect until the caller specifies a differen
value. When the caller obtains the value of a characteristicN&eORM(), it does not
change the value.

There are three types of timeouts in the BEA Tuxedo system: one is associated with
the duration of a transaction from start to finish. A second is associated with the
maximum length of time a blocking call will remain blocked before the caller regains
control. The third is a service timeout and occurs when a call exceeds the number o
seconds specified in tl®/CTIMEOUTparameter in thBERVICESsection of the
configuration file.

The first kind of timeout is specified when a transaction is startedfRBBEGIN() (see
TPBEGIN() for details). The second kind of timeout can occur when using the BEA
Tuxedo system communication routines define@iRgALL() . Callers of these

routines typically block when awaiting a reply that has yet to arrive, although they car
also block trying to send data (for example, if request queues are full). The maximun
amount of time a caller remains blocked is determined by a BEA Tuxedo system
configuration file parameter. (See tBEOCKTIMEparameter iUBBCONFIG(5) for

details.)

Blocking timeouts are performed by default when the caller is not in transaction mode
When a client or server is in transaction mode, it is subject to the timeout value with
which the transaction was started and is not subject to the blocking timeout value
specified in theJBBCONFIdile.

When a transaction timeout occurs, replies to asynchronous requests made in
transaction mode become invalid. That is, if a program is waiting for a particular
asynchronous reply for a request sent in transaction mode and a transaction timeou
occurs, the handle for that reply becomes invalid. Similarly, if a transaction timeout
occurs, an event is generated on the connection handle associated with the transact
and that handle becomes invalid. On the other hand, if a blocking timeout occurs, th
handle is still valid and the waiting program can re-issue the call to await the reply.

BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Dynamic
Service
Advertisements

Typed Records

The service timeout mechanism provides a way for the system to kill processes that
may be frozen by some unknown or unexpected system error. When a service timeout
occurs in a request/response service, the BEA Tuxedo system kills the server process
that is executing the frozen service and returns error TeE8VCERRIf a service

timeout occurs in a conversational service,TAEV_SVCERRvent is returned.

If a transaction has timed out, the only valid communications before the transaction is
aborted are calls toPACALL() with TPNOREPLYTPNOTRANandTPNOBLOCIHset.

By default, a server’s services are advertised when it is booted and unadvertised when
it is shut down. If a server needs to control the set of services that it offers at run time,

it can do so by callingPADVERTISE() andTPUNADVERTISE(). These routines affect

only the services offered by the calling server unless that server belongs to a multiple
server, single queue (MSSQ) set. Because all servers in an MSSQ set must offer the
same set of services, these routines also affect the advertisements of all servers sharing
the caller's MSSQ set.

In order to send data to another application program, the sending application program
first places the data inracord . The ATMI interface supports the notion ofyped

record . A typed record is really a pair of COBOL records. The data record is defined

in static storage and contains application data to be passed to another application
program. An auxiliary type record accompanies the data record and it identifies to the
BEA Tuxedo system the interpretation and translation rules of the data record as it
passes across heterogeneous machine boundaries. The auxiliary type record contains
the data record’s type, its optional subtype, and its optional length. Some record types
require further specification via a subtype (for example, a particular record layout) and
those of variable length require a length to be specified.

The application programmer may choose one of the six supported typed records. Note,
the BEA Tuxedo system provides a method for adding user-specific typed records. For
details, refer to the “Introduction to the C Language Application-Transaction Monitor
Interface” in theBEA Tuxedo C Function ReferenR€C-TYPEINn TPTYPE-RECSelects

which record type the application wishes to send or recUBTYPEIn TPTYPE-REC

must also be given when further classification is required (for example, a view record).
When sendind,ENin TPTYPE-RECIndicates the number of bytes to be sent and when
receiving the number of bytes to move into the user’s record. The following are the
supportecREC-TYPE.

CARRAY
TheCARRAYecord type allows an arbitrary number of characters which may
containLOW-VALUEcharacters anywhere in the record. When sending data,
LEN must contain the number of bytes to be transferred.

BEA Tuxedo COBOL Function Reference 11

Section 3(cbl) - COBOL Functions

12

Buffer Type
Switch

Single or
Multiple
Application
Context per
Process

STRING
TheSTRINGrecord type allows an arbitrary number of characters which may
not contairLOW-VALUEcharacters within the record but may be at the end of
the record. When sending dat&N must contain the number of bytes to be
transferred.

VIEW
This record type describes a COBOL record that was generated using the
viewc() compiler. When using\@EW, SUB-TYPEmust contain the name of
the view. When sending\dEw type,LEN must contain the number of bytes
to be transferred or s&O-LENGTHwhich will send the length of the view.

Two of the above record types have synonym&CTETis a synonym foCARRAYand
X_COMMOI$ a synonym fowIEW. X_COMMOSsupports a subset of the data types
supported bWIEW: longs (PIC S9(9) COMP-5) , shorts (PIC S9(4) COMP-5) ,
andcharacters (PIC X(n)) . X_CcomMmMoshould be used when both C and COBOL
programs are communicating.

In all three cases, after a successful transfey,contains the number of bytes
transferred. When receiving dat&ZNmust contain the maximum number of bytes the
data area contains. After a successful ¢a&l contains the number of bytes moved

into the data area. If the size of the incoming message is larger than the size specific
in LEN, only LEN amount of data is moved into the data area; the remaining data is
discarded.

The BEA Tuxedo system provides a method for adding user specific record types. Fc
details, see the “Buffer Type Switch” section in Introduction to the C Language
Application-Transaction Monitor Interface.

The BEA Tuxedo system allows client programs to create an association with one o
more applications per processTHINITIALIZE() s called with the
TP-MULTI-CONTEXTS setting ofCONTEXTS-FLAGN TPINFDEF-REC, then multiple

client contexts are allowed. TPINITIALIZE() s called implicitly or the
CONTEXTS-FLAGS not set torP-MULTI-CONTEXTS, then only a single application
association is allowed.

In single-context mode, fPINITIALIZE() is called more than once (that is, if it is
called after the client has already joined the application), no action is taken and succe
is returned.

In multi-context mode, each call ®PINITIALIZE() creates a new application
association. The program can obtain a handle representing this application associatic
by callingTPGETCTXT() and it can calfPSETCTXT() to set its context.

BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Once an application has chosen single-context mode, all catsSNOTIALIZE()

must specify single-context mode until all application associations are terminated.
Similarly, once an application has chosen multi-context mode, all calls to
TPINITIALIZE() must specify multi-context mode until all application associations
are terminated.

Server programs can be associated with only a single application and cannot act as
clients.

Note: In addition to allowing multiple application contexts per process, the BEA
Tuxedo system allows multiple application threads per process.
Multithreading is supported, however, only in the C language interface.

The following state table shows the transitions that may occur, within a client process,
among the following states: the uninitialized state, the initialized in single-context
mode state, and the initialized in multi-context mode state.

Per-Process Context Modes

Function States
Uninitialized Initialized Initialized
S Single-context Mode Multi-context Mode
St S
TPINITIALIZE() S S S, (error)
without

TP-MULTI-CONTEXTS

TPINITIALIZE() with S, S, (error) S,
TP-MULTI-CONTEXTS

implicit S St S, (error)
TPINITIALIZE()

TPTERM() - not last 7
association

TPTERM() - last S So
association

TPTERM() - no S
association

BEA Tuxedo COBOL Function Reference 13

Section 3(cbl) - COBOL Functions

Unsolicited
Notification

COBOL
Language ATMI
Return Codes
and Other
Definitions

There are two methods for sending messages to application clients outside the
boundaries of the client/server interaction defined above. The first is the broadcast
mechanism supported BYBROADCAST() This function allows application clients,
servers, and administrators to broadcast typed record messages to a set of clients
selected on the basis of the names assigned to them. The names assigned to clients
determined in part by the application (specifically, by the information passed in the
TPINFDEF-RECdata structure aPINITIALIZE time) and in part by the system (based
on the processor through which the client accesses the application).

The second is the notification of a particular client as identified from an earlier or
current service request. Each service request contains a unique client identifier that
identifies the originating client for the service request. Calls tam@aLL() and
TPFORWAR()functions from within a service routine do not change the originating
client for that chain of service requests. Client identifiers can be saved and passed
between application servers. TRHRNOTIFY() function is used to notify clients
identified in this manner.

The following return code and setting definitions are used by the ATMI routines.

*

* TPSTATUS.cbl

*

05 TP-STATUS PIC S9(9) COMP-5.
88 TPOK VALUE 0.
88 TPEABORT VALUE 1.
88 TPEBADDESC VALUE 2.
88 TPEBLOCK VALUE 3.
88 TPEINVAL VALUE 4.
88 TPELIMIT VALUE 5.
88 TPENOENT VALUE 6.
88 TPEOS VALUE 7.
88 TPEPERM VALUE 8.
88 TPEPROTO VALUE 9.
88 TPESVCERR VALUE 10.
88 TPESVCFAIL VALUE 11.
88 TPESYSTEM VALUE 12.
88 TPETIME VALUE 13.
88 TPETRAN VALUE 14.
88 TPEGOTSIG VALUE 15.
88 TPERMERR VALUE 16.
88 TPEITYPE VALUE 17.
88 TPEOTYPE VALUE 18.
88 TPERELEASE VALUE 19.
88 TPEHAZARD VALUE 20.
88 TPEHEURISTIC VALUE 21.
88 TPEEVENT VALUE 22.

14 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

88 TPEMATCH VALUE 23.
88 TPEDIAGNOSTIC VALUE 24.
88 TPEMIB VALUE 25.
88 TPEMAXVAL VALUE 26.
05 TPEVENT PIC S9(9) COMP-5.
88 TPEV-NOEVENT VALUE 0.
88 TPEV-DISCONIMM VALUE 1.
88 TPEV-SENDONLY VALUE 2.
88 TPEV-SVCERR VALUE 3.
88 TPEV-SVCFAIL VALUE 4.
88 TPEV-SVCSUCC VALUE 5.
05 TPSVCTIMOUT PIC S9(9) COMP-5.
88 TPED-NOEVENT VALUE 0.
88 TPEV-SVCTIMEOUT VALUE 1.
88 TPEV-TERM VALUE 2.
05 APPL-RETURN-CODE PIC S9(9) COMP-5.

The TPTYPECOBOL structure is used whenever sending or receiving application data.
REC-TYPEindicates the type of data record that is to be SW#-TYPEindicates the
name of the view if I EWREC-TYPEIs specifiedLEN indicates the amount of data to
send and the amount received.

*

* TPTYPE.cbl
*
05 REC-TYPE PIC X(8).
88 X-OCTET VALUE "X_OCTET".
88 X-COMMON VALUE "X_COMMON".
05 SUB-TYPE PIC X(16).
05 LEN PIC S9(9) COMP-5.
88 NO-LENGTH VALUE 0.
05 TPTYPE-STATUS PIC S9(9) COMP-5.
88 TPTYPEOK VALUE 0.
88 TPTRUNCATE VALUE 1.

TheTPSVCDERIata structure is used by functions to pass settings to and from the BEA
Tuxedo system.

*

* TPSVCDEF.chl

*

05 COMM-HANDLE PIC S9(9) COMP-5.
05 TPBLOCK-FLAG PIC S9(9) COMP-5.

88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.

BEA Tuxedo COBOL Function Reference 15

Section 3(cbl) - COBOL Functions

05 TPREPLY-FLAG PIC S9(9) COMP-5.

88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.
05 TPACK-FLAG PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.
88 TPNOACK VALUE 0.
88 TPACK VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.

05 TPGETANY-FLAG PIC S9(9) COMP-5.
88 TPGETHANDLE VALUE 0.
88 TPGETANY VALUE 1.

05 TPSENDRECV-FLAG PIC S9(9) COMP-5.
88 TPSENDONLY VALUE 0.
88 TPRECVONLY VALUE 1.

05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
88 TPCHANGE VALUE 0.
88 TPNOCHANGE VALUE 1.

05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.

88 TPREQRSP VALUE IS 0.
88 TPCONV VALUE IS 1.
*
05 APPKEY PIC S9(9) COMP-5.

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.
05 SERVICE-NAME PIC X(15).

The TPINFDEF data structure is used BRINITIALIZE() to join the application.

*

* TPINFDEF.cbl

*

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
88 TPU-SIG VALUE 1.
88 TPU-DIP VALUE 2.
88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 CONTEXTS-FLAG PIC S9(9) COMP-5.
88 TP-SINGLE-CONTEXT VALUE 0.
88 TP-MULTI-CONTEXTS VALUE 1.

05 DATALEN PIC S9(9) COMP-5.

16 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

The TPCONTEXTDEHata structure is used BYGETCTXT() andTPSETCTXT() to
manipulate program contexts.

*

* TPCONTEXTDEF.cbhl

*

05 CONTEXT PIC S9(9) COMP-5.

The TPQUEDERata structure is used to pass and retrieve information associated with

enqueuing the message.

*

* TPQUEDEF.chl
*

05 TPBLOCK-FLAG

PIC S9(9) COMP-5.

88 TPNOBLOCK VALUE 0.
88 TPBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPNOTRAN VALUE 0.
88 TPTRAN VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPNOTIME VALUE 0.
88 TPTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.

05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
88 TPNOCHANGE VALUE 0.
88 TPCHANGE VALUE 1.

05 TPQUE-ORDER-FLAG PIC S9(9) COMP-5.
88 TPQDEFAULT VALUE 0.
88 TPQTOP VALUE 1.
88 TPQBEFOREMSGID VALUE 2.

05 TPQUE-TIME-FLAG PIC S9(9) COMP-5.
88 TPQNOTIME VALUE 0.
88 TPQTIME-ABS VALUE 1.
88 TPQTIME-REL VALUE 2.

05 TPQUE-PRIORITY-FLAG PIC S9(9) COMP-5.
88 TPQNOPRIORITY VALUE 0.
88 TPQPRIORITY VALUE 1.

05 TPQUE-CORRID-FLAG PIC S9(9) COMP-5.
88 TPQNOCORRID VALUE 0.
88 TPQCORRID VALUE 1.

05 TPQUE-REPLYQ-FLAG PIC S9(9) COMP-5.
88 TPQNOREPLYQ VALUE 0.
88 TPQREPLYQ VALUE 1.

BEA Tuxedo COBOL Function Reference

17

Section 3(cbl) - COBOL Functions

05 TPQUE-FAILQ-FLAG PIC S9(9) COMP-5.
88 TPQNOFAILUREQ VALUE 0.
88 TPQFAILUREQ VALUE 1.

05 TPQUE-MSGID-FLAG PIC S9(9) COMP-5.
88 TPQNOMSGID VALUE 0.
88 TPQMSGID VALUE 1.

05 TPQUE-GETBY-FLAG PIC S9(9) COMP-5.
88 TPQGETNEXT VALUE 0.
88 TPQGETBYMSGIDOLD VALUE 1.
88 TPQGETBYCORRIDOLD VALUE 2.
88 TPQGETBYMSGID VALUE 3.
88 TPQGETBYCORRID VALUE 4.

05 TPQUE-WAIT-FLAG PIC S9(9) COMP-5.
88 TPQNOWAIT VALUE 0.
88 TPQWAIT VALUE 1.

05 TPQUE-DELIVERY-FLAG PIC S9(9) COMP-5.
88 TPQNODELIVERYQOS VALUE 0.
88 TPQDELIVERYQOS VALUE 1.

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
88 TPQQOSDELIVERYDEFAULTPERSIST VALUE 0.
88 TPQQOSDELIVERYPERSISTENT VALUE 1.

88 TPQQOSDELIVERYNONPERSISTENT VALUE 2.

05 TPQUE-REPLY-FLAG PIC S9(9) COMP-5.
88 TPQNOREPLYQOS VALUE 0.
88 TPQREPLYQOS VALUE 1.

05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

88 TPQQOSREPLYDEFAULTPERSIST VALUE 0.
88 TPQQOSREPLYPERSISTENT VALUE 1.
88 TPQQOSREPLYNONPERSISTENT VALUE 2.

05 TPQUE-EXPTIME-FLAG PIC S9(9) COMP-5.
88 TPQNOEXPTIME VALUE 0.
88 TPQEXPTIME-ABS VALUE 1.
88 TPQEXPTIME-REL VALUE 2.
88 TPQEXPTIME-NONE VALUE 3.
05 TPQUE-PEEK-FLAG PIC S9(9) COMP-5.
88 TPQNOPEEK VALUE 0.
88 TPQPEEK VALUE 1.
05 DIAGNOSTIC PIC S9(9) COMP-5.
88 QMEINVAL VALUE -1.
88 QMEBADRMID VALUE -2.
88 QMENOTOPEN VALUE -3.
88 QMETRAN VALUE -4.
88 QMEBADMSGID VALUE -5.
88 QMESYSTEM VALUE -6.
88 QMEOS VALUE -7.
88 QMEABORTED VALUE -8.
88 QMEPROTO VALUE -9.
88 QMEBADQUEUE VALUE -10.
88 QMENOMSG VALUE -11.

18 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

88 QMEINUSE VALUE -12.
88 QMENOSPACE VALUE -13.
88 QMERELEASE VALUE -14.
88 QMEINVHANDLE VALUE -15.
88 QMESHARE VALUE -16.
05 DEQ-TIME PIC S9(9) COMP-5.
05 EXP-TIME PIC S9(9) COMP-5.
05 PRIORITY PIC S9(9) COMP-5.
05 MSGID PIC X(32).
05 CORRID PIC X(32).
05 QNAME PIC X(15).
05 QSPACE-NAME PIC X(15).
05 REPLYQUEUE PIC X(15).
05 FAILUREQUEUE PIC X(15).
05 CLIENTID OCCURS4 TIMES ~ PIC S9(9) COMP-5.
05 APPL-RETURN-CODE PIC S9(9) COMP-5.
05 APPKEY PIC S9(9) COMP-5.

The TPSVCRETata structure is used BYRETURN() to indicate the status of the
transaction.

*

* TPSVCRET.chl

*

05 TP-RETURN-VAL PIC S9(9) COMP-5.
88 TPSUCCESS VALUE 0.
88 TPFAIL VALUE 1.
88 TPEXIT VALUE 2.

05 APPL-CODE PIC S9(9) COMP-5.

The TPTRXDERlata structure is used IDPBEGIN() to set transaction timeouts, and by
TPSUSPEND() andTPRESUME()to get and set, respectively, transaction identifiers.

*

* TPTRXDEF.cbl

*

05 T-OUT PIC S9(9) COMP-5 VALUE IS 0.
05 TRANID OCCURS 6 TIMES PIC S9(9) COMP-5.

The TPCMTDERata structure is used BYSCMT() to set the commit level
characteristics.

*

* TPCMTDEF.chl
*
05 CMT-FLAG PIC S9(9) COMP-5.
88 TP-CMT-LOGGED VALUE 1.
88 TP-CMT-COMPLETE VALUE 2.
05 PREV-CMT-FLAG PIC S9(9) COMP-5.

BEA Tuxedo COBOL Function Reference 19

Section 3(cbl) - COBOL Functions

20

88 PREV-TP-CMT-LOGGED VALUE 1.
88 PREV-TP-CMT-COMPLETE VALUE 2.

The TPAUTDERata structure is used BPCHKAUTH() to check if authentication is
required.

* TPAUTDEF.cbl

*

05 AUTH-FLAG PIC S9(9) COMP-5.
88 TPNOAUTH VALUE 0.
88 TPSYSAUTH VALUE 1.
88 TPAPPAUTH VALUE 2.

The TPPRIDEFdata structure is used BPSPRIO() andTPGPRIO() to manipulate
message priorities.

*

* TPPRIDEF.cbl

*

05 PRIORITY PIC S9(9) COMP-5.
05 PRIO-FLAG PIC S9(9) COMP-5.
88 TPABSOLUTE VALUE 0.
88 TPRELATIVE VALUE 1.

The TPTRXLEWata structure is used BPGETLEV() to receive transaction level
setting.

*

* TPTRXLEV.cbl

*

05 TPTRXLEV-FLAG PIC S9(9) COMP-5.
88 TP-NOT-IN-TRAN VALUE 0.
88 TP-IN-TRAN VALUE 1.

The TPBCTDERata structure is used BYNOTIFY() andTPBROADCAST()to send
notifications.

*

* TPBCTDEF.cbl

*

05 TPBLOCK-FLAG PIC S9(9) COMP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.

BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

05 LMID PIC X(30).
05 USERNAME PIC X(30).
05 CLTNAME PIC X(30).

The FML-INFO data structure is used BNIT() , FVSTOF(), andFVFTOS() to deal
with FML buffers.

*

* EMLINFO.cbl

*

05 FML-STATUS PIC S9(9) COMP-5.
88 FOK VALUE 0.
88 FALIGNERR VALUE 1.
88 FNOTFLD VALUE 2.

88 FNOSPACE VALUE 3.
88 FNOTPRES VALUE 4.

88 FBADFLD VALUE 5.
88 FTYPERR VALUE 6.
88 FEUNIX VALUE 7.

88 FBADNAME VALUE 8.
88 FMALLOC VALUE 9.
88 FSYNTAX VALUE 10.
88 FFTOPEN VALUE 11.
88 FFTSYNTAX VALUE 12.
88 FEINVAL VALUE 13.
88 FBADTBL VALUE 14.

88 FBADVIEW VALUE 15.
88 FVFSYNTAX VALUE 16.

88 FVFOPEN VALUE 17.
88 FBADACM VALUE 18.
88 FNOCNAME VALUE 19.
88 FEBADOP VALUE 20.

*

05 FML-LENGTH PIC S9(9) COMP-5.
*

05 FML-MODE PIC S9(9) COMP-5.

88 FUPDATE VALUE 1.
88 FCONCAT VALUE 2.
88 FJOIN VALUE 3.
88 FOJOIN VALUE 4.

*

05 VIEWNAME PIC X(33).

The TPEVTDERJata structure is used BYPOST(), TPSUBSCRIBE(), and
TPUNSUBSCRIBE() to handle event postings and subscriptions.

*

* TPEVTDEF.chl

*

BEA Tuxedo COBOL Function Reference 21

Section 3(cbl) - COBOL Functions

05 TPBLOCK-FLAG PIC S9(9) COMP-5.

88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.

05 TPREPLY-FLAG PIC S9(9) COMP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG ~ PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.
05 TPEV-METHOD-FLAG PIC S9(9) COMP-5.
88 TPEVNOTIFY VALUE 0.
88 TPEVSERVICE ~ VALUE 1.
88 TPEVQUEUE VALUE 2.
05 TPEV-PERSIST-FLAG PIC S9(9) COMP-5.
88 TPEVNOPERSIST ~ VALUE 0.
88 TPEVPERSIST VALUE 1.
05 TPEV-TRAN-FLAG PIC S9(9) COMP-5.
88 TPEVNOTRAN VALUE 0.
88 TPEVTRAN VALUE 1.
*
05 EVENT-COUNT PIC S9(9) COMP-5.
05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.
05 NAME-1 PIC X(31).
05 NAME-2 PIC X(31).
05 EVENT-NAME PIC X(31).
05 EVENT-EXPR PIC X(255).
05 EVENT-FILTER PIC X(255).

The TPKEYDERata structure is used BPKEYCLOSE(), TPKEYGETINFO(),
TPKEYOPEN(), andTPKEYSETINFO()to manage public-private keys for performing
message-based digital signature and encryption operations.

TPKEYDEF.cbl

05 KEY-HANDLE PIC S9(9) COMP-5.
05 PRINCIPAL-NAME PIC X(512).

05 LOCATION PIC X(1024).

05 IDENTITY-PROOF PIC X(2048).

05 PROOF-LEN PIC S9(9) COMP-5.

05 CRYPTO-PROVIDER PIC X(128).
05 SIGNATURE-FLAG PIC S9(9) COMP-5.
88 TPKEY-NOSIGNATURE VALUE 0.

22 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

COBOL
Language TX
Return Codes

and Other
Definitions

05

05

05

05

05
05

88 TPKEY-SIGNATURE ~ VALUE 1.
DECRYPT-FLAG PIC S9(9) COMP-5.

88 TPKEY-NODECRYPT VALUE 0.

88 TPKEY-DECRYPT VALUE 1.
ENCRYPT-FLAG PIC S9(9) COMP-5.

88 TPKEY-NOENCRYPT VALUE 0.

88 TPKEY-ENCRYPT VALUE 1.
AUTOSIGN-FLAG PIC S9(9) COMP-5.

88 TPKEY-NOAUTOSIGN VALUE 0.

88 TPKEY-AUTOSIGN VALUE 1.
AUTOENCRYPT-FLAG PIC S9(9) COMP-5.

88 TPKEY-NOAUTOENCRYPT VALUE 0.

88 TPKEY-AUTOENCRYPT VALUE 1.
ATTRIBUTE-NAME PIC X(64).
ATTRIBUTE-VALUE-LEN PIC S9(9) COMP-5.

The following return code and setting definitions are used by the TX routines.

*

* TXSTATUS.chl

*

05 TX-STATUS PIC S9(9) COMP-5.
88 TX-NOT-SUPPORTED VALUE 1.
* Normal execution

88 TX-OK VALUE 0.
* Normal execution
88 TX-OUTSIDE VALUE -1.
* Application is in an RM local transaction
88 TX-ROLLBACK VALUE -2.
* Transaction was rolled back
88 TX-MIXED VALUE -3.
* Transaction was partially committed and partially
* rolled back
88 TX-HAZARD VALUE -4.

* Transaction may have been partially committed and
* partially rolled back
88 TX-PROTOCOL-ERROR VALUE -5.
* Routine invoked in an improper context
88 TX-ERROR VALUE -6.
* Transient error

88 TX-FAIL VALUE -7.
* Fatal error
88 TX-EINVAL VALUE -8.

* |nvalid arguments were given
88 TX-COMMITTED VALUE -9.
* The transaction was heuristically committed
88 TX-NO-BEGIN VALUE -100.
* Transaction committed plus new transaction could not

* be started

BEA Tuxedo COBOL Function Reference 23

Section 3(cbl) - COBOL Functions

88 TX-ROLLBACK-NO-BEGIN VALUE -102.
* Transaction rollback plus new transaction could not
* be started
88 TX-MIXED-NO-BEGIN VALUE -103.
* Mixed plus new transaction could not be started
88 TX-HAZARD-NO-BEGIN VALUE -104.
* Hazard plus new transaction could not be started
88 TX-COMMITTED-NO-BEGIN VALUE -109.
* Heuristically committed plus transaction could not
* be started

The TXINFDEFrecord defines a data structure where the result aing=ORM() call
will be stored.

*

* TXINFDEF.cbl
*
05 XID-REC.
* XID record
10 FORMAT-ID PIC S9(9) COMP-5.
* Avalue of -1 in FORMAT-ID means that the XID is null
10 GTRID-LENGTH PIC S9(9) COMP-5.
10 BRANCH-LENGTH PIC S9(9) COMP-5.
10 XID-DATA PIC X(128).
05 TRANSACTION-MODE PIC S9(9) COMP-5.
* Transaction mode settings
88 TX-NOT-IN-TRAN VALUE 0.
88 TX-IN-TRAN VALUE 1.
05 COMMIT-RETURN PIC S9(9) COMP-5.
* Commit_return settings

88 TX-COMMIT-COMPLETED VALUE 0.

88 TX-COMMIT-DECISION-LOGGED VALUE 1.
05 TRANSACTION-CONTROL PIC S9(9) COMP-5.
* Transaction_control settings

88 TX-UNCHAINED VALUE 0.

88 TX-CHAINED VALUE 1.

05 TRANSACTION-TIMEOUT PIC S9(9) COMP-5.
* Transaction_timeout value

88 NO-TIMEOUT VALUE 0.

05 TRANSACTION-STATE PIC S9(9) COMP-5.
* Transaction_state information

88 TX-ACTIVE VALUE 0.

88 TX-TIMEOUT-ROLLBACK-ONLY VALUE 1.

88 TX-ROLLBACK-ONLY VALUE 2.

ATMI State The BEA Tuxedo system keeps track of the state for each program and verifies that
Transitions legal state transitions occur for the various function calls and options. The state
information includes the program type (request/response server, conversational serve

24 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

or client), the initialization state (uninitialized or initialized), the resource management
state (closed or open), the transaction state of the program, and the state of all
asynchronous request/response and connection handles. When an illegal state
transition is attempted, the called function fails, setiiRgTATUS-RECtO

TPEPROTO(). The legal states and transitions for this information are described in the
following tables.

The table below indicates which functions may be called by request/response servers,
conversational servers, and clients. Note TR&VRINIT() andTPSVRDONE()are not
included in this table because they are not called by applications (that is, they are
application-supplied functions that are invoked by the BEA Tuxedo system).

Available Functions

Function Process Type

Request/response Conversational Client
Server Server

TPABORT()

TPACALL()

TPADVERTISE()

TPBEGIN()

TPBROADCAST()

TPCALL()

TPCANCEL()

TPCHKAUTH()

TPCHKUNSOL()

TPCLOSE()

TPCOMMIT()

TPCONNECT()

TPDEQUE()

<| <| <| <|=<|z|=<|=<|=<|=<|=<|=<|=<]|x<
<| <| <| <|=<|z|=<|=<|=<|=<|=<|=<|=<]|x<

<| <| <| <|=<| <] <|=<|=<|=<|=<|z|=<]|<x<

TPDISCON()

BEA Tuxedo COBOL Function Reference 25

Section 3(cbl) - COBOL Functions

26

Available Functions

Function

Process Type

Request/response
Server

Conversational
Server

Client

TPENQUEUE()

TPFORWAR()

TPGETCTXT()

TPGETLEV()

TPGETRPLY()

TPGPRIO()

TPINITIALIZE()

TPNOTIFY()

TPOPEN()

TPPOST()

TPRECV()

TPRESUME()

TPRETURN()

TPSCMT()

TPSEND()

TPSETCTXT()

TPSETUNSOL()

TPSPRIO()

TPSUBSCRIBE()

TPSUSPEND()

TPTERM()

zl <| <| <|z|lz|<|<|=<|<|=<|=<|=<|=<|z|=<|=<|=<|=<]|=<]|<x<

BEA Tuxedo COBOL Function Reference

zl <| <| <|z|lz|<|=<|=<|<|=<|=<|=<|=<|z|=<|=<|=<|=<]|2z|<

<| <| <| <| <| <] <|=<|z|<|=<|=<|=<|=<|<|=<|=<|=<|=<]|=z|<

Introduction to the COBOL Application-Transaction Monitor Interface

Available Functions

Function Process Type

Request/response Conversational Client
Server Server

TPUNADVERTISE() Y Y N

TPUNSUBSCRIBE() % Y Y

The remaining state tables are for both clients and servers, unless otherwise noted.
Keep in mind that because some functions cannot be called by both clients and servers
(for example TPINITIALIZE()), certain state transitions shown below may not be
possible for both program types. The above table should be consulted to determine
whether the program in question is allowed to call a particular function.

The following state table indicates whether or not a client program has been initialized
and registered with the transaction manager. Note that this table assumes the use of
TPINITIALIZE() , which is optional in single-context mode. That is, a single-context
client may implicitly join an application by issuing one of many ATMI functions (for
exampleTPACALL() or TPCALL()). A client must usgPINITIALIZE() when one of

the following is true:

m Application authentication is required. (SERINITIALIZE() and the
description of thesECURITY keyword inUBBCONFIG(5) for details.)

m The client wants to access an XA-compliant resource manager directly. (See
TPINITIALIZE(3chl) for details.)

m The client wants to create multiple application associations.

A server is placed in the initialized state by the BEA Tuxedo dispatcher before its
TPSVRINIT() functionisinvoked, and itis placed in the uninitialized state by the BEA
Tuxedo dispatcher after T®SVRDONE()function has returned. Note that in all of the
state tables shown below, an error return from a function causes the program to remain
in the same state, unless otherwise noted.

BEA Tuxedo COBOL Function Reference 27

Section 3(cbl) - COBOL Functions

Initialization States

Function States

Uninitialized Initialized
lo I

TPCHKAUTH() lo Iy
TPGETCTXT() o I
TPINITIALIZE() Ih Ih
TPSETCTXT() Iy Iy
set to a non-null

context

TPSETCTXT() with 1 lo
TPNULLCONTEXSet

TPSETUNSOL() lo Iy
TPTERM() o o
All other ATMI I
functions

The remaining state tables assume a precondition of state | (regardless of whether
process arrived in this state WBRINITIALIZE() , TPSETCTXT(), or the BEA Tuxedo
service dispatcher).

The following table indicates the state of a client or server with respect to whether ol
not a resource manager associated with the process has been initialized.

Resource Management States

Function States

Closed Open
Ro Ry

TPOPEN() Ry Ry

28 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Resource Management States

Function States
Closed Open
Ro Ry

TPCLOSE() Ro Ro
TPBEGIN() R,
TPCOMMIT() Ri
TPABORT() Ry
TPSUSPEND() R,
TPRESUME() Ri
TPSVCSTART() with Ry
TPTRAN

All other ATMI Ro Ry
functions

The following state table indicates the state of a process with respect to whether or not
the process is associated with a transaction. For servers, transitions tostaieé ST

assume a precondition of state (for exampleTPOPEN() has been called with no

subsequent call toPCLOSE() or TPTERM()).

Transaction State of Application Association

Function State
Not in transaction Initiator Participant
To T T2
TPBEGIN()
TPABORT() To
TPCOMMIT() To

BEA Tuxedo COBOL Function Reference 29

Section 3(cbl) - COBOL Functions

Transaction State of Application Association

Function State

Not in transaction Initiator Participant

To T T2
SPSUSPEND() To
TPRESUME() To
TPSVCSTART() with TPTRAN T,
TPSVCSTART() To
(not in transaction mode)
TPRETURN() To To
TPFORWAR() To To
TPCLOSE() Ro
TPTERM() lo To
All other ATMI functions T T, T,

The following state table indicates the state of a single request handle returned by
TPACALLY() .

Asynchronous Request Descriptor States

Function States
No Descriptor Valid Descriptor
Ao Aq
TPACALL() Aq
TPGETRPLY() Ao
TPCANCEL() A
TPABORT() Ag Ag°

30 BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Asynchronous Request Descriptor States

Function States
No Descriptor Valid Descriptor
Ao A1

TPCOMMIT() Ag AP
TPSUSPEND() Ag AC
TPRETURN() Ao Ao
TPFORWAR() A Ag
TPTERM() lo lo
All other ATMI Ag Aq
functions

Note: 2This state change occurs only if the descriptor is not associated with the
caller’s transaction.

b This state change occurs only if the descriptor is associated with the caller’s
transaction.

¢ If the descriptor is associated with the caller's transaction, then
TPSUSPEND() returns a protocol error.

The following state table indicates the state of a connection descriptor returned by
TPCONNECT()or provided by a service invocation in theSVCINFOstructure. For
primitives that do not take a connection descriptor, the state changes apply to all
connection descriptors, unless otherwise noted.

The states are as follows.

Co - No handle

C, - TPCONNECT handle send-only
C, - TPCONNECT handle receive-only
C; - TPSVCDEF handle send-only

C, - TPSVCDEF handle receive-only

BEA Tuxedo COBOL Function Reference 31

Section 3(cbl) - COBOL Functions

32

Connection Request Handle States

Function/Event States
Co Cq C, C; C4

TPCONNECT()with TPSENDONLY C2
TPCONNECT()with TPRECVONLY C2
TPSVCSTART() with flag TPSENDONLY Cyh
TPSVCSTART() with flag TPRECVONLY CP
TPRECV()/no event G Cy
TPRECV()/TPEV_SENDONLY Cy Cs
TPRECV()/TPEV_DISCONIMM Co Co
TPRECV()/TPEV_SVCERR Co
TPRECV()/TPEV_SVCFAIL Co
TPRECV()/TPEV_SVCSUCC Co
TPSEND()/no event G Cs
TPSEND() with flag TPRECVONLY C, Cy
TPSEND()/TPEV_DISCONIMM Co Co
TPSEND()/TPEV_SVCERR Co
TPSEND()/TPEV_SVCFAIL Co
TPTERM() (client only) Co Co
TPCOMMIT() (originator only) G o Co©
TPSUSPEND() (originator only) G Cy° Cy°
TPABORT() (originator only) G Cy° Co°

BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

Connection Request Handle States

Function/Event States

TPDISCON() Co Co

TPRETURN() (CONVserver) G Co Co Co
TPFORWAR()(CONVserver) G Co Co Co
All other ATMI functions G C C, Cs Cy

Note: 2If the program is in transaction mode amNOTRANS not specified, the
connection is in transaction mode.

b If the TPTRANflag is set, the connection is in transaction mode.
¢ If the connection is not in transaction mode, no state change.

4 If the connection is in transaction mode, tM@SUSPEND() returns a
protocol error.

TXState BEA Tuxedo ensures that a process calls the TX functions in a legal sequence. When
Transitions an illegal state transition is attempted (that is, a call from a state with a blank transition
entry), the called function returi¥_PROTOCOL_ERRORhe legal states and
transitions for the TX functions are shown in the table below. Calls that return failure
do not make state transitions, except where described by specific state table entries.

Any BEA Tuxedo client or server is allowed to use the TX functions.

The states are defined below:

So

No RMs have been opened or initialized. A process cannot start a global
transaction until it has successfully calfexOPEN().

A process has opened its RM but is not in a transaction. Its
transaction_control characteristic igX-UNCHAINED

BEA Tuxedo COBOL Function Reference 33

Section 3(cbl) - COBOL Functions

34

A process has opened its RM but is not in a transaction. Its
characteristic igX-CHAINED.

A process has opened its RM and is in a transaction. Its

7
transaction_control
transaction_control
Sy

characteristic i$X-UNCHAINED

A process has opened its RM and is in a transaction. Its

transaction_control

TX State Transitions

characteristic i§X-CHAINED.

Function States
S S S S Sy

TXBEGIN() S3 Sy
TXCLOSE() S5 S S
TXCOMMIT() -> TX_SET1 St Sy
TXCOMMIT() -> TX_SET2 S,
TXINFORM() S, S, S3 S4
TXOPEN() St St S, S3 Sy
TXROLLBACK() -> TX_SET1 S, S4
TXROLLBACK() -> TX_SET2 S,
TXSETCOMMITRET() St S, S3 Ss
TXSETTRANCTL() S, S, S4 S4

control = TX-CHAINED
TXSETRRANCTL() St St S3 S

control = TX-UNCHAINED
TXSETTIMEOUT() St S, S3 Sy

BEA Tuxedo COBOL Function Reference

Introduction to the COBOL Application-Transaction Monitor Interface

See Also

m TX_SET1denotes any of the followingX_OK TX_ROLLBACKTX_MIXED,
TX_HAZARDOr TX_COMMITTED.TX_ROLLBACHKS not returned by
tx_rollback() andTX_COMMITTEDs not returned byk_commit()

m TX_SET2denotes any of the followingX_NO_BEGIN
TX_ROLLBACK_NO_BEGINIX_MIXED _NO_BEGINTX_HAZARD_NO_BEGINor
TX_COMMITTED_NO_BEGINTX_ROLLBACK_NO_BEGI& not returned by
tx_rollback() andTX_COMMITTED_NO_BEGIi$ not returned by
tx_commit()

m If TX_FAIL is returned on any call, the application process is in an undefined
state with respect to the above table.

m Whentx_info() returns eithemX_ROLLBACK_ONLWr
TX_TIMEOUT_ROLLBACK_ONLiv the transaction state information, the
transaction is marked rollback-only and is rolled back, regardless of whether the
application program callg_commit() or tx_rollback()

buffer(3c) , TPINITIALIZE(3cbl) , TPADVERTISE(3cbl) , TPBEGIN(3chl)
TPCALL(3cbl) , TPCONNECT(3chl) , TPGETCTXT(3cbl) , TPKEYCLOSE(3chl) ,
TPKEYGETINFO(3chl) , TPKEYOPEN(3chl) , TPKEYSETINFO(3chl)
TPOPEN(3cbl) , TPSETCTXT(3chbl) , TPSVCSTART(3chl) , tuxtypes(5)

typesw(5)

BEA Tuxedo COBOL Function Reference 35

Section 3(cbl) - COBOL Functions

FINIT, FINIT32(3¢bl)

Name

Synopsis

Description

Return Values

36

Errors

Example

See Also

FINIT() ,FINIT32() - initialize fielded buffer

01 FML-BUFFER
05 FML-ALIGN PIC S9(9) USAGE IS COMP.
05 FML-DATA PIC X(applen).

01 FML-REC
COPY FMLINFO.

CALL "FINIT" USING FML-BUFFER FML-REC

CALL "FINIT32" USING FML-BUFFER FML-REC

FINIT() can be called to initialize a fielded buffenL-BUFFERIs the record to be

used for the fielded buffer; it should be aligned on a 4-byte boundary to work with both
FML16 and FML32. This can be accomplished by defining two record elements as
shown in the synopsis abovIL-LENGTHIN FML-RECIS the length of the record. The
internal structure is set up for a fielded buffer with no fields; the application program
should not interpret the record, other than to passAtNG() , FYFTOS(), or

FVSTOF(), or an ATMI call that takes a typed record (in this case, the type is “FML”
and there is no subtype).

FINIT32() is used with 32-bit FML.

Upon successful completioRINIT() setsFML-STATUSIn FML-RECto FOK

On error,FML-STATUSIs set to a non-zero value.

Under the following conditionsINIT() fails and set§ML-STATUSIN FML-REC to:

[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOSPACE
“no space in fielded buffer”
The buffer size specified is too small for a fielded buffer.

The correct was to reinitialize a buffer to have no fieldsiist (frfr
(FLDLENFsizeof (fofr));

Introduction to FML Functions

BEA Tuxedo COBOL Function Reference

FVFTOS, FVFTOS32(3¢bl)

FVFTOS, FVFT0S32(3cbl)

Name

Synopsis

Description

Return Values

Errors

FVFTOS(), FVFTOS32() - copy from fielded buffer to COBOL structure

01 DATA-REC.
COPY User data.

01 FML-BUFFER.
05 FML-ALIGN PIC S9(9) USAGE IS COMP.
05 FML-DATA PIC X(applen).

01 FML-REC COPY FMLINFO.
CALL "FVFTOS" USING FML-BUFFER DATA-REC FML-REC.
CALL "FVFTOS32" USING FML-BUFFER DATA-REC FML-REC.

TheFVFTOS() function transfers data from a fielded buffer to a COBOL record.
FML-BUFFERIs a pointer to a fielded buffer initialized withNIT() . DATA-RECIiS a
pointer to a C structur®IEWNAME IN FML-RECIis the name of the view describing the
COBOL record.

Fields are copied from the fielded buffer into the structure based on the element
descriptions ivIEWNAMEIf a field in the fielded buffer has no corresponding element
in the COBOL record, it is ignored. If an element specified in the COBOL record has
no corresponding field in the fielded buffer, a null value is copied into the element. The
null value used is definable for each element in the view description.

To store multiple occurrences in the COBOL record, the record element should defined
with oCcCURSf the buffer has fewer occurrences of the field than there are occurrences
of the element, the extra element slots are assigned null values. On the other hand, if
the buffer has more occurrences of the field than there are occurrences of the element,
the surplus occurrences are ignored.

FVFTOS32() is used for views defined with view32 typed buffers for larger views with
more fields.

Upon successful completioRYFTOS32() setsFML-STATUS IN FML-RECto FOK
On error,FML-STATUSIs set to a non-zero value.

Under the following condition&VFTOS() fails and set§ML-STATUStO:

BEA Tuxedo COBOL Function Reference 37

Section 3(cbl) - COBOL Functions

See Also

[FALIGNERR
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD
“buffer not fielded”
The buffer is not a fielded buffer or has not been initializegIRyr()

[FEINVAL]
“invalid argument to function”
One of the arguments to the function invoked was invalid.

[FBADACW
“ACM contains negative value”
An Associated Count Member should not be a negative value while
transferring data from a COBOL record to a fielded buffer.

[FBADVIEW
“cannot find or get view”

The view descriptiorviIEWNAMAvas not found in the files specified by
VIEWDIR or VIEWFILES.

Introduction to FML Functionsjewfile(5)

38 BEA Tuxedo COBOL Function Reference

FVSTOF(3cbl)

FVSTOF(3cbl)

Name

Synopsis

Description

Return Values

Errors

FVSTOF() - copy from C structure to fielded buffer

01 DATA-REC.
COPY User data.

01 FML-BUFFER.
05 FML-ALIGN PIC S9(9) USAGE IS COMP.
05 FML-DATA PIC X(applen).

01 FML-REC
COPY FMLINFO.

CALL "FVSTOF" USING FML-BUFFER DATA-REC FML-REC.
CALL "FVSTOF32" USING FML-BUFFER DATA-REC FML-REC.

FVSTOF() transfers data from a C structure to a fielded bufeiL.-BUFFER's a record
containing the fielded buffeDATA-RECis the COBOL record/IEWNAME IN
FML-RECIs the name of the view describing the COBOL recBKklL-MODE IN
FML-RECspecifies the manner in which the transfer is masie-MODEhas four
possible values:

FUPDATE
FOJOIN
FJOIN
FCONCAT

The action of these modes are the same as that describaguliine,

Fupdate32(3fml) , Fojoin, Fojoin32(3fml) , Fjoin, Fjoin32(3fml) , and
Fconcat, Fconcat32(3fml) . One can even think 6VSTOF() as the same as these
functions, except that where they specify a source buff8TOF() specifies a
COBOL record. Bear in mind thatUPDATEdoes not move record elements that have
null values.

FVSTOF32() is used for views defined withew32() typed buffers for larger views
with more fields.

Upon successful completioRYSTOF32() setsFML-STATUS IN FML-RECto FOK
On error,FML-STATUSIs set to a non-zero value.

Under the following conditionsVSTOF() fails and set§ML-STATUStO:

BEA Tuxedo COBOL Function Reference 39

Section 3(cbl) - COBOL Functions

See Also

[FALIGNERR
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD
“buffer not fielded”
The buffer is not a fielded buffer or has not been initializegIRyr()

[FEINVAL]
“invalid argument to function”
One of the arguments to the function invoked was invalid.

[FBADACW
“ACM contains negative value”
An Associated Count Member should not be a negative value while
transferring data from a COBOL record to a fielded buffer.

[FBADVIEW
“cannot find or get view”

The view descriptiorviIEWNAMAvas not found in the files specified by
VIEWDIR or VIEWFILES.

Introduction to FML Functionsjewfile(5)

40 BEA Tuxedo COBOL Function Reference

TPABORT(3cbl)

TPABORT(3¢bl)

Name

Synopsis

Description

Return Values

Errors

TPABORT() - abort current BEA Tuxedo system transaction

01 TPTRXDEF-REC
COPY TPTRXDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPABORT" USING TPTRXDEF-RECTPSTATUS-REC

TPABORT() signifies the abnormal end of a transaction. When this call returns, all
changes made to resources during the transaction are undongPC&RIMIT(), this
routine can be called only by the initiator of a transaction. Participants (that is, service
routines) can express their desire to have a transaction aborted by TRIREIDURN()

with TPFAIL() .

If TPABORTY() is called while communication handles exist for outstanding replies,
then upon return from the routine, the transaction is aborted and those communications
handles associated with the caller’s transaction are no longer valid. Communications
handles not associated with the caller’s transaction remain valid.

For each open connection to a conversational server in transactionTlRAHORT()

will send aTPEV-DISCONIMMevent to the server, whether or not the server has control
of a connection. Connections opened bef®BEGIN() or with theTPNOTRANetting
(that is, not in transaction mode) are not affected.

The TPABORT() argument,TPTRXDEF-RECIS reserved for future use.
Upon successful completioMPABORT() setsTP-STATUS to [TPOK.
Under the following conditiong,PABORT() fails and set3P-STATUSto:

[TPEINVAL]
Invalid arguments were given. The caller’s transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

BEA Tuxedo COBOL Function Reference 41

Section 3(cbl) - COBOL Functions

Notices

See Also

[TPEHAZARD
Due to some failure, the work done on behalf of the transaction could have
been heuristically completed.

[TPEPROTD
TPABORT() was called in an improper context (for example, by a participant).

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

When usingrPBEGIN() , TPCOMMIT() andTPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a resourc
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eitheTPCOMMIT() or TPABORT

TPBEGIN(3cbl) , TPCOMMIT(3cbl) , TPGETLEV(3chl)

42 BEA Tuxedo COBOL Function Reference

TPACALL(3cbl)

TPACALL(3¢cbl)

Name

Synopsis

Description

TPACALL() - routine to send a message to a service asynchronously

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL"TPACALL"USING TPSVCDEF-RECTPTYPE-RECDATA-REC TPSTATUS-REC

TPACALL() sends a request message to the service nams&gRWICE-NAME IN
TPSVCDEF-RECThe request is sent out at the priority definedsiBRVICE-NAME
unless overridden by a previous calf®SPRIO() . DATA-RECiIS a message to be sent
andLENIN TPTYPE-RECspecifies the amount of datad TA-RECthat should be sent.
Note that ifDATA-RECs a record of a type that does not require a length to be specified,
thenLENis ignored (and may b®. If REC-TYPE IN TPTYPE-RECiS SPACES
DATA-RECandLEN are ignored and a request is sent with no data porti@EafTYPE

is STRINGandLEN s 0, then the request is sent with no data portion.RE@TYPE
andSUB-TYPEof DATA-RECmust match one of ttREC-TYPEandSUB-TYPES
recognized bySERVICE-NAME Note that for each request sent while in transaction
mode, a corresponding reply must ultimately be received.

The following is a list of valid settings inPPSVCDEF-REC

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAMEIs invoked, it is not performed on behalf of the caller’s
transaction. IISERVICE-NAMEbelongs to a server that does not support
transactions, then this setting must be used when the caller is in transaction
mode. A caller in transaction mode that uses this setting is still subject to the
transaction timeout (and no other). If a service fails that was invoked with this
setting, the caller’s transaction is not affected. EitRMOTRANTI TPTRAN
must be set.

BEA Tuxedo COBOL Function Reference 43

Section 3(cbl) - COBOL Functions

44

TPTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAMEIs invoked, it is performed on behalf of the caller’s
transaction. This setting is ignored if the caller is not in transaction mode.
Either TPNOTRANI TPTRANMuUSt be set.

TPNOREPLY
InformsTPACALL() that a reply is not expected. WhEBPNOREPLYS set, the
routine returnsPOK on success and s&t®MM-HANDLE INTPSVCDEF-REC
to 0, an invalid communications handle. When the caller is in transaction
mode, this setting cannot be used wiBTRANIs also set. EitheflPNOREPLY
or TPREPLYmust be set.

TPREPLY
Informs TPACALL() that a reply is expected. Wh&@RREPLYis set, the
routine returnsTPOK on success and set®MM-HANDLB a valid
communications handle. When the caller is in transaction mode, this setting
must be used wherPTRANIs also set. EitheFPNOREPLYor TPREPLYMuUSt
be set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). EftAROBLOCKr
TPBLOCKmust be set.

TPBLOCK
WhenTPBLOCKs specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithelTPNOBLOCKIr TPBLOCKmMust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Eith@PNOSIGRSTRTOr TPSIGRSTRTmMust be set.

BEA Tuxedo COBOL Function Reference

TPACALL(3cbl)

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted and the call fails. EithieNOSIGRSTRr TPSIGRSTRT
must be set.

Return Values Upon successful completioRPACALL() setsTP-STATUS to [TPOHK. In addition, if
TPREPLYWas set imPSVCDEF-RECthenTPCALL() returns a valid communications
handle incOMM-HANDLEthat can be used to receive the reply of the request sent.

Errors Under the following conditiong,PACALL() fails and set3P-STATUSto (unless
otherwise noted, failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]

Invalid arguments were given (for example, settingsASVCDEF-REGre
invalid).

[TPENOENT
Can not send t8ERVICE-NAMEbecause it does not exist or is not a
request/response service (that is, it is a conversational service).

[TPEITYPE]
The pairREC-TYPEandSUB-TYPEIs not one of the allowed types and
sub-types thaSERVICE-NAMEaccepts.

[TPELIMIT]
The caller's request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN

SERVICE-NAMEbelongs to a server that does not support transactions and
TPTRANwas set.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and botRBLOCKandTPTIME were specified. If
a transaction timeout occurred, then any attempts to send new requests or
receive outstanding replies will fail witmPETIME] until the transaction has
been aborted.

[TPETIME] may also indicate that a service failed inside a transaction, which
is now in therX_ROLLBACKONLState. As long as a transaction remains in the
TX_ROLLBACKONL¥$tate, any calls toPACALL() return [TPETIME].

BEA Tuxedo COBOL Function Reference 45

Section 3(cbl) - COBOL Functions

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received anmPNOSIGRSTRWwas specified.

[TPEPROTD
TPACALL() was called improperly.

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also TPCALL(3cbl) , TPCANCEL(3cbl) , TPGETRPLY(3chl) , TPGPRIO(3cbl)
TPSPRIO(3cbl)

46 BEA Tuxedo COBOL Function Reference

TPADVERTISE(3¢bl)

TPADVERTISE(3cbl)

Name

Synopsis

Description

Return Values

Errors

TPADVERTISE() - routine for advertising service names

01 SVC-NAME PIC X(15).
01 PROGRAM-NAMPIC X(32).
01 TPSTATUS-REC

COPY TPSTATUS.

CALL "TPADVERTISE" USING SVC-NAME PROGRAM-NAMEPSTATUS-REC

TPADVERTISE() allows a server to advertise the services that it offers. By default, a
server’s services are advertised when it is booted and unadvertised when it is
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of all servers sharing an MSSQ set.

TPADVERTISE() advertisessvVC-NAMHor the server (or the set of servers sharing the
caller's MSSQ set)svc-NAMEBshould be 15 characters or less, but cann@PReEES
(SeeSERVICESsection 0fUBBCONFIG(5)) Longer names are truncated to 15

characters. Users should make sure that truncated names do not match other service
namesPROGRAM-NAME the name of a BEA Tuxedo system service program. This
program will be invoked whenever a request3eC-NAMAS received by the server.
PROGRAM-NAMENNot beSPACES

If SVC-NAMAS already advertised for the server @RDGRAM-NAMBatches its

current program, thePPADVERTISE() returns success (this includes truncated names
that match already advertised names). Howevew/df-NAMAs already advertised for
the server buPROGRAM-NAMEDeS not match its current program, then an error is
returned (this can happen if truncated names match already advertised names).

TPADVERTISE() Upon successful completionPADVERTISE() setsSTP-STATUSto
[TPON.

Under the following conditiong,PADVERTISE() fails and set§P-STATUStO:

[TPEINVAL]
Either SVC-NAMEOr PROGRAM-NAME SPACES of PROGRAM-NAME not a
name of a valid program.

BEA Tuxedo COBOL Function Reference 47

Section 3(cbl) - COBOL Functions

48

Portability

See Also

[TPELIMIT]
SVC-NAMEcannot be advertised because of space limitations. (See
MAXSERVICESn theRESOURCESection ofUBBCONFIG(5))

[TPEMATCH
SVC-NAMEHSs already advertised for the server but with a program other than
PROGRAM-NAMAIthoughTPADVERTISE() fails, SVC-NAMEemains
advertised with its current program (thatPROGRAM-NAMIDes not replace
the current program).

[TPEPROTD
TPADVERTISE() was called improperly.

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

On AIX on the RS6000, any services provided in the first COBOL object file are not
available in the symbol table; their names must be specified usirg tiion on the
buildserver ~ command so that they can be advertised at run-time using
TPADVERTISE() .

TPUNADVERTISE(3cbl)

BEA Tuxedo COBOL Function Reference

TPBEGIN(3¢bl)

TPBEGIN(3¢bl)

Name

Synopsis

Description

Return Values

Errors

TPBEGIN() - routine to begin a BEA Tuxedo system transaction

01 TPTRXDEF-REC
COPY TPTRXDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPBEGIN" USING TPTRXDEF-RECTPSTATUS-REC

A transaction in the BEA Tuxedo system is used to define a single logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allows work
being performed in many processes, at possibly different sites, to be treated as an
atomic unit of work. The initiator of a transaction uSE8EGIN() and either

TPCOMMIT() or TPABORT() to delineate the operations within a transaction. Once
TPBEGIN() is called, communication with any other program can place the latter (of
necessity, a server) in “transaction mode” (that is, the server's work becomes part of
the transaction). Threads of control that join a transaction are called participants. A
transaction always has one initiator and can have several participants. Only the initiator
of a transaction can calPCOMMIT() or TPABORT(). Participants can influence the
outcome of a transaction by the settingg@sVCDEF-REChey use when they call
TPRETURN(). Once in transaction mode, any service requests made to servers are
processed on behalf of the transaction (unless the requester explicitly specifies
otherwise).

Note that if a program starts a transaction while it has any open connections that it
initiated to conversational servers, these connections will not be upgraded to
transaction mode. It is as if tHeNOTRANetting had been specified on the
TPCONNECT()call.

T-OUT specifies that the transaction should be allowed atfe@stT seconds before
timing out. Once a transaction times out it must be abortadoUT is 0, then the
transaction is given the maximum number of seconds allowed by the system before
timing out (that is, the timeout value equals the maximum value for an unsigned long
as defined by the system).

Upon successful completioMPBEGIN() setsTP-STATUS to [TPOK.

Under the following conditiong,PBEGIN() fails and set3P-STATUSto:

BEA Tuxedo COBOL Function Reference 49

Section 3(cbl) - COBOL Functions

50

Notices

See Also

[TPEINVAL]
Invalid arguments were given.

[TPETRAN
The caller cannot be placed in transaction mode because an error occurred
starting the transaction.

[TPEPROTD
TPBEGIN() was called in an improper context (for example, the caller is
already in transaction mode).

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

When usingrPBEGIN() , TPCOMMIT() andTPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a resourc
manager that meets the XAO interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eitheTPCOMMIT() or TPABORT(). Seebuildserver(1) for details on
linking resource managers that meet the XA interface into a server such that operatiol
performed by that resource manager are part of a BEA Tuxedo system transaction.

TPABORT(3cbl) , TPCOMMIT(3cbl) , TPGETLEV(3cbl) , TPSCMT(3cbl)

BEA Tuxedo COBOL Function Reference

TPBROADCAST(3cbl)

TPBROADCAST(3¢bl)

Name

Synopsis

Description

TPBROADCAST()- broadcast notification by name

01 TPBCTDEF-REC
COPY TPBCTDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPBROADCAST" USING TPBCTDEF-RECTPTYPE-REC DATA-REC
TPSTATUS-REC

TPBROADCAST()allows a client or server to send unsolicited messages to registered
clients within the system. The target client set consists of those clients matching
identifiers passed toPBROADCAST() Wildcards can be used in specifying identifiers.

LMID, USRNAMBNACLTNAMEall in TPBCTDEF-REG are logical identifiers used to

select the target client set.S®ACESvalue for any logical identifiers constitutes a
wildcard for that argument. A wildcard argument matches all client identifiers for that
field. Each identifier must meet the size restrictions defined for the system to be
considered valid, that is, each identifier must be between 0 and 30 characters in length.

The data portion of the request is identifiedd®rA-RECandLEN in TPTYPE-REC
specifies how much dbATA-RECto send. Note that DATA-RECIs a record of a type
that does not require a length to be specified, tiEnis ignored (and may 3. If
REC-TYPEINn TPTYPE-RECiIS SPACES in which caseATA-RECandLEN are ignored
and a request is sent with no data portion.

The following is a list of valid settings iNPPBCTDEF-REC

TPNOBLOCK
The requestis not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). EithROBLOCHKr
TPBLOCKmust be set.

BEA Tuxedo COBOL Function Reference 51

Section 3(cbl) - COBOL Functions

Return Values

Errors

TPBLOCK
If a blocking condition exists, the caller blocks until the condition subsides or
a timeout occurs (either transaction or blocking timeout). EfRROBLOCK
or TPBLOCKmust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Upon successful return fiPBROADCAST() the message
has been delivered to the system for forwarding to the selected clients.
TPBROADCAST()Jdoes not wait for the message to be delivered to each
selected client. EitheéPPNOSIGRSTROr TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted and the call fails. EitiENOSIGRSTRTOr TPSIGRSTRT
must be set.

Upon successful completioNPBROADCAST()setsTP-STATUS to [TPOK.

Under the following condition§;PBROADCAST()sends no broadcast messages to
application clients and set®-STATUSto:

[TPEINVAL]
Invalid arguments were given. Note that use of an illeg@b will cause
TPBROADCAST()to fail and returiTPEINVAL() . However, non-existent user
or client names will simply successfully broadcast to no one.

[TPETIME|
A blocking timeout occurred and botRBLOCKandTPTIME were specified.

[TPEBLOCK
A blocking condition was found on the call aneINOBLOCKvas specified.

52 BEA Tuxedo COBOL Function Reference

TPBROADCAST(3cbl)

Portability

Usage

See Also

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
TPBROADCAST()was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

The interfaces described TI’PNOTIFY() are supported on native site UNIX-based
processors. In addition, the routinEBBROADCAST()andTPCHKUNSOL()as well as
the routineTPSETUNSOL() are supported on UNIX and MS-DOS workstation
processors.

Clients that select signal-based naotification may not be signal-able by the system due
to signal restrictions. When this occurs, the system generates a log message that it is
switching notification for the selected client to dip-in and the client is notified then and
thereafter via dip-in notification. (S&BBCONFIG(5) description of th&RESOURCES
NOTIFY parameter for a detailed discussion of notification methods.)

Because signaling of clients is always done by the system, the behavior of notification
is always consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator is identified in the configuration file for the
application.

If signal-based natification is selected for a client, then certain ATMI calls can falil,
returningTPGOTSIG() due to receipt of an unsolicited messagePBIGRSTRTIiS not
specified. Se&BBCONFIG(5) andTPINITIALIZE(3cbl) for more information on
notification method selection.

TPINITIALIZE(3cbl) , TPNOTIFY(3cbl) , TPTERM(3chl) , UBBCONFIG(5)

BEA Tuxedo COBOL Function Reference 53

Section 3(cbl) - COBOL Functions

TPCALL(3cbl)

Name TPCALL() - routine to send a message to a service synchronously

Synopsis 01 TPSVCDEF-REC
COPY TPSVCDEF.

01 ITPTYPE-REC.
COPY TPTYPE.

01 IDATA-REC.
COPY User data.

01 OTPTYPE-REC
COPY TPTYPE.

01 ODATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL"TPCALL"USING TPSVCDEF-RECITPTYPE-REC IDATA-REC OTPTYPE-REC
ODATA-RECTPSTATUS-REC

Description TPCALL() sends a request and synchronously awaits its reply. A call to this routine is
the same as callinfPACALL() immediately followed byfPGETRPLY/(). TPCALL()
sends a request to the request/response service narBERWCE-NAMEIN
TPSVCDEF-RECThe request is sent out at the priority definedSERVICE-NAME
unless overridden by a previous callfRSPRIO() . The data portion of a request is
specified bylDATA-REC andLENin ITPTYPE-REC specifies how much dDATA-REC
to send. Note that lDATA-REC is a record of a type that does not require a length to
be specified, thebENin ITPTYPE-REC is ignored (and may b@. If REC-TYPEIn
ITPTYPE-REC is SPACES IDATA-REC andLENin ITPTYPE-REC are ignored and a
request is sent with no data portionREC-TYPEINn ITPTYPE-REC iS STRING andLEN
in ITPTYPE-REC is0, then the request is sent with no data portion. REE@TYPEIn
ITPTYPE-REC andSUB-TYPEIn ITPTYPE-REC must match one of tHREC-TYPE and
SUB-TYPEs recognized bgERVICE-NAME

ODATA-REGspecifies where a reply is read into, and, on ingitin OTPTYPE-REC
indicates the maximum number of bytes that should be move®PAFA-RECIf the
same record is to be used for both sending and rece®PWTrA-RECGhould be

54 BEA Tuxedo COBOL Function Reference

TPCALL(3c¢bl)

REDEFINEDtO /IDATA-REC. Upon successful return fromPCALL() , LENin
OTPTYPE-REG0Ntains the actual number of bytes moved & TA-RECREC-TYPE
andSUB-TYPEin OTPTYPE-RECcontain the replies type and sub-type respectively. If
the reply is larger tha®DATA-RECthenODATA-REGwill contain only as many bytes
as will fit in the record. The remainder of the reply is discardedraadLL() sets
TPTRUNCATE().

If LENin OTPTYPE-REQs 0 upon successful return, then the reply has no data portion
and ODATA-REGvas not modified. It is an error faEN in OTPTYPE-RECQO be0 on
input.

The following is a list of valid settings inPPSVCDEF-REC

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAMEIs invoked, it is not performed on behalf of the caller’s
transaction. If theSERVICE-NAMEbelongs to a server that does not support
transactions then this setting must be used when the caller is in transaction
mode. A caller in transaction mode that sets this to true is still subject to the
transaction timeout (and no other). If a service fails that was invoked with this
setting, the caller’s transaction is not affected. EitRMOTRANI TPTRAN
must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAMEIs invoked, it is performed on behalf of the caller’s
transaction. The setting is ignored if the caller is not in transaction mode.
EitherTPNOTRANI TPTRANMUSt be set.

TPNOCHANGE
When this setting is used, the type@PATA-REds not allowed to change.
That is, the type and sub-type of the replied record must rR&CHTYPE IN
OTPTYPE-REGNASUB-TYPE IN OTPTYPE-REGrespectively, so long as the
receiver recognizes the incoming record type. EtRMOCHANGEr
TPCHANGENUSt be set.

TPCHANGE
The type and/or subtype of the reply record is allowed to differ from those
specified iNREC-TYPE IN OTPTYPE-REGandSUB-TYPE IN OTPTYPE-REG
respectively, so long as the receiver recognizes the incoming record type.
Either TPNOCHANGEr TPCHANGHENUSt be set.

BEA Tuxedo COBOL Function Reference 55

Section 3(cbl) - COBOL Functions

Return Values

Errors

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). Note that this setting
applies only to the send portionTHCALL() : the routine may block waiting
for the reply. EitheTPNOBLOCHKT TPBLOCKmMuSst be set.

TPBLOCK
WhenTPBLOCKs specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithelTPNOBLOCKIr TPBLOCKmMust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Eith@fPNOSIGRSTRTOr TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted and the routine fails. EitheNOSIGRSTRr
TPSIGRSTRTmMust be set.

Upon successful completioTPCALL() setsTP-STATUSto [TPOK. WhenTP-STATUS
is set toTPOKor TPESVCFAIL, APPL-RETURN-CODE IN TPSTATUS-RECCONtains an
application defined value that was sent as palP&RETURN().

If the size of the incoming message was larger then the size specifdon input,
TPTRUNCATE()is set and onlyEN amount of data was moved @@ATA-RECthe
remaining data is discarded.

Under the following conditiong,PCALL() fails and set3P-STATUSto (unless
otherwise noted, failure does not affect the caller's transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for examp&ERVICE-NAMEIS SPACESor
settings iNTPSVCDEF-REGre invalid).

56 BEA Tuxedo COBOL Function Reference

TPCALL(3cbl)

[TPENOENT
Cannot send t6ERVICE-NAMEbecause it does not exist or is not a
request/response service (that is, it is a conversational service).

[TPEITYPE]
The pairREC-TYPEandSUB-TYPEIs not one of the allowed types and
sub-types thaSERVICE-NAMEaccepts.

[TPEOTYPE
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGEas set and thREC-TYPEandSUB-TYPEin ODATA-REQJ0 not
match the type and sub-type of the reply sent by the service. Neither
ODATA-REOrLENIn OTPTYPE-REGre changed. If the service request was
made on behalf of the caller’s current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPETRAN

SERVICE-NAMEbelongs to a server that does not support transactions and
TPTRANwas set.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and botRPBLOCKandTPTIME were specified. In
either case, neith@DATA-REhor OTPTYPE-REGare changed. If a
transaction timeout occurred, then with one exception, any attempts to send
new requests or receive outstanding replies will fail WRETIME until the
transaction has been aborted.

[TPESVCFAIL]
The service routine sending the caller's reply cafleHETURN() with
TPFAIL() . This is an application-level failure. The contents of the service’s
reply, if one was sent, is available @DATA-RECIf the service request was
made on behalf of the caller’s current transaction, then the transaction is
marked abort-only. Note that regardless of whether the transaction has timed
out, the only valid communications before the transaction is aborted are calls
to TPACALL() with TPNOREPLYTPNOTRANandTPNOBLOCIHKet.

[TPESVCERR
An error was encountered either in invoking a service routine or during its
completion iINTPRETURN() (for example, bad arguments were passed). No
reply data is returned when this error occurs (that is, neithaTA-REor
OTPTYPE-REGare changed). If the service request was made on behalf of the

BEA Tuxedo COBOL Function Reference 57

Section 3(cbl) - COBOL Functions

58

See Also

caller’s transaction (that iSPNOTRANvas not set), then the transaction is
marked abort-only. Note that regardless of whether the transaction has timec
out, the only valid communications before the transaction is aborted are call
to TPACALL() with TPNOREPLYTPNOTRANandTPNOBLOCIset.

[TPEBLOCK
A blocking condition was found on the send portiomPEALL() and
TPNOBLOCKvas specified.

[TPGOTSI]
A signal was received anmdPSIGRSTRTwas not specified.

[TPEPROTD
TPCALL() was called improperly.

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

TPACALL(3cbl) , TPFORWAR(3cbl), TPGPRIO(3cbl) , TPRETURN(3chI) |
TPSPRIO(3cbl)

BEA Tuxedo COBOL Function Reference

TPCANCEL (3cbl)

TPCANCEL(3¢bl)

Name TPCANCEL() - cancel a communication handle for an outstanding reply

Synopsis 01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPCANCEL" USING TPSVCDEF-RECTPSTATUS-REC

Description TPCANCEL() cancels a communication handiB)MM-HANDLE INTPSVCDEF-REC
returned byrPACALL() . It is an error to attempt to cancel a communication handle
associated with a transaction.

Upon success;OMM-HANDLE no longer valid and any reply received on behalf of
COMM-HANDL®ill be silently discarded.

Return Values ~ Upon successful completioMPCANCEL() setSTP-STATUSto [TPON.
Errors Under the following conditiong,PCANCEL() fails and set3P-STATUS to:

[TPEBADDESE
COMM-HANDLEB an invalid communication handle.

[TPETRAN
COMM-HANDLIB associated with the caller’s transactio®@MM-HANDLE
remains valid and the caller’s current transaction is not affected.

[TPEPROTD
TPCANCEL() was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Als0 TPACALL(3chl)

BEA Tuxedo COBOL Function Reference 59

Section 3(cbl) - COBOL Functions

TPCHKAUTH(3¢bl)

Name TPCHKAUTH(—check if authentication required to join a BEA Tuxedo system
application

Synopsis 01 TPAUTDEF-REC
COPY TPAUTDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPCHKAUTH" USING TPAUTDEF-RECTPSTATUS-REC

Description TPCHKAUTH() checks if authentication is required by the application configuration.
This is typically used by application clients prior to calllfRINITIALIZE() to
determine if a password should be obtained from the user.

Return Values Upon successful completioRPCHKAUTH() setsTP-STATUSto [TPOK and sets one of
the following values IMWPAUTDEF-REC

TPNOAUTH
indicates that no authentication is required.

TPSYSAUTH
indicates that only system authentication is required.

TPAPPAUTH
indicates that both system and application specific authentication are
required.

Errors Under the following conditiong,PCHKAUTH() fails and set¥P-STATUS to:

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

Portability ~ The interfaces described TCHKAUTH() are supported on UNIX System and
MS-DOS operating systems.

See Also TPINITIALIZE(3cbl)

60 BEA Tuxedo COBOL Function Reference

TPCHKUNSOL(3cbi)

TPCHKUNSOL(3¢bl)

Name

Synopsis

Description

Return Values

Errors

Portability

TPCHKUNSOL()- check for unsolicited message
01 MSG-NUMIC S9(9) COMP-5.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPCHKUNSOL" USING MSG-NUMTPSTATUS-REC

TPCHKUNSOL()is used by a client to trigger checking for unsolicited messages. Calls
to this routine in a client using signal-based notification do nothing and return
immediately. Calls to this routine can result in calls to an application-defined
unsolicited message handling routine by the BEA Tuxedo system libraries.

Upon successful completioMPCHKUNSOL()setsTP-STATUS to [TPOK and returns
the number of unsolicited messages dispatchedsia-NUM

Under the following condition§,PCHKUNSOL()fails and set3P-STATUStO:

[TPEPROTD
TPCHKUNSOL()was called in an improper context (for example, from within
a server).

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

The interfaces described T’PNOTIFY() are supported on native site UNIX-based
processors. In addition, the routinEBBROADCAST()andTPCHKUNSOL()as well as
the routineTPSETUNSOL() are supported on UNIX and MS-DOS workstation
processors.

Clients that select signal-based notification may not be signal-able by the system due
to signal restrictions. When this occurs, the system generates a log message that it is
switching notification for the selected client to dip-in and the client is notified then and
thereafter via dip-in notification. (S&BBCONFIG(5) description of th&RESOURCES
NOTIFY parameter for a detailed discussion of notification methods.)

BEA Tuxedo COBOL Function Reference 61

Section 3(cbl) - COBOL Functions

62

See Also

Because signaling of clients is always done by the system, the behavior of notificatio
is always consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator is identified as part of the configuration for
the application.

If signal-based notification is selected for a client, then certain ATMI calls can fall,
returningTPGOTSIG() due to receipt of an unsolicited messagePBIGRSTRTIS not
specified. Se&lBBCONFIG(5) andTPINITIALIZE(3cbl) for more information on
notification method selection.

TPBROADCAST(3chl) , TPINITIALIZE(3cbl) , TPNOTIFY(3chl) ,
TPSETUNSOL(3chbl)

BEA Tuxedo COBOL Function Reference

TPCLOSE(3c¢bl)

TPCLOSE(3cbl)

Name

Synopsis

Description

Return Values

Errors

See Also

TPCLOSE() - close the BEA Tuxedo system resource manager

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPCLOSE" USING TPSTATUS-REC

TPCLOSE() tears down the association between the caller and the resource manager to
which it is linked. Since resource managers differ in tble#e semantics, the

specific information needed to close a particular resource manager is placed in a
configuration file.

If a resource manager is already closed (thaPisL.OSE() is called more than once),
no action is taken and success is returned.

Upon successful completioMPCLOSE() setsTP-STATUS to [TPOK.
Under the following conditiong,PCLOSE() fails and set3P-STATUSto:

[TPERMERR
A resource manager failed to close correctly. More information concerning
the reason a resource manager failed to close can be obtained by interrogating
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTD
TPCLOSE() was called in an improper context (for example, while the caller
is in transaction mode).

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

TPOPEN(3cbl)

BEA Tuxedo COBOL Function Reference 63

Section 3(cbl) - COBOL Functions

TPCOMMIT(3cbl)

64

Name

Synopsis

Description

TPCOMMIT() - commit current BEA Tuxedo system transaction

01 TPTRXDEF-REC
COPY TPTRXDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPCOMMIT" USING TPTRXDEF-RECTPSTATUS-REC

TPCOMMIT() signifies the end of a transaction, using a two-phase commit protocol to
coordinate participantSPCOMMIT() can be called only by the initiator of a
transaction. If any of the participants cannot commit the transaction (for example, the:
call TPRETURN() with TPFAIL()), then the entire transaction is aborted and
TPCOMMIT() fails. That is, all of the work involved in the transaction is undone. If all
participants agree to commit their portion of the transaction, then this decision is
logged to stable storage and all participants are asked to commit their work.

Depending on the setting of tMe-COMMIT-CONTROIcharacteristic (SEEPSCMTY()),
TPCOMMIT() can return successfully either after the commit decision has been loggec
or after the two-phase commit protocol has completerPtfOMMIT() returns after the
commit decision has been logged but before the second phase has completed
(TP-CMT-LOGGED, then all participants have agreed to commit the work they did on
behalf of the transaction and should fulfill their promise to commit the transaction
during the second phase. However, beca@sOMMIT() is returning before the

second phase has completed, there is a hazard that one or more of the participants
heuristically complete their portion of the transaction (in a manner that is not consister
with the commit decision) even though the routine has returned success.

If the TP-COMMIT-CONTROIcharacteristic is set such tH@COMMIT() returns after
the two-phase commit protocol has completeRl¢MT-COMPLETE, then its return
value reflects the exact status of the transaction (that is, whether the transaction
heuristically completed or not).

Note that if only a single resource manager is involved in a transaction, then a
one-phase commit is performed (that is, the resource manager is not asked whether
not it can commit; it is simply told to commit). In this case, ThecOMMIT-CONTROL
characteristic has no bearing arRcOMMIT() will return heuristic outcomes if

present.

BEA Tuxedo COBOL Function Reference

TPCOMMIT(3¢cbl)

Return Values

Errors

If TPCOMMIT() is called while communication handles exist for outstanding replies,
then upon return fromPCOMMIT(), the transaction is aborted and those handles
associated with the caller’s transaction are no longer valid. Communication handles
not associated with the caller’s transaction remain valid.

TPCOMMIT() must be called after all connections associated with the caller’s
transaction are closed (otherwig®EABORTIs returned, the transaction is aborted
and these connections are disconnected in a disorderly fashion with a
TPEV-DISCONIMMevent). Connections opened befGRBEGIN() or with the
TPNOTRANetting (that is, connections not in transaction mode) are not affected by
calls toTPCOMMIT() or TPABORT().

Currently, TPCOMMIT()'s argument,TPTRXDEF-RECIs reserved for future use.
Upon successful completioMPCOMMIT() setsTP-STATUSto [TPOK.
Under the following conditiong,PCOMMT()fails and set3P-STATUSto:

[TPEINVAL]
TPTRXDEF-REQs not equal t@. The caller’s transaction is not affected.

[TPETIME]
The transaction timed out and the status of the transaction is unknown (that
is, it can have been either committed or aborted). Note that if the transaction
timed out and its status is known to be aborted, theEABORT s returned.

[TPEABORT
The transaction could not commit because either the work performed by the
initiator or by one or more of its participants could not commit. This error is
also returned ifPCOMMIT() is called with outstanding replies or open
conversational connections.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

[TPEHAZARD
Due to some failure, the work done on behalf of the transaction could have
been heuristically completed.

[TPEPROTD
TPCOMMIT() was called in an improper context (for example, by a
participant).

BEA Tuxedo COBOL Function Reference 65

Section 3(cbl) - COBOL Functions

66

Notices

See Also

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

When usingrPBEGIN() , TPCOMMIT(), andTPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a resourc
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eitheTPCOMMIT() or TPABORT(). Seebuildserver(1) for details on
linking resource managers that meet the XA interface into a server such that operatiol
performed by that resource manager are part of a BEA Tuxedo system transaction.

TPABORT(3chl) , TPBEGIN(3cbl) , TPCONNECT(3cbl), TPGETLEV(3cbl) ,
TPRETURN(3cbl) , TPSCMT(3cbl)

BEA Tuxedo COBOL Function Reference

TPCONNECT(3cbl)

TPCONNECT(3¢bl)

Name

Synopsis

Description

TPCONNECT()- establish a conversational connection

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-RECTPTYPE-REC DATA-REC
TPSTATUS-REC

TPCONNECT()allows a program to set up a half-duplex connection to a conversational
service SERVICE-NAMEInN TPSVCDEF-RECThe name must be one of the
conversational service names posted by a conversational server.

As part of setting up a connection, the caller can pass application defined data to the
receiving service routine. If the caller chooses to pass datap#efRECcoONtains

the data andENIn TPTYPE-RECspecifies how much of the record to send. Note that

if DATA-RECIs a record of a type that does not require a length to be specified, then
LENis ignored (and may 1. If REC-TYPEIn TPTYPE-RECS SPACES DATA-RECand

LEN are ignored (no application data is passed to the conversational service).
REC-TYPEandSUB-TYPEIn TPTYPE-RECmMust match one of the types and sub-types
recognized bYSERVICE-NAME

Because the conversational service recedaBA-RECandLEN upon successful return
from TPSVCSTART(), the service does not calPRECV() to get the data sent by
TPCONNECT()

The following is a list of valid settings inPPSVCDEF-REC

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAMEIs invoked, it is not performed on behalf of the caller’s
transaction. IISERVICE-NAMEbelongs to a server that does not support

BEA Tuxedo COBOL Function Reference 67

Section 3(cbl) - COBOL Functions

transactions, then this setting must be used when the caller is in transaction
mode. A caller in transaction mode that uses this setting is still subject to the
transaction timeout (and no other). If a service fails that was invoked with this
setting, the caller’s transaction is not affected. EiftRMOTRANI TPTRAN

must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, then when
SERVICE-NAMEIs invoked, it is performed on behalf of the caller’s
transaction. This setting is ignored if the caller is not in transaction mode.
Either TPNOTRAMNI TPTRANMuSt be set.

TPSENDONLY
The caller wants the connection to be set up initially such that it can only senc
data and the called service can only receive data (that is, the caller initially
has control of the connection). EitHEBFSENDONLYr TPRECVONLYNUSt be
specified.

TPRECVONLY
The caller wants the connection to be set up initially such that it can only
receive data and the called service can only send data (that is, the service
being called initially has control of the connection). EitheBENDONLYor
TPRECVONLYNust be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking
condition exists (for example, the data buffers through which the message i
sent are full). EitheTPNOBLOCKr TPBLOCKmust be set.

TPBLOCK
WhenTPBLOCKs specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithelTPNOBLOCKIr TPBLOCKmMust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts will still affect the
program. EithemPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

68 BEA Tuxedo COBOL Function Reference

TPCONNECT(3cbl)

Return Values

Errors

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted call is
reissued. EitheTPNOSIGRSTRTor TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
WhenTPNOSIGRSTRTS specified and a signal interrupts a system call, the
call fails andTP-STATUS is set toTPGOTSIG() . EitherTPNOSIGRSTRTor
TPSIGRSTRTmMust be set.

Upon successful completioMPCONNECT()SetsTP-STATUSto [TPOK and returns a
communications handle MOMM-HANDLIE TPSVCDEF-REChat is used to refer to the
connection in subsequent calls.

Under the following condition§;PCONNECT()fails and set3§P-STATUSto (unless
otherwise noted, failure does not affect the caller’s transaction, if one exists).

[TPEINVAL]
Invalid arguments were given (for example, settingsASVCDEF-REGre
invalid).

[TPENOENT
Can not initiate a connection $&RVICE-NAMEbecause it does not exist or is
not a conversational service.

[TPEITYPE]
The pairREC-TYPEandSUB-TYPEIs not one of the allowed types and
sub-types thaSERVICE-NAMEaccepts.

[TPELIMIT]
The connection was not sent because the maximum number of outstanding
connections has been reached.

[TPETRAN
SERVICE-NAMEbelongs to a program that does not support transactions and
TPNOTRANvas not set.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and botRBLOCKandTPTIME were specified. If
a transaction timeout occurred, then any attempts to send or receive messages
on any connections or to start a new connection will fail Wi IME] until
the transaction has been aborted.

BEA Tuxedo COBOL Function Reference 69

Section 3(cbl) - COBOL Functions

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received anmdPSIGRSTRTwas not specified.

[TPEPROTD
TPCONNECT()was called improperly.

[TPESYSTEW

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also TPDISCON(3chl) , TPRECV(3chl) , TPSEND(3chl)

70 BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3¢cbl)

TPDEQUEUE(3¢bl)

Name

Synopsis

Description

TPDEQUEUE()- routine to dequeue a message from a queue

01 TPQUEDEF-REC
COPY TPQUEDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY STATDEF.

CALL "TPDEQUEUE" USING TPQUEDEF-RECTPTYPE-REC DATA-REC
TPSTATUS-REC

TPDEQUEUE()takes a message for processing from the queue nan@dANEn the
QSPACE-NAMEuUeue space.

By default, the message at the top of the queue is dequeued. The order of messages on
the queue is defined when the queue is created. The application can request a particular
message for dequeuing by specifying its message identifier MSGD or
correlationidentifierusing CORRID . TPQUEDEF-REGettings can also be used

to indicate that the application wants to wait for a message, in the case when a message
is not currently available. It is possible to use TROUEDEF-REGtructure to look at a
message without removing it from the queue or changing its relative position on the
gueue. See the section below describing this record.

DATA-RECspecifies where a dequeued message is to be read into, and, drEiput
indicates the maximum number of bytes that should be movediita-REC Upon
successful return,EN contains the actual number of bytes moved MGA-REC
REC-TYPEandSUB-TYPEcontain the replies type and sub-type respectively. If the
reply is larger thamATA-REG thenDATA-RECwiIll contain only as many bytes as will
fit in the record. The remainder of the reply is discardedT@mEQUEUE()fails
returning fPTRUNCATE

If LENis0 upon successful return, then the reply has no data portionAmMiREC
was not modified. It is an error faENto be0 on input.

BEA Tuxedo COBOL Function Reference 71

Section 3(cbl) - COBOL Functions

72

The message is dequeued in transaction mode if the caller is in transaction mode al
TPTRANIs set. This has the effect thafWDEQUEUEeturns successfully and the

caller’s transaction is committed successfully, then the message is removed from th
gueue. If the caller’s transaction is rolled back either explicitly or as the result of a
transaction timeout or some communication error, then the message will be left on th
queue (that is, the removal of the message from the queue is also rolled back). Itis n
possible to enqueue and dequeue the same message within the same transaction.

The message is not dequeued in transaction mode if either the caller is not in
transaction mode, GPNOTRANS set. When not in transaction mode, if a
communication error or a timeout occurs, the application will not know whether or not
the message was successfully dequeued and the message may be lost.

The following is a list of valid settings MPPQUEDEF-REC

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message is nc
dequeued within the caller’s transaction. A caller in transaction mode that set:
this to true is still subject to the transaction timeout (and no other). If message
dequeuing fails that was invoked with this setting, the caller’s transaction is
not affected. EitheTPNOTRANI TPTRANMuUSt be set.

TPTRAN
If the caller is in transaction mode and this setting is used, the message is
dequeued within the same transaction as the caller. The setting is ignored if
the caller is not in transaction mode. EitieNOTRANr TPTRANMuUSt be set.

TPNOBLOCK
The message is not dequeued if a blocking condition exiSBNIBBLOCKS
set and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call fails BRGTATUS is set to
TPEBLOCK If TPNOBLOCHKs set and a blocking condition exists because the
target queue is openedclusivelyby another application, the call fails,
TP-STATUS is set toTPEDIAGNOSTIG and theDIAGNOSTICfield of the
TPQUEDERecord is set tQMESHAREN the latter case, the other application,
which is based on a BEA product other than the BEA Tuxedo system, openec
the queue for exclusive read and/or write using the Queuing Services API
(QSAPI). EitherTPNOBLOCHKTr TPBLOCKmMust be set.

TPBLOCK
WhenTPBLOCKis set and a blocking condition exists, the caller blocks until
the condition subsides or a timeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue

BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3¢cbl)

itself if theTPQWAITsetting is specified. Eith@PNOBLOCKr TPBLOCKmMust
be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
EitherTPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EftAROTIME
or TPTIME must be set.

TPNOCHANGE
When this setting is used, the typeba@fTA-RECS not allowed to change. That
is, the type and sub-type of the dequeued message mustRECHY PE IN
TPTYPE-RECandSUB-TYPE IN TPTYPE-REG respectively, so long as the
receiver recognizes the incoming record type. EtRMOCHANGEN
TPCHANGENUSt be set.

TPCHANGE
The type and/or subtype of the dequeued message is allowed to differ from
those specified iIREC-TYPE IN TPTYPE-RECandSUB-TYPE IN
TPTYPE-REG respectively, so long as the receiver recognizes the incoming
record type. EitheTPNOCHANG@&r TPCHANGHENUSt be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call
is reissued. EithefPNOSIGRSTRDr TPSIGRSTRTMuSst be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call
is not restarted and the routine fails. EithBNOSIGRSTRr TPSIGRSTRT
must be set.

If TPDEQUEUE()returns successfully, the application can retrieve additional
information about the message using IRQUEDEF-REGtructure. The information

may include the message identifier for the dequeued message; a correlation identifier
that should accompany any reply or failure message so that the originator can correlate
the message with the original request; the quality of service the message was delivered
with; the quality of service any replies to the message should be delivered with; the

BEA Tuxedo COBOL Function Reference 73

Section 3(cbl) - COBOL Functions

74

Control
Structure

name of a reply queue if a reply is desired; and the name of the failure queue on whic
the application can queue information regarding failure to dequeue the message. The
are described below.

TPQUEDEF-REGs used by the application program to pass and retrieve information
associated with dequeuing the message. The settimEUEDEF-REG@re used to
indicate what other elements in the structure are valid.

On input toTPDEQUEUE() the following elements may be set in ttlQUEDEF-REC

05 MSGID PIC X(32).
05 CORRID PIC X(32).

The following is a list of valid settings IlPPQUEDEF-REcontrolling input information
for TPDEQUEUE()

TPQGETNEXT
Setting this value requests that the next message on the queue be dequeue
using the default queue order. One of the following must b&BOGETNEXT
TPQGETBYMSGI|Dor TPQGETBYCORRID

TPQGETBYMSGID
Setting this value requests that the message identifis6ybbe dequeued.
The message identifier may be acquired by a prior caPENQUEUE() Note
that the message identifier changes if the message has moved from one que
to another. Note also that the entire 32 bytes of the message identifier value
are significant, so the value identified kGIDmust be completely
initialized (for example, padded with spaces).

One of the following must be s@PQGETNEXTTPQGETBYMSGLDor
TPQGETBYCORRID

TPQGETBYCORRID
Setting this value requests that the message identifieDBRIDbe
dequeued. The correlation identifier is specified by the application when
enqueuing the message WitAENQUEUE() Note that the entire 32 bytes of
the correlation identifier value are significant, so the value identified by
CORRIDmMust be completely initialized (for example, padded with spaces).

One of the following must be s@PQGETNEXTTPQGETBYMSGLDor
TPQGETBYCORRID

BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3cbl)

TPQWAIT
Setting this value indicates that an error should not be returned if the queue is
empty. Instead, the process should wait until a message is available. Set
TPQNOWAITO not wait until a message is availableTRQWAITIs set in
conjunction withTPQGETBYMSGIDr TPQGETBYCORRIDt indicates that an
error should not be returned if no message with the specified message
identifier or correlation identifier is present in the queue. Instead, the process
should wait until a message meeting the criteria is available. The process is
still subject to the caller’s transaction timeout, or, when not in transaction
mode, the process is still subject to the timeout specified orTMQEEUE
process by the option.

If a message matching the desired criteria is not immediately available and
the configured action resources are exhaustedEQUEURaiIls, TP-STATUS
is set toTPEDIAGNOSTIC andDIAGNOSTICis set toqQMESYSTEM

Note that eachMPDEQUEUE()request specifying thEPQWAITcontrol

parameter requires that a queue manage@UEUEaction object be available

if a message satisfying the condition is not immediately available. If one is
not available, thePDEQUEUE()request fails. The number of available queue
manager actions are specified when a queue space is created or modified.
When a waiting dequeue request completes, the associated action object
associated is made available for another request.

TPQPEEK
If TPQPEEKs set, the specified message is read but not removed from the
queue. ThE@PNOTRANIag must be set. It is not possible to read messages
enqueued or dequeued within a transaction before the transaction completes.

When a thread is non-destructively dequeuing a messageTesprgEEK the
message may not be seen by other non-blocking dequeuers for the brief time
the system is processing the non-destructive dequeue request. This includes
dequeuers using specific selection criteria (such as message identifier and
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

On output fromrPDEQUEUE() the following elements may be setiRQUEDEF-REC

05 PRIORITY PIC S9(9) COMP-5.
05 MSGID PIC X(32).
05 CORRID PIC X(32).

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.
05 REPLYQUEUE PIC X(15).

BEA Tuxedo COBOL Function Reference 75

Section 3(cbl) - COBOL Functions

05 FAILUREQUEUE PIC X(15).
05 DIAGNOSTIC PIC S9(9) COMP-5.

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5
05 APPL-RETURN-CODE PIC S9(9) COMP-5.
05 APPKEY PIC S9(9) COMP-5.

The following is a list of valid settings iMPQUEDEF-RE@ontrolling output

information fromTPDEQUEUE() For any of these settings, if the setting is true when
TPDEQUEUE()is called, the associated element in the record is populated with the
value provided when the message was queued, and the setting remains true. If the va
is not available (that is, no value was provided when the message was queued) or
setting is not true whePPDEQUEUE()is called,TPDEQUEUE()completes with the

setting not true.

TPQPRIORITY
If this value is set, the call tPDEQUEUE()is successful, and the message
was queued with an explicit priority, then the priority is storePRIORITY.
The priority is in the range 1 to 100, inclusive, and the higher the number, the
higher the priority (that is, a message with a higher number is dequeued
before a message with a lower numberyAQNOPRIORITYS set, the priority
is not available.

Note that if no priority was explicitly specified when the message was
queued, the priority for the message is 50.

TPQMSGID
If this value is set and the call tT®PDEQUEUE()is successful, the message
identifier is stored iMSGID The entire 32 bytes of the message identifier
value are significant. FPQNOMSGIIs set, the message identifier is not
available.

TPQCORRID
If this value is set, the call TPDEQUEUE()is successful, and the message
was queued with a correlation identifier, then the correlation identifier is
stored inCORRID The entire 32 bytes of the correlation identifier value are
significant. Any BEA Tuxedo /Q provided reply to a message has the
correlation identifier of the original messageTQNOCORRIS set, the
correlation identifier is not available.

TPQDELIVERYQOS
If this value is set, the call tPDEQUEUE()is successful, and the message
was queued with a delivery quality of service, then the flag—
TPQQOSDELIVERYDEFAULTPERSISTPQQOSDELIVERYPERSISTENDr
TPQQOSDELIVERYNONPERSISTENBpecified by

76 BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3¢cbl)

TPQUEQOS-DELIVERY-FLAGNdicates the delivery quality of service. If
TPQNODELIVERYQOIS set, the delivery quality of service is not available.

Note that if no delivery quality of service was explicitly specified when the
message was queued, the default delivery policy of the target queue dictates
the delivery quality of service for the message.

TPQREPLYQOS
If this value is set, the call ttPDEQUEUE()is successful, and the message
was queued with a reply quality of service, then the flag—
TPQQOSREPLYDEFAULTPERSISTPQQOSREPLYPERSISTENDr
TPQQOSREPLYNONPERSISTENEpecified byTPQUEQOS-REPLY-FLAG
indicates the reply quality of service. TIPQNOREPLYQQS set, the reply
quality of service is not available.

Note that if no reply quality of service was explicitly specified when the
message was queued, the default delivery policy oRER:YQUEURuUeue
dictates the delivery quality of service for any reply. The default delivery
policy is determined when the reply to a message is enqueued. That is, if the
default delivery policy of the reply queue is modified between the time that
the original message is enqueued and the reply to the message is enqueued,
the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this value is set, the call ttPDEQUEUE()is successful, and the message
was queued with a reply queue, then the name of the reply queue is stored in
REPLYQUEUEANy reply to the message should go to the named reply queue
within the same queue space as the request message@NOREPLY G set,
the reply queue is not available.

TPQFAILUREQ
If this value is set, the call ttPDEQUEUE()is successful, and the message
was queued with a failure queue, then the name of the failure queue is stored
in FAILUREQUEUEANYy failure message should go to the named failure queue
within the same queue space as the request messagONOFAILUREQs
set, the failure queue is not available.

The remaining settings IPPQUEDEF-REG@re set to the following values when
TPDEQUEUE()is called:TPQNOTOPTPQNOBEFOREMSGIDPQNOTIME_ABS
TPQNOTIME_RELTPQNOEXPTIME_ABSTPQNOEXPTIME_REland
TPQNOEXPTIME_NONE

BEA Tuxedo COBOL Function Reference 77

Section 3(cbl) - COBOL Functions

Return Values

78

Errors

If the call toTPDEQUEUE()fails andTP-STATUS is set toTPEDIAGNOSTIG a value
indicating the reason for failure is returnedIAGNOSTIC The possible values are
defined below in th®IAGNOSTICSsection.

Additionally on output, if the call toPDEQUEUE()is successfulAPPKEYis set to the
application authentication kegLIENTID is set to the identifier for the client
originating the request, andPPL-RETURN-CODES set to the user-return code value
that was set when the message was enqueued.

Upon successful completioMPDEQUEUE()SetSTP-STATUS to [TPOK.

Under the following conditiong;PDEQUEUE()fails and set3P-STATUSto the
following values (unless otherwise noted, failure does not affect the caller’s
transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for exampsSPACE-NAMES SPACESOr
settings iINTPQUEDEF-RE@re invalid).

[TPENOEN]T
Cannot access thgSPACE-NAMBecause it is not available (that is, the
associatedMQUEUE(5)server is not available), or cannot start a global
transaction due to the lack of entries in the Global Transaction Table (GTT)

[TPEOTYPE
Either theREC-TYPEandSUB-TYPEof the dequeued message are not known
to the caller; ofTPNOCHANGEas set and thREC-TYPEandSUB-TYPEdo not
match the type and sub-type of the dequeued message. NgiftreRECNOr
TPTYPE-RECare changed. When the call is made in transaction mode and this
error occurs, the transaction is marked abort-only, and the message remain
on the queue.

[TPTRUNCATE
The size of the incoming message is larger than the size specified.in
Only LEN amount of data was moved D& TA-REG the remaining data is
discarded.

[TPETIME
A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked abort-only; otherwise, a blocking
timeout occurred and botfPBLOCKandTPTIME were specified. In either
case, neitheDATA-RECNnor TPTYPE-RECare changed. If a transaction

BEA Tuxedo COBOL Function Reference

TPDEQUEUE(3¢cbl)

Diagnostics

timeout occurred, any attempts to CElDEQUEUE()or TPENQUEUE()will
fail with TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPBLOCKwas set.

[TPGOTSI]
A signal was received amtPNOSIGRSTRwas set.

[TPEPROTD
TPDEQUEUE()was called improperly. There is no effect on the queue or the
transaction.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file. There is no effect on the queue.

[TPEOS
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIG
Dequeuing a message from the specified queue failed. The reason for failure
can be determined by the diagnostic value returnedR@UEDEF-REC

The following diagnostic values are returned during the dequeuing of a message.

[QMEINVAL
An invalid setting was specified.

[QMEBADRMID
An invalid resource manager identifier was specified.

[QMENOTOPEN
The resource manager is not currently open.

[QMETRAN
The call was not in transaction mode or was made THNMOTRANet and an
error occurred trying to start a transaction in which to dequeue the message.
This diagnostic is not returned by a queue manager from BEA Tuxedo
Release 7.1 or later.

[QMEBADMSGI]D
An invalid message identifier was specified for dequeuing.

BEA Tuxedo COBOL Function Reference 79

Section 3(cbl) - COBOL Functions

See Also

[QMESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[QMECE
An operating system error has occurred.

[QMEABORTED
The operation was aborted. When executed within a global transaction, the
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE
An invalid, deleted, or reserved queue name was specified.

[QMENOM$G
No message was available for dequeuing. Note that it is possible that the
message exists on the queue and another application process has read the
message from the queue. In this case, the message may be put back on the
queue if that other process rolls back the transaction.

[QMEINUSE
When dequeuing a message by message identifier or correlation identifier,
the specified message is in use by another transaction. Other wise all
messages currently on the queue are in use by other transactions. This
diagnostic is not returned by a queue manager from BEA Tuxedo Release 7.
or later.

[QMESHARE
When dequeuing a message from a specified queue, the specified queue is
openecexclusivelyby another application. The other application is one based
on a BEA product other than the BEA Tuxedo system that opened the queut
for exclusive read and/or write using the Queuing Services API (QSAPI).

gmadmin(1l) , TPENQUEUE(3cbl) , TMQUEUE(5)

80 BEA Tuxedo COBOL Function Reference

TPDISCON(3cbl)

TPDISCON(3cbl)

Name

Synopsis

Description

Return Values

Errors

TPDISCON() - take down a conversational connection

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-RECTPSTATUS-REC

TPDISCON() immediately tears down the connection specifie€b¥IM-HANDLR
TPSVCDEF-RECthe communications handle, and generate=sy-DISCONIMMevent
on the other end of the connection.

TPDISCON() can only be called by the initiator of the conversati®DISCON() can

not be called within a conversational service on the communications handle with
which it was invoked. Rather, a conversational service mustRBETURN() to

signify that it has completed its part of the conversation. Similarly, even though a
program communicating with a conversational service can BDESCON(), the

preferred way is to let the service tear down the connectiotPRETURN(); doing so
ensures correct results. If the initiator of the connection is a serveRR&TURN()

can also be used to cause an orderly disconnection. If the initiator of the connection is
in a transaction, therPCOMMIT() or TPABORT() can be used to cause an orderly
disconnection.

TPDISCON() causes the connection to be torn down immediately (that is, abortive
rather than orderly). Any data that has not yet reached its destination may be lost.
TPDISCON() can be issued even when the program on the other end of the connection
is participating in the caller’s transaction. In this case, the transaction is aborted. Also,
the caller does not need to have control of the connection WABISCON() is called.

Upon successful completiomMPDISCON() setsTP-STATUSto [TPOK.
Under the following conditiong;,PDISCON() fails and set3P-STATUS to:

[TPEBADDESE
COMM-HANDL invalid or is the communications handle with which a
conversational service was invoked.

BEA Tuxedo COBOL Function Reference 81

Section 3(cbl) - COBOL Functions

[TPETIME]
A timeout occurred. The communications handle is no longer valid.

[TPEPROTD
TPDISCON() was called improperly.

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file. The communications handle is no longer valid.
[TPEOS

An operating system error has occurred. The communications handle is no
longer valid.

See Also TPABORT(3cbl) , TPCOMMIT(3cbl) , TPCONNECT(3cbl) , TPRECV(3cbl)
TPRETURN(3cbl) , TPSEND(3cbl)

82 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

TPENQUEUE(3cbl)

Name

Synopsis

Description

TPENQUEUE()- routine to enqueue a message

01 TPQUEDEF-REC
COPY TPQUEDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPENQUEUE" USING TPQUEDEF-RECTPTYPE-REC DATA-REC
TPSTATUS-REC

TPENQUEUE()stores a message on the queue namegNawWEn theQSPACE-NAME
gqueue space. A queue space is a collection of queues, one of which @NgME

When the message is intended for a BEA Tuxedo system servenAnEnatches

the name of a service provided by the server. The system provided server,
TMQFORWARD(5provides a default mechanism for dequeuing messages from the
gqueue and forwarding them to servers that provide a service matching the queue name.
If the originator expects a reply, then the reply to the forwarded service request is
stored on the originator’s queue unless otherwise specified. The originator will

dequeue the reply message at a subsequent time. Queues can also be used for a reliable
message transfer mechanism between any pair of BEA Tuxedo system processes
(clients and/or servers). In this case, the queue name does not match a service name but
some agreed upon name for transferring the message.

The data portion of a message is specifie®AYA-RECandLEN in TPTYPE-REC
specifies how much aPATA-RECto enqueue. Note thatifATA-RECIs a record of a
type that does not require a length to be specified,tBRis ignored (and may).

If REC-TYPEIN TPTYPE-RECIS SPACES DATA-RECandLEN are ignored and a message
is enqueued with no data portion. TREC-TYPEandSUB-TYPE, both inTPTYPE-REG
must match one of thREC-TYPEs andSUB-TYPES recognized bpSPACE-NAME

The message is queued at the priority defined&*ACE-NAMENless overridden by
a previous call tadPSPRIO() .

BEA Tuxedo COBOL Function Reference 83

Section 3(cbl) - COBOL Functions

84

If the caller is within a transaction am8 TRANis set, the message is queued in
transaction mode. This has the effect th@aPENQUEUE()returns successfully and the
caller’s transaction is committed successfully, then the message is guaranteed to be
available subsequent to the transaction completing. If the caller’s transaction is rolles
back either explicitly or as the result of a transaction timeout or some communicatior
error, then the message will be removed from the queue (that is, the placing of the
message on the queue is also rolled back). It is not possible to enqueue then deque
the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transactic
mode, orTPNOTRANS set. Onc@PENQUEUE()returns successfully, the submitted
message is guaranteed to be in the queue. When not in transaction mode, if a
communication error or a timeout occurs, the application will not know whether or not
the message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the applicatic
via TPQUEDEF-RE@s described below; the default queue ordering is set when the
queue is created.

The following is a list of valid settings MPPQUEDEF-REC

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message is nc
enqueued within the caller’s transaction. A caller in transaction mode that set:
this to true is still subject to the transaction timeout (and no other). If message
enqueuing fails that was invoked with this setting, the caller’s transaction is
not affected. EitheTPNOTRANTI TPTRANMuUSt be set.

TPTRAN
If the caller is in transaction mode and this setting is used, the message is
enqueued within the same transaction as the caller. The setting is ignored if
the caller is not in transaction mode. EitieNOTRANr TPTRANMuUSt be set.

TPNOBLOCK
The message is not enqueued if a blocking condition exiSBNIBBLOCKS
set and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call fails BM$TATUS is set to
TPEBLOCK If TPNOBLOCHKs set and a blocking condition exists because the
target queue is openedclusivelyby another application, the call fails,
TP-STATUS is set toTPEDIAGNOSTIG and theDIAGNOSTICfield of the
TPQUEDERecord is set tQMESHARHN the latter case, the other application,
which is based on a BEA product other than the BEA Tuxedo system, openec

BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

Control
Parameter

the queue for exclusive read and/or write using the Queuing Services API
(QSAPI). EitherTPNOBLOCKTr TPBLOCKmust be set.

TPBLOCK
WhenTPBLOCKis set and a blocking condition exists, the caller blocks until
the condition subsides or a timeout occurs (either transaction or blocking
timeout). EitheTPNOBLOCKIr TPBLOCKmust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EftAROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call
is reissued. EithefTPNOSIGRSTRDr TPSIGRSTRTMuSst be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call
is not restarted and the routine fails. EithBNOSIGRSTRr TPSIGRSTRT
must be set.

Additional information about queuing the message can be specified via
TPQUEDEF-RECThis information includes values to override the default queue

ordering placing the message at the top of the queue or before an enqueued message;
an absolute or relative time after which a queued message is made available; an
absolute or relative time when a message expires and is removed from the queue; the
quality of service for delivering the message; the quality of service that any replies to
the message should use; a correlation identifier that aids in correlating a reply or failure
message with the queued message; the name of a queue to which a reply should be
enqueued; and the name of a queue to which any failure message should be enqueued.

TPQUEDEF-REGS used by the application program to pass and retrieve information
associated with enqueuing the message. Settings are used to indicate what elements in
the record are valid.

On input toTPENQUEUE() the following elements may be setiRQUEDEF-REC

BEA Tuxedo COBOL Function Reference 85

Section 3(cbl) - COBOL Functions

05 DEQ-TIME PIC S9(9) COMP-5.
05 PRIORITY PIC S9(9) COMP-5.
05 MSGID PIC X(32).

05 CORRID PIC X(32).

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

05 EXP-TIME PIC S9(9) COMP-5.
05 REPLYQUEUE PIC X(15).
05 FAILUREQUEUE PIC X(15).

05 APPL-RETURN-CODE PIC S9(9) COMP-5.
The following values indicate what values are set inMP@QUEDEF-REC

TPQTOP
Setting this value indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue ordering. SEPQDEFAULTO use default queue orderirgRQTOR
TPQBEFOREMSG|mr TPQDEFAULTMuUSt be set.

TPQBEFOREMSGID
Setting this value indicates that the queue ordering be overridden and the
message placed in the queue before the message identifigsidm This
request may not be granted depending on whether or not the queue was
configured to allow overriding the queue ordering. BE)DEFAULTO use
default queue orderinFPQTOP TPQBEFOREMSG|mr TPQDEFAULTMuUSt be
set.

Note that the entire 32 bytes of the message identifier value are significant, s
the value identified bySGIDmust be completely initialized (for example,
padded with spaces).

TPQTIME-ABS
If this value is set, the message is made available after the time specified by
DEQ-TIME. DEQ-TIME is an absolute time value as generatednlyy (2) or
mktime (3C) (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970). SERQNOTIMEf neither an absolute or
relative time value is setPQTIME-ABS, TPQTIME-REL, or TPQNOTIMBNuUSt
be set. The absolute time is determined by the clock on the machine where th
gueue manager process resides.

TPQTIME-REL
If this value is set, the message is made available after a time relative to the
completion of the enqueuing operati@EQ-TIME specifies the number of

86 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

seconds to delay after the enqueuing completes before the submitted message
should be available. SEPQNOTIMHTf neither an absolute or relative time
value is setTPQTIME-ABS, TPQTIME-REL, or TPQNOTIMHENUSt be set.

TPQPRIORITY
If this value is set, the priority at which the message should be enqueued is
stored inPRIORITY . The priority must be in the range 1 to 100, inclusive. The
higher the number, the higher the priority (that is, a message with a higher
number is dequeued before a message with a lower number). For queues not
ordered by priority, this value is informational TPQNOPRIORITYis set, the
priority for the message is 50 by default.

TPQCORRID
If this value is set, the correlation identifier value specified@RRIDis
available when a message is dequeued WAEQUEUE() This identifier
accompanies any reply or failure message that is queued so that an application
can correlate a reply with a particular request TBINOCORRILf a
correlation identifier is not available.

Note that the entire 32 bytes of the correlation identifier value are significant,
so the value specified TORRIDMust be completely initialized (for example,
padded with spaces).

TPQREPLYQ
If this value is set, a reply queue nameREPLYQUEUIS associated with the
queued message. Any reply to the message is queued to the named queue
within the same queue space as the request messageBEIREPLY® a
reply queue name is not available.

TPQFAILUREQ
If this value is set, a failure queue nameBAILUREQUEUHS associated with
the queued message. If (1) the enqueued message is processed by
TMQFORWARD((2) TMQFORWARIaS started with thel option, and (3) the
service fails and returns a non-null reply, a failure message consisting of the
reply and its associatedPPL-RETURN-CODEN theTPSTATUSrecord is
enqueued to the named queue within the same queue space as the original
request message. SEQNOFAILUREGF a failure queue name is not
available.

TPQDELIVERYQOS

TPQREPLYQOS
If TPQDELIVERYQO$ set, the flags specified by
TPQUEQOS-DELIVERY-FLAGoONtrol the quality of service for message

BEA Tuxedo COBOL Function Reference 87

Section 3(cbl) - COBOL Functions

88

delivery. One of the following mutually exclusive flags must be set:
TPQQOSDELIVERYDEFAULTPERSISTPQQOSDELIVERYPERSISTENDT
TPQQOSDELIVERYNONPERSISTENT TPQDELIVERYQOSS not set,
TPQNODELIVERYQO®Ust be set. WhenPQNODELIVERYQOS set, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

If TPQREPLYQOSS set, the flags specified BPQUEQOS-REPLY-FLAGONtrOl
the quality of service for reply message delivery for any reply. One of the
following mutually exclusive flags must be set:
TPQQOSREPLYDEFAULTPERSISTPQQOSREPLYPERSISTENTr
TPQQOSREPLYNONPERSISTENheTPQREPLYQOfag is used when a reply
is returned from messages processetNdyFORWARApplications not using
TMQFORWARD invoke services may use theQREPLYQOS8ag as a hint for
their own reply mechanism.

If TPQREPLYQO#® not setTPQNOREPLYQQ8ust be set. When
TPQNOREPLYQQS set, the default delivery policy of tREPLYQUEURueue
dictates the delivery quality of service for any reply. Note that the default
delivery policy is determined when the reply to a message is enqueued. Tha
is, if the default delivery policy of the reply queue is modified between the
time that the original message is enqueued and the reply to the message is
enqueued, the policy used is the one in effect when the reply is finally
enqueued.

The validTPQUEQOS-DELIVERY-FLAGNATPQUEQOS-REPLY-FLAdags
are:

TPQQOSDELIVERYDEFAULTPERSIST

TPQQOSREPLYDEFAULTPERSIST
These flags specify that the message is to be delivered using the
default delivery policy specified on the target or reply queue.

TPQQOSDELIVERYPERSISTENT

TPQQOSREPLYPERSISTENT
These flags specify that the message is to be delivered in a persisten
manner using the disk-based delivery method. When specified, these
flags override the default delivery policy specified on the target or
reply queue.

BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

TPQQOSDELIVERYNONPERSISTENT

TPQQOSREPLYNONPERSISTENT
These flags specify that the message is to be delivered in a
non-persistent manner using the memory-based delivery method,;
the message is queued in memory until it is dequeued. When
specified, these flags override the default delivery policy specified
on the target or reply queue.

If the caller is transactional, non-persistent messages are enqueued
within the caller’s transaction, however, non-persistent messages
are lost if the system is shut down or crashes or the IPC shared
memory for the queue space is removed.

TPQEXPTIME-ABS
If this value is set, the message has an absolute expiration time, which is the
absolute time when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where
the queue manager process resides.

The absolute expiration time is specified by the value storERRATIME.
EXP-TIME must be set to an absolute time generatetriay (2) or

mktime (3C) (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue
operation, the operation succeeds, but the message is not counted for the
purpose of calculating thresholds. If the expiration time is before the message
availability time, the message is not available for dequeuing unless either the
availability or expiration time is changed so that the availability time is before
the expiration time. In addition, these messages are removed from the queue
at expiration time even if they were never available for dequeuing. If a
message expires during a transaction, the expiration does not cause the
transaction to fail. Messages that expire while being enqueued or dequeued
within a transaction are removed from the queue when the transaction ends.
There is no acknowledgment that the message has expired.

One of the following must be s@PQEXPTIME-ABS TPQEXPTIME-REL
TPQEXPTIME-NONEOr TPQNOEXPTIME

TPQEXPTIME-REL
If this value is set, the message has a relative expiration time, which is the
number of secondsfterthe message arrives at the queue that the message is

BEA Tuxedo COBOL Function Reference 89

Section 3(cbl) - COBOL Functions

90

removed from the queue. The relative expiration time is specified by the value
stored inEXP-TIME.

If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is
changed so that the availability time is before the expiration time. In addition,
these messages are removed from the queue at expiration time even if they
were never available for dequeuing. The expiration of a message during a
transaction does cause the transaction to fail. Messages that expire while
being enqueued or dequeued within a transaction are removed from the quet
when the transaction ends. There is no acknowledgment that the message h
expired.

One of the following must be s@PQEXPTIME-ABS TPQEXPTIME-REL
TPQEXPTIME-NONEOr TPQNOEXPTIME

TPQEXPTIME-NONE
Setting this value indicates that the message should not expire. This flag
overrides any default expiration policy associated with the target queue. You
can remove a message by dequeuing it or by deleting it via an administrative
interface. One of the following must be SERQEXPTIME-ABS
TPQEXPTIME-REL TPQEXPTIME-NONEOr TPQNOEXPTIME

TPQNOEXPTIME
Setting this value specifies that the default expiration time associated with the
target queue applies to the message. One of the following must be set:
TPQEXPTIME-ABS TPQEXPTIME-REL TPQEXPTIME-NONEOT
TPQNOEXPTIME

Additionally, APPL-RETURN-CODEan be set with a user-return code. This value is
returned to the application that dequeues the message.

On output fromMTPENQUEUE() the following elements may be setiRQUEDEF-REC

05MSGID PIC X(32).
05 DIAGNOSTIC PIC S9(9) COMP-5.

The following is a valid setting inPQUEDEF-REcontrolling output information from
TPENQUEUE() If this setting is true whePnPENQUEUE()is called, the /Q server
TMQUEUE(5)populates the associated element in the record with a message identifier
If this setting is not true whePPENQUEUE()is called, TMQUEUE()doesnot populate

the associated element in the record with a message identifier.

BEA Tuxedo COBOL Function Reference

TPENQUEUE(3¢cbl)

Return Values

Errors

TPQMSGID
If this value is set and the call TPENQUEUE()is successful, the message
identifier is stored iMSGID The entire 32 bytes of the message identifier
value are significant, so the value storedi®GIDis completely initialized
(for example, padded with null characters). The actual padding character used
for initialization varies between releases of the BEA Tuxedo /Q component.
If TPQNOMSGIIs set, the message identifier is not available.

The remaining members of the control structure are not used on input to
TPENQUEUE()

If the call toTPENQUEUE()failed andTP-STATUS s set toTPEDIAGNOSTIG a value
indicating the reason for failure is returnedIAGNOSTIC The possible values are
defined below in th®IAGNOSTICSsection.

Upon successful completioMPENQUEUE()SetsTP-STATUSto [TPOK.

Under the following condition§,PENQUEUE()fails and set§P-STATUSto the
following values (unless otherwise noted, failure does not affect the caller’s
transaction, if one exists).

[TPEINVAL]
Invalid arguments were given (for exampeEsPACE-NAMES SPACESOr
settings iNTPQUEDEF-REGre invalid).

[TPENOENT
Cannot access thgSPACE-NAMBecause it is not available (that is, the
associated MQUEUE(5)server is not available), or cannot start a global
transaction due to the lack of entries in the Global Transaction Table (GTT).

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked abort-only; otherwise, a blocking
timeout occurred and bottPBLOCKandTPTIME were specified. If a
transaction timeout occurred, any attempts toTEHNEQUEUE()or
TPENQUEUE()will fail with TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPBLOCKwas set.

[TPGOTSI]
A signal was received amtPNOSIGRSTRWwas set.

BEA Tuxedo COBOL Function Reference 91

Section 3(cbl) - COBOL Functions

Diagnostic
Values

[TPEPROTD
TPENQUEUE()was called improperly. There is no effect on the queue or the
transaction.

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file. There is no effect on the queue.

[TPEOS
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIG
Enqueuing a message from the specified queue failed. The reason for failur
can be determined by the diagnostic value returne@R@UEDEF-REC

The following diagnostic values are returned during the enqueuing of a message.

[QMEINVAI]
An invalid setting was specified.

[QMEBADRMID
An invalid resource manager identifier was specified.

[QMENOTOPEN
The resource manager is not currently open.

[QMETRAN
The call was not in transaction mode or was made witlRN®©TRAMNetting
and an error occurred trying to start a transaction in which to enqueue the
message. This diagnostic is not returned by a queue manager from BEA
Tuxedo Release 7.1 or later.

[QMEBADMSG|D
An invalid message identifier was specified.

[QMESYSTEM
A system error has occurred. The exact nature of the error is written to a loc
file.

[QMECE
An operating system error has occurred.

92 BEA Tuxedo COBOL Function Reference

TPENQUEUE(3cbl)

[QMEABORTED
The operation was aborted. When executed within a global transaction, the
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO
An enqueue was done when the transaction state was not active.

[QMEBADQUEVE
An invalid, deleted, or reserved queue name was specified.

[QMENOSPAGE
Due to an insufficient resource, such as no space on the queue, the message
with its required quality of service (persistent or non-persistent storage) was
not enqueuedMENOSPAQGE returned when any of the following configured
resources is exceeded: (1) the amount of disk (persistent) space allotted to the
gqueue space, (2) the amount of memory (non-persistent) space allotted to the
gueue space, (3) the maximum number of simultaneously active transactions
allowed for the queue space, (4) the maximum number of messages that the
gueue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or (6)
the maximum number of authenticated users that may concurrently use the
Queuing Services component.

[QMERELEASE
An attempt was made to enqueue a message to a queue manager that is from
a version of the BEA Tuxedo system that does not support a newer feature.

[QMESHARE
When enqueuing a message from a specified queue, the specified queue is
openeckxclusivelypy another application. The other application is one based
on a BEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services API (QSAPI).

See Also gmadmin(1) , TPDEQUEUE(3chbl) , TPSPRIO(3chl) , TMQFORWARD (ST MQUEUE(5)

BEA Tuxedo COBOL Function Reference 93

Section 3(cbl) - COBOL Functions

TPFORWAR(3¢bl)

94

Name

Synopsis

Description

TPFORWAR()- forward a BEA Tuxedo system service request to another routine

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

COPY TPFORWAR REPLACING TPSVCDEF-REC BYPSVCDEF-REC
TPTYPE-REC BY TPTYPE-REC

DATA-REC BY DATA-REC

TPSTATUS-REC BY TPSTAUS-REC

TPFORWAR()allows a service routine to forward a client’s request to another service
routine for further processing. SinTBFORWAR()contains areEXIT PROGRAM

statement, it should be called from within the same routine that was invoked to ensur
correct return of control to the BEA Tuxedo system dispatcher (tHERFQRWAR()
should not be invoked in a sub-program of the service routine since control would no
return to the BEA Tuxedo system dispatch&€PFORWAR()cannot be called from

within a conversational service.

This routine forwards a request to the service namesERyVICE-NAMEIN
TPSVCDEF-REQusing data contained DATA-REC A service routine forwarding a
request receives no reply. After the request is forwarded, the service routine returns
the BEA Tuxedo system dispatcher and the server is free to do other work. Note tha
because no reply is expected from a forwarded request, the request may be forward
without error to any service routine in the same executable as the service which
forwarded the request.

If the service routine is in transaction mode, this routine puts the caller’s portion of the
transaction in a state where it may be completed when the originator of the transactic
issues eitheTPCOMMIT() or TPABORT(). If a transaction was explicitly started with
TPBEGIN() while in a service routine, the transaction must be ended with either

BEA Tuxedo COBOL Function Reference

TPFORWAR(3cbl)

Return Values

Errors

TPCOMMIT() or TPABORT() before callingTPFORWAR() Thus, all services in a
“forward chain” are either all started in transaction mode or none are started in
transaction mode.

The last server in a forward chain sends a reply back to the originator of the request
usingTPRETURNY(). In essence,PFORWAR()transfers to another server the
responsibility of sending a reply back to the awaiting requester.

TPFORWAR(should be called after receiving all replies expected from service requests
initiated by the service routine. Any outstanding replies which are not received will
automatically be dropped by the BEA Tuxedo system dispatcher upon receipt. In
addition, the communications handle for those replies become invalid and the request
is not forwarded t@ERVICE-NAME

DATA-RECs the record to be sent arElN in TPTYPE-RECspecifies the amount of data
in DATA-RECthat should be sent. Note thaDhTA-RECIis a record of a type that does
not require a length to be specified, th&n is ignored (and may b®. If REC-TYPE

in TPTYPE-RECIiS SPACES DATA-RECandLEN are ignored and a request with zero
length data is sent. REC-TYPEis STRING andLEN is 0, then the request is sent with
no data portion.

Since the service routine writer does not regain control after cabRQRWAR() a
blocking send with signal restart is used (thalPSIGRSTRTis implied). Currently,
settings inNTPSVCDEF-REGre reserved for future use and any specified are ignored.

A service routine does not return any value to its caller, the BEA Tuxedo system
dispatcher. Thug,P-STATUS s not set.

If any errors occur either in the handling of the parameters passed to the routine or in
its processing, a “failed” message is sent back to the original requester (unless no reply
is to be sent). The existence of outstanding replies or subordinate connections, or the
caller’s transaction being marked abort-only, qualify as failures which generate failed
messages. Failed messages are detected by the requester Wb i€ERR() error
indication. When such an error occurs, the caller’s data is not sent. Also, this error
causes the caller’s current transaction to be marked abort-only.

If a transaction timeout occurs either while in the service routine or while forwarding
the request, the requester waiting for a reply with eitiR&@ALL() , or TPGETRPLY()

will get aTPETIME error return. Also, the waiting requester will not receive any data.
Service routines, however, are expected to terminate using eRRETURN() or
TPFORWAR() A conversational service routine must IBRETURN(), and cannot use
TPFORWAR()

BEA Tuxedo COBOL Function Reference 95

Section 3(cbl) - COBOL Functions

If a service routine returns without using eitMBRETURN() or TPFORWAR()or
TPFORWAR()is called from a conversational server, the server will print a warning
message in a log file and return a service error to the original requester. All open
connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replies will be marked stale. If the server was in transaction mode at tt
time of failure, the transaction is marked abort-only. Note also that if either
TPRETURN() or TPFORWAR()are used outside of a service routine (for example, in
clients, or iNTPSVRINIT() orTPSVRDONE(), then these routines simply return having
no effect.

See Also TPCONNECT(3cbl) , TPRETURN(3cbl)

96 BEA Tuxedo COBOL Function Reference

TPGETCTXT(3cbl)

TPGETCTXT(3cbl)

Name TPGETCTXT() - retrieves a context identifier for the current application association

Synopsis 01 TPCONTEXTDEF-REC.
COPY TPCONTEXTDEF.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPGETCTXT" USING TPCONTEXTDEF-REC TPSTATUS-REC.

Description TPGETCTXT() retrieves an identifier that represents the current application context and
places that identifier iITONTEXTin TPCONTEXTDEF-RECTypically, a COBOL
application

1. CallsTPINITIALIZE() with theTP-MULTI-CONTEXTSflag set.

2. CallsTPGETCTXT() and saves thePCONTEXTDEF-REC

3. CallsTPINITIALIZE() , again with therlP-MULTI-CONTEXTS flag.
4. CallsTPGETCTXT() again and saves the returned context.

5. CallsTPSETCTXT() to switch back to the first context.

TPGETCTXT() may be called in single-context applications as well as in multicontext
applications.

Return Values Upon successful completioNPGETCTXTsetsTP-STATUS to [TPOK and places the
program’s context identifier @ONTEXTn TPCONTEXTDEF-RECONTEXTS set to the
current context ID, which may be represented by either:

m An actual context ID

m TPNULLCONTEXTindicating that this program is not currently associated with a
context

Note: TPINVALIDCONTEXTcannot be returned in COBOL programs because this
value is possible only in multithreaded programs.

Errors Upon failure, TPGETCTXTsetsTP-STATUS to one of the following values.

BEA Tuxedo COBOL Function Reference 97

Section 3(cbl) - COBOL Functions

[TPEINVAL]
Invalid arguments have been given.

[TPESYSTEW

A BEA Tuxedo system error has occurred. The exact nature of the error has
been written to a log file.

[TPEOS
An operating system error has occurred.

See Also Introduction to the COBOL Application-Transaction Monitor Interface,
TPSETCTXT(3cbl)

98 BEA Tuxedo COBOL Function Reference

TPGETLEV(3cbl)

TPGETLEV(3cbl)

Name

Synopsis

Description

Return Values

Errors

Notices

See Also

TPGETLEV() - check if a BEA Tuxedo system transaction is in progress

01 TPTRXLEV-REC
COPY TPTRXLEV.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC

TPGETLEV() returns to the caller the current transaction level. Currently, the only
levels defined ar&P-NOT-IN-TRAN andTP-IN-TRAN .

Upon successful completioMPGETLEV() setsTP-STATUSto [TPOK and sets values
in TPTRXLEV-RECtO either aTP-NOT-IN-TRAN to indicate that no transaction is in
progress, ofP-IN-TRAN to indicate that a transaction is in progress.

Under the following conditiong,PGETLEV() fails and set3P-STATUS to:

[TPEPROTD
TPGETLEV() was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

When usingrPBEGIN() , TPCOMMIT(), andTPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a resource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eitheTPCOMMIT() or TPABORT(). Seebuildserver(1) for details on

linking resource managers that meet the XA interface into a server such that operations
performed by that resource manager are part of a BEA Tuxedo system transaction.

TPABORT(3chl) , TPBEGIN(3cbl) , TPCOMMIT(3cbl) , TPSCMT(3cbl)

BEA Tuxedo COBOL Function Reference 99

Section 3(cbl) - COBOL Functions

TPGETRPLY(3cbl)

Name TPGETRPLY() - get reply from asynchronous message

Synopsis 01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPGETRPLY" USING TPSVCDEF-RECTPTYPE-REC DATA-REC
TPSTATUS-REC

Description TPGETRPLY() returns a reply from a previously sent reqUEBGETRPLY() either
returns a reply for a particular request, or it returns any reply that is available. Both
options are described below.

DATA-RECspecifies where the reply is to be read into and, on inanjn
TPTYPE-RECiIndicates the maximum number of bytes that should be moved into
DATA-REC Also,REC-TYPEIn TPTYPE-RECOMust be specified. Upon successful return
from TPGETRPLY(), LEN contains the actual number of bytes moved PAGA-REG
REC-TYPEandSUB-TYPE, both inTPTYPE-REG contain the data’s type and sub-type,
respectively. If the reply is larger thamTA-REG thenDATA-RECWiIll contain only as
many bytes as will fit in the record. The remainder of the reply is discarded and
TPGETRPLY() SetSTPTRUNCATE().

If LENis 0 upon successful return, then the reply has no data portioDAamdREC
was not modified. It is an error feRENto be0 on input.

The following is a list of valid settings iInPPSVCDEF-REC

TPGETANY
This setting signifies thatPGETRPLY() should ignore the communications
handle indicated bgOMM-HANDLEh TPSVCDEF-RECreturn any reply
available and setOMM-HANDLE the communications handle for the reply

100 BEA Tuxedo COBOL Function Reference

TPGETRPLY/(3cbl)

returned. If no replies exiSIPGETRPLY() can wait for one to arrive. Either
TPGETANYor TPGETHANDLENust be set.

TPGETHANDLE
This setting signifies thatPGETRPLY() should use the communications
handle identified byzOMM-HANDLENd return a reply available for that
COMM-HANDLEHTf no replies existTPGETRPLY() can wait for one to arrive.
EitherTPGETANYor TPGETHANDLENnUSt be set.

TPNOCHANGE
When this value is set, the type@ATA-RECIs not allowed to change. That
is, the type and sub-type of the reply record must nrREchTYPEand
SUB-TYPE, respectively. EitheTPNOCHANG&r TPCHANGHNuUSt be set.

TPCHANGE
The type and/or subtype of the reply record differs fREa-TYPEand
SUB-TYPE, respectively, so long as the receiver recognizes the incoming
record type. EitheTPNOCHANG@&r TPCHANGHENUSt be set.

TPNOBLOCK
TPGETRPLY() does not wait for the reply to arrive. If the reply is available,
thenTPGETRPLY() gets the reply and returns. EitH@NOBLOCKr TPBLOCK
must be set.

TPBLOCK
WhenTPBLOCKs specified and no data is available, the caller blocks until the
reply arrives or a timeout occurs (either transaction or blocking timeout).
Either TPNOBLOCKr TPBLOCKmMust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely for its reply
and wants to be immune to blocking timeouts. Transaction timeouts may still
occur. EithelTPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EftAROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Eith@PNOSIGRSTRDr TPSIGRSTRTmMust be set.

BEA Tuxedo COBOL Function Reference 101

Section 3(cbl) - COBOL Functions

Return Values

102

Errors

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted and the call fails. EitiENOSIGRSTRTOr TPSIGRSTRT
must be set.

Except as noted belowwOMM-HANDLIS no longer valid after its reply is received.

Upon successful completioMPGETRPLY() setsTP-STATUS to [TPOK. When
TP-STATUS s set toTPOK() or TPESVCFAIL() , APPL-RETURN-CODEN
TPSTATUS-RECcontains an application defined value that was sent as part of
TPRETURN(). If the size of the incoming message was larger then the size specified ir
LENon input, TPTRUNCATE()is set and onlyENamount of data was moved to
DATA-REG the remaining data is discarded.

Under the following conditiong,PGETRPLY() fails and set3P-STATUS as indicated
below. Note that iTPGETHANDLEsS set, theltOMM-HANDLE invalidated unless
otherwise stated. FPGETANYis set, therCOMM-HANDLElentifies the

communications handle for the reply on which the failure occurred; if an error occurrec
before a reply could be retrieved, the@MM-HANDLES 0. Also, the failure does not
affect the caller’s transaction, if one exists, unless otherwise stated.

[TPEINVAL]
Invalid arguments were given (for example, settingsA8VCDEF-REGre
invalid).

[TPEOTYPE
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGEas set and theEC-TYPEandSUB-TYPEdo not match the type
and sub-type of the reply sent by the service. NeitgiA-RECNoOr
TPTYPE-RECare changed. If the reply was to be received on behalf of the
caller’s current transaction, then the transaction is marked abort-only since
the reply is discarded.

[TPEBADDESE
COMM-HANDLEoONtains an invalid communications handle.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and botRBLOCKandTPTIME were specified. In
either case, neith@ATA-RECnor TPTYPE-RECare changed. IfPGETHANDLE
was setCOMM-HANDLEemains valid unless the caller is in transaction mode.
If a transaction timeout occurred, then any attempts to send new requests 0

BEA Tuxedo COBOL Function Reference

TPGETRPLY/(3cbl)

See Also

receive outstanding replies will fail witmPETIME] until the transaction has
been aborted.

[TPESVCFAIL]
The service routine sending the caller’s reply catlleHETURN() with
TPFAIL() . This is an application-level failure. The contents of the service’s
reply, if one was sent, is available BMATA-REC APPL-RETURN-CODE
contains an application defined value that was sent as peRR&TURN(). If
the reply was received on behalf of the caller’s transaction, then the
transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the
transaction is aborted are callsTlACALL() with TPNOREPLYTPNOTRAN
andTPNOBLOCIHKet.

[TPESVCERR
An error was encountered by a service routine during its completion in
TPRETURN() or TPFORWAR()(for example, bad arguments were passed). No
reply data is returned when this error occurs (that is, neithea-RECnor
TPTYPE-RECare changed). If the reply was received on behalf of the caller’s
transaction, then the transaction is marked abort-only. Note that regardless of
whether the transaction has timed out, the only valid communications before
the transaction is aborted are call§®ACALL() with TPNOREPLY
TPNOTRANandTPNOBLOCIset.

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specifiedCOMM-HANDLE
remains valid.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
TPGETRPLY() was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

TPACALL(3cbl) , TPCANCEL(3cbl) , TPRETURN(3cbI)

BEA Tuxedo COBOL Function Reference 103

Section 3(cbl) - COBOL Functions

TPGETUNSOL(3cbl)

Name

Synopsis

Description

Return Values

104

Errors

TPGETUNSOL()- get unsolicited message

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC

TPGETUNSOL()gets unsolicited messages that were sentREROADCAST()or
TPNOTIFY() . This routine may only be called from an unsolicited message handler.

Upon successful returhEN IN TPTYPE_REontains the actual number of bytes
moved intoDATA-REC REC-TYPEandSUB-TYPE, both in TPTYPE-REG contain the
data’s type and sub-type, respectively. If the message is largePATARREG then
DATA-RECwIll contain only as many bytes as will fit in the record. The remainder of
the message is discarded and $EERUNCATE(). If LENis 0, upon successful
completion, then the message has no data portiomamnd-RECwas not modified.

It is an error folLENto be0 on input.

Upon successful completioRPGETUNSOL()setsTP-STATUSto [TPON. If the size of
the incoming message was larger then the size specifigzion input,
TPTRUNCATE()is set and onlyEN amount of data was moved a3 TA-REG the
remaining data is discarded.

Under the following conditiong;PGETUNSOL()fails and set3P-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPEPROTD
TPGETUNSOL()was called improperly.

BEA Tuxedo COBOL Function Reference

TPGETUNSOL(3cbI)

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also0 TPSETUNSOL(3cbl)

BEA Tuxedo COBOL Function Reference 105

Section 3(cbl) - COBOL Functions

TPGPRIO(3¢bl)

Name

Synopsis

Description

Return Values

106

Errors

TPGPRIO() - get service request priority

01 TPPRIDEF-REC
COPY TPPRIDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC

TPGPRIO() returns the priority for the last request sent or received. Priorities can range
from 1 to 100, inclusive, with 100 being the highest priofiBGPRIO() may be called
afterTPCALL() or TPACALL() , (alsoTPENQUEUE()or TPDEQUEUE() assuming the
gueued management facility is installed), and the priority returned is for the request
sent. Also,TPGPRIO() may be called within a service routine to find out at what
priority the invoked service was seMPGPRIO() may be called any number of times
and will return the same value until the next request is sent.

Since the conversation primitives are not associated with priorities, iISERBEND()
or TPRECV() has no effect on the priority returned TRGPRIO() . Also, there is no
priority associated with a conversational service routine unlesgAaLL() or
TPACALL() is done within that service.

Upon successful completioNPGPRIO() setsTP-STATUSto [TPOK and returns a
request’s priority irPRIORITY in TPPRIDEF-REC

Under the following conditiong,;PGPRIO() fails and set§P-STATUS to:

[TPENOENT
TPGPRIO() was called and no requests (VRCALL() or TPACALL()) have
been sent, or it is called within a conversational service for which no request:
have been sent.

[TPEPROTD
TPGPRIO() was called improperly.

BEA Tuxedo COBOL Function Reference

TPGPRIO(3cbI)

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred.

See Also TPACALL(3cbl) , TPCALL(3chl) , TPDEQUEUE(3chl) , TPENQUEUE(3chI) ,
TPSPRIO(3chl)

BEA Tuxedo COBOL Function Reference 107

Section 3(cbl) - COBOL Functions

TPINITIALIZE(3cbl)

Name

Synopsis

Description

TPINITIALIZE() - joins a BEA Tuxedo system application

01 TPINFDEF-REC
COPY TPINFDEF.

01 USER-DATA-RECPIC X(any-length).

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPINITIALIZE" TPINFDEF-REC USER-DATA-REC TPSTATUS-REC

TPINITIALIZE() allows a client to join a BEA Tuxedo system application. Before a
client can use any of the BEA Tuxedo communication or transaction routines, it mus
first join a BEA Tuxedo system applicatiorPINITIALIZE() has two modes of
operation: single-context mode and multi-context mode, which will be discussed in
greater detail below. Because calli®INITIALIE() is optional when in
single-context mode, a single-context client may also join an application by calling
many ATMI routines (for exampl@PACALL() orTPCALL()) which transparently call
TPINITIALIZE() with default values for the members INFDEF-REC. A client

may want to calfPINITIALIZE() directly so that it can set the parameters described
below. In additionTPINITIALIZE() must be used when multicontext mode is
required or when application authentication is required (see the description of the
SECURITYkeyword inUBBCONFIG(5)). After TPINITIALIZE() ~ successfully returns,
the client can initiate service requests and define transactions.

In single-context mode, fPINITIALIZE() s called more than once (that is, after the
client has already joined the application), no action is taken and success is returned

Description of the TPINFDEF-REC Record

108

The TPINFDEF-RECrecord includes the following members.

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
88 TPU-SIG VALUE 1.
88 TPU-DIP VALUE 2.

BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 CONTEXTS-FLAG PIC S9(9) COMP-5.
88 TP-SINGLE-CONTEXT VALUE 0.
88 TP-MULTI-CONTEXTS VALUE 1.

05 DATALEN PIC S9(9) COMP-5.

USRNAMIES a hame representing the callerTNAMES a client name whose semantics
are application defined. The valegsclient is reserved by the system for the
CLTNAMHield. TheUSRNAMBNACLTNAMEHields are associated with the client at
TPINITIALIZE() time and are used for both broadcast notification and administrative
statistics retrievaPASSWDs an application password in unencrypted format that is
used for validation against the application password.PA&sWDs significant up to

30 charactersGRPNAMIG used to associate the client with a resource manager group
name. IfGRPNAMIS SPACES then the client is not associated with a resource manager
and is in the default client group.

Single-context Mode versus Multicontext Mode

TPINITIALIZE() has two modes of operation: single-context mode and multi-context
mode. In single-context mode, a process may join at most one application at any one
time. Single-context mode is specified by calllf/RINITIALIZE() with the
TP-SINGLE-CONTEXT setting of CONTEXTS-FLAGr by calling another function that
invokesTPINITIALIZE() implicitly.

In single-context mode, PINITIALIZE() s called more than once (that is, after the
client has already joined the application), no action is taken and success is returned.

Multi-context mode is entered by callif@INITIALIZE() with the
TP-MULTI-CONTEXTS setting of CONTEXTS-FLAGIn multi-context mode, each call to
TPINITIALIZE() ~ results in the creation of a separate application association.

An application associatiois a context that associates a process and a BEA Tuxedo
application. A client may have associations with multiple BEA Tuxedo applications,
and may also have multiple associations with the same application. All of a client’s
associations must be made to applications running the same release of the BEA Tuxedo
system, and either all associations must be native clients or all associations must be
workstation clients.

BEA Tuxedo COBOL Function Reference 109

Section 3(cbl) - COBOL Functions

For native clients, the value of theXCONFIGenvironment variable is used to identify
the application to which the new association will be made. For workstation clients, the
value of thewSNADDRr WSENVFILEenvironment variable is used to identify the
application to which the new association will be made. The context for the current
COBOL process is set to the new association.

In multi-context mode the application can get a handle for the current context, by
calling TPGETCTXT(), and pass that handle as a paramet&P8ETCTXT(), thus
setting the context in which a particular COBOL process will operate.

Mixing single-context mode and multi-context mode is not allowed. Once an
application has chosen one of these modes, catbing TIALIZE() in the other
mode is not allowed unleS®TERM() is first called for all application associations.

TPINFDEF-REC Record Descriptions

110

The settings of PINFDEF-RECare used to indicate both the client specific notification
mechanism and the mode of system access. These settings may override the
application default; however, in the event that they cammiITIALIZE() will

print a warning in a log file, ignore the setting and return the application default setting
in TPINFDEF-REC upon return fronTPINITIALIZE() . For client notification, the
possible settings are as follows:

TPU-SIG
Select unsolicited notification by signals. This setting is not allowed in
conjunction with the’P-MULTI-CONTEXTS setting ofCONTEXTS-FLAG

TPU-DIP
Select unsolicited notification by dip-in.

TPU-IGN
Ignore unsolicited notification.

Only one of the above can be used at a time. If the client does not select a notificatio
method, then the application default method will be set upon return from
TPINITIALIZE()

For setting the mode of system access, the possible settings are as follows:

TPSA-FASTPATH
Set system access to fastpath.

TPSA-PROTECTED
Set system access to protected.

BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

Return Values

Errors

Only one of the above can be used at a time. If the client does not select a notification
method or a system access mode, then the application default method(s) will be set
upon return fronTPINITIALIZE() . SeeUBBCONFIG(5) for details on both client
notification methods and system access modes.

DATALENIs the length of the application specific data that will be sent to the service.
A SPACESvalue forUSRNAMBNACLTNAMES allowed for applications not making use
of the application authentication feature of the BEA Tuxedo system. Currently,
GRPNAMEUSt beSPACES Clients using this option will get defined in the BEA
Tuxedo system with the following: default values i8RNAMECLTNAMEand
GRPNAMHElefault settings; and no application data.

Upon successful completioMPINITIALIZE() setsTP-STATUSto [TPOK. Upon
failure, TPINITIALIZE() leaves the calling process in its original context, returns
and setgP-STATUS to indicate the error condition.

Upon failure, TPINITIALIZE() setsTP-STATUSto:

[TPEINVAL]
Invalid arguments were specified.

[TPENOENT
The client cannot join the application because of space limitations.

[TPEPERW
The client cannot join the application because it does not have permission to
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, failure
to pass application specific authentication or use of restricted names.

[TPEPROTD
TPINITIALIZE() was called improperly. For example: (a) the caller is a
server; (b) th@P-MULTI-CONTEXTS setting was specified in single-context
mode; or (¢) th&P-MULTI-CONTEXTS setting was not specified in
multi-context mode.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

BEA Tuxedo COBOL Function Reference 111

Section 3(cbl) - COBOL Functions

Environment

112

Portability

Variables

The interfaces described TRINITIALIZE() are supported on UNIX System and
MS-DOS operating systems. However, signal-based notification is not supported on
MS-DOS. If it is selected AtPINITIALIZE() time, then JJSERLOG() message is
generated and the method is automatically set to dip-in.

TUXCONFIG

is used withinTPINITIALIZE() when invoked by a non-workstation native
client. It indicates the application to which the client should connect. Note
that this environment variable is referenced only WiNITIALIZE() is
called. Subsequent calls make use of the application context.

WSENVFILE

is used withinTPINITIALIZE() when invoked by a workstation client. It
indicates a file containing environment variable settings that should be set in
the caller’'s environment. Seempilation(5) for more details on
environment variable settings necessary for workstation clients. Note that this
file is processed only wherPINITIALIZE() is called and not before.

WSNADDR

is used withinTPINITIALIZE() when invoked by a workstation client. It
indicates the network address(es) of the workstation listener that is to be
contacted for access to the application. This variable is required for
Workstation clients and is ignored for native clients.

TCP/IP addresses may be specified in the following forms:

"//host.name:port_number"
VIt #H#. A port_number”

In the first format, the domain finds an addresshfstname using the local
name resolution facilities (usually DNSjpstname must be the local

machine, and the local name resolution facilities must unambiguously resolve
hostname to the address of the local machine.

In the second example, the£## "isin dotted-decimal format. In dotted-
decimal format, eack should be a number from 0 to 255. This
dotted-decimal number represents the IP address of the local machine.

In both of the above formatggrt_ number is the TCP port number at which
the domain process will listen for incoming requesig._number can

either be a number between 0 and 65535 or a namert lhumber is a

name, then it must be found in the network services database on your local
machine.

BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

The address can also be specified in hexadecimal format when preceded by
the characters “Ox”. Each character after the initial “Ox” is a number between
0 and 9 or a letter between A and F (case insensitive). The hexadecimal
format is useful for arbitrary binary network addresses such as IPX/SPX or
TCP/IP.

The address can also be specified as an arbitrary string. The value should be
the same as that specified for NeSADDRparameter in thEETWORKSection
of the configuration file.

More than one address can be specified if desired by specifying a
comma-separated list of pathnamesf@NADDRAddresses are tried in order
until a connection is established. Any member of an address list can be
specified as a parenthesized grouping of pipe-separated network addresses.
For example,

WSNADDR="(//m1.acme.com:3050]|//m2.acme.com:3050),//m3.acme.com:3050"
For users running under Windows, the address string looks like the following:
set WSNADDR=(//m1.acme.com:3050"|//m2.acme.com:3050),//m3.acme.com:3050

Because the pipe symbol)(is considered a special character in Windows, it
must be preceded by a carat (*)—an escape character in the Windows
environment—when it is specified on the command line. However, if
WSNADD#R defined in an envfile, the BEA Tuxedo system gets the values
defined bywSNADDEhrough theuxgetenv(3c) function. In this context,

the pipe symbol|() is not considered a special character, so you do not need
to escape it with a carat)(

The BEA Tuxedo system randomly selects one of the parenthesized
addresses. This strategy distributes the load randomly across a set of listener
processes. Addresses are tried in order until a connection is established. Use
the value specified in the application configuration file for the workstation
listener to be called. If the value begins with the characters “0x”, it is
interpreted as a string of hex-digits, otherwise it is interpreted as ASCII
characters.

WSFADDR
Used withinTPINITIALIZE() when invoked by a workstation client. It
specifies the network address used by the workstation client when connecting
to the workstation listener or workstation handler. This variable, along with
the WSFRANGHariable, determines the range of TCP/IP ports to which a
workstation client will attempt to bind before making an outbound

BEA Tuxedo COBOL Function Reference 113

Section 3(cbl) - COBOL Functions

114

connection. This address must be a TCP/IP address. The port portion of the
TCP/IP address represents the base address from which a range of TCP/IP
ports can be bound by the workstation client. W&FRANGHariable

specifies the size of the range. For example, if this address is
/Imymachine.bea.com:30000 andwWSFRANGHB 200, then all native
processes attempting to make outbound connections fromvtiswill bind

a port onmymachine.bea.com between 30000 and 30200. If not set, this
variable defaults to the empty string, which implies the operating system
chooses a local port randomly.

WSFRANGE

Used withinTPINITIALIZE() when invoked by a workstation client. It
specifies the range of TCP/IP ports to which a workstation client process will
attempt to bind before making an outbound connection WrleRADDR
parameter specifies the base address of the range. For example, if the
WSFADDRarameter is set tinymachine.bea.com:30000 andwWSFRANGE

is set to 200, then all native processes attempting to make outbound
connections from thismiD will bind a port onrmymachine.bea.com

between 30000 and 30200. The valid range is 1-65535. The default is 1.

WSDEVICE

is used withinTPINITIALIZE() when invoked by a workstation client. It
indicates the device name to be used to access the network. This variable i
used by workstation clients and ignored for native clients. Note that certain
supported transport level network interfaces do not require a device name; fo
example, sockets and NetBIOS. Workstation clients supported by such
interfaces need not specifySDEVICE

WSTYPE

is used withinTPINITIALIZE() when invoked by a workstation client to
negotiate encode/decode responsibilities with the native site. This variable is
optional for workstation clients and ignored for native clients.

WSRPLYMAX

isused byPINITIALIZE() to setthe maximum amount of core memory that
should be used for buffering application replies before they are dumped to
file. The default value for this parameter varies with each instantiation. The
instantiation specific programmer’s guide should be consulted for further
information.

BEA Tuxedo COBOL Function Reference

TPINITIALIZE(3cbl)

Warning

See Also

TMMINENCRYPTBITS
is used to establish the minimum level of encryption required to connect to
the BEA Tuxedo system. “0” means no encryption, while “56” and “128”
specify the encryption key length (in bits). If this minimum level of
encryption cannot be met, link establishment will fail. The default is “0”

TMMAXENCRYPTBITS
is used to negotiate the level of encryption up to this level when connecting
to the BEA Tuxedo system. “0” means no encryption, while “56” and “128”
specify the encryption length (in bits). The default value is “128.”

Signal-based natification is not allowed in multicontext mode. In addition, clients that
select signal-based notification may not be able to receive signals from the system due
to signal restrictions. When clients cannot receive signals, the system generates a log
message that it is switching notification for the selected client to dip-in and the client
is notified then and thereafter via dip-in notification. See the description REXheY
parameter in thRESOURCESection ofuBBCONFIG(5) for a detailed discussion of
notification methods.

Because signaling of clients is always done by the system, the behavior of notification
is always consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator is identified in the configuration file for the
application.

If signal-based notification is selected for a client, then certain ATMI calls may fail,
returningTPGOTSIGdue to receipt of an unsolicited messagePiSIGRSTRTIis not
specified.

TPGETCTXT(3chl) , TPSETCTXT(3chl) , TPTERM(3chl)

BEA Tuxedo COBOL Function Reference 115

Section 3(cbl) - COBOL Functions

TPKEYCLOSE(3cbl)

Name TPKEYCLOSE() - close a previously opened key handle

Synopsis 01 TPKEYDEF-REC
COPY TPKEYDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPKEYCLOSE" USING TPKEYDEF-RECTPSTATUS-REC

Description TPKEYCLOSE() releases a previously opened key handle and all resources associate
with it. Any sensitive information, such as the principal’s private key, is erased from
memory.

The calling process must supg¥Y-HANDLBN TPKEYDEF-RECKEY-HANDLAS a key
identifier returned by a previous call TEKEYOPEN()

Return Values Upon successful completioNPKEYCLOSE() SetsTP-STATUSIN TPSTATUS-RECLO
[TPOK.

Errors Upon failure, TPKEYCLOSE() setsTP-STATUSIn TPSTATUS-RECt0 one of the
following values.

[TPEINVAL]
Invalid arguments were given. For exampey-HANDLEBN TPKEYDEF-REC
is not set correctly.

[TPESYSTEW
An error occurred. Consult the system error log file for details.

See Also0 TPKEYGETINFO(3cbl) , TPKEYOPEN(3chl) , TPKEYSETINFO(3chl)

116 BEA Tuxedo COBOL Function Reference

TPKEYGETINFO(3cbl)

TPKEYGETINFO(3cbl)

Name

Synopsis

Description

TPKEYGETINFO() - get information associated with a key handle

01 TPKEYDEF-REC
COPY TPKEYDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPKEYGETINFO" USING TPKEYDEF-RECTPSTATUS-REC

TPKEYGETINFO() reports information about a key handle. A key handle represents a
specific principal’s key and the information associated with it.

The calling process must sUp¥ Y-HANDLEIN TPKEYDEF-REGwhich is a key
identifier returned by a previous call TEKEYOPEN().

The attribute for which information is desired is identifiedAyRIBUTE-NAMEIN
TPKEYDEF-RECThe attribute name may be padded V@HACESor LOW-VALUES

Some attributes are specific to a cryptographic service provider, but the following core
set of attributes should be supported by all providers.

Attribute Value

PRINCIPAL The name identifying the principal associated with the key (key
handle), represented as a null-terminated character string.

PKENCRYPT_ALG An ASN.1 Distinguished Encoding Rules (DE&Yject identifierof
the public key algorithm used by the key for public key encryption.

The object identifier for RSA is identified in the following table,
“Mapping of Algorithm Object Identifiers to Algorithms.”

PKENCRYPT_BITS The key length of the public key algorithm (RSA modulus size). The
value must be within the range of 512 to 2048 bits, inclusive.

SIGNATURE_ALG An ASN.1 DERobject identifierof the digital signature algorithm
used by the key for digital signature.

The object identifiers for RSA and DSA are identified in the following
table, “Mapping of Algorithm Object Identifiers to Algorithms.”

BEA Tuxedo COBOL Function Reference 117

Section 3(cbl) - COBOL Functions

Attribute Value

SIGNATURE_BITS The key length of the digital signature algorithm (RSA modulus size).
The value must be within the range of 512 to 2048 bits, inclusive.

ENCRYPT_ALG An ASN.1 DERobject identifierof the symmetric key algorithm used
by the key for bulk data encryption.
The object identifiers for DES, 3DES, and RC2 are identified in the
following table, “Mapping of Algorithm Object Identifiers to
Algorithms.”

ENCRYPT_BITS The key length of the symmetric key algorithm. The value must be
within the range of 40 to 128 bits, inclusive.
When an algorithm with a fixed key length is SeEMCRYPT_ALG
theENCRYPT_BITSvalue is automatically set to the fixed key length.
For example, iENCRYPT_ALGs set to DES, thENCRYPT_BITS
value is automatically set to 56.

DIGEST_ALG An ASN.1 DERobject identifierof the message digest algorithm used
by the key for digital signature.

The object identifiers for MD5 and SHA-1 are identified in the
following table, “Mapping of Algorithm Obiject Identifiers to

Algorithms.”
PROVIDER The name of the cryptographic service provider.
VERSION The version number of the cryptographic service provider’s software.

The ASN.1 DER algorithm object identifiers supported by the default public key
implementation are given in the following table.

Mapping of Algorithm Object Identifiers to Algorithms

ASN.1 DER Algorithm Object Identifier Algorithm
{ 0x06, 0x08, Ox2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x02, 0x05 } MD5
{ 0x06, 0x05, 0x2b, Ox0e, 0x03, 0x02, Ox1a } SHA1

{ 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x01, 0x01, 0x01 } RSA

{ 0x06, 0x05, 0x2b, Ox0e, 0x03, 0x02, 0x0c } DSA

118 BEA Tuxedo COBOL Function Reference

TPKEYGETINFO(3cbl)

Return Values

Errors

See Also

Mapping of Algorithm Object Identifiers to Algorithms

ASN.1 DER Algorithm Object Identifier Algorithm
{ 0x06, 0x05, 0x2b, Ox0e, 0x03, 0x02, 0x07 } DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07 } 3DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02 } RC2

Upon successful completioNPKEYGETINFO() setsTP-STATUSIN TPSTATUS-REQO
[TPON.

The information associated with the specified attribute will be stored in the memory
location indicated bATTRIBUTE-VALUEIn TPKEYDEF-RECpadded at the end with
SPACES The maximum amount of data that can be stored at this location is specified
by the caller ilATTRIBUTE-LEN in TPKEYDEF-REC

After TPKEYGETINFO() completesATTRIBUTE-LEN is set to the size of the data
actually returned (not including padding values). If the number of bytes that need to be
returned exceed&TTRIBUTE-LEN, TPKEYGETINFO() fails (with theTPELIMIT error

code) and set&a TTRIBUTE-LEN to the required amount of space.

Upon failure, TPKEYGETINFO() SetsTP-STATUSIn TPSTATUS-RECto one of the
following values.

[TPEINVAL]
Invalid arguments were given. For exampey-HANDLES not a valid key.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

[TPELIMIT]
Insufficient space was provided to hold the requested attribute value.

[TPENOENT
The requested attribute is not associated with this key.

TPKEYCLOSE(3chl) , TPKEYOPEN(3cbl) , TPKEYSETINFO(3chl)

BEA Tuxedo COBOL Function Reference 119

Section 3(cbl) - COBOL Functions

TPKEYOPEN(3¢bl)

120

Name

Synopsis

Description

TPKEYOPEN() - open a key handle for digital signature generation, message
encryption, or message decryption

01 TPKEYDEF-REC
COPY TPKEYDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPKEYOPEN"USING TPKEYDEF-RECTPSTATUS-REC

TPKEYOPEN() makes a key handle available to the calling process. A key handle
represents a specific principal’s key and the information associated with it.

A key may be used for one or more of the following purposes:

m Automatically generating a digital signature, which protects a message’s content

and proves that a specific principal originated the message. (A principal may be
a person or a process.) This type of key is a private key and is available only to
the key’s owner.

Calling TPKEYOPEN()with the principal’s name and tH®KEY-SIGNATUREand
TPKEY-AUTOSIGNSettings returns a handle to the principal’s public key and
enables signature generatiorAinTOSIGNmode. The public key software
generates and attaches the digital signature to the message just before the
message is sent.

m Verifying a digital signature, which proves that a message’s content remains
unaltered and that a specific principal originated the message.

Signature verification does not require a calfKEYOPEN() the verifying
process uses the public key specified in the digital certificate accompanying the
digitally signed message to verify the signature.

m Automatically encrypting a message destined for a specific principal. This type
of key is available to any process with access to the principal's public key and
digital certificate.

Calling TPKEYOPEN()with the principal’s name and tH®KEY-ENCRYPTand
TPKEY-AUTOENCRYP3ettings returns a handle to the principal’s public key (via
the principal’s digital certificate) and enables encryptioAUTOENCRYPmode.

BEA Tuxedo COBOL Function Reference

TPKEYOPEN(3c¢bl)

The public key software encrypts the message and attaches an encryption
envelope to the message just before the message is sent; the encryption envelope
enables the receiving process to decrypt the message.

m Decrypting a message intended for a specific principal. This type of key is a
private key and is available only to the key’s owner.

Calling TPKEYOPEN() with the principal’s name and th®KEY-DECRYPTsetting
returns a handle to the principal’s private key and digital certificate.

The key handle returned BYKEYOPEN()is stored irKEY-HANDLBN TPKEYDEF-REC

The calling process must suppRINCIPAL-NAMEIN TPKEYDEF-RECwhich specifies

the key owner’s identity. This name may be padded at the encsRADESor
LOW-VALUESIf PRINCIPAL-NAME is all SPACESor LOW-VALUES a default identity is
assumed. The default identity may be based on the current login session, the current
operating system account, or another attribute such as a local hardware device.

The calling process may have to supp8CATIONN TPKEYDEF-REC which specifies
the location of a key owner’s identity. If the underlying provider does not require a
location field, this field may be populated wBRACESor LOW-VALUES

To authenticate the identity 8RINCIPAL-NAME, proof material such as a password or
pass phrase may be required. If required, the proof material should be stored in
IDENTITY-PROOF in TPKEYDEF-RECOtherwise, this field may be populated with
SPACESoOr LOW-VALUES

The length of the proof material (in bytes) is specifiedPBpOF-LENN
TPKEYDEF-RECIf PROOF-LENS OJDENTITY-PROOF is assumed to be a character
string padded at the end wPACESor LOW-VALUESINn which case trailinGPACES
or LOW-VALUESare not considered part of the proof material.

There may be a choice of cryptographic service providers, based on the local
machine’s configuration and operating environment. If you need to choose one, set
CRYPTO-PROVIDER TPKEYDEF-REQO the name of the required provider. Otherwise,
set this field tasSPACESor LOW-VALUESand a default provider will be assumed.

The type of key access required for a key’s mode of operation is determined by
specifying one or more of the following settingSTiPKEYDEF-REC

TPKEY-SIGNATURE
This private key is available to generate digital signatures.

BEA Tuxedo COBOL Function Reference 121

Section 3(cbl) - COBOL Functions

Return Values

Errors

See Also

TPKEY-AUTOSIGN
Whenever this process transmits a message, the public key software uses tf
signer’s private key to generate a digital signature and then attaches the
digital signature to the message.

TPKEY-ENCRYPT
This public key is available to identify the recipient of an encrypted message

TPKEY-AUTOENCRYPT
Whenever this process transmits a message, the public key software encryp
the message, uses the recipient’s public key to generate an encryption
envelope, and then attaches the encryption envelope to the message.

TPKEY-DECRYPT
This private key is available for decryption.

Various combinations of these settings are allowed. If a key is used only for encryptiol
(TPKEY-ENCRYPRNA TPKEY-AUTOENCRYRTIDENTITY-PROOF is not required.

Upon successful completioNPKEYOPEN() SetsTP-STATUSIN TPSTATUS-RECtO
[TPON. In addition,KEY-HANDLEN TPKEYDEF-REQS set to a value that represents this
key, for use by other functions suchT®<KEYGETINFO().

Upon failure,TPKEYOPEN()setsSTP-STATUSIn TPSTATUS-REQ0 one of the following
values.

[TPEINVAL]
Invalid arguments were given. For example, the settings (flag) values are no
set correctly.

[TPEPER
Permission failure. The cryptographic service provider was not able to acces:
a private key for this principal, given the proof information and current
environment.

[TPESYSTEW
An error occurred. Consult the system error log file for details.

TPKEYCLOSE(3cbl) , TPKEYGETINFO(3cbl) , TPKEYSETINFO(3cbl)

122 BEA Tuxedo COBOL Function Reference

TPKEYSETINFO(3c¢bl)

TPKEYSETINFO(3cbl)

Name

Synopsis

Description

Return Values

Errors

TPKEYSETINFO() - set optional parameters associated with a key handle

01 TPKEYDEF-REC
COPY TPKEYDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPKEYSETINFO" USING TPKEYDEF-REC TPSTATUS-REC

TPKEYSETINFO() sets an optional attribute parameter for a key handle. A key handle
represents a specific principal’s key and the information associated with it.

The key for which information is to be modified is identifiedAfy-HANDLEN
TPKEYDEF-RECKEY-HANDLEs a key identifier returned by a previous call to
TPKEYOPEN()

The attribute for which information is to be modified is identified by
ATTRIBUTE-NAMEN TPKEYDEF-RECThe attribute name may be padded \@®ACES

or LOW-VALUES Some attributes may be specific to a certain cryptographic service
provider, but the core set of attributes presented omMRKEYGETINFO(3cbl)

reference page should be supported by all providers.

The information to be associated WAMTRIBUTE-NAMEIs stored in the memory
location indicated bATTRIBUTE-VALUEIn TPKEYDEF-RECIf the data content of
ATTRIBUTE-VALUEISs self-describingATTRIBUTE-LEN in TPKEYDEF-REGS ignored
(and may be 0). Otherwisa7TRIBUTE-LEN must contain the length of data in
ATTRIBUTE-VALUE

Upon successful completioNPKEYSETINFO() setsTP-STATUSIN TPSTATUS-REQO
[TPON.

Upon failure, TPKEYSETINFO() SetsTP-STATUSIn TPSTATUS-RECto one of the
following values.

[TPEINVAL]
Invalid arguments were given. For examp{EyY-HANDLHS not set correctly.

[TPESYSTEW
An error occurred. Consult the system error log file for more details.

BEA Tuxedo COBOL Function Reference 123

Section 3(cbl) - COBOL Functions

[TPELIMIT]
The attribute value provided is too large.

[TPENOENT

The requested attribute is not recognized by the key’s cryptographic service
provider.

See Also0 TPKEYCLOSE(3cbl) , TPKEYGETINFO(3cbl) , TPKEYOPEN(3cbl)

124 BEA Tuxedo COBOL Function Reference

TPNOTIFY(3cbl)

TPNOTIFY(3cbl)

Name TPNOTIFY() - send notification by client identifier

Synopsis 01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPNOTIFY" USING TPSVCDEF-RECTPTYPE-REC DATA-REC
TPSTATUS-REC

Description TPNOTIFY() allows a server to send an unsolicited message to an individual client.

CLIENTID in TPSVCDEF-RE@oONtains a client identifier saved from the
TPSVCDEF-RE®f a previous or current service invocation.

DATA-RECIs the record to be sent ab@EN in TPTYPE-RECspecifies how much of
DATA-RECshould be sent. DATA-RECS a record of type that does not require a length
to be specified, therEN is ignored (and may ®. If REC-TYPEIn TPTYPE-RECIS
SPACES DATA-RECandLEN are ignored and a request is sent with no data portion.

Upon successful return fromMPNOTIFY() , the message has been delivered to the

system for forwarding to the identified clientTIPACK() was set, then a successful

return means the message has been received by the client. Furthermore, if the client has
registered an unsolicited message handler, the handler will have been called.

The following is a list of valid settings inPPSVCDEF-REC

TPNOBLOCK
The requestis not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). EithROBLOCHKT
TPBLOCKmust be set.

BEA Tuxedo COBOL Function Reference 125

Section 3(cbl) - COBOL Functions

Return Values

Errors

TPBLOCK
If a blocking condition exists in sending the notification, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithelTPNOBLOCKIr TPBLOCKmMust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Eith@PNOSIGRSTRTOr TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted and the call fails. EitiENOSIGRSTRTOr TPSIGRSTRT
must be set.

TPACK
This setting signifies that the caller will block waiting for an acknowledgment
from the client. EitheTPNOACK() or TPACK() must be set.

TPNOACK
This setting signifies that the caller will not block waiting for an
acknowledgment from the client. EitHEPNOACK() or TPACK() must be set.

Upon successful completioMPNOTIFY() setsTP-STATUStO [TPON.
Under the following conditiong,PNOTIFY() fails and set3P-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPENOENT
The target client does not exist arRACK() was set.

126 BEA Tuxedo COBOL Function Reference

TPNOTIFY(3cbl)

See Also

[TPETIME]
A blocking timeout occurred and botRBLOCKandTPTIME were specified,
or TPACK() andTPTIME were set and no acknowledgment was received. and
TPTIME was specified.

[TPEBLOCK
A blocking condition was found on sending the notification aPBOBLOCK
was specified.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
TPNOTIFY() was called in an improper context (for example, within a client).

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

[TPERELEASE
WhenTPACK() is specified and the target is a client from a prior release of
the BEA Tuxedo system that does not support the acknowledgment protocol.

TPBROADCAST(3cbl) , TPCHKUNSOL(3cbl) , TPINITIALIZE(3chl)
TPSETUNSOL(3cbl) , TPTERM(3cbl)

BEA Tuxedo COBOL Function Reference 127

Section 3(cbl) - COBOL Functions

TPOPEN(3cbl)

Name

Synopsis

Description

Return Values

Errors

See Also

TPOPEN() - open the BEA Tuxedo system resource manager

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPOPEN" USING TPSTATUS-REC

TPOPEN() opens the resource manager to which the caller is linked. At most one
resource manager can be linked to the caller. This routine is used in place of resourt
manager-specifiopen() calls and allows a service routine to be free of calls that may
hinder portability. Since resource managers differ in their initialization semantics, the
specific information needed to open a particular resource manager is placed in a
configuration file.

If a resource manager is already open (thatA®PEN() is called more than once), no
action is taken and success is returned.

Upon successful completioRPOPEN() setsTP-STATUSto [TPOK. More information
concerning the reason a resource manager failed to open can be gotten by interrogati
the resource manager in its own specific manner. Note that any calls to determine tf
exact nature of a resource manager’s error hinder portability.

Under the following conditiong,;POPEN() fails and set3P-STATUSto:

[TPERMERR
A resource manager failed to open correctly. More information concerning
the reason a resource manager failed to open can be obtained by interrogatir
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTD
TPOPEN() was called in an improper context (for example, by a client that has
not joined a BEA Tuxedo system server group).

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

TPCLOSE(3cbl)

128 BEA Tuxedo COBOL Function Reference

TPPOST(3c¢bl)

TPPOST(3¢bl)

Name

Synopsis

Description

TPPOST() - post an event

01 TPEVTDEF-REC
COPY TPEVTDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPPOST" USING TPEVTDEF-RECTPTYPE-REC DATA-REC TPSTATUS-REC

The caller use$PPOST() to post an event and any accompanying data. The event is
named byEVENT-NAMEN TPEVTDEF-REGand DATA-RECcontains the data to be

posted. The posted event and its data are dispatched by the BEA Tuxedo EventBroker
to all subscribers whose subscriptions successfully evaluate agaist-NAMEand

whose optional filter rules successfully evaluate ag@dagta-REC

EVENT-NAMHENust be 31 characters or less, but canneH#e&€ESEVENT-NAME first

character cannot be a dot (“.”) as this character is reserved as the starting character for
all events defined by the BEA Tuxedo system itself.

DATA-RECIs the typed record to be posted and LENATYPE-RECspecifies the
amount of data iIDATA-RECthat should be posted with the event. Note that if
DATA-RECIs a record of a type that does not require a length to be specifiedFthen
is ignored (and may be 0).MATA-RECIs a record of a type that does require a length
to be specified, thellEN must not be 0 (if it is 0, no data will be postedREC-TYPE

in TPTYPE-RECIiS SPACES DATA-RECand LEN are ignored and the event is posted
with no data.

WhenTPPOST() is used within a transaction, the transaction boundary can be

extended to include those servers and/or stable-storage message queues notified by the
EventBroker. When a transactional posting is made, some of the recipients of the event
posting are notified on behalf of the poster’s transaction (for example, servers and
queues), while some are not (for example, clients).

BEA Tuxedo COBOL Function Reference 129

Section 3(cbl) - COBOL Functions

130

If the poster is within a transaction anBTRANIs set, the posted event goes to the
EventBroker in transaction mode such that it dispatches the event as part of the poste
transaction. The broker dispatches transactional event notifications only to those
service routine and stable-storage queue subscriptions thaPBEs@RANset in
TPEVTDEF-RECNhen the subscription was made. Client notifications, and those
service routine and stable-storage queue subscriptions thaPBEENOTRASet in
TPEVTDEF-RECwhen the subscription was made, are also dispatched by the
EventBroker but not as part of the posting process’ transaction.

The following is a list of valid settings InPPEVTDEF-REC

TPNOTRAN
If the caller is in transaction mode and this setting is used, then the event
posting is not made on behalf of the caller’s transaction. A caller in
transaction mode that uses this setting is still subject to the transaction
timeout (and no other). If the event posting fails, the caller’s transaction is not
affected. EitheTPNOTRANI TPTRANMuUSt be set.

TPTRAN
If the caller is in transaction mode and this setting is used, then the event
posting is made on behalf of the caller’s transaction. This setting is ignored if
the caller is not in transaction mode. EitieNOTRANTI TPTRANMuUSt be set.

TPNOREPLY
Informs TPPOST() not to wait for the EventBroker to process all
subscriptions fOEVENT-NAMEbefore returning. WhemPNOREPLYs set,
EVENT-COUNTN TPEVTDEF-REQS set to zero regardless of whether
TPPOST() returns successfully or not. When the caller is in transaction mode,
this setting cannot be used wWhERTRANIsS also set. EithePPNOREPLYor
TPREPLYMust be set.

TPREPLY
Informs TPPOST() to wait for all subscriptions to be processed before
returning. WhernmPREPLYis set, the routine returnsHOK on success and
SetsEVENT-COUNTN TPEVTDEF-RECto the number of event notifications
dispatched by the EventBroker on behalE®ENT-NAMEWhen the caller is
in transaction mode, this setting must be used WRgRANis also set. Either
TPNOREPLYor TPREPLYmMust be set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition
occurs, the call fails and sétB-STATUS to [TPEBLOCK EitherTPNOBLOCK
or TPBLOCKmust be set.

BEA Tuxedo COBOL Function Reference

TPPOST(3c¢bl)

Return Values

Errors

TPBLOCK
WhenTPBLOCKs specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithemrPNOBLOCKor TPBLOCKmust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
EitherTPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EftAROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Eith@PNOSIGRSTRDr TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted, the call fails and SERsSTATUSto [TPGOTSIQ. Either
TPNOSIGRSTRT™r TPSIGRSTRTmust be set.

Upon successful completiomMPPOST() setsTP-STATUSto [TPOK. In addition,
EVENT-COUNTcontains the number of event notifications dispatched by the
EventBroker on behalf #VENT-NAMHKthat is, postings for those subscriptions whose
event expression evaluated successfully agaivBNT-NAMEand whose filter rule
evaluated successfully agaimATA-REQ. Upon return whergP-STATUS s set to
[TPESVCFAIL], EVENT-COUNTcontains the number of non-transactional event
notifications dispatched by the EventBroker on beha\NT-NAME

Under the following conditiong,PPOST() fails and set3P-STATUS to one of the
following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for exam@&ENT-NAMEiS SPACES.

[TPENOENT
Cannot access the BEA Tuxedo User EventBroker.

BEA Tuxedo COBOL Function Reference 131

Section 3(cbl) - COBOL Functions

See Also

[TPETRAN
The caller is in transaction modeeTRANwas set, an@iPPOST() contacted
an EventBroker that does not support transaction propagation (that is,
TMUSREVT(5) is not running in a BEA Tuxedo system group that supports
transactions).

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and botPBLOCKandTPTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
[TPETIME until the transaction has been aborted.

[TPESVCFAIL]
The EventBroker encountered an error posting a transactional event to eithe
a service routine or to a stable storage queue on behalf of the caller’s
transaction. The caller’s current transaction is marked abort-only. When this
error is returnedsVENT-COUNToONtains the number of non-transactional
event notifications dispatched by the EventBroker on beh&VaNT-NAME
transactional postings are not counted since their effects will be aborted upor
completion of the transaction. Note that so long as the transaction has not
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller’s transaction
will be aborted upon transaction completion (that is, for subsequent
communication to have any lasting effect, it should be doneTRittOTRAN
set).

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received anmPNOSIGRSTRWwas specified.

[TPEPROTD
TPPOST() was called improperly.

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

TPSUBSCRIBE(3cbl) , TPUNSUBSCRIBE(3cbl) , EVENTS(5), TMSYSEVT(5),
TMUSREVT(5)

132 BEA Tuxedo COBOL Function Reference

TPRECV(3cbi)

TPRECV(3¢bl)

Name

Synopsis

Description

TPRECV() - receive a message in a conversational connection

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-RECTPTYPE-REC DATA-REC TPSTATUS-REC

TPRECV() is used to receive data sent across an open connection from another
program.COMM-HANDLEspecifies on which open connection to receive data.
COMM-HANDLB a communications handle returned from eittF/SEONNECT()or
TPSVCSTART(). DATA-RECspecifies where the message is read into, and, on igdut,
indicates the maximum number of bytes that should be movedaa-REC

Upon successful and for several event typesicontains the actual number of bytes
moved intoDATA-REC REC-TYPEandSUB-TYPEcontain the data’s type and sub-type,
respectively. If the message is larger thatTA-REG thenDATA-RECwiIll contain only

as many bytes as will fit in the record. The remainder of the reply is discarded and
TPRECV() setsTPTRUNCATE

If LENis 0 upon successful return, then the reply has no data portionAmMiREC
was not modified. It is an error faENto be0 on input.

TPRECV() can be issued only by the program that does not have control of the
connection.

The following is a list of valid settings inPPSVCDEF-REC

TPNOCHANGE
When this setting is used, the typeba@fTA-RECS not allowed to change. That
is, the type and sub-type of the message received must R&tehyPEand
SUB-TYPE, respectively. EitheTPNOCHANGE&r TPCHANGHENust be set.

BEA Tuxedo COBOL Function Reference 133

Section 3(cbl) - COBOL Functions

134

TPCHANGE
The type and/or sub-type of the message received is allowed to differ from
those specified IREC-TYPEandSUB-TYPE, respectively, so long as the
receiver recognizes the incoming record type. EitirtOCHANGE!
TPCHANGENUSt be set.

TPNOBLOCK
TPRECV() does wait for data to arrive. If data is already available to receive,
thenTPRECV() gets the data and returns. EithRBENOBLOCIOr TPBLOCKMust
be set.

TPBLOCK
WhenTPBLOCKis specified and no data is available to receive, the caller
blocks until data arrives. Eith@PNOBLOCKr TPBLOCKmust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts will still affect the
program. EithemPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts the underlying receive system call, then the call is
reissued. EitheTPNOSIGRSTRTOr TPSIGRSTRTMuSt be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted and the call fails. EitiENOSIGRSTRTOr TPSIGRSTRT
must be set.

If an event exists for the communications handt@yM-HANDLREhen
TPRECV() will return settingTP-STATUS to TPEEVENT(). The event type is
returned iINTPEVENT(). Data can be received along with fREV-SVCSUCC
TPEV-SVCFAIL, andTPEV-SENDONLevents. Valid events faiPRECV() are
as follows.

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has issued an immediate disconnect on the

BEA Tuxedo COBOL Function Reference

TPRECV/(3cbl)

connection viarlPDISCON(), or an error occurred when the originator issued
TPRETURN() or TPCOMMIT() with the connection still open. This eventis also
returned to the originator or subordinate when a connection is broken due to
a communications error (for example, a server, machine, or network failure).
Because this is an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. If the two programs were
participating in the same transaction, then the transaction is marked
abort-only.COMM-HANDLE no longer valid.

TPEV-SENDONLY
The program on the other end of the connection has relinquished control of
the connection. The recipient of this event is allowed to send data but can not
receive any data until it relinquishes control.

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has iSSTRRETURN(). TPRETURN()
encountered an errors that precluded the service from returning successfully.
For example, bad arguments may have been pas3@®RETURN() or
TPRETURN() may have been called while the service had open connections to
other subordinates. Due to the nature of this event, any application defined
data or return code are not available. The connection has been torn down and
COMM-HANDLIS no longer valid. If this event occurred as part of the
recipient’s transaction, then the transaction is marked as abort-only.

TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it cARRETURN()
with TPFAIL() orTPEXIT()). If the subordinate service was in control of this
connection wheffPRETURN() was called, then it can pass an application
defined return value and a record back to the originator of the connection. As
part of ending the service routine, the server has torn down the connection.
Thus,COMM-HANDLES no longer valid. If this event occurred as part of the
recipient’s transaction, then the transaction is marked abort-only.

TPEV-SVCSUCC
Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
successfully as defined by the application (that is, it calRRETURN() with
TPSUCCESS(). As part of ending the service routine, the server has torn
down the connection. ThuSODMM-HANDLIS no longer valid. If the recipient

BEA Tuxedo COBOL Function Reference 135

Section 3(cbl) - COBOL Functions

Return Values

136

Errors

is in transaction mode, then it can either commit (if it is also the initiator) or
abort the transaction causing the work done by the server (if also in
transaction mode) to either commit or abort.

Upon successful completioNPRECV() setsTP-STATUSto [TPOK. WhenTP-STATUS

is set to TPEEVENT and TPEVENT() is eitherTPEV-SVCSUCOr TPEV-SVCFAIL,
APPL-RETURN-CODEoONtains an application defined value that was sent as part of
TPRETURN(). If the size of the incoming message was larger then the size specified ir
LENon input, TPTRUNCATE()is set and onlyENamount of data was moved to
DATA-REG the remaining data is discarded.

Under the following conditiong,PRECV() fails and set3P-STATUSto (unless
otherwise noted, failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, settingsA8VCDEF-REGre
invalid.

[TPEOTYPE
Either the type of sub-type of the incoming message are not known to the
caller, orTPNOCHANGEaS set anBEC-TYPEandSUB-TYPEdo not match the
type and sub-type of the incoming message. If the conversation is part of the
caller’s transaction, then the transaction is marked abort-only since the
incoming message is discarded.

[TPEBADDESE
COMM-HANDLEoONtains an invalid communications handle.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neittieBRNOBLOCHKIOr TPNOTIMEWere
specified. In either casPATA-RECwas not changed. If a transaction timeout
occurred, then any attempts to send or receive messages on any connectiol
or to start a new connection will fail wittPETIME until the transaction has
been aborted.

[TPEEVENT
An event occurred and its type is availabl@ REVENT().

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

BEA Tuxedo COBOL Function Reference

TPRECV(3cbi)

Usage

See Also

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
TPRECV() was called in an improper context (for example, the connection
was established such that the calling program can only send data).

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred.

A server can pass an application defined return value and typed record when calling
TPRETURN(). The return value is available APPL-RETURN-CODENd the record is
available inDATA-REC

TPCONNECT(3cbl) , TPDISCON(3cbl) , TPSEND(3cbl)

BEA Tuxedo COBOL Function Reference 137

Section 3(cbl) - COBOL Functions

TPRESUME(3¢bl)

Name

Synopsis

Description

Return Value

138

Errors

TPRESUME()- resume a global transaction

01 TPTRXDEF-REC
COPY TPTRXDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPRESUME" USING TPTRXDEF-REC TPSTATUS-REC

TPRESUME()is used to resume work on behalf of a previously suspended transaction
Once the caller resumes work on a transaction, it must either suspend it with
TPSUSPEND(), or complete it with one afPCOMMIT() or TPABORT() at a later time.

The caller must ensure that its linked resource managers have been opened (via
TPOPEN()) before it can resume work on any transaction.

TPRESUME()places the caller in transaction mode on behalf of the global transaction
identifier contained iIMRANID() .

Upon successful completioNPRESUME() sets TPON.
Under the following conditiong;PRESUME()fails and set3P-STATUS to:

[TPEINVAL]
EitherTRANID() contains a non-existent transaction identifier (including
previously completed or timed-out transactions), or it contains a transaction
identifier that the caller is not allowed to resume. The caller’s state with
respect to the transaction is not changed.

[TPEMATCH
TRANID() contains a transaction identifier that another program has already
resumed. The caller’s state with respect to the transaction is not changed.

[TPETRAHN
The BEA Tuxedo system is unable to resume the global transaction becaus
the caller is currently participating in work outside any global transaction
with one or more resource managers. All such work must be completed befor
a global transaction can be resumed. The caller’s state with respect to the
local transaction is unchanged.

BEA Tuxedo COBOL Function Reference

TPRESUME(3¢bl)

Notes

See Also

[TPEPROTD
TPRESUME()was called in an improper context (for example, the caller is
already in transaction mode). The caller’s state with respect to transaction
mode is unchanged.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred.

XA-compliant resource managers must be successfully opened to be included in the
global transaction. (SE®POPEN() for details.)

A program resuming a suspended transaction must reside on the same logical machine
(LMID) as the program that suspended the transaction. For a workstation client, the
workstation handler (WSH) to which it is connected must reside on the same logical
machine as the handler for the workstation client that suspended the transaction.

TPABORT(3cbl) , TPCOMMIT(3chl) , TPOPEN(3chl) , TPSUSPEND(3cbl)

BEA Tuxedo COBOL Function Reference 139

Section 3(cbl) - COBOL Functions

TPRETURN(3cbl)

140

Name

Synopsis

Description

TPRETURN() - returns from a BEA Tuxedo system service routine

01 TPSVCRET-REC
COPY TPSVCRET.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

COPY TPRETURN REPLACING TPSVCRET-REC BYTPSVCRET-REC

TPTYPE-REC BY TPTYPE-REC
DATA-REC BY DATA-RECT
PSTATUS-REC BY TPSTATUS-REC

TPRETURN() indicates that a service routine has completed. SIRBRETURN()

contains alEXIT PROGRAMstatement, it should be called from within the same routine
that was invoked to ensure correct return of control to the BEA Tuxedo system
dispatcher (that i§;PRETURN() should not be invoked in a sub-program of the service
routine since control would not return to the BEA Tuxedo system dispatcher).

TPRETURN() is used to send a service’s reply message. If the service receiving the
reply is waiting in eitheTPCALL() , TPGETRPLY(), or TPRECV(), then after a
successful call tdPRETURN(), the reply is available in the receiver’s record.

For conversational serviceERRETURN() also tears down the connection. That is the
service routine cannot catPDISCON() directly. To ensure correct results, the
program that connected to the conversation service should noPCafiCON() ;

rather, it should wait for notification that the conversational service has completed
(that is, it should wait for one of the events, [iH&EV-SVCSUC@r TPEV-SVCFAIL.

sent byTPRETURNY().

BEA Tuxedo COBOL Function Reference

TPRETURN(3cbl)

If a service routine was in transaction moeRETURN() places the service’s portion

of the transaction in a state from which it may be either committed or aborted when the
transaction is completed. A service may be invoked multiple times as part of the same
transaction so it is not necessarily fully committed nor aborted until either
TPCOMMIT() or TPABORT() is called by the originator of the transaction.

TPRETURN() should be called after receiving all replies expected from
request/response service requests initiated by the service routine. Otherwise,
depending on the nature of the service, eith@Pa$VCERRStatus or §PEV-SVCERR

event will be returned to the program that initiated communications with the service
routine. Any outstanding replies which are not received will automatically be dropped
by the BEA Tuxedo system dispatcher upon receipt. In addition, the communications
handle for those replies become invalid.

TPRETURN()should also be called after closing all connections initiated by the service.
Otherwise, depending on the nature of the service, eith@Es{/CERRStatus or a
TPEV-SVCERRevent will be returned to the program that initiated communications
with the service routine. Also, an immediate disconnect event (that is,
TPEV-DISCONIMM) is sent over all open connections to subordinates.

Concerning control of a connection, if the service routine does not have control over
the connection with which it was invoked when it issIBBETURN(), then two
outcomes are possible. First, if the service routine TRRETURN() with
TP-RETURN-VALIN TPSVCRET-REGettoTPFAIL() andREC-TYPEIN TPTYPE-REC

set toSPACES(that is, no data is sent), themREV-SVCFAIL event is sent to the
originator of this conversation. Second, if any other invocatiGPRETURN()is used,
aTPEV-SVCERRevent is sent to the originator.

Since a conversational service has only one open connection which it did not initiate,
the server knows over which communications handle the data (and any event) should
be sent. For this reason, a communication handle is not passEeREDURN().

The following is a description of tHePRETURN() argumentsTP-RETURN-VALcan be
set to one of the following.

TPSUCCESS
The service has terminated successfully. If data is present, then it will be sent
(barring any failures processing the return). If the caller is in transaction
mode, therTPRETURN() places the caller’s portion of the transaction in a
state such that it can be committed when the transaction ultimately commits.
Note that a call tdPRETURN() does not necessarily finalize an entire
transaction. Also, even though the caller indicates success, if there are any
outstanding replies or open connections, if any work done within the service

BEA Tuxedo COBOL Function Reference 141

Section 3(cbl) - COBOL Functions

142

caused its transaction to be marked abort-only, then a failed message is sel
(that is, the recipient of the reply receiveBPESVCERR() indication or a
TPEV-SVCERRevent). Note that if a transaction becomes abort-only while in
the service routine for any reason, tHehRETURN-VALshould be set to
TPFAIL() . If TPSUCCESS()is specified for a conversational service, a
TPEV-SVCSUC@vent is generated.

TPFAIL
The service has terminated unsuccessfully from an application standpoint. Ar
error will be reported to the program receiving the reply. That is, the call to
get the reply will fail and the recipient receivesB$VCERRindication or a
TPEV-SVCERRevent. If the caller is in transaction mode, tMeRETURN()
marks the transaction as abort-only (note that the transaction may already b
marked abort-only). Barring any failures in processing the return, the caller’s
data is sent, if present. One reason for not sending the caller’s data is when
transaction timeout has occurred. In this case, the program waiting for the
reply will receive an error offPETIME].

TPEXIT
This value is the same @BFAIL() , with respect to completing the service,
but the server will exit after the transaction is marked as abort-only and the
reply is sent back to the requester. If the server is restartable, then the serve
will automatically be restarted.

If TP-RETURN-VALIs not set to one of these three values, then it defauteRalL() .

An application defined return cod&RPL-CODEIN TPSVCRET-RECMay be sent to the
program receiving the service reply. This code is sent regardless of the setting of
TP-RETURN-VALas long as a reply can be successfully sent (that is, as long as the
receiving call returns success BPESVCFAIL], or receives one of the events
TPEV-SVCSUCQI TPEV-SVCFAIL). The value oRPPL-CODEIs available in the
receiver in the variable\PPL-RETURN-CODEN TPSTATUS-REC

DATA-RECIs a record to be sent ahBNspecifies the amount afATA-RECthat should

be sent. Note that DATA-RECIs a record of type and sub-type that does not require a
length to be specified, theiEN is ignored (and may ®. If REC-TYPEiS SPACES
DATA-RECandLEN are ignored. In this case, if a reply is expected by the program that
invokes the service, then a reply is sent with no data portion. If no reply is expected,
thenTPRETURN() ignores any data passed to it and returns sending no reply. If
REC-TYPEIis STRING andLEN s 0, then the request is sent with no data portion.

If the service is conversational, there are several cases in which the application retul
code and the data portion are not transmitted:

BEA Tuxedo COBOL Function Reference

TPRETURN(3cbl)

m If the connection has been terminated when the call is made (that is, the caller
has receivedPEV-DISCONIMMon the connection), then this call simply ends the
service routine and rolls back the current transaction, if one exists. In this case,
the caller’s data record cannot be transmitted.

m |f the caller does not have control of the connection, eitRer-SVCERRor
TPEV-SVCFAIL is sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data record is transmitted.
If the originator receives thEPEV_SVCFAIL event, however, the return code is
available in the originator’sPPL-RETURN-CODEN TPSTATUS-REC

Return Values Because’PRETURN() contains amEXIT PROGRAMstatement, no value is returned to
the caller, nor does control return to the service routine. If a service routine returns
without usingTPRETURN() (that is, it uses aBXIT PROGRAMstatement directly or just
simply “falls out of the service routine”), the server will return a service error to the
service requester. In addition, all open connections to subordinates will be
disconnected immediately, and any outstanding asynchronous replies will be dropped.
If the server was in transaction mode at the time of failure, the transaction is marked
abort-only. Note also that fPRETURN() is used outside of a service routine (that is,
by routines that are not services), then it returns having no effect.

Errors Errors encountered either in handling arguments or in processingicag83aTUSto
be set to fPESVCERRfor a program receiving the service’s outcome via either
TPCALL() or TPGETRPLY(), and cause the evemPEV-SVCERRt0 be sent over the
conversation to a program usimBSEND() or TPRECV().

See Also TPCALL(3cbl) , TPCONNECT(3chl) , TPFORWAR(3cbl)

BEA Tuxedo COBOL Function Reference 143

Section 3(cbl) - COBOL Functions

TPSCMT(3cbl)

144

Name

Synopsis

Description

TPSCMT() - set whermPCOMMITshould return

01 TPCMTDEF-REC
COPY TPCMTDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSCMT" USING TPCMTDEF-RECTPSTATUS-REC

TPSCMT() sets the’P-COMMIT-CONTROIcharacteristic to the value specified in
TPCMTDEF-RECThe TP-COMMIT-CONTROIcharacteristic affects the way

TPCOMMIT() behaves with respect to returning control to its caller. A program can call
TPSCMT() regardless of whether it is in transaction mode or not. Note that if the caller
is participating in a transaction that another program must commit, then its call to
TPSCMT() does not affect that transaction. Rather, it affects subsequent transactions
that the caller will commit.

In most cases, a transaction is committed only when a BEA Tuxedo system progran
callsTPCOMMIT(). There is one exception: when a service is dispatched in transactior
mode because theJTOTRANariable in thesERVICESsection of th&JBBCONFIHile

is enabled, then the transaction completes upon calfRETURN(). If TPFORWAR()

is called, then the transaction will be completed by the server ultimately calling
TPRETURN(). Thus, the setting of thHeP-COMMIT-CONTROIcharacteristic in the

service that callSPRETURN() determines whemPCOMMIT() returns control within a
server. IfTPCOMMIT() returns a heuristic error code, the server will write a message to
a log file.

When a client joins a BEA Tuxedo system application, the initial setting for this
characteristic comes from a configuration file. (Seeat@REvariable in the
RESOURCESection ofUBBCONFIG(5))

The following are the valid settings foPCMTDEF-REC

TP-CMT-LOGGED
This setting indicates thaPCOMMIT() should return after the commit
decision has been logged by the first phase of the two-phase commit protoco
but before the second phase has completed. This setting allows for faster
response to the caller oPCOMMIT() although there is a risk that a

BEA Tuxedo COBOL Function Reference

TPSCMT(3cbl)

transaction participant might decide to heuristically complete (that is,
aborted) its work due to timing delays waiting for the second phase to
complete. If this occurs, there is no way to indicate this situation to the caller
sinceTPCOMMIT() has already returned (although BEA Tuxedo writes a
message to a log file when a resource manager takes a heuristic decision).
Under normal conditions, participants that promise to commit during the first
phase will do so during the second phase. Typically, problems caused by
network or site failures are the sources for heuristic decisions being made
during the second phase.

TP-CMT-COMPLETE
This setting indicates thaPCOMMIT() should return after the two-phase
commit protocol has finished completely. This setting allows for
TPCOMMIT() to return an indication that a heuristic decision occurred during
the second phase of commit.

Return Values Upon successful completioRPSCMT() setsTP-STATUSto [TPOK and returns the
previous value of th&P-COMMIT-CONTROIcharacteristic.

Errors Under the following conditiong;PSCMT() fails and set3P-STATUS to:

[TPEINVAL]
TPCMTDEF-REQS not set taP-CMT-LOGGEDOr TP-CMT-COMPLETE

[TPEPROTD
TPSCMT() was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

Notices ~ When usingrPBEGIN() , TPCOMMIT(), andTPABORT() to delineate a BEA Tuxedo
system transaction, it is important to remember that only the work done by a resource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eitheTPCOMMIT() or TPABORT(). Seebuildserver(1) for details on
linking resource managers that meet the XA interface into a server such that operations
performed by that resource manager are part of a BEA Tuxedo system transaction.

See Als0 TPABORT(3cbl) , TPBEGIN(3cbl) , TPCOMMIT(3cbl) , TPGETLEV(3cbl)

BEA Tuxedo COBOL Function Reference 145

Section 3(cbl) - COBOL Functions

TPSEND(3¢bl)

146

Name

Synopsis

Description

TPSEND() - routine to send a message in a conversational connection

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-RECTPTYPE-REC DATA-REC TPSTATUS-REC

TPSEND() is used to send data across an open connection to another program. The
caller must have control of the connectic@MM-HANDLEpecifies the open

connection to send data oveOMM-HANDLIS a communications handle returned from
eitherTPCONNECT()or TPSVCSTART().

DATA-RECcontains the data to be sent agdispecifies how much of the data to send.
Note that ifDATA-REGSs a record of a type that does not require a length to be specified,
thenLENis ignored (and may b®. If REC-TYPEiS SPACES DATA-RECandLEN are
ignored and a message is sent with no data (this might be done, for instance, to gra
control of the connection without transmitting any data).

The following is a list of valid settings iInPPSVCDEF-REC

TPRECVONLY
This setting signifies that, after the caller's data is sent, the caller gives up
control of the connection (that is, the caller can not issue anyTREEND()
calls). When the receiver on the other end of the connection receives the dat
sent byTPSEND(), it will also receive an eventPEV-SENDONLYindicating
that it has control of the connection (and can not issue moreRRECV()
calls). EitherTPRECVONLYor TPSENDONLYnust be set.

TPSENDONLY
This setting signifies that the caller wants to remain in control of the
connection. EitheTPRECVONLYr TPSENDONLYNust be set.

BEA Tuxedo COBOL Function Reference

TPSEND(3cbl)

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for
example, the data buffers through which the message is sent are full). Either
TPNOBLOCHKTr TPBLOCKmMust be set.

TPBLOCK
WhenTPBLOCKs specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithelrPNOBLOCKr TPBLOCKmust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts will still affect the
program. EitheTPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EftAROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted call is
reissued. EitheTPNOSIGRSTRToOr TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted and the call fails. EitMieNOSIGRSTRr TPSIGRSTRT
must be set.

If an event exists focOMM-HANDLEhenTPSEND() will return without sending the
caller’'s data. The event type is returned®EVENT() . Valid events foTPSEND() are
as follows.

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has issued an immediate disconnect on the
connection viarPDISCON(), or the originator of the connection issued
TPRETURN() with open subordinate connections. This event is also returned
to the originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failure).

BEA Tuxedo COBOL Function Reference 147

Section 3(cbl) - COBOL Functions

Return Values

148

Errors

TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has isSTRRETURN() without having
control of the conversation. In additioFPRETURN() was issued with
TPFAIL() set and no data record (that is, REC-TYPEpassed to
TPRETURN() was set t6PACES

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has isSTRRETURN() without having
control of the conversation. In additiocFPRETURN() was issued in a manner
different from that described faPEV-SVCFAIL below.

Because each of these events indicates an immediate disconnection notification (th:
is, abortive rather than orderly), data in transit may be lost. The communications
handle used for the connection is no longer valid. If the two programs were
participating in the same transaction, then the transaction has been marked abort-or

Upon successful completioNPSEND() setsTP-STATUSto [TPOK. If an event exists
and no errors were encounter@8#SEND() setsTP-STATUS to [TPEEVENT. When
TP-STATUS s set to TPEEVENT andTP-EVENT is eitherTPEV-SVCSUCQTr
TPEV-SVCFAIL, APPL-RETURN-CODEONtains an application-defined value that was
sent as part ofPRETURN().

Under the following conditiong,PSEND() fails and set3P-STATUSto (unless
otherwise noted, failure does not affect caller’s transaction, if one exits):

[TPEINVAL]
Invalid arguments were given.

[TPEBADDESE
COMM-HANDLEoONtains an invalid communications handle.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neittieBRNOBLOCHKIOr TPNOTIMEWere
specified. In either case, neithRATA-RECnor TPTYPE-RECare changed. If
a transaction timeout occurred, then any attempts to send or receive messag
on any connections or to start a new connection will fail WiEHETIME] until
the transaction has been aborted.

BEA Tuxedo COBOL Function Reference

TPSEND(3c¢bl)

See Also

[TPEEVENT
An event occurred and its type is availabl@REVENT(). DATA-RECIS not
sent when this error occurs.

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
TPSEND() was called in an improper context (for example, the connection
was established such that the calling program can only receive data).

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

TPCONNECT(3chl) , TPDISCON(3cbl) , TPRECV(3cbl)

BEA Tuxedo COBOL Function Reference 149

Section 3(cbl) - COBOL Functions

TPSETCTXT(3cbl)

Name

Synopsis

Description

Return Values

150

Errors

TPSETCTXT() - sets a context identifier for the current application association

01 TPCONTEXTDEF-REC
COPY TPCONTEXTDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSETCTXT" USING TPCONTEXTDEF-REC TPSTATUS-REC.

TPSETCTXT() defines the context in which the current program operates.
(Multithreaded COBOL applications are not currently supported.) Subsequent BEA
Tuxedo calls reference the application indicatedywTEXTh TPCONTEXTDEF-REC
The value ofCONTEXTn TPCONTEXTDEF-REGhould have been provided by a
previous call torPGETCTXT(). If the value ofCONTEXTs TPNULLCONTEXTthen the
program is disassociated from any BEA Tuxedo cont@hVALIDCONTEXTiS not a
valid input value forCONTEXTN TPCONTEXTDEF-REC

Upon successful completioMPSETCTXT() setsTP-STATUS to [TPOK.

Upon failure, TPSETCTXT() leaves the calling process in its original context and sets
TP-STATUS to indicate the error condition.

Upon failure, TPSETCTXT() setsTP-STATUSto one of the following values.

[TPEINVAL]
Invalid arguments have been given.

[TPENOENT
The value ofcONTEXTN TPCONTEXTDEF-RE® not a valid context.

[TPEPROTD
TPSETCTXT() has been called in an improper context. For example, it has
been called in a process that has not calldITIALIZE() or that has
calledTPINITIALIZE() without specifying th&P-MULTI-CONTEXTS
setting.

BEA Tuxedo COBOL Function Reference

TPSETCTXT(3cbl)

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error has
been written to a log file.

[TPEOS
An operating system error has occurred.

See Also Introduction to the COBOL Application-Transaction Monitor Interface,
TPGETCTXT(3cbl)

BEA Tuxedo COBOL Function Reference 151

Section 3(cbl) - COBOL Functions

TPSETUNSOL(3¢bl)

Name

Synopsis

Description

Return Values

TPSETUNSOL() - sets method for handling unsolicited messages
01 CURR-ROUTINEPIC S9(9) COMP-5.
01 PREV-ROUTINEPIC S9(9) COMP-5.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSETUNSOL" USING CURR-ROUTINEPREV-ROUTINE TPSTATUS-REC

TPSETUNSOL() allows a client to identify the routine that should be invoked when an
unsolicited message is received by the BEA Tuxedo system libraries. Before the firs
call toTPSETUNSOL(), any unsolicited messages received by the BEA Tuxedo system
libraries on behalf of the client are logged and ignored. A cat8ETUNSOL() with

a function numberCURR-ROUTINESet to0 has the same effect. The method used by
the system for notification and detection is determined by the application default,
which can be overridden on a per-client basis {SEITIALIZE(3cbl)).

The routine number passed,GRR-ROUTINEON the call taArPSETUNSOL() selects
one of 16 predefined routines. The routine names mughbeispatchl through
_tm_dispatchg for C routines that provide unsolicited message handling and
TMDISPATCH®hroughTMDISPATCH16for COBOL routines that provide the same
message handling. The C functionsn_dispatchl through tm_dispatch8) must
conform to the parameter definition describetpietunsol(3c) . The COBOL
routines TMDISPATCHYhroughTMDISPATCH1§ must us&PGETUNSOL()to receive
the data.

Processing within the unsolicited message handling routine in a C application is
restricted to the following BEA Tuxedo functiongalloc() , tpfree()
tpgetctxt() , tpgetlev() , tprealloc() , andtptypes()

Processing within the unsolicited message handling routine in a COBOL application
is restricted to the following BEA Tuxedo functioM®GETLEV() andTPGETCTXT().

Upon successful completioMPSETUNSOL() setsTP-STATUSto [TPOK and returns
the previous setting for the unsolicited message handling roatin®REV-ROUTINE
is a successful return indicating that no message handling routine had been set
previously).

152 BEA Tuxedo COBOL Function Reference

TPSETUNSOL(3c¢bl)

Errors

Portability

See Also

Under the following conditiong,PSETUNSOL() fails and set3P-STATUSto:

[TPEINVAL]
Invalid arguments were given (for exampt&JRR-ROUTINES not a valid
routine value).

[TPEPROTD
TPSETUNSOL()was called in an improper context (for example, from within
a server).

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

The interfaces described TI’PNOTIFY() are supported on native site UNIX-based
processors. In addition, the routinEBBROADCAST()andTPCHKUNSOL()as well as
the routineTPSETUNSOL() are supported on UNIX and MS-DOS workstation
processors.

TPSETUNSOL() is not supported on Windows, OS/2, and RS6000 due to the way that
Dynamic Link Libraries and Shared Libraries work in these environments;
TPEPROTO()will be returned if called on these platforms. Use the C-language
interfacetpsetunsol() to set up a handler function in these environments.

TPGETCTXT(3chl) , TPGETUNSOL(3cbl) , TPINITIALIZE(3cbl) , TPTERM(3cbl)

BEA Tuxedo COBOL Function Reference 153

Section 3(cbl) - COBOL Functions

TPSPRIO(3¢bl)

Name

Synopsis

Description

Return Values

Errors

TPSPRIO() - set service request priority

01 TPPRIDEF-REC
COPY TPPRIDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC

TPSPRIO() sets the priority for the next request sent or forwarded. The priority set
affects only the next request sent. (Priority can also be set for messages enqueued
dequeued byPENQUEUE()or TPDEQUEUE()if the queued management facility is
installed.) By default, the setting BRIORITY in TPPRIDEF-RECincrements or
decrements a service’s default priority up to a maximum of 100 or down to a minimum
of 1 depending on its sign, where 100 is the highest priority. The default priority for a
request is determined by the service to which the request is being sent. This default
may be specified administratively (S8BBCONFIG(5)), or take the system default of
50.TPSPRIO() has no effect on messages sentf@ONNECT()or TPSEND().

The following is a list of valid settings iMPPRIDEF-REC

TPABSOLUTE
The priority of the next request should be sent out at the absolute value of
PRIORITY. The absolute value ®RIORITY must be within the range 1 and
100, inclusive, with 100 being the highest priority. Any value outside of this
range causes a default value to be used.

TPRELATIVE
The priority of the next request should be sent out at the relative value of
PRIORITY.

Upon successful completioMPSPRIO() setsTP-STATUSto [TPOK.
Under the following conditiong,;PSPRIO() fails and set§P-STATUS to:

[TPEINVAL]
TPPRIDEF-RECSsettings are invalid.

154 BEA Tuxedo COBOL Function Reference

TPSPRIO(3c¢bl)

[TPEPROTD
TPSPRIO() was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred.

See Also TPACALL(3cbl) , TPCALL(3chl) , TPDEQUEUE(3chl) , TPENQUEUE(3chI) ,
TPGPRIO(3chl)

BEA Tuxedo COBOL Function Reference 155

Section 3(cbl) - COBOL Functions

TPSUBSCRIBE(3¢bl)

156

Name

Synopsis

Description

TPSUBSCRIBE() - subscribe to an event

01 TPEVTDEF-REC
COPY TPEVTDEF.

01 TPQUEDEF-REC
COPY TPQUEDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSUBSCRIBE" USING TPEVTDEF-REC TPQUEDEF-RECTPSTATUS-REC

The caller useSPSUBSCRIBE() to subscribe to an event or set of events named by
EVENT-EXPRIN TPEVTDEF-RECSubscriptions are maintained by the BEA Tuxedo
EventBrokerTMUSREVT(), and are used to notify subscribers when events are posted
via TPPOST(). Each subscription specifies a notification method which can take one
of three forms: client naotification, service calls, or message enqueuing to
stable-storage queues. Notification methods are determined by the subscriber’s
process type and the setting of ftREV-METHOD-FLAGIN TPEVTDEF-REC

The event or set of events being subscribed to is named by the regular expression,
EVENT-EXPRin TPEVTDEF-REG and cannot b8PACES Regular expressions are of

the form specified imecomp, rematch(3c) . For example, iEVENT-EXPRIis

"ele.*" , the calleris subscribing to all system-generated evem¢ENT-EXPRiS
"\e\e.SysServer.*" , the caller is subscribing to all system-generated events related
to servers. IEVENT-EXPRis "[A-Z].*" , the caller is subscribing to all user events
starting with A-Z; ifEVENT-EXPRIis ".*(ERR|err).*" , the caller is subscribing to all
user events containing either the substriBRR or the substringérr " in the event

name (for example a¢count_error " and 'ERROR_STATEevents would both

qualify).

EVENT-FILTER in TPEVTDEF-REQS a string containing a boolean filter rule that must
be evaluated successfully before the EventBroker posts the event. Upon receiving &
event to be posted, the EventBroker applies the filter rule, if one exists, to the poste
event's data. If the data passes the filter rule, the EventBroker invokes the notificatiol
method; otherwise, the broker does not invoke the associated notification method. TF
caller can subscribe to the same event multiple times with different filter rules.

BEA Tuxedo COBOL Function Reference

TPSUBSCRIBE(3¢bl)

Filter rules are specific to the typed records to which they are applied. For FML and
view records, the filter rule is a string that can be passed to each boolean expression
compiler (seéboolco, Fhoolco32, Fvboolco, Fvboolco32(3fml)) and

evaluated against the posted record @melev, Fboolev32, Fvboolev,

Fvboolev32(3fml)). FOrSTRINGrecords, the filter rule is a regular expression of the
form specified inrecomp, rematch(3c) . All other record types require customized
filter evaluators (sebuffer(3c) andtypesw(5) for details on adding customized

filter evaluators). If no filter rule is associated WHVYENT-EXPR thenEVENT-FILTER

must beSPACES

If the subscriber is a BEA Tuxedo system client procesSBAE¥NOTIFYin
TPEVTDEF-REQS set, then the EventBroker sends an unsolicited message to the
subscriber when the event to which it subscribed is posted. That is, when an event
name is posted that evaluates successfully adaiEstT-EXPR, the EventBroker tests

the posted data against the filter rule associatedBMENT-EXPR If the data passes

the filter rule or if there is no filter rule for the event, then the subscriber receives an
unsolicited notification along with any data posted with the event. In order to receive
unsolicited notifications, the client must register (VRSETUNSOL()) an unsolicited
message handling routine. If a BEA Tuxedo system server process calls
TPSUBSCRIBE() with TPEVNOTIFYset, therTPSUBSCRIBE() fails and sets
TP-STATUS N TPSTATUS-RECtO [TPEPROTD

Clients receiving event notification via unsolicited messages should remove their
subscriptions from the EventBroker’s list of active subscriptions before exiting (see
TPUNSUBSCRIBE()for details). UsingPUNSUBSCRIB()'s wildcard handle, -1, clients

can conveniently remove all of their “non-persistent” subscriptions which include
those associated with the unsolicited notification method (see the description of
TPEVPERSISTbelow for subscriptions and their associated notification methods that
persist after a process exits). If a client exits without removing its non-persistent
subscriptions, then the EventBroker will remove them when it detects that the client is
no longer accessible.

WhenTPEVNOTIFYis set,TPEVNOTRARNATPEVNOPERSISTmust also be set;
otherwiseTPSUBSCRIBE() fails and set3P-STATUSto [TPEINVAL]. That is, an event
subscription for a client having the unsolicited notification method cannot be
transactional nor can it be persistent.

If the subscriber (regardless of process type)TS&#YSERVICE() in TPEVTDEF-REG

then event notifications are sent to the BEA Tuxedo system service routine named by
NAME-1in TPEVTDEF-RECThat is, when an event name is posted that evaluates
successfully again®VENT-EXPR the EventBroker tests the posted data against the
filter rule associated witBVENT-EXPR If the data passes the filter rule or if there is no

BEA Tuxedo COBOL Function Reference 157

Section 3(cbl) - COBOL Functions

158

filter rule for the event, then a service request is seRAtWE-1 along with any data
posted with the event. The service namaAME-1can be any valid BEA Tuxedo
system service hame and it may or may not be active at the time the subscription is
made. Service routines invoked by the EventBroker should return with no reply data
That is, they should callPRETURN() with REC-TYPEIn TPTYPE-RECSet to SPACES.

Any data passed tPRETURN() will be dropped.

If TPEVTRANN TPEVTDEF-REGS also set, then if the process callifRPOST() is in
transaction mode, the EventBroker calls the subscribed service routine such that it wi
be part of the poster’s transaction. Both the EventBrah@uSREVT(), and the
subscribed service routine must belong to server groups that support transactions (s
UBBCONFIG(5) for details). f TPEVNOTRANE set, then the EventBroker calls the
subscribed service routine such that it will not be part of the poster’s transaction.

If the subscriber (regardless of process type)B#HYQUEUE()in TPEVTDEF-REG

then event notifications are enqueued to the queue space nameasiby in
TPEVTDEF-REGand the queue named RK§ME-2 in TPEVTDEF-RECThat is, when an
event name is posted that evaluates successfully aga#sT-EXPR the EventBroker
tests the posted data against the filter rule associatedEWEKT-EXPR If the data

passes the filter rule or if there is no filter rule for the event, then the EventBroker
engueues a message to the queue space namidisyl and the queue named by
NAME-2 along with any data posted with the event. The queue space and queue nan
can be any valid BEA Tuxedo system queue space and queue name, either of whicl
may or may not exist at the time the subscription is made.

TPQUEDEF-RE@an contain options further directing the EventBroker’s enqueuing of
the posted event. If the caller has no options to specify,th@EDEF-REGhould be

set toLOW-VALUE Otherwise, options can be set as described in the “Control
Parameter” subsection of tteENQUEUE()reference page (specifically, see the
section describing the valid list of settings controlling input information for
TPENQUEUE().

If TPEVTRANN TPEVTDEF-REQS also set, then if the process callifRPOST() is in
transaction mode, the EventBroker enqueues the posted event and its data such tha
will be part of the poster’s transaction. The EventBrokeltySREVT(), must belong to

a server group that supports transactions y8BCONFIG(5) for details). If
TPEVNOTRAIS set, then the EventBroker enqueues the posted event and its data suc
that it will not be part of the poster’s transaction.

By default, the BEA Tuxedo EventBroker deletes subscriptions when the resource t
which it is posting is not available (for example, the EventBroker cannot access a
service routine and/or a queue space/queue name associated with an event

BEA Tuxedo COBOL Function Reference

TPSUBSCRIBE(3¢bl)

subscription). SettinPEVPERSISTIin TPEVTDEF-REANdicates that the subscriber

wants this subscription to persist across such errors (usually because the resource will
become available again in the future). Persistent subscriptions are allowed only for
TPEVSERVICE() andTPEVQUEUE()notification methodsTPEVPERSISTcannot be

used whermTPEVNOTIFYis set; otherwise, the function fails and SEtsSTATUSto
[TPEINVAL]. WhenTPEVNOPERSISTs used, the EventBroker will remove this
subscription if it encounters an error accessing either the client, the service name, or
gueue space/queue name designated in this subscription.

If TPEVPERSISTis used withfPEVTRANand the resource is not available at the time of
event notification, then the EventBroker will return to the poster such that its
transaction must be aborted. That is, even though the subscription remains intact, the
resource’s unavailability will cause the poster’s transaction to fail.

If the EventBroker’s list of active subscriptions already contains a subscription that
matches the one being requestedBgUBSCRIBE(), then the function fails setting
TP-STATUSto [TPEMATCH For a subscription to match an existing one, both
EVENT-EXPRandEVENT-FILTER must match those of a subscription already in the
EventBroker’s active list of subscriptions. In addition, depending on the notification
method, other criteria are used to determine matches.

If TPEVNOTIFYis set, then the caller's system-defined client identifier (known as a
CLIENTID) is also used to detect matches. ThatPSUBSCRIBE() fails if
EVENT-EXPR EVENT-FILTER, and the caller'SLIENTID match those of a
subscription already known to the EventBroker.

If TPEVSERVICE() is set, thelTPSUBSCRIBE() fails if EVENT-EXPR EVENT-FILTER,
and the service name seNAME-1match those of a subscription already known to the
EventBroker.

If TPEVQUEUE()is set, then EventBroker uses the queue space, queue name, and
correlation identifier, in addition tBVENT-EXPR andEVENT-FILTER, when

determining matches. The correlation identifier can be used to differentiate among
several subscriptions for the same event expression and filter rule, destined for the
same queue. Thus, if the caller has set hetvQUEUE()andTPQNOCOORID() then
TPSUBSCRIBE() fails if EVENT-EXPR EVENT-FILTER, the queue space name set in
NAME-1, and the queue name seNIME-2match those of a subscription (which also
does not have a correlation identifier specified) already known to the EventBroker.
Further, ifTPQCOORID() is set, therTPSUBSCRIBE() fails if EVENT-EXPR
EVENT-FILTER, NAME-1, NAME-2, andCORRIDIin TPQUEDEF-RE@natch those of a
subscription (which has the same correlation identifier specified) already known to the
EventBroker.

BEA Tuxedo COBOL Function Reference 159

Section 3(cbl) - COBOL Functions

Return Values

160

Errors

The following is a list of settings iIlPPEVTDEF-REC

TPNOBLOCK
The subscription is not made if a blocking condition exists. If such a condition
occurs, the call fails and sétB-STATUS to [TPEBLOCK EitherTPNOBLOCK
or TPBLOCKmust be set.

TPBLOCK
WhenTPBLOCKs specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithelTPNOBLOCKIr TPBLOCKmMust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIMEOr TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Eith@fPNOSIGRSTRTOr TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted, the call fails and SERsSTATUS to [TPGOTSI]. Either
TPNOSIGRSTRTor TPSIGRSTRTmust be set.

Upon successful completioNPSUBSCRIBE() setsTP-STATUSto [TPOK. In addition,
TPSUBSCRIBE() setsSUBSCRIPTION-HANDLEN TPEVTDEF-RECO the handle for this
subscriptionSUBSCRIPTION-HANDLEcan be used when callif@UNSUBSCRIBE()to
remove this subscription from the EventBroker’s list of active subscriptions. Either the
subscriber or any other process is allowed to use the returned handle to delete this
subscription.

Under the following conditiong,;PSUBSCRIBE() fails and set3P-STATUSto one of
the following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for examp#ENT-EXPRiS SPACES.

BEA Tuxedo COBOL Function Reference

TPSUBSCRIBE(3¢bl)

See Also

[TPENOENT
Cannot access the BEA Tuxedo EventBroker.

[TPELIMIT]
The subscription failed because the EventBroker's maximum number of
subscriptions has been reached.

[TPEMATCH
The subscription failed because it matched one already listed with the
EventBroker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and bottPBLOCKandTPTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
[TPETIME] until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received amPNOSIGRSTRTwas specified.

[TPEPROTD
TPSUBSCRIBE() was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

buffer(3c) , recomp, rematch(3c) , TPENQUEUE(3cbl) , TPPOST(3chl) ,
TPSETUNSOL(3cbl) , TPUNSUBSCRIBE(3cbl) , Fboolco, Fboolco32, Fvboolco,
Fvboolco32(3fml) , Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml) ,
EVENTS(5), EVENT_MIB(5) , TMSYSEVT(5), TMUSREVT(5), tuxtypes(5)
typesw(5) , UBBCONFIG(5)

BEA Tuxedo COBOL Function Reference 161

Section 3(cbl) - COBOL Functions

TPSUSPEND(3¢bl)

162

Name

Synopsis

Description

TPSUSPEND() - suspend a global transaction

01 TPTRXDEF-REC
COPY TPTRXDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSUSPEND" USING TPTRXDEF-REC TPSTATUS-REC

TPSUSPEND()is used to suspend the transaction active in the caller's program. A
transaction begun withPBEGIN() may be suspended witlPSUSPEND(). Either the
suspending program or another program mayTeRESUME()to resume work on a
suspended transaction. WhEBPSUSPEND() returns, the caller is no longer in
transaction mode. However, while a transaction is suspended, all resources associat
with that transaction (such as database locks) remain active. Like an active transactio
a suspended transaction is susceptible to the transaction timeout value that was
assigned when the transaction first began.

For the transaction to be resumed in another process, the calrgugPEND() must

have been the initiator of the transaction by explicitly caffRBEGIN() .

TPSUSPEND() may also be called by a process other than the originator of the
transaction (for example, a server that receives a request in transaction mode). In tt
latter case, only the caller PSUSPEND() may callTPRESUME()to resume that
transaction. This case is allowed so that a process can temporarily suspend a
transaction to begin and do some work in another transaction before completing the
original transaction (for example, to run a transaction to log a failure before rolling
back the original transaction).

TPSUSPEND() populateS'RANID with the transaction identifier being suspended.

To ensure success, the caller must have completed all outstanding transactional
communication with servers before issulfRSUSPEND(). That is, the caller must
have received all replies for requests sent WRACALL() that were associated with
the caller’s transaction. Also, the caller must have closed all connections with
conversational services associated with the caller’s transaction (FRRECV() must
have returned the TPEV-SVCSUCC event). If either rule is not followed, then
TPSUSPEND()fails, the caller’s current transaction is not suspended and alll

BEA Tuxedo COBOL Function Reference

TPSUSPEND(3¢bl)

Return Value

Errors

See Also

transactional communication handles remain valid. Communication handles not
associated with the caller’s transaction remain valid regardless of the outcome of
TPSUSPEND()

Upon successful completioNPSUSPEND() sets[TPOK] .
Under the following conditiong,PSUSPEND() fails and set§P-STATUSto:

[TPEABORT
The caller’s active transaction has been aborted. All communication handles
associated with the transaction are no longer valid.

[TPEPROTD
TPSUSPEND()was called in an improper context (for example, the caller is
not in transaction mode). The caller’s state with respect to transaction mode
is unchanged.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

TPACALL(3cbl) , TPBEGIN(3cbl) , TPRECV(3chl) , TPRESUME(3cbl)

BEA Tuxedo COBOL Function Reference 163

Section 3(cbl) - COBOL Functions

TPSVCSTART(3¢cbl)

164

Name

Synopsis

Description

TPSVCSTART() - start a BEA Tuxedo system service

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSVCSTART" USING TPSVCDEF-RECTPTYPE-REC DATA-REC
TPSTATUS-REC

TPSVCSTART() is the first BEA Tuxedo system routine to be called when writing a
service routines. In fact, it is an error to issue any other call within a service routine
before callingTPSVCSTART(). TPVCSTART() is used to retrieve the service’'s
parameters and data. This routine is used for services that receive requests via
TPCALL() or TPACALL() routines as well as by services that communicate via
TPCONNECT() TPSEND(), andTPRECV() routines.

Service routines processing requests made via ditf@&LL() , TPACALL() , or
TPFORWAR(Yeceive at most one incoming message (upon successfully returning frorr
TPSVCSTARYand send at most one reply (upon exiting the service routine with
TPRETURN()).

Conversational services, on the other hand, are invoked by connection requests with
most one incoming message along with a means of referring to the open connectior
Upon successfully returning fromPSVCSTARTY(), either the connecting program or

the conversational service may send and receive data as defined by the application. T
connection is half-duplex in nature meaning that one side controls the conversation
(that is, it sends data) until it explicitly gives up control to the other side of the
connection.

Concerning transactions, service routines can participate in at most one transaction
invoked in transaction mode. As far as the service routine writer is concerned, the
transaction ends upon returning from the service routine. If the service routine is not

BEA Tuxedo COBOL Function Reference

TPSVCSTART(3cbl)

invoked in transaction mode, then the service routine may originate as many
transactions as it wants UsimgBEGIN() , TPCOMMIT(), andTPABORT(). Note that
TPRETURN() is not used to complete a transaction. Thus, it is an error to call
TPRETURN() with an outstanding transaction that originated within the service routine.

DATA-RECspecifies where the service’s data is read into, and, on icgutn
TPTYPE-RECIndicates the maximum number of bytes that should be moved into
DATA-REC Upon successful return fronPSVCSTARTLEN contains the actual number
of bytes moved int@ATA-REC REC-TYPEandSUB-TYPE both inTPTYPE-REG

contain the data’s type and sub-type, respectively. If the message is larger than
DATA-REG thenDATA-RECWIll contain only as many bytes as will fit in the record. The
remainder of the message is discarded®8V/CSTART() SetSTPTRUNCATE().

If LENis0 upon successful return, then the service has no incoming daba&andreC
was not modified. It in an error fRENto be0 on input.

Upon successful returSERVICE-NAMEIN TPSVCDEF-REGsS populated with the
service name that the requesting program used to invoke the service.

The following are the possible settingsTiRSVCDEF-REQIpon return of
TPSVCSTARTY().

TPREQRSP
The service was invoked with eithEPCALL() or TPACALL() . This setting is
mutually exclusive witifPCONV

TPCONV
The service was invoked witlPCONNECT() The communications handle for
the conversation is available@OMM-HANDLEN TPSVCDEF-RECT his setting
is mutually exclusive witlTPREQRSP

TPNOTRAN
The service routine is not in transaction mode. This setting is mutually
exclusive withTPTRAN

TPTRAN
The service routine is in transaction mode. This setting is mutually exclusive
with TPNOTRAN

TPNOREPLY
The program invoking the service routine is not expecting a reply. This
setting is meaningful only whelPREQRSHSs set. This setting is mutually
exclusive withTPREPLY.

BEA Tuxedo COBOL Function Reference 165

Section 3(cbl) - COBOL Functions

Return Values
Errors
See Also

166

TPREPLY
The program invoking the service routine is expecting a reply. This setting is
meaningful only whermrPREQRSHs set. This setting is mutually exclusive
with TPNOREPLY

TPSENDONLY
The service is invoked such that it can send data across the connection and tl
program on the other end of the connection can only receive data. This settin
is meaningful only whe@MPCONVs set. This setting is mutually exclusive
with TPRECVONLY

TPRECVONLY
The service is invoked such that it can only receive data from the connection
and the program on the other end of the connection can send data. This settir
is meaningful only whe@MPCONVSs set. This setting is mutually exclusive
with TPSENDONLY

APPKEYin TPSVCDEF-REQGs set to the application key assigned to the requesting client
program by the application defined authentication service. This key value is passed
along with any and all service requests made while within this invocation of the service
routine.APPKEYWill have a value of -1 for originating clients that do not pass through
the application authentication service. This includes clients of an earlier release leve
interoperating with a security application.

Upon successful completioNPSVCSTART() setsTP-STATUSto [TPON. If the size of
the incoming message was larger then the size specifigzion input,
TPTRUNCATE()is set and onlyEN amount of data was moved D& TA-REG the
remaining data is discarded.

Under the following conditiong,PSVCSTART() fails and set3P-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPEPROTD
TPSVCSTART() was called improperly.

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

buildserver(l) , TPBEGIN(3cbl) , TPCALL(3cbl) , TPCONNECT(3cbl),
TPINITIALIZE(3cbl) , TPOPEN(3cbl) , TPSVRDONE(3chl) , TPSVRINIT(3cbl)

BEA Tuxedo COBOL Function Reference

TPSVRDONE(3cbl)

TPSVRDONE(3cbl)

Name

Synopsis

Description

Usage

See Also

TPSVRDONE()- BEA Tuxedo system server termination routine

01 TPSTATUS-REC
COPY TPSTATUS.
PROCEDURE DIVISION.
* User code

EXIT PROGRAM.

The BEA Tuxedo system server abstraction ce¥iSVYRDONE()after it has finished
processing service requests but before it exits. When this routine is invoked, the server
is still part of the system but its own services have been unadvertised. Thus, BEA
Tuxedo system communication can be performed and transactions can be defined in
this routine. However, ifPSVRDONE()returns with open connections, asynchronous
replies pending or while still in transaction mode, the BEA Tuxedo system will close
its connections, ignore any pending replies and rollback the transaction before the
server exits.

If an application does not provide this routine in a server, then the default version
provided by the BEA Tuxedo system is called instead. The dafastRDONE()calls
TPCLOSE() andUSERLOG() to announce that the server is about to exit.

If either TPRETURN() or TPFORWAR()are called imPSVRDONE() then these routines
simply return having no effect.

TPCLOSE(3chl) , TPSVRINIT(3cbl)

BEA Tuxedo COBOL Function Reference 167

Section 3(cbl) - COBOL Functions

TPSVRINIT(3cbl)

Name

Synopsis

Description

Return Values

TPSVRINIT() - BEA Tuxedo system server initialization routine
LINKAGE SECTION.

01 CMD-LINE.
05 ARGC PIC 9(4) COMP-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC
01 TPSTATUS-REC
COPY TPSTATUS.
PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC
* User code
EXIT PROGRAM

The BEA Tuxedo system server abstraction CEMSVRINIT() during its

initialization. This routine is called after the program has become a server but before
it handles any service requests; thus, BEA Tuxedo system communication may be
performed and transactions may be defined in this routine. HoweVegWRINIT()

returns with open connections, asynchronous replies pending or while still in
transaction mode, the BEA Tuxedo system will close the connections, ignore replies
pending, abort the transaction, and the server will exit gracefully.

If an application does not provide this routine in a server, then the default version
provided by the BEA Tuxedo system is called instead. The dafasltRINIT() calls
TPOPEN() andUSERLOG() to announce that the server has successfully started.

Application-specific options can be passed into a server and processed in
TPSVRINIT() (seeservopts(5)). The options are passed throufpGGNdARGV
ARG@ontain the number of arguments that have been passetRandontains the
arguments (in character format) separated by a sBRp€Echaractergetopt() is
used in a BEA Tuxedo system.

If successfulfPSVRINIT() , returns TPOK in TP-STATUS and the service can start
accepting requests. If an error occur§msVRINIT, the application can cause the
server to exit gracefully (and not take any service requests) by returning any value
except TPOHK in TP-STATUS.

If either TPRETURN() or TPFORWAR()are used outside of a service routine (for
example, in clients, or iMPSVRINIT() or TPSVRDONE(), then these routines return
having no effect.

168 BEA Tuxedo COBOL Function Reference

TPSVRINIT(3cbl)

Usage If either TPRETURN() or TPFORWAR()are called irTPSVRINIT() , these routines
simply return having no effect.

See Also TPOPEN(3cbl) , TPSVRDONE(3chl)

BEA Tuxedo COBOL Function Reference 169

Section 3(cbl) - COBOL Functions

TPTERM(3cbl)

Name TPTERM() - leaves an application

Synopsis 01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPTERM" USING TPSTATUS-REC

Description TPTERM() removes a client from a BEA Tuxedo system application. If the client is in
transaction mode, then the transaction is rolled back. WREBRM() returns
successfully, the caller can no longer perform BEA Tuxedo client operations. Any
outstanding conversations are immediately disconnected.

If TPTERM() is called more than once (that is, if it is called after the caller has already
left the application), no action is taken and success is returned.

Multicontexting Issues

After invoking TPTERM(), a program is placed in tH@NULLCONTEXTontext. Most
ATMI functions invoked by a program in ti@NULLCONTEXTontext perform an
implicit TPINITIALIZE() . Whether or not the call toPINITIALIZE() succeeds
depends on the usual determining factors, unrelated to context-specific issues.

Return Values Upon successful completioRPTERM() setsTP-STATUSto [TPOK. Upon success in a
multicontexted application, the application’s current context is changed to
TPNULLCONTEXTIt is the user’s responsibility to uUSSETCTXT() to change the
context subsequently, as desired.

Upon failure, TPTERM() returns -1 and se®®-STATUSto indicate the error condition.
Errors Upon failure, TPTERM() setsTP-STATUSto one of the following values.

[TPEPROTD
TPTERM() was called in an improper context (for example, the caller is a
server).

[TPESYSTEWM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also TPINITIALIZE(3cbl)

170 BEA Tuxedo COBOL Function Reference

TPUNADVERTISE(3¢bl)

TPUNADVERTISE(3cbl)

Name

Synopsis

Description

Return Values

Errors

TPUNADVERTISE() - routine for unadvertising service names

01 SVC-NAMEPIC X(15).

01 TPSTATUS-REC

COPY TPSTATUS.

CALL "TPUNADVERTISE" USING SVC-NAME TPSTATUS-REC

TPUNADVERTISE() allows a server to unadvertise a service that it offers. By default, a
server’s services are advertised when it is booted and they are unadvertised when it is
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of all servers sharing an MSSQ set.

TPUNADVERTISE() removesSVC-NAMEs an advertised service for the server (or the
set of servers sharing the caller's MSSQ s&C-NAMEcannot beSPACES Also,
SVC-NAMEshould be 15 characters or less. (SeesgRVICESsection of

UBBCONFIG(5)). Longer names will be accepted and truncated to 15 characters. Care
should be taken such that truncated names do not match other service names.

Upon successful completioMPUNADVERTISE() SetsTP-STATUS to [TPON.
Under the following condition§,PUNADVERTISE() fails and set3P-STATUS to:

[TPEINVAL]
Invalid arguments were given (for exam@leC-NAMAS SPACES.

[TPENOENT
SVC-NAMEHSs not currently advertised by the server.

[TPEPROTD
TPUNADVERTISE() was called in an improper context (for example, by a
client).

BEA Tuxedo COBOL Function Reference 171

Section 3(cbl) - COBOL Functions

[TPESYSTEW

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also TPADVERTISE(3chl)

172 BEA Tuxedo COBOL Function Reference

TPUNSUBSCRIBE(3¢cbl)

TPUNSUBSCRIBE(3¢bl)

Name TPUNSUBSCRIBE()- unsubscribe to an event

Synopsis 01 TPEVTDEF-REC
COPY TPEVTDEF.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPUNSUBSCRIBE" USING TPEVTDEF-RECTPSTATUS-REC

Description The caller useSPUNSUBSCRIBE()to remove an event subscription or a set of event
subscriptions from the BEA Tuxedo EventBroker’s list of active subscriptions.
SUBSCRIPTION-HANDLEN TPEVTDEF-REQs an event subscription handle returned by
TPSUBSCRIBE(). SettingSUBSCRIPTION-HANDLEto the wildcard value, -1, directs
TPUNSUBSCRIBE()to unsubscribe to all non-persistent subscriptions previously made
by the calling process. Non-persistent subscriptions are those made with
TPEVNOPERSISBet whermTPSUBSCRIBE() was called. Persistent subscriptions can be
deleted only by using the handle returnedrBUBSCRIBE().

Note that thel handle removes only those subscriptions made by the calling process
and not any made by previous instantiations of the caller (for example, a server that
dies and restarts cannot use the wildcard to unsubscribe to any subscriptions made by
the original server).

The following is a list of valid settings iInPPEVTDEF-REC

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a
condition occurs, the call fails and seBsSTATUSto [TPEBLOCK Either
TPNOBLOCHKTI TPBLOCKmMust be set.

TPBLOCK
WhenTPBLOCKs specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithemrPNOBLOCKr TPBLOCKmust be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants
to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIMEOr TPTIME must be set.

BEA Tuxedo COBOL Function Reference 173

Section 3(cbl) - COBOL Functions

Return Values

174

Errors

TPTIME
This setting signifies that the caller will receive blocking timeouts if a
blocking condition exists and the blocking time is reached. EfthROTIME
or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Eith@fPNOSIGRSTRTOr TPSIGRSTRTmMust be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is not restarted, the call fails and SERsSTATUS to [TPGOTSIQ. Either
TPNOSIGRSTRTor TPSIGRSTRTmust be set.

Upon successful completioMPUNSUBSCRIBE() SetSTP-STATUS to [TPON. In

addition, TPUNSUBSCRIBE() SetsSEVENT-COUNTN TPEVTDEF-RECto the number of
subscriptions deleted (zero or greater) from the EventBroker’s list of active
subscriptionsEVENT-COUNTmMay contain a number greater than 1 only when the
wildcard handle, -1, is used. AISBYENT-COUNTmay contain a number greater than

0 even wheTPUNSUBSCRIBE() completes unsuccessfully (that is, when the wildcard
handle is used, the EventBroker may have successfully removed some subscription
before it encountered an error deleting others).

Under the following conditiong;PUNSUBSCRIBE() fails and set3P-STATUSto one
of the following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEINVAL]

Invalid arguments were given (for examp&/BSCRIPTION-HANDLES an
invalid subscription handle).

[TPENOENT
Cannot access the BEA Tuxedo EventBroker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and botPBLOCKandTPTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
[TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

BEA Tuxedo COBOL Function Reference

TPUNSUBSCRIBE(3¢cbl)

See Also

[TPGOTSI]
A signal was received amPNOSIGRSTRTwas specified.

[TPEPROTD
TPUNSUBSCRIBE() was called improperly.

[TPESYSTEW
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred.

TPPOST(3chl) , TPSUBSCRIBE(3cbl) , EVENTS(5), EVENT_MIB(5) , TMSYSEVT(5),
TMUSREVT(5)

BEA Tuxedo COBOL Function Reference 175

Section 3(cbl) - COBOL Functions

TXBEGIN(3cbl)

Name

Synopsis

Description

Optional Set-up

Return Value

176

Errors

TXBEGIN() - begin a global transaction

01 TX-RETURN-STATUS
COPY TXSTATUS.
CALL "TXBEGIN" USING TX-RETURN-STATUS

TXBEGIN() is used to place the calling thread of control in transaction mode. The
calling thread must first ensure that its linked resource managers have been opened (
TXOPEN()) before it can start transactiomXBEGINfails (with aTX-STATUS value of
[TX-PROTOCOL-ERRQRIf the caller is already in transaction modeT®OPEN() has

not been called.

Once in transaction mode, the calling thread musTEalbMMIT() or TXROLLBACK()

to complete its current transaction. There are certain cases related to transaction
chaining wher@XBEGIN() does not need to be called explicitly to start a transaction.
SeeTXCOMMIT() andTXROLLBACK() for details.TX-RETURN-STATUSS the record

used to return a value.

TXSETTIMEOUT()
Upon successful completioMXBEGIN() returnsTX-OK, a non-negative return value.

Under the following condition§;XBEGIN() fails and returns one of these negative
values:

[TX-OUTSIDE]
The transaction manager is unable to start a global transaction because the
calling thread of control is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be started. The caller’s state with
respect to the local transaction is unchanged.

[TX-PROTOCOL-ERRQR
The function was called in an improper context (for example, the caller is
already in transaction mode). The caller’s state with respect to transaction
mode is unchanged.

BEA Tuxedo COBOL Function Reference

TXBEGIN(3cbi)

See Also

Warnings

[TX-ERROR
Either the transaction manager or one or more of the resource managers
encountered a transient error trying to start a new transaction. When this error
is returned, the caller is not in transaction mode. The exact nature of the error

is written to a log file.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. When this error is returned, the caller is not
in transaction mode. The exact nature of the error is written to a log file.

TXCOMMIT(3cbl) , TXOPEN(3cbl) , TXROLLBACK(3cbl) , TXSETTIMEOUT(3cbl)

XA-compliant resource managers must be successfully opened to be included in the
global transaction. (SEeXOPENor details.)

BEA Tuxedo COBOL Function Reference 177

Section 3(cbl) - COBOL Functions

TXCLOSE(3¢bl)

Name

Synopsis

Description

Return Value

178

Errors

TXCLOSE() - close a set of resource managers

DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS

COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXCLOSE" USING TX-RETURN-STATUS

TXCLOSE() closes a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

TXCLOSE() closes all resource managers to which the caller is linked. This function is
used in place of resource-manager-specific “close” calls and allows an application
program to be free of calls which may hinder portability. Since resource managers
differ in their termination semantics, the specific information needed to “close” a
particular resource manager must be published by each resource manager.

TXCLOSE() should be called when an application thread of control no longer wishes to
participate in global transaction®CLOSE() fails (returning fX-PROTOCOL-ERRJR

if the caller is in transaction mode. That is, no resource managers are closed even
though some may not be participating in the current transaction.

WhenTXCLOSE() returns succes3X-OK), all resource managers linked to the calling
thread are closed.

TX-RETURN-STATUSS the record used to return a value.
Upon successful completiomXCLOSE() returnsTX-OK, a non-negative value.

Under the following conditiong;XCLOSE() fails and returns one of these negative
values.

[TX-PROTOCOL-ERRQR
The function was called in an improper context (for example, the caller is in
transaction mode). No resource managers are closed.

BEA Tuxedo COBOL Function Reference

TXCLOSE(3cbI)

[TX-ERROR
Either the transaction manager or one or more of the resource managers
encountered a transient error. The exact nature of the error is written to a log
file. All resource managers that could be closed are closed.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a

log file.

See Als0 TXOPEN(3cbl)

BEA Tuxedo COBOL Function Reference 179

Section 3(cbl) - COBOL Functions

TXCOMMIT(3cbl)

Name

Synopsis

Description

Optional Set-up

Return Value

180

Errors

TXCOMMIT() - commit a transaction

DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS

COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXCOMMIT" USING TX-RETURN-STATUS

TXCOMMIT() is used to commit the work of the transaction active in the caller’s thread
of control.

If the transaction_control characteristic (SEEXSETTRANCTL()) is

TX-UNCHAINED then whermXCOMMIT() returns, the caller is no longer in transaction
mode. However, if theransaction_control characteristic i3X-CHAINED, then
whenTXCOMMIT() returns, the caller remains in transaction mode on behalf of a new
transaction (see trRETURN VALUEANdERRORSections below).

TX-RETURN-STATUSS the record used to return a value.

m TXSETCOMMITRET()
m TXSETTRANCTL()
m TXSETTIMEOUT()

Upon successful completioRXCOMMIT() returnsTX-OK, a non-negative return value.

Under the following conditiong;XCOMMIT() fails and returns one of these negative
values.

[TX-NO-BEGIN]
The current transaction committed successfully; however, a new transactior
could not be started and the caller is no longer in transaction mode. This
return value may occur only when thansaction_control characteristic
is TX-CHAINED.

[TX-ROLLBACH
The current transaction could not commit and has been rolled back. In
addition, if thetransaction_control characteristic iX-CHAINED, a new
transaction is started.

BEA Tuxedo COBOL Function Reference

TXCOMMIT(3cbl)

See Also

[TX-ROLLBACK-NO-BEGIN
The transaction could not commit and has been rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whentthesaction_control
characteristic iFX-CHAINED.

[TX-MIXED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if theansaction_control
characteristic iFX-CHAINED, a new transaction is started.

[TX-MIXED-NO-BEGIN]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
when thetransaction_control characteristic i3 X-CHAINED.

[TX-HAZARO
Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic igX-CHAINED, a new transaction is
started.

[TX-HAZARD-NO-BEGIN
Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whentthesaction_control
characteristic iFX-CHAINED.

[TX-PROTOCOL-ERRCR
The function was called in an improper context (for example, the caller is not
in transaction mode). The caller’s state with respect to transaction mode is not
changed.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a
log file. The caller’s state with respect to the transaction is unknown.

TXBEGIN(3cbl) , TXSETCOMMITRET(3cbl) , TXSETTIMEOUT(3chl) ,
TXSETTRANCTL(3chl)

BEA Tuxedo COBOL Function Reference 181

Section 3(cbl) - COBOL Functions

TXINFORM(3cbl)

Name

Synopsis

Description

Return Value

182

Errors

TXINFORM() - return global transaction information

DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS

COPY TXSTATUS.

01 TX-INFO-AREA.

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXINFORM" USING TX-INFO-AREA, TX-RETURN-STATUS .

TXINFORM() returns global transaction informationTX-INFO-AREA. In addition,
this function returns a value indicating whether the caller is currently in transaction
mode or not.

TXINFORM() populates th&x-INFO-AREA record with global transaction information.
The contents of th&X-INFO-AREA record are described undsimfRO() .

If TXINFORMis called in transaction mode, thex-IN-TRAN is set,XID-REC will be
populated with a current transaction branch identifiere@@&NSACTION-STATEwill
contain the state of the current transaction. If the caller is not in transaction mode,
TX-NOT-IN-TRAN s set andk/D-REC will be populated with the null XID (see
TXINTROfor details). In addition, regardless of whether the caller is in transaction
mode,COMMIT-RETURN,TRANSACTION-CONTROLaNd TRANSACTION-TIMEOUT
contain the current settings of thenmit_return ~ andtransaction_control
characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when the
next transaction is started. Thus, it may not reflect the timeout value for the caller’s
current global transaction since calls made@XSETTIMEOUT() after the current
transaction was begun may have changed its value.

TX-RETURN-STATUSS the record used to return a value.
Upon successful completioRNXINFORM() returnsTX-OK, a non-negative return value.

Under the following conditiong;XINFORM() fails and returns one of these negative
values.

BEA Tuxedo COBOL Function Reference

TXINFORM(3cbl)

See Also

Warnings

[TX-PROTOCOL-ERRJR
The function was called in an improper context (for example, the caller has
not yet calledrxOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error is written to a log file.

TXOPEN(3cbl) , TXSETCOMMITRET(3cbl) , TXSETTIMEOUT(3cbl) ,
TXSETTRANCTL(3chl)

Within the same global transaction, subsequent calfXtoFrORMare guaranteed to
provide an XID with the samgtrid component, but not necessarily the same/
component.

BEA Tuxedo COBOL Function Reference 183

Section 3(cbl) - COBOL Functions

TXOPEN(3¢bl)

Name

Synopsis

Description

Return Value

184

Errors

TXOPEN() - open a set of resource managers

DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS

COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXOPEN" USING TX-RETURN-STATUS

TXOPEN() opens a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

TXOPEN() attempts to open all resource managers that have been linked with the
application. This function is used in place of resource-manager-specific “open” calls
and allows an application program to be free of calls which may hinder portability.
Since resource managers differ in their initialization semantics, the specific
information needed to “open” a particular resource manager must be published by eac
resource manager.

If TXOPEN() returnsTX-ERROR then no resource managers are openxaPEN()
returnsTX-OK, some or all of the resource managers have been opened. Resource
managers that are not open will return resource-manager-specific errors when access
by the applicationTXOPEN() must successfully return before a thread of control
participates in global transactions.

OnceTXOPEN() returns success, subsequent callBtoPENbefore an intervening
call to TXCLOSE()) are allowed. However, such subsequent calls will return success,
and the TM will not attempt to re-open any RMs.

TX-RETURN-STATUSS the record used to return a value.
Upon successful completioMXOPEN() returnsTX-OK, a non-negative return value.

Under the following conditiong;XOPEN() fails and returns one of these negative
values.

BEA Tuxedo COBOL Function Reference

TXOPEN(3¢cbl)

[TX-ERROR
Either the transaction manager or one or more of the resource managers
encountered a transient error. No resource managers are open. The exact

nature of the error is written to a log file.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a

log file.

See Also TXCLOSE(3chl)

BEA Tuxedo COBOL Function Reference 185

Section 3(cbl) - COBOL Functions

TXROLLBACK(3cbl)

Name

Synopsis

Description

Optional Set-up

Return Value

186

Errors

TXROLLBACK() - roll back a transaction

DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS

COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXROLLBACK" USING TX-RETURN-STATUS

TXROLLBACK() is used to roll back the work of the transaction active in the caller's
thread of control.

If the transaction_control characteristic (SEEXSETTRANCTL()) is
TX-UNCHAINED then whermrXROLLBACK() returns, the caller is no longer in
transaction mode. However, if thvansaction control characteristic is
TX-CHAINED, then whermXROLLBACK() returns, the caller remains in transaction
mode on behalf of a new transaction (seeRBEURN VALUEandERRORSections
below).

TX-RETURN-STATUSS the record used to return a value.

m TXSETTRANCTL()
m TXSETTIMEOUT()

Upon successful completioMXROLLBACK() returnsTX-OK, a non-negative return
value.

Under the following conditiong XROLLBACK() fails and returns one of these negative
values.

[TX-NO-BEGIN]
The current transaction rolled back; however, a new transaction could not be
started and the caller is no longer in transaction mode. This return value may
occur only when theansaction_control characteristic i3 X-CHAINED.

[TX-MIXED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if theansaction_control
characteristic igX-CHAINED, a new transaction is started.

BEA Tuxedo COBOL Function Reference

TXROLLBACK(3c¢bl)

See Also

[TX-MIXED-NO-BEGIN]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
when thetransaction_control characteristic i3 X-CHAINED.

[TX-HAZARO
Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic igX-CHAINED, a new transaction is
started.

[TX-HAZARD-NO-BEGIN
Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whentthgsaction _control
characteristic iFX-CHAINED.

[TX-COMMITTED
The work done on behalf of the transaction was heuristically committed. In
addition, if thetransaction_control characteristic iX-CHAINED, a new
transaction is started.

[TX-COMMITTED-NO-BEGIN
The work done on behalf of the transaction was heuristically committed. In
addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the
transaction_control characteristic i3 X-CHAINED.

[TX-PROTOCOL-ERROR
The function was called in an improper context (for example, the caller is not
in transaction mode).

[TX-FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a
log file. The caller’'s state with respect to the transaction is unknown.

TXBEGIN(3cbl) , TXSETTIMEOUT(3cbl) , TXSETTRANCTL(3chl)

BEA Tuxedo COBOL Function Reference 187

Section 3(cbl) - COBOL Functions

TXSETCOMMITRET(3¢bl)

188

Name

Synopsis

Description

TXSETCOMMITRET()- setcommit_return ~ characteristic

DATA DIVISION.

* Include TX definitions.
01 TX-RETURN-STATUS
COPY TXSTATUS.

*

01 TX-INFO-AREA.

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETCOMMITRET" USING TX-INFO-AREA TX-RETURN-STATUS.

TXSETCOMMITRET()sets thecommit_return characteristic to the value specified in
COMMIT-RETURNThis characteristic affects the wayCoMMIT() behaves with

respect to returning control to its callEKSETCOMMITRET()may be called regardless

of whether its caller is in transaction mode. This setting remains in effect until change«
by a subsequent call XSETCOMMITRET()

The initial setting for this characteristicT¥-COMMIT-COMPLETED
The following are the valid settings fGOMMIT-RETURN

TX-COMMIT-DECISION-LOGGED
This flag indicates thatxCoOMMIT() should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. This setting allows for faster respon:
to the caller oftXCOMMIT(). However, there is a risk that a transaction will
have a heuristic outcome, in which case the caller will not find out about this
situation via return codes fromXCOMMIT(). Under normal conditions,
participants that promise to commit during the first phase will do so during
the second phase. In certain unusual circumstances however (for example,
long-lasting network or node failures) phase 2 completion may not be
possible and heuristic results may occur.

TX-COMMIT-COMPLETED
This flag indicates thatxCoMMIT() should return after the two-phase
commit protocol has finished completely. This setting allows the caller of
TXCOMMIT() to see return codes that indicate that a transaction had or may
have had heuristic results.

BEA Tuxedo COBOL Function Reference

TXSETCOMMITRET(3¢bl)

Return Value

Errors

See Also

TX-RETURN-STATUSSs the record used to return a value.

Upon successful completioMXSETCOMMITRET()returnsTX-OK, a non-negative
return value.

Under the following condition§;XSETCOMMITRET()does not change the setting of
the commit_return ~ characteristic and returns one of these negative values:

[TX-EINVAL |
COMMIT-RETURINS not one off X-COMMIT-DECISION-LOGGEDor
TX-COMMIT-COMPLETED

[TX-PROTOCOL-ERRJR
The function was called in an improper context (for example, the caller has
not yet calledrxOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error is written to a log file.

TXBEGIN(3cbl) , TXCOMMIT(3cbl) , TXINFORM(3cbl) , TXOPEN(3cbl) |
TXROLLBACK (3cbl)

BEA Tuxedo COBOL Function Reference 189

Section 3(cbl) - COBOL Functions

TXSETTRANCTL(3¢cbl)

Name

Synopsis

Description

Return Value

190

Errors

TXSETTRANCTL() - Settransaction_control characteristic

DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS

COPY TXSTATUS.

01 TX-INFO-AREA.

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETTRANCTL" USING TX-INFO-AREA TX-RETURN-STATUS.

TXSETTRANCTL() sets theransaction_control characteristic to the value

specified INTRANSACTION-CONTROIThis characteristic determines whether
TXCOMMIT() andTXROLLBACK() start a new transaction before returning to their
caller. TXSETTRANCTL() may be called regardless of whether the application program
is in transaction mode. This setting remains in effect until changed by a subsequent ce
to TXSETTRANCTLY().

The initial setting for this characteristicT®-UNCHAINED
The following are the valid settings foRANSACTION-CONTROL

TX-UNCHAINED
This flag indicates thatxCOMMIT() andTXROLLBACK() should not start a
new transaction before returning to their caller. The caller must issue
TXBEGIN() to start a new transaction.

TX-CHAINED
This flag indicates thatxCOMMIT() andTXROLLBACK() should start a new
transaction before returning to their caller.
TX-RETURN-STATUSS the record used to return a value.

Upon successful completioMXSETTRANCTL() returnsTX-OK, a hon-negative return
value.

Under the following condition§;XSETTRANCTL() does not change the setting of the
transaction_control characteristic and returns one of these negative values.

[TX-EINVAL |
TRANSACTION-CONTROIS not one ofrX-UNCHAINEDOF TX-CHAINED.

BEA Tuxedo COBOL Function Reference

TXSETTRANCTL(3cbi)

See Also

[TX-PROTOCOL-ERRJR
The function was called in an improper context (for example, the caller has
not yet calledrxOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error is written to a log file.

TXBEGIN(3cbl) , TXCOMMIT(3cbl) , TXOPEN(3chl) , TXROLLBACK(3chl) ,
TXINFORM(3cbl)

BEA Tuxedo COBOL Function Reference 191

Section 3(cbl) - COBOL Functions

TXSETTIMEOUT(3cbl)

Name

Synopsis

Description

Return Value

192

Errors

TXSETTIMEOUT() - Settransaction_timeout characteristic

DATA DIVISION.

* Include TX definitions.
01 TX-RETURN-STATUS
COPY TXSTATUS.

*

01 TX-INFO-AREA.

COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETTIMEOUT" USING TX-INFO-AREA TX-RETURN-STATUS.

TXSETTIMEOUT() sets tharansaction_timeout characteristic to the value

specified INTRANSACTION-TIMEOUTT his value specifies the time period in which the
transaction must complete before becoming susceptible to transaction timeout; that i
the interval between the AP callif¥BEGIN() andTXCOMMIT() or TXROLLBACK().
TXSETTIMEOUT() may be called regardless of whether its caller is in transaction mode
or not. IFTXSETTIMEOUT() is called in transaction mode, the new timeout value does
not take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

TRANSACTION-TIMEOUBpecifies the number of seconds allowed before the
transaction becomes susceptible to transaction timeout. It may be set to any value u
to the maximum value for an S9(@PMP-5as defined by the system. A
TRANSACTION-TIMEOUNalue of zero disables the timeout feature.

TX-RETURN-STATUSS the record used to return a value.

Upon successful completioMXSETTIMEOUT() returnsTX-OK, a hon-negative return
value.

Under the following conditiong;XSETTIMEOUT() does not change the setting of the
transaction_timeout characteristic and returns one of these negative values.

[TX-EINVAL]
The timeout value specified is invalid.

[TX-PROTOCOL-ERRQR
The function was called improperly. For example, it was called before the
caller calledTXOPEN().

BEA Tuxedo COBOL Function Reference

TXSETTIMEOUT(3cblI)

[TX-FAIL]
The transaction manager encountered an error. The nature of the error is such
that the transaction manager can no longer perform work on behalf of the
application. The exact nature of the error is written to a log file.

See Also TXBEGIN(3chl) , TXCOMMIT(3cbl) , TXINFORM(3cbl) , TXOPEN(3chl) ,
TXROLLBACK (3cbl)

BEA Tuxedo COBOL Function Reference 193

Section 3(cbl) - COBOL Functions

USERLOG(3¢cbl)

194

Name

Synopsis

Description

USERLOG() - write @ message to the BEA Tuxedo system central event log

01 LOG-REC

COPY User data.

01 LOGREC-LENPIC S9(9) COMP-5.

01 TPSTATUS-REC

COPY TPSTATUS.

CALL "USERLOG" USING LOG-REC LOGREC-LENTPSTATUS-REC

USERLOG() place9.0G-RECInto a fixed output file—the BEA Tuxedo system central
event log.

The central event log is an ordinary UNIX file whose pathname is composed as
follows:

m If the shell variableJLOGPFXs set, its value is used as the prefix for the
filename. IfULOGPFXs not setULOGs used. The prefix is determined the first
time USERLOG() is called.

m Each timeUSERLOG()is called the date is determined, and the month, day, and
year are concatenated to the prefixrasddyyto set the name for the file.

m The first time a process writes to the userlog, it first writes an additional
message indicating the associated BEA Tuxedo version.

The message is then appended to the file. With this scheme, processes that call
USERLOG() on successive days will write into different files.

m Messages are appended to the log file with a tag made up of thenttimresf),
system name, process hame, and process-id of the calling process. The tag is
terminated with a colon §.

m BEA Tuxedo system-generated error messages in the log file are prefixed by a
unique identification string of the form:

catalog>:number>:

m This string gives the name of the internationalized catalog containing the
message string, plus the message number. By convention, BEA Tuxedo
system-generated error messages are used only once, so the string uniquely
identifies a location in the source code.

BEA Tuxedo COBOL Function Reference

USERLOG(3c¢bi)

Portability

Examples

Errors

m If the last character of thlermat specification is not a newline character,
USERLOG() appends one.

m If the first character of the shell varialleOGDEBU® 1 ory, the message sent
to USERLOG()is also written to the standard error of the calling process.

m USERLOG()is used by the BEA Tuxedo system to record a variety of events.

m TheUSERLOGnechanism is entirely independent of any database transaction
logging mechanism.

TheUSERLOGnNterface is supported on UNIX and MS-DOS operating systems. The
system name produced as part of the log message is not available on MS-DOS systems;
therefore, the valueCis used as the system name for MS-DOS systems.

If the variableULOGPFXs set tQapplication/logs/log and if the first call to
USERLOG() occurred on 9/7/90, the log file created is named
/application/logs/log.090790 . If the call:

01 LOG-RECPIC X(15) VALUE “UNKNOWN USER”.
01 LOGREC-LENPIC S9(9) VALUES IS 13.
CALL “USERLOG” USING LOG-REC LOGREC-LENTPSTATUS-REC

is made at 4:22:14pm on the UNIX namegbys by theprogram whose process
ID is 23431 , the following line appears in the log file:

162214.logsys!security.23431: UNKNOWN USER

If the message is sent to the central event log while the process is in transaction mode,
the user log entry has additional components in the tag. These components consist of
the literalgtrid followed by threePiC S9(9) COMP-5 hexadecimal values. The

values uniquely identify the global transaction and make up what is referred to as the
global transaction identifier. This identifier is used mainly for administrative purposes,

but it does make an appearance in the tag that prefixes the messages in the central event
log. If the foregoing message is written to the central event log in transaction mode,

the resulting log entry will look like this.

162214.logsys!security.23431: gtrid x2 x24e1b803 x239: UNKNOWN USER

If the shell variabl&JLOGDEBUGBas a value of, the log message is also written to the
standard error of the program nansedurity

USERLOG()hangs if the message senttoitis larger B1alFSIZ as defined istdio.h

BEA Tuxedo COBOL Function Reference 195

Section 3(cbl) - COBOL Functions

Diagnostics USERLOG()returns values include the inability to open, or write to the current log file.

Inability to write to the standard error, whenhOGDEBUG set, is not considered an
error.

Notices It is recommended that applications’ us&J8ERLOGNnessages be limited to messages

that can be used to help debug application errors; flooding the log with incidental
information can make it hard to spot actual errors.

196 BEA Tuxedo COBOL Function Reference

	Copyright
	Contents
	Section 3(cbl) - COBOL Functions
	Introduction to the COBOL Application-Transaction Monitor Interface
	FINIT, FINIT32(3cbl)
	FVFTOS, FVFTOS32(3cbl)
	FVSTOF(3cbl)
	TPABORT(3cbl)
	TPACALL(3cbl)
	TPADVERTISE(3cbl)
	TPBEGIN(3cbl)
	TPBROADCAST(3cbl)
	TPCALL(3cbl)
	TPCANCEL(3cbl)
	TPCHKAUTH(3cbl)
	TPCHKUNSOL(3cbl)
	TPCLOSE(3cbl)
	TPCOMMIT(3cbl)
	TPCONNECT(3cbl)
	TPDEQUEUE(3cbl)
	TPDISCON(3cbl)
	TPENQUEUE(3cbl)
	TPFORWAR(3cbl)
	TPGETCTXT(3cbl)
	TPGETLEV(3cbl)
	TPGETRPLY(3cbl)
	TPGETUNSOL(3cbl)
	TPGPRIO(3cbl)
	TPINITIALIZE(3cbl)
	TPKEYCLOSE(3cbl)
	TPKEYGETINFO(3cbl)
	TPKEYOPEN(3cbl)
	TPKEYSETINFO(3cbl)
	TPNOTIFY(3cbl)
	TPOPEN(3cbl)
	TPPOST(3cbl)
	TPRECV(3cbl)
	TPRESUME(3cbl)
	TPRETURN(3cbl)
	TPSCMT(3cbl)
	TPSEND(3cbl)
	TPSETCTXT(3cbl)
	TPSETUNSOL(3cbl)
	TPSPRIO(3cbl)
	TPSUBSCRIBE(3cbl)
	TPSUSPEND(3cbl)
	TPSVCSTART(3cbl)
	TPSVRDONE(3cbl)
	TPSVRINIT(3cbl)
	TPTERM(3cbl)
	TPUNADVERTISE(3cbl)
	TPUNSUBSCRIBE(3cbl)
	TXBEGIN(3cbl)
	TXCLOSE(3cbl)
	TXCOMMIT(3cbl)
	TXINFORM(3cbl)
	TXOPEN(3cbl)
	TXROLLBACK(3cbl)
	TXSETCOMMITRET(3cbl)
	TXSETTRANCTL(3cbl)
	TXSETTIMEOUT(3cbl)
	USERLOG(3cbl)

