-
4
”

Iy

2®%%,

4
#
h '

BEA Tuxedo

Using the BEA Tuxedo
/Q Component

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Using the BEA Tuxedo /Q Component

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1. BEA Tuxedo /Q Overview

GeNEral DESCIIPLIONc..ueiieei ittt ettt e e 1-1
Queuing System Components and TasksScooooiiiiiiiiiiie e 1-2
AAMINISTFAtOr TASKS ..eeiiieiiiii i 1-3
ProgrammMer TASKSoiueiie ittt 1-6
Transaction Man@gemMENtuviiiiiiiiien et 1-7
Handling Reply MESSAQGESvuiiiiiiiiiiiei et 1-9
Error HAnAIiNg.......ooo oot 1-9
SUMMIEIY oottt e e s ettt e e e s e s s ae e e e ee s e nrenes 1-10
2. BEA Tuxedo /Q Administration
INEFOAUCTION ...ttt e e et e e s e e e e s nbee e e e 2-1
Available Sample Program Called gsample..........cccccooviiiieiniieieiiieeene 2-2
CONTIGUIATION. ...ttt sb e e e s 2-2
Specifying the QM Server GrOUP.........uueeariiiiier et 2-2
Specifying the Message QUEUE SEIVETc.ueeiiiiiiieiriiieee et eeesiieiee e 2-3
OPEration TIMEOULveiiiiiiie ettt 2-3
Queue Space Names, Queue Names, and Service Namesccueee. 2-4
Data-dependent ROULINGueeiiiiiiiiiiiie e 2-5
Customized BUFfer TYPESooooiiiiiiiiie e 2-5
BUFfer SUDLYPES. ...coiiiiiiie e 2-6
Specifying the Message FOrwarding Server..........cocceiiiiieeiiiiieeeeeiiieeeeee 2-6
Queue Names and Service Names: the -g option...........ccccoecveeennnnen 2-6
Controlling Transaction Timeout: the -t optioncccceviiiiienninen, 2-7
Controlling Idle Time: the -i OPtioNevviiiiiiiieiee e 2-7
Controlling Server Exit: the - Option...........ccccovviiiiiiniiiiiecie e 2-7

Using the BEA Tuxedo /Q Component iii

iv

Delete Message after Service Failure: the -d optioncccceveeenneee. -1

Customized BUFfer TYPES......coi it 2-&
Dynamic CONfIQUIALIONccoiiiiieiiiie e 2-€
Creating Queue Spaces and QUEBUEScceiiiiiieiiiiiie et ee et e et ee e |
Working with gmadmin COmMmMAaNdScccueeiiiiiiiiee i 2-9
Creating an Entry in the Universal Device List: crdl...........ccccoviieeininnen, 2-9
Creating a Queue SPace: SPACECIEALEieeeeeeieeeieieieieeeeeee e e eieieieeeeeeenns 2-
Creating 8@ QUEUE: (CIEALEeeiiiiiiiii et eei ittt 2-1
SPecCifying QUEUE OFUENoiiiiiiiieii ettt 2-12
Enabling Out-of-order ENQUEUING........cccvvveiiiiiiiiiiiie e 2-12
Specifying Retry Parameters..........cooooveeiiiiiiiieen e 2-1:
Using Queue Capacity LIMISccceeeiiiiiiiiiiniiiee e 2-13
Reply and Failure QUEUEScooiiiiiiiiiiiie e 2-1.
ErrOr QUEUES ...ttt et ee e e eeaebeeaeaneees 2-1!
Handling Encrypted Message BUffers.........ccccoiiini i, 2-1
Maintenance of the BEA Tuxedo /Q Featureccccuvveeveeeieeiiiiiiiiieieeee e, 2-1
Adding Extents t0 a8 QUEUE SPACEcccivuirieiiiiiiiiiiiiiee et 2-1
Backing Up or Moving QUEUE SPACE........coouiiiiiieariiieieneie e 2-1
Moving the Queue Space to a Different Type of Machine 2-17
TMQFORWARD and Non-Global Transactions..........ccccccoevveivivieeenennnn. 2-18
TMQFORWARD and Commit CONtrol..........cccoeveeiiiiiiiiiereeies e, 2-18
Handling Transaction TIMEOUL..........cccuuvieiriiiiiiriiiie e 2-1¢
TMQFORWARD and Retries for an Unavailable Service 2-19
WiINdows NT Standard 1/Occoueeiiiiiiiiii e 2-1

BEA Tuxedo /Q C Language Programming

INEFOAUCTION ...ttt e 3-
Prerequisite KNOWIEAQE........cooiiiiiiiiiiiiie et 3-
Where Requests Can OFgINAte.uuiiiiiiiiie et 3
Emphasis on the Default Caseueviiiiiiiiiiiii e 3
ENQUEUING MESSATESeviiiiiiiie ittt ettt ettt e e e e 3
tPeNQUEUE(3C) AFQUIMENESuveiiii it eee ittt et 3-
tpenqueue(): the gspace ArgUMENt........c..oooiiiiieeeriiiieee e 3-
tpenqueue(): the gname Argument.........ccoooieeiriiieee e 3-

Using the BEA Tuxedo /Q Component

tpenqueue(): the data and [en ArguUMENtSccceeeiiiieieeniiieeeniiieeeee 3-4

tpenqueue(): the flags ArguMENtSccovviiieiiiiiein e 3-5
TPQCTL SHUCKUIE ...t e e e 3-6
Overriding the QUEUE OFErueeeeiiiiiiieiiiee e 3-13
Overriding the QUEUE PriOrty........cccuvviiiiiiiiie e 3-13
Setting a Message Availability TIMe ..o 3-13
tpenqueue() and TranSACHIONS.c.ooiuiiieeriiie e 3-15
DeqUEUING MESSAGES ... vieeie ettt ettt ettt ettt e st e e e e sbbe e e e 3-15
tpdequeue(3C) ArQUIMENLSo.uuuii ittt 3-16
tpdequeue(): the gspace ArguUMENtc..eveviieirieniiieee e 3-16
tpdequeue(): the gname ArgumeENt..........ccceviiiiiiiie e 3-17
tpdequeue(): the data and len Argumentsccccovveeeeniiieeen e, 3-17
tpdequeue(): the flags ArgumMENtSccovcviiiiiiiiiiiin e 3-17
TPQCTL SHUCKUIE ... e 3-18
USING TPQWAIT oottt et et 3-22
Error Handling When Using TMQFORWARD Services..........ccccveeenee. 3-23
Procedure for Dequeuing Replies from Services Invoked Through
TMQFORWARD ..ottt e e e e e eee e aeeaeaeeaees 3-25
Sequential Processing 0f MESSAQESuuviiiiiiiiiii it 3-26
Using Queues for Peer-to-Peer Communication...........cccoovevevveieneneennn. 3-26

BEA Tuxedo /Q COBOL Language Programming

INEFOAUCTION ...ttt e e et e e s e e e e s nbee e e e 4-1
Prerequisite KNOWIEAQE.ccuuiiiiiiiii et 4-2
Where Requests Can OFgINAtecooiiiiiiiiaiiiiiie ettt 4-2
Emphasis on the Default Case..........cooviiiieiiiiiiiiiie e 4-2
ENQUEUING MESSAGESvviiieiiieie ettt ettt ettt 4-3
TPENQUEUE() ArQUMENTS ...ttt ettt et 4-3
TPENQUEUE(): the QSPACE-NAME in TPQUEDEF-REC
ATGQUMENT ... 4-4
TPENQUEUE(): the QNAME in TPQUEDEF-REC Argument........ 4-5
TPENQUEUE(): the DATA-REC and LEN in TPTYPE-REC
ATGUMEBNTS ... 4-5
TPENQUEUE(): the Settings in TPQUEDEF-REC.............cccvveeee 4-5

Using the BEA Tuxedo /Q Component v

Vi

TPQUEDEF-REC STrUCTUIcoiiiiiiie it 4-¢

Overriding the QUEUE OFder..........cooiuiiiiiiiiiiieiee e e 4-1F
Overriding the QUEUE PriOritycouuiiiiiiriiiie e 4-16
Setting a Message Availability TIMe ..o 4-16
TPENQUEUE() and TranSactiONS..........cccuveiiiiieeeieiiiiiee e 4-1
DeqUEUING MESSAQGESeeiiiiitiiiie ettt ettt ettt bbb e ennees 4-
TPDEQUEUE() ArQUMENTS ..ottt ettt 4-18
TPDEQUEUE(): the QSPACE-NAME in TPQUEDEF-REC Argument4-18
TPDEQUEUE(): the QNAME in TPQUEDEF-REC Argument...... 4-19
TPDEQUEUE(): the DATA-REC and LEN in TPTYPE-REC
ATGUMENTS ..ot 4-20
TPDEQUEUE(): the Settings in TPQUEDEF-REC.............cccouveeee. 4-20
TPQUEDEF-REC StrUCKUIEcciiiiiiiiie et s 4-2:
USING TPQWAIT ...ttt ettt ettt et et snbe e e eee e 4-26
Error Handling When Using TMQFORWARD Servicescccccveeeeeen. 4-27
Procedure for Dequeuing Replies from Services Invoked Through
TMQFORWARD ...ttt ettt ettt saee e s ee e snee e 4-29
Sequential Processing 0f MESSAQGESccviiiiiiie it 4-
Using Queues for Peer-to-Peer Communicationcccccvvevvvvveeininneen, 4-3

A. A Sample Application

OVEIVIEW ...ttt ettt bt e be et e et e e e et e e s e bne e e e nenn e A-
PrEr@QUISITESeiei ettt b e e e ee e A
What IS gSAMPIE ..o e A-
BUIldING gSAMPIE ..o A-!
Suggestions for Further EXploration.............ccoiiiiiiiiiiiie e A-
setenv: Set the ENVIFONMENt...........ooiiiiiiiiii e A-
makefile: Make Your APpliCatioN............cooaiieiieiniiiiie e A-6
ubb.sample: The ASCII Configuration Fileccccveiiiiiiiiiii e, A-6
crlog: Create the Transaction LOQeeeviiiiiiiiiiiieieen e A-
crque: Create the Queue Space and QUEUESeuvueeieeeeeriieiiiiiieeeeeeenns £
Boot, Run, and Shut Down the Applicationc.occceiiiiiiiininieee A-7
ClEAN UP i A-

Using the BEA Tuxedo /Q Component

CHAPTER

1 BEA Tuxedo /Q
Overview

m General Description
m Queuing System Components and Tasks
m Administrator Tasks

m Programmer Tasks

General Description

The BEA Tuxedo /Q component allows messages to be queued to persistent storage
(disk) or to non-persistent storage (memory) for later processing or retrieval. The BEA
Tuxedo Application-to-Transaction Monitor Interface (ATMI) provides functions that
allow messages to be added to or read from queues. Reply messages and error
messages can be queued for later return to client programs. An administrative
command interpreter is provided for creating, listing, and modifying the queues.
Servers are provided to accept requests to enqueue and dequeue messages, to forward
messages from the queue for processing, and to manage the transactions that involve
the queues.

Using the BEA Tuxedo /Q Component 1-1

1 BEA Tuxedo /Q Overview

Queuing System Components and Tasks

The following figure shows the components of the queued message facility.

Figure 1-1 Queued Service Invocation

1-2

QUEUE SERVER

CLIENT | TMQUEUE TMQFORWARD | SERVER
1,3 l local local l's5 SERVICEL
tpenqueue : engueue engueue /l/ {
I \ / t I 6
pcall
I
8.10 | \‘I\ tpreturn
tpdequeue | local local | }
| dequeue dequeue |
: TMS_QM :
: 2 APP : SERVER
| 9 Queue |
| Space | {SERVICEZ
I - - I
I . I
: : SERVICE1 : tpreturn
| : Rk
| ! SERVICE2 |
I I I
: | CLIENT_REPLY1 :
System/T ' ! '
Clients : ! FAILUREQ : Ssys:\?g]rg
Using /Q | | |
I I
I I
I I
I I

The figure illustrates how each component of the queuing system operates for queue
service invocation. In this discussion, we use the figure to explain how administrator:
and programmers work with the BEA Tuxedo /Q component to define it and use it to

GROUP

Using the BEA Tuxedo /Q Component

gmadmin

Administrator Tasks

gqueue a message for processing and get back a reply. The queuing service may also be
used for simple peer-to-peer communication by using a subset of the components
shown in the figure.

A queue space is a resource. Access to the resource is provided by an X/OPEN
XA-compliant resource manager interface. This interface is necessary so that
enqueuing and dequeuing can be done as part of a 2-phase committed transaction in
coordination with other XA-compliant resource managers.

Administrator Tasks

The BEA Tuxedo administrator is responsible for defining servers and creating queue
spaces and queues like those shown between the vertical dashed lines in the figure
“Queued Service Invocation” on page 1-2.

The administrator must define at least one queue server groupMgtionas the
transaction manager server for the group.

Two additional system-provided servers need to be defined in the configuration file.
These servers perform the following functions:

m The message queue servieMiQUEUE(S) is used to enqueue and dequeue
messages. This provides a surrogate server for doing message operations for
clients and servers, whether or not they are local to the queue.

m The message forwarding serve)QFORWARD(5)s used to dequeue and
forward messages to application servers. The BEA Tuxedo system provides a
main() for servers that handles server initialization and termination, allocates
buffers to receive and dispatch incoming requests to service routines, and routes
replies to the correct destination. All of this processing is transparent to the
application. Existing servers do not dequeue their own messages or enqueue
replies. One goal of BEA Tuxedo /Q is to be able to use existing servers to
service queued messages, without change TM@ORWARErver dequeues a
message from one or more queues in the queue space, forwards the message to a
server with a service that is named the same as the queue, waits for the reply,
and queues the success reply or failure reply on the associated reply or failure
queues, respectively, as specified by the originator of the message (if the
originator specified a reply or failure queue).

Using the BEA Tuxedo /Q Component 1-3

1 BEA Tuxedo /Q Overview

1-4

An administrator also must create a queue space using the queue administration
programgmadmin(1) , or theAPPQ_MIB(5) Management Information Base (MIB).

The queue space contains a collection of queues. In the figure “Queued Service
Invocation” on page 1-2, for example, four queues are present within the APP queue
space. There is a one-to-one mapping of queue space to queue server group since e
gueue space is a resource manager instance and only a single RM can exist in a gro

The notion of queue space allows for reducing the administrative overhead associate
with a queue by sharing the overhead among a collection of queues in the following
ways:

The queues in a queue space share persistent and non-persistent storage areas
messages.

A single message queue servieiQUEUEN the figure “Queued Service
Invocation” on page 1-2, can be used to enqueue and dequeue messages for
multiple queues within a single queue space.

A single message forwarding servevjQFORWARD the figure “Queued Service
Invocation” on page 1-2, can be used to dequeue and forward messages to
services from multiple queues within a single queue space.

Two instances of the transaction manager seTws, QMn the figure “Queued
Service Invocation” on page 1-2, can be used to complete transactions for
multiple queues within a single queue space. One instance of the transaction
manager server is reserved for non-blocking transactions so that they will be
processed as quickly as possible and not be held up by blocking transactions.
Blocking transactions are handled by the second instance of the transaction
manager server.

The administrator can define a single server group in the application
configuration for the queue space by specifying the groyBBCONFIGor by
usingtmconfig (1) (seemconfig, wtmconfig(1)) to add the group
dynamically.

Finally, when the administrator moves messages between queues within a queu
space the overhead is less than if the messages were in different stable storage
areas, because a one-phase commit can be done.

Part of the task of defining a queue is specifying the order for messages on the quet
Queue ordering can be determined by message availability time, expiration time,
priority, FIFO, LIFO, or a combination of these criteria.

Using the BEA Tuxedo /Q Component

Administrator Tasks

The administrator specifies one or more of these sort criteria for the queue, listing the
most significant criteria first. ThEIFO andLIFO values must be the least significant

sort criteria. Messages are put on the queue according to the specified sort criteria and
dequeued from the top of the queue. The administrator can configure as many message
queuing servers as are needed to keep up with the requests generated by clients for the
stable queues.

Data-dependent routing can be used to route between multiple server groups with
servers offering the same service.

For housekeeping purposes, the administrator can set up a command to be executed
when a threshold is reached for a queue that does not routinely get drained. This can
be based on the bytes, blocks, or percentage of the queue space used by the queue or
the number of messages on the queue. The command mightiseQF@RWARIRrver

to drain the queue or send mail to the administrator for manual handling.

The BEA Tuxedo system uses the Queueing Services component of the BEA Engine
for some operations. (The BEA Engine provides services to BEA Systems products
such as BEA Tuxedo and BEA WebLogic Enterprise.) For example, administrative
operations for shared memory are provided by the Queuing Services component. Some
functions are not currently applicable to BEA Tuxedo applications; this is noted in
descriptions of these functions.

You can also use the queued message facility for peer-to-peer communication between
clients, such that a client communicates with other clients without using any
forwarding server. The peer-to-peer communication model is shown in the following
figure.

Figure 1-2 Peer-to-Peer Communication

STORAGE
CLIENT (persistent or CLIENT
non-persistent)

N

tpenqueue > > tpdequeue

tpdequeue ¢ ¢ tpenqueue

Using the BEA Tuxedo /Q Component 1-5

1 BEA Tuxedo /Q Overview

Programmer Tasks

1-6

In steps 1 through 3 of the figure “Queued Service Invocation” on page 1-2, a client
engueues a message to 8ERVICE1 queue in the APP queue space using
tpenqueue(3c) . Optionally, the name of a reply queue and a failure queue can be
included in the call tepenqueue() . In the example they are the queues
CLIENT_REPLY1andFAILURE_Q The client can specify@rrelation identifiervalue

to accompany the message. This value is persistent across queues so that any reply
failure message associated with the queued message can be identified when it is re
from the reply or failure queue.

The client can use the default queue ordering (for example, a time after which the
message should be made available for dequeuing), or can specify an override of the
default queue ordering (asking, for example, that this message be put at the top of tt
queue or ahead of another message on the quperejueue() sends the message to
theTMQUEUBerver, the message is queued, and an acknowledgment (step 3) is sent
the client; the acknowledgment is not seen directly by the client but can be assumec
when the client gets a successful return. (A failure return includes information about
the nature of the failure.)

A message identifier assigned by the queue manager is returned to the application. T
identifier can be used to dequeue a specific message. It can also be used in anothe
tpenqueue() to identify a message already on the queue that the subsequent messa
should be enqueued ahead of.

Before an enqueued message is made available for dequeuing, the transaction in whi
the message is enqueued must be committed successfully.

When using BEA Tuxedo /Q for queued service invocation, and the message reach
the top of the queue, ti’MQFORWARRTIver dequeues the message and forwards it, via
tpcall(3c) , to a service with the same name as the queue name. In the figure
“Queued Service Invocation” on page 1-2, the queue and the service are named
SERVICE1and steps 4, 5, and 6 in the figure show this. The client identifier and the
application authentication key are set to the client that caused the message to be
enqueued; they accompany the dequeued message as it is sent to the service.

When the service returns a repiy}yQFORWARInqueues the reply (with an optional
user-return code) to the reply queue (step 7 in the figure “Queued Service Invocation
on page 1-2).

Using the BEA Tuxedo /Q Component

Programmer Tasks

Sometime later (steps 8, 9 and 10 in the figure “Queued Service Invocation” on page
1-2), the client usepdequeue(3c) to read from the reply que@RIENT_REPLY1in
order to get the reply message.

You can dequeue messages without removing them from the queue by using the
TPQPEEKIag withtpdequeue() . Messages that have expired or have been deleted by
an administrator are immediately removed from the queue.

Transaction Management

With regard to transaction management, one goal is to ensure reliability by enqueuing
and dequeuing messages within global transactions. However, a conflicting goal is to
reduce the execution overhead by minimizing the number of transactions that are
involved.

An option is provided for the caller to enqueue a message outside any transaction in
which the caller is involved (decoupling the queuing from the caller's transaction).
However, a timeout in this situation leaves it unknown as to whether or not the
message is enqueued.

A better approach is to enqueue the message within the caller's transaction, as is shown
in the following figure.

Using the BEA Tuxedo /Q Component 1-7

1 BEA Tuxedo /Q Overview

1-8

Figure 1-3 Transaction Demarcation

CLIENT
TRAN1 tpbegin()
Put Request Messa ge on QUEUE tpenqueue()
tpcommit()
TMQFORWARD
TRAN2 tpbegin()
Get Request Messa ge and Delete from Queue tpdequeue()
Process Messa ge tpcall()
Put Reply Message on Queue tpenqueue()
tpcommit()
CLIENT
TRAN3 tpbegin()
Get Reply Message and Delete from Queue tpdequeue()
Put Next Request Messa ge on Queue tpenqueue()
tpcommit()

In the figure, the client starts a transaction, queues the message and commits the
transaction. The message is dequeued within a second transaction started by
TMQFORWARthe service is called witlpcall(3c) , is executed and the reply is
enqueued within the same transaction. A third transaction, started by the client, is use
to dequeue the reply (and possibly enqueue another request message). In ongoing
processing the third and first transactions can meld into one since enqueuing the ne
request can be done in the same transaction as dequeuing the response from the
previous request.

Note: The system allows you to dequeue a response from one message and enque
the next request within the same transaction, but does not allow you to enqueu
a request and dequeue the response within the same transaction. The
transaction in which the request is enqueued must be successfully committes
before the message is available for dequeuing.

Using the BEA Tuxedo /Q Component

Programmer Tasks

Handling Reply Messages

A reply queue can be either specified or not by the application when calling
tpenqueue() . The effect is as follows:

m If a reply queue is not specified for a queued message, then no further work is
required beyond processing the message.

m If a message is dequeued that does specify a reply queue, then the originator of
the message expects a reply to be enqueued upon successful completion of the
execution of the request.

¢ In the case where the application explicitly dequeues the message using
tpdequeue() , it is the responsibility of the application to calnqueue()
to enqueue the reply. Normally, this would be done in the same transaction in
which the request message is dequeued and executed so the entire operation
is handled atomically (that is, the reply is enqueued only if the transaction
succeeds).

¢ Inthe case where the message is automatically processed by a service
(dequeued and passed to the application waadl()) by TMQFORWARD
TMQFORWARInqueues a reply if the application service returns successfully
(that is, the service routine callgaleturn(3c) with TPSUCCESSnd
tpcall() did not return 1). Ilfpcall() receives data, then the typed buffer
used is enqueued to the reply queue. If no data is receiwedhli) , then
a message with no data (that isy@LL message) is enqueued; the fact that a
message is enqueued (evenUfLl) is sufficient to signify that the operation
has been completed.

Error Handling

Handling of errors requires both an understanding of the nature of the errors the
application may encounter and careful planning and coordination between the BEA
Tuxedo administrator and the application program developers. The way BEA

Tuxedo /Q works, if a message is dequeued within a transaction and the transaction is
rolled back, then (if the retry parameter is greater than 0) the message ends up back on
the queue where it can be dequeued and executed again.

Using the BEA Tuxedo /Q Component 1-9

1 BEA Tuxedo /Q Overview

Summary

For a transient problem, it may be desirable to delay for a short period before retryin
to dequeue and execute the message, allowing the transient problem to clear. For
example, if there is a lot of activity against the application database, there may be
occasions when all you need is a little time to allow locks in a database to be release
by another transaction. Normally, a limit on the number of retries is also useful to
ensure that some application flaw doesn't cause significant waste of resources. Whe
a queue is configured by the administrator, both a retry count and a delay period (in
seconds) can be specified. A retry count of 0 implies that no retries are done. After th
retry count is reached, the message is moved to an error queue that can be configur
by the administrator for the queue space.

There are cases where the problem is not transient. For example, the queued mess:
may request operations on an account that does not exist. In this case, it is desirable 1
to waste any resources by trying again. If the application programmer or administratc
determines that failures for a particular operation are never transient, then it is simpl;
a matter of setting the retry count to zero. It is more likely the case that for the same
service some problems will be transient and some problems will be permanent; the

administrator and application developers need to have more than a single approach
handle errors.

Other variations come about because the application may either dequeue message:
directly or use theMQFORWARRTrver and because an error may cause a transaction tc
be rolled back and the message requeued while logic dictates that the transaction
should be committed. These variations and ways to deal with them are discussed in
“BEA Tuxedo /Q Administration” on page 2-1, “BEA Tuxedo /Q C Language
Programming” on page 3-1, and “BEA Tuxedo /Q COBOL Language Programming”
on page 4-1.

To summarize, BEA Tuxedo /Q provides the following features to BEA Tuxedo
application programmers and administrators:

m An application programming interface that lets you enqueue a request for
subsequent processing. The system guarantees to execute the request
successfully exactly once (by default, failure causes the message to be put back
on the queue). An application programming interface is also provided to dequeue
messages either from the top of a queue or by message identifier or correlation
identifier.

1-10 Using the BEA Tuxedo /Q Component

Programmer Tasks

m The application program and/or the administrator can control the ordering of
messages on the queue. Control is via the sort criteria, which may be based on
message availability time, expiration time, priorit{5O , FIFO, or a
combination of these criteria. The application can override the ordering to place
the message at the queue top or ahead of a specific message that is already
queued.

m A BEA Tuxedo server is provided to enqueue and dequeue messages on behalf
of, possibly remote, clients and servers. The administrator decides how many
copies of the server should be configured.

m A BEA Tuxedo server is provided to dequeue queued messages and forward
them to services for execution. This server allows for existing servers to handle
gueued requests without modification. Each forwarding server can be configured
to handle one or more queues. Transactions are used to guarantee exactly-once
processing. The administrator controls how many forwarding servers are
configured.

m The administrator can control messages stored on the queues for processing.
This includes the number of times requests are retried on failure and how much
time elapses between retries, reordering messages on queues, managing queue
capacity and so on.

There are many application paradigms in which queued messages can be used. This
feature can be used to queue requests when a machine, server, or resource is
unavailable or unreliable (for example, in the case of a wide-area or wireless
networks). This feature can also be used for work flow provisioning where each step
generates a queued request to do the next step in the process. Yet another use is for
batch processing of potentially long running transactions, such that the initiator does
not have to wait for completion but is assured that the message will eventually be
processed. This facility may also be used to provide a data pipe between two otherwise
unrelated applications in a peer-to-peer relationship.

Using the BEA Tuxedo /Q Component 1-11

1 BEA Tuxedo /Q Overview

1-12 Using the BEA Tuxedo /Q Component

CHAPTER

2 BEA Tuxedo /Q
Administration

m Introduction

m Configuration

m Creating Queue Spaces and Queues

m Handling Encrypted Message Buffers

m Maintenance of the BEA Tuxedo /Q Feature

m Windows NT Standard I/O

Introduction

The BEA Tuxedo /Q administrator has three primary areas of responsibility, which are:
m Configuration of resources

m Creation of the queue space and queues

m Monitoring and maintenance of the facility

Close cooperation with the application developers and programmers is a must; the
configuration and the queue attributes must reflect the requirements of the application.

Using the BEA Tuxedo /Q Component 2-1

2 BEA Tuxedo /Q Administration

Available Sample Program Called gsample

A brief example of the use of the queued message facility is distributed with the
software and is described in “A Sample Application” on page A-1.

Configuration

Three servers are provided with the BEA Tuxedo /Q component. One is the TMS
server,TMS_QMthat is the transaction manager server for the BEA Tuxedo /Q resource
manager. That is, it manages global transactions for the queued message facility. It
must be defined in theROUPSection of the configuration file.

The other twoTMQUEUE(5)andTMQFORWARD(5)provide services to users. They
must be defined in theERVERSsection of the configuration file.

The application can also create its own queue servers, if the functionality of
TMQFORWARIDes not fully meet the needs of the application. For example, the
administrator might want to have a special server to dequeue messages moved to tt
error queue.

The application can also choose peer-to-peer communication. In this case, the
application communicates with other applications, or a client communicates with othe
clients, by not using any forwarding server.

Specifying the QM Server Group

2-2

There must be a server group defined for each queue space the application will use.
addition to the standard requirements of a group name tag and a vabrPiugsee
UBBCONFIG(5) for details). Tha@aMSNAMBRNAOPENINFOparameters need to be set.
Here are examples:

TMSNAME=TMS_QM
and

OPENINFO="TUXEDO/QM:<dlevice_name :< queue_space_name >"

Using the BEA Tuxedo /Q Component

Configuration

TMS_QMs the name for the transaction manager server for BEA Tuxedo /Q. In the
OPENINFOparameterTUXEDO/QMS the literal name for the resource manager as it
appears irsTUXDIR/udataobj/RM . The values for device_name > and
<queue_space_name > are instance-specific and must be set to the pathname for the
universal device list and the name associated with the queue space, respectively. These
values are specified by the BEA Tuxedo administrator ugimgimin(1) .

Note: The chronological order of these specifications is not critical. The
configuration file can be created either before or after the queue space is
defined. The important thing is that the configuration must be defined and
gqueue space and queues created before the facility can be used.

There can be only one queue spaceGrUPSection entry. ThELOSEINFO
parameter is not used.

The following example is taken from the reference pag@NwUEUE(5)

*GROUPS

TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM:/dev/devicel:myqueuespace"

TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM:/dev/device2:myqueuespace"

Specifying the Message Queue Server

TheTMQUEUE(5)reference page gives a full description of $iERVERSection of the
configuration file, but there are some points worth additional emphasis here.

Operation Timeout

TMQUEUEecognizes & timeout option when specified after the double dash (- -)

in theCLOPTparameter. This timeout value affects only operations begun within the
server if it finds that a transaction is not in effect, in other words, either the client called
tpenqueue(3c) ortpdequeue(3c) without first callingtpbegin(3c) or it began a
transaction and calleglenqueue() ortpdequeue() with theTPNOTRANIag set to
exclude the queue request from the client's transaction. The defaittefmrt is 30
seconds. If gpdequeue requestis received with tifegs settoTPQWAIT aTPETIME

error will be returned if the wait exceeds timeout seconds.

Using the BEA Tuxedo /Q Component 2-3

2 BEA Tuxedo /Q Administration

Note: ctl is a structure of typ&PQCTLuUsed bytpenqueue(3c) and
tpdequeue(3c) to pass parameters between the calling process and the
systemTPQWAITIs a flag setting available thdequeue to indicate that the
process wishes to wait for a reply message. The structure is explained in deta
in “TPQCTL Structure” on page 3-6 and “TPQUEDEF-REC Structure” on
page 4-6. The COBOL equivalent is tfeRQUEDEF-REGecord.

Queue Space Names, Queue Names, and Service Names

2-4

There is potential confusion among queue space names, queue names, and service
names. The first place you are apt to encounter the confusion is in the specification ¢
the message queue serveMQUEUEWhen specifying this server in the configuration
file you can use the -s flag of tkleOPTparameter to name the queue space served by
a given instance of the server, which is the same as saying it is a service advertised
the function:TMQUEUHnN an application that uses only one queue space, it is not
necessary to specify tl& OPT -s option; it will default to -STMQUEUE: TMQUEUH

the application requires more than a single queue space, the names of the queue spa
are included as arguments to the -s option is#RVERSection entry for the queued
message server.

An alternative way of making this specification is to rebuild the message queue serve
usingbuildserver(1) , and name the queue spaces with the similar sounsling
option. This has the result of fixing, bardcoding the service names in the server
executable.

The following two specifications are equivalent:

*SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0 \
CLOPT="-s myqueuespace: TMQUEUE"

and

buildserver -0 TMQUEUE -s myqueuespace:TMQUEUE -r TUXEDO/QM \
-f ${TUXDIRY/Iib/TMQUEUE.o
followed by

'I.'.MQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0\
CLOPT="-A"

Using the BEA Tuxedo /Q Component

Configuration

Data-dependent Routing

The preceding discussion described the specification of services (that is, queue space
names) in the message queue server. This capability can be used to bring about
data-dependent routing of queued messages such that the message is queued for
processing by a service within a specific group depending on a value in a field of the
message buffer. To do this the same queue space name is specified in two different
groups and a routing specification is made part of the configuration file to govern the
group where the message is queued. Here is an example taken fIEVMQINEUE(5)
reference page (the queue space name has been changed).

*GROUPS

TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM:/dev/devicel:myqueuespace"

TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM:/dev/device2:myqueuespace"

*SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0\
CLOPT="-s ACCOUNTING:TMQUEUE"

TMQUEUE SRVGRP="TMQUEUEGRP2" SRVID=1000 RESTART=Y GRACE=0\
CLOPT="-s ACCOUNTING:TMQUEUE"

*SERVICES

ACCOUNTING ROUTING="MYROUTING"

*ROUTING

MYROUTING FIELD=ACCOUNT BUFTYPE="FML"\
RANGES="MIN-60000:TMQUEUEGRP1,60001-MAX:-TMQUEUEGRP2"

Customized Buffer Types

TMQUEUBUpports all of the standard BEA Tuxedo buffer types. If your application
needs to add other types, it can be done by copying
$TUXDIR/tuxedo/tuxlib/types/tmsypesw.c , adding an entry for your special

buffer types, making sure to leave the final line null, and using the revised file as input
to abuildserver(1) command. An example of thildserver ~ command is

shown on th@ MQUEUE(5)reference page.

You can also use the option of thebuildserver =~ command to associate additional
service names witiMQUEURS an alternative to specifying them in the secr@PT
parameter (see above).

Using the BEA Tuxedo /Q Component 2-5

2 BEA Tuxedo /Q Administration

Buffer Subtypes

You can assign a subtype to a buffer usingighioc(3c) subtype parameter and
later extract the subtype using thgpes(3c) function. This gives you the ability to
assign a type to data without having to create an entirely new user-defined BEA
Tuxedo buffer type. This is especially useful for buffers containing character arrays
(CARRAY or strings $TRING).

Specifying the Message Forwarding Server

The third system-supplied server included with the BEA Tuxedo /Q component is
TMQFORWARD(5)This is the server that takes messages from specified queues, passt
them along to BEA Tuxedo servers wyaall(3c) , and handles associated reply
messages. The full description of how the server is defined in the configuration file car
be found on theMQFORWARD(S)eference page, but the topics that follow bring out
some points that are worth additional emphasis.

TMQFORWARS®referred to as a server and each instance used by an application mus
be defined in th6é ERVERSection of the configuration file, but it has characteristics
that set it apart from ordinary servers. For example:

m |tis incorrect to specify services foMQFORWARD

m A client process cannot post a messagdfFORWARIS you would expect in
a normal request/response relationship.

®m TMQFORWARIhould not be defined as a member ofvesCset.
m TMQFORWARIbould never have a reply queue.

An instance ofMQFORWARS®tied to a queue space through the server group with
which it is associated, specifically through the third field in@RENINFOstatement
for the group. In the topics that follow we will examine other key parameters,
especiallycLOPTparameters that come after the double dash.

Queue Names and Service Names: the -q option
A required parameter i§ queuename, queuename. . . This parameter specifies the

queue(s) to be checked by this instance of the seyvarename is a
NULL-terminated string of up to 15 characters; it is the same as the name of the

2-6 Using the BEA Tuxedo /Q Component

Configuration

application service that will process the message once it has been taken off the queue
by TMQFORWARLD is also the name that a programmer specifies as the second
argument ofpenqueue(3c) ortpdequeue(3c) when preparing to call the message
queue servelfMQUEUE

Controlling Transaction Timeout: the -t option

TMQFORWARIDes its work within a transaction that it begins and ends. The

-t trantime option is available to specify the length of time in seconds before the
transaction is timed out. The transaction is begun WivepFORWAHRIDdS a message

on the queue it is checking; it is committed after a reply has been enqueued either to
the reply queue or the failure queue, so the transaction encompasses calling the service
that processes the message and receiving a reply. The default is 60 seconds.

Controlling Idle Time: the -i option

OnceTMQFORWARDbooted it periodically checks the queue to which it is assigned. If

it finds the queue empty, it pauses foridletime seconds before checking again. If

a value is not specified, the default is 30 seconds; a value of 0 says to keep checking
the queue constantly, which can be wasteful of CPU resources if the queue is
frequently empty.

Controlling Server Exit: the -e option

If the-e option is specified, the server will shut itself down gracefully (and will create

a userlog message) when it finds the queue empty. This behavior may be used to your
advantage in connection with the threshold command that you can specify for a queue.
There is a more complete discussion aboutd¢h@ption and the threshold command

in “Creating Queue Spaces and Queues” on page 2-8.

Delete Message after Service Failure: the -d option

When a service request fails after being calledg@FORWARIibe transaction is rolled

back, and the message is put back on the queue for a later retry (up to a limit of retries
specified for the queue). The option adds the following refinement: if the failed
service returns a non-NULL reply, the reply (and its associatecbde) are put on

a failure queue (if one is associated with the message and the queue exists) and the

Using the BEA Tuxedo /Q Component 2-7

2 BEA Tuxedo /Q Administration

original request message is deleted. Also withdheption, if the original request
message is to be deleted at the same time as the retry limit configured for the queue
reached, the original request message is put into the error queue.

The rationale behind this option is that rather than blindly retrying, the originating
client can be coded to examine the failure message and determine whether further
attempts are reasonable. It provides a way of handling a failure that is due to some
inherently reasonable condition (for example, a recandtifoundbecause the account
does not exist).

Customized Buffer Types

Customized application buffer types can be added to the type switch and incorporate
into TMQFORWARIIth thebuildserver(1) command. It should be noted, however,
that when you customiZeMQFORWARMS an error to specify service names witk a
option.

Dynamic Configuration

We have described configuration parameters in termd8BEONFIGarameters.
However, it should be noted that the specifications irGIROUP&NdSERVERS
sections can also be added to TkXCONFIGile of a running application by using
tmconfig (1) (seemconfig, wtmconfig(L)). Of course, the group and the servers
will have to be booted once they have been defined.

Creating Queue Spaces and Queues

This topic covers three of thgnadmin(l) commands that are used to establish the
resources of the BEA Tuxedo /Q component. AbeQ_MIBManagement Information
Base provides an alternative method of administering BEA Tuxedo /Q
programmatically. See thePPQ_MIB(5) reference page for more information on the
MIB.

2-8 Using the BEA Tuxedo /Q Component

Creating Queue Spaces and Queues

Working with gmadmin Commands

Most of the key commands gfhadmin have positional parameters. If the positional
parameters (those not specified with a dajlpfeceding the option) are not specified
on the command line when the command is invokeddmin prompts you for the
required information.

Creating an Entry in the Universal Device List: crdl

The universal device list (UDL) is a VTOC file under the control of the BEA Tuxedo
system. It maps the physical storage space on a machine where the BEA Tuxedo
system is run. An entry in the UDL points to the disk space where the queues and
messages of a queue space are stored; the BEA Tuxedo system manages the input and
output for that space. If the queued message facility is installed as part of a new BEA
Tuxedo installation, the UDL is created tmjoadcf(1) when the configuration file

is first loaded.

Before you create a queue space, you must create an entry for it in the UDL. Here is
an example of the commands:

First invoke the /Q administrative interface, gmadmin

The QMCONFIG variable points to an existing device where the UDL
either resides or will reside.

QMCONFIG=/dev/rawfs gmadmin

Next create the device list entry

crdl /dev/rawfs 50 500

#The above command sets aside 500 physical pages beginning at block
50

If the UDL has no previous entries, offset (block number) 0 must

be used

If you are going to add an entry to an existing BEA Tuxedo UDL, the value for the
QMCONFI&variable must be the same pathname specifisd XCONFIG Once you
have invokedymadmin, it is recommend that you ruriidi command to see where
space is available before creating your new entry.

Using the BEA Tuxedo /Q Component 2-9

2 BEA Tuxedo /Q Administration

Creating a Queue Space: gspacecreate

2-10

A queue space makes use of IPC resources; when you define a queue space you a
allocating a shared memory segment and a semaphore. As noted above, the easiest\
to use the command is to let it prompt you. (You can also use MrPQSPACEIlass

of theAPPQ_MIB(5) to create a queue space.) The sequence looks like this.

> gspacecreate

Queue space name: mygueuespace

IPC Key for queue space: 230458

Size of queue space in disk pages: 200

Number of queues in queue space: 3

Number of concurrent transactions in queue space: 3
Number of concurrent processes in queue space: 3
Number of messages in queue space: 12

Error queue name: errq

Initialize extents (y, n [default=n]):

Blocking factor [default=16]: 16

The program insists that you provide values for all prompts except the final three. As
you can see, there are defaults for the last two; while you will almost certainly want to
name an error queue, you are not required to. If you provide a name here, you must
create the error queue with th@eate command. If you choose not to name an error
queue, bear in mind that messages that normally would be moved to the error queu
(for example, when a retry limit is reached), are permanently lost.

The program does not prompt you to specify the size of the area to reserve in share
memory for storing non-persistent messages for all queues in the queue space. Wh
you require non-persistent (memory-based) messages, you must specify the size of t
memory area on thgspacecreate command line with then option.

The value for the IPC key should be picked so as not to conflict with your other
requirements for IPC resources. It should be a value greater than 32,768 and less th
262,143.

The size of the queue space, the number of queues, and the number of messages t
can be queued at one time all depend on the needs of your application. Of course, yz
cannot specify a size greater than the number of pages specified in your UDL entry. |
connection with these parameters, you also need to look ahead to the queue capaci
parameters for an individual queue within the queue space. Those parameters allow
you to (a) set a limit on the number of messages that can be put on a queue, and (b
name a command to be executed when the number of enqueued messages on the qu

Using the BEA Tuxedo /Q Component

Creating Queue Spaces and Queues

reaches the threshold. If you specify a low number of concurrent messages for the
gqueue space, you may create a situation where your threshold on a queue will never be
reached.

To calculate the number of concurrent transactions, count each of the following as one
transaction:

m EachTMS_Qmerver in the group that uses this queue space
m EachTMQUEUBr TMQFORWARIRrver in the group that uses this queue space
® gmadmin

If your client programs begin transactions before theytpaibueue , increase the
count by the number of clients that might access the queue space concurrently. The
worst case is that all clients access the queue space at the same time.

For the number of concurrent processes count one forfaé&hQM,TMQUEUBr
TMQFORWARETrver in the group that uses this queue space and one for a fudge factor.

You can choose to initialize the queue space as you ugsptivecreate command,
or you can let it be done by thepen command when you first open the queue space.

Creating a Queue: qcreate

Each queue that you intend to use must be created witimtuenin gcreate
command. You first have to open the queue space witlotled command. If you do
not provide a queue space namupen will prompt for it. (You can also use the
T_APPQclass of the\PPQ_MIB(5) to create a queue.)

The prompt sequence foereate looks like this.

> gcreate

Queue name: servicel

Queue order (priority, time, fifo, lifo): fifo

Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 2

Retry delay in seconds [default=0]: 30

High limit for queue capacity warning (b for bytes used, B for
blocks used,

% for percent used, m for messages [default=100%]): 80%
Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command:

Using the BEA Tuxedo /Q Component 2-11

2 BEA Tuxedo /Q Administration

No default queue capacity command
Queue 'servicel' created

You can skip all of these prompts (except the prompt for the queue name); if you do
not provide a name for the queue, the program displays a warning message and
prompts again. For the other parameters, the program provides a default and displa:
a message that specifies the default.

The program does not prompt you for a default delivery policy and memory thresholc
options. The default delivery policy option allows you to specify whether messages
with no specified delivery mode are delivered to persistent (disk-based) or
non-persistent (memory-based) storage. The memory threshold option allows you tc
specify values used to trigger command execution when a non-persistent memory
threshold is reached. To use these options, you must specify themqurethe

command line withd and-n , respectively.

Specifying Queue Order

Messages are put into the queue based on the order specified by this parameter an
dequeued from the top of the queue unless selection criteria are applied to the
dequeuing operation. firiority , expiration , and/ortime are chosen as queue
order criteria, then messages are inserted into the queue according to values in the
TPQCTLstructure. A combination of sort criteria may be specified with the most
significant criteria specified first. Separate multiple criteria with commadf(fifo

orlifo (which are mutually exclusive) are specified, they must be the last value
specified. The sequence in which parameters are specified determines the sort crite!
for the queue. In other words, a specificatioprafity, fifo would say that the
gqueue should be arranged by message priority and that within messages of equal
priority they should be dequeued on a first in, first out basis.

Enabling Out-of-order Enqueuing

2-12

If the administrator enables out-of-order enqueues; thattig iBnd/ormsgid are
specified at the prompt, programmers can specify (via values TPth@TLstructure

of atpenqueue call) that a message is to be put at the top of the queue or ahead of th
message identified hyisgid . Give this option some thought; once the choice is made
you have to destroy and recreate the queue to change it.

Using the BEA Tuxedo /Q Component

Creating Queue Spaces and Queues

Specifying Retry Parameters

Normal behavior for a queued message facility is to put a message back on the queue
if the transaction that dequeues it is rolled back. It will be dequeued again when it
reaches the top of the queue. You can specify the number of retries that should be
attempted and also a time delay between retries. Note that when a dequeued message
is put back on the queue for retry, queue order specifications are, in effect, suspended
for Retry delay ~ seconds. During this time, the message is unavailable for any
dequeuing operation.

The default for the number of retries is 0, which means that no retries are attempted.
When the retry limit is reached, the system moves the message to the error queue for
the queue space, assuming an error queue has been named and created. If the error
queue does not exist the message is discarded.

The delay time is expressed in seconds. When message queues are lightly populated so
that a message restored to the queue reaches the top almost immediately, you can save
CPU cycles by building in a delay factor. Your general policy on retries should be
based on the experience of your particular application. If you have a fair amount of
contention for the service associated with a given queue, you may get a lot of transient
problems. One way to deal with them is to specify a large number of retries. (The
number is strictly subjective, as is the time between retries.) If the nature of your
application is such that any rolled back transaction signals a failure that is never going
to go away, you might want to specify O retries and move the message immediately to
the error queue. (This is very much like what happens when you specifydpion

for TMQFORWARIbie only difference is that a non-zero length failure message must be
received folTMQFORWARItomatically to drop the message from the queue.)

Using Queue Capacity Limits

There are three parameters of tiheeate command that can be used to partially
automate the management of a queue. The parameters set a high and low threshold
figure (it can be expressed as bytes, blocks, messages or percent of queue capacity) and
allow you to specify a command that is executed when the high threshold is reached.
(Actually, the command is executed once when the high threshold is reached, but not
again until the low threshold is reached first prior to the high threshold.)

Here are two examples of ways the parameters can be used.

High limit for queue capacity warning (b for bytes used, B for
blocksused, %forpercentused, mfor messages [default=100%]): 80%

Using the BEA Tuxedo /Q Component 2-13

2 BEA Tuxedo /Q Administration

Reset (low) limit for queue capacity warning [default=0%]: 10%
Queue capacity command: /usr/app/bin/mailme myqueuespace servicel

This sequence sets the upper threshold at 80% of disk-based queue capacity and
specifies a command to be executed when the queue is 80% full. The command is &
script you have created that sends you a mail message when the threshold is reach
(myqueuespace andservicel are hypothetical arguments to your command.)
Presumably, once you have been informed that the queue is filling up you can take
action to ease the situation. You do not get the warning message again unless the que
load drops to 10% of capacity or below, and then rises again to 80%. You can also s
thresholds and specify commands for the management of non-persistent
(memory-based) queue capacity using-theption of thegcreate command.

Note: If you are working on an NT machine, see “Windows NT Standard /0" on
page 2-19 for additional information about configuring commands within a
gmadmin() session.

The second example is somewhat more automated and takes advantageaytibe -
of the TMQFORWARIRTIVEr.

High limit for queue capacity warning (b for bytes used, B for

blocks used, % for percent used, m for messages [default=100%]): 90%
Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command: tmboot -i 1002

This sequence assumes that you have configured a ras¢e@rORWARRTrver for the
gueue in question witBRVID=1002 and have included the option in itsSCLOPT
parameter. (It also assumes that the server is not booted or, if booted, has shut itsel
down as a result of finding the queue empty.) When the queue reaches 90% capaci
the tmboot command is executed to boot the reserve servere Bpécen causes the
server to shut itself down when the queue is empty. You have set the low threshold t
0% so as not to kick off unnecessampoot commands for a server that is already
booted.

The default values for the three options are 100%, 0%, and no command.

Reply and Failure Queues

2-14

The discussion above about creating a queue and providing parameters for its
operation was written from the viewpoint of creating a queue for messages to be
processed by a service of the same name. A queue may also be used for other purpa
as well, such as peer-to-peer communication. The parameters for creating a queue :
the same regardless of its use. TR@CTLstructure used when a message is enqueued

Using the BEA Tuxedo /Q Component

Creating Queue Spaces and Queues

to a service queue includes fields to specify a reply queue and a failure queue.
TMQFORWARI®tects the success or failure of thezall(3c) it makes to the

requested service and, if these queues have been created by the administrator,
enqueues the reply accordingly. If no reply or failure queue exists, the success or
failure response message from the service is dropped leaving the originating client
with no information about the outcome of the queued request. Even if there is no reply
message from the service, if a reply queue exists, a zero-length message is enqueued
there byTMQFORWARD inform the originating client of the outcome.

When creating a reply or a failure queue, bear in mind that in most cases messages are
dequeued from these queues by a client process looking for information about an
earlier enqueued request. Since the most common way of dequeuing such messages is
by themsgid (message identifier) aorrid (correlation identifier) associated with

the message—as opposed to taking a message off the top of the queue—the queue
ordering criteria are less significant. In this cdiée, is probably sufficient. The

retries andretrydelay parameters have no significance for reply queues; just take

the defaults. Thqueue capacity thresholds and commands are likely to be useful

on reply queues, and the recommended usage is to alert the administrator so that he or
she can intervene.

Error Queues

An error queue is a system queue. One ofitipacecreate prompts asks for the

name of the error queue for the queue space. When you have actually created an error
queue of the name specified, the system uses it as a place to move messages from the
service queue that have reached their retry limit. The management of the error queue
is up to the administrator who can either handle the messages manually through
commands ofimadmin or can set up an automated way of handling them through the
APPQ_MIBMIB. The queue capacity =~ parameters can be used, but all of the other
qcreate parameters, with the exceptiongpfame, are not useful for the error queue.

Note: We recommend against using the same queue as both an error queue and a
service failure queue; doing so makes it more difficult to cleanly manage the
application and could lead to clients trying to access the administrator's area.

Using the BEA Tuxedo /Q Component 2-15

2 BEA Tuxedo /Q Administration

Handling Encrypted Message Buffers

In generalTMQUEUBRNATMQFORWARTIandleencryptedmessage buffers without
decrypting them. However, there are situations where the /Q component needs to
decrypt enqueued message buffers, as described in “Compatibility/Interaction with
/Q” on page 1-62.

As mentioned in the “Compatibility/Interaction with /Q” discussion, a
non-transactionapdequeue() operation has the side effect of destroying an
encrypted queued message if the invoking process does not hold a valid decryption
key. Thus, application programmers need to open a decryption key for a process befo
the process callpdequeue() to retrieve an encrypted message; otherwise, the
message will be lost.

For information on opening a decryption key, see “Initializing Decryption Keys
Through the Plug-ins” on page 2-50 and “Writing Code to Receive Encrypted
Messages” on page 3-44lilsing BEA Tuxedo Security

Maintenance of the BEA Tuxedo /Q Feature

This topic covers some things the queue administrator may have to do from time to
time to keep a queue space operating efficiently.

Adding Extents to a Queue Space

2-16

If you find you need more disk storage for a queue space, you can add it with the
gaddext command ofimadmin(1) . (You can also use thie_MAXPAGES&ttribute of
theT_APPQSPACElass ofAPPQ_MIB(5) to add extents.) Thgnadmin command

takes the queue space name and a number of pages as arguments. The pages come
extents defined in the UDL for the device in yQCONFI&ariable. The queue space
must be inactive; you can use the exclamation point to execute a command outside
gmadmin to shut down the associated server group. For example:

Using the BEA Tuxedo /Q Component

Maintenance of the BEA Tuxedo /Q Feature

> Itmshutdown -g TMQUEUEGRP1
followed by

> qclose
> gaddext myqueue 100

The queue space must be cloggaadmin closes it for you if you try to add extents to
it while it is open. All non-persistent messages currently in the queue space are lost
when thegaddext command is issued and completes successfully.

Backing Up or Moving Queue Space

A convenient command to use to back up a queue space is the UNIX comfdnand
Shut down the associated server group first. The command lines would look like this:

tmshutdown -g TMQUEUEGRP1
dd if=<qgspace_device_file> of=<output_device_filename>

For other options, seatki(1) in a UNIX system reference manual.

This same command can be used to migrate the queue space to a machine of the same
architecture, although you may need to start the command sequenceymvifdnén

chdl command to provide a new device name if the present name does not exist on the
target machine.

Similar archival techniques are available on server platforms that do not haie the
command. First, shut down the group containing the queue space you want to back up
or migrate. Then, use an archival tool to save the queue space device to a file or other
medium that may then be used as a back up or used to move the queue space to another
server.

Moving the Queue Space to a Different Type of Machine

If you need to move a queue space to a machine with a different architecture (primarily
byte order), the procedure is more complex. Create and run an application program to
dequeue all messages from all queues in the queue space and write them out in

machine-independent format. Then enqueue the messages in the new queue space.

Using the BEA Tuxedo /Q Component 2-17

2 BEA Tuxedo /Q Administration

TMQFORWARD and Non-Global Transactions

Messages dequeued and forwarded usMQFORWARIDe executed within a global
transaction because the operation crosses group boundaries. If the messages are
executed by servers that are not associated with an RM or that do not run within a
global transaction, they should have a server groupwisNAME=TMEor the NULL

XA interface).

TMQFORWARD and Commit Control

The global transaction begun BYIQFORWAREhen it dequeues a message for
execution is terminated bytgcommit (). The administrator can set tB®TRET
parameter in the configuration file to control whether the transaction commits when it
is logged or when it is complete. (See the discussi@MIRETin theRESOURCES
section of theJBBCONFIG(5) reference page.)

Handling Transaction Timeout

2-18

Handling transaction timeout requires cooperation between the queue administrator
and the programmer developing client programs that dequeue messages. When
tpdequeue(3c) is called with thelags argument set to includePQWAIT the
TMQUEUBerver will wait for a message to arrive on a queue before returning to the
caller. The number of seconds before it times out is based on the following:

m Thetimeout specified in thepbegin call (if the transaction is started in the
client)

m The-t timeout flag of theTMQUEUBerver (if the client has not started the
transaction)

If a message is not immediately available when uSR@QWAIT TMQUEUEequires an
action resource so thatMQUEUBnay service other requests. You may want to increase
the number of actions the queue space may handle concurrently. WUsedtns

option to thegspacecreate Orgspacechange commands. This option specifies the
number of additional actions that can be handled concurrently. When a waiting
operation is encountered and additional actions are available, the blocking operation
set aside until it can be satisfied. If no actions are available, the paktoeue fails.

Using the BEA Tuxedo /Q Component

Windows NT Standard I/0

TMQFORWARD and Retries for an Unavailable Service

When aTMQFORWARIzrver attempts to forward messages to a service that is not
available, the situation can develop where the retry limit for the queue may be reached.
The message is then moved to the error queue (if one exists). To avoid this situation
the administrator should either shut theQFORWARRIver down or set the retry count
higher.

When a message is moved to the error queue it is no longer associated with the original
queue. If errors are going to be handled by the administrator moving the message back
to the service queue when the service is known to be available, then the queue name
may be stored as part of tb@rid in theTPQCTLstructure so the queue name is
associated with the message.

Windows NT Standard 1/0

In order to carry out a command that you have configured witlrimaemin() session,
such as thgchange ... Queue capacity command described in “Using Queue
Capacity Limits” on page 2-13, the NOreateProcess() function spawns a child
process as BETACHED PROCEST his type of process doast have an associated
console for standard input/output. Therefore, for instance, if you use standard DOS
syntax to set thgchange ... Queue capacity command to run a built-in DOS
command (such afir ordate) and then pipe or redirect the standard output to a file,
the file will be empty when the command completes.

As an example of resolving this problem, suppose that faydienge ... Queue
capacity command you want to capturéate information in a file using command
date /t > x.out . To accomplish this task interactively, you would proceed as
follows:

gmadmin

> qopen yourQspace

> qchange yourQname

> gothrough allthe setups... the threshold queue capacity warning,
and so on

> "Queue capacity command: " cmd /c date /t > x.out

Using the BEA Tuxedo /Q Component 2-19

2 BEA Tuxedo /Q Administration

To accomplish this task from a command file, gayrFile .cmd , you would add the
commandiate /t > x.out to yourFile .cmd and then proceed as follows:

gmadmin

> qopen yourQspace

> qchange yourQname

> gothrough allthe setups... the threshold queue capacity warning,
and so on

> "Queue capacity command: " yourFile .cmd

2-20 Using the BEA Tuxedo /Q Component

CHAPTER

3 BEA Tuxedo /Q
C Language
Programming

m Introduction

m Prerequisite Knowledge

m Where Requests Can Originate
m Emphasis on the Default Case
m Enqueuing Messages

m Dequeuing Messages

m Sequential Processing of Messages

Introduction

This topic deals with the use of the ATMI C language functions for enqueuing and
dequeuing messagepenqueue(3c) andtpdequeue(3c) , plus some ancillary
functions.

Using the BEA Tuxedo /Q Component 3-1

3 BEATuxedo /QC Language Programming

Prerequisite Knowledge

The BEA Tuxedo programmer coding client or server programs for the queued
message facility should be familiar with the C language binding to the BEA Tuxedo
ATMI. General guidance on BEA Tuxedo programming is availabRraggramming

a BEA Tuxedo Application Using Oetailed pages on all the ATMI functions are in
the BEA Tuxedo C Function Reference

Where Requests Can Originate

The calls used to place a message on a BEA Tuxedo /Q queue can originate from al
client or server process associated with the application. The list includes:

m Clients or servers on the same machine as the queue space or on another
machine on the network.

m Conversational programs, although you cannot have a conversational connectiol
with a queue (or with thEMQUEUE(5) server).

m Workstation clients via a surrogate process on the server side; the administrative
interface is also entirely on the server side.

Emphasis on the Default Case

The coverage of BEA Tuxedo /Q programming in this topic primarily reflects the
left-hand portion of the figure “Queued Service Invocation” on page 1-2. In the figure,
a client (or a process acting in the role of a client) queues a message by calling
tpenqueue(3c) and specifying a queue space made available throUBIQEEUE(5S)
server. The client later retrieves a reply viadequeue(3c) call to TMQUEUE

3-2 Using the BEA Tuxedo /Q Component

Enqueuing Messages

The figure “Queued Service Invocation” on page 1-2 shows the queued message being
dequeued by the serveMQFORWARD(5nd sent to an application server for

processing (vigocall(3c)). When a reply to thgcall() is receivedTMQFORWARD
enqueues the reply message. Because a major goat@@fORWAR®t0 provide an

interface between the queue space and existing application services, it does not require
further application coding. For that reason, this topic concentrates on the
client-to-queue space side.

A brief example of the use of the queued message facility is distributed with the
software and is described in “A Sample Application” on page A-1.

Enqueuing Messages

The syntax fotpenqueue() is as follows.

#include <atmi.h>
int tpenqueue(char * gspace , char* gname, TPQCTL* ctl ,
char * data ,long len ,long flags)

When apenqueue() call is issued, it tells the system to store a message on the queue
identified ingname in the space identified igspace . The message is in the buffer
pointed to bydata and has a length ¢n . By the use of bit settings ifags , the

system is informed how the calltf@nqueue() is to be handled. Further information
about the handling of the enqueued message and replies is providedMQIbEL
structure pointed to byt/ .

tpenqueue(3¢) Arguments

There are some important arguments to control the operatipangfieue(3c)
Let's look at some of them.

tpenqueue(): the qspace Argument
gspace identifies a queue space previously created by the administrator. When a

server is defined in theERVERSection of the configuration file, the service names it
offers are aliases for the actual queue space name (which is specified as part of the

Using the BEA Tuxedo /Q Component 3-3

3 BEATuxedo /QC Language Programming

OPENINFOparameter in theROUPSection). For example, when your application uses
the serveMMQUEURNhe value pointed at by tlgpace argument is the name of a
service advertised bBMQUEUHT no service aliases are defined, the default service is
the same as the server nam@QUEUHN this case the configuration file might include:

TMQUEUE
SRVGRP = QUE1 SRVID = 1
GRACE =0 RESTART =Y CONV =N
CLOPT = "-A"

or
CLOPT ="-s TMQUEUE"

The entry for server groupUE1lhas arDPENINFOparameter that specifies the resource
manager, the pathname of the device and the queue space nanspatéeargument
in a client program then looks like this:

if (tpenqueue("TMQUEUE", "STRING", (TPQCTL *)&qctl,
(char *)regstr, 0,0) ==-1) {
Error checking

}

The example shown on th&QUEUE(5) reference page shows how alias service
names can be included when the server is built and specified in the configuration file
The sample program in “A Sample Application” on page A-1, also specifies an alias
service name.

tpenqueue(): the gname Argument

Within a queue space, when queues are being used to invoke services, message que
are named according to the application services available to process reguesiss

a pointer to such an application service. Otherwjsame is simply the name of the
location where the message is to be stored until it is dequeued by an application (eith
the same application that enqueued it or another one).

tpenqueue(): the data and len Arguments

3-4

data points to a buffer that contains the message to be processed. The buffer must |
one that was allocated with a calltpalloc(3c) . len gives the length of the
message. Some BEA Tuxedo buffer types (such as FML) do not require that the lengt
of the message be specified; in such casesethargument is ignorediata can be
NULL; when it is,len is ignored and the message is enqueued with no data portion.

Using the BEA Tuxedo /Q Component

Enqueuing Messages

tpenqueue(): the flags Arguments

flags values are used to tell the BEA Tuxedo system howpthejueue() call is
handled; the following are valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not
queued within the caller’s transaction. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other) when queuing
the message. If message queuing fails, the caller’s transaction is not affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If this flag is set
and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call failstaadno(5) is set to
TPEBLOCKIf this flag is set and a blocking condition exists because the target
queue is openeeiclusivelyby another application, the call faifserrno()
is set toTPEDIAGNOSTIG and the diagnostic field of ti®eQCTLstructure is
set toQMESHAREHN the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services API (QSAPI).

WhenTPNOBLOCKs not set and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). If a timeout occurs, the call fails apédrrno() is set toTPETIME.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSIGRSTRT
Setting this flag indicates that any underlying system calls that are interrupted
by a signal should be reissued. When this flag is not set and a signal interrupts
a system call, the call fails and sgksmo(5) to TPGOTSIG

Using the BEA Tuxedo /Q Component 3-5

3 BEATuxedo /QC Language Programming

TPQCTL Structure

The third argument ttpenqueue() is a pointer to a structure of typeQCTL The
TPQCTLstructure has members that are used by the application and by the BEA Tuxed
system to pass parameters in both directions between application programs and the
sets flags to mark fields

the application wants the system to fill in. The structure is also uspddayieue()
some of the fields do not come into play until the application calls that function. The

gqueued message facility. The client that caliaqueue()

complete structure is shown in the following listing.

Listing 3-1 The tpqctl_t Structure

#define TMQNAMELEN 15
#define TMMSGIDLEN 32
#define TMCORRIDLEN 32

struct tpgctl_t { /* control parameters to queue primitives */
long flags; /* indicates which of the values are set */
long deqg_time; /* absolute/relative time for dequeuing */
long priority; /* enqueue priority */
long diagnostic; /* indicates reason for failure */

k

char msgid[TMMSGIDLEN]; /* ID of message before which to queue */
char corrid[TMCORRIDLEN]; /* correlation ID used to identify message */
char replyqueue[TMQNAMELEN+1]; /* queue name for reply message */
char failurequeue[TMQNAMELEN+1]; /* queue name for failure message */

CLIENTID cltid; /* client identifier for originating client */
long urcode; /* application user-return code */

long appkey; * application authentication client key */
long delivery_qos; /* delivery quality of service */

long reply_qos; I* reply message quality of service */
long exp_time; [* expiration time */

typedef struct tpgctl_t TPQCTL;

The following is a list of valid bits for théags parameter controlling input

information fortpenqueue()

TPNOFLAGS

No flags or values are set. No information is taken from the control structure.
Leaving fields of the structure not setis equivalent to a settimgNOFLAGS

3-6 Using the BEA Tuxedo /Q Component

Enqueuing Messages

TPQTOP

Setting this flag indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue ordering to put a message at the top of the qurpEOPand
TPQBEFOREMSGIare mutually exclusive flags

TPQBEFOREMSGID

Setting this flag indicates that the queue ordering be overridden and the
message placed in the queue before the message identiftedc-taggid

This request may not be granted depending on whether or not the queue was
configured to allow overriding the queue orderingQTOPand
TPQBEFOREMSGIare mutually exclusive flags. Note that the entire 32 bytes

of the message identifier value are significant, so the value identified by
ctl->msgid must be completely initialized (for example, padded with null
characters).

TPQTIME_ABS

If this flag is set, the message is made available after the time specified by
ctl->deq_time . Thedeq_time is an absolute time value as generated by
time (2) ormktime (3C), if they are available to your application, or
gp_mktime(3c) , provided with the BEA Tuxedo system. The value set in
ctl->deq_time is the number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1,1970. The absolute time is set based on
the clock on the machine where the queue manager process resides.
TPQTIME_ABSandTPQTIME_RELare mutually exclusive flags.

TPQTIME_REL

If this flag is set, the message is made available after a time relative to the
completion of the enqueuing operatieti->deq_time specifies the

number of seconds to delay after the enqueuing completes before the
submitted message should be availatheQTIME_ABSandTPQTIME_RELare
mutually exclusive flags.

TPQPRIORITY

If this flag is set, the priority at which the request should be enqueued is stored
in ctl->priority . The priority must be in the range 1 to 100, inclusive. The
higher the number, the higher the priority, that is, a message with a higher
number is dequeued before a message with a lower number from queues
ordered by priority. For queues not ordered by priority, the value is
informational.

If this flag is not set, the priority for the message is 50 by default.

Using the BEA Tuxedo /Q Component 3-7

3 BEATuxedo /QC Language Programming

3-8

TPQCORRID

If this flag is set, the correlation identifier value specifiedth»corrid is
available when a request is dequeued widbqueue(3c) . This identifier
accompanies any reply or failure message that is queued so an application ce
correlate a reply with a particular request. Note that the entire 32 bytes of the
correlation identifier value are significant, so the value specified in

ctl->corrid must be completely initialized (for example, padded with null
characters).

TPQREPLYQ

If this flag is set, a reply queue namedtik>replyqueue is associated

with the queued message. Any reply to the message is queued to the name
gueue within the same queue space as the request message. This string mi
be NULL-terminated (maximum 15 characters in length). If a reply is
generated for the service and a reply queue is not specified or the reply queu
does not exist, the reply is dropped.

TPQFAILUREQ

If this flag is set, a failure queue named in the-failurequeue is
associated with the queued message. If (1) the enqueued message is proces:
by TMQFORWARD((2) TMQFORWARI&S started with thel option, and (3)

the service fails and returns a non-null reply, a failure message consisting o
the reply and its associategircode is enqueued to the named queue within
the same queue space as the original request message. This string must be
NULL-terminated (maximum 15 characters in length).

TPQDELIVERYQOSTPQREPLYQOS

If the TPQDELIVERYQOS$ag is set, the flags specified by

ctl->delivery_qos control the quality of service for delivery of the
message. In this case, one of three mutually exclusive flags—
TPQQOSDEFAULTPERSISTPQQOSPERSISTENTOr
TPQQOSNONPERSISTENIMUSt be set imt/->delivery _qos f
TPQDELIVERYQO$ not set, the default delivery policy of the target queue
dictates the delivery quality of service for the message.

If the TPQREPLYQO#ag is set, the flags specified by->reply_gos

control the quality of service for any reply to the message. In this case, one o
three mutually exclusive flagsFPQQOSDEFAULTPERSIST
TPQQOSPERSISTENTOr TPQQOSNONPERSISTENTMUST be set in

ctl->reply_qos . TheTPQREPLYQOS8ag is used when a reply is returned
from messages processedyQFORWARBpplications not using

Using the BEA Tuxedo /Q Component

Enqueuing Messages

TMQFORWARD invoke services may use thBPQREPLYQOSflag as a hint for
their own reply mechanism.

If TPQREPLYQO$® not set, the default delivery policy of the

ctl->replyqueue gueue dictates the delivery quality of service for any

reply. Note that the default delivery policy is determined when the reply to a
message is enqueued. That s, if the default delivery policy of the reply queue
is modified between the time that the original message is enqueued and the
reply to the message is enqueued, the policy used is the one in effect when the
reply is finally enqueued.

The following is the list of valid flags fanl->delivery_qos and
ctl->reply_qos

TPQQOSDEFAULTPERSIST
This flag specifies that the message is to be delivered using the
default delivery policy specified on the target queue.

TPQQOSPERSISTENT
This flag specifies that the message is to be delivered in a persistent
manner using the disk-based delivery method. When specified, this
flag overrides the default delivery policy specified on the target
queue.

TPQQOSNONPERSISTENT
This flag specifies that the message is to be delivered in a
non-persistent manner using the memory-based delivery method.
Specifically, the message is queued in memory until it is dequeued.
When specified, this flag overrides the default delivery policy
specified on the target queue. If the caller is transactional,
non-persistent messages are enqueued within the caller’s
transaction, however, non-persistent messages are lost if the system
is shut down, crashes, or the IPC shared memory for the queue space
is removed.

TPQEXPTIME_ABS
If this flag is set, the message has an absolute expiration time, which is the
absolute time when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where
the queue manager process resides.

The absolute expiration time is indicated by the value stored in
ctl->exp_time . The value ottl->exp_time must be set to an absolute

Using the BEA Tuxedo /Q Component 3-9

3 BEATuxedo /QC Language Programming

3-10

time value generated hiyne (2), mktime (3C), orgp_mktime(3c) (the
number of seconds since 00:00:00 Universal Coordinated Time—UTC,
January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue
operation, the operation succeeds, but the message is not counted for the
purpose of calculating thresholds. If the expiration time is before the messag:
availability time, the message is not available for dequeuing unless either the
availability or expiration time is changed so that the availability time is before
the expiration time. In addition, these messages are removed from the queu
at expiration time even if they were never available for dequeuing. If a
message expires while it is within a transaction, the expiration does not caus
the transaction to fail. Messages that expire while being enqueued or
dequeued within a transaction are removed from the queue when the
transaction ends. There is no notification that the message has expired.

TPQEXPTIME_ABSTPQEXPTIME_RE| andTPQEXPTIME_NON&re mutually
exclusive flags. If none of these flags is set, the default expiration time
associated with the target queue is applied to the message.

TPQEXPTIME_REL

If this flag is set, the message has a relative expiration time, which is the
number of secondsfter the message arrives at the queue that the message is
removed from the queue. The relative expiration time is indicated by the
value stored irt/->exp_time

If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is
changed so that the availability time is before the expiration time. In addition,
these messages are removed from the queue at expiration time even if they
were never available for dequeuing. The expiration of a message during a
transaction, does not cause the transaction to fail. Messages that expire whil
being enqueued or dequeued within a transaction are removed from the quet
when the transaction ends. There is no acknowledgment that the message h
expired.

TPQEXPTIME_ABSTPQEXPTIME_RELandTPQEXPTIME_NONBre mutually
exclusive flags. If none of these flags is set, the default expiration time
associated with the target queue is applied to the message.

TPQEXPTIME_NONE

Setting this flag indicates that the message should not expire, even if the
default policy of the queue includes an expiration time.

Using the BEA Tuxedo /Q Component

Enqueuing Messages

TPQEXPTIME_ABSTPQEXPTIME_RELandTPQEXPTIME_NON&re mutually
exclusive flags. If none of these flags is set, the default expiration time
associated with the target queue is applied to the message.

Additionally, theurcode field of TPQCTLcan be set with a user-return code. This value
will be returned to the application that cafisequeue(3c) to dequeue the message.

On output frompenqueue() , the following fields may be set in tiBQCTLstructure:

long flags; [* indicates which of the values are set */
char msgid[32]; /* ID of enqueued message */
long diagnostic; [* indicates reason for failure */

The following is a valid bit for théags parameter controlling output information

from tpenqueue() . If this flag is turned on whetpenqueue() is called, the /Q
serverTMQUEUE(5) populates the associated element in the structure with a message
identifier. If this flag is turned off whemenqueue() is called,TMQUEUE()doesnot
populate the associated element in the structure with a message identifier.

TPQMSGID
If this flag is set and the call tpenqueue() is successful, the message
identifier is stored irctl->msgid . The entire 32 bytes of the message
identifier value are significant, so the value storedtitxmsgid is
completely initialized (for example, padded with null characters). The actual
padding character used for initialization varies between releases of the BEA
Tuxedo /Q component.

The remaining members of the control structure are not used on input to
tpenqueue()

If the call totpenqueue() fails andtpermo(5) is set toTPEDIAGNOSTIG a value
indicating the reason for failure is returnedik>diagnostic . The possible values
are:

[QMEINVAL
An invalid flag value was specified.

[QMEBADRMID
An invalid resource manager identifier was specified.

[QMENOTOPEN
The resource manager is not currently open.

Using the BEA Tuxedo /Q Component 3-11

3 BEATuxedo /QC Language Programming

[QMETRAN
The call was made in transaction mode or was made wittPtke TRANIag
set and an error occurred trying to start a transaction in which to enqueue thi
message. This diagnostic is not returned by queue managers from BEA
Tuxedo Release 7.1 or later.

[QMEBADMSGID
An invalid message identifier was specified.

[QMESYSTEM
A system error occurred. The exact nature of the error is written to a log file

[QMEOB
An operating system error occurred.

[QMEABORTED
The operation was aborted. If the aborted operation was being executed
within a global transaction, the global transaction is marked rollback-only.
Otherwise, the queue manager aborts the operation.

[QMEPROTO
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE
An invalid or deleted queue name was specified.

[QMENOSPAGE
Due to an insufficient resource, such as no space on the queue, the messag
with its required quality of service (persistent or non-persistent storage) was
not enqueueMENOSPAQE returned when any of the following configured
resources is exceeded: (1) the amount of disk (persistent) space allotted to tt
gqueue space, (2) the amount of memory (non-persistent) space allotted to th
gqueue space, (3) the maximum number of simultaneously active transaction:
allowed for the queue space, (4) the maximum number of messages that th
gueue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or (6)
the maximum number of authenticated users that may concurrently use the
Queuing Services component.

[QMERELEASE
An attempt was made to enqueue a message to a queue manager that is frc
a version of the BEA Tuxedo system that does not support a newer feature.

3-12 Using the BEA Tuxedo /Q Component

Enqueuing Messages

[QMESHARE
When enqueuing a message from a specified queue, the specified queue is
openeckxclusivelypy another application. The other application is one based
on a BEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services API (QSAPI).

Overriding the Queue Order

If the administrator, in creating a queue, allapesqueue() calls to override the

order of messages on the queue, you have two mutually exclusive ways to use that
capability. You can specify that the message is to be placed at the top of the queue by
settingflags to includeTPQTOROr you can specify that it be placed ahead of a specific
message by settinfpgs to includeTPQBEFOREMSGIand settingti->msgid to the

ID of the message you wish to precede. This assumes that you saved the message-1D
from a previous call in order to be able to use it here. Your administrator must tell you
what the queue supports; it can be created to allow either or both of these overrides, or
to allow neither.

Overriding the Queue Priority

You can set a value tl->priority to specify the priority of the message. The

value must be in the range 1 to 100; the higher the number the higher the priority. If
priority ~ was not one of the queue ordering parameters, setting a priority here has no
effect on the dequeuing order, however the priority value is retained so that the value
can be inspected when the message is dequeued.

Setting a Message Availability Time

You can specify indeq_time either an absolute time or a time relative to the
completion of the enqueuing operation for the message to be made available. You set
flags to include eitheTPQTIME_ABSor TPQTIME_RELto indicate how the value

should be treated. A queue may be createdtinith as a queue ordering criterion, in
which case the messages are ordered by the message availability time.

BEA Tuxedo /Q provides a functiogp_mktime(3c) , that is used to convert a date
and time provided in an structure to the number of seconds since January 1, 1970.
Thetime (2) andmktime (3C) functions may also be used insteadmfnktime (3c).

Using the BEA Tuxedo /Q Component 3-13

3 BEATuxedo /QC Language Programming

3-14

The value is returned iime_t , atypedefd long. To set an absolute time for the
message to be dequeued (we are using 12:00 noon, December 9, 2001), do the
following.

1. Place the values for the date you want to use imthstructure.

#include <stdio.h>

#include <time.h>

static char *const wday([] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

3

struct tm time_str;

>l

time_str.tm_year = 2001 - 1900;

time_str.tm_mon =12 - 1;

time_str.tm_mday = 9;

time_str.tm_hour = 12;

time_str.tm_min = 0O;

time_str.tm_sec = 1;

time_str.tm_isdst = -1;

2. Callgp_mktime to produce a value faleq_time and set thélags to indicate
that an absolute time is being provided.

#include <atmi.h>

TPQCTL qgctl;

if ((qctl->deq_time = (long)gp_mktime(&time_str)) == -1) {
/* check for errors */

}
gctl->flags = TPQTIME_ABS

3. Calltpenqueue()

if (tpenqueue(gspace, gname, qctl, *data,*len,*flags) == -1) {
[* check for errors */
}

If you want to specify a relative time for dequeuing, for exampie seconds after the
completion of the enqueuing operation, place the number of secatads time and
setflags to includeTPQTIME_REL

Using the BEA Tuxedo /Q Component

Dequeuing Messages

tpenqueue() and Transactions

If a caller oftpenqueue() is in transaction mode am@®NOTRANS not set, then the
enqueuing is done within the caller's transaction. The caller knows for certain from the
success or failure apenqueue() whether the message was enqueued or not. If the
call succeeds, the message is guaranteed to be on the queue. If the call fails, the
transaction is rolled back, including the part where the message was placed on the
queue.

If a caller oftpenqueue() is not in transaction mode oriPNOTRANs set, the

message is enqueued outside of the caller’s transaction. If the wpalidoeue()

returns success, the message is guaranteed to be on the queue. If the call to
tpenqueue() fails with a communication error or with a timeout, the caller is left in
doubt about whether the failure occurred before or after the message was enqueued.

Note that specifyingPNOTRANvhile the caller is not in transaction mode has no
meaning.

Dequeuing Messages

The syntax fotpdequeue() is as follows.

#include <atmi.h>
int tpdequeue(char *gspace, char *gname, TPQCTL *ctl, \
char **data, long *len, long flags)

When this call is issued it tells the system to dequeue a message frgmartisgjueue

in the queue space namgspace . The message is placed in a buffer (originally
allocated bypalloc(3c)) at the address pointed to byata . len points to the
length of the data. Ibn is 0 on return fronpdequeue() , the message had no data
portion. By the use of bit settingsfiags the system is informed how the call to
tpdequeue() is to be handled. THePQCTLstructure pointed to bgt/ carries further
information about how the call should be handled.

Using the BEA Tuxedo /Q Component 3-15

3 BEATuxedo /QC Language Programming

tpdequeue(3¢) Arguments

There are some important arguments to control the operatipteqfieue(3c) . Let's
look at some of them.

tpdequeue(): the gspace Argument

3-16

gspace identifies a queue space previously created by the administrator. When the
TMQUEUBerver is defined in tleERVERSection of the configuration file, the service
names it offers are aliases for the actual queue space name (which is specified as p
of theOPENINFOparameter in theROUPSection). For example, when your
application uses the servEMQUEURhe value pointed at by thgpace argument is

the name of a service advertised§QUEUEHE no service aliases are defined, the
default service is the same as the server n@mM@UEUHN this case the configuration

file may include:

TMQUEUE
SRVGRP = QUE1 SRVID =1
GRACE =0 RESTART =Y CONV =N
CLOPT = "-A"
or
CLOPT ="-s TMQUEUE"

The entry for server grou@UElhas arODPENINFOparameter that specifies the resource
manager, the pathname of the device and the queue space nagspatbeargument
in a client program then looks like this:

if (tpdequeue("TMQUEUE", "REPLYQ", (TPQCTL *)&qctl,
(char *)&reqstr, &len, TPNOTIME) == -1) {
Error checking

}

The example shown on th&QUEUE(5)reference page shows how alias service
names can be included when the server is built and specified in the configuration file
The sample program in “A Sample Application” on page A-1, also specifies an alias
service/queue space hame.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

tpdequeue(): the gname Argument

Queue names in a queue space must be agreed upon by the applications that will access
the queue space. This is especially important for reply queuganit refers to a

reply queue, the administrator creates it (and often an error queue) in the same manner
that he or she creates any other queusgmeis a pointer to the name of the queue from
which to retrieve the message or reply.

tpdequeue(): the data and len Arguments

These arguments have slightly different meanings than their counterparts in
tpenqueue() . *data points to the address of a buffer where the system is to place the
message being dequeued. Whetequeue() is called, it is an error for its value to
beNULL

Whentpdequeue() returnsjen points to a long that carries information about the
length of the data retrieved. If it is O, it means that the reply had no data portion. This
can be a legitimate and successful reply in some applications; receiving even a 0 length
reply can be used to show successful processing of the enqueued request. If you wish
to know whether the buffer has changed from before the apdidgueue() , save the

length prior to the call tpdequeue() and compare it teen after the call completes.

tpdequeue(): the flags Arguments

flags values are used to tell the BEA Tuxedo system howpthegjueue() call is
handled; the following are valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not
dequeued within the caller’s transaction. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other) when
dequeuing the message. If message dequeuing fails, the caller’s transaction is
not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If this flag is set
and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call failstaadno(5) is set to
TPEBLOCKIf this flag is set and a blocking condition exists because the target
queue is openeeiclusivelyby another application, the call faifserrno()
is set toTPEDIAGNOSTIG and the diagnostic field of ti®eQCTLstructure is

Using the BEA Tuxedo /Q Component 3-17

3 BEATuxedo /QC Language Programming

set toQMESHAREHN the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo system, opened the queue for
exclusive read and/or write using the Queuing Services APl (QSAPI).

WhenTPNOBLOCHKS not set and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQWAIToption inflags (of theTPQCTLstructure) is specified.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and
wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPNOCHANGE
When this flag is set, the type of the buffer pointed todayd" is not allowed
to change. By default, if a buffer is received that differs in type from the
buffer pointed to by #ata , then *data 's buffer type changes to the received
buffer's type so long as the receiver recognizes the incoming buffer type. Tha
is, the type and subtype of the received buffer must match the type and
subtype of the buffer pointed to byldta .

TPSIGRSTRT
Setting this flag indicates that any underlying system calls that are interruptec
by a signal should be reissued. When this flag is not set and a signal interrupt
a system call, the call fails and sgtsrno(5) to TPGOTSIG

TPQCTL Structure

3-18

The third argument ttpdequeue() is a pointer to a structure of typeQCTL The
TPQCTLstructure has members that are used by the application and by the BEA Tuxed
system to pass parameters in both directions between application programs and the
queued message facility. The client that caliequeue() sets flags to mark fields

for which the system should supply values. As described earlier, the structure is als
used bytpenqueue() ; some of the members apply only to that function. The entire
structure is shown in “The tpgctl_t Structure” on page 3-6.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

As input totpdequeue() , the following fields may be set in tH@QCTLstructure:

long flags; [* indicates which of the values are set */
char msgid[32]; /*id of message to dequeue */
char corrid[32]; /* correlation identifier of message to dequeue */

The following are valid flags on input tpdequeue()

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSGID
Setting this flag requests that the message with the message identifier

specified byct->msgid be dequeued. The message identifier is determined

through a prior call tepenqueue() . Note that the message identifier

changes if the message is moved from one queue to another. Note also that
the entire 32 bytes of the message identifier value are significant, so the value

specified byct->msgid must be completely initialized (for example,
padded with null characters).

TPQGETBYCORRID
Setting this flag requests that the message with the correlation identifier
specified byctl->corrid be dequeued. The correlation identifier is
specified by the application when enqueuing the message with

tpenqueue() . Note that the entire 32 bytes of the correlation identifier value

are significant, so the value specifieddw>corrid must be completely
initialized (for example, padded with null characters).

TPQWAIT

Setting this flag indicates that an error should not be returned if the queue is

empty. Instead, the process should wait until a message is available. If
TPQWAITIsS set in conjunction witiPQGETBYMSGIDr TPQGETBYCORR| 0t

indicates that an error should not be returned if no message with the specified
message identifier or correlation identifier is present in the queue. Instead, the
process should wait until a message meeting the criteria is available. The

process is still subject to the caller’s transaction timeout, or, when not in

transaction mode, the process is still subject to the timeout specified for the

TMQUEUProcess by the option.

If a message matching the desired criteria is not immediately available and

the configured action resources are exhaugtdelqueue() returns -1,
tperrno() is set toTPEDIAGNOSTIG and the diagnostic field of tH®@QCTL
structure is set tQMESYSTEM

Using the BEA Tuxedo /Q Component 3-19

3 BEATuxedo /QC Language Programming

Note that eackpdequeue() request specifying thEPQWAITcontrol

parameter requires that a queue manat@QUEUEaction object be available

if a message satisfying the condition is not immediately available. If an action
object is not available, thpdequeue() request fails. The number of
available queue manager actions are specified when a queue space is creat
or modified. When a waiting dequeue request completes, the associated
action object associated is made available for another request.

TPQPEEK
If this flag is set, the specified message is read but is not removed from the
queue. Th@PNOTRANIag must also be set.

When a thread is non-destructively dequeuing a messageTirSirgEK the
message may hot be seen by other non-blocking dequeuers for the brief tim
the system is processing the non-destructive dequeue request. This include
dequeuers using specific selection criteria (such as message identifier and
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

The following is a list of valid bits for th#&ags parameter controlling output
information fromtpdequeue() . For any of these bits, if the flag bit is turned on when
tpdequeue() is called, the associated field in the structure (see “The tpqctl_t
Structure” on page 3-6) is populated with the value provided when the message wa:
gueued, and the bit remains set. If a value is not available (that is, no value was
provided when the message was queued) or the bit is not setpatbgueue() s
called,tpdequeue() completes with the flag turned off.

TPQPRIORITY
If this flag is set, the call tpdequeue() is successful, and the message was
queued with an explicit priority, then the priority is stored in
ctl->priority . The priority is in the range 1 to 100, inclusive, and the
higher the number, the higher the priority (that is, a message with a higher
number is dequeued before a message with a lower number). For queues n
ordered by priority, the value is informational.

If no priority was explicitly specified when the message was queued and the
call totpdequeue() is successful, the priority for the message is 50.

TPQMSGID
If this flag is set and the call tpdequeue() is successful, the message
identifier is stored irctl->msgid . The entire 32 bytes of the message
identifier value are significant.

3-20 Using the BEA Tuxedo /Q Component

Dequeuing Messages

TPQCORRID
If this flag is set, the call tpdequeue() is successful, and the message was
queued with a correlation identifier, then the correlation identifier is stored in
ctl->corrid . The entire 32 bytes of the correlation identifier value are
significant. Any BEA Tuxedo /Q provided reply to a message has the
correlation identifier of the original request message.

TPQDELIVERYQOS
If this flag is set, the call tpdequeue() is successful, and the message was
queued with a delivery quality of service, then the flag—
TPQQOSDEFAULTPERSISTPQQOSPERSISTENTr
TPQQOSNONPERSISTEMIS stored inctl->delivery _gos . If no delivery
quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

TPQREPLYQOS
If this flag is set, the call tpdequeue() is successful, and the message was
queued with a reply quality of service, then the flag—
TPQQOSDEFAULTPERSISTPQQOSPERSISTENTr
TPQQOSNONPERSISTEMIS stored inctl->reply_qos . If no reply quality
of service was explicitly specified when the message was queued, the default
delivery policy of thecti->replyqueue queue dictates the delivery quality
of service for any reply.

Note that the default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of the reply queue
is modified between the time that the original message is enqueued and the
reply to the message is enqueued, the policy used is the one in effect when the
reply is finally enqueued.

TPQREPLYQ
If this flag is set, the call tpdequeue() is successful, and the message was
queued with a reply queue, then the name of the reply queue is stored in
ctl->replyqueue . Any reply to the message should go to the named reply
gqueue within the same queue space as the request message.

TPQFAILUREQ
If this flag is set, the call tpdequeue() is successful, and the message was
queued with a failure queue, then the name of the failure queue is stored in
ctl->failurequeue . Any failure message should go to the named failure
gqueue within the same queue space as the request message.

Using the BEA Tuxedo /Q Component 3-21

3 BEATuxedo /QC Language Programming

The following remaining bits for théags parameter are cleared (set to zero) when
tpdequeue() is called:TPQTORTPQBEFOREMSG|OPQTIME_ABS TPQTIME_REL
TPQEXPTIME_ABSTPQEXPTIME_RE|.andTPQEXPTIME_NONEThese bits are valid
bits for theflags parameter controlling input information faenqueue()

If the call totpdequeue() failed andpermo(5) is set toTPEDIAGNOSTIG a value
indicating the reason for failure is returnedtib>diagnostic . The valid codes for
ctl->diagnostic include those fapenqueue() described in “TPQCTL Structure”
on page 3-6 (except fIMENOSPACENdQMERELEASEand the following additional
codes.

[QMENOM$G
No message was available for dequeuing. Note that it is possible that the
message exists on the queue and another application process has read the
message from the queue. In this case, the message may be put back on the
queue if that other process rolls back the transaction.

[QMEINUSE
When dequeuing a message by message identifier or correlation identifier,
the specified message is in use by another transaction. Otherwise, all
messages currently on the queue are in use by other transactions. This
diagnostic is not returned by queue managers from BEA Tuxedo Release 7.
or later.

Using TPQWAIT

3-22

Whentpdequeue() is called withflags (of theTPQCTLstructure) set to include
TPQWAIT if a message is not immediately available, thQUEUBerver waits for the
arrival, on the queue, of a message that matchapdémpieue() request before
tpdequeue() returns control to the caller. TR&QUEUBrocess sets the waiting
request aside and processes requests from other processes while waiting to satisfy f
first request. ITPQGETBYMSGIBNd/OITPQGETBYCORRIare also specified, the server
waits until a message with the indicated message identifier and/or correlation identifie
becomes available on the queue. If neither of these flags is set, the server waits unt
any message is put onto the queue. The amount of time it waits is controlled by the
caller’s transaction timeout, if the call is in transaction mode, or by tlgtion in the
CLOPTparameter of theMQUEUBerver, if the call is not in transaction mode.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

The TMQUEUBerver can handle a number of waitipdequeue() requests at the

same time, as long as action resources are available to handle the request. If there are
not enough action resources configured for the queue spdapieve() fails. If this

happens on your system, increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services

In considering how best to handle errors when dequeuing it is helpful to differentiate
between two types of errors:

m Errors encountered byMQFORWARD(53s it attempts to dequeue a message to
forward to the requested service

m Errors that occur in the service that processes the request

By default, if a message is dequeued within a transaction and the transaction is rolled
back, then (if theetry parameter is greater than 0) the message ends up back on the
queue and can be dequeued and executed again. It may be desirable to delay for a short
period before retrying to dequeue and execute the message, allowing the transient
problem to clear (for example, allowing for locks in a database to be released by
another transaction). Normally, a limit on the number of retries is also useful to ensure
that an application flaw doesn't cause significant waste of resources. When a queue is
configured by the administrator, both a retry count and a delay period (in seconds) can
be specified. A retry count of 0 implies that no retries are done. After the retry count

is reached, the message is moved to an error queue that is configured by the
administrator for the queue space. If the error queue is not configured, then messages
that have reached the retry count are simply deleted. Messages on the error queue must
be handled by the administrator who must work out a way of notifying the originator
that meets the requirements of the application. The message handling method chosen
should be mostly transparent to the originating program that put the message on the
queue. There is a virtual guarantee that once a message is successfully enqueued it will
be processed according to the parameteeofueue() and the attributes of the

gueue. Notification that a message has been moved to the error queue should be a rare
occurrence in a system that has properly tuned its queue parameters.

A failure queue (normally, different from the queue space error queue) may be
associated with each queued message. This queue is specified on the enqueuing call as
the place to put any failure messages. The failure message for a particular request can
be identified by an application-generated correlation identifier that is associated with
the message when it is enqueued.

Using the BEA Tuxedo /Q Component 3-23

3 BEATuxedo /QC Language Programming

3-24

The default behavior of retrying until success (or a predefined limit) is quite
appropriate when the failure is caused by a transient problem that is later resolved,
allowing the message to be handled appropriately.

There are cases where the problem is not transient. For example, the queued mess:
may request operating on an account that does not exist (and the application is sucl
that it won't come into existence within a reasonable time period if at all). In this case
itis desirable not to waste any resources by trying again. If the application programme
or administrator determines that failures for a particular operation are never transien
then it is simply a matter of setting the retry count to zero, although this will require a
mechanism to constantly clear the queue space error queue of these messages (for
example, a background client that reads the queue periodically). More likely, it is the
case that some problems will be transient (for example, database lock contention) ar
some problems will be permanent (for example, the account doesn't exist) for the san
service.

In the case that the message is processed (dequeued and passed to the application
atpcall)) by TMQFORWARTthere is no mechanism in the information returned by
tpcall() to indicate whether @PESVCFAIL error is caused by a transient or
permanent problem.

As in the case where the application is handling the dequeuing, a simple solution is't
return success for the service, thatgssturn ~ with TPSUCCESSeven though the
operation failed. This allows the transaction to be committed and the message remove
from the queue. If reply messages are being used, the information in the buffer returne
from the service can indicate that the operation failed and the message will be
enqueued on the reply queue. Thade argument ofpreturn can also be used to
return application specific information.

In the case where the service fails and the transaction must be rolled back, it is not cle
whether or noTMQFORWARIhould execute a second transaction to remove the
message from the queue without further processing. By defagiFfORWARIl not
delete a message for a service that faNsQFORWARDYansaction is rolled back and

the message is restored to the queue. A command line option may be specified for
TMQFORWARDAat indicates that a message should be deleted from the queue if the
service fails and a reply message is sent back with length greater than 0. The messe
is deleted in a second transaction. The queue must be configured with a delay time a
retry count for this to work. If the message is associated with a failure queue, the repl
data will be enqueued to the failure queue in the same transaction as the one in whic
the message is deleted from the queue.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD

If your application expects to receive replies to queued messages, here is a procedure
you may want to follow.

1. As a preliminary step, the queue space must include a reply queue and a failure
gqueue. The application must also agree on the content of the correlation identifier.
The service should be coded to retthRSUCCES®n a logical failure and return an
explanatory code in theode argument ofpreturn

2. When you calipenqueue() to put the message on the queueflsgt to turn
on the bits for the following flags.

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID

Fill in the values fororrid , replyqueue andfailurequeue before issuing
the call. On return from the call, sasm@rid

3. When you calipdequeue() to check for a reply, specify the reply queue in the
gname argument and séiags to turn on the bits for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETCORRID

Use the saved correlation identifier to poputateid before issuing the call. If
the call totpdequeue() fails and setgperrno(5) to TPEDIAGNOSTIG then
further information is available igiagnostic . If you receive the error code
QMENOMS@ means that no message was available for dequeuing.

4. Set up another call tpdequeue() . This time havejname point to the name of
the failure queue and sitgs to turn on the bits for the following flags:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID

Populatecorrid ~ with the correlation identifier. When the call returns, check
len to see if data has been received and chegkle to see if the service has
returned a user return code.

Using the BEA Tuxedo /Q Component 3-25

3 BEATuxedo /QC Language Programming

Sequential Processing of Messages

Sequential processing of messages can be achieved by having one service enqueu
message for the next service in the chain before its transaction is committed. The
originating process can track the progress of the sequence with a series of
tpdequeue() calls to theeply_queue , if each member uses the same correlation-ID
and returns a 0 length reply.

Alternatively, word of the successful completion of the entire sequence can be returne
to the originator by using unsolicited notification. To make sure that the last
transaction in the sequence ended witftammit , a job step can be added that calls
tpnotify using the client identifier that is carried in theQCTLstructure returned

from tpdequeue() or in theTPSVCINFOstructure passed to the service. The
originating client must have callegketunsol ~ to name the unsolicited message
handler being used.

Using Queues for Peer-to-Peer Communication

3-26

In all of the foregoing discussion of enqueuing and dequeuing messages there has be
an implicit assumption that queues were being used as an alternative form of
request/response processing. A message does not have to be a service request. Tt
gqueued message facility can transfer data from one process to another as effectively
a service request. This style of communication between applications or clients is calle
peer-to-peer communication.

If it suits your application to use BEA Tuxedo /Q for this purpose, have the
administrator create a separate queue and code your own receiving program for
dequeuingnessagefrom that queue.

Using the BEA Tuxedo /Q Component

CHAPTER

4 BEA Tuxedo /Q

COBOL Language
Programming

m Introduction

m Prerequisite Knowledge

m Where Requests Can Originate
m Emphasis on the Default Case
m Enqueuing Messages

m Dequeuing Messages

m Sequential Processing of Messages

Introduction

This topic provides information about using the ATMI COBOL language functions for
enqueuing and dequeuing messageENQUEUE(3cbl) andTPDEQUEUE(3chl) , plus
some ancillary functions.

Using the BEA Tuxedo /Q Component 4-1

4 BEA Tuxedo /Q COBOL Language Programming

Prerequisite Knowledge

The BEA Tuxedo programmer coding client or server programs for the queued
message facility should be familiar with the COBOL language binding to the BEA
Tuxedo ATMI. General guidance on BEA Tuxedo programming is available in
Programming a BEA Tuxedo Application Using COBOketailed pages on all the
ATMI functions are in th&EA Tuxedo COBOL Function Reference

Where Requests Can Originate

The calls used to place a message on a BEA Tuxedo /Q queue can originate from a
client or server process associated with the application. The list includes:

m Clients or servers on the same machine as the queue space or on another
machine on the network

m Conversational programs, although you cannot have a conversational connectiol
with a queue (or with thEMQUEUE(5) server)

m Workstation clients via a surrogate process on the native side; the administrative
interface is also entirely on the native side

Emphasis on the Default Case

The discussion of BEA Tuxedo /Q programming in this topic primarily reflects the
client-side portion of the figure “Queued Service Invocation” on page 1-2. The figure
shows how a client (or a process acting in the role of a client) queues a message by
calling TPENQUEUE(3chl) and specifying a queue space made available through a
TMQUEUE(5)server. The client later retrieves a reply VIBP®EQUEUE(3cbl) call to
TMQUEUE

4-2 Using the BEA Tuxedo /Q Component

Enqueuing Messages

The figure shows the queued message being dequeued by thers&pFE@RWARD(5)

and sent to an application server for processingT®RGALL(3cbl)). When a reply to
TPCALL s receivedTMQFORWARMqueues the reply message. BecawsgFORWARD
provides an interface between the queue space and existing application services,
further application coding is not required. For that reason, this topic concentrates on
the client-to-queue space side.

Some examples of customization are given after the discussion of the basic model.

Enqueuing Messages

The syntax fomMPENQUEUE()is as follows.

01 TPQUEDEF-REC
COPY TPQUEDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPENQUEUE" USING TPQUEDEF-RECTPTYPE-REC DATA-REC TPSTATUS-REC

When arTPENQUEUE()call is issued it tells the system to store a message on the queue
identified iINnQNAMEN TPQUEDEF-REGN the space identified IQSPACE-NAMEN
TPQUEDEF-RECThe message is DATA-REG andLEN in TPTYPE-REChas the length

of the message. By the use of settingsAQUEDEF-RE(the system is informed how

the call toTPENQUEUE()is to be handled. Further information about the handling of
the enqueued message and replies is provided iINAQE&/EDEF-REGtructure.

TPENQUEUE() Arguments

There are some important arguments to control the operattPEOFQUEUE(3chl) .
Lets look at some of them.

Using the BEA Tuxedo /Q Component 4-3

4 BEA Tuxedo /Q COBOL Language Programming

TPENQUEUE(): the QSPACE-NAME in TPQUEDEF-REC Argument

4-4

QSPACE-NAMEdentifies a queue space previously created by the administrator. Whern
a server is defined in tt®ERVERSsection of the configuration file, the service names

it offers are aliases for the actual queue space name (which is specified as part of tt
OPENINFOparameter in theROUPSection). For example, when your application uses
the serveMMQUEURNhe value pointed at bySPACE-NAMES the name of a service
advertised byfMQUEUEIf no service aliases are defined, the name of the default
service is the same as the server naQUEUEIN this case the configuration file

might include the following.

TMQUEUE
SRVGRP = QUE1 SRVID =1
GRACE =0 RESTART =Y CONV =N
CLOPT ="-A"
or
CLOPT ="-s TMQUEUE"

The entry for server grou@UElhas arDPENINFOparameter that specifies the resource
manager, the pathname of the device and the queue space namePRIE-NAME
argument in a client program then looks like this.

01 TPQUEDEF-REC.
COPY TPQUEDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 USER-DATA-REC PIC X(100).
*

*
MOVE LOW-VALUES TO TPQUEDEF-REC.
MOVE "TMQUEUE" TO QSPACE-NAME IN TPQUEDEF-REC.
MOVE "STRING" TO QNAME IN TPQUEDEF-REC.
SET TPTRAN IN TPQUEDEF-REC TO TRUE.
SET TPBLOCK IN TPQUEDEF-REC TO TRUE.
SET TPTIME IN TPQUEDEF-REC TO TRUE.
SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.
MOVE LOW-VALUES TO TPTYPE-REC.
MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.
MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.
CALL "TPENQUEUE" USING
TPQUEDEF-REC
TPTYPE-REC
USER-DATA-REC
TPSTATUS-REC.

Using the BEA Tuxedo /Q Component

Enqueuing Messages

The example shown on thMQUEUE(5)reference page shows how alias service
names can be included when the server is built and specified in the configuration file.
The sample program in “A Sample Application” on page A-1, also specifies an alias
service name.

TPENQUEUE(): the QNAME in TPQUEDEF-REC Argument

When message queues are being used within a queue space to invoke services, they are
named according to application services that process the requestseontains such

a value; an exception in whicpNAMES not an application service is described in
“Procedure for Dequeuing Replies from Services Invoked Through

TMQFORWARD?” on page 4-29.

TPENQUEUE(): the DATA-REC and LEN in TPTYPE-REC Arguments

DATA-RECcontains the message to be processedin TPTYPE-REQgives the length

of the message. Some BEA Tuxedo record typiaA, for example) do not require
LENto be specified; in such cases, the argument is ignoreBECIfYPEN TPTYPE-REC

is SPACES DATA-RECandLEN are ignored and the message is enqueued with no data
portion.

TPENQUEUE(): the Settings in TPQUEDEF-REC

Settings iINTPQUEDEF-REGre used to tell the BEA Tuxedo system how the
TPENQUEUE()call is handled; the following are valid settings:

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message is not
enqueued within the caller’s transaction. A caller in transaction mode that sets
this to true is still subject to the transaction timeout (and no other). If message
enqueuing fails that was invoked with this setting, the caller’s transaction is
not affected. EitheTPNOTRANI TPTRANMuUSt be set.

TPTRAN
If the caller is in transaction mode, this setting specifies that the enqueuing of
the message is to be done within the same transaction. ERReTRANT
TPTRANMuSst be set.

Using the BEA Tuxedo /Q Component 4-5

4 BEA Tuxedo /Q COBOL Language Programming

TPNOBLOCK
The message is not enqueued if a blocking condition exiSBNIBBLOCHKS
set and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call failstaadno(5) is set to
TPEBLOCK If TPNOBLOCHKs set and a blocking condition exists because the
target queue is openedclusivelyby another application, the call fails,
tperrmo() is set toTPEDIAGNOSTIG and the diagnostic field of thi@QCTL
structure is set tQMESHAREN the latter case, the other application, which is
based on a BEA product other than the BEA Tuxedo system, opened the
gueue for exclusive read and/or write using the Queuing Services API
(QSAPI). EitherTPNOBLOCHKTr TPBLOCKmust be set.

TPBLOCK
WhenTPBLOCKis set and a blocking condition exists, the caller blocks until
the condition subsides or a timeout occurs (either transaction or blocking
timeout). EithelTPNOBLOCKTr TPBLOCKmMust be set.

TPNOTIME
This setting asks that the call be immune to blocking timeouts; transaction
timeouts may still occur. Eith@PNOTIMEOr TPTIME must be set.

TPTIME

This setting asks that the call will receive blocking timeouts. Either
TPNOTIMEOr TPTIME must be set.

TPSIGRSTRT
This setting says that any underlying system calls that are interrupted by a
signal should be reissued. EitT®SIGRSTRTOr TPNOSIGRSTRTNust be set.

TPNOSIGRSTRT
This setting says that any underlying system calls that are interrupted by a
signal should not be reissued. The call fails andBBSTATUS to
TPEGOTSIG EitherTPSIGRSTRTor TPNOSIGRSTRTnust be set.

TPQUEDEF-REC Structure

The TPQUEDEF-REGtructure has members that are used by the application and by the
BEA Tuxedo system to pass parameters in both directions between application
programs and the queued message facility. It is defined in the C@B®1file. The

client that callsSTPQUEDEF-RE@Ises settings to mark members the application wants

4-6 Using the BEA Tuxedo /Q Component

Enqueuing Messages

the system to fill in. The structure is also used BPREQUEUE() some of the members
do not come into play until the application calls that function. The complete structure
is shown in the following listing.

Listing 4-1 The TPQUEDEF-REC Structure

05 TPBLOCK-FLAG PIC S9(9) COMP-5.

88 TPBLOCK VALUE 0.

88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.

88 TPTRAN VALUE 0.

88 TPNOTRAN VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.

88 TPTIME VALUE 0.

88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.

88 TPSIGRSTRT VALUE 1.

05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
88 TPCHANGE VALUE 0.
88 TPNOCHANGE VALUE 1.

05 TPQUE-ORDER-FLAG PIC S9(9) COMP-5.
88 TPQDEFAULT VALUE 0.
88 TPQTOP VALUE 1.

88 TPQBEFOREMSGID VALUE 2.

05 TPQUE-TIME-FLAG PIC S9(9) COMP-5.
88 TPQNOTIME VALUE 0.
88 TPQTIME-ABS VALUE 1.
88 TPQTIME-REL VALUE 2.

05 TPQUE-PRIORITY-FLAG PIC S9(9) COMP-5.
88 TPQNOPRIORITY VALUE 0.
88 TPQPRIORITY VALUE 1.

05 TPQUE-CORRID-FLAG PIC S9(9) COMP-5.
88 TPQNOCORRID VALUE 0.
88 TPQCORRID VALUE 1.

05 TPQUE-REPLYQ-FLAG PIC S9(9) COMP-5.
88 TPQNOREPLYQ VALUE 0.
88 TPQREPLYQ VALUE 1.

05 TPQUE-FAILQ-FLAG PIC S9(9) COMP-5.
88 TPQNOFAILUREQ VALUE 0.
88 TPQFAILUREQ VALUE 1.

05 TPQUE-MSGID-FLAG PIC S9(9) COMP-5.

88 TPQNOMSGID VALUE 0.
88 TPQMSGID VALUE 1.

05 TPQUE-GETBY-FLAG PIC S9(9) COMP-5.
88 TPQGETNEXT VALUE 0.

Using the BEA Tuxedo /Q Component 4-7

4 BEA Tuxedo /Q COBOL Language Programming

88 TPQGETBYMSGIDOLD VALUE 1.
88 TPQGETBYCORRIDOLD VALUE 2.
88 TPQGETBYMSGID VALUE 3.
88 TPQGETBYCORRID VALUE 4.
05 TPQUE-WAIT-FLAG PIC S9(9) COMP-5.
88 TPQNOWAIT VALUE 0.
88 TPQWAIT VALUE 1.
05 TPQUE-DELIVERY-FLAG PIC S9(9) COMP-5.
88 TPQNODELIVERYQOS VALUE 0.
88 TPQDELIVERYQOS VALUE 1.
05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
88 TPQQOSDELIVERYDEFAULTPERSIST VALUE 0.
88 TPQQOSDELIVERYPERSISTENT VALUE 1.
88 TPQQOSDELIVERYNONPERSISTENT VALUE 2.
05 TPQUE-REPLY-FLAG PIC S9(9) COMP-5.
88 TPQNOREPLYQOS VALUE 0.
88 TPQREPLYQOS VALUE 1.
05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.
88 TPQQOSREPLYDEFAULTPERSIST VALUE 0.
88 TPQQOSREPLYPERSISTENT VALUE 1.
88 TPQQOSREPLYNONPERSISTENT VALUE 2.
05 TPQUE-EXPTIME-FLAG PIC S9(9) COMP-5.
88 TPQNOEXPTIME VALUE 0.
88 TPQEXPTIME-ABS VALUE 1.
88 TPQEXPTIME-REL VALUE 2.
88 TPQEXPTIME-NONE VALUE 3.
05 TPQUE-PEEK-FLAG PIC S9(9) COMP-5.

88 TPQNOPEEK VALUE 0.
88 TPQPEEK VALUE 1.
05 DIAGNOSTIC PIC S9(9) COMP-5.
88 QMEINVAL VALUE -1.
88 QMEBADRMID VALUE -2.
88 QMENOTOPEN VALUE -3.
88 QMETRAN VALUE -4.
88 QMEBADMSGID VALUE -5.
88 QMESYSTEM VALUE -6.
88 QMEOS VALUE -7.
88 QMEABORTED VALUE -8.
88 QMEPROTO VALUE -9.
88 QMEBADQUEUE VALUE -10.
88 QMENOMSG VALUE -11.
88 QMEINUSE VALUE -12.
88 QMENOSPACE VALUE -13.
88 QMERELEASE VALUE -14.
88 QMEINVHANDLE VALUE -15.
88 QMESHARE VALUE -16.
05 DEQ-TIME PIC 9(9) COMP-5.
05 EXP-TIME PIC 9(9) COMP-5.
05 PRIORITY PIC S9(9) COMP-5.

4-8 Using the BEA Tuxedo /Q Component

Enqueuing Messages

05 MSGID PIC X(32).
05 CORRID PIC X(32).
05 QNAME PIC X(15).
05 QSPACE-NAME PIC X(15).
05 REPLYQUEUE PIC X(15).

05 FAILUREQUEUE PIC X(15).

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.
05 APPL-RETURN-CODE PIC S9(9) COMP-5.

05 APPKEY PIC S9(9) COMP-5.

The following is a list of valid settings for the parameters controlling input information
for TPENQUEUE

TPQTOP

Setting this value indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue ordering. SBPQDEFAULTO use default queue orderingQTOR
TPQBEFOREMSG|mr TPQDEFAULTNUS be set.

TPQBEFOREMSGID

Setting this value indicates that the queue ordering be overridden and the
message placed in the queue before the message identifiestay This
request may not be granted depending on whether or not the queue was
configured to allow overriding the queue ordering. B&)DEFAULTO use
default queue orderin@PQTOPTPQBEFOREMSG|mr TPQDEFAULuUSt be
set.

Note that the entire 32 bytes of the message identifier value are significant, so
the value identified bSGIDmust be completely initialized (for example,
padded with spaces).

TPQTIME-ABS

If this value is set, the message is made available after the time specified by
DEQ-TIME. DEQ-TIME is an absolute time value as generatednyy (2) or

mktime (3C) (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970). SERQNOTIMEf neither an absolute or

relative time value is setPQTIME-ABS, TPQTIME-REL, or TPQNOTIMENUSt

be set. The absolute time is determined by the clock on the machine where the
gueue manager process resides.

Using the BEA Tuxedo /Q Component 4-9

4 BEA Tuxedo /Q COBOL Language Programming

4-10

TPQTIME-REL

If this value is set, the message is made available after a time relative to the
completion of the enqueuing operati@EQ-TIME specifies the number of
seconds to delay after the enqueuing completes before the submitted messal
should be available. SEPQNOTIMETf neither an absolute or relative time
value is setTPQTIME-ABS, TPQTIME-REL, or TPQNOTIMBEMuSt be set.

TPQPRIORITY

If this value is set, the priority at which the message should be enqueued is
stored inPRIORITY. The priority must be in the range 1 to 100, inclusive. The
higher the number, the higher the priority (that is, a message with a higher
number is dequeued before a message with a lower number). For queues n
ordered by priority, this value is informational TFQNOPRIORITYis set, the
priority for the message is 50 by default.

TPQCORRID

If this value is set, the correlation identifier value specifiecd@RRIDis

available when a message is dequeued WABEQUEUE() This identifier
accompanies any reply or failure message that is queued so that an applicatic
can correlate a reply with a particular request TB&INOCORRIf a

correlation identifier is not available.

Note that the entire 32 bytes of the correlation identifier value are significant,
so the value specified @ORRIDmMust be completely initialized (for example,
padded with spaces).

TPQREPLYQ

If this value is set, a reply queue nameREPLYQUEUIS associated with the
queued message. Any reply to the message is queued to the named queue
within the same queue space as the request messageQBIEIREPLY® a

reply queue name is not available.

TPQFAILUREQ

If this value is set, a failure queue nameBAILUREQUEUEHS associated with

the queued message. If (1) the enqueued message is processed by
TMQFORWARD()2) TMQFORWARIaS started with thel option, and (3) the
service fails and returns a non-null reply, a failure message consisting of the
reply and its associateglrcode is enqueued to the named queue within the
same queue space as the original request message@&EIFAILUREGQF a
failure queue name is not available.

Using the BEA Tuxedo /Q Component

Enqueuing Messages

TPQDELIVERYQOS

TPQREPLYQOS
If TPQDELIVERYQO$ set, the flags specified by
TPQUEQOS-DELIVERY-FLAGoNtrol the quality of service for message
delivery. One of the following mutually exclusive flags must be set:
TPQQOSDELIVERYDEFAULTPERSISTPQQOSDELIVERYPERSISTEN DI
TPQQOSDELIVERYNONPERSISTENT TPQDELIVERYQOS$s not set,
TPQNODELIVERYQO®USt be set. WheTPQNODELIVERYQOS set, the
default delivery policy of the target queue dictates the delivery quality of
service for the message.

If TPQREPLYQO set, the flags specified BPQUEQOS-REPLY-FLAGoONtrol
the quality of service for reply message delivery for any reply. One of the
following mutually exclusive flags must be set:
TPQQOSREPLYDEFAULTPERSISTPQQOSREPLYPERSISTEN®Dr
TPQQOSREPLYNONPERSISTEN'heTPQREPLYQO#ag is used when a reply
is returned from messages processetd@FORWARApplications not using
TMQFORWARD invoke services may use thBPQREPLYQOSflag as a hint for
their own reply mechanism.

If TPQREPLYQO®& not setTPQNOREPLYQQ8ust be set. When
TPQNOREPLYQQGS set, the default delivery policy of tREPLYQUEURueue
dictates the delivery quality of service for any reply. Note that the default
delivery policy is determined when the reply to a message is enqueued. That
is, if the default delivery policy of the reply queue is modified between the
time that the original message is enqueued and the reply to the message is
enqueued, the policy used is the one in effect when the reply is finally
enqueued.

The validTPQUEQOS-DELIVERY-FLA@GNdTPQUEQOS-REPLY-FLAdags
are:

TPQQOSDELIVERYDEFAULTPERSIST

TPQQOSREPLYDEFAULTPERSIST
These flags specify that the message is to be delivered using the
default delivery policy specified on the target or reply queue.

TPQQOSDELIVERYPERSISTENT

TPQQOSREPLYPERSISTENT
These flags specify that the message is to be delivered in a persistent
manner using the disk-based delivery method. When specified, these
flags override the default delivery policy specified on the target or
reply queue.

Using the BEA Tuxedo /Q Component 4-11

4 BEA Tuxedo /Q COBOL Language Programming

TPQQOSDELIVERYNONPERSISTENT

TPQQOSREPLYNONPERSISTENT
These flags specify that the message is to be delivered in a
non-persistent manner using the memory-based delivery method;
the message is queued in memory until it is dequeued. When
specified, these flags override the default delivery policy specified
on the target or reply queue.

If the caller is transactional, non-persistent messages are enqueuec
within the caller’s transaction, however, non-persistent messages
are lost if the system is shut down or crashes or the IPC shared
memory for the queue space is removed.

TPQEXPTIME-ABS
If this value is set, the message has an absolute expiration time, which is thi
absolute time when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where
the queue manager process resides.

The absolute expiration time is specified by the value storEdPATIME.
EXP-TIME must be set to an absolute time generateanay(2) or

mktime (3C) (the number of seconds since 00:00:00 Universal Coordinated
Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue
operation, the operation succeeds, but the message is not counted for the
purpose of calculating thresholds. If the expiration time is before the message
availability time, the message is not available for dequeuing unless either the
availability or expiration time is changed so that the availability time is before
the expiration time. In addition, these messages are removed from the queu
at expiration time even if they were never available for dequeuing. If a
message expires during a transaction, the expiration does not cause the
transaction to fail. Messages that expire while being enqueued or dequeuec
within a transaction are removed from the queue when the transaction ends
There is no acknowledgment that the message has expired.

One of the following must be s@PQEXPTIME-ABS TPQEXPTIME-REL
TPQEXPTIME-NONEOr TPQNOEXPTIME

TPQEXPTIME-REL
If this value is set, the message has a relative expiration time, which is the
number of secondsfter the message arrives at the queue that the message is

4-12 Using the BEA Tuxedo /Q Component

Enqueuing Messages

removed from the queue. The relative expiration time is specified by the value
stored inEXP-TIME.

If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is
changed so that the availability time is before the expiration time. In addition,
these messages are removed from the queue at expiration time even if they
were never available for dequeuing. The expiration of a message during a
transaction does cause the transaction to fail. Messages that expire while
being enqueued or dequeued within a transaction are removed from the queue
when the transaction ends. There is no acknowledgment that the message has
expired.

One of the following must be s@PQEXPTIME-ABS TPQEXPTIME-REL
TPQEXPTIME-NONEOr TPQNOEXPTIME

TPQEXPTIME-NONE
Setting this value indicates that the message should not expire. This flag
overrides any default expiration policy associated with the target queue. You
can remove a message by dequeuing it or by deleting it via an administrative
interface. One of the following must be SERQEXPTIME-ABS
TPQEXPTIME-REL TPQEXPTIME-NONEOr TPQNOEXPTIME

TPQNOEXPTIME
Setting this value specifies that the default expiration time associated with the
target queue applies to the message. One of the following must be set:
TPQEXPTIME-ABS TPQEXPTIME-REL TPQEXPTIME-NONEOr
TPQNOEXPTIME

Additionally, theAPPL-RETURN-CODEmember ofTPQUEDEF-RE@an be set with a
user-return code. This value is returned to the application thatreaiiBQUEUE()to
dequeue the message.

As output fromTPENQUEUE() the following may be set in thHePQUEDEF-REC
structure.

05 DIAGNOSTIC PIC S9(9) COMP-5.
05 MSGID PIC X(32).

The following is a valid setting inPQUEDEF-RE€onNtrolling output information from
TPENQUEUE() If this setting is true wheTPENQUEUE()is called, the BEA Tuxedo /Q
serverTMQUEUE(5)populates the associated element in the record with a message
identifier. If this setting is not true wha®ENQUEUE()is called,TMQUEUE()doesnot
populate the associated element in the record with a message identifier.

Using the BEA Tuxedo /Q Component 4-13

4 BEA Tuxedo /Q COBOL Language Programming

4-14

TPQMSGID
If this value is set and the call TPENQUEUE()is successful, the message
identifier is stored iMSGID The entire 32 bytes of the message identifier
value are significant, so the value storet8GIDis completely initialized
(for example, padded with null characters). The actual padding character use
for initialization varies between releases of the BEA Tuxedo /Q component.
If TPQNOMSGIIs set, the message identifier is not available.

The remaining members of the control structure are not used on input to
TPENQUEUE()

If the call toTPENQUEUE()fails andTP-STATUS is set toTPEDIAGNOSTIG a value
indicating the reason for failure is returneiIAGNOSTIC The following are the
possible values.

[QMEINVAL
An invalid setting value was specified.

[QMEBADRMID
An invalid resource manager identifier was specified.

[QMENOTOPEN
The resource manager is not currently open.

[QMETRAN
The call was not in transaction mode or was made witlRN©TRAMNetting
and an error occurred trying to start a transaction in which to enqueue the
message. This diagnostic is not returned by a queue manager from BEA
Tuxedo Release 7.1 or later.

[QMEBADMSGID
An invalid message identifier was specified.

[QMESYSTEM
A system error has occurred. The exact nature of the error is written to a loc
file.

[QMEOB
An operating system error has occurred.

[QMEABORTED
The operation was aborted. If the aborted operation was being executed
within a global transaction, the global transaction is marked rollback-only.
Otherwise, the queue manager aborts the operation.

Using the BEA Tuxedo /Q Component

Enqueuing Messages

[QMEPROTO
An enqueue was done when the transaction state was not active.

[QMEBADQUEVE
An invalid or deleted queue name was specified.

[QMENOSPAGE
Due to an insufficient resource, such as no space on the queue, the message
with its required quality of service (persistent or non-persistent storage) was
not enqueuedMENOSPAQGE returned when any of the following configured
resources is exceeded: (1) the amount of disk (persistent) space allotted to the
gqueue space, (2) the amount of memory (non-persistent) space allotted to the
gqueue space, (3) the maximum number of simultaneously active transactions
allowed for the queue space, (4) the maximum number of messages that the
gueue space can contain at any one time, (5) the maximum number of
concurrent actions that the Queuing Services component can handle, or (6)
the maximum number of authenticated users that may concurrently use the
Queuing Services component.

[QMERELEASE
An attempt was made to enqueue a message to a queue manager that is from
a version of the BEA Tuxedo system that does not support a newer feature.

[QMESHARE
When enqueuing a message from a specified queue, the specified queue is
openeckxclusivelypy another application. The other application is one based
on a BEA product other than the BEA Tuxedo system that opened the queue
for exclusive read and/or write using the Queuing Services API (QSAPI).

Overriding the Queue Order

If the administrator, in creating a queue, alloMPENQUEUE()calls to override the

order of messages on the queue, you have two mutually exclusive ways to use the
override capability. You can specify that the message is to be placed at the top of the
queue by settingPQTOFor you can specify that it be placed ahead of a specific
message by settintPQBEFOREMSGIBNd settingSGIDto the ID of the message you

wish to precede. This assumes that you saved the message-ID from a previous call in
order to be able to use it here. Your administrator must tell you what the queue
supports; it can be created to allow either or both of these overrides, or to allow neither.

Using the BEA Tuxedo /Q Component 4-15

4 BEA Tuxedo /Q COBOL Language Programming

Overriding the Queue Priority

You can set a value PRIORITY to specify the priority for the message. The value
must be in the range 1 to 100; the higher the number, the higher the priority, unlike
values specified with the UNIice command. IPRIORITY was not one of the queue
ordering parameters, setting a priority here has no effect on the dequeuing order. Tt
priority value is retained however, so that it can be inspected when the message is
dequeued.

Setting a Message Availability Time

4-16

You can specify ilDEQ-TIME either an absolute time or a time relative to the
completion of the enqueuing operation at which the message is made available. Yol
set eitheTPQTIME-ABS or TPQTIME-REL to indicate how the value should be treated.

A queue may be created witme as a queue-ordering criterion, in which case
messages are ordered by the message availability time.

The following example shows how to enqueue a message with a relative time. The
sample message will become available sixty seconds in the future.

01 TPQUEDEF-REC.
COPY TPQUEDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 USER-DATA-REC PIC X(100).
*

*
MOVE LOW-VALUES TO TPQUEDEF-REC.
MOVE "QSPACE1" TO QSPACE-NAME IN TPQUEDEF-REC.
MOVE "Q1" TO QNAME IN TPQUEDEF-REC.
SET TPTRAN IN TPQUEDEF-REC TO TRUE.
SET TPBLOCK IN TPQUEDEF-REC TO TRUE.
SET TPTIME IN TPQUEDEF-REC TO TRUE.
SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.
SET TPQDEFAULT IN TPQUEDEF-REC TO TRUE.
SET TPQTIME-REL IN TPQUEDEF-REC TO TRUE.
MOVE 60 TO DEQ-TIME IN TPQUEDEF-REC.
SET TPQNOPRIORITY IN TPQUEDEF-REC TO TRUE.
SET TPQNOCORRID IN TPQUEDEF-REC TO TRUE.
SET TPQNOREPLYQ IN TPQUEDEF-REC TO TRUE.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

SET TPONOFAILUREQ IN TPQUEDEF-REC TO TRUE.
SET TPQMSGID IN TPQUEDEF-REC TO TRUE.
MOVE LOW-VALUES TO TPTYPE-REC.
MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.
MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.
CALL "TPENQUEUE" USING
TPQUEDEF-REC
TPTYPE-REC
USER-DATA-REC
TPSTATUS-REC.

TPENQUEUE() and Transactions

If the caller ofTPENQUEUE()is in transaction mode arm&®TRANiIs set, then the
enqueuing is done within the caller's transaction. The caller knows for certain from the
success or failure GfPENQUEUE()whether the message was enqueued or not. If the
call succeeds, the message is guaranteed to be on the queue. If the call fails, the
transaction is rolled back, including the part where the message was placed on the
queue.

If the caller of TPENQUEUE()is not in transaction mode orliPNOTRANS set, the

message is enqueued outside of the caller’s transaction. If the TRENQUEUE()

returns success, the message is guaranteed to be on the queue. If the call to
TPENQUEUE()fails with a communication error or with a timeout, the caller is left in
doubt about whether the failure occurred before or after the message was enqueued.

Note that specifyingPNOTRANvhile the caller is not in transaction mode has no
meaning.

Dequeuing Messages

The syntax fomMPDEQUEUE()is as follows.

01 TPQUEDEF-REC
COPY TPQUEDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC

Using the BEA Tuxedo /Q Component 4-17

4 BEA Tuxedo /Q COBOL Language Programming

COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPDEQUEUE" USING TPQUEDEF-RECTPTYPE-REC DATA-REC TPSTATUS-REC

When this call is issued it tells the system to dequeue a message frQrAtEN
TPQUEDEF-RE@|ueue, in the queue space nam&iPACE-NAMIN TPQUEDEF-REC

The message is placedDATA-REC LEN in TPTYPE-RECIS set to the length of the
data. IfLENis O on return fronTPDEQUEUE() the message had no data portion. By the
use of settings iMPQUEDEF-REChe system is informed how the callMPDEQUEUE()

is to be handled.

TPDEQUEUE() Arguments

There are some important arguments to control the operatTtFDEQUEUE(3cbl) .
Let's look at some of them.

TPDEQUEUE(): the QSPACE-NAME in TPQUEDEF-REC
Argument

4-18

QSPACE-NAMEdentifies a queue space previously created by the administrator. Whern
the TMQUEUBerver is defined in thleBERVERSsection of the configuration file, the
service names it offers are aliases for the actual queue space name (which is specifi
as part of th@©PENINFOparameter in theROUPSection). For example, when your
application uses the serveMQUEURhe value pointed at lySPACE-NAMES the name

of a service advertised MWQUEUHE no service aliases are defined, the name of the
default service is the same as that of the serwmE@UEUHN this case the configuration

file may include the following.

TMQUEUE
SRVGRP = QUE1 SRVID =1
GRACE =0 RESTART =Y CONV =N
CLOPT ="-A"
or
CLOPT ="-s TMQUEUE"

Using the BEA Tuxedo /Q Component

Dequeuing Messages

The entry for server groupUELhas arOPENINFOparameter that specifies the resource
manager, the path name of the device, and the queue space na@8PABE-NAME
argument in a client program then looks like the following:

01 TPQUEDEF-REC.
COPY TPQUEDEF.
01 TPTYPE-REC.
COPY TPTYPE.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 USER-DATA-REC PIC X(100).
*

*
*

MOVE LOW-VALUES TO TPQUEDEF-REC.
MOVE "TMQUEUE" TO QSPACE-NAME IN TPQUEDEF-REC.
MOVE "REPLYQ" TO QNAME IN TPQUEDEF-REC.
SET TPTRAN IN TPQUEDEF-REC TO TRUE.
SET TPBLOCK IN TPQUEDEF-REC TO TRUE.
SET TPTIME IN TPQUEDEF-REC TO TRUE.
SET TPSIGRSTRT IN TPQUEDEF-REC TO TRUE.
MOVE LOW-VALUES TO TPTYPE-REC.
MOVE "STRING" TO REC-TYPE IN TPTYPE-REC.
MOVE LENGTH OF USER-DATA-REC TO LEN IN TPTYPE-REC.
CALL "TPDEQUEUE" USING
TPQUEDEF-REC
TPTYPE-REC
USER-DATA-REC
TPSTATUS-REC.

The example shown on thMQUEUE(5)reference page shows how alias service
names can be included when the server is built and specified in the configuration file.
The sample program in “A Sample Application” on page A-1, also specifies an alias
service name.

TPDEQUEUE(): the QNAME in TPQUEDEF-REC Argument

Queue names in a queue space must be agreed upon by the applications that will access
the queue space. This requirement is especially important for reply queprsME

refers to a reply queue, the administrator creates it (and often an error queue) in the
same manner that he or she creates any other qomd#tEontains the name of the

gueue from which to retrieve a message or reply.

Using the BEA Tuxedo /Q Component 4-19

4 BEA Tuxedo /Q COBOL Language Programming

TPDEQUEUE(): the DATA-REC and LEN in TPTYPE-REC Arguments

These arguments have a different flavor than they dtP@NQUEUE() DATA-RECIS
where the system is to place the message being dequeued.

It is an error folLENto be 0 on input. WhelmPDEQUEUE()returnsLEN contains the
length of the data retrieved. If it is O, it means that the reply had no data portion. This
can be alegitimate and successful reply in some applications; receiving even a 0 leng
reply can be used to show successful processing of the enqueued request. If you wi
to know whether the record has changed from before the ce#DBQUEUE() save

the length prior to the call ttPDEQUEUE()and compare it toEN after the call
completes. If the reply is larger thaBN, thenDATA-RECwiIll contain only as many

bytes as will fit. The remainder are discarded aROEQUEUE()fails with

TPTRUNCATE

TPDEQUEUE(): the Settings in TPQUEDEF-REC

4-20

Settings INTPQUEDEF-REG@re used to tell the BEA Tuxedo system how the
TPDEQUEUE()call is handled; the following are valid settings:

TPNOTRAN
If the caller is in transaction mode, this setting specifies that the message is t
be dequeued outside of the caller’s transaction. EfthROTRANTI TPTRAN
must be set.

TPTRAN
If the caller is in transaction mode, this setting specifies that the message is t
be dequeued within the same transaction. EtRSIOTRANI TPTRANMuUSt
be set.

TPNOBLOCK
The message is not dequeued if a blocking condition exiSBNIBBLOCKS
set and a blocking condition exists such as the internal buffers into which the
message is transferred are full, the call failstaadno(5) is set to
TPEBLOCK If TPNOBLOCHKs set and a blocking condition exists because the
target queue is openedclusivelyby another application, the call fails,
tperrmo() is set toTPEDIAGNOSTIG and the diagnostic field of thi@QCTL
structure is set tQMESHAREN the latter case, the other application, which is
based on a BEA product other than the BEA Tuxedo system, opened the
gueue for exclusive read and/or write using the Queuing Services API
(QSAPI). EitherTPNOBLOCHKr TPBLOCKmust be set.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

TPBLOCK
WhenTPBLOCKis set and a blocking condition exists, the caller blocks until
the condition subsides or a timeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if theTPQWAITsetting is specified. Eith@PNOBLOCKr TPBLOCKmust
be set.

TPNOTIME
Setting this value asks that the call be immune to blocking timeouts;
transaction timeouts may still occur. EitmM®NOTIMEOr TPTIME must be set.

TPTIME
Setting this value asks that the call receive blocking timeouts. Either
TPNOTIMEOr TPTIME must be set.

TPNOCHANGE
If this value is set, the record typem4TA-RECs not allowed to change. That
is, the type and sub-type of the received record must match the type and
subtype of the recordATA-REC EitherTPNOCHANG@&r TPCHANGENUSt be
set.

TPCHANGE
By default, if a record is received that differs in type from the record
DATA-REG DATA-RECs record type changes to the received record's type so
long as the receiver recognizes the incoming record type. That is, the type and
sub-type of the received record must match the type and sub-type of the
record DATA-REC EitherTPNOCHANG@&" TPCHANGENuUSst be set.

TPSIGRSTRT
Setting this value says that any underlying system calls that are interrupted by
a signal should be reissued. EitMeSIGRSTRTor TPNOSIGRSTRTMust be
set.

TPNOSIGRSTRT
If this value is set and a signal is received, the call fails andBe&ISATUS
to TPEGOTSIG EitherTPSIGRSTRTor TPNOSIGRSTRTMust be set.

Using the BEA Tuxedo /Q Component 4-21

4 BEA Tuxedo /Q COBOL Language Programming

TPQUEDEF-REC Structure

4-22

The first argument tdPDEQUEUE()is the structurd PQUEDEF-RECThe
TPQUEDEF-RECStructure has members that are used by the application and by the
BEA Tuxedo system to pass parameters in both directions between application
programs and the queued message facility. The client thatPBIEQUEUE()uses
settings to mark members the application wants the system to fill in. As described
earlier, the structure is also usedTtPENQUEUE() some of the members only apply to
that function. The entire structure is shown in “The TPQUEDEF-REC Structure” on
page 4-7.

As input toTPDEQUEUE() the following elements may be set in TRQUEDEF
structure.

05 MSGID PIC X(32).
05 CORRID PIC X(32).

The following is a list of valid settings iIlPQUEDEF-RE@hat control input for
TPDEQUEUE()

TPQGETNEXT
Setting this value requests that the next message on the queue be dequeue
using the default queue order. One of the following must b8 B@GETNEXT
TPQGETBYMSGIDor TPQGETBYCORRID

TPQGETBYMSGID
Setting this value requests that the message identifis6ybbe dequeued.
The message identifier is returned by a prior callRENQUEUE() Note that
the message identifier is not valid if the message has moved from one queu
to another. Note also that the entire 32 bytes of the message identifier value
are significant, so the value identified kGIDmust be completely
initialized (for example, padded with spaces).

One of the following must be s@PQGETNEXTTPQGETBYMSGLDOr
TPQGETBYCORRID

TPQGETBYCORRID
Setting this value requests that the message identifieDBRIDbe
dequeued. The correlation identifier is specified by the application when
enqueuing the message WitAENQUEUE() Note that the entire 32 bytes of
the correlation identifier value are significant, so the value identified by
CORRIDmMust be completely initialized (for example, padded with spaces).

Using the BEA Tuxedo /Q Component

Dequeuing Messages

One of the following must be saPQGETNEXTTPQGETBYMSGI|Dr
TPQGETBYCORRID

TPQWAIT
Setting this value indicates that an error should not be returned if the queue is
empty. Instead, the process should wait until a message is available. Set
TPQNOWAIT0 not wait until a message is availableTRQWAITIs set in
conjunction withTPQGETBYMSGIDr TPQGETBYCORRIDt indicates that an
error should not be returned if no message with the specified message
identifier or correlation identifier is present in the queue. Instead, the process
should wait until a message meeting the criteria is available. The process is
still subject to the caller’s transaction timeout, or, when not in transaction
mode, the process is still subject to the timeout specified orTMQEEUE
process by the option.

If a message matching the desired criteria is not immediately available and
the configured action resources are exhaustedEQUEURaiIls, TP-STATUS
is set toTPEDIAGNOSTIC andDIAGNOSTICis set toqQMESYSTEM

Note that eachMPDEQUEUE()request specifying thEPQwWAITcontrol

parameter requires that a queue manage@UEUEaction object be available

if a message satisfying the condition is not immediately available. If one is
not available, thePDEQUEUE()request fails. The number of available queue
manager actions are specified when a queue space is created or modified.
When a waiting dequeue request completes, the associated action object
associated is made available for another request.

TPQPEEK
If TPQPEEKs set, the specified message is read but not removed from the
queue. ThE@PNOTRANIag must be set. It is not possible to read messages
enqueued or dequeued within a transaction before the transaction completes.

When a thread is non-destructively dequeuing a messageTesprgEEK the
message may not be seen by other non-blocking dequeuers for the brief time
the system is processing the non-destructive dequeue request. This includes
dequeuers using specific selection criteria (such as message identifier and
correlation identifier) that are looking for the message currently being
non-destructively dequeued.

Using the BEA Tuxedo /Q Component 4-23

4 BEA Tuxedo /Q COBOL Language Programming

On output fromrPDEQUEUE() the following elements may be setiRQUEDEF-REC

05 PRIORITY PIC S9(9) COMP-5.
05MSGID PIC X(32).

05CORRID PIC X(32).

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.
05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

05 REPLYQUEUE PIC X(15).
05 FAILUREQUEUE PIC X(15).
05 DIAGNOSTIC PIC S9(9) COMP-5.

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5
05 APPL-RETURN-CODE PIC S9(9) COMP-5.
05 APPKEY PIC S9(9) COMP-5.

The following is a list of valid settings iIlPQUEDEF-RE@ontrolling output

information fromTPDEQUEUE() For any of these settings, if the setting is true when
TPDEQUEUE()is called, the associated element in the record is populated with the
value provided when the message was queued, and the setting remains true. If the va
is not available (that is, no value was provided when the message was queued) or
setting is not true whePPDEQUEUE()is called, TPDEQUEUE()completes with the

setting not true.

TPQPRIORITY
If this value is set, the call tPDEQUEUE()is successful, and the message
was queued with an explicit priority, then the priority is storePRIORITY.
The priority is in the range 1 to 100, inclusive, and the higher the number, the
higher the priority (that is, a message with a higher number is dequeued
before a message with a lower numberyAQNOPRIORITYS set, the priority
is not available.

Note that if no priority was explicitly specified when the message was
gqueued, the priority for the message is 50.

TPQMSGID
If this value is set and the call tT®PDEQUEUE()is successful, the message
identifier is stored iMSGID The entire 32 bytes of the message identifier
value are significant. FPQNOMSGIIs set, the message identifier is not
available.

TPQCORRID
If this value is set, the call tPDEQUEUE()is successful, and the message
was queued with a correlation identifier, then the correlation identifier is
stored inCORRID The entire 32 bytes of the correlation identifier value are
significant. Any BEA Tuxedo /Q provided reply to a message has the

4-24 Using the BEA Tuxedo /Q Component

Dequeuing Messages

correlation identifier of the original messageTHQNOCORRIIS set, the
correlation identifier is not available.

TPQDELIVERYQOS
If this value is set, the call ttPDEQUEUE()is successful, and the message
was queued with a delivery quality of service, then the flag—
TPQQOSDELIVERYDEFAULTPERSISTPQQOSDELIVERYPERSISTEN DI
TPQQOSDELIVERYNONPERSISTENBpecified by
TPQUEQOS-DELIVERY-FLAGNdicates the delivery quality of service. If
TPQNODELIVERYQOIS set, the delivery quality of service is not available.

Note that if no delivery quality of service was explicitly specified when the
message was queued, the default delivery policy of the target queue dictates
the delivery quality of service for the message.

TPQREPLYQOS
If this value is set, the call ttPDEQUEUE()is successful, and the message
was queued with a reply quality of service, then the flag—
TPQQOSREPLYDEFAULTPERSISTPQQOSREPLYPERSISTENDr
TPQQOSREPLYNONPERSISTENEpecified byTPQUEQOS-REPLY-FLAG
indicates the reply quality of service.TIPQNOREPLYQQS set, the reply
quality of service is not available.

Note that if no reply quality of service was explicitly specified when the
message was queued, the default delivery policy oRER.YQUEUEuUeue
dictates the delivery quality of service for any reply. The default delivery
policy is determined when the reply to a message is enqueued. That is, if the
default delivery policy of the reply queue is modified between the time that
the original message is enqueued and the reply to the message is enqueued,
the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this value is set, the call ttPDEQUEUE()is successful, and the message
was queued with a reply queue, then the name of the reply queue is stored in
REPLYQUEUEANy reply to the message should go to the named reply queue
within the same queue space as the request message@NOREPLY set,
the reply queue is not available.

TPQFAILUREQ
If this value is set, the call ttPDEQUEUE()is successful, and the message
was queued with a failure queue, then the name of the failure queue is stored
in FAILUREQUEUEAnNYy failure message should go to the named failure queue

Using the BEA Tuxedo /Q Component 4-25

4 BEA Tuxedo /Q COBOL Language Programming

within the same queue space as the request messag@NOFAILUREQs
set, the failure queue is not available.

The remaining settings INPQUEDEF-REG@re set to the following values when
TPDEQUEUEY()is called:TPQNOTOPTPQNOBEFOREMSGIDPQNOTIME_ABS
TPQNOTIME_RELTPQNOEXPTIME_ABSPQNOEXPTIME_REland
TPQNOEXPTIME_NONE

If the call toTPDEQUEUE()fails andTP-STATUS is set toTPEDIAGNOSTIG a value
indicating the reason for failure is returnedIAGNOSTIC The valid settings for
DIAGNOSTICinclude those foTPENQUEUE()described in “TPQUEDEF-REC
Structure” on page 4-6 (except QMENOSPACENdQMERELEASEand the following
additional codes.

[QMENOM$G
No message was available for dequeuing. Note that it is possible that the
message exists on the queue and another application process has read the
message from the queue. In this case, the message may be put back on the
queue if that other process rolls back the transaction.

[QMEINUSE
When dequeuing a message by message identifier or correlation identifier,
the specified message is in use by another transaction. Other wise all
messages currently on the queue are in use by other transactions. This
diagnostic is not returned by a queue manager from BEA Tuxedo Release 7.
or later.

Using TPQWAIT

4-26

WhenTPDEQUEUE()is called with flags set to includ®QWAIT if a message is not
immediately available, theMQUEUBerver waits for the arrival, on the queue, of a
message that matches trRDEQUEUE()request beforeéPDEQUEUE()returns control

to the caller. Th@MQUEUProcess sets the waiting request aside and processes
requests from other processes while waiting to satisfy the first request. If
TPQGETBYMSGIRNd/orTPQGETBYCORRIBre also specified, the server waits until a
message with the indicated message identifier and/or correlation identifier becomes
available on the queue. If neither of these flags is set, the server waits until any messa
is put onto the queue. The amount of time it waits is controlled by the caller’s
transaction timeout, if the call is in transaction mode, or bytttaption in theCLOPT
parameter of theMQUEUBerver, if the call is not in transaction mode.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

The TMQUEUBerver can handle a number of waitiftRDPEQUEUE()requests at the
same time, as long as action resources are available to handle the request. If there are
not enough action resources configured for the queue SpRREQUEUE(¥fails. If this
happens on your system, increase the number of action resources for the queue space.

Error Handling When Using TMQFORWARD Services

In considering how best to handle errors when dequeuing it is helpful to differentiate
between two types of errors:

m Errors encountered byMQFORWARD(53s it attempts to dequeue a message to
forward to the requested service

m Errors that occur in the service that processes the request

By default, if a message is dequeued within a transaction and the transaction is rolled
back, then the message ends up back on the queue and can be dequeued and executed
again. It may be desirable to delay for a short period before retrying to dequeue and
execute the message, allowing the transient problem to clear (for example, allowing for
locks in a database to be released by another transaction). Normally, a limit on the
number of retries is also useful to ensure that an application flaw doesn't cause
significant waste of resources. When a queue is configured by the administrator, both
a retry count and a delay period (in seconds) can be specified. A retry count of 0
implies that no retries are done. After the retry count is reached, the message is moved
to an error queue that is configured by the administrator for the queue space. If the error
gueue is not configured, then messages that have reached the retry count are simply
deleted. Messages on the error queue must be handled by the administrator who must
work out a way of notifying the originator that meets the requirements of the
application. The message handling method chosen should be mostly transparent to the
originating program that put the message on the queue. There is a virtual guarantee that
once a message is successfully enqueued it will be processed according to the
parameters ofPENQUEUE()and the attributes of the queue. Notification that a

message has been moved to the error queue should be a rare occurrence in a system
that has properly tuned its queue parameters.

A failure queue (normally, different from the queue space error queue) may be
associated with each queued message. This queue is specified on the enqueuing call as
the place to put any failure messages. The failure message for a particular request can
be identified by an application-generated correlation identifier that is associated with
the message when it is enqueued.

Using the BEA Tuxedo /Q Component 4-27

4 BEA Tuxedo /Q COBOL Language Programming

4-28

The default behavior of retrying until success (or a predefined limit) is quite
appropriate when the failure is caused by a transient problem that is later resolved,
allowing the message to be handled appropriately.

There are cases where the problem is not transient. For example, the queued mess:
may request operating on an account that does not exist (and the application is sucl
that it won't come into existence within a reasonable time period if at all). In this case
itis desirable not to waste any resources by trying again. If the application programme
or administrator determines that failures for a particular operation are never transien
then it is simply a matter of setting the retry count to zero, although this will require a
mechanism to constantly clear the queue space error queue of these messages (for
example, a background client that reads the queue periodically). More likely, it is the
case that some problems will be transient (for example, database lock contention) ar
some problems will be permanent (for example, the account doesn't exist) for the san
service.

In the case that the message is processed (dequeued and passed to the application
aTPCALL) by TMQFORWARIthere is no mechanism in the information returned by
TPCALLto indicate whether 8PESVCFAIL error is caused by a transient or permanent
problem.

As in the case where the application is handling the dequeuing, a simple solution is't
return success for the service, thalfBRETURNvith TPSUCCESSeven though the
operation failed. This allows the transaction to be committed and the message remove
from the queue. If reply messages are being used, the information in the buffer returne
from the service can indicate that the operation failed and the message will be
enqueued on the reply queue. BRPL-CODEIn the TPSVCRET-REG@rgument of
TPRETURNan also be used to return application specific information.

In the case where the service fails and the transaction must be rolled back, it is not cle
whether or noTMQFORWARIhould execute a second transaction to remove the
message from the queue without further processing. By defagif ORWARIIl not
delete a message for a service that falQFORWAROransaction is rolled back and

the message is restored to the queue. A command line option may be specified for
TMQFORWARDAat indicates that a message should be deleted from the queue if the
service fails and a reply message is sent back with length greater than 0. The messe
is deleted in a second transaction. The queue must be configured with a delay time a
retry count for this to work. If the message is associated with a failure queue, the repl
data is enqueued to the failure queue in the same transaction as the one in which th
message is deleted from the queue.

Using the BEA Tuxedo /Q Component

Dequeuing Messages

Procedure for Dequeuing Replies from Services Invoked
Through TMQFORWARD

If your application expects to receive replies to queued messages, here is a procedure
you may want to follow.

1. As a preliminary step, the queue space must include a reply queue and a failure
gqueue. The application must also agree on the content of the correlation identifier.
The service should be coded to retthRSUCCES®n a logical failure and return an
explanatory code in th&PPL-CODEIn the TPSVCRET-RE@rgument of PRETURN

2. When you calfPENQUEUE()to put the message on the queue, set the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID

(Fill in the values foICORRIQ REPLYQUEUBRNAFAILUREQUEUEbefore issuing
the call. On return from the call, sa@®RRID)

3. When you callflPDEQUEUE()to check for a reply, specify the reply queue in
QNAMENd set the following:

TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID

(Use the saved correlation identifier to popula@RRIDbefore issuing the call.

If the call toTPDEQUEUE()fails and set3P-STATUS to TPEDIAGNOSTIG then
further information is available in tHAGNOSTIC settings. If you receive the
error codeQMENOMS® means that no message was available for dequeuing.)

4. Set up another call ttPDEQUEUE() This time have&)NAMBoint to the name of
the failure queue and set the following:
TPQCORRID TPQREPLYQ
TPQFAILUREQ TPQMSGID
TPQGETBYCORRID
PopulateTPQCORRIDwith the correlation identifier. When the call returns, check
LENto see if data has been received and ch@Ek -RETURN-CODEHO see if the
service has returned a user return code.

Using the BEA Tuxedo /Q Component 4-29

4 BEA Tuxedo /Q COBOL Language Programming

Sequential Processing of Messages

Sequential processing of messages can be achieved by having one service enqueu
message for the next service in the chain before its transaction is committed. The
originating process can track the progress of the sequence with a series of
TPDEQUEUE()calls to theeply_queue , if each member uses the same correlation-1D
and returns a 0 length reply.

Alternatively, word of the successful completion of the entire sequence can be returne
to the originator by using unsolicited notification. To make sure that the last
transaction in the sequence ended witiP@OMMIT a job step can be added that calls
TPNOTIFY using the client identifier that is carried in thheQUEDEF-REGtructure. The
originating client must have call@@PSETUNSOIto name the unsolicited message
handler being used.

Using Queues for Peer-to-Peer Communication

4-30

In all of the foregoing discussion of enqueuing and dequeuing messages there has be
an implicit assumption that queues were being used as an alternative form of
request/response processing. A message does not have to be a service request. Tt
gqueued message facility can transfer data from one process to another as effectively
a service request. This style of communication between applications or clients is calle
peer-to-peer communication.

If it suits your application to use BEA Tuxedo /Q for this purpose, have the
administrator create a separate queue and code your own receiving program for
dequeuingnessagefrom that queue.

Using the BEA Tuxedo /Q Component

CHAPTER

A A Sample Application

m Overview

m Prerequisites

m What Is gsample
m Building gsample

m Suggestions for Further Exploration

Overview

The sample application in this topic contains a description of a one-client, one-server
application using BEA Tuxedo /Q callgdample . An interactive form of this
software is distributed with the BEA Tuxedo software.

Prerequisites

Before you can run the sample application, the BEA Tuxedo software must be installed
and built so that the files and commands referred to in this topic are available. If you
are personally responsible for installing the BEA Tuxedo software, consult the
Installing the BEA Tuxedo Systéon information about how to install the BEA

Tuxedo system.

Using the BEA Tuxedo /Q Component A-1

A A sample Application

If the installation has already been done by someone else, you need to know the
pathname of the root directory of the installed software. You also need to have read
and execute permissions on the directories and files in the BEA Tuxedo directory
structure so you can copgample files and execute BEA Tuxedo commands.

What Is gsample

gsample is a very basic BEA Tuxedo application that uses BEA Tuxedo /Q. It has one
application client and server, and uses two system seMMEJEUE(5)and
TMQFORWARD(5)The client call S SMQUEUEO enqueue a message in a queue space
created foysample . The message is dequeuedTMQFORWARINd passed to the
application server. The server converts a string from lower case to upper case and
returns torMQFORWARDMQFORWARIMqueues the reply message. The client
meanwhile has calletMQUEUHRo dequeue the reply. When the reply is received, the
client displays it on the user's screen.

Building qsample

A-2

The following procedure provides instructions on building and runningstireple
application.
1. Make a directory fogsample andcd to it:

mkdir gsampdir
cd gsampdir

This is suggested so you will be able to see clearlysheple files you have
at the start and the additional files you create along the way. Use the standard
shell (bin/sh) or the Korn shell; not the C shefif/csh).

2. Copy thegsample files.

cp $TUXDIR/apps/gsample/* .

Using the BEA Tuxedo /Q Component

Building gsample

You will be editing some of the files and making them executable, so it is best to
begin with a copy of the files rather than the originals delivered with the
software.

List the files.
$ls
README
client.c
crlog
crque
makefile
rmipc
runsample
server.c
setenv
ubb.sample
$
The files that make up the application are:
README
A file that describes the application and how to configure and run it
setenv
A script that sets environment variables
crlog
A script that creates BLOGfile
crque
A script that defines the queue space and queues for the application
makefile
A makefile that creates the executables for the application
client.c
The source code for the client program
server.c
The source code for the server program
ubb.sample

The ASCII form of the configuration file for the application

Using the BEA Tuxedo /Q Component A-3

A A sample Application

runsample
A script that calls all the necessary commands to build and run the
sample application

rmipc
A script that removes the IPC resources for the queue space

4. Edit thesetenv file.

Open thesetenv file and modify theTUXDIR value to the absolute path of the
root directory of the BEA Tuxedo system installation. Remove the angle bracket
charactersq{and>) when editing this value.

Runrunsample .

Therunsample script contains several commands; each command is preceded
by a comment line that describes the purpose of the command.

#set the environment

. .Isetenv

chmod +w ubb.sample

uname=""uname -n™"

ed ubb.sample<<!

g;<uname -n>;s;;${uname};

g;<full path of Tuxedo software>;s;;${TUXDIRY};
g:<full path of APPDIR>;s;;${APPDIR};

w

q
I

#build the client and server
make client server

#create the tuxconfig file
tmloadcf -y ubb.sample
#create the TLOG

Jcrlog

#create the QUE

Jcrque

#boot the application

tmboot -y

#run the client

client

#shutdown the application
tmshutdown -y

#remove the client and server
make clean

#remove the QUE ipc resources
Jrmipc

Using the BEA Tuxedo /Q Component

Suggestions for Further Exploration

#remove all files created
rm tuxconfig QUE stdout stderr TLOG ULOG*

When you run this script you will see a series of messages on your screen that
are generated by the various commands. Included among them are the following
lines.

before: this is a q example
after: THIS IS A Q EXAMPLE

Thebefore: line is a copy of the string thelient enqueues for processing by
server . Theafter: line is whatserver sends back. These two lines prove that
the program worked successfully.

Suggestions for Further Exploration

While it might prove interesting to build and run the sample application using
runserver , you will probably find it more instructive to examine the individual pieces

of the application. In this topic, we suggest some things that we recommend you look
at and try; you will undoubtedly be able to think of others as you explore the
application more closely.

setenv: Set the Environment

The scriptsetenv is an example of a file often used in BEA Tuxedo development.
Three of the variables that are SBUXDIR, APPDIR, andPATH are needed whenever
you are working with the BEA Tuxedo system. Notice that if you are running on a SUN
machine, there is anothieén you must have at the beginning of yewTHvariable.
LD_LIBRARY_PATH SHLIB_PATH, or LIBPATH are important if you are building the
system with shared libraries. The correct variable to use depends on your operating
systemTUXCONFIGmust be set before you can boot the systegmnDMINan be set

in a variable or provided on thgnadmin(1) command line.

Points to consider: should you plan to have such a file where you will be doing your
BEA Tuxedo /Q work? Should you have a command in youfile so that you set
your environment as you log in?

Using the BEA Tuxedo /Q Component A-5

A A sample Application

makefile: Make Your Application

Notice that thenakefile usesbuildserver(1) andbuildclient(1) to build the
server and client, respectively. You can, of course, execute these commands
individually or use the capability ofake to keep the application current.

While we are on the subject of tinekefile , this might be a good time to look through
the.c files for the client and server programs. Of particular interest in connection with
BEA Tuxedo /Q are thgenqueue andtpdequeue calls. Notice particularly the
values for thegspace and thegname arguments. When we look at the configuration
file, we will see where those values come from.

ubb.sample: The ASCII Configuration File

A-6

The three most pertinent entries in the configuration file arettb®@Tparameters for
the TMQUEUBRNdTMQFORWARIRrvers and thePENINFOparameter in theGROUPS
entry. We will extract those items to call them to your attention here:

First the CLOPT parameter from TMQUEUE:
CLOPT ="-s QSPACENAME:TMQUEUE -- "
Then the CLOPT parameter from TMQFORWARD:
CLOPT="-- -i 2 -q STRING"
Finally, the OPENINFO parameter from the QUE1 group:
OPENINFO = "TUXEDO/QM:<APPDIR pathname>/QUE:QSPACE"

ThecCLOPTparameter frolTMQUEUBpecifies a service alias QSPACENAME 00k

back again atlient.c and check thgspace argument ofpenqueue and

tpdequeue . TheCLOPTparameter foTMQFORWARIpecifies a servic8TRING by

means of theg option. This is also the name given to the queue where messages ar
enqgueued for that service and is specified agthee argument ofpenqueue in

client.c

Thetmloadcf(1) ~ command is used to compile the ASCII configuration file into a
TUXCONFIGile.

Using the BEA Tuxedo /Q Component

Suggestions for Further Exploration

crlog: Create the Transaction Log

The scriptircriog invokestmadmin(1) to create a device list entry for theoGand

then create the log for the site specified in our configuration. Because all messages for
the queued message facility are enqueued and dequeued within transactions, you must
have a log in which to keep track of transactions managed hywmseQnserver.

crque: Create the Queue Space and Queues

The script ircrque invokesgmadmin(1) to create the queue space and queues for the
sample application. Notice that the queue space is n@sRACHthat is also the name
specified as the last argument of GRENINFOparameter in the configuration file).
Queues namedTRING andRPLYQare created. In thgspacecreate portion of the
script an error queue is named, but the script does not includg@ae command

to create that queue. That is a modification you might want to make later.

Boot, Run, and Shut Down the Application

After making the application programs, loadifNgXCONFIG and creating the queue
space and queues, the next step is to boot the application and run it. The command to
boot is

tmboot -y

The-y option keepsmboot from prompting for an okay before booting.
The sample application is run simply by entering the command:

client

Thetmshutdown command is used to bring the application down.

Using the BEA Tuxedo /Q Component A-7

A A sample Application

Clean Up

Therunsample script includes three commands that restore the environment to the
state it was in before the script was run. Triae clean command usesiake to
remove the object and executable files for the client and server.

Thermipc command is included because the IPC resources for the queue space are r
automatically removed bynshutdown (which does remove the BEA Tuxedo IPC
resources used by the application). If you lookméyic you will find that it invokes
gmadmin and uses its version of tiperm command, namin@SPACHo identify
resources to be removed.

The final command in the script is the command, which removes a number of files
that are generated by the application. There is no harm in leaving these files; in fact,
you work more with the sample application you will probably want to keep

tuxconfig , QUE andTLOGto save having to recreate them.

A-8 Using the BEA Tuxedo /Q Component

	Copyright
	Contents

	Contents
	1 BEA Tuxedo /Q Overview
	General Description
	Queuing System Components and Tasks
	Administrator Tasks
	Programmer Tasks
	Transaction Management
	Handling Reply Messages
	Error Handling
	Summary

	2 BEA Tuxedo /Q Administration
	Introduction
	Available Sample Program Called qsample

	Configuration
	Specifying the QM Server Group
	Specifying the Message Queue Server
	Queue Space Names, Queue Names, and Service Names
	Specifying the Message Forwarding Server
	Dynamic Configuration

	Creating Queue Spaces and Queues
	Working with qmadmin Commands
	Creating an Entry in the Universal Device List: crdl
	Creating a Queue Space: qspacecreate
	Creating a Queue: qcreate

	Handling Encrypted Message Buffers
	Maintenance of the BEA Tuxedo /Q Feature
	Adding Extents to a Queue Space
	Backing Up or Moving Queue Space
	Moving the Queue Space to a Different Type of Machine
	TMQFORWARD and Non-Global Transactions
	TMQFORWARD and Commit Control
	Handling Transaction Timeout
	TMQFORWARD and Retries for an Unavailable Service

	Windows NT Standard I/O

	3 BEA Tuxedo /Q C Language Programming
	Introduction
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	tpenqueue(3c) Arguments
	TPQCTL Structure
	Setting a Message Availability Time
	tpenqueue() and Transactions

	Dequeuing Messages
	tpdequeue(3c) Arguments
	TPQCTL Structure
	Using TPQWAIT
	Error Handling When Using TMQFORWARD Services
	Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD

	Sequential Processing of Messages
	Using Queues for Peer-to-Peer Communication

	4 BEA Tuxedo /Q COBOL Language Programming
	Introduction
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	TPENQUEUE() Arguments
	TPQUEDEF-REC Structure
	Setting a Message Availability Time
	TPENQUEUE() and Transactions

	Dequeuing Messages
	TPDEQUEUE() Arguments
	TPDEQUEUE(): the QSPACE-NAME in TPQUEDEF-REC Argument
	TPQUEDEF-REC Structure
	Using TPQWAIT
	Error Handling When Using TMQFORWARD Services
	Procedure for Dequeuing Replies from Services Invoked Through TMQFORWARD

	Sequential Processing of Messages
	Using Queues for Peer-to-Peer Communication

	A A Sample Application
	Overview
	Prerequisites
	What Is qsample
	Building qsample
	Suggestions for Further Exploration
	setenv: Set the Environment
	makefile: Make Your Application
	ubb.sample: The ASCII Configuration File
	crlog: Create the Transaction Log
	crque: Create the Queue Space and Queues
	Boot, Run, and Shut Down the Application
	Clean Up

