o° o%%,

;7 !
Py ea

BEA Tuxedo

C Function Reference

BEA Tuxedo Release 7.1
Document Edition 7.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
BEA Tuxedo C Function Reference

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

Section 3¢ - C Functions

Introduction to the C Language A pplication-Transaction Monitor Interface 7
AEMSetbl 0CKiNGNOOK(BE)cveuveeee ettt e 43
P =@ =T [0 4 1= TV (S OSSR 45
AEPISDIOCKEA(3E) ..ottt e e e 48
ABEWSEIUNSOI(BC) vttt ettt et se e e e ees e seeseesnens 49
o0 =1 7o TSSO 50
(07 10 K (o) OSSR 59
CALOPEN, CACIOSE(BC) ..eueemenerereeiirtireie et e s e et eae e e ente e e eneeseene s e e 60
(o[o T = 1 (o) IR 62
OP_MKEIME(BEC) eeuvenee ettt et ee et e e en e se e e eneene e eeas 65
o I = o 1o <) IR 69
recomp, FEMAICH(BC) ...cveveeerrire ettt e e 70
rpc_sm_allocate, rpc_SS allOCALE(3C) ...cvereruereeriereeie et 76
rpc_sm_client_free, rpc_ss client_free(3C) ..oeooveeeveriene s 78
rpc_sm_disable alocate, rpc_ss disable allocate(3C)oooevveverierrnerieniirienee. 80
rpc_sm_enable alocate, rpc_ss enable alocate(3C).....ooovvveereeienrieeenenieneen. 8l
rPC_SM_free, rPC_SS FrEQ(3C) ..vevvirieiririere sttt 83
rpc_sm_set client_aloc free, rpc_ss set client_alloc_free(3c)cccoeeerernnen. 84
rpc_sm_swap _client_alloc_free, rpc_ss swap_client_alloc_free(3c) 86
1SS 10 oz 1= o) SRS 88
SEFEITON(BC) vt eueeuieeeeeee e eet e stesteestesteetaeste et teeteesteseeas e seaneeeseesesseeseestenseesraessessanns 90
S a1 0 T= o) ISR 91
L1072 0 014 {6 o) SO TUU RIS 94
EPACAII(BC) 1.ttt et e e e er e 96
L7020 [Tz 1T o ISR 99

BEA Tuxedo C Function Reference i

iv

L1020 (V7= 1S o) ISR 102

L0 Lo o) ISP 104
L70] 0= T g (T o) ISR 106
L0 o=l [or= St {6 o TSP 108
L7002z 11 o) ISR 111
L7007z g o= 1< o) USSR 116
L7000 011 1 o) ISP 117
EPCHKUNSOI (BE) -.nvvteeieeee ettt sttt et s et e en e 119
L7000 o) USRS 121
L0 o101 0210 0111 o) PSP 122
L7000 010 1< od {62 o) PSSP 125
L1000 01Y 7= 5 {6 o USRS 128
L0018 01101V USSR 130
EPAEQUEUE(BE) -neveeeeiie ettt et st sttt et b e b et e beb e se e st 132
L0 T0[ES oo (6T RSP SPRR 141
EPENQUEUE(BC) -enevereeirieetirtee e see st e ettt et ae bt b e e en s e seaneenenb e 143
L10= 01V7= Ta] 1< (o) I USRS 154
EPEITOIAELAIT(BC) vt et e e 158
L7 0= oo (<o) OSSP 161
L1004V o [o) ISP 163
L1012 o) USSR 166
L1010 1= =0 1001205V (o) USSR 167
L7010 1= (ot p e {2 OO RPRRRRO 168
EPOELIEV(BC) ettt et bt b et et n e 170
(00 (= 1 0] A7 €< o) ISR 171
L0000 (<o) ISR 176
Lo T o0 o) ISR 178
L0 T T (6T SRS 180
1101 GG A e 0 1S = o) ST SSTS 189
1101 Ao (= 11 110 <o) TSRS 190
1101 GG YA o o =T o) ISR 193
1101 YA = (101 o (<o) TSRS 196
10] 010112 €S o) ISR 197
L1000 =1 g o) ISR 200
110] 01011 (o) ISR 201

BEA Tuxedo C Function Reference

L= T ot OSSR 205

L1 (= V7 o) OSSR SSURRN 207
EPFESUME(BC) - cueveeeeeeeie ettt e sttt st e et se et eae e se e e e et an e see e eneesesseaneas 212
L1 = 0T g o) ISR 214
L1050 0162 o) OSSR 218
L1055 <= 1 o) ISR 221
L1055 =0T [o) ISR 222
L1055 < AV o= (o) USSP 226
L1055 < (00 o) ISR 229
EPSELUNSOI(BC) vttt sttt e et e sb e e e et 231
L1020 1 o) TSRS 233
L1050 T 0] <o) TSSO 234
10 = 0T (o) ISR 236
IPSLrETOrAEtai I (3C)veeeeeieeeireer ettt et e e e e e 237
EPSUDSCIIDE(BC) ..ttt e e e 239
EPSUSPENA(BC) 1. vttt ettt ettt sttt b et e e e e bes e e et e ene e 246
1O (0] 1= (<o) OSSR 248
EPSVIINIT(BC) 1.ttt ettt ettt et e e e e et 249
EPSVITIIAONE(3C) ettt e e e 251
EPSVITAITNIT(BC) vttt e st e e 252
L1010 o) I OSSR 254
L1018 €= (o) IO USRS 257
EPUNBAVEITISE(BC) vttt sttt et e e st et sbe e 258
EPUNSUDSCITDE(BC) ...veiiie et e e 260
LIRS 251 TSRS 263
L0 0 =0 V7 o) IR 273
L0000 1= 17 <o) TR 274
L0 =0 (= 01V (<) T 275
Lo o= o T 1o TS 278
Lo e o= =T () IS 280
Lo o 01 011 () TS 282
Lo T 10 <o) I 285
Lo o o1= (6T TP 287
Lo 0] 1 o= ot o) IR 289
IX_Set COMMIL_FELUIN(3C) c.ueveeieiieie ettt ettt et sre 292

BEA Tuxedo C Function Reference \%

tX_set transaction_CONFOI(3C) ...cveuerreruere e e seee ettt e 294

tX_set_transaction tiMEOUL(3C)o.eveuereeieereee et e 296
01 =g Foo o) ISP 298
USIGNEI(BE) - ueeuereereie ettt ettt st et see st e e et es e e eae e e es e e se e e aneeneens 301
L0 U TG = 4 (o) TSRS 304

Vi BEA Tuxedo C Function Reference

Section 3¢ - C Functions

BEA Tuxedo C Functions

Name

Description

Introduction to the C Language

Application-Transaction Monitor Interface

Provides an introduction to the C language ATMI

AEMs et bl ocki nghook(3c)

Establishes an application-specific blocking hook function

AECaddt ypesw 3c)

Installs or replaces a user-defined buffer type at execution time

AEPi sbl ocked(3c)

Determinesif ablocking cal isin progress

AEW et unsol (3c)

Posts Windows message for BEA Tuxedo unsolicited event

buf f er (3c)

Semantics of elementsint nt ype_sw t

cat get s(3c)

Reads a program message

cat open, catcl ose(3c)

Opens/closes a message catalogue

deci mal (3c)

Decimal conversion and arithmetic routines

gp_nktinme(3c)

Converts atm structure to a calendar time

nl _| angi nfo(3c)

Language information

reconp, rematch(3c)

Regular expression compile/execute

rpc_small ocate,
rpc_ss_al |l ocat e(3c)

Allocates memory within the RPC stub

rpc_smclient _free,
rpc_ss _client_free(3c)

Frees memory returned from aclient stub

BEA Tuxedo C Function Reference 1

Section 3c - C Functions

BEA Tuxedo C Functions

Name Description

rpc_smdi sabl e_al | ocat e,
rpc_ss_di sabl e_al | ocat e(3c)

Releases resources and allocated memory within the stub
memory management scheme

rpc_sm enabl e_al |l ocat e,
rpc_ss_enabl e_al |l ocate(3c)

Enables the stub memory management environment

rpc_smfree, rpc_ss_free(3c) Freesmemory alocated by ther pc_sm al | ocat e()

routine

rpc_smset_client_alloc_free, Sets the memory all ocation and freeing mechanisms used by
rpc_ss_set _client_alloc_free(3c) the client stubs

rpc_smswap_client_alloc_free, Exchanges current memory allocation and freeing mechanism
rpc_ss_swap_client_alloc_free(3c) usedby client stubswith one supplied by client

set | ocal e(3c)

Modifies and queries a program'’s locale

strerror(3c)

Gets error message string

strftime(3c)

Converts date and time to string

t pabort (3c)

Routine for aborting current transaction

tpacal | (3c)

Routine for sending a service request

t padntal | (3c)

Administers unbooted application

t padverti se(3c)

Routine for advertising a service name

tpal | oc(3c)

Routine for allocating typed buffers

t pbegi n(3c)

Routine for beginning a transaction

t pbroadcast (3c)

Routine to broadcast notification by hame

tpcal | (3c)

Routine for sending service request and awaiting its reply

tpcancel (3c)

Routine for canceling a call descriptor for outstanding reply

t pchkaut h(3c)

Routine for checking if authentication required to join an
application

2

t pchkunsol (3c)

BEA Tuxedo C Function Reference

Routine for checking for unsolicited message

BEA Tuxedo C Functions

Name

Description

t pcl ose(3c)

Routine for closing a resource manager

t pcommi t (3c)

Routine for committing current transaction

t pconnect (3c)

Routine for establishing a conversational service connection

t pconvert (3c)

Convert structures to/from string representations

t pcrypt pw 3c)

Encrypt application password in administrative request

t pdequeue(3c)

Routine to dequeue a message from a queue

t pdi scon(3c)

Routine for taking down a conversational service connection

t penqueue(3c)

Routine to enqueue a message

t penvel ope(3c)

Accesses the digital signature and encryption information
associated with a typed message buffer

tperrordetail (3c)

Gets additional detail about an error generated from the last
BEA Tuxedo system cdl

t pexport (3c)

Converts a typed message buffer into an exportable,
machine-independent string representation, that includes
digital signatures and encryption seals

t pf orwar d(3c)

Routine for forwarding a service request to another service
routine

t pfree(3c)

Routine for freeing a typed buffer

t pget adnkey(3c)

Gets administrative authentication key

t pget ct xt (3c)

Retrieves a context identifier for the current application
association

t pgetl ev(3c)

Routine for checking if atransaction isin progress

t pgetrpl y(3c)

Routine for getting areply from a previous request

t pgprio(3c)

Routine for getting a service request priority

t pi nport (3c)

Converts an exported representation back into atyped message
buffer

BEA Tuxedo C Function Reference 3

Section 3c - C Functions

BEA Tuxedo C Functions

Name

Description

tpinit(3c)

Joins an application

t pkey_cl ose(3c)

Closes a previoudy opened key handle

t pkey_geti nfo(3c)

Gets information associated with a key handle

t pkey_open(3c)

Opens akey handle for digital signature generation, message
encryption, or message decryption

t pkey_seti nfo(3c)

Sets optional attribute parameters associated with akey handle

tpnotify(3c)

Routine for sending notification by client identifier

t popen(3c)

Routine for opening a resource manager

t ppost (3c)

Posts an event

tpreall oc(3c)

Routine to change the size of atyped buffer

tprecv(3c)

Routinefor receiving amessage in aconversationa connection

t presune(3c)

Resumes a global transaction

tpreturn(3c)

Routine for returning from a service routine

tpscnt (3c)

Routine for setting whent pconmi t () should return

t pseal (3c)

Marks a typed message buffer for encryption

t psend(3c)

Routine for sending a message in a conversational connection

t pservi ce(3c)

Template for service routines

t pset ct xt (3c)

Sets a context identifier for the current application association

t pset unsol (3c)

Sets the method for handling unsolicited messages

t psign(3c)

Marks atyped message buffer for digital signature

tpsprio(3c)

Routine for setting service request priority

tpstrerror(3c)

Gets error message string for aBEA Tuxedo system error

4

tpstrerrordetail (3c)

BEA Tuxedo C Function Reference

Gets error detail message string for a BEA Tuxedo system

BEA Tuxedo C Functions

Name

Description

t psubscri be(3c)

Subscribes to an event

t psuspend(3c)

Suspends a global transaction

t psvrdone(3c)

Terminates a BEA Tuxedo system server

tpsvrinit(3c)

Initializes a BEA Tuxedo system server

t psvrt hrdone(3c)

Terminates a BEA Tuxedo server thread

tpsvrthrinit(3c)

Initializes a BEA Tuxedo server thread

tpterm(3c)

Leaves an application

t pt ypes(3c)

Routine to determine information about a typed buffer

t punadverti se(3c)

Routine for unadvertising a service name

t punsubscri be(3c)

Unsubscribes to an event

TRY(3¢)

Exception-returning interface

t uxget env(3c)

Returns value for environment name

t uxput env(3c)

Changes or adds value to environment

t uxr eadenv(3c)

Adds variables to the environment from afile

t x_begi n(3c)

Begins aglobal transaction

tx_cl ose(3c)

Closes a set of resource managers

tx_commit(3c)

Commits a global transaction

tx_info(3c)

Returns global transaction information

t x_open(3c)

Opens a set of resource managers

tx_rol |l back(3c)

Rolls back a global transaction

tx_set_commt_return(3c)

Setsconmi t _r et ur n characteristic

tx_set _transaction_control (3c)

Setst ransacti on_cont rol characteristic

tx_set _transaction_tineout (3c)

Setst ransacti on_ti meout characteristic

BEA Tuxedo C Function Reference

Section 3c - C Functions

BEA Tuxedo C Functions

Name Description

user| og(3c) Writes a message to the BEA Tuxedo system central event log
Usi gnal (3c) Signd handling in a BEA Tuxedo system environment

Uuni x_err (3c) Prints UNIX system call error

6 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Introduction to the C Language
Application-Transaction Monitor Interface

Description

Communication
Paradigms

The application-transaction monitor interface provides the interface between the
application and the transaction processing system. This interface is known as the
ATMI interface. It provides function calls to open and close resources, manage
transactions, manage typed buffers, and invoke request/response and conversational
service calls.

The function calls described in the ATMI reference pages imply a particular model of
communication. Thismodel is expressed in terms of how client and server processes
can communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversational .
Request/response services are invoked by service requests along with their associated
data. Request/response services can receive exactly one request (upon entering the
service routine) and send at most one reply (upon returning from the service routine).
Conversational services, on the other hand, areinvoked by connection requests along
with a means of referring to the open connection (that is, a descriptor used in calling
subsequent connection routines). Once the connection has been established and the
service routine invoked, either the connecting program or the conversational service
can send and receive data as defined by the application until the connection istorn
down.

Note that a process can initiate both request/response and conversational
communication, but cannot accept both request/response and conversational service
requests. The following sections describe the two communi cation paradigmsin greater
detail.

Note: Invarious parts of the BEA Tuxedo documentation we refer to threads. When
thisterm isused in adiscussion of multithreaded applications, it is
self-explanatory. In some instances, however, thetermis used in adiscussion
of atopic that isrelevant for both single-threaded and multithreaded
applications. In such cases, readers who are running single-threaded
applications may assume that the term thread refers to an entire process.

BEA Tuxedo C Function Reference 7

Section 3c - C Functions

8

BEA Tuxedo
System
Request/
Response
Paradigm for
Client/Server

With regard to request/response communication, a client is defined as a process that
can send requests and receive replies. By definition, clientscannot receive requests nor
send replies. A client can send any number of requests, and can wait for the replies
synchronously or receive (some limited number of) the replies at its convenience. In
certain cases, aclient can send arequest that has no reply. t pi nit () andt pt er m()
allow aclient to join and leave a BEA Tuxedo system application.

A reguest/response server is a process that can receive one (and only one) service
reguest at atime and send at most one reply to that request. (If the server is
multithreaded, however, it can receive multiple requests at onetime and issue multiple
replies at onetime.) While aserver isworking on a particular request, it can act like a
client by initiating request/response or conversational requests and receiving their
replies. In such a capacity, a server is called arequester. Note that both client and
server processes can be requesters (in fact, aclient can be nothing but a requester).

A reguest/response server can forward a request to another request/response server.
Here, the server passes along the request it received to another server and does not
expect areply. It isthe responsibility of the last server in the chain to send the reply to
theoriginal requester. Use of the forwarding routine ensures that the original requester
ultimately receivesitsreply.

Servers and service routines offer a structured approach to writing BEA Tuxedo

system applications. In a server, the application writer can concentrate on the work
performed by the service rather than communications detail s such as receiving

reguests and sending replies. Because many of the communication details are handled

by BEA Tuxedo system’s mai n, the application must adhere to certain conventions
when writing a service routine. At the time a server finishes its service routine, it can
send a reply usingpr et urn() or forward the request usingf or war d() . A service

is not allowed to perform any other work nor is it allowed to communicate with any
other process after this point. Thus, a service performed by a server is started when
request is received and ended when either a reply is sent or the request is forwarde

Concerning request and reply messages, there is an inherent difference between th
two: a request has no associated context before it is sent, but a reply does. For examy
when sending a request, the caller must supply addressing information, whereas a ref
is always returned to the process that originated the request, that is, addressing cont
is maintained for a reply and the sender of the reply can exert no control over its
destination. The differences between the two message types manifest themselvesin
parameters and descriptions of the routines describigeti 1 ().

BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

BEA Tuxedo
System
Conversational
Paradigm for
Client/Server

Message
Delivery

When arequest message is sent, it is sent at aparticular priority. The priority affects

how arequest isdegueued: when a server degueues requests, it dequeues the onewith

the highest priority. To prevent starvation, the oldest request is dequeued every so

often regardless of priority. By default, a request’s priority is associated with the
service hame to which the request is being sent. Service names can be given priorities
at configuration time (segBBCONFI G(5)). A default priority is used if none is defined.

In addition, the priority can be set at runtime using a routipepr i o() . By doing so,

the caller can override the configuration or default priority when the message is sent.

With regard to conversational communication, a client is defined as a process that can
initiate a conversation but cannot accept a connection request.

A conversational server is a process that can receive connection requests. Once the
connection has been established and the service routine invoked, either the connecting
program or the conversational service can send and receive data as defined by the
application until the connection is torn down. The conversation is half-duplex in nature
such that one side of the connection has control and can send data until it gives up
control to the other side. In a single-threaded server, while the connection is
established, the server is “reserved” such that no other process can establish a
connection with it. When a connection is established to a multithreaded server,
however, that server is not reserved for exclusive use by one process. Instead, it can
accept requests from multiple client threads.

As with a request/response server, the conversational server can act as a requester by
initiating other requests or connections with other servers. Unlike a request/response
server, a conversational server cannot forward a request to another server. Thus, a
conversational service performed by a server is started when a request is received and
ended when the final reply is sent viar et urn().

Once the connection is established, the connection descriptor implies any context
needed regarding addressing information for the participants. Messages can be sent
and received as needed by the application. There is no inherent difference between the
request and reply messages and no notion of priority of messages.

Sending and receiving messages, whether in conversation mode or request/response
mode, implies communication between two units of an application. The great majority

of messages lead to a reply or at least an acknowledgment, so that is an assurance that
the message was received. There are, however, certain messages (some originated by
the system, others originated by an application) where a reply or acknowledgment is
not expected. For example, the system can send an unsolicited message using

BEA Tuxedo C Function Reference 9

Section 3c - C Functions

Message
Sequencing

Queued
Message Model

t pnoti fy() without the TPACK() flag, or an application can send a message using
t pacal | () withthe TPNOREPLY() flag. If the message queue of the receiving
program is full, the message is dropped.

If the sending and receiving side are on different machines, the communication takes
place between bridge processes that send and receive messages across anetwork. This
raises the additional possibility of non-delivery due to a circuit failure. Even when
either of these conditions leads to the positing of an event or to a ULOG message, it is
not easy to associate the event or ULOG message with the non-arrival of a particular

message.

Because the BEA Tuxedo system is designed to handle large volumes of messages
across broad networks, it is not programmed to detect and correct the small percentage
of failures-to-deliver described in the preceding paragraphs. For that reason, there can
be no guarantee that every message will be delivered.

In the conversational model, for messages being exchanged using t psend() and
t precv(), aseguence number is added to the message header and messages are
received in the order in which they are sent. If aserver or client gets a message out of
order, the conversation is stopped, any transaction in progress is rolled back, and
message 1572 in LI BTUX, “Bad Conver sati onal Sequence Nunber,” is logged.

In the Request/Response model, messages are not sequenced by the system. If the
application logic implies a sequence, it is the responsibility of the application to
monitor and control it. The parallel message transmission made possible by the suppc
of multiple network addresses for bridge processes increases the possibility that
messages will not be received in the order sent. An application that is concerned abo
this may choose to specify a single network address for each bridge process, add
sequence numbers to their messages or require periodic acknowledgments.

The BEA Tuxedo system queued message model allows for enqueuing a request
message to stable storage for subsequent processing without waiting for its
completion, and optionally getting a reply via a queued response message. The ATN
functions that queue messages and dequeue responsesrareeue() and

t pdequeue() . They can be called from any type of BEA Tuxedo system application
processes: client, server, or conversational. The funatismsjueue() and

t pdequeue() can also be used for peer-to-peer communication where neither the
enqueuing application nor the dequeuing application are designated as server or clie

The queued message facility is an XA-compliant resource manager. Persistent
messages are enqueued and dequeued within transactions to ensure one-time-only
processing.

10 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

ATMI
Transactions

The BEA Tuxedo system supports two sets of mutually exclusive functions for

defining and managing transactions: the BEA Tuxedo system’s ATMI transaction
demarcation functions (the names of which include the prefisand X/Open’s TX
Interface functions (the names of which include the ptefiy. Because X/Open used
ATMI’s transaction demarcation functions as the base for the TX Interface, the syntax
and semantics of the TX Interface are quite similar to those of the ATMI. This section
is an overview of ATMI transaction concepts. The next section introduces additional
concepts about the TX Interface.

In the BEA Tuxedo systemteansaction is used to define a single logical unit of work

that either wholly succeeds or has no effect whatsoever. A transaction allows work
performed in many processes, possibly at different sites, to be treated as an atomic unit
of work. The initiator of a transaction normally usesegi n() and either

tpcommi t () ortpabort () to delineate the operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing

t psuspend() . Another process may take over the role of the initiator of a suspended
transaction by issuingpr esune() . As a transaction initiator, a process must call one
of the following:t psuspend(), t pconmi t (), Ort pabor t (). Thus, one process can
start a transaction that another may finish.

If a process calling a service is in transaction mode, then the called service routine is
also placed in transaction mode on behalf of the same transaction. Otherwise, whether
the service is invoked in transaction mode or not depends on options specified for the
service in the configuration file. A service that is not invoked in transaction mode can
define multiple transactions between the time it is invoked and the time it ends. On the
other hand, a service routine invoked in transaction mode can participate in only one
transaction, and work on that transaction is completed upon termination of the service
routine. Note that a connection cannot be upgraded to transaction maqubegf n()

is called while a conversation exists, the conversation remains outside of the
transaction (as ifpconnect () had been called with tHePNOTRAN() flag).

A service routine joining a transaction that was started by another process is called a
participant. A transaction can have several participants. A service can be invoked to
do work on the same transaction more than once. Only the initiator of a transaction
(that is, a process calling eithgrbegi n() ort presume()) can callt pcommit () or

t pabort () . Participants influence the outcome of a transaction by ugingt ur n()

ort pforward() . These two calls signify the end of a service routine and indicate that
the routine has finished its part of the transaction.

BEA Tuxedo C Function Reference 11

Section 3c - C Functions

TX Transactions

12

Chained and
Unchained
Transactions

Transactions defined by the TX Interface are practically identical with those defined
by the ATMI functions. An application developer may use either set of functionswhen
writing clients and service routines, but should not intermingle one set of functions
with the other within a single process (that is, a process cannot call t pbegi n() and
later call t x_commi t ()).

TheTX Interface hastwo callsfor opening and closing resource managersin aportable
manner, t x_open() andtx_cl ose(), respectively. Transactions are started with

t x_begi n() and completed with either t x_commi t () ortx_rol | back().

t x_i nfo() isused to retrieve transaction information, and there are three calls to set
options for transactions: t x_set _commi t _return(),

tx_set _transaction_control (),andtx_set transacti on_tineout (). The
TX Interface has no equivalents to ATMVt'gsuspend() andt presune() .

In addition to the semantics and rules defined for ATMI transactions, the TX Interface
has some additional semantics that are worth introducing here. First, service routine
writers wanting to use the TX Interface must supply their opgvri ni t () routine

that callst x_open() . The default BEA Tuxedo system-suppliggsvrinit () calls

t popen() . The same rule applies fopsvr done() : if the TX Interface is being used,
then service routine writers must supply their awavr done() that calls

tx_close().

Second, the TX Interface has two additional semantics not found in ATMI. These are
chained and unchained transactions, and transaction characteristics.

The TX Interface supports chained and unchained modes of transaction execution. E
default, clients and service routines execute in the unchained mode; when an active
transaction is completed, a new transaction does not beginxniigi n() is called.

In the chained mode, a new transaction starts implicitly when the current transactior
completes. Thatis, whemx_conmi t () ort x_rol | back() is called, the BEA Tuxedo
system coordinates the completion of the current transaction and initiates a new
transaction before returning control to the caller. (Certain failure conditions may
prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling

tx_set _transaction_control (). Transitions between the chained and unchained
mode affect the behavior of the next commit () ortx_rol | back() call. The call
totx_set _transaction_control () does not put the caller into or take it out of
transaction mode.

BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Transaction
Characteristics

Error Handling

Sincetx_cl ose() cannot be called when the caller isin transaction mode, a caller
executing in chained mode must switch to unchained mode and complete the current
transaction before calling t x_cl ose() .

A client or aserviceroutine may call t x_i nf o() to obtain the current values of their
transaction characteristics and to determine whether they are executing in transaction
mode.

The state of an application process includes several transaction characteristics. The
caller specifiesthese by calling t x_set _*() functions. When aclient or aservice
routine setsthe value of acharacteristic, it remainsin effect until the caller specifiesa
different value. When the caller obtains the value of acharacteristic viat x_i nf o() , it
does not change the value.

Most of the ATMI functions have one or more error returns. An error condition is
indicated by an otherwise impossible returned value. Thisis usually -1 or error, or O
for abad field identifier (BADFLDI D) or address. The error type is also made available
in the externa integer t per rno() . t per rno() isnot cleared on successful calls, so it
should be tested only after an error has been indicated.

Thetpstrerror() function is provided to produce a message on the standard error
output. It takes one argument, an integer (found in t per r no()) and returns a pointer
tothetext of an error messagein LI BTUX_CAT. The pointer can be used as an argument
touserl og().

tperrordetail () canbeused as the first step of athree step procedure to get
additional detail about an error in the most recent BEA Tuxedo system call on the
current thread. t perr ordet ai | () returnsan integer which is then used as an
argumenttot pstrerrordetail () toretrieve apointer to a string that contains the
error message. The pointer can then be used as an argument to user | og or to
fprintf().

The error codes that can be produced by an ATMI function are described on each
ATMI reference page. The F_error () and F_error 32() functionsare provided to
produce a message on the standard error output for FML errors. They take one
parameter, a string; print the argument string appended with a colon and a blank; and
then print an error message followed by a newline character. The error message
displayed is the one defined for the error number currently in Ferror () or
Ferror32(), which is set when errors occur.

Fstrerror(),anditscounterpart, Fstrerror 32(), can beusedto retrievethetext of
an FML error message from a message catal og; it returns a pointer that can be used as
an argument to userlog.

BEA Tuxedo C Function Reference 13

Section 3c - C Functions

14

Timeouts

Theerror codes that can be produced by an FML function are described on each FML
reference page.

There are three types of timeouts in the BEA Tuxedo system: one is associated with
the duration of atransaction from start to finish. A second is associated with the
maximum length of time a blocking call will remain blocked before the caller regains
control. Thethird is a service timeout and occurs when a call exceeds the number of
seconds specified in the SVCTI MEQUT parameter in the SERVI CES section of the
configuration file.

Thefirst kind of timeout is specified when atransaction is started with t pbegi n() .
(Seet pbegi n(3c) for details.) The second kind of timeout can occur when using the
BEA Tuxedo system communicationroutinesdefinedint pcal | (3c) . Callersof these
routinestypically block when awaiting areply that hasyet to arrive, although they can
also block trying to send data (for example, if request queues are full). The maximum
amount of time a caller remains blocked is determined by a BEA Tuxedo system
configuration file parameter. (See the BLOCKTI ME parameter in UBBCONFI G(5) for
details.)

Blocking timeouts are performed by default when the call er isnot in transaction mode.
When aclient or server isin transaction mode, it is subject to the timeout value with
which the transaction was started and is not subject to the blocking timeout value
specified in the UBBCONFI Gfile.

When atransaction timeout occurs, replies to asynchronous requests made in
transaction mode become invalid. That is, if aprocessiswaiting for a particular
asynchronous reply for arequest sent in transaction mode and a transaction timeout
occurs, the descriptor for that reply becomesinvalid. Similarly, if atransaction timeout
occurs, an event is generated on the connection descriptor associated with the
transaction and that descriptor becomes invalid. On the other hand, if a blocking
timeout occurs, the descriptor isstill valid and the waiting process can re-issue the call
to await the reply.

The service timeout mechanism provides away for the system to kill processes that
may be frozen by some unknown or unexpected system error. When a service timeout
occursin arequest/response service, the BEA Tuxedo system kills the server process
that is executing the frozen service and returns error code TPESVCERR. If a service
timeout occurs in a conversational service, the TP_EVSVCERR event is returned.

If atransaction hastimed out, the only valid communications before the transaction is
aborted are callsto t pacal | () with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Dynamic
Service
Advertisements

Buffer
Management

Since Release 6.4, some additional detail has been provided beyond the TPESVCERR
error code. If a service fails due to exceeding the timeout threshold, an event,
. SysSer vi ceTi neout , is posted.

By default, a server’s services are advertised when it is booted and unadvertised when
it is shut down. If a server needs to control the set of services that it offers at run time,

it can do so by callingpadver ti se() andt punadverti se(). These routines affect

only the services offered by the calling server unless that server belongs to a multiple
server, single queue (MSSQ) set. Because all servers in an MSSQ set must offer the
same set of services, these routines also affect the advertisements of all servers sharing
the caller's MSSQ set.

Initially, a process has no buffers. Before sending a message, a buffer must be allocated
usingt pal | oc() . The sender’s data can then be placed in the buffer and sent. This
buffer has a specific structure. The particular structure is denoted byghe

argument to thepal I oc() function. Since some structures can need further
classification, a subtype can also be given (for example, a particular type of C
structure).

When receiving a message, a buffer is required into which application data can be
received. This buffer must be one originally gotten ftgral | oc() . Note that a BEA
Tuxedo system server, in itsi n, allocates a buffer whose address is passed to a
request/response or conversational service upon invoking the service. (See

t pservi ce(3c) for details on how this buffer is treated.)

Buffers used for receiving messages are treated slightly differently than those used for
sending: the size and address usually change upon receipt of a message, since the
system internally swaps the buffer passed into the receive call with internal buffers it
used to process the buffer. A buffer may grow or shrink when it receives data. Whether
it grows or shrinks depends on the amount of data sent by the sender, and the internal
data flow needed to get the data from sender to receiver. Many factors can affect the
buffer size, including compression, receiving a message from a different type of
machine, and the action of thest recv() function for the type of buffer being used
(seebuf f er (3c)). The buffer sizes in Workstation clients are usually different from
those in native clients.

It is best to think of the receive buffer as a placeholder, rather than the actual container
that will receive the message. The system sometimes uses the size of the buffer you
pass as a hint, so it does help if it is big enough to hold the expected reply.

BEA Tuxedo C Function Reference 15

Section 3c - C Functions

16

Buffer Type
Switch

On the sending side, buffer types that might be filled to less than their allocated
capacity (for example, FML or STRING buffers) send only the amount used. A 100K
FML 32 buffer with one integer field in it is sent as amuch smaller buffer, containing
only that integer.

This means that the receiver will receive a buffer smaller than what was originally

allocated by the sender, yet larger than the data that was sent. For example, if a

STRING buffer of 10K bytes is allocated, and the string “HELLO” is copied into it,
only the six bytes are sent, and the receiver will probably end up with a buffer that is
around 1K or 4K bytes. (It may be larger or smaller, depending on other factors.) Th
BEA Tuxedo system guarantees only that a received message will contain all of the
data that was sent; it does not guarantee that the message will contain all the free spz
it originally contained.

The process receiving the reply is responsible for noting size changes in the buffer
(usingt pt ypes()) and reallocating the buffer if necessary. All BEA Tuxedo functions
change a receiver’s buffer return information about the amount of data in the buffer,
so it should become standard practice to check the buffer size every time a reply is
received.

One can send and receive messages using the same data buffer. Alternatively, a
different data buffer can be allocated for each message. It is usually the responsibilit
of the calling process to free its buffers by invokipgr ee() . However, in limited
cases, the BEA Tuxedo system frees the caller’'s buffer. For more information about
buffer usage, see the descriptions of communication functions suphrase() .

Thet nt ype_sw_t structure provides the description required when adding new buffer
types tot m t ypesw(), the buffer type switch for a process. The switch elements are
defined int ypesw(5) . The function names used in this entry are templates for the
actual function names defined by the BEA Tuxedo system or by applications in whick
custom buffer types are created. These function names can be mapped easily to swit
elements: to create a template name simply add the prefinto the element name of
a function pointer. For example, the template name for the eléemieruf is

tm nitbuf.

Thet ype element must be non-NULL and at most 8 characters in length. If this
element is not unique in the switch, tremt ype() must be non-NULL.

Thesubt ype() element can be NULL, a string of at most 16 characters, or * (the wild
card character). The combinationtgfpe() andsubtype() must uniquely identify
an element in the switch.

BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

A given type can have multiple subtypes. If all subtypes are to be treated the same for
a given type, then the wild card character, “*”, can be used. Note thgitthpes()

function can be used to determine a buffer’s type and subtype if subtypes need to be
distinguished. If some subset of the subtypes within a particular type are to be treated
individually, and the rest are to be treated identically, then those that are to be singled

out with specific subtype values should appear in the switch before the subtype

designated with the wild card. Thus, searching for types and subtypes in the switch is

done from top to bottom, and the wild card subtype entry accepts any “leftover” type
matches.

Thedfltsize() elementis used when allocating or re-allocating a buffer. The
semantics of pal | oc() andtpreal |l oc() are such that the larger of the following
two values is used to create or re-allocate a buffer: the valifeé o§i ze() or the
value of thesi ze parameter for thepal | oc() andt pr eal | oc() functions. For some

types of structures, such as a fixed-sized C structure, the buffer size should equal the

size of the structure. tf | t si ze() is set to this value, then the caller may not need to
specify the buffer’s length to routines in which a buffer is pastfied.si ze() can be

0 or less. However, ifpal 1 oc() ortpreall oc() is called and thei ze parameter

for the function being called is also less than or equal to 0, then the routine will fail.
We recommend settindf | t si ze() to a value greater than 0.

The BEA Tuxedo system provides five basic buffer types:

m CARRAY—a character array, possibly containing NULL characters, which is
neither encoded nor decoded during transmission

m STRING—a NULL-terminated character array
m FM_—fielded buffers EM. or FM_32)
m XM.—XML document or datagram buffer

m VI Ew—simple C structures/ Ewor VI En82); all views are handled by the same
set of routines. The name of a particular view is its subtype name.

Two of these buffer types have synonyiXSOCTET is a synonym foCARRAY, and
bothX_C_TYPE andX_COWMON are synonyms fovi EW X_C_TYPE supports all the
same elements a% EW whereask_COMMVON supports only longs, shorts, and
charactersX_COMVON should be used when both C and COBOL programs are
communicating.

An application wishing to supply its own buffer type can do so by adding an instance
to thet m typesw() array. Whenever adding or deleting a buffer type, be careful to
leave a NULL entry at the end of the array. Note that a buffer type with a NULL name

BEA Tuxedo C Function Reference 17

Section 3c - C Functions

isnot permitted. An application client or server is linked with the new buffer type
switch by explicitly specifying the name of the source or object file on the
bui | dserver () or buil dcl i ent () command line using the - f option.

Unsolicited There are two methods for sending messages to application clients outside the

Notification ~ boundaries of the client/server interaction defined above. The first is the broadcast
mechanism supported by t pbr oadcast () . This function allows application clients,
servers, and administrators to broadcast typed buffer messages to a set of clients
selected on the basis of the names assigned to them. The names assigned to clients are
determined in part by the application (specifically, by the information passed in the
TPI NI T typed buffer at t pi ni t () time) and in part by the system (based on the
processor through which the client accesses the application).

The second method isthe notification of aparticular client asidentified from an earlier
or current service request. Each service reguest contains a unique client identifier that
identifies the originating client for the service request. Callsto thet pcal | () and

t pf orwar d() functions from within a service routine do not change the originating
client for that chain of service requests. Client identifiers can be saved and passed
between application servers. Thet pnot i f y() function is used to notify clients
identified in this manner.

Singleor The BEA Tuxedo system allows client programs to create an association with one or
Multiple more applications per process. If t pi ni t () iscalled with the TPMULTI CONTEXTS
Application parameter included in the f I ags field of the TPI NI T structure, then multiple client
Contexts per ~ contextsare alowed. If t pi ni t () iscalled implicitly, is called withaNULL
Process parameter, or the f | ags field does not include TPMULTI CONTEXTS, then only asingle
application association is allowed.

In single-context mode, if t pi ni t () iscaled morethan once (that is, if it iscalled
after the client has already joined the application), no action istaken and successis
returned.

In multicontext mode, each call tot pi ni t () creates anew application association.
The application can obtain ahandle representing this application association by calling
t pget ct xt () . Any thread in the same process can call t pset ct xt () to set that
thread’'s context.

Once an application has chosen single-context mode, all cali$ tdot () must
specify single-context mode until all application associations are terminated.
Similarly, once an application has chosen multicontext mode, all calfs to t ()
must specify multicontext mode until all application associations are terminated.

18 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Server programs can be associated with only a single application and cannot act as
clients. However, within each server program, there may be multiple server dispatch
contexts. Each server dispatch context works in its own thread.

Thefollowing state table shows the transitions that may occur, within aclient process,
among the following states: the uninitialized state, the initialized in single-context
mode state, and theinitialized in multicontext mode state.

Per-Process Context M odes

Function States
Uninitialized Initialized Initialized
S Single-context Mode Multicontext M ode
S S,
t pi ni t without S S, Sy(error)
TPMULTI CONTEXTS
tpinit with S S, (error) S
TPMULTI CONTEXTS
implicit t pi ni t S S, S,(error)
t pt er m- not last S
associaion
t pt er m- last association So S
t pt er m- no association S
Context State In amulticontext application, callsto various functionsresult in context state changes
Changes fora for the calling thread and any other threads that are active in the same context asthe
Client Thread calling process. The following diagram illustrates the context state changes that result

from callsto thet pinit (), tpsetctxt(),andtptern() functions. (The
t pget ct xt () function does not produce any context state changes.)

BEA Tuxedo C Function Reference 19

Section 3c - C Functions

Multicontext State Transitions

t pi nit () without TPMULTI CONTEXTS t pi nit () with TPMULTI CONTEXTS
or or
implicitt pi ni t () invoked by ATMI function t pset ct xt () toavalid context

/tpt?n()

tpterm))
or
tpsetctxt()

tpterm()
or
tpsetctxt()

tpterm))
(see Note)
t pi nit () without

TPMULTI CONTEXTS

INVALID

CONTEXT tpsetctxt()

Note: Whentptern() iscaled by athread running in the multicontext state
(TPMULTI CONTEXTS), the calling thread is placed in the null context state
(TPNULLCONTEXT). All other threads associated with the terminated context

are switched to the invalid context state (TPI NVALI DCONTEXT).

Thefollowing table lists al possible context state changes produced by calling

tpinit(),tpsetctxt(),andtptern().These states are thread-specific; different
threads can be in different states when they are part of a multicontexted application.
By contrast, each context state listed in the preceding table (“Per-Process Context

Modes”) applies to an entire process.

20 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Context State Changes for a Client Thread

When this Then athread in thiscontext state resultsin . . .

function is . - -

executed . . . Null Context SingleContext ~ Multicontext Invalid
Context

t pi ni t without Single context Single context Error Error

TPMULTI CONTEXTS

t pi nit with M ulticontext Error M ulticontext Error

TPMULTI CONTEXTS

t psetct xt to Null Error Null Null

TPNULLCONTEXT

t psetctxt to Error Single context Error Error

context O

t pset ct xt to M ulticontext Error M ulticontext M ulticontext

context >0

Implicit t pi ni t Single context N/A N/A Error

t pt er minthisthread Null Null Null Null

t pt er minadifferent N/A Null Invalid N/A

thread of this context

Support for
Threads
Programming

The BEA Tuxedo system supports multithreaded programming in several ways. If the
processisusing single-context mode, then asthe application creates new threads, those
threads share the BEA Tuxedo context for the process. In aclient, after athread issues
atpinit() cal insingle-context mode, other threads may then proceed to issue

ATMI calls. For example, onethread may issueat pacal | () and adifferent thread in

the same process may issue at pget r pl y() .

When in multicontext mode, threads initially are not associated with a BEA Tuxedo
application. A thread can either join an existing application association by calling
t pset ct xt () or create a new association by calling t pi ni t () withthe

TPMULTI CONTEXTS flag set.

BEA Tuxedo C Function Reference 21

Section 3c - C Functions

22

Whether running in single-context mode or multicontext mode, the application is
responsible for coordinating its threads so that ATMI operations are performed at the
appropriate time.

An application may create additional threads within a server by using OS thread
functions. These threads may operate independently of the BEA Tuxedo system, or
they may operate in the same context as one of the server dispatch threads. Initialy,
application-created server threads are not associated with any server dispatch context.
An application-created server thread may call t pset ct xt () to associate itself with a
server dispatch thread. The application-created server thread must complete all of its
ATMI callsbeforethe dispatched thread callst pr et ur n() ort pforward() . A server
thread dispatched by the BEA Tuxedo system may not call t pset ct xt () . Inaddition,
application-created threads may not make ATMI callsthat would cause an implicit

t pi ni t () when not associated with a context. On the other hand, this failure to make
ATMI calls does not occur with dispatcher-created threads because those threads are
always associated with a context. All server threads are prohibited from calling

tpinit().

In amultithreaded application, athread that is operating in the TPI NVALI DCONTEXT
state is prohibited from calling many ATMI functions. The following lists specify
which functions may and may not be called under these circumstances.

The BEA Tuxedo system allows athread operating in the TPI NVALI DCONTEXT stateto
call the following functions:

m catgets(3c)

m cat open, catcl ose(3c)

m deci mal (3c)

m gp_nktinme(3c)

® nl _|angi nfo(3c)

m reconp, rematch(3c)

m rpc_smallocate, rpc_ss_allocate(3c)

m rpc_smclient _free, rpc_ss client _free(3c)

m rpc_smdisable allocate, rpc_ss_disable_allocate(3c)
m rpc_smenable_allocate, rpc_ss_enabl e allocate(3c)
m rpc_smfree, rpc_ss _free(3c)

m rpc_smset _client_alloc _free, rpc_ss set client_alloc_free(3c)

BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

rpc_smswap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3c)

set | ocal e(3c)
strerror(3c)
strftime(3c)
tpal | oc(3c)
tpconvert (3c)
tpcrypt pw 3c)
tperrordetail (3c)
tpfree(3c)

t pget ct xt (3c)
tpreall oc(3c)
t pset ct xt (3c)
tpstrerror(3c)
tpstrerrordetail (3c)
tpterm(3c)

t pt ypes(3c)
TRY(3¢c)

tuxget env(3c)
t uxput env(3c)
t uxreadenv(3c)
userl og(3c)
Usi gnal (3c)
Uuni x_err(3c)

The BEA Tuxedo system doesnot allow athread operating in the TPI NVALI DCONTEXT
state to call the following functions:

AEWSet unsol (3c)
t pabort (3c)
tpacal | (3c)

t padntal | (3c)

BEA Tuxedo C Function Reference

23

Section 3c - C Functions

m tpbegi n(3c)

m t pbroadcast (3c)
m tpcall (3c)

m tpcancel (3c)

m tpchkaut h(3c)

m tpchkunsol (3c)
m tpclose(3c)

m tpcommt(3c)

m tpconnect (3c)

m tpdequeue(3c)

m tpenqueue(3c)

m t pgetadnkey(3c)
m tpgetlev(3c)

m tpgetrply(3c)

m tpgprio(3c)

m tpinit(3c)

m tpnotify(3c)

m tpopen(3c)

m tppost(3c)

m tprecv(3c)

m tpresune(3c)

m tpscnt(3c)

m tpsend(3c)

m tpsetunsol (3c)
m tpsprio(3c)

m tpsubscribe(3c)
m tpsuspend(3c)

m tpunsubscri be(3c)

m tx_begin(3c)

24 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

CLanguage
ATMI Return
Codes and

m tx_close(3c)

m tx_commt(3c)

m tx_info(3c)

m tx_open(3c)

m tx_rollback(3c)

B tx_set _commit_return(3c)

B tx_set transaction_control (3c)

B tx_set transaction_timeout(3c)

Other
Definitions

/*

* The foll ow ng definitions nust

*/

/* Fl ags

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

/* Fl ags
#defi ne
#defi ne
#defi ne

to service routines */

TPNOBLOCK
TPSI GRSTRT
TPNOREPLY
TPNOTRAN
TPTRAN
TPNOTI ME
TPABSOLUTE
TPCGETANY
TPNOCHANGE

RESERVED BI T1

TPCONV
TPSENDONLY
TPRECVONLY
TPACK

to tpreturn -

TPFAI L
TPEXI T
TPSUCCESS

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000

be

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

included in atm.h

non- bl ocki ng send/rcv */
restart rcv on interrupt */

no reply expected */

not sent in transacti on node */
sent in transaction node */

no tineout */

absol ute value on tnsetprio */
get any valid reply */

force inconm ng buffer to match */
reserved for future use */
conversational service */
send-only node */

recv-only node */

*/

al so defined in xa.h */
0x20000000 /* service FAILURE for tpreturn */

0x08000000 /* service FAILURE with server

exit */

0x04000000 /* service SUCCESS for tpreturn */

BEA Tuxedo C Function Reference

Thefollowing return code and flag definitions are used by the ATMI routines. For an
application to work with different transaction monitors without change or
recompilation, each system must define its flags and return codes as stated here.

25

Section 3c - C Functions

/* Flags to tpscnt - Valid TP_COW T_CONTRCL
* characteristic val ues

*/
#define TP_CMI_LOGGED 0x01 /* return after commt

* decision is logged */
#define TP_CMI_COWPLETE 0x02 /* return after commt has

* conpleted */

/* client identifier structure */
struct clientid_t {
long clientdatal4]; /* reserved for internal use */

typedef struct clientid_t CLIENTID;
/* context identifier structure */
typedef | ong TPCONTEXT_T,;

/* interface to service routines */
struct tpsvcinfo {

nane[32] ;

I ong fl ags; /* describes service attributes */
char *dat a; /* pointer to data */

long | en; /* request data length */

int cd; /* connection descriptor

* if (flags TPCONV) true */

| ong appkey; /* application authentication client
* key */

CLIENTID cltid; /* client identifier for originating
* client */

b

typedef struct tpsvcinfo TPSVClI NFO,

/* tpinit(3c) interface structure */

#def i ne MAXTI DENT 30
struct tpinfo_t {

char usrname[MAXTI DENT+2] ; /* client user name */

char cl t name[MAXTI DENT+2] ; /* app client name */

char passwd[MAXTI DENT+2] ; [* application password */

I ong fl ags; /* initialization flags */

| ong datal en; /* length of app specific data */
| ong dat a; /* placehol der for app data */

h

typedef struct tpinfo_t TPINT;
/* The transactionlD structure passed to tpsuspend(3c) and tpresume(3c) */

struct tp_tranid_t {
I ong info[6]; /* Internally defined */

26 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

}s

typedef struct tp_tranid_t TPTRANI D,

/* Flags for TPINIT */
#defi ne TPU_MASK
#def i

ne TPU SIG

#defi ne TPU DI P

#define TPU | GN
#def i

#def i

ne
ne

TPU_THREAD
TPSA_FASTPATH
#def i

ne TPSA PROTECTED

#defi ne TPMULTI CONTEXTS

/* [Qtpgctl _t data structure
#defi ne TMONAMELEN

#defi ne TMVSG DLEN

#defi ne TMCORRI DLEN

struct tpgctl _t {
I ong fl ags;
| ong deq_tine;
long priority;
| ong di agnosti c;
char msgi d[TMVBA DLEN] ;
char corrid[TMCORRI DLEN] ;
char replyqueue[TMONAVELEN+1] ;
char failurequeue[TMONAMELEN+1] ;
CLIENTID cl tid;

ur code;
appkey;

del i very_qos;
reply_qos;
exp_time

| ong
| ong
| ong
| ong
| ong
h
typedef struct tpqctl_t TPQCTL;

/* [Q structure elements that are
#i f ndef TPNOFLAGS
#defi ne TPNOFLAGS
#endi f
#defi ne TPQCORRI D

0x00000007 /* unsolicited notification
* mask */
0x00000001 /* signal based
* notification */
0x00000002 /* dip-in based
* notification */
0x00000004 /* ignore unsolicited
* messages */
0x00000040 /* THREAD notification */
0x00000008 /* System access ==
* fastpath */
0x00000010 /* System access ==
* protected */
0x00000020 /* multiple context associ a-
* tions per process */
*/
15
32
32
/* control paranmeters to queue primtives */

/* indicates which values are set */

/* absolute/relative time for dequeuing */
/* enqueue priority */

/* indicates reason for failure */

/* 1 D of message before which to queue */

/* correlation ID used to identify message */

/*
/*
/*
/*
/*
/*

queue nane for reply nessage */
queue nane for failure message */
client identifier for */
originating client */

application user-return code */

application authentication client key */

/* delivery quality of service */
/* reply message quality of service */
/* expiration time */

valid - set in flags */
0x00000 /* no flags set -- no get */
0x00001 /* set/get correlation ID */

BEA Tuxedo C Function Reference 27

Section 3c - C Functions

#def i ne TPQFAlI LUREQ 0x00002 /* set/get failure queue */
#def i ne TPQBEFORENMBG D 0x00004 /* enqueue before nessage ID */
#def i ne TPQGETBYMSG DOLD 0x00008 /* deprecated */
#def i ne TPQVSG D 0x00010 /* get nmegid of enqg/deq nessage */
#def i ne TPQPRI ORI TY 0x00020 /* set/get nessage priority */
#def i ne TPQTOP 0x00040 /* enqueue at queue top */
#define TPQMI T 0x00080 /* wait for dequeuing */
#def i ne TPQREPLYQ 0x00100 /* set/get reply queue */
#def i ne TPQTI ME_ABS 0x00200 /* set absolute tinme */
#def i ne TPQTI ME_REL 0x00400 /* set relative time */
#def i ne TPQGETBYCORRI DOLD 0x00800 /* deprecated */
#def i ne TPQPEEK 0x01000 /* non-destructive dequeue */
#def i ne TPQDELI VERYQOS 0x02000 /* delivery quality of service */
#def i ne TPQREPLYQOS 0x04000 /* reply nmsg quality of service*/
#def i ne TPQEXPTI ME_ABS 0x08000 /* absolute expiration time */
#def i ne TPQEXPTI ME_REL 0x10000 /* relative expiration time */
#def i ne TPQEXPTI ME_NONE 0x20000 /* never expire */
#def i ne TPQGETBYMSG D 0x40008 /* dequeue by nsgid */
#def i ne TPQGETBYCORRI D 0x80800 /* dequeue by corrid */

/* Valid flags for the quality of service fields in the TPQCTL structure */
#def i ne TPQQOSDEFAULTPERSI ST 0x00001 /* queue’s default persistence */

/* policy */

#def i ne TPQQOSPERSI STENT 0x00002 /* di sk nessage */
#def i ne TPQQOSNONPERSI STENT 0x00004 /* menory nessage */

/* error return codes */
extern int tperrno;
extern long tpurcode;

/* tperrno values - error codes */

* The reference pages explain the context in which the follow ng
* error codes can return.

*/

#define TPM NVAL
#def i ne TPEABORT
#def i ne TPEBADDESC
#def i ne TPEBLOCK
#def i ne TPElI NVAL
#define TPELIMT
#def i ne TPENCENT
#defi ne TPECS
#def i ne TPEPERM
#def i ne TPEPROTO
#def i ne TPESVCERR 10
#def i ne TPESVCFAI L 11
#def i ne TPESYSTEM 12
#def i ne TPETI ME 13

/* mnimmerror nessage */

©CoOoO~NOOUILhWNEO

28 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

#defi ne TPETRAN

#defi ne TPGOTSI G
#defi ne TPERMVERR
#defi ne TPEI TYPE
#def i ne TPEOTYPE
#def i ne TPERELEASE
#defi ne TPEHAZARD
#defi ne TPEHEURI STI C
#def i ne TPEEVENT
#defi ne TPEMATCH
#def i ne TPEDI AGNOSTI C
#defi ne TPEM B

#defi ne TPMAXVAL

/* conversations -
#defi ne TPEV_DI SCONI MM
#defi ne TPEV_SVCERR
#defi ne TPEV_SVCFAI L
#defi ne TPEV_SVCSUCC
#defi ne TPEV_SENDONLY

/* [Q di agnostic codes
#def i ne QVElI NVAL
#defi ne QVEBADRM D
#def i ne QVENOTOPEN
#defi ne QVETRAN
#defi ne QVEBADVSA D
#defi ne QVESYSTEM
#defi ne QVECS
#defi ne QVEABORTED
#def i ne QVENOTA
#def i ne QVEPROTO
#defi ne QVEBADQUEUE
#def i ne QVENOVBG
#def i ne QVElI NUSE
#def i ne QVENOSPACE
#defi ne QVERELEASE
#defi ne QVEI NVHANDLE
#def i ne QVESHARE

/* Event Broker Messages */
#defi ne TPEVSERVI CE
#defi ne TPEVQUEUE
#defi ne TPEVTRAN
#defi ne TPEVPERSI ST

/* Subscription Control
struct tpevctl _t {
| ong flags;

events */

0x0001
0x0002
0x0004
0x0008
0x0020

*)
-1

-2

-3

-4

-5

-6

-7

-8
QVEABORTED
-9
-10
-11
-12
-13
-14
-15
-16

0x00000001
0x00000002
0x00000004
0x00000008

Structure */

/*

maxi num error

message */

BEA Tuxedo C Function Reference

29

Section 3c - C Functions

char nanmel[XATM _SERVI CE_NAME_LENGTH ;
char name2[XATM _SERVI CE_NAME_LENGTH ;
TPQCTL qct | ;

b

typedef struct tpevctl _t TPEVCTL;

Clanguage TX Thefollowing return code and flag definitions are used by the TX routines. For an

Return Codes application to work with different transaction monitors without change or

and Other recompilation, each system must define its flags and return codes as stated here.

current version of this
header file */

size in bytes */

format identifier */
val ue not to exceed 64 */
val ue not to exceed 64 */

Definitions
#def i ne TX_H VERSI ON 0 /*
*
/*
* Transaction identifier
*/
#def i ne Xl DDATASI ZE 128 /*
struct xid t {
long formatl D /*
long gtrid_| ength; /*
| ong bqual _I engt h; /*
char data[XI DDATASI ZE] ;
s
typedef struct xid_t X D
/*
* Avalue of -1 in formatlD nmeans that the XIDis null.
*/
/*
* Definitions for tx_ routines
*/

/* commt return val ues */

typedef | ong COW T_RETURN,

#define TX COW T_COVPLETED 0
#define TX COW T_DECI SI ON_LOGGED 1

/* transaction control values */
typedef | ong TRANSACTI ON_CONTRCL;
#def i ne TX_UNCHAI NED 0
#defi ne TX CHAI NED 1

/* type of transaction timeouts */
typedef | ong TRANSACTI ON_TI MEQUT,;

/* transaction state val ues */

typedef | ong TRANSACTI ON_STATE;
#define TX_ACTIVE 0

30 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

#define TX_TI MEOUT ROLLBACK ONLY 1

#define TX_ROLLBACK ONLY 2

/* structure popul ated by tx_info */

struct tx_info_t {

b

typedef struct tx_info_t TXI NFQ

/*

Xl D xi d;
COW T_RETURN when_return;

TRANSACTI ON_CONTROL transaction_control;
TRANSACTI ON_TI MEQUT transaction_ti neout;

TRANSACTI ON_STATE transaction_state;

* tx_ return codes

* (transaction manager

*/

#def i
#def i
#def i
#def i

#def i

#def i

#def i

#def i

#def i

#def i
#def i

#def i

#def i

#def i

#def i

ne
ne
ne
ne

ne

ne

ne

ne

ne

ne
ne

ne

ne

ne

ne

TX_NOT_SUPPORTED
TX_OK

TX_OUTSI DE
TX_ROLLBACK

TX_M XED

TX_HAZARD

TX_PROTOCOL_ERRCR

TX_ERROR
TX_FAI L

TX_El NVAL
TX_COWM TTED

TX_NO BEG N

TX_ROLLBACK_NO BEG N

TX_M XED_NO BEG N

TX_HAZARD NO BEG N

reports to application)

1 /* option not supported */
0 /* normal execution */
-1 /* application is in an RM
* |ocal transaction */
transaction was rolled
back */
transaction was
partially committed and
partially rolled back */
transacti on may have been
partially committed and
partially rolled back */
routine invoked in an
i mproper context */
-6 /* transient error */
-7 [/* fatal error */
-8 /* invalid argunents were given */
-9 /* transaction has
* heuristically committed */

1
N
-~

*

*

'
w
-~

,
IN
-

-5/

E I S

-100 /* transaction committed plus
* new transaction could not
* be started */

(TX_ROLLBACK+TX_NO BEG N)
/* transaction roll back plus
* new transaction could not
* be started */

(TX_M XED+TX_NO BEG N)
/* m xed plus new transaction
* could not be started */

(TX_HAZARD+TX_NO BEG N)

BEA Tuxedo C Function Reference

31

Section 3c - C Functions

/* hazard plus new transaction
* could not be started */

#define TX_COMM TTED_NO BEG N (TX_COWM TTED+TX_NO BEG N)

ATMI State
Transitions

/* heuristically commtted plus
* new transaction coul d not
* be started */

The BEA Tuxedo system keepstrack of the state for each process and verifies that
legal state transitions occur for the various function calls and options. The state
information includes the process type (request/response server, conversationa server,
or client), theinitialization state (uninitialized or initialized), the resource management
state (closed or open), the transaction state of the process, and the state of all
asynchronous request and connection descriptors. When an illegal state transition is
attempted, the called function fails, setting t per rno() to TPEPROTO. The legal states
and transitions for thisinformation are described in the following tables.

The table bel ow indicates which functions may be called by request/response servers,
conversational servers, and clients. Notethat t psvrinit(),t psvrdone(),
tpsvrthrinit(),andtpsvrthrdone() arenotincluded in this table because they
arenot called by applications (that is, they are application-supplied functions that are
invoked by the BEA Tuxedo system).

Available Functions

Function Process Type
Request/r esponse Conver sational Client
Server Server
t pabort Y Y Y
t pacal | Y Y Y
tpadvertise Y Y N
tpall oc Y Y Y
t pbegi n Y Y Y
t pbr oadcast Y Y Y
tpcal | Y Y Y
t pcancel Y Y Y

32 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Available Functions

Function Process Type

Request/response Conversational Client
Server Server

<
<

t pchkaut h

t pchkunso

t pcl ose

t pconmi t

t pconnect

t pdequeue

t pdi scon

t penqueue

t pf orwar d

tpfree

t pget ct xt

t pgetl ev

tpgetrply

tpgprio

tpinit

tpnotify

t popen

t ppost

tpreal l oc

t precv

<| <| <| <| <] <|z|<| <] <] <| <|<|=<|<|<|=<|=<]|<]| =z
<| <| <| <| <] <|z|<|=<|<|<|=<|z|=<|=<|=<|=<|=<|<]| =z
<| <| <| <| <] <| <| <| <] <] <|=<|z|=<|=<|=<|=<|=<]|=<| <] =<

t presune

BEA Tuxedo C Function Reference 33

Section 3c - C Functions

34

Available Functions

Function Process Type
Request/r esponse Conversational Client
Server Server
tpreturn Y Y N
t pscnt Y Y Y
t psend Y Y Y
tpservice Y Y N
tpset ct xt Y (in application- Y (in application- Y
created threads) created threads)
t pset unsol N N Y
tpsprio Y Y Y
t psubscri be Y Y Y
t psuspend Y Y Y
tpterm N N Y
t pt ypes Y Y Y
t punadvertise Y Y N
t punsubscri be Y Y Y

Theremaining state tables are for both clients and servers, unless otherwise noted.
Keep in mind that because some functions cannot be called by both clients and servers
(for example, t pi ni t ()), certain state transitions shown below may not be possible
for both process types. The above table should be consulted to determine whether the
process in question is allowed to call a particular function.

Thefollowing state table indicates whether or not athread in aclient process has been
initialized and regi stered with the transaction manager. Notethat thistable assumesthe
use of t pi ni t (), which isoptiona in single-context mode. That is, a single-context

BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

client may implicitly join an application by issuing one of many ATMI functions (for
example, t pconnect () ortpcal | ()). A client must uset pi ni t () when one of the
following istrue:

m Application authentication isrequired. (Seet pi ni t (3c) and the description of
the SECURI TY keyword in UBBCONFI G(5) for details.)

m The client wantsto access an XA-compliant resource manager directly. (See
t pi ni t (3c) for details)

m The client wants to create multiple application associations.

A server is placed in the initialized state by the BEA Tuxedo systesmis() before
itstpsvrinit () function is invoked, and it is placed in the uninitialized state by the
BEA Tuxedo system’sai n() afteritst psvrdone() function has returned. Note that

in all of the state tables shown below, an error return from a function causes the thread
to remain in the same state, unless otherwise noted.

Thread Initialization States

Function States
Uninitialize Initialize

lo 1
tpall oc lo I
t pchkaut h lo I1
tpfree lo I
t pget ct xt lo I1
tpinit I I
tpreall oc lo I1
t psetct xt 11 1

(set to anon-null context)

t pset ctxt lo lo
(with the TPNULLCONTEXT

context set)

t pset unsol lo I1

BEA Tuxedo C Function Reference 35

Section 3c - C Functions

Thread Initialization States

Function States
Uninitialize Initialize

lo l1

tpterm lo lo

(in this thread)

tpterm () lo

(in adifferent thread of this

context)

t pt ypes () 11

All other ATMI functions I I

The remaining state tables assume a precondition of state I, (regardless of whether a

process arrived in thisstate viat pi ni t (), t pset ct xt (), or the BEA Tuxedo
system’smai n()).

The following table indicates the state of a client or server with respect to whether o
not a resource manager associated with the process has been initialized.

Resour ce Management States

Function States
Closed Open

Ro Ry
t popen Ry R1
tpcl ose Ro Ro
t pbegi n R1
t pconmi t Ry
t pabort Ry
t psuspend Ry

36 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Resource M anagement States

Function States
Closed Open
Ro Ry
tpresune Ry
t pservi ce with flag TPTRAN Ry
All other ATMI functions Ro Ry

Thefollowing state tableindicates the state of a process with respect to whether or not
the process is associated with atransaction. For servers, transitionsto states Tqand T,

assume a precondition of state R, (for example, t popen() has been called with no
subsequent call to t pcl ose() ortptern()).

Transaction State of Application Association

Function State
Not in transaction [nitiator Participant
To T1 T2
t pbegin
t pabort To
t pcommi t To
t psuspend To
t presune T, To
t pservi ce with flag TPTRAN Ts
t pservi ce (not in transaction To
mode)
tpreturn To To
t pf orwar d To To

BEA Tuxedo C Function Reference 37

Section 3c - C Functions

Transaction State of Application Association

Function State
Not in transaction I nitiator Participant
To T1 T2
tpcl ose Ro
tpterm lo To
All other ATMI functions To T, Ts

Thefollowing state table indicates the state of asingle request descriptor returned by

tpacal I ().

Asynchronous Request Descriptor States

Function States
No Valid
Descriptor Descriptor
Ao Aq
t pacal | Aq
tpgetrply Ag
t pcancel Ap?
t pabort Ag AP
t pconmmi t Ag AP
t psuspend Ag Agc
tpreturn Ag Ag
t pf or war d Ag Ag
tpterm lo lo
All other ATMI functions Ag Aq

38 BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

Note: @This state change occurs only if the descriptor is not associated with the
caller's transaction.

b This state change occurs only if the descriptor is associated with the caller’s
transaction.

¢ If the descriptor is associated with the caller’s transaction, then
t psuspend() returns a protocol error.

The following state table indicates the state of a connection descriptor returned by
t pconnect () or provided by a service invocation in thesvCl NFO structure. For
primitives that do not take a connection descriptor, the state changes apply to all
connection descriptors, unless otherwise noted.

The states are as follows:

m Cgp - No descriptor

m C,-tpconnect () descriptor send-only

m C,-tpconnect () descriptor receive-only
m C3- TPSVCI NFOdescriptor send-only

m C, - TPSVCI NFOdescriptor receive-only

Connection Request Descriptor Sates

Function/Event States

t pconnect with TPSENDONLY C,2
t pconnect with TPRECVONLY C,?
t pservi ce with flag TPSENDONLY CyP
t pservi ce with flag TPRECVONLY C,P
t pr ecv/no event C, Cy
t precv/TPEV_SENDONLY C, C;

BEA Tuxedo C Function Reference 39

Section 3c - C Functions

40

Connection Request Descriptor States

Function/Event States
Co Cq C, Cy3 Cy4

t precv/TPEV_DI SCONI MM Co Co
t pr ecv/TPEV_SVCERR Co
t precv/TPEV_SVCFAI L Co
t pr ecv/TPEV_SVCSUCC Co
t psend/no event C, C;
t psend with flag TPRECVONLY C, Cy
t psend/TPEV_DI SCONI WM Co Co
t psend/TPEV_SVCERR Co
t psend/TPEV_SVCFAI L Co
t pt er m(client only) Co Co
t pcommi t (originator only) Co Co® Co°
t psuspend (originator only) Co C,¢ C,¢
t pabort (originator only) Co Co® Co®
t pdi scon Co Co
t pr et ur n (CONV server) Co Co Co G
t pf or war d (CONV server) Co Co Co G
All other ATMI functions Co C, C, C; C4

Note: 2If processisin transaction mode and TPNOTRAN is not specified, the

connection is in transaction mode.

b |f the TPTRANflag is set, the connection is in transaction mode.

BEA Tuxedo C Function Reference

Introduction to the C Language Application-Transaction Monitor Interface

TX State
Transitions

¢ If the connection is not in transaction mode, no state change.

d1f the connection isin transaction mode, then t psuspend() returns a
protocol error.

The BEA Tuxedo system ensures that a process calls the TX functionsin alega
sequence. When anillega state transition is attempted (that is, acall from a state with
ablank transition entry), the called function returns TX_PROTOCOL_ERROR. The legal
states and transitions for the TX functions are shown in the table below. Calls that
return failure do not make state transitions, unless they are described by specific state
table entries. Any BEA Tuxedo system client or server is alowed to use the TX
functions.

The states are defined below:

m Sy No RMs have been opened or initialized. An application association cannot
start aglobal transaction until it has successfully called t x_open.

m S;: An application association has opened its RM but isnot in atransaction. Its
transaction_control characteristic is TX_ UNCHAI NED.

m S, An application association has opened its RM but isnot in atransaction. Its
transaction_control characteristicis TX_CHAI NED.

m S5 An application association has opened itsRM and isin atransaction. Its
transaction_control characteristicis TX_ UNCHAI NED.

m S, An application association has opened itsRM and isin atransaction. Its
transaction_control characteristicis TX_CHAI NED.

Function States
S S S S 03
tx_begin S; Sy
tx_cl ose S S S
tx_commit —> TX SET1 S Sy
tx_commit —> TX_ SET2 S,
tx_info S, S, S3 Sy

BEA Tuxedo C Function Reference 41

Section 3c - C Functions

42

Function States

S S S S %
tx_open St St S, S3 Sy
tx_rol |l back —> TX_SET1 S, S,
tx_rol | back —> TX_SET2 S
tx_set_commit_return S S, S3 Sy
tx_set_transaction_control control S, S, S, S,
= TX_CHAI NED
tx_set_transaction_control control = S S S3 S3
TX_UNCHAI NED
tx_set_transaction_timeout S, S, S3 S,

m TX_SET1 denotesany of thefollowing: TX_OK, TX_ROLLBACK, TX_M XED,

TX_HAZARD, or TX_COVM TTED. TX_ROLLBACK is hot returned by
tx_rol | back() and TX_COWM TTEDis hot returned by t x_commi t () .

See Also

m TX SET2 denotes any of thefollowing: TX_NO BEG N,

TX_ROLLBACK_NO BEG N, TX_M XED_NO BEG N, TX_HAZARD NO BEG N, or
TX_COWMM TTED_NO BEG N. TX_ROLLBACK_NO_BEG Nisnot returned by
tx_rol | back() and TX_COW TTED_NO BEG Nis not returned by
tx_commit().

If TX_FAI L isreturned on any call, the application process isin an undefined
state with respect to the above table.

Whent x_i nf o() returns either TX_ROLLBACK_ONLY or

TX_TI MEOUT_ROLLBACK_ONLY in the transaction state information, the
transaction is marked rollback-only and will be rolled back whether the
application program callst x_conmi t () ort x_rol | back() .

buf fer (3c),tpadvertise(3c),tpalloc(3c),tpbegin(3c),tpcall(3c),

t pconnect (3c),tpgetctxt(3c),tpinit(3c),tpopen(3c),tpservice(3c),

tpsetctxt(3c), tuxtypes(5),typesw(5)

BEA Tuxedo C Function Reference

AEMsetblockinghook(3c)

AEMsetblockinghook(3c¢)

Name

Synopsis

Description

Return Values

Errors

AEMset bl ocki nghook() - establish an application-specific blocking hook function

#i ncl ude <atni. h>
i nt AEMset bl ocki nghook(_TM FARPRCC)

AEMset bl ocki nghook() is an “ATMI Extension for Mac” that allows a Mac task to
install a new function which the ATMI networking software uses to implement
blocking ATMI calls. It takes a pointer to the procedure instance address of the
blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
functionAEMset bl ocki nghook() gives the application the ability to execute its own
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and
then a loop is entered which is equivalent to the following pseudocode:

for(;;) {
execut e operation in non-blocking node
if error
br eak;
if operation conplete
br eak;
whi | e(Bl ocki ngHook())

}

AEMset bl ocki nghook() returns a pointer to the procedure-instance of the previously
installed blocking function. The application or library that calls the

AEMset bl ocki nghook() function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply discard
the value returned bgEMset bl ocki nghook() and eventually use

AEMset bl ocki nghook (NULL) to restore the default mechanism.)

AEMset bl ocki nghook() returns NULL on error and setper rno() to indicate the
error condition.

Under failure AEMset bl ocki nghook() setst perrno() to one of the following
values.

BEA Tuxedo C Function Reference 43

Section 3c - C Functions

[TPEPROTC)
AEMset bl ocki nghook() was called while ablocking operation wasin
progress.

Portability =~ Thisinterface is supported only in Mac clients.

Notices The blocking function is reset after t pt er n{ 3c) is called by the application.

44 BEA Tuxedo C Function Reference

AEOaddtypesw(3c)

AEOaddtypesw(3¢)

Name

Synopsis

Description

Return Values

Errors

AECaddt ypesw() - install or replace a user-defined buffer type at execution time

#i ncl ude <atni. h>
#i ncl ude <tntypes. h>

int FAR PASCAL AEQCaddt ypesw(TMTYPESW *newt ype)

AEQCaddt ypesw() is an “ATMI Extension for OS/2” that allows an OS/2 client to
install a new, or replace an existing user defined buffer type at execution time. The
argument to this function is a pointer t@®r YPESWstructure that contains the
information for the buffer type to be installed.

Ifthet ype() and thesubt ype() match an existing buffer type already installed, then
all the information is replaced with the new buffer type. If the information does not
match the ype() and thesubt ype() fields, then the new buffer type is added to the
existing types registered with the BEA Tuxedo system. For new buffer types, make
sure that th&sH and other BEA Tuxedo system processes involved in the call
processing have been built with the new buffer type.

The function pointers in theMrYPESWarray should appear in the Module Definition
file of the application in thEXPORTS section.

The application can also use the BEA Tuxedo system’s defined buffer type routines.
The application and the BEA Tuxedo system’s buffer routines can be intermixed in one
user defined buffer type.

Upon succesHECaddt ypesw() returns the number of user buffer types in the system
Upon failure AEOaddt ypesw() returns -1 and setper rno() to indicate the error
condition.

Upon failure AEOaddt ypesw() setst perrno() to one of the following values.

[TPEI NVAL]
AECaddt ypesw() was called and theype parameter was NULL.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

BEA Tuxedo C Function Reference 45

Section 3c - C Functions

Portability =~ Thisinterfaceissupported only in Windows clients. The preferred way to install atype
switch isto add it to the BEA Tuxedo system typeswitch DLL. Pleaserefer to Setting
Up a BEA Tuxedo Application for more information.

Notices FAR PASCAL isused only for the 16-bit OS/2 environment.
Examples

#i ncl ude <os2. h>
#include <atm . h>
#i ncl ude <tmypes. h>

nt FAR PASCAL Nfinit(char FAR *, |ong);

nt (FAR PASCAL * | pFinit)(char FAR *, long);
nt FAR PASCAL Nfreinit(char FAR *, long);

nt (FAR PASCAL * | pFreinit)(char FAR *, long);
nt FAR PASCAL Nfuninit(char FAR *, long);

i
i
i
i
i
int (FAR PASCAL * | pFuninit)(char FAR *, long);

TMIYPESW newtype =

{

“MYFML", 1024, NULL, NULL,
NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,

_froute

%

newtype.initbuf = Nfinit;
newtype.reinitbuf = Nfreinit;
newtype.uninitbuf = Nfuninit;

if(AEOaddtypesw(newtype) == -1) {
userlog(“AEOaddtypesw failed %s”, tpstrerror(tperrno));
}

int
FAR PASCAL
Nfinit(char FAR *ptr, long len)

return(1);

}

int

FAR PASCAL

Nfreinit(char FAR *ptr, long len)

return(1);

46 BEA Tuxedo C Function Reference

AEOaddtypesw(3c)

i nt
FAR PASCAL
Nf uni nit (char FAR *ptr, |ong ndl en)

return(l);

The application Module Definition File:
; EXAMPLE. DEF file
NAVE EXAMPLE
DESCRI PTI ON ' EXAMPLE for OS/2’
EXETYPE oS/ 2
EXPORTS
Nfinit

Nfreinit
Nf uni ni t

See Also bui | dwsh(1), buffer(3c),typesw5)

BEA Tuxedo C Function Reference 47

Section 3c - C Functions

AEPisblocked(3¢)

Name

Synopsis

Description

Return Values

Errors
Portability

Comments

See Also

AEPi sbl ocked() - determineif ablocking call isin progress

#i nclude <atm . h>
int far pascal AEPi sbl ocked(voi d)

AEPi sbl ocked() is an “ATMI Extension for OS/2 Presentation Manager” that allows
a OS/2 PM task to determine if it is executing while waiting for a previous blocking
call to complete.

If there is an outstanding blocking function awaiting completd@®j sbl ocked()
returns 1. Otherwise, it returns 0.

No errors are returned.
This interface is supported only in OS/2 PM clients.

Although a blocking ATMI call appears to an application as though it “blocks,” the
OS/2 PM ATMI DLL has to relinquish the processor to allow other applications to run.
This means that it is possible for the application which issued the blocking call to be
re-entered, depending on the message(s) it receives. In this instance, the

AEPi sbl ocked() function can be used to ascertain whether the task has been
re-entered while waiting for an outstanding blocking call to complete. Note that ATMI
prohibits more than one outstanding call per thread.

AEMset bl ocki nghook(3c)

48 BEA Tuxedo C Function Reference

AEWsetunsol(3¢)

AEWsetunsol(3¢)

Name

Synopsis

Description

Return Values

Errors

Portability

Notices

See Also

AEWet unsol () - post Windows message for BEA Tuxedo unsolicited event

#i ncl ude <w ndows. h>
#i ncl ude <atm . h>
int far pascal AEWetunsol (HAND hWwhd, WORD wivsQ)

In certain Microsoft Windows programming environmentsit is natural and convenient
for the BEA Tuxedo system’s unsolicited messages to be posted to the Windows event
message queue.

AEWset unsol () controls which window to notifyhWid, and which Windows
message type to postisg. When a BEA Tuxedo unsolicited message arrives, a
Windows message is posteédar an() is set to the BEA Tuxedo system buffer
pointer, or zero if none. IfPar an() is non-zero, the application must agtff r ee()
to release the buffer.

If wMsg is zero, any future unsolicited messages will be logged and ignored.

In a multithreaded application, a thread inTRENVALI DCONTEXT state is not allowed
to issue a call teaEWet unsol ().

Upon failure AEWset unsol () returns -1 and setgperrno() to indicate the error
condition.
Upon failure AEWset unsol () setst perrno() to one of the following values.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPECS]
An operating system error has occurred.

This interface is supported only in Microsoft Windows clients.

AEWet unsol () posting of Windows messages may not be activated simultaneously
with at pset unsol () callback routine. The most recentset unsol () or
AEWet unsol () request controls how unsolicited messages will be handled.

t pset unsol (3c)

BEA Tuxedo C Function Reference 49

Section 3c - C Functions

buffer(3¢)

Name buffer() - semanticsof elementsint nt ype_sw t

Synopsis
int /* Initialize a new data buffer */
_tmnitbuf(char *ptr, long | en)
int /* Re-initialize a re-allocated data buffer */
_tnreinitbuf(char *ptr, long |en)
int /* Un-initialize a data buffer to be freed */

_tmunini tbuf(char *ptr, long |en)

| ong /* Process buffer before sending */

_tnpresend(char *ptr, |ong dlen, |ong ndl en)

voi d /* Process buffer after sending */

_tnpostsend(char *ptr, long dlen, |ong nmdlen)

| ong /* Process buffer after receiving */

_tnpostrecv(char *ptr, long dlen, |ong nmdlen)

| ong /* Encode/decode a buffer to/froma transm ssion format */
_tmencdec(int op, char *encobj, |long elen, char *obj, |ong olen)

i nt /* Determne server group for routing based on data */ _tnroute(char
*routing_nane, char *service, char *data, long \ len, char *group)
int /* Evaluate boolean expression on buffer’s data */ _tmfilter(char *ptr,

long dlen, char *expr, long exprlen)

int /* Extract buffer's data based on format string */ _tmformat(char *ptr,

long dlen, char *fmt, char *result, long \ maxresult)

long /* Process buffer before sending, possibly generating copy */

_tmpresend2(char *iptr, long ilen, long mdlen, char *optr, long olen, int *flags)

Description This page describes the semantics of the elements and routines defined in the
tmtype_sw_t structure. These descriptions are necessary for adding new buffer types
to aprocess buffer type switch, tm_typesw . The switch elements are defined in
typesw(5) . Thefunction namesused in thisentry are templatesfor the actual function
names defined by the BEA Tuxedo system aswell as by applications adding their own
buffer types. The names map to the switch elements very simply: the template names
are made by taking each function pointer’'s element name and prependi(for
example, the elemenhi t buf has the function name ni ni t buf ()).

The element ype must be non-NULL and up to 8 characters in length. The element
subt ype can be NULL, a string of up to 16 characters, or the wild card character, “*”.
If t ype is not unique in the switch, thenabt ype must be used; the combination of

t ype andsubt ype must uniquely identify an element in the switch.

50 BEA Tuxedo C Function Reference

buffer(3c)

Routine
Specifics

_tminitbuf

A given type can have multiple sub-types. If all sub-types are to be treated the same

for a given type, then the wild card character, “*", can be used. Note that the function
t pt ypes() can be used to determine a buffer’s type and sub-type if sub-types need to
be distinguished. If some subset of the sub-types within a particular type are to be
treated individually, and the rest are to be treated identically, then those which are to
be singled out with specific sub-type values should appear in the switch before the
sub-type designated with the wild card. Thus, searching for types and sub-types in the
switch is done from top to bottom, and the wild card sub-type entry accepts any
“leftover” type matches.

df I tsi ze() is used when allocating or re-allocating a buffer. The larger of

df I tsi ze() and the routinesi ze parameter is used to create or re-allocate a buffer.
For some types of structures, like a fixed sized C structure, the buffer size should equal
the size of the structure.df I t si ze() is setto this value, then the caller may not need

to specify the buffer’s length to routines in which a buffer is passedsi ze() can

be 0 or less; however,tipal | oc() ortpreal | oc() is called and itsi ze parameter

is also less than or equal to 0, then the routine will fail. It is not recommended to set
df I tsi ze() to a value less than 0.

The names of the functions specified below are template names used within the BEA
Tuxedo system. Any application adding new routines to the buffer type switch must
use names that correspond to real functions, either provided by the application or
library routines. If a NULL function pointer is stored in a buffer type switch entry, the
BEA Tuxedo system calls a default function that takes the correct number and type of
arguments, and returns a default value.

_tminitbuf () is called from withirt pal | oc() after a buffer has been allocated. It
is passed a pointer to the new buffar; (), along with its size so that the buffer can
be initialized appropriately.en() is the larger of the length passed inpal | oc()

and the default specified it t si ze() in that type’s switch entry. Note thatr ()

will never be NULL due to the semanticstgfal | oc() andt preal | oc(). Upon
successful returmt r () is returned to the caller opal 1 oc().

If a single switch entry is used to manipulate many sub-types, then the writer of
_tminitbuf () can use ptypes() to determine the sub-type.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success,t mi ni t buf () returns 1. If the function fails, it returns -1 causing
tpal l oc() to also return failure settingper rno() to TPESYSTEM

BEA Tuxedo C Function Reference 51

Section 3c - C Functions

52

_tmreinitbuf

_tmuninitbuf

_tmpresend

_tnreinitbuf () behavesthesameas_t mi ni t buf () exceptitisusedtore-initiaize
are-allocated buffer. It is called from withint pr eal | oc() after the buffer has been
re-allocated.

If no buffer re-initialization needs to be performed, specify aNULL function pointer.

Upon success, _t nr ei ni t buf () returns 1. If the function fails, it returns -1 causing
t preal | oc() toaso return failure setting t per r no() to TPESYSTEM

_tmuni ni tbuf () iscalled by t pf ree() before the data buffer isfreed.

_tmuni ni t buf () ispassed apointer to the application portion of adata buffer, along
with its size, and can be used to clean up any structures or state information associated
with that buffer. pt r () will never be NULL duetot pfree()’s semantics. Note that
_truni ni t buf () should not free the buffer itself. Thef ree() function is called
automatically for anyLD PTR fields in the data buffer.

If no processing needs to be performed before freeing a buffer, specify a NULL
function pointer.

Upon success,t nuni ni t buf () returns 1. If the function fails, it returns -1 causing
t pfree() to print a log message.

_tnpresend() is called before a buffer is senttipcal | (), t pacal | (),

t pconnect (), tpsend(),tpbroadcast(),tpnotify(),tpreturn(), or

t pforwar d() . It is also called aftert nr out e() but before t mencdec() . If ptr()

is non-NULL, pre-processing is performed on a buffer before it is sent.
_tmpresend()’s first argumentpt r (), is the application data buffer passed into the
send call. Its second argumettiten() , is the data’s length as passed into the send call.
Its third argumentyal en() , is the actual size of the buffer in which the data resides.

One important requirement on this function is that it ensures that when the function
returns, the data pointed to pyr () can be sent “as is.” That is, sindgerencdec()

is called only if the buffer is being sent to a dissimilar machinepr esend() must
ensure upon return that no elemenpin () s buffer is a pointer to data that is not
contiguous to the buffer.

If no pre-processing needs to be performed on the data and the amount of data the ca
specified is the same as the amount that should be sent, specify a NULL function
pointer. The default routine returasen() and does nothing to the buffer.

If _tnpresend2() isnot NULL, tnpresend() is not called andt npresend2() is
called in its place.

BEA Tuxedo C Function Reference

buffer(3c)

_tmpostsend

_tmpostreqv

Upon success, _t npresend() returns the amount of datato be sent. If the function
fails, it returns -1 causing _t npr esend() 's caller to also return failure setting
tperrno() to TPESYSTEM

_tnpost send() is called after a buffer is senttipcal | (), t pbroadcast (),
tpnotify(), tpacall (), tpconnect(), ortpsend(). This routine allows any
post-processing to be performed on a buffer after it is sent and before the function
returns. Because the buffer passed into the send call should not be different upon
return,_t npost send() is called to repair a buffer changed_bypr esend() . This
function’s first argumentpt r (), points to the data sent as a resulttofpr esend() .

The data’s length, as returned frommpr esend(), is passed in as this function’s
second argumentl/ en() . The third argumentd! en(), is the actual size of the
buffer in which the data resides. This routine is called only velhe@) is non-NULL.

If no post-processing needs to be performed, specify a NULL function pointer.

_tmpost recv() is called after a buffer is received, and possibly decoded, in
tpgetrply(), tpcall (), tprecv(), orinthe BEA Tuxedo system'’s server
abstraction, and before it is returned to the applicatign.Af) is non-NULL,

_tpost recv() allows post-processing to be performed on a buffer after it is received
and before it is given to the application. Its first argument), points to the data
portion of the buffer received. Its second argumehen(), specifies the data’s size
coming in to_t npostrecv(). The third argument! en(), specifies the actual size

of the buffer in which the data resides.

If _tnpostrecv() changes the datalength in post-processing, it must return the data’s
new length. The length returned is passed up to the application in a manner dependent
on the call used (for examplepcal | () sets the data length in one of its arguments

for the caller to check upon return).

The buffer’s size might not be large enough for post-processing to succeed. If more
space is requiredt npost recv() returns the negative absolute value of the desired
buffer size. The calling routine then resizes the buffer, and_aalfsostrecv() a
second time.

If no post-processing needs to be performed on the data and the amount of data
received is the same as the amount that should be returned to the application, specify
a NULL function pointer. The default routine retuaisen() and does nothing to the
buffer.

BEA Tuxedo C Function Reference 53

Section 3c - C Functions

54

_tmencdec

On success, _t npost recv() returnsthe size of the data the application should be
made aware of when the buffer is passed up from the corresponding receive cal. If the
function fails, it returns -1 causing _t npost recv()’s caller to return failure, setting
t perrno() to TPESYSTEM

_tmencdec() is used to encode/decode a buffer sent/received over a network to/from
a machine having different data representations. The BEA Tuxedo system
recommends the use of XDR; however, any encoding/decoding scheme can be use
that obeys the semantics of this routine.

This function is called bypcal | (), tpacall (), tpbroadcast(),tpnotify(),

t pconnect (), t psend(),tpreturn(), ort pf orward() to encode the caller’s
buffer only when it is being sent to an “unlike” machine. In these cali&ncdec()
is called after botht mrout e() and_t npresend(), respectively. Recall from the
description of t npr esend() that the buffer passed into mencdec() contains no
pointers to data that is not contiguous to the buffer.

On the receiving endpr ecv() ,t pget rpl y(), the receive half afpcal I () and the
server abstraction all calt rencdec() to decode a buffer after they have received it
from an “unlike” machine but before calling npost recv().

_tmencdec() s first argumentpp(), specifies whether the function is encoding or
decoding dataop() can be one Of MENCODE or TVDECODE.

Whenop() is TMENCODE, encobj () points to a buffer allocated by the BEA Tuxedo
system where the encoded version of the data will be copied. The un-encoded data
resides irobj (). That is, wherop() is TMENCODE, _t mencdec() transformsobj ()

to its encoded format and places the resuhicvb;j () . The size of the buffer pointed

to by encobj () is specified byl en() and is at least four times the size of the buffer
pointed to byobj () whose length is! en(). ol en() is the length returned by
_tnpresend. _tmencdec() returns the size of the encoded datarinobj () (that

is, the amount of data to actually send)rencdec() should not free either of the
buffers passed into the function.

Whenop() is TMDECODE, encobj () points to a buffer allocated by the BEA Tuxedo
system where the encoded version of the data resides as read off a communication
endpoint. The length of the bufferaésen() . obj () points to a buffer that is at least
the same size as the buffer pointed taebyobj () into which the decoded data is
copied. The length afbj () isol en(). Asobj () is the buffer ultimately returned to
the application, this buffer may be grown by the BEA Tuxedo system before calling
_tmencdec() to ensure that it is large enough to hold the decoded datncdec()
returns the size of the decoded dataap() . After _t mencdec() returns,

BEA Tuxedo C Function Reference

buffer(3c)

_trmpost recv() iscaled with obj () passed asitsfirst argument, _t mencdec()’s
return value as its second, aricen() as its third. t mencdec() should not free either
of the buffers passed into the function.

_tmencdec() is called only when non-NULL data needs to be encoded or decoded.

If no encoding or decoding needs to be performed on the data even when dissimilar
machines exist in the network, specify a NULL function pointer. The default routine
returns eitheo/ en() (op() equalSTMENCODE) or el en() (op() equalsTVDECODE).

On success,t mencdec() returns a non-negative length as described above. If the
function fails, it returns -1 causing mencdec() s caller to return failure, setting
tperrno() to TPESYSTEM

_tmroute The default for message routing is to route a message to any available server group that
offers the desired service. Each service entry itUBBEONFI G file can specify the
logical name of some routing criteria for the service usindRulI NG parameter.
Multiple services can share the same routing criteria. In the case that a service has a
routing criteria name specifiedt nr out e() is used to determine the server group to
which a message is sent based on data in the message. This mapping of data to server
group is called “data-dependent routingthr out e() is called before a buffer is sent
(and before t npresend() and_t nencdec() are called)inpcal I (), tpacall (),
tpconnect (), andt pforward().

routing_nane is the logical name of the routing criteria (as specified in the

UBBCONFI Gfile) and is associated with every service that needs data dependent
routing.ser vi ce is the name of the service for which the request is being made. The
parametetiat a points to the data that is being transmitted in the requesgteanid its
length. Unlike the other routines described in these pagesout e() is called even
whenpt r () is NULL. Thegr oup parameter is used to return the name of the group to
which the request should be routed. This group hame must match one of the group
names listed in theBBCONFI Gfile (and one that is active at the time the group is
chosen). If the request can go to any available server providing the specified service,
gr oup should be set to the NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify a NULL function
pointer. The default routine segsoup to the NULL string and returns 1.

Upon success,t nrout e() returns 1. If the function fails, it returns -1 causing
_tnrout e() 'scallerto also return failure; as a resufier r no() is set torPESYSTEM
If _tnroute() fails because arequested server or service is not availpbte,no()
is set toTPENCENT.

BEA Tuxedo C Function Reference 55

Section 3c - C Functions

_tmfilter

_tmformat

_tmpresend2

If gr oup issettothename of aninvalid server group, thefunction calling _t nr out ()
will return an error and set t per r no() to TPESYSTEM

_tnfilter() iscaled by the EventBroker server to analyze the contents of a buffer
posted by t ppost () . An expression provided by the subscriber (t psubscribe())is
evaluated with respect to the buffer’s contents. If the expression istrde,| t er ()
returns 1 and the EventBroker performs the subscription’s notification action.
Otherwise, if tnfilter () returns 0, the EventBroker does not consider this posting
a “match” for the subscription.

If exprien() is-1,expr() is interpreted as a null-terminated character string.
Otherwiseexpr () is interpreted asxpr/ en bytes of binary data. Aaxpr/ en of O
indicates no expression.

If filtering does not apply to this buffer type, specify a NULL function pointer. The
default routine returns 1 if there is no expression exfr () is an empty
null-terminated string. Otherwise the default routine returns 0.

_tnformat () is called by the EventBroker server to convert a buffer’s data into a
printable string, based on a format specification nafmedThe EventBroker converts
posted buffers to strings as input forer / og() orsyst ent) notification actions.

The output is stored as a character string in the memory location pointed to by
resul t (). Uptomaxresul t () bytes are written inesu/ t (), including a
terminating null character. Hesul t () is not large enought nf or mat () truncates
its output. The output string is always null terminated.

On success,t nf or mat () returns a non-negative integer. 1 means success, 2 means
the output string is truncated. If the function fails, it returns -1 and stores an empty
string inresul t ().

If formatting does not apply to this buffer type, specify a NULL function pointer. The
default routine succeeds and returns an empty stringsion/ t ().

_tnpresend2() is called before a buffer is senttipcal | (), t pacal | (),

t pconnect (), t psend(),t pbroadcast (), tpnotify(),tpreturn(), and

t pf orwar d() . Itis also called aftert nr out e() but before t mencdec() . Ifiptr is
not NULL, preprocessing is performed on a buffer before the buffer is sent.

The first argument tot npr esend2() , i pt r, is the application data buffer passed into
the send call. The second arguméinten, is the length of the data as passed into the
send call. The third argumenmty/ en, is the actual size of the buffer in which the data
resides.

56 BEA Tuxedo C Function Reference

buffer(3c)

Unlike _t npresend(), _t npresend2() receivesapointer, opt r, which is used to
pass a pointer to abuffer into which the datain i pt r can be placed, after any required
processing is done. Use this pointer if you want to use a new buffer for the data
modified by _t npresend2() instead of modifying the input buffer. The fifth
argument, ol en, isthe size of the opt r buffer. The sixth argument, f/ ags, tells

_t mpr esend2() whether the buffer being processed isthe parent buffer (the one being
sent). The f1 ags argument is returned by _t npr esend2() to indicate the results of
processing.

The size of the opt r buffer may not be large enough for successful postprocessing. If
more spaceis required, _t npresend2() returns the negative absolute val ue of the
desired buffer size. All ol en bytes of the opt r buffer are preserved. The calling
routine then resizes the buffer and calls _t npr esend2() asecond time.

If no postprocessing needs to be performed on the data, and the amount of data
received is the same as the amount that should be returned to the application, specify
aNULL function pointer. The default routine returns i / en and does not modify the
buffer.

Thefollowing isavalid flag on input to _t npresend2() :

[TMPARENT]
Thisisthe parent buffer (the one being sent).

Theflagsreturned in f | ags specify the results of _t npr esend2() . Possible values
are:

[TMUSEI PTR]
_tpresend2() was successful: the processed dataisin the buffer
referenced by i pt r, and the return value contains the length of the datato be
sent.

[TMUSECPTR]
_tnpresend2() was successful: the processed dataisin the buffer
referenced by opt r, and the return value contains the length of the datato be
sent.

If TMUSECPTRIs returned, the processing done after messages are transmitted is
different from the processing done by _t npr esend() : thei pt r buffer remains
unchanged and _t npost send() isnot caled. If TMUSEI PTRis returned,

_tnpost send() iscalled, asitiscalled for _t npresend() . Itisthe responsibility of
the caller to allocate and to free or cache the opt r buffer.

BEA Tuxedo C Function Reference 57

Section 3c - C Functions

58

See Also

There are several reasons why you may want to use this approach for atyped buffer:

m Thebuffer created by processing for transmission islarger than the maximum
length allowed for the input buffer.

m Undoing the processing to prepare a buffer for transmission is so complicated
that it is easier to copy the data to a different buffer.

The _t npresend2() function ensures that when afunction returns, the data in the
buffer to be sent can be sent without further processing. Because _t nencdec() is
called only if the buffer isbeing sent to adissimilar machine, _t npr esend2() ensures,
upon return, that all datais stored contiguoudly in the buffer to be sent.

If no preprocessing needsto be performed on the data, and the amount of data specified
by the caller is the same as the amount that should be sent, specify a NULL function
pointer for _t npr esend2() in the buffer type switch. If _t npresend2() isNULL,
_tnpresend() iscalled by default.

Upon success, _t npr esend2() returns the amount of datato be sent or, if alarger
buffer is needed, the negative absolute value of the desired buffer size. If the function
fails, it returns -1, causing the caller of _t npr esend2() to also return failure, setting
t perrno() to TPESYSTEM

tpacal | (3c),tpalloc(3c),tpcall(3c),tpconnect(3c),tpdiscon(3c),
tpfree(3c),tpgetrply(3c),tpgprio(3c),tprealloc(3c),tprecv(3c),
t psend(3c),tpsprio(3c),tptypes(3c),tuxtypes(5)

BEA Tuxedo C Function Reference

catgets(3¢)

catgets(3¢)

Name

Synopsis

Description

Diagnostics

See Also

cat gets() - read aprogram message

#i ncl ude <nl _types. h>
char *catgets (nl _catd catd, int set_num int nmsg_num char *s)

cat get s() attemptsto read message nsg_numin set set _num from the message
catalogue identified by cat d. cat d is a catalogue descriptor returned from an earlier
call to cat open() . s points to a default message string which will be returned by
cat get s() if theidentified message catal ogue is not currently available.

A thread in amultithreaded application may issue acall to cat get s() while running
in any context state, including TP NVALI DCONTEXT.

If the identified message is retrieved successfully, cat get s() returns a pointer to an
internal buffer area containing the null terminated message string. If the cal is
unsuccessful because the message catal ogue identified by cat d is not currently
available, apointer to s isreturned.

cat open, catcl ose(3c)

BEA Tuxedo C Function Reference 59

Section 3c - C Functions

catopen, catclose(3¢)

60

Name

Synopsis

Description

cat open(), catcl ose() - open/close amessage catalogue

#i nclude <nl _types. h>
nl _catd catopen (char *nanme, int oflag)
int catclose (nl_catd catd)

cat open() opens amessage cata ogue and returns a catalogue descriptor. nane
specifiesthe name of the message catal ogue to be opened. If nanme contains a/” then

nane specifies a pathname for the message catalogue. Otherwise, the environment
variableNLSPATH is used. INLSPATH does not exist in the environment, or if a
message catalogue cannot be opened in any of the paths specifiesPibyH, then

the default path is used (see t ypes(5)).

The names of message catalogues, and their location in the filestore, can vary from ol
system to another. Individual applications can choose to name or locate message
catalogues according to their own special needs. A mechanism is therefore required
specify where the catalogue resides.

TheNLSPATH variable provides both the location of message catalogues, in the form
of a search path, and the naming conventions associated with message catalogue fil
For example:

NLSPATH=/ nl sl i b/ %./ %N. cat : / nl sl i b/ %N/ %

The metacharactesintroduces a substitution field, whexe substitutes the current
setting of the. ANG environment variable (see following section), esidubstitutes the
value of thenanme parameter passed ¢at open() . Thus, in the above example,
cat open() will searchin' nl sl i b/ $SLANG nane. cat , thenin' nl sl i b/nanme/$LANG,
for the required message catalogue.

NLSPATH will normally be set up on a system wide basis (for example, in
/et c/profil e)andthus makes the location and naming conventions associated with
message catalogues transparent to both programs and users.

The following table lists the full set of metacharacters.

%N The value of the name parameter passed to cat open.

%. Thevalue of LANG

BEA Tuxedo C Function Reference

catopen, catclose(3c)

Diagnostics

See Also

% Thevalue of the language element of LANG

% Thevalue of theterritory element of LANG.

% Thevalue of the codeset element of LANG.

W A single %.

The LANG environment variable provides the ability to specify the user’s requirements
for native languages, local customs and character set, as an ASCII string in the form
LANG=I anguage[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has a terminal that operates
in 1ISO 8859/1 codeset, would want the setting ofitheG variable to be as follows:

LANG=De_A. 88591

With this setting it should be possible for the user to find relevant catalogues if they
exist.

If the LANG variable is not set then the valueLaf MESSAGES as returned by
set | ocal e(3c) is used. If this islULL then the default path as defined in
nl _types(5) is used.

of I ag() is reserved for future use and should be set to 0. The results of setting this
field to any other value are undefined.

cat cl ose() closes the message catalogue identifieddry.

A thread in a multithreaded application may issue a calitopen() orcat cl ose()
while running in any context state, includimgl NVALI DCONTEXT.

If successfulgat open() returns a message catalogue descriptor for use on subsequent
calls tocat get s() andcat cl ose() . Otherwisecat open() returns(nl _catd) -1.
cat cl ose() returns O if successful, otherwise -1.

catgets(3c),setlocal e(3c),nl _types(5)

BEA Tuxedo C Function Reference 61

Section 3c - C Functions

decimal(3¢)

Name deci mal () - decimal conversion and arithmetic routines
Synopsis

#include “decimal.h”

int

Iddecimal(cp, len, np) /* load a decimal */
char*cp; /* input: location of compacted format */
int

len; /* input: length of compacted format */
dec_t*np; /* output: location of dec_t format */
void

stdecimal(np, cp, len) [* store a decimal */
dec_t*np; /* input: location of dec_t format */
char*cp; /* output: location of compacted format */
int len; /* input: length of compacted format */

int

deccmp(nl, n2) /* compare two decimal numbers */
dec_t*nil; /* input: number to be compared */
dec_t*n2; /* input: number to be compared */

int

dectoasc(np, cp, len, right) /* convert dec_t to ascii */
dec_t*np; /* input: number to be converted */
char*cp; /* output: number after conversion */

int len; /* input: length of output string */

int right; /* input: number of places to right of decimal point */

int

deccvasc(cp, len, np) /* convert ascii to dec_t */

char*cp; [* input: number to be converted */

int len; [* input: maximum length of number to be converted */
dec_t*np; /* output: number after conversion */

int

dectoint(np, ip) /* convert int to dec_t */

dec_t*np; [* input: number to be converted */

int *ip; /* output: number after conversion */

int

deccvint(in, np) /* convert dec_t to int */

62 BEA Tuxedo C Function Reference

decimal(3c¢)

int in; /* input: number to be converted */
dec_t *np; [* output: nunber after conversion */
int

dect ol ong(np, | ngp) /* convert dec_t to long */
dec_t *np; /* input: number to be converted */

| ong* Il ngp; /* output: nunber after conversion */
int

deccvl ong(l ng, np) /* convert long to dec_t */

| ongl ng; /* input: nunmber to be converted */
dec_t *np; /* output: nunber after conversion */
int

dect odbl (np, dbl p) /* convert dec_t to double */
dec_t *np; /* input: number to be converted */
doubl e *dbl p; /* output: nunber after conversion */
int

deccvdbl (dbl, np) /* convert double to dec_t */
doubl e *dbl ; /* input: nunmber to be converted */
dec_t *np; /* output: nunber after conversion */
int

dectoflt(np, fltp) /* convert dec_t to float */
dec_t *np; /* input: nunmber to be converted */
float*fltp; /* output: nunber after conversion */
int

deccvflt(flt, np) /* convert float to dec_t */
doubl e *flt; /* input: nunber to be converted */
dec_t *np; /* output: nunber after conversion */
int

decadd(*nl1, *n2, *n3) /* add two deci mal nunbers */
dec_t*nl; /* input: addend */

dec_t*n2; /* input: addend */

dec_t*n3; /* output: sum*/

int

decsub(*nl, *n2, *n3) /* subtract two deci nal nunbers */
dec_t*nl; /* input: mnuend */

dec_t*n2; /* input: subtrahend */

dec_t*n3; /* output: difference */

int

decrmul (*n1, *n2, *n3) /* multiply two deci mal nunbers */
dec_t*nil; /* input: multiplicand */

dec_t*n2; /* input: multiplicand */

dec_t*n3; /* output: product */

BEA Tuxedo C Function Reference

63

Section 3c - C Functions

int

decdi v(*nl,
dec_t*nl;
dec_t*n2;
dec_t*n3

Description

Native Decimal
Representation

Return Value

*n2, *n3) /* divide two deci mal nunbers */

/* input: dividend */
[* input: divisor */
/* output: quotient */

These functions allow storage, conversion, and manipulation of packed decimal data
on the BEA Tuxedo system. Note that the format in which the decimal datatypeis
represented on the BEA Tuxedo system is different from its representation under
CICs.

A thread in a multithreaded application may issue a call to any of the deci nal
conversion functions while running in any context state, including
TPl NVALI DCONTEXT.

Decimals are represented on native BEA Tuxedo system nodes using the dec_t
structure. This definition of this structureis as follows:

#def i ne DECSI ZE 16

struct deci mal {
short dec_exp; /* exponent base 100 */
short dec_pos; /* sign: 1l=pos, O=neg, -1=null */
short dec_ndgts; /* nunber of significant digits */

char dec_dgts[DECSI ZE]; /* actual digits base 100 */
i&pedef struct deci mal dec_t;
It should never be necessary for programmers to directly accessthe dec_t structure,
but it is presented here nevertheless to give an understanding of the underlying data
structure. If large amounts of decimal data need to be stored, the st deci mal () and
| ddeci mal () functions may be used to obtain amore compact format. dect oasc(),
dect oi nt (), dect ol ong(), dect odbl (), and dect of I t () allow the conversion of
decimalsto other datatypes. deccvasc() ,deccvi nt () ,deccvl ong(),deccvdbl (),
and deccvfl t () allow the conversion of other datatypesto the decimal data type.
deccnp() isthe function which comparestwo decimals. It returns -1 if the first
decimal is less than the second, 0 if the two decimalsare equal, and 1 if the first
decimal is greater than the second. A negative value other than -1 is returned if either
of theargumentsisinvalid. decadd() , decsub(), decnul (), anddecdi v() perform
arithmetic operations on decimal numbers.

Unless otherwise stated, these functions return 0 on success and a hegative value on
error.

64 BEA Tuxedo C Function Reference

gp_mktime(3c¢)

gp_mktime(3¢)

Name

Synopsis

Description

gp_rkti me() - convertsatm structure to a calendar time

#i ncl ude <tine. h>
time_t gp_nktinme (struct tm*tinmeptr);

gp_nkti me() convertsthetimerepresented by thetm structure pointedtoby ¢ i mept r
into a calendar time (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970).

The tm structure has the following format.

struct tm{

int tmsec; /* seconds after the mnute [0, 61] */
int tmmn; /* mnutes after the hour [0, 59] */
int tmhour; /* hour since mdnight [0, 23] */

i nt tm nday; /* day of the nmonth [1, 31] */

int tmnon; /* nonths since January [0, 11] */

int tmyear; /* years since 1900 */

int tmwday; /* days since Sunday [0, 6] */

int tmyday; /* days since January 1 [0, 365] */
int tmisdst; /* flag for daylight savings tine */

}s

In addition to computing the calendar tinge, nmkt i me() normalizes the supplied tm
structure. The original values of then wday andt m yday components of the

structure are ignored, and the original values of the other components are not restricted
to the ranges indicated in the definition of the structure. On successful completion, the
values of the m nday andt m yday components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values
forced to be within the appropriate ranges. The final valuemofday is not set until

t m non andt m year are determined.

The original values of the components may be either greater than or less than the
specified range. For example,@ hour of -1 means 1 hour before midnighty noay

of 0 means the day preceding the current month¢ andon of -2 means 2 months
before January afm year.

If t m i sdst is positive, the original values are assumed to be in the alternate timezone.
If it turns out that the alternate timezone is not valid for the computed calendar time,
then the components are adjusted to the main timezone. Likewisej €dst is zero,

BEA Tuxedo C Function Reference 65

Section 3c - C Functions

66

Example

Notices

Portability

the original values are assumed to be in the main timezone and are converted to the
alternate timezone if the main timezone isnot valid. If t m i sdst is negative, the
correct timezone is determined and the components are not adjusted.

Local timezone information isused asif gp_nkti me() had caledt zset ().

gp_nkt i me() returnsthe specified calendar time. If the calendar time cannot be
represented, the function returnsthe value (ti ne_t)-1.

A thread in amultithreaded application may issue a call to gp_nkt i me() while
running in any context state, including TPl NVALI DCONTEXT.

What day of the week isJuly 4, 2001?

#i ncl ude <stdi o. h>
#i ncl ude <tine. h>

static char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wdnesday",
"Thursday", "Friday", "Saturday", "-unknown-"

h

struct tmtinme_str;
[*..0.0%]
tine_str.tmyear
tine_str.tmnon
tine_str.tm nday
tinme_str.tm hour
tine_str.tmmn
tine_str.tmsec
tine_str.tm.sdst
if (gp_nktime(tinme_str)
time_str.tmwday=7;
printf("%\en", wday[time_str.tmwday]);

2001 - 1900;
7 - 1;

‘hooes

1
= _1)

t m year of thetm structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

On systems where the C compilation system already providesthe ANSI C nkti me()
function, gp_nkti me() simply callsnmkti me() to do the conversion. Otherwise, the
conversion is provided directly in gp_nkti ne() .

BEA Tuxedo C Function Reference

gp_mktime(3c¢)

In the latter case, the Tz environment variable must be set. Note that in many
installations, Tz is set to the correct value by default when the user logs on. The default
value for TZisGvro. The format for Tz is the following.

stdof fset[dst[offset],[start[tinme],end[tinme]]]

stdand dst
Three or more bytes that designate the standard timezone (st d) and daylight
savingstime timezone (dst). Only st d isrequired. If dst ismissing, then
daylight savings time does not apply in thislocale. Upper- and lower-case
lettersareallowed. Any characters except aleading colon (:), digits, acomma
(,), aminus (-) or aplus (+) are alowed.

of f set
Indicates the value one must add to the local time to arrive at Coordinated
Universa Time. The of f set has the following form: hh[:nm{:ss]]. The
minutes (nm) and seconds (ss) are optional. The hour (hh) is required and
may be asingledigit. The of f set following st d isrequired. If no of f set
follows dst , daylight savings timeis assumed to be one hour ahead of
standard time. One or more digits may be used; the valueis awaysinterpreted
as adecimal number. The hour must be between 0 and 24, and the minutes
(and seconds) if present, between 0 and 59. Out of range values may cause
unpredictable behavior. If preceded by a“-”, the timezone is east of the Prime
Meridian; otherwise it is west (which may be indicated by an optional
preceding “+” sign).

start/tinme,endltime
Indicates when to change to and back from daylight savings time, where
st art /time describes when the change from standard time to daylight
savings time occurs, arahd/t i me describes when the change back happens.
Eacht i ne field describes when, in current local time, the change is made.
The formats okt art andend are one of the following:

Jn
The Julian day: (1 n 365). Leap days are not counted. Thatis, in all
years, February 28 is day 59 and March 1 is day 60. It is impossible
to refer to the occasional February 29.

n

The zero-based Julian day{(B65). Leap days are counted, and it
is possible to refer to February 29.

BEA Tuxedo C Function Reference 67

Section 3c - C Functions

Mm n. d
Day d (0 d 6) of week n of month min the year (1 n 5, 1 m12), where week 5

means “the lastd-day in monthm” which may occur in either the fourth or
the fifth week). Week 1 is the first week in which dagccurs. Day 0 (zero)
is Sunday.

Implementation specific defaults are useddoart andend if these optional fields
are not given.

Thet i ne has the same format agf set except that no leading sign (“-" or “+") is
allowed. The default, if i ne is not specified, is 02:00:00.

See Also cti me(3c),get env(3c),ti mezone(4) in a UNIX system reference manual

68 BEA Tuxedo C Function Reference

nl_langinfo(3c)

nl_langinfo(3¢)

Name

Synopsis

Description

Diagnostics

Notices

See Also

nl _l angi nfo() - language information

#i ncl ude <nl _types. h>
#i ncl ude <l angi nfo. h>

char *nl _langinfo (nl _itemiten);

nl _l angi nf o() returnsapointer to a null-terminated string containing information
relevant to a particular language or cultural area defined in the programslocale. The
manifest constant names and values of i t emare defined by | angi nf o. h.

For example:
nl _langi nfo (ABDAY_1);

returns a pointer to the stringdi nf' if the identified language is French and a French
locale is correctly installed; orstin” if the identified language is English.

A thread in a multithreaded application may issue a caill td angi nf o() while
running in any context state, includimgl NVALI DCONTEXT.

If setlocal e() has not been called successfully, drafigi nf 0() data for a
supported language is either not availablétarmis not defined therein, then

nl _l angi nf o() returns a pointer to the corresponding string in the C locale. In all
locales,nl _I angi nf o() returns a pointer to an empty string ifemcontains an
invalid setting.

The array pointed to by the return value should not be modified by the program.
Subsequent calls @ _| angi nf o() may overwrite the array.

setl ocal e(3c),strftinme(3c),langinfo(5),nl _types(5)

BEA Tuxedo C Function Reference 69

Section 3c - C Functions

recomp, rematch(3¢)

70

Name

Synopsis

Description

Regular
Expressions

reconp(), remat ch() - regular expression compile/execute

char *reconp(pattern-1, [pattern-2, ...], 0)
char *pattern-1, [*pattern-2, ...];
extern int _Cerrnbr;

extern char * _Cerrnsg[];

char *rematch(pat, text, [substr-0, ..., substr-9,] 0);
char *pat, *text, [*substr-0, ..., *substr-9];

extern char *_Megin;

extern int _Merrnbr;
extern char *_Merrnsg[];
extern char _Eol ;

Theroutines, reconp() andr emat ch(), provide aregular expression pattern
matching scheme for C. There are two parts: a pattern compiler, r econp() ; and a
pattern interpreter, r emat ch() . They are, in effect and in spirit, extensions of the
standard routines, r egcnp(3) and r egex(3).

Significant features are the inclusion of regular expression alternation and portability
of the code.

reconp() compilesapattern, intheform of aregular expression, into an intermediate
code sequence. r emat ch() then searches user text for a pattern match by interpreting
the codes.

The code sequence, an array of characters, can be computed off-line by the command
rex(), which reads regular expressions from the standard input and writes the
corresponding character arraysto the standard output. The output can then beincluded
inaregular C compile.

A thread in a multithreaded application may issue acall tor econp() or remat ch()
while running in any context state, including TPI NVALI DCONTEXT.

The patterns for these routines are given with regular expressions, much like those
used in the UNIX System editor, ed(1). The alternation operator, (|), has been added
along with some other practical things. In general, however, there should be few
surprises.

BEA Tuxedo C Function Reference

recomp, rematch(3c)

Regular expressions (REs) are constructed by applying any of the following
production rules one or more times.

Regular Expressions

Rule Matching Text

character itself (character isany ASCII character except the special ones mentioned bel ow).

\ character itself except asfollows:
m \\-- newline

\\t - tab

\\b -- backspace

\\r -- carriage return

\\f -- formfeed

\ special -character itsunspecia self. The special charactersare.* + 2 | () [{ and \\.
. -- any character except the end-of-line character (usually newline or null).
~ -- beginning of theline.
$ -- end-of-line character.

[cl ass] any character in the class denoted by a sequence of characters and/or ranges. A
rangeis given by the construct character-character. For example, the character
class, [a-zA-Z0-9_], will match any alphameric character or “_". To be included in
the class, a hyphen, “-", must be escaped (preceded by a “\\") or appear first or last
in the class. A literal “]” must be escaped or appear first in the class. A literal “*"
must be escaped if it appears first in the class.

[* class] any character in the complement of the class with respect to the ASCII character set,
excluding the end-of-line character.

RE RE the sequence. (catenation)

RE | RE either the lefRE or the rightRE. (left to right alternation)

RE * zero or more occurrences RE.

RE + one or more occurrences RE.

RE ? Zero or one occurrences .

RE { n} n occurrences dRE. n must be between 0 and 255, inclusive.

BEA Tuxedo C Function Reference 71

Section 3c - C Functions

Regular Expressions

Rule Matching Text

RE{m n} m through n occurrences of RE, inclusive. A missing mis taken to be zero. A
missing n denotes mor more occurrences of RE.

(RE) explicit precedence/grouping.

(RE) $n the text matching RE is copied into the nth user buffer. n may be 0 through 9. User
buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

There are three levels of precedence. In order of decreasing binding strength they are:
m catenation closure (*,+?2,{...})
m catenation
m alternation (]|)
As indicated above, parentheses are used to give explicit precedence.
recomp: reconp() concatenatesitsargumentsupto aterminating zero into asingle expression.
Regular Theexpressionisthen compiled into acharacter array whose addressisreturned asthe
Expression function value.
Compiler

Space for the array is obtained from the standard C routine, nal | oc(), and may be
released (by the user) with acall to the standard f r ee() routine.

reconp() returnsazero (NULL) valueif the pattern cannot be processed. The reason
isindicated by aglobal variable, _Cerr nbr, which is set to a non-zero value on any
failure. _Cerrnbr may be used directly or as an index into atable of error messages,
_Cerrnsg._Cerrnbr isreset on each call tor econp() . The possible values for
_Cerrnbr and the corresponding messages from _Cer r nsg are given below.

Regular Expression Compiler

_Cerrnbr _Cerrnsg[_Cerrnbr]

O uo kn

1 “Syntax error at cotol nbr, char ‘char™

(col nbr is the position where the error is discoverebiar is the character
at that position)

72 BEA Tuxedo C Function Reference

recomp, rematch(3c)

rematch:
Regular
Expression
Matcher

Regular Expression Compiler

_Cerrnbr _Cerrnsg[_Cerrnbr]
2 “Out of node storage”

3 “Out of vector storage”

4 “Too many OR's”

5 “More than 255 repetitions”

(a number in ther'H...}" construct is greater than 255)

6 “Negative range”
(a range for a character class or a closure is given backward)

7 “Out of heap storage”
(mal | oc failed)

Conditionsthat cause _Cerr nbr valuesof 2, 3, and 4 relateto thesize of reconp()’s
internal data structures and are unlikely to occur.

The first and second characters of the code array form the least significant byte and the
most significant byte, respectively, of an unsigned 16 bit quantity that gives the length,
in bytes, of the entire array. This value will prove useful for copying or otherwise
manipulating the array.

remat ch() interprets the code sequence produceddeynp() to search a user string

for a match. When a match is foundpmat ch() returns as its value the address of the
first character beyond the matching text (which may then be used as the text argument
in a subsequent call tenat ch()). Also, the variable Moegi n is set to the address of

the first character of the matching text.

Any text matching a specified sub-pattern (see £) $ n” above) is copied into
the corresponding user buffer, providing one was supplied on the call. All supplied
user buffers are reset on eaamat ch() call and filled only on a successful match.

Note: rematch(), unlike its role modek, egex(3), requires a zero terminating
argument.

BEA Tuxedo C Function Reference 73

Section 3c - C Functions

remat ch() returnsNULL if no match can be found or if something el se goes wrong.
If nomatchisfoundthevariable, _Mer r nbr, isset to zero. If something worse happens
itisset to anon-zero value. As above, Merrnbr servesas an index for atable of
diagnostic messages as indicated below.

_Merrnbr _Merrnsg[_Merrnbr]

0 uokﬂ
(If r emat ch() returned NULL, no match was found)

1 “Too many closures”
2 “Line too long”
3 “Corrupt vector”

(checkr econp() for failure)

4 “More than 10 substr args”
(User probably forgot to terminatenmat ch() arguments with a zero)

5 “Too many assignments”

_Merrnbr valuesof 1, 2, or 5 are not likely to occur. They relate to the size of data
structures used by r emat ch() .

Thevariable _Eol is the current end-of-line character. Itis initialized\to™but may
be changed by the user to other reasonable values (for examg)eThe end-of-line
character determines what the special charastenatches.

Example The following program scans its input for C identifiers and prints each one on a
separate line.

#i ncl ude <stdi o. h>
mai n()
{
char *reconp(), *rematch();
char *patVect, *cursor, |ine[100], usrBuf[100];

pat Vect = reconp("([a-zA-Z][a-zA-Z0-9]*)%$0", 0);

74 BEA Tuxedo C Function Reference

recomp, rematch(3c)

Implementation

Notices

See Also

while (gets(line)) {
cursor = line;
whil e (cursor=renat ch(patVect, cursor, usrBuf, 0))
printf("%n", usrBuf);
}
}

Note the use of the variable, cur sor, to indicate a successful match as well asto
provide (on success) the starting point for the next search. A less courageous
programmer would check r econp() 's return value and restrict the length of the
pattern match to the receiving buffer’'s size (for example, "{0,98}" instead of "*").

reconp() andremat ch() are written in portable C codesconp() employs YACC,

which accounts for the fact that it is bigger and somewhat slower than its counterpart,
regcnp() . The intermediate code producedrtaonp() is generally more compact
than that of egcnp() .

remat ch() is about the same size and has about the same speed as its counterpart,
regex().

Support for the functions described in this manual page will be withdrawn in Release
5.0 of the BEA Tuxedo system.

rex(1)

ed(1),free(3), mal I oc(3),regcnp(3),regex(3) in a UNIX system reference manual

BEA Tuxedo C Function Reference 75

Section 3c - C Functions

rpc_sm_allocate, rpc_ss_allocate(3¢)

76

Name

Synopsis

Description

rpc_smal l ocate(),rpc_ss_al l ocat e() - alocatesmemory within the RPC stub
memory management scheme

#i ncl ude <rpc/rpc. h>
idl_void p_t rpc_smallocate(unsigned32 size, unsigned32 *status)
idl_void p_t rpc_ss_all ocate(unsi gned32 size)

Applicationscall r pc_sm al | ocat 3() to allocate memory within the RPC stub
memory management scheme. The input parameter, si ze, specifiesin bytes, the size
of memory to be allocated. Before a call to this routine, the stub memory management
environment must have been established. For service codethat is called from the server
stub, the stub itself normally establishes the necessary environment. When
rpc_sm al | ocat e() isused by code that isnot called from the stub, the application
must establish the required memory management environment by calling
rpc_smenabl e_al |l ocate().

Specifically, if the parameters of a server stub include any pointers other than those
used for passing parameters by reference or the [enabl e_al | ocat e] attribute is
specified for the operation in the ACS file, then the environment is automatically set
up. Otherwise, the environment must be set up by the application by calling
rpc_smenabl e_al |l ocate().

When the stub establishes the memory management environment, the stub itself frees
any memory allocated by rpc_sm al | ocat e() . The application can free such
memory before returning to the calling stub by calling rpc_sm free() .

When the application establishes the memory management environment, it must free
any memory allocated, either by callingr pc_sm free() or by calling
rpc_smdisabl e_all ocate().

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Always returned. The return value is used to determine failure.

rpc_ss_al | ocat e() isthe exception-returning version of this function and has no
st at us output parameter. No exceptions are raised.

BEA Tuxedo C Function Reference

rpc_sm_allocate, rpc_ss_allocate(3¢)

Return Values

See Also

A thread in amultithreaded application may issueacall torpc_sm al | ocat e() or
rpc_ss_al l ocat e() whilerunningin any context state, including
TPI NVALI DCONTEXT.

Upon success, the routines return a pointer to the allocated memory. Note that in the
ISO standard C environments, i dI _voi d_p_t isdefined asvoid * and in other
environmentsit isdefined aschar *.

If there is insufficient memory, the routines return aNULL pointer.

rpc_smdisable_allocate, rpc_ss_disable_allocate(3c),
rpc_smenabl e_all ocate, rpc_ss_enabl e_all ocate(3c),rpc_smfree,
rpc_ss_free(3c)

Programming a BEA Tuxedo Application Using TXRPC

BEA Tuxedo C Function Reference 77

Section 3c - C Functions

rpc_sm_client_free, rpc_ss_client_free(3¢)

Name

Synopsis

rpc_smclient_free(),rpc_ss_client_free() - freesmemory returned froma
client stub

#i ncl ude <rpc/rpc. h>
void rpc_smclient free (idl _void p_t node to free, unsigned32 *status)
void rpc_ss client _free (idl _void p_t node_to free)

Description

Return Values

Therpc_smclient_free() routinereleases memory allocated and returned from a
client stub. The input parameter, node_t o_fr ee, specifies a pointer to memory
returned from a client stub. Note that in the | SO standard C environments,

idl _void_p_t isdefined asvoi d * and in other environmentsisdefined as char *.

Thisroutine enables aroutineto deallocate dynamically allocated memory returned by
an RPC call without knowledge of the memory management environment from which
it was called.

Note that thisroutine is always called from client code, even if the code can is
executing as part of a server.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_ss_client_free() isthe exception-returning version of this function and has
no st at us output parameter. No exceptions are raised.

A thread in a multithreaded application may issueacall to rpc_smclient _free()
orrpc_ss_client_free() whilerunning in any context state, including
TPI NVALI DCONTEXT.

None.

78 BEA Tuxedo C Function Reference

rpc_sm_client_free, rpc_ss_client_free(3c)

SeeAlso rpc_smfree, rpc_ss free(3c),rpc_smset _client_alloc free,
rpc_ss_set _client_alloc_free(3c),rpc_smswap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3c)

Programming a BEA Tuxedo Application Using TXRPC

BEA Tuxedo C Function Reference 79

Section 3c - C Functions

rpc_sm_disable_allocate,
rpc_ss_disable_allocate(3¢)

Name

Synopsis

Description

Return Values

80

See Also

rpc_smdi sabl e_all ocate(),rpc_ss_disabl e_al | ocat e() -releasesresources
and allocated memory within the stub memory management scheme

#i ncl ude <rpc/rpc. h>
void rpc_sm di sabl e_al | ocat e(unsi gned32 *st at us);
void rpc_ss_disabl e_all ocate(void);

Ther pc_sm di sabl e_al | ocat e() routine releases all resources acquired by a call
torpc_sm enabl e_al | ocat e(), and any memory allocated by callsto
rpc_sm al | ocat e() afterthecall tor pc_sm enabl e_al | ocat e() was made.

Therpc_sm enabl e_al | ocate() andrpc_sm di sabl e_al | ocat e() routines
must be used in matching pairs. Calling this routine without a previous matching call
torpc_sm enabl e_al | ocat e() resultsin unpredictable behavior.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_ss_di sabl e_al | ocat e() isthe exception-returning version of this function
and has no st at us output parameter. No exceptions are raised.

A thread in a multithreaded application may issue a call to
rpc_sm di sabl e_al | ocat e() orrpc_ss_di sabl e_al | ocat e() whilerunningin
any context state, including TPI NVALI DCONTEXT.

None.

rpc_smallocate, rpc_ss_allocate(3c),rpc_smenable allocate,
rpc_ss_enabl e_al | ocat e(3c)

Programming a BEA Tuxedo Application Using TXRPC

BEA Tuxedo C Function Reference

rpc_sm_enable_allocate, rpc_ss_enable_allocate(3¢)

rpc_sm_enable_allocate,
rpc_ss_enable_allocate(3¢)

Name

Synopsis

Description

Return Values

rpc_smenabl e_all ocate(),rpc_ss_enabl e_al | ocat e() - enablesthe stub
memory management environment

#i ncl ude <rpc/rpc. h>
void rpc_sm enabl e_al | ocat e(unsi gned32 *st at us)
void rpc_ss_enabl e_al |l ocat e(voi d)

Applications can cal r pc_sm enabl e_al | ocat e() to establish a stub memory
management environment in cases where oneis not established by the stub itself. A
stub memory management environment must be established before any callsare made
torpc_sm al | ocat e() . For service code called from the server stub, the stub
memory management environment isnormally established by the stubitself. Code that
is called from other contexts needsto call r pc_sm enabl e_al | ocat e() before
calingrpc_sm al | ocat e() (for example, if the service codeis called directly
instead of from the stub).

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine compl eted successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

rpc_ss_enabl e_al | ocat e() istheexception-returning version of thisfunction and
has no st at us output parameter. The following exceptions are raised by this routine.

rpc_x_no_nenory
Insufficient memory available to set up necessary data structures.

A thread in amultithreaded application may issue acall to
rpc_sm enabl e_al | ocate() orrpc_ss_enabl e_al | ocat e() whilerunningin
any context state, including TPl NVALI DCONTEXT.

None.

BEA Tuxedo C Function Reference 81

Section 3c - C Functions

See Also rpc_smallocate, rpc_ss_allocate(3c),rpc_smdisable allocate,
rpc_ss_di sabl e_al | ocat e(3c)

Programming a BEA Tuxedo Application Using TXRPC

82 BEA Tuxedo C Function Reference

rpc_sm_free, rpc_ss_free(3c¢)

rpc_sm_free, rpc_ss_free(3¢)

Name

Synopsis

Description

Return Values

See Also

rpc_smfree, rpc_ss_free() -freesmemory allocated by the
rpc_sm al | ocat e() routine

#i ncl ude <rpc/rpc. h>
void rpc_smfree(idl _void p t node to free, unsigned32 *status)
void rpc_ss free(idl _void p_ t node to free)

Applicationscal rpc_sm free() to release memory allocated by

rpc_sm al | ocat e() . The input parameter, node_t o_f r ee, specifies a pointer to
memory alocated by r pc_sm al | ocat e() . Note that in SO standard C
environments, i dl _voi d_p_t isdefined asvoi d * andin other environmentsis
defined aschar *.

When the stub allocates memory within the stub memory management environment,
service code called from the stub can also user pc_sm f ree() to release memory
allocated by the stub.

Unpredictable behavior resultsif r pc_ss_free() iscalled with a pointer to memory
not allocated by r pc_sm al | ocat e() or memory allocatedby rpc_sm al | ocat e(),
but not the first address of such an allocation.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine compl eted successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_free isthe exception-returning version of this function and has no st at us
output parameter. No exceptions are raised.

A thread in amultithreaded application may issueacall torpc_sm free() or
rpc_ss_free() whilerunning in any context state, including TPl NVALI DCONTEXT.

None.
rpc_smallocate, rpc_ss_allocate(3c)

Programming a BEA Tuxedo Application Using TXRPC

BEA Tuxedo C Function Reference 83

Section 3c - C Functions

rpc_sm_set_client_alloc_free,
rpc_ss_set_client_alloc_free(3¢)

84

Name

Synopsis

Description

rpc_smset _client_alloc free(),rpc_ss set client_alloc free() - sets
the memory alocation and freeing mechanisms used by the client stubs

#i ncl ude <rpc/rpc. h>
void rpc_smset _client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl_void p_t ptr), unsigned32 *status)

void rpc_ss_set_client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl _void p_t ptr))

Therpc_smset _client_alloc_free() routineoverridesthe default routinesthat
the client stub uses to manage memory. The input parameters, p_al | ocat e and

p_f r ee specify memory allocator and free routines. The default memory management
routinesare ISO C nal 1 oc() andfree() except when the remote call occurs within
server code in which case the memory management routines must be
rpc_ss_allocate() andrpc_ss_free().

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

rpc_ss_set_client_all oc_freeistheexception-returningversion of thisfunction
and has no st at us output parameter. The following exceptions are raised by this
routine.

rpc_x_no_mnenory
Insufficient memory available to set up necessary data structures.

BEA Tuxedo C Function Reference

rpc_sm_set_client_alloc_free, rpc_ss_set_client_alloc_free(3c)

Return Values

See Also

A thread in amultithreaded application may issue acall to
rpc_smset _client_alloc _free() orrpc_ss_set _client_alloc_free()
while running in any context state, including TPl NVALI DCONTEXT.

None.
rpc_smallocate, rpc_ss_allocate(3c),rpc_smfree, rpc_ss _free(3c)

Programming a BEA Tuxedo Application Using TXRPC

BEA Tuxedo C Function Reference 85

Section 3c - C Functions

rpc_sm_swap_client_alloc_free,
rpc_ss_swap_client_alloc_free(3¢)

86

Name

Synopsis

Description

rpc_smswap_client_alloc _free(),rpc_ss_swap _client_alloc _free() -
exchanges current memory allocation and freeing mechanism used by client stubswith
one supplied by client

#i ncl ude <rpc/rpc. h>
void rpc_smswap_client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl _void p_t ptr),
idl_void p t (**p_p_old_allocate)(unsigned | ong size),
void (**p_p_old free)(idl _void p_t ptr)
unsi gned32 *st at us)

void rpc_ss_swap_client_alloc_free(
idl_void p t (*p_allocate)(unsigned |ong size),
void (*p_free) (idl _void p_t ptr),
idl_void p t (**p_p_old_allocate)(unsigned | ong size),
void (**p_p old free)(idl _void p t ptr))

Therpc_sm swap_client_al l oc_free() routine exchanges the current allocate
and free mechanisms used by the client stubs for routines supplied by the caller. The
input parameters, p_al | ocat e and p_f r ee, specify new memory allocation and free
routines. The output parameters, p_p_ol d_al I ocate and p_p_ol d_fr ee return the
memory allocation and free routinesin use before the call to this routine.

When acallableroutineisan RPC client, it may need to ensure which allocate and free
routines are used, despite the mechanism its caller had selected. This routine allows
scoped replacement of the allocation/free mechanism to allow this.

The output parameter, st at us, returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meaningsinclude:

rpc_s_ok
Success.

rpc_s_no_nenory
Insufficient memory available to set up necessary data structures.

BEA Tuxedo C Function Reference

rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3¢)

Return Values

See Also

rpc_ss_swap_client_all oc_free isthe exception-returning version of this
function and hasno st at us output parameter. The following exceptionsare raised by
thisroutine.

rpc_x_no_nenory
Insufficient memory available to set up necessary data structures.

A thread in amultithreaded application may issue acall to
rpc_smswap_client_alloc_free() orrpc_ss swap_client_alloc_free()
while running in any context state, including TPl NVALI DCONTEXT.

None.

rpc_smallocate, rpc_ss_allocate(3c),rpc_smfree, rpc_ss _free(3c),
rpc_smset _client_alloc _free, rpc_ss_set _client_alloc_free(3c)

Programming a BEA Tuxedo Application Using TXRPC

BEA Tuxedo C Function Reference 87

Section 3c - C Functions

setlocale(3¢)

88

Name

Synopsis

Description

set | ocal e() - modify and query a program’s locale

#i ncl ude <l ocal e. h>
char *setlocale (int category, const char *l|ocal e);

set | ocal e() selects the appropriate piece of the program’s locale as specified by the
cat egory and/ ocal e arguments. Theat egor y argument may have the following
values:

LC_CTYPE
LC_NUVERI C
LC TIME
LC_COLLATE
LC_MONETARY
LC_MESSAGES
LC ALL

These names are defined in theeal e. h header file. For the BEA Tuxedo system
compatibility functionsset | ocal e() allows only a singlé ocal e for all categories.
Setting any category is treated the sameag\l L, which hames the program’s entire
locale.

A value of “C” for I ocal e specifies the default environment.

A value of " forl ocal e specifies that the locale should be taken from an environment
variable. The environment varialleNG is checked for a locale.

At program startup, the equivalent of
setl ocal e(LC ALL, "C")

is executed. This has the effect of initializing each category to the locale described b
the environment “C".

If a pointer to a string is given fobcal e, set| ocal e() attempts to set the locale for

all the categories tbocal e. Thel ocal e must be a simple locale, consisting of a
single locale. I&et | ocal e() fails to set the locale for any category, a null pointer is
returned and the program’s locale for all categories is not changed. Otherwise, local
is returned.

BEA Tuxedo C Function Reference

setlocale(3c¢)

A null pointer for / ocal e causesset | ocal e() to return the current local e associated
with the cat egor y. The program’s locale is not changed.

A thread in a multithreaded application may issue a calétdocal e() while
running in any context state, includimgl NVALI DCONTEXT.

Files $TUXDI R/ |1 ocal e/ ¢ LANG NFO - ti me and noney dat abase for the Clocale
$TUXDI R/ 1 ocal e/ I ocal e/ * - | ocale specific information for each
local e $TUXDI R/ | ocal e/ O * _CAT - text messages for the C locale

Note A composite locale is not supported. A composite locale is a string beginning with a
“/", followed by the locale of each category, separated by a “/”.

See Also nkl angi nfo(1)

cti me(3c),ct ype(3c),get dat e(3c),! ocal econv(3c),strfti me(3c),strtod(3c),
printf (3S),environ(5) in a UNIX system reference manual

BEA Tuxedo C Function Reference 89

Section 3c - C Functions

strerror(3¢)

Name

Synopsis

Description

See Also

strerror () - get error message string

#i nclude <string. h>
char *strerror (int errnum;

strerror mapsthe error number in er r numto an error message string, and returns a
pointer to that string. str er r or usesthe same set of error messages as perr or . The
returned string should not be overwritten.

A thread in amultithreaded application may issueacall tost rer r or () whilerunning
in any context state, including TPI NVALI DCONTEXT.

per ror (3) in aUNIX system reference manual

90 BEA Tuxedo C Function Reference

strftime(3c)

strftime(3¢)

Name strftime() - convert date and timeto string
Synopsis #i ncl ude <time. h>

size t *strftime (char *s, size_t nmaxsize, const char *format, const
struct tm*tinmeptr);

Description strftime() placescharactersintothearray pointedto by s as controlled by the string
pointed to by f or mat . The f or mat string consists of zero or more directives and
ordinary characters. All ordinary characters (including the terminating null character)
are copied unchanged into the array. For st rf ti me(), ho more than naxsi ze
characters are placed into the array.

If for mat is (char *)0, then the locale’'s default format is used. The default format is
the same as%" .

Each directive is replaced by appropriate characters as described in the following list.
The appropriate characters are determined bych&l ME category of the program’s
locale and by the values contained in the structure pointed#toneyt r.

%% sameas%

% locale's abbreviated weekday name

%A locale’s full weekday name

% locale’s abbreviated month name

%8B locale’s full month name

% locale’s appropriate date and time representation

%C locale’s date and time representation as produced by date(1)

%l day of month (01-31)

% date as %m/%d/%y

% day of month (1-31; single digits are preceded by a blank)

BEA Tuxedo C Function Reference 91

Section 3c - C Functions

92

%h

locale’s abbreviated month name.

%

hour (00 - 23)

%

hour (01-12)

%

day number of year (001 - 366)

%n

month number (01 -12)

M

minute (00 - 59)

%0

same as \

%

locale’s equivalent of either AM or PM

%

time as %I:%M:%S [AM|PM]

"R

time as %H:%M

%5

seconds (00 - 61), allows for leap seconds

%

insert a tab

o

time as %H:%M:%S

%)

week number of year (00 - 53), Sunday is the first day of week 1

%

weekday number (0 - 6), Sunday =0

o

week number of year (00 - 53), Monday is the first day of week 1

U

locale’s appropriate date representation

wX

locale’s appropriate time representation

%

year within century (00 - 99)

W

year as ccyy (for example, 1986)

w

timezone name or no characters if no timezone exists

The difference between %J and vamMiesin which day is counted asthefirst of the week.
Week number 01 isthefirst week in January starting with a Sunday for %J or aMonday
for vav Week number 00 contains those days before the first Sunday or Monday in
January for 94J and %N respectively.

BEA Tuxedo C Function Reference

strftime(3c)

Selecting the
Output
Language
Timezone

Examples

Files

See Also

If the total number of resulting characters including the terminating null character is

not morethan naxsi ze,strfti me(), returnsthe number of charactersplaced into the
array pointed to by s not including the terminating null character. Otherwise, zerois

returned and the contents of the array are indeterminate.

A thread in amultithreaded application may issueacall tostrfti me() whilerunning
in any context state, including TP NVALI DCONTEXT.

By default, the output of st rf ti me(), appearsin US English. The user can request
that the output of strftime() bein aspecific language by setting the / ocal e for
category LC TIMEiInset!| ocal e().

The timezone is taken from the environment variable Tz. See ct i me(3c) for a
description of Tz.

Theexampleillustratesthe useof st rf t i me() . It showswhat thestringinst r would
look like if the structure pointed to by ¢ npt r contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "% % % %", tnptr)
Thisresultsin str containing "Thursday Aug 28 240".

$TUXDI R/ | ocal e/ I ocal e/l LANG NFO- file containing compiled |ocal e-specific date
and time information

nkl angi nfo(1),setl ocal e(3c)

BEA Tuxedo C Function Reference 93

Section 3c - C Functions

tpabort(3¢)

Name

Synopsis

Description

Return Values

94

Errors

t pabor t () - routine for aborting current transaction

#i nclude <atm . h>
int tpabort(long flags)

t pabor t () signifiesthe abnormal end of atransaction. When this call returns, all
changes made to resources during the transaction are undone. Like t pcommi t (), this
function can becalled only by theinitiator of atransaction. Participants (that is, service
routines) can expresstheir desireto have atransaction aborted by calling t pr et ur n()
with TPFAI L.

If t pabor t () iscalled while call descriptors exist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated

with the caller’s transaction are no longer valid. Call descriptors not associated with
the caller’s transaction remain valid.

For each open connection to a conversational server in transactiont mpaioe, t ()

will send aTPEV_DI SCONI MMevent to the server, whether or not the server has control
of a connection. Connections opened befagigegi n() or with theTPNOTRAN flag

(that is, not in transaction mode) are not affected.

Currently, the sole argument to theabor t () function,f/ ags, is reserved for future
use and should be set to 0.

In a multithreaded application, a thread inTPeNVALI DCONTEXT state is not allowed
to issue a call topabort ().

Upon failure t pabort () returns -1 and setgerrno() to indicate the error
condition.

Upon failure t pabort () setst perrno() to one of the following values.

[TPEI NVAL]
f 1 ags is not equal to 0. The caller’s transaction is not affected.

[TPEHEUR STI (]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

BEA Tuxedo C Function Reference

tpabort(3c¢)

Notices

See Also

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have

been heuristically completed.

[TPEPROTC]
t pabort () was called improperly (for example, by a participant).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pcomi t (), and t pabort () to delineate a BEA Tuxedo
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () ort pabort ().

t pbegin(3c),tpcomit(3c),tpgetlev(3c)

BEA Tuxedo C Function Reference 95

Section 3c - C Functions

tpacall(3¢)

Name

Synopsis

Description

t pacal | () - routine for sending a service request

#i nclude <atm . h>
int tpacall (char *svc, char *data, long len, long flags)

t pacal | () sendsarequest message to the service named by svc. Therequest is sent
out at the priority defined for svc unless overridden by a previous call to t pspri () .
If dat aisnon-NULL, it must point to abuffer previously allocated by t pal I oc() and
I en should specify the amount of datain the buffer that should be sent. Note that if
dat a pointsto a buffer of atype that does not require alength to be specified, (for
example, an FM_ fielded buffer), then / en isignored (and may be 0). If dat aisNULL,
I enisignored and arequest is sent with no data portion. Thetype and sub-typeof dat a
must match one of the types and sub-types recognized by svc. Note that for each
reguest sent while in transaction mode, a corresponding reply must ultimately be
received.

Thefollowingisalist of valid f I ags.

TPNOTRAN
If the caller isin transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller's transaction. I&vc
belongs to a server that does not support transactions, then this flag must b
set when the caller is in transaction mode. Notedhamay still be invoked
in transaction mode but it will not be the same transactisnc anay have as
a configuration attribute that it is automatically invoked in transaction mode.
A caller in transaction mode that sets this flag is still subject to the transaction
timeout (and no other). If a service fails that was invoked with this flag, the
caller’s transaction is not affected.

TPNOREPLY
Informs tpacall() that a reply is not expected. WRBROREPLY is set, the
function returns 0 on success, where 0 is an invalid descriptor. When the
caller is in transaction mode, this setting cannot be used UHRSERAN is
also set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). VWIR&IBLOCK is

96 BEA Tuxedo C Function Reference

tpacall(3¢)

Return Values

Errors

not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call is reissued.

In amultithreaded application, athread in the TPl NVALI DCONTEXT stateis not allowed
toissueacal totpacal | ().

Upon successful completion, t pacal | () returns a descriptor that can be used to
receive the reply of the request sent.

Uponfailure, t pacal | () returnsavalueof -1 and setst per r no() toindicatetheerror
condition.

Upon failure, t pacal | () setst perrno() toone of the following values. (Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampdec is NULL, dat a does not
point to space allocated witlpal | oc(), orf/ ags are invalid).

[TPENCENT]
Cannot send tevc because it does not exist or is a conversational service.

[TPEI TYPE]
The type and sub-type @kt a is not one of the allowed types and sub-types
thatsvc accepts.

[TPELI M T]
The caller’'s request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN]
svc belongs to a server that does not support transactiorHOURAN was
not set.

BEA Tuxedo C Function Reference 97

Section 3c - C Functions

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. If atransaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is arequest
that does not block, expects no reply, and is not sent on behalf of the caller’s
transaction (that is, tpacall() witfPNOTRAN, TPNOBLOCK, andTPNOREPLY
set).

[TPEBLOCK]
A blocking condition exists antPNOBLOCK was specified.

[TPGOTSI G|
A signal was received anmPSI GRSTRT was not specified.

[TPEPROTC)
t pacal | () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEGCS]
An operating system error has occurred. If a message queue on a remote
location is filled, TPEGS may be returned eventipacal | () returned
successfully.

See Also tpalloc(3c),tpcall(3c),tpcancel (3c),tpgetrply(3c),tpgprio(3c),
t psprio(3c)

98 BEA Tuxedo C Function Reference

tpadmcall(3c)

tpadmcall(3¢)

Name

Synopsis

Description

t padntal | () - administer unbooted application

#i ncl ude <atm . h>
#i ncl ude <fm 32. h>
#i ncl ude <tpadm h>

int tpadntal |l (FBFR32 *inbuf, FBFR32 **outbuf, |ong flags)

t padntal | () isused to retrieve and update attributes of an unbooted application. It
may also be used in an active application to perform direct retrievals of alimited set of
attributes without requiring communication to an external process. This function
provides sufficient capability such that complete system configuration and
administration can take place through system provided interface routines.

i nbuf isapointer to an FML 32 buffer previously allocated with t pal | oc() that
contains the desired administrative operation and its parameters.

out buf isthe address of apointer to the FML 32 buffer that should contain the results.
out buf must point to an FML 32 buffer originally allocated by t pal | oc() . If thesame
buffer isto be used for both sending and receiving, out buf should be set to the address
of i nbuf .

Currently, t padntal | () 's last argumentf/ ags, is reserved for future use and must
be setto 0.

M B(5) should be consulted for generic information on construction of administrative
requestsTM M B(5) andAPPQ M B(5) should be consulted for information on the
classes that are accessible throughadncal | () .

There are four modes in which callstfeadntal | () can be made.

Mode 1: Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The only
operations permitted are to SET a NEW T_DOMAIN class object, thus
defining an initial configuration for the application, and to GET and SET
objects of the classes definedaPPQ M B() .

Mode 2: Unbooted, Configured Application:
The caller is assigned administrator or other privileges based on a comparison
of their UID/GID to that defined in the configuration for the administrator on

BEA Tuxedo C Function Reference 99

Section 3c - C Functions

Environment

Variables

Notices

Return Values

100

Errors

Mode 3:

Mode 4:

thelocal system. The caller may GET and SET any attributesfor any classin
TM M B() and APPQ M B() for whichthey havethe appropriate permissions.
Note that some classes contain only attributes that are inaccessible in an
unbooted application and attempts to access these classes will fail.

Booted Application, Unattached Process:

Thecaller isassigned administrator or other privileges based on acomparison
of their UID/GID to that defined in the configuration for the administrator on
the local system. The caller may GET any attributes for any classin

TM M B() for which they have the appropriate permissions. Similarly, the
caller may GET and SET any attributesfor any classin APPQ M B(), subject
to class-specific restrictions. Attributes accessible only while ACTIVE will
not be returned.

Booted Application, Attached Process:

Permissions are determined from the authentication key assigned at

t pi nit () time. Thecaller may GET any attributesfor any classinTM M B()
for which they have the appropriate permissions. Additionally, the caller may
GET and SET any attributes for any classin APPQ M B(), subject to
class-specific restrictions.

Access to and update of binary BEA Tuxedo system application configuration files
through this interface routine is controlled through the use of UNIX System
permissions on directory names and filenames.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot padntal I ().

Thefollowing environment variables must be set prior to calling this routine.

TUXCONFI G

Name of the file or device on which the binary BEA Tuxedo system
configuration file for this application is or should be stored.

Use of the TA_OCCURS attribute on GET reguests is not supported when using
t padncal | () . GETNEXT requests are not supported when using t padncal | () .

t padneal | () returns 0 on success and -1 on failure.

Upon failure, t padncal | () setst perrno() to one of the following values.

BEA Tuxedo C Function Reference

tpadmcall(3c)

Interoperability

Portability

Files

See Also

Note: Except for TPEI NVAL, the caller’s output buffegut buf , will be modified to
includeTA_ERROR, TA_STATUS, and possiblyfA_BADFLD attributes to further
qualify the error condition. Se& B(5) ,TM_ M B(5) , andAPPQ M B(5) foran
explanation of possible error codes returned in this fashion.

[TPEI NVAL]
Invalid arguments were specified. Thieags value is invalid ov nbuf or
out buf are not pointers to typed buffers of type “FML32.”

[TPEM B]
The administrative request faileaut buf is updated and returned to the
caller with FML32 fields indicating the cause of the error as is discussed in
M B(5) andTM M B(5) .

[TPEPROTC)
t padntal | () was called improperly.

[TPERELEASE]
t padntal | () was called with th@UXCONFI Genvironment variable pointing
to a different release version configuration file.

[TPECS]
An operating system error has occurred. A numeric value representing the
system call that failed is availabletnni xerr .

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written touser | og() .

This interface supports access and update to the local configuration file and bulletin
board only; therefore, there are no interoperability concerns.

This interface is available only on UNIX System sites running BEA Tuxedo Release
5.0 or later.

${TUXDIR}/lib/libtmb.a, ${TUXDIR}/1ib/libgm a,
${TUXDIR}/ lib/libtmb.so.<rel> ${TUXDIR}/Ilib/libgmso. <rel >,
${TUXDIR}/1ib/libtmb.lib,${TUXDIR/lib/libgmlib

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/1ib -ltnid -1 gm

ACL_M B(5), APPQ M B(5), EVENT_M B(5), M B(5), TM M B(5) , Ws_M B(5)
Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time

BEA Tuxedo C Function Reference 101

Section 3c - C Functions

tpadvertise(3¢)

Name

Synopsis

Description

Return Values

102

Errors

t padverti se() - routine for advertising a service name

#i nclude <atm . h>
int tpadvertise(char *svcnane, void (*func)(TPSVC NFO *))

t padverti se() allowsaserver to advertise the services that it offers. By default, a
server's services are advertised when it is booted and unadvertised when it is
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisemen
of all servers sharing an MSSQ set.

t padverti se() advertisesvcnane for the server (or the set of servers sharing the
caller's MSSQ set)svcnane should be 15 characters or less, but cannot be NULL or
the NULL string (*”). (See *SERVICES section bBBCONFI G 5) .)f unc is the

address of a BEA Tuxedo system service function. This function will be invoked
whenever a request fewcnane is received by the servetunc cannot be NULL.
Explicitly specified function names (seer vopt s(5)) can be up to 128 characters
long. Names longer than 15 characters are accepted and truncated to 15 characters
Users should make sure that truncated names do not match other service names.

If svenane is already advertised for the server aoedc matches its current function,
thent padver ti se() returns success (this includes truncated names that match
already advertised names). Howevekiitnane is already advertised for the server
butf unc does not match its current function, then an error is returned (this can happe
if truncated names match already advertised names).

Service hames starting with dot (.) are reserved for administrative services. An error
will be returned if an application attempts to advertise one of these services.

Upon failure t padverti se() returns -1 and setper rno() to indicate the error
condition.

Upon failure t padverti se() setst perrno() to one of the following values.

[TPEI NVAL]
svenane is NULL or the NULL string (“”),or begins with a “.” ofunc is
NULL.

BEA Tuxedo C Function Reference

tpadvertise(3c)

See Also

[TPELI M T]
svcnane cannot be advertised because of space limitations. (See
MAXSERVI CES in the RESOURCES section of UBBCONFI (5) .)

[TPEMATCH]
svenane is already advertised for the server but with afunction other than
f unc. Although the function fails, svcname remains advertised with its
current function (that is, f unc does not replace the current function).

[TPEPROTC)
t padvertise() wascalledinanimproper context (for example, by aclient).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

tpservice(3c),tpunadverti se(3c)

BEA Tuxedo C Function Reference 103

Section 3c - C Functions

tpalloc(3¢)

Name

Synopsis

Description

Return Values

104

Errors

t pal | oc() - routine for allocating typed buffers

#i nclude <atm . h>
char * tpalloc(char *type, char *subtype, |ong size)

t pal | oc() returnsapointer to abuffer of type t ype. Depending on the type of buffer,
both subt ype and si ze are optional. The BEA Tuxedo system provides a variety of
typed buffers, and applications are free to add their own buffer types. Consult

t uxt ypes(5) for more details.

If subt ypeisnon-NULL intntype_swfor aparticular buffer type, then subt ype
must be specified when t pal | oc() iscalled. The allocated buffer will be at least as
large asthelarger of si ze and df | t si ze, wheredf | t si ze isthe default buffer size
specified int mt ype_swfor the particular buffer type. For buffer type STRI NG the
minimum is 512 bytes; for buffer types FM. and VI Ewthe minimum is 1024 bytes.

Note that only the first eight bytes of ¢ ype and the first 16 bytes of subt ype are
significant.

Because some buffer types require initialization before they can be used, t pal | oc()

initializes abuffer (ina BEA Tuxedo system-specific manner) after it is allocated and
beforeit is returned. Thus, the buffer returned to the caller is ready for use. Note that
unless theinitialization routine cleared the buffer, the buffer is not initialized to zeros
by t pal 1 oc() .

A thread in a multithreaded application may issueacall to t pal I oc() while running
in any context state, including TPI NVALI DCONTEXT.

Upon successful completion, t pal | oc() returns apointer to a buffer of the
appropriate type aligned on along word; otherwise, it returns NULL and sets
t perrno() to indicate the condition.

Upon failure, t pal | oc() setst perrno() to one of the following values.

[TPEI NVAL]
Invalid arguments were given (for example, t ype isNULL).

[TPENCENT]
No entry int nmt ype_swmatches t ype and, if non-NULL, subt ype.

BEA Tuxedo C Function Reference

tpalloc(3c¢)

Usage

See Also

[TPEPROTC]
tpal l oc() wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

If buffer initialization fails, the allocated buffer isfreed andt pal | oc() failsreturning
NULL.

Thisfunction should not be used in concert withmal | oc() ,real | oc(),orfree() in
the Clibrary (for example, abuffer allocated witht pal | oc() should not befreed with
free()).

Two buffer types are supported by any compliant implementation of the BEA Tuxedo
system extension. Details are in the Introduction to the C Language
Application-Transaction Monitor Interface.

tpfree(3c),tpreall oc(3c),tptypes(3c)

BEA Tuxedo C Function Reference 105

Section 3c - C Functions

tpbegin(3¢)

Name

Synopsis

Description

Return Values

t pbegi n() - routine for beginning a transaction

#i nclude <atm . h>
i nt tpbegin(unsigned long tinmeout, |long flags)

A transaction in the BEA Tuxedo system is used to defineasinglelogical unit of work

that either wholly succeeds or has no effect whatsoever. A transaction allows work

being performed in many processes, at possibly different sites, to be treated as an

atomic unit of work. The initiator of atransaction usest pbegi n() and either

t pcommi t () ortpabort () to delineate the operations within atransaction. Once

t pbegi n() iscaled, communication with any other program can place the latter (of
necessity, a server) in “transaction mode” (that is, the server’'s work becomes part o
the transaction). Programs that join a transaction are called participants. A transactic
always has one initiator and can have several participants. Only the initiator of a
transaction can catllpconmmi t () ortpabort (). Participants can influence the

outcome of a transaction by the return values(s) they use when they call

t preturn(). Once in transaction mode, any service requests made to servers are
processed on behalf of the transaction (unless the requester explicitly specifies
otherwise).

Note that if a program starts a transaction while it has any open connections that it
initiated to conversational servers, these connections will not be upgraded to
transaction mode. Itis as if tieNOTRANflag had been specified on thgconnect ()

call.

t pbegi n() 's firstarguments i neout , specifies that the transaction should be allowed
at leastt i neout seconds before timing out. Once a transaction times out it must be
marked abort-only. If i neout is 0, then the transaction is given the maximum number
of seconds allowed by the system before timing out (that is, the timeout value equal
the maximum value for an unsigned long as defined by the system).

Currently,t pbegi n()'s second argument/ ags, is reserved for future use and must
be setto 0.

In a multithreaded application, a thread inTPeNVALI DCONTEXT state is not allowed
to issue a call topbegi n() .

Upon failure t pbegi n() returns -1 and setgerrno() to indicate the error
condition.

106 BEA Tuxedo C Function Reference

tpbegin(3¢)

Errors

Notices

See Also

Upon failure, t pbegi n() setst perrno() to one of the following values.

[TPEI NVAL]
f1 ags isnot equal to O.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occurred
starting the transaction.

[TPEPROTC)
t pbegi n() wascalled in an improper context (for example, the caler is
already in transaction mode).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pcommi t (), and t pabort () to delineate a BEA Tuxedo
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () ort pabort (). Seebuil dserver () for details on
linking resource managersthat meet the X A interfaceinto a server such that operations
performed by that resource manager are part of a BEA Tuxedo system transaction.

t pabort (3c),tpcomit(3c),tpgetlev(3c),tpscnt(3c)

BEA Tuxedo C Function Reference 107

Section 3c - C Functions

tpbroadcast(3¢)

108

Name

Synopsis

Description

t pbr oadcast () - routine to broadcast notification by name
#include <atm . h>

i nt tpbroadcast(char *I md, char *usrname, char *cltnaneg,
char *data, long len, long flags)

t pbr oadcast () allowsaclient or server to send unsolicited messages to registered
clientswithin the system. The target client set consists of those clients matching
identifiers passed to t pbr oadcast () . Wildcards can be used in specifying identifiers.

I m d, usr nane, and ¢l t nane arelogical identifiers used to select the target client set.
A NULL value for any argument constitutes awildcard for that argument. A wildcard
argument matches al client identifiersfor that field. A O-length string for any
argument matches only 0-length client identifiers. Each identifier must meet the size
restrictions defined for the system to be considered valid, that is, each identifier must
be between 0 and MAXTI DENT charactersin length.

The data portion of the request is pointed to by dat a, a buffer previously allocated by
t pal | oc() . I en specifies how much of dat a to send. Note that if dat a pointsto a
buffer type that does not require alength to be specified (for example, an FM fielded
buffer), then I en isignored (and may be 0). Also, dat a may be NULL, in which case
I en isignored. The buffer passes through the typed buffer switch routines just as any
other outgoing or incoming message would; for example, encode/decode are
performed automatically.

Thefollowingisalist of valid f I ags.

TPNOBLOCK
Therequest isnot sent if ablocking condition exists (for example, theinternal
buffers into which the message is transferred are full).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call isreissued. Upon successful return fromt pbr oadcast () , the message

BEA Tuxedo C Function Reference

tpbroadcast(3c¢)

Return Values

Errors

Portability

has been delivered to the system for forwarding to the selected clients.
t pbroadcast () does not wait for the message to be delivered to each
selected client.

Inamultithreaded application, athread inthe TPI NVALI DCONTEXT stateisnot
alowed toissue acall tot pbroadcast ().

Upon failure, t pbr oadcast () returns-1 and setst perr no() to indicate the error
condition.

Upon failure, t pbr oadcast () sends no broadcast messages to application clients and
setst per rno() to one of the following values.

[TPEI NVAL]
Invalid arguments were given (for example, identifierstoo long or invalid
flags). Notethat use of anillegal LM Dwill causet pbr oadcast () tofail and
return TPEI NVAL. However, non-existent user or client names will simply
successfully broadcast to no one.

[TPETI ME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
t pbroadcast () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

Theinterfaces described int pnot i fy(3c) are supported on native site UNIX-based
processors. In addition, the routines t pbr oadcast () andt pchkunsol () aswell as
the function t pset unsol () are supported on UNIX and MS-DOS workstation
processors.

BEA Tuxedo C Function Reference 109

Section 3c - C Functions

110

Usage

See Also

Clients that select signal-based notification may not be signal-able by the system due
to signd restrictions. When this occurs, the system generates alog message that it is
switching notification for the selected client to dip-in and the client is notified then and
thereafter via dip-in notification. (See the description of the RESOURCES NOTI FY
parameter in UBBCONFI () for adetailed discussion of notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification
isalways consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator isidentified as part of the configuration for
the application.

If signal-based notification is selected for a client, then certain ATMI calls can fail,
returning TPGOTSI Gdue to receipt of an unsolicited message if TPSI GRSTRT is hot
specified. See UBBCONFI G 5) andt pi ni t (3c) for more information on notification
method selection.

tpalloc(3c),tpinit(3c),tpnotify(3c),tpterm 3c), UBBCONFI 4 5)

BEA Tuxedo C Function Reference

tpcall(3¢)

tpcall(3¢)

Name tpcall () - routinefor sending service request and awaiting its reply

Synopsis int tpcall(char *svc, char *idata, long ilen, char **odata, |ong \
*olen, long flags)

Description t pcal | () sendsarequest and synchronously awaitsitsreply. A call to thisfunctionis
thesame ascalling t pacal | () immediately followed by t pget rpl y() .tpcal I ()
sends a request to the service named by svc. The request is sent out at the priority
defined for svc unless overridden by aprevious call tot pspri () . The data portion of
arequest is pointed to by i dat a, abuffer previously alocated by t pal | oc().i/en
specifies how much of i dat a to send. Note that if i dat a pointsto a buffer of atype
that does not require alength to be specified, (for example, an FM_ fiel ded buffer), then
il enisignored (and may be 0). Also, i dat a may be NULL, in which casei ! enis
ignored. The type and sub-type of i dat a must match one of the types and sub-types
recognized by svc.

odat a isthe address of a pointer to the buffer where areply isread into, and o/ en
pointsto the length of that reply. * odat a must point to abuffer originally allocated by
tpal I oc() . If the same buffer is to be used for both sending and receiving, odat a
should be set to the address of j dat a. FML and FML32 buffers often assume a minimum
size of 4096 bytes; if thereply islarger than 4096, the size of the buffer isincreased to
asize large enough to accommodate the data being returned. Also, if i dat a and

* odat awereequal whent pcal | () wasinvoked, and * odat aischanged, then i dat a
no longer points to avalid address. Using the old address can |ead to data corruption
or process exceptions.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive a buffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (and

how much) areply buffer changed in size, compareitstotal sizebeforet pget r pl y()
was issued with */ en. See “Introduction to the C Language Application-Transaction
Monitor Interface” for more information about buffer management.

BEA Tuxedo C Function Reference 111

Section 3c - C Functions

112

If *ol en is 0 upon return, then the reply has no data portion and neither * odat a nor
the buffer it points to were modified. It is an error for * odat a or ol ento be NULL.

Thefollowingisalist of valid f I ags.

TPNOTRAN
If the caller isin transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller’s transaction. Note that
svc may still be invoked in transaction mode but it will not be the same
transaction: &vc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
sets this flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller’s transaction is not
affected.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed
to by *odat a, then *odat a's buffer type changes to the received buffer’s type
so long as the receiver recognizes the incoming buffer type. When this flag is
set, the type of the buffer pointed to lytat a is not allowed to change. That
is, the type and sub-type of the received buffer must match the type and
sub-type of the buffer pointed to bydat a.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). Note that this flag
applies only to the send portiontqfcal | () : the function may block waiting
for the reply. WhermPNOBLOCK is not specified and a blocking condition
exists, the caller blocks until the condition subsides or a timeout occurs (eithel
transaction or blocking timeout).

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. However, if the caller is in transaction
mode, this flag has no effect; it is subject to the transaction timeout limit.
Transaction timeouts may still occur.

TPSI GRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued.

In a multithreaded application, a thread inTPeNVALI DCONTEXT state is not allowed
to issue a call topcal | ().

BEA Tuxedo C Function Reference

tpcall(3¢)

Return Values

Errors

Upon successful return fromt pcal | () or upon return wheret per rno() isset to
TPESVCFAI L, t pur code() contains an application defined value that was sent as part
of tpreturn().

Upon failure, t pcal | () returns-1and setst per rno() toindicate the error condition.
If acall failswith aparticular t perrno() value, asubsequent call to
tperrordetail (), withnointermediate ATMI cals, may provide more detailed
information about the generated error. Refer to the t perr ordet ai | (3c) reference
page for more information.

Upon failure, t pcal | () setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampdec is NULL or f/ ags are
invalid).

[TPENCENT]
Cannot send tevc because it does not exist, or it is a conversational service,
or the name provided begins with a dot (.).

[TPEI TYPE]
The type and sub-type étiat a is not one of the allowed types and sub-types
thatsvc accepts.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set irnf/ ags and the type and sub-type afdat a do not
match the type and sub-type of the reply sent by the service. Neitdera;
its contents, nord/ en is changed. If the service request was made on behalf
of the caller’s current transaction, then the transaction is marked abort-only
since the reply is discarded.

[TPETRAN]
svc belongs to a server that does not support transactiorPHOURAN was
not set.

[TPETI ME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neitleNOBLOCK nor TPNOTI ME was
specified. In either case, neitherdat a, its contents, nordy en is changed.
If a transaction timeout occurred, then with one exception, any attempts to

BEA Tuxedo C Function Reference 113

Section 3c - C Functions

114

send new requests or receive outstanding replieswill fail with TPETI ME until
the transaction has been aborted. The exception is a request that does not
block, expects no reply, and is not sent on behalf of the caller’s transaction
(that is, tpacall withfPNOTRAN, TPNOBLOCK, andTPNOREPLY set).

[TPESVCFAI L]

The service routine sending the caller’s reply calledet ur n() with

TPFAI L. This is an application-level failure. The contents of the service’s
reply, if one was sent, is available in the buffer pointed todaat a. If the
service request was made on behalf of the caller’s current transaction, then th
transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the
transaction is aborted are calls fmcal | () with TPNOREPLY, TPNOTRAN,
andTPNOBLOCK set.

[TPESVCERR]

A service routine encountered an error eithearpinet ur n(3c) or

t pf orwar d(3c) (for example, bad arguments were passed). No reply data is
returned when this error occurs (that is, neithetat a, its contents, nor

*ol en is changed). If the service request was made on behalf of the caller’s
transaction (that iS;PNOTRAN was not set), then the transaction is marked
abort-only. Note that regardless of whether the transaction has timed out, the
only valid communications before the transaction is aborted are calls to

t pacal | () with TPNOREPLY, TPNOTRAN, andTPNOBLOCK set. If either

SVCTI MEQUT in the UBBCONFI Gfile or TA_SVCTI MEQUT in theTM M B is
non-zero,TPESVCERR is returned when a service timeout occurs.

[TPEBLOCK]

A blocking condition was found on the send call aRNOBLOCK was
specified.

[TPGOTSI G

A signal was received anmbSI GRSTRT was not specified.

[TPEPROTC]

tpcal I () was called improperly.

[TPESYSTEM

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

BEA Tuxedo C Function Reference

tpcall(3¢)

[TPECS]
An operating system error has occurred. If a message queue on aremote
location isfilled, TPEOS may be returned even if t pcal | () returned
successfully.

See Also tpacal | (3c),tpalloc(3c),tperrordetail (3c),tpforward(3c),tpfree(3c),
tpgprio(3c),tprealloc(3c),tpreturn(3c),tpsprio(3c),
tpstrerrordetail (3c),tptypes(3c)

BEA Tuxedo C Function Reference 115

Section 3c - C Functions

tpcancel(3¢)

Name tpcancel () - routine for canceling a cal descriptor for outstanding reply

Synopsis #i ncl ude <atmi . h>
int tpcancel (int cd)

Description t pcancel () cancelsacall descriptor, cd, returned by t pacal | () . Itisan error to
attempt to cancel a call descriptor associated with a transaction.

Upon success, cd is no longer valid and any reply received on behalf of cd will be
silently discarded.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pcancel ().

Return Values Upon failure, t pcancel () returns-1and setst perrno() toindicate the error
condition.

Errors Upon failure, t pcancel () setst perrno() to one of the following values.

[TPEBADDESC]
cd isaninvalid descriptor.

[TPETRAN]
cd() is associated with the caller’s transactioncd remains valid and the
caller’s current transaction is not affected.

[TPEPROTC)
t pcancel () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEGCS]
An operating system error has occurred.

See Also tpacal | (3c)

116 BEA Tuxedo C Function Reference

tpchkauth(3c¢)

tpchkauth(3¢)

Name

Synopsis

Description

Return Values

Errors

Interoperability

t pchkaut h() - routine for checking if authentication required to join an application
#i ncl ude <atni. h>
int tpchkaut h(void)

t pchkaut h() checksif authentication is required by the application configuration.
Thisistypically used by application clients prior to calling t pi ni t () to determineif
apassword should be obtained from the user.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacal tot pchkaut h().

Upon success, t pchkaut h() returns one of the following non-negative values.

TPNQAUTH
Indicates that no authentication is required.

TPSYSAUTH
Indicates that system authentication only is required.

TPAPPAUTH
Indicates that both system and application specific authentication are
required.

Upon failure, t pchkaut h() returns-1and setst perrno() to indicate the error
condition.

Upon failure, t pchkaut h() setst perrno() to one of the following values.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

t pchkaut h() isavailable only on sites running Release 4.2 or later.

BEA Tuxedo C Function Reference 117

Section 3c - C Functions

Portability = The interfaces described in t pchkaut h(3c) are supported on UNIX, Windows, and
MS-DOS operating systems.

See Also tpinit(3c)

118 BEA Tuxedo C Function Reference

tpchkunsol(3c¢)

tpchkunsol(3¢)

Name

Synopsis

Description

Return Values

Errors

Portability

t pchkunsol () - routine for checking for unsolicited message

#i ncl ude <atni. h>
int tpchkunsol (voi d)

t pchkunsol () isused by aclient to trigger checking for unsolicited messages. Calls
to thisroutine in a client using signal-based notification do nothing and return
immediately. This call has no arguments. Callsto thisroutine can result in calls to an
application-defined unsolicited message handling routine by the BEA Tuxedo system
libraries.

In amultithreaded application, athread in the TPl NVALI DCONTEXT stateis not allowed
toissueacal tot pchkunsol ().

Upon successful completion, t pchkunsol () returns the number of unsolicited
messages dispatched; otherwise it returns-1 and setst per r no() to indicate the error
condition.

Upon failure, t pchkunsol () setst perrno() to one of the following values.

[TPEPROTC]
t pchkunsol () wascalledin animproper context (for example, from within
aserver).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

Theinterfaces described int pnot i fy(3c) are supported on native site UNIX-based
processors. In addition, the routines t pbr oadcast () andt pchkunsol () aswell as
the function t pset unsol () are supported on UNIX and MS-DOS workstation
processors.

BEA Tuxedo C Function Reference 119

Section 3c - C Functions

120

See Also

Clients that select signal-based notification may not be signal-able by the system due
to signd restrictions. When this occurs, the system generates alog message that it is
switching notification for the selected client to dip-in and the client is notified then and
thereafter via dip-in notification. (See the description of the RESOURCES NOTI FY
parameter in UBBCONFI & 5) for a detailed discussion of notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification
isalways consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

The ID for the application administrator isidentified as part of the configuration for
the application.

If signal-based notification is selected for a client, then certain ATMI calls can fail,
returning TPGOTSI Gdue to receipt of an unsolicited message if TPSI GRSTRT is hot
specified. See UBBCONFI G 5) andt pi ni t (3c) for more information on notification
method selection.

t pbroadcast (3c),tpinit(3c),tpnotify(3c),tpsetunsol (3c)

BEA Tuxedo C Function Reference

tpclose(3¢)

tpclose(3¢)

Name

Synopsis

Description

Return Values

Errors

See Also

tpcl ose() - routine for closing a resource manager

#i ncl ude <atni. h>
int tpclose(void)

t pcl ose() tears down the association between the caller and the resource manager
towhichitislinked. Since resource managers differ in their cl ose semantics, the
specific information needed to close a particular resource manager is placed in a
configuration file.

If aresource manager isalready closed (thatis, t pcl ose() iscalled morethan once),
no action istaken and successis returned.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacal tot pcl ose() .

Upon failure, t pcl ose() returns-1 and setst perrno() to indicate the error
condition.

Upon failure, t pcl ose() failsand setst perrno() to one of the following values.

[TPERVERR]
A resource manager failed to close correctly. Moreinformation concerning
thereason aresource manager failed to close can be obtained by interrogating
aresource manager in its own specific manner. Notethat any callsto
determine the exact nature of the error hinder portability.

[TPEPROTC]
t pcl ose() wascalledinanimproper context (for example, whilethe caller
isin transaction mode).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alogfile.

[TPECS]
An operating system error has occurred.

t popen(3c)

BEA Tuxedo C Function Reference 121

Section 3c - C Functions

tpcommit(3¢)

122

Name

Synopsis

Description

t pcommi t () - routine for committing current transaction

#i nclude <atm . h>
int tpconmt(long flags)

t pcommi t () signifiesthe end of atransaction, using a two-phase commit protocol to
coordinate participants. t pcommi t () can be called only by the initiator of a
transaction. If any of the participants cannot commit the transaction (for example, they
cal t pret urn() with TPFAI L), thentheentiretransaction isaborted andt pconmmi t ()
fails. That is, all of the work involved in the transaction is undone. If al participants
agree to commit their portion of the transaction, then this decision is logged to stable
storage and al participants are asked to commit their work.

Depending on the setting of the TP_COVM T_CONTROL characteristic (see

tpscnt (3c)), tpcomi t () can return successfully either after the commit decision
hasbeen logged or after the two-phase commit protocol has completed. If t pcommi t ()
returns after the commit decision has been logged but before the second phase has
completed (TP_CMT_LOGGED), then all participants have agreed to commit the work
they did on behalf of the transaction and should fulfill their promise to commit the
transaction during the second phase. However, becauset pcommi t () isreturning
before the second phase has completed, there is a hazard that one or more of the
participants can heuristically complete their portion of the transaction (in amanner that
isnot consistent with the commit decision) even though the function has returned
sucCess.

If the TP_COWMM T_CONTRQOL characteristic is set such that t pcommi t () returns after
the two-phase commit protocol has completed (TP_CMI_COVPLETE), then its return
value reflects the exact status of the transaction (that is, whether the transaction
heuristically completed or not).

Note that if only a single resource manager is involved in atransaction, then a
one-phase commit is performed (that is, the resource manager is not asked whether or
not it can commit; it is simply told to commit). In this case, the TP_COMM T_CONTROL
characteristic has no bearing and t pconmi t () will return heuristic outcomes if
present.

BEA Tuxedo C Function Reference

tpcommit(3¢)

Return Values

Errors

If t pcommi t () iscalled while call descriptorsexist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated

with the caller’s transaction are no longer valid. Call descriptors not associated with
the caller’s transaction remain valid.

t pcommi t () must be called after all connections associated with the caller’s
transaction are closed (otherwReEABORT is returned, the transaction is aborted and
these connections are disconnected in a disorderly fashion W#thvaDl SCONI MM
event). Connections opened befopbegi n() or with theTPNOTRAN flag (that is,
connections not in transaction mode) are not affected by calfgtomi t () or

t pabort ().

Currently,t pcommi t () 's sole argument,/ ags, is reserved for future use and must be
set to 0.

In a multithreaded application, a thread inTRENVALI DCONTEXT state is not allowed
to issue a call topcommi t () .

Upon failuret pconmi t () returns -1 and setger rno() to indicate the error
condition.

Upon failuret pconmi t () setst perrno() to one of the following values.

[TPEI NVAL]
f1 ags is not equal to 0. The caller’s transaction is not affected.

[TPETI ME]
The transaction timed out and the status of the transaction is unknown (that
is, it can have been either committed or aborted). Note that if the transaction
timed out and its status is known to be aborted, TREABORT is returned.

[TPEABCRT]
The transaction could not commit because either the work performed by the
initiator or by one or more of its participants could not commit. This error is
also returned if pconmi t () is called with outstanding replies or open
conversational connections.

[TPEHEURI STI C]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have
been heuristically completed.

BEA Tuxedo C Function Reference 123

Section 3c - C Functions

124

Notices

See Also

[TPEPROTC)
t pcommi t () was called in an improper context (for example, by a
participant).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

When using t pbegi n(), t pconmi t (), and t pabor t () to delineate aBEA Tuxedo
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () or t pabort (). Seebui | dserver (1) for detailson
linking resource managersthat meet the XA interfaceinto aserver such that operations
performed by that resource manager are part of a BEA Tuxedo system transaction.

t pabort (3c),tpbegin(3c),tpconnect(3c),tpgetlev(3c),tpreturn(3c),
t pscnt (3c¢)

BEA Tuxedo C Function Reference

tpconnect(3¢)

tpconnect(3¢)

Name

Synopsis

Description

t pconnect () - routine for establishing a conversational service connection
#i ncl ude <atm . h>

int tpconnect(char *svc, char *data, long len, long flags)

t pconnect () alowsaprogram to set up ahalf-duplex connection to aconversational
service, sve. The name must be one of the conversational service names posted by a
conversational server.

Aspart of setting up a connection, the caller can pass application defined data to the
listening program. If the caller chooses to pass data, then dat a must point to a buffer
previously allocated by t pal | oc() . I en specifies how much of the buffer to send.
Note that if dat a points to a buffer of atype that does not require alength to be
specified, (for example, an FM fielded buffer), then / en isignored (and may be 0).
Also, dat a can be NULL inwhich case I en isignored (no application datais passed
to the conversationa service). The type and sub-type of dat a must match one of the
types and sub-typesrecognized by svc. dat a and I en are passed to the conversational
serviceviathe TPSVC NFOstructure with which the serviceisinvoked; the service does
not haveto cal t precv() to get the data.

Thefollowingisalist of valid 1 ags.

TPNOTRAN
If the caller isin transaction mode and thisflag is set, then when svc is
invoked, it is not performed on behalf of the caller’s transaction. Note that
svc may still be invoked in transaction mode but it will not be the same
transaction: &vc may have as a configuration attribute that it is

automatically invoked in transaction mode. A caller in transaction mode that
sets this flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller’s transaction is not
affected.

TPSENDONLY

The caller wants the connection to be set up initially such that it can only send
data and the called service can only receive data (that is, the caller initially
has control of the connection). EithERSENDONLY or TPRECVONLY must be
specified.

BEA Tuxedo C Function Reference 125

Section 3c - C Functions

Return Values

126

Errors

TPRECVONLY
The caller wants the connection to be set up initially such that it can only
receive data and the called service can only send data (that is, the service
being called initially has control of the connection). Either TPSENDONLY or
TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking
condition exists (for example, the data buffers through which the message is
sent are full). Note that this flag applies only to the send portion of
t pconnect () ; thefunction may block waiting for an acknowledgement from
the server. When TPNOBLOCK is not specified and ablocking condition exists,
the caller blocks until the condition subsides or a blocking timeout or
transaction timeout occurs.

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted call is
reissued.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pconnect ().

Upon successful completion, t pconnect () returnsadescriptor that isused to refer to
the connection in subsequent calls. Otherwiseiit returns-1 and setst perr no() to
indicate the error condition.

Upon failure, t pconnect () setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampdec is NULL, dat a is
non-NULL and does not point to a buffer allocated pwl | oc(),
TPSENDONLY or TPRECVONLY was not specified ifi/ ags, orf/ ags are
otherwise invalid).

[TPENCENT]
Cannot initiate a connection $owc because it does not exist or is not a
conversational service.

BEA Tuxedo C Function Reference

tpconnect(3¢)

See Also

[TPEI TYPE]
The type and subtype of dat a is not one of the allowed types and subtypes
that svc accepts.

[TPELI M T]
The caller’s request was not sent because the maximum number of
outstanding connections has been reached.

[TPETRAN]

svc belongs to a program that does not support transactiongPangRAN
was not set.

[TPETI ME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neitleNOBLOCK nor TPNOTI ME were
specified. If a transaction timeout occurred, then any attempts to send or
receive messages on any connections or to start a new connection will fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists antPNOBLOCK was specified.

[TPGOTSI G|
A signal was received arPSI GRSTRT was not specified.

[TPEPROTC)
t pconnect () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPECS]
An operating system error has occurred.

tpal I oc(3c),tpdi scon(3c),tprecv(3c),tpsend(3c),tpservice(3c)

BEA Tuxedo C Function Reference 127

Section 3c - C Functions

tpconvert(3¢)

128

Name

Synopsis

Description

t pconvert () - convert structures to/from string representations

#include <atm . h>
#i ncl ude <xa. h>

int tpconvert(char *strrep, char *binrep, |long flags)

t pconvert () convertsthe string representation of interface structures (st r rep) to or
from the binary representation (bi nr ep).

Both the direction of the conversion and the interface structure type are determined
fromthe f 1 ags argument. To convert a structure from binary representation to string
representation, the programmer must set the TPTOSTRI NG hit in f/ ags. To convert a
structure from string to binary the programmer must clear the bit. The following flags
are defined to indicate the particular structure type to be converted; only one may be
specified at atime:

TPCONVCLTI D
Convert CLI ENTI D(seeat mi . h).

TPCONVTRANI D
Convert TPTRANI D (seeat mi . h).

TPCONVXI D
Convert XI D (see xa. h).

For conversions from binary to string representation, st r r ep should be at least
TPCONVMAXSTR characters in length.

Note that unequal string versions of TPTRANI Dand Xl D values may be considered
equal by the systemwhen accessing TM M B(5) classesthat allow thesevaluesaskey
fields (for example, T_TRANSACTI ON or T_ULGG). Therefore, string values for these
data types should not be fabricated or manipulated by application programs.

TM_M B(5) guarantees that only objects matching the global transaction identified by
the string are returned when one of these valuesis used as a key field.

A thread in amultithreaded application may issueacall tot pconvert () while
running in any context state, including TPl NVALI DCONTEXT.

BEA Tuxedo C Function Reference

tpconvert(3¢)

Return Values

Errors

Portability

See Also

Upon failure, t pconvert () returns-1and setst perrno() to indicate the error
condition.

Under the following conditions, t pconvert () failsand setst per rno() to one of the
following values.

[TPEI NVAL]
Invalid arguments were specified. st rrep or bi nrep isaNULL pointer, or
f 1 ags does not indicate exactly one structure type.

[TPECS]
An operating system error has occurred. A numeric value representing the
system call that failed is availablein Uuni xerr .

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

writtento user| og(3c) .

Thisinterfaceis available only on BEA Tuxedo Release 5.0 or later. Thisinterfaceis
available on workstation platforms.

tpresune(3c),tpservice(3c),tpsuspend(3c),tx_info(3c), TM M B(5)

BEA Tuxedo C Function Reference 129

Section 3c - C Functions

tparyptpw(3¢)

Name

Synopsis

Description

Return Values

Errors

t pcrypt pw() - encrypt application password in administrative request

#include <atm . h>
#include <fm 32. h>

int tpcrypt pw FBFR32 *buf)

t pcrypt pw() is used to encrypt the application password stored in an administrative
reguest buffer prior to sending the request for servicing. Application passwords are
stored as string valuesusing the FM L 32 field identifier TA_ PASSWORD. Thisencryption
isnecessary to insure that clear text passwords are not compromised and that
appropriate propagation of the update can take place to all active application sites.
Additional system fields may be added to the callers buffer and existing fields may be
modified to satisfy the request.

A thread in amultithreaded application may issueacall tot pcr ypt pw() while
running in any context state, including TPl NVALI DCONTEXT.

Upon failure, t pcrypt pw() returns-1 and setst per rno() to indicate the error
condition.

Upon failure, t pcrypt pw() setst perrno() to one of the following values.

[TPEI NVAL]
Invalid arguments were specified. The buf valueis NULL, does not point to
aFML 32 typed buffer or appdir could not be determined from theinput buffer
or the environment.

[TPEPERM
The calling process did not have the appropriate permissions necessary to
perform the requested task.

[TPEGCS]
An operating system error has occurred. A numeric value representing the
system call that failed isavailable in Uuni xerr .

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to user | og(3c) .

130 BEA Tuxedo C Function Reference

tpcryptpw(3c)

Portability

Files

See Also

Thisinterfaceis available only on UNIX System sites running BEA Tuxedo Release
5.0 or later. Thisinterface is not available to workstation clients.

${TUXDIR}/lib/libtmb.a ${TUXDIR/lib/libtnib.so.rel
M B(5), TM M B(5)
Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

BEA Tuxedo C Function Reference 131

Section 3c - C Functions

tpdequeue(3¢)

132

Name

Synopsis

Description

t pdequeue() - routine to dequeue a message from a queue

#i nclude <atm . h>
i nt tpdequeue(char *gspace, char *qgnanme, TPQCTL *ctl, char **data,
long *len, long flags)

t pdequeue() takesamessage for processing from the queue named by gnane in the
gspace queue space.

By default, the message at the top of the queueis dequeued. The order of messages on
the queueisdefined when the queueis created. The application can request aparticular
message for dequeuing by specifying its message identifier or correlation identifier
using the ct !/ parameter. ct/ flags can aso be used to indicate that the application
wants to wait for amessage, in the case when a message is not currently available. It
ispossibleto usethe ct | parameter to look at amessage without removing it from the
gueue or changing itsrelative position on the queue. See the section below describing
this parameter.

dat a isthe address of a pointer to the buffer into which a messageisread, and / en
points to the length of that message. * dat a must point to a buffer originally allocated
by t pal I oc() . If amessageislarger than the buffer passed to t pdequeue, the buffer
isincreased in size to accommodate the message. To determine whether a message
buffer changed in size, compareits (total) size before t pdequeue() wasissued with
*] en. If *] en islarger, then the buffer has grown; otherwise, the buffer has not
changed size. Note that * dat a may change for reasons other than the buffer’s size

increased. If ¥ en is 0 upon return, then the message dequeued has no data portion ar

neither *dat a nor the buffer it points to were modified. It is an error faufa or / en
to be NULL.

The message is dequeued in transaction mode if the caller is in transaction mode at

the TPNOTRAN flag is not set. This has the effect thatptiequeue() returns

successfully and the caller’s transaction is committed successfully, then the messag
is removed from the queue. If the caller’s transaction is rolled back either explicitly or
as the result of a transaction timeout or some communication error, then the messa
will be left on the queue (that is, the removal of the message from the queue is also
rolled back). It is not possible to enqueue and dequeue the same message within th

same transaction.

BEA Tuxedo C Function Reference

tpdequeue(3c¢)

The message is not dequeued in transaction mode if either the caller isnot in
transaction mode, or the TPNOTRAN flag is set. When not in transaction mode, if a
communication error or atimeout occurs, the application will not know whether or not
the message was successfully dequeued and the message may be | ost.

Thefollowingisalist of valid 1 ags.

TPNOTRAN
If the caller isin transaction mode and thisflag is set, the message is not
dequeued within the caller’s transaction. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other) when
dequeuing the message. If message dequeuing fails, the caller’s transaction is
not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If this flag is set
and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call fails gyt r no() is set to
TPEBLOCK. If this flag is set and a blocking condition exists because the target
gueue is openegkclusively by another application, the call failger r no()
is set torPEDI AGNOSTI C, and the diagnostic field of tHeQCTL structure is
set toQVESHARE. In the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI).

WhenTPNOBLOCK is not set and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQWAI T option inf/ ags (of theTPQCTL structure) is specified.

TPNOTI ME
Setting this flag signifies that the caller is willing to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPNOCHANGE
When this flag is set, the type of the buffer pointed todwt % is not allowed
to change. By default, if a buffer is received that differs in type from the
buffer pointed to by #at a, then *dat a's buffer type changes to the received
buffer’s type so long as the receiver recognizes the incoming buffer type. That
is, the type and sub-type of the dequeued message must match the type and
sub-type of the buffer pointed to by/4t a.

BEA Tuxedo C Function Reference 133

Section 3c - C Functions

134

Control
Parameter

TPSI GRSTRT
Setting thisflag indicates that any underlying system callsthat areinterrupted
by asignal should be reissued. When thisflag isnot set and asignal interrupts
asystem call, the call failsand setst per r no() to TPGOTSI G.

If t pdequeue() returns successfully, the application can retrieve additional
information about the message using the ct | data structure. The information may
include the message identifier for the dequeued message; a correlation identifier that
should accompany any reply or failure message so that the originator can correlate the
message with the original request; the quality of service the message was delivered
with, the quality of service any replies to the message should be delivered with; the
name of areply queueif areply isdesired; and the name of the fail ure queue on which
the application can queue information regarding failure to dequeue the message. These
are described below.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pdequeue() .

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with dequeuing the message. The 7/ ags element of TPQCTL is
used to indicate what other elements in the structure are valid.

Oninput tot pdequeue() , thefollowing elements may be set in the TPQCTL structure:

I ong flags; /* indicates which of the val ues
* are set */

char nsgi d[32] ; /* I D of message to dequeue */

char corrid[32]; /* correlation identifier of

* nessage to dequeue */

Thefollowing isalist of valid bits for the f I ags parameter controlling input
information for t pdequeue() .

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSG D
Setting this flag requests that the message with the message identifier
specified by ct I —>nsgi d be dequeued. The message identifier may be
acquired by aprior call to t penqueue(3c) . Note that a message identifier
changesif the message has moved from one queue to another. Note also that
the entire 32 bytes of the message identifier val ue are significant, so the value
specified by ct I —>nsgi d must be completely initialized (for example,
padded with null characters).

BEA Tuxedo C Function Reference

tpdequeue(3c¢)

TPQGETBYCORRI D

Setting this flag requests that the message with the correlation identifier
specified by ct I —>corri d be dequeued. The correlation identifier is
specified by the application when enqueuing the message with

t penqueue() . Notethat the entire 32 bytes of the correl ation identifier value
are significant, so the value specified by ct / —>cor ri d must be completely
initialized (for example, padded with null characters).

TPOQMI T

Setting this flag indicates that an error should not be returned if the queueis
empty. Instead, the process should wait until a message isavailable. If

TPQWAI T is set in conjunction with TPQGETBYMSG D or TPQGETBYCORRI D, it
indicatesthat an error should not be returned if no message with the specified
messageidentifier or correlationidentifier ispresent inthe queue. Instead, the
process should wait until a message meeting the criteriais available. The
process is still subject to the caller’s transaction timeout, or, when not in
transaction mode, the process is subject to the timeout specified on the
TMQUEUE process by thet option.

If a message matching the desired criteria is not immediately available and
the configured action resources are exhaustatbqueue returns -1,

t perrno() is set torPEDI AGNCSTI C, and the diagnostic field of theQCTL
structure is set tQVESYSTEM

Note that eachpdequeue() request specifying thHEPQAAI T control

parameter requires that a queue mana¢EUE) action object be available

if a message satisfying the condition is notimmediately available. If an action
object is not available, thepdequeue() request fails. The number of

available queue manager actions are specified when a queue space is created
or modified. When a waiting dequeue request completes, the associated
action object associated is made available for another request.

TPQPEEK

If this flag is set, the specified message is read but is not removed from the
gueue. This flag implies teNOTRANflag has been set for thedequeue()
operation. That is, non-destructive dequeuing is non-transactional. Note that
it is not possible to read messages enqueued or dequeued within a transaction
before the transaction completes.

When a thread is non-destructively dequeuing a messageTesIPEEK, the
message may not be seen by other non-blocking dequeuers for the brief time
the system is processing the non-destructive dequeue request. This includes

BEA Tuxedo C Function Reference 135

Section 3c - C Functions

dequeuers using specific selection criteria (such as message identifier and
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

On output from t pdequeue() , the following el ements may be set in the TPQCTL

structure:
I ong flags; /* indicates which of the val ues
* shoul d be set */
long priority; /* enqueue priority */
char nmsgi d[32] ; /* I D of message dequeued */
char corrid[32]; /* correlation identifier used to
* identify the nessage */
| ong delivery_qos; /* delivery quality of service */
I ong reply_qos; /* reply nmessage quality of service */
char repl yqueue[16]; /* queue name for reply */
char failurequeue[16]; /* queue nanme for failure */
| ong di agnosti c; /* reason for failure */
| ong appkey; /* application authentication client
* key */
| ong urcode; /* user-return code */
CLIENTID cltid; /* client identifier for originating

* client */

Thefollowing isalist of valid bits for the f I ags parameter controlling output
information from t pdequeue() . For any of these bits, if theflag bit isturned on when
t pdequeue() iscaled, the associated element in the structure is populated with the
value provided when the message was queued, and the bit remains set. If avalueis not
available (that is, no value was provided when the message was queued) or the bit is
not set whent pdequeue() iscalled, t pdequeue() completeswith the flag turned off.

TPQPRI ORI TY
If thisflagisset, thecall tot pdequeue() issuccessful, and the message was
gueued with an explicit priority, then the priority is stored in
ct!—>priority. The priority isintherange 1 to 100, inclusive, and the
higher the number, the higher the priority (that is, amessage with a higher
number is dequeued before a message with alower number). For queues not
ordered by priority, the value isinformational .

If no priority was explicitly specified when the message was queued and the
cal to t pdequeue() issuccessful, the priority for the messageis 50.

136 BEA Tuxedo C Function Reference

tpdequeue(3c¢)

TPQVSG D

If thisflag is set and the call tot pdequeue() is successful, the message
identifier isstored in ct I —>nsgi d. The entire 32 bytes of the message
identifier value are significant.

TPQCORRI D

If thisflag is set, thecall tot pdequeue() issuccessful, and the message was
queued with acorrelation identifier, then the correlation identifier isstored in
ct | —>corri d. The entire 32 bytes of the correlation identifier value are
significant. Any BEA Tuxedo /Q provided reply to a message has the
correlation identifier of the original request message.

TPQDELI VERYQCS

If thisflag is set, thecall tot pdequeue() issuccessful, and the message was
queued with a delivery quality of service, then the flag—

TPQQOSDEFAULTPERSI ST, TPQQOSPERSI STENT, Or

TPQQOSNONPERSI STENT—is stored irct | - >del i very_qos. If no delivery
quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

TPQREPLYQOS

If this flag is set, the call topdequeue() is successful, and the message was
queued with a reply quality of service, then the flag—

TPQQOSDEFAULTPERSI ST, TPQQOSPERSI STENT, Or

TPQQOSNONPERSI STENT—is stored irct / - >repl y_qos. If no reply quality

of service was explicitly specified when the message was queued, the default
delivery policy of thect I - >r epl yqueue queue dictates the delivery quality

of service for any reply.

Note that the default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of the reply queue
is modified between the time that the original message is enqueued and the
reply to the message is enqueued, the policy used is the one in effect when the
reply is finally enqueued.

TPQREPLYQ

If this flag is set, the call topdequeue() is successful, and the message was
queued with a reply queue, then the name of the reply queue is stored in
ct | —>repl yqueue. Any reply to the message should go to the named reply
gueue within the same queue space as the request message.

BEA Tuxedo C Function Reference 137

Section 3c - C Functions

Return Values

138

Errors

TPQFAI LUREQ
If thisflagisset, thecall tot pdequeue() issuccessful, and the message was
gueued with a failure queue, then the name of the failure queueis stored in
ct!—>f ai | ur equeue. Any failure message should go to the named failure
gueue within the same queue space as the request message.

Thefollowing remaining bits for the f ags parameter are cleared (set to zero) when
t pdequeue() iscalled: TPQTOP, TPQBEFORENBG D, TPQTI VE_ABS, TPQTI ME_REL,
TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE. These bits are valid
bits for the f 1 ags parameter controlling input information for t penqueue() .

If thecall tot pdequeue() failed andtperrno() isset to TPEDI AGNOSTI C, avalue
indicating thereasonfor failureisreturnedin ct | —>di agnost i c. The possible values
are defined below in the DIAGNOSTICS section.

Additionally on output, if the call tot pdequeue() issuccessful, ct I —>appkey is set
to the application authentication key, ct I =>c/ t i d is set to theidentifier for the client
originating the request, and ct | —>ur code is set to the user-return code val ue that was
set when the message was enqueued.

If the ct | parameter isNULL, the input flags are considered to be TPNOFLAGS, and no
output information is made availabl e to the application program.

Upon failure, t pdequeue() returns-1 and setst per rno() to indicate the error
condition.

Upon failure, t pdequeue() setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampjeane is NULL, dat a does not
point to space allocated witlpal | oc() or f/ ags are invalid).

[TPENCENT]
Cannot access thgspace because it is not available (that is, the associated
TMQUEUE(5) server is not available), or cannot start a global transaction due
to the lack of entries in the Global Transaction Table (GTT).

[TPEOTYPE]
Either the type and sub-type of the dequeued message are not known to the
caller; or, TPNOCHANGE was set irf/ ags and the type and sub-type afdt a
do not match the type and sub-type of the dequeued message. In either cas
*dat a, its contents, and/*en arenot changed. When the call is made in

BEA Tuxedo C Function Reference

tpdequeue(3c¢)

Diagnostic

transaction mode and this error occurs, the transaction is marked abort-only,
and the message remains on the queue.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, atransaction timeout
occurred and the transaction is to be aborted; otherwise, a blocking timeout
occurred and neither TPNOBLOCK nor TPNOTI ME was specified. If a
transaction timeout occurred, any attempts to dequeue new messageswill fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC]
t pdequeue() was called improperly. There isno effect on the queue or the
transaction.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file. Thereis no effect on the queue.

[TPECS]
An operating system error has occurred. There is no effect on the queue.

[TPEDI AGNOSTI C]
Dequeuing a message from the specified queue failed. The reason for failure
can be determined by the diagnostic value returned via ct | structure.

The following diagnostic values are returned during the dequeuing of a message.

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
Aninvalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

[QVETRAN]

The call was not in transaction mode or was made with the TPNOTRAN flag set
and an error occurred trying to start a transaction in which to dequeue the

BEA Tuxedo C Function Reference 139

Section 3c - C Functions

message. This diagnostic is not returned by queue managers from BEA
Tuxedo Release 7.1 or | ater.

[QVEBADMSG D)
An invalid message identifier was specified for dequeuing.

[QVESYSTEM
A system error has occurred. The exact nature of the error iswritten to alog
file.

[QVECE]
An operating system error has occurred.

[QVEABORTED)]
The operation was aborted. When executed within a global transaction, the

global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QVEPROTC)|
A dequeue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENOVSG]
No message was available for dequeuing. Note that it is possible that the
message exists on the queue and another application process has read the
message from the queue. In this case, the message may be put back on the
queue if that other processrolls back the transaction.

[QVEI NUSE]
When dequeuing a message by message identifier or correlation identifier,

the specified message isin use by another transaction. Otherwise, all
messages currently on the queue are in use by other transactions. This
diagnostic is not returned by queue managersfrom BEA Tuxedo Release 7.1
or |ater.

[QVESHARE]
When dequeuing a message from a specified queue, the specified queue is
opened exclusively by another application. The other application is one based
on aBEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

See Also gmadni n(1), tpalloc(3c),tpenqueue(3c), APPQ M B(5), TMQUEUE(5)

140 BEA Tuxedo C Function Reference

tpdiscon(3c¢)

tpdiscon(3¢)

Name tpdiscon() - routinefor taking down a conversational service connection

Synopsis #i ncl ude <atmi . h>
int tpdiscon(int cd)

Description t pdi scon() immediately tears down the connection specified by cd and generates a
TPEV_DI SCONI MMevent on the other end of the connection.

t pdi scon() can be called only by the initiator of the conversation. t pdi scon()
cannot be called within a conversational service on the descriptor with which it was
invoked. Rather, a conversational service must uset pret ur n() to signify that it has
completed its part of the conversation. Similarly, even though a program
communicating with a conversational service can issuet pdi scon(), the preferred
way isto let the service tear down the connection in t pr et ur n() ; doing so ensures
correct results.

t pdi scon() causesthe connection to be torn down immediately (that is, abortive

rather than orderly). Any data that has not yet reached its destination may be lost.

t pdi scon() can beissued even when the program on the other end of the connection
isparticipating in the caller’s transaction. In this case, the transaction must be aborted.
Also, the caller does not need to have control of the connectiontwléscon() is
called.

Return Values ~ Upon failure,t pdi scon() returns -1 and setger rno() to indicate the error
condition.

Errors Upon failuret pdi scon() setst perrno() to one of the following values.

[TPEBADDESC]
cd is invalid or is the descriptor with which a conversational service was
invoked.

[TPETI ME]
A timeout occurred. The descriptor is no longer valid.

[TPEPROTC)
t pdi scon() was called improperly.

BEA Tuxedo C Function Reference 141

Section 3c - C Functions

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file. The descriptor is no longer valid.

[TPEGCS]
An operating system error has occurred. The descriptor isno longer valid.

See Also tpabort(3c),tpcommit(3c),tpconnect(3c),tprecv(3c),tpreturn(3c),
t psend(3c)

142 BEA Tuxedo C Function Reference

tpenqueue(3c)

tpenqueue(3¢)

Name

Synopsis

Description

t penqueue() - routine to enqueue a message

#i ncl ude <atni. h>
int tpenqueue(char *qspace, char *gnane, TPQCTL *ctl, char *data,
long len, long flags)

t penqueue() storesamessage on the queue named by gnane in the gspace queue
space. A queue spaceis acollection of queues, one of which must be gnane.

When the messageis intended for aBEA Tuxedo system server, the gnane matches

the name of a service provided by the server. The system provided server,

TMQFORWARD(5) , provides a default mechanism for dequeuing messages from the

gueue and forwarding them to serversthat provide a service matching the queue name.

If the originator expects areply, then the reply to the forwarded service request is

stored on the originator’s queue, unless otherwise specified. The originator will
dequeue the reply message at a subsequent time. Queues can also be used for a reliable
message transfer mechanism between any pair of BEA Tuxedo system processes
(clients and/or servers). In this case, the queue name does not match a service name but
some agreed upon name for transferring the message.

If dat ais non-NULL, it must point to a buffer previously allocated byl | oc() and

I en should specify the amount of data in the buffer that should be queued. Note that if
dat a points to a buffer of a type that does not require a length to be specified (for
example, arM fielded buffer), them en is ignored. Ifdat ais NULL, / en is ignored

and a message is queued with no data portion.

The message is queued at the priority definedfpace unless overridden by a
previous call ta psprio().

If the caller is within a transaction and theNOTRAN flag is not set, the message is
gueued in transaction mode. This has the effect thakiiqueue() returns

successfully and the caller’s transaction is committed successfully, then the message
is guaranteed to be available subsequent to the transaction completing. If the caller’s
transaction is rolled back either explicitly or as the result of a transaction timeout or
some communication error, then the message will be removed from the queue (that is,
the placing of the message on the queue is also rolled back). It is not possible to
enqueue then dequeue the same message within the same transaction.

BEA Tuxedo C Function Reference 143

Section 3c - C Functions

144

The message is not queued in transaction mode if either the caller is not in transaction
mode, or the TPNOTRAN flag is set. Oncet penqueue() returns successfully, the
submitted message is guaranteed to be in the queue. When not in transaction mode, if
acommunication error or atimeout occurs, the application will not know whether or
not the message was successfully stored on the queue.

The order in which messages are placed on the queueis controlled by the application
viact | datastructure as described below; the default queue ordering is set when the
queue is created.

Thefollowingisalist of valid f ags.

TPNOTRAN

If the caller isin transaction mode and this flag is set, the message is not

gueued within the caller’s transaction. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other) when queuing
the message. If message queuing fails, the caller’s transaction is not affecte

TPNOBLOCK

The message is not enqueued if a blocking condition exists. If this flag is set
and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call fails gyt rno() is set to

TPEBLOCK. If this flag is set and a blocking condition exists because the target
queue is openegkclusively by another application, the call faitger r no()

is set toTPEDI AGNCSTI C, and the diagnostic field of th@QCTL structure is

set toQVESHARE. In the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services AP| (QSAPI).

WhenTPNOBLOCK is hot set and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). If a timeout occurs, the call fails anger rno() is set toTPETI ME.

TPNOTI ME

Setting this flag signifies that the caller is willing to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSI GRSTRT

If this flag is set and a signal interrupts any underlying system calls, the
interrupted system call is reissuedTHSI GRSTRT is not set and a signal
interrupts a system catlpenqueue() fails andt perrno() is set to
TPGOTSI G.

BEA Tuxedo C Function Reference

tpenqueue(3c)

Control
Parameter

Additiona information about queuing the message can be specified viact | data
structure. This information includes values to override the default queue ordering
placing the message at the top of the queue or before an enqueued message; an absolute
or relativetime after which aqueued messageis made avail able; an absolute or relative
time when amessage expires and is removed from the queue; the quality of servicefor
delivering the message; the quality of service that any repliesto the message should
use; acorrelation identifier that aids in correlating a reply or failure message with the
gueued message; the name of a queue to which areply should be enqueued; and the
name of a queue to which any failure message should be enqueued.

In amultithreaded application, athread in the TPl NVALI DCONTEXT stateis not allowed
toissueacall tot penqueue() .

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with enqueuing the message. The f/ ags element of TPQCTL is
used to indicate what other elements in the structure are valid.

Oninputtot penqueue() , the following elements may be set in the TPQCTL structure:

long fl ags; /* indicates which of the val ues
* are set */
| ong deq_tine; /* absolute/relative for dequeuing */
long priority; /* enqueue priority */
long exp_tine /* expiration tine */
I ong delivery_qos /* delivery quality of service */
long reply_qos /* reply quality of service */
| ong ur code; /* user-return code */
char nsgid[32]; /* I D of nessage before which to queue
* request */
char corrid[32]; /* correlation identifier used to
* identify the nmsg */
char replyqueue[16]; /* queue nane for reply nessage */

char failurequeue[16]; /* queue name for failure nessage */

Thefollowing isalist of valid bitsfor the f 1 ags parameter controlling input
information for t penqueue() .

TPNCOFLAGS
No flags or values are set. No information is taken from the control structure.

TPQTOP
Setting this flag indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding

BEA Tuxedo C Function Reference 145

Section 3c - C Functions

146

the queue ordering. TPQTCP and TPQBEFOREMSG D are mutually exclusive
flags.

TPQBEFCOREMSG D
Setting this flag indicates that the queue ordering be overridden and the
message placed in the queue before the message identified by ct | —>nsgi d.
This request may not be granted depending on whether or not the queue was
configured to alow overriding the queue ordering. TPQTOP and
TPQBEFOREMSG D are mutually exclusive flags. Note that the entire 32 bytes
of the message identifier value are significant, so the value identified by
ct! —>nsgi d must be completely initialized (for example, padded with null
characters).

TPQTI ME_ABS
If thisflag is set, the message is made available after the time specified by
ctl—>deq_tinme. The deq_t i nme isan absolute time value as generated by
time(2), nktinme(3C), or gp_nkti nme(3c) (the number of seconds since
00:00:00 Universal Coordinated Time—UTC, January 1, 1970).

TPQTI ME_ABS andTPQrI ME_REL are mutually exclusive flags. The absolute
time is determined by the clock on the machine where the queue manager
process resides.

TPQTI ME_REL
If this flag is set, the message is made available after a time relative to the
completion of the enqueuing operatien/ —>deq_t i ne specifies the
number of seconds to delay after the enqueuing completes before the
submitted message should be availather ME_ABS andTPQTI VE_REL are
mutually exclusive flags.

TPQPRI ORI TY
If this flag is set, the priority at which the message should be enqueued is
stored inct I —>pri ori ty. The priority must be in the range 1 to 100,
inclusive. The higher the number, the higher the priority (that is, a message
with a higher number is dequeued before a message with a lower number).
For queues not ordered by priority, this value is informational.

If this flag is not set, the priority for the message is 50 by default.

TPQCORRI D

If this flag is set, the correlation identifier value specifiedtih—>corri dis
available when a message is dequeued witlequeue() . This identifier
accompanies any reply or failure message that is queued so that an applicatic

BEA Tuxedo C Function Reference

tpenqueue(3c)

can correlate areply with aparticul ar request. Note that the entire 32 bytes of
the correlation identifier value are significant, so the value specified in

ct | —>corri d must be completely initialized (for example, padded with null
characters).

TPQREPLYQ

If thisflag is set, areply queue named in ct | —>r epl yqueue is associated
with the queued message. Any reply to the message will be queued to the
named gqueue within the same queue space asthe request message. Thisstring
must be NULL terminated (maximum 15 charactersin length).

TPQFAI LUREQ

If thisflag is set, afailure queue named in the ct I —>f ai | ur equeue is
associ ated with the queued message. If (1) the enqueued messageis processed
by TMQFORWARDY() , (2) TMQFORWARD was started with the - d option, and (3)
the service fails and returns anon-null reply, a failure message consisting of
thereply and itsassociated t pur code isenqueued to the named queue within
the same queue space as the original request message. This string must be
NULL-terminated (maximum 15 characters in length).

TPQDELI VERYQOS, TPQREPLYQOS

If the TPQDEL | VERYQQS flag is set, the flags specified by

ct!->del i very_qos control the quality of service for delivery of the
message. In this case, one of three mutually exclusive flags—
TPQQOSDEFAULTPERSI ST, TPQQOSPERSI STENT, Or

TPQQOSNONPERSI STENT—must be set it/ - >del i very_qos. If

TPQDELI VERYQCS is not set, the default delivery policy of the target queue
dictates the delivery quality of service for the message.

If the TPQREPLYQCS flag is set, the flags specified by/ - >repl y_qos

control the quality of service for any reply to the message. In this case, one of
three mutually exclusive flagsFPQQOSDEFAULTPERSI ST,

TPQQOSPERSI STENT, or TPQQOSNONPERSI STENT—must be set in
ctl->reply_qgos. TheTPQREPLYQCS flag is used when a reply is returned
from messages processedFORWARD. Applications not using

TMQFORWARD to invoke services may use thPQREPLYQCS flag as a hint for

their own reply mechanism.

If TPQREPLYQCS is not set, the default delivery policy of the

ct | - >repl yqueue queue dictates the delivery quality of service for any
reply. Note that the default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of the reply queue

BEA Tuxedo C Function Reference 147

Section 3c - C Functions

148

is modified between the time that the original message is enqueued and the
reply to the messageis enqueued, the policy used isthe onein effect when the
reply isfinally enqueued.

Thefollowing isthelist of valid flagsfor ct I - >del i ver y_qos and
ctl->reply qos:

TPQQOSDEFAULTPERSI ST
This flag specifies that the message is to be delivered using the
default delivery policy specified on the target queue.

TPQQOSPERSI STENT
This flag specifies that the message isto be delivered in a persistent
manner using the disk-based delivery method. Setting this flag
overrides the default delivery policy specified on the target queue.

TPQQOSNONPERSI STENT
This flag specifies that the message isto be delivered in a
non-persistent manner using the memory-based delivery method.
Specifically, the message is queued in memory until it is dequeued.
Setting this flag overrides the default delivery policy specified on
the target queue. If the caller is transactional, non-persi stent
messages are enqueued within the caller’s transaction, however,
non-persistent messages are lost if the system is shut down, crashe:
or the IPC shared memory for the queue space is removed.

TPQEXPTI ME_ABS

If this flag is set, the message has an absolute expiration time, which is the
absolute time when the message will be removed from the queue.

The absolute expiration time is determined by the clock on the machine where
the queue manager process resides.

The absolute expiration time is indicated by the value stored in
ctl->exp_tinme. The value ott /- >exp_t i me must be set to an absolute
time value generated hy ne(2), nkti ne(3C), orgp_nkt i me(3c) (the
number of seconds since 00:00:00 Universal Coordinated Time—UTC,
January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue
operation, the operation succeeds, but the message is not counted for the
purpose of calculating thresholds. If the expiration time is before the message
availability time, the message is not available for dequeuing unless either the
availability or expiration time is changed so that the availability time is before
the expiration time. In addition, these messages are removed from the queu

BEA Tuxedo C Function Reference

tpenqueue(3c)

at expiration time even if they were never available for dequeuing. If a
message expires whileit iswithin atransaction, the expiration does not cause
the transaction to fail. M essages that expire while being enqueued or
dequeued within a transaction are removed from the queue when the
transaction ends. There is no notification that the message has expired.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusiveflags. If none of these flags is set, the default expiration time
associ ated with the target queue is applied to the message.

TPQEXPTI ME_REL
If thisflag is set, the message has arelative expiration time, which isthe
number of seconds after the message arrives at the queue that the messageis
removed from the queue. The relative expiration time isindicated by the
vauestored in ct/ - >exp_ti ne.

If the expiration time is before the message availability time, the message is
not availablefor dequeuing unless either the availability or expirationtimeis
changed so that the avail ability time is before the expiration time. In addition,
these messages are removed from the queue at expiration time even if they
were never available for dequeuing. The expiration of a message during a
transaction, does not cause the transaction to fail. M essages that expire while
being enqueued or dequeued within atransaction are removed from the queue
when the transaction ends. There is no acknowledgment that the message has
expired.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusiveflags. If none of these flags is set, the default expiration time
associ ated with the target queue is applied to the message.

TPQEXPTI ME_NONE
Setting this flag indicates that the message should not expire. This flag
overrides any default expiration policy associated with the target queue. A
message can be removed by dequeuing it or by deleting it viaan
administrative interface.

TPQEXPTI ME_ABS, TPQEXPTI ME_REL, and TPQEXPTI ME_NONE are mutually
exclusiveflags. If none of these flags is set, the default expiration time
associ ated with the target queue is applied to the message.

Additionally, the ur code element of TPQCTL can be set with a user-return code. This
value will be returned to the application that dequeues the message.

BEA Tuxedo C Function Reference 149

Section 3c - C Functions

Return Values

150

Errors

On output from t penqueue() , the following el ements may be set in the TPQCTL
structure:

I ong flags; /* indicates which of the val ues
* are set */
char msgi d[32] ; /* | D of enqueued nessage */
| ong di agnosti c; /* indicates reason for failure */

Thefollowing isavalid bit for the f I ags parameter controlling output information
fromt penqueue() . If thisflag is turned on when t penqueue() iscalled, the/Q
server TMQUEUE(5) populates the associated element in the structure with a message
identifier. If thisflag isturned off when t penqueue() iscalled, TMQUEUE() does not
populate the associated element in the structure with a message identifier.

TPQVESG D
If thisflag is set and the call tot penqueue() issuccessful, the message
identifier isstored in ct | —>nsgi d. The entire 32 bytes of the message
identifier value are significant, so the value stored in ct / —>nsgi dis
completely initialized (for example, padded with null characters). The actual
padding character used for initialization varies between releases of the BEA
Tuxedo /Q component.

The remaining members of the control structure are not used on input to
t penqueue().

If the call tot penqueue() failed andtperrno() isset to TPEDI AGNOSTI C, avalue
indicating thereasonfor failureisreturnedin ct | —>di agnost i c. The possible values
are defined below in the DIAGNOSTICS section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and no
output information is made available to the application program.

Upon failure, t penqueue() returns-1 and setst per rno() to indicate the error
condition. Otherwise, the message has been successfully queued when t penqueue()
returns.

Upon failure, t penqueue() setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampjepace is NULL, dat a does not
point to space allocated witlpal | oc(), orf/ ags are invalid).

BEA Tuxedo C Function Reference

tpenqueue(3c)

Diagnostic

[TPENOENT]
Cannot access the gspace because it is not available (that is, the associated
TMQUEUE(5) server isnot available), or cannot start aglobal transaction due
to the lack of entriesin the Global Transaction Table (GTT).

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, atransaction timeout
occurred and the transaction is to be aborted; otherwise, a blocking timeout
occurred and neither TPNOBLOCK nor TPNOTI ME was specified. If a
transaction timeout occurred, any attempts to enqueue new messageswill fail
with TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC]
t penqueue() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

[TPEDI AGNOSTI C]
Enqueuing amessage on the specified queuefailed. Thereason for failure can
be determined by the diagnostic returned via ct / .

The following diagnostic values are returned during the enqueuing of a message.

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
Aninvalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

BEA Tuxedo C Function Reference 151

Section 3c - C Functions

[QVETRAN]
Thecall wasnot in transaction mode or was made with the TPNOTRANflag set
and an error occurred trying to start a transaction in which to enqueue the
message. This diagnostic is not returned by queue managers from BEA
Tuxedo Release 7.1 or | ater.

[QVEBADMSG D)
An invalid message identifier was specified.

[QVESYSTEM
A system error occurred. The exact nature of the error iswritten to alog file.

[QVECE]
An operating system error occurred.

[QVEABORTED)]
The operation was aborted. When executed within a global transaction, the

global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QVEPROTC)|
An engueue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENCSPACE]
Due to an insufficient resource, such as no space on the queue, the message
with itsrequired quality of service (persistent or non-persistent storage) was
not enqueued. QVENOSPACE isreturned when any of thefollowing configured
resourcesis exceeded: (1) theamount of disk (persistent) spaceallotted to the
gueue space, (2) the amount of memory (non-persistent) space allotted to the
gueue space, (3) the maximum number of simultaneously active transactions
allowed for the queue space, (4) the maximum number of messages that the
gueue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or (6)
the maximum number of authenticated users that may concurrently use the
Queuing Services component.

[QVERELEASE]
An attempt was made to enqueue a message to a queue manager that isfrom
aversion of the BEA Tuxedo system that does not support a newer feature.

152 BEA Tuxedo C Function Reference

tpenqueue(3c)

[QVESHARE]
When enqueuing a message from a specified queue, the specified queueis
opened exclusively by another application. The other application isone based
on aBEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services APl (QSAPI).

See Also qgmadmi n(1), gp_nkti me(3c),tpacal | (3c),tpalloc(3c),tpdequeue(3c),
tpinit(3c),tpsprio(3c),APPQ M B(5), TMFORWARD(5) , TMQUEUE(5)

BEA Tuxedo C Function Reference 153

Section 3c - C Functions

tpenvelope(3¢)

154

Name

Synopsis

Description

t penvel ope() - accessthe digital signature and encryption information associated
with a typed message buffer

#i nclude <atm . h>
int tpenvel ope(char *data, long len, int occurrence, TPKEY
*out putkey, long *status, char *tinestanp, |ong flags)

t penvel ope() provides accessto the following types of digital signature and
encryption information associated with a typed message buffer:

m Digital-signature registration requests

A sending process explicitly registers adigita signature request for a message
buffer by calling t psi gn(), or implicitly registers adigital signature request for
amessage buffer by calling t pkey_open() with the TPKEY_AUTCSI GN flag
specified.

m Digital signatures

Just before the message buffer is sent, the public key software generates and
attaches a digital signature to the message buffer for each digital-signature
registration request; a digital signature enables areceiving processto verify the
signer (originator) of the message.

m Encryption registration requests

A sending process explicitly registers an encryption (seal) request for a message
buffer by calling t pseal (), or implicitly registers an encryption (seal) request
for amessage buffer by calling t pkey_open() with the TPKEY_AUTOENCRYPT
flag specified.

m Encryption envelopes

Just before the message buffer is sent, the public key software encrypts the
message content and attaches an encryption envelope to the message buffer for
each encryption registration request; an encryption envelope enables areceiving
process to decrypt the message.

Signature and encryption information is available to both sending and receiving
processes. In a sending process, digital signature and encryption information is
generaly in a pending state, waiting until the message is sent. In areceiving process,

BEA Tuxedo C Function Reference

tpenvelope(3¢)

digital signatures have already been verified, and encryption and decryption have
already been performed. Failuresin decryption or signature verification might prevent
message delivery, in which case the receiving process never receives the message
buffer and therefore has no knowledge of the message buffer.

dat a must point to avalid typed message buffer either (1) previously allocated by a
processcallingt pal | oc() or (2) delivered by the system to areceiving process. If the
message buffer is self-describing, / enisignored (and may be 0). Otherwise, | en must
contain the length of datain dat a.

There may be multiple occurrences of digital-signature registration requests, digital
signatures, encryption registration requests, and encryption envelopes associated with
amessage buffer. The occurrences are stored in sequence, withthefirst item at the zero
position and subseguent items in consecutive positions. The occur r ence input
parameter indicateswhichitemisreguested. Whenthevalueof occur r ence isbeyond
the position of the last item, t penvel ope() failswith the TPENCENT error condition.
All items may be examined by calling t penvel ope() repeatedly until TPENCENT is
returned.

The handle to the key associated with a digital-signature registration request, digital
signature, encryption registration request, or encryption envelope is returned via

out put key. The key handle returned is a separate copy of the original key opened by
calling t pkey_open() . Properties of the key, such as the PRI NCI PAL attribute
parameter, can be obtained by calling t pkey_get i nf o() . It is the caller’s
responsibility to release key handlet put key by callingt pkey_cl ose() .

Note: If out put key is NULL, no key handle is returned.

The st at us output parameter reports the state of the digital-signature registration
request, digital signature, encryption registration request, or encryption envelope. If
the value of the status is not NULL, it is set to one of the following states.

TPSI GN_PENDI NG
A digital signature has been requested on behalf odigmer principal
associated with the corresponding private key, and will be generated when the
message buffer is transmitted from this process.

TPSI GN_OK
The digital signature has been verified.

TPSI GN_TAMPERED_ MESSAGE
The digital signature is not valid because the content of the message buffer
has been altered.

BEA Tuxedo C Function Reference 155

Section 3c - C Functions

156

TPSI GN_TAMPERED_CERT
The digital signature is not valid because the signer’s digital certificate has
been altered.

TPSI GN_REVOKED CERT
The digital signature is not valid because the signer’s digital certificate has
been revoked.

TPSI GN_POSTDATED
The digital signature is not valid because its timestamp is too far into the
future.

TPSI GN_EXPI RED_CERT
The digital signature is not valid because the signer’s digital certificate has
expired.

TPSI GN_EXPI RED
The digital signature is not valid because its timestamp is too old.

TPSI GN_UNKNOAN
The digital signature is not valid because the signer’s digital certificate was
issued by an unknown Certification Authority (CA).

TPSEAL_PENDI NG
An encryption (seal) has been requested foratipient principal associated
with the corresponding public key, and will be performed when the message
buffer is transmitted from this process.

TPSEAL_OK
The encryption envelope is valid.

TPSEAL_TAMPERED CERT
The encryption envelope is not valid because the recipient’s digital certificate
has been altered.

TPSEAL_REVOKED CERT
The encryption envelope is not valid because the recipient’s digital certificate
has been revoked.

TPSEAL_EXPI RED_CERT
The encryption envelope is not valid because the recipient’s digital certificate
has expired.

TPSEAL_UNKNOAN
The encryption envelope is not valid because the recipient’s digital certificate
was issued by an unknown CA.

BEA Tuxedo C Function Reference

tpenvelope(3¢)

Return Values

Errors

See Also

Thet i nest anp output parameter contains the digital signature’s timestamp according
to the local clock on the machine where the digital signature was generated. The
integrity of this value is protected by the associated digital signature. The memory
location indicated by nest anp is set to the null-terminated signature time in format
YYYYMVDDHHWSS, whereYYyYYy=year,Mv=month,DD=day,HH=hour, MvEminute, and
Ss=secondt i nest anp may be NULL, in which case no value is returned. Encryption
seals do not contain timestamps, and the memory location indicateédryt anp is
unchanged.

Thef ! ags parameter may be set to one of the following values:

m TPKEY_REMOVE-The item at positiomccurr ence is removed (that is, it is no
longer associated with the buffer). Output parametergut key, st at us, and
ti mest anp related to the item are captured before the item is removed. Items at
subsequent positions are shifted down by one, so there are never any gaps in the
numbering ofoccur rence.

m TPKEY_REMOVEALL-AIl items associated with the message buffer are removed.
The output parametetsit put key, st at us, andt i mest anp are not returned.

m TPKEY_VER FY=All digital signatures associated with the message buffer are
re-verified. The status of a signature may change after re-verification. For
example, if a message buffer has been modified by a receiving process, the
status of the originator’s signature changes fi®s GN_OK to
TPSI GN_TAMPERED MESSAGE.

On failure, this function returnsl and setsperrno() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the valugaof is NULL or
the value assigned fd ags is unrecognized.

[TPENCENT]
Thisoccurrence does not exist.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

t pkey_cl ose(3c),tpkey_getinfo(3c),tpkey_open(3c),tpseal (3c),
t psign(3c)

BEA Tuxedo C Function Reference 157

Section 3c - C Functions

tperrordetail(3¢)

Name

Synopsis

Description

Return Values

tperrordetail () - get additional detail about an error generated from the last BEA
Tuxedo system call

#i nclude <atm . h>
int tperrordetail (long flags)

tperrordetail () returns additional detail related to an error produced by the last
BEA Tuxedo system routine called in the current thread. t per r or det ai | () returnsa
numeric value that is al so represented by a symbolic name. If the last BEA Tuxedo
system routine called in the current thread did not produce an error, then
tperrordetail () will return zero. Therefore, t perrordet ai | () should be called
after an error has been indicated; that is, whent perr no() has been set.

Currently f 1 ags isreserved for future use and must be set to O.

A thread in a multithreaded application may issueacall tot perrordetail () while
running in any context state, including TPl NVALI DCONTEXT.

Uponfailure, t perrordetail () returnsa- 1 and setst perr no() toindicatetheerror
condition.

These are the symbolic names and meaning for each numeric value that
t perrordetail () may return. The order in which these are listed is not significant
and does not imply precedence.

TPED_CLI ENTDI SCONNECTED
A Jolt client is disconnected currently. The TPACK flagisused in a
tpnoti fy() call and thetarget of t pnoti fy() isacurrently disconnected
Jolt client. Whent pnoti fy() fails, asubsequent call tot perrordetail ()
with no intermediate ATMI calls will return TPED_CLI ENTDI SCONNECTED.

TPED_DECRYPTI ON_FAI LURE
A process receiving an encrypted message cannot decrypt the message. This
error most likely occurs because the process does not have access to the
private key required to decrypt the message.

When acall fails due to this error, a subsequent call tot per ror det ai | ()
with no intermediate ATMI calls will return TPED_DECRYPTI ON_FAI LURE.

158 BEA Tuxedo C Function Reference

tperrordetail(3c¢)

TPED_DOVAI NUNREACHABLE
A domain is unreachable. Specifically, adomain configured to satisfy a
request that alocal domain cannot service was not reachable when arequest
was made. After the request failure, a subsequent call tot perr or det ai | ()
with no intermediate ATMI callswill return TPED_DOVAI NUNREACHABLE.

The following table indicates the corresponding values returned by
tperrno() whencallstotpcal | (),tpgetrply(),ortprecv() fail
because of an unreachable domain. The error detail returned by a subsequent
call tot perrordetail () is TPED_DOVAI NUNREACHABLE.

ATMI Call tperrno Error Detail

tpcal | TPESVCERR TPED_DOVAI NUNREACHABLE

tpgetrply TPESVCERR TPED_DOVAI NUNREACHABLE

t precv TPEEVENT TPED_DOVAI NUNREACHABLE
TPEV_SVCERR

Note that the TPED_DOMAI NUNREACHABLE feature applies to BEA Tuxedo
Domains only. It does not apply to other domains products such as Connect
OSl| TP Domains and Connect SNA Domains.

TPED_I NVALI D_CERTI FI CATE
A process receiving a digitally signed message cannot verify the digital
signature because the associated digital certificateisinvalid. This error most
likely occurs because the digital certificate has expired, the digital certificate
was issued by an unknown Certification Authority (CA), or the digital
certificate has been altered.

When acall fails due to this error, a subsequent call to t per r or det ai | ()
with no intermediate ATMI callswill return TPED | NVALI D_CERTI FI CATE.

TPED_I NVALI D_SI GNATURE
A process receiving a digitally signed message cannot verify the digital
signature because the signatureis invalid. This error most likely occurs
because the message has been atered, the timestamp for the digital signature
istoo old, or the timestamp for the digital signature istoo far into the future.

When acall fails due to this error, a subsequent call to t per r or det ai | ()
with no intermediate ATMI callswill return TPED | NVALI D_SI GNATURE.

BEA Tuxedo C Function Reference 159

Section 3c - C Functions

160

Errors

See Also

TPED_| NVALI DCONTEXT
A thread is blocked in an ATMI call when another thread terminates its
context. Specifically, any thread blocked in an ATMI call when another
thread terminates its context will return from the ATMI call with afailure
return; t per rno() isset to TPESYSTEM A subsequent call to
tperrordetail () with nointermediate ATMI calswill return
TPED_| NVALI DCONTEXT.

TPED_NOCLI ENT
No client exists. The TPACK flagisused inat pnoti f y() call but thereisno
target for t pnoti fy(). Whent pnoti fy() fails, t perrno() issetto
TPENCENT. A subsequent call to t per r or det ai | () with no intermediate
ATMI callswill return TPED_NOCLI ENT.

TPED_NOUNSOLHANDLER
A client does not have an unsolicited handler set. The TPACK flagisusedina
t pnoti fy() call and thetarget of thet pnotify() isinaBEA Tuxedo
session, but it has not set an unsolicited notification handler. When
t pnoti fy() fails, t perrno() issetto TPENOENT. A subsequent call to
t perrordetail () with nointermediate ATMI calswill return
TPED_NOUNSCOLHANDLER.

TPED_SVCTI MEQUT
A server was terminated due to a service timeout. The service timeout is
controlled by the value of SVCTI MEQUT in the UBBCONFI G file or
TA_SVCTI MEOUT in T_SERVER and T_SERVI CE classesinthe TM_ M B. When
acall fails due to this error, a subsequent call tot per r or det ai | () withno
intermediate ATMI callswill return TPED_SVCTI MEQUT.

TPED_TERM
A Workstation client has been disconnected from the application. When acall
fails dueto thiserror, a subsequent call to t perror det ai | () with no
intermediate ATMI callswill return TPED_TERM

Upon failure, t perror det ai | () setst perrno() to one of thefollowing values.
TPEI NVAL
f I ags not set to zero

Introduction to the C Language Application-Transaction Monitor Interface,
tpstrerrordetail (3c),tperrno(5)

BEA Tuxedo C Function Reference

tpexport(3¢)

tpexport(3¢)

Name tpexport () - convert atyped message buffer into an exportable,
machine-independent string representation, that includes digital signatures and
encryption envelopes

Synopsis #i ncl ude <atmi . h>
int tpexport(char *ibuf, long ilen, char *ostr, |long *ol en,
long fl ags)

Description t pexport () convertsatyped message buffer into an externalized representation. An
externalized representation is amessage buffer that does not include any BEA Tuxedo
header information that is normally added to amessage buffer just before the buffer is
transmitted.

The externalized representation may be transmitted between processes, machines, or
BEA Tuxedo applications via any communication mechanism. It may be archived on
permanent storage, and remains valid after a system shutdown and reboot.

An externalized representation includes:

m Any digital signatures associated with i buf . They are verified later when the
buffer isimported.

m Any encryption envel opes associated with i buf . The buffer content remains
protected by encryption. Only specified recipients with accessto avalid private
key for decryption may later import the buffer.

i buf must point to avalid typed message buffer either (1) previously allocated by a
processcallingt pal | oc() or (2) delivered by the system to areceiving process. i I en
specifies how much of i buf to export. Note that if i buf points to abuffer type for
which alength need not be specified (for example, an FM fielded buffer), then i/ en
isignored (and may be 0).

ost r isapointer to the output area that will hold an externalized representation of the
buffer's content and associated propertie3PEX_STRI NGis set inf/ ags, then the
externalized format will be a string type. Otherwise, the output length is determined by
*ol en and may contain embedded null bytes.

On input, %o/ en specifies the maximum storage size availablesat . On output
*ol en is set to the actual number of bytes writtendor (including a terminating null
character iffPEX_STRI NGis set inf/ ags).

BEA Tuxedo C Function Reference 161

Section 3c - C Functions

Return Values

Errors

See Also

The f 1 ags argument may be set to TPEX_STRI NG if string format (base 64 encoded)
is desired for the output buffer. Otherwise, the output will be binary.

Onfailure, thisfunction returns- 1 and setst per r no() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the value of i buf iSNULL or
the value of f 1 ags is not set correctly.

[TPEPERM
Permission failure. The cryptographic service provider was not ableto access
aprivate key necessary to produce a digita signature.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

[TPELI M T]
Insufficient output storage was provided. * o/ en is set to the necessary
amount of space.

t pi nport (3c)

162 BEA Tuxedo C Function Reference

tpforward(3c)

tpforward(3¢)

Name

Synopsis

Description

t pf orwar d() - routine for forwarding a service request to another service routine

#i ncl ude <atni. h>
void tpforward(char *svc, char *data, long len, long flags)

t pf or war d() alowsaserviceroutineto forward aclient’s request to another service
routine for further processingpf or war d() acts liket pret urn() in thatitis the last
call made in a service routine. Likpr et urn() , t pf or war d() should be called from
within the service routine dispatched to ensure correct return of control to the BEA
Tuxedo system dispatcheipf orwar d() cannot be called from within a
conversational service.

This function forwards a request to the service namesibyising data pointed to by

dat a. The service name must not begin with a dot. A service routine forwarding a
request receives no reply. After the request is forwarded, the service routine returns to
the communication manager dispatcher and the server is free to do other work. Note
that because no reply is expected from a forwarded request, the request may be
forwarded without error to any service routine in the same executable as the service
that forwarded the request.

If the service routine is in transaction modgf, or war d() puts the caller’s portion of
the transaction in a state where it may be completed when the originator of the
transaction issues eithepcommi t () ort pabort (). If a transaction was explicitly
started with pbegi n() while in a service routine, the transaction must be ended with
eithert pcommi t () ortpabort () before calling pf orward() . Thus, all services in

a “forward chain” are either all started in transaction mode or none are.

The last server in a forward chain sends a reply back to the originator of the request
usingt preturn() . In essence,pf orwar d() transfers to another server the
responsibility of sending a reply back to the awaiting requester.

t pf orwar d() should be called after receiving all replies expected from service
requests initiated by the service routine. Any outstanding replies which are not
received will automatically be dropped by the communication manager dispatcher
upon receipt. In addition, the descriptors for those replies become invalid and the
request is not forwarded tvc.

BEA Tuxedo C Function Reference 163

Section 3c - C Functions

Return Values

164

Errors

dat a pointsto the data portion of areply to besent. If dat aisnon-NULL, it must point
toabuffer previously obtained by acall tot pal | oc() . If thisisthe same buffer passed
to the service routine upon itsinvocation, then its disposition is up to the BEA Tuxedo
system dispatcher; the service routine writer does not have to worry about whether it
isfreed or not. In fact, any attempt by the user to free this buffer will fail. However, if
the buffer passed to t pf or war d() is not the same one with which the serviceis
invoked, then t pf or war d() will freethat buffer. / en specifies the amount of the data
buffer to be sent. If dat a points to a buffer which does not require a length to be
specified, (for example, an FML fielded buffer), then / enisignored (and can be 0). If
dat aisNULL, then / en isignored and a request with zero length datais sent.

The f 1 ags argument is reserved for future use and should be set to O (zero).

A service routine does not return any value to its caller, the communication manager
dispatcher. Thus, t pf orwar d() isdeclared asavoid. Seet pretur n(3c) for amore
extensive discussion.

If any errors occur either in the handling of the parameters passed to the function or in

its processing, a “failed” message is sent back to the original requester (unless no rep
is to be sent). The existence of outstanding replies or subordinate connections, or th
caller’s transaction being marked abort-only, qualify as failures which generate failed
messages.

If either SVCTI MEQUT in the UBBCONFIG file offA_SVCTI MEQUT in theTM M Bis
non-zero, the eventPEV_SVCERRIs returned when a service timeout occurs.

Failed messages are detected by the requester witlPESECERR error indication.
When such an error occurs, the caller’'s data is not sent. Also, this error causes the
caller’s current transaction to be marked abort-only.

If a transaction timeout occurs either while in the service routine or while forwarding
the request, the requester waiting for a reply with eitheal | (), ort pgetrpl y()

will get aTPETI ME error return. Also, the waiting requester will not receive any data.
Service routines, however, are expected to terminate using tgith&trur n() or

t pf orwar d() . A conversational service routine must tiseet ur n() , and cannot use

t pf orward() .

If a service routine returns without using eithpret urn() ort pforward() (thatis,

it uses the C languaget ur n statement or simply “falls out of the function”) or if

t pf orwar d() is called from a conversational server, the server will print a warning
message in a log file and return a service error to the original requester. All open
connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replies will be marked stale. If the server was in transaction mode at tf

BEA Tuxedo C Function Reference

tpforward(3c)

time of failure, the transaction is marked abort-only. Note also that if either
tpreturn() ortpforward() areused outside of aservice routine (for example, in
clients,orint psvrini t() ortpsvrdone()), thentheseroutinessimply return having
no effect.

See Also tpall oc(3c),tpconnect(3c),tpreturn(3c),tpservice(3c),
tpstrerrordetail (3c)

BEA Tuxedo C Function Reference 165

Section 3c - C Functions

tpfree(3¢)

Name

Synopsis

Description

Return Values

166

Usage

See Also

t pfree() - routine for freeing atyped buffer

#i nclude <atm . h>
void tpfree(char *ptr)

Theargument tot pf ree() isapointer to a buffer previously obtained by either

tpal l oc() ortprealloc().If ptrisNULL, noactionoccurs. Undefined resultswill
occur if pt r does not point to atyped buffer (or if it points to space previously freed

witht pfree()). Insideserviceroutines, t pf ree() returnsand does not freethebuffer
if pt r points to the buffer passed into a service routine.

Some buffer types require state information or associated data to be removed as part
of freeing abuffer. t pf r ee() removes any of these associations (in acommunication
manager-specific manner) before a buffer is freed.

Oncet pfree() returns, pt r should not be passed as an argument to any BEA Tuxedo
system routine or used in any other manner.

A thread in amultithreaded application may issueacall tot pf r ee() whilerunningin
any context state, including TPI NVALI DCONTEXT.

When freeing an FM_32 buffer using t pf r ee() , the routine recursively freesall
embedded buffersto prevent memory leaks. In order to preserve the embedded buffers,
you should assign the associated pointer to NULL beforeissuing the t pf r ee()
command. As stated above, if ptr isNULL, no action occurs.

t pf ree() doesnot return any value to itscaller. Thus, it is declared as a void.

This function should not be used in concert with nal | oc(),real | oc(), orfree()
inthe C library (for example, a buffer allocated with t pal | oc() should not be freed
withfree()).

Introduction to the C Language Application-Transaction Monitor Interface,
tpal l oc(3c),tprealloc(3c)

BEA Tuxedo C Function Reference

tpgetadmkey(3c¢)

tpgetadmkey(3¢)

Name

Synopsis

Description

Return Values

Errors

Portability

See Also

t pget adnkey() - get administrative authentication key

#i ncl ude <atni. h>
I ong tpgetadnkey(TPI NI T *t pi nf o)

t pget adnkey() isavailable for application use by an application specific
authentication server. It returns an application security key suitable for assignment
to the indicated user for the purpose of administrative authentication. This routine
must becalled with aclient name (that is, t pi nf o—>c! t nane) of either t psysadny()
or t psysop() ; otherwise, avalid administrative key will not be returned.

In amultithreaded application, athread in the TPl NVALI DCONTEXT stateis not allowed
toissueacal tot pget adnkey() .

Upon success, t pget adnkey() returns a non-0 value with the high-order bit
(0Ox80000000) set; otherwise it returns 0. Zero may be returned if ¢ pi nf o isNULL,
t pi nf o—>cl t naneisnott psysadn() ort psysop(), orlastly if theeffectiveuser ID
is not the configured application administrator for this site.

A zero return value is the only indication that a valid administrative key was not
assigned.

Thisinterfaceis available only on UNIX System sites running BEA Tuxedo Release
5.0 or later.

t padduser (1), tpinit(3c), AUTHSVR(5)
Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

BEA Tuxedo C Function Reference 167

Section 3c - C Functions

tpgetctxt(3¢)

Name tpgetctxt() - retrieve acontext identifier for the current application association

Synopsis #i ncl ude <atmi . h>
int tpgetctxt(TPCONTEXT T *context, long flags)

Description t pget ct xt () retrievesanidentifier that representsthe current application context and
places that identifier in cont ext . This function operates on a per-thread basisin a
multithreaded environment, and on a per-process basis in a non-threaded environment.

Typically, athread
1. Calstpinit()
2. Cadllstpgetctxt ()

3. Handlesthevalue of cont ext asfollows:

¢ Ina multithreaded application—Passes the valusof ext to another
thread in the same process so the other thread carpsatict xt ()

¢ In a single-threaded or multithreaded application—Saves this context
identifier for itself so it can switch back to the indicated context later

The second argumert] ags, is not currently used and must be set to 0.

t pget ct xt () may be called in single-context applications as well as in multicontext
applications.

A thread in a multithreaded application may issue a calpget ct xt () while
running in any context state, includimgl NVALI DCONTEXT.

Return Values Upon successful completionpget ct xt () returns a non-negative value. Context is

168

set to the current context ID, which may be represented by any of the following:
m A context ID greater than 0, indicating a context in a multicontexted application

m TPSI NGLECONTEXT, indicating that the current thread has successfully executed
t pi ni t () without theTPMULTI CONTEXTS flag, or that the current thread was
just created in a process that has successfully execpitedt () without the
TPMULTI CONTEXTS flag. The value of PSI NGLECONTEXT is O.

BEA Tuxedo C Function Reference

tpgetctxt(3c)

Errors

See Also

m TPNULLCONTEXT, indicating that the current thread is not associated with a
context.

®m TPl NVALI DCONTEXT, indicating that the current thread isin the invalid context
state. If athread in amulticontexted client issuesacall tot pt er n{) while other
threads in the same context are still working, the working threads are placed in
the TPl NVALI DCONTEXT context. The value of TPl NVALI DCONTEXT is- 1.

A thread in the TPI NVALI DCONTEXT state is prohibited from issuing calls to most
ATMI functions. For a complete list of functions that may and may not be
called, see Introduction to the C L anguage Application-Transaction Monitor
Interface.

For details about the TPI NVALI DOCONTEXT context state, seet pt er m(3c) .

Uponfailure, t pget ct xt () returnsavalueof -1 and setst per r no toindicatetheerror
condition.

Upon failure, t pget ct xt () setst perr no to one of the following values.

[TPEI NVAL]
Invalid arguments have been given. For example, the value of cont ext is
NULL or thevalue of f/ ags isnot O.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error has
been written to alog file.

[TPECS]
An operating system error has occurred.

Introduction to the C Language A pplication-Transaction Monitor Interface,
tpsetctxt(3c),tpterm3c)

BEA Tuxedo C Function Reference 169

Section 3c - C Functions

tpgetlev(3¢)

Name

Synopsis

Description

Return Values

Errors

Notices

See Also

t pgetl ev() - routine for checking if atransaction isin progress

#include <atm . h>
int tpgetlev()

t pgetl ev() returnsto the caller the current transaction level. Currently, the only
levels defined are 0 and 1.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pget | ev().

Upon successful completion, t pget | ev() returnseither a0 to indicate that no
transaction isin progress, or 1 to indicate that a transaction isin progress;

Upon failure, t pget | ev() returns-1 and setst per r no() toindicate the error
condition.

Upon failure, t pget | ev() setst perrno() to one of the following values.

[TPEPROTC)
t pget | ev() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

When using t pbegi n(), t pconmi t () andt pabort () to delineate a BEA Tuxedo
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by either t pconmi t () or t pabort (). Seebui | dserver (1) for detailson
linking resource managersthat meet the XA interfaceinto aserver such that operations
performed by that resource manager are part of a BEA Tuxedo system transaction.

t pabort (3c),tpbegin(3c),tpcomit(3c),tpscnt(3c)

170 BEA Tuxedo C Function Reference

tpgetrply(3c¢)

tpgetrply(3¢)

Name tpgetrply() - routinefor getting areply from a previous request

Synopsis #i ncl ude <atmi . h>
int tpgetrply(int *cd, char **data, long */en, long flags)

Description t pget rpl y() returnsareply from a previously sent request. Thisfunction’s first
argumentgd, points to a call descriptor returnedtpacal | () . By default, the
function waits until the reply matching:# arrives or a timeout occurs.

dat a must be the address of a pointer to a buffer previously allocategaby oc ()

and/ en should point to a long thapget r pl y() sets to the amount of data
successfully received. Upon successful retudtat % points to a buffer containing the
reply and ¥ en contains the size of the data. FML and FML32 buffers often assume a
minimum size of 4096 bytes; if the reply is larger than 4096, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive a buffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) a reply buffer changed in size, compare its total size hefgeer pl y()

was issued with fen. See “Introduction to the C Language Application-Transaction
Monitor Interface” for more information about buffer management.

If* I enis O, then the reply has no data portion and neittier& nor the buffer it points
to were modified.

It is an error for Hat a or / en to be NULL.
Within any particular context of a multithreaded program:

m Calls tot pget r pl y(TPGETANY) andt pget rpl y() for a specific handle cannot
be issued concurrently.

m Multiple calls tot pget r pl y(TPGETANY) cannot be issued concurrently.

BEA Tuxedo C Function Reference 171

Section 3c - C Functions

172

Any t pget rpl y() call that would, if issued, cause aviolation of either of these
restrictions, returns - 1 and setst per r no to TPEPROTO.

It is acceptable to issue:
m Concurrent calstot pget rpl y() for different handles

m A cal totpgetrpl y(TPGETANY) inasingle context concurrently with acall to
t pgetrpl y(), with or without TPGETANY, in a different context

Thefollowingisalist of valid f/ ags.

TPGETANY
Thisflag signifiesthat t pget r pl y() should ignore the descriptor pointed to
by cd, return any reply available and set cd to point to the call descriptor for
the reply returned. If no replies exist, t pget r pl y() by default will wait for
oneto arrive.

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed
to by *dat a, then *dat a's buffer type changes to the received buffer’s type
so long as the receiver recognizes the incoming buffer type. When this flag is
set, the type of the buffer pointed to hyat a is not allowed to change. That
is, the type and sub-type of the received buffer must match the type and
sub-type of the buffer pointed to byt a.

TPNOBLOCK
t pgetrpl y() does not wait for the reply to arrive. If the reply is available,
thent pget r pl y() gets the reply and returns. When this flag is not specified
and a reply is not available, the caller blocks until the reply arrives or a
timeout occurs (either transaction or blocking timeout).

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely for its reply
and wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSI GRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued.

Except as noted belowcd is no longer valid after its reply is received.

In a multithreaded application, a thread inTiRe NVALI DCONTEXT state is not allowed
to issue a call topget rpl y() .

BEA Tuxedo C Function Reference

tpgetrply(3c¢)

Return Values

Errors

Upon successful return fromt pget r pl y() or upon return wheret perrno() issetto
TPESVCFAI L, t pur code() contains an application defined value that was sent as part
of tpreturn().

Upon failure, t pget rpl y() returns-1and setst perrno() to indicate the error
condition.

Upon failure, t pgetrpl y() setst perrno() asindicated below. Note that if

TPGETANY is not set, then * cd isinvalidated unless otherwise stated. If TPGETANY is

set, then cd points to the descriptor for the reply on which the failure occurred; if an

error occurred before areply could be retrieved, then cd pointsto 0. Also, the failure

does not affect the caller’s transaction, if one exists, unless otherwise stated. If a call
fails with a particulat perr no() value, a subsequent callttper r or det ai | () with

no intermediate ATMI calls, may provide more detailed information about the
generated error. Refer to thgerr or det ai | (3c) reference page for more

information.

[TPEI NVAL]
Invalid arguments were given (for example, dat a, *dat a or/ enis NULL
or f1 ags are invalid). Ifcd is non-NULL, then it is still valid after this error
and the reply remains outstanding.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set irnf/ ags and the type and sub-type afdt a do not
match the type and sub-type of the reply sent by the service. Regardless,
neither *dat a, its contents nor/*en are changed. If the reply was to be
received on behalf of the caller’s current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPEBADDESC]
cd points to an invalid descriptor.

[TPETI ME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neitleNOBLOCK nor TPNOTI ME were
specified. In either case, neithefat a, its contents nor*en are changed.
* cd remains valid unless the caller is in transaction modeTR@ETANY was
not set). If a transaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is a request
that does not block, expects no reply and is not sent on behalf of the caller’s

BEA Tuxedo C Function Reference 173

Section 3c - C Functions

174

transaction (that is, t pacal | () with TPNOTRAN, TPNOBLOCK and TPNOREPLY
set).

[TPESVCFAI L]
The service routine sending the caller’s reply calledet ur n() with
TPFAI L. This is an application-level failure. The contents of the service’s
reply, if one was sent, is available in the buffer pointed today 4. If the
service request was made on behalf of the caller’s transaction, then the
transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the
transaction is aborted are calls fmcal | () with TPNOREPLY, TPNOTRAN,
andTPNOBLOCK set.

[TPESVCERR]
A service routine encountered an error eithearpinet ur n() or
t pf orwar d() (for example, bad arguments were passed). No reply data is
returned when this error occurs (that is, neith#t%, its contents norr*en
are changed). If the service request was made on behalf of the caller’s
transaction, then the transaction is marked abort-only. Note that regardless c
whether the transaction has timed out, the only valid communications before
the transaction is aborted are calls pacal | () with TPNOREPLY,
TPNOTRAN, andTPNOBLOCK set. If eithelSVCTI MEQUT in the UBBCONFI Gfile
or TA_SVCTI MEQUT in theTM_M B is non-zeroTPESVCERR is returned when
a service timeout occurs.

[TPEBLOCK]
A blocking condition exists antPNOBLOCK was specified. &d remains
valid.

[TPGOTSI G|
A signal was received anmbSI GRSTRT was not specified.

[TPEPROTC)
t pgetrpl y() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEGCS]
An operating system error has occurred. If a message queue on a remote
location is filled, TPEGS may possibly be returned.

BEA Tuxedo C Function Reference

tpgetrply(3c¢)

See Also tpacall (3c),tpalloc(3c),tpcancel (3c),tperrordetail (3c),
tprealloc(3c),tpreturn(3c),tpstrerrordetail (3c),tptypes(3c)

BEA Tuxedo C Function Reference 175

Section 3c - C Functions

tpgprio(3¢)

Name tpgprio() - routine for getting a service request priority

Synopsis #i ncl ude <atmi . h>
int tpgprio(void)

Description t pgpri o() returnsthe priority for the last request sent or received by the current
thread in its curent context. Priorities can range from 1 to 100, inclusive, with 100
being the highest priority. t pgpri o() may be called after t pcal | () ortpacal | (),
(also t penqueue(), ort pdequeue() , assuming the queued management facility is
installed), and the priority returned is for the request sent. Also, t pgpri o() may be
called within aserviceroutineto find out at what priority theinvoked service was sent.
t pgpri o() may be called any number of timesand will return the same value until the
next request is sent.

In amultithreaded application t pgpri o() operates on a per-thread basis.

Because the conversation primitives are not associated with priorities, issuing

t psend() ortprecv() hasno affect on the priority returned by t pgpri o() . Also,
thereisno priority associated with aconversational serviceroutineunlessat pcal | ()
or t pacal | () isdone within that service.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pgpri o().

Return Values Upon success, t pgpri o() returns arequest’s priority;

Upon failure t pgpri o() returns -1 and setgerrno() to indicate the error
condition.

Errors Upon failuret pgpri o() setst per rno to one of the following values.

[TPENCENT]
t pgpri o() was called and no requests (vial | () ortpacall ()) have
been sent, or it is called within a conversational service for which no requests
have been sent.

[TPEPROTC)
t pgpri o() was called improperly.

176 BEA Tuxedo C Function Reference

tpgprio(3c)

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to alog file.

[TPECS]
An operating system error has occurred.

See Also tpacall (3c),tpcal |l (3c),tpdequeue(3c),tpenqueue(3c),tpservice(3c),
tpsprio(3c)

BEA Tuxedo C Function Reference 177

Section 3c - C Functions

tpimport(3¢)

Name

Synopsis

Description

Return Values

t pi nport () - convert an externalized representation of a message buffer into atyped
message buffer

#i nclude <atm . h>
int tpinmport(char *istr, long ilen, char **obuf, |ong *ol en,
I ong flags)

t pi nport () convertsan externalized representation of a message buffer into atyped
message buffer. An externalized representation is a message buffer that does not
include any BEA Tuxedo header information that is normally added to a message
buffer just before the buffer istransmitted. A process converts atyped message buffer
into an externalized representation by calling the t pexpor t () function.

Any digital signatures associated with i st r are verified when the buffer isimported,
and are available for examination after importing viat penvel ope() .

If the i st r buffer representation is encrypted, the importing process must have access
toavalid private key for decryption. Decryption is performed automatically during the
importing process.

If TPEX_STRI NGishot setin f/ ags, then i | en contains the length of the binary data
containedinistr.If ilenisO,istr isassumed to point to a null-terminated string,
and the TPEX_STRI NGflag isinferred.

*obuf must point to avalid typed message buffer either (1) previously allocated by a
process calling t pal | oc() or (2) delivered by the system to areceiving process. The
buffer will be reallocated as necessary to accommodate the result, and its buffer type
or subtype may change.

*ol en is set to the amount of valid data contained in the output buffer. If of enis
NULL on input, it isignored.

The f 1 ags argument should be set to TPEX_STRI NGif the input externalized
representation isin string format (base 64 encoded). Otherwise, theinput isin binary
format of length i / en.

Onfailure, thisfunction returns- 1 and setst per r no() to indicate the error condition.

178 BEA Tuxedo C Function Reference

tpimport(3¢)

Errors [TPEI NVAL]
Invalid arguments were given. For example, the value of i st r iSNULL or
the f/ ags parameter is not set correctly.

[TPEPERM
Permission failure. The cryptographic service provider was not able to access
aprivate key necessary for decryption.

[TPEPROTC)
A protocol failure occurred. The failure involves an invalid data format in
i str or adigital signaturethat failed verification.

[TPESYSTEM
An error occurred. Consult the system error log file for more details.

See Also tpenvel ope(3c), t pexport (3c)

BEA Tuxedo C Function Reference 179

Section 3c - C Functions

tpinit(3¢)

Name

Synopsis

Description

tpinit () -joinsan application

#include <atm . h>
int tpinit(TPINIT *tpinfo)

t pi nit () alowsaclienttojoinaBEA Tuxedo system application. Beforeaclient can
useany of the BEA Tuxedo system communication or transaction routines, it must first
join a BEA Tuxedo system application.

t pi nit () hastwo modes of operation: single-context mode and multicontext mode,
which will be discussed in detail below. Because calling t pi ni t () isoptiona when
in single-context mode, a single-context client may also join an application by calling
many ATMI routines (for example, t pcal | ()), which transparently call t pi ni t ()
with t pi nfo setto NULL. A client may want to call t pi ni t () directly so that it can
set the parameters described below. In addition, t pi ni t () must be used when
multicontext mode is required, when application authentication is required (see the
description of the SECURI TY keyword in UBBCONFI G(5)), or when the application
wishes to supply its own buffer type switch (see t ypesw(5)). After t pinit ()
successfully returns, the client can initiate service requests and define transactions.

In single-context mode, if t pi ni t () iscaled morethan once (that is, if it iscalled
after the client has already joined the application), no action istaken and successis
returned.

In amultithreaded client, athread in the TPI NVALI DCONTEXT state is not allowed to
issueacall tot pi ni t (). Tojoin aBEA Tuxedo application, a multithreaded
workstation client must always call t pi ni t () with the TPMULTI CONTEXTS flag set,
even if theclient is running in single-context mode.

Description of the TPINFO Structure

180

t pi ni t () 's argumenty pi nf o, is a pointer to a typed buffer of typel NI T and a
NULL sub-type.TPI NI T is a buffer type that isypedef ed in theat ni . h header file.
The buffer must be allocated wigal | oc() prior to callingt pi ni t (). The buffer
should be freed usingf ree() after callingt pi ni t (). TheTPI NI T typed buffer
structure includes the following members:

char usr nane[MAXTI DENT+2] ;
char cl t name[MAXTI DENT+2] ;

BEA Tuxedo C Function Reference

tpinit(3¢)

char passwd[MAXTI DENT+2] ;
char gr pnane[MAXTI DENT+2] ;
| ong fl ags;

| ong dat al en;

| ong dat a;

The values of usr nane, cl t nane, gr pnane, and passwd are all NULL-terminated
strings. usr nane isaname representing the caller. cl t nane is aclient name whose
semantics are application defined. Thevaluesyscl i ent isreserved by the system for
thecl t name field. The usr name and cl t nane fields are associated with the client at
t pi ni t () timeand are used for both broadcast notification and administrative
statistics retrieval. They should not have more characters than MAXTI DENT, which is
defined as 30. passwd is an application password in unencrypted format that is used
for validation against the application password. The passwd islimited to 30 characters.
gr pname is used to associate the client with aresource manager group name. If

gr pname is set to a 0-length string, then the client is not associated with aresource
manager and isin the default client group. The value of gr pname must be the null
string (O-length string) for Workstation clients. Note that gr pnane is not related to
ACL GROUPS.

Single-context Mode versus Multicontext Mode

t pi ni t () hastwo modes of operation: single-context mode and multicontext mode.
In single-context mode, a process may join at most one application at any onetime.
Multiple application threads may access this application. Single-context modeis
specified by calling t pi ni t () withaNULL parameter or by calling it without
specifying the TPMULTI CONTEXTS flag in the f | ags field of the TPI NI T structure.
Single-context mode is also specified whent pi ni t () iscaled implicitly by another
ATMI function. The context state for a process operating in single-context mode is
TPSI NGLECONTEXT.

In single-context mode, if t pi ni t () iscalled more than once (that is, if it is called
after the client has already joined the application), no action is taken and successis
returned.

Multicontext mode is entered by calling t pi ni t () with the TPMULTI CONTEXTS flag
setinthef | ags field of the TPI NI T structure. In multicontext mode, each call to
tpi ni t () resultsin the creation of a separate application association.

An application association is a context that associates a process and a BEA Tuxedo
application. A client may have associations with multiple BEA Tuxedo applications,
and may also have multiple associations with the same application. All of a client’s

BEA Tuxedo C Function Reference 181

Section 3c - C Functions

associ ations must be made to applicationsrunning the same release of the BEA Tuxedo
system, and either all associations must be native clients or al associations must be
workstation clients.

For native clients, the value of the TUXCONFI G environment variable isused to identify
the application to which the new association will be made. For workstation clients, the
value of the WBNADDR or WSENVFI LE environment variable is used to identify the
application to which the new association will be made. The context for the current
thread is set to the new association.

In multicontext mode, the application can get a handle for the current context by
calingt pget ct xt () and pass that handle as a parameter to t pset ct xt (), thus
setting the context in which a particular thread or process will operate.

Mixing single-context mode and multicontext mode is not alowed. Once an
application has chosen one of these modes, calling t pi ni t () inthe other modeis not
allowed unlesst pt er m() isfirst called for all application associations.

TPINFO Structure Field Descriptions

182

In addition to controlling multicontext and single-context modes, the setting of f | ags
is used to indicate both the client-specific notification mechanism and the mode of
system access. These two settings may override the application default. If these
settings cannot override the application default, t pi ni t () printsawarninginalog
file, ignores the setting, and restores the application default setting in the f | ags field
upon return fromt pi ni t () . For client notification, the possible valuesfor f | ags are
asfollows:

TPU SI G
Select unsolicited notification by signals. This flag should be used only with
single-threaded, single-contexted applications; it cannot be used when the
TPMULTI CONTEXTS flag is set.

TPU DI P
Select unsolicited notification by dip-in.

TPU_THREAD
Select THREAD notification in a separate thread managed by the BEA Tuxedo
system. Thisflagisallowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support multithreading,
itis considered an invalid argument and will result in an error return with
t perrno() setto TPElI NVAL.

BEA Tuxedo C Function Reference

tpinit(3¢)

TPU | GN
Ignore unsolicited notification.

Only one of the above flags can be used at atime. If the client does not select a
notification method viathe flags field, then the application default method will be set
in the flags field upon return fromt pi ni t () .

For setting the mode of system access, the possible valuesfor f | ags are as follows:

TPSA_FASTPATH
Set system access to fastpath.

TPSA_PROTECTED
Set system access to protected.

Only one of the above flags can be used at atime. If the client does not select a
notification method or a system access mode viathe flags field, then the application
default method(s) will be set in the f | ags field upon return from t pi ni t () . See
UBBCONFI G 5) for details on both client notification methods and system access
modes.

If your application uses multithreading and/or multicontexting, you must set the
following flag:

TPMULTI CONTEXTS
See description in “Single-context Mode versus Multicontext Mode.”

dat al en is the length of the application-specific data that follows. The buffer type
switch entry for th@PI NI T typed buffer sets this field based on the total size passed
in for the typed buffer (the application data size is the total size less the size of the
TPI NI T structure itself plus the size of the data placeholder as defined in the structure).
dat a is a place holder for variable length data that is forwarded to an
application-defined authentication service. It is always the last element of this
structure.

A macro,TPI Nl TNEED, is available to determine the siz@ NI T buffer necessary to
accommodate a particular desired application specific data length. For example, if 8
bytes of application-specific data are desirel,Nl TNEED(8) will return the required

TPI NI T buffer size.

A NULL value fort pi nf o is allowed for applications not making use of the
authentication feature of the BEA Tuxedo system. Clients using a NULL argument
will get: defaults of O-length strings fasr nane, cl t nane andpasswd; no flags set;
and no application data.

BEA Tuxedo C Function Reference 183

Section 3c - C Functions

Return Values

Errors

Interoperability

Portability

Environment

184

Variables

Upon failure, t pi ni t () leavesthe calling processin itsorigina context, returns- 1,
and setst per r no toindicatethe error condition. Also, t pur code() isset to thevalue
returned by the AUTHSVR(5) server.

Upon failure, t pi ni t () setstperrno() to one of the following values.

[TPEI NVAL]
Invalid arguments were specified. t pi nf o isnon-NULL and does not point
to atyped buffer of type TPI NI T.

[TPENCENT]
The client cannot join the application because of space limitations.

[TPEPERM
The client cannot join the application because it does not have permission to
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, failure
to pass application-specific authentication, or use of restricted names.
t pur code() may be set by an application-specific authentication server to
explain why the client cannot join the application.

[TPEPROTC)
t pi ni t () hasbeen caled improperly. For example: (a) thecaller isaserver;
(b) the TPMULTI CONTEXTS flag has been specified in single-context mode; or
(c) the TPMULTI CONTEXTS flag has not been specified in multicontext mode.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pchkaut h() and anon-NULL value for the TPI NI T typed buffer argument of
t pi nit () areavailableonly on sitesrunning Release 4.2 or later.

Theinterfaces described in t pi ni t (3c) are supported on UNIX System, Windows,
and MS-DOS operating systems. However, signal-based notification is not supported
on 16-bit Windows or MS-DOS platforms. If itisselected at t pi nit () time, thena
user | og() message is generated and the method is automatically set to dip-in.

TUXCONFI G
Used within t pi ni t () when invoked by anative client. It indicates the
application to which the client should connect. Note that this environment

BEA Tuxedo C Function Reference

tpinit(3¢)

variableisreferenced only whent pi ni t () iscalled. Subsequent calls make
use of the application context.

WSENVFI LE
Used within t pi ni t () when invoked by aworkstation client. It indicates a
file containing environment variable settings that should be set in the caller’s
environment. Seeonpi | ati on(5) for details on environment variable
settings necessary for workstation clients. Note that this file is processed only
whent pi nit () is called and not before.

WENADDR
Used withint pi ni t () when invoked by a workstation client. It indicates the
network addresses of the workstation listener that is to be contacted for access
to the application. This variable is required for Workstation clients and is
ignored for native clients.

TCP/IP addresses may be specified in the following forms:
// host. nanme: port_nunber
//#. #. # #: port_nunber

In the first format, the domain finds an addressifaxt nane using the local
name resolution facilities (usually DNSjost name must be the local

machine, and the local name resolution facilities must unambiguously resolve
host nane to the address of the local machine.

In the second format, the strirg#. #. # is in dotted-decimal format. In
dotted-decimal format, each # should be a number from 0 to 255. This
dotted-decimal number represents the IP address of the local machine.

In both of the above formatsert _nunber is the TCP port number at which
the domain process will listen for incoming requests.t _nunber can

either be a number between 0 and 65535 or a namer if nunber is a

name, then it must be found in the network services database on your local
machine.

The address can also be specified in hexadecimal format when preceded by
the charactersx. Each character after the initia is a number between 0

and 9 or a letter between A and F (case insensitive). The hexadecimal format
is useful for arbitrary binary network addresses such as IPX/SPX or TCP/IP.

The address can also be specified as an arbitrary string. The value should be
the same as that specified for theSADDR parameter in thBETWORK section
of the configuration file.

BEA Tuxedo C Function Reference 185

Section 3c - C Functions

More than one address can be specified if desired by specifying a
comma-separated list of path namesfor WeNADDR. Addressesaretriedin order
until a connection is established. Any member of an addresslist can be
specified as a parenthesized grouping of pipe-separated network addresses.
For example:

WENADDR=(// mL. acrre. com 3050| / / n2. acne. com 3050), // nB. acme. com 3050

For usersrunning under Windows, the address string looks like the following.

set WBNADDR=(//nil. acne. com 3050"|// n2. acrme. com 3050), // nB. acrre. com 3050

186

Because the pipe symbol (|) isconsidered a special character in Windows, it

must be preceded by a carat (*)—an escape character in the Windows
environment—when it is specified on the command line. However, if
WBNADDR is defined in an envfile, the BEA Tuxedo system gets the values
defined byWsNADDR through the uxget env(3c) function. In this context,

the pipe symbol|() is not considered a special character, so you do not need
to escape it with a carat)(

The BEA Tuxedo system randomly selects one of the parenthesized
addresses. This strategy distributes the load randomly across a set of listen
processes. Addresses are tried in order until a connection is established. Us
the value specified in the application configuration file for the workstation
listener to be called. If the value begins with the charaeseiisis interpreted

as a string of hex-digits; otherwise, it is interpreted as ASCII characters.

WSFADDR

Used withint pi ni t () when invoked by a workstation client. It specifies the
network address used by the workstation client when connecting to the
workstation listener or workstation handler. This variable, along with the
WSFRANGE variable, determines the range of TCP/IP ports to which a
workstation client will attempt to bind before making an outbound
connection. This address must be a TCP/IP address. The port portion of the
TCP/IP address represents the base address from which a range of TCP/IP
ports can be bound by the workstation client. WBERANGE variable

specifies the size of the range. For example, if this address is

/ I nymachi ne. bea. com 30000 andWsFRANGE is 200, then all native
processes attempting to make outbound connections frommhiswill bind

a port omynachi ne. bea. combetween 30000 and 30200. If not set, this
variable defaults to the empty string, which implies the operating system
chooses a local port randomly.

BEA Tuxedo C Function Reference

tpinit(3¢)

WSFRANGE

Used withint pi ni t () wheninvoked by aworkstation client. It specifiesthe
range of TCP/IP ports to which a workstation client process will attempt to
bind before making an outbound connection. The WSFADDR parameter
specifies the base address of the range. For example, if the WSFADDR
parameter is set to / / nynmachi ne. bea. com 30000 and WSFRANGE is set to
200, then all native processes attempting to make outbound connections from
this LM Dwill bind a port on nynachi ne. bea. combetween 30000 and
30200. The valid rangeis 1-65535. The default is 1.

WSDEVI CE

WSTYPE

Used withint pi ni t () wheninvoked by aworkstation client. Itindicatesthe
device name to be used to access the network. This variable is used by
workstation clients and ignored for native clients. Note that certain supported
transport level network interfaces do not require adevice name; for example,
sockets and NetBIOS. Workstation clients supported by such interfaces need
not specify WSDEVI CE.

Used within t pi ni t () when invoked by aworkstation client to negotiate
encode/decode responsibilities with the native site. This variable is optional
for workstation clients and ignored for native clients.

WSERPL YVAX

Used by t pi ni t () to set the maximum amount of core memory that should
be used for buffering application replies before they are dumped to file. The
default for this parameter 256,000 bytes. For more information, see the
programming documentation for your instantiation.

TMM NENCRYPTBI TS

Used to establish the minimum level of encryption required to connect to the

BEA Tuxedo system. “0” means no encryption, while “56” and “128" specify
the encryption key length (in bits). The link-level encryption value of 40 bits
is also provided for backward compatibility. If this minimum level of
encryption cannot be met, link establishment will fail. The default is “0”.

TMVRXENCRYPTBI TS

Used to negotiate the level of encryption up to this level when connecting to
the BEA Tuxedo system. “0” means no encryption, while “56” and “128"
specify the encryption length (in bits). The link-level encryption value of 40
bits is also provided for backward compatibility. The default is “128.”

BEA Tuxedo C Function Reference 187

Section 3c - C Functions

Warning Signal-based notification is not allowed in multicontext mode. In addition, signal
restrictions may prevent the system from using signal -based notification even though
it hasbeen selected by aclient. When this happens, the system generates alog message
that it is switching notification for the selected client to dip-in and the client isnotified
then and thereafter via dip-in notification. (See the description of the NOTI FY
parameter in the RESOURCES section of UBBCONFI G(5) for a detailed discussion of
notification methods.)

Because signaling of clientsis always done by the system, the behavior of notification
isaways consistent, regardless of where the originating notification call is made.
Therefore to use signal-based notification:

m A native client must be running as an application administrator

m A Workstation client is not required to be running as the application
administrator

TheID for the application administrator isidentified as part of the configuration for
the application.

If signal-based notification is selected for a client, then certain ATMI calls may fail,
returning TPGOTSI Gdue to receipt of an unsolicited message if TPSI GRSTRT is hot
specified.

See Also Introduction to the C Language A pplication-Transaction Monitor Interface,
t pgetctxt(3c),tpsetctxt(3c),tpterm 3c)

188 BEA Tuxedo C Function Reference

tpkey_close(3¢)

tpkey_close(3¢)

Name

Synopsis

Description

Return Values

Errors

See Also

t pkey_cl ose() - closeapreviousy opened key handle

#i ncl ude <atni. h>
int tpkey_cl ose(TPKEY hKey, |ong flags)

t pkey_cl ose() releasesapreviously opened key handle and all resources associated
with it. Any sensitive information, such as the principal’s private key, is erased from
memory.

Key handles can be opened in one of two ways:
m By an explicit call ta pkey_open()
m As output fromt penvel ope()

It is the application’s responsibility to release key resources by calling

t pkey_cl ose() . Once a process closes a key, the process can no longer use the key
handle to register a message buffer for digital signature or encryption. If the process
opened the key usingkey_open() with theTPKEY_AUTOSI GN or

TPKEY_AUTOENCRYPT flag specified, the key handle no longer applies to future
communication operations after the key is closed.

Even though a key is closed, however, the key handle continues to be valid for any
associated signature or encryption request registered before the key was closed. When
the last buffer associated with a closed key is freed or overwritten, resources
attributable to the key are released.

Thef ags argument is reserved for future use and must be set to 0.
On failure, this function returnsl and setsperrno() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the valuee§ is not a valid
key.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

t penvel ope(3c),tpkey_getinfo(3c),tpkey_open(3c),tpkey setinfo(3c)

BEA Tuxedo C Function Reference 189

Section 3c - C Functions

tpkey_getinfo(3¢)

Name tpkey_getinfo() - getinformation associated with akey handle

Synopsis #i ncl ude <atmi . h>
int tpkey_getinfo(TPKEY hKey, char *attribute _nanme, void *value,
Il ong *val ue | en, long flags)

Description t pkey_get i nf o() reportsinformation about akey handle. A key handle representsa
specific principal's key and the information associated with it.

The key under examination is identified by thiey input parameter. The attribute for
which information is desired is identified by thet ri but e_nane input parameter.
Some attributes are specific to a cryptographic service provider, but the following core
set of attributes should be supported by all providers.

Attribute Value

PRI NCI PAL The name identifying the principal associated with the key (key
handle), represented as a null-terminated character string.

PKENCRYPT_ALG An ASN.1 Distinguished Encoding Rules (DER) object identifier of
the public key algorithm used by the key for public key encryption.

The object identifier for RSA isidentified in the following table,
“Mapping of Algorithm Object Identifiers to Algorithms.”

PKENCRYPT_BI TS The key length of the public key algorithm (RSA modulus size). The
value must be within the range of 512 to 2048 bits, inclusive.

SI GNATURE_ALG An ASN.1 DERobject identifier of the digital signature algorithm
used by the key for digital signature.

The object identifiers for RSA and DSA are identified in the following
table, “Mapping of Algorithm Object Identifiers to Algorithms.”

SI GNATURE_BI TS The key length of the digital signature algorithm (RSA modulus size).
The value must be within the range of 512 to 2048 bits, inclusive.

190 BEA Tuxedo C Function Reference

tpkey_getinfo(3c)

Attribute Value

ENCRYPT_ALG An ASN.1DER object identifier of the symmetric key algorithm used
by the key for bulk data encryption.
The object identifiers for DES, 3DES, and RC2 are identified in the
following table, “Mapping of Algorithm Object Identifiers to
Algorithms.”

ENCRYPT_BI TS The key length of the symmetric key algorithm. The value must be
within the range of 40 to 128 bits, inclusive.
When an algorithm with a fixed key length is SeENCRYPT_ALG,
theENCRYPT_BI TS value is automatically set to the fixed key length.
For example, iENCRYPT_ALGis set to DES, thENCRYPT_BI TS
value is automatically set to 56.

DI GEST_ALG An ASN.1 DERobject identifier of the message digest algorithm used
by the key for digital signature.
The object identifiers for MD5 and SHA-1 are identified in the
following table, “Mapping of Algorithm Object Identifiers to
Algorithms.”

PROVI DER The name of the cryptographic service provider.

VERSI ON The version number of the cryptographic service provider's software.

The ASN.1 DER agorithm object identifiers supported by the default public key
implementation are given in the following table.

Mapping of Algorithm Object | dentifiersto Algorithms

ASN.1 DER Algorithm Object Identifier Algorithm
{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, Ox05 } VD5
{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, Oxla } SHA1

{ 0x06, 0x09, Ox2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x01, 0x01, 0x01 } RSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0xOc } DSA
{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x07 } DES
{ 0x06, 0x08, Ox2a, 0x86, 0x48, 0x86, Oxf7, 0x0d, 0x03, 0x07 } 3DES

BEA Tuxedo C Function Reference 191

Section 3c - C Functions

M apping of Algorithm Object Identifiersto Algorithms

ASN.1 DER Algorithm Object Identifier Algorithm

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, Oxf7, 0x0Od, 0x03, 0x02 } RC2

Theinformation associated with the specified at t r i but e_nane parameter will be
stored in the memory location indicated by val ue. The maximum amount of datathat
can be stored at thislocation is specified by the caller in val ue_I en.

After t pkey_get i nfo() completes, val ue_I enis set to the size of the data actually
returned (including a terminating null value for string values). If the number of bytes
that need to be returned exceeds val ue_I en, t pkey_get i nfo() fails (with the
TPELI M T error code) and sets val ue_I en to the required amount of space.

The f 1 ags argument is reserved for future use and must be set to 0.
Return Values On failure, thisfunction returns- 1 and setst per rno() to indicate the error condition.

Errors [TPEI NVAL]
Invalid arguments were given. For example, hkey isnot avalid key.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

[TPELI M T]
Insufficient space was provided to hold the requested attribute value.

[TPENCENT]
Therequested attribute is not associated with this key.

See Also tpkey_cl ose(3c),tpkey_open(3c),tpkey_setinfo(3c)

192 BEA Tuxedo C Function Reference

tpkey_open(3c¢)

tpkey_open(3¢)

Name

Synopsis

Description

t pkey_open() - open akey handle for digital signature generation, message
encryption, or message decryption

#i ncl ude <atni. h>
int tpkey_open(TPKEY * hKey, char *principal _nanme, char */ocation,
char *identity proof, long proof_|en, |long flags)

t pkey_open() makes akey handle available to the calling process. A key handle
represents a specific principal’s key and the information associated with it.

A key may be used for one or more of the following purposes:

Generating a digital signature, which protects a typed message buffer’s content
and proves that a specific principal originated the message. (A principal may be
a person or a process.) This type of key is a private key and is available only to
the key’s owner.

Callingt pkey_open() with the principal’'s name and either the
TPKEY_SI GNATURE or TPKEY_AUTOSI GN flag returns a handle to the principal’s
private key and digital certificate.

Verifying a digital signature, which proves that a typed message buffer’s content
remains unaltered and that a specific principal originated the message.

Signature verification does not require a call peey_open() ; the verifying
process uses the public key specified in the digital certificate accompanying the
digitally signed message to verify the signature.

Encrypting a message buffer destined for a specific principal. This type of key is
available to any process with access to the principal’s public key and digital
certificate.

Callingt pkey_open() with the principal’s name and either theKEY_ENCRYPT
or TPKEY_AUTCENCRYPT flag returns a handle to the principal’s public key via
the principal’s digital certificate.

Decrypting a message buffer intended for a specific principal. This type of key is
a private key and is available only to the key’s owner.

Callingt pkey_open() with the principal's name and ti@KEY_DECRYPT flag
returns a handle to the principal’s private key and digital certificate.

BEA Tuxedo C Function Reference 193

Section 3c - C Functions

194

Thekey handlereturned by t pkey_open() isstored in * hkey, the value of which
cannot be NULL.

Thepri nci pal _nane input parameter specifies the key owner’s identity. If the value
of princi pal _nane is a NULL pointer or an empty string, a default identity is
assumed. The default identity may be based on the current login session, the currer
operating system account, or another attribute such as a local hardware device.

The file location of a key may be passed into/theat i on parameter. If the
underlying key management provider does not require a location parameter, the valt
of this parameter may be NULL.

To authenticate the identity pf i nci pal _nane, proof material such as a password or
pass phrase may be required. If required, the proof material should be referenced b
identity_ proof.Otherwise, the value of this parameter may be NULL.

The length of the proof material (in bytes) is specifiecbbyof _I en. If proof_I en
is 0,identity proof is assumed to be a null-terminated character string.

The type of key access required for a key’s mode of operation is specifiedfbytize
parameter.

TPKEY_SI GNATURE:
This private key is available to generate digital signatures.

TPKEY_AUTCSI GN:
Whenever this process transmits a message buffer, the public key software
uses the signer’s private key to generate a digital signhature and then attache
the digital signature to the buffaiPKEY_SI GNATURE is implied.

TPKEY_ENCRYPT:
This public key is available to identify the recipient of an encrypted message

TPKEY_AUTCENCRYPT:
Whenever this process transmits a message buffer, the public key software
encrypts the message content, uses the recipient’s public key to generate a
encryption envelope, and then attaches the encryption envelope to the buffel
TPKEY_ENCRYPT is implied.

TPKEY_DECRYPT:
This private key is available for decryption.

BEA Tuxedo C Function Reference

tpkey_open(3c¢)

Return Values

Errors

See Also

Any combination of one or more of these flag valuesis allowed. If akey isused only
for encryption (TPKEY_ENCRYPT), i dent i t y_pr oof isnot required and may be set to
NULL.

Upon successful completion, * hKey is set to aval ue that represents thiskey, for use by
other functionssuch ast psi gn() andt pseal ().

On failure, thisfunction returns- 1 and setst per r no() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, the value of hkey isNULL or
the f/ ags parameter is not set correctly.

[TPEPERM
Permission failure. The cryptographic service provider was not able to access
aprivate key for this principal, given the proof information and current
environment.

[TPESYSTEM
A system error occurred. Consult the systems error log file for details.

tpkey_cl ose(3c),tpkey_getinfo(3c),tpkey_setinfo(3c)

BEA Tuxedo C Function Reference 195

Section 3c - C Functions

tpkey_setinfo(3¢)

Name

Synopsis

Description

Return Values

Errors

See Also

t pkey_setinfo() - setoptiona attribute parameters associated with a key handle

#i nclude <atm . h>
int tpkey_setinfo(TPKEY hKey, char *attribute nanme, void *value,
Il ong value len, |long flags)

t pkey_set i nfo() setsanoptional attribute parameter for akey handle. A key handle
represents a specific principal’'s key and the information associated with it.

The key for which information is to be modified is identified by tixey input
parameter. The attribute for which information is to be modified is identified by the
attri but e_nane input parameter. Some attributes may be specific to a certain
cryptographic service provider, but the core set of attributes presented on the

t pkey_get i nfo(3c) reference page should be supported by all providers.

The information to be associated with #ie ri but e_nane parameter is stored in the
memory location indicated byal uve. If the data content ofal ue is self-describing,
val ue_I enisignored (and may be 0). Otherwisa/ ue_I en must contain the length
of data inval ve.

Thef I ags argument is reserved for future use and must be set to 0.
On failure, this function returnsl and sets per rno() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For exampi&ey is not a valid key or
attribut e_nane refers to a read-only value.

[TPELI M T]
Theval ue provided is too large.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

[TPENOCENT]
The requested attribute is not recognized by the key’s cryptographic service
provider.

t pkey_cl ose(3c), t pkey_getinfo(3c),tpkey_open(3c)

196 BEA Tuxedo C Function Reference

tpnotify(3c)

tpnotify(3¢)

Name

Synopsis

Description

tpnotify() - routinefor sending notification by client identifier

#i ncl ude <atni. h>
int tpnotify(CLIENTID *clientid, char *data, |ong | en, long flags)

tpnotify() alowsaclient or server to send an unsolicited message to an individual
client.

clientidisapointertoaclient identifier saved from the TPSVCI NFO structure of a
previous or current service invocation, or passed to a client via some other
communications mechanism (for example, retrieved via the administration interface).

The data portion of the request is pointed to by dat a, abuffer previously allocated by
tpal I oc() . ! en specifies how much of dat a to send. Note that if dat a pointsto a
buffer type that does not require alength to be specified, (for example, an FM. fielded
buffer) then / en isignored (and may be 0). Also, dat a may be NULL in which case
I enisignored.

Upon successful return fromt pnoti f y() , the message has been delivered to the
system for forwarding to the identified client. If the TPACK flag was set, a successful
return means the message has been received by the client. Furthermore, if the client has
registered an unsolicited message handler, the handler will have been called.

Thefollowingisalist of valid 1 ags.

TPACK
The request is sent and the caller blocks until an acknowledgement message
isreceived from the target client.

TPNOBLOCK
The request is not sent if a blocking condition exists in sending the
notification (for example, the internal buffersinto which the messageis
transferred are full).

TPNOTI ME

Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

BEA Tuxedo C Function Reference 197

Section 3c - C Functions

Return Values

Errors

TPSI GRSTRT
If asignal interrupts any underlying system calls, then theinterrupted system
call is reissued.

Unlessthe TPACK flag isset, t pnot i f y() doesnot wait for the messageto be
delivered to the client.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pnotify().

Upon failure, t pnot i f y() returns-1 and setst per r no() toindicate the error
condition. If acal failswith aparticular t per rno() value, asubsequent call to
tperrordetail (), with nointermediate ATMI calls, may provide more detailed
information about the generated error. Refer to thet per r or det ai | (3c) reference
page for more information.

Upon failure, t pnot i fy() setst perrno() to one of the following values.

[TPEI NVAL]
Invalid arguments were given (for example, invaid flags).

[TPENCENT]
Thetarget client does not exist or does not have an unsolicited handler set and
the TPACK flag is set.

[TPETI ME]
A blocking timeout occurred and neither TPNOBL OCK nor TPNOTI ME were
specified, or TPACK was set but ho acknowledgment was received and
TPNOTI ME was not specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t pnoti fy() wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

198 BEA Tuxedo C Function Reference

tpnotify(3c)

[TPERELEASE]
When the TPACK is set and the target isa client from a prior release of BEA

Tuxedo that does not support the acknowledgment protocol.

See Also Introduction to the C Language Application-Transaction Monitor Interface,
tpall oc(3c),tpbroadcast (3c),tpchkunsol (3c),tperrordetail (3c),
tpinit(3c),tpsetunsol (3c),tpstrerrordetail (3c),tpterm3c)

BEA Tuxedo C Function Reference 199

Section 3c - C Functions

tpopen(3¢)

Name

Synopsis

Description

Return Values

Errors

See Also

t popen() - routine for opening a resource manager

#i nclude <atm . h>
i nt tpopen(void)

t popen() opens the resource manager to which the caller is linked. At most one
resource manager can be linked to the caller. Thisfunction isused in place of resource
manager-specific open() callsand allowsaserviceroutineto be free of callsthat may
hinder portability. Since resource managers differ in their initialization semantics, the
specific information needed to open a particular resource manager is placed in a
configuration file.

If aresource manager is already open (that is, t popen() iscalled more than once), no
action is taken and success is returned.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot popen() .

Upon failure, t popen() returns-1 and setst per rno() toindicate the error condition.
Upon failure, t popen() setstperrno() to one of the following values.

[TPERVERR]
A resource manager failed to open correctly. More information concerning
thereason aresource manager failed to open can be obtained by interrogating
aresource manager in its own specific manner. Note that any callsto
determine the exact nature of the error hinder portability.

[TPEPROTC)
t popen() wascalledinanimproper context (for example, by aclient that has
not joined a BEA Tuxedo system server group).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t pcl ose(3c)

200 BEA Tuxedo C Function Reference

tppost(3¢)

tppost(3¢)

Name

Synopsis

Description

t ppost () - post an event

#i ncl ude <atni. h>
int tppost(char *eventnane, char *data, long len, long flags)

The caller usest ppost () to post an event and any accompanying data. The event is
named by event name and dat a, if not NULL, pointsto the data. The posted event and
its data are dispatched by the BEA Tuxedo EventBroker to all subscribers whose
subscriptions successfully eval uate against event nanme and whose optional filter rules
successfully evaluate against dat a.

event nane isaNULL-terminated string of at most 31 characters. event nane’s first
character cannot be a dot (*.”) as this character is reserved as the starting character for
all events defined by the BEA Tuxedo system itself.

If dat ais non-NULL, it must point to a buffer previously allocated byl | oc() and

I en should specify the amount of data in the buffer that should be posted with the
event. Note that iflat a points to a buffer of a type that does not require a length to be
specified (for example, an FML fielded buffer), them is ignored. Ifdat ais NULL,

I enis ignored and the event is posted with no data.

Whent ppost () is used within a transaction, the transaction boundary can be

extended to include those servers and/or stable-storage message queues notified by the
EventBroker. When a transactional posting is made, some of the recipients of the event
posting are notified on behalf of the poster’s transaction (for example, servers and
gueues), while some are not (for example, clients).

If the poster is within a transaction and RNOTRAN flag is not set, the posted event

goes to the EventBroker in transaction mode such that it dispatches the event as part of
the poster’s transaction. The broker dispatches transactional event notifications only to
those service routine and stable-storage queue subscriptions that UBeEMIRAN

bit setting in thect | —>f 1 ags parameter passedtpsubscri be() . Client

notifications, and those service routine and stable-storage queue subscriptions that did
not use th@PEVTRAN bit setting in thect | —>f 1 ags parameter passed to

t psubscri be() , are also dispatched by the EventBroker but not as part of the posting
process’s transaction.

BEA Tuxedo C Function Reference 201

Section 3c - C Functions

202

If the poster is outside a transaction, t ppost () isaone-way post with no
acknowledgement when the service associated with the event fails. This occurs even
when TPEVTRAN is set for that event (using the ct / —>f | ags parameter passed to

t psubscri be()). If theposter isin atransaction, thent ppost () returns TPESVCFAI L
when the associated service failsin the event.

Thefollowingisalist of valid f ags.

TPNOTRAN
If the caller isin transaction mode and this flag is set, then the event posting
isnot made on behalf of thecaller’s transaction. A caller in transaction mode
that sets this flag is still subject to the transaction timeout (and no other) wher
posting events. If the event posting fails, the caller’s transaction is not
affected.

TPNOREPLY
Informst ppost () not to wait for the EventBroker to process all
subscriptions foevent nanme before returning. WhenPNOREPLY is set,
t pur code() is set to zero regardless of whethppost () returns
successfully or not. When the caller is in transaction mode, this setting canno
be used unlesEPNOTRAN is also set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition
occurs, the call fails artcper r no() is set torTPEBLOCK. WhenTPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. WhemPSI GRSTRT is not specified and a signal interrupts a
system call, thenppost () fails andt per rno() is set toTPGOTSI G.

In a multithreaded application, a thread inTPeNVALI DCONTEXT state is not allowed
to issue a call toppost () .

BEA Tuxedo C Function Reference

tppost(3¢)

Return Values

Errors

Upon successful return fromt ppost (), t pur code() contains the number of event
notifications dispatched by the EventBroker on behalf of event nane (that is, postings
for those subscriptions whose event expression eval uated successfully against

event narme and whose filter rule evaluated successfully against dat a). Upon return
wheret perrno() issetto TPESVCFAI L, t pur code() containsthe number of
non-transactional event notifications dispatched by the EventBroker on behalf of
event nane.

Upon failure, t ppost () returns-1 setst per rno() toindicate the error condition.

Upon failure, t ppost () setst perrno() to one of the following values. (Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampdeent nanme is NULL).

[TPENOENT]
Cannot access the BEA Tuxedo User EventBroker.

[TPI:_I'RAN]
The caller is in transaction modePNOTRAN was not set andppost ()

contacted an EventBroker that does not support transaction propagation (that
is, TMUSREVT(5) is not running in a BEA Tuxedo system group that supports

transactions).

[TPETI ME]

A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking

timeout occurred and neith&PNOBLOCK nor TPNOTI ME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPESVCFAI L]

The EventBroker encountered an error posting a transactional event to either

a service routine or to a stable storage queue on behalf of the caller’s

transaction. The caller’s current transaction is marked abort-only. When this
error is returned,pur code() contains the number of non-transactional event

notifications dispatched by the EventBroker on behalwafnt nane;

transactional postings are not counted since their effects will be aborted upon
completion of the transaction. Note that so long as the transaction has not

timed out, further communication may be performed before aborting the

transaction and that any work performed on behalf of the caller’s transaction

will be aborted upon transaction completion (that is, for subsequent

BEA Tuxedo C Function Reference 203

Section 3c - C Functions

204

See Also

communication to have any lasting effect, it should be done with TPNOTRAN
set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t ppost () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

t psubscri be(3c), t punsubscribe(3c), EVENTS(5), TMBYSEVT(5),
TMUSREVT(5)

BEA Tuxedo C Function Reference

tprealloc(3¢)

tprealloc(3¢)

Name

Synopsis

Description

Return Values

Errors

tpreal l oc() - routineto change the size of atyped buffer

#i ncl ude <atni. h>
char * tprealloc(char *ptr, long size)

t pr eal | oc() changes the size of the buffer pointed to by ptr to si ze bytes and

returns a pointer to the new (possibly moved) buffer. Similar to t pal | oc() , the size

of the buffer will be at least as large as the larger of si ze and df | t si ze, where

df I t si ze isthe default buffer size specifiedint nt ype_sw. If thelarger of thetwo is

less than or equal to zero, then the buffer is unchanged and NULL is returned. A

buffer's type remains the same after it is re-allocated. After this function returns
successfully, the returned pointer should be used to reference the puffshould

no longer be used. The buffer’'s contents will not change up to the lesser of the new and
old sizes.

Some buffer types require initialization before they can be uge@al | oc()

re-initializes a buffer (in a communication manager-specific manner) after it is
re-allocated and before it is returned. Thus, the buffer returned to the caller is ready for
use.

A thread in a multithreaded application may issue a calpteal | oc() while
running in any context state, includimgl NVALI DCONTEXT.

Upon successful completionpr eal 1 oc() returns a pointer to a buffer of the
appropriate type aligned on a long word.

Upon failuret preal | oc() returns NULL and setsperrno() to indicate the error
condition.

If the re-initialization function failst pr eal | oc() fails, returning NULL and the
contents of the buffer pointed to pyr may not be valid. Upon failurepr eal | oc()
setst perrno() to one of the following values.

[TPEI NVAL]
Invalid arguments were given (for exampber does not point to a buffer
originally allocated by pal | oc()).

[TPEPROTC)
tpreal l oc() was called improperly.

BEA Tuxedo C Function Reference 205

Section 3c - C Functions

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to alog file.

[TPEGCS]
An operating system error has occurred.

Usage If buffer re-initidizationfails, t pr eal | oc() failsreturning NULL and the contents of
the buffer pointed to by pt r may not be valid. This function should not be used in
concert withmal 1 oc(),real l oc() orfree() intheClibrary (for example, abuffer
allocated with t preal | oc() should not be freed with fr ee()).

See Also tpalloc(3c),tpfree(3c),tptypes(3c)

206 BEA Tuxedo C Function Reference

tprecv(3c)

tprecv(3¢)

Name

Synopsis

Description

tprecv() -routine for receiving a message in a conversational connection

#i ncl ude <atni. h>
int tprecv(int cd, char **data, long *len, long flags, long \
*revent)

t precv() isused to receive data sent across an open connection from another

program. t precv() s first argumentgd, specifies on which open connection to
receive datacd is a descriptor returned from eithgrconnect () or theTPSVC NFO
parameter to the service. The second argunans, is the address of a pointer to a
buffer previously allocated hypal | oc() .

dat a must be the address of a pointer to a buffer previously allocateplaby oc()
and/ en should point to a long thapr ecv() sets to the amount of data successfully
received. Upon successful returmiat a points to a buffer containing the reply and
*| en contains the size of the buffénL andrFML32 buffers often assume a minimum
size of 4096 bytes; if the reply is larger than 4096 bytes, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used sent. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive a buffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) a reply buffer changed in size, compare its total size begiosev() was
issued with*/ en. See “Introduction to the C Language Application-Transaction
Monitor Interface” for more information about buffer management.

If 1 enis 0, then no data was received and neitlart a nor the buffer it points to
were modified. It is an error fafat a, *dat a or/ en to be NULL.

tprecv() can be issued only by the program that does not have control of the
connection.

The following is a list of valid'/ ags.

BEA Tuxedo C Function Reference 207

Section 3c - C Functions

TPNOCHANGE
By default, if abuffer isreceived that differsin type from the buffer pointed
to by *dat a, then *dat a's buffer type changes to the received buffer's type
so long as the receiver recognizes the incoming buffer type. When this flag is
set, the type of the buffer pointed to hyat a is not allowed to change. That
is, the type and sub-type of the received buffer must match the type and
subtype of the buffer pointed to byt a.

TPNOBLOCK
t precv() does not wait for data to arrive. If data is already available to
receive, then precv() gets the data and returns. When this flag is not
specified and no data is available to receive, the caller blocks until data
arrives.

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSI GRSTRT
If a signal interrupts the underlying receive system call, then the call is
reissued.

If an event exists for the descripted, thent precv() will return setting

t perrno() to TPEEVENT. The event type is returnedievent . Data can be
received along with th&PEV_SVCSUCC, TPEV_SVCFAI L, and
TPEV_SENDONLY events. Valid events famprecv() are as follows.

TPEV_DI SCONI MM
Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has either issued an immediate disconnect or
the connection viapdi scon(), or itissued preturn(),tpcommit() or
t pabor t () with the connection still open. This event is also returned to the
originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failure).
Because this is an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. If the two programs were
participating in the same transaction, then the transaction is marked
abort-only. The descriptor used for the connection is no longer valid.

TPEV_SENDONLY
The program on the other end of the connection has relinquished control of
the connection. The recipient of this event is allowed to send data but canno
receive any data until it relinquishes control.

208 BEA Tuxedo C Function Reference

tprecv(3c)

Return Values

TPEV_SVCERR

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation hasissued t pret urn().tpreturn()
encountered an error that precluded the service from returning successfully.
For example, bad arguments may have been passedto t pr et ur n() or

t pr et ur n() may have been called whilethe service had open connectionsto
other subordinates. Due to the nature of this event, any application defined
dataor return code are not available. The connection has been torn down and
isno longer avalid descriptor. If this event occurred as part of the cd
recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCFAI L

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it cajjedt ur n()

with TPFAI L or TPEXI T). If the subordinate service was in control of this
connection whempret urn() was called, then it can pass an application
defined return value and a typed buffer back to the originator of the
connection. As part of ending the service routine, the server has torn down the
connection. Thus;d is no longer a valid descriptor. If this event occurred as
part of the recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCSUCC

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
successfully as defined by the application (that is, it calpe@t ur n() with
TPSUCCESS). As part of ending the service routine, the server has torn down
the connection. Thugd is no longer a valid descriptor. If the recipient is in
transaction mode, then it can either commit (if it is also the initiator) or abort
the transaction causing the work done by the server (if also in transaction
mode) to either commit or abort.

In a multithreaded application, a thread inTRENVALI DCONTEXT state is not allowed

to issue a call toprecv().

Upon return from precv() wherer event is set to eitheTPEV_SVCSUCC or

TPEV_SVCFAI L, thet pur code global contains an application defined value that was

sent as part afpreturn().

BEA Tuxedo C Function Reference 209

Section 3c - C Functions

210

Errors

Upon failure, t precv() returns-1and setst per r no() toindicate the error condition.
If acall failswith aparticulart per r no value, asubsequent call tot perrordetail (),
with no intermediate ATMI calls, may provide more detailed information about the
generated error. Refer tothet perror det ai | (3c) reference page for more
information.

Upon failure, t precv() setstperrno to one of the following values.

[TPEI NVAL]
Invalid arguments were given (for example, datais not the address of a
pointer to a buffer allocated by t pal | oc() or 1 ags areinvalid).

[TPEOTYPE]
Either the type and subtype of theincoming buffer are not known to the caller,
or TPNOCHANGE was set in f / ags and the type and subtype of *dat a do not
match the type and subtype of the incoming buffer. Regardless, neither
*dat a, its contents nor */ en are changed. If the conversation is part of the
caller's current transaction, then the transaction is marked abort-only because
the incoming buffer is discarded.

[TPEBADDESC]
cd is invalid.

[TPETI ME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neitlEANOBLOCK nor TPNOTI ME were
specified. In either case, neithrafat a nor its contents are changed. If a
transaction timeout occurred, then any attempts to send or receive message
on any connections or to start a new connection will fail Wit ME until
the transaction has been aborted.

[TPEEVENT]
An event occurred and its type is available in revent. There is a relationship
between theTPETI ME] and the TPEEVENT] return codes. While in
transaction mode, if the receiving side of a conversation is blocksgt env
and the sending side callpabor t (), then the receiving side gets a return
code of PEVENT] with an event offPEV_DI SCONl MM However, if the
sending side callspabort () before the receiving side callgr ecv() , then
the transaction may have already been removed from the GTT, which cause
t precv() to fail with the TPETI ME] code.

BEA Tuxedo C Function Reference

tprecv(3c)

Usage

See Also

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTC)
t precv() was called in an improper context (for example, the connection
was established such that the calling program can only send data).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

A server can pass an application defined return value and typed buffer when calling
tpreturn(). Thereturn valueisavailable in the global variable t pur code and the
buffer is available in dat a.

tpall oc(3c),tpconnect(3c),tpdiscon(3c),tperrordetail (3c),
tpsend(3c),tpservice(3c),tpstrerrordetail (3c)

BEA Tuxedo C Function Reference 211

Section 3c - C Functions

tpresume(3¢)

Name

Synopsis

Description

Return Value

212

Errors

t presunme() - resume aglobal transaction

#i nclude <atm . h>
int tpresume(TPTRANID *tranid, long fl ags)

t presune() isused to resume work on behalf of a previously suspended transaction.
Once the caller resumes work on atransaction, it must either suspend it with
t psuspend() , or complete it with one of t pcommi t () ortpabort () at alater time.

The caller must ensure that its linked resource managers have been opened (via
t popen()) before it can resume work on any transaction.

t presunme() placesthe caller in transaction mode on behalf of the global transaction
identifier pointed to by ¢t r ani d. Itisan error for t rani d to be NULL.

Currently, fI ags are reserved for future use and must be set to 0.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot presume().

t presune() returns-1 on error and setst per rno() to indicate the error condition.
Under the following conditions, t pr esune() faillsand setst perrno() to:

[TPEI NVAL]
Either t rani disaNULL pointer, it points to a non-existent transaction
identifier (including previously completed or timed-out transactions), or it
points to atransaction identifier that the caller is not allowed to resume. The
caler's state with respect to the transaction is not changed.

[TPEMATCH]

t rani d points to a transaction identifier that another process has already
resumed. The caller’s state with respect to the transaction is not changed.

[TPETRAN]

The BEA Tuxedo system is unable to resume the global transaction becaus
the caller is currently participating in work outside any global transaction
with one or more resource managers. All such work must be completed befor
a global transaction can be resumed. The caller’s state with respect to the

local transaction is unchanged.

BEA Tuxedo C Function Reference

tpresume(3c)

Notes

See Also

[TPEPROTC]
t presune() was called in an improper context (for example, the caller is
already intransaction mode). Thecaller's state with respect to the transaction
is not changed.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

written to a log file.

[TPECS]
An operating system error has occurred.

XA-compliant resource managers must be successfully opened to be included in the
global transaction. (Seeopen(3c) for details.)

A process resuming a suspended transaction must reside on the same logical machine
(LMID) as the process that suspended the transaction. For a workstation client, the
workstation handler (WSH) to which it is connected must reside on the same logical
machine as the handler for the workstation client that suspended the transaction.

t pabort (3c),tpcommt(3c),tpopen(3c),tpsuspend(3c)

BEA Tuxedo C Function Reference 213

Section 3c - C Functions

tpreturn(3¢)

214

Name

Synopsis

Description

tpreturn() - returnsfrom a BEA Tuxedo system service routine

void tpreturn(int rval, long rcode, char *data, long /en, long \
fl ags)

t preturn() indicatesthat a service routine has completed. t pr et ur n() actslikea
r et ur n statement in the C language (that is, when t pr et urn() is called, the service
routine returns to the BEA Tuxedo system dispatcher). It is recommended that

t preturn() becaled from within the service routine dispatched to ensure correct
return of control to the BEA Tuxedo system dispatcher.

t preturn() isused to send aservice's reply message. If the program receiving the
reply is waiting in eithetpcal I (), t pgetrply(), ortprecv(), then after a
successful call topr et urn(), the reply is available in the receiver’s buffer.

For conversational servicegr et ur n() also tears down the connection. That is, the
service routine cannot calpdi scon() directly. To ensure correct results, the
program that connected to the conversational service should nopdadicon();
rather, it should wait for notification that the conversational service has completed
(that is, it should wait for one of the events, li®EV_SVCSUCC or TPEV_SVCFAI L,

sent byt preturn()).

If the service routine was in transaction mad®,et ur n() places the service’s

portion of the transaction in a state from which it may be either committed or rolled
back when the transaction is completed. A service may be invoked multiple times a:
part of the same transaction so it is not necessarily fully committed or rolled back unti
eithert pcommi t () ort pabort () is called by the originator of the transaction.

t preturn() should be called after receiving all replies expected from service requests
initiated by the service routine. Otherwise, depending on the nature of the service,
either aTPESVCERR status or &PEV_SVCERR event will be returned to the program that
initiated communication with the service routine. Any outstanding replies that are nof
received will automatically be dropped by the communication manager. In addition,
the descriptors for those replies become invalid.

BEA Tuxedo C Function Reference

tpreturn(3c¢)

t pret urn() should be caled after closing all connections initiated by the service.
Otherwise, depending on the nature of the service, either a TPESVCERR or a
TPEV_SVCERRevent will bereturned to the program that initiated communication with
the serviceroutine. Also, animmediate disconnect event (thatis, TPEV_DI SCONI M) is
sent over all open connections to subordinates.

Since a conversationa service has only one open connection which it did not initiate,
the communication manager knows over which descriptor data (and any event) should
be sent. For this reason, a descriptor isnot passed to t pret urn() .

The following is a description of the argumentsfor t pret urn() . rval canbesetto
one of the following.

TPSUCCESS
The service hasterminated successfully. If datais present, thenit will be sent
(barring any failures processing the return). If the caller isin transaction
mode, thent pr et urn() placesthe caller's portion of the transaction in a

state such that it can be committed when the transaction ultimately commits.

Note that a call topr et urn() does not necessarily finalize an entire

transaction. Also, even though the caller indicates success, if there are any
outstanding replies or open connections, if any work done within the service
caused its transaction to be marked rollback-only, then a failed message is

sent (that is, the recipient of the reply receiv@®ESVCERR indication or a

TPEV_SVCERR event). Note that if a transaction becomes rollback-only while

in the service routine for any reason, thea/ should be set toPFAI L. If
TPSUCCESS is specified for a conversational servic&PgVv_SVCSUCC event
is generated.

TPFAI L

The service has terminated unsuccessfully from an application standpoint. An
error will be reported to the program receiving the reply. That is, the call to

get the reply will fail and the recipient receiveSR$VCFAI L indication or a
TPEV_SVCFAI L event. If the caller is in transaction mode, thpnet ur n()

marks the transaction as rollback-only (note that the transaction may already
be marked rollback-only). Barring any failures in processing the return, the

caller's data is sent, if present. One reason for not sending the caller's data is
that a transaction timeout has occurred. In this case, the program waiting for

the reply will receive an error GPETI ME. If TPFAI L is specified for a
conversational service, T®EV_SVCFAI L event is generated.

BEA Tuxedo C Function Reference 215

Section 3c - C Functions

TPEXIT
This value behaves the same as TPFAI L with respect to completing the
service, but when TPEXI T is returned, the server exits after the transaction is
rolled back and the reply is sent back to the requester.
When specified for a multithreaded process, TPEXI T indicates that an entire
process (not only asingle thread within that process) will be killed.
If the server is restartable, then the server isrestarted automatically.

If rval isnot set to one of these three values, then it defaults to TPFAI L.

An application defined return code, r code, may be sent to the program receiving the
servicereply. This codeis sent regardless of the setting of rval aslong asareply can
be successfully sent (that is, aslong asthe receiving call returns success or
TPESVCFAI L). In addition, for conversationa services, thiscode can be sent only if the
service routine has control of the connection whenit issuest pr et ur n() . Thevalue of
rcode is available in the receiver in the variable, t pur code() .

dat a pointsto the data portion of areply to be sent. If dat aisnon-NULL, it must point
toabuffer previously obtained by acall tot pal | oc() . If thisisthe same buffer passed
to the service routine upon itsinvocation, then its disposition is up to the BEA Tuxedo
system dispatcher; the service routine writer does not have to worry about whether it
isfreed or not. In fact, any attempt by the user to free this buffer will fail. However, if
the buffer passedtot pr et ur n() isnot the same onewith which the serviceisinvoked,
thent preturn() freesthat buffer. Although the main buffer is freed, any buffers
referenced by embedded fields within that buffer are not freed. /| en specifiesthe
amount of the data buffer to be sent. If dat a points to a buffer which does not require
alength to be specified, (for example, an FML fielded buffer), then / enisignored (and
can be 0).

If dat aisNULL, then/ enisignored. Inthiscase, if areply isexpected by the program
that invoked the service, then areply is sent with no data. If no reply is expected, then
t preturn() frees dat a as necessary and returns sending no reply.

Currently, fI ags isreserved for future use and must be set to O (if set to anon-zero
value, the recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR
event).

If the service is conversational, there are two cases where the caller’s return code and
the data portion are not transmitted:

m if the connection has already been torn down when the call is made (that is, the
caller has receive@PEV_DI SCONI vMon the connection), then this call simply
ends the service routine and rolls back the current transaction, if one exists.

216 BEA Tuxedo C Function Reference

tpreturn(3c¢)

Return Values

Errors

See Also

m if the caller does not have control of the connection, either TPEV_SVCFAI L or
TPEV_SVCERRIs sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data is transmitted;
however, if the originator receives the TPEV_SVCFAI L event, the return codeis
available in the originator’st pur code() variable.

A service routine does not return any value to its caller, the BEA Tuxedo system
dispatcher; thus, it is declared asa voi d. Service routines, however, are expected to
terminate using either t pr et ur n() ort pf orward() . A conversational serviceroutine

must uset pr et urn(), and cannot use t pf or war d() . If aserviceroutine returns

without using either t pret urn() or t pf orwar d() (thatis, it usesthe C language

r et ur n statement or just simply “falls out of the function”)t@if or war d() is called

from a conversational server, the server will print a warning message in the log and
return a service error to the service requester. In addition, all open connections to
subordinates will be disconnected immediately, and any outstanding asynchronous
replies will be dropped. If the server was in transaction mode at the time of failure, the
transaction is marked rollback-only. Note also that if eithert ur n() or

t pf orwar d() are used outside of a service routine (for example, in clients, or in
tpsvrinit() ortpsvrdone()), then these routines simply return having no effect.

Sincet pret ur n() ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function’s caller. Such errors
cause per rno() to be set taPESVCERR for a program receiving the service’s
outcome via eithearpcal | () ort pgetrply(), and cause the evemBEV_SVCERR, to

be sent over the conversation to a program uspsgnd() ort precv().

If either SVCTI MEQUT in the UBBCONFI Gfile or TA_SVCTI MEOUT in theTM M B is
non-zero, the eveMPEV_SVCERR is returned when a service timeout occurs.

tperrordetail () andtpstrerrordetail () can be used to get additional
information about an error produced by the last BEA Tuxedo system routine called in
the current thread. If an error occurrederrordet ai | () returns a numeric value

that can be used as an argumentrtet r er ror det ai | () to retrieve the text of the

error detail.

tpalloc(3c),tpcall (3c),tpconnect(3c),tpforward(3c),tprecv(3c),
tpsend(3c),tpservice(3c)

BEA Tuxedo C Function Reference 217

Section 3c - C Functions

tpscmt(3¢)

218

Name

Synopsis

Description

t pscnt () - routine for setting when t pconmi t () should return

#i nclude <atm . h>
int tpscnt(long flags)

t pscnt () setsthe TP_COVM T_CONTROL characteristic to the value specified in
flags. TheTP_COVM T_CONTROL characteristic affectstheway t pconmmi t () behaves
with respect to returning control toitscaller. A program can call t pscnt () regardless
of whether it isin transaction mode or not. Note that if the caller is participating in a
transaction that another program must commit, then its call tot pscnt () does not
affect that transaction. Rather, it affects subsegquent transactions that the caller will
commit.

In most cases, a transaction is committed only when a BEA Tuxedo system thread of
control callst pconmi t () . There is one exception: when a serviceis dispatched in
transaction mode because the AUTOTRAN variable in the * SERVI CES section of the
UBBCONFI Gfileis enabled, then the transaction completes upon calling t pr et urn() .
If t pf orwar d() is called, then the transaction will be completed by the server
ultimately calling t pr et ur n() . Thus, the setting of the TP_COVM T_CONTROL
characteristic in the service that callst pr et ur n() determineswhent pcommit ()
returns control withinaserver. If t pconmi t () returnsaheuristic error code, the server
will write amessage to alog file.

When aclient joinsa BEA Tuxedo system application, theinitial setting for this
characteristic comes from a configuration file. (See the CMIRET variable in the
RESOURCES section of UBBCONFI G(5))

Thefollowing are the valid settings for f/ ags.

TP_CMI_LOGGED
Thisflagindicatesthat t pcommi t () should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has compl eted. Thissetting allowsfor faster response
tothecaller of t pconmi t () although thereisarisk that atransaction
participant might decide to heuristically complete (that is, abort) itswork due
totiming delayswaiting for the second phaseto complete. If thisoccurs, there
isnoway toindicate thissituationto the caller sincet pconmmi t () hasalready
returned (although the BEA Tuxedo system writes a message to alog file

BEA Tuxedo C Function Reference

tpscmt(3¢)

Return Values

Errors

Notices

when aresource manager takes a heuristic decision). Under normal
conditions, participants that promise to commit during the first phase will do
so during the second phase. Typically, problems caused by network or site
failures are the sources for heuristic decisions being made during the second
phase.

TP_CMI_COMPLETE
Thisflag indicates that t pconmi t (3¢) should return after the two-phase
commit protocol has finished completely. This setting allows for
t pcommi t () toreturn an indication that a heuristic decision occurred during
the second phase of commit.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateis not allowed
toissueacal totpscnt ().

Upon success, t pscnt () returns the previous value of the TP_COVWM T_CONTROL
characteristic.

Upon failure, t pscnt () returns-1 oand setst perrno() to indicate the error
condition.

Upon failure, t pscnt () setst per rno to one of the following values.

[TPEI NVAL]
fl ags isnot one of TP_CMI_LOGGED or TP_CMI_COVPLETE.

[TPEPROTC]
tpscnt () was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

When using t pbegi n(), t pcommi t () andt pabort () to delineate a BEA Tuxedo
system transaction, it isimportant to remember that only the work done by aresource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in atransaction are not
affected by either t pconmi t () ort pabort (). Seebuil dserver (1) for detailson

BEA Tuxedo C Function Reference 219

Section 3c - C Functions

linking resource managersthat meet the XA interfaceinto aserver such that operations
performed by that resource manager are part of a BEA Tuxedo system transaction.

See Also tpabort(3c),tpbegin(3c),tpcomit(3c),tpgetlev(3c)

220 BEA Tuxedo C Function Reference

tpseal(3¢)

tpseal(3¢)

Name

Synopsis

Description

Return Values

Errors

See Also

t pseal () - mark atyped message buffer for encryption

#i ncl ude <atni. h>
int tpseal (char *data, TPKEY hKey, |ong fl ags)

t pseal () marks, or registers, amessage buffer for encryption. The principal who
owns hKey can decrypt this buffer and accessits content. A buffer may be sealed for
more than one recipient principal by making several callsto t pseal ().

dat a must point to avalid typed message buffer either (1) previously allocated by a
process calling t pal | oc() or (2) delivered by the system to areceiving process. The
content of the buffer may be modified after t pseal () isinvoked.

When the message buffer pointed to by dat a istransmitted from a process, the public
key software encrypts the message content and attaches an encryption envelope to the
message buffer for each encryption registration request. An encryption envelope
enables areceiving process to decrypt the message.

The f 1 ags argument is reserved for future use and must be set to 0.
On failure, thisfunction returns- 1 and setst per r no() to indicate the error condition.

[TPEI NVAL]

Invalid arguments were given. For example, hkey isnot avalid key for
encrypting or dat aisNULL.

[TPESYSTEM
An error has occurred. Consult the system error log file for details.

t pkey_cl ose(3c),t pkey_open(3c)

BEA Tuxedo C Function Reference 221

Section 3c - C Functions

tpsend(3¢)

222

Name

Synopsis

Description

t psend() - routine for sending a message in a conversationa connection

#i nclude <atm . h>
int tpsend(int cd, char *data, long /en, long flags, |long *revent)

t psend() is used to send data across an open connection to another program. The
caller must have control of the connection. t psend() s first argument¢d, specifies
the open connection over which data is setifs a descriptor returned from either
t pconnect () or theTPSVCI NFO parameter passed to a conversational service.

The second argumentat a, must point to a buffer previously allocated by

t pal | oc() . I en specifies how much of the buffer to send. Note thaaifa points to

a buffer of a type that does not require a length to be specified (for examphe, an
fielded buffer), then en is ignored (and may be 0). Alsggt a can be NULL in which
casel enis ignored (no application data is sent - this might be done, for instance, to
grant control of the connection without transmitting any data). The type and sub-type
of dat a must match one of the types and sub-types recognized by the other end of th
connection.

The following is a list of valid / ags.

TPRECVONLY
This flag signifies that, after the caller's data is sent, the caller gives up
control of the connection (that is, the caller can not issue any tpeeand()
calls). When the receiver on the other end of the connection receives the dat
sent byt psend() , it will also receive an eventPEV_SENDONLY) indicating
that it has control of the connection (and can not issue morepag v ()
calls).

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for
example, the internal buffers into which the message is transferred are full).
WhenTPNOBLOCK is hot specified and a blocking condition exists, the caller
blocks until the condition subsides or a timeout occurs (either transaction or
blocking timeout).

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

BEA Tuxedo C Function Reference

tpsend(3c¢)

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call is reissued.

If an event exists for the descriptor, cd, thent psend() will fail without
sending the caller's data. The event type is returnedient . Valid events
for t psend() are as follows:

TPEV_DI SCONI MM
Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has issued an immediate disconnect on the
connection via pdi scon(), or it issued preturn(),tpcommit () or
t pabort () with the connection still open. This event is also returned to the
originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failure).

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issygcet ur n() without having
control of the conversation. In additiamr et ur n() has been issued in a
manner different from that described fthEv_SVCFAI L below. This event
can be caused by an ACL permissions violation; that is, the originator does
not have permission to connect to the receiving process. This event is not
returned at the time thepconnect () is issued, but is returned with the first
t psend() (following at pconnect () with flag TPSENDONLY) ort precv()
(following at pconnect () with flag TPRECVONLY). A system event and a log
message are also generated.

TPEV_SVCFAI L
Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issygcet ur n() without having
control of the conversation. In additiamr et ur n() was issued with the
rval settoTPFAI L or TPEXI T anddat a to NULL.

Because each of these events indicates an immediate disconnection notification (that
is, abortive rather than orderly), data in transit may be lost. The descriptor used for the
connection is no longer valid. If the two programs were participating in the same
transaction, then the transaction has been marked abort-only.

If the value of eitheBVCTI MEQUT in the UBBCONFI G file or TA_SVCTI MEQUT in the
TM_M B is non-zeroTPESVCERR is returned when a service timeout occurs.

In a multithreaded application, a thread inTRENVALI DCONTEXT state is not allowed
to issue a call topsend() .

BEA Tuxedo C Function Reference 223

Section 3c - C Functions

Return Values

224

Errors

Upon return from t psend() where revent is set to either TPEV_SVCSUCC or
TPEV_SVCFAI L, thet pur code() global contains an application-defined value that
was sent as part of t pret urn(). The function t psend() returns-1 on error and sets
t perrno() toindicatethe error condition. Also, if an event exists and no errors were
encountered, t psend() returns-1andt perrno() issetto[TPEEVENT] .

Upon failure, t psend() setstperrno() to one of the following values.

[TPEI NVAL]
Invalid arguments were given (for example, dat a does not point to a buffer
allocated by t pal | oc() or fI ags areinvalid).

[TPEBADDESC]
cdisinvalid.

[TPETI ME]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. In either case, no changesaremadeto * dat a, itscontentsnor */ en.
If atransaction timeout occurred, then any attempts to send or receive
messages on any connections or to start a new connection will fail with
TPETI ME until the transaction has been aborted.

[TPEEVENT]
An event occurred. dat a is not sent when thiserror occurs. The event typeis
returned in r event .

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSI G|
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTC)
t psend() was called in an improper context (for example, the connection
was established such that the calling program can only receive data).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

BEA Tuxedo C Function Reference

tpsend(3c¢)

[TPECS]
An operating system error has occurred.

See Also tpall oc(3c),tpconnect (3c),tpdiscon(3c),tprecv(3c),tpservice(3c)

BEA Tuxedo C Function Reference 225

Section 3c - C Functions

tpservice(3¢)

226

Name

Synopsis

Description

t pservice() -template for service routines

#i nclude <atm . h> /* Cinterface */

voi d tpservice(TPSVCI NFO *svcinfo) /* C++ interface - nust have
* C linkage */

extern “C” void tpservice(TPSVCINFO *svcinfo)

tpservice() isthe template for writing service routines. This template is used for
services that receive requestsviatpcall() , tpacall() or tpforward() routines as
well as by services that communicate viatpconnect() , tpsend() and tprecv()
routines.

Service routines processing requests made via either tpcall() or tpacall() receive
at most oneincoming message (in the dat a element of svci nf o) and send at most one
reply (upon exiting the service routine with tpreturn()).

Conversational services, on the other hand, areinvoked by connection requestswith at
most one incoming message along with a means of referring to the open connection.
When aconversational serviceroutineisinvoked, either the connecting program or the
conversational service may send and receive data as defined by the application. The
connection is half-duplex in nature meaning that one side controls the conversation
(that is, it sends data) until it explicitly gives up control to the other side of the
connection.

Concerning transactions, service routines can participate in at most one transaction if
invoked in transaction mode. As far as the service routine writer is concerned, the
transaction ends upon returning from the service routine. If the service routine is not
invoked in transaction mode, then the service routine may originate as many
transactions as it wants using tpbegin() , tocommit() , and tpabort() . Notethat
tpreturn() is not used to complete a transaction. Thus, it isan error to call
tpreturn() with an outstanding transaction that originated within the service routine.

Service routines are invoked with one argument: svci nf o, apointer to a service
information structure. This structure includes the following members:

char name[32];
char *data;
long len;

long flags;

int cd;

BEA Tuxedo C Function Reference

tpservice(3c¢)

| ong appkey;
CLI ENTI D cltid;

name is populated with the service name that the requester used to invoke the service.

The setting of f 1 ags upon entrance to a service routine indicates attributes which the
service routine may want to note. The following are the possible valuesfor f I ags.

TPCONV
A connection request for a conversation has been accepted and the descriptor
for the conversation isavailablein cd. If not set, then thisisa
request/response service and cd is not valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
The caller isnot expecting areply. Thisoption will not be set if TPCONV is set.

TPSENDONLY
The service isinvoked such that it can only send data across the connection
and the program on the other end of the connection can only receive data. This
flag is mutually exclusive with TPRECVONLY and may be set only when
TPCONV is also set.

TPRECVONLY
The serviceisinvoked such that it can only receive data from the connection
and the program on the other end of the connection can only send data. This
flag is mutually exclusive with TPSENDONLY and may be set only when
TPCONV is also set.

dat a pointsto the data portion of arequest message and / en is the length of the data.
The buffer pointed to by dat a was allocated by t pal | oc() in the communication
manager. Thisbuffer may begrown by theuser witht pr eal | oc() ; however, it cannot
be freed by the user. It is recommended that this buffer be the one passed to either
tpreturn() ortpforward() whenthe service ends. If adifferent buffer ispassed to
thoseroutines, then that buffer isfreed by them. Note that the buffer pointedto by dat a
will be overwritten by the next service request even if this buffer is not passed to
tpreturn() ortpforward().datamay be NULL if no data accompanied the
request. In this case, / en will be 0.

When TPCONV isset in £/ ags, cd is the connection descriptor that can be used with
tpsend() andt precv() to communicate with the program that initiated the
conversation.

BEA Tuxedo C Function Reference 227

Section 3c - C Functions

Return Values

228

Errors

See Also

appkey isset to the application key assigned to the requesting client by the application
defined authentication service. This key value is passed along with any and all service
reguests made while within thisinvocation of the serviceroutine. appkey will have a
value of -1 for originating clients that do not pass through the application
authentication service.

cl tidistheunique client identifier for the originating client associated with this
service request. The definition of this structure is made available to the application in
at mi . h solely so that client identifiers may be passed between application servers if
necessary. Therefore, the semantics of the fields defined below are not documented
and applications should not manipulate the contents of CLIENTID structures. Doing
so will invalidate the structures. The CLIENTID structure includes the following
member:

| ong clientdatal 4];

Notethat for C++, the service function must have C linkage. Thisis done by declaring
the function as ‘extern “C.”

A service routine does not return any value to its caller, the communication manage
dispatcher; thus, it is declared as a void. Service routines, however, are expected to
terminate using eithempr et urn() ort pf or war d() . A conversational service routine
must use pr et ur n(), and cannot usepf orwar d() . If a service routine returns
without using eithetpr et urn() ort pf orward() (thatis, it uses the C language

r et ur n statement or just simply “falls out of the function”)tquf or war d() is called

from a conversational server, the server will print a warning message in a log file anc
return a service error to the originator or requester. All open connections to
subordinates will be disconnected immediately, and any outstanding asynchronous
replies will be marked stale. If the server was in transaction mode at the time of failure
the transaction is marked abort-only. Note also that if eithest urn() or

t pf orwar d() are used outside of a service routine (for example, in clients, or in
tpsvrinit() ortpsvrdone()), then these routines simply return having no effect.

Sincet pr et urn() ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function’s caller. Such errors
cause perrno() to be set tadPESVCERR for a program receiving the service’s
outcome via eitherpcal | () ort pgetrpl y(), and cause the evemBEV_SVCERR, to

be sent over the conversation to a program usisgnd() ortprecv() .

t pal I oc(3c),tpbegin(3c),tpcall(3c),tpconnect(3c),tpforward(3c),
tpreturn(3c),servopts(5)

BEA Tuxedo C Function Reference

tpsetctxt(3¢)

tpsetctxt(3¢)

Name

Synopsis

Description

Return Values

Errors

tpset ct xt () - setsacontext identifier for the current application association

#i ncl ude <atni. h>
int tpsetctxt(TPCONTEXT T context, |ong flags)

t pset ct xt () definesthe context in which the current thread operates. This function
operates on a per-thread basisin a multithreaded environment, and on a per-process
basisin a non-threaded environment.

Subseguent BEA Tuxedo calls made in this thread reference the application indicated
by context. The context should have been provided by apreviouscall to t pget ct xt ()
in one of the threads of the same process. If the value of cont ext iS TPNULLCONTEXT,
then the current thread is disassociated from any BEA Tuxedo context.

Y ou can put an individual thread in a process operating in multicontext mode into the
TPNULLCONTEXT state by issuing the following call:

t pset ct xt (TPNULLCONTEXT, 0)
TPI NVALI DCONTEXT is not avalid input value for cont ext .

A thread in the TPI NVALI DCONTEXT state is prohibited from issuing calls to most

ATMI functions. (For acompletelist of the functions that may and may not be called,

see “Introduction to the C Language Application-Transaction Monitor Interface” on
page .) Therefore, you may sometimes need to move a thread out of the

TPI NVALI DCONTEXT state. To do so, calbset ct xt () with context set to
TPNULLCONTEXT or another valid context. (It is also allowable to callttheer n()
function to exit from tha@PI NVALI DCONTEXT state.)

The second argumernt] ags, is not currently used and must be set to 0.

A thread in a multithreaded application may issue a calptet ct xt () while
running in any context state, includimgl NVALI DCONTEXT.

Upon successful completionpset ct xt () returns a non-negative value.

Upon failure, it leaves the calling process in its original context, returns a valuge of
and sets per rno to indicate the error condition.

Upon failuret pset ct xt () setst perrno to one of the following values.

BEA Tuxedo C Function Reference 229

Section 3c - C Functions

See Also

[TPEI NVAL]
Invalid arguments have been given. For example, f/ ags hasbeen set to a
value other than 0 or the context is TPI NVALI DCONTEXT.

[TPENCENT]
Thevalue of cont ext isnot avalid context.

[TPEPROTC)
t pset ct xt () hasbeen called in animproper context. For example: () it has
been called in a server-dispatched thread; (b) it has been called in a process
that has not called t pi ni t () ; or (c) it has been called in a process that has
caledt pi ni t () without specifying the TPMULTI CONTEXTS flag.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error has
been written to alog file.

[TPEGCS]
An operating system error has occurred.

Introduction to the C Language Application-Transaction Monitor Interface,
t pget ct xt (3c)

230 BEA Tuxedo C Function Reference

tpsetunsol(3c)

tpsetunsol(3¢)

Name tpsetunsol () - setsthe method for handling unsolicited messages

Synopsis #i ncl ude <atmi . h>
void (*tpsetunsol (void (_TMDLLENTRY *)(*disp) (char *data, |ong
len, long flags))) (char *data, long len, long flags)

Description t pset unsol () alowsaclient to identify the routine that should be invoked when an
unsolicited message is received by the BEA Tuxedo system libraries. Before the first
call tot pset unsol (), any unsolicited messages received by the BEA Tuxedo system
libraries on behalf of the client are logged and ignored. A call to t pset unsol () with
aNULL function pointer has the same effect. The method used by the system for
notification and detection is determined by the application default, which can be
overridden on a per-client basis (seet pi ni t (3c)).

The function pointer passed on the call to t pset unsol () must conform to the
parameter definition given. dat a points to the typed buffer received and / en isthe
length of the data. f/ ags are currently unused. dat a can be NULL if no data
accompanied the notification. dat a may be of abuffer type/subtype that is not known
by the client, in which case the message data is unintelligible.

dat a cannot be freed by application code. However, the system freesit and invalidates
the data area following return.

Processing within the application’s unsolicited message handling routine is restricted
to the following BEA Tuxedo functionspal | oc(),tpfree(), tpgetctxt (),
tpgetlev(),tpreal l oc(), andt ptypes().

Note that in a multithreaded programming environment, it is possible for an
unsolicited message handling routine to taflet ct xt () , create another thread, have
that thread cali pset ct xt () to the appropriate context, and have the new thread use
the full set of ATMI functions that are available to clients.

If t psetunsol () is called from a thread that is not currently associated with a context,
this establishes a per-process default unsolicited message handler for all new

tpi ni t () contexts created. It has no effect on contexts already associated with the
system. A specific context may change this default unsolicited message handler by
callingt psetunsol () again when the context is active. The per-process default
unsolicited message handler may be changed by again aallirgunsol () in a

thread not currently associated with a context.

BEA Tuxedo C Function Reference 231

Section 3c - C Functions

Return Values

232

Errors

Portability

See Also

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot pset unsol ().

Upon success, t pset unsol () returnsthe previous setting for the unsolicited message
handling routine. (NULL is asuccessful return indicating that no message handling
function had been set previously.)

Upon failure, it returns TPUNSOLERR and setst per r no() to indicate the error
condition.

Upon failure, t pset unsol () setst perrno() to one of the following values.

[TPEPROTC)
t psetunsol () hasbeen called in an improper context. For example, it has
been called from within a server.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

Theinterfaces described int pnot i f y(3c) are supported on native site UNIX-based
and Windows NT processors. In addition, the routinest pbr oadcast () and

t pchkunsol (), aswell asthe functiont pset unsol (), are supported on UNIX and
MS-DOS workstation processors.

tpinit(3c),tpterm3c)

BEA Tuxedo C Function Reference

tpsign(3c¢)

tpsign(3¢)

Name

Synopsis

Description

Return Values

Errors

See Also

t psi gn() - mark atyped message buffer for digital signature

#i ncl ude <atni. h>
int tpsign(char *data, TPKEY hKey, |ong fl ags)

t psi gn() marks, or registers, amessage buffer for digital signature on behalf of the
principal associated with hKey.

dat a must point to avalid typed message buffer either (1) previously allocated by a
process calling t pal | oc() or (2) delivered by the system to areceiving process. The
content of the buffer may be modified after t psi gn() isinvoked.

When the buffer pointed to by dat a istransmitted from a process, the public key
software generates and attaches a digital signature to the message buffer for each
digital-signature registration request. A digital signature enablesareceiving processto
verify the signer (originator) of the message.

The f 1 ags argument is reserved for future use and must be set to 0.
On failure, thisfunction returns- 1 and setst per r no() to indicate the error condition.

[TPEI NVAL]
Invalid arguments were given. For example, hkey isnot avalid key for
signing or the value of dat aisNULL.

[TPESYSTEM
An error occurred. Consult the system error log file for details.

t pkey_cl ose(3c),t pkey_open(3c)

BEA Tuxedo C Function Reference 233

Section 3c - C Functions

tpsprio(3¢)

Name

Synopsis

Description

Return Values

234

Errors

t psprio() - setsthe service reguest priority

#i nclude <atm . h>
int tpsprio(prio, flags)

t pspri o() setsthepriority for the next request sent or forwarded by the current thread

in the current context. The priority set affects only the next request sent. Priority can

also be set for messages enqueued or dequeued by t penqueue() or t pdequeue(), if

the queued message facility isinstaled. By default, the setting of pri o increments or
decrements a service's default priority up to a maximum of 100 or down to a minimum
of 1, depending on its sign, where 100 is the highest priority. The default priority for a
request is determined by the service to which the request is being sent. This default
may be specified administratively (SEBBCONFI G(5)), or take the system default of
50.t psprio() has no effect on messages sent yi@onnect () ort psend() .

A lower priority message does not remain enqueued forever because every tenth
message is retrieved on a “first-in, first-out” (FIFO) basis. Response time should not
be a concern of the lower priority interface or service.

In a multithreaded applicatiarpspri o() operates on a per-thread basis.
The following is a list of valid flags.

TPABSOLUTE
The priority of the next request should be sent out at the absolute value of
pri o. The absolute value @f i o must be within the range 1 and 100,
inclusive, with 100 being the highest priority. Any value outside of this range
causes a default value to be used.

In a multithreaded application, a thread inTPeNVALI DCONTEXT state is not allowed
to issue a call topsprio() .

Upon failure t psprio() returns -1 and setgerrno() to indicate the error
condition.

Upon failuret psprio() setst perrno() to one of the following values.

[TPEI NVAL]
fl ags are invalid.

BEA Tuxedo C Function Reference

tpsprio(3¢)

[TPEPROTC]
tpsprio() wascalled improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

See Also tpacall (3c),tpcal | (3c),t pdequeue(3c),t penqueue(3c),tpgprio(3c)

BEA Tuxedo C Function Reference 235

Section 3c - C Functions

tpstrerror(3¢)

Name tpstrerror() - get error message string for aBEA Tuxedo system error

Synopsis #i ncl ude <atmi . h>
char *
tpstrerror(int err)

Description t pstrerror () isusedtoretrievethetext of an error message from LI BTUX_CAT. err
istheerror code setint perrno() whenaBEA Tuxedo system function call returns a
- 1 or other failure value.

Y ou can use the pointer returned by t pstrerror () asanargument to user | og() or
the UNIX functionfprintf().

A thread in a multithreaded application may issueacall tot pstrerror () while
running in any context state, including TPl NVALI DCONTEXT.

Return Values Upon success, t pstrerror () returns apointer to a string that contains the error
message text.

If err isaninvalid error code, t pstrerror () returnsaNULL.
Errors Upon failure, t pstrerror () returnsaNULL but does not set t per rno() .

Example #incl ude <atni.h>

char *p;

if (tpbegin(10,0) == -1) {
p = tpstrerror(tperrno);

userlog(“%s”, p);

(void)tpabort(0);

(void)tpterm();

exit(1);

}

See Also userlog(3c) , Fstrerror, Fstrerror32(3fml)

236 BEA Tuxedo C Function Reference

tpstrerrordetail(3¢)

tpstrerrordetail(3¢)

Name

Synopsis

Description

Return Values

Errors

Example

tpstrerrordetail () - get error detail message string for a BEA Tuxedo system
error

#i ncl ude <atni. h>
char * tpstrerrordetail (int err, long flags)

tpstrerrordetail () isused to retrieve thetext of an error detail of aBEA Tuxedo
system error. er r isthevaluereturned by t perrordetail ().

The user can use the pointer returned by t pstrerrordetai | () asan argument to
userl og() or the UNIX functionfprintf().

Currently f1 ags isreserved for future use and must be set to O.

A thread in amultithreaded application may issueacall totpstrerrordetail ()
while running in any context state, including TPl NVALI DCONTEXT.

Upon success, the function returns a pointer to a string that contains the error detail
message text.

Upon failure (that is, if err isaninvalid error code), t pstrerrordetail () returnsa
NULL.

Upon failure, t pstrerrordetail () returnsaNULL but does not set t perrno() .

#i ncl ude <atm . h> .

int ret;

char *p;

if (tpbegin(10,0) == -1) {
ret = tperrordetail (0);

if (ret == -1) {

(void) fprintf(stderr, “tperrordetail() failed!\n");

(void) fprintf(stderr, “tperrno = %d, %s\n”,
tperrno, tpstrerror(tperrno));

BEA Tuxedo C Function Reference 237

Section 3c - C Functions

else if (ret = 0)
(void) fprintf(stderr, “errordetail:%s\n”,
tpstrerrordetail(ret, 0));

}
}
See Also Introduction to the C Language A pplication-Transaction Monitor Interface,
tperrordetail(3c) , tpstrerror(3c) , userlog(3c) , tperrno(5)

238 BEA Tuxedo C Function Reference

tpsubscribe(3¢)

tpsubscribe(3¢)

Name

Synopsis

Description

t psubscri be() - subscribeto an event

#i ncl ude <atni. h>
| ong t psubscribe(char *eventexpr, char *filter, TPEVCTL *ctl, |ong
flags)

The caller usest psubscri be() to subscribeto an event or set of events named by

event expr. Subscriptions are maintained by the BEA Tuxedo EventBroker,

TMUSREVT(5) , and are used to notify subscribers when events are posted via

t ppost () . Each subscription specifies a notification method which can take one of

three forms: client notification, service calls, or message enqueuing to stable-storage

qgueues. Notification methods are determined by the subscriber’s process type and the
arguments passed t@subscri be() .

The event or set of events being subscribed to is nameddsy expr, a
NULL-terminated string of at most 255 characters containing a regular expression. For
example, ifevent expr is “\ e\ e. . *”, the caller is subscribing to all system-generated
events; ifevent expr is “\ e\ e. SysServer. *”, the caller is subscribing to all
system-generated events related to servees.efit expr is “[A-Z] . *”, the caller is
subscribing to all user events starting with A-Zewlent expr is “. *(ERR| err) . *”,

the caller is subscribing to all user events containing either the sut&rrgy the
substringer r in the event name. Events callectount _err or andERROR_STATE,

for example, would both qualify.

If presentfilter is a string containing a boolean filter rule that must be evaluated
successfully before the EventBroker posts the event. Upon receiving an event to be
posted, the EventBroker applies the filter rule, if one exists, to the posted event’s data.
If the data passes the filter rule, the EventBroker invokes the notification method;
otherwise, the broker does not invoke the associated notification method. The caller
can subscribe to the same event multiple times with different filter rules.

Filter rules are specific to the typed buffers to which they are applied. For FML and
view buffers, the filter rule is a string that can be passed to each’s boolean expression
compiler (seebool co(3fml) andFvbool co(3fml), respectively) and evaluated

against the posted buffer (Se®ol ev(3fml) andrFvbool ev(3fml), respectively). For

STRI NG buffers, the filter rule is a regular expression. All other buffer types require

BEA Tuxedo C Function Reference 239

Section 3c - C Functions

240

customized filter evaluators (see buf f er (3c) and t ypesw(5) for details on adding
customized filter evaluators). fil t er isaNULL-terminated string of at most 255
characters.

If the subscriber isa BEA Tuxedo system client process and ct / isNULL, then the
EventBroker sends an unsolicited message to the subscriber when the event to which
it subscribed is posted. That is, when an event name is posted that evaluates
successfully against event expr , the EventBroker tests the posted data against the
filter rule associated with event expr . If the data passes the filter rule or if thereisno
filter rule for the event, then the subscriber receives an unsolicited notification along
with any data posted with the event. In order to receive unsolicited notifications, the
client must register (viat pset unsol ()) an unsolicited message handling routine. If a
BEA Tuxedo system server processcallst psubscri be() withaNULL ct/
parameter, then t psubscri be() falls settingt per rno() to TPEPROTO.

Clients receiving event notification via unsolicited messages should remove their
subscriptions from the EventBroker’s list of active subscriptions before exiting (see

t punsubscri be(3c) for details). Using punsubscri be() 's wild-card handle, -1,
clients can conveniently remove all of their “non-persistent” subscriptions which
include those associated with the unsolicited notification method (see the descriptior
of TPEVPERSI ST below for subscriptions and their associated notification methods that
persist after a process exits). If a client exits without removing its non-persistent
subscriptions, then the EventBroker will remove them when it detects that the client i
no longer accessible.

If the subscriber (regardless of process type) wants event notifications to go to servic
routines or to stable-storage queues, therctheparameter must point to a valid
TPEVCTL structure. This structure contains the following elements:

| ong flags;
char nanel[32];
char nane2[32];
TPQCTL gctl;

The following is a list of valid bits for thet /| —>f | ags element controlling options for
event subscriptions.

TPEVSERVI CE
Setting this flag indicates that the subscriber wants event notifications to be
sent to the BEA Tuxedo system service routine named/ir>nane1. That
is, when an event name is posted that evaluates successfully against
event expr, the EventBroker tests the posted data against the filter rule
associated witlevent expr . If the data passes the filter rule or if there is no

BEA Tuxedo C Function Reference

tpsubscribe(3¢)

filter rule for the event, then a service request is sent to ct | —>nane1 along
with any data posted with the event. The service namein ct | —>nane1 can be
any valid BEA Tuxedo system service name and it may or may not be active
at the time the subscription is made. Service routinesinvoked by the
EventBroker should return with no reply data. That is, they should call
tpreturn() withaNULL dataargument. Any data passed tot pr et urn()
will be dropped. TPEVSERVI CE and TPEVQUEUE are mutually exclusiveflags.

If TPEVTRANISasosetinct/ —>f1 ags, thenif the process calling t ppost ()

is in transaction mode, the EventBroker calls the subscribed service routine
such that it will be part of the poster’s transaction. Both the EventBroker,
TMUSREVT(5) , and the subscribed service routine must belong to server
groups that support transactions (8BBCONFI G(5) for details). If

TPEVTRAN is not set irct I —>f | ags, then the EventBroker calls the
subscribed service routine such that it will not be part of the poster’'s
transaction.

TPEVQUEUE
Setting this flag indicates that the subscriber wants event notifications to be
enqueued to the queue space named fir>nane1 and the queue named in
ct I —>nane2. That is, when an event name is posted that evaluates
successfully againgtvent expr, the EventBroker tests the posted data
against the filter rule associated withent expr . If the data passes the filter
rule or if there is no filter rule for the event, then the EventBroker enqueues a
message to the queue space named ir>nane1 and the queue named in
ct | —>nane2 along with any data posted with the event. The queue space and
gueue name can be any valid BEA Tuxedo system queue space and queue
name, either of which may or may not exist at the time the subscription is
made.

ct | —>qct| can contain options further directing the EventBroker's
enqueuing of the posted event. If no options are specified, then

ctl—>qct . fl ags should be set tbPNOFLAGS. Otherwise, options can be
set as described in the “Control Parameter” subsectiopesfqueue(3c)
(specifically, see the section describing the valid list of flags controlling input
information fort penqueue(3c)). TPEVSERVI CE and TPEVQUEUE are

mutually exclusive flags.

If TPEVTRANIS also setirt/ —>f1 ags, then if the process callingpost ()
is in transaction mode, the EventBroker enqueues the posted event and its
data such that it will be part of the poster’s transaction. The EventBroker,

BEA Tuxedo C Function Reference 241

Section 3c - C Functions

242

TMUSREVT(5) , must belong to a server group that supports transactions (see
UBBCONFI G(5) for details). If TPEVTRANIsnot setin ct | —>f | ags, then the
EventBroker enqueues the posted event and its data such that it will not be
part of the poster’s transaction.

TPEVTRAN

Setting this flag indicates that the subscriber wants the event notification for
this subscription to be included in the poster’s transaction, if one exists. If the
poster is not a transaction, then a transaction is started for this event
notification. If this flag is not set, then any events posted for this subscription
will not be done on behalf of any transaction in which the poster is
participating. This flag can be used with eitlmBEVSERVI CE or TPEVQUEUE.

TPEVPERSI ST

By default, the BEA Tuxedo EventBroker deletes subscriptions when the
resource to which it is posting is not available (for example, the EventBroker
cannot access a service routine and/or a queue space/queue hame associa
with an event subscription). Setting this flag indicates that the subscriber
wants this subscription to persist across such errors (usually because the
resource will become available again in the future). When this flag is not
used, the EventBroker will remove this subscription if it encounters an error
accessing either the service name or queue space/queue name designated
this subscription.

If this flag is used witlTPEVTRAN and the resource is not available at the time

of event notification, then the EventBroker will return to the poster such that
its transaction must be aborted. That is, even though the subscription remain
intact, the resource’s unavailability will cause the poster’s transaction to fail.

If the EventBroker’s list of active subscriptions already contains a subscription that
matches the one being requested pyubscri be(), then the function fails setting

t perrno() to TPEMATCH. For a subscription to match an existing one, both
event expr andfi |t er must match those of a subscription already in the

EventBroker’s active list of subscriptions. In addition, depending on the notification

method, other criteria are used to determine matches.

If the subscriber is a BEA Tuxedo system client processahds NULL (such that
the caller receives unsolicited notifications when events are posted), then its

system-defined client identifier (known asla ENTI D) is also used to detect matches.

That is,t psubscri be() fails if event expr, fil t er, and the caller'€LI ENTI D
match those of a subscription already known to the EventBroker.

BEA Tuxedo C Function Reference

tpsubscribe(3¢)

If the caller has set ct | —>f | ags to TPEVSERVI CE, thent psubscri be() failsif
event expr, filter,andthe servicename set in ct I —>nane1 match those of a
subscription aready known to the EventBroker.

For subscriptions to stable-storage queues, the queue space, queue name, and
correlation identifier are used, in addition to event expr and 7 i I t er, when
determining matches. The correlation identifier can be used to differentiate among
severa subscriptions for the same event expression and filter rule, destined for the
same queue. Thus, if thecaller hasset ct | —>f | ags to TPEVQUEUE, and TPQCOCRI Dis
not setinct/—>qgct /. fl ags,thentpsubscribe() failsif eventexpr, filter,the
gueue space name set in ct | —>nane1, and the queue name set in ct | —>nane2 match
those of a subscription (which also does not have a correlation identifier specified)
already known to the EventBroker. Further, if TPQCOORI Disset in

ctl—=>qgct! . fl ags,thent psubscri be() falsif eventexpr,filter,ctl —>nanel,
ct!—>nane2,and ct | —>qct | . corri d match those of a subscription (which hasthe
same correlation identifier specified) already known to the EventBroker.

Thefollowingisalist of valid f1 ags for t psubscri be() :

TPNOBLOCK
The subscriptionisnot madeif ablocking condition exists. If such acondition
occurs, thecall failsandt per rno() isset to TPEBLOCK. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isreissued. When TPSI GRSTRT is not specified and asignal interrupts a
system call, thent psubscri be() fallsandtperrno() issetto TPGOTSI G.

In amultithreaded application, athread in the TPl NVALI DCONTEXT stateis not allowed
toissueacal tot psubscri be().

Return Values Upon successful completion, t psubscri be() returns a handle that can be used to
remove this subscription from the EventBroker’s list of active subscriptions. The
subscriber or any other process is allowed to use the returned handle to delete this
subscription.

BEA Tuxedo C Function Reference 243

Section 3c - C Functions

244

Errors

Upon failure, t psubscri be() returns-1 and setst per rno() to indicate the error
condition.

Uponfailure, t psubscri be() setst per rno() to oneof thefollowing values. (Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampdeent expr is NULL).

[TPENCENT]
Cannot access the BEA Tuxedo EventBroker.

[TPELI M T]
The subscription failed because the EventBroker's maximum number of
subscriptions has been reached.

[TPEMATCH]
The subscription failed because it matched one already listed with the
EventBroker.

[TPEPERM
The client is not attached agsysadmand the subscription action is either a
service call or the enqueuing of a message.

[TPETI ME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neith&PNOBLOCK nor TPNOTI ME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists antPNOBLOCK was specified.

[TPGOTSI G|
A signal was received anmbSI GRSTRT was not specified.

[TPEPROTC)
t psubscri be() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

BEA Tuxedo C Function Reference

tpsubscribe(3¢)

[TPECS]
An operating system error has occurred.

See Also buffer(3c),reconp, rematch(3c),tpenqueue(3c),tppost(3c),
t pset unsol (3c), tpunsubscri be(3c), Fbool co, Fbool co32, Fvbool co,
Fvbool co32(3fnml), Fbool ev, Fbool ev32, Fvbool ev, Fvbool ev32(3fm),
EVENTS(5) , EVENT_M B(5) , TMSYSEVT(5) , TMUSREVT(5) , t uxt ypes(5),
typesw 5), UBBCONFI (5)

BEA Tuxedo C Function Reference 245

Section 3c - C Functions

tpsuspend(3¢)

246

Name

Synopsis

Description

t psuspend() - suspend aglobal transaction

#i nclude <atm . h>
int tpsuspend(TPTRANID *tranid, |ong flags)

t psuspend() isused to suspend the transaction active in the caller’s process. A
transaction begun withpbegi n() may be suspended witlpsuspend() . Either the
suspending process or another process maypigsume() to resume work on a
suspended transaction. Whggsuspend() returns, the caller is no longer in
transaction mode. However, while a transaction is suspended, all resources associat
with that transaction (such as database locks) remain active. Like an active transactio
a suspended transaction is susceptible to the transaction timeout value that was
assigned when the transaction first began.

For the transaction to be resumed in another process, the calpasuepend() must

have been the initiator of the transaction by explicitly callipgegi n() .

t psuspend() may also be called by a process other than the originator of the
transaction (for example, a server that receives a request in transaction mode). In tt
latter case, only the caller opsuspend() may callt presune() to resume that
transaction. This case is allowed so that a process can temporarily suspend a
transaction to begin and do some work in another transaction before completing the
original transaction (for example, to run a transaction to log a failure before rolling
back the original transaction).

t psuspend() returns in the space pointed to fyyani d the transaction identifier
being suspended. The caller is responsible for allocating the space tot winc
points. It is an error forrani d to be NULL.

To ensure success, the caller must have completed all outstanding transactional
communication with servers before issuinguspend() . That is, the caller must

have received all replies for requests sent wiitical | () that were associated with

the caller’s transaction. Also, the caller must have closed all connections with
conversational services associated with the caller’s transaction (thatdésy () must

have returned the TPEV_SVCSUCC event). If either rule is not followed, then

t psuspend() fails, the caller’'s current transaction is not suspended and all
transactional communication descriptors remain valid. Communication descriptors no
associated with the caller’s transaction remain valid regardless of the outcome of

t psuspend() .

BEA Tuxedo C Function Reference

tpsuspend(3c¢)

Return Value

Errors

See Also

Currently, fI ags are reserved for future use and must be set to 0.

In amultithreaded application, athread in the TPl NVALI DCONTEXT stateis not allowed
toissueacal tot psuspend() .

t psuspend() returns-1 on error and setst per r no() to indicate the error condition.
Under the following conditions, t psuspend() failsand setst perrno() to:

[TPEI NVAL]
trani disaNULL pointer or f/ ags isnot 0. The caller’s state with respect
to the transaction is not changed.

[TPEABCRT]
The caller’s active transaction has been aborted. All communication
descriptors associated with the transaction are no longer valid.

[TPEPROTC]
t psuspend() was called in an improper context (for example, the caller is
not in transaction mode). The caller’'s state with respect to the transaction is
not changed.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPECS]
An operating system error has occurred.

tpacal | (3c),tpbegin(3c),tprecv(3c),tpresune(3c)

BEA Tuxedo C Function Reference 247

Section 3c - C Functions

tpsvrdone(3¢)

248

Synopsis

Description

Usage

See Also

t psvrdone() - terminatesa BEA Tuxedo system server

#i nclude <atm . h>
voi d tpsvrdone(voi d)

The BEA Tuxedo system server abstraction callst psvr done() after it has finished
processing service requests but before it exits. When thisroutineisinvoked, the server
isstill part of the system but its own services have been unadvertised. Thus, BEA
Tuxedo system communication can be performed and transactions can be defined in
this routine. However, if t psvr done() returnswith open connections, asynchronous
replies pending or while still in transaction mode, the BEA Tuxedo system will close
its connections, ignore any pending replies, and abort the transaction before the server
exits.

If aserver is shut down by the invocation of t nehut down -y, services are suspended
and the ability to perform communication or to begin transactionsin t psvr done() is
limited.

If an application does not provide thisroutine in a server, then the default version
provided by the BEA Tuxedo system is called instead. If a server has been defined as
asingle-threaded server, the default t psvrdone() callst psvrthrdone(), and the
default version of t psvr t hr done() callst x_cl ose() . If aserver hasbeen defined as
amultithreaded server, t psvrt hrdone() iscalled in each server dispatch thread, but
isnot called from t psvrdone() . Regardless of whether the server is multithreaded,
the default t psvr done() callsuser | og to indicate that the server is about to exit.

When caled int psvrdone(), thet preturn() andt pforwar d() functions simply
return with no effect.

tpsvrthrdone(3c),tpsvrthrinit(3c),servopts(5)

BEA Tuxedo C Function Reference

tpsvrinit(3c)

tpsvrinit(3¢)

Name

Synopsis

Description

Return Values

Usage

tpsvrinit() -initializesaBEA Tuxedo system server

#i ncl ude <atni. h>
int tpsvrinit(int argc, char **argv)

The BEA Tuxedo system server abstraction callst psvri nit () during its
initialization. Thisroutineis called after the thread of control has become a server but
beforeit handles any service requests; thus, BEA Tuxedo system communication may
be performed and transactions may be defined in this routine. However, if
tpsvrinit() returnswith either open connections or asynchronous replies pending,
or while still in transaction mode, the BEA Tuxedo system closes the connections,
ignores any pending replies, and aborts the transaction before the server exits.

If an application does not provide this routine in a server, then the default version
provided by the BEA Tuxedo system is called instead.

If aserver has been defined asasingle-threaded server, the default t psvri nit () cals
tpsvrthrinit(),andthedefault versionof t psvrthrinit() calstx_open().Ifa
server has been defined as a multithreaded server, t psvrthrinit () iscalled in each
server dispatch thread, butisnot called fromt psvri ni t () . Regardless of whether the
server is single-threaded or multithreaded, the default version of t psvrinit () calls
userl og() toindicate that the server started successfully.

Application-specific options can be passed into a server and processed in
tpsvrinit() (seeservopts(5)). Theoptions are passed through ar gc and ar gv.
Since get opt () isused in a BEA Tuxedo system server abstraction, opt ar g() ,
optind(),andopterr () may beusedto control option parsing and error detectionin
tpsvrinit().

If an error occursint psvrini t (), the application can cause the server to exit
gracefully (and not take any service requests) by returning -1. The application itself
should not call exit ().

A negative return val ue causes the server to exit gracefully.

When used outside a service routine (for example, in clients, int psvrinit (), orin
t psvrdone()), thet preturn() andt pf orwar d() functionssimply return with no
effect.

BEA Tuxedo C Function Reference 249

Section 3c - C Functions

See Also t popen(3c),tpsvrdone(3c),tpsvrthrinit(3c),servopts(5)
get opt (3) in a C language reference manual

250 BEA Tuxedo C Function Reference

tpsvrthrdone(3c)

tpsvrthrdone(3¢)

Name

Synopsis

Description

Usage

See Also

tpsvrthrdone() - terminates aBEA Tuxedo server thread

#i ncl ude <atni. h>
voi d tpsvrthrdone(void)

The BEA Tuxedo server abstraction callst psvr t hr done() during the termination of
each thread that has been started to handl e dispatched service requests. |n other words,
even if athread isterminated before it has handled a request, the t psvr done()
function is called. When this routineis called, the thread of control is still part of the
BEA Tuxedo server, but the thread has finished processing al service requests. Thus,
BEA Tuxedo communication may be performed and transactions may be defined in
thisroutine. However, if t psvrt hr done() returnswith either open connections or
asynchronous replies pending, or while till in transaction mode, the BEA Tuxedo
system closes the connections, ignores any pending replies, and aborts the transaction
before the server dispatch thread exits.

If an application does not provide this routine in a server, then the default version of
t psvrthrdone() provided by the BEA Tuxedo system is called instead. The default
version of t psvrt hrdone() callstx_cl ose().

tpsvrthrdone() iscalled even in single-threaded servers. In a single-threaded
server, t psvrt hr done() iscaled from the default version of t psvrdone().Ina
server with the potential for multiple dispatch threads, t psvr done() does not call
tpsvrthrdone().

When called from t psvr t hr done() , thet preturn() andt pf orwar d() functions
simply return with no effect.

tpforward(3c),tpreturn(3c),tpsvrdone(3c),tpsvrthrinit(3c),
tx_cl ose(3c), servopt s(5)

BEA Tuxedo C Function Reference 251

Section 3c - C Functions

tpsvrthrinit(3¢)

Name

Synopsis

Description

Return Values

252

Usage

tpsvrthrinit() -initializesaBEA Tuxedo server thread

#i nclude <atm . h>
int tpsvrthrinit(int argc, char **argv)

The BEA Tuxedo server abstraction callst psvr t hri ni t () duringtheinitialization of
each thread that handles dispatched service requests. Thisroutineis called after the
thread of control has become part of the BEA Tuxedo server but before the thread
handles any service requests. Thus, BEA Tuxedo communication may be performed
and transactions may be defined in thisroutine. However, if t psvrt hri ni t () returns
with either open connections or asynchronous replies pending, or while still in
transaction mode, the BEA Tuxedo system closes the connections, ignores any
pending replies, and aborts the transaction before the server dispatch thread exits.

If an application does not provide thisroutine in a server, then the default version of
tpsvrthrinit() provided by the BEA Tuxedo system iscalled instead. The default
versionof t psvrthrinit() calstx_open().

tpsvrthrinit() iscalled evenin single-threaded servers. In a single-threaded
server, tpsvrthrinit () iscaled fromthe default versionof t psvrinit().Ina
server with the potential for multiple dispatch threads, t psvri ni t () does not call
tpsvrthrinit().

Application-specific options can be passed into a server and processed in
tpsvrthrinit().For moreinformation about options, seeservopt s(5) . The
optionsare passed ar gc and ar gv. Becauseget opt () isusedinaBEA Tuxedo server
abstraction, opt ar g(), opti nd(), and opt err () may be used to control option
parsing and error detectionint psvrthrinit().

If an error occursint psvrthrini t (), the application can cause the server dispatch
thread to exit gracefully (and not take any service regquests) by returning -1. The
application should not call exi t () or any operating system thread exit function.

A negative return value will cause the server dispatch thread to exit gracefully.

When used outside a service routine (for example, when used in aclient or in
tpsvrinit(),tpsvrdone(),tpsvrthrinit(),ortpsvrthrdone()),the
tpreturn() andt pf orwar d() functionssimply return with no effect.

BEA Tuxedo C Function Reference

tpsvrthrinit(3c)

See Also tpforward(3c),tpreturn(3c),tpsvrthrdone(3c),tpsvrthrinit(3c),
tx_open(3c), servopts(5)

get opt (3) in a C language reference manual

BEA Tuxedo C Function Reference 253

Section 3c - C Functions

tpterm(3¢)

Name

Synopsis

Description

tpterm() - leavesan application

#include <atm . h>
int tpterm(void)

t pt erm() removesaclient from a BEA Tuxedo system application. If theclientisin
transaction mode, then the transaction is rolled back. When t pt er m() returns
successfully, the caller can no longer perform BEA Tuxedo client operations. Any
outstanding conversations are immediately disconnected.

If t ptern() iscalled morethan once (that is, if itiscalled after the caller has already
left the application), no action is taken and success is returned.

Multithreading and Multicontexting Issues

254

In good programming practice, al threads but one should either exit or switch context
before the single remaining thread issues a call tot pt er n() . If thisis not done, then
the remaining threads are put in a TPl NVALI DCONTEXT context. A description of the

semantics of this context follows.

When invoked by one thread in a context with which multiple threads are associated,
tpterm():

m Operateson al threadsin a context, but not on al contextsin a process

m Executes immediately, even if other threads in the same process are still
associated with that context

Any thread blocked in an ATMI call when another thread terminates its context will
return from the ATMI call with afailurereturn; t perrno() is set to TPESYSTEM In
addition, if t perrordetai | () isinvoked after such afailure return, it returns
TPED_| NVALI DCONTEXT.

In a single-context application, whenever asingle thread calls t pt er n() , the context
state for all threads is set to TPNULLCONTEXT.

In amulticontexted application, however, whent pt er () isinvoked by one thread,
all other threadsin the same context are placed in astate such that if they subsequently
call most ATMI functions, those functions will, instead, return failure with t per r no

BEA Tuxedo C Function Reference

tpterm(3c¢)

Return Values

Errors

set to TPEPROTO. Lists of the functions that are allowed and disallowed in such an

invalid context state are provided in “Introduction to the C Language
Application-Transaction Monitor Interface” on page . If a thread in the invalid context
state TPI NVALI DCONTEXT) calls thet pget ct xt () function,t pget ct xt () sets the
context parameter toPl NVALI DOONTEXT.

A thread may exit from th&PI NVALI DCONTEXT state by calling one of the following:

B tpsetctxt() with theTPNULLCONTEXT context or another valid context
m tpterm()

It is forbidden to calt pset ct xt () with a context offPl NVALI DCONTEXT; doing so
results in failure with per r no set toTPEPROTO. When a thread invokes ATMI
functions other thanpset unsol () that do not require the caller to be associated with
an application, these functions behave as if they were invoked in the null context.

After invokingt pt er n(), a thread is placed in tH®NULLCONTEXT context. Most
ATMI functions invoked by a thread in tH@®NULLCONTEXT context perform an
implicit t pi ni t () . Whether or not the call topi ni t () succeeds depends on the
usual determining factors, unrelated to context-specific or thread-specific issues.

A thread in a multithreaded application may issue a cappter n() while running in
any context state, includingPl NVALI DCONTEXT.

Upon success in a single-context application, all threads in the application’s current
context are placed in tHePNULLCONTEXT state.

Upon success in a multicontexted application, the calling thread is placed in the
TPNULLCONTEXT state and all other threads in the same context as the calling thread
are placed in th&PI NVALI DCONTEXT state. The user may change the context state of
the latter threads by runningset ct xt () with thecont ext argument set to
TPNULLCONTEXT or another valid context.

Upon failuret pt er m() leaves the calling process in its original context state, returns
-1, and setsperrno() to indicate the error condition.

Upon failuret pt er () setst perrno() to one of the following values.

[TPEPROTC)
tpt er m() was called in an improper context (for example, the caller is a
server).

BEA Tuxedo C Function Reference 255

Section 3c - C Functions

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPEGCS]
An operating system error has occurred.

See Also tpinit(3c),tpgetctxt(3c),tpsetctxt(3c),tpsetunsol (3c)

256 BEA Tuxedo C Function Reference

tptypes(3¢)

tptypes(3¢)

Name

Synopsis

Description

Return Values

Errors

See Also

t pt ypes() - routine to determine information about a typed buffer

#i ncl ude <atni. h>
|l ong tptypes(char *ptr, char *type, char *subtype)

t pt ypes() takesasitsfirst argument a pointer to a data buffer and returns the type

and subtype of that buffer in its second and third arguments, respectively. pt r must

point to a buffer gotten fromt pal | oc() . If t ype and subt ype are non-NULL, then

the function populates the character arrays to which they point with the names of the
buffer's type and subtype, respectively. If the names are of their maximum length (8
for t ype, 16 forsubt ype), the character array is not null-terminated. If no subtype
exists, then the array pointed to dybt ype will contain a NULL string.

Note that only the first eight bytes ofpe and the first 16 bytes afubt ype are
populated.

A thread in a multithreaded application may issue a calptgpes() while running
in any context state, includintPl NVALI DCONTEXT.

Upon success,pt ypes() returns the size of the buffer;
Upon failure, it returns -1 and setger rno() to indicate the error condition.
Upon failuret pt ypes() setsperrno() to one of the following values.

[TPEI NVAL]
Invalid arguments were given (for exampber does not point to a buffer
gotten from\ % t pal | oc()).

[TPEPROTC)
t pt ypes() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPECS]
An operating system error has occurred.

tpalloc(3c),tpfree(3c),tprealloc(3c)

BEA Tuxedo C Function Reference 257

Section 3c - C Functions

tpunadvertise(3¢)

Name

Synopsis

Description

Return Values

258

Errors

t punadver ti se() - routine for unadvertising a service name

#i nclude <atm . h>
int tpunadvertise(char *svcnane)

t punadver ti se() alowsaserver to unadvertise aservicethat it offers. By default, a
server’'s services are advertised when it is booted and they are unadvertised when it |
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisemen
of all servers sharing an MSSQ set.

t punadver ti se() removesvcnane as an advertised service for the server (or the set
of servers sharing the caller's MSSQ set)cnane cannot be NULL or the NULL

string (). Also, svcnane should be 15 characters or less. (See *SERVICES section
of UBBCONFI G(5)). Longer names will be accepted and truncated to 15 characters.
Care should be taken such that truncated names do not match other service names

Upon failure t punadvertise() returns -1 and setperrno() to indicate the error
condition.

Upon failure t punadvertise() setst perrno() to one of the following values.

[TPEI NVAL]
svenane is NULL or the NULL string (*).

[TPENCENT]
svcnane is not currently advertised by the server.

[TPEPROTC)
t punadver ti se() was called in an improper context (for example, by a
client).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

BEA Tuxedo C Function Reference

tpunadvertise(3c)

[TPECS]
An operating system error has occurred.

See Also tpadvertise(3c)

BEA Tuxedo C Function Reference 259

Section 3c - C Functions

tpunsubscribe(3¢)

260

Name

Synopsis

Description

t punsubscri be() - unsubscribe to an event

#i nclude <atm . h>
i nt tpunsubscribe(long subscription, [ong flags)

Thecaller usest punsubscri be() to remove an event subscription or a set of event
subscriptions from the BEA Tuxedo EventBroker's list of active subscriptions.
subscriptionis an event subscription handle returned pyubscri be() . Setting
subscri ption to the wild-card value, -1, diredtpunsubscri be() to unsubscribe
to all non-persistent subscriptions previously made by the calling process.
Non-persistent subscriptions are those made withoutRIBPERSI ST bit setting in
thect | —>f 1 ags parameter of psubscri be() . Persistent subscriptions can be
deleted only by using the handle returned pyubscri be() .

Note that the -1 handle removes only those subscriptions made by the calling proce:
and not any made by previous instantiations of the caller (for example, a server that
dies and restarts cannot use the wild-card to unsubscribe to any subscriptions made
the original server).

The following is a list of valid / ags.

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a
condition occurs, the call fails amger r no() is set toTPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTI ME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSI GRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. WhemPSI GRSTRT is not specified and a signal interrupts a
system call, thenpunsubscri be() fails andt perrno() is set to
TPGOTSI G.

BEA Tuxedo C Function Reference

tpunsubscribe(3c)

Return Values

Errors

In amultithreaded application, athread in the TPl NVALI DCONTEXT stateis not allowed
toissueacal tot punsubscri be().

Upon completion of t punsubscri be(), t pur code() containsthe number of

subscriptions deleted (zero or greater) from the EventBroker's list of active

subscriptionst pur code() may contain a number greater than 1 only when the
wild-card handle, -1, is used. Alsqur code() may contain a number greater than 0
even when punsubscri be() completes unsuccessfully (that is, when the wild-card
handle is used, the EventBroker may have successfully removed some subscriptions
before it encountered an error deleting others).

Upon failuret punsubscri be() returns -1 and setgerrno() to indicate the error
condition.

Upon failuret punsubscri be() setst perrno() to one of the following values.
(Unless otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEI NVAL]
Invalid arguments were given (for exampepscri pti onis an invalid
subscription handle).

[TPENCENT]
Cannot access the BEA Tuxedo EventBroker.

[TPETI ME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neith&PNOBLOCK nor TPNOTI ME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETI ME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists antPNOBLOCK was specified.

[TPGOTSI G|
A signal was received arPSI GRSTRT was not specified.

[TPEPROTC)
t punsubscri be() was called improperly.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

BEA Tuxedo C Function Reference 261

Section 3c - C Functions

[TPEGCS]
An operating system error has occurred.

See Also t ppost (3c),t psubscribe(3c), EVENTS(5), EVENT_M B(5), TMSYSEVT(5),
TMUSREVT(5)

262 BEA Tuxedo C Function Reference

TRY(3¢)

TRY(3¢)

Name

Synopsis

Description

TRY() - exception-returning interface
#i ncl ude <texc. h>

TRY

try bl ock

[CATCH(exception_nane) handl er bl ock]
[CATCH_ALL hand! er_bl ock]

ENDTRY

TRY

try bl ock

FI NALLY
finally bl ock
ENDTRY

RAI SE(except i on_nane)
RERAI SE

/* decl are exception */
EXCEPTI ON excepti on_nane;

/* initialize address (application) exception */
EXCEPTI ON_I NI T(EXCEPTI ON excepti on_nane)

/* intialize status exception (rmap status to exception */
exc_set st at us(EXCEPTI ON *exception_name, |ong status)

/* map status exception to status */
exc_get st at us(EXCEPTI ON *exception_nane, |ong *stat us)

/* conpare exceptions */
exc_mat ches(EXCEPTI ON *el, EXCEPTI ON *e2)

/* print error to stderr */
voi d exc_report (EXCEPTI ON * excepti on)

The TRY/CATCH interface provides a mechanism to handle exceptions without the use
of status variables (for example, er r no or status variables passed back from an RPC
operation). These macros are defined int exc. h and this header is automatically
included in any header files generated by ti dI (1) .

BEA Tuxedo C Function Reference 263

Section 3c - C Functions

264

TheTRY try_bl ock isablock of C or C++ declarations and statementsin which an
exception may beraised (code that is not associated with raising an exception should
beplaced beforeor afterthe t ry_bl ock). Each TRY/ENDTRY pair constitutes a “scope,”
with respect to exceptions (not unlike C scoping), or a region of code over which
exceptions are caught. These scopes can be properly nested. When an exception is
raised, an error is reported to the application by searching the active scopes for actio
written to handle (“absorb”) an exceptidBAfCH or CATCH_ALL clauses) or complete

the scopesHi NALLY clauses). If a scope does not handle an exception, the scope is tori
down with the exception raised at the next higher level (unwinding the stack of
exception scopes). Execution resumes at the point after which the exception is handle
there is no provision for resuming execution at the point of error. If the exception is no
handled by any scope, the program is terminated (a message is written to the log vi
user | og(3c) andabort (3) is called).

Zero or more occurrences ©ATCH (except i on_nane) hand! er _bl ock may be
provided. Eacthandl er _bl ock is a block of C or C++ declarations and statements in
which the associated exceptianxtept i on_nane) is processed (normally, actions are
specified for recovery from the failure). If an exception is raised by a statement in
try_ bl ock, then the firsCATCH clause that matches the exception is executed.

Within a CATCH or CATCH_ALL hand! er _bl ock, the current exception can be
referenced by thEXCEPTI ON pointerTHI S_CATCH (for example, for logic based on or
printing the exception value).

If the exception is not handled by one of & CH clauses, then theATCH ALL clause

is executed. By default, no further action is taken for an exception that is handled by
CATCH or CATCH_ALL clause. If naCATCH_ALL clause exists, then the exception is
raised at thery bl ock at the next higher level, assuming thatthg b/ ock is

nested within anothetrry_bl ock. If an ANSI C compiler is used, register and
automatic variables that are used in the handler blocks should be declared with the
vol ati | e attribute (as is true of any blocks that ss€j np/ | ongj np). Also note that
output parameters and return values from the functions that can generate an excepti
are indeterminate.

Within a CATCH or CATCH_ALL hand! er _bl ock, the current exception can be
propagated to the next higher level (the exception is “reraised”) usirRERMe SE
statement. ThBERAI SE statement must appear lexically within the scope of a

handl er_bl ock (that is, not within a function called by thend! er _bl ock). Any
exception that is caught but not fully handled should be reraised. In many cases, a
CATCH_ALL handler should reraise the exception because the handler is not written t
handle every exception. The application should also be written such that an exceptic

BEA Tuxedo C Function Reference

TRY(3¢)

is raised to the proper scope such that the handler blocks take the appropriate actions
and modify the appropriate state (for example, if an exception occurs while opening a
file, the handler function for that level should not try to close the unopened file).

An exception can be raised from anywhere by using the RAI SE(except i on_nane)
statement. This statement causes the exception to start propagating at the current
try bl ock and will be reraised until it is handled.

The FI NALLY clause can be used to specify an epilogue block of code that is executed
after thet ry_bl ock, whether or not an exception israised. If an exceptionisraisedin
thetry bl ock,itisreraised after thefinal | y_bl ock isexecuted. Thisclause can be
used to avoid replicating epilogue code twice, oncein a CATCH_ALL clause, and again
after the ENDTRY. It isnormally used to execute cleanup activities, restoring invariants
(for example, shared data, | ocks) asthe scopes are unwound, whether or not exceptions
areraised (that is, on both normal and abnormal exits from the block). Note (in the
“Synopsis” section) that@l NALLY clause cannot be used witle4rCH or CATCH_ALL
clause for the samie y_bl ock; use nestedry bl ocks.

The ENDTRY statement must be used to completeTiReblock, since it contains code
that must be executed to make sure that exceptions are handled and the context is
cleaned up. Ary_bl ock, handl er _bl ock, orfinal | y_bl ock must not contain a

ret ur n, non-local jump, or any other means of leaving the block such thanti®y

is not reached (for examplgot o() , br eak(), conti nue(), | ongj mp()).

This interface is provided to handle exceptions from RPC operations. However, this is
a generic interface that can be used for any application. An exception is declared to be
of typeEXCEPTI ON. (This is a complex data type; don’t try to use it like a long integer.)
There are two types of exceptions. They are declared in the same manner but initialized
differently.

One type of exception is used to propagate status values associated with operating
system signals and exceptions raised by the RPC run-time primitives. For each status
value, an exception has been pre-defined (for example, exceptior_no_menory

is defined for statuspc_s_no_menor y); these are declared in the trpcsts.h header file.
While not necessary (since the status exceptions are pre-defined), a status exception
can be declared by the application and initialized witteitve set _st at us() macro

which takes a pointer to tHEXCEPTI ONto be initialized, and the status value. The

status value associated witlsiaat us exception can be retrieved using the

exc_get _status() macro. It takes a pointer to tB¥CEPTI ON and a pointer to the
variable in which the status value is to be returned; the value of the macrois O if itis a
st at us exception, and -1 otherwise.

BEA Tuxedo C Function Reference 265

Section 3c - C Functions

266

The second type of exception is used to define application exceptions. It isinitialized
by calling the EXCEPTI ON_I NI T() macro. The address of the exception isstored asthe
value within the addr ess exception. Note that thisvalue isvalid only within asingle
address space and will changeif the exceptionisan automatic variable. For thisreason,
an addr ess exception should be declared as a static or external variable, not an
automatic or register variable. The exc_get _st at us() macro will evaluateto -1 for
an addr ess exception. Using theexc_set _st at us() macro on this exception will
make it a st at us exception.

Theexc_nmat ches macro can be used to compare two exceptions. To compare equd,
the exceptions must both be the same type and have the same value (for example, the
same status value for st at us exceptions, or the same addresses for addr ess
exceptions). This comparison is used for the CATCH clause, described above.

When status exceptions are raised, acommon part of handling the exception might be
to print out the statusvalue, or better yet, astring indicating what status val ue occurred.
If the string isto be printed to the standard error output, then the function
exc_report () canbecalledwithapointertothest at us exception to print the string
in one operation.

CATCH ALL

{
exc_report (TH S_CATCH) ;

}
ENDTRY

If something elseis to be done with the string (for example, printing the error to the
userlog), exc_get _stat us() can beused on TH S_CATCH to get the status value
(remember that TH' S_CATCH is already a pointer to an EXCEPTI ON, not an

EXCEPTI ON), and dce_error _i ng_t ext () can be used to get the string value
associated with the status value.

CATCH ALL

{
unsi gned |l ong status_to_convert;
unsi gned char error_text[200];
int status;

exc_get status(TH S_CATCH, status_t o_convert);
dce _error_ing_text(status_to_convert, error_text, status);
userlog(“%s”, (char *)error_text);

}
ENDTRY

BEA Tuxedo C Function Reference

TRY(3¢)

Note: A thread in amultithreaded application may invoke the TRY/CATCH interface
while running in any context state, including TPl NVALI DCONTEXT.

Whento Use The status of RPC operations can be determined portably by defining status variables
Exceptionand for each operation ([conm st at us] and [f aul t _st at us] parameters are defined via
Status Returns the Attribute Configuration File). The status-returning interface is the only interface

provided in the X/OPEN RPC specification. Thef aul t _st at us attribute indicates
that errors occurring on the server due to incorrectly specified parameter values,
resource constraints, or coding errors be reported by an additional status argument or
return value. Similarly, the comm st at us attribute indicates that RPC
communications failures be reported by an additional status argument or return value.
Using status values works well for fine-grained error handling (on a per-call basis)
with recovery specified for each possible error on each call, and where it is necessary
to retry from the point of failure. The disadvantageisthat it is not transparent whether
or not the call islocal or remote. The remote call has additional status parameters, or a
status return value instead of being a void return. Thus, the application must have
procedure declarations adjusted between local and distributed code.

For application portability from an OSF/DCE environment, the TRY/CATCH
exception-returning interface is also provided. This interface may not be provided in
all environments. However, it has the advantage that procedure declarations need not
be adjusted between local and distributed code, maintaining existing interfaces. The
checking for errors can be simplified such that each procedure call does not have
specific failure checking or recovery code. If an error isnot handled at somelevel, then
the program exits with a system error message such that the error is detected and can
be corrected (omissions become more obvious). Exceptions work better for
coarse-grained exception handling.

Built-in The following exceptions are “built-in” to the use of this exception interface. The first
Exceptions TRY clause sets up a signal handler to catch the signals list below if they are not
currently ignored or caught; the other exceptions are defined only for DCE program
portability.

Built-1n Exceptions

Exception Description

exc_e_SI GBUS An unhandled SI GBUS signd occurred.
exc_e_ S| GEMr An unhandled SI GEMT signd occurred.
exc_e_ S| GFPE An unhandled SI G-PE signd occurred.

BEA Tuxedo C Function Reference 267

Section 3c - C Functions

Built-1n Exceptions

Exception Description

exc_e_SIdLL An unhandled SI G LL signal occurred.
exc_e_Sldor An unhandled SI G OT signal occurred.
exc_e_SI GPI PE An unhandled SI GPI PE signal occurred.
exc_e_S| GSEGV An unhandled SI GSEGV signal occurred.
exc_e_SI GSYS An unhandled SI GSYS signal occurred.
exc_e_SI| GTRAP An unhandled SI GTRAP signal occurred.
exc_e_SI GXCPU An unhandled SI GXCPU signal occurred.
exc_e_S| GXFSz An unhandled SI GXFSZ signal occurred.

pt hread_e_badpar am

pthread_e_defer_q_full

pt hread_e_exi st ence

pthread_e_in_use

pt hread_e_nost ackmem

pt hread_e_nost ack

pthread_e_signal _q full

pt hread_e_st ackovf

pt hread_e_uni np

pthread_e_use_error

exc_e_decovf

exc_e_exquot a

exc_e fltdiv

exc_e fltovf

exc_e fltund

268 BEA Tuxedo C Function Reference

TRY(3¢)

Built-1n Exceptions

Exception

Description

exc_e SIGLL

Anunhandled SI G LL signd occurred.

exc_e_SIAdOr

An unhandled SI G OT signd occurred.

exc_e_SI GPl PE

An unhandled SI GPI PE signal occurred.

exc_e_SI GSEGV

An unhandled SI GSEGV signal occurred.

exc_e_SI GSYS

An unhandled SI GSYS signd occurred.

exc_e_S| GTRAP

An unhandled SI GTRAP signal occurred.

exc_e_SI GXCPU

An unhandled SI GXCPU signal occurred.

exc_e_SI GXFSzZ

An unhandled SI GXFSZ signal occurred.

pt hr ead_e_badpar am

pthread_e _defer_q_full

pt hread_e_exi stence

pthread_e_in_use

pt hread_e_nost acknmem

pt hread_e_nost ack

pthread_e_signal _q full

pt hr ead_e_st ackovf

pt hread_e_uni np

pt hread_e_use_error

exc_e_decovf

exc_e_exquota

exc_e fltdiv

exc_e_ fltovf

exc_e fltund

BEA Tuxedo C Function Reference

269

Section 3c - C Functions

Built-1n Exceptions

Exception Description

exc_e_SIdLL An unhandled SI G LL signal occurred.
exc_e_Sldor An unhandled SI G OT signal occurred.
exc_e_SI GPI PE An unhandled SI GPI PE signal occurred.
exc_e_S| GSEGV An unhandled SI GSEGV signal occurred.
exc_e_SI GSYS An unhandled SI GSYS signal occurred.
exc_e_SI| GTRAP An unhandled SI GTRAP signal occurred.
exc_e_SI GXCPU An unhandled SI GXCPU signal occurred.
exc_e_S| GXFSz An unhandled SI GXFSZ signal occurred.

pt hread_e_badpar am

pthread_e_defer_q_full

pt hread_e_exi st ence

pthread_e_in_use

pt hread_e_nost ackmem

pt hread_e_nost ack

pthread_e_signal _q full

pt hread_e_st ackovf

pt hread_e_uni np

pthread_e_use_error

exc_e_decovf

exc_e_exquot a

exc_e fltdiv

exc_e fltovf

exc_e fltund

270 BEA Tuxedo C Function Reference

TRY(3¢)

Built-1n Exceptions

Exception Description

exc_e_ill addr

exc_e_insfnmem

exc_e_intdiv

exc_e_intovf

exc_e_nopriv

exc_e_privinst

exc_e_resaddr

exc_e_resoper

exc_e_subrng

exc_e_uni ni texc

These same exception codes are also defined with #iat the end of the name (for
exampleexc_e_SI GBUS is also defined asxc_SI GBUS_e). Equivalent status codes
are defined with similar names but thee"” is changed to “s_" (for example,
exc_e_SI GBUS is equivalent to thexc_s_SI GBUS status code).

Caveats In OSF/DCE, the header file is named:_handl i ng. h; the BEA Tuxedo system
header file ig exc. h. It is not possible for the same source file to use both DCE and
BEA Tuxedo system exception handling. Further, within a program, the handling of
signal exceptions can only be done by either DCE or the BEA Tuxedo system, not
both. Sed’rogramming a BEA Tuxedo Application Using TXRPC for a discussion of
integrating BEA Tuxedo System/TxRPC stubs and OSF/DCE stubs in a single
program.

When linking a program using this interfag@UXDl R/ | i b/ 1 i bt r pc. a must be
included.

Examples Here is an example C source file that uses exceptions.
#i ncl ude <texc. h>

EXCEPTI ON badopen_e; /* decl are exception for bad open() */

BEA Tuxedo C Function Reference 271

Section 3c - C Functions

doi t (char *fil enane)

{
EXCEPTI ON_I NI T(badopen_e); /* initialize exception */
TRY get_and_update_data(fil enane); /* do the operation */
CATCH(badopen_eg) /* exception - open() failed */
fprintf(stderr, “Cannot open %s\en”, filename);
CATCH_ALL /* handle other errors */

/* handle rpc service not available, ... */
exc_report(THIS_CATCH)
ENDTRY
}
/*
* Open output file
* Get the remote data item
* Write out to file
*/
get_and_update_data(char *filename)

FILE *fp;

if (fp == fopen(filename)) == NULL) /* open output file */
RAISE(badopen_e); [* raise exception */

TRY

* in this block, file is opened successfully -
* use associated FINALLY to close file
*/
long data;
/*
* Execute RPC call - exceptions are raised to the calling
* function, doit()
*/
data = remote_get_data();
fprintf(fp, “%ld\en”, data);
FINALLY
I* Whether or not exceptions are raised, close the file */
fclose(fp);
ENDTRY

}
See Also tidl(1) , userlog(3c)

abort (2) inaUNIX system reference manual

Programming a BEA Tuxedo Application Using TXRPC

272 BEA Tuxedo C Function Reference

tuxgetenv(3¢)

tuxgetenv(3c¢)

Name

Synopsis

Description

Return Values

Portability

See Also

tuxget env() - return valuefor environment name

#i ncl ude <atni. h>
char *tuxgetenv(char *nane)

t uxget env() searchesthe environment list for a string of the form nane=val ue and,
if the string is present, returns a pointer to the val ue in the current environment.
Otherwise, it returns a null pointer.

This function provides a portable interface to environment variables across the
different platforms on which the BEA Tuxedo system is supported, including those
platforms that do not normally have environment variables.

Note that t uxget env is case-sensitive.

A thread in amultithreaded application may issue acall tot uxget env() while
running in any context state, including TPl NVALI DCONTEXT.

If apointer to the string exists, t uxget env() returnsthat pointer. If a pointer does not
exist, t uxget env() returnsanull pointer.

OnMSWindows, thisfunction overcomestheinability to share environment variables
between an application and a Dynamic Link Library. The BEA Tuxedo Workstation
DLL maintains an environment copy for each application that is attached to it. This
associ ated environment and context information isdestroyed when't pt er n() iscalled
from a Windows application. The value of an environment variable could be changed
after the application program callst pt er m() .

It is recommended that upper case variable names be used for the DOS, Windows,
0S/2, and NetWare environments. (t uxr eadenv() convertsall environment variable
names to upper case.)

t uxput env(3c),t uxreadenv(3c)

BEA Tuxedo C Function Reference 273

Section 3c - C Functions

tuxputenv(3¢)

Name

Synopsis

Description

Return Values

274

Portability

See Also

t uxput env() - change or add value to environment

#i nclude <atm . h>
int tuxputenv(char *string)

string points to a string of the form “name=valuedxput env() makes the value

of the environment variable name equal to value by altering an existing variable or
creating a new one. In either case, the string pointed o hiyng becomes part of the
environment.

This function provides a portable interface to environment variables across the
different platforms on which the BEA Tuxedo system is supported, including those
platforms that do not normally have environment variables.

Note thatt uxput env() is case-sensitive.

A thread in a multithreaded application may issue a callig@ut env() while
running in any context state, includimgl NVALI DCONTEXT.

If t uxput env() cannot obtain enough space, m# | oc(), for an expanded
environment, it returns a non-zero integer. Otherwise, it returns zero.

On MS Windows, this function overcomes the inability to share environment variables
between an application and a Dynamic Link Library. The BEA Tuxedo system
Workstation DLL maintains an environment copy for each application that is attachec
to it. This associated environment and context information is destroyed when

t pt erm() is called from a Windows application. The value of an environment variable
could be changed after the application program calier () .

We recommend using upper case variable names for the DOS, Windows, and OS/2
environments.t(uxr eadenv() converts all environment variable names to upper
case.)

t uxget env(3c), tuxreadenv(3c)

BEA Tuxedo C Function Reference

tuxreadenv(3c)

tuxreadenv(3¢)

Name

Synopsis

Description

tuxr eadenv() - add variables to the environment from afile

#i ncl ude <atni. h>
int tuxreadenv(char *file, char *|abel)

t uxr eadenv() reads afile containing environment variables and adds them to the
environment, independent of platform. These variables are available using
tuxget env() and can bereset using t uxput env() .

The format of the environment file is as follows.

m Any leading space or tab character on alineisignored and is not considered in
the following points.

m Lines containing variables to be put into the environment are of the form
vari abl e=val ue
or
set vari abl e=val ue

where var i abl e must begin with an al phabetic or underscore character and
contain only alphanumeric or underscore characters, and val ue may contain any
character except newline.

m Within the val ue, strings of the form ${ env} are expanded using variables
already in the environment (forward referencing is not supported and if avalue
is not set, the variable is replaced with the empty string). Backslash (\) may be
used to escape the dollar sign and itself. All other shell quoting and escape
mechanisms are ignored and the expanded val ue is placed into the environment.

m Linesbeginning with slash (/), pound sign (#), semicolon (;), or exclamation
point (1) are treated as comments and ignored. Lines beginning with other
characters besides these comment characters, a left square bracket, or an
alphabetic or underscore character are reserved for future use; their useis
undefined.

BEA Tuxedo C Function Reference 275

Section 3c - C Functions

m Thefileis partitioned into sections by lines beginning with left square bracket
(D), which acts asalabel. The label will be silently truncated if longer than 31
characters. The format of alabel is

[I abel]

where | abel followsthe samerulesfor vari abl e above (lines with invalid
I abel valuesareignored).

m Variablelines between the top of the file and the first label are put into the
environment for all labels (thisisthe global section). Other variables are put into
the environment only if the label matches the label specified for the application.
A label of [] will indicate the global section.

If fileisNULL, then adefault filenameis used. The fixed filenames are as follows:

DOS, W ndows, (OS2, NT: C \ TUXEDO TUXEDO. ENV
MAC. TUXEDO. ENV in the system preferences directory
NETWARE: SYS: SYSTEM TUXEDO. ENV

PCSI X: /usr/tuxedo/ TUXEDO. ENV or /var/opt/tuxedo/ TUXEDO. ENV

If 1 abel isNULL, then only variablesin the global section are put into the
environment. For other valuesof / abel , theglobal section variables plusany variables
in asection matching the I abel are put into the environment.

Anerror messageisprintedtotheuser| og() if thereisamemory failure, if anon-null
filename does not exigt, or if anon-null label does not exist.

A thread in a multithreaded application may issue acall to t uxr eadenv() while
running in any context state, including TPl NVALI DCONTEXT.

Example Hereis an example environment file.

TUXDI R=/ usr/t uxedo

[applicationl]

this is a coment

/* this is a coment */
#this is a conment

//this is a comrent

FI ELDTBLS=appl_flds

FLDTBLDI R=/ usr/ appl/ udat aobj
[appl i cation2]

FI ELDTBLS=app2_f 1 ds

FLDTBLDI R=/ usr/ app2/ udat aobj

276 BEA Tuxedo C Function Reference

tuxreadenv(3c)

Return Values If t uxr eadenv() cannot obtain enough space, viamal | oc() , for an expanded
environment, or if it cannot open and read a file with anon-NULL name, it returns a

non-zero integer. Otherwise, t uxr eadenv() returns zero.

Portability ~ Inthe DOS, Windows, OS/2, and NetWare environments, t uxr eadenv() convertsall
environment variable names to upper case.

See Also tuxgetenv(3c),tuxputenv(3c)

BEA Tuxedo C Function Reference 277

Section 3c - C Functions

tx_begin(3¢)

Name tx_begin() - beginaglobal transaction

Synopsis #i ncl ude <t x. h>
int tx_begin(void)

Description t x_begi n() is used to place the calling thread of control in transaction mode. The
calling thread must first ensure that itslinked resource managers have been opened (via
t x_open()) before it can start transactions. t x_begi n() fails (returning
[TX_PROTOCOL_ERROR)) if the caller isalready in transaction mode or t x_open() has
not been called.

Once in transaction mode, the calling thread must call t x_conmi t () or

tx_rol | back() to completeitscurrent transaction. There are certain cases related to
transaction chaining wheret x_begi n() doesnot needto be called explicitly to start a
transaction. Seet x_conmmit () andtx_rol | back() for details.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_begin() .

Optional Set-up tx_set _transacti on_ti meout ()
Return Value Upon successful completion, t x_begi n() returns TX_OK, a non-negative return value.

Errors Under the following conditions, t x_begi n() failsand returns one of these negative
values:

[TX_OUTSI DE]
The transaction manager is unable to start a global transaction because the
calling thread of control is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be started. The caller’s state with
respect to the local transaction is unchanged.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is
already in transaction mode). The caller’s state with respect to transaction
mode is unchanged.

278 BEA Tuxedo C Function Reference

tx_begin(3c¢)

[TX_ERROR]
Either the transaction manager or one or more of the resource managers
encountered atransient error trying to start anew transaction. When thiserror
isreturned, the caller is not in transaction mode. The exact nature of the error
iswrittento alog file.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. When thiserror isreturned, the caller is not
in transaction mode. The exact nature of the error is written to alog file.

See Also tx_commi t(3c),tx_open(3c),tx_rollback(3c),
tx_set_transaction_tinmeout(3c)

Warnings X A-compliant resource managers must be successfully opened to be included in the
global transaction. (Seet x_open(3c) for details.) Both the X/Open TX interface and
the X-Windows system define the type XID. It is not possible to use both X-Windows
callsand TX callsin the samefile.

BEA Tuxedo C Function Reference 279

Section 3c - C Functions

tx_close(3¢)

Name

Synopsis

Description

Return Value

280

Errors

tx_cl ose() - close aset of resource managers

#i ncl ude <tx. h>
int tx_close(void)

tx_cl ose() closesaset of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

tx_cl ose() closesall resource managersto which the caller islinked. Thisfunction

is used in place of resource-manager-specific “close” calls and allows an applicatior
program to be free of calls which may hinder portability. Since resource managers
differ in their termination semantics, the specific information needed to “close” a
particular resource manager must be published by each resource manager.

t x_cl ose() should be called when an application thread of control no longer wishes
to participate in global transactions_cl ose() fails (returning

[TX_PROTOCOL_ERRCR)) if the caller is in transaction mode. That is, no resource
managers are closed even though some may not be patrticipating in the current
transaction.

Whent x_cl ose() returns succes3IX_OK), all resource managers linked to the
calling thread are closed.

In a multithreaded application, a thread inTPeNVALI DCONTEXT state is not allowed
to issue a call tox_cl ose() .

Upon successful completiony_cl ose() returnsTX_OK, a hon-negative return value.

Under the following conditions,x_cl ose() fails and returns one of these negative
values:

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller is in
transaction mode). No resource managers are closed.

BEA Tuxedo C Function Reference

tx_close(3c¢)

[TX_ERROR]
Either the transaction manager or one or more of the resource managers
encountered atransient error. The exact nature of the error iswritten to alog
file. All resource managers that could be closed are closed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswrittentoa
log file.

See Also tx_open(3c)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA Tuxedo C Function Reference 281

Section 3c - C Functions

tx_commit(3¢)

Name

Synopsis

Description

Optional Set-up

Return Value

282

Errors

tx_conmmi t () - commit aglobal transaction

#i ncl ude <tx.h>
int tx_commt(void)

t x_commi t () isusedto committhework of thetransaction activeinthecaller’'s thread
of control.

If the t ransacti on_control characteristic (see

tx_set _transaction_control (3c)) is TX_UNCHAI NED, then when x_comi t ()
returns, the caller is no longer in transaction mode. However, if the
transaction_cont rol characteristic igX_CHAI NED, then when x_conmi t ()

returns, the caller remains in transaction mode on behalf of a new transaction (see tl
RETURN VALUE and ERRORS sections below).

In a multithreaded application, a thread inTPeNVALI DCONTEXT state is not allowed
to issue a call tox_comi t ().

B tx _set _commt_return()
B tx_set _transaction_control ()

B tx_set _transaction_tinmeout ()

Upon successful completionx_conmi t () returnsTX_OK, a hon-negative return
value.

Under the following conditions,x_comi t () fails and returns one of these negative
values:

[TX_NO BEG N|
The current transaction committed successfully; however, a new transactior
could not be started and the caller is no longer in transaction mode. This
return value may occur only when theansact i on_cont r ol characteristic
is TX_CHAI NED.

[TX_ROLLBACK]
The current transaction could not commit and has been rolled back. In
addition, if thet ransact i on_cont r ol characteristic i3X_CHAI NED, a new
transaction is started.

BEA Tuxedo C Function Reference

tx_commit(3c¢)

[TX_ROLLBACK_NO BEG N]
Thetransaction could not commit and hasbeen rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the t r ansact i on_cont r ol
characteristic is TX_CHAI NED.

[TX_M XED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if the t r ansacti on_cont r ol
characteristic is TX_CHAI NED, a new transaction is started.

[TX_M XED_NO BEG N]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started and
the caller isno longer in transaction mode. This return value can occur only
whenthetransaction_control characteristicis TX_CHAI NED.

[TX_HAZARD]
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX_CHAI NED, a new transaction is
started.

[TX_HAZARD_NO BEG N|
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the t r ansact i on_cont r ol
characteristic is TX_CHAI NED.

[TX_PROTOCOL_ERRCR]
Thefunction was called in an improper context (for example, the caller isnot
intransaction mode). Thecaller’s state with respect to transaction mode is not
changed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a
log file. The caller’s state with respect to the transaction is unknown.

BEA Tuxedo C Function Reference 283

Section 3c - C Functions

See Also tx_begin(3c),tx_set_conmt_return(3c),
tx_set _transaction_control (3c),tx_set_transaction_timeout(3c)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

284 BEA Tuxedo C Function Reference

tx_info(3¢)

tx_info(3¢)

Name tx_info() - return globa transaction information

Synopsis #i ncl ude <tx.h>
int tx_info(TXI NFO *info)

Description t x_i nfo() returns global transaction information in the structure pointed to by i nf o.
In addition, this function returns a value indicating whether the caller is currently in
transaction mode or not. If i nf o isnon-null, thent x_i nf o() populates a TXINFO
structure pointed to by i nf o with global transaction information. The TXINFO
structure contains the following elements:

Xl D Xi d;

COWM T_RETURN when_return;
TRANSACTI ON_CONTROL transacti on_control;
TRANSACTI ON_TI MEQUT transaction_ti neout;
TRANSACTI ON_STATE transacti on_st at e;

If t x_i nf o() iscalledintransaction mode, then xi d will be populated with a current
transaction branch identifier and t ransact i on_st at e will contain the state of the
current transaction. If the caller isnot in transaction mode, xi d will be populated with
the null XID (see <tx.h> for details). In addition, regardless of whether the callerisin
transaction mode, when_r et urn, t ransacti on_cont rol , and

transaction_ti meout contain the current settings of the conmi t _r et ur n and
transaction_control characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when the
next transaction is started. Thus, it may not reflect the timeout value for the caller’'s
current global transaction since calls madexoset _transaction_ti neout ()
after the current transaction was begun may have changed its value.

If i nfois null, no TXINFO structure is returned.

In a multithreaded application, a thread inTRENVALI DCONTEXT state is not allowed
to issue a call tox_i nfo() .

Return Value If the caller is in transaction mode, then 1 is returned. If the caller is not in transaction
mode, then 0 is returned.

Errors Under the following conditions,x_i nf o() fails and returns one of these negative
values:

BEA Tuxedo C Function Reference 285

Section 3c - C Functions

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open()).

[TX_FAI L]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

See Also tx_open(3c),tx_set_comit_return(3c),
tx_set _transaction_control (3c),tx_set_transaction_timeout(3c)

Warnings ~ Within the same global transaction, subsequent callstot x_i nf o() are guaranteed to
provide an X1D with the same gt r i d component, but not necessarily the same bqual
component. Both the X/Open TX interface and the X-Windows system define thetype
XID. It isnot possible to use both X-Windows calls and TX callsin the samefile.

286 BEA Tuxedo C Function Reference

tx_open(3c¢)

tx_open(3¢)

Name

Synopsis

Description

Return Value

Errors

t x_open() - open aset of resource managers

#i ncl ude <tx.h>
int tx_open(void)

t x_open() opens aset of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transacti on-manager-specific manner and pass this information to the resource
managers linked to the caler.

t x_open() attemptsto open all resource managers that have been linked with the
application. This function is used in place of resource-manager-specific “open” calls
and allows an application program to be free of calls which may hinder portability.
Since resource managers differ in their initialization semantics, the specific
information needed to “open” a particular resource manager must be published by each
resource manager.

If t x_open() returnsTX_ERROR, then no resource managers are operx_lbpen()
returnsTX_oK, some or all of the resource managers have been opened. Resource
managers that are not open will return resource-manager-specific errors when accessed
by the applicationt x_open() must successfully return before a thread of control
participates in global transactions.

Oncet x_open() returns success, subsequent caltxtmpen() (before an
intervening call ta x_cl ose()) are allowed. However, such subsequent calls will
return success, and the TM will not attempt to re-open any RMs.

In a multithreaded application, a thread inTRENVALI DCONTEXT state is not allowed
to issue a call tox_open() .

Upon successful completiony_open() returnstX_OK, a non-negative return value.

Under the following conditions,x_open() fails and returns one of these negative
values:

[TX_ERROR]
Either the transaction manager or one or more of the resource managers
encountered a transient error. No resource managers are open. The exact
nature of the error is written to a log file.

BEA Tuxedo C Function Reference 287

Section 3c - C Functions

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. TX_FAI L isreturned if t pi ni t () isnot called
before the call to t x_open in a secure application (SECURITY APP_PW).
The nature of the error is such that the transaction manager and/or one or
more of the resource managers can no longer perform work on behalf of the
application. The exact nature of the error is written to alog file.

See Also tx_cl ose(3c)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

288 BEA Tuxedo C Function Reference

tx_rollback(3c¢)

tx_rollback(3¢)

Name

Synopsis

Description

Optional Set-up

Return Value

Errors

tx_rol I back() - roll back aglobal transaction

#i ncl ude <tx.h>
int tx_rollback(void)

tx_roll back() isusedto roll back the work of the transaction active in the caller's
thread of control.

If the t ransact i on_cont rol characteristic (see

tx_set_transaction_control (3c)) iS TX_UNCHAI NED, then when

tx_rol I back() returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic iFX_CHAI NED, then when x_r ol | back()

returns, the caller remains in transaction mode on behalf of a new transaction (see the
RETURN VALUE and ERRORS sections below).

In a multithreaded application, a thread inTRENVALI DCONTEXT state is not allowed
to issue a call tox_r ol | back().

B tx_set transaction_control ()

B tx_set transaction_timeout()

Upon successful completiony_r ol | back() returnsTX_OK, a non-negative return
value.

Under the following conditions,x_r ol | back() fails and returns one of these
negative values:

[TX_NO BEG N]|
The current transaction rolled back; however, a new transaction could not be
started and the caller is no longer in transaction mode. This return value may
occur only when theransacti on_cont rol characteristic i3X_CHAI NED.

[TX_M XED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if ther ansacti on_cont r ol
characteristic igX_CHAI NED, a new transaction is started.

BEA Tuxedo C Function Reference 289

Section 3c - C Functions

[TX_M XED_NO BEG N|
Thework done on behalf of the transaction was partially committed and
partialy rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
whenthet ransacti on_cont rol characteristic is TX_CHAI NED.

[TX_HAZARD]|
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transacti on_cont rol characteristic is TX_CHAI NED, anew transaction is
started.

[TX_HAZARD NO BEG N]
Dueto afailure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, anew
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the ¢ ransact i on_cont r ol
characteristic is TX_CHAI NED.

[TX_COowM TTED|
Thework done on behalf of the transaction was heuristically committed. In
addition, if the t ransact i on_cont r ol characteristicis TX_CHAI NED, anew
transaction is started.

[TX_COWM TTED _NO BEG N|
Thework done on behalf of the transaction was heuristically committed. In
addition, a new transaction could not be started and the caller isno longer in
transaction mode. Thisreturn value can occur only when the
transacti on_cont rol characteristic is TX_CHAI NED.

[TX_PROTOCOL_ERRCR]
Thefunction was called in an improper context (for example, the caller isnot
in transaction mode).

[TX_FAI L]
Either the transaction manager or one or more of the resource managers
encountered afatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error iswrittento a
log file. The caller’s state with respect to the transaction is unknown.

See Also tx_begin(3c),tx_set_transaction_control (3c),
tx_set _transaction_tineout (3c)

290 BEA Tuxedo C Function Reference

tx_rollback(3c¢)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

BEA Tuxedo C Function Reference 291

Section 3c - C Functions

tx_set_commit_return(3¢)

Name

Synopsis

Description

Return Value

tx_set_commit_return() -Setcommt_return characteristic

#i ncl ude <tx. h>
int tx_set_commit_return(COV T_RETURN when_r eturn)

tx_set_commit_return() setstheconmit_ret urn characteristic to the value
specified in when_r et ur n. This characteristic affectstheway t x_comni t () behaves
with respect to returning control toitscaller. t x_set _commit _return() may be
called regardless of whether its caller isin transaction mode. This setting remainsin
effect until changed by a subsequent call tot x_set _conmit _return().

Theinitia setting for this characteristic is TX_COvM T_COVPLETED.
Thefollowing are the valid settings for uhen_ret ur n.

TX_COWM T_DECI S| ON_LOGGED
Thisflagindicatesthat t x_commi t () should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. Thissetting allowsfor faster response
tothecaller of t x_commi t () . However, thereis arisk that atransaction will
have a heuristic outcome, in which case the caller will not find out about this
situation viareturn codes fromt x_conmi t () . Under normal conditions,
participants that promise to commit during the first phase will do so during
the second phase. In certain unusual circumstances however (for example,
long-lasting network or node failures) phase 2 completion may not be
possible and heuristic results may occur.

TX_COWMM T_COMPLETED
Thisflag indicatesthat t x_commi t () should return after the two-phase
commit protocol has finished completely. This setting allows the caller of
t x_conmi t () to seereturn codes that indicate that a transaction had or may
have had heuristic results.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall totx_set _commit _return().

Upon successful completion, t x_set _commi t _ret urn() returns TX_OK, a
non-negative return value.

292 BEA Tuxedo C Function Reference

tx_set_commit_return(3c)

Errors

See Also

Warnings

Under thefollowing conditions, tx_set_commit_return() does not change the setting of
the conmi t _r et ur n characteristic and returns one of these negative values:

[TX_EI NVAL]
when_ret ur nisnot one of TX_COVM T_DECI SI ON_LOGGED or
TX_COW T_COMPLETED

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open()).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

tx_commt(3c),tx_info(3c),tx _open(3c)

Both the X/Open TX interface and the X-Windows system define thetype XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

BEA Tuxedo C Function Reference 293

Section 3c - C Functions

tx_set_transaction_control(3¢)

Name

Synopsis

Description

Return Value

294

Errors

tx_set_transaction_control () - settransacti on_control characteristic

#i ncl ude <tx. h>
int tx_set_transaction_control (TRANSACTI ON_ CONTRCL control)

tx_set _transaction_control () setsthetransacti on_cont r ol characteristicto
the value specifiedin cont r ol . This characteristic determines whether t x_commi t ()
andtx_rol | back() start anew transaction before returning to their caller.

tx_set _transaction_control () may be caled regardless of whether the
application program isintransaction mode. This setting remainsin effect until changed
by a subsequent call tot x_set _transacti on_control ().

Theinitia setting for this characteristic is TX_UNCHAI NED.
Thefollowing are the valid settings for cont r ol .

TX_UNCHAI NED
Thisflagindicatesthat t x_conmi t () andt x_r ol | back() should not start a
new transaction before returning to their caller. The caller must issue
t x_begi n() to start anew transaction.

TX_CHAI NED
Thisflag indicatesthat t x_comi t () andtx_r ol | back() should start a
new transaction before returning to their caller.

In amultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_set _transaction_control ().

Upon successful completion, t x_set _transaction_control () returns TX_OK, a
non-negative return value.

Under thefollowing conditions, t x_set _t ransact i on_control () doesnot change
the setting of the t ransact i on_cont r ol characteristic and returns one of these
negative values:

[TX_EI NVAL]
cont rol isnot one of TX_UNCHAI NED or TX_CHAI NED.

BEA Tuxedo C Function Reference

tx_set_transaction_control(3c)

[TX_PROTOCOL_ERRCR]
The function was called in an improper context (for example, the caller has
not yet called t x_open()).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error iswritten to alog file.

See Also tx_begin(3c),tx_comit(3c),tx_info(3c),tx_open(3c),tx_rollback(3c)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. Itis
not possible to use both X-Windows callsand TX callsin the samefile.

BEA Tuxedo C Function Reference 295

Section 3c - C Functions

tx_set_transaction_timeout(3¢)

Name

Synopsis

Description

Return Value

296

Errors

tx_set_transaction_timeout () -Settransaction_tineout characteristic

#i ncl ude <tx. h>
int tx_set_transaction_ti meout (TRANSACTI ON Tl MEOUT ti meout)

tx_set _transaction_timeout () setsthetransacti on_ti nmeout characteristicto
the value specified in t i meout . This value specifies the time period in which the
transaction must compl ete before becoming susceptible to transaction timeout; that is,
the interval between the AP calling t x_begi n() andt x_commi t () or

tx_rol | back().tx_set_transaction_timeout() may be called regardless of
whether itscaller isin transaction modeor not. If t x_set _transacti on_ti neout ()
iscalledintransaction mode, thenew t i meout value does not take effect until the next
transaction.

Theinitia t ransact i on_t i meout valueis 0 (no timeout).

ti meout specifies the number of seconds allowed before the transaction becomes
susceptible to transaction timeout. It may be set to any value up to the maximum value
for al ong as defined by the system. A ti neout value of zero disables the timeout
feature.

Inamultithreaded application, athread in the TPI NVALI DCONTEXT stateisnot allowed
toissueacall tot x_set _transaction_timeout().

Upon successful completion, t x_set _transaction_ti meout () returns TX_OK, a
non-negative return value.

Under thefollowing conditions, t x_set _t ransact i on_t i meout () doesnot change
the setting of the t ransact i on_t i meout characteristic and returns one of these
negative values:

[TX_EI NVAL]
The timeout value specified isinvalid.

[TX_PROTOCOL_ERRCR]
The function was called improperly. For example, it was called before the
caller caledt x_open() .

BEA Tuxedo C Function Reference

tx_set_transaction_timeout(3c)

[TX_FAIL]
The transaction manager encountered an error. The nature of the error issuch
that the transaction manager can no longer perform work on behalf of the
application. The exact nature of the error is written to alog file.

See Also tx_begin(3c),tx_comit(3c),tx_info(3c),tx_open(3c),tx_rollback(3c)

Warnings Both the X/Open TX interface and the X-Windows system define the type XID. It is
not possible to use both X-Windows callsand TX callsin the samefile.

BEA Tuxedo C Function Reference 297

Section 3c - C Functions

userlog(3¢)

298

Name

Synopsis

Description

user | og() - write amessage to the BEA Tuxedo system central event log

#include “userlog.h”
extern char *proc_name;

int userlog (format [,arg] . ..)
char *format;

userlog() acceptsaprintf (3S) style format specification, with afixed output
file-the BEA Tuxedo system centra event log.

The central event log is an ordinary UNIX file whose pathname is composed as
follows: If the shell variable ULOGPFXs set, its valueis used as the prefix for the
filename. If ULOGPFXs not set, ULOG s used. The prefix is determined the first time
userlog() iscalled. Eachtimeuserlog() iscalled the dateis determined, and the
month, day, and year are concatenated to the prefix as mmddyyto set the name for the
file. The first time aprocess writesto the userlog, it first writes an additional message
indicating the associated BEA Tuxedo system version.

The message is then appended to the file. With this scheme, processes that call
userlog() on successive days will write into different files.

M essages are appended to the log filewith atag made up of thetime (hhmmss), system
name, process name, and process I D, thread I D, and context D of the calling process.
Thetag is terminated with acolon (:). The name of the processis taken from the
pathname of the external variable proc_name . If proc_name hasvaue NULL, the
printed name is set to ?proc .

BEA Tuxedo system-generated error messages in the log file are prefixed by aunique
identification string of the form:

<catalog>:number>:

This string gives the name of the internationalized catalog containing the message
string, plus the message number. By convention, BEA Tuxedo system-generated error
messages are used only once, so the string uniquely identifies alocation in the source
code.

If thelast character of the f or mat specification isnot anewline character, userlog()
appends one.

BEA Tuxedo C Function Reference

userlog(3c)

Portability

Examples

Errors

If the first character of the shell variable ULOGDEBUGIs 1 or y, the message sent to
userl og() isalso written to the standard error of the calling process, using the
fprintf (3S) function.

userl og() isused by the BEA Tuxedo system to record a variety of events.

The user | og mechanism is entirely independent of any database transaction logging
mechani sm.

A thread in amultithreaded application may issue acall to user 1 og() whilerunning
in any context state, including TP NVALI DCONTEXT.

Theuser | og() interfaceis supported on UNIX and MS-DOS operating systems. The
system name produced as part of thelog messageishot availableon MS-DOS systems;
therefore, the value PC is used as the system name for MS-DOS systems.

If the variable ULOGPFX isset to/ appl i cati on/ | ogs/ | og and if thefirst call to
userl og() occurred on 9/7/90, the log file created is named
/ appl ication/l ogs/| og. 090790. If the call:

userlog(“"UNKNOWN USER '%s' (UID=%d)", usrname, UID);

is made at 4:22:14pm on the UNIX System file named m1by thesec program, whose
process-id is 23431, and the variable usrname contains the string “sxx”, and the
variableUl D contains the integer 123, the following line appears in the log file:

162214. ml! sec. 23431: UNKNOMN USER ’ sxx’ (Ul D=123)

If the message is sent to the central event log while the process is in transaction mode,
the user log entry has additional components in the tag. These components consist of
the literalgt ri d followed by three ong hexadecimal integers. The integers uniquely
identify the global transaction and make up what is referred to as the global transaction
identifier. This identifier is used mainly for administrative purposes, but it does make
an appearance in the tag that prefixes the messages in the central event log. If the
foregoing message is written to the central event log in transaction mode, the resulting
log entry will look like this:

162214. 1 ogsys! security.23431: gtrid x2 x24e1b803 x239: UNKNOAN USER
"sxx’ (Ul D=123)

If the shell variablé)LOGDEBUG has a value of, the log message is also written to the
standard error of the program nansedurity.

userl og() hangs if the message sentto itis larger 8@l Z as defined ist di 0. h

BEA Tuxedo C Function Reference 299

Section 3c - C Functions

Diagnostics user | og() returnsthe number of characters output, or a negative value if an output
error was encountered. Output errors include the inability to open, or write to the
current log file. Inability to write to the standard error, when ULOGDEBUG S Set, is hot
considered an error.

Notices It isrecommended that applications’ use ofuser| og() messages be limited to
messages that can be used to help debug application errors; flooding the log with
incidental information can make it hard to spot actual errors.

See Also printf(3S)in a UNIX system reference manual

300 BEA Tuxedo C Function Reference

Usignal(3¢)

Usignal(3¢)

Name

Synopsis

Description

Usi gnal () - signal handling in a BEA Tuxedo system environment
#include “Usignal.h”

UDEFERSIGS()
UENSURESIGS()
UGDEFERLEVEL()
URESUMESIGS()
USDEFERLEVEL (level)

int (*Usignal(sig,func)()
int sig;

int (*func)();

void Usiginit()

Many of the facilities provided by the BEA Tuxedo system software require
concurrent access to data structures in shared memory. Processes accessing the shared
data structuresrun in user mode, and are thus interruptable by signals sent to them. In
order to ensure the consistency of the shared data structures, it is important that the
operations which access them not be interrupted by the receipt of certain UNIX
signals. The functions described in this section provide protection against the most
common signals, and are used internally by much of the BEA Tuxedo system code.
Additionally, they are available to applications to prevent the untimely arrival of a
signal.

Theideabehind the BEA Tuxedo system signal handling packageisthat signalsshould
be deferrable whilein critical code sections. To this end, signals are not immediately
processed when received. Instead, aBEA Tuxedo system routine first catches the sent
signal. If it is safe to process the signal, the specified action for the signal is taken. If
itisnot safeto processthesignal whenit arrives, thearrival isnoted, but the processing
isdeferred until the user indicatesthat the critical section of code has been terminated.

We recommend against any use of signals in multithreaded programs, although the
software does not prevent such usage. If signals are used, however, athread in a
multithreaded application may issueacall to Usignal() ~ whilerunning in any context
state, including TPINVALIDCONTEXT

BEA Tuxedo C Function Reference 301

Section 3c - C Functions

Catching
Signals

Deferring and

302

Restoring
Signals

Notices

User code that uses callsr mopen() ort pi ni t () should catch signalsthrough the use
of theUsi gnal () function. Usi gnal () behaveslikethe UNIX si gnal () systemcall,
except that Usi gnal () first arranges for the signal to be caught by an internal routine
before dispatching the user routine.

Thecallsdescribed in this section need only be used if application code wishesto defer
signals. In general, these routines are called automatically by BEA Tuxedo system
routines to protect themselves from untimely signal arrival.

Before deferring or restoring signals, the mechanism must be initialized. Thisis done
automatically for BEA Tuxedo system clients when they call t pi ni t () and for BEA
Tuxedo system servers. It is also done the first time that the application calls

Usi gnal () . It can be done explicitly by calling Usi gi ni t () .

The UDEFERSI GS() macro should be used when entering a section of critical code.
After UDEFERSI GS() iscalled, signas are held in a pending state. The

URESUMVESI GS() macro should beinvoked when the critical sectionisexited. Notethat
signal deferrals stack. The stack isimplemented via a counter which isinitially set to
zero. When signals are deferred by a call to UDEFERSI GS() , the counter is
incremented. When signals are resumed, by a call to URESUMESI GS(), the counter is
decremented. If asignal arrives while the counter is non-zero, the processing of the
signal isdeferred. If the counter is zero when the signal arrives, the signal isprocessed
immediately. If signal resumption causes the counter to be become zero (that is, prior
totheresumptionit had value 1), any signalsthat arrived during the deferral period are
processed. In general, each call to UDEFERSI GS() should have a counterpart call to
URESUVESI GS() .

UDEFERSI GS increments the deferral counter, but returnsthe value of the counter prior
to its incrementation. The macro UENSURESI GS() may be used to explicitly set the
deferral counter to zero (and thusforce the processing of deferred signals), in case the
user wishes to protect against unmatching UDEFERSI GS() and URESUMESI GS() .

Thefunction UGDEFERLEVEL () returnsthe current setting of the deferral counter. The
macro USDEFERLEVEL (level) allows the setting of a specific deferral level.
UGDEFERLEVEL() and USDEFERLEVEL() are useful to set the counter appropriately in
set j np/ | ongj np situations where a set of deferrals/resumes are bypassed. The idea
isto save the value of the counter when set j np() iscaled, viaacall to
UGDEFERLEVEI (), and to restoreit viaacall to USDEFERLEVel () when the

I ongj np() isperformed.

Usi gnal providessignal deferral for thefollowing signals: SI GHUP,SI G NT, SI GQUI T,
SI GALRM SI GTERM, Sl GUSR1, and SI GUSR2. Handling requests for all other signal
numbers are passed directly to si gnaL() by Usi gnal () . Signals may be deferred for

BEA Tuxedo C Function Reference

Usignal(3¢)

Files

See Also

aconsiderable time. For this reason, during signal deferral, individua signa arrivals

are counted. When it is safe to process asignal that may have arrived many times, the

signal’s processing routine is iteratively called to process each arrival of the signal.
Before each call the default action for the signal is instantiated. The idea is to handle
the deferred occurrences of the signal as if they happened in quick succession in safe
code.

In general, users should not mix callst@gnalL() andUsi gnaL() forthe same signal.

The recommended procedure is to go througjtgnal (), so that it is always aware

of the state of the signal. Sometimes it may be necessary, such as when an application
wants to use alarms within BEA Tuxedo system services. To daJthigi ni T()

should be called to initialize the signal deferring mechanism. $hemal () can be

called to override the mechanism for the desired signal. To restore the deferring
mechanism for the signal, it is necessary tolgsilgnaL () for the signal with

SI G | G\, and then again with the desired signal-handling function.

The shell variablé&) MVEDSI GS can be used to override the deferral of signals. If the
value of this variable begins with the letyeas in:

U MVEDSI GS=y

signals are not intercepted (and thus not deferred) bysthgnal () code. In such a
case, a call tasi gnal () is passed immediately &0 gnalL() .

Usi gnal is not available under DOS operating systems.
Usignal . h

si gnal (2) in a UNIX system reference manual

BEA Tuxedo C Function Reference 303

Section 3c - C Functions

Uunix_err(3¢)

304

Name

Synopsis

Description

Examples

Uuni x_err () - print UNIX system call error
#i ncl ude Uuni x. h

void Uuni x_err(s)
char *s;

When a BEA Tuxedo system function callsa UNIX system call that detects an error,
an error isreturned. The external integer Uuni xer r () isset to avalue (asdefined in
Uuni x. h) that identifiesthe system call that returned the error. In addition, the system
cal setserrno() toavaue (asdefinedin errno. h) that tells why the system call
failed.

The Uuni x_err () function is provided to produce a message on the standard error
output, describing thelast system call error encountered during acall to aBEA Tuxedo
system function. It takes one argument, a string. The function prints the argument
string, then a colon and a blank, followed by the name of the system call that failed,
the reason for failure, and a newline. To be of most use, the argument string should
include the name of the program that incurred the error. The system call error number
istaken from the external variable Uuni xerr () , the reason istaken fromerrno() .
Both variables are set when errors occur. They are not cleared when non-erroneous
calls are made.

To simplify variant formatting of messages, the array of message strings
extern char *Uuni xnmsg[];

isprovided; Uuni xerr () can be used asan index into this table to get the name of the
system call that failed (without the newline).

A thread in amultithreaded application may issue a call to Uuni x_er r () while
running in any context state, including TPl NVALI DCONTEXT.

#incl ude Uuni x. h
extern int Uunixerr, errno;

if((fd=open(“myfile”, 3, 0660)) == -1)

BEA Tuxedo C Function Reference

Uunix_err(3c)

{
Uuni xerr = UOPEN;

Uunix_err(“myprog”);
exit(1);
}

BEA Tuxedo C Function Reference 305

Section 3c - C Functions

306 BEA Tuxedo C Function Reference

	Copyright
	Contents
	Section 3c - C Functions
	Introduction to the C Language Application-Transaction Monitor Interface
	AEMsetblockinghook(3c)
	AEOaddtypesw(3c)
	AEPisblocked(3c)
	AEWsetunsol(3c)
	buffer(3c)
	catgets(3c)
	catopen, catclose(3c)
	decimal(3c)
	gp_mktime(3c)
	nl_langinfo(3c)
	recomp, rematch(3c)
	rpc_sm_allocate, rpc_ss_allocate(3c)
	rpc_sm_client_free, rpc_ss_client_free(3c)
	rpc_sm_disable_allocate, rpc_ss_disable_allocate(3c)
	rpc_sm_enable_allocate, rpc_ss_enable_allocate(3c)
	rpc_sm_free, rpc_ss_free(3c)
	rpc_sm_set_client_alloc_free, rpc_ss_set_client_alloc_free(3c)
	rpc_sm_swap_client_alloc_free, rpc_ss_swap_client_alloc_free(3c)
	setlocale(3c)
	strerror(3c)
	strftime(3c)
	tpabort(3c)
	tpacall(3c)
	tpadmcall(3c)
	tpadvertise(3c)
	tpalloc(3c)
	tpbegin(3c)
	tpbroadcast(3c)
	tpcall(3c)
	tpcancel(3c)
	tpchkauth(3c)
	tpchkunsol(3c)
	tpclose(3c)
	tpcommit(3c)
	tpconnect(3c)
	tpconvert(3c)
	tpcryptpw(3c)
	tpdequeue(3c)
	tpdiscon(3c)
	tpenqueue(3c)
	tpenvelope(3c)
	tperrordetail(3c)
	tpexport(3c)
	tpforward(3c)
	tpfree(3c)
	tpgetadmkey(3c)
	tpgetctxt(3c)
	tpgetlev(3c)
	tpgetrply(3c)
	tpgprio(3c)
	tpimport(3c)
	tpinit(3c)
	tpkey_close(3c)
	tpkey_getinfo(3c)
	tpkey_open(3c)
	tpkey_setinfo(3c)
	tpnotify(3c)
	tpopen(3c)
	tppost(3c)
	tprealloc(3c)
	tprecv(3c)
	tpresume(3c)
	tpreturn(3c)
	tpscmt(3c)
	tpseal(3c)
	tpsend(3c)
	tpservice(3c)
	tpsetctxt(3c)
	tpsetunsol(3c)
	tpsign(3c)
	tpsprio(3c)
	tpstrerror(3c)
	tpstrerrordetail(3c)
	tpsubscribe(3c)
	tpsuspend(3c)
	tpsvrdone(3c)
	tpsvrinit(3c)
	tpsvrthrdone(3c)
	tpsvrthrinit(3c)
	tpterm(3c)
	tptypes(3c)
	tpunadvertise(3c)
	tpunsubscribe(3c)
	TRY(3c)
	tuxgetenv(3c)
	tuxputenv(3c)
	tuxreadenv(3c)
	tx_begin(3c)
	tx_close(3c)
	tx_commit(3c)
	tx_info(3c)
	tx_open(3c)
	tx_rollback(3c)
	tx_set_commit_return(3c)
	tx_set_transaction_control(3c)
	tx_set_transaction_timeout(3c)
	userlog(3c)
	Usignal(3c)
	Uunix_err(3c)

