2o®%%,

7 hea
BEA Tuxedo

Programming a BEA Tuxedo
Application Using C

BEA Tuxedo Release 7.1
Document Edition 7.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Programming a BEA Tuxedo Application Using C

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1.

Introduction to BEA Tuxedo Programming

BEA Tuxedo Distributed Application Programmingccccceeviveeeeininieeennans 1-1
Communication ParadigMmscoouuiieiiiiiiie ettt 1-3
BEA TUXEAO ClIENES.....eiiiiiiiie ettt 1-4
BEA TUXEUO SEIVEIS ...ciiiiitiiiie ettt ettt ettt s 1-6
BasiC Server OPEration..........coiuviieeiiiiiien ittt 1-6
SErvers as REQUESTEISuuiiiiiii ittt 1-8
BEA TUXEdO AP ATMI .ottt 1-9

Programming Environment

Updating the UBBCONFIG Configuration File.............ccccvuiiieiniiiiniiieecns 2-1

Setting Environment Variables..........c..cooiiiiiii e 2-5
Including the Required Header FileS...........cooiiiiiiiiiiiiineee e 2-8
Starting and Stopping the AppliCatioN ..o 2-8

Managing Typed Buffers

Overview of Typed BUFErS........cooiiiiiiiii e 3-2
Allocating a Typed BUFEr..........ooiiiiiiii e 3-6
Putting Data in @ BUFfer........ocueiiiiiii e 3-9
Resizing @ Typed BUFfer........oo i 3-11
Checking for BUffEr TYPEeeiieiiee e 3-14
Freeing a Typed BUFFEr ... 3-15
Using a VIEW Typed BUFfer..........ooiiiiiiiiii e 3-16
Setting Environment Variables for a VIEW Typed Buffer...................... 3-17
Creating a View Description File...........ccccciiiiiiiiii e 3-18
Executing the VIEW COMPIIETeeiiiiiiiiie e 3-21
Using an FML Typed BUFfer...........ooiiiiiiiiii e 3-22

Programming a BEA Tuxedo Application Using C iii

Setting Environment Variables for an FML Typed Buffer 3-23

Creating a Field Table File ... 3-2:
Creating an FML Header File...........ooiiiiiiiiiie e 3-2!
Using an XML Typed BUFfer ... 3-27
Customizing & BUFfEr........oiiiiiii e 3-2
Defining Your Own BUffer TYPeS......ccviiiiiiiiiiii e 3-30
DAta CONVEISION ..coeiiiiiiee ittt ettt 3-4
4. Writing Clients
JOINING &N APPIICALIONcoiitiiiie it 4-
Using Features of the TPINIT Typed Buffer..........ccceiiiiiiiiie e, 4-
ClENT NAMING ..ttt e e et 4-
Unsolicited Notification Handling ..o 4-6
SYStEM ACCESS MOUE.......eiiiiiiiiiiiie ettt 4-
Resource Manager ASSOCIAtIONc.ueiiiiiiiiiii et 4-
Client AUtNENTICALION..........iiiiiiiee e 4-¢
Leaving the APPHCAtiON ... e 4-
BUIIAING CHIENES ...eeiieit et 4-1(
SBE AlSO ... it e 4-1
Client Process EXAMPIESociiiiiiiiiiiiit ettt 4-!

5. Writing Servers

BEA Tuxedo SYStemM MaIN()...cvueiie ettt 5-
System-supplied Server and SEIVICEScccuiiiiiii it 5
System-supplied Server: AUTHSVR() c.uoeviiiiiieiiiieee e 5-3
System-supplied Services: tpsvrinit() FUNCLION..........cccceiviiiieiiiiiiee e 5-£
System-supplied Services: tpsvrdone() FUNCLONoovvvveeiiiiieeeniinen, 5-
Guidelines for WItiNg SEIVEIS.........cooiiiiiiiiiiiiiis et 5-¢
DEefiNING @ SEIVICE ...ttt 5-1
Example: Checking the Buffer Type.......ccciiiiiiiii e, 5-1¢
Example: Checking the Priority of the Service Requestcccceeeeeee. 5-1¢
Terminating a Service ROULINEcoiiiiiiiiiiiii e 5-1
SENAING REPIES ... 5-1
INvalidating DESCIIPLOISceiiiiiieie ettt 5-2¢
Forwarding REQUESTEScouuiiiiiiiie et 5-2

Programming a BEA Tuxedo Application Using C

Advertising and UnadvertiSing SErVICEScccovuuiiiiiiiiieie i ee e 5-29

AVEITISING SEIVICES ...ttt 5-30
UNadVertiSING SEIVICES.......uvuiiiiiiiiiie ettt 5-30
Example: Dynamic Advertising and Unadvertising of a Service 5-31
BUIIAING SEIVEISceiiiie et 5-32
SBE AlSD .ttt et 5-33
USiNg @ CH+ COMPIIET ... 5-34
Declaring Service FUNCLIONScooiiiiiiiiiiiiiies ettt 5-34
Using Constructors and DeSIUCTOrS.coovuieiiiiiiiiee e 5-35

Writing Request/Response Clients and Servers

Overview of Request/Response CommuUNICAtioNcoocveeeriieieniiieee e 6-1
Sending SYNCNrONOUS MESSATES.ccciiuuiiieei ittt ettt 6-2
Example: Using the Same Buffer for Request and Reply Messages 6-5
Example: Testing for Change in Size of Reply Bufferccccoceiniinenn, 6-6
Example: Sending a Synchronous Message with TPSIGRSTRT Set......... 6-7
Example: Sending a Synchronous Message with TPNOTRAN Set........... 6-8
Example: Sending a Synchronous Message with TPNOCHANGE Set 6-9
Sending ASYNChIroNOUS MESSAJESeeiiiuriiiiiaiiieie ettt ettt ee e 6-11
Sending an ASynchronous REQUESTooviiiiiiiiiiie e 6-11
Getting an ASynchronous REPIYueeviiiiiiiioiiiiiie e 6-15
Setting and Getting Message PrOMtES ... 6-16
Setting a MesSage PriOMtY........ccooiiiiiiiiiiiee e 6-16
Getting a8 MeSSage PrOMLYcooueeiiiiiiiiee et 6-17

Writing Conversational Clients and Servers

Overview of Conversational CommuNIiCatioNc.ceiiiiiiereriiiiee e 7-1
JoINING 8N APPIICALIONeeiiiiiiie it 7-3
Establishing @ CONNECLIONccoiiiiiiiii i 7-3
Sending and ReCeIVING MESSAUESuceeieiiiiiiieiiiiiie et ee et 7-5
SENAING MESSAGES .. .eeeiiiiiitiiiie ettt ettt ee e e bt e e e sbin e e e 7-5
RECEIVING MESSAGESeeeiii ittt ettt 7-7
ENding @ CONVEISALIONeeiiiiiiiiieei ittt ettt e e 7-9
Example: Ending a Simple Conversation............cccccoeoieeveeniieieeeninieeenaene 7-10
Example: Ending a Hierarchical Conversationocccceeviiiieinninninnne. 7-11

Programming a BEA Tuxedo Application Using C %

Vi

Executing a Disorderly DISCONNECT..........ccoviuuiiiiiiiiiiee e 7-12
Building Conversational Clients and SErvers.........cccccoviiieeniiieie e 7-1
Understanding Conversational Communication EVentS...........cc.ococvvvvveeeeennnn. 7-1

Writing Event-based Clients and Servers

OVEIVIEW OF EVENLES ...eiiiiiiiiiie ittt 8-
UNSOIICItEd EVENTS......oiiiiiiiiie i 8-
BroKered EVENS ..ottt ettt 8-

Defining the Unsolicited Message Handler............occvviiiiiiiie e 8-

Sending UNsolicited MESSAQESeveiiiiiiieiiiiieit ettt 8
Broadcasting Messages By Namecooiiiiiiiiie e 8-
Broadcasting Messages by ldentifier...........ccoeiiiiiiiieee e, 8-

Checking for Unsolicited MESSAQGESuveeviiiiiiiiiiiieit ettt 8-

SUbSCrDING t0 EVENES ... e 8

Unsubscribing from EVENTSoiiiiiiii e 8-1

POSEING EVENES ...ttt ettt ee e 8-

Example of Event SUDSCIIPIONcoooiiiiiiii e 8-1

Writing Global Transactions

What Is @ Global TranSaCtioN?coieeiiiiiiiiee et 9-
Starting the TranSACHONcoii it 9.
Suspending and Resuming @ TranSaCtioNcceeeeiiiiiiiiiiiiree e eiiiiie e eee e 9
Suspending @ TraNSACONuuuiiiiieiee e ee e e e e e e e eeee s 9.
Resuming @ TranSACHONccciiiiiiiiiiee e 9-
Example: Suspending and Resuming a Transactionccccccoeeveeeineees 9-1
Terminating the TranSaCtONooiiiiiiii e 9-1
Committing the Current TranSaCtioN..........cccovieeeiiiiieiie e 9-11
Aborting the Current TranSACHON.........ccvuvieeiiiiie e 9-1¢
Example: Committing a Transaction in Conversational Mode................. 9-14
Example: Testing for PartiCipant Errors...........occcveeiiiiiieeniiiieen e 9-1¢
Implicitly Defining a Global Transaction.............ccccceviiiiiieniie e, 9-17
Implicitly Defining a Transaction in a Service Routine...............cccceeene 9-17
Defining Global Transactions for an XA-Compliant Server Group................ 9-19
Testing Whether a Transaction Has Startedccooo oo, 9-
S AlSOD ...t a e e e e 9-2

Programming a BEA Tuxedo Application Using C

10. Programming a Multithreaded and Multicontexted

Application
Support for Programming a Multithreaded/Multicontexted Application........ 10-2
Platform-specific Considerations for Multithreaded/Multicontexted
APPHCALIONS .ot 10-2
Planning and Designing a Multithreaded/Multicontexted Application........... 10-3
What Are Multithreading and MulticonteXting..........c.cvoiviirieeniieeenieee e 10-4
What IS MUIItNreadingccooiiiiiiiiiiiici e 10-4
What IS MUIICONTEXEING......eeeieiiiiiiei e 10-6
Licensing a Multithreaded or Multicontexted Application...................... 10-8
Advantages and Disadvantages of a Multithreaded/Multicontexted
F Y o] o] L To= 11 o ISP 10-8
Advantages of a Multithreaded/Multicontexted Application................... 10-9
Disadvantages of a Multithreaded/Multicontexted Application 10-10
How Multithreading and Multicontexting Work in a Client......................... 10-11
Start-Up PhasSe.. ... 10-11
WOIK PRASE ..ot 10-13
CoMPIELION PRASE.......eiiiiiiiiiie et 10-16
How Multithreading and Multicontexting Work in a Servercccccoouee. 10-17
SEArt-UP PRaSE.....coiiiiii i 10-18
WOIK PRASE ..o e e 10-18
CoMPIELION PRASE.......eeiiiiiiiiiie e 10-21
Design Considerations for a Multithreaded and Multicontexted
7Y o] o] L To7= 1] o ISP 10-22
Environment REQUINEMENTScoii ittt 10-23
Design REQUIFEIMENTScoiiiiiiieiiiiiie ettt 10-24
Is the Task of Your Application Suitable for Multithreading and/or
MUIRICONEEXEING ...t 10-24
How Many Applications and Connections Do You Want..................... 10-25
What Synchronization Issues Need to Be Addressedcccccvveeeeennn. 10-26
Will You Need to Port Your Application............cceeeeeiieieeeniiiiee e 10-26
Which Threads Model IS BESt fOr YOUcocccuveiiiiiiiiiiiiiiiie e 10-26
Interoperability Restrictions for Workstation Clients...........c.cccceevinee. 10-27
Implementing a Multithreaded/ Multicontexted Application........................ 10-28

Preliminary Guidelines for Programming a Multithreaded/Multicontexted

Programming a BEA Tuxedo Application Using C Vi

APPICALION 1.t 10-2¢

Prerequisites for a Multithreaded Applicationc.ccceevviiiiiiiiininnen. 10-29
General Multithreaded Programming Considerations.............cccceeeeeeee. 10-2¢
Concurrency CoNSIdErationseeeiiviieeiiiiie e 10-3
Writing Code to Enable Multicontexting in a Client...............cccocoeoiiniins 10-31
ConteXt AUMDULES ..o 10-3:
Setting Up Multicontexting at Initialization..............cccoceeviiiiieiiniiieeees 10-33
Implementing Security for a Multicontexted Client.............c.occceeevnnen. 10-34
Synchronizing Threads Before a Client Termination............................. 10-34
SWILChING CONLEXESeiiiiiiiiii ittt 10-3!
Handling Unsolicited MESSAJEScouvviiiiiieiiieiiiie e 10-3
Coding Rules for Transactions in a Multithreaded/Multicontexted
APPICALION ..t 10-39
Writing Code to Enable Multicontexting and Multithreading in a Server10-40
CoNteXt AMIDULES ..o 10-4(
Coding Rules for a Multicontexted Server..........oococuiieveiiee e, 10-41
Initializing and Terminating Servers and Server Threads...................... 10-4:
Programming a Server to Create Threadsccocviviiireiienin e 10-4
Sample Code for Creating an Application Thread in a Multicontexted
SBIVEI ettt e 10-4.
Writing a Multithreaded CHENt............ooiiiiiiii e 10-45
Coding Rules for a Multithreaded Clientc.coooeeiiiiiiiecniieee, 10-46
Initializing a Client to Multiple ContextS.........occceiviiiiier i 10-47
Context State Changes for a Client Threadcccccoeviiiieiiiiiiiniennnn, 10-4
Getting Replies in a Multithreaded Environment.................ccceeevennnen. 10-49
Using Environment Variables in a Multithreaded and/or Multicontexted
ENVIFONMENT ...ttt e 10-5C
Using Per-context Functions and Data Structures in a Multithreaded
(O 1= | O O PPPPPTUPRPN 10-5-
Using Per-process Functions and Data Structures in a Multithreaded
ClIENT e e et 10-5¢
Using Per-thread Functions and Data Structures in a Multithreaded
(O 1= | TP PPPPPPUPRPTN 10-5¢
Sample Code for a Multithreaded Client.............ccccoiiiiiiiniie, 10-5¢
Writing a Multithreaded SErver ... 10-5¢
Compiling Code for a Multithreaded/Multicontexted Application 10-59

viii Programming a BEA Tuxedo Application Using C

11.

Testing a Multithreaded/Multicontexted Applicationcccccveeeiiiieeennee. 10-60
Testing Recommendations for a Multithreaded/Multicontexted

APPHCALION ...t 10-60
Troubleshooting a Multithreaded/Multicontexted Application.............. 10-61
Error Handling for a Multithreaded/Multicontexted Application.......... 10-62

Managing Errors

SYSTEIM EITOIS ittt e e 11-1
F Yoo 0 = (o] £ TP UUPPPPPPPN 11-3
BEA TUXEAO SYSLEM EITOIS ...ttt 11-4
Call DESCIIPLON EITOIS.uvtieiiiiiieie ettt ettt ee et e e e e e e e 11-4
(T30 O g (o] £ SRR 11-4
INvalid DeSCHPLOr EFTOIS......oiuviiieiiiiie ettt 11-5
COoNVEISAtIONAI EFTOIScieiiieiiieiee ettt ettt 11-5
Duplicate OBJECE EFTONueiiiiiiiiie ettt 11-6
General Communication Call ErfOrS.........ccooiiiiieiiiiiiie e 11-6
TPESVCFAIL and TPESVCERR EITOrS.......cccoiiiiiiiiiiiiiie e 11-7
TPEBLOCK and TPGOTSIG EFTOIScooiiiiiiiiiiiiiie i 11-7
INValid ArQUMENT EFTOIS.....eiiiiiiiiii ettt e 11-8
MIB EFTON .. e et e e e et e e e e e e ennn s 11-8
NO ENIY EXTOIS ... s 11-9
Operating SYSIEIM EFTOISuviiiiiiiiiiei ittt 11-10
PErmMISSION EITOIS ..ottt 11-10
PrOtOCOI EFTOIS. .. ittt 11-10
QUEUING EFTON ..ttt ettt e 11-11
Release Compatibility ErrOr..........coooiiiiiiiiiiiii e 11-11
Resource Manager EITOrS.........cooo oo 11-12
TIME-OUL ETTOTS ..ttt ettt et 11-12
TraNSACHON EITOISuviiiiiiiie ettt e e 11-13
Typed BUFfEr EITOIS ..ottt 11-14
APPHCALION EITOIS ..ottt 11-15
HaNAIING EFTOIS ...ttt 11-15
Transaction CONSIAEIrAtIONSeviiiiiiiie et 11-19
Communication EHQUELIEoiiiiiioii e 11-19
TranSACHON EITOIS ...ttt ettt e 11-21

Programming a BEA Tuxedo Application Using C iX

Non-fatal TranSaCtioN EITOIS.......c.uiiiiiieieeee et ee e 11-2:

Fatal TransSaction EFTOIScoooiuiiiiaiiiiie ettt 11-2
Heuristic DECISION EFTOISccooiiiiiiiiiieie sttt 11-2:
TranSaCHON TIME-0ULSccciituiiiiiiiiie ettt e en bbb e e e e 11-2
Effect on the tpcommit() FUNCLONoouviiiiiiiiiiii e 11-24
Effect on the TPNOTRAN Flagccuueiiiiiiiiiie i 11-25
tpreturn() and tpforward() FUNCHONSevviiiiiiiii e 11-2!
EPEIM() FUNCHION ...eeiiiiiiiee et 11-2
RESOUIrCE MaNaQEIS........coiiiiiiiiiie e 11-
Sample Transaction SCENANIOSccoiiiiiiiii et 11-
Called Service in Same Transaction as Caller............cccoccoveeiiiiiieeennen. 11-2
Called Service in Different Transaction with AUTOTRAN Set............ 11-28
Called Service that Starts a New Explicit Transaction.............c.c.ccoc...... 11-2¢
BEA TUXEDO System-supplied SUbroutinescocveeeriieeeninieee e, 11-3(
Central EVENT LOQ .. ciiiitieiie ettt ettt ettt e 11-3
LOG NAME ... 11-3
LOg ENtry FOrMAaLoeeiiiieieii e 11-3:
Writing t0 the EVENE LOQcvviieiiiiiie e e 11-33
Debugging AppliCation PrOCESSESccoiiiiiieiiiiiie ettt 11-3
Debugging Application Processes on UNIX Platformscccceee 11-34
Debugging Application Processes on Windows NT Platforms.............. 11-35
Comprehensive EXample ...t 11-:

Programming a BEA Tuxedo Application Using C

CHAPTER

1 Introduction to BEA
Tuxedo Programming

m BEA Tuxedo Distributed Application Programming
m Communication Paradigms

m BEA Tuxedo Clients

m BEA Tuxedo Servers

m BEA Tuxedo API: ATMI

BEA Tuxedo Distributed Application
Programming

A distributed applicatiorconsists of a set of software modules that reside on multiple
hardware systems, and that communicate with one another to accomplish the tasks
required of the application. For example, as shown in the following figure, a
distributed application for a remote online banking system includes software modules
that run on a bank customer’'s home computer, and a computer system at the bank on
which all bank account records are maintained.

Programming a BEA Tuxedo Application Using C 1-1

1

Introduction to BEA Tuxedo Programming

1-2

Figure 1-1 Distributed Application Example - Online Banking System

Cusiomer Heguast: Chesk Account Balance 2 £

h

4
System Response: £ 26,76 i

Customer's Bank's Compufar on Which
Home Computsr Account Records Are Stored

The task of checking an account balance, for example, can be performed simply by
logging on and selecting an option from a menu. Behind the scenes, the local softwal
module communicates with the remote software module using special Application
Programming Interface (API) functions.

The BEA Tuxedo distributed application programming environment provides the API
functions necessary to enable secure, reliable communication between the distribute
software modules. The BEA Tuxedo API is referred to as the
Application-to-Transaction Monitor Interface (ATMI)

The ATMI enables you to:

Send and receive messages between clients and servers, possibly across a
network of heterogeneous machines

Establish and use client naming and security features
Define and manage transactions in which data may be stored in several location:

Generically open and close a resource manager such as a Database Manageme
System (DBMS)

Manage the flow of service requests and the availability of servers to process
them

Programming a BEA Tuxedo Application Using C

Communication Paradigms

Communication Paradigms

The following table describes the BEA Tuxedo communication paradigms available to
application developers.

Table 1-1 Communication Paradigms

Paradigm Description
Request/Response Request/response communication enables one software module
Communication to send a request to a second software module and wait for a

response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processing
continues while the requester waits for the response).

This mode is also referred to as client/server interaction. The
first software module assumes the role of the client; the second,
of the server.

Refer to “Writing Request/Response Clients and Servers” on
page 6-1 for more information on this paradigm.

Conversational Conversational communication is similar to request/response

Communication communication, except that multiple requests and/or responses
need to take place before the “conversation” is terminated. With
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the client
and server.

Conversational communication is commonly used to buffer
portions of a lengthy response from a server to a client.

Refer to “Writing Conversational Clients and Servers” on page
7-1 for more information on this paradigm.

Programming a BEA Tuxedo Application Using C 1-3

1

Introduction to BEA Tuxedo Programming

BEA Tuxedo Clients

1-4

Paradigm

Description

Application Queue-based Application queue-based communication supports deferred or

Communication

time-independent communication, enabling a client and server
to communicate using an application queue. The BEA
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is useful
for enqueuing requests when a system goes off-line for
maintenance, or for buffering communications if the client and
server systems are operating at different speeds.

Refer toUsing the BEA Tuxedo /Q Componé&tmore
information on the /Q facility.

Event-based
Communication

Event-based communication allows a client or server to notify a
client when a specific situation (event) occurs.

Events are reported in one of two ways:

m Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

m Brokered events are unexpected situations or predictable
occurrences with unpredictable timeframes that are reported
by servers to clients indirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the BEA Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clients and Servers” on page 8-1
for more information on this paradigm.

A BEA Tuxedoclientis a software module that collects a user request and forwards it
to a server that offers the requested service. Almost any software module can becor
a BEA Tuxedo client by calling the ATMI client initialization routine afjairiing”

the BEA Tuxedo application. The client can then allocate message buffers and
exchange information with the server.

Programming a BEA Tuxedo Application Using C

BEA Tuxedo Clients

The client calls the ATMI termination routine te&vé the application and notify the
BEA Tuxedo system that it (the client) no longer needs to be tracked. Consequently,
BEA Tuxedo application resources are made available for other operations.

The operation of a basic client process can be summarized by the pseudo-code shown
in the following listing.

Listing 1-1 Pseudo-code for a Request/Response Client

main()

allocate a TPINIT buffer
place initial client identification in buffer
enroll as a client of the BEA Tuxedo application
allocate buffer
do while true {
place user input in buffer
send service request
receive reply
pass reply to the user }
leave application

Most of the actions described in the above listing are implemented\ivith
functions Others—placing the user input in a buffer and passing the reply to the user—
are implemented with C language functions.

During the “allocate buffer” phase, the client program allocates a memory area, called
atyped bufferfrom the BEA Tuxedo run-time system. A typed buffer is simply a
memory buffer with an associated format, for example, a C structure.

A client may send and receive any number of service requests before leaving the
application. The client may send these requests as a series of request/response calls or,
if it is important to carry state information from one call to the next, by establishing a
connection to a conversational server. In both cases, the logic in the client program is
similar, but different ATMI functions are required for these two approaches.

Before you can execute a client, you must rurbtlieclient command to compile
it and link it with the BEA Tuxedo ATMI and required libraries. Refer to “Writing
Clients” on page 4-1 for information on theildclient command.

Programming a BEA Tuxedo Application Using C 1-5

1 introduction to BEA Tuxedo Programming

BEA Tuxedo Servers

A BEA Tuxedoserveris a process that provides one or megeviceso a client. A
service is a specific business task that a client may need to perform. Servers receive
requests from clients and dispatch them to the appropriate service subroutines.

Basic Server Operation

To build server processes, applications combine their service subroutines with a
main() process provided by the BEA Tuxedo system. This system-supdie¢

is a set of predefined functions. It performs server initialization and termination and
allocates buffers that can be used to receive and dispatch incoming requests to serv
routines. All of this processing is transparent to the application.

The following figure summarizes, in pseudo-code, the interaction between a server an
a service subroutine.

1-6 Programming a BEA Tuxedo Application Using C

BEA Tuxedo Servers

Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subroutine

Provided by the BEA Tuxedo System

r—-——————
I START PROGRAM I
| enroll as a server in the BEA Tuxedo application |

I advertise services

| perform until end |

| check message queue for service request |

| dequeus request |

| dispatch request to service subrouting _—
I

receive control back from subroutine 4 |
end perform

e e e ¥ Eama e, e, it . e 3 e, s s, iy i i s, iy Yt iy ¥ s, i, i, i

| SERVICE SUBROUTINE + i
| receive control from server |
| |
| I

process request
return contral to server

After initialization, a server allocates a buffer, waits until a request message is
delivered to its message queue, dequeues the request, and dispatches it to a service
subroutine for processing. If a reply is required, the reply is considered part of request
processing.

The conversational paradigm is somewhat different from request/response, as
illustrated by the pseudo-code in the following figure.

Programming a BEA Tuxedo Application Using C 1-7

1 introduction to BEA Tuxedo Programming

Figure 1-3 Pseudo-code for a Conversational Service Subroutine

SERVER 4

CONYERSATICNAL SERVICE SUBRCU TIMN E4—

Eceive contm | from ssrer

performm while true
receivwe dats from cone rsstionad client
pocess Equest
s=nd dads © comersational client

end perorm

eturn contm | 1o s=ner.

The BEA Tuxedo system-supplietiin() process contains the code needed to enroll
a process as a server, advertise services, allocate buffers, and dequeue requests. A’
functions are used in service subroutines that process requests. When you are ready
compile and test your service subroutines, you must link edit them with the server
main() and generate an executable server. To do so, rinittiserver ~ command.

Servers as Requesters

If a client requests several services, or several iterations of the same service, a sub:
of the services might be transferred to another server for execution. In this case, the
server assumes the role of a clientremuester Both clients and servers can be
requesters; a client, however, can only be a requester. This coding model is easily
accomplished using the BEA Tuxedo ATMI functions.

Note: A request/response server can also forward a request to another server. In th
case, the server does not assume the role of client (requester) because the re
is expected by the original client, not by the server forwarding the request.

1-8 Programming a BEA Tuxedo Application Using C

BEA Tuxedo API: ATMI

BEA Tuxedo API: ATMI

In addition to the C code that expresses the logic of your application, you must use the
Application-to-Transaction Monitor Interface (ATMI), the interface between your
application and the BEA Tuxedo system. The ATMI functions are C language
functions that resemble operating system calls. They implement communication
among application modules running under the control of the BEA Tuxedo system
transaction monitor, including all the associated resources you need.

The ATMI is a reasonably compact set of functions used to open and close resources,
begin and end transactions, allocate and free buffers, and support communication
between clients and servers. The following table summarizes the ATMI functions.
Each function is described in tB&A Tuxedo C Function Reference

Table 1-2 Using the ATMI Functions

For a Task Related Use This C Function... To... For More
to... Information,
Referto. ..
Buffer management tpalloc() Create a message buffer “Managing Typed Buffers”
on page 3-1
tprealloc() Resize a message buffer
tptypes() Get a message type and
subtype
tpfree() Free a message buffer
Client membership tpchkauth() Check whether “Writing Clients” on page
authentication is required 4-1
tpinit() Join an application
tpterm() Leave an application

Programming a BEA Tuxedo Application Using C 1-9

1 introduction to BEA Tuxedo Programming

For a Task Related Use This C Function... To... For More
to... Information,
Referto. ..
Multiple application tpgetctxt(3c) Retrieve an identifier for “Programming a
context management the current thread’s contextMultithreaded and
Multicontexted
context in a multicontexted
process
Service entry and return tpsvrinit() Initialize a server m “Writing Servers” on
page 5-1
tpsvrdone() Terminate a server N .
® “Programming a
tpsvrthrinit() Initialize an individual Multithreaded and
server thread Multicontexted
Application” on page
tpsvrthrdone() Termination code for an 10-1
individual server thread
tpreturn() End a service function
tpforward() Forward a request
Dynamic advertisement tpadvertise() Advertise a service name “Writing Servers” on pag
5-1
tpunadvertise() Unadvertise a service name
Message priority tpgprio() Get the priority of the last “Writing Servers” on page
request 5-1
tpsprio() Set the priority of the next

request

1-10 Programming a BEA Tuxedo Application Using C

BEA Tuxedo API: ATMI

For a Task Related Use This C Function... To... For More
to... Information,
Referto. ..
Request/response tpcall() Initiate a synchronous m “Writing Servers” on
communications request/response to a page 5-1
service m “Writing
" Request/Response
t I .
pacall() Initiate an asynchronous Clients and Servers” on
request
page 6-1
tpgetrply() Receive an asynchronous
response
tpcancel() Cancel an asynchronous
request
Conversational tpconnect() Begin a conversation with a “Writing Conversational
communication service Clients and Servers” on
- page 7-1
tpdiscon() Abnormally terminate a
conversation
tpsend() Send a message in a
conversation
tprecv() Receive a message in a
conversation
Reliable queuing tpenqueue(3c) Enqueue a message to a Using the BEA Tuxedo /Q
message queue Component
tpdequeue(3c) Dequeue a message from a

message queue

Programming a BEA Tuxedo Application Using C 1-11

1 introduction to BEA Tuxedo Programming

For a Task Related
to...

For More
Information,
Referto. ..

Event-based
communications

Use This C Function... To...

tpnotify() Send an unsolicited
message to a client

tpbroadcast() Send messages to several

clients

tpsetunsol()

Set unsolicited message

call-back
tpchkunsol() Check the arrival of
unsolicited messages
tppost() Post an event message
tpsubscribe() Subscribe to event

messages

tpunsubscribe()

Unsubscribe to event
messages

“Writing Event-based
Clients and Servers” on
page 8-1

Transaction management tpbegin() Begin a transaction “Writing Global
- Transactions” on page 9-1
tpcommit() Commit the current
transaction
tpabort() Roll back the current
transaction
tpgetlev() Check whether in
transaction mode
tpsuspend() Suspend the current
transaction
tpresume() Resume a transaction
Resource management tpopen(3c) Open a resource manager Setting Up a BEA Tuxedo
Application
tpclose(3c) Close a resource manager

1-12 Programming a BEA Tuxedo Application Using C

BEA Tuxedo API: ATMI

For a Task Related
to...

Use This C Function . . .

To...

For More
Information,
Referto . ..

Security

tpkey_open(3c)

Open a key handle for

digital signature

Using BEA Tuxedo
Security

generation, message
encryption, or message
decryption

tpkey_getinfo(3c)

Get information associated
with a key handle

tpkey_setinfo(3c)

Set optional attributes
associated with a key
handle

tpkey_close(3c)

Close a previously opened
handle

tpsign(3c) Mark a typed message
buffer for generation of a
digital signature

tpseal(3c) Mark a typed message

buffer for generation of an
encryption envelope

tpenvelope(3c)

Access the digital signature
and recipient information
associated with a typed
message buffer

tpexport(3c)

Convert a typed message
buffer into an exportable,
machine-independent
(externalized) string
representation

tpimport(3c)

Convert an externalized
string representation back
into a typed message buffer

Programming a BEA Tuxedo Application Using C 1-13

1 introduction to BEA Tuxedo Programming

1-14 Programming a BEA Tuxedo Application Using C

CHAPTER

2 Programming
Environment

m Updating the UBBCONFIG Configuration File
m Setting Environment Variables
m Including the Required Header Files

m Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an
application in theuBBCONFIGconfiguration file. To customize your programming
environment, you may need to create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelines:

m Copy and edit a file that already exists. For example, thetfiishm that comes
with thebankapp sample application can provide a good starting point.

m Minimize complexity. For test purposes, set up your application as a shared
memory, single-processor system. Use regular operating system files for your
data.

Programming a BEA Tuxedo Application Using C 2-1

2 Programming Environment

m Make sure théPCKEY parameter in the configuration file does not conflict with
any other parameters being used at your installation. Check with your BEA
Tuxedo application administrator, and refeSttting Up a BEA Tuxedo
Applicationfor more information.

m Set theuID andGID parameters so that you are the owner of the configuration.

m Review the documentation. The configuration file is describ&tBBCONFIG(5)
in theBEA Tuxedo File Formats and Data Descriptions Reference

The following table summarizes tuBBCONFIGonfiguration file parameters that
affect the programming environment. Parameters are listed by functional category.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional

Category
Functional Parameter Section Description
Category
Global Resource MAXSERVERS RESOURCES Specifies the maximum number of
Limits servers in the configuration. When
setting this value, you need to
consider theviAXvalues for all
servers.
MAXSERVICES RESOURCES Specifies the maximum total number
of services in the configuration.
Data-dependent BUFTYPE ROUTING List of types and subtypes of data
Routing buffers for which the specified
routing entry is valid.
Link-level MINENCRYPTBITS NETWORK Sets the minimum encryption level
Encryption that a process accepts.
MAXENCRYPTBITS NETWORK Sets the maximum encryption level

that a process accepts.

2-2 Programming a BEA Tuxedo Application Using C

Updating the UBBCONFIG Configuration File

Functional
Category

Parameter

Section

Description

Load Balancing

LDBAL

RESOURCES

Flag for specifying whether or not
load balancing is enabled. If enabled,
the BEA Tuxedo system attempts to
balance requests across the network.

NETLOAD

MACHINES

Numeric value that is added to the
load factor of services that are remote
from the invoking client, providing a
bias for choosing a local server over a
remote server. Load balancing must
be enabled (that iEDBAL must be

set toy).

LOAD

SERVICES

Relative load factor associated with a
service instance. The default is 50.

Security

AUTHSVC

RESOURCES

Specifies the name of an application
authentication service that is invoked
by the system for each client joining
the system.

SECURITY

RESOURCES

Specifies the type of application
security to be enforced.

Programming a BEA Tuxedo Application Using C 2-3

2 Programming Environment

Functional Parameter

Category

Section

Description

Conversational MAXCONV

Communication

RESOURCES

Sets the maximum number of
simultaneous conversations for a
single machine. You can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in tIBERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in thdACHINES
section.

CONV

SERVERS

Specifies whether or not
conversational communication is
supported. If this parameter is seNto
or unspecified, gpconnect() call
to a service fails.

MIN/MAX

SERVERS

Specify the minimum and maximum
number of occurrences of the server
to be started bymboot(1) . If not
specified MIN defaults to 1 antMAX
defaults taVIN. The same parameters
are available for use with
request/response servers. However,
conversational servers are
automatically spawned as needed. So
if you setMIN=1 andMAX=1Q for
exampletmboot starts one server
initially. When atpconnect() call

is made to a service offered by that
server, the system starts a second
copy of a server. As each copy is
called, a new one is spawned, up to a
limit of 10.

2-4 Programming a BEA Tuxedo Application Using C

Setting Environment Variables

Functional Parameter Section Description
Category
Transaction AUTOTRAN SERVICES Controls whether a service routine is
Management placed in transaction mode. If you set
this parameter t¥, a transaction in
the service subroutine is
automatically started whenever a
request message is received from
another process.
Multithreaded MAXDISPATCHTHREADS SERVERS Specifies the maximum number of
Servers concurrently dispatched threads that
each server process may spawn.
MINDISPATCHTHREADS SERVERS Specifies the number of server
dispatch threads started on initial
server boot.
The configuration file is an operating system text file. To make it usable by the system,
you must execute thenloadcf(l) command to convert the file to a binary file.
See Also

Reference

m Setting Up a BEA Tuxedo Application

m UBBCONFIG(5) in theBEA Tuxedo File Formats and Data Descriptions

Setting Environment Variables

Initially, the application administrator sets the variables that define the environment in
which your application runs. These environment variables are set by assigning values
to theENVFILE parameter in th®IACHINESsection of theJBBCONFIdile. (Refer to

Setting Up a BEA Tuxedo Applicatifor more information.)

Programming a BEA Tuxedo Application Using C 2-5

2 Programming Environment

For the client and server routines in your application, you can update existing
environment variables or create new ones. The following table summarizes the mos
commonly used environment variables. The variables are listed by functional categor

Table 2-2 Programming-related Environment Variables by Functional Category

Functional Environment Defines the . . . Used by ...

Category Variable

Global TUXDIR Location of the BEA BEA Tuxedo application
Tuxedo system binary files programs

Configuration TUXCONFIG Location of the BEA BEA Tuxedo application
Tuxedo configuration file programs

Compilation CcC Command that invokes the buildclient(1) and
C compiler. Default isc buildserver(1) commands

CFLAGS Link edit flags to be passed buildclient(1) and

to the C compiler. Link edit buildserver(1) commands

flags are optional.

Data Compression ~ TMCMPPRFM Level of compression BEA Tuxedo application
(between 1 and 9). programs that perform data
compression

Load Balancing TMNETLOAD Numeric value thatis addedBEA Tuxedo application
to the load value for remote programs that perform load
queues, making the remotebalancing
gueues appear to have more
work than they actually do.
As a result, even if load
balancing is enabled, local
requests are sent to local
queues more often than to
remote queues.

2-6 Programming a BEA Tuxedo Application Using C

Setting Environment Variables

Functional Environment Defines the . . . Used by . ..
Category Variable
Buffer Management FIELDTBLS or Comma-separated list of FMLandFML32typed buffers
FIELDTBLS32 field table filenames for ~ andFMLVIEWs
FMLandFML32 typed

buffers, respectively.
Required only foFMLand

VIEWtypes.
FLDTBLDIR or Colon-separated list of FMLandFML32 typed buffers
FLDTBLDIR32 directories to be searched andFMLVIEWs

for the field table files for

FMLandFML32,

respectively. For Windows
NT, a semi-colon separated

listis used.
VIEWFILES or Comma-separated list of VIEWandVIEW32 typed
VIEWFILES32 allowablef ilenames for buffers

VIEW andVIEW32 typed
buffers, respectively.

VIEWDIR or Colon-separated list of VIEWandVIEW32 typed
VIEWDIR32 directories to be searched buffers

for VIEWandVIEW32

files, respectively. For

Windows NT, a semi-colon

separated list is used.

If operating in a UNIX environment, addUXDIR/bin to your environmenpATHto
ensure that your application can locate the executables for the BEA Tuxedo system
commands. For more information on setting up the environment, re8etttog Up a
BEA Tuxedo Applicatian

See Also

m Setting Up a BEA Tuxedo Application

Programming a BEA Tuxedo Application Using C 2-7

2 Programming Environment

Including the Required Header Files

The following table summarizes the header files that may need to be specified withir
the application programs, using #ieclude statement, in order to interface properly
with the BEA Tuxedo system.

Table 2-3 Required Header Files

For... You mustinclude. ..

All BEA Tuxedo atmi.h header file supplied by the BEA Tuxedo system
application programs

Application programs m Header file generated from the corresponding field table
with FMLtyped buffers files

m fml.h header file supplied by the BEA Tuxedo system

Application program with Header file generated from the corresponding view description
VIEW typed buffers files

Starting and Stopping the Application

To start the application, execute thboot(1l) command. The command gets the IPC
resources required by the application, and starts administrative processes and
application servers.

To stop the application, execute thehutdown(1) command. The command stops
the servers and releases the IPC resources used by the application, except any that
might be used by the resource manager, such as a database.

See Also

®m tmboot(l) andtmshutdown(l) intheBEA Tuxedo Command Reference

2-8 Programming a BEA Tuxedo Application Using C

CHAPTER

3 Managing Typed
Buffers

m Overview of Typed Buffers
m Allocating a Typed Buffer

m Putting Data in a Buffer

m Resizing a Typed Buffer

m Checking for Buffer Type

m Freeing a Typed Buffer

m Using a VIEW Typed Buffer
m Using an FML Typed Buffer
m Using an XML Typed Buffer

m Customizing a Buffer

Programming a BEA Tuxedo Application Using C 3-1

3 Managing Typed Buffers

Overview of Typed Buffers

3-2

Before a message can be sent from one process to another, a buffer must be alloca
for the message data. BEA Tuxedo System clients use typed buffers to send messac
to servers. A typed buffer is a memory area with a category (type) and optionally a
subcategory (subtype) associated with it. Typed buffers make up one of the
fundamental features of the distributed programming environment supported by the
BEA Tuxedo system.

Why typed In a distributed environment, an application may be installed on
heterogeneous systems that communicate across multiple networks using different
protocols. Different types of buffers require different routines to initialize, send and
receive messages, and encode and decode data. Each buffers is designated as a spe
type so that the appropriate routines can be called automatically without programme
intervention.

The following table lists the typed buffers supported by the BEA Tuxedo system and
indicates whether or not:

m The buffer isself-describingin other words, the buffer data type and length can
be determined simply by (a) knowing the type and subtype, and (b) looking at
the data.

m The buffer requires a subtype.
m The system supports data-dependent routing for the typed buffer.
m The system supports encoding and decoding for the typed buffer.

If any routing functions are required, the application programmer must provide them
as part of the application.

Programming a BEA Tuxedo Application Using C

Overview of Typed Buffers

Table 3-1 Typed Buffers

Typed Buffer Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
CARRAY Undefined array of characters, any of No No No No

which can be NULL. This typed buffer is
used to handle the data opaquely, as the
BEA Tuxedo system does not interpret the
semantics of the array. BecauseARRAY

is not self-describing, the length must
always be provided during transmission.
Encoding and decoding are not supported
for messages sent between machines
because the bytes are not interpreted by the

system.
FML (Field Proprietary BEA Tuxedo System type of Yes No Yes Yes
Manipulation self-describing buffer in which each data
Language) field carries its own identifier, an

occurrence number, and possibly a length
indicator. Because all data manipulation is
done viaFML function calls rather than
native C statements, the FML buffer offers
data-independence and greater flexibility
at the expense of some processing
overhead.

TheFMLbuffer uses 16 bits for field
identifiers and lengths of fields.

Refer to “Using an FML Typed Buffer” on
page 3-22 for more information.

FML32 Equivalent td&-MLbut uses 32 bits for field Yes No Yes Yes
identifiers and lengths of fields, which
allows for larger and more fields and,
consequently, larger overall buffers.

Refer to “Using an FML Typed Buffer” on
page 3-22 for more information.

Programming a BEA Tuxedo Application Using C 3-3

3 Managing Typed Buffers

Typed Buffer Description Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
STRING Array of characters that terminates with ayes No No No

NULL character. Th&TRING buffer is
self-describing, so the BEA Tuxedo
System can convert data automatically
when data is exchanged by machines with
different character sets.

VIEW C structure defined by the application. No Yes Yes Yes
VIEW types must have subtypes that
designate individual data structures. A
view description filein which the fields
and types that appear in the data structure
are defined, must be available to client and
server processes that use a data structure
described in &|IEW typed buffer.

Encoding and decoding are performed
automatically if the buffer is passed
between machines of different types. Refer
to “Using a VIEW Typed Buffer” on page
3-16 for more information.

VIEW32 Equivalent toVIEW but uses 32 bits for No Yes Yes Yes
length and count fields, which allows for
larger and more fields and, consequently,
larger overall buffers.

Refer to “Using a VIEW Typed Buffer” on
page 3-16 for more information.

X C TYPE Equivalent tovIEW. No Yes Yes Yes

X_COMMON Equivalent tovIEW, but used for No Yes Yes Yes
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

3-4 Programming a BEA Tuxedo Application Using C

Overview of Typed Buffers

Typed Buffer Description Self- Subtype Data- Encoding/
Describing Dependent Decodirg
Routing
XML An XML document that consists of: No No Yes No

m Text, in the form of a sequence of
encoded characters

m A description of the logical structure
of the document and information about
that structure

The routing of an XML document can be
based on element content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if the encoding differs from the
native character sets (US-ASCII or
EBCDIC) used in the BEA Tuxedo
configuration files yBBCONFIG(5) and
DMCONFIG(5)), the element and attribute
names are converted to US-ASCII or
EBCDIC. Refer to “Using an XML Typed
Buffer” on page 3-27for more information.

X_OCTET Equivalent toCARRAY No No No No

All buffer types are defined in a file calledtypesw.c in theSTUXDIR/lib directory.
Only buffer types defined imtypesw.c are known to your client and server
programs. You can edit thetypesw.c file to add or remove buffer types. In
addition, you can use tiBJFTYPEparameter (ituBBCONFI$ to restrict the types and
subtypes that can be processed by a given service.

Thetmtypesw.c file is used to build a shared object or dynamic link library. This
object is dynamically loaded by both BEA Tuxedo administrative servers, and
application clients and servers.

See Also

m “Using a VIEW Typed Buffer” on page 3-16
m “Using an FML Typed Buffer” on page 3-22

Programming a BEA Tuxedo Application Using C 3-5

3 Managing Typed Buffers

m “Using an XML Typed Buffer” on page 3-27
m tuxtypes(5) in theBEA Tuxedo File Formats and Data Descriptions Reference

m UBBCONFIG(5) in theBEA Tuxedo File Formats and Data Descriptions
Reference

Allocating a Typed Buffer

Initially, no buffers are associated with a client process. Before a message can be se
a client process must allocate a buffer of a supported type to carry a message. A typ
buffer is allocated using thgalloc(3c) function, as follows.

char*
tpalloc(char * type ,char* subtype ,long size)

The following table describes the arguments toghkoc() function.

Table 3-2 tpalloc() Function Arguments

Argument Description

type Pointer to a valid typed buffer.

subtype Pointer to the name of a subtype being specified (inithe
description filg for aVIEW, VIEW32, or X_COMMOtyped
buffer.

In the cases wheresabtype is not relevant, assign the NULL
value to this argument.

3-6 Programming a BEA Tuxedo Application Using C

Allocating a Typed Buffer

Argument Description

size Size of the buffer.

The BEA Tuxedo system automatically associates a default
buffer size with all typed buffers excepARRAYX_OCTET
andXML, which require that you specify a size, so that the end
of the buffer can be identified.

For all typed buffers other th&@@ARRAYX_OCTET andXML, if

you specify a value of zero, the BEA Tuxedo system uses the
default associated with that typed buffer. If you specify a size,
the BEA Tuxedo system assigns the larger of the following two
values: the specified size or the default size associated with that
typed buffer.

The default size for all typed buffers other tI&IRING,
CARRAYX_OCTETandXMLis 1024 bytes. The default size for
STRINGtyped buffers is 512 bytes. There is no default value for
CARRAYX_OCTET andXML; for these typed buffers you must
specify a size valugreater than zerof you do not specify a
size, the argument defaults to 0. As a resulttghtoc()

function returns a NULL pointer and sép&rrmo to

TPEINVAL.

TheVIEW, VIEW32, X_C_TYPE andX_COMMOtyped buffers require theubtype
argument, as shown in the following example.

Listing 3-1 Allocating a VIEW Typed Buffer

struct aud *audv; /* pointer to aud view structure */

audv = (struct aud *) tpalloc("VIEW", "aud", sizeof(struct aud));

The following example shows how to allocate an FML typed buffer. Note that a value
of NULL is assigned to thsubtype argument.

Programming a BEA Tuxedo Application Using C 3-7

3 Managing Typed Buffers

Listing 3-2 Allocating an FML Typed Buffer

FBFR *fbfr; /* pointer to an FML buffer structure */

fbfr = (FBFR *)tpalloc("FML", NULL, Fneeded(, v))

The following example shows how to allocate&RRAMyped buffer, which requires
that asize value be specified.

Listing 3-3 Allocating a CARRAY Typed Buffer

char *cptr;

long casize;

casize = 1024;

cptr = tpalloc("CARRAY", NULL, casize);

Upon success, thpalloc() function returns a pointer of typear . For types other
thanSTRINGandCARRAYYyou should cast the pointer to the proper C structure or FML
pointer.

If the tpalloc() function encounters an error, it returns the NULL pointer. The
following list provides examples of error conditions:

m Failure to specify aize value for 8CARRAYX_OCTET or XMLtyped buffer
m Failure to specify aype (orsubtype in the case o¥IEW)

m Specifying atype that is not known to the system

m Failure to join the application before attempting allocation

For a complete list of error codes and explanations of them, refeite(3c) in
theBEA Tuxedo C Function Reference

The following listing shows how to allocateSaRING typed buffer. In this example,
the associated default size is used as the value siztheargument tapalloc()

3-8 Programming a BEA Tuxedo Application Using C

Putting Data in a Buffer

See Also

Listing 3-4 Allocating a STRING Buffer

char *cptr;

cptr = tpalloc("STRING", NULL, 0);

m “Putting Data in a Buffer” on page 3-9
m “Resizing a Typed Buffer” on page 3-11

m tpalloc(3c) in theBEA Tuxedo C Function Reference

Putting Data in a Buffer

Once you have allocated a buffer, you can put data in it.

In the following example, ®IEWtyped buffer calledud is created with three
members (fields). The three memberstard , the branch identifier taken from the
command line (if providedpalance , used to return the requested balance; and
ermsg , used to return a message to the status line for the user.atthienis used to
request a specific branch balance, the value df thie member is set to the branch
identifier to which the request is being sent, anchtience andermsg members are
set to zero and the NULL string, respectively.

Programming a BEA Tuxedo Application Using C 3-9

3 Managing Typed Buffers

See Also

Listing 3-5 Putting Data in a Message Buffer - Example 1

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));
[* Prepare aud structure */
audv->b_id = g_branchid,;

audv->balance = 0.0;
(void)strcpy(audv->ermsg, ™);

Whenaudit is used to query the total bank balance, the total balance at each site is
obtained by a call to th@AL server. To run a query on each site, a representative branch
identifier is specified. Representative branch identifiers are stored in an array name
sitelist[] . Hence, thawud structure is set up as shown in the following example.

Listing 3-6 Placing Data in a Message Buffer - Example 2

[* Prepare aud structure */

audv->b_id = sitelist[i];/* routing done on this field */
audv->balance = 0.0;
(void)strcpy(audv->ermsg, "™);

The process of putting data int&aRING buffer is illustrated in the “Resizing a
Buffer” on page 3-12 listing.

m “Allocating a Typed Buffer” on page 3-6
m “Resizing a Typed Buffer” on page 3-11

m tpalloc(3c) in theBEA Tuxedo C Function Reference

3-10 Programming a BEA Tuxedo Application Using C

Resizing a Typed Buffer

Resizing a Typed Buffer

You can change the size of a buffer allocated wpithoc() by using the

tprealloc(3c) function as follows.
char*
tprealloc(char * ptr , long size)

The following table describes the arguments tayfhealloc() function.

Table 3-3 tprealloc() Function Arguments

Argument Description
ptr Pointer to the buffer thatis to be re-sized. This pointer must have
been allocated originally by a call tiwalloc() . If it was not,

the call fails andperrno(5) is set toT PEINVAL to signify
that invalid arguments have been passed to the function.

size Long integer specifying the new size of the buffer.

The pointer returned hyrealloc() points to a buffer of the same type as the
original buffer. You must use the returned pointer to reference the resized buffer
because the location of the buffer may have changed.

When you call theprealloc() function to increase the size of the buffer, the BEA
Tuxedo system makes new space available to the buffer. When you call the

tprealloc() function to make a buffer smaller, the system does not actually re-size
the buffer; instead, it renders the space beyond the specified size unusable. The actual
content of the typed buffer remains unchanged. If you want to free up unused space, it
is recommended that you copy the data into a buffer of the desired size afire¢¢hen

the larger buffer.

On error, theprealloc() function returns the NULL pointer and sgisrrmo to an
appropriate value. Refertmalloc(3c) in theBEA Tuxedo C Function Refererfoe
information on error codes.

Warning: If the tprealloc() function returns the NULL pointer, the contents of
the buffer passed to it may have been altered and may be no longer valid.

Programming a BEA Tuxedo Application Using C 3-11

3 Managing Typed Buffers

The following example shows how to reallocate space 8IRNG buffer.

Listing 3-7 Resizing a Buffer

#include <stdio.h>
#include “atmi.h”

char instr[100]; /* string to capture stdin input strings */
long sllen, s2len; /* string 1 and string 2 lengths */
char *slptr, *s2ptr; /* string 1 and string 2 pointers */

main()

(void)gets(instr); /* get line from stdin */
sllen = (long)strlen(instr)+1; /* determine its length */

join application

if ((slptr = tpalloc(“STRING”, NULL, sllen)) == NULL) {
fprintf(stderr, “tpalloc failed for echo of: %s\n”, instr);
leave application
exit(1);

}

(void)strcpy(slptr, instr);

make communication call with buffer pointed to by s1ptr

(void)gets(instr); [* get another line from stdin */
s2len = (long)strlen(instr)+1; /* determine its length */
if ((s2ptr = tprealloc(s1ptr, s2len)) == NULL) {
fprintf(stderr, “tprealloc failed for echo of: %s\n”, instr);
free slptr's buffer
leave application
exit(1);

}
(void)strcpy(s2ptr, instr);

make communication call with buffer pointed to by s2ptr

The following example (an expanded version of the previous example) shows how tt
check for occurrences of all possible error codes.

3-12 Programming a BEA Tuxedo Application Using C

Resizing a Typed Buffer

Listing 3-8 Error Checking for tprealloc()

if ((s2ptr=tprealloc(slptr, s2len)) == NULL)
switch(tperrno) {
case TPEINVAL:
fprintf(stderr, "given invalid arguments\n");
fprintf(stderr, "will do tpalloc instead\n");
tpfree(slptr);
if ((s2ptr=tpalloc("STRING", NULL, s2len)) == NULL) {
fprintf(stderr, “tpalloc failed for echo of: %s\n", instr);
leave application
exit(1);

break;
case TPEPROTO:
fprintf(stderr, "tried to tprealloc before tpinit;\n");
fprintf(stderr, "program error; contact product support\n®);
leave application
exit(1);
case TPESYSTEM:
fprintf(stderr,
"BEA Tuxedo error occurred; consult today's userlog file\n");
leave application
exit(1);
case TPEOS:
fprintf(stderr, "Operating System error %d
occurred\n",Uunixerr);
leave application
exit(1);
default:
fprintf(stderr,
"Error from tpalloc: %s\n", tpstrerror(tperrno));
break;

}

See Also

m “Allocating a Typed Buffer” on page 3-6
m “Putting Data in a Buffer” on page 3-9

m tprealloc(3c) in theBEA Tuxedo C Function Reference

Programming a BEA Tuxedo Application Using C 3-13

3 Managing Typed Buffers

Checking for Buffer Type

3-14

Thetptypes(3c) function returns the type and subtype (if one exists) of a buffer. The
tptypes() function signature is as follows.

long
tptypes(char * ptr ,char* type ,char* subtype)

The following table describes the arguments tatypes() function.

Table 3-4 tptypes() Function Arguments

Argument Description
ptr Pointer to a data buffer. This pointer must have been originally
allocated by a call tipalloc() ortprealloc() , it may not

be NULL, and it must be cast as a character type; otherwise, the
tptypes() function reports an invalid argument error.

type Pointer to the type of the data bufféme is of character type.

subtype Pointer to the subtype of the data buffer, if one exssistype
is of character type. For all types other tNaBW, VIEW32,
X_C_TYPE andX_COMMQMNpon return theubtype
parameter points to a character array containing the NULL
string.

Upon success, thptypes() function returns the length of the buffer in the form of
a long integer.

In the event of an erroptypes() returns a value of -1 and s@tsrmo(5) to the
appropriate error code. For a list of these error codes, refer to the “Introduction to th
C Language Application-Transaction Monitor Interface,” gratloc(3c) in the

BEA Tuxedo C Function Reference

You can use the size value returneddoypes() upon success to determine whether
the default buffer size is large enough to hold your data, as shown in the following
example.

Programming a BEA Tuxedo Application Using C

Freeing a Typed Buffer

See Also

Listing 3-9 Getting Buffer Size

|ptr = (FBFR *)tpalloc("FML", NULL, 0);
ilen = tptypes(iptr, NULL, NULL);

i.f.(illen < mydatasize)
iptr=tprealloc(iptr, mydatasize);

m “Allocating a Typed Buffer” on page 3-6

m tptypes(3c) in theBEA Tuxedo C Function Reference

Freeing a Typed Buffer

Thetpfree(3c) function frees a buffer allocated Ipalloc() or reallocated by
tprealloc() . Thetpfree() ~ function signature is as follows.

void
tpfree(char * ptr)

Thetpfree() function takes only one argumept; , which is described in the
following table.

Table 3-5 tpfree() Function Argument

Argument Description
ptr Pointer to a data buffer. This pointer must have been allocated
originally by a call tapalloc() or tprealloc() , it may

not be NULL, and it must be cast as a character type; otherwise,
the function returns without freeing anything or reporting an
error condition.

Programming a BEA Tuxedo Application Using C 3-15

3 Managing Typed Buffers

When freeing arML32 buffer usingipfree() , the routine recursively frees alll
embedded buffers to prevent memory leaks. In order to preserve the embedded buffe
you should assign the associated pointer to NULL before issuingfitbe)

routine. Wherptr is NULL, no action occurs.

The following example shows how to use thigee() function to free a buffer.

Listing 3-10 Freeing a Buffer

struct aud *audv; /* pointer to aud view structure */
audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

ip.f.ree((char *audv);

See Also

m “Allocating a Typed Buffer” on page 3-6
m “Resizing a Typed Buffer” on page 3-11

m tpfree(3c) in theBEA Tuxedo C Function Reference

Using a VIEW Typed Buffer

There are two kinds oflIEW typed buffers. The firsEML VIEW, is a C structure
generated from aRML buffer. The second is simply an independent C structure.

3-16 Programming a BEA Tuxedo Application Using C

Using a VIEW Typed Buffer

The reason for convertirgML buffers into C structures and back again (and the
purpose of th&ML VIEW typed buffers) is that whileML buffers provide
data-independence and convenience, they incur processing overhead because they
must be manipulated usimgL function calls. C structures, while not providing
flexibility, offer the performance required for lengthy manipulations of buffer data. If
you need to perform a significant amount of data manipulation, you can improve
performance by transferring fielded buffer data to C structures, operating on the data
using normal C functions, and then converting the data back to the FML buffer for
storage or message transmission.

For more information on thieMLtyped buffer an&MLfile conversion, refer to thREA
Tuxedo FML Function Reference

To useVIEWtyped buffers, you must perform the following steps:
m Set the appropriate environment variables
m Describe each structure in view description files

m Compile the view description files usingwc , the BEA Tuxedo view
compiler. Specify the resulting header file in thieclude statement for your
application program.

Setting Environment Variables for a VIEW Typed Buffer

To use aviIEwtyped buffer in an application, you must set the following environment
variables.

Table 3-6 Environment Variables for a VIEW Typed Buffer

Environment Description

Variable

FIELDTBLS or Comma-separated list of field table file namesHBiL or

FIELDTBLS32 FML32 typed buffers. Required only f6iMLVIEW types.

FLDTBLDIR or Colon-separated list of directories to search for the field table

FLDTBLDIR32 files for FMLandFML32typed buffers. For Microsoft Windows,
use a semi-colon separated list. Required onlykek VIEW
types.

Programming a BEA Tuxedo Application Using C 3-17

3 Managing Typed Buffers

Environment Description

Variable

VIEWFILES or Comma-separated list of allowalilée names foVIEW or
VIEWFILES32 VIEW32 description files.

VIEWDIR or Colon-separated list of directories to searchvi@Ww or
VIEWDIR32 VIEW32 files. For Microsoft Windows, use a semi-colon

separated list.

Creating a View Description File

3-18

To use aviEwtyped buffer, you must define the C record in a view description file.
The view description file includes, a view for each entry, a view that describes the
characteristic C structure mapping and the poteRtiatonversion pattern. The name

of the view corresponds to the name of the C language structure.

The following format is used for each structure in the view description file.

$ /* View structure */
VIEW viewname
type cname fbname count flag size null

The following table describes the fields that must be specified in the view description
file for each C structure.

Table 3-7 View Description File Fields

Field Description

type Data type of the field. Can be setstwort , long , float ,
double , char ,string , orcarray

cname Name of the field as it appears in the C structure.

fbname If you will be using the=ML-to-VIEW or VIEW-to-FML

conversion functions, this field must be included to indicate the
corresponding-MLname. This field name must also appear in
the FMLfield table file This field is not required for
FML-independent VIEWS.

count Number of times field occurs.

Programming a BEA Tuxedo Application Using C

Using a VIEW Typed Buffer

Field Description

flag Specifies any of the following optional flag settings:

m P - Change the interpretation of the NULL value
S - One-way mapping from fielded buffer to structure
F - One-way mapping from structure to fielded buffer
N - Zero-way mapping

C - Generate additional field for associated count member
(ACM)

m L - Hold number of bytes transferred FRING and
CARRAY

size ForSTRINGandCARRAMUffertypes, specifies the maximum
length of the value. This field is ignored for all other buffer
types.

null User-specified NULL value, or to indicate the default value
for a field. NULL values are used WIEWtyped buffers to
indicate empty C structure members.

The default NULL value for all numeric types is 0 (0.0 for
dec_t). For character types, the default NULL value\@s’:
For STRINGandCARRAMypes, the default NULL value is “ .

Constants used, by convention, as escape characters can also be
used to specify a NULL value. The view compiler recognizes

the following escape constantddd (whered is an octal digit),

\O,\n A\t W\ M NV Jandy .

You may enclos€TRING, CARRAYandchar NULL valuesin

double or single quotes. The view compiler does not accept
unescaped quotes within a user-specified NULL value.

You can also specify the keyword NONE in the NULL field of

a view member description, which means that there is no NULL
value for the member. The maximum size of default values for
string and character array members is 2660 characters. For more
information, refer to th® EA Tuxedo FML Function Reference

You can include a comment line by prefixing it with the # or $ character. Lines
prefixed by a $ sign are included in thefile.

Programming a BEA Tuxedo Application Using C 3-19

3 Managing Typed Buffers

The following listing is an excerpt from an example view description file based on an
FML buffer. In this case, thiname field must be specified and match that which
appeatrs in the correspondifigld table file Note that thecARRAYTield includes an
occurrence count &f and sets the flag to indicate that an additional count element
should be created. In addition, thélag is set to establish a length element that
indicates the number of characters with which the application populatesrkiray1
field.

Listing 3-11 View Description File for FML VIEW

$ /* View structure */

VIEW MYVIEW

#type cname fbname count flag size null
float floatl FLOAT1 1 - - 0.0
double doublel DOUBLE1 1 - - 0.0
long longl LONG1 1 - - 0
short shortl SHORT1 1 - - 0

int intl INT1 1 - - 0

dect decl DEC1 1 - 9,16 O
char charl CHAR1 1 - - \0'
string stringl STRING1 1 - 20 O
carray carrayl CARRAY1 2 CL 20 "\O
END

The following listing illustrates the same view description file for an independent
VIEW.

Listing 3-12 View Description File for an Independent View

$ /* View data structure */

VIEW MYVIEW

#type cname fbname count flag size null
float floatl - 1 - - -

double doublel - 1 - - -

long longl - 1 - - -

short shortl - 1 - - -

int intl - 1 - - -

dec t decl - 1 - 9,16 -

char charl - 1 - - -

string stringl - 1 - 20 -

3-20 Programming a BEA Tuxedo Application Using C

Using a VIEW Typed Buffer

carray carrayl- 2 CL 20 -
END

Note that the format is similar to ti®L-dependent view, except that tlheame and
null fields are not relevant and are ignored byibe&c compiler. You must include
a value (for example, a dash) as a placeholder in these fields.

Executing the VIEW Compiler

To compile aviEwtyped buffer, run theiewc command, specifying the name of the
view description file as an argument. To specify an independewt use then

option. You can optionally specify a directory in which the resulting output file should
be written. By default, the output file is written to the current directory.

For example, for arML-dependenVIEW, the compiler is invoked as follows.
viewc myview.v

Note: To compile aviEw32 typed buffer, run theiewc32 command.

For an independemMEW, use then option on the command line, as follows.
viewc -n myview.v

The output of the@iewc command includes:

m One or more COBOICOPYfiles; for exampleMYVIEW.cbl

m Header file containing a structure definition that may be used by application
programs

m Binary version of the source description file; for exampigsiew.V

Note: On case-insensitive platforms (for example, Microsoft Windows), the
extension used for the names of such files iFor examplemyview.vv .

The following listing provides an example of the header file createtbivy .

Programming a BEA Tuxedo Application Using C 3-21

3 Managing Typed Buffers

Listing 3-13 Header File Created Using the VIEW Compiler

struct MYVIEW {

float floatl;
double doublel;
long longl;
short shorti;
int intl;
dec t decl;
char charl;

char string1[20];

unsigned short L_carray1[2]; /* length array of carrayl */
short C_carrayl; /* count of carrayl */

char carrayl1[2][20];

The same header file is created for FML-dependent and independent VIEWS.

In order to use ¥IEWtyped buffer in client programs or service subroutines, you must
specify the header file in the applicatiinclude statements.

See Also

m “Using an FML Typed Buffer” on page 3-22
m “Using an XML Typed Buffer” on page 3-27

m viewc, viewc32(1) in theBEA Tuxedo Command Reference

Using an FML Typed Buffer

To useFMLtyped buffers, you must perform the following steps:

m Set the appropriate environment variables

3-22 Programming a BEA Tuxedo Application Using C

Using an FML Typed Buffer

m Describe the potential fields in an FML field table

m Create arFML header file and specify the header file #irelude statement in

the application.

FMLfunctions are used to manipulate typed buffers, including those that convert
fielded buffers to C structures and vice versa. By using these functions, you can access
and update data values without having to know how data is structured and stored. For
more information ofMLfunctions, refer to thBEA Tuxedo FML Function Reference

Setting Environment Variables for an FML Typed Buffer

To use arFMLtyped buffer in an application program, you must set the following

environment variables.

Table 3-8 FML Typed Buffer Environment Variables

Environment
Variable

Description

FIELDTBLS or
FIELDTBLS32

Comma-separated list of field table file namesHBiL or
FML32 typedbuffers respectively.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of directories to search for the field table
files for FMLandFML32, respectively. For Microsoft Windows,
use a semi-colon separated list.

Creating a Field Table File

Field table files are always required wirn_buffers and/oFML-dependenyIEWSs are
used. A field table file maps the logical name of a field ifnbuffer to a string that
uniquely identifies the field.

The following format is used for the description of each field inrthiefield table.

$ /* FML structure */
*base value
name number

type flags comments

Programming a BEA Tuxedo Application Using C 3-23

3 Managing Typed Buffers

The following table describes the fields that must be specified iiMhé&eld table file
for eachFMLfield.

Table 3-9 Field Table File Fields

Field Description

*base value Specifies a base for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The*base option allows field numbers to be reused. For
a 16-bit buffer, the base plus the relevant number must be greater
than or equal to 100 and less than 8191. This field is optional.

Note: The BEA Tuxedo system reserves field numbers 1-100
and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FML, field numbers 101-33, 554, and 431, for
FML32.

name Identifier for the field. The value must be a string of up to 30
characters, consisting of alphanumeric and underscore
characters only.

rel-number Relative numeric value of the field. This value is added to the
current base, if specified, to calculate the field number.

type Type of the field. This value can be any of the followicigar ,
string , short ,long , float , double , orcarray

flag Reserved for future use. A dash (-) should be included as a
placeholder.

comment Optional comment.

All fields are optional, and may be included more than once.

3-24 Programming a BEA Tuxedo Application Using C

Using an FML Typed Buffer

The following example illustrates a field table file that may be used with the
FML-dependenYIEW example

Listing 3-14 Field Table File for FML VIEW

name number type flags comments
FLOAT1 110 float - -

DOUBLE1 111 double - -

LONG1 112 long - -

SHORT1 113 short - -

INT1 114 long - -

DEC1 115 string - -

CHAR1 116 char - -

STRING1 117 string - -
CARRAY1 118 carray - -

Creating an FML Header File

In order to use aRMLtyped buffer in client programs or service subroutines, you must
create arFMLheader file and specify it in the applicatiginclude statements.

To create arMLheader file from a field table file, use thefldahdr (1) command. For
example, to create a file callegview.fids.h , enter the following command.

mkfldhdr myview.flds

ForFML32 typed buffers, use thekfldhdr32 command.

Programming a BEA Tuxedo Application Using C 3-25

3 Managing Typed Buffers

The following listing shows thenyview.flds.h header file that is created by the
mkfldhdr command.

Listing 3-15 myview.flds.h Header File

/* fname fldid */
/¥ e e */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHAR1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#define CARRAY1 ((FLDID)49270) /* number: 118 type: carray */

Specify the new header file in thimclude statement of your application. Once the
header file is included, you can refer to fields by their symbolic names.

See Also

m “Using a VIEW Typed Buffer” on page 3-16
m “Using an XML Typed Buffer” on page 3-27

m mkfldhdr, mkfldhdr32(1) in theBEA Tuxedo Command Reference

3-26 Programming a BEA Tuxedo Application Using C

Using an XML Typed Buffer

Using an XML Typed Buffer

XMLbuffers enable BEA Tuxedo applications to use XML for exchanging data within
and between applications. BEA Tuxedo applications can send and receivexitnple
buffers, and route those buffers to the appropriate servers. All logic for dealing with
XMLdocuments, including parsing, resides in the application.

An XMLdocument consists of:
m A sequence of characters that encode the text of a document

m A description of the logical structure of the document and information about that
structure

The programming model for theMLbuffer type is similar to that for ti@ARRADUffer
type: you must specify the length of the buffer with tredioc() function. The
maximum supported size of &MLdocument is 4GB.

Formatting and filtering for Events processing (which are supported w&eRIEG
buffer type is used) are not supported forxiebuffer type. Therefore, the
_tmfiter and_tmformat function pointers in the buffer type switch ftmLbuffers
are set to NULL.

TheXMLparser in the BEA Tuxedo system performs the following functions:
m Autodetection of character encodings

m Character code conversion

m Detection of element content and attribute values

m Data type conversion

Data-dependent routing is supportedXetLbuffers. The routing of akMLdocument

can be based on element content, or on element type and an attribute vakiL The
parser determines the character encoding being used; if the encoding differs from the
native character sets (US-ASCII or EBCDIC) used in the BEA Tuxedo configuration
files (UBBCONFIGandDMCONFIG, the element and attribute names are converted to
US-ASCII or EBCDIC.

Programming a BEA Tuxedo Application Using C 3-27

3 Managing Typed Buffers

See Also

Attributes configured for routing must be included inxanLdocument. If an attribute
is configured as a routing criteria but it is not included intkiedocument, routing
processing fails.

The content of an element and the value of an attribute must conform to the syntax ar
semantics required for a routing field value. The user must also specify the type of thi
routing field valueXMLsupports only character data. If a range field is numeric, the

content or value of that field is converted to a numeric value during routing processing

m “Using a VIEW Typed Buffer” on page 3-16
m “Using an FML Typed Buffer” on page 3-22

Customizing a Buffer

You may find that the buffer types supplied by the BEA Tuxedo system do not meet
your needs. For example, perhaps your application uses a data structure that is not fl
but has pointers to other data structures, such as a parse tree for an SQL database qu
To accommodate unique application requirements, the BEA Tuxedo System suppor!
customized buffers.

To customize a buffer, you need to identify the following characteristics.

Table 3-10 Custom Buffer Type Characteristics

Characteristic Description
Buffer type Name of the buffer type, specified by a string of up to eight
characters.

3-28 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

Characteristic Description

Buffer subtype Name of the buffer subtype, specified by a string of up to 16
characters. The system uses a subtype to identify different
processing requirements for buffers of a given type. When the
wildcard character (*) is specified as the subtype value, all
buffers of a given type can be processed using the same generic
routine. Any buffers for which a subtype is defined must appear
before the wildcard in the list, in order to be processed correctly.

Default size Minimum size of the associated buffer type that can be allocated
or reallocated. For buffer types that have a value greater than
zero and that are sized appropriately, you can specify a buffer
size of zero when allocating or reallocating a buffer to use this
default size.

The following table defines the list of routines that you may need to specify for each
buffer type. If a particular routine is not applicable, you can simply provide a NULL
pointer; the BEA Tuxedo system uses default processing, as necessary.

Table 3-11 Custom Buffer Type Routines

Routine Description
Buffer initialization Initializes a newly allocated typed buffer.
Buffer reinitialization Reinitializes a typed buffer. This routine is called after a buffer

has been reallocated (that is, assigned a new size).

Buffer uninitialization Uninitializes a typed buffer. This routine is called just before a
typed buffer is freed.

Buffer presend Prepares the typed buffer for sending. This routine is called
before a typed buffer is sent as a message to another client or
server. It returns the length of the data to be transmitted.

Buffer postsend Returns the typed buffer to its original state. This routine is
called after the message is sent.

Buffer postreceive Prepares the typed buffer once it has been received by the
application. It returns the length of the application data.

Programming a BEA Tuxedo Application Using C 3-29

3 Managing Typed Buffers

Routine Description

Encode/decode Performs all the encoding and decoding necessary for the buffer
type. A request to encode or decode is passed to the routine,
along with input and output buffers and lengths. The format used
for encoding is determined by the application and, as with the
other routines, it may be dependent on the buffer type.

Routing Specifies the routing information. This routine is called with a
typed buffer, the length of the data for that buffer, a logical
routing name configured by an administrator, and a target
service. Based on this information, the application must select
the server group to which the message should be sent or indicate
that the message is not needed.

Filter Specifies filter information. This routine is called to evaluate an
expression against a typed buffer and to return a match if it finds
one. If the typed buffer igIEW or FML, theFML Boolean
expressions are used. This routine is used by the EventBroker to
evaluate matches for events

Format Specifies a printable string for a typed buffer.

Defining Your Own Buffer Types

The application programmer is responsible for the code that manipulates buffers,
which allocates and frees space, and sends and receives messages. For application
which the default buffer types do not meet the needs of the application, other buffer
types can be defined, and new routines can be written and then incorporated into th
buffer type switch.

To define other buffer types, complete the following steps:
1. Code any switch element routines that may be required.

2. Add your new types and the names of your buffer management modules to
tm_typesw .

3. Build a new shared object or a DLL. The shared object or DLL must contain your
updated buffer type switch and associated functions.

3-30 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

4. Install your new shared object or DLL so that all servers, clients, and executables

provided by the BEA Tuxedo system are loaded dynamically at run time.

If your application is using static libraries and you are providing a customized buffer
type switch, then you must build a custom server to link in your new type switch. For

details, seeuildwsh (1), TMQUEUKS), or TMQFORWARB).

The rest of the sections in this topic address the steps listed in the preceding procedure
to define a new buffer type in a shared-object or DLL environment. First, however,
let's look at the buffer switch that is delivered with the BEA Tuxedo system software.

The following listing shows the switch delivered with the system.

Listing 3-16 Default Buffer Type Switch

#include <stdio.h>
#include <tmtypes.h>

* Initialization of the buffer type switch */
static struct tmtype_sw_t tm_typesw]] = {

{

“CARRAY", I* type */
/* subtype */

0 [* dfltsize */

h

{

“STRING", I* type */
/*subtype */
512, /* dfltsize */
NULL, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
_strpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_strencdec, /* encdec */
NULL, /* route */
NULL, [* filter */
NULL /* format */

h

{

“FML", I* type */

/* subtype */
1024, /* dfltsize */
_finit, /* initbuf */
_freinit, /* reinitbuf */

Programming a BEA Tuxedo Application Using C 3-31

3 Managing Typed Buffers

_funinit, /* uninitbuf */
_fpresend, /* presend */
_fpostsend, I*postsend */
_fpostrecy, /* postrecv */
_fencdec, /* encdec */
_froute, [*route */
_ffilter, /* filter */
_fformat /* format */

h

{

“FML32", I* type */

/* subtype */
1024, /* dfltsize */
_finit32, /* initbuf */

_freinit32, /* reinitbuf */
_funinit32, * uninitbuf */
_fpresend32, * presend */
_fpostsend32, /* postsend */
_fpostrecv3d2, /* postrecv */

_fencdec32, /* encdec */
_froute32, * route */
_ffilter32, [* filter */
_fformat32 /* format */
h

{

"VIEW", I* type */

. [* subtype */
1024, * dfitsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, * presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */

_ Vfilter, [* filter */
_vformat /* format */

h

{

"VIEW32", I* type */

e [* subtype */
1024, [* dfitsize */
_Vinit32, /* initbuf */
_vreinit32, [* reinitbuf */
NULL, /* uninitbuf */
_vpresend32, [* presend */
NULL, /* postsend */
NULL, /* postrecv */

3-32 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

_vencdec32, /* encdec */
_vroute32, /* route */

_Vfilter32, [* filter */

_vformat32 /* format */

h

{

"X_OCTET", I* type */

[* subtype */

0, /* dfltsize */

h

{

LG UTUYUPVET, [type ¥
B [* subtype */

1024, /* dfltsize */

_vinit, /* initbuf */

_vreinit, /* reinitbuf */

NULL, /* uninitbuf */
_vpresend, /* presend */

NULL, /* postsend */

NULL, /* postrecv */

_vencdec, /* encdec */

_vroute, /* route */

_Vilter, /* filter */

_vformat /* format */

h

{

"X 'CLOL'MM'ON®, [type ¥
Rl [* subtype */

1024, /* dfltsize */

_vinit, /* initbuf */

_vreinit, /* reinitbuf */

NULL, /* uninitbuf */
_vpresend, /* presend */

NULL, /* postsend */

NULL, /* postrecv */

_vencdec, /* encdec */

_vroute, /* route */

_Vilter, /* filter */

_vformat /* format */

h

{

"XML", I* type */

B [* subtype */

o, /* dfltsize */

NULL, /* _xinit - not available */
NULL, /* _xreinit - not available */
NULL, /* _xuninit - not available */
NULL, /* _xpresend - not available */
NULL, /* _xpostsend - not available */

Programming a BEA Tuxedo Application Using C 3-33

3 Managing Typed Buffers

NULL, [* _xpostrecv - not available */
NULL, /* _xencdec - not available */
_Xroute, /* _xroute */

NULL, /* filter - not available */

NULL /* format - not available */

h

L,

}

3

For a better understanding of the preceding listing, consider the declaration of the
buffer type structure that is shown in the following listing.

Listing 3-17 Buffer Type Structure

[* The following definitions are in $TUXDIR/include/tmtypes.h */

#define TMTYPELEN 8
#define TMSTYPELEN 16

struct tmtype_sw_t {

char type[TMTYPELEN]; /* type of buffer */

char subtype[TMSTYPELEN]; /* sub-type of buffer */

long dfltsize; /* default size of buffer */

[* buffer initialization function pointer */

int C TMDLLENTRY *initbuf) _((char _TM_FAR *, long));

/* buffer re-initialization function pointer */

int C TMDLLENTRY *reinitbuf) _((char _TM_FAR *, long));

/* buffer un-initialization function pointer */

int C TMDLLENTRY *uninitbuf) _((char _TM_FAR *, long));

[* pre-send buffer manipulation func pointer */

long (_ TMDLLENTRY *presend) _((char _TM_FAR *, long, long));

[* post-send buffer manipulation func pointer */

void (_ TMDLLENTRY *postsend) _((char _TM_FAR *, long, long));

[* post-receive buffer manipulation func pointer*/

long (_ TMDLLENTRY *postrecv) _((char _TM_FAR *, long, long));

/* encode/decode function pointer */

long (_ TMDLLENTRY *encdec) _((int, char _TM_FAR *, long,
char _TM_FAR *, long));

/* routing function pointer */

int C TMDLLENTRY *route) _((char _TM_FAR *, char _TM_FAR *,
char _TM_FAR *, long, char _TM_FAR *));

3-34 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

[* buffer filtering function pointer */

int _ TMDLLENTRY *filter) _((char _TM_FAR *, long, char _TM_FAR *,
long));

* buffer formatting function pointer */

int _ TMDLLENTRY *format) _((char _TM_FAR *, long, char _TM_FAR *,
char _TM_FAR *, long));

/* this space reserved for future expansion */

void (_ TMDLLENTRY *reserved[10]) _((void));

The listing for the default buffer type switch shows the initialization of the buffer type
switch. The nine default buffer types are shown, followed by a field for naming a
subtype. Except for thelEw (and equivalentl)X_C_TYPEandX_COMMQNype,

subtype is null. The subtype fatEwis given as “*", which means that the default
VIEWtype puts no constraints on subtypes; all subtypes ofifgveare processed in
the same manner.

The next field gives the default (minimum) size of the buffer. Foc#rRAYand
equivalentlyx_OCTET type this is given as 0, which means that the routine that uses a
CARRAYbuffer type mustpalloc() enough space for the expecte®RRAY

For the other types, the BEA Tuxedo system allocates (wjthilac() call) the
space shown in thdfitsize field of the entry (unless the size argument of
tpalloc() specifies a larger size).

The remaining eight fields of entries in the buffer type switch contain the names of
switch element routines. These routines are described tnffee (3c) page iIBEA
Tuxedo C Function Referencehe name of a routine provides a clue to the purpose of
the routine. For examplefpresend on theFMLtype is a pointer to a routine that
manipulates the buffer before sending it. If no presend manipulation is needed, a
NULL pointer may be specified. NULL means no special handling is required; the
default action should be taken. Seéfer (3c) for details.

Itis particularly important that you notice the NULL entry at the end of the switch. Any
changes that are made must always leave the NULL entry at the end of the array.

Programming a BEA Tuxedo Application Using C 3-35

3 Managing Typed Buffers

Coding Switch Element Routines

3-36

Presumably an application that is defining new buffer types is doing so because of ¢
special processing need. For example, let's assume the application has a recurring ne
to compress data before sending a buffer to the next process. The application could
write a presend routine. The declaration for the presend routine is shown in the
following listing.

Listing 3-18 Semantics of the Presend Switch Element

long
presend(ptr, dlen, mdlen)
char *ptr;

long dlen, mdlen;

m ptr is a pointer to the application data buffer.
m dlen is the length of the data as passed into the routine.
m mdlen is the size of the buffer in which the data resides.

The data compression that takes place within your presend routine is the responsibilit
of the system programmer for your application.

On completion the routine should return the new, hopefully shorter length of the date
to be sent (in the same buffer), oriato indicate failure.

The name given to your version of the presend routine can be any identifier accepte
by the C compiler. For example, suppose we namayipresend .

If you use our mypresend compression routine, you will probably also need a
corresponding mypostrecv routine to decompress the data at the receiving end.
Follow the template shown in theffer (3c) entry inBEA Tuxedo C Function
Reference

Programming a BEA Tuxedo Application Using C

Customizing a Buffer

Adding a New Buffer Type to tm_typesw

After the new switch element routines have been written and successfully compiled,
the new buffer type must be added to the buffer type switch. To do this task, we
recommend making a copy $fUXDIR/lib/tmtypesw.c (the source code for the
default buffer type switch). Give your copy a hame with auffix, such as

mytypesw.c . Add the new type to your copy. The name of the type can be up to 8
characters in length. Subtype can be nul) ©r a string of up to 16 characters. Enter
the names of your new switch element routines in the appropriate locations, including

theextern

declarations. The following listing provides an example.

Listing 3-19 Adding a New Type to the Buffer Switch

#include <stdio.h>
#include <tmtypes.h>

[* Customized the buffer type switch */

static struct tmtype_sw_t tm_typesw(] = {

{

"SOUND", I* type */

[* subtype */
50000, [* dfltsize */
snd_init, /* initbuf */
snd_init, /* reinitbuf */
NULL, /* uninitbuf */
snd_cmprs, /* presend */

snd_uncmprs, /* postsend */
snd_uncmprs /* postrecv */

h

{

"FML", I* type */

[* subtype */
1024, [* dfltsize */
_finit, [* initbuf */
_freinit, /* reinitbuf */
_funinit, /* uninitbuf */
_fpresend, /* presend */

_fpostsend, /* postsend */
_fpostrecy, /* postrecv */

_fencdec, /* encdec */
_froute, /* route */
_ffilter, /* filter */
_fformat /* format */

Programming a BEA Tuxedo Application Using C 3-37

3

Managing Typed Bulffers

In the previous listing, we added a new typeUNDWe also removed the entries for
VIEW, X_OCTET X_COMMQMndX_C_TYPE to demonstrate that you can remove any
entries that are not needed in the default switch. Note that the array still ends with th
NULL entry.

An alternative to defining a new buffer type is to redefine an existing type. Suppose,
for the sake of argument, that the data compression for which you defined the buffe
typeMYTYPBEwvas performed on strings. You could substitute your new switch element
routines,_mypresend and_mypostrecv , for the two_dfitolen routines in type
STRING.

Compiling and Linking Your New tm_typesw

3-38

To simplify installation, the buffer type switch is stored in a shared object.

Note: On some platforms the term “shared library” is used instead of “shared
object.” On the NT platform a “dynamic link library” is used instead of a
“shared object.” For the purposes of this discussion, however, the functionality
implied by all three terms is equivalent, so we use only one term.

This section describes how to make all BEA Tuxedo processes in your application
aware of the modified buffer type switch. These processes include application servelr
and clients, as well as servers and utilities provided by the BEA Tuxedo system.

1. Copy and modifggTUXDIR/lib/tmtypesw.c , as described in “Adding a New
Buffer Type to tm_typesw” on page 3-37. If additional functions are required, store
them in eithermtypesw.c or a separate C source file.

2. Compiletmtypesw.c with the flags required for shared objects.

3. Link together all object files to produce a shared object.

Programming a BEA Tuxedo Application Using C

Customizing a Buffer

4. Copylibbuft.so.71 from the current directory to a directory in which it will
be visible to applications, and processed before the default shared object supplied
by the BEA Tuxedo system. We recommend using one of the following
directories$APPDIR, $TUXDIR/lib , or $TUXDIR/bin (on an NT platform).

Different platforms assign different names to the buffer type switch shared object, to
conform to operating system conventions.

Table 3-12 OS-specific Names for the Buffer Type Switch Shared Object

On This Platform ... The Name of the Buffer Type Switch
Shared Object s . ..

UNIX System libbuft.so.71

(most SVR4)

HP-UX libbuft.sl

Sun OS libbuft.so.71

Windows (16-bit) wbuft.dll

Windows (32-bit) wbuft32.dll

OS/2 (16-bit) obuft.dll

0OS/2 (32-bit) obuft.dll

Please refer to the software development documentation for your platform for
instructions on building a shared object library.

As an alternative, it is possible to statically link a new buffer type switch in every client
and server process, but doing so is more error-prone and not as efficient as building a
shared object library.

Compiling and Linking Your New tm_typesw for a 16-bit Windows Platform

If you have modifiedmtypesw.c on a Windows platform, as described in
“Compiling and Linking Your New tm_typesw” on page 3-38, then you can use the
commands shown in the following sample code listing to make the modified buffer
type switch available to your application.

Programming a BEA Tuxedo Application Using C 3-39

3 Managing Typed Buffers

Listing 3-20 Sample Code in Microsoft Visual C++

CL -AL -l..\e\|sysinclu -I..\e\]include -Aw -G2swx -Zp -D_TM_WIN

-D_TMDLL -Od -¢c TMTYPESW.C

LINK /CO /ALIGN:16 TMTYPESW.OBJ, WBUFT.DLL, NUL, WTUXWS /SE:250 /NOD
/NOE LIBW LDLLCEW, WBUFT.DEF

RC /30 /T /K WBUFT.DLL

Data Conversion

The purpose of theYPE parameter in th®IACHINESsection of the configuration file

is to group together machines that have the same form of data representation (and L
the same compiler) so that data conversion is done on messages going between
machines of differentYPEs. For the default buffer types, data conversion between
unlike machines is transparent to the user (and to the administrator and programme
for that matter).

If your application defines new buffer types for messages that move between machine
with different data representation schemes, you must also write new encode/decode
routines to be incorporated into the buffer type switch. When writing your own data
conversion routines, keep the following guidelines in mind:

® You should use the semantics of th@encdec routine shown on the
buffer(3c) page in thaBEA Tuxedo C Function Referenddat is, you should
code your routine so that it uses the same arguments and returns the same valu
on success or failure asnencdec . Follow the procedure provide in “ for
building servers with services that use your new buffer type.

The encode/decode routines are called only when the BEA Tuxedo system determin

that data is being sent between two machines that are not of thasame

3-40 Programming a BEA Tuxedo Application Using C

CHAPTER

4 Writing Clients

m Joining an Application

m Using Features of the TPINIT Typed Buffer
m Leaving the Application

m Building Clients

m Client Process Examples
Joining an Application

Before a client can perform any service request, it must join the BEA Tuxedo
application, either explicitly or implicitly. Once the client has joined the application, it
can initiate requests and receive replies.

A client joins an application explicitly by calling th@nit(3c) function with the
following signature.

int

tpinit (TRPINIT *tpinfo)

A client joins an application implicitly by issuing a service request (or any ATMI
function) without first calling thepinit) function. In this case, thinit()

function is called by the BEA Tuxedo system on behalf of the client wittpitife
argument set to NULL. Thinfo argument points to a typed buffer witifINIT

type and NULL subtype. THEPINIT typed buffer is defined in themi.n header file
and includes the following information:

Programming a BEA Tuxedo Application Using C 4-1

4 Writing Clients

char usrname [MAXTIDENT+2];
char cltname [MAXTIDENT+2];
char passwd[MAXTIDENT+2];

char grpname [MAXTIDENT+2];

long flags ;
long datalen ;
long data ;

The following table summarizes theINIT data structure fields.

Table 4-1 TPINIT Data Structure Fields

Field Description

usrname Name representing the client; used for both broadcast
notification and administrative statistics retrieval. The client
assigns a value tasrname during the call to thgpinit()
function. The value is a string of upMAXTIDENTcharacters
(which defaults to 30 and is configurable by the administrator),
and must be terminated by NULL

cltname Client name with application-defined semantics: a 30-character
null-terminated string used for both broadcast notification and
administrative statistics retrieval. The client assigns a value to
cltname during the call to thginit() function. The value
is a string of up tdt/AXTIDENTcharacters (which defaults to 30
and is configurable by the administrator), and must be
terminated by NULL

Note: The valuesysclient is reserved for thelthame
field.

passwd Application password in unencrypted format. Used for user
authentication. The value is a string of up to 30 characters.

grpname Associates client with resource manager group. If set to a
0-length string, the client is not associated with a resource
manager and is in the default client group. The value of
grpname must be the null string (0-length string) for
Workstation clients. Refer tdsing the BEA Tuxedo
Workstation Componeiibr more information on Workstation
clients.

4-2 Programming a BEA Tuxedo Application Using C

Joining an Application

Field Description

flags Indicates both the client-specific notification mechanism and the
mode of system access. Controls both multicontext and
single-context modes. Refer to “Unsolicited Notification
Handling” on page 4-6 dpinit() in theBEA Tuxedo C
Function Referenctr more information on flags.

datalen Length of the application-specific data. The buffer type switch
entry for theTPINIT typed buffer sets this field based on the
total size passed in for the typed buffer. The size of the
application data is the total size less the size oTBibIIT
structure itself plus the size of the data placeholder as defined in
the structure.

data Placeholder for variable length data that is forwarded to an
application-defined authentication service.

Before it can join the application, the client program mustieallbc() to allocate
theTPINIT buffer. The following example shows how to allocat@®mIT buffer that
will be used to pass eight bytes of application-sped#ig to thetpinit() function.

Listing 4-1 Allocating a TPINIT Typed Buffer

TPRINIT *tpinfo;

if ((tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,
TPINITNEED(8))) == (TPINIT ¥)NULL){
Error Routine

Refer totpinit() in theBEA Tuxedo C Function Refererfoe more information on
the TPINIT typed buffer.

Programming a BEA Tuxedo Application Using C 4-3

4 Writing Clients

See Also

® tpinit(3c) in theBEA Tuxedo C Function Reference

Using Features of the TPINIT Typed Buffer

The client must explicitly invoke thginit() function in order to take advantage of
the following features of thePINIT typed buffer:

m Client Naming

m Unsolicited Notification Handling
m System Access Mode

m Resource Manager Association

m Client Authentication

Client Naming

4-4

When a client joins an application, the BEA Tuxedo system assigns a unique client
identifier to it. The identifier is passed to each service called by the client. It can alsc
be used for unsolicited notification.

You can also assign unique client and user names of up to 30 characters each, by
passing them to thginit() function via thepinfo buffer argument. The BEA
Tuxedo system establishes a unique identifier for each process by combining the cliel
and user names associated with it, with the logical machine identifier (LMID) of the
machine on which the process is running. You may choose a method for acquiring th
values for these fields.

Programming a BEA Tuxedo Application Using C

Using Features of the TPINIT Typed Buffer

Note: If a process is executing outside the administrative domain of the application
(that is, if it is running on a workstation connected to the administrative
domain), the LMID of the machine used by the workstation client to access the
application is assigned.

Once a unique identifier for a client process is created:
m Client authentication can be implemented.

m Unsolicited messages can be sent to a specific client or to groups of clients via
tpnotify() andtpbroadcast()

m Detailed statistical information can be gatheredmisimin(1)

Refer to “Writing Event-based Clients and Servers” on page 8-1 for information on
sending and receiving unsolicited messages, anBE#eTuxedo C Function
Referencdor more information ommadmin(1)

The following figure shows how names might be associated with clients accessing an
application. In the example, the application usesitheme field to indicate a job
function.

Figure 4-1 Client Naming

LMID: NODE1 — LMID: ITIODEI
usmname: john W usmame: jane
cltname: teller o diname: teller
il
£
) A
NETWORK - -
M - LMID: NODE2
3 N usrname: jane
fol clthame: manager
L D
o 2. .
s 2
physical connections
logical connections

Programming a BEA Tuxedo Application Using C 4-5

4 Writing Clients

Unsolicited Notification Handling

4-6

Unsolicited natification refers to any communication with a client that is not an
expected response to a service request (or an error code). For example, an
administrator may broadcast a message to indicate that the system will go down in fiv
minutes.

A client can be notified of an unsolicited message in a number of ways. For example
some operating systems might send a signal to the client and interrupt its current
processing. By default, the BEA Tuxedo system checks for unsolicited messages ea
time an ATMI function is invoked. This approach, referred tdipsn, is

advantageous because it:

m Is supported on all platforms
m Does not interrupt the current processing

As some time may elapse between “dip-ins,” the application can call the
tpchkunsol() function to check for any waiting unsolicited messages. Refer to
“Writing Event-based Clients and Servers” on page 8-1 for more information on the
tpchkunsol() ~ function.

When a client joins an application using thieit() function, it can control how to
handle unsolicited notification messages by defining flags. For client notification, the
possible values fdtags are defined in the following table.

Programming a BEA Tuxedo Application Using C

Using Features of the TPINIT Typed Buffer

Table 4-2 Client Notification Flags in a TPINIT Typed Buffer

Flag Description

TPU_SIG Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. The
advantage of using this mode is immediate notification. The
disadvantages include:

m The calling process must have the sa®@ as the sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

m TPU_SIGis not available on all platforms (specifically, it is
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, the flag is setd)_DIP and the
event is logged.

TPU_DIP (default) Select unsolicited notification by dip-in. In this case, the client
can specify the name of the message handling function using the
tpsetunsol() function, and check for waiting unsolicited
messages using ttgchkunsol() function.

TPU_THREAD SelectTHREADnotification in a separate thread. This flag is
allowed only on platforms that support multithreading. If
TPU_THREADLDs specified on a platform that does not support
multithreading, it is considered an invalid argument. As a result,
an error is returned and is seffBEINVAL.

TPU_IGN Ignore unsolicited notification.

Refer totpinit(3c) in theBEA Tuxedo C Function Refererfoe more information
on theTPINIT typed buffer flags.

System Access Mode

An application can access the BEA Tuxedo system through either of two modes:
protected or fastpath. The client can request a mode when it joins an application using
thetpinit() function. To specify a mode, a client passes one of the following values
in theflags field of theTPINIT buffer to thetpinit() function.

Programming a BEA Tuxedo Application Using C 4-7

4 Writing Clients

Table 4-3 System Access Flags in a TPINIT Typed Buffer

Mode Description

Protected Allows ATMI calls within an application to access the BEA
Tuxedo system internal tables via shared memory, but protects
shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overrides the value in
UBBCONFIGexcept whelNO_OVERRIDES specified. Refer to
Setting Up a BEA Tuxedo Applicatifor more information on
UBBCONFIG

Fastpath (default) Allows ATMI calls within application code access to BEA
Tuxedo system internals via shared memory. Does not protect
shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overrides the value of
UBBCONFIGexcept whetNO_OVERRIDEs specified. Refer to
Setting Up a BEA Tuxedo Applicatifor more information on
UBBCONFIG

Resource Manager Association

An application administrator can configure groups for servers associated with a
resource manager, including servers that provide administrative processes for
coordinating transactions. Refer$etting Up a BEA Tuxedo Applicatifor
information on defining groups.

When joining the application, a client can join a particular group by specifying the
name of that group in thegpname field of theTPINIT buffer.

Client Authentication

4-8

The BEA Tuxedo system provides security at incremental levels, including operating
system security, application password, user authentication, optional access control
lists, mandatory access control lists, and link-level encryption. Re&=ttimg Up a

BEA Tuxedo Applicatiofor information on setting security levels.

Programming a BEA Tuxedo Application Using C

Leaving the Application

The application password security level requires every client to provide an application
password when it joins the application. The administrator can set or change the
application password and must provide it to valid users.

If this level of security is used, BEA Tuxedo system-supplied client programs, such as
ud() , prompt for the application password. (RefeAtbninistering a BEA Tuxedo
Application at Run Timér more information ond, wud(1) .) In turn,
application-specific client programs must include code for obtaining the password
from a user. The unencrypted password is placed imRiNT buffer and evaluated
when the client callgpinit() to join the application.

Note: The password should not be displayed on the screen.

You can use thechkauth(3c) function to determine:
m Whether the application requires any authentication

m |f the application requires authentication, which of the following types of
authentication is needed:

e System authentication based on an application password

e Application authentication based on an application password and
user-specific information

Typically, a client should call thechkauth() function beforepinit() to identify
any additional security information that must be provided during initialization.

Refer toUsing BEA Tuxedo Securityr more information on security programming
techniques.

Leaving the Application

Once all service requests have been issued and replies received, the client can leave the
application using thegpterm(3c) function. Thetpterm() function takes no
arguments, and returns an integer value that is equal to —1 on error.

Programming a BEA Tuxedo Application Using C 4-9

4 Writing Clients

Building Clients

To build an executable client, compile your application with the BEA Tuxedo system
libraries and all other referenced files usingutigiclient(1) command. Use the
following syntax for thevuildclient command.

buildclient filename. c-o filename -t filenames -l filenames

The following table describes the options to ilaédclient command.

Table 4-4 buildclient Options

This Option or Allows You to Specify . . .

Argument . . .

filename. c The C application to be compiled.

-0 filename The executable output file. The default name for the output file
isa.out .

-f filenames A list of files that are to be link edited before the BEA Tuxedo

system libraries are link edited. You can spedifymore than
once on the command line, and you can include multiple
filenames for each occurrence-bf. If you specify a C program
file (file .c), itis compiled beforeitis linked. You can specify
other object filesfifle .0) separately, or in groups in an
archive file file .a).

-l filenames A list of files that are to be link edited after the BEA Tuxedo
system libraries are link edited. You can spedifymore than
once on the command line, and you can include multiple
filenames for each occurrence-bf. If you specify a C program
file (file .c), itis compiled beforeitis linked. You can specify
other object filesfifle .0) separately, or in groups in an
archive file file .a).

4-10 Programming a BEA Tuxedo Application Using C

Building Clients

See Also

This Option or Allows You to Specify . . .
Argument . . .
-r The resource manager access libraries that should be link edited

with the executable server. The application administrator is
responsible for predefining all valid resource manager
information in theSTUXDIR/updataobj/RM file using the
buildtms (1) command. Only one resource manager can be
specified. Refer t&etting Up a BEA Tuxedo Applicatitor
more information.

Note: The BEA Tuxedo libraries are linked in automatically; you do not need to
specify any BEA Tuxedo libraries on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which functions are called in the code, and which libraries
contain references to those functions.

By default, thebuildclient command invokes the UNIXc command. You can set
theCccCandCFLAGSenvironment variables to specify an alternative compile command,
and to set flags for the compile and link-edit phases, respectively. For more
information, refer to “Setting Environment Variables” on page 2-5.

buildclient -C -0 audit -f audit.o

The following example command line compiles a C program calléidc and
generates an executable file namedit .

buildclient —o audit —f audit.c

m “Building Servers” on page 5-32

® buildclient(1) in theBEA Tuxedo Command Reference

Programming a BEA Tuxedo Application Using C 4-11

4 Writing Clients

Client Process Examples

4-12

The following pseudo-code shows how a typical client process works from the time a
which it joins an application to the time at which it leaves the application.

Listing 4-2 Typical Client Process Paradigm

main()
{
check level of security
call tpsetunsol() to name your handler for TPU_DIP
get usrname, cltname
prompt for application password
allocate a TPINIT buffer
place values into TPINIT buffer structure members

if (tpinit((TPINIT *) tpinfo) == -1){
error routine;

}

allocate a message buffer
while user input exists {
place user input in the buffer
make a service call
receive the reply
check for unsolicited messages

}

free buffers

if (tpterm() == -1){
error routine;
}
}

On error1 is returned and the application sets the external global vanisdstaep

to a value that indicates the nature of the etperrno is defined in thetmi.h

header file and documentedyermo(5) intheBEA Tuxedo File Formats and Data
Descriptions Referenc@rogrammers typically assign, to this global variable, an error

Programming a BEA Tuxedo Application Using C

Client Process Examples

“Introduction to the C Language Application-Transaction Monitor Interface” in the
BEA Tuxedo C Function Refererfoe a complete list of error codes that can be
returned for each of the ATMI functions.

The following example illustrates how to use thieit() andtpterm() functions.
This example is borrowed frorhankapp , the sample banking application that is
provided with the BEA Tuxedo system.

Listing 4-3 Joining and Leaving an Application

#include <stdio.h> /* UNIX */

#include <string.h> /* UNIX */

#include <fml.h> /* BEA Tuxedo System */
#include <atmi.h> /* BEA Tuxedo System */
#include <Uunix.h> /* BEA Tuxedo System */
#include <userlog.h> /* BEA Tuxedo System */
#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */

main(argc, argv)
int argc;
char *argv([];

{

if (strrchr(argv[0],"/) '= NULL)
proc_name = strrchr(argv[0],/)+1;
else

proc_name = argv[0];

/* Join application */

if (tpinit((TPINIT *) NULL) ==-1) {

(void)userlog("%s: failed to join application\n", proc_name);
exit(1);

[* Leave application */
if (tpterm() == -1) {
(void)userlog("%s: failed to leave application\n", proc_name);
exit(1);
}
}

Programming a BEA Tuxedo Application Using C 4-13

4 Writing Clients

4-14

The previous example shows the client process attempting to join the application witl
a call totpinit() . If the process encounters an error (that s, if the return code is —1),
the process writes a descriptive message to the central event log via a call to
userlog() , which takes arguments similar to tentf() C program statement.

Refer touserlog(3c) intheBEA Tuxedo C Function Refererfoemore information.

Similarly, whentpterm() is called, if an error is encountered, the process writes a
descriptive message to the central event log.

Programming a BEA Tuxedo Application Using C

CHAPTER

5 Writing Servers

m BEA Tuxedo System main()

m System-supplied Server and Services

m Guidelines for Writing Servers

m Defining a Service

m Example: Checking the Buffer Type

m Example: Checking the Priority of the Service Request
m Terminating a Service Routine

m Advertising and Unadvertising Services

m Building Servers

BEA Tuxedo System main()

To facilitate the development of servers, the BEA Tuxedo system provides a predefined

main() routine for server load modules. When you executédhdserver
command, thenain() routine is automatically included as part of the server.

Note: Themain() routine that the system provides is a closed abstraction; you
cannot modify it.

In addition to joining and exiting from an application, the predefinaid() routine
accomplishes the following tasks on behalf of the server.

Programming a BEA Tuxedo Application Using C 5-1

5 Writing Servers

5-2

Executes the process ignoring any hangups (that is, it ignoresaHepP
signal).

Initiates the cleanup process on receipt of the standard operating system softwal
termination signalRIGTERN). The server is shut down and must be rebooted if
needed again.

Attaches to shared memory for bulletin board services.
Creates a message queue for the process.

Advertises the initial services to be offered by the server. The initial services are
either all the services link edited with the predefineth() , or a subset
specified by the BEA Tuxedo system administrator in the configuration file.

Processes command-line arguments up to the double -dgshvhich indicates
the end of system-recognized arguments.

Calls the functionpsvrinit() to process any command-line arguments listed
after the double dash- () and optionally to open the resource manager. These
command-line arguments are used for application-specific initialization.

Until ordered to halt, checks its request queue for service request messages.

When a service request message arrives on the request ga@ie, performs
the following tasks until ordered to halt:

e Ifthe-r option is specified, records the starting time of the service request.
¢ Updates the bulletin board to indicate that the sen@ugy

e Allocates a buffer for the request message and dispatches the service; that is
calls the service subroutine.

When the service returns from processing its inpaby() performs the
following tasks until ordered to halt:

e Ifthe-r option is specified, records the ending time of the service request.
e Updates statistics.

¢ Updates the bulletin board to indicate that the serv®LB; that is, that the
server is ready for work.

e Checks its queue for the next service request.

Programming a BEA Tuxedo Application Using C

System-supplied Server and Services

m When the server is required to halt, caits/rdone() to perform any required
shutdown operations.

As indicated above, theain() routine handles all of the details associated with
joining and exiting from an application, managing buffers and transactions, and
handling communication.

Note: Because the system-suppliedin() accomplishes the work of joining and
leaving the application, you should not include calls taytimé() or
tpterm() function in your code. If you do, the function encounters an error
and return§PEPROTON tperrno . For more information on thginit() or
tpterm() function, refer to “Writing Clients” on page 4-1.

System-supplied Server and Services

Themain() routine provides one system-supplied sers&THSVRand two
subroutinestpsvrinit() andtpsvrdone() . The default versions of all three, which
are described in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions gvrinit() andtpsvrdone()
remember that the default versions of these two routinesccagen() and
tx_close() , respectively. If you write a new versiontpévrinit() that

callstpopen() rather thanx_open() , you should also write a new version
of tpsvrdone() that callspclose() . In other words, both functions in an
open/close pair must belong to the same set.

In addition to the subroutines described in this topic, the system provides two
subroutines calletbsvrthrinit(3c) andtpsvrthrdone(3c) . For more
information, refer to “Programming a Multithreaded and Multicontexted
Application” on page 10-1.

System-supplied Server: AUTHSVR()

You can use thaUTHSVR(5) server to provide individual client authentication for an
application. Thepinit() function calls this server when the level of security for the
application iSTPAPPAUTH

Programming a BEA Tuxedo Application Using C 5-3

5 Writing Servers

The service iIMUTHSVROOKs in thedata field of theTPINIT buffer for a user
password (not to be confused with the application password specifiedpastioe
field of theTPINIT buffer). By default, the system takes the strindata and
searches for a matching string in the/passwd file.

When called by a native-site clientinit() forwards thelata field asitis received.
This means that if the application requires the password to be encrypted, the client
program must be coded accordingly.

When called by a workstation cliemginit() encrypts the data before sending it
across the network.

System-supplied Services: tpsvrinit() Function

5-4

When a server is booted, the BEA Tuxedo systeiin() callstpsvrinit(3c)
during its initialization phase, before handling any service requests.

If an application does not provide a custom version of this function within the server,
the system uses the default function providedhbin() , which opens the resource
manager and logs an entry in the central event log indicating that the server has
successfully started. The central user log is an automatically generated file to which
processes can write messages by callingithgog(3c) function. Refer to

“Managing Errors” on page 11-1 for more information on the central event log.

You can use thgsuvrinit() function for any initialization processes that might be
required by an application, such as the following:

m Receiving command-line options
m Opening a database

The following sections provide code samples showing how these initialization tasks
are performed through calls fgsvrinit() . Although it is not illustrated in the
following examples, message exchanges can also be performed within this routine.
However,tpsvrinit() fails if it returns with asynchronous replies pending. In this
case, the replies are ignored by the BEA Tuxedo system, and the server exits
gracefully.

You can also use thegsvrinit() function to start and complete transactions, as
described in “Managing Errors” on page 11-1.

Use the following signature to call thgsvrinit() function.

Programming a BEA Tuxedo Application Using C

System-supplied Server and Services

int
tpsvrinit(int argc, char **argv)

Receiving Command-line Options

When a server is booted, its first task is to read the server options specified in the
configuration file up to the point that it receives an EOF indication. To do so, the server
calls thegetopt (3) UNIX function. The presence of a double dash pn the

command line causes thetopt() function to return an EOF. Thetopt function
places thergv index of the next argument to be processed in the external variable
optind . The predefineehain() then callgpsvrinit()

The following code example shows how th&vrinit() function is used to receive
command-line options.

Listing 5-1 Receiving Command-line Options in tpsvrinit()

tpsvrinit(argc, argv)

int argc;

char **argv;

t
intc;
extern char *optarg;
extern int optind;

While((c = getopt(argc, argv, "f:x:")) |= EOF)
switch(c){

Programming a BEA Tuxedo Application Using C 5-5

5 Writing Servers

Whenmain() callstpsvrinit() , it picks up any arguments that follow the double
dash ¢) on the command line. In the example above, optioasdx each takes an
argument, as indicated by the coloptarg points to the beginning of the option
argument. The switch statement logic is omitted.

Opening a Resource Manager

5-6

The following example illustrates another common usgsfinit() : opening a
resource manager. The BEA Tuxedo system provides functions to open a resource
managerpopen(3c) andtx_open(3c). It also provides the complementary
functions,tpclose(3c) andtx_close(3c) . Applications that use these functions to
open and close their resource managers are portable in this respect. They work by
accessing the resource manager instance-specific information that is available in the
configuration file.

Note: If writing a multithreaded server, you must usettiserthrinit() function
to open a resource manager, as described in “Programming a Multithreaded
and Multicontexted Application” on page 10-1.

These function calls are optional and can be used in place of the resource manager
specific calls that are sometimes part of the Data Manipulation Language (DML) if the
resource manager is a database. Note the use wfefh@(3c) function to write to

the central event log.

Note: To create an initialization function that both receives command-Iline options
and opens a database, combine the following example with the previous
example.

Listing 5-2 Opening a Resource Manager in tpsvrinit()

tpsvrinit()
{

/* Open database */

if (tpopen() == -1) {
(void)userlog(“tpsvrinit: failed to open database: ");
switch (tperrno) {
case TPESYSTEM:
(void)userlog("System error\n");
break;

Programming a BEA Tuxedo Application Using C

System-supplied Server and Services

case TPEOS:
(void)userlog("Unix error %d\n",Uunixerr);
break;

case TPEPROTO:
(void)userlog("Called in improper context\n");
break;

case TPERMERR:
(void)userlog("RM failure\n");
break;

return(-1); /* causes the server to exit */

return(0);

To guard against errors that may occur during initializatigvrinit() can be
coded to allow the server to exit gracefully before starting to process service requests.

System-supplied Services: tpsvrdone() Function

Thetpsvrdone() function callstpclose() to close the resource manager, similarly
to the waytpsvrinit() callstpopen() to open it.

Note: If writing a multithreaded server, you must ws&/rthrdone() command
to open a resource manager, as described in “Programming a Multithreaded
and Multicontexted Application” on page 10-1.

Use the following signature to call thgsvrdone() function.

void
tpsvrdone() /* Server termination routine */

Thetpsvrdone() function requires no arguments.

If an application does not define a closing routinegevrdone() , the BEA Tuxedo
system calls the default routine suppliednligin() . This routine callsx_close()
anduserlog() to close the resource manager and write to the central event log,
respectively. The message sent to the log indicates that the server is about to exit.

Programming a BEA Tuxedo Application Using C 5-7

5 Writing Servers

tpsvrdone() is called after the server has finished processing service requests but
before it exits. Because the server is still part of the system, further communication an
transactions can take place within the routine, as long as certain rules are followed.
These rules are covered in “Managing Errors” on page 11-1.

The following example illustrates how to use thsrdone() function to close a
resource manager and exit gracefully.

Listing 5-3 Closing a Resource Manager with tpsvrdone()

void
tpsvrdone()

{

/* Close the database */
if(tpclose() == -1)
(void)userlog(“tpsvrdone: failed to close database: ");
switch (tperrno) {
case TPESYSTEM:
(void)userlog("BEA TUXEDO error\n®);
break;
case TPEOS:
(void)userlog("Unix error %d\n",Uunixerr);
break;
case TPEPROTO:
(void)userlog("Called in improper context\n");
break;
case TPERMERR:
(void)userlog("RM failure\n");
break;

return;

return;

5-8 Programming a BEA Tuxedo Application Using C

Guidelines for Writing Servers

Guidelines for Writing Servers

Because the communication details are handled by the BEA Tuxedo systeém

routine, you can concentrate on the application service logic rather than
communication implementation. For compatibility with the system-suppiléga) |,
however, application services must adhere to certain conventions. These conventions
are referred to, collectively, as the service template for coding service routines. They
are summarized in the following list. Refer to thservice(3c) reference page in
theBEA Tuxedo C Function Refererfoe more information on these conventions.

m A request/response service can receive only one request at a time and can send
only one reply.

m When processing a request, a request/response service works only on that
request. It can accept another only after it has either sent a reply to the requester
or forwarded the request to another service for additional processing.

m Service routines must terminate by calling eithemnpheurn() or
tpforward() ~ function. These functions behave similarly to the C language
return statement except that after they finish executing, control returns to the
BEA Tuxedo system’main() instead of the calling function.

m When communicating with another server ygacall) , the initiating service
must either wait for all outstanding replies or invalidate them titincel()
before callingpreturn() or tpforward()

m Service routines are invoked with one argumewtinfo , which is a pointer to
a service information structuréKSVCINFQ.

Programming a BEA Tuxedo Application Using C 5-9

5 Writing Servers

Defining a Service

You must define every service routine as a function that receives one argument
consisting of a pointer toBPSVCINFOstructure. Th@PSVCINFOstructure is defined
in theatmi.h header file and includes the following information.

char namg32];
long flags ;
char * data ;
long len ;

int cd;

int appkey ;

CLIENTID cltid ;

The following table summarizes theSVCINFOdata structure.

Table 5-1 TPSVCINFO Data Structure

Field Description

name Specifies, to the service routine, the name used by the requesting
process to invoke the service.

flags Notifies the service if it is in transaction mode or if the caller is

expecting a reply. The various ways in which a service can be
placed in transaction mode are discussed in “Writing Global
Transactions” on page 9-1.

The TPTRANflag indicates that the service is in transaction
mode. When a service is invoked through a caibeall()

or tpacall() with theflags parameter set ttPNOTRAN
the service cannot participate in the current transaction.
However, it is still possible for the service to be executed in
transaction mode. That is, even when the caller sets the
TPNOTRANommunication flag, it is possible foPTRANO be
set insvcinfo->flags . For an example of such a situation,
refer to “Writing Global Transactions” on page 9-1.

Theflags member is set tbBPNOREPLYf the service is called

by tpacall() with theTPNOREPLYommunication flag set.

If a called service is part of the same transaction as the calling
process, it must return a reply to the caller.

5-10 Programming a BEA Tuxedo Application Using C

Defining a Service

Field Description

data Pointer to a buffer that was previously allocateddajioc()
within themain() . This buffer is used to receive request
messages. However, it is recommended that you also use this
buffer to send back reply messages or forward request messages.

len Contains the length of the request data that is in the buffer
referenced by thdata field.

cd For conversational communication, specifies the connection
descriptor.
appkey Reserved for use by the application. If application-specific

authentication is part of your design, the application-specific
authentication server, which is called when a client joins the
application, should return a client authentication key as well as
an indication of success or failure. The BEA Tuxedo system
holds theappkey on behalf of the client and passes the
information to subsequent service requests in this field. By the
time theappkey is passed to a service, the client has already
been authenticated. However, tygpkey field can be used
within a service to identify the user invoking the service or some
other parameters associated with the user.

If this field is not used, the system assigns it a default value of
-1.

cltid Structure of type€CLIENTID used by the system to carry the
identification of the client. You should not modify this structure.

When thedata field in theTPSVCINFOstructure is being accessed by a process, the
following buffer types must agree:

m Type of the request buffer passed by the calling process
m Type of the corresponding buffer code defined within the called service

m Type of the associated buffer type defined for the called service in the
configuration file

The following example illustrates a typical service definition. This code is borrowed
from theABAL (account balance) service routine that is part of the banking application
provided with the BEA Tuxedo softwar@BAL is part of theBAL server.

Programming a BEA Tuxedo Application Using C 5-11

5 Writing Servers

Listing 5-4 Typical Service Definition

#include <stdio.h> /* UNIX */

#include <atmi.h> /* BEA Tuxedo System */
#include <sqglcode.h> /* BEA Tuxedo System */
#include "bank.flds.n" /* bankdb fields */
#include "aud.h" /* BANKING view defines */

EXEC SQL begin declare section;
static long branch_id; /* branch id */
static float bal; /* balance */
EXEC SQL end declare section;

/*
* Service to find sum of the account balances at a SITE
*/

void

#ifdef _ STDC___
ABAL(TPSVCINFO *transb)
#else

ABAL (transb)

TPSVCINFO *transb;
#endif

struct aud *transv; /* view of decoded message */

[* Set pointer to TPSVCINFO data buffer */

transv = (struct aud *)transb->data;

Set the consistency level of the transaction

/* Get branch id from message, do query */

EXEC SQL declare acur cursor for

select SUM(BALANCE) from ACCOUNT;

EXEC SQL open acur; /* open */

EXEC SQL fetch acur into :bal; /* fetch */

if (SQLCODE !=SQL_OK){ /* nothing found */
(void)strcpy (transv->ermsg,"abalfailed in sql aggregation");

EXEC SQL close acur;

tpreturn(TPFAIL, O, transb->data, sizeof(struct aud), 0);

EXEC SQL close acur;

5-12 Programming a BEA Tuxedo Application Using C

Defining a Service

Example:

transv->balance = bal;
tpreturn (TPSUCCESS, 0, transb->data, sizeof(struct aud), 0);

In the preceding example, the application allocates a request buffer on the client side
by a call totpalloc() with thetype parameter set talEW and thesubtype set to

aud. TheABAL service is defined as supporting thew typed buffer. The8UFTYPE
parameter is not specified faBAL and defaults taLL. TheABAL service allocates a
buffer of the type&/IEwand assigns thgata member of th@PSVCINFOstructure that

was passed to theBAL subroutine to the buffer pointer. TABAL server retrieves the
appropriate data buffer by accessing the correspontditagmember, as illustrated in

the preceding example.

Note: After the buffer is retrieved, but before the first attempt is made to access the
database, the service must specify the consistency level of the transaction.
Refer to “Writing Global Transactions” on page 9-1 for more details on
transaction consistency levels.

Checking the Buffer Type

The code example in this section shows how a service can access the data buffer
defined in therPSVCINFOstructure to determine its type by using thigpes()

function. (This process is described in “Checking for Buffer Type” on page 3-14.) The
service also checks the maximum size of the buffer to determine whether or not to
reallocate space for the buffer.

This example is derived from tR@AL service that is part of the banking application
provided with the BEA Tuxedo software. It shows how the service is written to accept
a request either as and VIEW or anFMLbuffer. If its attempt to determine the

message type fails, the service returns a string with an error message plus an
appropriate return code; otherwise it executes the segment of code that is appropriate
for the buffer type. For more information on tipesturn() function, refer to
“Terminating a Service Routine” on page 5-17.

Programming a BEA Tuxedo Application Using C 5-13

5 Writing Servers

Listing 5-5 Checking for Buffer Type

#define TMTYPERR 1 /* return code indicating tptypes failed */
#define INVALMTY 2 /* return code indicating invalid message type */

void
ABAL (transb)

TPSVCINFO *transb;

{

struct aud *transv; /* view message */

FBFR *transf; /* fielded buffer message */

int repc; /* tpgetrply return code */

char typ[TMTYPELEN+1], subtyp[TMSTYPELEN+1]; /* type, subtype of message */
char *retstr; /* return string if tptypes fails */

/* find out what type of buffer sent */
if (tptypes((char *)transb->data, typ, subtyp) == -1) {
retstr=tpalloc("STRING", NULL, 100);
(void)sprintf(retstr,
"Message garbled; tptypes cannot tell what type message\n");
tpreturn(TPFAIL, TMTYPERR, retstr, 100, 0);
}
/* Determine method of processing service request based on type */
if (stremp(typ, "FML") == 0) {
transf = (FBFR *)transb->data;
... code to do abal service for fielded buffer ...
tpreturn succeeds and sends FML buffer in reply

}
else if (stremp(typ, "VIEW") == 0 && strcmp(subtyp, "aud") == 0) {
transv = (struct aud *)transb->data;
... code to do abal service for aud struct ...
tpreturn succeeds and sends aud view buffer in reply
}
else {
retstr=tpalloc("STRING", NULL, 100);
(void)sprintf(retstr,
"Message garbled; is neither FML buffer nor aud view\n");
tpreturn(TPFAIL, INVALMTY, retstr, 100, 0);
}
}

5-14 Programming a BEA Tuxedo Application Using C

Defining a Service

Example:

#include <stdio.h>
#include "atmi.h"

char *roundrobin();

PRINTER(pbuf)

Checking the Priority of the Service Request

Note: Thetpgprio() andtpsprio() functions, used for getting and setting
priorities, respectively, are described in detail in “Setting and Getting Message
Priorities” on page 6-16.

The example code in this section in this section shows how a serviceRRINTER
tests the priority level of the request just received usingtpéo() function. Then,
based on the priority level, the application routes the print job to the appropriate
destination printer and pipes the contentphof —>data to that printer.

The application queriguf —>flags to determine whether a reply is expected. If so,
it returns the name of the destination printer to the client. For more information on the
tpreturn() function, refer to “Terminating a Service Routine” on page 5-17.

Listing 5-6 Checking the Priority of a Received Request

TPSVCINFO *pbuf; /* print buffer */

char prname[20], ocmd[30]; /* printer name, output command */

long rlen;
int prio;
FILE *Ip_pipe;

prio=tpgprio();
if (prio <= 20)

/* return buffer length */
/* priority of request */
/* pipe file pointer */

(void)strcpy(prname,"bigjobs"); /* send low priority (verbose)

else if (prio <= 60)

jobs to big comp. center
laser printer where operator
sorts output and puts it

in a bin */

(void)strcpy(prname,roundrobin()); /* assign printer on a

rotating basis to one of
many local small laser printers

Programming a BEA Tuxedo Application Using C 5-15

5 Writing Servers

where output can be picked
up immediately; roundrobin() cycles
through list of printers */
else
(void)strcpy(prname,“hispeed");
* assign job to high-speed laser

printer; reserved for those who

need verbose output on a daily,

frequent basis */

(void)sprintf(ocmd, "Ip -d%s", prname); /* output Ip(1) command */

Ip_pipe = popen(ocmd, "w"); /* create pipe to command */
(void)fprintf(Ip_pipe, "%s", pbuf->data); /* print output there */
(void)pclose(lp_pipe); I* close pipe */

if ((pbuf->flags & TPNOREPLY))
tpreturn(TPSUCCESS, 0, NULL, 0, 0);
rlen = strlen(prname) + 1;
pbuf->data = tprealloc(pbuf->data, rlen); /* ensure enough space for name */
(void)strcpy(pbuf->data, prname);
tpreturn(TPSUCCESS, 0, pbuf->data, rlen, 0);

char *
roundrobin()

{
static char *printers[] = {"printerl1", "printer2", "printer3", "printer4"};
static intp = 0;

if (p> 3)
p=0;
return(printers[p++1);

5-16 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

Terminating a Service Routine

Thetpreturn(3c) , tpcancel(3c) , andtpforward(3c) functions specify that a
service routine has completed with one of the following actions:

m tpreturn() sends a reply to the calling client.
m tpcancel() cancels the current request.

m tpforward() forwards a request to another service for further processing.

Sending Replies

Thetpreturn(3c) function marks the end of the service routine and sends a message
to the requester. Use the following signature to caltgheeurn() function.

void
tpreturn(int rval, int rcode, char *data, long len, long flags)

The following table describes the arguments tahaurn() function.

Programming a BEA Tuxedo Application Using C 5-17

5 Writing Servers

Table 5-2 tpreturn() Function Arguments

Argument

Description

rval

Indicates whether or not the service has completed successfully
on an application-level. The value is an integer that is
represented by a symbolic name. Valid settings include:

m TPSUCCESSThe calling function succeeded. The function
stores the reply message in the caller’s buffer. If there is a
reply message, it is in the caller’s buffer.

m TPFAIL (default) - The service terminated unsuccessfully.
The function reports an error message to the client process
waiting for the reply. In this case, the clierpsall() or
tpgetrply() function call fails and the system sets the
tperrno(5) variable toTPESVCFAIL to indicate an
application-defined failurdf a reply message was
expected, it is available in the caller’'s buffer.

m TPEXIT - The service terminated unsuccessfully. The
function reports an error message to the client process
waiting for the reply, and exits.

For a description of the effect that the value of this argument has
on global transactions, refer to “Writing Global Transactions”
on page 9-1.

rcode

Returns an application-defined return code to the caller. The
client can access the value returnedciode by querying the
tpurcode(5) global variable. The function returns this code
regardless of success or failure.

5-18 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

Argument

Description

data

Pointer to the reply message that is returned to the client process.
The message buffer must have been allocated previously by
tpalloc()

If you use the same buffer that was passed to the service in the
SVCINFOstructure, you need not be concerned with buffer
allocation or disposition because both are handled by the
system-suppliechain() . You cannot free this buffer using the
tpfree() command; any attempt to do so quietly fails. You
can resize the buffer using ttpealloc() function.

If you use another buffer (that is, a buffer other than the one
passed to the service routine) to return the message, it is your
responsibility to allocate it. The system frees the buffer
automatically when the application calls thesturn()

function.

If no reply message needs to be returned, set this argument to the
NULL pointer.

Note: If no reply is expected by the client (that is, if
TPNOREPLYvas set), thépreturn() function
ignores thedata andlen arguments and returns
control tomain() .

len

Length of the reply buffer. The application accesses the value of
this argument through th@en parameter of thepcall()
function or thden parameter of thgpgetrply() function.

Acting as the client, the process can use this returned value to
determine whether the reply buffer has grown.

If a reply is expected by the client and there is no data in the
reply buffer (that is, if thelata argument is set to the NULL
pointer), the function sends a reply with zero length, without
modifying the client’s buffer.

The system ignores the value of this argument ittra
argument is not specified.

flag

Currently not used.

Programming a BEA Tuxedo Application Using C 5-19

5 Writing Servers

5-20

The primary function of a service routine is to process a request and return a reply t
a client process. It is not necessary, however, for a single service to do all the work
required to perform the requested function. A service can act as a requester and pas
request call to another service the same way a client issues the original request: throu
calls totpcall() or tpacall()

Note: Thetpcall() andtpacall() functions are described in detail in “Writing
Request/Response Clients and Servers” on page 6-1.

Whentpreturn() is called, control always returnsr@in() . If a service has sent
requests with asynchronous replies, it must receive all expected replies or invalidate
them withtpcancel() ~ before returning control t@ain() . Otherwise, the

outstanding replies are automatically dropped when they are received by the BEA
Tuxedo systemrmain() , and an error is returned to the caller.

If the client invokes the service withtall) , after a successful call tpreturn()

the reply message is available in the buffer referenceéddnta . If tpacall() is
used to send the request, apréturn() returns successfully, the reply message is
available in thepgetrply() buffer that is referenced Byata .

If a reply is expected antpreturn() encounters errors while processing its
arguments, it sendsfailed message to the calling process. The caller detects the
error by checking the value placedypermo . In the case of failed messages, the
system setperrno to TPESVCERRThis situation takes precedence over the value of
thetpurcode global variable. If this type of error occurs, no reply data is returned, and
both the contents and length of the caller’s output buffer remain unchanged.

If tpreturn() returns a message in a buffer of an unknown type or a buffer that is nof
allowed by the caller (that is, if the call is made witps set toTPNOCHANQEthe
system returnPEOTYPEHN tpermo(5) . In this case, application success or failure
cannot be determined, and the contents and length of the output buffer remain
unchanged.

The value returned in thpurcode(5) global variable is not relevant if the

tpreturn() function is invoked and a time-out occurs for the call waiting for the
reply. This situation takes precedence over all others in determining the value that i
returned inpermo(5) . Inthis caseperrno(5) is settorPETIME and the reply data

is not sent, leaving the contents and length of the caller’s reply buffer unchanged.
There are two types of time-outs in the BEA Tuxedo system: blocking and transactior
time-outs (discussed in “Writing Global Transactions” on page 9-1).

Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

The example code in this section showsTReNSFERservice that is part of theFER
server. Basically, thERANSFERservice makes synchronous calls to WigHDRAWAL
andDEPOSIT services. It allocates a separate buffer for the reply message since it must
use the request buffer for the calls to bothwhfieHDRAWARN theDEPOSIT services.

If the call towITHDRAWA(ails, the service writes the messagenot withdraw on

the status line of the form, frees the reply buffer, and setsdheargument of the
tpreturn() function toTPFAIL . If the call succeeds, the debit balance is retrieved
from the reply buffer.

Note: In the following example, the application moves the identifier for the
“destination account” (which is retrieved from tveid variable) to the
zeroth occurrence of theCCOUNT _IDfield in thetransf fielded buffer. This
move is necessary because this occurrence of the field-imiasuffer is used
for data-dependent routing. RefeiSetting Up a BEA Tuxedo Applicatitor
more information.

A similar scenario is followed for the call BEPOSIT. On success, the service frees
the reply buffer that was allocated in the service routine and setathargument to
TPSUCCESSreturning the pertinent account information to the status line.

Listing 5-7 tpreturn() Function

#include <stdio.h> /* UNIX */

#include <string.h> /* UNIX */

#include "fml.h" /* BEA Tuxedo System */
#include "atmi.h" /* BEA Tuxedo System */
#include "Usysflds.h" /* BEA Tuxedo System */
#include "userlog.h" /* BEA Tuxedo System */
#include "bank.h" /* BANKING #defines */
#include "bank.flds.h" /* bankdb fields */

/*
* Service to transfer an amount from a debit account to a credit

* account

*/

void

#ifdef __ STDC__

TRANSFER(TPSVCINFO *transb)

#else

Programming a BEA Tuxedo Application Using C 5-21

5 Writing Servers

TRANSFER(transb)

TPSVCINFO *transb;

#endif
FBFR *transf; /* fielded buffer of decoded message */
long db_id, cr_id; /* from/to account id’'s */
float db_bal, cr_bal; /* from/to account balances *
float tamt; /* amount of the transfer */
FBFR *reqfb; /* fielded buffer for request message*/
int reglen; /* length of fielded buffer */

char t_amts[BALSTR]; /* string for transfer amount */
char db_amts[BALSTR]; /* string for debit account balance */
char cr_amts[BALSTRY]; /* string for credit account balance */

[* Set pointr to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;

/* Get debit (db_id) and credit (cr_id) account IDs */

/* must have valid debit account number */

if (((db_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) || (db_id > MAXACCT)) {
(void)Fchg(transf, STATLIN, 0,"Invalid debit account number",(FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

}

/* must have valid credit account number */

if ((cr_id = Fvall(transf, ACCOUNT_LID, 1)) < MINACCT || cr_id > MAXACCT) {
(void)Fchg(transf,STATLIN, 0,"Invalid credit account number",(FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

[* get amount to be withdrawn */

if (Fget(transf, SAMOUNT, 0, t_amts, < 0) 0 || strcmp(t_amts,"") == 0) {
(void)Fchg(transf, STATLIN, 0, "Invalid amount",(FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

(void)sscanf(t_amts,"%f", tamt);

/* must have valid amount to transfer */
if (tamt = 0.0) {
(void)Fchg(transf, STATLIN, O,
"Transfer amount must be greater than $0.00",(FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

}

/* make withdraw request buffer */

if ((regfb = (FBFR *)tpalloc("FML",NULL,transb->len)) == (FBFR *)NULL) {
(void)userlog(“tpalloc failed in transfer\n");
(void)Fchg(transf, STATLIN, O,

5-22 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

"unable to allocate request buffer", (FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

reglen = Fsizeof(reqfb);

[* put ID in request buffer */
(void)Fchg(reqfb, ACCOUNT_ID,0,(char *)&db_id, (FLDLEN)O);

[* put amount in request buffer */
(void)Fchg(reqfb, SAMOUNT,0,t_amts, (FLDLEN)O);

* increase the priority of withdraw call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of withdraw\n");

if (tpcall"WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
(long *)&reqlen, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0,
"Cannot withdraw from debit account”, (FLDLEN)O);
tpfree((char *)reqfb);
tpreturn(TPFAIL, 0,transb->data, OL, 0);

/* get "debit" balance from return buffer */

(void)strcpy(db_amts, Fvals((FBFR *)reqfb, SBALANCE,0));
void)sscanf(db_amts,"%f",db_bal);
if ((db_amts == NULL) || (db_bal < 0.0)) {
(void)Fchg(transf, STATLIN, 0,
"illegal debit account balance", (FLDLEN)O0);
tpfree((char *)reqfb);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

[* put deposit account ID in request buffer */
(void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&cr_id, (FLDLEN)O);

[* put transfer amount in request buffer */
(void)Fchg(reqfb, SAMOUNT,0,t_amts, (FLDLEN)O);

* Up the priority of deposit call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of deposit\n");

/* Do a tpcall to deposit to second account */
if (tpcall"DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
(long *)®len, TPSIGRSTRT) ==-1) {
(void)Fchg(transf, STATLIN, O,
"Cannot deposit into credit account", (FLDLEN)O);

Programming a BEA Tuxedo Application Using C 5-23

5 Writing Servers

tpfree((char *)reqfb);
tpreturn(TPFAIL, 0,transb->data, OL, 0);

[* get "credit" balance from return buffer */

(void)strcpy(cr_amts, Fvals((FBFR *)reqfb,SBALANCE,0));
(void)sscanf(cr_amts,"%f",&cr_bal);
if ((cr_amts == NULL) || (cr_bal 0.0)) {
(void)Fchg(transf, STATLIN, O,
"lllegal credit account balance", (FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

[* set buffer for successful return */

(void)Fchg(transf, FORMNAM, 0, "CTRANSFER", (FLDLEN)O0);
(void)Fchg(transf, SAMOUNT, 0, Fvals(reqfb, SAMOUNT,0), (FLDLEN)0);
(void)Fchg(transf, STATLIN, 0, "™, (FLDLEN)O0);

(void)Fchg(transf, SBALANCE, 0, db_amts, (FLDLEN)O);
(void)Fchg(transf, SBALANCE, 1, cr_amts, (FLDLEN)O0);

tpfree((char *)regfb);

tpreturn(TPSUCCESS, 0,transb->data, OL, 0);

Invalidating Descriptors

If a service callingpgetrply() (described in detail in “Writing Request/Response
Clients and Servers” on page 6-1) fails WilETIME and decides to cancel the request,
it can invalidate the descriptor with a calltpoancel(3c) . If a reply subsequently
arrives, it is silently discarded.

Use the following signature to call thgeancel() function.

void
tpcancel(int cd)

Thecd (call descriptor) argument identifies the process you want to cancel.

tpcancel() cannot be used for transaction replies (that is, for replies to requests mad
without theTPNOTRANIag set). Within a transactiotpabort(3c) does the same job
of invalidating the transaction call descriptor.

The following example shows how to invalidate a reply after timing out.

5-24 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

Listing 5-8 Invalidating a Reply After Timing Out

int cdl;

if ((cd1l=tpacall(sname, (char *)audv, sizeof(struct aud),
TPNOTRAN)) == -1) {

}
if (tpgetrply(cdl, (char **)&audv,&audrl, 0) == -1) {
if (tperrno == TPETIME) {
tpcancel(cdl);

}}
tpreturn(TPSUCCESS, 0,NULL, OL, 0);

Forwarding Requests

Thetpforward(3c) function allows a service to forward a request to another service
for further processing.

Use the following signature to call thgorward() function.

void
tpforward(char * sve, char *data, long len, long flags)

The following table describes the arguments totpheurn() function.

Table 5-3 tpreturn() Function Arguments

Argument Description

svc Character pointer to the name of the service to which the request
is to be forwarded.

Programming a BEA Tuxedo Application Using C 5-25

5 Writing Servers

5-26

Argument

Description

data

Pointer to the reply message that is returned to the client process.
The message buffer must have been allocated previously by
tpalloc()

If you use the same buffer that was passed to the service in the
SVCINFOstructure, you need not be concerned with buffer
allocation or disposition because both are handled by the
system-suppliedhain() . You cannot free this buffer using the
tpfree() command; any attempt to do so quietly fails. You
can resize the buffer using ttgrealloc() function.

If you use another buffer (that is, a buffer other than the one that
is passed to the service routine) to return the message, it is your
responsibility to allocate it. The system frees the buffer
automatically when the application calls tpesturn()

function.

If no reply message needs to be returned, set this argument to the
NULL pointer.

Note: If no reply is expected by the client (that is, if
TPNOREPLYvas set), thépreturn() function
ignores thedata andlen arguments and returns
control tomain() .

len

Length of the reply buffer. The application accesses the value of
this argument through triden parameter of thepcall()
function or thden parameter of thgpgetrply() function.

Acting as the client, the process can use this returned value to
determine whether the reply buffer has grown.

If a reply is expected by the client and there is no data in the
reply buffer (that is, if thelata argument is set to the NULL
pointer), the function sends a reply with zero length, without
modifying the client’s buffer.

The system ignores the value of this argument ittira
argument is not specified.

flag

Currently not used.

Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

The functionality ofpforward() differs from a service call: a service that forwards

a request does not expect a reply. The responsibility for providing the reply is passed
to the service to which the request has been forwarded. The latter service sends the
reply to the process that originated the request. It becomes the responsibility of the last
server in the forward chain to send the reply to the originating client by invoking
tpreturn()

The following figure shows one possible sequence of events when a request is
forwarded from one service to another. Here a client initiates a request using the
tpcall() function and the last service in the ch&w¢_Q provides a reply using the
tpreturn() function.

Figure 5-1 Forwarding a Request

SERVER

CLIENT

Service routines can forward requests at specified priorities in the same manner that
client processes send requests, by usingptipeio() function.

When a process calisforward() , the system-suppliadain() regains control, and
the server process is free to do more work.

Programming a BEA Tuxedo Application Using C 5-27

5 Writing Servers

Note: If a server process is acting as a client and a reply is expected, the serveris n
allowed to request services from itself. If the only available instance of the
desired service is offered by the server process making the request, the call
fails, indicating that a recursive call cannot be made. However, if a service
routine sends a request (to itself) with trlOREPLYommunication flag set,
or if it forwards the request, the call does not fail because the service is not
waiting for itself.

Calling tpforward() ~ can be used to indicate success up to that point in processing
the request. If no application errors have been detected, you can iptwweard()
otherwise, you can cafpreturn() with rval set toTPFAIL .

The following example is borrowed from tO®EN_ACCTEervice routine which is part

of theACCTserver. This example illustrates how the service sends its data buffer to the
DEPOSIT service by callingpforward() . The code shows how to test 5@LCODE

to determine whether the account insertion is successful. If the new account is adde
successfully, the branch record is updated to reflect the new account, and the data
buffer is forwarded to thBEPOSIT service. On failurepreturn() is called with

rval set toTPFAIL and the failure is reported on the status line of the form.

Listing 5-9 tpforward() Function

/* set pointer to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;

/* Insert new account record into ACCOUNT?*/
account_id = ++last_acct; /* get new account number */
tir_bal = 0.0; /* temporary balance of 0 */
EXEC SQL insert into ACCOUNT (ACCOUNT_ID, BRANCH_ID, BALANCE,
ACCT_TYPE, LAST_NAME, FIRST_NAME, MID_INIT, ADDRESS, PHONE) values
(:account_id, :branch_id, :tIr_bal, :acct_type, :last_name,

first_name, :mid_init, :address, :phone);
if (SQLCODE !=SQL_OK) { /* Faillure to insert */

(void)Fchg(transf, STATLIN, O,

"Cannot update ACCOUNT", (FLDLEN)0);
tpreturn(TPFAIL, 0, transh->data, OL, 0);

}

/* Update branch record with new LAST_ACCT */
EXEC SQL update BRANCH set LAST_ACCT =:last_acct where BRANCH_ID = :branch_id;

if (SQLCODE !=SQL_OK) { /* Failure to update */
(void)Fchg(transf, STATLIN, 0,

5-28 Programming a BEA Tuxedo Application Using C

Advertising and Unadvertising Services

"Cannot update BRANCH", (FLDLEN)O0);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

* up the priority of the deposit call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of deposit\n");

* tpforward same buffer to deposit service to add initial balance */
tpforward("DEPOSIT", transb->data, OL, 0);

Advertising and Unadvertising Services

When a server is booted, it advertises the services it offers based on the values
specified for thecLOPTparameter in the configuration file.

Note: The services that a server may advertise are initially defined when the
buildserver ~ command is executed. Tke option allows a
comma-separated list of services to be specified. It also allows you to specify
a function with a name that differs from that of the advertised service that is to
be called to process the service request. Refer tautidserver(1) in the
BEA Tuxedo Command Refereficemore information.

The default specification calls for the server to advertise all services with which it was
built. Refer to theJBBCONFIG(5) orservopts(5) reference page in tiREA Tuxedo
File Formats and Data Descriptions Referericemore information.

Because an advertised service uses a service table entry in the bulletin board, and can
therefore be resource-expensive, an application may boot its servers in such a way that
only a subset of the services offered are available. To limit the services available in an
application, define theLOPTparameter, within the appropriate entry in 8#RVERS

section of the configuration file, to include the desired services in a comma-separated
list following the-s option. Thes option also allows you to specify a function with

a name other than that of the advertised service to be called to process the request.
Refer to theservopts(5) reference page in tHiBEA Tuxedo File Formats and Data
Descriptions Referender more information.

Programming a BEA Tuxedo Application Using C 5-29

5 Writing Servers

A BEA Tuxedo application administrator can use dhieertise ~ andunadvertise
commands ofmadmin(1) to control the services offered by servers. The

tpadvertise() andtpunadvertise() functions enable you to dynamically control
the advertisement of a service in a request/response or conversational server. The
service to be advertised (or unadvertised) must be available within the same server:
the service making the request.

Advertising Services
Use the following signature to call thgadvertise(3c) function.
int
tpadvertise(char * svename, void * func)

The following table describes the arguments toghévertise() function.

Table 5-4 tpadvertise() Function Arguments

Argument Description

svchame Pointer to the name of the service to be advertised. The service
name must be a character string of up to 15 characters. Names
longer than 15 characters are truncated. The NULL string is not
a valid value. If it is specified, an errdfREINVAL) results.

func Pointer to the address of a BEA Tuxedo system function that is
called to perform a service. Frequently, this name is the same as
the name of the service. The NULL string is not a valid value. If
it is specified, an error results.

Unadvertising Services

5-30

Thetpunadvertise(3c) function removes the name of a service from the service
table of the bulletin board so that the service is no longer advertised.

Use the following signature for thgunadvertise() function.

tpunadvertise(char * svcname)
char* svcname;

Programming a BEA Tuxedo Application Using C

Advertising and Unadvertising Services

Thetpunadvertise() function contains one argument, which is described in the
following table.

Table 5-5 tpunadvertise() Function Arguments

Argument Description

svchame Pointer to the name of the service to be advertised. The service
name must be a character string of up to 15 characters. Names
longer than 15 characters are truncated. The NULL string is not
a valid value. If it is specified, an errdrREINVAL) results.

Example: Dynamic Advertising and Unadvertising of a
Service

The following example shows how to use thadvertise() function. In this
example, a server calladR is programmed to offer only the service calte&_INIT
when booted. After some initializatioml.,R_INIT advertises two services called
DEPOSITandwITHDRAWBoth are performed by thie funcs function, and both are
built into theTLR server.

After advertisingDEPOSIT andWITHDRAWTLR_INIT unadvertises itself.

Listing 5-10 Dynamic Advertising and Unadvertising

extern void tlr_funcs()

if (tpadvertise("DEPOSIT", (tlr_funcs)(TPSVCINFO *)) == -1)
check for errors ;
if (tpadvertise("WITHDRAW", (tIr funcs)(TPSVCINFO *)) == -1)
check for errors
if (tpunadvertise("TLR_INIT') ==-1)
check for errors
tpreturn(TPSUCCESS, 0, transb >data,OL, 0);

Programming a BEA Tuxedo Application Using C 5-31

5 Writing Servers

Building Servers

To build an executable server, compile your application service subroutines with the
BEA Tuxedo System server adaptor and all other referenced files using the
buildserver(1) command.

Note: The BEA Tuxedo server adaptor accepts messages, dispatches work, and
manages transactioli transactions are enabled).

Use the following syntax for theuildserver =~ command.
buildserver -o filename -f filenames -l filenames -s-v

The following table describes theildserver ~ command-line options.

Table 5-6 buildserver Command-Line Options

This Option . . . Allows You to Specify the . . .
-0 filename Name of the executable output file. The defaudtaut .
-f filenames List of files that are link edited before the BEA Tuxedo system

libraries. You can specify thé option more than once, and
multiple filenames for each occurrence-ff. If you specify a C
program file @ile. c), itis compiled before it is linked. You can
specify other object filesfile. 0) separately, or in groups in an
archive file file. a).

-l filenames List of files that are link edited after the BEA Tuxedo system
libraries. You can specify th¢ option more than once, and
multiple filenames for each occurrence-lof. If you specify a C
program file @ile. c), it is compiled before it is linked. You can
specify other object filesfile. 0) separately, or in groups in an
archive file file. a).

-r filenames List of resource manager access libraries that are link edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the
$TUXDIR/updataobj/RM file using thebuildtms(1)
command. You can specify only one resource manager. Refer to
Setting Up a BEA Tuxedo Applicatifor more information.

5-32 Programming a BEA Tuxedo Application Using C

Building Servers

This Option . . .

Allows You to Specify the . . .

-s [service :]function Name of service or services offered by the server and the name of

the function that performs each service. You can specifysthe

option more than once, and multiple services for each occurrence of
-s . The server uses the specified service names to advertise its
services to clients.

Typically, you should assign the same name to both the service and
the function that performs that service. Alternatively, you can
specify any names. To assign names, use the following syntax:
service :function

Specifies that the server is coded in a thread-safe manner and may
be booted as multithreaded if specified as such in the configuration
file.

See Also

Note: The BEA Tuxedo libraries are linked in automatically. You do not need to
specify the BEA Tuxedo library names on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which functions are called and which libraries contain
references to those functions.

By default, thebuildserver ~ command invokes the UNI¥c command. You can
specify an alternative compile command and set your own flags for the compile and
link-edit phases, however, by setting teandCFLAGSenvironment variables,
respectively. For more information, refer to “Setting Environment Variables” on page
2-5.

The following command processes Hwet.o application file and creates a server
calledAccCTthat contains two serviceSEW_ACCTwhich calls thedPEN_ACCT
function, andCLOSE_AccCTwhich calls a function of the same name.

buildserver —o ACCT —f acct.o —s NEW_ACCT:OPEN_ACCT —s CLOSE_ACCT

m “Writing Clients” on page 4-1

® buildclient(1) in theBEA Tuxedo Command Reference

Programming a BEA Tuxedo Application Using C 5-33

5 Writing Servers

Using a C++ Compiler

There are basically two differences between using a C++ compiler and a C compiler t
develop application servers:

m Different declarations of the service function

m Different use of constructors and destructors

Declaring Service Functions

When declaring a service function for a C++ compiler, you must declare it to have “C”
linkage usingextern “C” . Specify the function prototype as follows.

#ifdef __ cplusplus

extern "C"

#endif

MYSERVICE(TPSVCINFO *tpsvcinfo)

By declaring the name of your service with “C” linkage, you ensure that the C++
compiler will notmodifythe name. Many C++ compilers change the function name to
include type information for the parameters and function return.

This declaration also allows you to:

m Link both C and C++ service routines into a single server without indicating the
type of each routine

m Use dynamic service advertisement, which requires accessing the symbol table
of the executable to find the function name

5-34 Programming a BEA Tuxedo Application Using C

Using a C++ Compiler

Using Constructors and Destructors

C++ constructors are called to initialize class objects when those objects are created,
and destructors are invoked when class objects are destroyed. For automatic (that is,
local, non-static) variables that contain constructors and destructors, the constructor is
called when the variable comes into scope and the destructor is called when the
variable goes out of scope. However, when you catpteeirn() ortpforward()

function, the compiler performs a non-local goto (usimgjmp (3)) such that

destructors for automatic variables are not called. To avoid this problem, write the
application so that you capreturn() ortpforward() from the service routine

directly (instead of from any functions that are called from the service routine). In
addition, one of the following should be true:

m The service routine should not have any automatic variables with destructors
(they should be declared and used in a function called by the service routine).

m Automatic variables should be declared and used in a nested scope (contained
within curly brackets {}) in such a way that the scope ends before calling the
tpreturn() or tpforward() function.

In other words, you should define the application so that there are no automatic
variables with destructors in scope in the current function or on the stack when the
tpreturn() ortpforward() function is called.

For proper handling of global and static variables that contain constructors and
destructors, many C++ compilers require that you comjpiie() using the C++
compiler.

Note: Special processing is included in thein() routine to ensure that any
constructors are executed when the program starts and any destructors are
executed when the program exits.

Becausenain() is provided by the BEA Tuxedo system, you do not compile it
directly. To ensure that the file is compiled using C++, you must use the C++ compiler
with thebuildserver ~ command. By default, theiildserver ~ command invokes the
UNIX cc command. You can specify that theéldserver =~ command invoke the C++
compiler, instead, by setting tllecenvironment variable to the full path name for the
C++ compiler. Also, you can set flags for any options that you want to include on the
C+ command line by setting ti@FLAGSenvironment variable. For more information,
refer to “Setting Environment Variables” on page 2-5.

Programming a BEA Tuxedo Application Using C 5-35

5 Writing Servers

5-36 Programming a BEA Tuxedo Application Using C

CHAPTER

6 Writing
Request/Response
Clients and Servers

m Overview of Request/Response Communication
m Sending Synchronous Messages
m Sending Asynchronous Messages

m Setting and Getting Message Priorities

Overview of Request/Response
Communication

In request/response communication mode, one software module sends a request to a
second software module and waits for a response. Because the first software module
performs the role of the client, and the second, the role of the server, this mode is also
referred to as client/server interaction. Many online banking tasks are programmed in
request/response mode. For example, a request for an account balance is executed as
follows:

1. A customer (the client) sends a request for an account balance to the Account
Record Storage System (the server).

Programming a BEA Tuxedo Application Using C 6-1

6 Writing Request/Response Clients and Servers

2. The Account Record Storage System (the server) sends a reply to the customer
(the client), specifying the dollar amount in the designated account.

Figure 6-1 Example of Request/Response Communication in Online Banking

, ;

Customer Fegquast Check Account Balance ._ &

4
System Sesporse: 26,76

Customer's Bank's Compuier on Which
Home Compuier Account Records Are Stored

Once aclient process has joined an application, allocated a buffer, and placed a requ
for input into that buffer, it can then send the request message to a service subroutil
for processing and receive a reply message.

Sending Synchronous Messages

6-2

Thetpcall(3c) function sends a request to a service subroutine and synchronously
waits for a reply. Use the following signature to calldfwll() function.

int

tpcall(char* svc,char* idata ,long ilen ,char** odata ,long* olen ,

long flags)

The following table describes the arguments toibal() function.

Table 6-1 tpcall() Function Arguments

Argument Description

sve Pointer to the name of the service offered by your application.

Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

Argument Description

idata Pointer that contains the address of the data portion of the request. The
pointer must reference a typed buffer that was allocated by a prior call to
tpalloc() . Note that theype (and optionally theubtype) of
idata must match thgype (and optionally theubtype) expected by
the service routine. If the types do not match, the systenpsetso
to TPEITYPE and the function call fails.

If the request requires no data, gktta to the NULL pointer. This
setting means that the parameter can be ignored. If no data is being sent
with the request, you do not need to allocate a buffedéda .

ilen Length of the request data in the buffer referenceii&ta . If the
buffer is a self-defining type, that is, &ML FML32, VIEW, VIEW32,
X_COMMQNX_C_TYPE or STRINGbuffer, you can set this argument to
zero to indicate that the argument should be ignored.

* odata Address of a pointer to the output buffer that receives the reply. You must
allocate the output buffer using ttpalloc() function. If the reply
message contains no data, upon successful returniazh() , the
system setSolen to zero, and the pointer and the contents of the output
buffer remain unchanged.

You can use the same buffer for both the request and reply messages. If
you do, you must setotlata to the address of the pointer returned when
you allocate the input buffer. It is an error for this parameter to point to
NULL.

olen Pointer to the length of the reply data. It is an error for this parameter to
point to NULL.

flags Flag options. You ca®Ra series of flags together. If you set this value
to zero, the communication is conducted in the default manner. For a list
of valid flags and the defaults, refertpzall (3c) in theBEA Tuxedo C
Function Reference

tpcall() waits for the expected reply.

Note: Calling thetpcall) function is logically the same as calling thecall()
function immediately followed bypgetrply() , as described in “Sending
Asynchronous Messages” on page 6-11.

Programming a BEA Tuxedo Application Using C 6-3

6 Writing Request/Response Clients and Servers

6-4

The request carries the priority set by the system for the specified semndgeifless
a different priority has been explicitly set by a call totgsprio() function
(described in “Setting and Getting Message Priorities” on page 6-16).

tpcall() returns an integer. On failure, the value of this integer is -1 and the value of
is set to a value that reflects the type of error that occurred. For information on valid
error codes, refer tipcall(3c) in theBEA Tuxedo C Function Reference

Note: Communication calls may fail for a variety of reasons, many of which can be
corrected at the application level. Possible causes of failure include:
application defined error§ PESVCFAIL), errors in processing return
argumentsTPESVCERR typed buffer errorsTPEITYPE, TPEOTYPE, time-out
errors {PETIME), and protocol errorsSTPEPROTYH among others. For a
detailed discussion of errors, refer to “Managing Errors” on page 11-1. For a
complete list of possible errors, refenpoall(3c) in theBEA Tuxedo C
Function Reference

The BEA Tuxedo system automatically adjusts a buffer used for receiving a messag
if the received message is too large for the allocated buffer. You should test for
whether or not the reply buffers have been resized.

To access the new size of the buffer, use the address returned aetheparameter.

To determine whether a reply buffer has changed in size, compare the size of the rep
buffer before the call tpcall() with the value of olen after its return. If olen is
larger than the original size, the buffer has grown. If not, the buffer size has not
changed.

You should reference the output buffer by the value returnedata after the call
because the output buffer may change for reasons other than an increase in buffer si:
You do not need to verify the size of request buffers because the request data is not
adjusted once it has been allocated.

Note: If you use the same buffer for the request and reply message, and the pointe
to the reply buffer has changed because the system adjusted the size of the
buffer, then the input buffer pointer no longer references a valid address.

Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

Example: Using the Same Buffer for Request and Reply
Messages

The following example shows how the client prograamdjt.c , makes a synchronous

call using the same buffer for both the request and reply messages. In this case, using
the same buffer is appropriate because thel¥ message buffer has been set up to
accommodate both request and reply information. The following actions are taken in
this code:

1. The service queries theid field, but does not overwrite it.

2. The application initializes theal andermsg fields to zero and the NULL string,
respectively, in preparation for the values to be returned by the service.

3. Thesvc_name andhdr_type variables represent the service name and the
balance type requested, respectively. In this example, these variables represent
account andteller , respectively.

Listing 6-1 Using the Same Buffer for Request and Reply Messages

[* Create buffer and set data pointer */
audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));
/* Prepare aud structure */

audv->b_id = g_branchid;
audv->balance = 0.0;
(void)strcpy(audv->ermsg, ");

/* Do tpcall */

if (tpcall(svc_name,(char *)audv,sizeof(struct aud),
(char **)&audv,(long *)&audrl,0)==-1){
(void)fprintf (stderr, "%s service failed\n %s: %s\n",
svC_name, svc_name, audv->ermsg);
retc = -1;

}

else
(void)printf ("Branch %Id %s balance is $%.2f\n",

Programming a BEA Tuxedo Application Using C 6-5

6 Writing Request/Response Clients and Servers

audv->b_id, hdr_type, audv->balance);

Example: Testing for Change in Size of Reply Buffer

The following code provides a generic example of how an application test for a chang
in buffer size after a call tpcall() . In this example, the input and output buffers
must remain equal in size.

Listing 6-2 Testing for Change in Size of the Reply Buffer

char *svc, *idata, *odata,
long ilen, olen, bef_len, aft_len;

if (idata = tpalloc("STRING", NULL, 0) == NULL)
error

if (odata = tpalloc("STRING", NULL, 0) == NULL)
error

place string value into idata buffer

ilen = olen = strlen(idata)+1;

bef len = olen;

if (tpcall(svc, idata, ilen, &odata, &olen, flags) == -1)
error

aft_len = olen;

if (aft_len > bef_len){ /* message buffer has grown */

if (idata = tprealloc(idata, olen) == NULL)
error

6-6 Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

Example: Sending a Synchronous Message with
TPSIGRSTRT Set

The following example is based on thRANSFERservice, which is part of theFER
server process tknkapp . (bankapp is a sample application delivered with the BEA
Tuxedo system.) TheERANSFERservice assumes the role of a client when it calls the
WITHDRAWARNIDEPOSIT services. The application sets the communication flag to
TPSIGRSTRTIn these service calls to give the transaction a better chance of
committing. TheTPSIGRSTRTflag specifies the action to take if there is a signal
interrupt. For more information on communication flags, refepdall(3c) in the
BEA Tuxedo C Function Reference

Listing 6-3 Sending a Synchronous Message with TPSIGRSTRT Set

/* Do a tpcall to withdraw from first account */

if (tpcall"WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
(long *)&reqlen, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0,
"Cannot withdraw from debit account”, (FLDLEN)O0);
tpfree((char *)reqfb);

/* Do a tpcall to deposit to second account */

if (tpcall"DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
(long *)®len, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0,
"Cannot deposit into credit account", (FLDLEN)O);
tpfree((char *)reqfb);

Programming a BEA Tuxedo Application Using C 6-7

6 Writing Request/Response Clients and Servers

Example: Sending a Synchronous Message with
TPNOTRAN Set

The following example illustrates a communication call that suppresses transaction

mode. The call is made to a service that is not affiliated with a resource manager; it

would be an error to allow the service to participate in the transaction. The applicatior
prints an accounts receivable repattrev , generated from information obtained

from a database namaccounts .

The service routinREPORTInterprets the specified parameters and sends the byte
stream for the completed report as a reply. The clienttpss#l) to send the byte
stream to a service call®RINTER, which, in turn, sends the byte stream to a printer
that is conveniently close to the client. The reply is printed. FinallyPRIWeTER
service notifies the client that the hard copy is ready to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOREPLY |
TPNOTRAN?" on page 6-13 shows a similar example using an asynchronous
message call.

Listing 6-4 Sending a Synchronous Message with TPNOTRAN Set

#include <stdio.h>
#include "atmi.h"

main()

char *rbuf; * report buffer */

long rllen, r2len, r3len; /* buffer lengths of send, 1st reply,
and 2nd reply buffers for report */

join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space
for report */
leave application and exit program

(void)strcpy(rbuf,
"REPORT=accrcv DBNAME=accounts"); /* send parms of report */
rllen = strlen(rbuf)+1; * length of request */

start transaction

6-8 Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

if (tpcall"REPORT", rbuf, rllen, &rbuf,
&r2len, 0) ==-1) [* get report print stream */
error routine

if (tpcall"PRINTER", rbuf, r2len, &rbuf,
&r3len, TPNOTRAN) == -1) * send report to printer */
error routine

(void)printf("Report sent to %s printer\n”,
rbuf); * indicate which printer */

terminate transaction
free buffer
leave application

Note: In the preceding example, the teemor routine indicates that the
following tasks are performed: an error message is printed, the transaction is
aborted, allocated buffers are freed, the client leaves the application, and the
program is exited.

Example: Sending a Synchronous Message with
TPNOCHANGE Set

The following example shows how tieNOCHANGEommunication flag is used to
enforce strong buffer type checking by indicating that the reply message must be
returned in the same type of buffer that was originally allocated. This example refers
to a service routine calleREPORT(TheREPORTservice is also shown in “Example:
Sending a Synchronous Message with TPNOTRAN Set” on page 6-8.)

In this example, the client receives the reply inewtyped buffer calledviewl and
prints the elements intf() statements. The strong type check fleRNOCHANGE
forces the reply to be returned in a buffer of typEw and of subtypeviewl .

A possible reason for this check is to guard against errors that may occlREPtRT
service subroutine, resulting in the use of a reply buffer of an incorrect type. Another
reason is to prevent changes that are not made consistently across all areas of
dependency. For example, another programmer may have change®tbrBervice

to standardize all replies in anotheEw format without modifying the client process

to reflect the change.

Programming a BEA Tuxedo Application Using C 6-9

6 Writing Request/Response Clients and Servers

Listing 6-5 Sending a Synchronous Message with TPNOCHANGE Set

#include <stdio.h>
#include "atmi.h"
#include "rviewl.h"

main(argc, argv)
int argc;
char * argv[];

char *rbuf; * report buffer */
struct rviewl *rrbuf; /* report reply buffer */
long rlen, rrlen; /* buffer lengths of send and reply
buffers for report */
if (tpinit((TPINIT *) tpinfo) == -1)
fprintf(stderr, "%s: failed to join application\n", argv[0]);

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) { /* allocate space
for report */

tpterm();

exit(1);

/* allocate space for return buffer */
if (rrbuf = (struct rview1 *)tpalloc("VIEW", "rviewl",
sizeof(struct rview1)) \ == NULL{

tpfree(rbuf);
tpterm();
exit(1);

}
(void)strepy(rbuf, "REPORT=accrcv DBNAME=accounts FORMAT=rview1");
rlen = strlen(rbuf)+1; /* length of request */
* get report in rviewl struct */

if (tpcall("REPORT", rbuf, rlen, (char **)&rrbuf, &rrlen,
TPNOCHANGE) == -1) {

fprintf(stderr, "accounts receivable report failed in service
call\n");

if (tperrno == TPEOTYPE)

fprintf(stderr, "report returned has wrong view type\n");

tpfree(rbuf);

tpfree(rrbuf);

tpterm();

exit(1);
}
(void)printf("Total accounts receivable %6d\n", rrbuf->total);
(void)printf("Largestthree outstanding %-20s%6d\n", rrbuf->name1,
rrbuf->amtl);
(void)printf("%-20s %6d\n", rrbuf->name2, rrbuf->amt2);

6-10 Programming a BEA Tuxedo Application Using C

Sending Asynchronous Messages

(void)printf("%-20s %6d\n", rrbuf->name3, rrbuf->amt3);
tpfree(rbuf);

tpfree(rrbuf);

tpterm();

Sending Asynchronous Messages

This section explains how to:
m Send an asynchronous request usinggteall() function
m Get an asynchronous reply using thgetrply() function

The type of asynchronous processing discussed in this section is sometimes referred to
asfan-out parallelisnmbecause it allows a client’s requests to be distributed (or “fanned
out”) simultaneously to several services for processing.

The other type of asynchronous processing supported by the BEA Tuxedo system is
pipeline parallelism in which theforward() ~ function is used to pass (or forward) a
process from one service to another. For a description gfftheard() function,

refer to “Writing Servers” on page 5-1.

Sending an Asynchronous Request

Thetpacall(3c) function sends a request to a service and immediately returns. Use
the following signature to call theacall() function.

int
tpacall(char * svc,char* data,long len ,long flags)

The following table describes the arguments totpheall() function.

Programming a BEA Tuxedo Application Using C 6-11

6 Writing Request/Response Clients and Servers

6-12

Table 6-2 tpacall() Function Arguments

Argument Description
sve Pointer to the name of the service offered by your application.
data Pointer that contains the address of the data portion of the request. The

pointer must reference a typed buffer that was allocated by a prior call to
tpalloc() . Note that theype (and optionally theubtype) of

idata must match thgype (and optionally theubtype) expected by

the service routine. If the types do not match, the systentpsetso

to TPEITYPE and the function call fails.

If the request requires no data,geta tothe NULL pointer. This setting
means that the parameter can be ignored. If no data is being sent with the
request, you do not need to allocate a buffedtda .

len Length of the request data in the buffer referenceddty . If the buffer
is a self-defining type, that is, &ML FML32, VIEW, VIEW32,
X_COMMQN_C_TYPE or STRINGbuffer, you can set this argument to
zero, indicating that the argument should be ignored.

flags Flag options. You can list a group of flags by using the logi¢al
operator. If you set this value to zero, the communication is conducted in
the default manner. For a list of valid flags and defaults, refer to
tpacall(3c) in theBEA Tuxedo C Function Reference

Thetpacall() function sends a request message to the service namedsirc the
parameter and immediately returns from the call. Upon successful completion of the
call, thetpacall() function returns an integer that serves as a descriptor used to
access the correct reply for the relevant request. \iffaitall() is in transaction

mode (as described in “Writing Global Transactions” on page 9-1) there may not be
any outstanding replies when the transaction commits; that is, within a given
transaction, for each request for which a reply is expected, a corresponding reply mu
eventually be received.

If the valueTPNOREPLYs assigned to théags parameter, the parameter signals to
tpacall() that a reply is not expected. When this flag is set, on sutpeesat()

returns a value df as the reply descriptor. If subsequently passed tpdheply()

function, this value becomes invalid. Guidelines for using this flag value correctly
when a process is in transaction mode are discussed in “Writing Global Transactions
on page 9-1.

Programming a BEA Tuxedo Application Using C

Sending Asynchronous Messages

On error tpacall() returns -1 and sets to a value that reflects the nature of the error.
tpacall() returns many of the same error codegpedl() . The differences

between the error codes for these functions are based on the fact that one call is
synchronous and the other, asynchronous. These errors are discussed at length in
“Managing Errors” on page 11-1.

Example: Sending an Asynchronous Message with TPNOTRAN | TPNOREPLY

The following example shows hoyvacall() uses th@PNOTRANaNd TPNOREPLY

flags. This code is similar to the code in “Example: Sending a Synchronous Message
with TPNOTRAN Set” on page 6-8. In this case, however, a reply is not expected from
the PRINTER service. By setting bothPNOTRANiNd TPNOREPLYlags, the client is
indicating that no reply is expected and BRNTER service will not participate in the
current transaction. This situation is discussed more fully in “Managing Errors” on
page 11-1.

Listing 6-6 Sending an Asynchronous Message with TPNOREPLY |
TPNOTRAN

#include <stdio.h>
#include "atmi.h"

main()

char *rbuf; * report buffer */

long rlen, rrlen; /* buffer lengths of send, reply buffers for
report */

join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space

for report */

error

(void)strcpy(rbuf, "REPORT=accrcv DBNAME=accounts");/* send parms
of report */

rlen = strlen(rbuf)+1; /* length of request */

start transaction

if (tpcall"REPORT", rbuf, rlen, &rbuf, &rrlen, 0)
== -1) /* get report print stream */

Programming a BEA Tuxedo Application Using C 6-13

6 Writing Request/Response Clients and Servers

error
if (tpacall"PRINTER", rbuf, rrlen, TPNOTRAN|TPNOREPLY)
==-1) /* send report to printer */
error

commit transaction
free buffer
leave application

}

Example: Sending Asynchronous Requests

6-14

The following example shows a series of asynchronous calls that make up the total
bank balance query. Because the banking application data is distributed among sevel
database sites, an SQL query needs to be executed against each one. The applicat
performs these queries by selecting one branch identifier per database site, and callil
the ABAL or TBAL service for each site. The branch identifier is not used in the actual
SQL query, but it enables the BEA Tuxedo system to route each request to the prop
site. In the following code, thfer loop invokegpacall() once for each site.

Listing 6-7 Sending Asynchronous Requests

audv->balance = 0.0;
(void)strcpy(audv->ermsg, ™);

for (i=0; i<NSITE; i++) {
/* Prepare aud structure */
audv->b_id = sitelist[i]; /* routing done on this field */
/* Do tpacall */

if ((cd[i]=tpacall(sname, (char *)audyv, sizeof(struct aud), 0))
==-1) {
(void)fprintf (stderr,
"%s: %s service request failed for site rep %ld\n",
pgmname, shame, sitelist[i]);
tpfree((char *)audv);
return(-1);
}
}

Programming a BEA Tuxedo Application Using C

Sending Asynchronous Messages

Getting an Asynchronous Reply

A reply to a service call can be received asynchronously by calling the
tpgetrply(3c) function. Thepgetrply() function dequeues a reply to a request
previously sent bypacall()

Use the following signature to call thgyetrply() function.

int
tpgetrply(int * cd, char ** data ,long* len ,long flags)

The following table describes the arguments totpletrply() function.

Table 6-3 tpgetrply() Function Arguments

Argument Description

cd Pointer to the call descriptor returned by thecall() function.

* data Address of a pointer to the output buffer that receives the reply. You must
allocate the output buffer using ttpalloc() function. If the reply
message contains no data, upon successful returniczh) , the

system setsdata to zero. The pointer and the contents of the output
buffer remain unchanged.

You can use the same buffer for both the request and reply messages. If
you do, then you must setlata to the address of the pointer returned
when you allocated the input buffer. It is an error for this parameter to
point to NULL.

len Pointer to the length of the reply data. It is an error for this parameter to
point to NULL.

flags Flag options. You can list a group of flags using the logd¢abperator.
If you set this value to zero, the communication is conducted in the
default manner. For a list of valid flags and defaults, refer to
tpcall(3c)) in theBEA Tuxedo C Function Reference

By default, the function waits for the arrival of the reply that corresponds to the value
referenced by thed parameter. During this waiting interval, a blocking time-out may
occur. A time-out occurs whepgetrply() fails andtpermo(5) is settorPETIME
(unless thelags parameter is set ftPNOTIMB.

Programming a BEA Tuxedo Application Using C 6-15

6 Writing Request/Response Clients and Servers

Setting and Getting Message Priorities

Two ATMI functions allow you to determine and set the priority of a message request:
tpsprio(3c) andtpgprio(3c) . The priority affects how soon the request is
dequeued by the server; servers dequeue requests with the highest priorities first.

This section describes:
m Setting a Message Priority

m Getting a Message Priority

Setting a Message Priority

6-16

Thetpsprio(3c) function enables you to set the priority of a message request.

Thetpsprio() function affects the priority level of only one request: the next request
to be sent bypcall() ortpacall) , or to be forwarded by a service subroutine.

Use the following signature to call thgsprio() function.

int
tpsprio(int prio , long flags);

The following table describes the arguments toghgrio() function.

Table 6-4 tpsprio() Function Arguments

Argument Description

prio Integer indicating a new priority value. The effect of this argument is
controlled by thelags parameter. Iflags is setto Oprio specifies
a relative value and the sign accompanying the value indicates whether
the current priority is incremented or decremented. Otherwise, the value
specified indicates an absolute value and must be set to a value
between 0 and 100. If you do not specify a value within this range, the
system sets the value to 50.

flags Flag indicating whether the value pfio is treated as a relative value
(0, the default) or an absolute valdé?ABSOLUTE

Programming a BEA Tuxedo Application Using C

Setting and Getting Message Priorities

The following sample code is an excerpt fromTR&NSFERservice. In this example,
the TRANSFERservice acts as a client by sending a synchronous requastaiiia

to thewITHDRAWAEervice TRANSFERalISo invokespsprio() to increase the priority
of its request messageWITHDRAWALand to prevent the request from being queued
for thewITHDRAWABervice (and later tHeEPOSIT service) after waiting on the
TRANSFERjueue.

Listing 6-8 Setting the Priority of a Request Message

* increase the priority of withdraw call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of withdraw\n");

if (tpcall"WITHDRAWAL", (char *)regfb,0, (char **)&reqfb, (long *)
\

&reqglen, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0, "Cannot withdraw from debit
account”, \
(FLDLEN)O);
tpfree((char *)reqfb);
tpreturn(TPFAIL, 0,transb->data, OL, 0);
}

Getting a Message Priority

Thetpgprio(3c) function enables you to get the priority of a message request.

Use the following signature to call thgyprio() function.

int

tpgprio();

A requester can call thpgprio() function after invoking thepcall() or

tpacall) function to retrieve the priority of the request message. If a requester calls
the function but no request is sent, the function fails, returning -1 and setting

tperrno(5) to TPENOENTUpon successpgprio() returns an integer value in the
range of 1 to 100 (where the highest priority value is 100).

Programming a BEA Tuxedo Application Using C 6-17

6 Writing Request/Response Clients and Servers

If a priority has not been explicitly set using theprio() function, the system sets

the message priority to that of the service routine that handles the request. Within al
application, the priority of the request-handling service is assigned a default value of
50 unless a system administrator overrides this value.

The following example shows how to determine the priority of a message that was setr
in an asynchronous call.

Listing 6-9 Determining the Priority of a Request After It is Sent

#include <stdio.h>
#include "atmi.h"

main ()

int cdl, cd2; [* call descriptors */

int prl, pr2; [* priorities to two calls */
char *bufl, *buf2; [* buffers */

long bufllen, buf2len; /* buffer lengths */
Join application

if (bufL=tpalloc("FML", NULL, 0) == NULL)
error

if (buf2=tpalloc("FML", NULL, 0) == NULL)
error

populate FML buffers with send request

if ((cd1 = tpacall("servicel", bufl, 0, 0)) ==-1)
error

if ((prl = tpgprio()) == -1)
error

if ((cd2 = tpacall("service2", buf2, 0, 0)) ==-1)
error

if ((pr2 = tpgprio()) == -1)\
error

if (prl >=pr2) { /* base the order of tpgetrplys on priority of
calls */
if (tpgetrply(&cdl, &bufl, &bufllen, 0) ==-1)
error
if (tpgetrply(&cd2, &buf2, &buf2len, 0) ==-1)
error

6-18 Programming a BEA Tuxedo Application Using C

Setting and Getting Message Priorities

else {
if (tpgetrply(&cd2, &buf2, &buf2len, 0) == -1)
error
if (tpgetrply(&cdl, &bufl, &bufllen, 0) ==-1)
error

Programming a BEA Tuxedo Application Using C 6-19

6 Writing Request/Response Clients and Servers

6-20 Programming a BEA Tuxedo Application Using C

CHAPTER

[Writing
Conversational Clients
and Servers

m Overview of Conversational Communication
m Joining an Application

m Establishing a Connection

m Sending and Receiving Messages

m Ending a Conversation

m Building Conversational Clients and Servers

m Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between clients and servers. In this
form of communication, a virtual connection is maintained between the client
(initiator) and server (subordinate) and each side maintains information about the state
of the conversation. The connection remains active until an event occurs to terminate
it.

Programming a BEA Tuxedo Application Using C 7-1

4 Writing Conversational Clients and Servers

During conversational communicationhalf-duplexconnection is established

between the client and server. A half-duplex connection allows messages to be sent
only one direction at any given time. Control of the connection can be passed back ar
forth between the initiator and the subordinate. The process that has control can sel
messages; the process that does not have control can only receive messages.

To understand how conversational communication works in a BEA Tuxedo
application, consider the following example from an online banking application. In
this example, a bank customer requests checking account statements for the past tv
months.

Figure 7-1 Example of Conversational Communication in an Online Banking
Application

1. Customer Request Send slabemenis —'
for last 2 months =

4 2 System Resgporse: Here's the first ﬂahmt'nnlanuﬁm?h
4 Customer Requast: Yes, send more 3

- 4. Spatem Resporse: Here's the statement for the second month =

Customer Residence Account Records Storage Systemn
located at the Bank Headguarters

1. The customer requests the checking account statements for the past two month:

2. The Account Records Storage System responds by sending the first month’s
checking account statement followed byi@e prompt for accessing the
remaining month’s statement.

3. The customer requests the second month’s account statement by selecting the
More prompt.

Note: The Account Records Storage System must maintain state information so it
knows which account statement to return when the customer selekis¢he

prompt.

4. The Account Records Storage System sends the remaining month’s account
statement.

As with request/response communication, the BEA Tuxedo system passes data usit
typed buffers. The buffer types must be recognized by the application. For more
information on buffer types, refer to “Overview of Typed Buffers” on page 3-2.

7-2 Programming a BEA Tuxedo Application Using C

Joining an Application

Conversational clients and servers have the following characteristics:

m The logical connection between them remains active until terminated.

m Any number of messages can be transmitted across a connection between them.

m Both clients and servers use thsend() andtprecv() routines to send and

receive data in conversations.

Conversational communication differs from request/response communication in the

following ways:

m A conversational client initiates a request for service usicapnect() rather

thantpcall() or tpacall()

m A conversational client sends a service request to a conversational server.

m The configuration file reserves part of the conversational server for addressing

conversational services.

m Conversational servers are prohibited from making calls usitngvard()

Joining an Application

A conversational client must join an application via a catitet()

before

attempting to establish a connection to a service. For more information, refer to

“Writing Clients” on page 4-1.

Establishing a Connection

Thetpconnect(3c) function sets up a conversation.

Use the following signature to call thgonnect() function.

int
tpconnect(char * name, char* data ,long len long flags)

Programming a BEA Tuxedo Application Using C 7-3

4 Writing Conversational Clients and Servers

7-4

The following table describes the arguments tagbennect() function.

Table 7-1 tpconnect() Function Arguments

Argument Description

name Character pointer to a conversational service name. If you do not
specifyname as a pointer to a conversational service, the call
fails with a value of -1 antperrno is set to the error code
TPENOENT

data Pointer to a data buffer. When establishing the connection, you
can send data simultaneously by settingdit argument to
point to a buffer previously allocated tpalloc() . The
type andsubtype of the buffer must be types recognized by
the service being called. You can set the valufatd to NULL
to specify that no data is to be sent.

The conversational service being called receives/éte and
len pointers via th@ PSVCINFOdata structure passed to it by
main() when the service is invoked. (A request/response
service receives théata andl/en pointers in the same way.)
For more information on thEPSVCINFOdata structure, refer to
“Defining a Service” on page 5-10.

len Length of the data buffer. If the buffer is self-defining (for
example, afrMLbuffer), you can seen to 0.

flag Specifies the flag settings. For a complete list of valid flag
settings, refer tépconnect(3c) in theBEA Tuxedo C
Function Reference

The system notifies the called service through the flag members
of the TPSVCINFOstructure.

The BEA Tuxedo system returns a connection descriptrhen a connection is
established withpconnect() . Thecd is used to identify subsequent message
transmissions with a particular conversation. A client or conversational service can
participate in more than one conversation simultaneously. The maximum number of
simultaneous conversations is 64.

In the event of a failure, theconnect() ~ function returns a value of -1 and sets
tperro to the appropriate error condition. For a list of possible error codes, refer to
tpconnect(3c) in theBEA Tuxedo C Function Reference

Programming a BEA Tuxedo Application Using C

Sending and Receiving Messages

The following example shows how to use thennect() function.

Listing 7-1 Establishing a Conversational Connection

#include atmi.h

#define FAIL -1

int cdl; [* Connection Descriptor */
main()

if ((cd = tpconnect(“AUDITC",NULL,0,TPSENDONLY)) == -1) {
error routine

}

}

Sending and Receiving Messages

Once the BEA Tuxedo system establishes a conversational connection,
communication between the initiator and subordinate is accomplished using send and
receive calls. The process with control of the connection can send messages using the
tpsend(3c) function; the process without control can receive messages using the
tprecv(3c) function.

Note: Initially, the originator (that is, the client) decides which process has control
using theTPSENDONLYr TPRECVONLYlag value of thepconnect() call.
TPSENDONL$pecifies that control is being retained by the originator;
TPRECVONLYthat control is being passed to the called service.

Sending Messages

To send a message, usettsend(3c) function with the following signature.

int
tpsend(int cd, char* data ,long len ,long flags ,long* revent)

The following table describes the arguments taythend() function.

Programming a BEA Tuxedo Application Using C 7-5

4 Writing Conversational Clients and Servers

Table 7-2 tpsend() Function Arguments

Argument Description

cd Specifies the connection descriptor returned by the
tpconnect() function identifying the connection over which
the data is sent.

data Pointer to a data buffer. When establishing the connection, you
can send data simultaneously by settingdit argument to
point to a buffer previously allocated tpalloc() . The
type andsubtype of the buffer must be types recognized by
the service being called. You can set the valufatd to NULL
to specify that no data is to be sent.

The conversational service being called receives/dte and
len pointers via th@ PSVCINFOdata structure passed to it by
main() when the service is invoked. (A request/response
server receives th#ata andlen pointers in the same way.) For
more information on th& PSVCINFOdata structure, refer to
“Defining a Service” on page 5-10.

len Length of the data buffer. If the buffer is self-defining (for
example, afrMLbuffer), you can sden to O. If you do not
specify a value fodata , this argument is ignored.

revent Pointer to event value set when an error is encountered (that is,
whentperrno(5) is set toTPEEVENT. For a list of valid
event values, refer tpsend(3c) in theBEA Tuxedo C
Function Reference

flag Specifies the flag settings. For a list of valid flag settings, refer
totpsend(3c) in theBEA Tuxedo C Function Reference

In the event of a failure, thesend() function returns a value of -1 and sets
tpermo(5) to the appropriate error condition. For a list of possible error codes, refer
totpsend(3c) in theBEA Tuxedo C Function Reference

You are not required to pass control each time you issupséérel() function. In

some applications, the process authorized to igsaed() calls can execute as many
calls as required by the current task before turning over control to the other process. |
other applications, however, the logic of the program may require the same process |
maintain control of the connection throughout the life of the conversation.

7-6 Programming a BEA Tuxedo Application Using C

Sending and Receiving Messages

The following example shows how to invoke thsend() function.

Listing 7-2 Sending Data in Conversational Mode

if (tpsend(cd,line,0,TPRECVONLY,revent) == -1) {
(void)userlog(“%s: tpsend failed tperrno %d”,
argv[0],tperrno);
(void)tpabort(0);
(void)tpterm();
exit(1);

Receiving Messages

To receive data sent over an open connection, ugpréiee(3c) function with the
following signature.

int
tprecv(int cd, char ** data ,long* len ,long flags ,long* revent)

The following table describes the arguments tayheev() function.

Argument Description

cd Specifies the connection descriptor. If a subordinate program
issues the call, thed argument should be set to the value
specified in theTPSVCINFOstructure for the program. If the
originator program issues the call, gteargument should be set
to the value returned by theconnect() function.

Programming a BEA Tuxedo Application Using C 7-7

4 Writing Conversational Clients and Servers

Argument

Description

data

Pointer to a data buffer. Tl#ata argument must point to a
buffer previously allocated hiypalloc() . Thetype and
subtype of the buffer must be types recognized by the service
being called. This value cannot be NULL; if it is, the call fails
andtperrno(5) is set toTPEINVAL.

The conversational service being called receives/éte and
len pointers via th@ PSVCINFOdata structure passed to it by
main() when the service is invoked. (A request/response
service receives th#ata andl/en pointers in the same way.)
For more information on thEPSVCINFOdata structure, refer to
“Defining a Service” on page 5-10.

len

Length of the data buffer. If the buffer is self-defining (for
example, an FML buffer), you can detr to 0. This value
cannot be NULL; if it is, the call fails artderrno(5) is set
to TPEINVAL.

revent

Pointer to event value set when an error is encountered (that is,
whentperrno is set tofPEEVENY). Refer tatprecv(3c) in

the BEA Tuxedo C Function Refererfoe a list of valid event
values.

flag

Specifies the flag settings. Refertpoecv(3c) in theBEA
Tuxedo C Function Referenfar a list of valid flags.

Upon success, thedata argument points to the data received &mnd contains the
size of the buffer. lfen is greater than the total size of the buffer before the call to
tprecv() , the buffer size has changed ad indicates the new size. A value of O for
thelen argument indicates that no data was received.

The following example shows how to use thecv() function.

Listing 7-3 Receiving Data in Conversation

if (tprecv(cd,line,len,TPNOCHANGE revent) = -1) {
(void)userlog(“%s: tprecv failed tperrno %d revent %ld”,
argv[0],tperrno,revent);

(void)tpabort(0);
(void)tpterm();

7-8 Programming a BEA Tuxedo Application Using C

Ending a Conversation

exit(1);

Ending a Conversation

A connection can be taken down gracefully and a conversation ended normally

through:
m A successful call tepreturn() in a simple conversation
m A series of successful calls toeturn() in a complex conversation based on

a hierarchy of connections
m Global transactions, as described in “Writing Global Transactions” on page 9-1

Note: Thetpreturn() function is described in detail in “Writing Request/Response
Clients and Servers” on page 6-1.

The following sections describe two scenarios for gracefully terminating
conversations that do not include global transactions in whictpristern()
function is used.

The first example shows how to terminate a simple conversation between two
components. The second example illustrates a more complex scenario, with a
hierarchical set of conversations.

If you end a conversation with connections still open, the system returns an error. In
this case, eithapcommit() or tpreturn() fails in a disorderly manner.

Programming a BEA Tuxedo Application Using C 7-9

7

Writing Conversational Clients and Servers

Example: Ending a Simple Conversation

The following diagram shows a simple conversation between A and B that terminate:
gracefully.

Figure 7-2 Simple Conversation Terminated Gracefully

A EVENTE B
swi L{tpsvenfo)
tronipnally a RECONLY connection™®f

cdl=tpeonnect("swel", TPEENDONLY);

tpsend{cdl, data , TPRECWVONLYY, TPEV, SENDONLY

tprecwitpsvoinfo->od, &buffer, . drevent);

f*changed to a SENDONLY connection®/
tprecwicdl, &buffer, revent); TEEV SVosUce

tpreturn(TP UCCERS S, uffer,);

7-10

The program flow is as follows:

1. A sets up the connection by callipgonnect() with theTPSENDONLYlag set,
indicating that process B is on the receiving end of the conversation.

2. A turns control of the connection over to B by callipgend() with the
TPRECVONLYlag set, resulting in the generation of REV_SENDONL®gvent.

3. The next call by B teprecv() returns a value of -1, safsermo(5) to
TPEEVENTand return§PEV_SENDONL therevent argument, indicating that
control has passed to B.

4. B callstpreturn() with rval set toTPSUCCESSThis call generates a
TPEV_SvCSuUCevent for A and gracefully brings down the connection.

5. A callstprecv() , learns of the event, and recognizes that the conversation has
been terminated. Data can be received on this cagltdo/() even if the event
is set toTPEV_SVCFAIL

Note: In this example, A can be either a client or a server, but B must be a server.

Programming a BEA Tuxedo Application Using C

Ending a Conversation

Example: Ending a Hierarchical Conversation

The following diagram shows a hierarchical conversation that terminates gracefully.
Figure 7-3 Connection Hierarchy

EVENTS EVENTS

A B c

cdl=tpconnect!"svcB", TPRECVOMLY); . .
P (2 sveBtpaveinfn) svcCitpsveintn)

cdl=tpconnect"sveC", TPSENDONLUY],
tpsend(cdl, dats, TPRECWVONLY),

TPEV_SENDONLY

tprecwitpeveinfo=cd, . &revent),
tpreturn TPSUCCES S, buffer, 3,
TPEV_SWIsUCC

tprecw(cd, &huffer, . &revent),
tpreturn(TPEUCCESS buffer,),

TFPEWV_Z[MCIUCC

tprecv(cd, &buffer, . Erevent);

In the preceding example, service B is a member of a conversation that has initiated a
connection to a second service called C. In other words, there are two active
connections: A-to-B and B-to-C. #is in control of both connections, a call to

tpreturn() has the following effect: the call failsTREV_SVCERRvent is posted on

all open connections, and the connections are closed in a disorderly manner.

In order to terminate both connections normally, an application must execute the
following sequence:

1. B callstpsend() with theTPRECVONLYlag set on the connection to C,
transferring control of the B-to-C connection to C.

2. C callstpreturn() with rval set toTPSUCCESSTPFAIL, or TPEXIT, as
appropriate.

Programming a BEA Tuxedo Application Using C 7-11

Writing Conversational Clients and Servers

3. B can then calpreturn() , posting an event (eith@PEV_SvVCSUCOTr
TPEV_SVCFAIL) for A.

Note: Itislegal for a conversational service to make request/response calls if it need
to do so to communicate with another service. Therefore, in the preceding
example, the calls from B to C may be executed usicedi() or
tpacall() instead ofpconnect() . Conversational services are not
permitted to make calls tpforward()

Executing a Disorderly Disconnect

7-12

The only way in which a disorderly disconnect can be executed is through a call to thi
tpdiscon(3c) function (which is equivalent to “pulling the plug” on a connection).
This function can be called only by the initiator of a conversation (that is, the client).

Note: This is not the preferred method for bringing down a conversation. To bring
down an application gracefully, the subordinate (the server) should call the
tpreturn() function.

Use the following signature to call thgliscon() function.
int
tpdiscon(int cd)

The cd argument specifies the connection descriptor returned bypdbrenect()
function when the connection is established.

Thetpdiscon() function generates BPEV_DISCONIMMevent for the service at the
other end of the connection, renderingdhiénvalid. If a transaction is in progress, the
system aborts it and data may be lost.

If tpdiscon() is called from a service that was not the originator of the connection
identified bycd, the function fails with an error code TFEBADDESC

For a list and descriptions of all event and error codes, refgdioon(3c) in the
BEA Tuxedo C Function Reference

Programming a BEA Tuxedo Application Using C

Building Conversational Clients and Servers

Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:
m buildclient() as described in “Building Clients” on page 4-10

m buildserver() as described in “Building Servers” on page 5-32

For conversational and request/response services, you cannot:

m Build both in the same server

m Assign the same name to both

Understanding Conversational
Communication Events

The BEA Tuxedo system recognizes five events in conversational communication. All
five events can be posted fprecv() ; three can be posted fgsend()

The following table lists the events, the functions for which they are returned, and a
detailed description of each.

Table 7-3 Conversational Communication Events

Event Received By Description

TPEV_SENDONLY tprecv () Control of the connection has been passed; this process
can now caltpsend()

Programming a BEA Tuxedo Application Using C 7-13

4 Writing Conversational Clients and Servers

Event

Received By

Description

TPEV_DISCONIMM

tpsend()
tprecv (),
tpreturn()

The connection has been torn down and no further
communication is possible. Thgdiscon() function
posts this event in the originator of the connection, and
sends it to all open connections whpreturn() is
called, as long as connections to subordinate services
remain open. Connections are closed in a disorderly
fashion. If a transaction exists, it is aborted.

TPEV_SVCERR

tpsend()

Received by the originator of the connection, usually
indicating that the subordinate program issued a
tpreturn() without having control of the connection.

tprecv ()

Received by the originator of the connection, indicating
that the subordinate program issuegraturn() with
TPSUCCESS®Tr TPFAIL and a valid data buffer, but an
error occurred that prevented the call from completing.

TPEV_SVCFAIL

tpsend()

Received by the originator of the connection, indicating
that the subordinate program issuegraturn()

without having control of the connection, and

tpreturn() was called withTPFAIL or TPEXIT and

no data.

tprecv ()

Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(tpreturn() was called witiTPFAIL or TPEXIT).

TPEV_SVCSUCC

tprecv ()

Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it calledtpreturn() with TPSUCCESS

7-14 Programming a BEA Tuxedo Application Using C

CHAPTER

8 Writing Event-based
Clients and Servers

m Overview of Events

m Defining the Unsolicited Message Handler
m Sending Unsolicited Messages

m Checking for Unsolicited Messages

m Subscribing to Events

m Unsubscribing from Events

m Posting Events

m Example of Event Subscription

Overview of Events

Event-based communication provides a method for a BEA Tuxedo system process to
be notified when a specific situation (event) occurs.

The BEA Tuxedo system supports two types of event-based communication:
m Unsolicited events

m Brokered events

Programming a BEA Tuxedo Application Using C 8-1

8 Writing Event-based Clients and Servers

Unsolicited Events

Unsolicited events are messages used to communicate with client programs that are r
waiting for and/or expecting a message.

Brokered Events

8-2

Brokered events enable a client and a server to communicate transparently with one
another via an “anonymous” broker that receives and distributes messages. Such
brokering is another client/server communication paradigm that is fundamental to the
BEA Tuxedo system.

The EventBroker is a BEA Tuxedo subsystem that receives and filters event posting
messages, and distributes them to subscribepesteris a BEA Tuxedo system
process that detects when a specific event has occurred and reports (posts) it to the
EventBroker. Asubscriberis a BEA Tuxedo system process with a standing request
to be notified whenever a specific event has been posted.

The BEA Tuxedo system does not impose a fixed ratio of service requesters to servic
providers; an arbitrary number of posters can post a message buffer for an arbitrary
number of subscribers. The posters simply post events, without knowing which
processes receive the information or how the information is handled. Subscribers ar
notified of specified events, without knowing who posted the information. In this way,
the EventBroker provides complete location transparency.

Typically, EventBroker applications are designed to handle exception events. An
application designer must decide which events in the application constitute exceptiol
events and need to be monitored. In a banking application, for example, it might be
useful to post an event whenever an unusually large amount of money is withdrawn,
but it would not be particularly useful to post an event for every withdrawal
transaction. In addition, not all users would need to subscribe to that event; perhaps
only the branch manager would need to be notified.

Programming a BEA Tuxedo Application Using C

Overview of Events

Notification Actions

The EventBroker may be configured such that whenever an event is posted, the
EventBroker invokes one or more notification actions for clients and/or servers that
have subscribed. The following table lists the types of notification actions that the
EventBroker can take.

Table 8-1 EventBroker Notification Actions

Notification Action Description

Unsolicited notification ~ Clients may receive event notification messages in their
message unsolicited message handling routine, just as if they were sent by
the tpnotify() function.

Service call Servers may receive event notification messages as input to
service routines, just as if they were sent bytplaeall()
function.

Reliable queue Event notification messages may be stored in a BEA Tuxedo

system reliable queue, using tpenqueue(3c) function.
Event notification buffers are stored until requests for buffer
contents are issued. A BEA Tuxedo system client or server
process may call thpdequeue(3c) function to retrieve

these notification buffers, or alternatdiMQFORWARD(5hay

be configured to automatically dispatch a BEA Tuxedo system
service routine that retrieves a notificatiouffer.

For more information on /Q, séésing the BEA Tuxedo /Q
Component

In addition, the application administrator may creat€@BNT_MIB(5) entry (by
using the BEA Tuxedo administrative API) that performs the following notification
actions:

m Invokes a system command

m Writes a message to the system’s log file on disk

Note: Only the BEA Tuxedo application administrator is allowed to create an
EVENT_MIB(5) entry.

Programming a BEA Tuxedo Application Using C 8-3

8 Writing Event-based Clients and Servers

For information on th&VENT_MIB(5) , refer to theBEA Tuxedo File Formats and
Data Descriptions Reference

EventBroker Servers

TMUSREVTs the BEA Tuxedo system-supplied server that acts as an EventBroker fol
user eventsSTMUSREVProcesses event report message buffers, and then filters and
distributes them. The BEA Tuxedo application administrator must boot one or more of
these servers to activate event brokering.

TMSYSEVTs the BEA Tuxedo system-supplied server that acts as an EventBroker fol
system-defined even®SYSEVIandTMUSREV&re similar, but separate servers are
provided to allow the application administrator the ability to have different replication
strategies for processing notifications of these two types of events. R8#titg Up

a BEA Tuxedo Applicatiofor additional information.

System-defined Events

8-4

The BEA Tuxedo system itself detects and posts certain predefined events related t
system warnings and failures. These tasks are performed by the EventBroker. For
example, system-defined events include configuration changes, state changes,
connection failures, and machine partitioning. For a complete list of system-defined
events detected by the EventBroker, BENTS(5) in theBEA Tuxedo File Formats

and Data Descriptions Reference

System-defined events are defined in advance by the BEA Tuxedo system code and |
not require posting. The name of a system-defined event, unlike that of an

application-defined event, always begins with a dot (“.”). Names of
application-defined events may not begin with a leading dot.

Clients and servers can subscribe to system-defined events. These events, howeve
should be used mainly by application administrators, not by every client in the
application.

When incorporating the EventBroker into your application, remember that it is not
intended to provide a mechanism for high-volume distribution to many subscribers. D¢
not attempt to post an event for every activity that occurs, and do not expect all client
and servers to subscribe. If you overload the EventBroker, system performance may
be adversely affected and notifications may be dropped. To minimize the possibility o
overload, the application administrator should carefully tune the operating system IP(
resources, as explainedlirstalling the BEA Tuxedo System

Programming a BEA Tuxedo Application Using C

Defining the Unsolicited Message Handler

Programming Interface for the EventBroker

EventBroker programming interfaces are available for all BEA Tuxedo system server
and client processes, including Workstation, in both C and COBOL.

The programmer’s job is to code the following sequence:
1. Aclient or servepostsa buffer to an application-defined event name.

2. The posted buffer is transmitted to any number of processes thatuiesegibed
to the event.

Subscribers may be notified in a variety of ways (as discussed in “Notification
Actions”), and events may be filtered. Notification and filtering are configured through
the programming interface, as well as through the BEA Tuxedo system administrative
API.

Defining the Unsolicited Message Handler

To define the unsolicited message handler function, usgstitensol(3c) function
with the following signature.

int
tpsetunsol(* myfunc)

The following table describes the single argument that can be passed to the
tpsetunsol() function.

Table 8-2 tpsetunsol() Function Argument

Argument Description

myfunc Pointer to a function that conforms to the prototype of a call-back
function. In order to conform, the function must accept the following
three parameters:

m data - points to the typed buffer that contains the unsolicited
message

m Jen -length of the buffer
m flags - currently not used

Programming a BEA Tuxedo Application Using C 8-5

8 Writing Event-based Clients and Servers

When a client receives an unsolicited notification, the system dispatches the call-bac
function with the message. To minimize task disruption, you should code the
unsolicited message handler function to perform only minimal processing tasks, so i
can return quickly to the waiting process.

Sending Unsolicited Messages

The BEA Tuxedo system allows unsolicited messages to be sent to client processes
without disturbing the processing of request/response calls or conversational
communications.

Unsolicited messages can be sent to client processes by name, using
tpbroadcast(3c) , or by an identifier received with a previously processed message,
usingtpnotify(3c) . Messages sent vipbroadcast() can originate either in a
service or in another client. Messages sentpriatify() can originate only in a
service.

Broadcasting Messages By Name

int
tpbroadcast(char *
flags)

Thetpbroadcast(3c) function allows a message to be sent to registered clients of
the application. It can be called by a service or another client. Registered clients are
those that have successfully made a cabitdt() and have not yet made a call to
tpterm()

Use the following signature to call thgbroadcast() function.

Imid, char *usrname, char *cltname, char *data, long len, long

The following table describes the arguments taghmadcast() function.

8-6 Programming a BEA Tuxedo Application Using C

Sending Unsolicited Messages

Table 8-3 tpbroadcast() Function Arguments

Argument Description

Imid Pointer to the logical machine identifier for the client. A value of NULL
acts as a wildcard, so that a message can be directed to groups of clients.

usrname Pointer to the user name of the client process, if one exists. A value of
NULL acts as a wildcard, so that a message can be directed to groups of
clients.

cltname Pointer to the client name of the client process, if one exists. A value of
NULL acts as a wildcard, so that a message can be directed to groups of
clients.

data Pointer to the content of a message.

len Size of the message bufferdéata points to a self-defining buffer type,
for example ML, then/en can be setto 0.

flags Flag options. Refer ttpbroadcast(3c) in theBEA Tuxedo C

Function Referenctor information on available flags.

The following example illustrates a call tftbroadcast() for which all clients are
targeted. The message to be sent is containe§TRIAG buffer.

Listing 8-1 Using tpbroadcast()

char *strbuf;

if ((strbuf = tpalloc("STRING", NULL, 0)) == NULL) {
error routine

}
(void) strcpy(strbuf, "hello, world");

if (tpbroadcast(NULL, NULL, NULL, strbuf, 0, TPSIGRSTRT) == -1)
error routine

Programming a BEA Tuxedo Application Using C 8-7

8 Writing Event-based Clients and Servers

Broadcasting Messages by Identifier

Thetpnotify(3c) function is used to broadcast a message using an identifier
received with a previously processed message. It can be called only from a service.

Use the following signature to call thgnotify() function.

int
tpnotify(CLIENTID * clientid, char *data, long len, long flags)

The following table describes the arguments toghetify() function.

Table 8-4 tpnotify() Function Arguments

Argument Description

clientid Pointer to &CLIENTID structure that is saved from tli@SVCINFO
structure that accompanied the request to this service.

data Pointer to the content of the message.

len Size of the message buffer.déta points to a self-defining buffer type,

for example FML, thenlen can be set to 0.

flags Flag options. Refer ttpnotify(3c) in theBEA Tuxedo C Function
Referencdor information on available flags.

Checking for Unsolicited Messages

To check for unsolicited messages while running the client in “dip-in” notification
mode, use thechkunsol(3c) function with the following signature.

int
tpchkunsol()

The function takes no arguments.

If any messages are pending, the system invokes the unsolicited message handling
function that was specified usimgsetunsol() . Upon completion, the function
returns either the number of unsolicited messages that were processed or -1 on errc

8-8 Programming a BEA Tuxedo Application Using C

Subscribing to Events

If you issue this function when the client is runningiBNAL-based, thread-based
notification mode, or is ignoring unsolicited messages, the function has no impact and
returns immediately.

Subscribing to Events

Thetpsubscribe(3c) function enables a BEA Tuxedo system client or server to
subscribe to an event.

A subscriber can be notified through an unsolicited notification message, a service call,
a reliable queue, or other notification methods configured by the application
administrator. (For information about configuring alternative notification methods,
refer toSetting Up a BEA Tuxedo Applicatipn

Use the following signature to call thgsubscribe() function.

long handle
tpsubscribe (char * eventexpr ,char* filter , TPEVCTL* ctl ,long flags)

The following table describes the arguments toiphebscribe() function.

Table 8-5 tpsubscribe() Function Arguments

Argument Description

eventexpr Pointer to a set of one or more events to which a process can subscribe.
Consists of a null-terminated string of up to 255 characters containing a
regular expression. Regular expressions are of the form specified in
recomp, rematch(3c) , as described in tH2EA Tuxedo C Function
Referencg For example, ieventexpr s set to:

m M\ — The caller is subscribing to all system-defined events.

m "\\.SysServer.*" — The caller is subscribing to all
system-defined events related to servers.

m [A-Z]* — The caller is subscribing to all user events starting
with any uppercase letter between A and Z.

m "*(ERR|err).*" — The caller is subscribing to all user events
with names that contain either or ERR such as the
account_error andERROR_STATIEvents, respectively.

Programming a BEA Tuxedo Application Using C 8-9

8 Writing Event-based Clients and Servers

8-10

Argument Description

filter Pointer to a string containing a boolean filter rule that must be evaluated
successfully before the EventBroker posts the event. Upon receiving an
event to be posted, the EventBroker applies the filter rule, if one exists, to
the posted event’s data. If the data passes the filter rule, the EventBroker
invokes the notification method specified; otherwise, the EventBroker
ignores the notification method. The caller can subscribe to the same
event multiple times with different filter rules.

By using the event-filtering capability, subscribers can discriminate
among the events about which they are notified. For example, a poster
can post an event for withdrawals greater than $10,000, but a subscriber
may want to specify a higher threshold for being notified, such as
$50,000. Or, a subscriber may want to be notified of large withdrawals
made by specific customers.

Filter rules are specific to the typed buffers to which they are applied. For
more information on filter rules, refertosubscribe(3c) intheBEA
Tuxedo C Function Reference

ctl Pointer to a flag for controlling how a subscriber is notified of an event.
Valid values include:

m NULL - sends unsolicited messages. Refer to “Notification via
Unsolicited Message” on page 8-11 for more information.

m Pointer to a validPEVCTLstructure - sends information based on
the TPEVCTLstructure. Refer to “Notification via Service Call or
Reliable Queue” on page 8-11 for more information.

flags Flag options. For more information on available flag options, refer to
tpsubscribe(3c) in theBEA Tuxedo C Function Reference

You can subscribe to both system- and application-defined events using the
tpsubscribe() function.

For purposes of subscriptions (and f0B updates), service routines executed in a
BEA Tuxedo system server process are considered to be trusted code.

Programming a BEA Tuxedo Application Using C

Subscribing to Events

Notification via Unsolicited Message

If a subscriber is a BEA Tuxedo system client processginds NULL, when the

event to which the client has subscribed is posted, the EventBroker sends an
unsolicited message to the subscriber as follows. When an event name is posted that
evaluates successfully agaimstntexpr , the EventBroker tests the posted data
against the associated filter rule. If the data passes the filter rule (or if there is no filter
rule for the event), then the subscriber receives an unsolicited notification along with
any data posted with the event.

In order to receive unsolicited naotifications, the client must register an unsolicited
message handling routine using theetunsol() function.

Clients receiving event notification via unsolicited messages should remove their
subscriptions from the EventBroker list of active subscriptions before exiting. This is
done using theunsubscribe() function.

Notification via Service Call or Reliable Queue

Event notification vigservice callenables you to program actions that can be taken in
response to specific conditions in your application without human intervention. Event
notification viareliable queueensures that event data is not lost. It also provides the
subscriber the flexibility of retrieving the event data at any time.

If the subscriber (either a client or a server process) wants event notifications sent to
service routines or to stable-storage queues, thestithparameter of
tpsubscribe() must point to a validPEVCTLStructure.

The TPEVCTLSstructure contains the following elements:
long flags ;
char name1[32];

char nameZ32];
TPQCTL gctl ;

Programming a BEA Tuxedo Application Using C 8-11

8 Writing Event-based Clients and Servers

The following table summarizes theEVCTLtyped buffer data structure.

Table 8-6 TPEVCTL Typed Buffer Format

Field Description

flags Flag options. For more information on flags, refer to
tpsubscribe(3c) in theBEA Tuxedo C Function Reference

namel Character string of 32 characters or fewer.

name2 Character string of 32 characters or fewer.

gctl TPQCTLstructure. For more information, refer to
tpsubscribe(3c) in theBEA Tuxedo C Function Reference

Unsubscribing from Events

Thetpunsubscribe(3c) function enables a BEA Tuxedo system client or server to
unsubscribe from an event.

Use the following signature to call thginsubscribe() function.

int
tpunsubscribe (long subscription , long flags)

The following table describes the arguments taghesubscribe() function.

Table 8-7 tpunsubscribe() Function Arguments

Argument Description

subscription Subscription handle returned by a caltgsubscribe()

flags Flag options. For more information on available flag options, refer to
tpunsubscribe(3c) in theBEA Tuxedo C Function Reference

8-12 Programming a BEA Tuxedo Application Using C

Posting Events

Posting Events

Thetppost(3c) function enables a BEA Tuxedo client or server to post an event.
Use the following signature to call thgpost() function.
tppost(char * eventname , char* data ,long len , long flags)

The following table describes the arguments tayhest() function.

Table 8-8 tppost() Function Arguments

Argument Description

eventname Pointer to an event name containing up to 31 characters plus NULL. The
first character cannot be a dot (“.”) because the dot is reserved as the first
character in names of BEA Tuxedo system-defined events. When
defining event names, keep in mind that subscribers can use wild card
capabilities to subscribe to multiple events with a single function call.

Using the same prefix for a category of related event names can be

helpful.
data Pointer to a buffer previously allocated using tibegdloc() function.
len Size of data buffer that should be posted with the evedtafdf points to

a buffer of a type that does not require a length to be specified (for
example, an FML fielded buffer) or if you set it to NULL, tlee
argument is ignored and the event is posted with no data.

flags Flag options. For more information on available flag options, refer to
tppost(3c) in theBEA Tuxedo C Function Reference

The following example illustrates an event posting taken from the BEA Tuxedo system
sample applicatiohankapp . This example is part of theITHDRAWAEervice. One of

the functions of th&VITHDRAWAEKervice is checking for withdrawals greater than
$10,000 and posting an event calBeNK_TLR_WITHDRAWAL

Programming a BEA Tuxedo Application Using C 8-13

8 Writing Event-based Clients and Servers

Listing 8-2 Posting an Event with tppost()

[* Event logic related */
static float evt_thresh = 10000.00 ; /* default for event threshold */
static char emsg[200] ; /* used by event posting logic */

/* Post a BANK_TLR_WITHDRAWAL event ? */
if (amt < evt_thresh) {
/* no event to post */
tpreturn(TPSUCCESS, 0,transb->data , OL, 0);
}
[* prepare to post the event */
if ((Fchg (transf, EVENT_NAME, 0, "BANK_TLR_WITHDRAWAL", (FLDLEN)OQ) ==-1) ||
(Fchg (transf, EVENT_TIME, 0, gettime(), (FLDLEN)O) ==-1) ||
(Fchg (transf, AMOUNT, O, (char *)&amt, (FLDLEN)O0) == -1)) {
(void)sprintf (emsg, "Fchg failed for event fields: %s",
Fstrerror(Ferror)) ;
}
[* post the event */
else if (tppost ("BANK_TLR_WITHDRAWAL", /* event name */
(char *)transf, /* data */
oL, /*len*/
TPNOTRAN | TPSIGRSTRT) == -1) {
[* If event broker is not reachable, ignore the error */
if (tperrno = TPENOENT)
(void)sprintf (emsg, "tppost failed: %s", tpstrerror (tperrno));

This example simply posts the event to the EventBroker to indicate a noteworthy
occurrence in the application. Subscription to the event by interested clients, who ca
then take action as required, is done independently.

8-14 Programming a BEA Tuxedo Application Using C

Example of Event Subscription

Example of Event Subscription

The following example illustrates a portion ofankapp application server that
subscribes tBANK_TLR_.* events, which includes tiBANK_TLR_WITHDRAWAdvent
shown in the previous example, as well as any other event names beginning with
BANK_TLR. When a matching event is posted, the application notifies the subscriber
via a call to a service nam&@ATCHDOG

Listing 8-3 Subscribing to an Event with tpsubscribe()

[* Event Subscription handles */
static long sub_ev_largeamt = OL ;

/* Preset default for option 'w' - watchdog threshold */
(void)strcpy (amt_expr, "AMOUNT > 10000.00") ;

/*
* Subscribe to the events generated
* when a "large" amount is transacted.
*/
evctl.flags = TPEVSERVICE ;
(void)strcpy (evctl.namel, "WATCHDOG") ;
[* Subscribe */
sub_ev_largeamt = tpsubscribe ("BANK_TLR_.*",amt_expr,&evctl, TPSIGRSTRT) ;
if (sub_ev_largeamt == -1L) {
(void)userlog ("ERROR: tpsubscribe for event BANK_TLR_.* failed: %s",
tpstrerror(tperrno)) ;
return -1 ;

}

/* Unsubscribe to the subscribed events */
if (tpunsubscribe (sub_ev_largeamt, TPSIGRSTRT) == -1)

Programming a BEA Tuxedo Application Using C 8-15

8 Writing Event-based Clients and Servers

(void)userlog ("ERROR: tpunsubscribe to event BANK_TLR_.* failed: %s",
tpstrerror(tperrno)) ;
return ;
}
/*
* Service called when a BANK_TLR_.* event is posted.
*/
void
#if defined(__STDC_) || defined(__cplusplus)
WATCHDOG(TPSVCINFO *transb)
#else
WATCHDOG(transb)
TPSVCINFO *transb;
#endif

FBFR *transf; /* fielded buffer of decoded message */

[* Set pointr to TPSVCINFO data buffer */

transf = (FBFR *)transb->data;

[* Print the log entry to stdout */

(void)fprintf (stdout, "%20s|%28s|%8ld|%10.2f\n",

Fvals (transf, EVENT_NAME, 0),

Fvals (transf, EVENT_TIME, 0),

Fvall (transf, ACCOUNT_ID, 0),

*((float *)CFfind (transf, AMOUNT, O, NULL, FLD_FLOAT)));
/* No data should be returned by the event subscriber's svc routine */
tpreturn(TPSUCCESS, 0,NULL, OL, 0);

}

8-16 Programming a BEA Tuxedo Application Using C

CHAPTER

O Writing Global
Transactions

m What Is a Global Transaction?

m Starting the Transaction

m Suspending and Resuming a Transaction

m Terminating the Transaction

m Implicitly Defining a Global Transaction

m Defining Global Transactions for an XA-Compliant Server Group

m Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction is a mechanism that allows a set of programming tasks, potentially
using more than one resource manager and potentially executing on multiple servers,
to be treated as one logical unit.

Once a process is in transaction mode, any service requests made to servers may be
processed on behalf of the current transaction. The services that are called and join the
transaction are referred to @mansactionparticipants The value returned by a

participant may affect the outcome of the transaction.

Programming a BEA Tuxedo Application Using C 9-1

9 Writing Global Transactions

9-2

A global transaction may be composed of several local transactions, each accessing t
same resource manager. The resource manager is responsible for performing

concurrency control and atomicity of updates. A given local transaction may be eithe|
successful or unsuccessful in completing its access; it cannot be partially successful

A maximum of 16 server groups can participate in a single transaction.

The BEA Tuxedo system manages a global transaction in conjunction with the
participating resource managers and treats it as a specific sequence of operations tl
is characterized by atomicity, consistency, isolation, and durability. In other words, &
global transaction is a logical unit of work in which:

m All portions either succeed or have no effect.

m Operations are performed that correctly transform resources from one consistent
state to another.

m Intermediate results are not accessible to other transactions, although some
processes in a transaction may access the data associated with another process

m Once a sequence is complete, its results cannot be altered by any kind of failure

The BEA Tuxedo system tracks the status of each global transaction and determine
whether it should be committed or rolled back.

Note: If a transaction includes callst@all() ,tpacall) , ortpconnect() for
which theflags parameter is explicitly set ttPNOTRANthe operations
performed by the called service do not become part of that transaction. In this
case, the calling process does not invite the called service to be a participant i
the current transaction. As a result, services performed by the called process
are not affected by the outcome of the current transactisgRNOTRANS set
for a call that is directed to a service in an XA-compliant server group, the call
may be executed outside of transaction mode or in a separate transaction,
depending on how the service is configured and coded. For more information
refer to “Implicitly Defining a Global Transaction” on page 9-17.

Programming a BEA Tuxedo Application Using C

Starting the Transaction

Starting the Transaction

To start a global transaction, use thigegin(3c) function with the following
signature.

int
tpbegin(unsigned long timeout, long flags)

The following table describes the arguments taghegin() function.

Programming a BEA Tuxedo Application Using C 9-3

9 Writing Global Transactions

Table 9-1 tpbegin() Function Arguments

Field Description

timeout Specifies the amount of time, in seconds, a transaction can execute before
timing out. You can set this value to the maximum number of seconds allowed
by the system, by specifying a value of 0. In other words, you can set
timeout to the maximum value for an unsigniedg as defined by the
system.

The use of 0 or an unrealistically large value forttheout parameter

delays system detection and reporting of errors. The system ugestbet
parameter to ensure that responses to service requests are sent within a
reasonable time, and to terminate transactions that encounter problems such as
network failures before executing a commit.

For a transaction in which a person is waiting for a response, you should set
this parameter to a small value: if possible, less than 30 seconds.

In a production system, you should geteout to a value large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: The value assigned to tiiemeout parameter should be consistent
with that of theSCANUNITparameter set by the BEA Tuxedo
application administrator in the configuration file. TB@ANUNIT
parameter specifies the frequency with which the system checks, or
scans for timed-out transactions and blocked calls in service
requests. The value of this parameter represents the interval of time
between these periodic scans, referred to asddening unit

You should set themeout parameter to a value that is greater than
the scanning unit. If you set tiemeout parameter to a value

smaller than the scanning unit, there will be a discrepancy between
the time at which a transaction times out and the time at which this
time-out is discovered by the system. The default value for
SCANUNITis 10 seconds. You may need to discuss the setting of the
timeout parameter with your application administrator to make
sure the value you assign to ttreeout parameter is compatible

with the values assigned to your system parameters.

flags Currently undefined; must be set to 0.

9-4 Programming a BEA Tuxedo Application Using C

Starting the Transaction

Any process may catibbegin() unless the process is already in transaction mode or
is waiting for outstanding replies.tfbegin() is called in transaction mode, the call
fails due to a protocol error amgbrrmo(5) is set toTPEPROTOIf the process is in
transaction mode, the transaction is unaffected by the failure.

The following example provides a high-level view of how a global transaction is
defined.

Listing 9-1 Defining a Global Transaction - High-level View

if (tpbegin(timeout,flags) == -1)
error routine
program statements

if (tpcommit(flags) == -1)
error routine

The following example provides a more detailed view of how to define a transaction.
This example is excerpted fromdit.c , a client program included imankapp , the
sample banking application delivered with the BEA Tuxedo system.

Listing 9-2 Defining a Global Transaction - Detailed View

#include <stdio.h> /* UNIX */

#include <string.h> I* UNIX */

#include <atmi.h> /* BEA Tuxedo System */
#include <Uunix.h> /* BEA Tuxedo System */
#include <userlog.h> /* BEA Tuxedo System */

#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */
#define INVI O [* account inquiry */

#define ACCT 1 [* account inquiry */
#define TELL 2 [* teller inquiry */

static int sum_bal _((char *, char *));

static long sitelistfNSITE] = SITEREP; /* list of machines to audit */
static char pgmname[STATLEN]; [* program name = argv|[0] */
static char result_str[STATLEN]; /* string to hold results of query */

Programming a BEA Tuxedo Application Using C 9-5

9 Writing Global Transactions

main(argc, argv)
int argc;
char *argv(];

int aud_type=INVI, /* audit type -- invalid unless specified */
int clarg; /* command line arg index from optind */

int c; /* Option character */

int cflgs=0; /* Commit flags, currently unused */

int aflgs=0; /* Abort flags, currently unused */

int nbl=0; /* count of branch list entries */

char svc_name[NAMELEN]; /* service name */
char hdr_type[NAMELEN]; /* heading to appear on output */

int retc; [* return value of sum_bal() */
struct aud *audyv; /* pointer to audit buf struct */
int audrl=0; [* audit return length */

long g_branchid; /* branch_id to query */

/* Get Command Line Options and Set Variables */
/* Join application */

if (tpinit((TPINIT *) NULL) == -1) {
(void)userlog("%s: failed to join application\n", pgmname);
exit(1);

}

[* Start global transaction */

if (tpbegin(30, 0) ==-1) {
(void)userlog("%s: failed to begin transaction\n", pgmname);
(void)tpterm();
exit(1);

if (nbl ==0) { /* no branch id specified so do a global sum */
retc = sum_bal(svc_name, hdr_type); /* sum_bal routine not shown */
}else {
/* Create buffer and set data pointer */
if ((audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud)))
== (struct aud *)NULL) {
(void)userlog("audit: unable to allocate space for VIEW\n");

exit(1);
}

/* Prepare aud structure */

9-6 Programming a BEA Tuxedo Application Using C

Starting the Transaction

audv->b_id = g_branchid,;
audv->balance = 0.0;
audv->ermsg[0] = \0';

/* Do tpcall */

if (tpcall(svc_name,(char *)audv,sizeof(struct aud),
(char **)audv,(long *)audrl,0) == -1}
(void)fprintf (stderr,"%s service failed\n%s: %s\n",
svC_name, svc_name, audv->ermsg);
retc = -1,

telse {

(void)sprintf(result_str,"Branch %Id %s balance is $%.2\n",
audv->b_id, hdr_type, audv->balance);

tpfree((char *)audv);

}

/* Commit global transaction */

if (retc < 0) /* sum_bal failed so abort */
(void) tpabort(aflgs);
else {
if (tpcommit(cflgs) == -1) {
(void)userlog("%s: failed to commit transaction\n", pgmname);
(void)tpterm();
exit(1);

[*print out results only when transaction has committed successfully*/
(void)printf("%s",result_str);

[* Leave application */

if (tpterm() == -1) {

(void)userlog("%s: failed to leave application\n", pgmname);
exit(1);

If a transaction times out, a callttmommit() causes the transaction to be aborted.
As a resulttpcommit() fails and setgperrno(5) to TPEABORT

The following example shows how to test for a transaction time-out. Note that the
value oftimeout is set to 30 seconds.

Programming a BEA Tuxedo Application Using C 9-7

9 Writing Global Transactions

Listing 9-3 Testing for Transaction Time-out

if (tpbegin(30, 0) == -1) {
(void)userlog("%s: failed to begin transaction\n", argv[0]);
tpterm();
exit(1);

}

communication calls

if (tperro == TPETIME
if (tpabort(0) == -1) {
check for errors ;

else if (tpcommit(0) == -1){
check for errors ;

}

Note: When a process is in transaction mode and makes a communication call witt
flags set toTPNOTRANIt prohibits the called service from becoming a
participant in the current transaction. Whether the service request succeeds c
fails has no impact on the outcome of the transaction. The transaction can stil
time-out while waiting for a reply that is due from a service, whether it is part
of the transaction or not. Refer to “Managing Errors” on page 11-1 for more
information on the effects of tHePNOTRANIag.

Suspending and Resuming a Transaction

9-8

At times, it may be desirable to temporarily remove a process from an incomplete
transaction and allow it to initiate a different transaction by calfibggin() or
tpresume() . For example, suppose a server wants to log a request to the database
central event log, but does not want the logging activity to be rolled back if the
transaction aborts.

The BEA Tuxedo system provides two functions that allow a client or server to
suspend and resume a transaction in such situatpaaspend(3c) and
tpresume(3c) . Using these functions, a process can:

Programming a BEA Tuxedo Application Using C

Suspending and Resuming a Transaction

1. Temporarily suspend the current transaction by cattisigspend()

2. Start a separate transaction. (In the preceding example, the server writes an entry
to the event log.)

3. Commit the transaction started in step 2.

>

Resume the original transaction by callipgsume()

Suspending a Transaction

Use thewpsuspend(3c) function to suspend the current transaction. Use the
following signature to call thgpsuspend() function.

int
tpsuspend(TPTRANID * t id ,long flags)

The following table describes the arguments tayhespend() function.

Table 9-2 tpsuspend() Function Arguments

Field Description
*t id Pointer to the transaction identifier.
flags Currently not used. Reserved for future use.

You cannot suspend a transaction with outstanding asynchronous events. When a
transaction is suspended, all modifications previously performed are preserved in a
pending state until the transaction is committed, aborted, or timed out.

Resuming a Transaction

To resume the current transaction, usagfeume(3c) function with the following
signature.

int
tpresume(TPTRANID * ¢t id ,long flags)

Programming a BEA Tuxedo Application Using C 9-9

9 Writing Global Transactions

The following table describes the arguments taghesume() function.

Table 9-3 tpresume() Function Arguments

Field Description
*t id Pointer to the transaction identifier.
flags Currently not used. Reserved for future use.

It is possible to resume a transaction from a process other than the one that suspenc
it, subject to certain restrictions. For a list of these restrictions, refer to
tpsuspend(3c) andtpresume(3c) in theBEA Tuxedo C Function Reference

Example: Suspending and Resuming a Transaction

The following example shows how to suspend one transaction, start and commit a
second transaction, and resume the initial transaction. For the sake of simplicity, errc
checking code has been omitted.

Listing 9-4 Suspending and Resuming a Transaction

DEBIT(SVCINFO *s)

{
TPTRANID t;

tpsuspend(&t, TPNOFLAGS); /* suspend invoking transaction*/
tpbegin(30,TPNOFLAGS); /* begin separate transaction */
Perform work in the separate transaction.
tpcommit(TPNOFLAGS); /* commit separate transaction */

tpresume(&t, TPNOFLAGS); /* resume invoking transaction*/

ipreturn(.)

9-10 Programming a BEA Tuxedo Application Using C

Terminating the Transaction

Terminating the Transaction

To end a global transaction, cgléommit(3c) to commit the current transaction, or
tpabort(3c) to abort the transaction and roll back all operations.

Note: If tpcall) ,tpacall) , ortpconnect() is called by a process that has
explicitly set theflags argument ta'PNOTRANthe operations performed by
the called service do not become part of the current transaction. In other words,
when you call thepabort() function, the operations performed by these
services are not rolled back.

Committing the Current Transaction

Thetpcommit(3c) function commits the current transaction. Wigmommit()
returns successfully, all changes to resources as a result of the current transaction
become permanent.

Use the following signature to call tiggommit() ~ function.

int
tpcommit(long flags)

Although theflags argument is not used currently, you must set it to zero to ensure
compatibility with future releases.

Prerequisites for a Transaction Commit
Fortpcommit() to succeed, the following conditions must be true:

m The calling process must be the same one that initiated the transaction with a
call totpbegin()

m The calling process must have no transactional replies (calls made without the
TPNOTRANlag) outstanding.

m The transaction must not be in a rollback-only state and must not be timed out.

Programming a BEA Tuxedo Application Using C 9-11

9 Writing Global Transactions

If the first condition is false, the call fails afm@rmo(5) is set toTPEPROTQ
indicating a protocol error. If the second or third condition is false, the call fails and
tperrno() is set toTPEABORTIndicating that the transaction has been rolled back. If
tpcommit() is called by the initiator with outstanding transaction replies, the
transaction is aborted and those reply descriptors associated with the transaction
become invalid. If a participant callscommit() ortpabort() , the transaction is
unaffected.

A transaction is placed in a rollback-only state if any service call ret®siL or
indicates a service error.tfcommit() is called for a rollback-only transaction, the
function cancels the transaction, returhsand setsperrno(5) to TPEABORTThe
results are the sametpcommit() is called for a transaction that has already timed
out: tpcommit() returns1 and setsperrno() to TPEABORTRefer to “Managing
Errors” on page 11-1 for more information on transaction errors.

Two-phase Commit Protocol

9-12

When thepcommit() function is called, it initiates thtwvo-phase commit protocol
This protocol, as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. The initiator of the transaction gives permission to commit to each participating
resource manager.

The commit sequence begins when the transaction initiator catis:tihenit()

function. The BEA Tuxedo TMS server process in the designated coordinator group
contacts the TMS in each participant group that is to perform the first phase of the
commit protocol. The TMS in each group then instructs the resource manager (RM) ii
that group to commit using the XA protocol that is defined for communications
between the Transaction Managers and RMs. The RM writes, to stable storage, the
states of the transaction before and after the commit sequence, and indicates succe
or failure to the TMS. The TMS then passes the response back to the coordinating
TMS.

When the coordinating TMS has received a success indication from all groups, it log
a statement to the effect that a transaction is being committed and sends second-ph:
commit notifications to all participant groups. The RM in each group then finalizes the
transaction updates.

Programming a BEA Tuxedo Application Using C

Terminating the Transaction

If the coordinator TMS is notified of a first-phase commit failure from any group, or
if it fails to receive a reply from any group, it sends a rollback notification to each RM
and the RMs back out all transaction updatgemmit() then fails and sets

tperrno(5) to TPEABORT

Selecting Criteria for a Successful Commit

When more than one group is involved in a transaction, you can specify which of two
criteria must be met fapcommit() to return successfully:

m When all participants have indicated a readiness to commit (that is, when all
participants have reported that phase 1 of the two-phase commit has been logged
as complete and the coordinating TMS has written its decision to commit to
stable storage)

m When all participants have finished phase 2 of the two-phase commit

To specify one of these prerequisites, setdM@RETparameter in thRESOURCES
section of the configuration file to one of the following values:

m LOGGED to require completion of phase 1
m COMPLETE to require completion of phase 2
By default, CMTRETs set tocCOMPLETE

If you later want to override the setting in the configuration file, you can do so by
calling thetpscmt() function with itsflags argument set to eith@P_CMT_LOGGED
or TP_CMT_COMPLETE

Trade-offs Between Possible Commit Criteria

In most cases, when all participants in a global transaction have logged successful
completion of phase 1, they do not fail to complete phase 2. By SEMINGET0
LOGGEDyou allow a slightly faster return of callstt@wommit() , but you run the

slight risk that a participant may heuristically complete its part of the transaction in a
way that is not consistent with the commit decision.

Programming a BEA Tuxedo Application Using C 9-13

9 Writing Global Transactions

Whether it is prudent to accept the risk depends to a large extent on the nature of yo
application. If your application demands complete accuracy (for example, if you are
running a financial application), you should probably wait until all participants fully
complete the two-phase commit process before returning. If your application is more
time-sensitive, you may prefer to have the application execute faster at the expense
accuracy.

Aborting the Current Transaction

Example:
Mode

Use thepabort(3c) function to indicate an abnormal condition and explicitly abort

a transaction. This function invalidates the call descriptors of any outstanding
transactional replies. None of the changes produced by the transaction are applied
the resource. Use the following signature to calkpabort() function.

int

tpabort(long flags)

Although theflags argument is not used currently, you must set it to zero to ensure
compatibility with future releases.

Commiitting a Transaction in Conversational

The following figure illustrates a conversational connection hierarchy that includes a
global transaction.

9-14 Programming a BEA Tuxedo Application Using C

Terminating the Transaction

Figure 9-1 Connection Hierarchy in Transaction Mode

EVENTS EVENTS

A B c

cd= tpbegin(30, 0);
cdl=tpconnectsvcB", TPRECVOMLY), . .
P (2 sveBtpaveinfn) svcCitpsveintn)

cdl=tpconnect"sveC", TPSENDONLUY],
tpsend(cdl, dats, TPRECWVONLY),

TPEV_SENDONLY

tprecwitpeveinfo=cd, . &revent),
tpreturn TPSUCCES S, buffer, 3,
TPEV_SWIsUCC

tprecw(cd, &huffer, . &revent),
tpreturn(TPEUCCESS buffer,),

TFPEWV_Z[MCIUCC

tprecv(cd, &buffer, . Erevent);

The connection hierarchy is created through the following process:

1. Aclient (process A) initiates a connection in transaction mode by calling
tpbegin() andtpconnect()

2. The client calls subsidiary services, which are executed.

3. As each subordinate service completes, it sends a reply indicating success or
failure (TPEV_SVCSUC®©r TPEV_SVCFAIL, respectively) back up through the
hierarchy to the process that initiated the transaction. In this example the process
that initiated the transaction is the client (process A). When a subordinate service
has completed sending replies (that is, when no more replies are outstanding), it
must calltpreturn()

4. The client (process A) determines whether all subordinate services have returned
successfully.

¢ If so, the client commits the changes made by those services, by calling
tpcommit() , and completes the transaction.

Programming a BEA Tuxedo Application Using C 9-15

9

Writing Global Transactions

¢ If not, the client callspabort() , since it knows thapcommit() could not
be successful.

Example: Testing for Participant Errors

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

9-16

In the following sample code, a client makes a synchronous call to the fictitious
REPORTservice (line 18). Then the code checks for participant failures by testing for
errors that can be returned on a communication call (lines 19-34).

Listing 9-5 Testing for Participant Success or Failure

#include <stdio.h>
#include "atmi.h"

main()

char *sbuf, *rbuf;
long slen, rlen;
if (tpinit((TPINIT *) NULL) ==-1)
error message, exit program;
if (tpbegin(30, 0) == -1)
error message, tpterm, exit program;
if ((sbuf=tpalloc("STRING", NULL, 100)) == NULL)
error message, tpabort, tpterm, exit program;
if ((rbuf=tpalloc("STRING", NULL, 2000)) == NULL)
error message, tpfree sbuf, tpabort, tpterm, exit program;
(void)strcpy(sbuf, "REPORT=accrcv DBNAME=accounts");
slen=strlen(sbuf);
if (tpcall"REPORT", sbuf, slen, &rbuf, &rlen, 0) == -1) {
switch(tperrno) {
case TPESVCERR:
fprintf(stderr,
"REPORT service's tpreturn encountered problems\n");
break;
case TPESVCFAIL:
fprintf(stderr,
"REPORT service TPFAILED with return code of %d\n", tpurcode);
break;
case TPEOTYPE:
fprintf(stderr,
"REPORT service's reply is not of any known data type\n");
break;
default:

Programming a BEA Tuxedo Application Using C

Implicitly Defining a Global Transaction

033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

fprintf(stderr,
"REPORT service failed with error %d\n", tperrno);
break;

}
if (tpabort(0) == -1){

check for errors ;
}

}

else

if (tpcommit(0) == -1)

fprintf(stderr, "Transaction failed at commit time\n");

tpfree(rbuf);
tpfree(sbuf);
tpterm();
exit(0);
}

Implicitly Defining a Global Transaction

An application can start a global transaction in either of two ways:

m Explicitly, by calling ATMI functions, as described in “Starting the Transaction”
on page 9-3

m Implicitly, from within a service routine

This section describes the second method.

Implicitly Defining a Transaction in a Service Routine

You can implicitly place a service routine in transaction mode by setting the system
parameteAUTOTRANN the configuration file. If you sétUTOTRANO Y, the system
automatically starts a transaction in the service subroutine when a request is received
from another process.

When implicitly defining a transaction, observe the following rules:

Programming a BEA Tuxedo Application Using C 9-17

9 Writing Global Transactions

m If a process requests a service from another process when the calling process is
notin transaction mode and tA&TOTRANystem parameter is set to start a
transaction, the system initiates a transaction.

m If a process that is already in transaction mode requests a service from another
process, the system’s first response is to determine whether or not the caller has
its flags parameter set ttPNOTRAN

If the flags argument is not set tPNOTRANthen the system places the called
process in transaction mode through the “rule of propagation.” The system does
not check theAUTOTRANparameter.

If theflags argument is set ttPNOTRANthe services performed by the called
process are not included in the current transaction (that is, the propagation rule i
suppressed). The system checksatiEOTRANDarameter.

e If AUTOTRANS set toN (or if it is not set), the system does not place the
called process in transaction mode.

e If AUTOTRANS set toy, the system places the called process in transaction
mode, but treats it as a new transaction.

Note: Because a service can be placed in transaction mode automatically, it is
possible for a service with tieeNOTRANIag set to call services that have the
AUTOTRANarameter set. If such a service requests another serviéegshe
member of the service information structure retmPERANVhen queried. For
example, if the call is made with the communicatiags member set to
TPNOTRANTPNOREPLYand the service automatically starts a transaction
when called, théags member of the information structure is SeTRIRAN
| TPNOREPLY

9-18 Programming a BEA Tuxedo Application Using C

Defining Global Transactions for an XA-Compliant Server Group

Defining Global Transactions for an
XA-Compliant Server Group

Generally, the application programmer writes a service that is part of an XA-compliant
server group to perform some operation via the group’s resource manager. In the
normal case, the service expects to perform all operations within a transaction. If, on
the other hand, the service is called with the communicé@tigsn set toTPNOTRAN

you may receive unexpected results when executing database operations.

In order to avoid unexpected behavior, design the application so that services in groups
associated with XA-compliant resource managers are always called in transaction
mode or are always defined in the configuration file witiTOTRAN€t toY. You

should also test the transaction level in the service code early.

Testing Whether a Transaction Has Started

When a process in transaction mode requests a service from another process, the latter
process becomes part of the transaction, unless specifically instructed not to join it.

Itis important to know whether or not a process is in transaction mode in order to avoid
and interpret certain error conditions. For example, it is an error for a process already
in transaction mode to caflbegin() . Whentpbegin() is called by such a process,

it fails and setgperrno(5) to TPEPROTQo indicate that it was invoked while the

caller was already participating in a transaction. The transaction is not affected.

You can design a service subroutine so that it tests whether it is in transaction mode
before invokingpbegin() . You can test the transaction level by either of the
following methods:

m Querying theflags field of the service information structure that is passed to
the service routine. The service is in transaction mode if the value is set to
TPTRAN

m Calling thetpgetlev(3c) function.

Programming a BEA Tuxedo Application Using C 9-19

9 Writing Global Transactions

Use the following signature to call thgetlev() function.
int
tpgetlev() /* Get current transaction level */

Thetpgetlev() function requires no arguments. It returns 0 if the caller is notin a
transaction, and 1 if it is.

The following code sample is a variation of hlekEN_ACCSBervice that shows how to
test for transaction level using ttpgetlev() function (line 12). If the process is not
already in transaction mode, the application starts a transaction (linetd#Bgi()

fails, a message is returned to the status line (line 16) andotfee argument of
tpreturn() is set to a code that can be retrieved in the global vatahbtede(s)
(lines 1 and 17).

Listing 9-6 Testing Transaction Level

001 #define BEGFAIL 3 /* tpurcode setting for return if tpbegin fails */

002 void
003 OPEN_ACCT (transb)

004 TPSVCINFO *transb;

005 {
... other declarations ...
006 FBFR *transf; /*fielded buffer of decoded message */
007 intdotran; /* checks whether service tpbegin/tpcommit/tpaborts */

008 /* set pointer to TPSVCINFO data buffer */

009 transf = (FBFR *)transb->data;

010 /* Test if transaction exists; initiate if no, check if yes */
011 dotran = 0;

012 if (tpgetlev() == 0) {

013 dotran=1;

014 if (tpbegin(30, 0) == -1) {
015 Fchg(transf, STATLIN, O,

016 "Attempt to tpbegin within service routine failed\n");
017 tpreturn(TPFAIL, BEGFAIL, transb->data, 0, 0);
018

019}

9-20 Programming a BEA Tuxedo Application Using C

Testing Whether a Transaction Has Started

See Also

If the AUTOTRANbarameter is set tg you do not need to call thgegin() , and
tpcommit() ortpabort() transaction functions explicitly. As a result, you can avoid
the overhead of testing for transaction level. In addition, you can SERKNTIME
parameter to specify the time-out interval: the amount of time that may elapse after a
transaction for a service begins, and before it is rolled back if not completed.

For example, suppose you are revisingdREN_ACCTEervice shown in the preceding

code listing. CurrentlyQPEN_ACCTefines the transaction explicitly and then tests for

its existence (see lines 7 and 10-19). To reduce the overhead introduced by these tasks,
you can eliminate them from the code. Therefore, you need to require that whenever
OPEN_ACCTs called, it is called in transaction mode. To specify this requirement,
enable theA\UTOTRANAINDTRANTIMESYystem parameters in the configuration file.

m Description of theAUTOTRANONfiguration parameter in the section “Implicitly
Defining a Global Transaction” on page 9-17Sgftting Up a BEA Tuxedo
Application

m TRANTIMEconfiguration parameter iBetting Up a BEA Tuxedo Application

Programming a BEA Tuxedo Application Using C 9-21

9 Writing Global Transactions

9-22 Programming a BEA Tuxedo Application Using C

CHAPTER

1 0Programming a

Multithreaded and
Multicontexted
Application

m Support for Programming a Multithreaded/Multicontexted Application
m Planning and Designing a Multithreaded/Multicontexted Application
m Implementing a Multithreaded/ Multicontexted Application

m Testing a Multithreaded/Multicontexted Application

Programming a BEA Tuxedo Application Using C 10-1

10 Programming a Multithreaded and Multicontexted Application

Support for Programming a
Multithreaded/Multicontexted Application

The BEA Tuxedo system supports only:
m Kernel-level threads packages (user-level threads packages are not supported)

m Multithreaded applications written in C (multithreaded COBOL applications are
not supported)

m Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions as well as other types of
threads functions, we recommend using the POSIX threads functions, which make
your code easier to port to other platforms later.

To find out whether your platform supports a kernel-level threads package, C
functions, or POSIX functions, see the data sheet for your operating system in
Appendix A, “Platform Data Sheets,” Installing the BEA Tuxedo System

Platform-specific Considerations for
Multithreaded/Multicontexted Applications

Many platforms have idiosyncratic requirements for multithreaded and multicontextec
applications. Appendix A, “Platform Data Sheets,Inistalling the BEA Tuxedo
Systemlists these platform-specific requirements. To find out what is needed on your
platform, check the appropriate data sheet.

10-2 Programming a BEA Tuxedo Application Using C

Planning and Designing a Multithreaded/Multicontexted Application

See Also

“What Are Multithreading and Multicontexting” on page 10-4

“Advantages and Disadvantages of a Multithreaded/Multicontexted Application”
on page 10-8

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in a Server” on page 10-17

Planning and Designing a
Multithreaded/Multicontexted Application

m What Are Multithreading and Multicontexting

m Advantages and Disadvantages of a Multithreaded/Multicontexted Application
m How Multithreading and Multicontexting Work in a Client

m How Multithreading and Multicontexting Work in a Server

m Design Considerations for a Multithreaded and Multicontexted Application

Programming a BEA Tuxedo Application Using C 10-3

10 Programming a Multithreaded and Multicontexted Application

What Are Multithreading and
Multicontexting

The BEA Tuxedo system allows you to use a single process to perform multiple task
simultaneously. The programming techniques for implementing this sort of process
usage arenultithreadingandmulticontexting This topic provides basic information
about these techniques:

m What Is Multithreading

m What Is Multicontexting

What Is Multithreading

10-4

Multithreading is the inclusion of more than one unit of execution in a single process
In a multithreaded application, multiple simultaneous calls can be made from the sam
process. For example, an individual process is not limited to one outstanding

tpcall()

In a server, multithreading requires multicontexting except when application-created
threads are used in a singled-context server. The only way to create a multithreadec
single-context application is to use application-created threads.

The BEA Tuxedo system supports multithreaded applications written in C. It does no
support multithreaded COBOL applications.

The following diagram shows how a multithreaded client can issue calls to three
servers simultaneously.

Programming a BEA Tuxedo Application Using C

What Are Multithreading and Multicontexting

Figure 10-1 Sample Multithreaded Process

CLIENT PROCESS

tpcall()

SERVER C

In a multithreaded application, multiple service-dispatched threads are available
in the same server, which means that fewer servers need to be started for that

application.

The following diagram shows how a server process can dispatch multiple
threads to different clients simultaneously.

Programming a BEA Tuxedo Application Using C 10-5

10 Programming a Multithreaded and Multicontexted Application

Figure 10-2 Multiple Service Threads Dispatched in One Server Process

THREAD 1

SERVER
THREAD 2 PROCESS
THREAD 3

What Is Multicontexting

A context is an association to a domain. Multicontexting is the ability of a single
process to have one of the following:

m More than one connection within a domain
m Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers,
multicontexting implies the use of multithreading, as well.

10-6 Programming a BEA Tuxedo Application Using C

What Are Multithreading and Multicontexting

For a more complete list of the characteristics of a context, see “Context Attributes” in
one of the following sections:

m “Writing Code to Enable Multicontexting in a Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

The BEA Tuxedo system supports multicontexted applications written in either C or
COBOL. Multithreaded applications, however, are supported only in C.

The following diagram shows how a multicontexted client process works within a
domain. Each arrow represents an outstanding call to a server.

Figure 10-3 Multicontexted Process in Two Domains

CLIENT PROCESS
Context 3

BEA Tuxedo Application A

BEA Tuxedo Application B

Programming a BEA Tuxedo Application Using C 10-7

10 Programming a Multithreaded and Multicontexted Application

Licensing a Multithreaded or Multicontexted Application

For licensing purposes, each context is counted as one user. Additional licenses are 1
required to accommodate multiple threads within one context. For example:

m If a process has two contexts associated with Application A and one with
Application B, the BEA Tuxedo system counts a total of three users (two in
Application A and one in Application B).

m If a process has multiple threads accessing one application within the same
context, the system counts only one user.

See Also

m “Advantages and Disadvantages of a Multithreaded/Multicontexted Application”
on page 10-8

m “How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in a Server” on page 10-17

Advantages and Disadvantages of a
Multithreaded/Multicontexted Application

Multithreading and multicontexting are powerful tools for enhancing the performance
of BEA Tuxedo applications—given the appropriate circumstances. Before embarking
on a plan to use these techniques, however, it is important to understand potential
benefits and pitfalls.

10-8 Programming a BEA Tuxedo Application Using C

Advantages and Disadvantages of a Multithreaded/Multicontexted Application

Advantages of a Multithreaded/Multicontexted
Application

Multithreaded and multicontexted applications offer the following advantages:

m Improved performance and concurrency

For certain applications, performance and concurrency can be improved by using
multithreading and multicontexting together. In other applications, performance
can be unaffected or even degraded by using multithreading and multicontexting
together. How performance is affected depends on your application.

m Simplified coding of remote procedure calls and conversations

In some applications it is easier to code different remote procedure calls and
conversations in separate threads than to manage them from the same thread.

m Simultaneous access to multiple applications

Your BEA Tuxedo clients can be connected to more than one application at a
time.

m Reduced number of required servers

Because one server can dispatch multiple service threads, the number of servers
to start for your application is reduced. This capability for multiple dispatched
threads is especially useful for conversational servers, which otherwise must be
dedicated to one client for the entire duration of a conversation.

For applications in which client threads are created by the Microsoft Internet
Information Server API or the Netscape Enterprise Server interface (that is, the
NSAPI), the use of multiple threads is essential if you want to obtain the full benefits
afforded by these tools. This may be true of other tools, as well.

Programming a BEA Tuxedo Application Using C 10-9

10 Programming a Multithreaded and Multicontexted Application

Disadvantages of a Multithreaded/Multicontexted

Application

Multithreaded and multicontexted applications present the following disadvantages:

Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only
experienced programmers should undertake coding for these types of
applications.

Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted
application than it is to do so in a single-threaded, single-contexted application.
As a result, it is more difficult, in the former case, to identify and verify root
causes when errors occur.

Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the
potential to introduce new problems into an application.

Difficulty of testing

Testing a multithreaded application is more difficult than testing a
single-threaded application because defects are often timing-related and more
difficult to reproduce.

Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of
multithreading and multicontexting. Programmers need to:

e Remove static variables
e Replace any function calls that are not thread-safe
e Replace any other code that is not thread-safe

Because the completed port must be tested and re-tested, the work required to
port a multithreaded and/or multicontexted application is substantial.

10-10 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Client

See Also

m “What Are Multithreading and Multicontexting” on page 10-4
m “How Multithreading and Multicontexting Work in a Client” on page 10-11
m “How Multithreading and Multicontexting Work in a Server” on page 10-17

m “Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

How Multithreading and Multicontexting
Work in a Client

When a multithreaded and multicontexted application is active, the life cycle of a client
can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Start-up Phase

In the start-up phase the following events occur:

m Some client threads join one or more BEA Tuxedo applications by calling
tpinit()

m Other client threads share the contexts created by the first set of threads by
calling tpsetctxt(3c)

m Some client threads join multiple contexts.

m Some client threads switch to an existing context.

Programming a BEA Tuxedo Application Using C10-11

10 Programming a Multithreaded and Multicontexted Application

Note: There may also be threads that work independently of the BEA Tuxedo
system. We do not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in a BEA Tuxedo multicontexted application can have more than one
application association as long as the following rules are observed:

m All associations must be made to the same installation of the BEA Tuxedo
system.

m All application associations must be made from the same type of client. In other
words, one of the following must be true:

e All application associations must be made from native clients only.

¢ All application associations must be made from workstation clients only.

To join multiple contexts, clients call thgnit() function with the
TPMULTICONTEXTSlag set in thelags element of th@PINFO data type.

Whentpinit() is called with therPMULTICONTEXTSlag set, a new application
association is created and is designated the current association for the thread. The B
Tuxedo domain to which the new association is made is determined by the value of th
TUXCONFIGor WSENVFILE/WSNADDRBNvironment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For a complete list, see “Using
Per-context Functions and Data Structures in a Multithreaded Client” on page 10-52.
In such cases, the target context must be the current context. Although clients can jo
more than one context, at any time, in any thread, only one context can be the curre
context.

As task priorities shift within an application, requiring interactions with one BEA
Tuxedo domain rather than another, itis sometimes advantageous to re-assign a thre
from one context to another.

In such situations, one client threads caldetctxt(3c) and passes the handle that
is returned (the value of which is the current context) to a second client thread. The
second thread then associates itself with the current context by calling

tpsetctxt(3c) and specifying the handle it received fropgetctxt(3c) via the

first thread.

10-12 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Client

Once the second thread is associated with the desired context, it is available to perform
tasks executed by ATMI functions that operate on a per-context basis. For details, see
“Using Per-context Functions and Data Structures in a Multithreaded Client” on page
10-52.

Work Phase

In this phase each thread performs a task. The following is a list of sample tasks:
m Athread issues a request for a service.

m A thread gets the reply to a service request.

m A thread initiates and/or participates in a conversation.

m A thread begins, commits, or rolls back a transaction.

Service Requests

A thread sends a request to a server by calling ejibali) for a synchronous
request otpacall() for an asynchronous request. If the request is sent with
tpcall) , then the reply is received without further action by any thread.

Replies to Service Requests

If an asynchronous request for a service has been senpueitl) , a thread in the
same context (which may or may not be the same thread that sent the request) gets the

reply by callingtpgetrply()

Programming a BEA Tuxedo Application Using C10-13

10 Programming a Multithreaded and Multicontexted Application

Transactions

If one thread starts a transaction, then all threads that share the context of that three
also share the transaction.

Many threads in a context may work on a transaction, but only one thread may comm
or abortit. The thread that commits or aborts the transaction can be any thread workir
on the transaction; it is not necessarily the same thread that started the transaction.
Threaded applications are responsible for providing appropriate synchronization so
that the normal rules of transactions are followed. (For example, there can be no
outstanding RPC calls or conversations when a transaction is committed, and no stre
calls are allowed after a transaction has been committed or aborted.) A process may
part of at most one transaction for each of its application associations.

If one thread of an application calfgommit() concurrently with an RPC or
conversational call in another thread of the application, the system acts as if the call
were issued in some serial order. An application context may temporarily suspend
work on a transaction by callingsuspend() and then start another transaction
subject to the same restrictions that exist for single-threaded and single-context
programs.

Unsolicited Messages

For each context in a multithreaded or multicontexted application, you may choose on
of three methods for handling unsolicited messages.

A context may . . . By setting . . .
Ignore unsolicited messages TPU_IGN

Use dip-in notification TPU_DIP

Use dedicated thread notification TPU_THREAD

(available only for C applications)

The following caveats apply:

m SIGNAL-based notification is not allowed in multithreaded or multicontexted
processes.

10-14 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Client

m If your application runs on a platform that supports multicontexting but not
multithreading, then you cannot use tiR)_THREADunsolicited notification
method. As a result, you cannot receive immediate notification of events.

If receiving immediate notification of events is important to your application,
then you should carefully consider whether to use a multicontexted approach on
this platform.

m Dedicated thread notification is available only:
e For applications written in C

¢ On multithreaded platforms supported by the BEA Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate thread
to receive unsolicited messages and dispatch the unsolicited message handler. Only
one copy of the unsolicited message handler can run at any one time in a given context.

If tpinit() is called on a platform for which the BEA Tuxedo system does not
support threads, with parameters indicating t*t_THREADotification is being

requested on a platform that does not support thrgawis) returns -1 and sets

tperrno to TPEINVAL. If the UBBCONFIG(5) defaultNOTIFY option is set tdHREAD

but threads are not available on a particular machine, the default behavior for that
machine is downgraded mPIN . The difference between these two behaviors allows

an administrator to specify a default for all machines in a mixed configuration—a
configuration that includes some machines that support threads and some that do not—
but it does not allow a client to explicitly request a behavior that is not available on its
machine.

If tpsetunsol() is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for altpietg) contexts

created is established. A specific context may change the unsolicited message handler
for that context by callingpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calling
tpsetunsol() in a thread not currently associated with a context.

If a process has multiple associations with the same application, then each association
is assigned a differe@LIENTID so that it is possible to send an unsolicited message

to a specific application association. If a process has multiple associations with the
same application, then amybroadcast() is sent separately to each of the

application associations that meet the broadcast criteria. When performing a dip-in
check for receiving unsolicited messages, an application checks for only those
messages sent to the current application association.

Programming a BEA Tuxedo Application Using C10-15

10 Programming a Multithreaded and Multicontexted Application

In addition to the ATMI functions permitted in unsolicited message handlers, it is
permissible to calipgetctxt(3c) within an unsolicited message handler. This
functionality allows an unsolicited message handler to create another thread to perfor
any more substantial ATMI work required within the same context.

Userlog Maintains Thread-specific Information

For each thread in each applicatioserlog(3c) records the following identifying
information:

process_ID . thread ID . context_ID

Placeholders are printed in thieead_ID andcontext_ID fields of entries for
non-threaded platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in thBA_ THREADIDandTA_CONTEXTID
fields in theT_ULOGclass.

Completion Phase

In this phase, when the client process is about to exit, on behalf of the current conte:
and all associated threads, a thread ends its application association by calling
tpterm() . Like other ATMI functionsipterm() operates on the current context. It
affects all threads for which the context is set to the terminated context, and terminate
any commonality of context among these threads.

A well-designed application normally waits for all work in a particular context to
complete before it caltpterm() . Be sure that all threads are synchronized before
your application callgpterm()

10-16 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Server

See Also

“What Are Multithreading and Multicontexting” on page 10-4

“Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

“Writing Code to Enable Multicontexting in a Client” on page 10-31

“Writing a Multithreaded Client” on page 10-45

m “Synchronizing Threads Before a Client Termination” on page 10-34

How Multithreading and Multicontexting
Work in a Server

The events that occur in a server when a multithreaded and multicontexted application
is active can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Programming a BEA Tuxedo Application Using C10-17

10 Programming a Multithreaded and Multicontexted Application

Start-up Phase

What happens during the start-up phase depends on the value of the
MINDISPATCHTHREAD&NdMAXDISPATCHTHREADSarameters in the configuration
file.

If the value of And the value of Then. ..
MINDISPATCHTHREADS MAXDISPATCHTHREADS
is... is...

0 >1 1. The BEA Tuxedo system creates a thread
dispatcher.

2. The dispatcher caltgsvrinit() to join the
application.

>0 >1 1. The BEA Tuxedo system creates a thread

dispatcher.

2. The dispatcher caltpsvrinit() to join the
application.

3. The BEA Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.

4. Each new system-created thread calls
tpsvrthrinit(3c) to join the application.

Work Phase

In this phase, the following activities occur:

m Multiple client requests to one server are handled concurrently in multiple
contexts. The system allocates a separate thread for each request.

m If necessary, additional threads (up to the number indicated by
MAXDISPATCHTHREAD@®re created.

m The system keeps statistics on server threads.

10-18 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Server

Server-dispatched Threads Are Used

In response to clients’ requests for a service, the server dispatcher creates multiple
threads (up to a configurable maximum) in one server that can be assigned to various
client requests concurrently. A server cannot become a client by calling

Each dispatched thread is associated with a separate context. This feature is useful in
both conversational and RPC servers. Itis especially useful for conversational servers
which otherwise sit idle, waiting for the client side of a conversation while other
conversational connections are waiting for service.

This functionality is controlled by the following parameters inSBERVERSection of
the UBBCONFIG(5) file and theTM_MIB(5) .

UBBCONFIG Parameter MIB Parameter Default

MINDISPATCHTHREADS TA_MINDISPATCHTHREADS 0

MAXDISPATCHTHREADS TA_MAXDISPATCHTHREADS 1

THREADSTACKSIZE TA_THREADSTACKSIZE 0 (representing the
OS default)

m Each dispatched thread is created with the stack size specified by
THREADSTACKSIZEor TA_THREADSTACKSIZE If this parameter is not specified
or has a value of 0, the operating system default is used. On a few operating
systems on which the default is too small to be used by the BEA Tuxedo system,
a larger default is used.

m If the value of this parameter is not specified or is O, or if the operating system
does not support settingTREADSTACKSIZEthen the operating system default
is used.

m MINDISPATCHTHREADSor TA_MINDISPATCHTHREADSMuUSt be less than or
equal toMAXDISPATCHTHREAD®r TA_MAXDISPATCHTHREADS

m |If MAXDISPATCHTHREAD®r TA_MAXDISPATCHTHREADS 1, then the
dispatcher thread and the service function thread are the same thread.

m |If MAXDISPATCHTHREAD®r TA_MAXDISPATCHTHREADS greater than 1, any
separate thread used for dispatching other threads does not count toward the
limit of dispatched threads.

Programming a BEA Tuxedo Application Using C10-19

10 Programming a Multithreaded and Multicontexted Application

m Initially, the system bootSIINDISPATCHTHREAD$Or
TA_MINDISPATCHTHREADSserver threads.

m The system never boots more thasxDISPATCHTHREAD®
TA_MAXDISPATCHTHREADServer threads.

Application-created Threads Are Used

Using your operating system functions, you may create additional threads within an
application server. Application-created threads may:

m Operate independently of the BEA Tuxedo system

m Operate in the same context as an existing server dispatch thread

m Perform work on behalf of server dispatch contexts

Some restrictions govern what you can do if you create threads in your application.
m Servers may not become clients by callipigit()

m Initially, application-created server threads are not associated with any server
dispatch context. An application-created server thread magpsetiitxt(3c)
(and pass it a value returned by a previous cafigietctxt(3c) within a
server-dispatched thread) to associate itself with that server-dispatched context.

m An application-created server thread cannottpadturn() or tpforward()
When an application-created server thread has finished its work, it must call
tpsetctxt(3c) with the context set toPNULLCONTEXDefore the originally
dispatched thread calisreturn()

BBL Verifies Sanity of System Processes

The BBL periodically checks servers. If a server is taking too long to execute a
particular service request, the BBL kills that server. (If specified, the BBL then restarts
the server.) If the BBL kills a multicontexted server, the other service calls that are
currently being executed are also terminated as a result of the process being killed.

The BBL also sends a message to any process or thread that has been waiting long
than its timeout value to receive a message. The blocking message receive call thel
returns an error indicating a timeout.

10-20 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Server

System Keeps Statistics on Server Threads

For each server, the BEA Tuxedo system maintains statistics for the following
information:

m Maximum number of server-dispatched threads allowed

m Number of server-dispatched threads currently in use
(TA_CURDISPATCHTHREADS

m High-water mark of concurrent server-dispatched threads since the server was
booted TA_HWDISPATCHTHREAPDS

m Number of server-dispatched threads historically started
(TA_NUMDISPATCHTHREADS

Userlog Maintains Thread-specific Information

For each thread in each applicatiaserlog(3c) records the following identifying
information:

process_ID . thread_ID . context ID

Placeholders are printed in thieead ID andcontext ID fields of entries for
non-threaded platforms and single-contexted applications.

TheTM_MIB(5) supports this functionality in theA_THREADIDandTA_CONTEXTID
fields in theT_ULOGclass.

Completion Phase

When the application is shut dowpsvrthrdone(3c) andtpsvrdone(3c) are
called to perform any termination processing that is necessary, such as closing a
resource managetr.

Programming a BEA Tuxedo Application Using C10-21

10 Programming a Multithreaded and Multicontexted Application

See Also

“What Are Multithreading and Multicontexting” on page 10-4

“Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

“Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

“Writing a Multithreaded Server” on page 10-59

Design Considerations for a Multithreaded
and Multicontexted Application

Multithreaded and multicontexted applications are appropriate for some BEA Tuxedc
domains, but not all. To decide whether to create such applications, you should answi
several basic questions about the following:

Your development and run-time environments
Design requirements for your application
Type of threads model to use

Interoperability restrictions for Workstation clients

10-22 Programming a BEA Tuxedo Application Using C

Design Considerations for a Multithreaded and Multicontexted Application

Environment Requirements

When considering the development of multithreaded and/or multicontexted
applications, examine the following aspects of your development and run-time
environments:

m Do you have an experienced team of programmers capable of writing and
debugging multithreaded and multicontexted programs that successfully manage
concurrency and synchronization?

m Are the multithreading features of the BEA Tuxedo system supported on the
platform on which you are developing your application? These features are
supported only on platforms with an OS-provided threads package, providing an
appropriate level of functionality.

m Do the resource managers (RMs) used by your servers support multithreading?
If so, consider the following issues, as well:

¢ Do you need to set any parameters required by your RM to enable
multithreaded access by your servers? For example, if you use an Oracle
database with a multithreaded application, you must setHREADS=true
parameter as part of tlEPENINFOstring passed to Oracle. By doing so, you
make it possible for individual threads to operate as separate Oracle
associations.

e Does your RM support a mixed mode of operation? A mixed-mode operation
is a form of access such that multiple threads in a process can map to one
RM association while other threads in the same process simultaneously map
to different RM associations. Within one process, for example, Threads A
and B map to RM Association X, while Thread C maps to RM Association
Y.

Not all RMs support mixed-mode operation. Some require all threads in a
given process to map to the same RM association. If you are designing an
application that will make use of transactional RM access within
application-created threads, make sure your RM supports mixed-mode
operation.

Programming a BEA Tuxedo Application Using C10-23

10 Programming a Multithreaded and Multicontexted Application

Design Requirements

When designing a multithreaded and/or multicontexted application, you should
consider the following design questions:

m Is the task performed by your application suitable for multithreading and/or
multicontexting?

m Do you want to connect to more than one BEA Tuxedo application? How many
connections to each target application do you want?

m What synchronization issues need to be addressed in your application?

= Will you need to port your application to another platform after you have put
your initial application into production?

Is the Task of Your Application Suitable for
Multithreading and/or Multicontexting

The following table provides a list of questions to help you decide whether your
application would be improved if it were multithreaded and/or multicontexted. This
list is not comprehensive; your individual requirements will determine other factors
that should be considered.

For additional suggestions, we recommend that you consult a multithreaded and/or
multicontexted programming publication.

If the answer to this question . . . Is YES, then you might consider
using . ..

Does your client need to connect to more than one application Multicontexting
without using the Domains feature?

Does your client perform the role of a multiplexer within your Multicontexting
application? For example, have you designated one machine in your
application the “surrogate” for 100 other machines?

Does your client use multicontexting? Multithreading. By allocating one thread
per context, you can simplify your code.

10-24 Programming a BEA Tuxedo Application Using C

Design Considerations for a Multithreaded and Multicontexted Application

If the answer to this question . . . Is YES, then you might consider
using . . .

Does your client perform two or more tasks that can be executedMultithreading
independently for a long time such that the performance gains from
concurrent execution outweigh the costs and complexities of threads
synchronization?

Do you want one server to process multiple concurrent requests? Multithreading. Assign a value greater
than 1 toMAXDISPATCHTHREADShis
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessaryNot using multithreading
synchronize them after each thread had performed only a little work?

How Many Applications and Connections Do You Want

Decide how many applications you want to access and the number of connections you
want to make.

m If you want connections to more than one application, then we recommend one
of the following:

e A single-threaded, multicontexted application

¢ A multithreaded, multicontexted application

m If you want more than one connection to an application, then we recommend a
multithreaded, multicontexted application.

m |f you want only one connection to one application, then we recommend one of
the following:

e Multithreaded, single-contexted clients
e Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Programming a BEA Tuxedo Application Using C10-25

10 Programming a Multithreaded and Multicontexted Application

What Synchronization Issues Need to Be Addressed

This issue is an important one during the design phase. Itis, however, beyond the sco
of this documentation. Please refer to a publication about multithreaded and/or
multicontexted programming.

Will You Need to Port Your Application

If you may need to port your application in the future, you should keep in mind that
different operating systems have different sets of functions. If you think you may want
to port your application after completing the initial version of it on one platform,
remember to consider the amount of staff time that will be needed to revise the code
with a different set of functions.

Which Threads Model Is Best for You

Various models for multithreaded programs are now being used, including the
following:

m Boss/worker model
m Siblings model
= Workflow model

We do not discuss threads models in this documentation. We recommend that you
research all available models and consider your design requirements carefully wher
choosing a programming model for your application.

10-26 Programming a BEA Tuxedo Application Using C

Design Considerations for a Multithreaded and Multicontexted Application

Interoperability Restrictions for Workstation Clients

Interoperability between Release 7.1 Workstation clients and applications based on
pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

m The client is neither multithreaded nor multicontexted.
m The client is multicontexted.
m The client is multithreaded and each thread is in a different context

A BEA Tuxedo Release 7.1 Workstation client with multiple threads in a single
context cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

See Also

m “Advantages and Disadvantages of a Multithreaded/Multicontexted Application
on page 10-8

m “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

Programming a BEA Tuxedo Application Using C10-27

10 Programming a Multithreaded and Multicontexted Application

Implementing a Multithreaded/
Multicontexted Application

“Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

“Writing Code to Enable Multicontexting in a Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

“Writing a Multithreaded Client” on page 10-45

“Writing a Multithreaded Server” on page 10-59

“Compiling Code for a Multithreaded/Multicontexted Application” on page
10-59

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted Application

Before you start coding, make sure you have fulfilled or thought about the following:
m “Prerequisites for a Multithreaded Application” on page 10-29
m “General Multithreaded Programming Considerations” on page 10-29

m “Concurrency Considerations” on page 10-30

10-28 Programming a BEA Tuxedo Application Using C

Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application

Prerequisites for a Multithreaded Application

Make sure your environment meets the following prerequisites before starting your
development project.

m Your operating system must provide a suitable threads package supported by the

BEA Tuxedo system.

The BEA Tuxedo system does not supply tools for creating threads, but it
supports various threads packages provided by different operating systems. To
create and synchronize threads, you must use the functions native to your
operating system. To find out which, if any, threads packages are supported by
your operating system, see Appendix A, “Platform Data Sheet#stalling the
BEA Tuxedo System

If you are using multithreaded servers, the resource managers used by those
servers must support threads.

General Multithreaded Programming Considerations

Only experienced programmers should write multithreaded programs. In particular,
programmers should already be familiar with basic design issues specific to this task,
such as:

The need for concurrency control among multiple threads
The need to avoid the use of static variables in most instances

Potential problems that may arise from the use of signals in multithreaded
programs

These are just a few of the issues, too numerous to list here, with which we assume any
programmer undertaking the writing of a multithreaded program is already familiar.
These issues are discussed in many commercially available books on the subject of
multithreaded programming.

Programming a BEA Tuxedo Application Using C10-29

10 Programming a Multithreaded and Multicontexted Application

Concurrency Considerations

Multithreading enables different threads of an application to perform concurrent
operations on the same conversation. We do not recommend this approach, but the
BEA Tuxedo system does not forbid it. If different threads perform concurrent
operations on the same conversation, the system acts as if the concurrent calls wer
issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency among
them by using mutexes or other concurrency-control functions. Here are three
examples of the need for concurrency control.

m When multithreaded threads are operating on the same context, the programmel
must ensure that functions are being executed in the required serial order. For
example, all RPC calls and conversations must be compiled bpfonenit()
can be called. lfpcommit() is called from a thread other than the thread from
which all these RPC or conversational calls are made, some concurrency control
is probably required in the application.

m Similarly, it is permissible to calpacall() in one thread anggetrply() in
another, but the application must either:

e Ensure thatpacall() is called beforepgetrply() , or

¢ Manage the consequencespicall() is not called beforeggetrply()

m Multiple threads may operate on the same conversation but application
programmers must realize that if different threads igsieed() at
approximately the same time, the system acts as thoughtphes#() calls
have been issued in an arbitrary order.

For most applications, the best strategy is to code all the operations for one
conversation in one thread. The second best strategy is to serialize these
operations using concurrency control.

10-30 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

See Also

“Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

“Writing Code to Enable Multicontexting in a Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

“Writing a Multithreaded Client” on page 10-45

“Writing a Multithreaded Server” on page 10-59

Writing Code to Enable Multicontexting in a

Client

To enable multicontexting in a client, you must write code that:

Sets up multicontexting at initialization time

Implements security

If multithreading is also being used, synchronizes threads
Switches contexts

Handles unsolicited messages for each context

If your application uses transactions, you should also keep in mind the consequences
of multicontexting for transactions. For more information, see “Coding Rules for
Transactions in a Multithreaded/Multicontexted Application” on page 10-39.

Note: The instructions and sample code provided in this section refer to the C library

functions provided by the BEA Tuxedo system. Equivalent COBOL library
functions are also available; for details, seeBBA Tuxedo COBOL Function
Reference

Programming a BEA Tuxedo Application Using C10-31

10 Programming a Multithreaded and Multicontexted Application

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thgreturn() ortpforward() fails. The
execution of a thread exit does not automatically trigger a call to

tpsetctxt(3c) to change the context WPNULLCONTEXT

For all contexts in a process, the same buffer type switch must be used.

As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

e Both calls may use the buffer
e Both calls may free the buffer

e One call may use the buffer and one call may free the buffer

If you call tpinit() more than once, either to join multiple applications or to
make multiple connections to a single application, keep in mind that on each
tpinit() you must accommodate whatever security mechanisms have been
established.

10-32 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

Setting Up Multicontexting at Initialization

When a client is ready to join an application, spetifyit() with the
TPMULTICONTEXTSlag set, as shown in the following sample code.

Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

#include <stdio.h>
#include <atmi.h>

TPINIT * tpinitbuf;

main()
{
tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));
tpinitbuf->flags = TPMULTICONTEXTS;
if (tpinit (tpinitbuf) == -1) {
ERROR_PROCESSING_CODE
}
}

A new application association is created and assigned to the BEA Tuxedo domain
specified in th@UXCONFIGor WSENVFILE/WSNADDBNvironment variable.

Note: In any one process, either all callagmit() must include the
TPMULTICONTEXT$ag or else no call tpinit() may include this flag. The
only exception to this rule is that if all of a client’s application associations are
terminated by successful callstfeerm() , then the process is restored to a
state in which the inclusion of tH®@MULTICONTEXTSlag in the next call to
tpinit() is optional.

Programming a BEA Tuxedo Application Using C10-33

10 Programming a Multithreaded and Multicontexted Application

Implementing Security for a Multicontexted Client

Each application association in the same process requires a separate security
validation. The nature of that validation depends on the type of security mechanism:
used in your application. In a BEA Tuxedo application you might, for example, use a
system-level password or an application password.

As the programmer of a multicontexted application, you are responsible for identifying
the type of security used in your application and implementing it for each application
association in a process.

Synchronizing Threads Before a Client Termination

When you are ready to disconnect a client from an application, inpeke ()

Keep in mind, however, that in a multicontexted applicatpogrm() destroys the
current context. All the threads operating on that context are affected. As the
application programmer, you must carefully coordinate the use of multiple threads tc
make sure thapterm() is not called unexpectedly.

It is important to avoid callingpterm() on a context while other threads are still
working on that context. If such a calltteerm() is made, the BEA Tuxedo system
places the other threads that had been associated with that context in a special inva
context state. When in the invalid context state, most ATMI functions are disallowed.

A thread may exit from the invalid context state by caltpsgtctxt(3c) or
tpterm() . Most well designed applications never have to deal with the invalid context
state.

Note: The BEA Tuxedo system does not support multithreading in COBOL
applications.

10-34 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

Switching Contexts

The following is a summary of the coding steps that might be made by a client that calls
services from two contexts.

1.
2.

Set theTUXCONFIGenvironment variable to the value requiredfibytapp

Join the first application by callinginit() with theTPMULTICONTEXTSlag
set.

Obtain a handle to the current context by calijmgtctxt(3c)

Switch the value of thHBUXCONFIGenvironment variable to the value required by
thesecondapp context, by callinguxputenv()

Join the second application by callipgpit() with theTPMULTICONTEXTS
flag set.

Get a handle to the current context by caltpygtctxt(3c)

Beginning with théirstapp context, start toggling between contexts by calling
tpsetctxt(3c)

Callfirstapp ~ services.

Switch the client to theecondapp context (by callingpsetctxt(3c)) and call
secondapp Sservices.

10. Switch the client to thigstapp ~ context (by callingpsetctxt(3c)) and call

firstapp services.

11. Terminate thérstapp ~ context by callingpterm()

12. Switch the client to theecondapp context (by callingpsetctxt(3c)) and call

secondapp Sservices.

13. Terminate theecondapp context by callingpterm()

The following sample code provides an example of these steps.

Note: In order to simplify the sample, error checking code is not included.

Programming a BEA Tuxedo Application Using C10-35

10 Programming a Multithreaded and Multicontexted Application

Listing 10-2 Sample Code for Switching Contexts in a Client

#include <stdio.h>
#include "atmi.h"/* BEA Tuxedo header file */

#if defined(__STDC_) || defined(__cplusplus)
main(int argc, char *argv([])

telse

main(argc, argv)

int argc;

char *argv(];

#endif

{

TPINIT * tpinitbuf;

TPCONTEXT_T firstapp_contextlD, secondapp_contextID;

/* Assume that TUXCONFIG is initially set to /homeffirstapp/ TUXCONFIG*/
/*

* Attach to the BEA Tuxedo system in multicontext mode.

*

tpinitbuf=tpalloc(TPINIT, NULL, TPINITNEED(0));

tpinitbuf->flags = TPMULTICONTEXTS;

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);

/*
* Obtain a handle to the current context.
*/

tpgetctxt(&firstapp_contextID, 0);

/*

* Use tuxputenv to change the value of TUXCONFIG,

* S0 we now tpinit to another application.

*
tuxputenv("TUXCONFIG=/home/second_app/TUXCONFIG");

/*

* tpinit to secondapp.

*

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);

}

/*

10-36 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

* Get a handle to the context of secondapp.
*
tpgetctxt(&secondapp_contextlD, 0);

/*

* Now you can alternate between the two contexts
* using tpsetctxt and the handles you obtained from
* tpgetctxt. You begin with firstapp.

*

tpsetctxt(firstapp_contextID, 0);

/*

*You call services offered by firstapp and then switch
* to secondapp.

*/

tpsetctxt(secondapp_contextID, 0);

/*

*You call services offered by secondapp.
* Then you switch back to firstapp.

*

tpsetctxt(firstapp_contextID, 0);

/*

*You call services offered by firstapp. When you have
* finished, you terminate the context for firstapp.

*

tpterm();

/*
* Then you switch back to secondapp.
*/

tpsetctxt(secondapp_contextID, 0);

/*

* You call services offered by secondapp. When you have
finished, you terminate the context for secondapp and
end your program.

*/

tpterm();

return(0);

Programming a BEA Tuxedo Application Using C10-37

10 Programming a Multithreaded and Multicontexted Application

Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must set u
an unsolicited message handler or use the process handler default if you have set o

up.

If tpsetunsol() is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for altpia) contexts

created is established. A specific context may change the unsolicited message hand
for that context by callingpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calling
tpsetunsol() in a thread not currently associated with a context.

Set up the handler in the same way you set one up for a single-threaded or
single-contexted application. Sggetunsol() for details.

You can useépgetctxt(3c) in an unsolicited message handler if you want to identify
the context in which you are currently working.

10-38 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

Coding Rules for Transactions in a
Multithreaded/Multicontexted Application

See Also

The following consequences of using transactions should be kept in mind while you
are writing your application:

You can have only one transaction in any one context.
You can have a different transaction for each context.

All the threads associated with a given context at a given time share the same
transaction state (if any) of that context.

You must synchronize your threads so all conversations and RPC calls are
complete before you calcommit()

You can caltpcommit() from only one thread in any particular transaction.

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“Writing a Multithreaded Client” on page 10-45

Programming a BEA Tuxedo Application Using C10-39

10 Programming a Multithreaded and Multicontexted Application

Writing Code to Enable Multicontexting and
Multithreading in a Server

Coding Rules for a Multicontexted Server
Initializing and Terminating Servers and Server Threads
Programming a Server to Create Threads

Sample Code for Creating an Application Thread in a Multicontexted Server

Note: The instructions and sample code provided in this section refer to the C library

functions provided by the BEA Tuxedo system. (SeeBtEA Tuxedo C
FunctionReferencéor details.) Equivalent COBOL routines are not available
because multithreading (which is required to create a multicontexted server) i
not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thereturn() or tpforward() fails. The
execution of a thread exit does not automatically trigger a call to

tpsetctxt(3c) to change the context WPNULLCONTEXT

For all contexts in a process, the same buffer type switch must be used.

As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

e Both calls may use the buffer.
e Both calls may free the buffer.

e One call may use the buffer and one call may free the buffer.

10-40 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting and Multithreading in a Server

Coding Rules for a Multicontexted Server

Keep in mind the following rules for coding multicontexted servers:

The BEA Tuxedo dispatcher on the server may dispatch the same service and/or
different services multiple times, creating a different dispatch context for each
service dispatched.

A server is prohibited from callinginit() or otherwise acting as a client. If a
server process caliginit() , tpinit() returns -1 and setgermo(5) to
TPEPROTOAN application-created server thread may not make ATMI calls
before callingpsetctxt(3c)

Only a server-dispatched thread may gadturn() or tpforward()

A server cannot execute@eturn() or tpforward() if any
application-created thread is still associated with any application context.
Therefore, before a server-dispatched thread ga#larn() , each
application-created thread associated with that context must call
tpsetctxt(3c) with the context set to eith@PNULLCONTEX®r another valid
context.

If this rule is violated, thetpreturn() or tpforward() writes a message to

the userlog, indicateBPESVCERRO the caller, and returns control to the main
server dispatch loop. The threads that had been in the context where the invalid
tpreturn() was done are placed in an invalid context.

If there are outstanding ATMI calls, RPC calls, or conversations when
tpreturn() or tpforward() is called tpreturn() or tpforward() writes a
message to the userlog, indicateE SVCERRo the caller, and returns control to
the main server dispatch loop.

A server-dispatched thread may not gadktctxt(3c)

Unlike single-contexted servers, it is permissible for a multicontexted server
thread to call a service that is offered only by that same server process.

Programming a BEA Tuxedo Application Using C10-41

10 Programming a Multithreaded and Multicontexted Application

Initializing and Terminating Servers and Server Threads

To initialize and terminate your servers and server threads, you can use the default
functions provided by the BEA Tuxedo system or you can use your own.

Table 10-1 Default Functions for Initialization and Termination

To... Use the default function
Initialize a server tpsvrinit(3c)

Initialize a server thread tpsvrthrinit(3c)

Terminate a server tpsvrdone(3c)

Terminate a server thread tpsvrthrdone(3c)

Programming a Server to Create Threads

You may create additional threads within an application server, although most
applications using multicontexted servers use only the dispatched server threads
created by the system. This section provides instructions for doing so.

Creating Threads

You may create additional threads within an application server by using OS threads
functions. These new threads may operate independently of the BEA Tuxedo systen
or they may operate in the same context as one of the server-dispatched threads.

Associating Threads with a Context

Initially, application-created server threads are not associated with any
server-dispatched context. If called before being initialized, however, most ATMI
functions perform an implicipinit() . Such calls introduce problems because
servers are prohibited from callimgnit() . (If a server process calisinit() ,
tpinit() returns-1 and setsperrno(5) to TPEPROTQ

10-42 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting and Multithreading in a Server

Therefore, an application-created server thread must associate itself with an existing
context before calling any ATMI functions. To associate an application-created server
thread with an existing context, you must write code that implements the following
procedure.

1. Server-dispatched-thread_A gets a handle to the current context by calling
tpgetctxt(3c)

2. Server-dispatched-thread_A passes the handle returnpgehyxt(3c) to
Application_thread_B.

3. Application_thread_B associates itself with the current context by calling
tpsetctxt(3c) , specifying the handle received from
Server-dispatched-thread A.

4. Application-created server threads cannottpedturn() or tpforward()
Before the originally dispatched thread cabieturn() or tpforward() , all
application-created server threads that have been in that context must switch to
TPNULLCONTEXDr another valid context.

If this rule is not observed, thepforward() ortpreturn() fails and
indicates a service error to the caller.

Sample Code for Creating an Application Thread in a
Multicontexted Server
For those applications with a need to create an application thread in a server, the
following code sample shows a multicontexted server in which a service creates

another thread to help perform its work. Operating system (OS) threads functions
differ from one OS to another. In this sample POSIX and ATMI functions are used.

Programming a BEA Tuxedo Application Using C10-43

10 Programming a Multithreaded and Multicontexted Application

Notes: In order to simplify the sample, error checking code is not included. Also, an
example of a multicontexted server using only threads dispatched by the BEA
Tuxedo system is not included because such a server is coded in exactly the
same way as a single-contexted server, as long as thread-safe programming
practices are used.

Listing 10-3 Code Sample for Creating a Thread in a Multicontexted Server

#include <pthread.h>
#include <atmi.h>

void *withdrawalthread(void *);

struct sdata {
TPCONTEXT_T ctxt;
TPSVCINFO *svcinfoptr;

kh

void
TRANSFER(TPSVCINFO *svcinfo)
{
struct sdata transferdata;
pthread_t withdrawalthreadid;

tpgetctxt(&transferdata.ctxt, 0);

transferdata.svcinfoptr = svcinfo;

pthread_create(&withdrawalthreadid, NULL, withdrawalthread, &transferdata);
tpcall("DEPOSIT", ...);

pthread_join(withdrawalthreadid, NULL);

tpreturn(TPSUCCESS, ...);

void *

withdrawalthread(void *arg)

{
tpsetctxt(arg->ctxt, 0);
tpopen();
tpcall("WITHDRAWAL", ...);
tpclose();
return(NULL);

10-44 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

The previous example accomplishes a funds transfer by invokimgE#@sITservice

in the originally dispatched thread, awtiTHDRAWAIN an application-created thread.

This example is based on the assumption that the resource manager being used allows
a mixed model such that multiple threads of a server can be associated with a particular
database connection without all threads of the server being associated with that
instance. Most resource managers, however, do not support such a model.

A simpler way to code this example is to avoid the use of an application-created thread.
To obtain the same concurrency provided by the two calisdt) inthe example,
substitute two calls tgacall() and two calls topgetrply() in the

server-dispatched thread.

See Also

m “How Multithreading and Multicontexting Work in a Server” on page 10-17

Writing a Multithreaded Client

m Coding Rules for a Multithreaded Client
m Initializing a Client to Multiple Contexts
m Getting Replies in a Multithreaded Environment

m Using Environment Variables in a Multithreaded and/or Multicontexted
Environment

m Using Per-context Functions and Data Structures in a Multithreaded Client
m Using Per-process Functions and Data Structures in a Multithreaded Client
m Using Per-thread Functions and Data Structures in a Multithreaded Client

m Sample Code for a Multithreaded Client

Note: The BEA Tuxedo system does not support multithreaded COBOL
applications.

Programming a BEA Tuxedo Application Using C10-45

10 Programming a Multithreaded and Multicontexted Application

Coding Rules for a Multithreaded Client

Keep in mind the following rules for coding multithreaded clients:

Once a conversation has been started, any thread in the same process can work
on that conversation. Handles and call descriptors are portable within the same
context in the same process, but not between contexts or processes. Handles ar
call descriptors can be used only in the application context in which they are
originally assigned.

Any thread operating in the same context within the same process can invoke
tpgetrply() to receive a response to an earlier calptoall() , regardless
of whether or not that thread originally callgdcall()

A transaction can be committed or aborted by only one thread, which may or
may not be the same thread that started it.

All RPC calls and all conversations must be completed before an attempt is
made to commit the transaction. If an application ¢pdlsmmit() while RPC
calls or conversations are outstanditpgommit() aborts the transaction,
returns -1, and setgerrno(5) to TPEABORT

Functions such apcall() , tpacall) , tpgetrply() , tpconnect()
tpsend() ,tprecv() , andtpdiscon() should not be called in transaction
mode unless you are sure that the transaction is not already committing or
aborting.

Two tpbegin() calls cannot be made simultaneously for the same context.
tpbegin() cannot be issued for a context that is already in transaction mode.

If you are using a client and you want to connect to more than one domain, you
must manually change the valueTafXCONFIGor WSNADDRefore calling

tpinit() . You must synchronize the setting of the environment variable and the
tpinit() call if multiple threads may be performing such an action. All
application associations in a client must obey the following rules:

e All associations must be made to the same release of the BEA Tuxedo
system.

e Either every application association in a particular client must be made as a
native client, or every application association must be made as a workstation
client.

10-46 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

m To join an application, a multithreaded workstation client must always call
tpinit() with the TPMULTICONTEXTSlag set, even if the client is running in
single-context mode.

Initializing a Client to Multiple Contexts

To have a client join more than one context, issue a call tpitit@ function with
the TPMULTICONTEXTSlag set in theflags element of th@PINIT data structure.

In any one process, either all callsjnit() must include th@PMULTICONTEXTS
flag or no call tapinit() may include this flag. The only exception to this rule is that
if all of a client’s application associations are terminated by successful calls to
tpterm() , then the process is restored to a state in which the inclusion of the
TPMULTICONTEXTSIag in the next call tapinit() is optional.

Whentpinit() is invoked with thePMULTICONTEXT$lag set, a new application
association is created and is designated the current association. The BEA Tuxedo
domain to which the new association is made is determined by the value of the
TUXCONFIGor WSENVFILE/WSNADDBNvironment variable.

When a client thread successfully execuyit() without theTPMULTICONTEXTS
flag, all threads in the client are placed in the single-context SB&NGLECONTEX]L

On failuretpinit() leaves the calling thread in its original context (that is, in the
context state in which it was operating before the caflitit()).

Do not calltpterm() ~ from a given context if any of the threads in that context are still
working. See the table labeled “Multicontext State Transitions” on page 10-48 for a
description of the context states that result from catlirgm() under these and
other circumstances.

Context State Changes for a Client Thread

In a multicontext application, calls to various functions result in context state changes
for the calling thread and any other threads that are active in the same context as the
calling process. The following diagram illustrates the context state changes that result
from calls totpinit() , tpsetctxt(3c) , andtpterm() . (Thetpgetctxt(3c)

function does not produce any context state changes.)

Programming a BEA Tuxedo Application Using C10-47

10 Programming a Multithreaded and Multicontexted Application

Figure 10-4 Multicontext State Transitions

tpinit() without TPMULTICONTEXTS
or
implicit tpinit() invoked by ATMI function

tpinit() with TPMULTICONTEXTS
or
tpsetctxt() to a valid context

/tptez()

pterm()
or
tpsetctxt()
tpterm()

or
tpsetetxt()

tpterm()

(see Note)
tpinit() without

TPMULTICONTEXTS

INVALID
CONTEXT

tpsetetxt()

Note: Whentpterm() is called by a thread running in the multicontext state
(TPMULTICONTEXT] the calling thread is placed in the null context state
(TPNULLCONTEXT All other threads associated with the terminated context
are switched to the invalid context stat@IN\VALIDCONTEXT).

The following table lists all possible context state changes produced by calling
tpinit() , tpsetctxt(3c) , andtpterm()

10-48 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

Table 10-2 Context State Changes for a Client Thread

When this Then a thread in this context state resultsin . . .

function is - , "

executed . . . Null Context Single Context ~ Multicontext Invalid
Context

tpinit() without Single context Single context Error Error

TPMULTICONTEXTS

tpinit() with Multicontext Error Multicontext Error

TPMULTICONTEXTS

tpsetctxt(3c) to Null Error Null Null

TPNULLCONTEXT

tpsetctxt(3c) to Error Single context Error Error

context O

tpsetctxt(3c) to Multicontext Error Multicontext Multicontext

context >0

Implicit tpinit() Single context N/A N/A Error

tpterm() in this Null Null Null Null

thread

tpterm() ina N/A Null Invalid N/A

different thread of this

context

Getting Replies in a Multithreaded Environment

tpgetrply() receives responses only to requests madeatall() . Requests
made withtpcall() are separate and cannot be retrieved tpiétrply()
regardless of the multithreading or multicontexting level.

tpgetrply() operates in only one context, which is the context in which it is called.
Therefore, when you catbgetrply() with theTPGETANYlag, only handles

generated in the same context are considered. Similarly, a handle generated in one
context may not be used in another context, but the handle may be used in any thread
operating within the same context.

Programming a BEA Tuxedo Application Using C10-49

10 Programming a Multithreaded and Multicontexted Application

Whentpgetrply() is called in a multithreaded environment, the following
restrictions apply:

m If a thread callspgetrply() for a specific handle while another thread in the
same context is already waitingtpyetrply() for the same handle,
tpgetrply() returns -1 and setgerrno to TPEPROTO

m If a thread callspgetrply() for a specific handle while another thread in the
same context is already waitingtpyetrply() with theTPGETANYlag, the
call returns -1 and setgermo(5) to TPEPROTO

The same behavior occurs if a thread calistrply() with the TPGETANY

flag while another thread in the same context is already waititpgenply()

for a specific handle. These restrictions protect a thread that is waiting on a
specific handle from having its reply taken by a thread waiting on any handle.

m At any given time, only one thread in a particular context can wait in
tpgetrply() with theTPGETANYlag set. If a second thread in the same context
invokestpgetrply() with theTPGETANYlag while a similar call is
outstanding, this second call returns -1 andtgetsio(5) to TPEPROTO

Using Environment Variables in a Multithreaded and/or
Multicontexted Environment

When a BEA Tuxedo application is run in an environment that is multicontexted
and/or multithreaded, the following considerations apply to the use of environment
variables:

m A process initially inherits its environment from the operating system
environment. On platforms that support environment variables, such variables
make up a per-process entity. Therefore, applications that depend on per-contex
environment settings should use ttvgyetenv(3c) function instead of an OS
function.

Note: The environment is initially empty for those operating systems that do not
recognize an operating system environment.

10-50 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

m Many environment variables are read by the BEA Tuxedo system only once per
process or once per context and then cached within the BEA Tuxedo system.
Changes to such variables once cached in the process have no effect.

Cachingisdoneona... Forenvironment variables such as . ..

Per-context basis TUXCONFIG

FIELDTBLS andFIELDTBLS32

FLDTBLDIR andFLDTBLDIR32

ULOGPFX

VIEWDIR andVIEWDIR32

VIEWFILES andVIEWFILES32

WSNADDR

WSDEVICE

WSENV

Per-process basis TMTRACE

TUXDIR

ULOGDEBUG

m Thetuxputenv(3c) function affects the environment for the entire process.

m When you call theuxreadenv(3c) function, it reads a file containing
environment variables and adds them to the environment for the entire process.

m Thetuxgetenv(3c) function returns the current value of the requested
environment variable in the current context. Initially, all contexts have the same
environment, but the use of environment files specific to a particular context can
cause different contexts to have different environment settings.

m If a client intends to initialize to more than one domain, the client must change
the value of th@ UXCONFIGWSNADDRr WSENVFILEenvironment variable to
the proper value before each callgmit() . If such an application is
multithreaded, a mutex or other application-defined concurrency control will
probably be needed to ensure that:

Programming a BEA Tuxedo Application Using C10-51

10 Programming a Multithreaded and Multicontexted Application

e The appropriate environment variable is reset.

e The call totpinit() is made without the environment variable being re-set
by any other thread.

m When a client initializes to the system, théENVFILEand/or machine
environment file is read and affects the environment in that context only. The
previous environment for the process as a whole remains for that context to the
extent that it is not overridden within the environment file(s).

Using Per-context Functions and Data Structures in a
Multithreaded Client

The following ATMI functions affect only the application contexts in which they are
called:

| tpabort()

m tpacall()

m tpadmcall(3c)
m tpbegin()

m tpbroadcast()
m tpcall()

m tpcancel()

m tpchkauth()

m tpchkunsol()

m tpclose(3c)

® tpcommit()

m tpconnect()

m tpdequeue(3c)
m tpdiscon()

m tpenqueue(3c)
m tpforward()

m tpgetlev()

10-52 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

tpgetrply()

tpinit()

tpnotify()

tpopen(3c)

tppost()

tprecv()

tpresume()

tpreturn()

tpscmt(3c)

tpsend()

tpservice(3c)

tpsetunsol()

tpsubscribe()

tpsuspend()

tpterm()

tpunsubscribe()
tx_begin(3c)

tx_close(3c)
tx_commit(3c)

tx_info(3c)

tx_open(3c)
tx_rollback(3c)
tx_set_commit_return(3c)
tx_set_transaction_control(3c)
tx_set_transaction_timeout(3c)

userlog(3c)

Programming a BEA Tuxedo Application Using C10-53

10 Programming a Multithreaded and Multicontexted Application

Note: Fortpbroadcast() ,the broadcast message is identified as having come from
a particular application association. Farotify(3c) , the notification is
identified as having come from a particular application association. See
“Using Per-process Functions and Data Structures in a Multithreaded Client”
for notes aboupinit()

If tpsetunsol() is called from a thread that is not associated with a context,
a per-process default unsolicited message handler for alipien

contexts created is established. A specific context may change the unsolicite
message handler for that context by calligggtunsol() again when the
context is active. The per-process default unsolicited message handler may b
changed by again callingsetunsol() in a thread not currently associated
with a context.

m TheCLIENTID, client name, user name, transaction 1D, and the contents of the
TPSVCINFOdata structure may differ from context to context within the same
process.

m Asynchronous call handles and connection descriptors are valid in the contexts
in which they are created. The unsolicited notification type is specific
per-context. Although signal-based notification may not be used with multiple
contexts, each context may choose one of three options:

e Ignoring unsolicited messages
e Using dip-in notification

e Using dedicated thread notification

10-54 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

Using Per-process Functions and Data Structures in a
Multithreaded Client

The following BEA Tuxedo functions affect the entire process in which they are
called.

tpadvertise()

tpalloc()

tpconvert(3c) —The requested structure is converted, although it is probably relevant
to only a subset of the process.

tpfree()

tpinit() —to the extent that the per-procd$3MULTICONTEXT®node or
single-context mode is established. See also “Using Per-context Functions and Data
Structures in a Multithreaded Client” on page 10-52.

tprealloc()

tpsvrdone()

tpsvrinit()

tptypes()

tpunadvertise()

tuxgetenv(3c) —if the OS environment is per-process

tuxputenv(3c) —if the OS environment is per-process

tuxreadenv(3c) —if the OS environment is per-process

Usignal(3c)

The determination of single-context mode, multicontext mode, or uninitialized mode
affects an entire process. The buffer type switch, the view cache, and environment
variable values are also per-process functions.

Programming a BEA Tuxedo Application Using C10-55

10 Programming a Multithreaded and Multicontexted Application

Using Per-thread Functions and Data Structures in a
Multithreaded Client

Only the calling thread is affected by the following:
m CATCH

m tperrordetail(3c)

m tpgetctxt(3c)

® tpgprio()

m tpsetctxt(3c)

| tpsprio()

| tpstrerror(3c)

m tpstrerrordetail(3c)

®m TRY(3c)

® Uunix_err(3c)

TheFerror, Ferror32(5) ,tperrno(5) , tpurcode(5) , andUunix_err variables
are specific to each thread.

The identity of the current context is specific to each thread.

Sample Code for a Multithreaded Client

The following example shows a multithreaded client using ATMI calls. Threads
functions differ from one operating system to another. In this example, POSIX
functions are used.

Note: In order to simplify this example, error checking code has not been included.

Listing 10-4 Sample Code for a Multithreaded Client

#include <stdio.h>
#include <pthread.h>
#include <atmi.h>

10-56 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

TPINIT * tpinitbuf;

int timeout=60;

pthread_t withdrawalthreadid, stockthreadid;
TPCONTEXT_T ctxt;

void * stackthread(void *);

void * withdrawalthread(void *);

main()

{

tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));

/*

* This code will perform a transfer, using separate threads for the

* withdrawal and deposit. It will also get the current

* price of BEA stock from a separate application, and calculate how
* many shares the transferred amount can buy.

*/

tpinitbuf->flags = TPMULTICONTEXTS;

* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);

tpgetctxt(&ctxt, 0);

tpbegin(timeout, 0);

pthread_create(&withdrawalthreadid, NULL, withdrawalthread, NULL);
tpcall("DEPOSIT", ...);

/* Wait for the withdrawal thread to complete. */
pthread_join(withdrawalthreadid, NULL);

tpcommit(0);
tpterm();

/* Wait for the stock thread to complete. */
pthread_join(stockthreadid, NULL);

[* Print the results. */
printf("$%9.2f has been transferred \
from your savings account to your checking account.\n", ...);

printf("At the current BEA stock price of $%8.3f, \
you could purchase %d shares.\n", ...);

exit(0);
}

Programming a BEA Tuxedo Application Using C10-57

10 Programming a Multithreaded and Multicontexted Application

void *
stockthread(void *arg)

{

[* The other threads have now called tpinit(), so resetting TUXCONFIG can
* no longer adversely affect them.
*/

tuxputenv("TUXCONFIG=/home/users/xyz/stockconf");
tpinitbuf->flags = TPMULTICONTEXTS;
/* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);
tpcall("GETSTOCKPRICE", ...);
/* Save the stock price in a variable that can also be accessed in main(). */
tpterm();
return(NULL);
}

void *
withdrawalthread(void *arg)

[* Create a separate thread to get stock prices from a different
* application.
*/

pthread_create(&stockthreadid, NULL, stockthread, NULL);
tpsetctxt(ctxt, 0);

tpcall("WITHDRAWAL", ...);

return(NULL);

See Also

m “How Multithreading and Multicontexting Work in a Client” on page 10-11

m “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

m “Writing Code to Enable Multicontexting in a Client” on page 10-31

10-58 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Server

Writing a Multithreaded Server

Multithreaded servers are almost always multicontexted, as well. For information
about writing a multithreaded server, see “Writing Code to Enable Multicontexting
and Multithreading in a Server” on page 10-40.

Compiling Code for a
Multithreaded/Multicontexted Application

The programs provided by the BEA Tuxedo system for compiling or building
executables, such asildserver(1) andbuildclient(1) , automatically include

any required compiler flags. If you use these tools, then you do not need to set any flags
at compile time.

If, however, you compile yout files into.o files before doing a final compilation,
you may need to set platform-specific compiler flags. Such flags must be set
consistently for all code linked into a single process.

If you are creating a multithreaded server, you must rubdiserver(1)

command with thet option. This option is mandatory for multithreaded servers; if

you do not specify it at build time and later try to boot the new server with a
configuration file in which the value ®iAXDISPATCHTHREADIS greater than 1, a
warning message is recorded in the userlog and the server reverts to single-threaded
operation.

To identify any operating system-specific compiler parameters that are required when
you compile.c files into.o files in a multithreaded environment, run
buildclient(1) or buildserver(1) with the-v option set on a test file.

Programming a BEA Tuxedo Application Using C10-59

10 Programming a Multithreaded and Multicontexted Application

See Also

m “Writing Code to Enable Multicontexting in a Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

= “Writing a Multithreaded Client” on page 10-45

Testing a Multithreaded/Multicontexted
Application

m Testing Recommendations for a Multithreaded/Multicontexted Application
m Troubleshooting a Multithreaded/Multicontexted Application

m Error Handling for a Multithreaded/Multicontexted Application

Testing Recommendations for a
Multithreaded/Multicontexted Application

We recommend following these recommendations during testing of your
multithreaded and/or multicontexted code:

m Use a multi-processor.
m Use a multithreaded debugger (if your operating system vendor offers one).

m Run stress tests to introduce a variety of timing conditions.

10-60 Programming a BEA Tuxedo Application Using C

Testing a Multithreaded/Multicontexted Application

Troubleshooting a Multithreaded/Multicontexted
Application

When you need to investigate possible causes of errors, we recommend that you start
by checking whether and how tMeMULTICONTEXTSlag has been set. Errors are
frequently introduced by failures to set this flag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If a process includes ti@MULTICONTEXTSlag in a state for which this flag is not
allowed (or omitSPMULTICONTEXT$ a state that requires it), thgpinit() returns
-1 and setgperrno to TPEPROTO

Calls to tpinit() Without TPMULTICONTEXTS

Whentpinit() is invoked withouTPMULTICONTEXTSit behaves as it does when
called in a single-contexted application. Whginit() has been invoked once,
subsequerntpinit() calls without therPMULTICONTEXTSlag succeed without
further action. This is true even if the value of TkXCONFIGr WSNADDBnvironment
variable in the application has been changed. Catiniy) without the
TPMULTICONTEXTSlag set is not allowed in multicontext mode.

If a client has not joined an application apigit() is called implicitly (as a result
of a call to another function that calfgnit)), then the BEA Tuxedo system
interprets the action as a calltpnit() without theTPMULTICONTEXTSlag for
purposes of determining which flags may be used in subsequent aapité@®o

For most ATMI functions, if a function is invoked by a thread that is not associated
with a context in a process already operating in multicontext mode, the ATMI function
fails with tperrmo(5)=TPEPROTO .

Programming a BEA Tuxedo Application Using C10-61

10 Programming a Multithreaded and Multicontexted Application

Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack size is
insufficient for use with the BEA Tuxedo system. Compaq Tru64 UNIX and
UnixWare are two operating systems for which this is known to be the case. If the
default thread stack size parameter is used, applications on these platforms dump cc
when a function with substantial stack usage requirements is called by any thread oth
than the main thread. Often the core file that is created does not give any obvious clue
to the fact that an insufficient stack size is the cause of the problem.

When the BEA Tuxedo system is creating threads on its own, such as
server-dispatched threads or a client unsolicited message thread, it can adjust the
default stack size parameter on these platforms to a sufficient value. However, whel
an application is creating threads on its own, the application must specify a sufficien
stack size. At a minimum, a value of 128K should be used for any thread that will
access the BEA Tuxedo system.

On Compagq Tru64 UNIX and other systems on which Posix threads are used, a thre:

stack size is specified by invokipthread_attr_setstacksize() before calling
pthread_create() . On UnixWare, the thread stack size is specified as an argument
tothr_create() . Consult your operating system documentation for further

information on this subject.

Error Handling for a Multithreaded/Multicontexted
Application

Errors are reported in the user log. For each error, whether in single-context mode c
multicontext mode, the following information is recorded:

process_ID.thread_ID.context_ID

10-62 Programming a BEA Tuxedo Application Using C

Testing a Multithreaded/Multicontexted Application

See Also

= “How Multithreading and Multicontexting Work in a Client” on page 10-11
m “How Multithreading and Multicontexting Work in a Server” on page 10-17

m “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

Programming a BEA Tuxedo Application Using C10-63

10 Programming a Multithreaded and Multicontexted Application

10-64 Programming a BEA Tuxedo Application Using C

CHAPTER

11

System

Managing Errors

m System Errors

m Application Errors

m Handling Errors

m Transaction Considerations

m Central Event Log

m Debugging Application Processes

m Comprehensive Example

Errors

The BEA Tuxedo system uses therrno(5) variable to supply information to a
process when a function fails. All ATMI functions that normally return an integer or
pointer return -1 or NULL, respectively, on error andtsetno() to a value that
describes the nature of the error. When a function does not return to its caller, as in the
case ofpreturn() ortpforward() , which are used to terminate a service routine,

the only way the system can communicate success or failure is through the variable
tperrno() in the requester.

Programming a BEA Tuxedo Application Using C 11-1

11 managing Errors

Thetperrordetail(3c) andtpstrerrordetail(3c) functions can be used to
obtain additional detail about an error in the most recent BEA Tuxedo system call or
the current threadperrordetail() returns an integer (with an associated symbolic
name) which is then used as an argumengsteerrordetail() to retrieve a

pointer to a string that contains the error message. The pointer can then be used as
argument taiserlog(3c) orfprintf() . For alist of the symbolic names that can be
returned, refer teperrordetail(3c) in theBEA Tuxedo C Function Reference

tpurcode(5) is used to communicate user-defined conditions only. The system sets
the value ofpurcode tothe value of thecode argument ofpreturn() . The system
setstpurcode , regardless of the value of theas argument ofpreturn() , unless

an error is encountered Igyreturn() or a transaction time-out occurs.

The codes returned tperrno(5) represent categories of errors, which are listed in
the following table.

Table 11-1 tperrno Error Categories

Error Category

tperrno Values

Abort

TPEABORT

BEA Tuxedo systeth

TPESYSTEM

Call descriptor

TPELIMIT andTPEBADDESC

Conversational

TPEVENT

Duplicate operation

TPEMATCH

General communication

TPESVCFAIL, TPESVCERR
TPEBLOCKandTPGOTSIG

Heuristic decision

TPEHAZARBandTPEHEURISTIC?

Invalid argumert TPEINVAL
MIB TPEMIB

No entry TPENOENT
Operating system TPEOS
Permission TPEPERM

11-2 Programming a BEA Tuxedo Application Using C

Abort Errors

Error Category tperrno Values

Protocot TPEPROTO

Queueing TPEDIAGNOSTIC
Release compatibility TPERELEASE

Resource manager TPERMERR

Time-out TPETIME

Transaction TPETRAN

Typed buffer mismatch TPEITYPE andTPEOTYPE

1. Applicable to all ATMI functions for which failure is reported by the
value returned itperrno(5)

2. Refer to “Fatal Transaction Errors” on page 11-22 for more
information on this error category.

As footnote 1 shows, four categories of errors are reportggbiogo(5) are
applicable to all ATMI functions. The remaining categories are used only for specific
ATMI functions.The following sections describe some error categories in detail.

Abort Errors

For information on the errors that lead to abort, refer to “Fatal Transaction Errors” on
page 11-22.

Programming a BEA Tuxedo Application Using C 11-3

11 managing Errors

BEA Tuxedo System Errors

BEA Tuxedo system errors indicate problems atstfstem levelather than at the
application level. When BEA Tuxedo system errors occur, the system writes message
explaining the exact nature of the errors to the central event log, and returns
TPESYSTEMnN tperrno(5) . For more information, refer to the “Central Event Log”

on page 11-31. Because these errors occur in the system, rather than in the applicati
you may need to consult the system administrator to correct them.

Call Descriptor Errors

Call descriptor errors occur as a result of exceeding the maximum limit of call
descriptors or referencing an invalid value. Asynchronous and conversational calls
returnTPELIMIT when the maximum number of outstanding call descriptors has been
exceededTPEBADDESGs returned when an invalid call descriptor value is specified
for an operation.

Call descriptor errors occur only during asynchronous calls or conversational calls.
(Call descriptors are not used for synchronous calls.) Asynchronous calls depend o
call descriptors to associate replies with the corresponding requests. Conversationa
send and receive functions depend on call descriptors to identify the connection; the
call that initiates the connection depends on the availability of a call descriptor.

Troubleshooting of call descriptor errors can be can be done by checking for specifi
errors at the application level.

Limit Errors

The system allows up to 50 outstanding call descriptors (replies) per context (or BE/
Tuxedo application association). This limit is enforced by the system; it cannot be
redefined by your application.

11-4 Programming a BEA Tuxedo Application Using C

Conversational Errors

The limit for call descriptors for simultaneous conversational connections is more
flexible than the limit for replies. The application administrator defines the limit in the
configuration file. When the application is not running, the administrator can modify
the MAXCONYarameter in thRESOURCESection of the configuration file. When the
application is running, the administrator can modify MCHINESsection

dynamically. Refer tamconfig, wtmconfig(1) in theBEA Tuxedo Command
Referencdor more information.

Invalid Descriptor Errors

A call descriptor can become invalid and, if referenced, cause an error to be returned
to tperrno(5) in either of two situations:

m A call descriptor is used to retrieve a message, which may be a failed message
(TPEBADDESE

m An attempt is made to reuse a stale call descripEEADDESC
A call descriptor might become stale, for example, in the following circumstances:

m When the application caltpabort() ortpcommit() and transaction replies
(sent without th@PNOTRANIag) remain to be retrieved.

m A transaction times out. When the time-out is reported by a call to
tpgetrply() , ho message is retrieved using the specified descriptor and the
descriptor becomes stale.

Conversational Errors

When an unknown descriptor is specified for conversational servicegsé¢he()
tprecv() , andtpdiscon() functions returrTPEBADDESC

Whentpsend() andtprecv() fail with aTPEEVENTerror after a conversational
connection is established, an event has occurred. Data may or may not be sent by
tpsend() , depending on the event. The system ret@REEVENTin the revent
parameter passed to the function call and the course of action is dictated by the
particular event.

Programming a BEA Tuxedo Application Using C 11-5

11 managing Errors

For a complete description of conversational events, refer to “Understanding
Conversational Communication Events” on page 7-13.

Duplicate Object Error

The TPEMATCHerror code is returned tpermo(5) when an attempt is made to
perform an operation that results in a duplicate object. The following table lists the
functions that may return thePEMATCHerror code and the associated cause

Function Cause

tpadvertise The svcname specified is already advertised for the server but
with a function other thafunc . Although the function fails,
svcname remains advertised with its current function (that is,
func does not replace the current function name).

tpresume Thetranid points to a transaction identifier that another
process has already resumed. In this case, the caller’s state with
respect to the transaction is not changed.

tpsubscribe The specified subscription information has already been listed
with the EventBroker.

For more information on these functions, refer toBE&A Tuxedo C Function
Reference

General Communication Call Errors

General communication call errors can occur during any communication calls,
regardless of whether those calls are synchronous or asynchronous. Any of the
following errors may be returned iperrno(5) : TPESVCFAIL, TPESVCERR
TPEBLOCKOr TPGOTSIG.

11-6 Programming a BEA Tuxedo Application Using C

General Communication Call Errors

TPESVCFAIL and TPESVCERR Errors

If the reply portion of a communication fails as a result of a cafictal() or
tpgetrply() , the system returrnePESVCERRYI TPSEVCFAIL totperrno(5) . The
system determines the error by the arguments that are passetlito() and the
processing that is performed by this function.

If tpreturn() encounters an error in processing or handling arguments, the system
returns an error to the original requester andtpetsio(5) to TPESVCERRThe
receiver determines that an error has occurred by checking the vapeeraf()

The system does not send the data fromgptteeurn() function, and if the failure
occurred onpgetrply() , it renders the call descriptor invalid.

If tpreturn() does not encounter tHi®ESVCERFRerror, then the value returned in
rval determines the success or failure of the call. If the application spetmfiasL

in therval parameter, the system retuffBESVCFAIL in tperrno(5) and sends the
data message to the callernid/ is set torPSUCCESSthe system returns successfully
to the callerfperrno() is not set, and the caller receives the data.

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCKandTPGOTSIGerror codes may be returned at the request or the reply
end of a message and, as a result, can be returned for all communication calls.

The system returnBPEBLOCKwhen a blocking condition exists and the process
sending a request (synchronously or asynchronously) indicates, by settiagsits
parameter tdPPNOBLOCKhat it does not want to wait on a blocking condition. A
blocking condition can exist when a request is being sent if, for example, all the system
queues are full.

Whentpcall() indicates a no blocking condition, only the sending part of the
communication is affected. If a call successfully sends a request, the system does not
returnTPEBLOCK regardless of any blocking situation that may exist while the call
waits for the reply.

The system returnsBPEBLOCKor tpgetrply() when a call is made witflags set
to TPNOBLOCHKnd a blocking condition is encountered whlgetrply() is
awaiting the reply. This may occur, for example, if a message is not currently
available.

Programming a BEA Tuxedo Application Using C 11-7

11 managing Errors

TheTPGOTSIGerror indicates an interruption of a system call by a signal; this situation
is not actually an error condition. If thlegs parameter for the communication
functions is set tdPSIGRSTRT, the calls do not fail and the system does not return the
TPGOTSIGerror code inperrno(5)

Invalid Argument Errors

Invalid argument errors indicate that an invalid argument was passed to a function.
Any ATMI function that takes arguments can fail if you pass it arguments that are
invalid. In the case of a function that returns to the caller, the function fails and cause
tpermo(5) to be set tdPEINVAL. In the case apreturn() ortpforward() , the
system setgermo() to TPESVCERROor either thapcall() or tpgetrply()

function that initiated the request and is waiting for results to be returned.

You can correct an invalid argument error atdpplication leveby ensuring that you
pass only valid arguments to functions.

MIB Error

11-8

Thetpadmcall(3c) function return’PEMIB in tperro(5) in the event an
administrative request failsutbuf is updated and returned to the caller with FML32
fields indicating the cause of the error. For more information on the cause of the errol
refer toMIB(5) andTM_MIB(5) in BEA Tuxedo File Formats and Data Descriptions
Reference

Programming a BEA Tuxedo Application Using C

No Entry Errors

No Entry Errors

No entry errors result from a lack of entries in the system tables or the data structure
used to identify buffer types. The meaning of the no entry type @rBNOENT

depends on the function that is returning it. The following table lists the functions that
return this error and describes various causes of error.

Table 11-2 No Entry Errors

Function Cause

tpalloc() The system does not know about the type of buffer requested. For a
buffer type and/or subtype to be known, there must be an entry for it
in a type switch data structure that is defined in the BEA Tuxedo
system libraries. Refer toxtypes(5) andtypesw(5) in the
BEA Tuxedo File Formats and Data Descriptions Referéoice
more information.

On an application level, ensure that you have referenced a known
type; otherwise, check with the system administrator.

tpinit() The calling process cannot join the application because there is no
space left in the bulletin board to make an entry for it. Check with
the system administrator.

tpcall() The calling process references a service called that is not known to

tpacall() the system since there is no entry for it in the bulletin board. On an
application level, ensure that you have referenced the service
correctly; otherwise, check with the system administrator.

tpconnect() The system cannot connect to the specified name because the service
named does not exist or it is not a conversational service.

tpgprio() The calling process seeks a request priority when no request has
been made. This is an application-level error.

tpunadvertise() The system cannot unadvertise the service name because the name
is not currently advertised by the calling process.

tpenqueue(3c) The system cannot access the queue space because the associated
tpdequeue(3c) TMQUEUE(5perver is not available. Refer to tBEA Tuxedo File
Formats and Data Descriptions Refererioemore information.

Programming a BEA Tuxedo Application Using C 11-9

11 managing Errors

Function Cause

tppost() The system cannot access the BEA Tuxedo system Event Broker.
tpsubscribe() Refer to “Writing Event-based Clients and Servers” on page 8-1 for
tpunsubscribe() more information.

Operating System Errors

Operating system errors indicate that an operating system call has failed. The syste
returnsTPEOSIn tpermo(5) . On UNIX systems, the system returns a numeric value
identifying the failed system call in the global variableixerr . To resolve

operating system errors, you may need to consult your system administrator.

Permission Errors

If a calling process does not have the correct permissions to join the application, the
tpinit() call fails, returningrPEPERMN tperro(5) . Permissions are set in the
configuration file, outside of the application. If you encounter this error, check with the
application administrator to make sure the necessary permissions are set in the
configuration file.

Protocol Errors

Protocol errors occur when an ATMI function is invoked, either in the wrong order or
using an incorrect process. For example, a client may try to begin communicating witt
a server before joining the application.f@ommit() may be called by a transaction
participant instead of the initiator.

11-10 Programming a BEA Tuxedo Application Using C

Queuing Error

You can correct a protocol error at dygplication leveby enforcing the rules of order
and proper usage of ATMI calls.

To determine the cause of a protocol error, answer the following questions:
m Is the call being made in the correct order?

m Is the call being made by the correct process?

Protocol errors return thHEPEPROTvalue intperrno(5)

Refer to “Introduction to the C Application-Transaction Monitor Interface” irBBA
Tuxedo C Function Referenfrr more information.

Queuing Error

Thetpenqueue(3c) ortpdequeue(3c) function returnFPEDIAGNOSTICIN

tperrno(5) if the enqueuing or dequeuing on a specified queue fails. The reason for
failure can be determined by the diagnostic returned viatthébuffer. For a list of

valid ct/ flags, refer tapenqueue(3c) ortpdequeue(3c) intheBEA Tuxedo C
Function Reference

Release Compatibility Error

The BEA Tuxedo system returlMBERELEASHN tperrno(5) if a compatibility issue
exists between multiple releases of a BEA Tuxedo system participating in an
application domain.

For example, th&PERELEASEerror may be returned if thePACKflag is set when
issuing thepnotify(3c) function (indicating that the caller blocks until an
acknowledgment message is received from the target client), but the target client is
using an earlier release of the BEA Tuxedo system that does not supperatie
acknowledgement protocol.

Programming a BEA Tuxedo Application Using C11-11

11 managing Errors

Resource Manager Errors

Resource manager errors can occur with calisof@en(3c) andtpclose(3c) , in

which case the system returns the valueRERMERR tperrno(5) . This error code

is returned fotpopen() when the resource manager fails to open correctly. Similarly,
this error code is returned farclose() when the resource manager fails to close
correctly. To maintain portability, the BEA Tuxedo system does not return a more
detailed explanation of this type of failure. To determine the exact nature of a resourc
manager error, you must interrogate the resource manager.

Time-out Errors

The BEA Tuxedo system supports time-out errors to establish a limit on the amount o
time that the application waits for a service request or transaction. The BEA Tuxedo
system supports two types of configurable time-out mechanisms: blocking and
transaction.

A blocking time-ouspecifies the maximum amount of time that an application waits
for a reply to a service request. The application administrator defines the blocking
time-out for the system in the configuration file.

A transaction time-oudlefines the duration of a transaction, which may involve several
service requests. To define the transaction time-out for an application, pass the
timeout argument tapbegin()

The system may return time-out errors on communication calls for either blocking or
transaction time-outs, and greommit() ~ for transaction time-outs only. In each case,

if a process is in transaction mode and the system rel@ER”ME on a failed call, a
transaction time-out has occurred.

By default, if a process is not in transaction mode, the system performs blocking
time-outs. When you set thlags parameter of a communication calltBNOTIME

the flag setting applies to blocking time-outs only. If a process is in transaction mode
blocking time-outs are not performed and TR&NOTIMEflag setting is not relevant.

11-12 Programming a BEA Tuxedo Application Using C

Transaction Errors

If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked fails, but the call descriptor is
still valid and may be used on a re-issued call. Other communication is not affected.

When a transaction time-out occurs, the call descriptor to an asynchronous transaction
reply (specified without th&PNOTRANIag) becomes stale and may no longer be
referenced.

TPETIME indicates a blocking time-out on a communication call if the call was not
made in transaction mode or if thags parameter was not setT@NOBLOCK

Note: If you set theTPNOBLOCHKlag, a blocking time-out cannot occur because the
call returns immediately if a blocking condition exists.

For additional information on handling time-out errors, refer to “Transaction
Considerations” on page 11-19.

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur, refer
to “Transaction Considerations” on page 11-19.

Programming a BEA Tuxedo Application Using C11-13

11 managing Errors

Typed Buffer Errors

Typed buffer errors are returned when requests or replies to processes are sent in

buffers of an unknown type. Theeall) ,tpacall) , andtpconnect() functions
returnTPEITYPE when a request data buffer is sent to a service that does not recogniz
the type of the buffer.

Processes recognize buffer types that are identified in both the configuration file anc
the BEA Tuxedo system libraries that are linked into the process. These libraries defin
and initialize a data structure that identifies the typed buffers that the process
recognizes. You can tailor the library to each process, or an application can supply it
own copy of a file that defines the buffer types. An application can set up the buffer
type data structure (referred to as a buffer type switch) on a process-specific basis. F
more information, sewixtypes(5) andtypesw(5) intheBEA Tuxedo File Formats

and Data Descriptions Reference

Thetpcall) , tpgetrply() , tpdequeue(3c) , andtprecv() functions return
TPEOTYPEWhen a reply message is sent in a buffer that is not recognized or not
allowed by the caller. In the latter case, the buffer type is included in the type switch
but the type returned does not match the type that was allocated to receive the reply
and a change in buffer type is not allowed by the caller. The caller indicates this
preference by settinfilags to TPNOCHANGERN this case, strong type checking is
enforced; the system returMBEOTYPEwnhen it is violated. By default, weak type
checking is used. In this case, a buffer type other than the type originally allocated ma
be returned, as long as that type is recognized by the caller. The rules for sending
replies are that the reply buffer must be recognized by the caller and, if strong type
checking has been indicated, you must observe it.

11-14 Programming a BEA Tuxedo Application Using C

Application Errors

Application Errors

Within an application, you can pass information about user-defined errors to calling
programs using thecode argument ofpreturn() . Also, the system sets the value
of tpurcode to the value of thecode argument ofpreturn() . For more

information aboutpreturn(3c) or tpurcode(5) , refer to theBEA Tuxedo C

Function Referencand theBEA Tuxedo File Formats and Data Descriptions
Referencerespectively.

Handling Errors

Your application logic should test for error conditions for the calls that have return
values, and take appropriate action when an error occurs. Specifically, you should:

m Test to determine whether a -1 or NULL value has been returned (depending on
the function call).

m Invoke code that contains a switch statement that tests for specific values of
tperrno(5) and performs the appropriate application logic.

The ATMI supports three functiongstrerrordetail(3c) , tpstrerror(3c) ,
andFstrerror, Fstrerror32(3fml) , for retrieving the text of an error message

from the message catalogs for the BEA Tuxedo system and FML. The functions return
pointers to the appropriate error messages. Your program can use a pointer to direct
the referenced text ierlog(3c) or to another destination. For details, refer to

tpstrerrordetail(3c) andtpstrerror(3c) in theBEA Tuxedo C Function
ReferencgandFstrerror, Fstrerror32(3fml) in theBEA Tuxedo FML Function
Reference

The following example shows a typical method of handling errorsathhieall()

function in this example represents a generic ATMI call. Note the code after the switch
statement (line 21): it shows hapurcode can be used to interpret an
application-defined return code.

Programming a BEA Tuxedo Application Using C11-15

11 managing Errors

Listing 11-1 Handling Errors

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

#include <stdio.h>
#include "atmi.h"

main()

{

int rtnval;

if (tpinit((TPINIT *) NULL) ==-1)
error message, exit program;
if (tpbegin(30, 0) == -1)
error message, tpterm, exit program;

allocate any buffers,
make atmi calls
check return value

rtnval = atmicall() ;

if (rtnval == -1) {
switch(tperrno) {
case TPEINVAL:
fprintf(stderr, “Invalid arguments were given to

atmicall \n");

024 fprintf(stderr, "e.qg., service name was null or flags
wrong\n");

025 break;

026 case

027 fprintf(stderr, ". . .");

028 break;

029

030 Include allerror cases described inthe atmicall(3) reference
031 page.

032 Other return codes are not possible, so there should be no
033 default within the switch statement.

034

035 if (tpabort(0) == -1) {

036 char *p;

037 fprintf(stderr, "abort was attempted but failed\n");

038 p =tpstrerror(tperrno);

039 userlog("%s", p);

040 }

041 }

042 else

043 if (tpcommit(0) == -1)

044 fprintf(stderr, "REPORT program failed at commit time\n");

11-16 Programming a BEA Tuxedo Application Using C

Handling Errors

045

046 The following code fragment shows how an application-specific
047 return code can be examined

048

049

050 .

051 ret = tpcall("servicename", (char*)sendbuf, 0, (char
*)&rcvbuf, &rcvlen, \

052 (long)0);

053 .

054

055 .

056 (void) fprintf(stdout, "Returned tpurcode is: %d\n",
tpurcode);

057

058

059 free all buffers

060 tpterm();

061 exit(0);

062 }

The values ofperrno(5) provide details about the nature of each problem and
suggest the level at which it can be corrected. If your application defines a list of error
conditions specific to your processing, the same can be said for the values of
tpurcode

The following example shows how to use thsrerrordetail(3c) function to
obtain additional detail when an error is encountered.

Listing 11-2 Handling Errors Using tpstrerrordetail()

001 #include <stdio.h>

002 #include <string.h>

003 #include <atmi.h>/* BEA Tuxedo Header File */
004 #define LOOP_ITER 100

005 #if defined(__STDC_) || defined(__cplusplus)
006 main(int argc, char *argvf])

007 #else

008 main(argc, argv)

009 intargc;

010 char *argv(];

011 #endif

012 {

Programming a BEA Tuxedo Application Using C11-17

11 managing Errors

013 char *sendbuf, *rcvbuf;
014 long sendlen, rcvlen;

015 intret;

016 inti;

017 if(argc!=2) {

018 (void) fprintf(stderr, "Usage: simpcl string\n");
019 exit(1);

020

}
021 /* Attach to BEA Tuxedo System as a Client Process */
022 if (tpinit((TPINIT *) NULL) == -1) {

023 (void) fprintf(stderr, "Tpinit failed\n");

024 exit(1);

025

026 sendlen = strlen(argv[1]);

027

028 /* Allocate STRING buffers for the request and the reply */
029

030 if((sendbuf = (char *) tpalloc("STRING", NULL, sendlen+1))
== NULL) {

031 (void) fprintf(stderr,"Error allocating send
buffer\n");

032 tpterm();

033 exit(1);

034 }

035

036 if((rcvbuf=(char*)tpalloc("STRING", NULL, sendlen+1))==
NULL) {

037 (void) fprintf(stderr,"Error allocating receive
buffer\n");

038 tpfree(sendbuf);

039 tpterm();

040 exit(1);

041 }

042

043 for(i=0; i<LOOP_ITER; i++) {

044 (void) strcpy(sendbuf, argv[1]);

045

046 /* Request the service TOUPPER, waiting for a reply */
047 ret = tpcall("TOUPPER", (char *)sendbuf, O, (char
**)&rcvbuf, &revlen, (long)0);

048

049 if(ret==-1) {

050 (void) fprintf(stderr, "Can't send request to service
TOUPPER\n");

051 (void) fprintf(stderr, "Tperrno =%d, %s\n", tperrno,
tpstrerror(tperrno));

052

053 ret = tperrordetail(0);

054 if(ret ==-1) {

11-18 Programming a BEA Tuxedo Application Using C

Transaction Considerations

055 (void) fprintf(stderr, "tperrodetail()
failed!\n");

056 (void) fprintf(stderr, "Tperrno = %d, %s\n",
tperrno, tpstrerror(tperrno));

057

058 else if (ret = 0) {

059 (void) fprintf(stderr, "errordetail:%s\n",
060 tpstrerrordetail(ret, 0));
061 }

062 tpfree(sendbuf);

063 tpfree(rcvbuf);

064 tpterm();

065 exit(1);

066

067 (void) fprintf(stdout, "Returned string is: %s\n", rcvbuf);
068 }

069

070 /* Free Buffers & Detach from System/T */

071 tpfree(sendbuf);

072 tpfree(rcvbuf);

073 tpterm();

074 return(0);

Transaction Considerations

The following sections describe how various programming features work when used
in transaction mode. The first section provides rules of basic communication etiquette
that should be observed in code written for transaction mode.

Communication Etiquette

When writing code to be run in transaction mode, you must observe the following rules
of basic communication etiquette:

Programming a BEA Tuxedo Application Using C11-19

11 managing Errors

m Processes that are participants in the same transaction must require replies for &
requests. To include a request that requires no reply, sédghe parameter of
tpacall) ~ to TPNOTRAMNI TPNOREPLY

m A service must retrieve all asynchronous transaction replies before calling
tpreturn() ortpforward() . This rule must be observed regardless of whether
the code is running in transaction mode.

m The initiator must retrieve all asynchronous transaction replies (made without
the TPNOTRANIag) before callingpcommit()

m Replies must be retrieved for asynchronous calls that expect replies from
non-participants of the transaction, that is, replies to requests made with
tpacall() in which the transaction, but not the reply, is suppressed.

m |f a transaction has not timed-out but is marked “abort-only,” any further
communication should be performed with IRNOTRANIag set so that the
results of the communication are preserved after the transaction is rolled back.

m [f a transaction has timed out:

e The descriptor for the timed-out call becomes stale and any further reference
to it returnsSTPEBADDESC

e Further calls tapgetrply() ortprecv() for any outstanding descriptors
return a global state of transaction time-out; the systemetso(5) to
TPETIME.

e Asynchronous calls can be made with thgs parameter ofpacall() set
to TPNOREPLYTPNOBLOCKOr TPNOTRAN

m Once atransaction has been marked “abort-only” for reasons other than
time-out, a call tapgetrply() returns whatever value represents the local state
of the call; that is, it returns either success or an error code that reflects the local
condition.

m Once a descriptor is used withyetrply() to retrieve a reply, or with
tpsend() ortprecv() to report an error condition, it becomes invalid and any
further reference to it returmr®EBADDESCThis rule is always observed,
regardless of whether the code is running in transaction mode.

m Once atransaction is aborted, all outstanding transaction call descriptors (made
without theTPNOTRANIag) become stale, and any further references to them
returnTPEBADDESC

11-20 Programming a BEA Tuxedo Application Using C

Transaction Errors

Transaction Errors

The following sections describe transaction-related errors.

Non-fatal Transaction Errors

When transaction errors occur, the system rettiPETRANN tpermo(5) . The

precise meaning of such an error, however, depends on the function that is returning it.
The following table lists the functions that return transaction errors and describes
possible causes of them.

Table 11-3 Transaction Errors

Function Cause

tpbegin() Usually caused by a transient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

tpcancel() The function was called for a transaction reply after a request was
made without th&d PNOTRANIag.

tpresume() The BEA Tuxedo system is unable to resume a global transaction
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be completed before the global transaction can be
resumed. The caller’s state with respect to the local transaction is
unchanged.

Programming a BEA Tuxedo Application Using C11-21

11 managing Errors

Function Cause

tpconnect() A call was made in transaction mode to a service that does not
tppost() support transactions. Some services belong to server groups that
tpcall() ,and access a database management system (DBMS) that, in turn, support
tpacall() transactions. Other services, however, do not belong to such groups.

In addition, some services that support transactions may require
interoperation with software that does not. For example, a service
that prints a form may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participants in a transaction.

The grouping of services into servers and server groups is an
administrative task. In order to determine which services support
transactions, check with your application administrator.

You can correct transaction-level errors at the application level by
enabling theTPNOTRANIag or by accessing the service for which
an error was returned outside of the transaction.

Fatal Transaction Errors

When a fatal transaction error occurs, the application should explicitly abort the
transaction by having the initiator cglhbort() . Therefore, it is important to
understand the errors that are fatal to transactions. Three conditions cause a transact
to fail:

m The initiator or a participant in the transaction causes it to be marked
“abort-only” for one of the following reasons:

e tpreturn() encounters an error while processing its arguments;
tpermo(5) is set toTPESVCERR

e Therval argument tapreturn() was set taPFAIL ; tpermo(5) is set to
TPESVCFAIL

e Thetype orsubtype of the reply buffer is not known or not allowed by the
caller and, as a result, success or failure cannot be deternpisred(s)
is set toTPEOTYPE

m The transaction times outierrno(5) is set toTPETIME.

11-22 Programming a BEA Tuxedo Application Using C

Transaction Errors

m tpcommit() is called by a participant rather than by the originator of a
transactiontpermo(5) is set toTPEPROTO

The only protocol error that is fatal to transactions is catpagmmit() from the
wrong participant in a transaction. This error can be corrected in the application during
the development phase.

If tpcommit() is called after an initiator/participant failure or transaction time-out, the
resultis an implicit abort error. Then, because the commit failed, the transaction should
be aborted.

If the system returnSPESVCERRTPESVCFAIL, TPEOTYPE or TPETIME for any
communication call, the transaction should be aborted explicitly with a call to

tpabort() . You need not wait for outstanding call descriptors before explicitly

aborting the transaction. However, because these descriptors are considered stale after
the call is aborted, any attempt to access them after the transaction is terminated returns
TPEBADDESC

In the case OofPESVCERRTPESVCFAIL, andTPEOTYPEcommunication calls continue

to be allowed as long as the transaction has not timed out. When these errors are
returned, the transaction is marked abort-only. To preserve the results of any further
work, you should call any communication functions withthgs parameter set to
TPNOTRANBY setting this flag, you ensure that the work performed for the transaction
marked “abort-only” will not be rolled back when the transaction is aborted.

When a transaction time-out occurs, communication can continue, but communication
requests cannot:

m Require replies
m Block
m Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you must séktjse parameter to
TPNOREPLYTPNOBLOCKOr TPNOTRAN

Heuristic Decision Errors

Thetpcommit() function may returTPEHAZARDDr TPEHEURISTIC, depending on
how TP_COMMIT_CONTRQE set.

Programming a BEA Tuxedo Application Using C11-23

11 managing Errors

If you setTP_COMMIT_CONTRAD TP_CMT_LOGGEDhe application obtains control
before the second phase of a two-phase commit is performed. In this case, the
application may not be aware of a heuristic decision that occurs during the second
phase.

TPEHAZARDDr TPEHEURISTIC can be returned in a one-phase commit, however, if a
single resource manager is involved in the transaction and it returns a heuristic decisic
or a hazard indication during a one-phase commit.

If you setTP_COMMIT_CONTRGb TP_CMT_COMPLETEhen the system returns
TPEHEURISTIC if any resource manager reports a heuristic decisionTRBHAZARD

if any resource manager reports a hazePEHAZARBpecifies that a participant failed
during the second phase of commit (or during a one-phase commit) and that it is no
known whether a transaction completed successfully.

Transaction Time-outs

As described in “Transaction Errors” on page 11-21, two types of time-outs can occu
in a BEA Tuxedo application: blocking and transaction. The following sections
describe how various programming features are affected by transaction time-outs.
Refer to “Transaction Errors” on page 11-21 for more information on time-outs.

Effect on the tpcommit() Function

What is the state of a transaction if a time-out occurs after a gatbtomit() ? If the
transaction timed out and the system knows that it was aborted, the system reports
these events by settimgerrno(5) to TPEABORTIf the status of the transaction is
unknown, the system sets the error COdEPIBTIME.

When the state of a transaction is in doubt, you must query the resource manager. Fir
verify whether or not any of the changes that were part of the transaction were applie
Then you can determine whether the transaction was committed or aborted.

11-24 Programming a BEA Tuxedo Application Using C

tpreturn() and tpforward() Functions

Effect on the TPNOTRAN Flag

When a process is in transaction mode and makes a communication c@lgwith

set toTPNOTRANIt prohibits the called service from becoming a participant in the
current transaction. Whether the service request succeeds or fails has no impact on the
outcome of the transaction. The transaction can still time-out while waiting for a reply
that is due from a service, whether it is part of the transaction or not.

For additional information on using ti®NOTRANlag, refer to “tpreturn(’) and
tpforward(') Functions” on page 11-25.

tpreturn() and tpforward() Functions

If you call a process while running in transaction mageturn() and

tpforward() place the service portion of the transaction in a state that allows it to be
either committed or aborted when the transaction completes. You can call a service
several times on behalf of the same transaction. The system does not fully commit or
abort the transaction until the initiator of the transaction galtsnmit() or

tpabort()

Neithertpreturn() nor tpforward() should be called until all outstanding
descriptors for the communication calls made within the service have been retrieved.
If you call tpreturn() with outstanding descriptors for whieva/ is set to
TPSUCCESSthe system encounters a protocol error and retFESVCERRO the

process waiting otpgetrply() . If the process is in transaction mode, the system
marks the caller as “abort-only.” Even if the initiator of the transaction calls

tpcommit() , the system implicitly aborts the transaction. If you gaditurn()

with outstanding descriptors for whieba/ is set toTPFAIL , the system returns
TPESVCFAIL to the process waiting apgetrply() . The effect on the transaction is

the same.

When you caltpreturn() while running in transaction mode, this function can affect
the result of the transaction by the processing errors that it encounters or that are
retrieved from the value placedival by the application.

Programming a BEA Tuxedo Application Using C11-25

11 managing Errors

You can usepforward() to indicate that success has been achieved up to a particulat
point in the processing of a request. If no application errors have been detected, the
system invokespforward() ; otherwise, the system invokeseturn() with

TPFAIL . If you calltpforward() improperly, the system considers the call a
processing error and returns a failed message to the requester.

tpterm() Function

Use thepterm() function to remove a client context from an application.

If the client context is in transaction mode, the call fails WitBEPROTOeturned in
tperro(5) , and the client context remains part of the application and in transaction
mode.

When the call is successful, the client context is allowed no further communication ol
participation in transactions because the current thread of execution is no longer pa
of the application.

Resource Managers

When you use an ATMI function to define transactions, the BEA Tuxedo system
executes an internal call to pass any global transaction information to each resource
manager participating in the transaction. When youtgadmmit() or tpabort()

for example, the system makes internal calls to direct each resource manager to
commit or abort the work it did on behalf of the caller’s global transaction.

When a global transaction has been initiated, either explicitly or implicitly, you should
not make explicit calls to the resource manager’s transaction functions in your
application code. Failure to follow this transaction rule causes indeterminate results.
You can use thggetlev() function to determine whether a process is already in a
global transaction before calling the resource manager’s transaction function.

11-26 Programming a BEA Tuxedo Application Using C

Sample Transaction Scenarios

Some resource managers allow programmers to configure certain parameters (such as
the transaction consistency level) by specifying options available in the interface to the
resource managers themselves. Such options are made available in two forms:

m Resource manager-specific function calls that can be used by programmers of
distributed applications to configure options.

m Hard-coded options incorporated in the transaction interface supplied by the
provider of the resource manager.

Consult the documentation for your resource managers for additional information.

The method of setting options varies for each resource manager. In the BEA Tuxedo
System SQL resource manager, for examplesdtteansaction statement is used

to negotiate specific options (consistency level and access mode) for a transaction that
has already been started by the BEA Tuxedo system.

Sample Transaction Scenarios

The following sections provide some considerations for the following transaction
scenarios:

m Called Service in Same Transaction as Caller
m Called Service in Different Transaction with AUTOTRAN Set

m Called Service that Starts a New Explicit Transaction

Called Service in Same Transaction as Caller

When a caller in transaction mode calls another service to participate in the current
transaction, the following facts apply:

m tpreturn() andtpforward() , when called by the participating service, place
that service’s portion of the transaction in a state from which it can be either
aborted or committed by the initiator.

Programming a BEA Tuxedo Application Using C11-27

11 managing Errors

The success or failure of the called process affects the current transaction. If any
fatal transaction errors are encountered by the participant, the current transactior
is marked “abort-only.”

Whether or not the tasks performed by a successful participant are applied
depends on the fate of the transaction. In other words, if the transaction is
aborted, the work of all participants is reversed.

The TPNOREPLY¥lag cannot be used when calling another service to participate
in the current transaction.

Called Service in Different Transaction with AUTOTRAN

Set

If you issue a communication call with theNOTRANIag set and the called service is
configured such that a transaction automatically starts when the service is called, th
system places both the calling and called processes in transaction mode, but the tw
constitute different transactions. In this situation, the following facts apply:

tpreturn() plays the initiator’s transaction role: it terminates the transaction in
the service in which the transaction was automatically started. Alternatively, if
the transaction is automatically started in a service that terminates with
tpforward() , thetpreturn() call issued in the last service in the forward

chain plays the initiator’s transaction role: it terminates the transaction. (For an
example, refer to the figure called “Transaction Roles of tpforward() and
tpreturn() with AUTOTRAN" on page 11-29.)

Because it is in transaction mod&eturn() is vulnerable to the failure of any
participant in the transaction, as well as to transaction time-outs. In this scenario
the system is more likely to return a failed message.

The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

The caller’s own transaction may timeout as the caller waits for a reply.

If no reply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

11-28 Programming a BEA Tuxedo Application Using C

Sample Transaction Scenarios

Figure 11-1 Transaction Roles of tpforward() and tpreturn() with AUTOTRAN

Transaction & Transaction B
tpcall () tprorwardi)
CLIENT : : 2VC B
with TPMOTEAN -
AUTOTEAM
Begins B
tpreturni) L tprorwardi)

Tertinates B

Called Service that Starts a New Explicit Transaction

If a communication call is made witlPNOTRANand the called service is not
automatically placed in transaction mode by a configuration option, the service can
define multiple transactions using explicit calladgbegin() , tpcommit() , and

tpabort() . As a result, the transaction can be completed before a call is issued to
tpreturn()

In this situation, the following facts apply:

m tpreturn() plays no transaction role; that is, the rolepodturn() is always
the same, regardless of whether transactions are explicitly defined in the service
routine.

m tpreturn() can return any value ival , regardless of the outcome of the
transaction.

m Typically, the system returns processing errors, buffer type errors, or application
failure, and follows the normal rules foPESVCFAIL, TPEITYPE/TPEOTYPEand
TPESVCERR

m The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

Programming a BEA Tuxedo Application Using C11-29

11 managing Errors

m The caller is vulnerable to the possibility that its own transaction may time out
as it waits for its reply.

m If no reply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

BEA TUXEDO System-supplied Subroutines

The BEA Tuxedo system-supplied subroutingsyrinit() , tpsvrdone()
tpsvrthrinit(3c) , andtpsvrthrdone(3c) , must follow certain rules when used
in transactions.

Note: tpsvrthrinit(3c) andtpsvrthrdone(3c) can be specified for
multithreaded applications onlgsvrinit() andtpsvrdone() can be
specified for both threaded and non-threaded applications.

The BEA Tuxedo system server cafisvrinit() or tpsvrthrinit(3c) during
initialization. Specifically tpsvrinit() or tpsvrthrinit(3c) is called after the
calling process becomes a server but before it starts handling service requests. If
tpsvrinit() ortpsvrthrinit(3c) performs any asynchronous communication, all
replies must be retrieved before the function returns; otherwise, the system ignores a
pending replies and the server exitgp#vrinit() or tpsvrthrinit(3c) defines

any transactions, they must be completed with all asynchronous replies retrieved
before the function returns; otherwise, the system aborts the transaction and ignores :
outstanding replies. In this case, the server exits gracefully.

The BEA Tuxedo system server abstraction agiiérdone() or

tpsvrthrdone(3c) after it finishes processing service requests but before it exits. At
this point, the server’s services are no longer advertised, but the server has not yet le
the application. Ifpsvrdone() or tpsvrthrdone(3c) initiates communication, it
must retrieve all outstanding replies before it returns; otherwise, pending replies are
ignored by the system and the server exits. If a transaction is started within
tpsvrdone() Ortpsvrthrdone(3c) , it must be completed with all replies retrieved;
otherwise, the system aborts the transaction and ignores the replies. In this case, to
the server exits.

11-30 Programming a BEA Tuxedo Application Using C

Central Event Log

Central Event Log

The central event log is a record of significant events in your BEA Tuxedo application.
Messages about these events are sent to the log by your application clients and services
via theuserlog(3c) function.

Any analysis of the central event log must be provided by the application. You should
establish strict guidelines for the events that are to be recordedusethg(3c)
Application debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows NT platform,
refer toUsing the BEA Tuxedo System on Windows NT

Log Name

The application administrator defines (in the configuration file) the absolute path name
that is used as the prefix of the name ofutwlog(3c) error message file on each
machine. Theiserlog(3c) function creates a date—in the fornmddyy,

representing the month, day, and year—and adds this date to the path name prefix,
forming the full flename of the central event log. A new file is created daily. Thus, if

a process sends messages to the central event log on succeeding days, the messages are
written into different files.

Programming a BEA Tuxedo Application Using C11-31

11 managing Errors

Log Entry Format

Entries in the log consist of the following components:
m Tag consisting of:
e Time of day fhmms9

¢ Machine name (for example, the name returned byrthee(1) command
on a UNIX system)

¢ Name, process ID, and thread ID (which is 0 on platforms that do not
support threads) of the thread callumgrlog(3c)

e Context ID of the thread callingserlog(3c)
m Message text

The text of each message is preceded by the catalog name and number of that
message.

m Optional arguments iprintt (3S) format

For example, suppose that a security program executes the following call at
4:22:14pm on a UNIX machine calleghachl (as returned by thename command):

userlog("Unknown User '%s’ \n", usrnm);

The resulting log entry appears as follows:
162214.machl!security.23451: Unknown User 'abc’

In this example, the process ID for securitgdgs1, and the variablesrnm contains
the valueabc .

If the preceding message was generated by the BEA Tuxedo system (rather than by t
application), it might appear as follows:

162214.machl!security.23451: LIBSEC_CAT: 999: Unknown User 'abc’

In this case, the message catalog namB&EC_CAT and the message numbed$s .

11-32 Programming a BEA Tuxedo Application Using C

Central Event Log

If the message is sent to the central event log while the process is in transaction mode,
other components are added to the tag in the user log entry. These components consist
of the literal stringgtrid ~ followed by three long hexadecimal integers. The integers
uniquely identify the global transaction and make up what is referred to as the global
transaction identifier, that is, thyerid . This identifier is used mainly for

administrative purposes, but it also appears in the tag that prefixes the messages in the
central event log. If the system writes the message to the central event log in
transaction mode, the resulting log entry appears as follows:

162214.machl!security.23451: gtrid x2 x24e1b803 x239:
Unknown User 'abc’

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

m Assign the error message you wish to write to the log to a variable ofttype
* and use the variable name as the argument to the call.

m Specify the literal text of the message within double quotes, as the argument to
theuserlog(3c) call, as shown in the following example.

/* Open the database to be accessed by the transactions.*/
if(tpopen() == -1) {

userlog("tpsvrinit: Cannot open database %s,
tpstrerror(tperrno)™);

return(-1);

In this example, the message is sent to the central eventipogefi(3c) returns -1.

Theuserlog(3c) signature is similar to that of the UNIX Systermtf (3S)
function. The format portion of both functions can contain literal strings and/or
conversion specifications for a variable number of arguments.

Programming a BEA Tuxedo Application Using C11-33

11 managing Errors

Debugging Application Processes

Although you can useserlog(3c) statements to debug application software, it is
sometimes necessary to use a debugger command for more complex problem solvi

The following sections describe how to debug an application on UNIX and Windows
NT platforms.

Debugging Application Processes on UNIX Platforms

The standard UNIX system debugging commarntthig1). For complete information
about this tool, refer tabx (1) in a UNIX system reference manual. If you use-he
option to compile client processes, you can debug those processes using the procedu
described on thebx (1) reference page.

To run thedbx command, enter the following:
dbx client

To execute a client process:

1. Set any desired breakpoints in the code.

2. Enter thedbx command.

3. Atthedbx prompt ¢), type theun subcommandr(and any options you want
to pass to the client programisin() .

The task of debugging server programs is more complicated. Normally a server is
started using thenboot command, which starts the server on the correct machine with
the correct options. When usidpx, it is necessary to run a server directly rather than
through thamboot command. To run a server directly, enterrtighort forrun)
subcommand after the prompt displayed bydiye command.

11-34 Programming a BEA Tuxedo Application Using C

Debugging Application Processes

The BEA Tuxedamboot(1) command passes undocumented command-line options
to the server’s predefinedain() . To run a server directly, you must pass these
options, manually, to the subcommand. To find out which options need to be
specified, runmboot with the-n and-d 1 options. Then option instructsmboot

not to execute a booy 1 instructs it to display level 1 debugging statements. By
default, thed 1 option returns information about all processes. If you want
information about only one process, you can specify your request accordingly with
additional options. For more information, refer to BieA Tuxedo Command
Reference

The output ofmboot-n-d 1 includes a list of the command-line options passed by
tmboot to the server'snain() , as shown in the following example.

exec server -g 1 -i 1 -u sfmax -U /tuxdir/appdir/ULOG -m 0 -A

Once you have the list of required command-line options, you are ready to run the
server program directly, with thesubcommand adbx (1). The following command
line is an example.

*r-g 1-il-usfmax-U /tuxdir/appdir/lULOG -m 0 -A

You may not usebx (1) to run a server that is already running as part of the
configuration. If you try to do so, the server exits gracefully, indicating a duplicate
server in the central event log.

Debugging Application Processes on Windows NT
Platforms

On a Windows NT platform, a graphical debugger is provided as part of the Microsoft
Visual C++ environment. For complete information about this tool, refer to the
Microsoft Visual C++ reference manual.

To invoke the Microsoft Visual C++ debugger, enterdla@ command as follows.
start msdev -p process_ID

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5.0,
enter thestat command as follows.

start msdev -p process_id

Programming a BEA Tuxedo Application Using C11-35

11 managing Errors

To invoke the debugger and automatically enter a process, specify the process nam
and arguments on theart command line, as follows.

start msdev filename argument

For example, to invoke the debugger and entesithgcl.exe process with the
ConvertThisString argument, enter the following command.

start msdev simpcl.exe ConvertThisString

When a user-mode exception occurs, you are prompted to invoke the default systen
debugger to examine the location of the program failure and the state of the register:
stacks, and so on. By defauit, watson is used in the Windows NT environment
uses as the default debugger for user-mode exception failures, while the kernel
debugger is used in the Win32 SDK environment.

To modify the default debugger used by the Windows NT system for user-mode
exception failures, perform the following steps:

1. Runregedit orregedt32

2. Within theHKEY_LOCAL_MACHINEuUbtree, navigate to
\SOFTWAREWicrosoft\Windows NT\CurrentVersion\AeDebug

3. Double-click on th@ebugger key to advance into the registry string editor.

4. Modify the existing string to specify the debugger of your choice.

For example, to request the debugger supplied with the Microsoft Visual C++
environment, enter the following command.

msdev.exe -p %ld -e %ld

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5.0,
enter the following command.

msvc.exe -p %ld -e %ld

11-36 Programming a BEA Tuxedo Application Using C

Comprehensive Example

Comprehensive Example

Transaction integrity, message communication, and resource access are the major
requirements of an Online-Transaction-Processing (OLTP) application.

This section provides a code sample that illustrates the ATMI transaction, buffer
management, and communication routines operating together with SQL statements
that access a resource manager. The example is borrowed fragCeerver that is

part of the BEA Tuxedo banking applicatidrarfkapp) and illustrates the
CLOSE_ACCBervice.

The example shows how thet transaction statement (line 49) is used to set the
consistency level and access mode of the transaction before the first SQL statement
that accesses the database. (When read/write access is specified, the consistency level
defaults to high consistency.) The SQL query determines the amount to be withdrawn
in order to close the account based on the value &tk®UNT_ID(lines 50-58).

tpalloc() allocates a buffer for the request message tatmeDRAWAEervice, and
theACCOUNT_IDand the amount to be withdrawn are placed in the buffer (lines 62-74).
Next, a request is sent to thdTHDRAWAKervice via apcall() call (line 79). An
SQLdelete statement then updates the database by removing the account in question
(line 86).

If all is successful, the buffer allocated in the service is freed (line 98) and the
TPSVCINFOdata buffer that was sent to the service is updated to indicate the successful
completion of the transaction (line 99). Then, if the service was the initiator, the
transaction is automatically committepketurn() returnsTPSUCCESSalong with

the updated buffer, to the client process that requested the closing of the account.
Finally, the successful completion of the requested service is reported on the status line
of the form.

After each function call, success or failure is determined. If a failure occurs, the buffer
allocated in the service is freed, any transaction begun in the service is aborted, and the
TPSVCINFObuffer is updated to show the cause of failure (lines 80-83). Finally,
tpreturn() returnsTPFAIL and the message in the updated buffer is reported on the
status line of the form.

Note: When specifying the consistency level of a global transaction in a service
routine, take care to define the level in the same way for all service routines
that may participate in the same transaction.

Programming a BEA Tuxedo Application Using C11-37

11 managing Errors

Listing 11-3 ACCT Server

001 #include <stdio.h> [* UNIX */

002 #include <string.h> /* UNIX */

003 #include <fml.h> /* BEA Tuxedo System */
004 #include <atmi.h> /* BEA Tuxedo System */
005 #include <Usysflds.h> [* BEA Tuxedo System */
006 #include <sglcode.h> /* BEA Tuxedo System */
007 #include <userlog.h> /* BEA Tuxedo System */
008 #include "bank.h" /* BANKING #defines */
009 #include "bank.flds.h" * bankdb fields */

010 #include "event.flds.h" * event fields */

011

012

013 EXEC SQL begin declare section;

014 static long account_id,; [* account id */

015 static long branch_id; /* branch id */

016 static float bal, tir_bal; /* BALANCE */

017 static char acct_type; /* account type*/
018 static char last_name[20], first_name[20]; /* last name, first name */
019 static char mid_init; /* middle initial */
020 static char address[60]; /* address */

021 static char phone[14]; /* telephone */

022 static long last_acct; /* last account branch gave */

023 EXEC SQL end declare section;

024 static FBFR *reqfb; /* fielded buffer for request message */
025 static long reglen; /* length of request buffer */
026 static char amts[BALSTR]; [* string representation of float */

027 code for OPEN_ACCT service

028 /*

029 * Service to close an account

030 */

031 void

032 #ifdef __STDC__

033 LOSE_ACCT(TPSVCINFO *transb)
034 #else

035 CLOSE_ACCT(transb)

036 TPSVCINFO *transb;

037 #endif

038 {

039 FBFR *transf; /* fielded buffer of decoded message */

11-38 Programming a BEA Tuxedo Application Using C

Comprehensive Example

040 /* set pointer to TPSVCINFO data buffer */
041 transf = (FBFR *)transb->data;

042 /* must have valid account number */

043 if (((account_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) ||

044 (account_id > MAXACCT)) {

045 (void)Fchg(transf, STATLIN, 0, "Invalid account number”, (FLDLEN)O);
046 tpreturn(TPFAIL, 0, transb->data, OL, 0);

047 '}

048 /* Set transaction level */
049 EXEC SQL set transaction read write;

050 /* Retrieve AMOUNT to be deleted */

051 EXEC SQL declare ccur cursor for

052 select BALANCE from ACCOUNT where ACCOUNT _ID = :account _id;
053 EXEC SQL open ccur;

054 EXEC SQL fetch ccur into :bal;

055 if (SQLCODE !=SQL_OK){ /* nothing found */

056 (void)Fchg(transf, STATLIN, 0, getstr("account",SQLCODE), (FLDLEN)0);
057 EXEC SQL close ccur;

058 tpreturn(TPFAIL, 0, transb->data, OL, 0);

059

060 /* Do final withdrawal */

061 /* make withdraw request buffer */

062 if ((reqfb = (FBFR *)tpalloc("FML",NULL,transb->len)) == (FBFR *)NULL) {
063 (void)userlog(“tpalloc failed in close_acct\n");

064 (void)Fchg(transf, STATLIN, O,

065 "Unable to allocate request buffer", (FLDLEN)O);
066 tpreturn(TPFAIL, 0, transb->data, OL, 0);
067

068 reqglen = Fsizeof(reqfb);
069 (void)Finit(regfb,reglen);

070 /* put ID in request buffer */
071 (void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&account_id, (FLDLEN)O);

072 /* put amount into request buffer */

073 (void)sprintf(amts,"%.2f",bal);

074 (void)Fchg(regfb,SAMOUNT,0,amts, (FLDLEN)O);

075 /*increase the priority of this withdraw */

076 if (tpsprio(PRIORITY, OL) == -1)

077 (void)userlog("Unable to increase priority of withdraw");

078 /*tpcall to withdraw service to remove remaining balance */

Programming a BEA Tuxedo Application Using C11-39

11 managing Errors

079
080
081
082
083
084

085

086
087
088
089
090
091
092
093

094
095
096
097
098
099
100 }

11-40

if (tpcall("WITHDRAWAL", (char *)regfb, OL, (char **)&reqfb,

(long *)&reqlen, TPSIGRSTRT) == -1) {

(void)Fchg(transf, STATLIN, 0,"Cannot make withdrawal", (FLDLEN)O);
tpfree((char *)reqgfb);

tpreturn(TPFAIL, 0,transb->data, OL, 0);

}

/* Delete account record */

EXEC SQL delete from ACCOUNT where current of ccur;
if (SQLCODE != SQL_OK) { /* Failure to delete */
(void)Fchg(transf, STATLIN, 0,"Cannot close account”, (FLDLEN)O);
EXEC SQL close ccur;
tpfree((char *)reqfb);
tpreturn(TPFAIL, O, transb->data, OL, 0);

}
EXEC SQL close ccur;

* prepare buffer for successful return */

(void)Fchg(transf, SBALANCE, 0, Fvals(reqfb, SAMOUNT,0), (FLDLEN)O0);
(void)Fchg(transf, FORMNAM, 0, "CCLOSE", (FLDLEN)O0);
(void)Fchg(transf, STATLIN, 0, " ", (FLDLEN)O);

tpfree((char *)reqfb);

tpreturn(TPSUCCESS, 0, transb->data, OL, 0);

Programming a BEA Tuxedo Application Using C

	Copyright
	Contents
	1 Introduction to BEA Tuxedo Programming
	BEA Tuxedo Distributed Application Programming
	Communication Paradigms
	BEA Tuxedo Clients
	BEA Tuxedo Servers
	Basic Server Operation
	Servers as Requesters

	BEA Tuxedo API: ATMI

	2 Programming Environment
	Updating the UBBCONFIG Configuration File
	Setting Environment Variables
	Including the Required Header Files
	Starting and Stopping the Application

	3 Managing Typed Buffers
	Overview of Typed Buffers
	Allocating a Typed Buffer
	Putting Data in a Buffer
	Resizing a Typed Buffer
	Checking for Buffer Type
	Freeing a Typed Buffer
	Using a VIEW Typed Buffer
	Setting Environment Variables for a VIEW Typed Buffer
	Creating a View Description File
	Executing the VIEW Compiler

	Using an FML Typed Buffer
	Setting Environment Variables for an FML Typed Buffer
	Creating a Field Table File
	Creating an FML Header File

	Using an XML Typed Buffer
	Customizing a Buffer
	Defining Your Own Buffer Types
	Data Conversion

	4 Writing Clients
	Joining an Application
	Using Features of the TPINIT Typed Buffer
	Client Naming
	Unsolicited Notification Handling
	System Access Mode
	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	See Also

	Client Process Examples

	5 Writing Servers
	BEA Tuxedo System main()
	System-supplied Server and Services
	System-supplied Server: AUTHSVR()
	System-supplied Services: tpsvrinit() Function
	System-supplied Services: tpsvrdone() Function

	Guidelines for Writing Servers
	Defining a Service
	Example: Checking the Buffer Type
	Example: Checking the Priority of the Service Request

	Terminating a Service Routine
	Sending Replies
	Invalidating Descriptors
	Forwarding Requests

	Advertising and Unadvertising Services
	Advertising Services
	Unadvertising Services
	Example: Dynamic Advertising and Unadvertising of a Service

	Building Servers
	See Also

	Using a C++ Compiler
	Declaring Service Functions
	Using Constructors and Destructors

	6 Writing Request/Response Clients and Servers
	Overview of Request/Response Communication
	Sending Synchronous Messages
	Example: Using the Same Buffer for Request and Reply Messages
	Example: Testing for Change in Size of Reply Buffer
	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Example: Sending a Synchronous Message with TPNOTRAN Set
	Example: Sending a Synchronous Message with TPNOCHANGE Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Getting an Asynchronous Reply

	Setting and Getting Message Priorities
	Setting a Message Priority
	Getting a Message Priority

	7 Writing Conversational Clients and Servers
	Overview of Conversational Communication
	Joining an Application
	Establishing a Connection
	Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	Ending a Conversation
	Example: Ending a Simple Conversation
	Example: Ending a Hierarchical Conversation
	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events

	8 Writing Event-based Clients and Servers
	Overview of Events
	Unsolicited Events
	Brokered Events

	Defining the Unsolicited Message Handler
	Sending Unsolicited Messages
	Broadcasting Messages By Name
	Broadcasting Messages by Identifier

	Checking for Unsolicited Messages
	Subscribing to Events
	Unsubscribing from Events
	Posting Events
	Example of Event Subscription

	9 Writing Global Transactions
	What Is a Global Transaction?
	Starting the Transaction
	Suspending and Resuming a Transaction
	Suspending a Transaction
	Resuming a Transaction
	Example: Suspending and Resuming a Transaction

	Terminating the Transaction
	Committing the Current Transaction
	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Example: Testing for Participant Errors

	Implicitly Defining a Global Transaction
	Implicitly Defining a Transaction in a Service Routine

	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	See Also

	10 Programming a Multithreaded and Multicontexted Application
	Support for Programming a Multithreaded/Multicontexted Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications

	Planning and Designing a Multithreaded/Multicontexted Application
	What Are Multithreading and Multicontexting
	What Is Multithreading
	What Is Multicontexting
	Licensing a Multithreaded or Multicontexted Application

	Advantages and Disadvantages of a Multithreaded/Multicontexted Application
	Advantages of a Multithreaded/Multicontexted Application
	Disadvantages of a Multithreaded/Multicontexted Application

	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Work Phase
	Completion Phase

	How Multithreading and Multicontexting Work in a Server
	Start-up Phase
	Work Phase
	Completion Phase

	Design Considerations for a Multithreaded and Multicontexted Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting
	How Many Applications and Connections Do You Want
	What Synchronization Issues Need to Be Addressed
	Will You Need to Port Your Application
	Which Threads Model Is Best for You
	Interoperability Restrictions for Workstation Clients

	Implementing a Multithreaded/ Multicontexted Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application
	Prerequisites for a Multithreaded Application
	General Multithreaded Programming Considerations
	Concurrency Considerations

	Writing Code to Enable Multicontexting in a Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Implementing Security for a Multicontexted Client
	Synchronizing Threads Before a Client Termination
	Switching Contexts
	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted Application

	Writing Code to Enable Multicontexting and Multithreading in a Server
	Context Attributes
	Coding Rules for a Multicontexted Server
	Initializing and Terminating Servers and Server Threads
	Programming a Server to Create Threads
	Sample Code for Creating an Application Thread in a Multicontexted Server

	Writing a Multithreaded Client
	Coding Rules for a Multithreaded Client
	Initializing a Client to Multiple Contexts
	Context State Changes for a Client Thread
	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded Client
	Using Per-process Functions and Data Structures in a Multithreaded Client
	Using Per-thread Functions and Data Structures in a Multithreaded Client
	Sample Code for a Multithreaded Client

	Writing a Multithreaded Server
	Compiling Code for a Multithreaded/Multicontexted Application
	Testing a Multithreaded/Multicontexted Application
	Testing Recommendations for a Multithreaded/Multicontexted Application
	Troubleshooting a Multithreaded/Multicontexted Application
	Error Handling for a Multithreaded/Multicontexted Application

	11 Managing Errors
	System Errors
	Abort Errors
	BEA Tuxedo System Errors
	Call Descriptor Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	MIB Error
	No Entry Errors
	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Time-out Errors
	Transaction Errors
	Typed Buffer Errors
	Application Errors
	Handling Errors
	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Time-outs
	Effect on the tpcommit() Function
	Effect on the TPNOTRAN Flag

	tpreturn() and tpforward() Functions
	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Called Service that Starts a New Explicit Transaction

	BEA TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	Debugging Application Processes
	Debugging Application Processes on UNIX Platforms
	Debugging Application Processes on Windows NT Platforms

	Comprehensive Example

