
B E A T u x e d o R e l e a s e 7 . 1
D o c u m e n t E d i t i o n 7 . 1

M a y 2 0 0 0

BEA Tuxedo

Programming a BEA Tuxedo
Application Using C

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Programming a BEA Tuxedo Application Using C

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

1-1

.. 1-3

.. 1-4

.. 1-6

.. 1-6

.... 1-8

1-9

2-1

.. 2-5

.. 2-8

. 2-8

. 3-2

. 3-6

.. 3-9

3-11

3-14

3-15

-16

17

-18

-21

-22
Contents

1. Introduction to BEA Tuxedo Programming
BEA Tuxedo Distributed Application Programming ..

Communication Paradigms ...

BEA Tuxedo Clients..

BEA Tuxedo Servers...

Basic Server Operation...

Servers as Requesters ...

BEA Tuxedo API: ATMI ..

2. Programming Environment
Updating the UBBCONFIG Configuration File..

Setting Environment Variables..

Including the Required Header Files...

Starting and Stopping the Application ...

3. Managing Typed Buffers
Overview of Typed Buffers..

Allocating a Typed Buffer..

Putting Data in a Buffer...

Resizing a Typed Buffer..

Checking for Buffer Type ...

Freeing a Typed Buffer ...

Using a VIEW Typed Buffer... 3

Setting Environment Variables for a VIEW Typed Buffer...................... 3-

Creating a View Description File... 3

Executing the VIEW Compiler .. 3

Using an FML Typed Buffer ... 3
Programming a BEA Tuxedo Application Using C iii

-23

3-23

3-25

-27

3-28

-30

3-40

.. 4-1

. 4-4

. 4-4

4-6

... 4-7

.. 4-8

. 4-8

.. 4-9

4-10

. 4-11

. 4-12

.. 5-1

.... 5-3

5-3

. 5-4

.. 5-7

.. 5-9

5-10

-13

5-15

5-17

. 5-17

5-24

. 5-25
Setting Environment Variables for an FML Typed Buffer 3

Creating a Field Table File ...

Creating an FML Header File...

Using an XML Typed Buffer .. 3

Customizing a Buffer...

Defining Your Own Buffer Types..3

Data Conversion ...

4. Writing Clients
Joining an Application...

Using Features of the TPINIT Typed Buffer..

Client Naming ...

Unsolicited Notification Handling ...

System Access Mode...

Resource Manager Association ..

Client Authentication...

Leaving the Application ..

Building Clients ...

See Also...

Client Process Examples ..

5. Writing Servers
BEA Tuxedo System main()...

System-supplied Server and Services..

System-supplied Server: AUTHSVR() ...

System-supplied Services: tpsvrinit() Function..

System-supplied Services: tpsvrdone() Function

Guidelines for Writing Servers..

Defining a Service ...

Example: Checking the Buffer Type.. 5

Example: Checking the Priority of the Service Request

Terminating a Service Routine ..

Sending Replies ...

Invalidating Descriptors ...

Forwarding Requests ...
iv Programming a BEA Tuxedo Application Using C

5-29

5-30

5-30

-31

5-32

5-33

5-34

5-34

5-35

.. 6-1

.... 6-2

.. 6-5

6-6

.. 6-7

. 6-8

. 6-9

.. 6-11

. 6-11

6-15

. 6-16

6-16

6-17

. 7-1

.. 7-3

... 7-3

.... 7-5

... 7-5

... 7-7

... 7-9

7-10

7-11
Advertising and Unadvertising Services ...

Advertising Services ..

Unadvertising Services...

Example: Dynamic Advertising and Unadvertising of a Service 5

Building Servers ..

See Also..

Using a C++ Compiler ..

Declaring Service Functions ..

Using Constructors and Destructors...

6. Writing Request/Response Clients and Servers
Overview of Request/Response Communication..

Sending Synchronous Messages..

Example: Using the Same Buffer for Request and Reply Messages

Example: Testing for Change in Size of Reply Buffer

Example: Sending a Synchronous Message with TPSIGRSTRT Set

Example: Sending a Synchronous Message with TPNOTRAN Set

Example: Sending a Synchronous Message with TPNOCHANGE Set ...

Sending Asynchronous Messages ...

Sending an Asynchronous Request ...

Getting an Asynchronous Reply ..

Setting and Getting Message Priorities ..

Setting a Message Priority..

Getting a Message Priority ...

7. Writing Conversational Clients and Servers
Overview of Conversational Communication ..

Joining an Application...

Establishing a Connection ..

Sending and Receiving Messages ...

Sending Messages ...

Receiving Messages ..

Ending a Conversation ...

Example: Ending a Simple Conversation...

Example: Ending a Hierarchical Conversation ..
Programming a BEA Tuxedo Application Using C v

7-12

7-13

7-13

.. 8-1

.. 8-2

.. 8-2

.. 8-5

... 8-6

... 8-6

.. 8-8

.. 8-8

... 8-9

8-12

. 8-13

8-15

... 9-1

... 9-3

.... 9-8

... 9-9

... 9-9

. 9-10

9-11

9-11

9-14

-14

-16

-17

-17

-19

. 9-19

. 9-21
Executing a Disorderly Disconnect ..

Building Conversational Clients and Servers ..

Understanding Conversational Communication Events..................................

8. Writing Event-based Clients and Servers
Overview of Events ...

Unsolicited Events..

Brokered Events ...

Defining the Unsolicited Message Handler...

Sending Unsolicited Messages ...

Broadcasting Messages By Name ...

Broadcasting Messages by Identifier..

Checking for Unsolicited Messages ..

Subscribing to Events ...

Unsubscribing from Events ...

Posting Events ..

Example of Event Subscription ...

9. Writing Global Transactions
What Is a Global Transaction? ...

Starting the Transaction..

Suspending and Resuming a Transaction..

Suspending a Transaction..

Resuming a Transaction ..

Example: Suspending and Resuming a Transaction

Terminating the Transaction..

Committing the Current Transaction..

Aborting the Current Transaction...

Example: Committing a Transaction in Conversational Mode9

Example: Testing for Participant Errors... 9

Implicitly Defining a Global Transaction.. 9

Implicitly Defining a Transaction in a Service Routine........................... 9

Defining Global Transactions for an XA-Compliant Server Group................9

Testing Whether a Transaction Has Started ...

See Also...
vi Programming a BEA Tuxedo Application Using C

0-2

0-2

0-3

0-4

0-4

0-6

-8

10-8

0-9

-10

11

10-11

0-13

0-16

17

10-18

0-18

0-21

0-22

0-23

0-24

-24

-25

0-26

26

-26

-27

-28
10. Programming a Multithreaded and Multicontexted
Application

Support for Programming a Multithreaded/Multicontexted Application........ 1

Platform-specific Considerations for Multithreaded/Multicontexted
Applications .. 1

Planning and Designing a Multithreaded/Multicontexted Application........... 1

What Are Multithreading and Multicontexting... 1

What Is Multithreading .. 1

What Is Multicontexting... 1

Licensing a Multithreaded or Multicontexted Application 10

Advantages and Disadvantages of a Multithreaded/Multicontexted
Application ...

Advantages of a Multithreaded/Multicontexted Application................... 1

Disadvantages of a Multithreaded/Multicontexted Application 10

How Multithreading and Multicontexting Work in a Client 10-

Start-up Phase...

Work Phase .. 1

Completion Phase... 1

How Multithreading and Multicontexting Work in a Server 10-

Start-up Phase...

Work Phase .. 1

Completion Phase... 1

Design Considerations for a Multithreaded and Multicontexted
Application ... 1

Environment Requirements.. 1

Design Requirements ... 1

Is the Task of Your Application Suitable for Multithreading and/or
Multicontexting... 10

How Many Applications and Connections Do You Want 10

What Synchronization Issues Need to Be Addressed 1

Will You Need to Port Your Application... 10-

Which Threads Model Is Best for You .. 10

Interoperability Restrictions for Workstation Clients 10

Implementing a Multithreaded/ Multicontexted Application........................ 10

Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Programming a BEA Tuxedo Application Using C vii

0-28

-29

0-29

0-30

-31

0-32

33

-34

-34

0-35

0-38

-39

-40

0-40

-41

0-42

0-42

0-43

-45

-46

47

0-47

-49

0-50

0-52

0-55

0-56

0-56

0-59

59
Application ... 1

Prerequisites for a Multithreaded Application 10

General Multithreaded Programming Considerations............................ 1

Concurrency Considerations .. 1

Writing Code to Enable Multicontexting in a Client..................................... 10

Context Attributes ..1

Setting Up Multicontexting at Initialization... 10-

Implementing Security for a Multicontexted Client...............................10

Synchronizing Threads Before a Client Termination............................. 10

Switching Contexts... 1

Handling Unsolicited Messages ... 1

Coding Rules for Transactions in a Multithreaded/Multicontexted
Application .. 10

Writing Code to Enable Multicontexting and Multithreading in a Server 10

Context Attributes ..1

Coding Rules for a Multicontexted Server ... 10

Initializing and Terminating Servers and Server Threads...................... 1

Programming a Server to Create Threads .. 1

Sample Code for Creating an Application Thread in a Multicontexted
Server .. 1

Writing a Multithreaded Client..10

Coding Rules for a Multithreaded Client ... 10

Initializing a Client to Multiple Contexts... 10-

Context State Changes for a Client Thread .. 1

Getting Replies in a Multithreaded Environment................................... 10

Using Environment Variables in a Multithreaded and/or Multicontexted
Environment .. 1

Using Per-context Functions and Data Structures in a Multithreaded
Client ... 1

Using Per-process Functions and Data Structures in a Multithreaded
Client ... 1

Using Per-thread Functions and Data Structures in a Multithreaded
Client ... 1

Sample Code for a Multithreaded Client..1

Writing a Multithreaded Server ... 1

Compiling Code for a Multithreaded/Multicontexted Application 10-
viii Programming a BEA Tuxedo Application Using C

-60

-60

61

2

. 11-1

11-3

11-4

11-4

1-4

1-5

. 11-5

11-6

11-6

1-7

1-7

11-8

11-8

11-9

1-10

1-10

1-10

1-11

1-11

11-12

1-12

1-13

1-14

1-15

1-15

11-19

1-19

1-21
Testing a Multithreaded/Multicontexted Application 10

Testing Recommendations for a Multithreaded/Multicontexted
Application.. 10

Troubleshooting a Multithreaded/Multicontexted Application.............. 10-

Error Handling for a Multithreaded/Multicontexted Application 10-6

11. Managing Errors
System Errors ...

Abort Errors...

BEA Tuxedo System Errors ..

Call Descriptor Errors..

Limit Errors .. 1

Invalid Descriptor Errors.. 1

Conversational Errors...

Duplicate Object Error ..

General Communication Call Errors ...

TPESVCFAIL and TPESVCERR Errors... 1

TPEBLOCK and TPGOTSIG Errors ... 1

Invalid Argument Errors..

MIB Error ..

No Entry Errors ...

Operating System Errors ... 1

Permission Errors .. 1

Protocol Errors... 1

Queuing Error.. 1

Release Compatibility Error .. 1

Resource Manager Errors ..

Time-out Errors ... 1

Transaction Errors ... 1

Typed Buffer Errors .. 1

Application Errors ... 1

Handling Errors ... 1

Transaction Considerations ...

Communication Etiquette .. 1

Transaction Errors ... 1
Programming a BEA Tuxedo Application Using C ix

1-21

1-22

1-23

1-24

-24

-25

1-25

1-26

11-26

11-27

1-27

28

1-29

-30

1-31

1-31

1-32

-33

1-34

-34

-35

11-37
Non-fatal Transaction Errors.. 1

Fatal Transaction Errors ... 1

Heuristic Decision Errors ... 1

Transaction Time-outs ... 1

Effect on the tpcommit() Function ... 11

Effect on the TPNOTRAN Flag... 11

tpreturn() and tpforward() Functions ... 1

tpterm() Function.. 1

Resource Managers..

Sample Transaction Scenarios...

Called Service in Same Transaction as Caller.. 1

Called Service in Different Transaction with AUTOTRAN Set............ 11-

Called Service that Starts a New Explicit Transaction........................... 1

BEA TUXEDO System-supplied Subroutines .. 11

Central Event Log.. 1

Log Name ... 1

Log Entry Format ... 1

Writing to the Event Log.. 11

Debugging Application Processes ...1

Debugging Application Processes on UNIX Platforms 11

Debugging Application Processes on Windows NT Platforms..............11

Comprehensive Example ...
x Programming a BEA Tuxedo Application Using C

CHAPTER

ple
sks

ules
nk on
1 Introduction to BEA
Tuxedo Programming

� BEA Tuxedo Distributed Application Programming

� Communication Paradigms

� BEA Tuxedo Clients

� BEA Tuxedo Servers

� BEA Tuxedo API: ATMI

BEA Tuxedo Distributed Application
Programming

A distributed application consists of a set of software modules that reside on multi
hardware systems, and that communicate with one another to accomplish the ta
required of the application. For example, as shown in the following figure, a
distributed application for a remote online banking system includes software mod
that run on a bank customer’s home computer, and a computer system at the ba
which all bank account records are maintained.
Programming a BEA Tuxedo Application Using C 1-1

1 Introduction to BEA Tuxedo Programming

 by
tware
n

API
buted

tions

ment

Figure 1-1 Distributed Application Example - Online Banking System

The task of checking an account balance, for example, can be performed simply
logging on and selecting an option from a menu. Behind the scenes, the local sof
module communicates with the remote software module using special Applicatio
Programming Interface (API) functions.

The BEA Tuxedo distributed application programming environment provides the
functions necessary to enable secure, reliable communication between the distri
software modules. The BEA Tuxedo API is referred to as the
Application-to-Transaction Monitor Interface (ATMI).

The ATMI enables you to:

� Send and receive messages between clients and servers, possibly across a
network of heterogeneous machines

� Establish and use client naming and security features

� Define and manage transactions in which data may be stored in several loca

� Generically open and close a resource manager such as a Database Manage
System (DBMS)

� Manage the flow of service requests and the availability of servers to process
them
1-2 Programming a BEA Tuxedo Application Using C

Communication Paradigms

le to

le

g

d,

s
h

t

Communication Paradigms

The following table describes the BEA Tuxedo communication paradigms availab
application developers.

Table 1-1 Communication Paradigms

Paradigm Description

Request/Response
Communication

Request/response communication enables one software modu
to send a request to a second software module and wait for a
response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processin
continues while the requester waits for the response).

This mode is also referred to as client/server interaction. The
first software module assumes the role of the client; the secon
of the server.

Refer to “Writing Request/Response Clients and Servers” on
page 6-1 for more information on this paradigm.

Conversational
Communication

Conversational communication is similar to request/response
communication, except that multiple requests and/or response
need to take place before the “conversation” is terminated. Wit
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the clien
and server.

Conversational communication is commonly used to buffer
portions of a lengthy response from a server to a client.

Refer to “Writing Conversational Clients and Servers” on page
7-1 for more information on this paradigm.
Programming a BEA Tuxedo Application Using C 1-3

1 Introduction to BEA Tuxedo Programming

s it
come

r

ul

a

d

1
BEA Tuxedo Clients

A BEA Tuxedo client is a software module that collects a user request and forward
to a server that offers the requested service. Almost any software module can be
a BEA Tuxedo client by calling the ATMI client initialization routine and “joining”
the BEA Tuxedo application. The client can then allocate message buffers and
exchange information with the server.

Application Queue-based
Communication

Application queue-based communication supports deferred or
time-independent communication, enabling a client and serve
to communicate using an application queue. The BEA
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is usef
for enqueuing requests when a system goes off-line for
maintenance, or for buffering communications if the client and
server systems are operating at different speeds.

Refer to Using the BEA Tuxedo /Q Component for more
information on the /Q facility.

Event-based
Communication

Event-based communication allows a client or server to notify
client when a specific situation (event) occurs.

Events are reported in one of two ways:

� Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

� Brokered events are unexpected situations or predictable
occurrences with unpredictable timeframes that are reporte
by servers to clients indirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the BEA Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clients and Servers” on page 8-
for more information on this paradigm.

Paradigm Description
1-4 Programming a BEA Tuxedo Application Using C

BEA Tuxedo Clients

ntly,

shown

er—

alled

e
alls or,
g a
am is
The client calls the ATMI termination routine to “leave” the application and notify the
BEA Tuxedo system that it (the client) no longer needs to be tracked. Conseque
BEA Tuxedo application resources are made available for other operations.

The operation of a basic client process can be summarized by the pseudo-code
in the following listing.

Listing 1-1 Pseudo-code for a Request/Response Client

main()
 {
 allocate a TPINIT buffer
 place initial client identification in buffer
 enroll as a client of the BEA Tuxedo application
 allocate buffer
 do while true {
 place user input in buffer
 send service request
 receive reply
 pass reply to the user }
 leave application
 }

Most of the actions described in the above listing are implemented with ATMI
functions. Others—placing the user input in a buffer and passing the reply to the us
are implemented with C language functions.

During the “allocate buffer” phase, the client program allocates a memory area, c
a typed buffer, from the BEA Tuxedo run-time system. A typed buffer is simply a
memory buffer with an associated format, for example, a C structure.

A client may send and receive any number of service requests before leaving th
application. The client may send these requests as a series of request/response c
if it is important to carry state information from one call to the next, by establishin
connection to a conversational server. In both cases, the logic in the client progr
similar, but different ATMI functions are required for these two approaches.

Before you can execute a client, you must run the buildclient command to compile
it and link it with the BEA Tuxedo ATMI and required libraries. Refer to “Writing
Clients” on page 4-1 for information on the buildclient command.
Programming a BEA Tuxedo Application Using C 1-5

1 Introduction to BEA Tuxedo Programming

eive

nd
ervice

r and
BEA Tuxedo Servers

A BEA Tuxedo server is a process that provides one or more services to a client. A
service is a specific business task that a client may need to perform. Servers rec
requests from clients and dispatch them to the appropriate service subroutines.

Basic Server Operation

To build server processes, applications combine their service subroutines with a
main() process provided by the BEA Tuxedo system. This system-supplied main()
is a set of predefined functions. It performs server initialization and termination a
allocates buffers that can be used to receive and dispatch incoming requests to s
routines. All of this processing is transparent to the application.

The following figure summarizes, in pseudo-code, the interaction between a serve
a service subroutine.
1-6 Programming a BEA Tuxedo Application Using C

BEA Tuxedo Servers

ne

rvice
uest
Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subrouti

After initialization, a server allocates a buffer, waits until a request message is
delivered to its message queue, dequeues the request, and dispatches it to a se
subroutine for processing. If a reply is required, the reply is considered part of req
processing.

The conversational paradigm is somewhat different from request/response, as
illustrated by the pseudo-code in the following figure.
Programming a BEA Tuxedo Application Using C 1-7

1 Introduction to BEA Tuxedo Programming

oll
. ATMI
ady to
r

ubset
 the

ily

n this
e reply
t.
Figure 1-3 Pseudo-code for a Conversational Service Subroutine

The BEA Tuxedo system-supplied main() process contains the code needed to enr
a process as a server, advertise services, allocate buffers, and dequeue requests
functions are used in service subroutines that process requests. When you are re
compile and test your service subroutines, you must link edit them with the serve
main() and generate an executable server. To do so, run the buildserver command.

Servers as Requesters

If a client requests several services, or several iterations of the same service, a s
of the services might be transferred to another server for execution. In this case,
server assumes the role of a client, or requester. Both clients and servers can be
requesters; a client, however, can only be a requester. This coding model is eas
accomplished using the BEA Tuxedo ATMI functions.

Note: A request/response server can also forward a request to another server. I
case, the server does not assume the role of client (requester) because th
is expected by the original client, not by the server forwarding the reques
1-8 Programming a BEA Tuxedo Application Using C

BEA Tuxedo API: ATMI

e the

rces,
n
.

ffers”

e
BEA Tuxedo API: ATMI

In addition to the C code that expresses the logic of your application, you must us
Application-to-Transaction Monitor Interface (ATMI), the interface between your
application and the BEA Tuxedo system. The ATMI functions are C language
functions that resemble operating system calls. They implement communication
among application modules running under the control of the BEA Tuxedo system
transaction monitor, including all the associated resources you need.

The ATMI is a reasonably compact set of functions used to open and close resou
begin and end transactions, allocate and free buffers, and support communicatio
between clients and servers. The following table summarizes the ATMI functions
Each function is described in the BEA Tuxedo C Function Reference.

Table 1-2 Using the ATMI Functions

For a Task Related
to . . .

Use This C Function . . . To . . . For More
Information,
Refer to . . .

Buffer management tpalloc() Create a message buffer “Managing Typed Bu
on page 3-1

tprealloc() Resize a message buffer

tptypes() Get a message type and
subtype

tpfree() Free a message buffer

Client membership tpchkauth() Check whether
authentication is required

“Writing Clients” on pag
4-1

tpinit() Join an application

tpterm() Leave an application
Programming a BEA Tuxedo Application Using C 1-9

1 Introduction to BEA Tuxedo Programming

-1

e

 page

ge
Multiple application
context management

tpgetctxt(3c) Retrieve an identifier for
the current thread’s context

“Programming a
Multithreaded and
Multicontexted
Application” on page 10tpsetctxt(3c) Set the current thread’s

context in a multicontexted
process

Service entry and return tpsvrinit() Initialize a server � “Writing Servers” on
page 5-1

� “Programming a
Multithreaded and
Multicontexted
Application” on pag
10-1

tpsvrdone() Terminate a server

tpsvrthrinit() Initialize an individual
server thread

tpsvrthrdone() Termination code for an
individual server thread

tpreturn() End a service function

tpforward() Forward a request

Dynamic advertisement tpadvertise() Advertise a service name “Writing Servers” on
5-1

tpunadvertise() Unadvertise a service name

Message priority tpgprio() Get the priority of the last
request

“Writing Servers” on pa
5-1

tpsprio() Set the priority of the next
request

For a Task Related
to . . .

Use This C Function . . . To . . . For More
Information,
Refer to . . .
1-10 Programming a BEA Tuxedo Application Using C

BEA Tuxedo API: ATMI

” on

l

 /Q
Request/response
communications

tpcall() Initiate a synchronous
request/response to a
service

� “Writing Servers” on
page 5-1

� “Writing
Request/Response
Clients and Servers
page 6-1

tpacall() Initiate an asynchronous
request

tpgetrply() Receive an asynchronous
response

tpcancel() Cancel an asynchronous
request

Conversational
communication

tpconnect() Begin a conversation with a
service

“Writing Conversationa
Clients and Servers” on
page 7-1

tpdiscon() Abnormally terminate a
conversation

tpsend() Send a message in a
conversation

tprecv() Receive a message in a
conversation

Reliable queuing tpenqueue(3c) Enqueue a message to a
message queue

Using the BEA Tuxedo
Component

tpdequeue(3c) Dequeue a message from a
message queue

For a Task Related
to . . .

Use This C Function . . . To . . . For More
Information,
Refer to . . .
Programming a BEA Tuxedo Application Using C 1-11

1 Introduction to BEA Tuxedo Programming

9-1

do
Event-based
communications

tpnotify() Send an unsolicited
message to a client

“Writing Event-based
Clients and Servers” on
page 8-1

tpbroadcast() Send messages to several
clients

tpsetunsol() Set unsolicited message
call-back

tpchkunsol() Check the arrival of
unsolicited messages

tppost() Post an event message

tpsubscribe() Subscribe to event
messages

tpunsubscribe() Unsubscribe to event
messages

Transaction management tpbegin() Begin a transaction “Writing Global
Transactions” on page

tpcommit() Commit the current
transaction

tpabort() Roll back the current
transaction

tpgetlev() Check whether in
transaction mode

tpsuspend() Suspend the current
transaction

tpresume() Resume a transaction

Resource management tpopen(3c) Open a resource manager Setting Up a BEA Tuxe
Application

tpclose(3c) Close a resource manager

For a Task Related
to . . .

Use This C Function . . . To . . . For More
Information,
Refer to . . .
1-12 Programming a BEA Tuxedo Application Using C

BEA Tuxedo API: ATMI
Security tpkey_open(3c) Open a key handle for
digital signature
generation, message
encryption, or message
decryption

Using BEA Tuxedo
Security

tpkey_getinfo(3c) Get information associated
with a key handle

tpkey_setinfo(3c) Set optional attributes
associated with a key
handle

tpkey_close(3c) Close a previously opened
handle

tpsign(3c) Mark a typed message
buffer for generation of a
digital signature

tpseal(3c) Mark a typed message
buffer for generation of an
encryption envelope

tpenvelope(3c) Access the digital signature
and recipient information
associated with a typed
message buffer

tpexport(3c) Convert a typed message
buffer into an exportable,
machine-independent
(externalized) string
representation

tpimport(3c) Convert an externalized
string representation back
into a typed message buffer

For a Task Related
to . . .

Use This C Function . . . To . . . For More
Information,
Refer to . . .
Programming a BEA Tuxedo Application Using C 1-13

1 Introduction to BEA Tuxedo Programming
1-14 Programming a BEA Tuxedo Application Using C

CHAPTER

es:

r
2 Programming
Environment

� Updating the UBBCONFIG Configuration File

� Setting Environment Variables

� Including the Required Header Files

� Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an
application in the UBBCONFIG configuration file. To customize your programming
environment, you may need to create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelin

� Copy and edit a file that already exists. For example, the file ubbshm that comes
with the bankapp sample application can provide a good starting point.

� Minimize complexity. For test purposes, set up your application as a shared
memory, single-processor system. Use regular operating system files for you
data.
Programming a BEA Tuxedo Application Using C 2-1

2 Programming Environment

.

ry.
� Make sure the IPCKEY parameter in the configuration file does not conflict with
any other parameters being used at your installation. Check with your BEA
Tuxedo application administrator, and refer to Setting Up a BEA Tuxedo
Application for more information.

� Set the UID and GID parameters so that you are the owner of the configuration

� Review the documentation. The configuration file is described in UBBCONFIG(5)
in the BEA Tuxedo File Formats and Data Descriptions Reference.

The following table summarizes the UBBCONFIG configuration file parameters that
affect the programming environment. Parameters are listed by functional catego

Table 2-1 Programming-related UBBCONFIG Parameters by Functional
Category

Functional
Category

Parameter Section Description

Global Resource
Limits

MAXSERVERS RESOURCES Specifies the maximum number of
servers in the configuration. When
setting this value, you need to
consider the MAX values for all
servers.

MAXSERVICES RESOURCES Specifies the maximum total number
of services in the configuration.

Data-dependent
Routing

BUFTYPE ROUTING List of types and subtypes of data
buffers for which the specified
routing entry is valid.

Link-level
Encryption

MINENCRYPTBITS NETWORK Sets the minimum encryption level
that a process accepts.

MAXENCRYPTBITS NETWORK Sets the maximum encryption level
that a process accepts.
2-2 Programming a BEA Tuxedo Application Using C

Updating the UBBCONFIG Configuration File
Load Balancing LDBAL RESOURCES Flag for specifying whether or not
load balancing is enabled. If enabled,
the BEA Tuxedo system attempts to
balance requests across the network.

NETLOAD MACHINES Numeric value that is added to the
load factor of services that are remote
from the invoking client, providing a
bias for choosing a local server over a
remote server. Load balancing must
be enabled (that is, LDBAL must be
set to Y).

LOAD SERVICES Relative load factor associated with a
service instance. The default is 50.

Security AUTHSVC RESOURCES Specifies the name of an application
authentication service that is invoked
by the system for each client joining
the system.

SECURITY RESOURCES Specifies the type of application
security to be enforced.

Functional
Category

Parameter Section Description
Programming a BEA Tuxedo Application Using C 2-3

2 Programming Environment
Conversational
Communication

MAXCONV RESOURCES Sets the maximum number of
simultaneous conversations for a
single machine. You can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in the SERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in the MACHINES
section.

CONV SERVERS Specifies whether or not
conversational communication is
supported. If this parameter is set to N
or unspecified, a tpconnect() call
to a service fails.

MIN/MAX SERVERS Specify the minimum and maximum
number of occurrences of the server
to be started by tmboot(1) . If not
specified, MIN defaults to 1 and MAX
defaults to MIN. The same parameters
are available for use with
request/response servers. However,
conversational servers are
automatically spawned as needed. So
if you set MIN=1 and MAX=10, for
example, tmboot starts one server
initially. When a tpconnect() call
is made to a service offered by that
server, the system starts a second
copy of a server. As each copy is
called, a new one is spawned, up to a
limit of 10.

Functional
Category

Parameter Section Description
2-4 Programming a BEA Tuxedo Application Using C

Setting Environment Variables

tem,

nt in
alues
The configuration file is an operating system text file. To make it usable by the sys
you must execute the tmloadcf(1) command to convert the file to a binary file.

See Also

� Setting Up a BEA Tuxedo Application

� UBBCONFIG(5) in the BEA Tuxedo File Formats and Data Descriptions
Reference

Setting Environment Variables

Initially, the application administrator sets the variables that define the environme
which your application runs. These environment variables are set by assigning v
to the ENVFILE parameter in the MACHINES section of the UBBCONFIG file. (Refer to
Setting Up a BEA Tuxedo Application for more information.)

Transaction
Management

AUTOTRAN SERVICES Controls whether a service routine is
placed in transaction mode. If you set
this parameter to Y, a transaction in
the service subroutine is
automatically started whenever a
request message is received from
another process.

Multithreaded
Servers

MAXDISPATCHTHREADS SERVERS Specifies the maximum number of
concurrently dispatched threads that
each server process may spawn.

MINDISPATCHTHREADS SERVERS Specifies the number of server
dispatch threads started on initial
server boot.

Functional
Category

Parameter Section Description
Programming a BEA Tuxedo Application Using C 2-5

2 Programming Environment

ost
gory.
For the client and server routines in your application, you can update existing
environment variables or create new ones. The following table summarizes the m
commonly used environment variables. The variables are listed by functional cate

Table 2-2 Programming-related Environment Variables by Functional Category

Functional
Category

Environment
Variable

Defines the . . . Used by . . .

Global TUXDIR Location of the BEA
Tuxedo system binary files

BEA Tuxedo application
programs

Configuration TUXCONFIG Location of the BEA
Tuxedo configuration file

BEA Tuxedo application
programs

Compilation CC Command that invokes the
C compiler. Default is cc

buildclient(1) and
buildserver(1) commands

CFLAGS Link edit flags to be passed
to the C compiler. Link edit
flags are optional.

buildclient(1) and
buildserver(1) commands

Data Compression TMCMPPRFM Level of compression
(between 1 and 9).

BEA Tuxedo application
programs that perform data
compression

Load Balancing TMNETLOAD Numeric value that is added
to the load value for remote
queues, making the remote
queues appear to have more
work than they actually do.
As a result, even if load
balancing is enabled, local
requests are sent to local
queues more often than to
remote queues.

BEA Tuxedo application
programs that perform load
balancing
2-6 Programming a BEA Tuxedo Application Using C

Setting Environment Variables

tem

If operating in a UNIX environment, add $TUXDIR/bin to your environment PATH to
ensure that your application can locate the executables for the BEA Tuxedo sys
commands. For more information on setting up the environment, refer to Setting Up a
BEA Tuxedo Application.

See Also

� Setting Up a BEA Tuxedo Application

Buffer Management FIELDTBLS or
FIELDTBLS32

Comma-separated list of
field table filenames for
FML and FML32 typed
buffers, respectively.
Required only for FML and
VIEW types.

FML and FML32 typed buffers
and FML VIEWs

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of
directories to be searched
for the field table files for
FML and FML32,
respectively. For Windows
NT, a semi-colon separated
list is used.

FML and FML32 typed buffers
and FML VIEWs

VIEWFILES or
VIEWFILES32

Comma-separated list of
allowable f ilenames for
VIEW and VIEW32 typed
buffers, respectively.

VIEW and VIEW32 typed
buffers

VIEWDIR or
VIEWDIR32

Colon-separated list of
directories to be searched
for VIEW and VIEW32
files, respectively. For
Windows NT, a semi-colon
separated list is used.

VIEW and VIEW32 typed
buffers

Functional
Category

Environment
Variable

Defines the . . . Used by . . .
Programming a BEA Tuxedo Application Using C 2-7

2 Programming Environment

ithin

that

Including the Required Header Files

The following table summarizes the header files that may need to be specified w
the application programs, using the #include statement, in order to interface properly
with the BEA Tuxedo system.

Table 2-3 Required Header Files

Starting and Stopping the Application

To start the application, execute the tmboot(1) command. The command gets the IPC
resources required by the application, and starts administrative processes and
application servers.

To stop the application, execute the tmshutdown(1) command. The command stops
the servers and releases the IPC resources used by the application, except any
might be used by the resource manager, such as a database.

See Also

� tmboot(1) and tmshutdown(1) in the BEA Tuxedo Command Reference

For . . . You must include . . .

All BEA Tuxedo
application programs

atmi.h header file supplied by the BEA Tuxedo system

Application programs
with FML typed buffers

� Header file generated from the corresponding field table
files

� fml.h header file supplied by the BEA Tuxedo system

Application program with
VIEW typed buffers

Header file generated from the corresponding view description
files
2-8 Programming a BEA Tuxedo Application Using C

CHAPTER
3 Managing Typed
Buffers

� Overview of Typed Buffers

� Allocating a Typed Buffer

� Putting Data in a Buffer

� Resizing a Typed Buffer

� Checking for Buffer Type

� Freeing a Typed Buffer

� Using a VIEW Typed Buffer

� Using an FML Typed Buffer

� Using an XML Typed Buffer

� Customizing a Buffer
Programming a BEA Tuxedo Application Using C 3-1

3 Managing Typed Buffers

ocated
sages
 a

the

ent
d

 specific
mer

and

t

em
Overview of Typed Buffers

Before a message can be sent from one process to another, a buffer must be all
for the message data. BEA Tuxedo System clients use typed buffers to send mes
to servers. A typed buffer is a memory area with a category (type) and optionally
subcategory (subtype) associated with it. Typed buffers make up one of the
fundamental features of the distributed programming environment supported by
BEA Tuxedo system.

Why typed? In a distributed environment, an application may be installed on
heterogeneous systems that communicate across multiple networks using differ
protocols. Different types of buffers require different routines to initialize, send an
receive messages, and encode and decode data. Each buffers is designated as a
type so that the appropriate routines can be called automatically without program
intervention.

The following table lists the typed buffers supported by the BEA Tuxedo system
indicates whether or not:

� The buffer is self-describing; in other words, the buffer data type and length can
be determined simply by (a) knowing the type and subtype, and (b) looking a
the data.

� The buffer requires a subtype.

� The system supports data-dependent routing for the typed buffer.

� The system supports encoding and decoding for the typed buffer.

If any routing functions are required, the application programmer must provide th
as part of the application.
3-2 Programming a BEA Tuxedo Application Using C

Overview of Typed Buffers
Table 3-1 Typed Buffers

Typed Buffer Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding

CARRAY Undefined array of characters, any of
which can be NULL. This typed buffer is
used to handle the data opaquely, as the
BEA Tuxedo system does not interpret the
semantics of the array. Because a CARRAY
is not self-describing, the length must
always be provided during transmission.
Encoding and decoding are not supported
for messages sent between machines
because the bytes are not interpreted by the
system.

No No No No

FML (Field
Manipulation
Language)

Proprietary BEA Tuxedo System type of
self-describing buffer in which each data
field carries its own identifier, an
occurrence number, and possibly a length
indicator. Because all data manipulation is
done via FML function calls rather than
native C statements, the FML buffer offers
data-independence and greater flexibility
at the expense of some processing
overhead.

The FML buffer uses 16 bits for field
identifiers and lengths of fields.

Refer to “Using an FML Typed Buffer” on
page 3-22 for more information.

Yes No Yes Yes

FML32 Equivalent to FML but uses 32 bits for field
identifiers and lengths of fields, which
allows for larger and more fields and,
consequently, larger overall buffers.

Refer to “Using an FML Typed Buffer” on
page 3-22 for more information.

Yes No Yes Yes
Programming a BEA Tuxedo Application Using C 3-3

3 Managing Typed Buffers
STRING Array of characters that terminates with a
NULL character. The STRING buffer is
self-describing, so the BEA Tuxedo
System can convert data automatically
when data is exchanged by machines with
different character sets.

Yes No No No

VIEW C structure defined by the application.
VIEW types must have subtypes that
designate individual data structures. A
view description file, in which the fields
and types that appear in the data structure
are defined, must be available to client and
server processes that use a data structure
described in a VIEW typed buffer.
Encoding and decoding are performed
automatically if the buffer is passed
between machines of different types. Refer
to “Using a VIEW Typed Buffer” on page
3-16 for more information.

No Yes Yes Yes

VIEW32 Equivalent to VIEW but uses 32 bits for
length and count fields, which allows for
larger and more fields and, consequently,
larger overall buffers.

Refer to “Using a VIEW Typed Buffer” on
page 3-16 for more information.

No Yes Yes Yes

X_C_TYPE Equivalent to VIEW. No Yes Yes Yes

X_COMMON Equivalent to VIEW, but used for
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

No Yes Yes Yes

Typed Buffer Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding
3-4 Programming a BEA Tuxedo Application Using C

Overview of Typed Buffers
All buffer types are defined in a file called tmtypesw.c in the $TUXDIR/lib directory.
Only buffer types defined in tmtypesw.c are known to your client and server
programs. You can edit the tmtypesw.c file to add or remove buffer types. In
addition, you can use the BUFTYPE parameter (in UBBCONFIG) to restrict the types and
subtypes that can be processed by a given service.

The tmtypesw.c file is used to build a shared object or dynamic link library. This
object is dynamically loaded by both BEA Tuxedo administrative servers, and
application clients and servers.

See Also

� “Using a VIEW Typed Buffer” on page 3-16

� “Using an FML Typed Buffer” on page 3-22

XML An XML document that consists of:

� Text, in the form of a sequence of
encoded characters

� A description of the logical structure
of the document and information about
that structure

The routing of an XML document can be
based on element content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if the encoding differs from the
native character sets (US-ASCII or
EBCDIC) used in the BEA Tuxedo
configuration files (UBBCONFIG(5) and
DMCONFIG(5)), the element and attribute
names are converted to US-ASCII or
EBCDIC. Refer to “Using an XML Typed
Buffer” on page 3-27for more information.

No No Yes No

X_OCTET Equivalent to CARRAY. No No No No

Typed Buffer Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding
Programming a BEA Tuxedo Application Using C 3-5

3 Managing Typed Buffers

ce

 sent,
 typed
� “Using an XML Typed Buffer” on page 3-27

� tuxtypes(5) in the BEA Tuxedo File Formats and Data Descriptions Referen

� UBBCONFIG(5) in the BEA Tuxedo File Formats and Data Descriptions
Reference

Allocating a Typed Buffer

Initially, no buffers are associated with a client process. Before a message can be
a client process must allocate a buffer of a supported type to carry a message. A
buffer is allocated using the tpalloc(3c) function, as follows.

char*
tpalloc(char * type , char * subtype , long size)

The following table describes the arguments to the tpalloc() function.

Table 3-2 tpalloc() Function Arguments

Argument Description

type Pointer to a valid typed buffer.

subtype Pointer to the name of a subtype being specified (in the view
description file) for a VIEW, VIEW32, or X_COMMON typed
buffer.

In the cases where a subtype is not relevant, assign the NULL
value to this argument.
3-6 Programming a BEA Tuxedo Application Using C

Allocating a Typed Buffer

lue

at

r
The VIEW, VIEW32, X_C_TYPE, and X_COMMON typed buffers require the subtype
argument, as shown in the following example.

Listing 3-1 Allocating a VIEW Typed Buffer

struct aud *audv; /* pointer to aud view structure */
 . . .
audv = (struct aud *) tpalloc("VIEW", "aud", sizeof(struct aud));
 . . .

The following example shows how to allocate an FML typed buffer. Note that a va
of NULL is assigned to the subtype argument.

size Size of the buffer.

The BEA Tuxedo system automatically associates a default
buffer size with all typed buffers except CARRAY, X_OCTET,
and XML, which require that you specify a size, so that the end
of the buffer can be identified.

For all typed buffers other than CARRAY, X_OCTET, and XML, if
you specify a value of zero, the BEA Tuxedo system uses the
default associated with that typed buffer. If you specify a size,
the BEA Tuxedo system assigns the larger of the following two
values: the specified size or the default size associated with th
typed buffer.

The default size for all typed buffers other than STRING,
CARRAY, X_OCTET, and XML is 1024 bytes. The default size for
STRING typed buffers is 512 bytes. There is no default value fo
CARRAY, X_OCTET, and XML; for these typed buffers you must
specify a size value greater than zero. If you do not specify a
size, the argument defaults to 0. As a result, the tpalloc()
function returns a NULL pointer and sets tperrno to
TPEINVAL.

Argument Description
Programming a BEA Tuxedo Application Using C 3-7

3 Managing Typed Buffers

L
Listing 3-2 Allocating an FML Typed Buffer

FBFR *fbfr; /* pointer to an FML buffer structure */
 . . .
fbfr = (FBFR *)tpalloc("FML", NULL, Fneeded(f, v))
 . . .

The following example shows how to allocate a CARRAY typed buffer, which requires
that a size value be specified.

Listing 3-3 Allocating a CARRAY Typed Buffer

char *cptr;
long casize;
. . .
casize = 1024;
cptr = tpalloc("CARRAY", NULL, casize);
. . .

Upon success, the tpalloc() function returns a pointer of type char . For types other
than STRING and CARRAY, you should cast the pointer to the proper C structure or FM
pointer.

If the tpalloc() function encounters an error, it returns the NULL pointer. The
following list provides examples of error conditions:

� Failure to specify a size value for a CARRAY, X_OCTET, or XML typed buffer

� Failure to specify a type (or subtype in the case of VIEW)

� Specifying a type that is not known to the system

� Failure to join the application before attempting allocation

For a complete list of error codes and explanations of them, refer to tpalloc(3c) in
the BEA Tuxedo C Function Reference.

The following listing shows how to allocate a STRING typed buffer. In this example,
the associated default size is used as the value of the size argument to tpalloc() .
3-8 Programming a BEA Tuxedo Application Using C

Putting Data in a Buffer
Listing 3-4 Allocating a STRING Buffer

char *cptr;
 . . .
cptr = tpalloc("STRING", NULL, 0);
. . .

See Also

� “Putting Data in a Buffer” on page 3-9

� “Resizing a Typed Buffer” on page 3-11

� tpalloc(3c) in the BEA Tuxedo C Function Reference

Putting Data in a Buffer

Once you have allocated a buffer, you can put data in it.

In the following example, a VIEW typed buffer called aud is created with three
members (fields). The three members are b_id , the branch identifier taken from the
command line (if provided); balance , used to return the requested balance; and
ermsg , used to return a message to the status line for the user. When audit is used to
request a specific branch balance, the value of the b_id member is set to the branch
identifier to which the request is being sent, and the balance and ermsg members are
set to zero and the NULL string, respectively.
Programming a BEA Tuxedo Application Using C 3-9

3 Managing Typed Buffers

e is
nch
med
.

Listing 3-5 Putting Data in a Message Buffer - Example 1

...
audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

/* Prepare aud structure */

audv->b_id = q_branchid;
audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");
...

When audit is used to query the total bank balance, the total balance at each sit
obtained by a call to the BAL server. To run a query on each site, a representative bra
identifier is specified. Representative branch identifiers are stored in an array na
sitelist[] . Hence, the aud structure is set up as shown in the following example

Listing 3-6 Placing Data in a Message Buffer - Example 2

...
/* Prepare aud structure */

audv->b_id = sitelist[i];/* routing done on this field */
audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");
...

The process of putting data into a STRING buffer is illustrated in the “Resizing a
Buffer” on page 3-12 listing.

See Also

� “Allocating a Typed Buffer” on page 3-6

� “Resizing a Typed Buffer” on page 3-11

� tpalloc(3c) in the BEA Tuxedo C Function Reference
3-10 Programming a BEA Tuxedo Application Using C

Resizing a Typed Buffer

ize
actual
ce, it

alid.

e
Resizing a Typed Buffer

You can change the size of a buffer allocated with tpalloc() by using the
tprealloc(3c) function as follows.

char*
tprealloc(char * ptr , long size)

The following table describes the arguments to the tprealloc() function.

Table 3-3 tprealloc() Function Arguments

The pointer returned by tprealloc() points to a buffer of the same type as the
original buffer. You must use the returned pointer to reference the resized buffer
because the location of the buffer may have changed.

When you call the tprealloc() function to increase the size of the buffer, the BEA
Tuxedo system makes new space available to the buffer. When you call the
tprealloc() function to make a buffer smaller, the system does not actually re-s
the buffer; instead, it renders the space beyond the specified size unusable. The
content of the typed buffer remains unchanged. If you want to free up unused spa
is recommended that you copy the data into a buffer of the desired size and thenfree
the larger buffer.

On error, the tprealloc() function returns the NULL pointer and sets tperrno to an
appropriate value. Refer to tpalloc(3c) in the BEA Tuxedo C Function Reference for
information on error codes.

Warning: If the tprealloc() function returns the NULL pointer, the contents of
the buffer passed to it may have been altered and may be no longer v

Argument Description

ptr Pointer to the buffer that is to be re-sized. This pointer must hav
been allocated originally by a call to tpalloc() . If it was not,
the call fails and tperrno(5) is set to TPEINVAL to signify
that invalid arguments have been passed to the function.

size Long integer specifying the new size of the buffer.
Programming a BEA Tuxedo Application Using C 3-11

3 Managing Typed Buffers

w to
The following example shows how to reallocate space for a STRING buffer.

Listing 3-7 Resizing a Buffer

#include <stdio.h>
#include “atmi.h”

char instr[100]; /* string to capture stdin input strings */
long s1len, s2len; /* string 1 and string 2 lengths */
char *s1ptr, *s2ptr; /* string 1 and string 2 pointers */

main()

{
 (void)gets(instr); /* get line from stdin */
 s1len = (long)strlen(instr)+1; /* determine its length */

 join application

 if ((s1ptr = tpalloc(“STRING”, NULL, s1len)) == NULL) {
 fprintf(stderr, “tpalloc failed for echo of: %s\n”, instr);
 leave application
 exit(1);
 }
 (void)strcpy(s1ptr, instr);

 make communication call with buffer pointed to by s1ptr

 (void)gets(instr); /* get another line from stdin */
 s2len = (long)strlen(instr)+1; /* determine its length */
 if ((s2ptr = tprealloc(s1ptr, s2len)) == NULL) {
 fprintf(stderr, “tprealloc failed for echo of: %s\n”, instr);
 free s1ptr's buffer
 leave application
 exit(1);
 }
 (void)strcpy(s2ptr, instr);

 make communication call with buffer pointed to by s2ptr
 . . .
}

The following example (an expanded version of the previous example) shows ho
check for occurrences of all possible error codes.
3-12 Programming a BEA Tuxedo Application Using C

Resizing a Typed Buffer
Listing 3-8 Error Checking for tprealloc()

. . .
if ((s2ptr=tprealloc(s1ptr, s2len)) == NULL)
 switch(tperrno) {
 case TPEINVAL:
 fprintf(stderr, "given invalid arguments\n");
 fprintf(stderr, "will do tpalloc instead\n");
 tpfree(s1ptr);
 if ((s2ptr=tpalloc("STRING", NULL, s2len)) == NULL) {
 fprintf(stderr, "tpalloc failed for echo of: %s\n", instr);
 leave application
 exit(1);
 }
 break;
 case TPEPROTO:
 fprintf(stderr, "tried to tprealloc before tpinit;\n");
 fprintf(stderr, "program error; contact product support\n");
 leave application
 exit(1);
 case TPESYSTEM:
 fprintf(stderr,
 "BEA Tuxedo error occurred; consult today's userlog file\n");
 leave application
 exit(1);
 case TPEOS:
 fprintf(stderr, "Operating System error %d
occurred\n",Uunixerr);
 leave application
 exit(1);
 default:
 fprintf(stderr,
 "Error from tpalloc: %s\n", tpstrerror(tperrno));
 break;
}

See Also

� “Allocating a Typed Buffer” on page 3-6

� “Putting Data in a Buffer” on page 3-9

� tprealloc(3c) in the BEA Tuxedo C Function Reference
Programming a BEA Tuxedo Application Using C 3-13

3 Managing Typed Buffers

he

f

 the

r
g

y

e
Checking for Buffer Type

The tptypes(3c) function returns the type and subtype (if one exists) of a buffer. T
tptypes() function signature is as follows.

long
tptypes(char * ptr , char * type , char * subtype)

The following table describes the arguments to the tptypes() function.

Table 3-4 tptypes() Function Arguments

Upon success, the tptypes() function returns the length of the buffer in the form o
a long integer.

In the event of an error, tptypes() returns a value of -1 and sets tperrno(5) to the
appropriate error code. For a list of these error codes, refer to the “Introduction to
C Language Application-Transaction Monitor Interface,” and tpalloc(3c) in the
BEA Tuxedo C Function Reference.

You can use the size value returned by tptypes() upon success to determine whethe
the default buffer size is large enough to hold your data, as shown in the followin
example.

Argument Description

ptr Pointer to a data buffer. This pointer must have been originall
allocated by a call to tpalloc() or tprealloc() , it may not
be NULL, and it must be cast as a character type; otherwise, th
tptypes() function reports an invalid argument error.

type Pointer to the type of the data buffer. type is of character type.

subtype Pointer to the subtype of the data buffer, if one exists. subtype
is of character type. For all types other than VIEW, VIEW32,
X_C_TYPE, and X_COMMON, upon return the subtype
parameter points to a character array containing the NULL
string.
3-14 Programming a BEA Tuxedo Application Using C

Freeing a Typed Buffer

d

e,
Listing 3-9 Getting Buffer Size

. . .
iptr = (FBFR *)tpalloc("FML", NULL, 0);
ilen = tptypes(iptr, NULL, NULL);
. . .
if (ilen < mydatasize)
 iptr=tprealloc(iptr, mydatasize);

See Also

� “Allocating a Typed Buffer” on page 3-6

� tptypes(3c) in the BEA Tuxedo C Function Reference

Freeing a Typed Buffer

The tpfree(3c) function frees a buffer allocated by tpalloc() or reallocated by
tprealloc() . The tpfree() function signature is as follows.

void
tpfree(char * ptr)

The tpfree() function takes only one argument, ptr , which is described in the
following table.

Table 3-5 tpfree() Function Argument

Argument Description

ptr Pointer to a data buffer. This pointer must have been allocate
originally by a call to tpalloc() or tprealloc() , it may
not be NULL, and it must be cast as a character type; otherwis
the function returns without freeing anything or reporting an
error condition.
Programming a BEA Tuxedo Application Using C 3-15

3 Managing Typed Buffers

uffers,

When freeing an FML32 buffer using tpfree() , the routine recursively frees all
embedded buffers to prevent memory leaks. In order to preserve the embedded b
you should assign the associated pointer to NULL before issuing the tpfree()
routine. When ptr is NULL, no action occurs.

The following example shows how to use the tpfree() function to free a buffer.

Listing 3-10 Freeing a Buffer

struct aud *audv; /* pointer to aud view structure */
. . .
audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));
. . .
tpfree((char *)audv);

See Also

� “Allocating a Typed Buffer” on page 3-6

� “Resizing a Typed Buffer” on page 3-11

� tpfree(3c) in the BEA Tuxedo C Function Reference

Using a VIEW Typed Buffer

There are two kinds of VIEW typed buffers. The first, FML VIEW, is a C structure
generated from an FML buffer. The second is simply an independent C structure.
3-16 Programming a BEA Tuxedo Application Using C

Using a VIEW Typed Buffer

hey

. If

 data
r

nt
The reason for converting FML buffers into C structures and back again (and the
purpose of the FML VIEW typed buffers) is that while FML buffers provide
data-independence and convenience, they incur processing overhead because t
must be manipulated using FML function calls. C structures, while not providing
flexibility, offer the performance required for lengthy manipulations of buffer data
you need to perform a significant amount of data manipulation, you can improve
performance by transferring fielded buffer data to C structures, operating on the
using normal C functions, and then converting the data back to the FML buffer fo
storage or message transmission.

For more information on the FML typed buffer and FML file conversion, refer to the BEA
Tuxedo FML Function Reference.

To use VIEW typed buffers, you must perform the following steps:

� Set the appropriate environment variables.

� Describe each structure in view description files.

� Compile the view description files using viewc , the BEA Tuxedo view
compiler. Specify the resulting header file in the #include statement for your
application program.

Setting Environment Variables for a VIEW Typed Buffer

To use a VIEW typed buffer in an application, you must set the following environme
variables.

Table 3-6 Environment Variables for a VIEW Typed Buffer

Environment
Variable

Description

FIELDTBLS or
FIELDTBLS32

Comma-separated list of field table file names for FML or
FML32 typed buffers. Required only for FML VIEW types.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of directories to search for the field table
files for FML and FML32 typed buffers. For Microsoft Windows,
use a semi-colon separated list. Required only for FML VIEW
types.
Programming a BEA Tuxedo Application Using C 3-17

3 Managing Typed Buffers

.
e

tion

Creating a View Description File

To use a VIEW typed buffer, you must define the C record in a view description file
The view description file includes, a view for each entry, a view that describes th
characteristic C structure mapping and the potential FML conversion pattern. The name
of the view corresponds to the name of the C language structure.

The following format is used for each structure in the view description file.

$ /* View structure */
 VIEW viewname
 type cname fbname count flag size null

The following table describes the fields that must be specified in the view descrip
file for each C structure.

Table 3-7 View Description File Fields

VIEWFILES or
VIEWFILES32

Comma-separated list of allowable f ile names for VIEW or
VIEW32 description files.

VIEWDIR or
VIEWDIR32

Colon-separated list of directories to search for VIEW or
VIEW32 files. For Microsoft Windows, use a semi-colon
separated list.

Environment
Variable

Description

Field Description

type Data type of the field. Can be set to short , long , float ,
double , char , string , or carray .

cname Name of the field as it appears in the C structure.

fbname If you will be using the FML-to-VIEW or VIEW-to-FML
conversion functions, this field must be included to indicate the
corresponding FML name. This field name must also appear in
the FML field table file. This field is not required for
FML-independent VIEWs.

count Number of times field occurs.
3-18 Programming a BEA Tuxedo Application Using C

Using a VIEW Typed Buffer

 be

r
re
You can include a comment line by prefixing it with the # or $ character. Lines
prefixed by a $ sign are included in the .h file.

flag Specifies any of the following optional flag settings:

� P - Change the interpretation of the NULL value

� S - One-way mapping from fielded buffer to structure

� F - One-way mapping from structure to fielded buffer

� N - Zero-way mapping

� C - Generate additional field for associated count member
(ACM)

� L - Hold number of bytes transferred for STRING and
CARRAY

size For STRING and CARRAY buffer types, specifies the maximum
length of the value. This field is ignored for all other buffer
types.

null User-specified NULL value, or - to indicate the default value
for a field. NULL values are used in VIEW typed buffers to
indicate empty C structure members.

The default NULL value for all numeric types is 0 (0.0 for
dec_t). For character types, the default NULL value is ‘\0 ’.
For STRING and CARRAY types, the default NULL value is “ ”.

Constants used, by convention, as escape characters can also
used to specify a NULL value. The view compiler recognizes
the following escape constants: \ddd (where d is an octal digit),
\0 , \n , \t , \v , \r , \f , \\ , \’ , and \” .

You may enclose STRING, CARRAY, and char NULL values in
double or single quotes. The view compiler does not accept
unescaped quotes within a user-specified NULL value.

You can also specify the keyword NONE in the NULL field of
a view member description, which means that there is no NULL
value for the member. The maximum size of default values fo
string and character array members is 2660 characters. For mo
information, refer to the BEA Tuxedo FML Function Reference.

Field Description
Programming a BEA Tuxedo Application Using C 3-19

3 Managing Typed Buffers

 an

t
The following listing is an excerpt from an example view description file based on
FML buffer. In this case, the fbname field must be specified and match that which
appears in the corresponding field table file. Note that the CARRAY1 field includes an
occurrence count of 2 and sets the C flag to indicate that an additional count elemen
should be created. In addition, the L flag is set to establish a length element that
indicates the number of characters with which the application populates the CARRAY1
field.

Listing 3-11 View Description File for FML VIEW

$ /* View structure */
 VIEW MYVIEW
 #type cname fbname count flag size null
 float float1 FLOAT1 1 - - 0.0
 double double1 DOUBLE1 1 - - 0.0
 long long1 LONG1 1 - - 0
 short short1 SHORT1 1 - - 0
 int int1 INT1 1 - - 0
 dec_t dec1 DEC1 1 - 9,16 0
 char char1 CHAR1 1 - - '\0'
 string string1 STRING1 1 - 20 '\0'
 carray carray1 CARRAY1 2 CL 20 '\0'
 END

The following listing illustrates the same view description file for an independent
VIEW.

Listing 3-12 View Description File for an Independent View

$ /* View data structure */
 VIEW MYVIEW
 #type cname fbname count flag size null
 float float1 - 1 - - -
 double double1 - 1 - - -
 long long1 - 1 - - -
 short short1 - 1 - - -
 int int1 - 1 - - -
 dec_t dec1 - 1 - 9,16 -
 char char1 - 1 - - -
 string string1 - 1 - 20 -
3-20 Programming a BEA Tuxedo Application Using C

Using a VIEW Typed Buffer

uld
 carray carray1 - 2 CL 20 -
 END

Note that the format is similar to the FML-dependent view, except that the fbname and
null fields are not relevant and are ignored by the viewc compiler. You must include
a value (for example, a dash) as a placeholder in these fields.

Executing the VIEW Compiler

To compile a VIEW typed buffer, run the viewc command, specifying the name of the
view description file as an argument. To specify an independent VIEW, use the -n
option. You can optionally specify a directory in which the resulting output file sho
be written. By default, the output file is written to the current directory.

For example, for an FML-dependent VIEW, the compiler is invoked as follows.

viewc myview.v

Note: To compile a VIEW32 typed buffer, run the viewc32 command.

For an independent VIEW, use the -n option on the command line, as follows.

viewc -n myview.v

The output of the viewc command includes:

� One or more COBOL COPY files; for example, MYVIEW.cbl

� Header file containing a structure definition that may be used by application
programs

� Binary version of the source description file; for example, myview.V

Note: On case-insensitive platforms (for example, Microsoft Windows), the
extension used for the names of such files is vv ; for example, myview.vv .

The following listing provides an example of the header file created by viewc .
Programming a BEA Tuxedo Application Using C 3-21

3 Managing Typed Buffers

st
Listing 3-13 Header File Created Using the VIEW Compiler

struct MYVIEW {
 float float1;
 double double1;
 long long1;
 short short1;
 int int1;
 dec_t dec1;
 char char1;
 char string1[20];
 unsigned short L_carray1[2]; /* length array of carray1 */
 short C_carray1; /* count of carray1 */
 char carray1[2][20];
};

The same header file is created for FML-dependent and independent VIEWs.

In order to use a VIEW typed buffer in client programs or service subroutines, you mu
specify the header file in the application #include statements.

See Also

� “Using an FML Typed Buffer” on page 3-22

� “Using an XML Typed Buffer” on page 3-27

� viewc, viewc32(1) in the BEA Tuxedo Command Reference

Using an FML Typed Buffer

To use FML typed buffers, you must perform the following steps:

� Set the appropriate environment variables.
3-22 Programming a BEA Tuxedo Application Using C

Using an FML Typed Buffer

ccess
. For
� Describe the potential fields in an FML field table.

� Create an FML header file and specify the header file in a #include statement in
the application.

FML functions are used to manipulate typed buffers, including those that convert
fielded buffers to C structures and vice versa. By using these functions, you can a
and update data values without having to know how data is structured and stored
more information on FML functions, refer to the BEA Tuxedo FML Function Reference.

Setting Environment Variables for an FML Typed Buffer

To use an FML typed buffer in an application program, you must set the following
environment variables.

Table 3-8 FML Typed Buffer Environment Variables

Creating a Field Table File

Field table files are always required when FML buffers and/or FML-dependent VIEWs are
used. A field table file maps the logical name of a field in an FML buffer to a string that
uniquely identifies the field.

The following format is used for the description of each field in the FML field table.

$ /* FML structure */
 *base value
 name number type flags comments

Environment
Variable

Description

FIELDTBLS or
FIELDTBLS32

Comma-separated list of field table file names for FML or
FML32 typed buffers, respectively.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of directories to search for the field table
files for FML and FML32, respectively. For Microsoft Windows,
use a semi-colon separated list.
Programming a BEA Tuxedo Application Using C 3-23

3 Managing Typed Buffers

ter

The following table describes the fields that must be specified in the FML field table file
for each FML field.

Table 3-9 Field Table File Fields

All fields are optional, and may be included more than once.

Field Description

* base value Specifies a base for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The *base option allows field numbers to be reused. For
a 16-bit buffer, the base plus the relevant number must be grea
than or equal to 100 and less than 8191. This field is optional.

Note: The BEA Tuxedo system reserves field numbers 1-100
and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FML; field numbers 101-33, 554, and 431, for
FML32.

name Identifier for the field. The value must be a string of up to 30
characters, consisting of alphanumeric and underscore
characters only.

rel-number Relative numeric value of the field. This value is added to the
current base, if specified, to calculate the field number.

type Type of the field. This value can be any of the following: char ,
string , short , long , float , double , or carray .

flag Reserved for future use. A dash (-) should be included as a
placeholder.

comment Optional comment.
3-24 Programming a BEA Tuxedo Application Using C

Using an FML Typed Buffer

ust
The following example illustrates a field table file that may be used with the
FML-dependent VIEW example.

Listing 3-14 Field Table File for FML VIEW

name number type flags comments
 FLOAT1 110 float - -
 DOUBLE1 111 double - -
 LONG1 112 long - -
 SHORT1 113 short - -
 INT1 114 long - -
 DEC1 115 string - -
 CHAR1 116 char - -
 STRING1 117 string - -
 CARRAY1 118 carray - -

Creating an FML Header File

In order to use an FML typed buffer in client programs or service subroutines, you m
create an FML header file and specify it in the application #include statements.

To create an FML header file from a field table file, use the mkfldhdr (1) command. For
example, to create a file called myview.flds.h , enter the following command.

mkfldhdr myview.flds

For FML32 typed buffers, use the mkfldhdr32 command.
Programming a BEA Tuxedo Application Using C 3-25

3 Managing Typed Buffers

The following listing shows the myview.flds.h header file that is created by the
mkfldhdr command.

Listing 3-15 myview.flds.h Header File

/* fname fldid */
/* ----- ----- */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHAR1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#define CARRAY1 ((FLDID)49270) /* number: 118 type: carray */

Specify the new header file in the #include statement of your application. Once the
header file is included, you can refer to fields by their symbolic names.

See Also

� “Using a VIEW Typed Buffer” on page 3-16

� “Using an XML Typed Buffer” on page 3-27

� mkfldhdr, mkfldhdr32(1) in the BEA Tuxedo Command Reference
3-26 Programming a BEA Tuxedo Application Using C

Using an XML Typed Buffer

hin
e
ith

hat

e
m the
ion
o
Using an XML Typed Buffer

XML buffers enable BEA Tuxedo applications to use XML for exchanging data wit
and between applications. BEA Tuxedo applications can send and receive simplXML
buffers, and route those buffers to the appropriate servers. All logic for dealing w
XML documents, including parsing, resides in the application.

An XML document consists of:

� A sequence of characters that encode the text of a document

� A description of the logical structure of the document and information about t
structure

The programming model for the XML buffer type is similar to that for the CARRAY buffer
type: you must specify the length of the buffer with the tpalloc() function. The
maximum supported size of an XML document is 4GB.

Formatting and filtering for Events processing (which are supported when a STRING
buffer type is used) are not supported for the XML buffer type. Therefore, the
_tmfilter and _tmformat function pointers in the buffer type switch for XML buffers
are set to NULL.

The XML parser in the BEA Tuxedo system performs the following functions:

� Autodetection of character encodings

� Character code conversion

� Detection of element content and attribute values

� Data type conversion

Data-dependent routing is supported for XML buffers. The routing of an XML document
can be based on element content, or on element type and an attribute value. ThXML
parser determines the character encoding being used; if the encoding differs fro
native character sets (US-ASCII or EBCDIC) used in the BEA Tuxedo configurat
files (UBBCONFIG and DMCONFIG), the element and attribute names are converted t
US-ASCII or EBCDIC.
Programming a BEA Tuxedo Application Using C 3-27

3 Managing Typed Buffers

x and
f the
e

sing.

eet
ot flat,
e query.
ports
Attributes configured for routing must be included in an XML document. If an attribute
is configured as a routing criteria but it is not included in the XML document, routing
processing fails.

The content of an element and the value of an attribute must conform to the synta
semantics required for a routing field value. The user must also specify the type o
routing field value. XML supports only character data. If a range field is numeric, th
content or value of that field is converted to a numeric value during routing proces

See Also

� “Using a VIEW Typed Buffer” on page 3-16

� “Using an FML Typed Buffer” on page 3-22

Customizing a Buffer

You may find that the buffer types supplied by the BEA Tuxedo system do not m
your needs. For example, perhaps your application uses a data structure that is n
but has pointers to other data structures, such as a parse tree for an SQL databas
To accommodate unique application requirements, the BEA Tuxedo System sup
customized buffers.

To customize a buffer, you need to identify the following characteristics.

Table 3-10 Custom Buffer Type Characteristics

Characteristic Description

Buffer type Name of the buffer type, specified by a string of up to eight
characters.
3-28 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

ach
LL

ric
r
y.

d

r
The following table defines the list of routines that you may need to specify for e
buffer type. If a particular routine is not applicable, you can simply provide a NU
pointer; the BEA Tuxedo system uses default processing, as necessary.

Table 3-11 Custom Buffer Type Routines

Buffer subtype Name of the buffer subtype, specified by a string of up to 16
characters. The system uses a subtype to identify different
processing requirements for buffers of a given type. When the
wildcard character (*) is specified as the subtype value, all
buffers of a given type can be processed using the same gene
routine. Any buffers for which a subtype is defined must appea
before the wildcard in the list, in order to be processed correctl

Default size Minimum size of the associated buffer type that can be allocate
or reallocated. For buffer types that have a value greater than
zero and that are sized appropriately, you can specify a buffer
size of zero when allocating or reallocating a buffer to use this
default size.

Routine Description

Buffer initialization Initializes a newly allocated typed buffer.

Buffer reinitialization Reinitializes a typed buffer. This routine is called after a buffer
has been reallocated (that is, assigned a new size).

Buffer uninitialization Uninitializes a typed buffer. This routine is called just before a
typed buffer is freed.

Buffer presend Prepares the typed buffer for sending. This routine is called
before a typed buffer is sent as a message to another client o
server. It returns the length of the data to be transmitted.

Buffer postsend Returns the typed buffer to its original state. This routine is
called after the message is sent.

Buffer postreceive Prepares the typed buffer once it has been received by the
application. It returns the length of the application data.

Characteristic Description
Programming a BEA Tuxedo Application Using C 3-29

3 Managing Typed Buffers

,
tions in
ffer
o the

our

er

d

t
te

s

 to
Defining Your Own Buffer Types

The application programmer is responsible for the code that manipulates buffers
which allocates and frees space, and sends and receives messages. For applica
which the default buffer types do not meet the needs of the application, other bu
types can be defined, and new routines can be written and then incorporated int
buffer type switch.

To define other buffer types, complete the following steps:

1. Code any switch element routines that may be required.

2. Add your new types and the names of your buffer management modules to
tm_typesw .

3. Build a new shared object or a DLL. The shared object or DLL must contain y
updated buffer type switch and associated functions.

Encode/decode Performs all the encoding and decoding necessary for the buff
type. A request to encode or decode is passed to the routine,
along with input and output buffers and lengths. The format use
for encoding is determined by the application and, as with the
other routines, it may be dependent on the buffer type.

Routing Specifies the routing information. This routine is called with a
typed buffer, the length of the data for that buffer, a logical
routing name configured by an administrator, and a target
service. Based on this information, the application must selec
the server group to which the message should be sent or indica
that the message is not needed.

Filter Specifies filter information. This routine is called to evaluate an
expression against a typed buffer and to return a match if it find
one. If the typed buffer is VIEW or FML, the FML Boolean
expressions are used. This routine is used by the EventBroker
evaluate matches for events.

Format Specifies a printable string for a typed buffer.

Routine Description
3-30 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

bles

ffer
 For

edure
r,
re.
4. Install your new shared object or DLL so that all servers, clients, and executa
provided by the BEA Tuxedo system are loaded dynamically at run time.

If your application is using static libraries and you are providing a customized bu
type switch, then you must build a custom server to link in your new type switch.
details, see buildwsh (1), TMQUEUE (5), or TMQFORWARD (5).

The rest of the sections in this topic address the steps listed in the preceding proc
to define a new buffer type in a shared-object or DLL environment. First, howeve
let’s look at the buffer switch that is delivered with the BEA Tuxedo system softwa
The following listing shows the switch delivered with the system.

Listing 3-16 Default Buffer Type Switch

#include <stdio.h>
#include <tmtypes.h>

/* Initialization of the buffer type switch */
static struct tmtype_sw_t tm_typesw[] = {
{
“CARRAY", /* type */
““, /* subtype */
0 /* dfltsize */
},
{
“STRING", /* type */
“", /*subtype */
512, /* dfltsize */
NULL, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
_strpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_strencdec, /* encdec */
NULL, /* route */
NULL, /* filter */
NULL /* format */
},
{
“FML", /* type */
“", /* subtype */
1024, /* dfltsize */
_finit, /* initbuf */
_freinit, /* reinitbuf */
Programming a BEA Tuxedo Application Using C 3-31

3 Managing Typed Buffers
_funinit, /* uninitbuf */
_fpresend, /* presend */
_fpostsend, /*postsend */
_fpostrecv, /* postrecv */
_fencdec, /* encdec */
_froute, /*route */
_ffilter, /* filter */
_fformat /* format */
},
{
“FML32", /* type */
“", /* subtype */
1024, /* dfltsize */
_finit32, /* initbuf */
_freinit32, /* reinitbuf */
_funinit32, /* uninitbuf */
_fpresend32, /* presend */
_fpostsend32, /* postsend */
_fpostrecv32, /* postrecv */
_fencdec32, /* encdec */
_froute32, /* route */
_ffilter32, /* filter */
_fformat32 /* format */
},
{
"VIEW", /* type */
"*", /* subtype */
1024, /* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vformat /* format */
},
{
"VIEW32", /* type */
"*" /* subtype */
1024, /* dfltsize */
_vinit32, /* initbuf */
_vreinit32, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend32, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
3-32 Programming a BEA Tuxedo Application Using C

Customizing a Buffer
_vencdec32, /* encdec */
_vroute32, /* route */
_vfilter32, /* filter */
_vformat32 /* format */
},
{
"X_OCTET", /* type */
"", /* subtype */
0, /* dfltsize */
},
{
"'X','_','C','_','T','Y','P','E'", /* type */
"*", /* subtype */
1024, /* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vformat /* format */
},
{
"'X','_','C','O','M','M','O','N'", /* type */
"*", /* subtype */
1024, /* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vformat /* format */
},
{
"XML", /* type */
"*", /* subtype */
0, /* dfltsize */
NULL, /* _xinit - not available */
NULL, /* _xreinit - not available */
NULL, /* _xuninit - not available */
NULL, /* _xpresend - not available */
NULL, /* _xpostsend - not available */
Programming a BEA Tuxedo Application Using C 3-33

3 Managing Typed Buffers

e
NULL, /* _xpostrecv - not available */
NULL, /* _xencdec - not available */
_xroute, /* _xroute */
NULL, /* filter - not available */
NULL /* format - not available */
},
{
""
}
};

For a better understanding of the preceding listing, consider the declaration of th
buffer type structure that is shown in the following listing.

Listing 3-17 Buffer Type Structure

/* The following definitions are in $TUXDIR/include/tmtypes.h */

#define TMTYPELEN 8
#define TMSTYPELEN 16

struct tmtype_sw_t {
 char type[TMTYPELEN]; /* type of buffer */
 char subtype[TMSTYPELEN]; /* sub-type of buffer */
 long dfltsize; /* default size of buffer */
 /* buffer initialization function pointer */
 int (_TMDLLENTRY *initbuf) _((char _TM_FAR *, long));
 /* buffer re-initialization function pointer */
 int (_TMDLLENTRY *reinitbuf) _((char _TM_FAR *, long));
 /* buffer un-initialization function pointer */
 int (_TMDLLENTRY *uninitbuf) _((char _TM_FAR *, long));
 /* pre-send buffer manipulation func pointer */
 long (_TMDLLENTRY *presend) _((char _TM_FAR *, long, long));
 /* post-send buffer manipulation func pointer */
 void (_TMDLLENTRY *postsend) _((char _TM_FAR *, long, long));
 /* post-receive buffer manipulation func pointer*/
 long (_TMDLLENTRY *postrecv) _((char _TM_FAR *, long, long));
 /* encode/decode function pointer */
 long (_TMDLLENTRY *encdec) _((int, char _TM_FAR *, long,
 char _TM_FAR *, long));
 /* routing function pointer */
 int (_TMDLLENTRY *route) _((char _TM_FAR *, char _TM_FAR *,
 char _TM_FAR *, long, char _TM_FAR *));
3-34 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

pe

s a

of

 of

e

ny
y.
 /* buffer filtering function pointer */
 int (_TMDLLENTRY *filter) _((char _TM_FAR *, long, char _TM_FAR *,
 long));
 /* buffer formatting function pointer */
 int (_TMDLLENTRY *format) _((char _TM_FAR *, long, char _TM_FAR *,
 char _TM_FAR *, long));
 /* this space reserved for future expansion */
 void (_TMDLLENTRY *reserved[10]) _((void));
};

The listing for the default buffer type switch shows the initialization of the buffer ty
switch. The nine default buffer types are shown, followed by a field for naming a
subtype. Except for the VIEW (and equivalently X_C_TYPE and X_COMMON) type,
subtype is null. The subtype for VIEW is given as ``*'', which means that the default
VIEW type puts no constraints on subtypes; all subtypes of type VIEW are processed in
the same manner.

The next field gives the default (minimum) size of the buffer. For the CARRAY (and
equivalently X_OCTET) type this is given as 0, which means that the routine that use
CARRAY buffer type must tpalloc() enough space for the expected CARRAY.

For the other types, the BEA Tuxedo system allocates (with a tpalloc() call) the
space shown in the dfltsize field of the entry (unless the size argument of
tpalloc() specifies a larger size).

The remaining eight fields of entries in the buffer type switch contain the names
switch element routines. These routines are described in the buffer (3c) page in BEA
Tuxedo C Function Reference. The name of a routine provides a clue to the purpose
the routine. For example, _fpresend on the FML type is a pointer to a routine that
manipulates the buffer before sending it. If no presend manipulation is needed, a
NULL pointer may be specified. NULL means no special handling is required; th
default action should be taken. See buffer (3c) for details.

It is particularly important that you notice the NULL entry at the end of the switch. A
changes that are made must always leave the NULL entry at the end of the arra
Programming a BEA Tuxedo Application Using C 3-35

3 Managing Typed Buffers

 of a
g need
uld

ibility

data

pted
Coding Switch Element Routines

Presumably an application that is defining new buffer types is doing so because
special processing need. For example, let’s assume the application has a recurrin
to compress data before sending a buffer to the next process. The application co
write a presend routine. The declaration for the presend routine is shown in the
following listing.

Listing 3-18 Semantics of the Presend Switch Element

long
presend(ptr, dlen, mdlen)
char *ptr;

long dlen, mdlen;

� ptr is a pointer to the application data buffer.

� dlen is the length of the data as passed into the routine.

� mdlen is the size of the buffer in which the data resides.

The data compression that takes place within your presend routine is the respons
of the system programmer for your application.

On completion the routine should return the new, hopefully shorter length of the
to be sent (in the same buffer), or a -1 to indicate failure.

The name given to your version of the presend routine can be any identifier acce
by the C compiler. For example, suppose we name it _mypresend .

If you use our _mypresend compression routine, you will probably also need a
corresponding _mypostrecv routine to decompress the data at the receiving end.
Follow the template shown in the buffer (3c) entry in BEA Tuxedo C Function
Reference.
3-36 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

led,

8
r
ding
Adding a New Buffer Type to tm_typesw

After the new switch element routines have been written and successfully compi
the new buffer type must be added to the buffer type switch. To do this task, we
recommend making a copy of $TUXDIR/lib/tmtypesw.c (the source code for the
default buffer type switch). Give your copy a name with a .c suffix, such as
mytypesw.c . Add the new type to your copy. The name of the type can be up to
characters in length. Subtype can be null ("") or a string of up to 16 characters. Ente
the names of your new switch element routines in the appropriate locations, inclu
the extern declarations. The following listing provides an example.

Listing 3-19 Adding a New Type to the Buffer Switch

#include <stdio.h>
#include <tmtypes.h>

/* Customized the buffer type switch */

static struct tmtype_sw_t tm_typesw[] = {
{
"SOUND", /* type */
“", /* subtype */
50000, /* dfltsize */
snd_init, /* initbuf */
snd_init, /* reinitbuf */
NULL, /* uninitbuf */

snd_cmprs, /* presend */
snd_uncmprs, /* postsend */
snd_uncmprs /* postrecv */
},
{
"FML", /* type */
"", /* subtype */
1024, /* dfltsize */
_finit, /* initbuf */
_freinit, /* reinitbuf */
_funinit, /* uninitbuf */
_fpresend, /* presend */
_fpostsend, /* postsend */
_fpostrecv, /* postrecv */
_fencdec, /* encdec */
_froute, /* route */
_ffilter, /* filter */
_fformat /* format */
Programming a BEA Tuxedo Application Using C 3-37

3 Managing Typed Buffers

h the

se,
uffer
ent

lity

n
rvers

tore
},
{
""
}
};

In the previous listing, we added a new type: SOUND. We also removed the entries for
VIEW, X_OCTET, X_COMMON, and X_C_TYPE, to demonstrate that you can remove any
entries that are not needed in the default switch. Note that the array still ends wit
NULL entry.

An alternative to defining a new buffer type is to redefine an existing type. Suppo
for the sake of argument, that the data compression for which you defined the b
type MYTYPE was performed on strings. You could substitute your new switch elem
routines, _mypresend and _mypostrecv , for the two _dfltblen routines in type
STRING.

Compiling and Linking Your New tm_typesw

To simplify installation, the buffer type switch is stored in a shared object.

Note: On some platforms the term “shared library” is used instead of “shared
object.” On the NT platform a “dynamic link library” is used instead of a
“shared object.” For the purposes of this discussion, however, the functiona
implied by all three terms is equivalent, so we use only one term.

This section describes how to make all BEA Tuxedo processes in your applicatio
aware of the modified buffer type switch. These processes include application se
and clients, as well as servers and utilities provided by the BEA Tuxedo system.

1. Copy and modify $TUXDIR/lib/tmtypesw.c , as described in “Adding a New
Buffer Type to tm_typesw” on page 3-37. If additional functions are required, s
them in either tmtypesw.c or a separate C source file.

2. Compile tmtypesw.c with the flags required for shared objects.

3. Link together all object files to produce a shared object.
3-38 Programming a BEA Tuxedo Application Using C

Customizing a Buffer

plied

t, to

ient
ing a

e
er
4. Copy libbuft.so.71 from the current directory to a directory in which it will
be visible to applications, and processed before the default shared object sup
by the BEA Tuxedo system. We recommend using one of the following
directories: $APPDIR, $TUXDIR/lib , or $TUXDIR/bin (on an NT platform).

Different platforms assign different names to the buffer type switch shared objec
conform to operating system conventions.

Table 3-12 OS-specific Names for the Buffer Type Switch Shared Object

Please refer to the software development documentation for your platform for
instructions on building a shared object library.

As an alternative, it is possible to statically link a new buffer type switch in every cl
and server process, but doing so is more error-prone and not as efficient as build
shared object library.

Compiling and Linking Your New tm_typesw for a 16-bit Windows Platform

If you have modified tmtypesw.c on a Windows platform, as described in
“Compiling and Linking Your New tm_typesw” on page 3-38, then you can use th
commands shown in the following sample code listing to make the modified buff
type switch available to your application.

On This Platform . . . The Name of the Buffer Type Switch
Shared Object Is . . .

UNIX System
(most SVR4)

libbuft.so.71

HP-UX libbuft.sl

Sun OS libbuft.so.71

Windows (16-bit) wbuft.dll

Windows (32-bit) wbuft32.dll

OS/2 (16-bit) obuft.dll

OS/2 (32-bit) obuft.dll
Programming a BEA Tuxedo Application Using C 3-39

3 Managing Typed Buffers

nd use

mer,

hines
ode
ta

alues

mines
Listing 3-20 Sample Code in Microsoft Visual C++

CL -AL -I..\e\|sysinclu -I..\e\|include -Aw -G2swx -Zp -D_TM_WIN
-D_TMDLL -Od -c TMTYPESW.C
LINK /CO /ALIGN:16 TMTYPESW.OBJ, WBUFT.DLL, NUL, WTUXWS /SE:250 /NOD
/NOE LIBW LDLLCEW, WBUFT.DEF
RC /30 /T /K WBUFT.DLL

Data Conversion

The purpose of the TYPE parameter in the MACHINES section of the configuration file
is to group together machines that have the same form of data representation (a
the same compiler) so that data conversion is done on messages going between
machines of different TYPEs. For the default buffer types, data conversion between
unlike machines is transparent to the user (and to the administrator and program
for that matter).

If your application defines new buffer types for messages that move between mac
with different data representation schemes, you must also write new encode/dec
routines to be incorporated into the buffer type switch. When writing your own da
conversion routines, keep the following guidelines in mind:

� You should use the semantics of the _tmencdec routine shown on the
buffer(3c) page in the BEA Tuxedo C Function Reference. That is, you should
code your routine so that it uses the same arguments and returns the same v
on success or failure as _tmencdec . Follow the procedure provide in “ for
building servers with services that use your new buffer type.

The encode/decode routines are called only when the BEA Tuxedo system deter

that data is being sent between two machines that are not of the same TYPE.
3-40 Programming a BEA Tuxedo Application Using C

CHAPTER

, it
4 Writing Clients

� Joining an Application

� Using Features of the TPINIT Typed Buffer

� Leaving the Application

� Building Clients

� Client Process Examples

Joining an Application

Before a client can perform any service request, it must join the BEA Tuxedo
application, either explicitly or implicitly. Once the client has joined the application
can initiate requests and receive replies.

A client joins an application explicitly by calling the tpinit(3c) function with the
following signature.

int
tpinit (TPINIT *tpinfo)

A client joins an application implicitly by issuing a service request (or any ATMI
function) without first calling the tpinit() function. In this case, the tpinit()
function is called by the BEA Tuxedo system on behalf of the client with the tpinfo
argument set to NULL. The tpinfo argument points to a typed buffer with a TPINIT
type and NULL subtype. The TPINIT typed buffer is defined in the atmi.h header file
and includes the following information:
Programming a BEA Tuxedo Application Using C 4-1

4 Writing Clients

,

r

char usrname [MAXTIDENT+2];
char cltname [MAXTIDENT+2];
char passwd [MAXTIDENT+2];
char grpname [MAXTIDENT+2];
long flags ;
long datalen ;
long data ;

The following table summarizes the TPINIT data structure fields.

Table 4-1 TPINIT Data Structure Fields

Field Description

usrname Name representing the client; used for both broadcast
notification and administrative statistics retrieval. The client
assigns a value to usrname during the call to the tpinit()
function. The value is a string of up to MAXTIDENT characters
(which defaults to 30 and is configurable by the administrator)
and must be terminated by NULL.

cltname Client name with application-defined semantics: a 30-characte
null-terminated string used for both broadcast notification and
administrative statistics retrieval. The client assigns a value to
cltname during the call to the tpinit() function. The value
is a string of up to MAXTIDENT characters (which defaults to 30
and is configurable by the administrator), and must be
terminated by NULL.

Note: The value sysclient is reserved for the cltname
field.

passwd Application password in unencrypted format. Used for user
authentication. The value is a string of up to 30 characters.

grpname Associates client with resource manager group. If set to a
0-length string, the client is not associated with a resource
manager and is in the default client group. The value of
grpname must be the null string (0-length string) for
Workstation clients. Refer to Using the BEA Tuxedo
Workstation Component for more information on Workstation
clients.
4-2 Programming a BEA Tuxedo Application Using C

Joining an Application

e

in
Before it can join the application, the client program must call tpalloc() to allocate
the TPINIT buffer. The following example shows how to allocate a TPINIT buffer that
will be used to pass eight bytes of application-specific data to the tpinit() function.

Listing 4-1 Allocating a TPINIT Typed Buffer

.

.

.
TPINIT *tpinfo;
.
.
.
if ((tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,
 TPINITNEED(8))) == (TPINIT *)NULL){
 Error Routine
}

Refer to tpinit() in the BEA Tuxedo C Function Reference for more information on
the TPINIT typed buffer.

flags Indicates both the client-specific notification mechanism and th
mode of system access. Controls both multicontext and
single-context modes. Refer to “Unsolicited Notification
Handling” on page 4-6 or tpinit() in the BEA Tuxedo C
Function Reference for more information on flags.

datalen Length of the application-specific data. The buffer type switch
entry for the TPINIT typed buffer sets this field based on the
total size passed in for the typed buffer. The size of the
application data is the total size less the size of the TPINIT
structure itself plus the size of the data placeholder as defined
the structure.

data Placeholder for variable length data that is forwarded to an
application-defined authentication service.

Field Description
Programming a BEA Tuxedo Application Using C 4-3

4 Writing Clients

f

nt
also

by

client
he
g the
See Also

� tpinit(3c) in the BEA Tuxedo C Function Reference

Using Features of the TPINIT Typed Buffer

The client must explicitly invoke the tpinit() function in order to take advantage o

the following features of the TPINIT typed buffer:

� Client Naming

� Unsolicited Notification Handling

� System Access Mode

� Resource Manager Association

� Client Authentication

Client Naming

When a client joins an application, the BEA Tuxedo system assigns a unique clie
identifier to it. The identifier is passed to each service called by the client. It can
be used for unsolicited notification.

You can also assign unique client and user names of up to 30 characters each,
passing them to the tpinit() function via the tpinfo buffer argument. The BEA
Tuxedo system establishes a unique identifier for each process by combining the
and user names associated with it, with the logical machine identifier (LMID) of t
machine on which the process is running. You may choose a method for acquirin
values for these fields.
4-4 Programming a BEA Tuxedo Application Using C

Using Features of the TPINIT Typed Buffer

tion

 the

ia

n

g an
Note: If a process is executing outside the administrative domain of the applica
(that is, if it is running on a workstation connected to the administrative
domain), the LMID of the machine used by the workstation client to access
application is assigned.

Once a unique identifier for a client process is created:

� Client authentication can be implemented.

� Unsolicited messages can be sent to a specific client or to groups of clients v
tpnotify() and tpbroadcast() .

� Detailed statistical information can be gathered via tmadmin(1) .

Refer to “Writing Event-based Clients and Servers” on page 8-1 for information o
sending and receiving unsolicited messages, and the BEA Tuxedo C Function
Reference for more information on tmadmin(1) .

The following figure shows how names might be associated with clients accessin
application. In the example, the application uses the cltname field to indicate a job
function.

Figure 4-1 Client Naming
Programming a BEA Tuxedo Application Using C 4-5

4 Writing Clients

n five

ple,
t
 each

the

the
Unsolicited Notification Handling

Unsolicited notification refers to any communication with a client that is not an
expected response to a service request (or an error code). For example, an
administrator may broadcast a message to indicate that the system will go down i
minutes.

A client can be notified of an unsolicited message in a number of ways. For exam
some operating systems might send a signal to the client and interrupt its curren
processing. By default, the BEA Tuxedo system checks for unsolicited messages
time an ATMI function is invoked. This approach, referred to as dip-in, is
advantageous because it:

� Is supported on all platforms

� Does not interrupt the current processing

As some time may elapse between “dip-ins,” the application can call the
tpchkunsol() function to check for any waiting unsolicited messages. Refer to
“Writing Event-based Clients and Servers” on page 8-1 for more information on
tpchkunsol() function.

When a client joins an application using the tpinit() function, it can control how to
handle unsolicited notification messages by defining flags. For client notification,
possible values for flags are defined in the following table.
4-6 Programming a BEA Tuxedo Application Using C

Using Features of the TPINIT Typed Buffer

:
using
ues

e

t
he

,
Table 4-2 Client Notification Flags in a TPINIT Typed Buffer

Refer to tpinit(3c) in the BEA Tuxedo C Function Reference for more information
on the TPINIT typed buffer flags.

System Access Mode

An application can access the BEA Tuxedo system through either of two modes
protected or fastpath. The client can request a mode when it joins an application
the tpinit() function. To specify a mode, a client passes one of the following val
in the flags field of the TPINIT buffer to the tpinit() function.

Flag Description

TPU_SIG Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. Th
advantage of using this mode is immediate notification. The
disadvantages include:

� The calling process must have the same UID as the sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

� TPU_SIG is not available on all platforms (specifically, it is
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, the flag is set to TPU_DIP and the
event is logged.

TPU_DIP (default) Select unsolicited notification by dip-in. In this case, the clien
can specify the name of the message handling function using t
tpsetunsol() function, and check for waiting unsolicited
messages using the tpchkunsol() function.

TPU_THREAD Select THREAD notification in a separate thread. This flag is
allowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support
multithreading, it is considered an invalid argument. As a result
an error is returned and is set to TPEINVAL.

TPU_IGN Ignore unsolicited notification.
Programming a BEA Tuxedo Application Using C 4-7

4 Writing Clients

ting
rol

ts
he

t
he
Table 4-3 System Access Flags in a TPINIT Typed Buffer

Resource Manager Association

An application administrator can configure groups for servers associated with a
resource manager, including servers that provide administrative processes for
coordinating transactions. Refer to Setting Up a BEA Tuxedo Application for
information on defining groups.

When joining the application, a client can join a particular group by specifying the
name of that group in the grpname field of the TPINIT buffer.

Client Authentication

The BEA Tuxedo system provides security at incremental levels, including opera
system security, application password, user authentication, optional access cont
lists, mandatory access control lists, and link-level encryption. Refer to Setting Up a
BEA Tuxedo Application for information on setting security levels.

Mode Description

Protected Allows ATMI calls within an application to access the BEA
Tuxedo system internal tables via shared memory, but protec
shared memory against access by application code outside of t
BEA Tuxedo system libraries. Overrides the value in
UBBCONFIG, except when NO_OVERRIDE is specified. Refer to
Setting Up a BEA Tuxedo Application for more information on
UBBCONFIG.

Fastpath (default) Allows ATMI calls within application code access to BEA
Tuxedo system internals via shared memory. Does not protec
shared memory against access by application code outside of t
BEA Tuxedo system libraries. Overrides the value of
UBBCONFIG except when NO_OVERRIDE is specified. Refer to
Setting Up a BEA Tuxedo Application for more information on
UBBCONFIG.
4-8 Programming a BEA Tuxedo Application Using C

Leaving the Application

tion

h as

d

ave the
The application password security level requires every client to provide an applica
password when it joins the application. The administrator can set or change the
application password and must provide it to valid users.

If this level of security is used, BEA Tuxedo system-supplied client programs, suc
ud() , prompt for the application password. (Refer to Administering a BEA Tuxedo
Application at Run Time for more information on ud, wud(1) .) In turn,
application-specific client programs must include code for obtaining the passwor
from a user. The unencrypted password is placed in the TPINIT buffer and evaluated
when the client calls tpinit() to join the application.

Note: The password should not be displayed on the screen.

You can use the tpchkauth(3c) function to determine:

� Whether the application requires any authentication

� If the application requires authentication, which of the following types of
authentication is needed:

z System authentication based on an application password

z Application authentication based on an application password and
user-specific information

Typically, a client should call the tpchkauth() function before tpinit() to identify
any additional security information that must be provided during initialization.

Refer to Using BEA Tuxedo Security for more information on security programming
techniques.

Leaving the Application

Once all service requests have been issued and replies received, the client can le
application using the tpterm(3c) function. The tpterm() function takes no
arguments, and returns an integer value that is equal to –1 on error.
Programming a BEA Tuxedo Application Using C 4-9

4 Writing Clients

em

Building Clients

To build an executable client, compile your application with the BEA Tuxedo syst
libraries and all other referenced files using the buildclient(1) command. Use the
following syntax for the buildclient command.

buildclient filename. c -o filename -f filenames -l filenames

The following table describes the options to the buildclient command.

Table 4-4 buildclient Options

This Option or
Argument . . .

Allows You to Specify . . .

filename. c The C application to be compiled.

-o filename The executable output file. The default name for the output file
is a.out .

-f filenames A list of files that are to be link edited before the BEA Tuxedo
system libraries are link edited. You can specify -f more than
once on the command line, and you can include multiple
filenames for each occurrence of -f . If you specify a C program
file (file .c), it is compiled before it is linked. You can specify
other object files (file .o) separately, or in groups in an
archive file (file .a).

-l filenames A list of files that are to be link edited after the BEA Tuxedo
system libraries are link edited. You can specify -l more than
once on the command line, and you can include multiple
filenames for each occurrence of -l . If you specify a C program
file (file .c), it is compiled before it is linked. You can specify
other object files (file .o) separately, or in groups in an
archive file (file .a).
4-10 Programming a BEA Tuxedo Application Using C

Building Clients

es

nd,

ed
Note: The BEA Tuxedo libraries are linked in automatically; you do not need to
specify any BEA Tuxedo libraries on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which functions are called in the code, and which librari
contain references to those functions.

By default, the buildclient command invokes the UNIX cc command. You can set
the CC and CFLAGS environment variables to specify an alternative compile comma
and to set flags for the compile and link-edit phases, respectively. For more
information, refer to “Setting Environment Variables” on page 2-5.

buildclient -C -o audit -f audit.o

The following example command line compiles a C program called audit.c and
generates an executable file named audit .

buildclient –o audit –f audit.c

See Also

� “Building Servers” on page 5-32

� buildclient(1) in the BEA Tuxedo Command Reference

-r The resource manager access libraries that should be link edit
with the executable server. The application administrator is
responsible for predefining all valid resource manager
information in the $TUXDIR/updataobj/RM file using the
buildtms (1) command. Only one resource manager can be
specified. Refer to Setting Up a BEA Tuxedo Application for
more information.

This Option or
Argument . . .

Allows You to Specify . . .
Programming a BEA Tuxedo Application Using C 4-11

4 Writing Clients

e at

ror
Client Process Examples

The following pseudo-code shows how a typical client process works from the tim
which it joins an application to the time at which it leaves the application.

Listing 4-2 Typical Client Process Paradigm

main()
{
 check level of security
 call tpsetunsol() to name your handler for TPU_DIP
 get usrname, cltname
 prompt for application password
 allocate a TPINIT buffer
 place values into TPINIT buffer structure members

 if (tpinit((TPINIT *) tpinfo) == -1){
 error routine;
 }

 allocate a message buffer
 while user input exists {
 place user input in the buffer
 make a service call
 receive the reply
 check for unsolicited messages
 }
 free buffers
 . . .
 if (tpterm() == -1){
 error routine;
 }
}

On error, -1 is returned and the application sets the external global variable, tperrno ,
to a value that indicates the nature of the error. tperrno is defined in the atmi.h
header file and documented in tperrno(5) in the BEA Tuxedo File Formats and Data
Descriptions Reference. Programmers typically assign, to this global variable, an er
4-12 Programming a BEA Tuxedo Application Using C

Client Process Examples

“Introduction to the C Language Application-Transaction Monitor Interface” in the
BEA Tuxedo C Function Reference for a complete list of error codes that can be
returned for each of the ATMI functions.

The following example illustrates how to use the tpinit() and tpterm() functions.
This example is borrowed from, bankapp , the sample banking application that is
provided with the BEA Tuxedo system.

Listing 4-3 Joining and Leaving an Application

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include <fml.h> /* BEA Tuxedo System */
#include <atmi.h> /* BEA Tuxedo System */
#include <Uunix.h> /* BEA Tuxedo System */
#include <userlog.h> /* BEA Tuxedo System */
#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */

...

main(argc, argv)
int argc;
char *argv[];

{
 ...
 if (strrchr(argv[0],'/') != NULL)
 proc_name = strrchr(argv[0],'/')+1;
 else
 proc_name = argv[0];
 ...
 /* Join application */
 if (tpinit((TPINIT *) NULL) == -1) {
 (void)userlog("%s: failed to join application\n", proc_name);
 exit(1);
 }
 ...
 /* Leave application */
 if (tpterm() == -1) {
 (void)userlog("%s: failed to leave application\n", proc_name);
 exit(1);
 }
}

Programming a BEA Tuxedo Application Using C 4-13

4 Writing Clients

 with
–1),

a
The previous example shows the client process attempting to join the application
a call to tpinit() . If the process encounters an error (that is, if the return code is
the process writes a descriptive message to the central event log via a call to
userlog() , which takes arguments similar to the printf() C program statement.
Refer to userlog(3c) in the BEA Tuxedo C Function Reference for more information.

Similarly, when tpterm() is called, if an error is encountered, the process writes
descriptive message to the central event log.
4-14 Programming a BEA Tuxedo Application Using C

CHAPTER

fined
5 Writing Servers

� BEA Tuxedo System main()

� System-supplied Server and Services

� Guidelines for Writing Servers

� Defining a Service

� Example: Checking the Buffer Type

� Example: Checking the Priority of the Service Request

� Terminating a Service Routine

� Advertising and Unadvertising Services

� Building Servers

BEA Tuxedo System main()

To facilitate the development of servers, the BEA Tuxedo system provides a prede

main() routine for server load modules. When you execute the buildserver
command, the main() routine is automatically included as part of the server.

Note: The main() routine that the system provides is a closed abstraction; you
cannot modify it.

In addition to joining and exiting from an application, the predefined main() routine
accomplishes the following tasks on behalf of the server.
Programming a BEA Tuxedo Application Using C 5-1

5 Writing Servers

tware

are

t.

at is,

.

� Executes the process ignoring any hangups (that is, it ignores the SIGHUP
signal).

� Initiates the cleanup process on receipt of the standard operating system sof
termination signal (SIGTERM). The server is shut down and must be rebooted if
needed again.

� Attaches to shared memory for bulletin board services.

� Creates a message queue for the process.

� Advertises the initial services to be offered by the server. The initial services
either all the services link edited with the predefined main() , or a subset
specified by the BEA Tuxedo system administrator in the configuration file.

� Processes command-line arguments up to the double dash (--), which indicates
the end of system-recognized arguments.

� Calls the function tpsvrinit() to process any command-line arguments listed
after the double dash (--) and optionally to open the resource manager. These
command-line arguments are used for application-specific initialization.

� Until ordered to halt, checks its request queue for service request messages.

� When a service request message arrives on the request queue, main() performs
the following tasks until ordered to halt:

z If the -r option is specified, records the starting time of the service reques

z Updates the bulletin board to indicate that the server is BUSY.

z Allocates a buffer for the request message and dispatches the service; th
calls the service subroutine.

� When the service returns from processing its input, main() performs the
following tasks until ordered to halt:

z If the -r option is specified, records the ending time of the service request

z Updates statistics.

z Updates the bulletin board to indicate that the server is IDLE ; that is, that the
server is ready for work.

z Checks its queue for the next service request.
5-2 Programming a BEA Tuxedo Application Using C

System-supplied Server and Services

r

 two

n
e
� When the server is required to halt, calls tpsvrdone() to perform any required
shutdown operations.

As indicated above, the main() routine handles all of the details associated with
joining and exiting from an application, managing buffers and transactions, and
handling communication.

Note: Because the system-supplied main() accomplishes the work of joining and
leaving the application, you should not include calls to the tpinit() or
tpterm() function in your code. If you do, the function encounters an erro
and returns TPEPROTO in tperrno . For more information on the tpinit() or
tpterm() function, refer to “Writing Clients” on page 4-1.

System-supplied Server and Services

The main() routine provides one system-supplied server, AUTHSVR, and two
subroutines, tpsvrinit() and tpsvrdone() . The default versions of all three, which
are described in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions of tpsvrinit() and tpsvrdone() ,
remember that the default versions of these two routines call tx_open() and
tx_close() , respectively. If you write a new version of tpsvrinit() that
calls tpopen() rather than tx_open() , you should also write a new version
of tpsvrdone() that calls tpclose() . In other words, both functions in an
open/close pair must belong to the same set.

In addition to the subroutines described in this topic, the system provides
subroutines called tpsvrthrinit(3c) and tpsvrthrdone(3c) . For more
information, refer to “Programming a Multithreaded and Multicontexted
Application” on page 10-1.

System-supplied Server: AUTHSVR()

You can use the AUTHSVR(5) server to provide individual client authentication for a
application. The tpinit() function calls this server when the level of security for th
application is TPAPPAUTH.
Programming a BEA Tuxedo Application Using C 5-3

5 Writing Servers

nt

ver,

ich

e

sks

ne.
s
The service in AUTHSVR looks in the data field of the TPINIT buffer for a user
password (not to be confused with the application password specified in the passwd
field of the TPINIT buffer). By default, the system takes the string in data and
searches for a matching string in the /etc/passwd file.

When called by a native-site client, tpinit() forwards the data field as it is received.
This means that if the application requires the password to be encrypted, the clie
program must be coded accordingly.

When called by a workstation client, tpinit() encrypts the data before sending it
across the network.

System-supplied Services: tpsvrinit() Function

When a server is booted, the BEA Tuxedo system main() calls tpsvrinit(3c)
during its initialization phase, before handling any service requests.

If an application does not provide a custom version of this function within the ser
the system uses the default function provided by main() , which opens the resource
manager and logs an entry in the central event log indicating that the server has
successfully started. The central user log is an automatically generated file to wh
processes can write messages by calling the userlog(3c) function. Refer to
“Managing Errors” on page 11-1 for more information on the central event log.

You can use the tpsvrinit() function for any initialization processes that might b
required by an application, such as the following:

� Receiving command-line options

� Opening a database

The following sections provide code samples showing how these initialization ta
are performed through calls to tpsvrinit() . Although it is not illustrated in the
following examples, message exchanges can also be performed within this routi
However, tpsvrinit() fails if it returns with asynchronous replies pending. In thi
case, the replies are ignored by the BEA Tuxedo system, and the server exits
gracefully.

You can also use the tpsvrinit() function to start and complete transactions, as
described in “Managing Errors” on page 11-1.

Use the following signature to call the tpsvrinit() function.
5-4 Programming a BEA Tuxedo Application Using C

System-supplied Server and Services

e
rver

le

int
tpsvrinit(int argc, char **argv)

Receiving Command-line Options

When a server is booted, its first task is to read the server options specified in th
configuration file up to the point that it receives an EOF indication. To do so, the se
calls the getopt (3) UNIX function. The presence of a double dash (--) on the
command line causes the getopt() function to return an EOF. The getopt function
places the argv index of the next argument to be processed in the external variab
optind . The predefined main() then calls tpsvrinit() .

The following code example shows how the tpsvrinit() function is used to receive
command-line options.

Listing 5-1 Receiving Command-line Options in tpsvrinit()

tpsvrinit(argc, argv)
int argc;
char **argv;
{
 int c;
 extern char *optarg;
 extern int optind;
 .
 .
 .
 while((c = getopt(argc, argv, "f:x:")) != EOF)
 switch(c){
 .
 .
 .
 }
 .
 .
 .
}

Programming a BEA Tuxedo Application Using C 5-5

5 Writing Servers

rce

by
 the

ded

ger
 the

ns
When main() calls tpsvrinit() , it picks up any arguments that follow the double
dash (--) on the command line. In the example above, options f and x each takes an
argument, as indicated by the colon. optarg points to the beginning of the option
argument. The switch statement logic is omitted.

Opening a Resource Manager

The following example illustrates another common use of tpsvrinit() : opening a
resource manager. The BEA Tuxedo system provides functions to open a resou
manager, tpopen(3c) and tx_open(3c). It also provides the complementary
functions, tpclose(3c) and tx_close(3c) . Applications that use these functions to
open and close their resource managers are portable in this respect. They work
accessing the resource manager instance-specific information that is available in
configuration file.

Note: If writing a multithreaded server, you must use the tpsvrthrinit() function
to open a resource manager, as described in “Programming a Multithrea
and Multicontexted Application” on page 10-1.

These function calls are optional and can be used in place of the resource mana
specific calls that are sometimes part of the Data Manipulation Language (DML) if
resource manager is a database. Note the use of the userlog(3c) function to write to
the central event log.

Note: To create an initialization function that both receives command-line optio
and opens a database, combine the following example with the previous
example.

Listing 5-2 Opening a Resource Manager in tpsvrinit()

tpsvrinit()
{

 /* Open database */

 if (tpopen() == -1) {
 (void)userlog("tpsvrinit: failed to open database: ");
 switch (tperrno) {
 case TPESYSTEM:
 (void)userlog("System error\n");
 break;
5-6 Programming a BEA Tuxedo Application Using C

System-supplied Server and Services

uests.

y

ded

it.
 case TPEOS:
 (void)userlog("Unix error %d\n",Uunixerr);
 break;
 case TPEPROTO:
 (void)userlog("Called in improper context\n");
 break;
 case TPERMERR:
 (void)userlog("RM failure\n");
 break;
 }
 return(-1); /* causes the server to exit */
 }
 return(0);
}

To guard against errors that may occur during initialization, tpsvrinit() can be
coded to allow the server to exit gracefully before starting to process service req

System-supplied Services: tpsvrdone() Function

The tpsvrdone() function calls tpclose() to close the resource manager, similarl

to the way tpsvrinit() calls tpopen() to open it.

Note: If writing a multithreaded server, you must use tpsvrthrdone() command
to open a resource manager, as described in “Programming a Multithrea
and Multicontexted Application” on page 10-1.

Use the following signature to call the tpsvrdone() function.

void
tpsvrdone() /* Server termination routine */

The tpsvrdone() function requires no arguments.

If an application does not define a closing routine for tpsvrdone() , the BEA Tuxedo
system calls the default routine supplied by main() . This routine calls tx_close()
and userlog() to close the resource manager and write to the central event log,
respectively. The message sent to the log indicates that the server is about to ex
Programming a BEA Tuxedo Application Using C 5-7

5 Writing Servers

but
 and

ed.
tpsvrdone() is called after the server has finished processing service requests
before it exits. Because the server is still part of the system, further communication
transactions can take place within the routine, as long as certain rules are follow
These rules are covered in “Managing Errors” on page 11-1.

The following example illustrates how to use the tpsvrdone() function to close a
resource manager and exit gracefully.

Listing 5-3 Closing a Resource Manager with tpsvrdone()

void
tpsvrdone()
{

 /* Close the database */
 if(tpclose() == -1)
 (void)userlog("tpsvrdone: failed to close database: ");
 switch (tperrno) {
 case TPESYSTEM:
 (void)userlog("BEA TUXEDO error\n");
 break;
 case TPEOS:
 (void)userlog("Unix error %d\n",Uunixerr);
 break;
 case TPEPROTO:
 (void)userlog("Called in improper context\n");
 break;
 case TPERMERR:
 (void)userlog("RM failure\n");
 break;
 }
 return;
 }
 return;
}

5-8 Programming a BEA Tuxedo Application Using C

Guidelines for Writing Servers

tions
hey

end

ster

e
Guidelines for Writing Servers

Because the communication details are handled by the BEA Tuxedo system main()
routine, you can concentrate on the application service logic rather than
communication implementation. For compatibility with the system-supplied main() ,
however, application services must adhere to certain conventions. These conven
are referred to, collectively, as the service template for coding service routines. T
are summarized in the following list. Refer to the tpservice(3c) reference page in
the BEA Tuxedo C Function Reference for more information on these conventions.

� A request/response service can receive only one request at a time and can s
only one reply.

� When processing a request, a request/response service works only on that
request. It can accept another only after it has either sent a reply to the reque
or forwarded the request to another service for additional processing.

� Service routines must terminate by calling either the tpreturn() or
tpforward() function. These functions behave similarly to the C language
return statement except that after they finish executing, control returns to th
BEA Tuxedo system’s main() instead of the calling function.

� When communicating with another server via tpacall() , the initiating service
must either wait for all outstanding replies or invalidate them with tpcancel()
before calling tpreturn() or tpforward() .

� Service routines are invoked with one argument, svcinfo , which is a pointer to
a service information structure (TPSVCINFO).
Programming a BEA Tuxedo Application Using C 5-9

5 Writing Servers

ng

Defining a Service

You must define every service routine as a function that receives one argument
consisting of a pointer to a TPSVCINFO structure. The TPSVCINFO structure is defined
in the atmi.h header file and includes the following information.

char name[32];
long flags ;
char * data ;
long len ;
int cd ;
int appkey ;
CLIENTID cltid ;

The following table summarizes the TPSVCINFO data structure.

Table 5-1 TPSVCINFO Data Structure

Field Description

name Specifies, to the service routine, the name used by the requesti
process to invoke the service.

flags Notifies the service if it is in transaction mode or if the caller is
expecting a reply. The various ways in which a service can be
placed in transaction mode are discussed in “Writing Global
Transactions” on page 9-1.

The TPTRAN flag indicates that the service is in transaction
mode. When a service is invoked through a call to tpcall()
or tpacall() with the flags parameter set to TPNOTRAN,
the service cannot participate in the current transaction.
However, it is still possible for the service to be executed in
transaction mode. That is, even when the caller sets the
TPNOTRAN communication flag, it is possible for TPTRAN to be
set in svcinfo->flags . For an example of such a situation,
refer to “Writing Global Transactions” on page 9-1.

The flags member is set to TPNOREPLY if the service is called
by tpacall() with the TPNOREPLY communication flag set.
If a called service is part of the same transaction as the calling
process, it must return a reply to the caller.
5-10 Programming a BEA Tuxedo Application Using C

Defining a Service

e

ed
tion

es.

s

f
When the data field in the TPSVCINFO structure is being accessed by a process, th
following buffer types must agree:

� Type of the request buffer passed by the calling process

� Type of the corresponding buffer code defined within the called service

� Type of the associated buffer type defined for the called service in the
configuration file

The following example illustrates a typical service definition. This code is borrow
from the ABAL (account balance) service routine that is part of the banking applica
provided with the BEA Tuxedo software. ABAL is part of the BAL server.

data Pointer to a buffer that was previously allocated by tpalloc()
within the main() . This buffer is used to receive request
messages. However, it is recommended that you also use this
buffer to send back reply messages or forward request messag

len Contains the length of the request data that is in the buffer
referenced by the data field.

cd For conversational communication, specifies the connection
descriptor.

appkey Reserved for use by the application. If application-specific
authentication is part of your design, the application-specific
authentication server, which is called when a client joins the
application, should return a client authentication key as well a
an indication of success or failure. The BEA Tuxedo system
holds the appkey on behalf of the client and passes the
information to subsequent service requests in this field. By the
time the appkey is passed to a service, the client has already
been authenticated. However, the appkey field can be used
within a service to identify the user invoking the service or some
other parameters associated with the user.

If this field is not used, the system assigns it a default value o
-1 .

cltid Structure of type CLIENTID used by the system to carry the
identification of the client. You should not modify this structure.

Field Description
Programming a BEA Tuxedo Application Using C 5-11

5 Writing Servers
Listing 5-4 Typical Service Definition

#include <stdio.h> /* UNIX */
#include <atmi.h> /* BEA Tuxedo System */
#include <sqlcode.h> /* BEA Tuxedo System */
#include "bank.flds.h" /* bankdb fields */
#include "aud.h" /* BANKING view defines */

EXEC SQL begin declare section;
static long branch_id; /* branch id */
static float bal; /* balance */
EXEC SQL end declare section;

/*
 * Service to find sum of the account balances at a SITE
 */

void
#ifdef __STDC__
ABAL(TPSVCINFO *transb)

#else

ABAL(transb)
TPSVCINFO *transb;
#endif

{
 struct aud *transv; /* view of decoded message */

 /* Set pointer to TPSVCINFO data buffer */

 transv = (struct aud *)transb->data;

 set the consistency level of the transaction

 /* Get branch id from message, do query */

 EXEC SQL declare acur cursor for
 select SUM(BALANCE) from ACCOUNT;
 EXEC SQL open acur; /* open */
 EXEC SQL fetch acur into :bal; /* fetch */
 if (SQLCODE != SQL_OK) { /* nothing found */
 (void)strcpy (transv->ermsg,"abal failed in sql aggregation");
 EXEC SQL close acur;
 tpreturn(TPFAIL, 0, transb->data, sizeof(struct aud), 0);
 }
 EXEC SQL close acur;
5-12 Programming a BEA Tuxedo Application Using C

Defining a Service

 side

 the
n.

er

The
to

ept

priate
 transv->balance = bal;
 tpreturn (TPSUCCESS, 0, transb->data, sizeof(struct aud), 0);
}

In the preceding example, the application allocates a request buffer on the client
by a call to tpalloc() with the type parameter set to VIEW and the subtype set to
aud . The ABAL service is defined as supporting the VIEW typed buffer. The BUFTYPE
parameter is not specified for ABAL and defaults to ALL. The ABAL service allocates a
buffer of the type VIEW and assigns the data member of the TPSVCINFO structure that
was passed to the ABAL subroutine to the buffer pointer. The ABAL server retrieves the
appropriate data buffer by accessing the corresponding data member, as illustrated in
the preceding example.

Note: After the buffer is retrieved, but before the first attempt is made to access
database, the service must specify the consistency level of the transactio
Refer to “Writing Global Transactions” on page 9-1 for more details on
transaction consistency levels.

Example: Checking the Buffer Type

The code example in this section shows how a service can access the data buff
defined in the TPSVCINFO structure to determine its type by using the tptypes()
function. (This process is described in “Checking for Buffer Type” on page 3-14.)
service also checks the maximum size of the buffer to determine whether or not
reallocate space for the buffer.

This example is derived from the ABAL service that is part of the banking application
provided with the BEA Tuxedo software. It shows how the service is written to acc
a request either as an aud VIEW or an FML buffer. If its attempt to determine the
message type fails, the service returns a string with an error message plus an
appropriate return code; otherwise it executes the segment of code that is appro
for the buffer type. For more information on the tpreturn() function, refer to
“Terminating a Service Routine” on page 5-17.
Programming a BEA Tuxedo Application Using C 5-13

5 Writing Servers
Listing 5-5 Checking for Buffer Type

#define TMTYPERR 1 /* return code indicating tptypes failed */
#define INVALMTY 2 /* return code indicating invalid message type */

void
ABAL(transb)

TPSVCINFO *transb;

{
 struct aud *transv; /* view message */
 FBFR *transf; /* fielded buffer message */
 int repc; /* tpgetrply return code */
 char typ[TMTYPELEN+1], subtyp[TMSTYPELEN+1]; /* type, subtype of message */
 char *retstr; /* return string if tptypes fails */

/* find out what type of buffer sent */
 if (tptypes((char *)transb->data, typ, subtyp) == -1) {
 retstr=tpalloc("STRING", NULL, 100);
 (void)sprintf(retstr,
 "Message garbled; tptypes cannot tell what type message\n");
 tpreturn(TPFAIL, TMTYPERR, retstr, 100, 0);
 }
/* Determine method of processing service request based on type */
 if (strcmp(typ, "FML") == 0) {
 transf = (FBFR *)transb->data;
... code to do abal service for fielded buffer ...
 tpreturn succeeds and sends FML buffer in reply
 }
 else if (strcmp(typ, "VIEW") == 0 && strcmp(subtyp, "aud") == 0) {
 transv = (struct aud *)transb->data;
... code to do abal service for aud struct ...
 tpreturn succeeds and sends aud view buffer in reply
 }
 else {
 retstr=tpalloc("STRING", NULL, 100);
 (void)sprintf(retstr,
 "Message garbled; is neither FML buffer nor aud view\n");
 tpreturn(TPFAIL, INVALMTY, retstr, 100, 0);
 }
}

5-14 Programming a BEA Tuxedo Application Using C

Defining a Service

age

o,
 the
Example: Checking the Priority of the Service Request

Note: The tpgprio() and tpsprio() functions, used for getting and setting
priorities, respectively, are described in detail in “Setting and Getting Mess
Priorities” on page 6-16.

The example code in this section in this section shows how a service called PRINTER
tests the priority level of the request just received using the tpgprio() function. Then,
based on the priority level, the application routes the print job to the appropriate
destination printer and pipes the contents of pbuf −>data to that printer.

 The application queries pbuf −>flags to determine whether a reply is expected. If s
it returns the name of the destination printer to the client. For more information on
tpreturn() function, refer to “Terminating a Service Routine” on page 5-17.

Listing 5-6 Checking the Priority of a Received Request

#include <stdio.h>
#include "atmi.h"

char *roundrobin();

PRINTER(pbuf)

TPSVCINFO *pbuf; /* print buffer */

{
char prname[20], ocmd[30]; /* printer name, output command */
long rlen; /* return buffer length */
int prio; /* priority of request */
FILE *lp_pipe; /* pipe file pointer */

prio=tpgprio();
if (prio <= 20)
 (void)strcpy(prname,"bigjobs"); /* send low priority (verbose)
 jobs to big comp. center
 laser printer where operator
 sorts output and puts it
 in a bin */
else if (prio <= 60)
 (void)strcpy(prname,roundrobin()); /* assign printer on a
 rotating basis to one of
 many local small laser printers
Programming a BEA Tuxedo Application Using C 5-15

5 Writing Servers
 where output can be picked
 up immediately; roundrobin() cycles
 through list of printers */
else
 (void)strcpy(prname,"hispeed");
 /* assign job to high-speed laser
 printer; reserved for those who
 need verbose output on a daily,
 frequent basis */

(void)sprintf(ocmd, "lp -d%s", prname); /* output lp(1) command */
lp_pipe = popen(ocmd, "w"); /* create pipe to command */
(void)fprintf(lp_pipe, "%s", pbuf->data); /* print output there */
(void)pclose(lp_pipe); /* close pipe */

if ((pbuf->flags & TPNOREPLY))
 tpreturn(TPSUCCESS, 0, NULL, 0, 0);
rlen = strlen(prname) + 1;
pbuf->data = tprealloc(pbuf->data, rlen); /* ensure enough space for name */
(void)strcpy(pbuf->data, prname);
tpreturn(TPSUCCESS, 0, pbuf->data, rlen, 0);

char *
roundrobin()

{
static char *printers[] = {"printer1", "printer2", "printer3", "printer4"};
static int p = 0;

if (p > 3)
 p=0;
return(printers[p++]);
}

5-16 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

sage
Terminating a Service Routine

The tpreturn(3c) , tpcancel(3c) , and tpforward(3c) functions specify that a
service routine has completed with one of the following actions:

� tpreturn() sends a reply to the calling client.

� tpcancel() cancels the current request.

� tpforward() forwards a request to another service for further processing.

Sending Replies

The tpreturn(3c) function marks the end of the service routine and sends a mes
to the requester. Use the following signature to call the tpreturn() function.

void
tpreturn(int rval, int rcode, char *data, long len, long flags)

The following table describes the arguments to the tpreturn() function.
Programming a BEA Tuxedo Application Using C 5-17

5 Writing Servers

lly

s

s
Table 5-2 tpreturn() Function Arguments

Argument Description

rval Indicates whether or not the service has completed successfu
on an application-level. The value is an integer that is
represented by a symbolic name. Valid settings include:

� TPSUCCESS - The calling function succeeded. The function
stores the reply message in the caller’s buffer. If there is a
reply message, it is in the caller’s buffer.

� TPFAIL (default) - The service terminated unsuccessfully.
The function reports an error message to the client proces
waiting for the reply. In this case, the client’s tpcall() or
tpgetrply() function call fails and the system sets the
tperrno(5) variable to TPESVCFAIL to indicate an
application-defined failure. If a reply message was
expected, it is available in the caller’s buffer.

� TPEXIT - The service terminated unsuccessfully. The
function reports an error message to the client process
waiting for the reply, and exits.

For a description of the effect that the value of this argument ha
on global transactions, refer to “Writing Global Transactions”
on page 9-1.

rcode Returns an application-defined return code to the caller. The
client can access the value returned in rcode by querying the
tpurcode(5) global variable. The function returns this code
regardless of success or failure.
5-18 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

ss.

e

r

the

f

data Pointer to the reply message that is returned to the client proce
The message buffer must have been allocated previously by
tpalloc() .

If you use the same buffer that was passed to the service in th
SVCINFO structure, you need not be concerned with buffer
allocation or disposition because both are handled by the
system-supplied main() . You cannot free this buffer using the
tpfree() command; any attempt to do so quietly fails. You
can resize the buffer using the tprealloc() function.

If you use another buffer (that is, a buffer other than the one
passed to the service routine) to return the message, it is you
responsibility to allocate it. The system frees the buffer
automatically when the application calls the tpreturn()
function.

If no reply message needs to be returned, set this argument to
NULL pointer.

Note: If no reply is expected by the client (that is, if
TPNOREPLY was set), the tpreturn() function
ignores the data and len arguments and returns
control to main() .

len Length of the reply buffer. The application accesses the value o
this argument through the olen parameter of the tpcall()
function or the len parameter of the tpgetrply() function.

Acting as the client, the process can use this returned value to
determine whether the reply buffer has grown.

If a reply is expected by the client and there is no data in the
reply buffer (that is, if the data argument is set to the NULL
pointer), the function sends a reply with zero length, without
modifying the client’s buffer.

The system ignores the value of this argument if the data
argument is not specified.

flag Currently not used.

Argument Description
Programming a BEA Tuxedo Application Using C 5-19

5 Writing Servers

ly to
ork
pass a
rough

date

A

s

e

of
nd

 not

at is

.
tion
The primary function of a service routine is to process a request and return a rep
a client process. It is not necessary, however, for a single service to do all the w
required to perform the requested function. A service can act as a requester and
request call to another service the same way a client issues the original request: th
calls to tpcall() or tpacall() .

Note: The tpcall() and tpacall() functions are described in detail in “Writing
Request/Response Clients and Servers” on page 6-1.

When tpreturn() is called, control always returns to main() . If a service has sent
requests with asynchronous replies, it must receive all expected replies or invali
them with tpcancel() before returning control to main() . Otherwise, the
outstanding replies are automatically dropped when they are received by the BE
Tuxedo system main() , and an error is returned to the caller.

If the client invokes the service with tpcall() , after a successful call to tpreturn() ,
the reply message is available in the buffer referenced by *odata . If tpacall() is
used to send the request, and tpreturn() returns successfully, the reply message i
available in the tpgetrply() buffer that is referenced by *data .

If a reply is expected and tpreturn() encounters errors while processing its
arguments, it sends a failed message to the calling process. The caller detects th
error by checking the value placed in tperrno . In the case of failed messages, the
system sets tperrno to TPESVCERR. This situation takes precedence over the value
the tpurcode global variable. If this type of error occurs, no reply data is returned, a
both the contents and length of the caller’s output buffer remain unchanged.

If tpreturn() returns a message in a buffer of an unknown type or a buffer that is
allowed by the caller (that is, if the call is made with flags set to TPNOCHANGE), the
system returns TPEOTYPE in tperrno(5) . In this case, application success or failure
cannot be determined, and the contents and length of the output buffer remain
unchanged.

The value returned in the tpurcode(5) global variable is not relevant if the
tpreturn() function is invoked and a time-out occurs for the call waiting for the
reply. This situation takes precedence over all others in determining the value th
returned in tperrno(5) . In this case, tperrno(5) is set to TPETIME and the reply data
is not sent, leaving the contents and length of the caller’s reply buffer unchanged
There are two types of time-outs in the BEA Tuxedo system: blocking and transac
time-outs (discussed in “Writing Global Transactions” on page 9-1).
5-20 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

must

The example code in this section shows the TRANSFER service that is part of the XFER
server. Basically, the TRANSFER service makes synchronous calls to the WITHDRAWAL
and DEPOSIT services. It allocates a separate buffer for the reply message since it
use the request buffer for the calls to both the WITHDRAWAL and the DEPOSIT services.
If the call to WITHDRAWAL fails, the service writes the message cannot withdraw on
the status line of the form, frees the reply buffer, and sets the rval argument of the
tpreturn() function to TPFAIL . If the call succeeds, the debit balance is retrieved
from the reply buffer.

Note: In the following example, the application moves the identifier for the
“destination account” (which is retrieved from the cr_id variable) to the
zeroth occurrence of the ACCOUNT_ID field in the transf fielded buffer. This
move is necessary because this occurrence of the field in an FML buffer is used
for data-dependent routing. Refer to Setting Up a BEA Tuxedo Application for
more information.

A similar scenario is followed for the call to DEPOSIT. On success, the service frees
the reply buffer that was allocated in the service routine and sets the rval argument to
TPSUCCESS, returning the pertinent account information to the status line.

Listing 5-7 tpreturn() Function

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include "fml.h" /* BEA Tuxedo System */
#include "atmi.h" /* BEA Tuxedo System */
#include "Usysflds.h" /* BEA Tuxedo System */
#include "userlog.h" /* BEA Tuxedo System */
#include "bank.h" /* BANKING #defines */
#include "bank.flds.h" /* bankdb fields */

/*
 * Service to transfer an amount from a debit account to a credit
 * account
 */

void
#ifdef __STDC__
TRANSFER(TPSVCINFO *transb)

#else

Programming a BEA Tuxedo Application Using C 5-21

5 Writing Servers
TRANSFER(transb)
TPSVCINFO *transb;
#endif

{
 FBFR *transf; /* fielded buffer of decoded message */
 long db_id, cr_id; /* from/to account id’s */
 float db_bal, cr_bal; /* from/to account balances */
 float tamt; /* amount of the transfer */
 FBFR *reqfb; /* fielded buffer for request message*/
 int reqlen; /* length of fielded buffer */
 char t_amts[BALSTR]; /* string for transfer amount */
 char db_amts[BALSTR]; /* string for debit account balance */
 char cr_amts[BALSTR]; /* string for credit account balance */

/* Set pointr to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;

/* Get debit (db_id) and credit (cr_id) account IDs */

/* must have valid debit account number */
if (((db_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) || (db_id > MAXACCT)) {
 (void)Fchg(transf, STATLIN, 0,"Invalid debit account number",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
/* must have valid credit account number */
if ((cr_id = Fvall(transf, ACCOUNT_ID, 1)) < MINACCT || cr_id > MAXACCT) {
 (void)Fchg(transf,STATLIN, 0,"Invalid credit account number",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* get amount to be withdrawn */
if (Fget(transf, SAMOUNT, 0, t_amts, < 0) 0 || strcmp(t_amts,"") == 0) {
 (void)Fchg(transf, STATLIN, 0, "Invalid amount",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
(void)sscanf(t_amts,"%f",tamt);

/* must have valid amount to transfer */
if (tamt = 0.0) {
 (void)Fchg(transf, STATLIN, 0,
 "Transfer amount must be greater than $0.00",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* make withdraw request buffer */
if ((reqfb = (FBFR *)tpalloc("FML",NULL,transb->len)) == (FBFR *)NULL) {
 (void)userlog("tpalloc failed in transfer\n");
 (void)Fchg(transf, STATLIN, 0,
5-22 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine
 "unable to allocate request buffer", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
reqlen = Fsizeof(reqfb);

/* put ID in request buffer */
(void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&db_id, (FLDLEN)0);

/* put amount in request buffer */
(void)Fchg(reqfb,SAMOUNT,0,t_amts, (FLDLEN)0);

/* increase the priority of withdraw call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of withdraw\n");

if (tpcall("WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
 (long *)&reqlen,TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot withdraw from debit account", (FLDLEN)0);
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
}

/* get "debit" balance from return buffer */

(void)strcpy(db_amts, Fvals((FBFR *)reqfb,SBALANCE,0));
void)sscanf(db_amts,"%f",db_bal);
if ((db_amts == NULL) || (db_bal < 0.0)) {
 (void)Fchg(transf, STATLIN, 0,
 "illegal debit account balance", (FLDLEN)0);
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* put deposit account ID in request buffer */
(void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&cr_id, (FLDLEN)0);

/* put transfer amount in request buffer */
(void)Fchg(reqfb,SAMOUNT,0,t_amts, (FLDLEN)0);

/* Up the priority of deposit call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of deposit\n");

/* Do a tpcall to deposit to second account */
if (tpcall("DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
 (long *)&reqlen, TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot deposit into credit account", (FLDLEN)0);
Programming a BEA Tuxedo Application Using C 5-23

5 Writing Servers

t,

ade
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
}

/* get "credit" balance from return buffer */

(void)strcpy(cr_amts, Fvals((FBFR *)reqfb,SBALANCE,0));
(void)sscanf(cr_amts,"%f",&cr_bal);
if ((cr_amts == NULL) || (cr_bal 0.0)) {
 (void)Fchg(transf, STATLIN, 0,
 "Illegal credit account balance", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* set buffer for successful return */
(void)Fchg(transf, FORMNAM, 0, "CTRANSFER", (FLDLEN)0);
(void)Fchg(transf, SAMOUNT, 0, Fvals(reqfb,SAMOUNT,0), (FLDLEN)0);
(void)Fchg(transf, STATLIN, 0, "", (FLDLEN)0);
(void)Fchg(transf, SBALANCE, 0, db_amts, (FLDLEN)0);
(void)Fchg(transf, SBALANCE, 1, cr_amts, (FLDLEN)0);
tpfree((char *)reqfb);
tpreturn(TPSUCCESS, 0,transb->data, 0L, 0);
}

Invalidating Descriptors

If a service calling tpgetrply() (described in detail in “Writing Request/Response
Clients and Servers” on page 6-1) fails with TPETIME and decides to cancel the reques
it can invalidate the descriptor with a call to tpcancel(3c) . If a reply subsequently
arrives, it is silently discarded.

Use the following signature to call the tpcancel() function.

void
tpcancel(int cd)

The cd (call descriptor) argument identifies the process you want to cancel.

tpcancel() cannot be used for transaction replies (that is, for replies to requests m
without the TPNOTRAN flag set). Within a transaction, tpabort(3c) does the same job
of invalidating the transaction call descriptor.

The following example shows how to invalidate a reply after timing out.
5-24 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

ice

st
Listing 5-8 Invalidating a Reply After Timing Out

int cd1;
 .
 .
 .
 if ((cd1=tpacall(sname, (char *)audv, sizeof(struct aud),
 TPNOTRAN)) == -1) {
 .
 .
 .
 }
 if (tpgetrply(cd1, (char **)&audv,&audrl, 0) == -1) {
 if (tperrno == TPETIME) {
 tpcancel(cd1);
 .
 .
 .
 }
 }
 tpreturn(TPSUCCESS, 0,NULL, 0L, 0);

Forwarding Requests

The tpforward(3c) function allows a service to forward a request to another serv
for further processing.

Use the following signature to call the tpforward() function.

void
tpforward(char * svc, char *data, long len, long flags)

The following table describes the arguments to the tpreturn() function.

Table 5-3 tpreturn() Function Arguments

Argument Description

svc Character pointer to the name of the service to which the reque
is to be forwarded.
Programming a BEA Tuxedo Application Using C 5-25

5 Writing Servers

ss.

e

at
ur

the

f

data Pointer to the reply message that is returned to the client proce
The message buffer must have been allocated previously by
tpalloc() .

If you use the same buffer that was passed to the service in th
SVCINFO structure, you need not be concerned with buffer
allocation or disposition because both are handled by the
system-supplied main() . You cannot free this buffer using the
tpfree() command; any attempt to do so quietly fails. You
can resize the buffer using the tprealloc() function.

If you use another buffer (that is, a buffer other than the one th
is passed to the service routine) to return the message, it is yo
responsibility to allocate it. The system frees the buffer
automatically when the application calls the tpreturn()
function.

If no reply message needs to be returned, set this argument to
NULL pointer.

Note: If no reply is expected by the client (that is, if
TPNOREPLY was set), the tpreturn() function
ignores the data and len arguments and returns
control to main() .

len Length of the reply buffer. The application accesses the value o
this argument through the olen parameter of the tpcall()
function or the len parameter of the tpgetrply() function.

Acting as the client, the process can use this returned value to
determine whether the reply buffer has grown.

If a reply is expected by the client and there is no data in the
reply buffer (that is, if the data argument is set to the NULL
pointer), the function sends a reply with zero length, without
modifying the client’s buffer.

The system ignores the value of this argument if the data
argument is not specified.

flag Currently not used.

Argument Description
5-26 Programming a BEA Tuxedo Application Using C

Terminating a Service Routine

s
ssed
 the
e last

 that
The functionality of tpforward() differs from a service call: a service that forward
a request does not expect a reply. The responsibility for providing the reply is pa
to the service to which the request has been forwarded. The latter service sends
reply to the process that originated the request. It becomes the responsibility of th
server in the forward chain to send the reply to the originating client by invoking
tpreturn() .

The following figure shows one possible sequence of events when a request is
forwarded from one service to another. Here a client initiates a request using the
tpcall() function and the last service in the chain (SVC_C) provides a reply using the
tpreturn() function.

Figure 5-1 Forwarding a Request

Service routines can forward requests at specified priorities in the same manner
client processes send requests, by using the tpsprio() function.

When a process calls tpforward() , the system-supplied main() regains control, and
the server process is free to do more work.
Programming a BEA Tuxedo Application Using C 5-27

5 Writing Servers

is not
e
call
e

ot

ing

 the

dded
ta
Note: If a server process is acting as a client and a reply is expected, the server
allowed to request services from itself. If the only available instance of th
desired service is offered by the server process making the request, the
fails, indicating that a recursive call cannot be made. However, if a servic
routine sends a request (to itself) with the TPNOREPLY communication flag set,
or if it forwards the request, the call does not fail because the service is n
waiting for itself.

Calling tpforward() can be used to indicate success up to that point in process
the request. If no application errors have been detected, you can invoke tpforward() ,
otherwise, you can call tpreturn() with rval set to TPFAIL .

The following example is borrowed from the OPEN_ACCT service routine which is part
of the ACCT server. This example illustrates how the service sends its data buffer to
DEPOSIT service by calling tpforward() . The code shows how to test the SQLCODE
to determine whether the account insertion is successful. If the new account is a
successfully, the branch record is updated to reflect the new account, and the da
buffer is forwarded to the DEPOSIT service. On failure, tpreturn() is called with
rval set to TPFAIL and the failure is reported on the status line of the form.

Listing 5-9 tpforward() Function

 ...
/* set pointer to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;
...
/* Insert new account record into ACCOUNT*/
account_id = ++last_acct; /* get new account number */
tlr_bal = 0.0; /* temporary balance of 0 */
EXEC SQL insert into ACCOUNT (ACCOUNT_ID, BRANCH_ID, BALANCE,
ACCT_TYPE, LAST_NAME, FIRST_NAME, MID_INIT, ADDRESS, PHONE) values
(:account_id, :branch_id, :tlr_bal, :acct_type, :last_name,
 :first_name, :mid_init, :address, :phone);
if (SQLCODE != SQL_OK) { /* Failure to insert */
 (void)Fchg(transf, STATLIN, 0,
 "Cannot update ACCOUNT", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* Update branch record with new LAST_ACCT */

EXEC SQL update BRANCH set LAST_ACCT = :last_acct where BRANCH_ID = :branch_id;
if (SQLCODE != SQL_OK) { /* Failure to update */
 (void)Fchg(transf, STATLIN, 0,
5-28 Programming a BEA Tuxedo Application Using C

Advertising and Unadvertising Services

cify
is to

was

nd can
y that
in an

rated

est.

 "Cannot update BRANCH", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
/* up the priority of the deposit call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of deposit\n");

/* tpforward same buffer to deposit service to add initial balance */
tpforward("DEPOSIT", transb->data, 0L, 0);

Advertising and Unadvertising Services

When a server is booted, it advertises the services it offers based on the values
specified for the CLOPT parameter in the configuration file.

Note: The services that a server may advertise are initially defined when the
buildserver command is executed. The -s option allows a
comma-separated list of services to be specified. It also allows you to spe
a function with a name that differs from that of the advertised service that
be called to process the service request. Refer to the buildserver(1) in the
BEA Tuxedo Command Reference for more information.

The default specification calls for the server to advertise all services with which it
built. Refer to the UBBCONFIG(5) or servopts(5) reference page in the BEA Tuxedo
File Formats and Data Descriptions Reference for more information.

Because an advertised service uses a service table entry in the bulletin board, a
therefore be resource-expensive, an application may boot its servers in such a wa
only a subset of the services offered are available. To limit the services available
application, define the CLOPT parameter, within the appropriate entry in the SERVERS
section of the configuration file, to include the desired services in a comma-sepa
list following the -s option. The -s option also allows you to specify a function with
a name other than that of the advertised service to be called to process the requ
Refer to the servopts(5) reference page in the BEA Tuxedo File Formats and Data
Descriptions Reference for more information.
Programming a BEA Tuxedo Application Using C 5-29

5 Writing Servers

l
he
ver as

e

ce
s
t

is
as
f
A BEA Tuxedo application administrator can use the advertise and unadvertise
commands of tmadmin(1) to control the services offered by servers. The
tpadvertise() and tpunadvertise() functions enable you to dynamically contro
the advertisement of a service in a request/response or conversational server. T
service to be advertised (or unadvertised) must be available within the same ser
the service making the request.

Advertising Services

Use the following signature to call the tpadvertise(3c) function.

int
tpadvertise(char * svcname , void * func)

The following table describes the arguments to the tpadvertise() function.

Table 5-4 tpadvertise() Function Arguments

Unadvertising Services

The tpunadvertise(3c) function removes the name of a service from the servic
table of the bulletin board so that the service is no longer advertised.

Use the following signature for the tpunadvertise() function.

tpunadvertise(char * svcname)
char * svcname ;

Argument Description

svcname Pointer to the name of the service to be advertised. The servi
name must be a character string of up to 15 characters. Name
longer than 15 characters are truncated. The NULL string is no
a valid value. If it is specified, an error (TPEINVAL) results.

func Pointer to the address of a BEA Tuxedo system function that
called to perform a service. Frequently, this name is the same
the name of the service. The NULL string is not a valid value. I
it is specified, an error results.
5-30 Programming a BEA Tuxedo Application Using C

Advertising and Unadvertising Services

e
s
t
The tpunadvertise() function contains one argument, which is described in the
following table.

Table 5-5 tpunadvertise() Function Arguments

Example: Dynamic Advertising and Unadvertising of a
Service

The following example shows how to use the tpadvertise() function. In this
example, a server called TLR is programmed to offer only the service called TLR_INIT
when booted. After some initialization, TLR_INIT advertises two services called
DEPOSIT and WITHDRAW. Both are performed by the tlr_funcs function, and both are
built into the TLR server.

After advertising DEPOSIT and WITHDRAW, TLR_INIT unadvertises itself.

Listing 5-10 Dynamic Advertising and Unadvertising

extern void tlr_funcs()
 .
 .
 .
 if (tpadvertise("DEPOSIT", (tlr_funcs)(TPSVCINFO *)) == -1)
 check for errors ;
 if (tpadvertise("WITHDRAW", (tlr_funcs)(TPSVCINFO *)) == -1)
 check for errors ;
 if (tpunadvertise("TLR_INIT") == -1)
 check for errors ;
 tpreturn(TPSUCCESS, 0, transb->data,0L, 0);

Argument Description

svcname Pointer to the name of the service to be advertised. The servic
name must be a character string of up to 15 characters. Name
longer than 15 characters are truncated. The NULL string is no
a valid value. If it is specified, an error (TPEINVAL) results.
Programming a BEA Tuxedo Application Using C 5-31

5 Writing Servers

 the

d
Building Servers

To build an executable server, compile your application service subroutines with
BEA Tuxedo System server adaptor and all other referenced files using the
buildserver(1) command.

Note: The BEA Tuxedo server adaptor accepts messages, dispatches work, an
manages transactions (if transactions are enabled).

Use the following syntax for the buildserver command.

buildserver -o filename -f filenames -l filenames -s -v

The following table describes the buildserver command-line options.

Table 5-6 buildserver Command-Line Options

This Option . . . Allows You to Specify the . . .

-o filename Name of the executable output file. The default is a.out .

-f filenames List of files that are link edited before the BEA Tuxedo system
libraries. You can specify the -f option more than once, and
multiple filenames for each occurrence of -f . If you specify a C
program file (file. c), it is compiled before it is linked. You can
specify other object files (file. o) separately, or in groups in an
archive file (file. a).

-l filenames List of files that are link edited after the BEA Tuxedo system
libraries. You can specify the -l option more than once, and
multiple filenames for each occurrence of -l . If you specify a C
program file (file. c) , it is compiled before it is linked. You can
specify other object files (file. o) separately, or in groups in an
archive file (file. a).

-r filenames List of resource manager access libraries that are link edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the
$TUXDIR/updataobj/RM file using the buildtms(1)
command. You can specify only one resource manager. Refer to
Setting Up a BEA Tuxedo Application for more information.
5-32 Programming a BEA Tuxedo Application Using C

Building Servers

and

ge
Note: The BEA Tuxedo libraries are linked in automatically. You do not need to
specify the BEA Tuxedo library names on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which functions are called and which libraries contain
references to those functions.

By default, the buildserver command invokes the UNIX cc command. You can
specify an alternative compile command and set your own flags for the compile
link-edit phases, however, by setting the CC and CFLAGS environment variables,
respectively. For more information, refer to “Setting Environment Variables” on pa
2-5.

The following command processes the acct.o application file and creates a server
called ACCT that contains two services: NEW_ACCT, which calls the OPEN_ACCT
function, and CLOSE_ACCT, which calls a function of the same name.

buildserver –o ACCT –f acct.o –s NEW_ACCT:OPEN_ACCT –s CLOSE_ACCT

See Also

� “Writing Clients” on page 4-1

� buildclient(1) in the BEA Tuxedo Command Reference

-s [service :]function Name of service or services offered by the server and the name of
the function that performs each service. You can specify the -s
option more than once, and multiple services for each occurrence of
-s . The server uses the specified service names to advertise its
services to clients.

Typically, you should assign the same name to both the service and
the function that performs that service. Alternatively, you can
specify any names. To assign names, use the following syntax:
service :function

-t Specifies that the server is coded in a thread-safe manner and may
be booted as multithreaded if specified as such in the configuration
file.

This Option . . . Allows You to Specify the . . .
Programming a BEA Tuxedo Application Using C 5-33

5 Writing Servers

ler to

 “C”

 to

e

ble
Using a C++ Compiler

There are basically two differences between using a C++ compiler and a C compi
develop application servers:

� Different declarations of the service function

� Different use of constructors and destructors

Declaring Service Functions

When declaring a service function for a C++ compiler, you must declare it to have
linkage using extern “C” . Specify the function prototype as follows.

#ifdef __cplusplus
extern "C"
#endif
MYSERVICE(TPSVCINFO *tpsvcinfo)

By declaring the name of your service with “C” linkage, you ensure that the C++
compiler will not modify the name. Many C++ compilers change the function name
include type information for the parameters and function return.

This declaration also allows you to:

� Link both C and C++ service routines into a single server without indicating th
type of each routine

� Use dynamic service advertisement, which requires accessing the symbol ta
of the executable to find the function name
5-34 Programming a BEA Tuxedo Application Using C

Using a C++ Compiler

ated,
at is,
tor is

e

.

ed

he

re

piler

e
 the
,
Using Constructors and Destructors

C++ constructors are called to initialize class objects when those objects are cre
and destructors are invoked when class objects are destroyed. For automatic (th
local, non-static) variables that contain constructors and destructors, the construc
called when the variable comes into scope and the destructor is called when the
variable goes out of scope. However, when you call the tpreturn() or tpforward()
function, the compiler performs a non-local goto (using longjmp (3)) such that
destructors for automatic variables are not called. To avoid this problem, write th
application so that you call tpreturn() or tpforward() from the service routine
directly (instead of from any functions that are called from the service routine). In
addition, one of the following should be true:

� The service routine should not have any automatic variables with destructors
(they should be declared and used in a function called by the service routine)

� Automatic variables should be declared and used in a nested scope (contain
within curly brackets {}) in such a way that the scope ends before calling the
tpreturn() or tpforward() function.

In other words, you should define the application so that there are no automatic
variables with destructors in scope in the current function or on the stack when t
tpreturn() or tpforward() function is called.

For proper handling of global and static variables that contain constructors and
destructors, many C++ compilers require that you compile main() using the C++
compiler.

Note: Special processing is included in the main() routine to ensure that any
constructors are executed when the program starts and any destructors a
executed when the program exits.

Because main() is provided by the BEA Tuxedo system, you do not compile it
directly. To ensure that the file is compiled using C++, you must use the C++ com
with the buildserver command. By default, the buildserver command invokes the
UNIX cc command. You can specify that the buildserver command invoke the C++
compiler, instead, by setting the CC environment variable to the full path name for th
C++ compiler. Also, you can set flags for any options that you want to include on
C+ command line by setting the CFLAGS environment variable. For more information
refer to “Setting Environment Variables” on page 2-5.
Programming a BEA Tuxedo Application Using C 5-35

5 Writing Servers
5-36 Programming a BEA Tuxedo Application Using C

CHAPTER

t to a
odule
s also
ed in
ted as

t
6 Writing
Request/Response
Clients and Servers

� Overview of Request/Response Communication

� Sending Synchronous Messages

� Sending Asynchronous Messages

� Setting and Getting Message Priorities

Overview of Request/Response
Communication

In request/response communication mode, one software module sends a reques
second software module and waits for a response. Because the first software m
performs the role of the client, and the second, the role of the server, this mode i
referred to as client/server interaction. Many online banking tasks are programm
request/response mode. For example, a request for an account balance is execu
follows:

1. A customer (the client) sends a request for an account balance to the Accoun
Record Storage System (the server).
Programming a BEA Tuxedo Application Using C 6-1

6 Writing Request/Response Clients and Servers

er

quest
utine

usly
2. The Account Record Storage System (the server) sends a reply to the custom
(the client), specifying the dollar amount in the designated account.

Figure 6-1 Example of Request/Response Communication in Online Banking

Once a client process has joined an application, allocated a buffer, and placed a re
for input into that buffer, it can then send the request message to a service subro
for processing and receive a reply message.

Sending Synchronous Messages

The tpcall(3c) function sends a request to a service subroutine and synchrono
waits for a reply. Use the following signature to call the tpcall() function.

int
tpcall(char * svc , char * idata , long ilen , char ** odata , long * olen ,
long flags)

The following table describes the arguments to the tpcall() function.

Table 6-1 tpcall() Function Arguments

Argument Description

svc Pointer to the name of the service offered by your application.
6-2 Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

he
 to

ent

st

t

. If

to

list
tpcall() waits for the expected reply.

Note: Calling the tpcall() function is logically the same as calling the tpacall()
function immediately followed by tpgetrply() , as described in “Sending
Asynchronous Messages” on page 6-11.

idata Pointer that contains the address of the data portion of the request. T
pointer must reference a typed buffer that was allocated by a prior call
tpalloc() . Note that the type (and optionally the subtype) of
idata must match the type (and optionally the subtype) expected by
the service routine. If the types do not match, the system sets tperrno
to TPEITYPE and the function call fails.

If the request requires no data, set idata to the NULL pointer. This
setting means that the parameter can be ignored. If no data is being s
with the request, you do not need to allocate a buffer for idata .

ilen Length of the request data in the buffer referenced by idata . If the
buffer is a self-defining type, that is, an FML, FML32, VIEW, VIEW32,
X_COMMON, X_C_TYPE, or STRING buffer, you can set this argument to
zero to indicate that the argument should be ignored.

* odata Address of a pointer to the output buffer that receives the reply. You mu
allocate the output buffer using the tpalloc() function. If the reply
message contains no data, upon successful return from tpcall() , the
system sets * olen to zero, and the pointer and the contents of the outpu
buffer remain unchanged.

You can use the same buffer for both the request and reply messages
you do, you must set *odata to the address of the pointer returned when
you allocate the input buffer. It is an error for this parameter to point to
NULL.

olen Pointer to the length of the reply data. It is an error for this parameter
point to NULL.

flags Flag options. You can OR a series of flags together. If you set this value
to zero, the communication is conducted in the default manner. For a
of valid flags and the defaults, refer to tpcall (3c) in the BEA Tuxedo C
Function Reference.

Argument Description
Programming a BEA Tuxedo Application Using C 6-3

6 Writing Request/Response Clients and Servers

e of
alid

 be

r a

sage

 reply

r size.
 not

inter
the
The request carries the priority set by the system for the specified service (svc) unless
a different priority has been explicitly set by a call to the tpsprio() function
(described in “Setting and Getting Message Priorities” on page 6-16).

tpcall() returns an integer. On failure, the value of this integer is -1 and the valu
is set to a value that reflects the type of error that occurred. For information on v
error codes, refer to tpcall(3c) in the BEA Tuxedo C Function Reference.

Note: Communication calls may fail for a variety of reasons, many of which can
corrected at the application level. Possible causes of failure include:
application defined errors (TPESVCFAIL), errors in processing return
arguments (TPESVCERR), typed buffer errors (TPEITYPE, TPEOTYPE), time-out
errors (TPETIME), and protocol errors (TPEPROTO), among others. For a
detailed discussion of errors, refer to “Managing Errors” on page 11-1. Fo
complete list of possible errors, refer to tpcall(3c) in the BEA Tuxedo C
Function Reference.

The BEA Tuxedo system automatically adjusts a buffer used for receiving a mes
if the received message is too large for the allocated buffer. You should test for
whether or not the reply buffers have been resized.

To access the new size of the buffer, use the address returned in the *olen parameter.
To determine whether a reply buffer has changed in size, compare the size of the
buffer before the call to tpcall() with the value of * olen after its return. If * olen is
larger than the original size, the buffer has grown. If not, the buffer size has not
changed.

You should reference the output buffer by the value returned in odata after the call
because the output buffer may change for reasons other than an increase in buffe
You do not need to verify the size of request buffers because the request data is
adjusted once it has been allocated.

Note: If you use the same buffer for the request and reply message, and the po
to the reply buffer has changed because the system adjusted the size of
buffer, then the input buffer pointer no longer references a valid address.
6-4 Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

 using

n in

ent
Example: Using the Same Buffer for Request and Reply
Messages

The following example shows how the client program, audit.c , makes a synchronous
call using the same buffer for both the request and reply messages. In this case,
the same buffer is appropriate because the *audv message buffer has been set up to
accommodate both request and reply information. The following actions are take
this code:

1. The service queries the b_id field, but does not overwrite it.

2. The application initializes the bal and ermsg fields to zero and the NULL string,
respectively, in preparation for the values to be returned by the service.

3. The svc_name and hdr_type variables represent the service name and the
balance type requested, respectively. In this example, these variables repres
account and teller , respectively.

Listing 6-1 Using the Same Buffer for Request and Reply Messages

. . .
/* Create buffer and set data pointer */

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

 /* Prepare aud structure */

audv->b_id = q_branchid;
audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");

 /* Do tpcall */

if (tpcall(svc_name,(char *)audv,sizeof(struct aud),
 (char **)&audv,(long *)&audrl,0)== -1){
 (void)fprintf (stderr, "%s service failed\n %s: %s\n",
 svc_name, svc_name, audv->ermsg);
 retc = -1;
}
else
 (void)printf ("Branch %ld %s balance is $%.2f\n",
Programming a BEA Tuxedo Application Using C 6-5

6 Writing Request/Response Clients and Servers

ange
 audv->b_id, hdr_type, audv->balance);
. . .

Example: Testing for Change in Size of Reply Buffer

The following code provides a generic example of how an application test for a ch
in buffer size after a call to tpcall() . In this example, the input and output buffers
must remain equal in size.

Listing 6-2 Testing for Change in Size of the Reply Buffer

char *svc, *idata, *odata;
long ilen, olen, bef_len, aft_len;
. . .
if (idata = tpalloc("STRING", NULL, 0) == NULL)
 error

if (odata = tpalloc("STRING", NULL, 0) == NULL)
 error

place string value into idata buffer

ilen = olen = strlen(idata)+1;
. . .
bef_len = olen;
if (tpcall(svc, idata, ilen, &odata, &olen, flags) == -1)
 error

aft_len = olen;

if (aft_len > bef_len){ /* message buffer has grown */

 if (idata = tprealloc(idata, olen) == NULL)
 error
}

6-6 Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

e

o
Example: Sending a Synchronous Message with
TPSIGRSTRT Set

The following example is based on the TRANSFER service, which is part of the XFER
server process of bankapp . (bankapp is a sample application delivered with the BEA
Tuxedo system.) The TRANSFER service assumes the role of a client when it calls th
WITHDRAWAL and DEPOSIT services. The application sets the communication flag t
TPSIGRSTRT in these service calls to give the transaction a better chance of
committing. The TPSIGRSTRT flag specifies the action to take if there is a signal
interrupt. For more information on communication flags, refer to tpcall(3c) in the
BEA Tuxedo C Function Reference.

Listing 6-3 Sending a Synchronous Message with TPSIGRSTRT Set

 /* Do a tpcall to withdraw from first account */

if (tpcall("WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
 (long *)&reqlen,TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot withdraw from debit account", (FLDLEN)0);
 tpfree((char *)reqfb);
}
...
 /* Do a tpcall to deposit to second account */

if (tpcall("DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
 (long *)&reqlen, TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot deposit into credit account", (FLDLEN)0);
 tpfree((char *)reqfb);
}

Programming a BEA Tuxedo Application Using C 6-7

6 Writing Request/Response Clients and Servers

ion
r; it
tion

r

ous
Example: Sending a Synchronous Message with
TPNOTRAN Set

The following example illustrates a communication call that suppresses transact
mode. The call is made to a service that is not affiliated with a resource manage
would be an error to allow the service to participate in the transaction. The applica
prints an accounts receivable report, accrcv , generated from information obtained
from a database named accounts .

The service routine REPORT interprets the specified parameters and sends the byte
stream for the completed report as a reply. The client uses tpcall() to send the byte
stream to a service called PRINTER, which, in turn, sends the byte stream to a printe
that is conveniently close to the client. The reply is printed. Finally, the PRINTER
service notifies the client that the hard copy is ready to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOREPLY |
TPNOTRAN” on page 6-13 shows a similar example using an asynchron
message call.

Listing 6-4 Sending a Synchronous Message with TPNOTRAN Set

#include <stdio.h>
#include "atmi.h"

main()

{
char *rbuf; /* report buffer */
long r1len, r2len, r3len; /* buffer lengths of send, 1st reply,
 and 2nd reply buffers for report */
join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space
for report */
 leave application and exit program
(void)strcpy(rbuf,
 "REPORT=accrcv DBNAME=accounts"); /* send parms of report */
r1len = strlen(rbuf)+1; /* length of request */

start transaction

6-8 Programming a BEA Tuxedo Application Using C

Sending Synchronous Messages

n is
 the

fers

ther

if (tpcall("REPORT", rbuf, r1len, &rbuf,
 &r2len, 0) == -1) /* get report print stream */
 error routine
if (tpcall("PRINTER", rbuf, r2len, &rbuf,
 &r3len, TPNOTRAN) == -1) /* send report to printer */
 error routine
(void)printf("Report sent to %s printer\n",
 rbuf); /* indicate which printer */

terminate transaction
free buffer
leave application
}

Note: In the preceding example, the term error routine indicates that the
following tasks are performed: an error message is printed, the transactio
aborted, allocated buffers are freed, the client leaves the application, and
program is exited.

Example: Sending a Synchronous Message with
TPNOCHANGE Set

The following example shows how the TPNOCHANGE communication flag is used to
enforce strong buffer type checking by indicating that the reply message must be
returned in the same type of buffer that was originally allocated. This example re
to a service routine called REPORT. (The REPORT service is also shown in “Example:
Sending a Synchronous Message with TPNOTRAN Set” on page 6-8.)

In this example, the client receives the reply in a VIEW typed buffer called rview1 and
prints the elements in printf() statements. The strong type check flag, TPNOCHANGE,
forces the reply to be returned in a buffer of type VIEW and of subtype rview1 .

A possible reason for this check is to guard against errors that may occur in the REPORT
service subroutine, resulting in the use of a reply buffer of an incorrect type. Ano
reason is to prevent changes that are not made consistently across all areas of
dependency. For example, another programmer may have changed the REPORT service
to standardize all replies in another VIEW format without modifying the client process
to reflect the change.
Programming a BEA Tuxedo Application Using C 6-9

6 Writing Request/Response Clients and Servers
Listing 6-5 Sending a Synchronous Message with TPNOCHANGE Set

#include <stdio.h>
#include "atmi.h"
#include "rview1.h"

main(argc, argv)
int argc;
char * argv[];

{
char *rbuf; /* report buffer */
struct rview1 *rrbuf; /* report reply buffer */
long rlen, rrlen; /* buffer lengths of send and reply
 buffers for report */
if (tpinit((TPINIT *) tpinfo) == -1)
 fprintf(stderr, "%s: failed to join application\n", argv[0]);

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) { /* allocate space
for report */
 tpterm();
 exit(1);
}
 /* allocate space for return buffer */
if (rrbuf = (struct rview1 *)tpalloc("VIEW", "rview1",
sizeof(struct rview1)) \ == NULL{
 tpfree(rbuf);
 tpterm();
 exit(1);
}
(void)strcpy(rbuf, "REPORT=accrcv DBNAME=accounts FORMAT=rview1");
rlen = strlen(rbuf)+1; /* length of request */
 /* get report in rview1 struct */
if (tpcall("REPORT", rbuf, rlen, (char **)&rrbuf, &rrlen,
TPNOCHANGE) == -1) {
 fprintf(stderr, "accounts receivable report failed in service
call\n");
 if (tperrno == TPEOTYPE)
 fprintf(stderr, "report returned has wrong view type\n");
 tpfree(rbuf);
 tpfree(rrbuf);
 tpterm();
 exit(1);
}
(void)printf("Total accounts receivable %6d\n", rrbuf->total);
(void)printf("Largest three outstanding %-20s %6d\n", rrbuf->name1,
rrbuf->amt1);
(void)printf("%-20s %6d\n", rrbuf->name2, rrbuf->amt2);
6-10 Programming a BEA Tuxedo Application Using C

Sending Asynchronous Messages

rred to
ed

m is

Use
(void)printf("%-20s %6d\n", rrbuf->name3, rrbuf->amt3);
tpfree(rbuf);
tpfree(rrbuf);
tpterm();
}

Sending Asynchronous Messages

This section explains how to:

� Send an asynchronous request using the tpacall() function

� Get an asynchronous reply using the tpgetrply() function

The type of asynchronous processing discussed in this section is sometimes refe
as fan-out parallelism because it allows a client’s requests to be distributed (or “fann
out”) simultaneously to several services for processing.

The other type of asynchronous processing supported by the BEA Tuxedo syste
pipeline parallelism in which the tpforward() function is used to pass (or forward) a
process from one service to another. For a description of the tpforward() function,
refer to “Writing Servers” on page 5-1.

Sending an Asynchronous Request

The tpacall(3c) function sends a request to a service and immediately returns.
the following signature to call the tpacall() function.

int
tpacall(char * svc , char * data , long len , long flags)

The following table describes the arguments to the tpacall() function.
Programming a BEA Tuxedo Application Using C 6-11

6 Writing Request/Response Clients and Servers

 the

 be

 must

ions”

he
 to

 the

 in
Table 6-2 tpacall() Function Arguments

The tpacall() function sends a request message to the service named in the svc
parameter and immediately returns from the call. Upon successful completion of
call, the tpacall() function returns an integer that serves as a descriptor used to
access the correct reply for the relevant request. While tpacall() is in transaction
mode (as described in “Writing Global Transactions” on page 9-1) there may not
any outstanding replies when the transaction commits; that is, within a given
transaction, for each request for which a reply is expected, a corresponding reply
eventually be received.

If the value TPNOREPLY is assigned to the flags parameter, the parameter signals to
tpacall() that a reply is not expected. When this flag is set, on success tpacall()
returns a value of 0 as the reply descriptor. If subsequently passed to the tpgetrply()
function, this value becomes invalid. Guidelines for using this flag value correctly
when a process is in transaction mode are discussed in “Writing Global Transact
on page 9-1.

Argument Description

svc Pointer to the name of the service offered by your application.

data Pointer that contains the address of the data portion of the request. T
pointer must reference a typed buffer that was allocated by a prior call
tpalloc() . Note that the type (and optionally the subtype) of
idata must match the type (and optionally the subtype) expected by
the service routine. If the types do not match, the system sets tperrno
to TPEITYPE and the function call fails.

If the request requires no data, set data to the NULL pointer. This setting
means that the parameter can be ignored. If no data is being sent with
request, you do not need to allocate a buffer for data .

len Length of the request data in the buffer referenced by data . If the buffer
is a self-defining type, that is, an FML, FML32, VIEW, VIEW32,
X_COMMON, X_C_TYPE, or STRING buffer, you can set this argument to
zero, indicating that the argument should be ignored.

flags Flag options. You can list a group of flags by using the logical OR
operator. If you set this value to zero, the communication is conducted
the default manner. For a list of valid flags and defaults, refer to
tpacall(3c) in the BEA Tuxedo C Function Reference.
6-12 Programming a BEA Tuxedo Application Using C

Sending Asynchronous Messages

rror.

 in

sage
from

n
On error, tpacall() returns -1 and sets to a value that reflects the nature of the e
tpacall() returns many of the same error codes as tpcall() . The differences
between the error codes for these functions are based on the fact that one call is
synchronous and the other, asynchronous. These errors are discussed at length
“Managing Errors” on page 11-1.

Example: Sending an Asynchronous Message with TPNOTRAN | TPNOREPLY

The following example shows how tpacall() uses the TPNOTRAN and TPNOREPLY
flags. This code is similar to the code in “Example: Sending a Synchronous Mes
with TPNOTRAN Set” on page 6-8. In this case, however, a reply is not expected
the PRINTER service. By setting both TPNOTRAN and TPNOREPLY flags, the client is
indicating that no reply is expected and the PRINTER service will not participate in the
current transaction. This situation is discussed more fully in “Managing Errors” o
page 11-1.

Listing 6-6 Sending an Asynchronous Message with TPNOREPLY |
TPNOTRAN

#include <stdio.h>
#include "atmi.h"

main()

{
char *rbuf; /* report buffer */
long rlen, rrlen; /* buffer lengths of send, reply buffers for
report */

join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space
for report */
 error
(void)strcpy(rbuf, "REPORT=accrcv DBNAME=accounts");/* send parms
of report */
rlen = strlen(rbuf)+1; /* length of request */

start transaction

if (tpcall("REPORT", rbuf, rlen, &rbuf, &rrlen, 0)
 == -1) /* get report print stream */
Programming a BEA Tuxedo Application Using C 6-13

6 Writing Request/Response Clients and Servers

tal
everal
ication
alling

ual
roper
 error
if (tpacall("PRINTER", rbuf, rrlen, TPNOTRAN|TPNOREPLY)
 == -1) /* send report to printer */
 error

. . .
commit transaction
free buffer
leave application
}

Example: Sending Asynchronous Requests

The following example shows a series of asynchronous calls that make up the to
bank balance query. Because the banking application data is distributed among s
database sites, an SQL query needs to be executed against each one. The appl
performs these queries by selecting one branch identifier per database site, and c
the ABAL or TBAL service for each site. The branch identifier is not used in the act
SQL query, but it enables the BEA Tuxedo system to route each request to the p
site. In the following code, the for loop invokes tpacall() once for each site.

Listing 6-7 Sending Asynchronous Requests

audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");

for (i=0; i<NSITE; i++) {

 /* Prepare aud structure */

 audv->b_id = sitelist[i]; /* routing done on this field */

 /* Do tpacall */

 if ((cd[i]=tpacall(sname, (char *)audv, sizeof(struct aud), 0))
 == -1) {
 (void)fprintf (stderr,
 "%s: %s service request failed for site rep %ld\n",
 pgmname, sname, sitelist[i]);
 tpfree((char *)audv);
 return(-1);
 }
}

6-14 Programming a BEA Tuxedo Application Using C

Sending Asynchronous Messages

t

lue
y

st

. If

to
Getting an Asynchronous Reply

A reply to a service call can be received asynchronously by calling the
tpgetrply(3c) function. The tpgetrply() function dequeues a reply to a reques
previously sent by tpacall() .

Use the following signature to call the tpgetrply() function.

int
tpgetrply(int * cd , char ** data , long * len , long flags)

The following table describes the arguments to the tpgetrply() function.

Table 6-3 tpgetrply() Function Arguments

By default, the function waits for the arrival of the reply that corresponds to the va
referenced by the cd parameter. During this waiting interval, a blocking time-out ma
occur. A time-out occurs when tpgetrply() fails and tperrno(5) is set to TPETIME
(unless the flags parameter is set to TPNOTIME).

Argument Description

cd Pointer to the call descriptor returned by the tpacall() function.

* data Address of a pointer to the output buffer that receives the reply. You mu
allocate the output buffer using the tpalloc() function. If the reply
message contains no data, upon successful return from tpcall() , the
system sets * data to zero. The pointer and the contents of the output
buffer remain unchanged.

You can use the same buffer for both the request and reply messages
you do, then you must set odata to the address of the pointer returned
when you allocated the input buffer. It is an error for this parameter to
point to NULL.

len Pointer to the length of the reply data. It is an error for this parameter
point to NULL.

flags Flag options. You can list a group of flags using the logical OR operator.
If you set this value to zero, the communication is conducted in the
default manner. For a list of valid flags and defaults, refer to
tpcall(3c)) in the BEA Tuxedo C Function Reference.
Programming a BEA Tuxedo Application Using C 6-15

6 Writing Request/Response Clients and Servers

est:

t.

est

er
ue

Setting and Getting Message Priorities

Two ATMI functions allow you to determine and set the priority of a message requ
tpsprio(3c) and tpgprio(3c) . The priority affects how soon the request is
dequeued by the server; servers dequeue requests with the highest priorities firs

This section describes:

� Setting a Message Priority

� Getting a Message Priority

Setting a Message Priority

The tpsprio(3c) function enables you to set the priority of a message request.

The tpsprio() function affects the priority level of only one request: the next requ
to be sent by tpcall() or tpacall() , or to be forwarded by a service subroutine.

Use the following signature to call the tpsprio() function.

int
tpsprio(int prio , long flags);

The following table describes the arguments to the tpsprio() function.

Table 6-4 tpsprio() Function Arguments

Argument Description

prio Integer indicating a new priority value. The effect of this argument is
controlled by the flags parameter. If flags is set to 0, prio specifies
a relative value and the sign accompanying the value indicates wheth
the current priority is incremented or decremented. Otherwise, the val
specified indicates an absolute value and prio must be set to a value
between 0 and 100. If you do not specify a value within this range, the
system sets the value to 50.

flags Flag indicating whether the value of prio is treated as a relative value
(0, the default) or an absolute value (TPABSOLUTE).
6-16 Programming a BEA Tuxedo Application Using C

Setting and Getting Message Priorities

d

alls

The following sample code is an excerpt from the TRANSFER service. In this example,
the TRANSFER service acts as a client by sending a synchronous request, via tpcall() ,
to the WITHDRAWAL service. TRANSFER also invokes tpsprio() to increase the priority
of its request message to WITHDRAWAL, and to prevent the request from being queue
for the WITHDRAWAL service (and later the DEPOSIT service) after waiting on the
TRANSFER queue.

Listing 6-8 Setting the Priority of a Request Message

/* increase the priority of withdraw call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of withdraw\n");

if (tpcall("WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb, (long *)
\
 &reqlen,TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0, "Cannot withdraw from debit
account", \
 (FLDLEN)0);
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
}

Getting a Message Priority

The tpgprio(3c) function enables you to get the priority of a message request.

Use the following signature to call the tpgprio() function.

int
tpgprio();

A requester can call the tpgprio() function after invoking the tpcall() or
tpacall() function to retrieve the priority of the request message. If a requester c
the function but no request is sent, the function fails, returning -1 and setting
tperrno(5) to TPENOENT. Upon success, tpgprio() returns an integer value in the
range of 1 to 100 (where the highest priority value is 100).
Programming a BEA Tuxedo Application Using C 6-17

6 Writing Request/Response Clients and Servers

in an
e of

 sent
If a priority has not been explicitly set using the tpsprio() function, the system sets
the message priority to that of the service routine that handles the request. With
application, the priority of the request-handling service is assigned a default valu
50 unless a system administrator overrides this value.

The following example shows how to determine the priority of a message that was
in an asynchronous call.

Listing 6-9 Determining the Priority of a Request After It is Sent

#include <stdio.h>
#include "atmi.h"

main ()
{
int cd1, cd2; /* call descriptors */
int pr1, pr2; /* priorities to two calls */
char *buf1, *buf2; /* buffers */
long buf1len, buf2len; /* buffer lengths */

join application

if (buf1=tpalloc("FML", NULL, 0) == NULL)
 error
if (buf2=tpalloc("FML", NULL, 0) == NULL)
 error

populate FML buffers with send request

if ((cd1 = tpacall("service1", buf1, 0, 0)) == -1)
 error
if ((pr1 = tpgprio()) == -1)
 error
if ((cd2 = tpacall("service2", buf2, 0, 0)) == -1)
 error

if ((pr2 = tpgprio()) == -1)\
 error

if (pr1 >= pr2) { /* base the order of tpgetrplys on priority of
calls */
 if (tpgetrply(&cd1, &buf1, &buf1len, 0) == -1)
 error
 if (tpgetrply(&cd2, &buf2, &buf2len, 0) == -1)
 error
}

6-18 Programming a BEA Tuxedo Application Using C

Setting and Getting Message Priorities
else {
 if (tpgetrply(&cd2, &buf2, &buf2len, 0) == -1)
 error
 if (tpgetrply(&cd1, &buf1, &buf1len, 0) == -1)
 error
}
. . .
}

Programming a BEA Tuxedo Application Using C 6-19

6 Writing Request/Response Clients and Servers
6-20 Programming a BEA Tuxedo Application Using C

CHAPTER

this

 state
inate
7 Writing
Conversational Clients
and Servers

� Overview of Conversational Communication

� Joining an Application

� Establishing a Connection

� Sending and Receiving Messages

� Ending a Conversation

� Building Conversational Clients and Servers

� Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between clients and servers. In
form of communication, a virtual connection is maintained between the client
(initiator) and server (subordinate) and each side maintains information about the
of the conversation. The connection remains active until an event occurs to term
it.
Programming a BEA Tuxedo Application Using C 7-1

7 Writing Conversational Clients and Servers

ent in
k and
 send

n
st two

nths.

he

o it

 using

During conversational communication, a half-duplex connection is established
between the client and server. A half-duplex connection allows messages to be s
only one direction at any given time. Control of the connection can be passed bac
forth between the initiator and the subordinate. The process that has control can
messages; the process that does not have control can only receive messages.

To understand how conversational communication works in a BEA Tuxedo
application, consider the following example from an online banking application. I
this example, a bank customer requests checking account statements for the pa
months.

Figure 7-1 Example of Conversational Communication in an Online Banking
Application

1. The customer requests the checking account statements for the past two mo

2. The Account Records Storage System responds by sending the first month’s
checking account statement followed by a More prompt for accessing the
remaining month’s statement.

3. The customer requests the second month’s account statement by selecting t
More prompt.

Note: The Account Records Storage System must maintain state information s
knows which account statement to return when the customer selects the More
prompt.

4. The Account Records Storage System sends the remaining month’s account
statement.

As with request/response communication, the BEA Tuxedo system passes data
typed buffers. The buffer types must be recognized by the application. For more
information on buffer types, refer to “Overview of Typed Buffers” on page 3-2.
7-2 Programming a BEA Tuxedo Application Using C

Joining an Application

em.

the

g
Conversational clients and servers have the following characteristics:

� The logical connection between them remains active until terminated.

� Any number of messages can be transmitted across a connection between th

� Both clients and servers use the tpsend() and tprecv() routines to send and
receive data in conversations.

Conversational communication differs from request/response communication in
following ways:

� A conversational client initiates a request for service using tpconnect() rather
than tpcall() or tpacall() .

� A conversational client sends a service request to a conversational server.

� The configuration file reserves part of the conversational server for addressin
conversational services.

� Conversational servers are prohibited from making calls using tpforward() .

Joining an Application

A conversational client must join an application via a call to tpinit() before
attempting to establish a connection to a service. For more information, refer to
“Writing Clients” on page 4-1.

Establishing a Connection

The tpconnect(3c) function sets up a conversation.

Use the following signature to call the tpconnect() function.

int
tpconnect(char * name, char * data , long len , long flags)
Programming a BEA Tuxedo Application Using C 7-3

7 Writing Conversational Clients and Servers

an
r of

r to

ot

u

rs
The following table describes the arguments to the tpconnect() function.

Table 7-1 tpconnect() Function Arguments

The BEA Tuxedo system returns a connection descriptor (cd) when a connection is
established with tpconnect() . The cd is used to identify subsequent message
transmissions with a particular conversation. A client or conversational service c
participate in more than one conversation simultaneously. The maximum numbe
simultaneous conversations is 64.

In the event of a failure, the tpconnect() function returns a value of -1 and sets
tperrno to the appropriate error condition. For a list of possible error codes, refe
tpconnect(3c) in the BEA Tuxedo C Function Reference.

Argument Description

name Character pointer to a conversational service name. If you do n
specify name as a pointer to a conversational service, the call
fails with a value of -1 and tperrno is set to the error code
TPENOENT.

data Pointer to a data buffer. When establishing the connection, yo
can send data simultaneously by setting the data argument to
point to a buffer previously allocated by tpalloc() . The
type and subtype of the buffer must be types recognized by
the service being called. You can set the value of data to NULL
to specify that no data is to be sent.

The conversational service being called receives the data and
len pointers via the TPSVCINFO data structure passed to it by
main() when the service is invoked. (A request/response
service receives the data and len pointers in the same way.)
For more information on the TPSVCINFO data structure, refer to
“Defining a Service” on page 5-10.

len Length of the data buffer. If the buffer is self-defining (for
example, an FML buffer), you can set len to 0.

flag Specifies the flag settings. For a complete list of valid flag
settings, refer to tpconnect(3c) in the BEA Tuxedo C
Function Reference.

The system notifies the called service through the flag membe
of the TPSVCINFO structure.
7-4 Programming a BEA Tuxedo Application Using C

Sending and Receiving Messages

d and
ng the
e

rol
The following example shows how to use the tpconnect() function.

Listing 7-1 Establishing a Conversational Connection

#include atmi.h
#define FAIL -1
int cd1; /* Connection Descriptor */
main()
{
 if ((cd = tpconnect(“AUDITC”,NULL,0,TPSENDONLY)) == -1) {
 error routine
 }
}

Sending and Receiving Messages

Once the BEA Tuxedo system establishes a conversational connection,
communication between the initiator and subordinate is accomplished using sen
receive calls. The process with control of the connection can send messages usi
tpsend(3c) function; the process without control can receive messages using th
tprecv(3c) function.

Note: Initially, the originator (that is, the client) decides which process has cont
using the TPSENDONLY or TPRECVONLY flag value of the tpconnect() call.
TPSENDONLY specifies that control is being retained by the originator;
TPRECVONLY, that control is being passed to the called service.

Sending Messages

To send a message, use the tpsend(3c) function with the following signature.

int
tpsend(int cd , char * data , long len , long flags , long * revent)

The following table describes the arguments to the tpsend() function.
Programming a BEA Tuxedo Application Using C 7-5

7 Writing Conversational Clients and Servers

efer

ss. In
ss to

u

is,

r
Table 7-2 tpsend() Function Arguments

In the event of a failure, the tpsend() function returns a value of -1 and sets
tperrno(5) to the appropriate error condition. For a list of possible error codes, r
to tpsend(3c) in the BEA Tuxedo C Function Reference.

You are not required to pass control each time you issue the tpsend() function. In
some applications, the process authorized to issue tpsend() calls can execute as many
calls as required by the current task before turning over control to the other proce
other applications, however, the logic of the program may require the same proce
maintain control of the connection throughout the life of the conversation.

Argument Description

cd Specifies the connection descriptor returned by the
tpconnect() function identifying the connection over which
the data is sent.

data Pointer to a data buffer. When establishing the connection, yo
can send data simultaneously by setting the data argument to
point to a buffer previously allocated by tpalloc() . The
type and subtype of the buffer must be types recognized by
the service being called. You can set the value of data to NULL
to specify that no data is to be sent.

The conversational service being called receives the data and
len pointers via the TPSVCINFO data structure passed to it by
main() when the service is invoked. (A request/response
server receives the data and len pointers in the same way.) For
more information on the TPSVCINFO data structure, refer to
“Defining a Service” on page 5-10.

len Length of the data buffer. If the buffer is self-defining (for
example, an FML buffer), you can set len to 0. If you do not
specify a value for data , this argument is ignored.

revent Pointer to event value set when an error is encountered (that
when tperrno(5) is set to TPEEVENT). For a list of valid
event values, refer to tpsend(3c) in the BEA Tuxedo C
Function Reference.

flag Specifies the flag settings. For a list of valid flag settings, refe
to tpsend(3c) in the BEA Tuxedo C Function Reference.
7-6 Programming a BEA Tuxedo Application Using C

Sending and Receiving Messages
The following example shows how to invoke the tpsend() function.

Listing 7-2 Sending Data in Conversational Mode

if (tpsend(cd,line,0,TPRECVONLY,revent) == -1) {
 (void)userlog(“%s: tpsend failed tperrno %d”,
 argv[0],tperrno);
 (void)tpabort(0);
 (void)tpterm();
 exit(1);
 }

Receiving Messages

To receive data sent over an open connection, use the tprecv(3c) function with the
following signature.

int
tprecv(int cd , char ** data , long * len , long flags , long * revent)

The following table describes the arguments to the tprecv() function.

Argument Description

cd Specifies the connection descriptor. If a subordinate program
issues the call, the cd argument should be set to the value
specified in the TPSVCINFO structure for the program. If the
originator program issues the call, the cd argument should be set
to the value returned by the tpconnect() function.
Programming a BEA Tuxedo Application Using C 7-7

7 Writing Conversational Clients and Servers

r

is,
Upon success, the * data argument points to the data received and len contains the
size of the buffer. If len is greater than the total size of the buffer before the call to
tprecv() , the buffer size has changed and len indicates the new size. A value of 0 fo
the len argument indicates that no data was received.

The following example shows how to use the tprecv() function.

Listing 7-3 Receiving Data in Conversation

if (tprecv(cd,line,len,TPNOCHANGE,revent) != -1) {
 (void)userlog(“%s: tprecv failed tperrno %d revent %ld”,
 argv[0],tperrno,revent);
 (void)tpabort(0);
 (void)tpterm();

data Pointer to a data buffer. The data argument must point to a
buffer previously allocated by tpalloc() . The type and
subtype of the buffer must be types recognized by the service
being called. This value cannot be NULL; if it is, the call fails
and tperrno(5) is set to TPEINVAL.

The conversational service being called receives the data and
len pointers via the TPSVCINFO data structure passed to it by
main() when the service is invoked. (A request/response
service receives the data and len pointers in the same way.)
For more information on the TPSVCINFO data structure, refer to
“Defining a Service” on page 5-10.

len Length of the data buffer. If the buffer is self-defining (for
example, an FML buffer), you can set len to 0. This value
cannot be NULL; if it is, the call fails and tperrno(5) is set
to TPEINVAL.

revent Pointer to event value set when an error is encountered (that
when tperrno is set to TPEEVENT). Refer to tprecv(3c) in
the BEA Tuxedo C Function Reference for a list of valid event
values.

flag Specifies the flag settings. Refer to tprecv(3c) in the BEA
Tuxedo C Function Reference for a list of valid flags.

Argument Description
7-8 Programming a BEA Tuxedo Application Using C

Ending a Conversation

1

e

r. In
 exit(1);
}

Ending a Conversation

A connection can be taken down gracefully and a conversation ended normally
through:

� A successful call to tpreturn() in a simple conversation

� A series of successful calls to tpreturn() in a complex conversation based on
a hierarchy of connections

� Global transactions, as described in “Writing Global Transactions” on page 9-

Note: The tpreturn() function is described in detail in “Writing Request/Respons
Clients and Servers” on page 6-1.

The following sections describe two scenarios for gracefully terminating
conversations that do not include global transactions in which the tpreturn()
function is used.

The first example shows how to terminate a simple conversation between two
components. The second example illustrates a more complex scenario, with a
hierarchical set of conversations.

If you end a conversation with connections still open, the system returns an erro
this case, either tpcommit() or tpreturn() fails in a disorderly manner.
Programming a BEA Tuxedo Application Using C 7-9

7 Writing Conversational Clients and Servers

ates

as

er.
Example: Ending a Simple Conversation

The following diagram shows a simple conversation between A and B that termin
gracefully.

Figure 7-2 Simple Conversation Terminated Gracefully

The program flow is as follows:

1. A sets up the connection by calling tpconnect() with the TPSENDONLY flag set,
indicating that process B is on the receiving end of the conversation.

2. A turns control of the connection over to B by calling tpsend() with the
TPRECVONLY flag set, resulting in the generation of a TPEV_SENDONLY event.

3. The next call by B to tprecv() returns a value of -1, sets tperrno(5) to
TPEEVENT, and returns TPEV_SENDONLY in the revent argument, indicating that
control has passed to B.

4. B calls tpreturn() with rval set to TPSUCCESS. This call generates a
TPEV_SVCSUCC event for A and gracefully brings down the connection.

5. A calls tprecv() , learns of the event, and recognizes that the conversation h
been terminated. Data can be received on this call to tprecv() even if the event
is set to TPEV_SVCFAIL.

Note: In this example, A can be either a client or a server, but B must be a serv
7-10 Programming a BEA Tuxedo Application Using C

Ending a Conversation

lly.

ted a

Example: Ending a Hierarchical Conversation

The following diagram shows a hierarchical conversation that terminates gracefu

Figure 7-3 Connection Hierarchy

In the preceding example, service B is a member of a conversation that has initia
connection to a second service called C. In other words, there are two active
connections: A-to-B and B-to-C. If B is in control of both connections, a call to
tpreturn() has the following effect: the call fails, a TPEV_SVCERR event is posted on
all open connections, and the connections are closed in a disorderly manner.

In order to terminate both connections normally, an application must execute the
following sequence:

1. B calls tpsend() with the TPRECVONLY flag set on the connection to C,
transferring control of the B-to-C connection to C.

2. C calls tpreturn() with rval set to TPSUCCESS, TPFAIL , or TPEXIT, as
appropriate.
Programming a BEA Tuxedo Application Using C 7-11

7 Writing Conversational Clients and Servers

eeds
g

o the
.
nt).

ng
e

n
3. B can then call tpreturn() , posting an event (either TPEV_SVCSUCC or
TPEV_SVCFAIL) for A.

Note: It is legal for a conversational service to make request/response calls if it n
to do so to communicate with another service. Therefore, in the precedin
example, the calls from B to C may be executed using tpcall() or
tpacall() instead of tpconnect() . Conversational services are not
permitted to make calls to tpforward() .

Executing a Disorderly Disconnect

The only way in which a disorderly disconnect can be executed is through a call t
tpdiscon(3c) function (which is equivalent to “pulling the plug” on a connection)
This function can be called only by the initiator of a conversation (that is, the clie

Note: This is not the preferred method for bringing down a conversation. To bri
down an application gracefully, the subordinate (the server) should call th
tpreturn() function.

Use the following signature to call the tpdiscon() function.

int
tpdiscon(int cd)

The cd argument specifies the connection descriptor returned by the tpconnect()
function when the connection is established.

The tpdiscon() function generates a TPEV_DISCONIMM event for the service at the
other end of the connection, rendering the cd invalid. If a transaction is in progress, the
system aborts it and data may be lost.

If tpdiscon() is called from a service that was not the originator of the connectio
identified by cd , the function fails with an error code of TPEBADDESC.

For a list and descriptions of all event and error codes, refer to tpdiscon(3c) in the
BEA Tuxedo C Function Reference.
7-12 Programming a BEA Tuxedo Application Using C

Building Conversational Clients and Servers

. All

d a
Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:

� buildclient() as described in “Building Clients” on page 4-10

� buildserver() as described in “Building Servers” on page 5-32

For conversational and request/response services, you cannot:

� Build both in the same server

� Assign the same name to both

Understanding Conversational
Communication Events

The BEA Tuxedo system recognizes five events in conversational communication
five events can be posted for tprecv() ; three can be posted for tpsend() .

The following table lists the events, the functions for which they are returned, an
detailed description of each.

Table 7-3 Conversational Communication Events

Event Received By Description

TPEV_SENDONLY tprecv () Control of the connection has been passed; this process
can now call tpsend() .
Programming a BEA Tuxedo Application Using C 7-13

7 Writing Conversational Clients and Servers
TPEV_DISCONIMM tpsend() ,
tprecv (),
tpreturn()

The connection has been torn down and no further
communication is possible. The tpdiscon() function
posts this event in the originator of the connection, and
sends it to all open connections when tpreturn() is
called, as long as connections to subordinate services
remain open. Connections are closed in a disorderly
fashion. If a transaction exists, it is aborted.

TPEV_SVCERR tpsend() Received by the originator of the connection, usually
indicating that the subordinate program issued a
tpreturn() without having control of the connection.

tprecv () Received by the originator of the connection, indicating
that the subordinate program issued a tpreturn() with
TPSUCCESS or TPFAIL and a valid data buffer, but an
error occurred that prevented the call from completing.

TPEV_SVCFAIL tpsend() Received by the originator of the connection, indicating
that the subordinate program issued a tpreturn()
without having control of the connection, and
tpreturn() was called with TPFAIL or TPEXIT and
no data.

tprecv () Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(tpreturn() was called with TPFAIL or TPEXIT).

TPEV_SVCSUCC tprecv () Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it called tpreturn() with TPSUCCESS.

Event Received By Description
7-14 Programming a BEA Tuxedo Application Using C

CHAPTER

ss to
8 Writing Event-based
Clients and Servers

� Overview of Events

� Defining the Unsolicited Message Handler

� Sending Unsolicited Messages

� Checking for Unsolicited Messages

� Subscribing to Events

� Unsubscribing from Events

� Posting Events

� Example of Event Subscription

Overview of Events

Event-based communication provides a method for a BEA Tuxedo system proce
be notified when a specific situation (event) occurs.

The BEA Tuxedo system supports two types of event-based communication:

� Unsolicited events

� Brokered events
Programming a BEA Tuxedo Application Using C 8-1

8 Writing Event-based Clients and Servers

re not

 one
h
 the

ting

 the
st

rvice
rary

s are
ay,

ption
 be
wn,

aps
Unsolicited Events

Unsolicited events are messages used to communicate with client programs that a
waiting for and/or expecting a message.

Brokered Events

Brokered events enable a client and a server to communicate transparently with
another via an “anonymous” broker that receives and distributes messages. Suc
brokering is another client/server communication paradigm that is fundamental to
BEA Tuxedo system.

The EventBroker is a BEA Tuxedo subsystem that receives and filters event pos
messages, and distributes them to subscribers. A poster is a BEA Tuxedo system
process that detects when a specific event has occurred and reports (posts) it to
EventBroker. A subscriber is a BEA Tuxedo system process with a standing reque
to be notified whenever a specific event has been posted.

The BEA Tuxedo system does not impose a fixed ratio of service requesters to se
providers; an arbitrary number of posters can post a message buffer for an arbit
number of subscribers. The posters simply post events, without knowing which
processes receive the information or how the information is handled. Subscriber
notified of specified events, without knowing who posted the information. In this w
the EventBroker provides complete location transparency.

Typically, EventBroker applications are designed to handle exception events. An
application designer must decide which events in the application constitute exce
events and need to be monitored. In a banking application, for example, it might
useful to post an event whenever an unusually large amount of money is withdra
but it would not be particularly useful to post an event for every withdrawal
transaction. In addition, not all users would need to subscribe to that event; perh
only the branch manager would need to be notified.
8-2 Programming a BEA Tuxedo Application Using C

Overview of Events

at

e

y

Notification Actions

The EventBroker may be configured such that whenever an event is posted, the
EventBroker invokes one or more notification actions for clients and/or servers th
have subscribed. The following table lists the types of notification actions that th
EventBroker can take.

Table 8-1 EventBroker Notification Actions

In addition, the application administrator may create an EVENT_MIB(5) entry (by
using the BEA Tuxedo administrative API) that performs the following notification
actions:

� Invokes a system command

� Writes a message to the system’s log file on disk

Note: Only the BEA Tuxedo application administrator is allowed to create an
EVENT_MIB(5) entry.

Notification Action Description

Unsolicited notification
message

Clients may receive event notification messages in their
unsolicited message handling routine, just as if they were sent b
the tpnotify() function.

Service call Servers may receive event notification messages as input to
service routines, just as if they were sent by the tpacall()
function.

Reliable queue Event notification messages may be stored in a BEA Tuxedo
system reliable queue, using the tpenqueue(3c) function.
Event notification buffers are stored until requests for buffer
contents are issued. A BEA Tuxedo system client or server
process may call the tpdequeue(3c) function to retrieve
these notification buffers, or alternately TMQFORWARD(5) may
be configured to automatically dispatch a BEA Tuxedo system
service routine that retrieves a notification buffer.

For more information on /Q, see Using the BEA Tuxedo /Q
Component.
Programming a BEA Tuxedo Application Using C 8-3

8 Writing Event-based Clients and Servers

r for
nd
e of

r for
e
ion

ed to
or

ed

nd do

ever,

t
. Do
ients
may
ty of
 IPC
For information on the EVENT_MIB(5) , refer to the BEA Tuxedo File Formats and
Data Descriptions Reference.

EventBroker Servers

TMUSREVT is the BEA Tuxedo system-supplied server that acts as an EventBroke
user events. TMUSREVT processes event report message buffers, and then filters a
distributes them. The BEA Tuxedo application administrator must boot one or mor
these servers to activate event brokering.

TMSYSEVT is the BEA Tuxedo system-supplied server that acts as an EventBroke
system-defined events. TMSYSEVT and TMUSREVT are similar, but separate servers ar
provided to allow the application administrator the ability to have different replicat
strategies for processing notifications of these two types of events. Refer to Setting Up
a BEA Tuxedo Application for additional information.

System-defined Events

The BEA Tuxedo system itself detects and posts certain predefined events relat
system warnings and failures. These tasks are performed by the EventBroker. F
example, system-defined events include configuration changes, state changes,
connection failures, and machine partitioning. For a complete list of system-defin
events detected by the EventBroker, see EVENTS(5) in the BEA Tuxedo File Formats
and Data Descriptions Reference.

System-defined events are defined in advance by the BEA Tuxedo system code a
not require posting. The name of a system-defined event, unlike that of an
application-defined event, always begins with a dot (“.”). Names of
application-defined events may not begin with a leading dot.

Clients and servers can subscribe to system-defined events. These events, how
should be used mainly by application administrators, not by every client in the
application.

When incorporating the EventBroker into your application, remember that it is no
intended to provide a mechanism for high-volume distribution to many subscribers
not attempt to post an event for every activity that occurs, and do not expect all cl
and servers to subscribe. If you overload the EventBroker, system performance
be adversely affected and notifications may be dropped. To minimize the possibili
overload, the application administrator should carefully tune the operating system
resources, as explained in Installing the BEA Tuxedo System.
8-4 Programming a BEA Tuxedo Application Using C

Defining the Unsolicited Message Handler

rver

gh
ative
Programming Interface for the EventBroker

EventBroker programming interfaces are available for all BEA Tuxedo system se
and client processes, including Workstation, in both C and COBOL.

The programmer’s job is to code the following sequence:

1. A client or server posts a buffer to an application-defined event name.

2. The posted buffer is transmitted to any number of processes that have subscribed
to the event.

Subscribers may be notified in a variety of ways (as discussed in “Notification
Actions”), and events may be filtered. Notification and filtering are configured throu
the programming interface, as well as through the BEA Tuxedo system administr
API.

Defining the Unsolicited Message Handler

To define the unsolicited message handler function, use the tpsetunsol(3c) function
with the following signature.

int
tpsetunsol(* myfunc)

The following table describes the single argument that can be passed to the
tpsetunsol() function.

Table 8-2 tpsetunsol() Function Argument

Argument Description

myfunc Pointer to a function that conforms to the prototype of a call-back
function. In order to conform, the function must accept the following
three parameters:

� data - points to the typed buffer that contains the unsolicited
message

� len - length of the buffer

� flags - currently not used
Programming a BEA Tuxedo Application Using C 8-5

8 Writing Event-based Clients and Servers

back

so it

ses

ge,

of
 are

When a client receives an unsolicited notification, the system dispatches the call-
function with the message. To minimize task disruption, you should code the
unsolicited message handler function to perform only minimal processing tasks,
can return quickly to the waiting process.

Sending Unsolicited Messages

The BEA Tuxedo system allows unsolicited messages to be sent to client proces
without disturbing the processing of request/response calls or conversational
communications.

Unsolicited messages can be sent to client processes by name, using
tpbroadcast(3c) , or by an identifier received with a previously processed messa
using tpnotify(3c) . Messages sent via tpbroadcast() can originate either in a
service or in another client. Messages sent via tpnotify() can originate only in a
service.

Broadcasting Messages By Name

The tpbroadcast(3c) function allows a message to be sent to registered clients
the application. It can be called by a service or another client. Registered clients
those that have successfully made a call to tpinit() and have not yet made a call to
tpterm() .

Use the following signature to call the tpbroadcast() function.

int
tpbroadcast(char * lmid, char *usrname, char *cltname, char *data, long len, long
flags)

The following table describes the arguments to the tpbroadcast() function.
8-6 Programming a BEA Tuxedo Application Using C

Sending Unsolicited Messages
Table 8-3 tpbroadcast() Function Arguments

The following example illustrates a call to tpbroadcast() for which all clients are
targeted. The message to be sent is contained in a STRING buffer.

Listing 8-1 Using tpbroadcast()

char *strbuf;

 if ((strbuf = tpalloc("STRING", NULL, 0)) == NULL) {
 error routine
 }

 (void) strcpy(strbuf, "hello, world");

 if (tpbroadcast(NULL, NULL, NULL, strbuf, 0, TPSIGRSTRT) == -1)
 error routine

Argument Description

lmid Pointer to the logical machine identifier for the client. A value of NULL
acts as a wildcard, so that a message can be directed to groups of clients.

usrname Pointer to the user name of the client process, if one exists. A value of
NULL acts as a wildcard, so that a message can be directed to groups of
clients.

cltname Pointer to the client name of the client process, if one exists. A value of
NULL acts as a wildcard, so that a message can be directed to groups of
clients.

data Pointer to the content of a message.

len Size of the message buffer. If data points to a self-defining buffer type,
for example, FML, then len can be set to 0.

flags Flag options. Refer to tpbroadcast(3c) in the BEA Tuxedo C
Function Reference for information on available flags.
Programming a BEA Tuxedo Application Using C 8-7

8 Writing Event-based Clients and Servers

ice.

ling

 error.
Broadcasting Messages by Identifier

The tpnotify(3c) function is used to broadcast a message using an identifier
received with a previously processed message. It can be called only from a serv

Use the following signature to call the tpnotify() function.

int
tpnotify(CLIENTID * clientid, char *data, long len, long flags)

The following table describes the arguments to the tpnotify() function.

Table 8-4 tpnotify() Function Arguments

Checking for Unsolicited Messages

To check for unsolicited messages while running the client in “dip-in” notification
mode, use the tpchkunsol(3c) function with the following signature.

int
tpchkunsol()

The function takes no arguments.

If any messages are pending, the system invokes the unsolicited message hand
function that was specified using tpsetunsol() . Upon completion, the function
returns either the number of unsolicited messages that were processed or -1 on

Argument Description

clientid Pointer to a CLIENTID structure that is saved from the TPSVCINFO
structure that accompanied the request to this service.

data Pointer to the content of the message.

len Size of the message buffer. If data points to a self-defining buffer type,
for example, FML, then len can be set to 0.

flags Flag options. Refer to tpnotify(3c) in the BEA Tuxedo C Function
Reference for information on available flags.
8-8 Programming a BEA Tuxedo Application Using C

Subscribing to Events

t and

 call,

,

be.
 a

.

If you issue this function when the client is running in SIGNAL-based, thread-based
notification mode, or is ignoring unsolicited messages, the function has no impac
returns immediately.

Subscribing to Events

The tpsubscribe(3c) function enables a BEA Tuxedo system client or server to
subscribe to an event.

A subscriber can be notified through an unsolicited notification message, a service
a reliable queue, or other notification methods configured by the application
administrator. (For information about configuring alternative notification methods
refer to Setting Up a BEA Tuxedo Application.)

Use the following signature to call the tpsubscribe() function.

long handle
tpsubscribe (char * eventexpr , char * filter , TPEVCTL * ctl , long flags)

The following table describes the arguments to the tpsubscribe() function.

Table 8-5 tpsubscribe() Function Arguments

Argument Description

eventexpr Pointer to a set of one or more events to which a process can subscri
Consists of a null-terminated string of up to 255 characters containing
regular expression. Regular expressions are of the form specified in
recomp, rematch(3c) , as described in the BEA Tuxedo C Function
Reference). For example, if eventexpr is set to:

� "\\..*" — The caller is subscribing to all system-defined events

� "\\.SysServer.*" — The caller is subscribing to all
system-defined events related to servers.

� "[A-Z].*" — The caller is subscribing to all user events starting
with any uppercase letter between A and Z.

� ".*(ERR|err).*" — The caller is subscribing to all user events
with names that contain either err or ERR, such as the
account_error and ERROR_STATE events, respectively.
Programming a BEA Tuxedo Application Using C 8-9

8 Writing Event-based Clients and Servers

ed
an
 to
ker

r
ber

or

t.
You can subscribe to both system- and application-defined events using the
tpsubscribe() function.

For purposes of subscriptions (and for MIB updates), service routines executed in a
BEA Tuxedo system server process are considered to be trusted code.

filter Pointer to a string containing a boolean filter rule that must be evaluat
successfully before the EventBroker posts the event. Upon receiving
event to be posted, the EventBroker applies the filter rule, if one exists,
the posted event’s data. If the data passes the filter rule, the EventBro
invokes the notification method specified; otherwise, the EventBroker
ignores the notification method. The caller can subscribe to the same
event multiple times with different filter rules.

By using the event-filtering capability, subscribers can discriminate
among the events about which they are notified. For example, a poste
can post an event for withdrawals greater than $10,000, but a subscri
may want to specify a higher threshold for being notified, such as
$50,000. Or, a subscriber may want to be notified of large withdrawals
made by specific customers.

Filter rules are specific to the typed buffers to which they are applied. F
more information on filter rules, refer to tpsubscribe(3c) in the BEA
Tuxedo C Function Reference.

ctl Pointer to a flag for controlling how a subscriber is notified of an even
Valid values include:

� NULL - sends unsolicited messages. Refer to “Notification via
Unsolicited Message” on page 8-11 for more information.

� Pointer to a valid TPEVCTL structure - sends information based on
the TPEVCTL structure. Refer to “Notification via Service Call or
Reliable Queue” on page 8-11 for more information.

flags Flag options. For more information on available flag options, refer to
tpsubscribe(3c) in the BEA Tuxedo C Function Reference.

Argument Description
8-10 Programming a BEA Tuxedo Application Using C

Subscribing to Events

d that

filter
with

r
s is

 in
ent

he

nt to
Notification via Unsolicited Message

If a subscriber is a BEA Tuxedo system client process and ctl is NULL, when the
event to which the client has subscribed is posted, the EventBroker sends an
unsolicited message to the subscriber as follows. When an event name is poste
evaluates successfully against eventexpr , the EventBroker tests the posted data
against the associated filter rule. If the data passes the filter rule (or if there is no
rule for the event), then the subscriber receives an unsolicited notification along
any data posted with the event.

In order to receive unsolicited notifications, the client must register an unsolicited
message handling routine using the tpsetunsol() function.

Clients receiving event notification via unsolicited messages should remove thei
subscriptions from the EventBroker list of active subscriptions before exiting. Thi
done using the tpunsubscribe() function.

Notification via Service Call or Reliable Queue

Event notification via service call enables you to program actions that can be taken
response to specific conditions in your application without human intervention. Ev
notification via reliable queue ensures that event data is not lost. It also provides t
subscriber the flexibility of retrieving the event data at any time.

If the subscriber (either a client or a server process) wants event notifications se
service routines or to stable-storage queues, then the ctl parameter of
tpsubscribe() must point to a valid TPEVCTL structure.

The TPEVCTL structure contains the following elements:

long flags ;
char name1[32];
char name2[32];
TPQCTL qctl ;
Programming a BEA Tuxedo Application Using C 8-11

8 Writing Event-based Clients and Servers

 to
The following table summarizes the TPEVCTL typed buffer data structure.

Table 8-6 TPEVCTL Typed Buffer Format

Unsubscribing from Events

The tpunsubscribe(3c) function enables a BEA Tuxedo system client or server
unsubscribe from an event.

Use the following signature to call the tpunsubscribe() function.

int
tpunsubscribe (long subscription , long flags)

The following table describes the arguments to the tpunsubscribe() function.

Table 8-7 tpunsubscribe() Function Arguments

Field Description

flags Flag options. For more information on flags, refer to
tpsubscribe(3c) in the BEA Tuxedo C Function Reference.

name1 Character string of 32 characters or fewer.

name2 Character string of 32 characters or fewer.

qctl TPQCTL structure. For more information, refer to
tpsubscribe(3c) in the BEA Tuxedo C Function Reference.

Argument Description

subscription Subscription handle returned by a call to tpsubscribe() .

flags Flag options. For more information on available flag options, refer to
tpunsubscribe(3c) in the BEA Tuxedo C Function Reference.
8-12 Programming a BEA Tuxedo Application Using C

Posting Events

t.

tem

he
irst

d
Posting Events

The tppost(3c) function enables a BEA Tuxedo client or server to post an even

Use the following signature to call the tppost() function.

tppost(char * eventname , char * data , long len , long flags)

The following table describes the arguments to the tppost() function.

Table 8-8 tppost() Function Arguments

The following example illustrates an event posting taken from the BEA Tuxedo sys
sample application bankapp . This example is part of the WITHDRAWAL service. One of
the functions of the WITHDRAWAL service is checking for withdrawals greater than
$10,000 and posting an event called BANK_TLR_WITHDRAWAL.

Argument Description

eventname Pointer to an event name containing up to 31 characters plus NULL. T
first character cannot be a dot (“.”) because the dot is reserved as the f
character in names of BEA Tuxedo system-defined events. When
defining event names, keep in mind that subscribers can use wild car
capabilities to subscribe to multiple events with a single function call.
Using the same prefix for a category of related event names can be
helpful.

data Pointer to a buffer previously allocated using the tpalloc() function.

len Size of data buffer that should be posted with the event. If data points to
a buffer of a type that does not require a length to be specified (for
example, an FML fielded buffer) or if you set it to NULL, the len
argument is ignored and the event is posted with no data.

flags Flag options. For more information on available flag options, refer to
tppost(3c) in the BEA Tuxedo C Function Reference.
Programming a BEA Tuxedo Application Using C 8-13

8 Writing Event-based Clients and Servers

 can
Listing 8-2 Posting an Event with tppost()

.

.

.
/* Event logic related */
static float evt_thresh = 10000.00 ; /* default for event threshold */
static char emsg[200] ; /* used by event posting logic */
.
.
.
/* Post a BANK_TLR_WITHDRAWAL event ? */
if (amt < evt_thresh) {
 /* no event to post */
 tpreturn(TPSUCCESS, 0,transb->data , 0L, 0);
}
/* prepare to post the event */
if ((Fchg (transf, EVENT_NAME, 0, "BANK_TLR_WITHDRAWAL", (FLDLEN)0) == -1) ||
(Fchg (transf, EVENT_TIME, 0, gettime(), (FLDLEN)0) == -1) ||
(Fchg (transf, AMOUNT, 0, (char *)&amt, (FLDLEN)0) == -1)) {
 (void)sprintf (emsg, "Fchg failed for event fields: %s",
 Fstrerror(Ferror)) ;
}
/* post the event */
else if (tppost ("BANK_TLR_WITHDRAWAL", /* event name */
(char *)transf, /* data */
0L, /* len */
TPNOTRAN | TPSIGRSTRT) == -1) {
/* If event broker is not reachable, ignore the error */
 if (tperrno != TPENOENT)
 (void)sprintf (emsg, "tppost failed: %s", tpstrerror (tperrno));
}

This example simply posts the event to the EventBroker to indicate a noteworthy
occurrence in the application. Subscription to the event by interested clients, who
then take action as required, is done independently.
8-14 Programming a BEA Tuxedo Application Using C

Example of Event Subscription

h
iber
Example of Event Subscription

The following example illustrates a portion of a bankapp application server that
subscribes to BANK_TLR_.* events, which includes the BANK_TLR_WITHDRAWAL event
shown in the previous example, as well as any other event names beginning wit
BANK_TLR_. When a matching event is posted, the application notifies the subscr
via a call to a service named WATCHDOG.

Listing 8-3 Subscribing to an Event with tpsubscribe()

.

.

.
/* Event Subscription handles */
static long sub_ev_largeamt = 0L ;
.
.
.
/* Preset default for option 'w' - watchdog threshold */
(void)strcpy (amt_expr, "AMOUNT > 10000.00") ;
.
.
.
/*
 * Subscribe to the events generated
 * when a "large" amount is transacted.
 */
evctl.flags = TPEVSERVICE ;
(void)strcpy (evctl.name1, "WATCHDOG") ;
/* Subscribe */
sub_ev_largeamt = tpsubscribe ("BANK_TLR_.*",amt_expr,&evctl,TPSIGRSTRT) ;
if (sub_ev_largeamt == -1L) {
 (void)userlog ("ERROR: tpsubscribe for event BANK_TLR_.* failed: %s",
 tpstrerror(tperrno)) ;
 return -1 ;
}
.
.
.
{
/* Unsubscribe to the subscribed events */
if (tpunsubscribe (sub_ev_largeamt, TPSIGRSTRT) == -1)
Programming a BEA Tuxedo Application Using C 8-15

8 Writing Event-based Clients and Servers
 (void)userlog ("ERROR: tpunsubscribe to event BANK_TLR_.* failed: %s",
 tpstrerror(tperrno)) ;
 return ;
}
/*
* Service called when a BANK_TLR_.* event is posted.
*/
void
#if defined(__STDC__) || defined(__cplusplus)
WATCHDOG(TPSVCINFO *transb)
#else
WATCHDOG(transb)
TPSVCINFO *transb;
#endif
{
FBFR *transf; /* fielded buffer of decoded message */
/* Set pointr to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;
/* Print the log entry to stdout */
(void)fprintf (stdout, "%20s|%28s|%8ld|%10.2f\n",
Fvals (transf, EVENT_NAME, 0),
Fvals (transf, EVENT_TIME, 0),
Fvall (transf, ACCOUNT_ID, 0),
*((float *)CFfind (transf, AMOUNT, 0, NULL, FLD_FLOAT)));
/* No data should be returned by the event subscriber's svc routine */
tpreturn(TPSUCCESS, 0,NULL, 0L, 0);
}

8-16 Programming a BEA Tuxedo Application Using C

CHAPTER

tially
rvers,

ay be
in the
9 Writing Global
Transactions

� What Is a Global Transaction?

� Starting the Transaction

� Suspending and Resuming a Transaction

� Terminating the Transaction

� Implicitly Defining a Global Transaction

� Defining Global Transactions for an XA-Compliant Server Group

� Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction is a mechanism that allows a set of programming tasks, poten
using more than one resource manager and potentially executing on multiple se
to be treated as one logical unit.

Once a process is in transaction mode, any service requests made to servers m
processed on behalf of the current transaction. The services that are called and jo
transaction are referred to as transaction participants. The value returned by a
participant may affect the outcome of the transaction.
Programming a BEA Tuxedo Application Using C 9-1

9 Writing Global Transactions

ing the

ither
sful.

s that
s, a

tent

ess.

lure.

ines

 this
nt in
ess

call
n,
tion,
A global transaction may be composed of several local transactions, each access
same resource manager. The resource manager is responsible for performing
concurrency control and atomicity of updates. A given local transaction may be e
successful or unsuccessful in completing its access; it cannot be partially succes

A maximum of 16 server groups can participate in a single transaction.

The BEA Tuxedo system manages a global transaction in conjunction with the
participating resource managers and treats it as a specific sequence of operation
is characterized by atomicity, consistency, isolation, and durability. In other word
global transaction is a logical unit of work in which:

� All portions either succeed or have no effect.

� Operations are performed that correctly transform resources from one consis
state to another.

� Intermediate results are not accessible to other transactions, although some
processes in a transaction may access the data associated with another proc

� Once a sequence is complete, its results cannot be altered by any kind of fai

The BEA Tuxedo system tracks the status of each global transaction and determ
whether it should be committed or rolled back.

Note: If a transaction includes calls to tpcall() , tpacall() , or tpconnect() for
which the flags parameter is explicitly set to TPNOTRAN, the operations
performed by the called service do not become part of that transaction. In
case, the calling process does not invite the called service to be a participa
the current transaction. As a result, services performed by the called proc
are not affected by the outcome of the current transaction. If TPNOTRAN is set
for a call that is directed to a service in an XA-compliant server group, the
may be executed outside of transaction mode or in a separate transactio
depending on how the service is configured and coded. For more informa
refer to “Implicitly Defining a Global Transaction” on page 9-17.
9-2 Programming a BEA Tuxedo Application Using C

Starting the Transaction
Starting the Transaction

To start a global transaction, use the tpbegin(3c) function with the following
signature.

int
tpbegin(unsigned long timeout, long flags)

The following table describes the arguments to the tpbegin() function.
Programming a BEA Tuxedo Application Using C 9-3

9 Writing Global Transactions
Table 9-1 tpbegin() Function Arguments

Field Description

timeout Specifies the amount of time, in seconds, a transaction can execute before
timing out. You can set this value to the maximum number of seconds allowed
by the system, by specifying a value of 0. In other words, you can set
timeout to the maximum value for an unsigned long as defined by the
system.

The use of 0 or an unrealistically large value for the timeout parameter
delays system detection and reporting of errors. The system uses the timeout
parameter to ensure that responses to service requests are sent within a
reasonable time, and to terminate transactions that encounter problems such as
network failures before executing a commit.

For a transaction in which a person is waiting for a response, you should set
this parameter to a small value: if possible, less than 30 seconds.

In a production system, you should set timeout to a value large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: The value assigned to the timeout parameter should be consistent
with that of the SCANUNIT parameter set by the BEA Tuxedo
application administrator in the configuration file. The SCANUNIT
parameter specifies the frequency with which the system checks, or
scans, for timed-out transactions and blocked calls in service
requests. The value of this parameter represents the interval of time
between these periodic scans, referred to as the scanning unit.

You should set the timeout parameter to a value that is greater than
the scanning unit. If you set the timeout parameter to a value
smaller than the scanning unit, there will be a discrepancy between
the time at which a transaction times out and the time at which this
time-out is discovered by the system. The default value for
SCANUNIT is 10 seconds. You may need to discuss the setting of the
timeout parameter with your application administrator to make
sure the value you assign to the timeout parameter is compatible
with the values assigned to your system parameters.

flags Currently undefined; must be set to 0.
9-4 Programming a BEA Tuxedo Application Using C

Starting the Transaction

 or
l

ion.
Any process may call tpbegin() unless the process is already in transaction mode
is waiting for outstanding replies. If tpbegin() is called in transaction mode, the cal
fails due to a protocol error and tperrno(5) is set to TPEPROTO. If the process is in
transaction mode, the transaction is unaffected by the failure.

The following example provides a high-level view of how a global transaction is
defined.

Listing 9-1 Defining a Global Transaction - High-level View

. . .
if (tpbegin(timeout,flags) == -1)
 error routine
program statements
. . .
if (tpcommit(flags) == -1)
 error routine

The following example provides a more detailed view of how to define a transact
This example is excerpted from audit.c , a client program included in bankapp , the
sample banking application delivered with the BEA Tuxedo system.

Listing 9-2 Defining a Global Transaction - Detailed View

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include <atmi.h> /* BEA Tuxedo System */
#include <Uunix.h> /* BEA Tuxedo System */
#include <userlog.h> /* BEA Tuxedo System */
#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */

#define INVI 0 /* account inquiry */
#define ACCT 1 /* account inquiry */
#define TELL 2 /* teller inquiry */

static int sum_bal _((char *, char *));
static long sitelist[NSITE] = SITEREP; /* list of machines to audit */
static char pgmname[STATLEN]; /* program name = argv[0] */
static char result_str[STATLEN]; /* string to hold results of query */

Programming a BEA Tuxedo Application Using C 9-5

9 Writing Global Transactions
main(argc, argv)
int argc;
char *argv[];
{
 int aud_type=INVI; /* audit type -- invalid unless specified */
 int clarg; /* command line arg index from optind */
 int c; /* Option character */
 int cflgs=0; /* Commit flags, currently unused */
 int aflgs=0; /* Abort flags, currently unused */
 int nbl=0; /* count of branch list entries */
 char svc_name[NAMELEN]; /* service name */
 char hdr_type[NAMELEN]; /* heading to appear on output */
 int retc; /* return value of sum_bal() */
 struct aud *audv; /* pointer to audit buf struct */
 int audrl=0; /* audit return length */
 long q_branchid; /* branch_id to query */

. . . /* Get Command Line Options and Set Variables */

/* Join application */

if (tpinit((TPINIT *) NULL) == -1) {
 (void)userlog("%s: failed to join application\n", pgmname);
 exit(1);
}

/* Start global transaction */

if (tpbegin(30, 0) == -1) {
 (void)userlog("%s: failed to begin transaction\n", pgmname);
 (void)tpterm();
 exit(1);
}

if (nbl == 0) { /* no branch id specified so do a global sum */
 retc = sum_bal(svc_name, hdr_type); /* sum_bal routine not shown */

} else {

 /* Create buffer and set data pointer */

 if ((audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud)))
 == (struct aud *)NULL) {
 (void)userlog("audit: unable to allocate space for VIEW\n");
 exit(1);
 }

 /* Prepare aud structure */

9-6 Programming a BEA Tuxedo Application Using C

Starting the Transaction

.

e
 audv->b_id = q_branchid;
 audv->balance = 0.0;
 audv->ermsg[0] = '\0';

 /* Do tpcall */

 if (tpcall(svc_name,(char *)audv,sizeof(struct aud),
 (char **)audv,(long *)audrl,0) == -1){
 (void)fprintf (stderr,"%s service failed\n%s: %s\n",
 svc_name, svc_name, audv->ermsg);
 retc = -1;

 }else {

 (void)sprintf(result_str,"Branch %ld %s balance is $%.2f\n",
 audv->b_id, hdr_type, audv->balance);
 }
 tpfree((char *)audv);
}

/* Commit global transaction */

if (retc < 0) /* sum_bal failed so abort */
 (void) tpabort(aflgs);
else {
 if (tpcommit(cflgs) == -1) {
 (void)userlog("%s: failed to commit transaction\n", pgmname);
 (void)tpterm();
 exit(1);
 }
 /*print out results only when transaction has committed successfully*/
 (void)printf("%s",result_str);
}

/* Leave application */

if (tpterm() == -1) {
 (void)userlog("%s: failed to leave application\n", pgmname);
 exit(1);
}

If a transaction times out, a call to tpcommit() causes the transaction to be aborted
As a result, tpcommit() fails and sets tperrno(5) to TPEABORT.

The following example shows how to test for a transaction time-out. Note that th
value of timeout is set to 30 seconds.
Programming a BEA Tuxedo Application Using C 9-7

9 Writing Global Transactions

 with

ds or
 still
art
re

e

se
Listing 9-3 Testing for Transaction Time-out

if (tpbegin(30, 0) == -1) {
 (void)userlog("%s: failed to begin transaction\n", argv[0]);
 tpterm();
 exit(1);
}
. . .
communication calls
. . .
if (tperrno == TPETIME){
 if (tpabort(0) == -1) {
 check for errors ;
}
else if (tpcommit(0) == -1){
 check for errors ;
}
. . .

Note: When a process is in transaction mode and makes a communication call
flags set to TPNOTRAN, it prohibits the called service from becoming a
participant in the current transaction. Whether the service request succee
fails has no impact on the outcome of the transaction. The transaction can
time-out while waiting for a reply that is due from a service, whether it is p
of the transaction or not. Refer to “Managing Errors” on page 11-1 for mo
information on the effects of the TPNOTRAN flag.

Suspending and Resuming a Transaction

At times, it may be desirable to temporarily remove a process from an incomplet
transaction and allow it to initiate a different transaction by calling tpbegin() or
tpresume() . For example, suppose a server wants to log a request to the databa
central event log, but does not want the logging activity to be rolled back if the
transaction aborts.

The BEA Tuxedo system provides two functions that allow a client or server to
suspend and resume a transaction in such situations: tpsuspend(3c) and
tpresume(3c) . Using these functions, a process can:
9-8 Programming a BEA Tuxedo Application Using C

Suspending and Resuming a Transaction

 entry

 a
n a
1. Temporarily suspend the current transaction by calling tpsuspend() .

2. Start a separate transaction. (In the preceding example, the server writes an
to the event log.)

3. Commit the transaction started in step 2.

4. Resume the original transaction by calling tpresume() .

Suspending a Transaction

Use the tpsuspend(3c) function to suspend the current transaction. Use the
following signature to call the tpsuspend() function.

int
tpsuspend(TPTRANID * t_id ,long flags)

The following table describes the arguments to the tpsuspend() function.

Table 9-2 tpsuspend() Function Arguments

You cannot suspend a transaction with outstanding asynchronous events. When
transaction is suspended, all modifications previously performed are preserved i
pending state until the transaction is committed, aborted, or timed out.

Resuming a Transaction

To resume the current transaction, use the tpresume(3c) function with the following
signature.

int
tpresume(TPTRANID * t_id ,long flags)

Field Description

*t_id Pointer to the transaction identifier.

flags Currently not used. Reserved for future use.
Programming a BEA Tuxedo Application Using C 9-9

9 Writing Global Transactions

ended

 a
error
The following table describes the arguments to the tpresume() function.

Table 9-3 tpresume() Function Arguments

It is possible to resume a transaction from a process other than the one that susp
it, subject to certain restrictions. For a list of these restrictions, refer to
tpsuspend(3c) and tpresume(3c) in the BEA Tuxedo C Function Reference.

Example: Suspending and Resuming a Transaction

The following example shows how to suspend one transaction, start and commit
second transaction, and resume the initial transaction. For the sake of simplicity,
checking code has been omitted.

Listing 9-4 Suspending and Resuming a Transaction

DEBIT(SVCINFO *s)
{

TPTRANID t;
tpsuspend(&t,TPNOFLAGS); /* suspend invoking transaction*/

tpbegin(30,TPNOFLAGS); /* begin separate transaction */
Perform work in the separate transaction.
tpcommit(TPNOFLAGS); /* commit separate transaction */

tpresume(&t,TPNOFLAGS); /* resume invoking transaction*/

.

.

.
tpreturn(. . .);

}

Field Description

*t_id Pointer to the transaction identifier.

flags Currently not used. Reserved for future use.
9-10 Programming a BEA Tuxedo Application Using C

Terminating the Transaction

ords,

on

re

e

t.
Terminating the Transaction

To end a global transaction, call tpcommit(3c) to commit the current transaction, or
tpabort(3c) to abort the transaction and roll back all operations.

Note: If tpcall() , tpacall() , or tpconnect() is called by a process that has
explicitly set the flags argument to TPNOTRAN, the operations performed by
the called service do not become part of the current transaction. In other w
when you call the tpabort() function, the operations performed by these
services are not rolled back.

Committing the Current Transaction

The tpcommit(3c) function commits the current transaction. When tpcommit()
returns successfully, all changes to resources as a result of the current transacti
become permanent.

Use the following signature to call the tpcommit() function.

int
tpcommit(long flags)

Although the flags argument is not used currently, you must set it to zero to ensu
compatibility with future releases.

Prerequisites for a Transaction Commit

For tpcommit() to succeed, the following conditions must be true:

� The calling process must be the same one that initiated the transaction with a
call to tpbegin() .

� The calling process must have no transactional replies (calls made without th
TPNOTRAN flag) outstanding.

� The transaction must not be in a rollback-only state and must not be timed ou
Programming a BEA Tuxedo Application Using C 9-11

9 Writing Global Transactions

nd
 If

n

g

oup
e
) in

 the
ccess
ng

 logs
-phase
 the
If the first condition is false, the call fails and tperrno(5) is set to TPEPROTO,
indicating a protocol error. If the second or third condition is false, the call fails a
tperrno() is set to TPEABORT, indicating that the transaction has been rolled back.
tpcommit() is called by the initiator with outstanding transaction replies, the
transaction is aborted and those reply descriptors associated with the transactio
become invalid. If a participant calls tpcommit() or tpabort() , the transaction is
unaffected.

A transaction is placed in a rollback-only state if any service call returns TPFAIL or
indicates a service error. If tpcommit() is called for a rollback-only transaction, the
function cancels the transaction, returns -1 , and sets tperrno(5) to TPEABORT. The
results are the same if tpcommit() is called for a transaction that has already timed
out: tpcommit() returns -1 and sets tperrno() to TPEABORT. Refer to “Managing
Errors” on page 11-1 for more information on transaction errors.

Two-phase Commit Protocol

When the tpcommit() function is called, it initiates the two-phase commit protocol.
This protocol, as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. The initiator of the transaction gives permission to commit to each participatin
resource manager.

The commit sequence begins when the transaction initiator calls the tpcommit()
function. The BEA Tuxedo TMS server process in the designated coordinator gr
contacts the TMS in each participant group that is to perform the first phase of th
commit protocol. The TMS in each group then instructs the resource manager (RM
that group to commit using the XA protocol that is defined for communications
between the Transaction Managers and RMs. The RM writes, to stable storage,
states of the transaction before and after the commit sequence, and indicates su
or failure to the TMS. The TMS then passes the response back to the coordinati
TMS.

When the coordinating TMS has received a success indication from all groups, it
a statement to the effect that a transaction is being committed and sends second
commit notifications to all participant groups. The RM in each group then finalizes
transaction updates.
9-12 Programming a BEA Tuxedo Application Using C

Terminating the Transaction

or
M

 two

gged

ful

in a
If the coordinator TMS is notified of a first-phase commit failure from any group,
if it fails to receive a reply from any group, it sends a rollback notification to each R
and the RMs back out all transaction updates. tpcommit() then fails and sets
tperrno(5) to TPEABORT.

Selecting Criteria for a Successful Commit

When more than one group is involved in a transaction, you can specify which of
criteria must be met for tpcommit() to return successfully:

� When all participants have indicated a readiness to commit (that is, when all
participants have reported that phase 1 of the two-phase commit has been lo
as complete and the coordinating TMS has written its decision to commit to
stable storage)

� When all participants have finished phase 2 of the two-phase commit

To specify one of these prerequisites, set the CMTRET parameter in the RESOURCES
section of the configuration file to one of the following values:

� LOGGED - to require completion of phase 1

� COMPLETE - to require completion of phase 2

By default, CMTRET is set to COMPLETE.

If you later want to override the setting in the configuration file, you can do so by
calling the tpscmt() function with its flags argument set to either TP_CMT_LOGGED
or TP_CMT_COMPLETE.

Trade-offs Between Possible Commit Criteria

In most cases, when all participants in a global transaction have logged success
completion of phase 1, they do not fail to complete phase 2. By setting CMTRET to
LOGGED, you allow a slightly faster return of calls to tpcommit() , but you run the
slight risk that a participant may heuristically complete its part of the transaction
way that is not consistent with the commit decision.
Programming a BEA Tuxedo Application Using C 9-13

9 Writing Global Transactions

f your
are
ly
ore
se of

rt

ied to

re

s a
Whether it is prudent to accept the risk depends to a large extent on the nature o
application. If your application demands complete accuracy (for example, if you
running a financial application), you should probably wait until all participants ful
complete the two-phase commit process before returning. If your application is m
time-sensitive, you may prefer to have the application execute faster at the expen
accuracy.

Aborting the Current Transaction

Use the tpabort(3c) function to indicate an abnormal condition and explicitly abo
a transaction. This function invalidates the call descriptors of any outstanding
transactional replies. None of the changes produced by the transaction are appl
the resource. Use the following signature to call the tpabort() function.

int
tpabort(long flags)

Although the flags argument is not used currently, you must set it to zero to ensu
compatibility with future releases.

Example: Committing a Transaction in Conversational
Mode

The following figure illustrates a conversational connection hierarchy that include
global transaction.
9-14 Programming a BEA Tuxedo Application Using C

Terminating the Transaction

r

cess
rvice
), it

rned
Figure 9-1 Connection Hierarchy in Transaction Mode

The connection hierarchy is created through the following process:

1. A client (process A) initiates a connection in transaction mode by calling
tpbegin() and tpconnect() .

2. The client calls subsidiary services, which are executed.

3. As each subordinate service completes, it sends a reply indicating success o
failure (TPEV_SVCSUCC or TPEV_SVCFAIL, respectively) back up through the
hierarchy to the process that initiated the transaction. In this example the pro
that initiated the transaction is the client (process A). When a subordinate se
has completed sending replies (that is, when no more replies are outstanding
must call tpreturn() .

4. The client (process A) determines whether all subordinate services have retu
successfully.

z If so, the client commits the changes made by those services, by calling
tpcommit() , and completes the transaction.
Programming a BEA Tuxedo Application Using C 9-15

9 Writing Global Transactions

 for
z If not, the client calls tpabort() , since it knows that tpcommit() could not
be successful.

Example: Testing for Participant Errors

In the following sample code, a client makes a synchronous call to the fictitious
REPORT service (line 18). Then the code checks for participant failures by testing
errors that can be returned on a communication call (lines 19-34).

Listing 9-5 Testing for Participant Success or Failure

001 #include <stdio.h>
002 #include "atmi.h"
003
004 main()
005 {
006 char *sbuf, *rbuf;
007 long slen, rlen;
008 if (tpinit((TPINIT *) NULL) == -1)
009 error message, exit program;
010 if (tpbegin(30, 0) == -1)
011 error message, tpterm, exit program;
012 if ((sbuf=tpalloc("STRING", NULL, 100)) == NULL)
013 error message, tpabort, tpterm, exit program;
014 if ((rbuf=tpalloc("STRING", NULL, 2000)) == NULL)
015 error message, tpfree sbuf, tpabort, tpterm, exit program;
016 (void)strcpy(sbuf, "REPORT=accrcv DBNAME=accounts");
017 slen=strlen(sbuf);
018 if (tpcall("REPORT", sbuf, slen, &rbuf, &rlen, 0) == -1) {
019 switch(tperrno) {
020 case TPESVCERR:
021 fprintf(stderr,
022 "REPORT service's tpreturn encountered problems\n");
023 break;
024 case TPESVCFAIL:
025 fprintf(stderr,
026 "REPORT service TPFAILED with return code of %d\n", tpurcode);
027 break;
028 case TPEOTYPE:
029 fprintf(stderr,
030 "REPORT service's reply is not of any known data type\n");
031 break;
032 default:
9-16 Programming a BEA Tuxedo Application Using C

Implicitly Defining a Global Transaction

”

em

eived
033 fprintf(stderr,
034 "REPORT service failed with error %d\n", tperrno);
035 break;
036 }
037 if (tpabort(0) == -1){
038 check for errors ;
039 }
040 }
041 else
042 if (tpcommit(0) == -1)
043 fprintf(stderr, "Transaction failed at commit time\n");
044 tpfree(rbuf);
045 tpfree(sbuf);
046 tpterm();
047 exit(0);
048 }

Implicitly Defining a Global Transaction

An application can start a global transaction in either of two ways:

� Explicitly, by calling ATMI functions, as described in “Starting the Transaction
on page 9-3

� Implicitly, from within a service routine

This section describes the second method.

Implicitly Defining a Transaction in a Service Routine

You can implicitly place a service routine in transaction mode by setting the syst
parameter AUTOTRAN in the configuration file. If you set AUTOTRAN to Y, the system
automatically starts a transaction in the service subroutine when a request is rec
from another process.

When implicitly defining a transaction, observe the following rules:
Programming a BEA Tuxedo Application Using C 9-17

9 Writing Global Transactions

s is

er
has

es

le is

� If a process requests a service from another process when the calling proces
not in transaction mode and the AUTOTRAN system parameter is set to start a
transaction, the system initiates a transaction.

� If a process that is already in transaction mode requests a service from anoth
process, the system’s first response is to determine whether or not the caller
its flags parameter set to TPNOTRAN.

If the flags argument is not set to TPNOTRAN, then the system places the called
process in transaction mode through the “rule of propagation.” The system do
not check the AUTOTRAN parameter.

If the flags argument is set to TPNOTRAN, the services performed by the called
process are not included in the current transaction (that is, the propagation ru
suppressed). The system checks the AUTOTRAN parameter.

z If AUTOTRAN is set to N (or if it is not set), the system does not place the
called process in transaction mode.

z If AUTOTRAN is set to Y, the system places the called process in transaction
mode, but treats it as a new transaction.

Note: Because a service can be placed in transaction mode automatically, it is
possible for a service with the TPNOTRAN flag set to call services that have the
AUTOTRAN parameter set. If such a service requests another service, the flags
member of the service information structure returns TPTRAN when queried. For
example, if the call is made with the communication flags member set to
TPNOTRAN | TPNOREPLY, and the service automatically starts a transaction
when called, the flags member of the information structure is set to TPTRAN
| TPNOREPLY.
9-18 Programming a BEA Tuxedo Application Using C

Defining Global Transactions for an XA-Compliant Server Group

liant
e
f, on

roups
n

e latter
 it.

void
eady
,

ode
Defining Global Transactions for an
XA-Compliant Server Group

Generally, the application programmer writes a service that is part of an XA-comp
server group to perform some operation via the group’s resource manager. In th
normal case, the service expects to perform all operations within a transaction. I
the other hand, the service is called with the communication flags set to TPNOTRAN,
you may receive unexpected results when executing database operations.

In order to avoid unexpected behavior, design the application so that services in g
associated with XA-compliant resource managers are always called in transactio
mode or are always defined in the configuration file with AUTOTRAN set to Y. You
should also test the transaction level in the service code early.

Testing Whether a Transaction Has Started

When a process in transaction mode requests a service from another process, th
process becomes part of the transaction, unless specifically instructed not to join

It is important to know whether or not a process is in transaction mode in order to a
and interpret certain error conditions. For example, it is an error for a process alr
in transaction mode to call tpbegin() . When tpbegin() is called by such a process
it fails and sets tperrno(5) to TPEPROTO to indicate that it was invoked while the
caller was already participating in a transaction. The transaction is not affected.

You can design a service subroutine so that it tests whether it is in transaction m
before invoking tpbegin() . You can test the transaction level by either of the
following methods:

� Querying the flags field of the service information structure that is passed to
the service routine. The service is in transaction mode if the value is set to
TPTRAN.

� Calling the tpgetlev(3c) function.
Programming a BEA Tuxedo Application Using C 9-19

9 Writing Global Transactions

 a

Use the following signature to call the tpgetlev() function.

int
tpgetlev() /* Get current transaction level */

The tpgetlev() function requires no arguments. It returns 0 if the caller is not in
transaction, and 1 if it is.

The following code sample is a variation of the OPEN_ACCT service that shows how to
test for transaction level using the tpgetlev() function (line 12). If the process is not
already in transaction mode, the application starts a transaction (line 14). If tpbegin()
fails, a message is returned to the status line (line 16) and the rcode argument of
tpreturn() is set to a code that can be retrieved in the global variable tpurcode(5)
(lines 1 and 17).

Listing 9-6 Testing Transaction Level

001 #define BEGFAIL 3 /* tpurcode setting for return if tpbegin fails */

002 void
003 OPEN_ACCT(transb)

004 TPSVCINFO *transb;

005 {
 ... other declarations ...
006 FBFR *transf; /* fielded buffer of decoded message */
007 int dotran; /* checks whether service tpbegin/tpcommit/tpaborts */

008 /* set pointer to TPSVCINFO data buffer */

009 transf = (FBFR *)transb->data;

010 /* Test if transaction exists; initiate if no, check if yes */

011 dotran = 0;
012 if (tpgetlev() == 0) {
013 dotran = 1;
014 if (tpbegin(30, 0) == -1) {
015 Fchg(transf, STATLIN, 0,
016 "Attempt to tpbegin within service routine failed\n");
017 tpreturn(TPFAIL, BEGFAIL, transb->data, 0, 0);
018 }
019 }
 . . .
9-20 Programming a BEA Tuxedo Application Using C

Testing Whether a Transaction Has Started

id

ter a

or
 tasks,
ever

If the AUTOTRAN parameter is set to Y, you do not need to call the tpbegin() , and
tpcommit() or tpabort() transaction functions explicitly. As a result, you can avo
the overhead of testing for transaction level. In addition, you can set the TRANTIME
parameter to specify the time-out interval: the amount of time that may elapse af
transaction for a service begins, and before it is rolled back if not completed.

For example, suppose you are revising the OPEN_ACCT service shown in the preceding
code listing. Currently, OPEN_ACCT defines the transaction explicitly and then tests f
its existence (see lines 7 and 10-19). To reduce the overhead introduced by these
you can eliminate them from the code. Therefore, you need to require that when
OPEN_ACCT is called, it is called in transaction mode. To specify this requirement,
enable the AUTOTRAN and TRANTIME system parameters in the configuration file.

See Also

� Description of the AUTOTRAN configuration parameter in the section “Implicitly
Defining a Global Transaction” on page 9-17 of Setting Up a BEA Tuxedo
Application.

� TRANTIME configuration parameter in Setting Up a BEA Tuxedo Application.
Programming a BEA Tuxedo Application Using C 9-21

9 Writing Global Transactions
9-22 Programming a BEA Tuxedo Application Using C

CHAPTER
10Programming a
Multithreaded and
Multicontexted
Application

� Support for Programming a Multithreaded/Multicontexted Application

� Planning and Designing a Multithreaded/Multicontexted Application

� Implementing a Multithreaded/ Multicontexted Application

� Testing a Multithreaded/Multicontexted Application
Programming a BEA Tuxedo Application Using C 10-1

10 Programming a Multithreaded and Multicontexted Application

d)

re

s of
ke

xted

our
Support for Programming a
Multithreaded/Multicontexted Application

The BEA Tuxedo system supports only:

� Kernel-level threads packages (user-level threads packages are not supporte

� Multithreaded applications written in C (multithreaded COBOL applications a
not supported)

� Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions as well as other type
threads functions, we recommend using the POSIX threads functions, which ma
your code easier to port to other platforms later.

To find out whether your platform supports a kernel-level threads package, C
functions, or POSIX functions, see the data sheet for your operating system in
Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo System.

Platform-specific Considerations for
Multithreaded/Multicontexted Applications

Many platforms have idiosyncratic requirements for multithreaded and multiconte
applications. Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo
System, lists these platform-specific requirements. To find out what is needed on y
platform, check the appropriate data sheet.
10-2 Programming a BEA Tuxedo Application Using C

Planning and Designing a Multithreaded/Multicontexted Application

n”

n

See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio
on page 10-8

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

Planning and Designing a
Multithreaded/Multicontexted Application

� What Are Multithreading and Multicontexting

� Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio

� How Multithreading and Multicontexting Work in a Client

� How Multithreading and Multicontexting Work in a Server

� Design Considerations for a Multithreaded and Multicontexted Application
Programming a BEA Tuxedo Application Using C 10-3

10 Programming a Multithreaded and Multicontexted Application

asks
ss

ess.
ame

ted
ded,

 not

What Are Multithreading and
Multicontexting

The BEA Tuxedo system allows you to use a single process to perform multiple t
simultaneously. The programming techniques for implementing this sort of proce
usage are multithreading and multicontexting. This topic provides basic information
about these techniques:

� What Is Multithreading

� What Is Multicontexting

What Is Multithreading

Multithreading is the inclusion of more than one unit of execution in a single proc
In a multithreaded application, multiple simultaneous calls can be made from the s
process. For example, an individual process is not limited to one outstanding
tpcall() .

In a server, multithreading requires multicontexting except when application-crea
threads are used in a singled-context server. The only way to create a multithrea
single-context application is to use application-created threads.

The BEA Tuxedo system supports multithreaded applications written in C. It does
support multithreaded COBOL applications.

The following diagram shows how a multithreaded client can issue calls to three
servers simultaneously.
10-4 Programming a BEA Tuxedo Application Using C

What Are Multithreading and Multicontexting

ble
t
Figure 10-1 Sample Multithreaded Process

In a multithreaded application, multiple service-dispatched threads are availa
in the same server, which means that fewer servers need to be started for tha
application.

The following diagram shows how a server process can dispatch multiple
threads to different clients simultaneously.

SERVER A SERVER B

S E RV ER C

CLIENT PROCESS

THREAD 1 THREAD 2

THREAD 3

tpcall() tpcall()

tpcall()
Programming a BEA Tuxedo Application Using C 10-5

10 Programming a Multithreaded and Multicontexted Application

1

Figure 10-2 Multiple Service Threads Dispatched in One Server Process

What Is Multicontexting

A context is an association to a domain. Multicontexting is the ability of a single
process to have one of the following:

� More than one connection within a domain

� Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers,
multicontexting implies the use of multithreading, as well.

CLIENT A

CLIEN T C

THR EA D 1

THR EA D 2

THR EA D 3

SERVER

CLIENT B

PROCESS
0-6 Programming a BEA Tuxedo Application Using C

What Are Multithreading and Multicontexting

s” in

 or

For a more complete list of the characteristics of a context, see “Context Attribute
one of the following sections:

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

The BEA Tuxedo system supports multicontexted applications written in either C
COBOL. Multithreaded applications, however, are supported only in C.

The following diagram shows how a multicontexted client process works within a
domain. Each arrow represents an outstanding call to a server.

Figure 10-3 Multicontexted Process in Two Domains

CLIENT PROCESS

S e rv e r 2

BEA Tuxedo Application A BEA Tuxedo Application B

S erv er 1

S e rv e r 3

S erv er 2

S e rv e r 1

Context 1

Context 2

Context 3
Programming a BEA Tuxedo Application Using C 10-7

10 Programming a Multithreaded and Multicontexted Application

re not

n”

nce
king
ial
Licensing a Multithreaded or Multicontexted Application

For licensing purposes, each context is counted as one user. Additional licenses a
required to accommodate multiple threads within one context. For example:

� If a process has two contexts associated with Application A and one with
Application B, the BEA Tuxedo system counts a total of three users (two in
Application A and one in Application B).

� If a process has multiple threads accessing one application within the same
context, the system counts only one user.

See Also

� “Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio
on page 10-8

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

Advantages and Disadvantages of a
Multithreaded/Multicontexted Application

Multithreading and multicontexting are powerful tools for enhancing the performa
of BEA Tuxedo applications—given the appropriate circumstances. Before embar
on a plan to use these techniques, however, it is important to understand potent
benefits and pitfalls.
10-8 Programming a BEA Tuxedo Application Using C

Advantages and Disadvantages of a Multithreaded/Multicontexted Application

sing
e

ting

d.

vers

 be

fits
Advantages of a Multithreaded/Multicontexted
Application

Multithreaded and multicontexted applications offer the following advantages:

� Improved performance and concurrency

For certain applications, performance and concurrency can be improved by u
multithreading and multicontexting together. In other applications, performanc
can be unaffected or even degraded by using multithreading and multicontex
together. How performance is affected depends on your application.

� Simplified coding of remote procedure calls and conversations

In some applications it is easier to code different remote procedure calls and
conversations in separate threads than to manage them from the same threa

� Simultaneous access to multiple applications

Your BEA Tuxedo clients can be connected to more than one application at a
time.

� Reduced number of required servers

Because one server can dispatch multiple service threads, the number of ser
to start for your application is reduced. This capability for multiple dispatched
threads is especially useful for conversational servers, which otherwise must
dedicated to one client for the entire duration of a conversation.

For applications in which client threads are created by the Microsoft Internet
Information Server API or the Netscape Enterprise Server interface (that is, the
NSAPI), the use of multiple threads is essential if you want to obtain the full bene
afforded by these tools. This may be true of other tools, as well.
Programming a BEA Tuxedo Application Using C 10-9

10 Programming a Multithreaded and Multicontexted Application

es:

n.

e

 to
Disadvantages of a Multithreaded/Multicontexted
Application

Multithreaded and multicontexted applications present the following disadvantag

� Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only
experienced programmers should undertake coding for these types of
applications.

� Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted
application than it is to do so in a single-threaded, single-contexted applicatio
As a result, it is more difficult, in the former case, to identify and verify root
causes when errors occur.

� Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the
potential to introduce new problems into an application.

� Difficulty of testing

Testing a multithreaded application is more difficult than testing a
single-threaded application because defects are often timing-related and mor
difficult to reproduce.

� Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of
multithreading and multicontexting. Programmers need to:

z Remove static variables

z Replace any function calls that are not thread-safe

z Replace any other code that is not thread-safe

Because the completed port must be tested and re-tested, the work required
port a multithreaded and/or multicontexted application is substantial.
10-10 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Client

n

lient
See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

How Multithreading and Multicontexting
Work in a Client

When a multithreaded and multicontexted application is active, the life cycle of a c
can be described in three phases:

� Start-up Phase

� Work Phase

� Completion Phase

Start-up Phase

In the start-up phase the following events occur:

� Some client threads join one or more BEA Tuxedo applications by calling
tpinit() .

� Other client threads share the contexts created by the first set of threads by
calling tpsetctxt(3c) .

� Some client threads join multiple contexts.

� Some client threads switch to an existing context.
Programming a BEA Tuxedo Application Using C10-11

10 Programming a Multithreaded and Multicontexted Application

er

e BEA
f the

sing
-52.)
n join
rrent

 thread

t
he
Note: There may also be threads that work independently of the BEA Tuxedo
system. We do not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in a BEA Tuxedo multicontexted application can have more than one
application association as long as the following rules are observed:

� All associations must be made to the same installation of the BEA Tuxedo
system.

� All application associations must be made from the same type of client. In oth
words, one of the following must be true:

z All application associations must be made from native clients only.

z All application associations must be made from workstation clients only.

To join multiple contexts, clients call the tpinit() function with the
TPMULTICONTEXTS flag set in the flags element of the TPINFO data type.

When tpinit() is called with the TPMULTICONTEXTS flag set, a new application
association is created and is designated the current association for the thread. Th
Tuxedo domain to which the new association is made is determined by the value o
TUXCONFIG or WSENVFILE/WSNADDR environment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For a complete list, see “U
Per-context Functions and Data Structures in a Multithreaded Client” on page 10
In such cases, the target context must be the current context. Although clients ca
more than one context, at any time, in any thread, only one context can be the cu
context.

As task priorities shift within an application, requiring interactions with one BEA
Tuxedo domain rather than another, it is sometimes advantageous to re-assign a
from one context to another.

In such situations, one client threads calls tpgetctxt(3c) and passes the handle tha
is returned (the value of which is the current context) to a second client thread. T
second thread then associates itself with the current context by calling
tpsetctxt(3c) and specifying the handle it received from tpgetctxt(3c) via the
first thread.
10-12 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Client

rform
, see
age

:

ets the
Once the second thread is associated with the desired context, it is available to pe
tasks executed by ATMI functions that operate on a per-context basis. For details
“Using Per-context Functions and Data Structures in a Multithreaded Client” on p
10-52.

Work Phase

In this phase each thread performs a task. The following is a list of sample tasks

� A thread issues a request for a service.

� A thread gets the reply to a service request.

� A thread initiates and/or participates in a conversation.

� A thread begins, commits, or rolls back a transaction.

Service Requests

A thread sends a request to a server by calling either tpcall() for a synchronous
request or tpacall() for an asynchronous request. If the request is sent with
tpcall() , then the reply is received without further action by any thread.

Replies to Service Requests

If an asynchronous request for a service has been sent with tpcall() , a thread in the
same context (which may or may not be the same thread that sent the request) g
reply by calling tpgetrply() .
Programming a BEA Tuxedo Application Using C10-13

10 Programming a Multithreaded and Multicontexted Application

hread

mmit
rking

ion.
 so

 stray
ay be

 calls
d

 one
Transactions

If one thread starts a transaction, then all threads that share the context of that t
also share the transaction.

Many threads in a context may work on a transaction, but only one thread may co
or abort it. The thread that commits or aborts the transaction can be any thread wo
on the transaction; it is not necessarily the same thread that started the transact
Threaded applications are responsible for providing appropriate synchronization
that the normal rules of transactions are followed. (For example, there can be no
outstanding RPC calls or conversations when a transaction is committed, and no
calls are allowed after a transaction has been committed or aborted.) A process m
part of at most one transaction for each of its application associations.

If one thread of an application calls tpcommit() concurrently with an RPC or
conversational call in another thread of the application, the system acts as if the
were issued in some serial order. An application context may temporarily suspen
work on a transaction by calling tpsuspend() and then start another transaction
subject to the same restrictions that exist for single-threaded and single-context
programs.

Unsolicited Messages

For each context in a multithreaded or multicontexted application, you may choose
of three methods for handling unsolicited messages.

The following caveats apply:

� SIGNAL-based notification is not allowed in multithreaded or multicontexted
processes.

A context may . . . By setting . . .

Ignore unsolicited messages TPU_IGN

Use dip-in notification TPU_DIP

Use dedicated thread notification.
(available only for C applications)

TPU_THREAD
10-14 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Client

 on

hread
Only
ntext.

at
s

 not—
n its

andler

ng

iation
ge
he

-in
� If your application runs on a platform that supports multicontexting but not
multithreading, then you cannot use the TPU_THREAD unsolicited notification
method. As a result, you cannot receive immediate notification of events.

If receiving immediate notification of events is important to your application,
then you should carefully consider whether to use a multicontexted approach
this platform.

� Dedicated thread notification is available only:

z For applications written in C

z On multithreaded platforms supported by the BEA Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate t
to receive unsolicited messages and dispatch the unsolicited message handler.
one copy of the unsolicited message handler can run at any one time in a given co

If tpinit() is called on a platform for which the BEA Tuxedo system does not
support threads, with parameters indicating that TPU_THREAD notification is being
requested on a platform that does not support threads, tpinit() returns -1 and sets
tperrno to TPEINVAL. If the UBBCONFIG(5) default NOTIFY option is set to THREAD
but threads are not available on a particular machine, the default behavior for th
machine is downgraded to DIPIN . The difference between these two behaviors allow
an administrator to specify a default for all machines in a mixed configuration—a
configuration that includes some machines that support threads and some that do
but it does not allow a client to explicitly request a behavior that is not available o
machine.

If tpsetunsol() is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for all new tpinit() contexts
created is established. A specific context may change the unsolicited message h
for that context by calling tpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calli
tpsetunsol() in a thread not currently associated with a context.

If a process has multiple associations with the same application, then each assoc
is assigned a different CLIENTID so that it is possible to send an unsolicited messa
to a specific application association. If a process has multiple associations with t
same application, then any tpbroadcast() is sent separately to each of the
application associations that meet the broadcast criteria. When performing a dip
check for receiving unsolicited messages, an application checks for only those
messages sent to the current application association.
Programming a BEA Tuxedo Application Using C10-15

10 Programming a Multithreaded and Multicontexted Application

rform

ntext

t
nates

In addition to the ATMI functions permitted in unsolicited message handlers, it is
permissible to call tpgetctxt(3c) within an unsolicited message handler. This
functionality allows an unsolicited message handler to create another thread to pe
any more substantial ATMI work required within the same context.

Userlog Maintains Thread-specific Information

For each thread in each application, userlog(3c) records the following identifying
information:

process_ID . thread_ID . context_ID

Placeholders are printed in the thread_ID and context_ID fields of entries for
non-threaded platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in the TA_THREADID and TA_CONTEXTID
fields in the T_ULOG class.

Completion Phase

In this phase, when the client process is about to exit, on behalf of the current co
and all associated threads, a thread ends its application association by calling
tpterm() . Like other ATMI functions, tpterm() operates on the current context. I
affects all threads for which the context is set to the terminated context, and termi
any commonality of context among these threads.

A well-designed application normally waits for all work in a particular context to
complete before it calls tpterm() . Be sure that all threads are synchronized before
your application calls tpterm() .
10-16 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Server

n

ation
See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing a Multithreaded Client” on page 10-45

� “Synchronizing Threads Before a Client Termination” on page 10-34

How Multithreading and Multicontexting
Work in a Server

The events that occur in a server when a multithreaded and multicontexted applic
is active can be described in three phases:

� Start-up Phase

� Work Phase

� Completion Phase
Programming a BEA Tuxedo Application Using C10-17

10 Programming a Multithreaded and Multicontexted Application
Start-up Phase

What happens during the start-up phase depends on the value of the
MINDISPATCHTHREADS and MAXDISPATCHTHREADS parameters in the configuration
file.

Work Phase

In this phase, the following activities occur:

� Multiple client requests to one server are handled concurrently in multiple
contexts. The system allocates a separate thread for each request.

� If necessary, additional threads (up to the number indicated by
MAXDISPATCHTHREADS) are created.

� The system keeps statistics on server threads.

If the value of
MINDISPATCHTHREADS
is . . .

And the value of
MAXDISPATCHTHREADS

is . . .

Then . . .

0 > 1 1. The BEA Tuxedo system creates a thread
dispatcher.

2. The dispatcher calls tpsvrinit() to join the
application.

> 0 > 1 1. The BEA Tuxedo system creates a thread
dispatcher.

2. The dispatcher calls tpsvrinit() to join the
application.

3. The BEA Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.

4. Each new system-created thread calls
tpsvrthrinit(3c) to join the application.
10-18 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Server

ple
rious

eful in
rvers

em,

Server-dispatched Threads Are Used

In response to clients’ requests for a service, the server dispatcher creates multi
threads (up to a configurable maximum) in one server that can be assigned to va
client requests concurrently. A server cannot become a client by calling tpinit() .

Each dispatched thread is associated with a separate context. This feature is us
both conversational and RPC servers. It is especially useful for conversational se
which otherwise sit idle, waiting for the client side of a conversation while other
conversational connections are waiting for service.

This functionality is controlled by the following parameters in the SERVERS section of
the UBBCONFIG(5) file and the TM_MIB(5) .

� Each dispatched thread is created with the stack size specified by
THREADSTACKSIZE (or TA_THREADSTACKSIZE). If this parameter is not specified
or has a value of 0, the operating system default is used. On a few operating
systems on which the default is too small to be used by the BEA Tuxedo syst
a larger default is used.

� If the value of this parameter is not specified or is 0, or if the operating system
does not support setting a THREADSTACKSIZE, then the operating system default
is used.

� MINDISPATCHTHREADS (or TA_MINDISPATCHTHREADS) must be less than or
equal to MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS).

� If MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS) is 1, then the
dispatcher thread and the service function thread are the same thread.

� If MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS) is greater than 1, any
separate thread used for dispatching other threads does not count toward the
limit of dispatched threads.

UBBCONFIG Parameter MIB Parameter Default

MINDISPATCHTHREADS TA_MINDISPATCHTHREADS 0

MAXDISPATCHTHREADS TA_MAXDISPATCHTHREADS 1

THREADSTACKSIZE TA_THREADSTACKSIZE 0 (representing the
OS default)
Programming a BEA Tuxedo Application Using C10-19

10 Programming a Multithreaded and Multicontexted Application

 an

n.

r

xt.

tarts
re
ed.

longer
then
� Initially, the system boots MINDISPATCHTHREADS (or
TA_MINDISPATCHTHREADS) server threads.

� The system never boots more than MAXDISPATCHTHREADS (or
TA_MAXDISPATCHTHREADS) server threads.

Application-created Threads Are Used

Using your operating system functions, you may create additional threads within
application server. Application-created threads may:

� Operate independently of the BEA Tuxedo system

� Operate in the same context as an existing server dispatch thread

� Perform work on behalf of server dispatch contexts

Some restrictions govern what you can do if you create threads in your applicatio

� Servers may not become clients by calling tpinit() .

� Initially, application-created server threads are not associated with any serve
dispatch context. An application-created server thread may call tpsetctxt(3c)
(and pass it a value returned by a previous call to tpgetctxt(3c) within a
server-dispatched thread) to associate itself with that server-dispatched conte

� An application-created server thread cannot call tpreturn() or tpforward() .
When an application-created server thread has finished its work, it must call
tpsetctxt(3c) with the context set to TPNULLCONTEXT before the originally
dispatched thread calls tpreturn() .

BBL Verifies Sanity of System Processes

The BBL periodically checks servers. If a server is taking too long to execute a
particular service request, the BBL kills that server. (If specified, the BBL then res
the server.) If the BBL kills a multicontexted server, the other service calls that a
currently being executed are also terminated as a result of the process being kill

The BBL also sends a message to any process or thread that has been waiting
than its timeout value to receive a message. The blocking message receive call
returns an error indicating a timeout.
10-20 Programming a BEA Tuxedo Application Using C

How Multithreading and Multicontexting Work in a Server

s

System Keeps Statistics on Server Threads

For each server, the BEA Tuxedo system maintains statistics for the following
information:

� Maximum number of server-dispatched threads allowed

� Number of server-dispatched threads currently in use
(TA_CURDISPATCHTHREADS)

� High-water mark of concurrent server-dispatched threads since the server wa
booted (TA_HWDISPATCHTHREADS)

� Number of server-dispatched threads historically started
(TA_NUMDISPATCHTHREADS)

Userlog Maintains Thread-specific Information

For each thread in each application, userlog(3c) records the following identifying
information:

process_ID . thread_ID . context_ID

Placeholders are printed in the thread_ID and context_ID fields of entries for
non-threaded platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in the TA_THREADID and TA_CONTEXTID
fields in the T_ULOG class.

Completion Phase

When the application is shut down, tpsvrthrdone(3c) and tpsvrdone(3c) are
called to perform any termination processing that is necessary, such as closing a
resource manager.
Programming a BEA Tuxedo Application Using C10-21

10 Programming a Multithreaded and Multicontexted Application

n

edo
swer
See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Server” on page 10-59

Design Considerations for a Multithreaded
and Multicontexted Application

Multithreaded and multicontexted applications are appropriate for some BEA Tux
domains, but not all. To decide whether to create such applications, you should an
several basic questions about the following:

� Your development and run-time environments

� Design requirements for your application

� Type of threads model to use

� Interoperability restrictions for Workstation clients
10-22 Programming a BEA Tuxedo Application Using C

Design Considerations for a Multithreaded and Multicontexted Application

age

 an

g?

ion

ap

Environment Requirements

When considering the development of multithreaded and/or multicontexted
applications, examine the following aspects of your development and run-time
environments:

� Do you have an experienced team of programmers capable of writing and
debugging multithreaded and multicontexted programs that successfully man
concurrency and synchronization?

� Are the multithreading features of the BEA Tuxedo system supported on the
platform on which you are developing your application? These features are
supported only on platforms with an OS-provided threads package, providing
appropriate level of functionality.

� Do the resource managers (RMs) used by your servers support multithreadin
If so, consider the following issues, as well:

z Do you need to set any parameters required by your RM to enable
multithreaded access by your servers? For example, if you use an Oracle
database with a multithreaded application, you must set the THREADS=true
parameter as part of the OPENINFO string passed to Oracle. By doing so, you
make it possible for individual threads to operate as separate Oracle
associations.

z Does your RM support a mixed mode of operation? A mixed-mode operat
is a form of access such that multiple threads in a process can map to one
RM association while other threads in the same process simultaneously m
to different RM associations. Within one process, for example, Threads A
and B map to RM Association X, while Thread C maps to RM Association
Y.

Not all RMs support mixed-mode operation. Some require all threads in a
given process to map to the same RM association. If you are designing an
application that will make use of transactional RM access within
application-created threads, make sure your RM supports mixed-mode
operation.
Programming a BEA Tuxedo Application Using C10-23

10 Programming a Multithreaded and Multicontexted Application

y

is
rs

/or

d
Design Requirements

When designing a multithreaded and/or multicontexted application, you should
consider the following design questions:

� Is the task performed by your application suitable for multithreading and/or
multicontexting?

� Do you want to connect to more than one BEA Tuxedo application? How man
connections to each target application do you want?

� What synchronization issues need to be addressed in your application?

� Will you need to port your application to another platform after you have put
your initial application into production?

Is the Task of Your Application Suitable for
Multithreading and/or Multicontexting

The following table provides a list of questions to help you decide whether your
application would be improved if it were multithreaded and/or multicontexted. Th
list is not comprehensive; your individual requirements will determine other facto
that should be considered.

For additional suggestions, we recommend that you consult a multithreaded and
multicontexted programming publication.

If the answer to this question . . . Is YES, then you might consider
using . . .

Does your client need to connect to more than one application
without using the Domains feature?

Multicontexting

Does your client perform the role of a multiplexer within your
application? For example, have you designated one machine in your
application the “surrogate” for 100 other machines?

Multicontexting

Does your client use multicontexting? Multithreading. By allocating one threa
per context, you can simplify your code.
10-24 Programming a BEA Tuxedo Application Using C

Design Considerations for a Multithreaded and Multicontexted Application

s you

ne

 a

of

ter
How Many Applications and Connections Do You Want

Decide how many applications you want to access and the number of connection
want to make.

� If you want connections to more than one application, then we recommend o
of the following:

z A single-threaded, multicontexted application

z A multithreaded, multicontexted application

� If you want more than one connection to an application, then we recommend
multithreaded, multicontexted application.

� If you want only one connection to one application, then we recommend one
the following:

z Multithreaded, single-contexted clients

z Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Does your client perform two or more tasks that can be executed
independently for a long time such that the performance gains from
concurrent execution outweigh the costs and complexities of threads
synchronization?

Multithreading

Do you want one server to process multiple concurrent requests? Multithreading. Assign a value grea
than 1 to MAXDISPATCHTHREADS. This
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessary to
synchronize them after each thread had performed only a little work?

Not using multithreading

If the answer to this question . . . Is YES, then you might consider
using . . .
Programming a BEA Tuxedo Application Using C10-25

10 Programming a Multithreaded and Multicontexted Application

 scope

at
ant

ode

ou
hen
What Synchronization Issues Need to Be Addressed

This issue is an important one during the design phase. It is, however, beyond the
of this documentation. Please refer to a publication about multithreaded and/or
multicontexted programming.

Will You Need to Port Your Application

If you may need to port your application in the future, you should keep in mind th
different operating systems have different sets of functions. If you think you may w
to port your application after completing the initial version of it on one platform,
remember to consider the amount of staff time that will be needed to revise the c
with a different set of functions.

Which Threads Model Is Best for You

Various models for multithreaded programs are now being used, including the
following:

� Boss/worker model

� Siblings model

� Workflow model

We do not discuss threads models in this documentation. We recommend that y
research all available models and consider your design requirements carefully w
choosing a programming model for your application.
10-26 Programming a BEA Tuxedo Application Using C

Design Considerations for a Multithreaded and Multicontexted Application

 on

n”
Interoperability Restrictions for Workstation Clients

Interoperability between Release 7.1 Workstation clients and applications based
pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

� The client is neither multithreaded nor multicontexted.

� The client is multicontexted.

� The client is multithreaded and each thread is in a different context

A BEA Tuxedo Release 7.1 Workstation client with multiple threads in a single
context cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

See Also

� “Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio
on page 10-8

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28
Programming a BEA Tuxedo Application Using C10-27

10 Programming a Multithreaded and Multicontexted Application

ing:
Implementing a Multithreaded/
Multicontexted Application

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Client” on page 10-45

� “Writing a Multithreaded Server” on page 10-59

� “Compiling Code for a Multithreaded/Multicontexted Application” on page
10-59

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted Application

Before you start coding, make sure you have fulfilled or thought about the follow

� “Prerequisites for a Multithreaded Application” on page 10-29

� “General Multithreaded Programming Considerations” on page 10-29

� “Concurrency Considerations” on page 10-30
10-28 Programming a BEA Tuxedo Application Using C

Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application

ur

 the

To

by

ar,
task,

e any
ar.
t of
Prerequisites for a Multithreaded Application

Make sure your environment meets the following prerequisites before starting yo
development project.

� Your operating system must provide a suitable threads package supported by
BEA Tuxedo system.

The BEA Tuxedo system does not supply tools for creating threads, but it
supports various threads packages provided by different operating systems.
create and synchronize threads, you must use the functions native to your
operating system. To find out which, if any, threads packages are supported
your operating system, see Appendix A, “Platform Data Sheets,” in Installing the
BEA Tuxedo System.

� If you are using multithreaded servers, the resource managers used by those
servers must support threads.

General Multithreaded Programming Considerations

Only experienced programmers should write multithreaded programs. In particul
programmers should already be familiar with basic design issues specific to this
such as:

� The need for concurrency control among multiple threads

� The need to avoid the use of static variables in most instances

� Potential problems that may arise from the use of signals in multithreaded
programs

These are just a few of the issues, too numerous to list here, with which we assum
programmer undertaking the writing of a multithreaded program is already famili
These issues are discussed in many commercially available books on the subjec
multithreaded programming.
Programming a BEA Tuxedo Application Using C10-29

10 Programming a Multithreaded and Multicontexted Application

 the

were

ong

mer
r

trol
Concurrency Considerations

Multithreading enables different threads of an application to perform concurrent
operations on the same conversation. We do not recommend this approach, but
BEA Tuxedo system does not forbid it. If different threads perform concurrent
operations on the same conversation, the system acts as if the concurrent calls
issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency am
them by using mutexes or other concurrency-control functions. Here are three
examples of the need for concurrency control.

� When multithreaded threads are operating on the same context, the program
must ensure that functions are being executed in the required serial order. Fo
example, all RPC calls and conversations must be compiled before tpcommit()
can be called. If tpcommit() is called from a thread other than the thread from
which all these RPC or conversational calls are made, some concurrency con
is probably required in the application.

� Similarly, it is permissible to call tpacall() in one thread and tpgetrply() in
another, but the application must either:

z Ensure that tpacall() is called before tpgetrply() , or

z Manage the consequences if tpacall() is not called before tpgetrply()

� Multiple threads may operate on the same conversation but application
programmers must realize that if different threads issue tpsend() at
approximately the same time, the system acts as though these tpsend() calls
have been issued in an arbitrary order.

For most applications, the best strategy is to code all the operations for one
conversation in one thread. The second best strategy is to serialize these
operations using concurrency control.
10-30 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

n

nces

rary
y

See Also

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Client” on page 10-45

� “Writing a Multithreaded Server” on page 10-59

Writing Code to Enable Multicontexting in a
Client

To enable multicontexting in a client, you must write code that:

� Sets up multicontexting at initialization time

� Implements security

� If multithreading is also being used, synchronizes threads

� Switches contexts

� Handles unsolicited messages for each context

If your application uses transactions, you should also keep in mind the conseque
of multicontexting for transactions. For more information, see “Coding Rules for
Transactions in a Multithreaded/Multicontexted Application” on page 10-39.

Note: The instructions and sample code provided in this section refer to the C lib
functions provided by the BEA Tuxedo system. Equivalent COBOL librar
functions are also available; for details, see the BEA Tuxedo COBOL Function
Reference.
Programming a BEA Tuxedo Application Using C10-31

10 Programming a Multithreaded and Multicontexted Application

ts:

the

Context Attributes

When writing your code, keep in mind the following considerations about contex

� If an application-created server thread exits without changing context before
original dispatched thread exits, then tpreturn() or tpforward() fails. The
execution of a thread exit does not automatically trigger a call to
tpsetctxt(3c) to change the context to TPNULLCONTEXT.

� For all contexts in a process, the same buffer type switch must be used.

� As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

z Both calls may use the buffer

z Both calls may free the buffer

z One call may use the buffer and one call may free the buffer

� If you call tpinit() more than once, either to join multiple applications or to
make multiple connections to a single application, keep in mind that on each
tpinit() you must accommodate whatever security mechanisms have been
established.
10-32 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

in

are

Setting Up Multicontexting at Initialization

When a client is ready to join an application, specify tpinit() with the
TPMULTICONTEXTS flag set, as shown in the following sample code.

Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

#include <stdio.h>
#include <atmi.h>

TPINIT * tpinitbuf;

main()
{

tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));

tpinitbuf->flags = TPMULTICONTEXTS;
 .
 .
 .

if (tpinit (tpinitbuf) == -1) {

 ERROR_PROCESSING_CODE
}

 .
 .
 .

}

A new application association is created and assigned to the BEA Tuxedo doma
specified in the TUXCONFIG or WSENVFILE/WSNADDR environment variable.

Note: In any one process, either all calls to tpinit() must include the
TPMULTICONTEXTS flag or else no call to tpinit() may include this flag. The
only exception to this rule is that if all of a client’s application associations
terminated by successful calls to tpterm() , then the process is restored to a
state in which the inclusion of the TPMULTICONTEXTS flag in the next call to
tpinit() is optional.
Programming a BEA Tuxedo Application Using C10-33

10 Programming a Multithreaded and Multicontexted Application

isms
e a

ying
tion

s to

nvalid
ed.

text
Implementing Security for a Multicontexted Client

Each application association in the same process requires a separate security
validation. The nature of that validation depends on the type of security mechan
used in your application. In a BEA Tuxedo application you might, for example, us
system-level password or an application password.

As the programmer of a multicontexted application, you are responsible for identif
the type of security used in your application and implementing it for each applica
association in a process.

Synchronizing Threads Before a Client Termination

When you are ready to disconnect a client from an application, invoke tpterm() .
Keep in mind, however, that in a multicontexted application tpterm() destroys the
current context. All the threads operating on that context are affected. As the
application programmer, you must carefully coordinate the use of multiple thread
make sure that tpterm() is not called unexpectedly.

It is important to avoid calling tpterm() on a context while other threads are still
working on that context. If such a call to tpterm() is made, the BEA Tuxedo system
places the other threads that had been associated with that context in a special i
context state. When in the invalid context state, most ATMI functions are disallow
A thread may exit from the invalid context state by calling tpsetctxt(3c) or
tpterm() . Most well designed applications never have to deal with the invalid con
state.

Note: The BEA Tuxedo system does not support multithreading in COBOL
applications.
10-34 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

 calls

y

g
Switching Contexts

The following is a summary of the coding steps that might be made by a client that
services from two contexts.

1. Set the TUXCONFIG environment variable to the value required by firstapp .

2. Join the first application by calling tpinit() with the TPMULTICONTEXTS flag
set.

3. Obtain a handle to the current context by calling tpgetctxt(3c) .

4. Switch the value of the TUXCONFIG environment variable to the value required b
the secondapp context, by calling tuxputenv() .

5. Join the second application by calling tpinit() with the TPMULTICONTEXTS
flag set.

6. Get a handle to the current context by calling tpgetctxt(3c) .

7. Beginning with the firstapp context, start toggling between contexts by callin
tpsetctxt(3c) .

8. Call firstapp services.

9. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call
secondapp services.

10. Switch the client to the firstapp context (by calling tpsetctxt(3c)) and call
firstapp services.

11. Terminate the firstapp context by calling tpterm() .

12. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call
secondapp services.

13. Terminate the secondapp context by calling tpterm() .

The following sample code provides an example of these steps.

Note: In order to simplify the sample, error checking code is not included.
Programming a BEA Tuxedo Application Using C10-35

10 Programming a Multithreaded and Multicontexted Application
Listing 10-2 Sample Code for Switching Contexts in a Client

#include <stdio.h>
#include "atmi.h"/* BEA Tuxedo header file */

#if defined(__STDC__) || defined(__cplusplus)
main(int argc, char *argv[])
#else
main(argc, argv)
int argc;
char *argv[];
#endif
{

 TPINIT * tpinitbuf;
 TPCONTEXT_T firstapp_contextID, secondapp_contextID;
 /* Assume that TUXCONFIG is initially set to /home/firstapp/TUXCONFIG*/
 /*
 * Attach to the BEA Tuxedo system in multicontext mode.
 */
 tpinitbuf=tpalloc(TPINIT, NULL, TPINITNEED(0));
 tpinitbuf->flags = TPMULTICONTEXTS;

 if (tpinit((TPINIT *) tpinitbuf) == -1) {
 (void) fprintf(stderr, "Tpinit failed\n");
 exit(1);
}

 /*
 * Obtain a handle to the current context.
 */
 tpgetctxt(&firstapp_contextID, 0);

 /*
 * Use tuxputenv to change the value of TUXCONFIG,
 * so we now tpinit to another application.
 */
 tuxputenv("TUXCONFIG=/home/second_app/TUXCONFIG");

 /*
 * tpinit to secondapp.
 */
 if (tpinit((TPINIT *) tpinitbuf) == -1) {
 (void) fprintf(stderr, "Tpinit failed\n");
 exit(1);
 }

 /*
10-36 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client
 * Get a handle to the context of secondapp.
 */
 tpgetctxt(&secondapp_contextID, 0);

 /*
 * Now you can alternate between the two contexts
 * using tpsetctxt and the handles you obtained from
 * tpgetctxt. You begin with firstapp.
 */

 tpsetctxt(firstapp_contextID, 0);

 /*
 * You call services offered by firstapp and then switch
 * to secondapp.
 */

 tpsetctxt(secondapp_contextID, 0);

 /*
 * You call services offered by secondapp.
 * Then you switch back to firstapp.
 */

 tpsetctxt(firstapp_contextID, 0);

 /*
 * You call services offered by firstapp. When you have
 * finished, you terminate the context for firstapp.
 */

 tpterm();

 /*
 * Then you switch back to secondapp.
 */

 tpsetctxt(secondapp_contextID, 0);
 /*
 * You call services offered by secondapp. When you have
 finished, you terminate the context for secondapp and
 end your program.
 */

 tpterm();

 return(0);
}

Programming a BEA Tuxedo Application Using C10-37

10 Programming a Multithreaded and Multicontexted Application

et up
et one

andler

ng

fy
Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must s
an unsolicited message handler or use the process handler default if you have s
up.

If tpsetunsol() is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for all new tpinit() contexts
created is established. A specific context may change the unsolicited message h
for that context by calling tpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calli
tpsetunsol() in a thread not currently associated with a context.

Set up the handler in the same way you set one up for a single-threaded or
single-contexted application. See tpsetunsol() for details.

You can use tpgetctxt(3c) in an unsolicited message handler if you want to identi
the context in which you are currently working.
10-38 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting in a Client

you

e
Coding Rules for Transactions in a
Multithreaded/Multicontexted Application

The following consequences of using transactions should be kept in mind while
are writing your application:

� You can have only one transaction in any one context.

� You can have a different transaction for each context.

� All the threads associated with a given context at a given time share the sam
transaction state (if any) of that context.

� You must synchronize your threads so all conversations and RPC calls are
complete before you call tpcommit() .

� You can call tpcommit() from only one thread in any particular transaction.

See Also

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “Writing a Multithreaded Client” on page 10-45
Programming a BEA Tuxedo Application Using C10-39

10 Programming a Multithreaded and Multicontexted Application

rary

le
r) is

ts:

the

Writing Code to Enable Multicontexting and
Multithreading in a Server

� Coding Rules for a Multicontexted Server

� Initializing and Terminating Servers and Server Threads

� Programming a Server to Create Threads

� Sample Code for Creating an Application Thread in a Multicontexted Server

Note: The instructions and sample code provided in this section refer to the C lib
functions provided by the BEA Tuxedo system. (See the BEA Tuxedo C
Function Reference for details.) Equivalent COBOL routines are not availab
because multithreading (which is required to create a multicontexted serve
not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contex

� If an application-created server thread exits without changing context before
original dispatched thread exits, then tpreturn() or tpforward() fails. The
execution of a thread exit does not automatically trigger a call to
tpsetctxt(3c) to change the context to TPNULLCONTEXT.

� For all contexts in a process, the same buffer type switch must be used.

� As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

z Both calls may use the buffer.

z Both calls may free the buffer.

z One call may use the buffer and one call may free the buffer.
10-40 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting and Multithreading in a Server

d/or

lid
Coding Rules for a Multicontexted Server

Keep in mind the following rules for coding multicontexted servers:

� The BEA Tuxedo dispatcher on the server may dispatch the same service an
different services multiple times, creating a different dispatch context for each
service dispatched.

� A server is prohibited from calling tpinit() or otherwise acting as a client. If a
server process calls tpinit() , tpinit() returns -1 and sets tperrno(5) to
TPEPROTO. An application-created server thread may not make ATMI calls
before calling tpsetctxt(3c) .

� Only a server-dispatched thread may call tpreturn() or tpforward() .

� A server cannot execute a tpreturn() or tpforward() if any
application-created thread is still associated with any application context.
Therefore, before a server-dispatched thread calls tpreturn() , each
application-created thread associated with that context must call
tpsetctxt(3c) with the context set to either TPNULLCONTEXT or another valid
context.

If this rule is violated, then tpreturn() or tpforward() writes a message to
the userlog, indicates TPESVCERR to the caller, and returns control to the main
server dispatch loop. The threads that had been in the context where the inva
tpreturn() was done are placed in an invalid context.

� If there are outstanding ATMI calls, RPC calls, or conversations when
tpreturn() or tpforward() is called, tpreturn() or tpforward() writes a
message to the userlog, indicates TPESVCERR to the caller, and returns control to
the main server dispatch loop.

� A server-dispatched thread may not call tpsetctxt(3c) .

� Unlike single-contexted servers, it is permissible for a multicontexted server
thread to call a service that is offered only by that same server process.
Programming a BEA Tuxedo Application Using C10-41

10 Programming a Multithreaded and Multicontexted Application

ult

s

ads
stem,
s.

Initializing and Terminating Servers and Server Threads

To initialize and terminate your servers and server threads, you can use the defa
functions provided by the BEA Tuxedo system or you can use your own.

Table 10-1 Default Functions for Initialization and Termination

Programming a Server to Create Threads

You may create additional threads within an application server, although most
applications using multicontexted servers use only the dispatched server thread
created by the system. This section provides instructions for doing so.

Creating Threads

You may create additional threads within an application server by using OS thre
functions. These new threads may operate independently of the BEA Tuxedo sy
or they may operate in the same context as one of the server-dispatched thread

Associating Threads with a Context

Initially, application-created server threads are not associated with any
server-dispatched context. If called before being initialized, however, most ATMI
functions perform an implicit tpinit() . Such calls introduce problems because
servers are prohibited from calling tpinit() . (If a server process calls tpinit() ,
tpinit() returns -1 and sets tperrno(5) to TPEPROTO.)

To . . . Use the default function

Initialize a server tpsvrinit(3c)

Initialize a server thread tpsvrthrinit(3c)

Terminate a server tpsvrdone(3c)

Terminate a server thread tpsvrthrdone(3c)
10-42 Programming a BEA Tuxedo Application Using C

Writing Code to Enable Multicontexting and Multithreading in a Server

sting
rver
g

 to

e

s
d.
Therefore, an application-created server thread must associate itself with an exi
context before calling any ATMI functions. To associate an application-created se
thread with an existing context, you must write code that implements the followin
procedure.

1. Server-dispatched-thread_A gets a handle to the current context by calling
tpgetctxt(3c) .

2. Server-dispatched-thread_A passes the handle returned by tpgetctxt(3c) to
Application_thread_B.

3. Application_thread_B associates itself with the current context by calling
tpsetctxt(3c) , specifying the handle received from
Server-dispatched-thread_A.

4. Application-created server threads cannot call tpreturn() or tpforward() .
Before the originally dispatched thread calls tpreturn() or tpforward() , all
application-created server threads that have been in that context must switch
TPNULLCONTEXT or another valid context.

If this rule is not observed, then tpforward() or tpreturn() fails and
indicates a service error to the caller.

Sample Code for Creating an Application Thread in a
Multicontexted Server

For those applications with a need to create an application thread in a server, th
following code sample shows a multicontexted server in which a service creates
another thread to help perform its work. Operating system (OS) threads function
differ from one OS to another. In this sample POSIX and ATMI functions are use
Programming a BEA Tuxedo Application Using C10-43

10 Programming a Multithreaded and Multicontexted Application

 an
EA

 the
ing
Notes: In order to simplify the sample, error checking code is not included. Also,
example of a multicontexted server using only threads dispatched by the B
Tuxedo system is not included because such a server is coded in exactly
same way as a single-contexted server, as long as thread-safe programm
practices are used.

Listing 10-3 Code Sample for Creating a Thread in a Multicontexted Server

#include <pthread.h>
#include <atmi.h>

void *withdrawalthread(void *);

struct sdata {
 TPCONTEXT_T ctxt;
 TPSVCINFO *svcinfoptr;
};

void
TRANSFER(TPSVCINFO *svcinfo)
{
 struct sdata transferdata;
 pthread_t withdrawalthreadid;

 tpgetctxt(&transferdata.ctxt, 0);
 transferdata.svcinfoptr = svcinfo;
 pthread_create(&withdrawalthreadid, NULL, withdrawalthread, &transferdata);
 tpcall("DEPOSIT", ...);
 pthread_join(withdrawalthreadid, NULL);
 tpreturn(TPSUCCESS, ...);
}

void *
withdrawalthread(void *arg)
{
 tpsetctxt(arg->ctxt, 0);
 tpopen();
 tpcall("WITHDRAWAL", ...);
 tpclose();
 return(NULL);
}

10-44 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

.
 allows
icular

read.
The previous example accomplishes a funds transfer by invoking the DEPOSIT service
in the originally dispatched thread, and WITHDRAWAL in an application-created thread
This example is based on the assumption that the resource manager being used
a mixed model such that multiple threads of a server can be associated with a part
database connection without all threads of the server being associated with that
instance. Most resource managers, however, do not support such a model.

A simpler way to code this example is to avoid the use of an application-created th
To obtain the same concurrency provided by the two calls to tpcall() in the example,
substitute two calls to tpacall() and two calls to tpgetrply() in the
server-dispatched thread.

See Also

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

Writing a Multithreaded Client

� Coding Rules for a Multithreaded Client

� Initializing a Client to Multiple Contexts

� Getting Replies in a Multithreaded Environment

� Using Environment Variables in a Multithreaded and/or Multicontexted
Environment

� Using Per-context Functions and Data Structures in a Multithreaded Client

� Using Per-process Functions and Data Structures in a Multithreaded Client

� Using Per-thread Functions and Data Structures in a Multithreaded Client

� Sample Code for a Multithreaded Client

Note: The BEA Tuxedo system does not support multithreaded COBOL
applications.
Programming a BEA Tuxedo Application Using C10-45

10 Programming a Multithreaded and Multicontexted Application

ork
e

s and

e

.

ou

the

 a
tion
Coding Rules for a Multithreaded Client

Keep in mind the following rules for coding multithreaded clients:

� Once a conversation has been started, any thread in the same process can w
on that conversation. Handles and call descriptors are portable within the sam
context in the same process, but not between contexts or processes. Handle
call descriptors can be used only in the application context in which they are
originally assigned.

� Any thread operating in the same context within the same process can invok
tpgetrply() to receive a response to an earlier call to tpacall() , regardless
of whether or not that thread originally called tpacall() .

� A transaction can be committed or aborted by only one thread, which may or
may not be the same thread that started it.

� All RPC calls and all conversations must be completed before an attempt is
made to commit the transaction. If an application calls tpcommit() while RPC
calls or conversations are outstanding, tpcommit() aborts the transaction,
returns -1, and sets tperrno(5) to TPEABORT.

� Functions such as tpcall() , tpacall() , tpgetrply() , tpconnect() ,
tpsend() , tprecv() , and tpdiscon() should not be called in transaction
mode unless you are sure that the transaction is not already committing or
aborting.

� Two tpbegin() calls cannot be made simultaneously for the same context.

� tpbegin() cannot be issued for a context that is already in transaction mode

� If you are using a client and you want to connect to more than one domain, y
must manually change the value of TUXCONFIG or WSNADDR before calling
tpinit() . You must synchronize the setting of the environment variable and
tpinit() call if multiple threads may be performing such an action. All
application associations in a client must obey the following rules:

z All associations must be made to the same release of the BEA Tuxedo
system.

z Either every application association in a particular client must be made as
native client, or every application association must be made as a worksta
client.
10-46 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

at

o

till
r a

ges
s the
esult
� To join an application, a multithreaded workstation client must always call
tpinit() with the TPMULTICONTEXTS flag set, even if the client is running in
single-context mode.

Initializing a Client to Multiple Contexts

To have a client join more than one context, issue a call to the tpinit() function with
the TPMULTICONTEXTS flag set in the flags element of the TPINIT data structure.

In any one process, either all calls to tpinit() must include the TPMULTICONTEXTS
flag or no call to tpinit() may include this flag. The only exception to this rule is th
if all of a client’s application associations are terminated by successful calls to
tpterm() , then the process is restored to a state in which the inclusion of the
TPMULTICONTEXTS flag in the next call to tpinit() is optional.

When tpinit() is invoked with the TPMULTICONTEXTS flag set, a new application
association is created and is designated the current association. The BEA Tuxed
domain to which the new association is made is determined by the value of the
TUXCONFIG or WSENVFILE/WSNADDR environment variable.

When a client thread successfully executes tpinit() without the TPMULTICONTEXTS
flag, all threads in the client are placed in the single-context state (TPSINGLECONTEXT).

On failure, tpinit() leaves the calling thread in its original context (that is, in the
context state in which it was operating before the call to tpinit()).

Do not call tpterm() from a given context if any of the threads in that context are s
working. See the table labeled “Multicontext State Transitions” on page 10-48 fo
description of the context states that result from calling tpterm() under these and
other circumstances.

Context State Changes for a Client Thread

In a multicontext application, calls to various functions result in context state chan
for the calling thread and any other threads that are active in the same context a
calling process. The following diagram illustrates the context state changes that r
from calls to tpinit() , tpsetctxt(3c) , and tpterm() . (The tpgetctxt(3c)
function does not produce any context state changes.)
Programming a BEA Tuxedo Application Using C10-47

10 Programming a Multithreaded and Multicontexted Application

t
Figure 10-4 Multicontext State Transitions

Note: When tpterm() is called by a thread running in the multicontext state
(TPMULTICONTEXTS), the calling thread is placed in the null context state
(TPNULLCONTEXT). All other threads associated with the terminated contex
are switched to the invalid context state (TPINVALIDCONTEXT).

The following table lists all possible context state changes produced by calling
tpinit() , tpsetctxt(3c) , and tpterm() .

NULL

tpinit() without TPMULTICONTEXTS

 or
implicit tpinit() invoked by ATMI function

CONTEXT

INVALID
CONTEXT

MULTI-
CONTEXT

SINGLE
CONTEXT

tpinit() with TPMULTICONTEXTS

or
tpsetctxt() to a valid context

tpterm() tpterm()
or

tpsetctxt()

tpterm()
or

tpsetctxt()

tpsetctxt()

tpterm()

tpinit() without
TPMULTICONTEXTS

(see Note)
10-48 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

d.

one
hread
Getting Replies in a Multithreaded Environment

tpgetrply() receives responses only to requests made via tpacall() . Requests
made with tpcall() are separate and cannot be retrieved with tpgetrply()
regardless of the multithreading or multicontexting level.

tpgetrply() operates in only one context, which is the context in which it is calle
Therefore, when you call tpgetrply() with the TPGETANY flag, only handles
generated in the same context are considered. Similarly, a handle generated in
context may not be used in another context, but the handle may be used in any t
operating within the same context.

Table 10-2 Context State Changes for a Client Thread

When this
function is
executed . . .

Then a thread in this context state results in . . .

Null Context Single Context Multicontext Invalid
Context

tpinit() without
TPMULTICONTEXTS

Single context Single context Error Error

tpinit() with
TPMULTICONTEXTS

Multicontext Error Multicontext Error

tpsetctxt(3c) to
TPNULLCONTEXT

Null Error Null Null

tpsetctxt(3c) to
context 0

Error Single context Error Error

tpsetctxt(3c) to
context > 0

Multicontext Error Multicontext Multicontext

Implicit tpinit() Single context N/A N/A Error

tpterm() in this
thread

Null Null Null Null

tpterm() in a
different thread of this
context

N/A Null Invalid N/A
Programming a BEA Tuxedo Application Using C10-49

10 Programming a Multithreaded and Multicontexted Application

.

xt

nt

s
text

not
When tpgetrply() is called in a multithreaded environment, the following
restrictions apply:

� If a thread calls tpgetrply() for a specific handle while another thread in the
same context is already waiting in tpgetrply() for the same handle,
tpgetrply() returns -1 and sets tperrno to TPEPROTO.

� If a thread calls tpgetrply() for a specific handle while another thread in the
same context is already waiting in tpgetrply() with the TPGETANY flag, the
call returns -1 and sets tperrno(5) to TPEPROTO.

The same behavior occurs if a thread calls tpgetrply() with the TPGETANY
flag while another thread in the same context is already waiting in tpgetrply()
for a specific handle. These restrictions protect a thread that is waiting on a
specific handle from having its reply taken by a thread waiting on any handle

� At any given time, only one thread in a particular context can wait in
tpgetrply() with the TPGETANY flag set. If a second thread in the same conte
invokes tpgetrply() with the TPGETANY flag while a similar call is
outstanding, this second call returns -1 and sets tperrno(5) to TPEPROTO.

Using Environment Variables in a Multithreaded and/or
Multicontexted Environment

When a BEA Tuxedo application is run in an environment that is multicontexted
and/or multithreaded, the following considerations apply to the use of environme
variables:

� A process initially inherits its environment from the operating system
environment. On platforms that support environment variables, such variable
make up a per-process entity. Therefore, applications that depend on per-con
environment settings should use the tuxgetenv(3c) function instead of an OS
function.

Note: The environment is initially empty for those operating systems that do
recognize an operating system environment.
10-50 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

er
.

ss.

e
an

e
� Many environment variables are read by the BEA Tuxedo system only once p
process or once per context and then cached within the BEA Tuxedo system
Changes to such variables once cached in the process have no effect.

� The tuxputenv(3c) function affects the environment for the entire process.

� When you call the tuxreadenv(3c) function, it reads a file containing
environment variables and adds them to the environment for the entire proce

� The tuxgetenv(3c) function returns the current value of the requested
environment variable in the current context. Initially, all contexts have the sam
environment, but the use of environment files specific to a particular context c
cause different contexts to have different environment settings.

� If a client intends to initialize to more than one domain, the client must chang
the value of the TUXCONFIG, WSNADDR, or WSENVFILE environment variable to
the proper value before each call to tpinit() . If such an application is
multithreaded, a mutex or other application-defined concurrency control will
probably be needed to ensure that:

Caching is done on a . . . For environment variables such as . . .

Per-context basis TUXCONFIG

FIELDTBLS and FIELDTBLS32

FLDTBLDIR and FLDTBLDIR32

ULOGPFX

VIEWDIR and VIEWDIR32

VIEWFILES and VIEWFILES32

WSNADDR

WSDEVICE

WSENV

Per-process basis TMTRACE

TUXDIR

ULOGDEBUG
Programming a BEA Tuxedo Application Using C10-51

10 Programming a Multithreaded and Multicontexted Application

t

he

re
z The appropriate environment variable is reset.

z The call to tpinit() is made without the environment variable being re-se
by any other thread.

� When a client initializes to the system, the WSENVFILE and/or machine
environment file is read and affects the environment in that context only. The
previous environment for the process as a whole remains for that context to t
extent that it is not overridden within the environment file(s).

Using Per-context Functions and Data Structures in a
Multithreaded Client

The following ATMI functions affect only the application contexts in which they a
called:

� tpabort()

� tpacall()

� tpadmcall(3c)

� tpbegin()

� tpbroadcast()

� tpcall()

� tpcancel()

� tpchkauth()

� tpchkunsol()

� tpclose(3c)

� tpcommit()

� tpconnect()

� tpdequeue(3c)

� tpdiscon()

� tpenqueue(3c)

� tpforward()

� tpgetlev()
10-52 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client
� tpgetrply()

� tpinit()

� tpnotify()

� tpopen(3c)

� tppost()

� tprecv()

� tpresume()

� tpreturn()

� tpscmt(3c)

� tpsend()

� tpservice(3c)

� tpsetunsol()

� tpsubscribe()

� tpsuspend()

� tpterm()

� tpunsubscribe()

� tx_begin(3c)

� tx_close(3c)

� tx_commit(3c)

� tx_info(3c)

� tx_open(3c)

� tx_rollback(3c)

� tx_set_commit_return(3c)

� tx_set_transaction_control(3c)

� tx_set_transaction_timeout(3c)

� userlog(3c)
Programming a BEA Tuxedo Application Using C10-53

10 Programming a Multithreaded and Multicontexted Application

om

nt”

xt,

cited

ay be

e

ts

Note: For tpbroadcast() , the broadcast message is identified as having come fr
a particular application association. For tpnotify(3c) , the notification is
identified as having come from a particular application association. See
“Using Per-process Functions and Data Structures in a Multithreaded Clie
for notes about tpinit() .

If tpsetunsol() is called from a thread that is not associated with a conte
a per-process default unsolicited message handler for all new tpinit()
contexts created is established. A specific context may change the unsoli
message handler for that context by calling tpsetunsol() again when the
context is active. The per-process default unsolicited message handler m
changed by again calling tpsetunsol() in a thread not currently associated
with a context.

� The CLIENTID , client name, user name, transaction ID, and the contents of th
TPSVCINFO data structure may differ from context to context within the same
process.

� Asynchronous call handles and connection descriptors are valid in the contex
in which they are created. The unsolicited notification type is specific
per-context. Although signal-based notification may not be used with multiple
contexts, each context may choose one of three options:

z Ignoring unsolicited messages

z Using dip-in notification

z Using dedicated thread notification
10-54 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client

ant

de
nt
Using Per-process Functions and Data Structures in a
Multithreaded Client

The following BEA Tuxedo functions affect the entire process in which they are
called.

� tpadvertise()

� tpalloc()

� tpconvert(3c) —The requested structure is converted, although it is probably relev
to only a subset of the process.

� tpfree()

� tpinit() —to the extent that the per-process TPMULTICONTEXTS mode or
single-context mode is established. See also “Using Per-context Functions and Data
Structures in a Multithreaded Client” on page 10-52.

� tprealloc()

� tpsvrdone()

� tpsvrinit()

� tptypes()

� tpunadvertise()

� tuxgetenv(3c) —if the OS environment is per-process

� tuxputenv(3c) —if the OS environment is per-process

� tuxreadenv(3c) —if the OS environment is per-process

� Usignal(3c)

The determination of single-context mode, multicontext mode, or uninitialized mo
affects an entire process. The buffer type switch, the view cache, and environme
variable values are also per-process functions.
Programming a BEA Tuxedo Application Using C10-55

10 Programming a Multithreaded and Multicontexted Application

ed.
Using Per-thread Functions and Data Structures in a
Multithreaded Client

Only the calling thread is affected by the following:

� CATCH

� tperrordetail(3c)

� tpgetctxt(3c)

� tpgprio()

� tpsetctxt(3c)

� tpsprio()

� tpstrerror(3c)

� tpstrerrordetail(3c)

� TRY(3c)

� Uunix_err(3c)

The Ferror, Ferror32(5) , tperrno(5) , tpurcode(5) , and Uunix_err variables
are specific to each thread.

The identity of the current context is specific to each thread.

Sample Code for a Multithreaded Client

The following example shows a multithreaded client using ATMI calls. Threads
functions differ from one operating system to another. In this example, POSIX
functions are used.

Note: In order to simplify this example, error checking code has not been includ

Listing 10-4 Sample Code for a Multithreaded Client

#include <stdio.h>
#include <pthread.h>
#include <atmi.h>
10-56 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Client
TPINIT * tpinitbuf;
int timeout=60;
pthread_t withdrawalthreadid, stockthreadid;
TPCONTEXT_T ctxt;
void * stackthread(void *);
void * withdrawalthread(void *);

main()
{
tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));
/*
 * This code will perform a transfer, using separate threads for the
 * withdrawal and deposit. It will also get the current
 * price of BEA stock from a separate application, and calculate how
 * many shares the transferred amount can buy.
 */

tpinitbuf->flags = TPMULTICONTEXTS;

/* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);

tpgetctxt(&ctxt, 0);
tpbegin(timeout, 0);
pthread_create(&withdrawalthreadid, NULL, withdrawalthread, NULL);
tpcall("DEPOSIT", ...);

/* Wait for the withdrawal thread to complete. */
pthread_join(withdrawalthreadid, NULL);

tpcommit(0);
tpterm();

/* Wait for the stock thread to complete. */
pthread_join(stockthreadid, NULL);

/* Print the results. */
printf("$%9.2f has been transferred \
from your savings account to your checking account.\n", ...);

printf("At the current BEA stock price of $%8.3f, \
you could purchase %d shares.\n", ...);

exit(0);
}

Programming a BEA Tuxedo Application Using C10-57

10 Programming a Multithreaded and Multicontexted Application
void *
stockthread(void *arg)
{

 /* The other threads have now called tpinit(), so resetting TUXCONFIG can
 * no longer adversely affect them.
 */

 tuxputenv("TUXCONFIG=/home/users/xyz/stockconf");
 tpinitbuf->flags = TPMULTICONTEXTS;
 /* Fill in the rest of tpinitbuf. */
 tpinit(tpinitbuf);
 tpcall("GETSTOCKPRICE", ...);
 /* Save the stock price in a variable that can also be accessed in main(). */
 tpterm();
 return(NULL);
}

void *
withdrawalthread(void *arg)
{
/* Create a separate thread to get stock prices from a different
 * application.
*/

 pthread_create(&stockthreadid, NULL, stockthread, NULL);
 tpsetctxt(ctxt, 0);
 tpcall("WITHDRAWAL", ...);
 return(NULL);
}

See Also

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

� “Writing Code to Enable Multicontexting in a Client” on page 10-31
10-58 Programming a BEA Tuxedo Application Using C

Writing a Multithreaded Server

g

 flags

f

aded

hen
Writing a Multithreaded Server

Multithreaded servers are almost always multicontexted, as well. For information
about writing a multithreaded server, see “Writing Code to Enable Multicontextin
and Multithreading in a Server” on page 10-40.

Compiling Code for a
Multithreaded/Multicontexted Application

The programs provided by the BEA Tuxedo system for compiling or building
executables, such as buildserver(1) and buildclient(1) , automatically include
any required compiler flags. If you use these tools, then you do not need to set any
at compile time.

If, however, you compile your .c files into .o files before doing a final compilation,
you may need to set platform-specific compiler flags. Such flags must be set
consistently for all code linked into a single process.

If you are creating a multithreaded server, you must run the buildserver(1)
command with the -t option. This option is mandatory for multithreaded servers; i
you do not specify it at build time and later try to boot the new server with a
configuration file in which the value of MAXDISPATCHTHREADS is greater than 1, a
warning message is recorded in the userlog and the server reverts to single-thre
operation.

To identify any operating system-specific compiler parameters that are required w
you compile .c files into .o files in a multithreaded environment, run
buildclient(1) or buildserver(1) with the -v option set on a test file.
Programming a BEA Tuxedo Application Using C10-59

10 Programming a Multithreaded and Multicontexted Application
See Also

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Client” on page 10-45

Testing a Multithreaded/Multicontexted
Application

� Testing Recommendations for a Multithreaded/Multicontexted Application

� Troubleshooting a Multithreaded/Multicontexted Application

� Error Handling for a Multithreaded/Multicontexted Application

Testing Recommendations for a
Multithreaded/Multicontexted Application

We recommend following these recommendations during testing of your
multithreaded and/or multicontexted code:

� Use a multi-processor.

� Use a multithreaded debugger (if your operating system vendor offers one).

� Run stress tests to introduce a variety of timing conditions.
10-60 Programming a BEA Tuxedo Application Using C

Testing a Multithreaded/Multicontexted Application

 start

d
tion
Troubleshooting a Multithreaded/Multicontexted
Application

When you need to investigate possible causes of errors, we recommend that you
by checking whether and how the TPMULTICONTEXTS flag has been set. Errors are
frequently introduced by failures to set this flag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If a process includes the TPMULTICONTEXTS flag in a state for which this flag is not
allowed (or omits TPMULTICONTEXTS in a state that requires it), then tpinit() returns
-1 and sets tperrno to TPEPROTO.

Calls to tpinit() Without TPMULTICONTEXTS

When tpinit() is invoked without TPMULTICONTEXTS, it behaves as it does when
called in a single-contexted application. When tpinit() has been invoked once,
subsequent tpinit() calls without the TPMULTICONTEXTS flag succeed without
further action. This is true even if the value of the TUXCONFIG or WSNADDR environment
variable in the application has been changed. Calling tpinit() without the
TPMULTICONTEXTS flag set is not allowed in multicontext mode.

If a client has not joined an application and tpinit() is called implicitly (as a result
of a call to another function that calls tpinit()), then the BEA Tuxedo system
interprets the action as a call to tpinit() without the TPMULTICONTEXTS flag for
purposes of determining which flags may be used in subsequent calls to tpinit() .

For most ATMI functions, if a function is invoked by a thread that is not associate
with a context in a process already operating in multicontext mode, the ATMI func
fails with tperrno(5)=TPEPROTO .
Programming a BEA Tuxedo Application Using C10-61

10 Programming a Multithreaded and Multicontexted Application

e
p core
 other
 clues

e
hen
ient

ll

hread

ent

de or
Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack size is
insufficient for use with the BEA Tuxedo system. Compaq Tru64 UNIX and
UnixWare are two operating systems for which this is known to be the case. If th
default thread stack size parameter is used, applications on these platforms dum
when a function with substantial stack usage requirements is called by any thread
than the main thread. Often the core file that is created does not give any obvious
to the fact that an insufficient stack size is the cause of the problem.

When the BEA Tuxedo system is creating threads on its own, such as
server-dispatched threads or a client unsolicited message thread, it can adjust th
default stack size parameter on these platforms to a sufficient value. However, w
an application is creating threads on its own, the application must specify a suffic
stack size. At a minimum, a value of 128K should be used for any thread that wi
access the BEA Tuxedo system.

On Compaq Tru64 UNIX and other systems on which Posix threads are used, a t
stack size is specified by invoking pthread_attr_setstacksize() before calling
pthread_create() . On UnixWare, the thread stack size is specified as an argum
to thr_create() . Consult your operating system documentation for further
information on this subject.

Error Handling for a Multithreaded/Multicontexted
Application

Errors are reported in the user log. For each error, whether in single-context mo
multicontext mode, the following information is recorded:

process_ID.thread_ID.context_ID
10-62 Programming a BEA Tuxedo Application Using C

Testing a Multithreaded/Multicontexted Application
See Also

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28
Programming a BEA Tuxedo Application Using C10-63

10 Programming a Multithreaded and Multicontexted Application
10-64 Programming a BEA Tuxedo Application Using C

CHAPTER

or

in the
e,
ble
11Managing Errors

� System Errors

� Application Errors

� Handling Errors

� Transaction Considerations

� Central Event Log

� Debugging Application Processes

� Comprehensive Example

System Errors

The BEA Tuxedo system uses the tperrno(5) variable to supply information to a
process when a function fails. All ATMI functions that normally return an integer
pointer return -1 or NULL, respectively, on error and set tperrno() to a value that
describes the nature of the error. When a function does not return to its caller, as
case of tpreturn() or tpforward() , which are used to terminate a service routin
the only way the system can communicate success or failure is through the varia
tperrno() in the requester.
Programming a BEA Tuxedo Application Using C 11-1

11 Managing Errors

ll on
ic

 as an
e

sets

in
The tperrordetail(3c) and tpstrerrordetail(3c) functions can be used to
obtain additional detail about an error in the most recent BEA Tuxedo system ca
the current thread. tperrordetail() returns an integer (with an associated symbol
name) which is then used as an argument to tpstrerrordetail() to retrieve a
pointer to a string that contains the error message. The pointer can then be used
argument to userlog(3c) or fprintf() . For a list of the symbolic names that can b
returned, refer to tperrordetail(3c) in the BEA Tuxedo C Function Reference.

tpurcode(5) is used to communicate user-defined conditions only. The system
the value of tpurcode to the value of the rcode argument of tpreturn() . The system
sets tpurcode , regardless of the value of the rval argument of tpreturn() , unless
an error is encountered by tpreturn() or a transaction time-out occurs.

The codes returned in tperrno(5) represent categories of errors, which are listed
the following table.

Table 11-1 tperrno Error Categories

Error Category tperrno Values

Abort TPEABORT2

BEA Tuxedo system1 TPESYSTEM

Call descriptor TPELIMIT and TPEBADDESC

Conversational TPEVENT

Duplicate operation TPEMATCH

General communication TPESVCFAIL, TPESVCERR,
TPEBLOCK, and TPGOTSIG

Heuristic decision TPEHAZARD2 and TPEHEURISTIC2

Invalid argument1 TPEINVAL

MIB TPEMIB

No entry TPENOENT

Operating system1 TPEOS

Permission TPEPERM
11-2 Programming a BEA Tuxedo Application Using C

Abort Errors

ific

” on
As footnote 1 shows, four categories of errors are reported by tperrno(5) are
applicable to all ATMI functions. The remaining categories are used only for spec
ATMI functions.The following sections describe some error categories in detail.

Abort Errors

For information on the errors that lead to abort, refer to “Fatal Transaction Errors
page 11-22.

Protocol1 TPEPROTO

Queueing TPEDIAGNOSTIC

Release compatibility TPERELEASE

Resource manager TPERMERR

Time-out TPETIME

Transaction TPETRAN2

Typed buffer mismatch TPEITYPE and TPEOTYPE

1. Applicable to all ATMI functions for which failure is reported by the
value returned in tperrno(5) .
2. Refer to “Fatal Transaction Errors” on page 11-22 for more
information on this error category.

Error Category tperrno Values
Programming a BEA Tuxedo Application Using C 11-3

11 Managing Errors

ages

cation,

lls
een
d

lls.
d on
onal
; the

cific

BEA
e
BEA Tuxedo System Errors

BEA Tuxedo system errors indicate problems at the system level, rather than at the
application level. When BEA Tuxedo system errors occur, the system writes mess
explaining the exact nature of the errors to the central event log, and returns
TPESYSTEM in tperrno(5) . For more information, refer to the “Central Event Log”
on page 11-31. Because these errors occur in the system, rather than in the appli
you may need to consult the system administrator to correct them.

Call Descriptor Errors

Call descriptor errors occur as a result of exceeding the maximum limit of call
descriptors or referencing an invalid value. Asynchronous and conversational ca
return TPELIMIT when the maximum number of outstanding call descriptors has b
exceeded. TPEBADDESC is returned when an invalid call descriptor value is specifie
for an operation.

Call descriptor errors occur only during asynchronous calls or conversational ca
(Call descriptors are not used for synchronous calls.) Asynchronous calls depen
call descriptors to associate replies with the corresponding requests. Conversati
send and receive functions depend on call descriptors to identify the connection
call that initiates the connection depends on the availability of a call descriptor.

Troubleshooting of call descriptor errors can be can be done by checking for spe
errors at the application level.

Limit Errors

The system allows up to 50 outstanding call descriptors (replies) per context (or
Tuxedo application association). This limit is enforced by the system; it cannot b
redefined by your application.
11-4 Programming a BEA Tuxedo Application Using C

Conversational Errors

e
he
ify

rned

ge

s:

by
The limit for call descriptors for simultaneous conversational connections is mor
flexible than the limit for replies. The application administrator defines the limit in t
configuration file. When the application is not running, the administrator can mod
the MAXCONV parameter in the RESOURCES section of the configuration file. When the
application is running, the administrator can modify the MACHINES section
dynamically. Refer to tmconfig, wtmconfig(1) in the BEA Tuxedo Command
Reference for more information.

Invalid Descriptor Errors

A call descriptor can become invalid and, if referenced, cause an error to be retu
to tperrno(5) in either of two situations:

� A call descriptor is used to retrieve a message, which may be a failed messa
(TPEBADDESC).

� An attempt is made to reuse a stale call descriptor (TPEBADDESC).

A call descriptor might become stale, for example, in the following circumstance

� When the application calls tpabort() or tpcommit() and transaction replies
(sent without the TPNOTRAN flag) remain to be retrieved.

� A transaction times out. When the time-out is reported by a call to
tpgetrply() , no message is retrieved using the specified descriptor and the
descriptor becomes stale.

Conversational Errors

When an unknown descriptor is specified for conversational services, the tpsend() ,
tprecv() , and tpdiscon() functions return TPEBADDESC.

When tpsend() and tprecv() fail with a TPEEVENT error after a conversational
connection is established, an event has occurred. Data may or may not be sent
tpsend() , depending on the event. The system returns TPEEVENT in the revent
parameter passed to the function call and the course of action is dictated by the
particular event.
Programming a BEA Tuxedo Application Using C 11-5

11 Managing Errors

e

ith

For a complete description of conversational events, refer to “Understanding
Conversational Communication Events” on page 7-13.

Duplicate Object Error

The TPEMATCH error code is returned in tperrno(5) when an attempt is made to
perform an operation that results in a duplicate object. The following table lists th
functions that may return the TPEMATCH error code and the associated cause

For more information on these functions, refer to the BEA Tuxedo C Function
Reference

General Communication Call Errors

General communication call errors can occur during any communication calls,
regardless of whether those calls are synchronous or asynchronous. Any of the
following errors may be returned in tperrno(5) : TPESVCFAIL, TPESVCERR,
TPEBLOCK, or TPGOTSIG.

Function Cause

tpadvertise The svcname specified is already advertised for the server but
with a function other than func . Although the function fails,
svcname remains advertised with its current function (that is,
func does not replace the current function name).

tpresume The tranid points to a transaction identifier that another
process has already resumed. In this case, the caller’s state w
respect to the transaction is not changed.

tpsubscribe The specified subscription information has already been listed
with the EventBroker.
11-6 Programming a BEA Tuxedo Application Using C

General Communication Call Errors

tem

ply

stem

s not
l
TPESVCFAIL and TPESVCERR Errors

If the reply portion of a communication fails as a result of a call to tpcall() or
tpgetrply() , the system returns TPESVCERR or TPSEVCFAIL to tperrno(5) . The
system determines the error by the arguments that are passed to tpreturn() and the
processing that is performed by this function.

If tpreturn() encounters an error in processing or handling arguments, the sys
returns an error to the original requester and sets tperrno(5) to TPESVCERR. The
receiver determines that an error has occurred by checking the value of tperrno() .
The system does not send the data from the tpreturn() function, and if the failure
occurred on tpgetrply() , it renders the call descriptor invalid.

If tpreturn() does not encounter the TPESVCERR error, then the value returned in
rval determines the success or failure of the call. If the application specifies TPFAIL
in the rval parameter, the system returns TPESVCFAIL in tperrno(5) and sends the
data message to the caller. If rval is set to TPSUCCESS, the system returns successfully
to the caller, tperrno() is not set, and the caller receives the data.

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCK and TPGOTSIG error codes may be returned at the request or the re
end of a message and, as a result, can be returned for all communication calls.

The system returns TPEBLOCK when a blocking condition exists and the process
sending a request (synchronously or asynchronously) indicates, by setting its flags
parameter to TPPNOBLOCK, that it does not want to wait on a blocking condition. A
blocking condition can exist when a request is being sent if, for example, all the sy
queues are full.

When tpcall() indicates a no blocking condition, only the sending part of the
communication is affected. If a call successfully sends a request, the system doe
return TPEBLOCK, regardless of any blocking situation that may exist while the cal
waits for the reply.

The system returns TPEBLOCK for tpgetrply() when a call is made with flags set
to TPNOBLOCK and a blocking condition is encountered while tpgetrply() is
awaiting the reply. This may occur, for example, if a message is not currently
available.
Programming a BEA Tuxedo Application Using C 11-7

11 Managing Errors

ion

he

n.
e
uses

2
rror,

s
The TPGOTSIG error indicates an interruption of a system call by a signal; this situat
is not actually an error condition. If the flags parameter for the communication
functions is set to TPSIGRSTRT, the calls do not fail and the system does not return t
TPGOTSIG error code in tperrno(5) .

Invalid Argument Errors

Invalid argument errors indicate that an invalid argument was passed to a functio
Any ATMI function that takes arguments can fail if you pass it arguments that ar
invalid. In the case of a function that returns to the caller, the function fails and ca
tperrno(5) to be set to TPEINVAL. In the case of tpreturn() or tpforward() , the
system sets tperrno() to TPESVCERR for either the tpcall() or tpgetrply()
function that initiated the request and is waiting for results to be returned.

You can correct an invalid argument error at the application level by ensuring that you
pass only valid arguments to functions.

MIB Error

The tpadmcall(3c) function returns TPEMIB in tperrno(5) in the event an
administrative request fails. outbuf is updated and returned to the caller with FML3
fields indicating the cause of the error. For more information on the cause of the e
refer to MIB(5) and TM_MIB(5) in BEA Tuxedo File Formats and Data Description
Reference.
11-8 Programming a BEA Tuxedo Application Using C

No Entry Errors

ture

that

r a
 it

n

o

 to
n

vice

me

ted
No Entry Errors

No entry errors result from a lack of entries in the system tables or the data struc
used to identify buffer types. The meaning of the no entry type error, TPENOENT,
depends on the function that is returning it. The following table lists the functions
return this error and describes various causes of error.

Table 11-2 No Entry Errors

Function Cause

tpalloc() The system does not know about the type of buffer requested. Fo
buffer type and/or subtype to be known, there must be an entry for
in a type switch data structure that is defined in the BEA Tuxedo
system libraries. Refer to tuxtypes(5) and typesw(5) in the
BEA Tuxedo File Formats and Data Descriptions Reference for
more information.

On an application level, ensure that you have referenced a know
type; otherwise, check with the system administrator.

tpinit() The calling process cannot join the application because there is n
space left in the bulletin board to make an entry for it. Check with
the system administrator.

 tpcall()
tpacall()

The calling process references a service called that is not known
the system since there is no entry for it in the bulletin board. On a
application level, ensure that you have referenced the service
correctly; otherwise, check with the system administrator.

tpconnect() The system cannot connect to the specified name because the ser
named does not exist or it is not a conversational service.

tpgprio() The calling process seeks a request priority when no request has
been made. This is an application-level error.

tpunadvertise() The system cannot unadvertise the service name because the na
is not currently advertised by the calling process.

tpenqueue(3c)
tpdequeue(3c)

The system cannot access the queue space because the associa
TMQUEUE(5)server is not available. Refer to the BEA Tuxedo File
Formats and Data Descriptions Reference for more information.
Programming a BEA Tuxedo Application Using C 11-9

11 Managing Errors

stem
ue

 the

 the

r or
 with

r.
r
Operating System Errors

Operating system errors indicate that an operating system call has failed. The sy
returns TPEOS in tperrno(5) . On UNIX systems, the system returns a numeric val
identifying the failed system call in the global variable Uunixerr . To resolve
operating system errors, you may need to consult your system administrator.

Permission Errors

If a calling process does not have the correct permissions to join the application,
tpinit() call fails, returning TPEPERM in tperrno(5) . Permissions are set in the
configuration file, outside of the application. If you encounter this error, check with
application administrator to make sure the necessary permissions are set in the
configuration file.

Protocol Errors

Protocol errors occur when an ATMI function is invoked, either in the wrong orde
using an incorrect process. For example, a client may try to begin communicating
a server before joining the application. Or tpcommit() may be called by a transaction
participant instead of the initiator.

tppost()
tpsubscribe()
tpunsubscribe()

The system cannot access the BEA Tuxedo system Event Broke
Refer to “Writing Event-based Clients and Servers” on page 8-1 fo
more information.

Function Cause
11-10 Programming a BEA Tuxedo Application Using C

Queuing Error

 for

t is
You can correct a protocol error at the application level by enforcing the rules of order
and proper usage of ATMI calls.

To determine the cause of a protocol error, answer the following questions:

� Is the call being made in the correct order?

� Is the call being made by the correct process?

Protocol errors return the TPEPROTO value in tperrno(5) .

Refer to “Introduction to the C Application-Transaction Monitor Interface” in the BEA
Tuxedo C Function Reference for more information.

Queuing Error

The tpenqueue(3c) or tpdequeue(3c) function returns TPEDIAGNOSTIC in
tperrno(5) if the enqueuing or dequeuing on a specified queue fails. The reason
failure can be determined by the diagnostic returned via the ctl buffer. For a list of
valid ctl flags, refer to tpenqueue(3c) or tpdequeue(3c) in the BEA Tuxedo C
Function Reference

Release Compatibility Error

The BEA Tuxedo system returns TPERELEASE in tperrno(5) if a compatibility issue
exists between multiple releases of a BEA Tuxedo system participating in an
application domain.

For example, the TPERELEASE error may be returned if the TPACK flag is set when
issuing the tpnotify(3c) function (indicating that the caller blocks until an
acknowledgment message is received from the target client), but the target clien
using an earlier release of the BEA Tuxedo system that does not support the TPACK
acknowledgement protocol.
Programming a BEA Tuxedo Application Using C11-11

11 Managing Errors

ly,

e
urce

nt of
edo

its
g

ral

g or
,

ode,
Resource Manager Errors

Resource manager errors can occur with calls to tpopen(3c) and tpclose(3c) , in
which case the system returns the value of TPERMERR in tperrno(5) . This error code
is returned for tpopen() when the resource manager fails to open correctly. Similar
this error code is returned for tpclose() when the resource manager fails to close
correctly. To maintain portability, the BEA Tuxedo system does not return a mor
detailed explanation of this type of failure. To determine the exact nature of a reso
manager error, you must interrogate the resource manager.

Time-out Errors

The BEA Tuxedo system supports time-out errors to establish a limit on the amou
time that the application waits for a service request or transaction. The BEA Tux
system supports two types of configurable time-out mechanisms: blocking and
transaction.

A blocking time-out specifies the maximum amount of time that an application wa
for a reply to a service request. The application administrator defines the blockin
time-out for the system in the configuration file.

A transaction time-out defines the duration of a transaction, which may involve seve
service requests. To define the transaction time-out for an application, pass the
timeout argument to tpbegin() .

The system may return time-out errors on communication calls for either blockin
transaction time-outs, and on tpcommit() for transaction time-outs only. In each case
if a process is in transaction mode and the system returns TPETIME on a failed call, a
transaction time-out has occurred.

By default, if a process is not in transaction mode, the system performs blocking
time-outs. When you set the flags parameter of a communication call to TPNOTIME,
the flag setting applies to blocking time-outs only. If a process is in transaction m
blocking time-outs are not performed and the TPNOTIME flag setting is not relevant.
11-12 Programming a BEA Tuxedo Application Using C

Transaction Errors

or is
ted.

ction

e

 refer
If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked fails, but the call descript
still valid and may be used on a re-issued call. Other communication is not affec

When a transaction time-out occurs, the call descriptor to an asynchronous transa
reply (specified without the TPNOTRAN flag) becomes stale and may no longer be
referenced.

TPETIME indicates a blocking time-out on a communication call if the call was not
made in transaction mode or if the flags parameter was not set to TPNOBLOCK.

Note: If you set the TPNOBLOCK flag, a blocking time-out cannot occur because th
call returns immediately if a blocking condition exists.

For additional information on handling time-out errors, refer to “Transaction
Considerations” on page 11-19.

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur,
to “Transaction Considerations” on page 11-19.
Programming a BEA Tuxedo Application Using C11-13

11 Managing Errors

 in

nize

and
efine

ly its
fer
is. For

itch,
eply

 may
g
pe
Typed Buffer Errors

Typed buffer errors are returned when requests or replies to processes are sent

buffers of an unknown type. The tpcall() , tpacall() , and tpconnect() functions
return TPEITYPE when a request data buffer is sent to a service that does not recog
the type of the buffer.

Processes recognize buffer types that are identified in both the configuration file
the BEA Tuxedo system libraries that are linked into the process. These libraries d
and initialize a data structure that identifies the typed buffers that the process
recognizes. You can tailor the library to each process, or an application can supp
own copy of a file that defines the buffer types. An application can set up the buf
type data structure (referred to as a buffer type switch) on a process-specific bas
more information, see tuxtypes(5) and typesw(5) in the BEA Tuxedo File Formats
and Data Descriptions Reference.

The tpcall() , tpgetrply() , tpdequeue(3c) , and tprecv() functions return
TPEOTYPE when a reply message is sent in a buffer that is not recognized or not
allowed by the caller. In the latter case, the buffer type is included in the type sw
but the type returned does not match the type that was allocated to receive the r
and a change in buffer type is not allowed by the caller. The caller indicates this
preference by setting flags to TPNOCHANGE. In this case, strong type checking is
enforced; the system returns TPEOTYPE when it is violated. By default, weak type
checking is used. In this case, a buffer type other than the type originally allocated
be returned, as long as that type is recognized by the caller. The rules for sendin
replies are that the reply buffer must be recognized by the caller and, if strong ty
checking has been indicated, you must observe it.
11-14 Programming a BEA Tuxedo Application Using C

Application Errors

ing

n
ld:

 on

turn
irect

itch
Application Errors

Within an application, you can pass information about user-defined errors to call
programs using the rcode argument of tpreturn() . Also, the system sets the value
of tpurcode to the value of the rcode argument of tpreturn() . For more
information about tpreturn(3c) or tpurcode(5) , refer to the BEA Tuxedo C
Function Reference and the BEA Tuxedo File Formats and Data Descriptions
Reference, respectively.

Handling Errors

Your application logic should test for error conditions for the calls that have retur
values, and take appropriate action when an error occurs. Specifically, you shou

� Test to determine whether a -1 or NULL value has been returned (depending
the function call).

� Invoke code that contains a switch statement that tests for specific values of
tperrno(5) and performs the appropriate application logic.

The ATMI supports three functions, tpstrerrordetail(3c) , tpstrerror(3c) ,
and Fstrerror, Fstrerror32(3fml) , for retrieving the text of an error message
from the message catalogs for the BEA Tuxedo system and FML. The functions re
pointers to the appropriate error messages. Your program can use a pointer to d
the referenced text to userlog(3c) or to another destination. For details, refer to
tpstrerrordetail(3c) and tpstrerror(3c) in the BEA Tuxedo C Function
Reference, and Fstrerror, Fstrerror32(3fml) in the BEA Tuxedo FML Function
Reference.

The following example shows a typical method of handling errors. The atmicall()
function in this example represents a generic ATMI call. Note the code after the sw
statement (line 21): it shows how tpurcode can be used to interpret an
application-defined return code.
Programming a BEA Tuxedo Application Using C11-15

11 Managing Errors
Listing 11-1 Handling Errors

001 #include <stdio.h>
002 #include "atmi.h"
003
004 main()
005
006 {
007 int rtnval;
008
009 if (tpinit((TPINIT *) NULL) == -1)
010 error message, exit program;
011 if (tpbegin(30, 0) == -1)
012 error message, tpterm, exit program;
013
014 allocate any buffers,
015 make atmi calls
016 check return value
017
018 rtnval = atmicall() ;
019
020 if (rtnval == -1) {
021 switch(tperrno) {
022 case TPEINVAL:
023 fprintf(stderr, "Invalid arguments were given to
atmicall \n");
024 fprintf(stderr, "e.g., service name was null or flags
wrong\n");
025 break;
026 case ...:
027 fprintf(stderr, ". . .");
028 break;
029
030 Include all error cases described in the atmicall(3) reference
031 page.
032 Other return codes are not possible, so there should be no
033 default within the switch statement.
034
035 if (tpabort(0) == -1) {
036 char *p;
037 fprintf(stderr, "abort was attempted but failed\n");
038 p = tpstrerror(tperrno);
039 userlog("%s", p);
040 }
041 }
042 else
043 if (tpcommit(0) == -1)
044 fprintf(stderr, "REPORT program failed at commit time\n");
11-16 Programming a BEA Tuxedo Application Using C

Handling Errors

rror
045
046 The following code fragment shows how an application-specific
047 return code can be examined .
048 .
049 .
050 .
051 ret = tpcall("servicename", (char*)sendbuf, 0, (char
**)&rcvbuf, &rcvlen, \
052 (long)0);
053 .
054 .
055 .
056 (void) fprintf(stdout, "Returned tpurcode is: %d\n",
tpurcode);
057
058
059 free all buffers
060 tpterm();
061 exit(0);
062 }

The values of tperrno(5) provide details about the nature of each problem and
suggest the level at which it can be corrected. If your application defines a list of e
conditions specific to your processing, the same can be said for the values of
tpurcode .

The following example shows how to use the tpstrerrordetail(3c) function to
obtain additional detail when an error is encountered.

Listing 11-2 Handling Errors Using tpstrerrordetail()

001 #include <stdio.h>
002 #include <string.h>
003 #include <atmi.h>/* BEA Tuxedo Header File */
004 #define LOOP_ITER 100
005 #if defined(__STDC__) || defined(__cplusplus)
006 main(int argc, char *argv[])
007 #else
008 main(argc, argv)
009 int argc;
010 char *argv[];
011 #endif
012 {
Programming a BEA Tuxedo Application Using C11-17

11 Managing Errors
013 char *sendbuf, *rcvbuf;
014 long sendlen, rcvlen;
015 int ret;
016 int i;
017 if(argc != 2) {
018 (void) fprintf(stderr, "Usage: simpcl string\n");
019 exit(1);
020 }
021 /* Attach to BEA Tuxedo System as a Client Process */
022 if (tpinit((TPINIT *) NULL) == -1) {
023 (void) fprintf(stderr, "Tpinit failed\n");
024 exit(1);
025 }
026 sendlen = strlen(argv[1]);
027
028 /* Allocate STRING buffers for the request and the reply */
029
030 if((sendbuf = (char *) tpalloc("STRING", NULL, sendlen+1))
== NULL) {
031 (void) fprintf(stderr,"Error allocating send
buffer\n");
032 tpterm();
033 exit(1);
034 }
035
036 if((rcvbuf = (char *) tpalloc("STRING", NULL, sendlen+1)) ==
NULL) {
037 (void) fprintf(stderr,"Error allocating receive
buffer\n");
038 tpfree(sendbuf);
039 tpterm();
040 exit(1);
041 }
042
043 for(i=0; i<LOOP_ITER; i++) {
044 (void) strcpy(sendbuf, argv[1]);
045
046 /* Request the service TOUPPER, waiting for a reply */
047 ret = tpcall("TOUPPER", (char *)sendbuf, 0, (char
**)&rcvbuf, &rcvlen, (long)0);
048
049 if(ret == -1) {
050 (void) fprintf(stderr, "Can't send request to service
TOUPPER\n");
051 (void) fprintf(stderr, "Tperrno = %d, %s\n", tperrno,
tpstrerror(tperrno));
052
053 ret = tperrordetail(0);
054 if(ret == -1) {
11-18 Programming a BEA Tuxedo Application Using C

Transaction Considerations

sed
ette

ules
055 (void) fprintf(stderr, "tperrodetail()
failed!\n");
056 (void) fprintf(stderr, "Tperrno = %d, %s\n",
tperrno, tpstrerror(tperrno));
057 }
058 else if (ret != 0) {
059 (void) fprintf(stderr, "errordetail:%s\n",
060 tpstrerrordetail(ret, 0));
061 }
062 tpfree(sendbuf);
063 tpfree(rcvbuf);
064 tpterm();
065 exit(1);
066 }
067 (void) fprintf(stdout, "Returned string is: %s\n", rcvbuf);
068 }
069
070 /* Free Buffers & Detach from System/T */
071 tpfree(sendbuf);
072 tpfree(rcvbuf);
073 tpterm();
074 return(0);
}

Transaction Considerations

The following sections describe how various programming features work when u
in transaction mode. The first section provides rules of basic communication etiqu
that should be observed in code written for transaction mode.

Communication Etiquette

When writing code to be run in transaction mode, you must observe the following r
of basic communication etiquette:
Programming a BEA Tuxedo Application Using C11-19

11 Managing Errors

or all

er

t

k.

nce

te
cal

de
� Processes that are participants in the same transaction must require replies f
requests. To include a request that requires no reply, set the flags parameter of
tpacall() to TPNOTRAN or TPNOREPLY.

� A service must retrieve all asynchronous transaction replies before calling
tpreturn() or tpforward() . This rule must be observed regardless of wheth
the code is running in transaction mode.

� The initiator must retrieve all asynchronous transaction replies (made withou
the TPNOTRAN flag) before calling tpcommit() .

� Replies must be retrieved for asynchronous calls that expect replies from
non-participants of the transaction, that is, replies to requests made with
tpacall() in which the transaction, but not the reply, is suppressed.

� If a transaction has not timed-out but is marked “abort-only,” any further
communication should be performed with the TPNOTRAN flag set so that the
results of the communication are preserved after the transaction is rolled bac

� If a transaction has timed out:

z The descriptor for the timed-out call becomes stale and any further refere
to it returns TPEBADDESC.

z Further calls to tpgetrply() or tprecv() for any outstanding descriptors
return a global state of transaction time-out; the system sets tperrno(5) to
TPETIME.

z Asynchronous calls can be made with the flags parameter of tpacall() set
to TPNOREPLY, TPNOBLOCK, or TPNOTRAN.

� Once a transaction has been marked “abort-only” for reasons other than
time-out, a call to tpgetrply() returns whatever value represents the local sta
of the call; that is, it returns either success or an error code that reflects the lo
condition.

� Once a descriptor is used with tpgetrply() to retrieve a reply, or with
tpsend() or tprecv() to report an error condition, it becomes invalid and any
further reference to it returns TPEBADDESC. This rule is always observed,
regardless of whether the code is running in transaction mode.

� Once a transaction is aborted, all outstanding transaction call descriptors (ma
without the TPNOTRAN flag) become stale, and any further references to them
return TPEBADDESC.
11-20 Programming a BEA Tuxedo Application Using C

Transaction Errors

ing it.
s

s

n

Transaction Errors

The following sections describe transaction-related errors.

Non-fatal Transaction Errors

When transaction errors occur, the system returns TPETRAN in tperrno(5) . The
precise meaning of such an error, however, depends on the function that is return
The following table lists the functions that return transaction errors and describe
possible causes of them.

Table 11-3 Transaction Errors

Function Cause

tpbegin() Usually caused by a transient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

tpcancel() The function was called for a transaction reply after a request wa
made without the TPNOTRAN flag.

tpresume() The BEA Tuxedo system is unable to resume a global transactio
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be completed before the global transaction can be
resumed. The caller’s state with respect to the local transaction is
unchanged.
Programming a BEA Tuxedo Application Using C11-21

11 Managing Errors

action

t
port
ps.

y
Fatal Transaction Errors

When a fatal transaction error occurs, the application should explicitly abort the
transaction by having the initiator call tpabort() . Therefore, it is important to
understand the errors that are fatal to transactions. Three conditions cause a trans
to fail:

� The initiator or a participant in the transaction causes it to be marked
“abort-only” for one of the following reasons:

z tpreturn() encounters an error while processing its arguments;
tperrno(5) is set to TPESVCERR.

z The rval argument to tpreturn() was set to TPFAIL ; tperrno(5) is set to
TPESVCFAIL.

z The type or subtype of the reply buffer is not known or not allowed by the
caller and, as a result, success or failure cannot be determined; tperrno(5)
is set to TPEOTYPE.

� The transaction times out; tperrno(5) is set to TPETIME.

tpconnect() ,
tppost() ,
tpcall() , and
tpacall()

A call was made in transaction mode to a service that does not
support transactions. Some services belong to server groups tha
access a database management system (DBMS) that, in turn, sup
transactions. Other services, however, do not belong to such grou
In addition, some services that support transactions may require
interoperation with software that does not. For example, a service
that prints a form may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participants in a transaction.

The grouping of services into servers and server groups is an
administrative task. In order to determine which services support
transactions, check with your application administrator.

You can correct transaction-level errors at the application level b
enabling the TPNOTRAN flag or by accessing the service for which
an error was returned outside of the transaction.

Function Cause
11-22 Programming a BEA Tuxedo Application Using C

Transaction Errors

ring

he
ould

le after
eturns

e
ther

tion

tion
� tpcommit() is called by a participant rather than by the originator of a
transaction; tperrno(5) is set to TPEPROTO.

The only protocol error that is fatal to transactions is calling tpcommit() from the
wrong participant in a transaction. This error can be corrected in the application du
the development phase.

If tpcommit() is called after an initiator/participant failure or transaction time-out, t
result is an implicit abort error. Then, because the commit failed, the transaction sh
be aborted.

If the system returns TPESVCERR, TPESVCFAIL, TPEOTYPE, or TPETIME for any
communication call, the transaction should be aborted explicitly with a call to
tpabort() . You need not wait for outstanding call descriptors before explicitly
aborting the transaction. However, because these descriptors are considered sta
the call is aborted, any attempt to access them after the transaction is terminated r
TPEBADDESC.

In the case of TPESVCERR, TPESVCFAIL, and TPEOTYPE, communication calls continue
to be allowed as long as the transaction has not timed out. When these errors ar
returned, the transaction is marked abort-only. To preserve the results of any fur
work, you should call any communication functions with the flags parameter set to
TPNOTRAN. By setting this flag, you ensure that the work performed for the transac
marked “abort-only” will not be rolled back when the transaction is aborted.

When a transaction time-out occurs, communication can continue, but communica
requests cannot:

� Require replies

� Block

� Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you must set the flags parameter to
TPNOREPLY, TPNOBLOCK, or TPNOTRAN.

Heuristic Decision Errors

The tpcommit() function may return TPEHAZARD or TPEHEURISTIC, depending on
how TP_COMMIT_CONTROL is set.
Programming a BEA Tuxedo Application Using C11-23

11 Managing Errors

d

 a
ision

 not

ccur

s.

rts

. First,
plied.
If you set TP_COMMIT_CONTROL to TP_CMT_LOGGED, the application obtains control
before the second phase of a two-phase commit is performed. In this case, the
application may not be aware of a heuristic decision that occurs during the secon
phase.

TPEHAZARD or TPEHEURISTIC can be returned in a one-phase commit, however, if
single resource manager is involved in the transaction and it returns a heuristic dec
or a hazard indication during a one-phase commit.

If you set TP_COMMIT_CONTROL to TP_CMT_COMPLETE, then the system returns
TPEHEURISTIC if any resource manager reports a heuristic decision, and TPEHAZARD
if any resource manager reports a hazard. TPEHAZARD specifies that a participant failed
during the second phase of commit (or during a one-phase commit) and that it is
known whether a transaction completed successfully.

Transaction Time-outs

As described in “Transaction Errors” on page 11-21, two types of time-outs can o
in a BEA Tuxedo application: blocking and transaction. The following sections
describe how various programming features are affected by transaction time-out
Refer to “Transaction Errors” on page 11-21 for more information on time-outs.

Effect on the tpcommit() Function

What is the state of a transaction if a time-out occurs after a call to tpcommit() ? If the
transaction timed out and the system knows that it was aborted, the system repo
these events by setting tperrno(5) to TPEABORT. If the status of the transaction is
unknown, the system sets the error code to TPETIME.

When the state of a transaction is in doubt, you must query the resource manager
verify whether or not any of the changes that were part of the transaction were ap
Then you can determine whether the transaction was committed or aborted.
11-24 Programming a BEA Tuxedo Application Using C

tpreturn() and tpforward() Functions

on the
ply

 be
ice
it or

ved.

ct
e
Effect on the TPNOTRAN Flag

When a process is in transaction mode and makes a communication call with flags
set to TPNOTRAN, it prohibits the called service from becoming a participant in the
current transaction. Whether the service request succeeds or fails has no impact
outcome of the transaction. The transaction can still time-out while waiting for a re
that is due from a service, whether it is part of the transaction or not.

For additional information on using the TPNOTRAN flag, refer to “tpreturn() and
tpforward() Functions” on page 11-25.

tpreturn() and tpforward() Functions

If you call a process while running in transaction mode, tpreturn() and

tpforward() place the service portion of the transaction in a state that allows it to
either committed or aborted when the transaction completes. You can call a serv
several times on behalf of the same transaction. The system does not fully comm
abort the transaction until the initiator of the transaction calls tpcommit() or
tpabort() .

Neither tpreturn() nor tpforward() should be called until all outstanding
descriptors for the communication calls made within the service have been retrie
If you call tpreturn() with outstanding descriptors for which rval is set to
TPSUCCESS, the system encounters a protocol error and returns TPESVCERR to the
process waiting on tpgetrply() . If the process is in transaction mode, the system
marks the caller as “abort-only.” Even if the initiator of the transaction calls
tpcommit() , the system implicitly aborts the transaction. If you call tpreturn()
with outstanding descriptors for which rval is set to TPFAIL , the system returns
TPESVCFAIL to the process waiting on tpgetrply() . The effect on the transaction is
the same.

When you call tpreturn() while running in transaction mode, this function can affe
the result of the transaction by the processing errors that it encounters or that ar
retrieved from the value placed in rval by the application.
Programming a BEA Tuxedo Application Using C11-25

11 Managing Errors

ular
 the

tion

n or
 part

urce

uld

ults.
 a
You can use tpforward() to indicate that success has been achieved up to a partic
point in the processing of a request. If no application errors have been detected,
system invokes tpforward() ; otherwise, the system invokes tpreturn() with
TPFAIL . If you call tpforward() improperly, the system considers the call a
processing error and returns a failed message to the requester.

tpterm() Function

Use the tpterm() function to remove a client context from an application.

If the client context is in transaction mode, the call fails with TPEPROTO returned in
tperrno(5) , and the client context remains part of the application and in transac
mode.

When the call is successful, the client context is allowed no further communicatio
participation in transactions because the current thread of execution is no longer
of the application.

Resource Managers

When you use an ATMI function to define transactions, the BEA Tuxedo system
executes an internal call to pass any global transaction information to each reso
manager participating in the transaction. When you call tpcommit() or tpabort() ,
for example, the system makes internal calls to direct each resource manager to
commit or abort the work it did on behalf of the caller’s global transaction.

When a global transaction has been initiated, either explicitly or implicitly, you sho
not make explicit calls to the resource manager’s transaction functions in your
application code. Failure to follow this transaction rule causes indeterminate res
You can use the tpgetlev() function to determine whether a process is already in
global transaction before calling the resource manager’s transaction function.
11-26 Programming a BEA Tuxedo Application Using C

Sample Transaction Scenarios

uch as
o the

f

n.

xedo

n that

ent

Some resource managers allow programmers to configure certain parameters (s
the transaction consistency level) by specifying options available in the interface t
resource managers themselves. Such options are made available in two forms:

� Resource manager-specific function calls that can be used by programmers o
distributed applications to configure options.

� Hard-coded options incorporated in the transaction interface supplied by the
provider of the resource manager.

Consult the documentation for your resource managers for additional informatio

The method of setting options varies for each resource manager. In the BEA Tu
System SQL resource manager, for example, the set transaction statement is used
to negotiate specific options (consistency level and access mode) for a transactio
has already been started by the BEA Tuxedo system.

Sample Transaction Scenarios

The following sections provide some considerations for the following transaction
scenarios:

� Called Service in Same Transaction as Caller

� Called Service in Different Transaction with AUTOTRAN Set

� Called Service that Starts a New Explicit Transaction

Called Service in Same Transaction as Caller

When a caller in transaction mode calls another service to participate in the curr
transaction, the following facts apply:

� tpreturn() and tpforward() , when called by the participating service, place
that service’s portion of the transaction in a state from which it can be either
aborted or committed by the initiator.
Programming a BEA Tuxedo Application Using C11-27

11 Managing Errors

 any
ction

e

, the
 two

 in
f

n

ario,

by
� The success or failure of the called process affects the current transaction. If
fatal transaction errors are encountered by the participant, the current transa
is marked “abort-only.”

� Whether or not the tasks performed by a successful participant are applied
depends on the fate of the transaction. In other words, if the transaction is
aborted, the work of all participants is reversed.

� The TPNOREPLY flag cannot be used when calling another service to participat
in the current transaction.

Called Service in Different Transaction with AUTOTRAN
Set

If you issue a communication call with the TPNOTRAN flag set and the called service is
configured such that a transaction automatically starts when the service is called
system places both the calling and called processes in transaction mode, but the
constitute different transactions. In this situation, the following facts apply:

� tpreturn() plays the initiator’s transaction role: it terminates the transaction
the service in which the transaction was automatically started. Alternatively, i
the transaction is automatically started in a service that terminates with
tpforward() , the tpreturn() call issued in the last service in the forward
chain plays the initiator’s transaction role: it terminates the transaction. (For a
example, refer to the figure called “Transaction Roles of tpforward() and
tpreturn() with AUTOTRAN” on page 11-29.)

� Because it is in transaction mode, tpreturn() is vulnerable to the failure of any
participant in the transaction, as well as to transaction time-outs. In this scen
the system is more likely to return a failed message.

� The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

� The caller’s own transaction may timeout as the caller waits for a reply.

� If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.
11-28 Programming a BEA Tuxedo Application Using C

Sample Transaction Scenarios

an

to

ice

ion

Figure 11-1 Transaction Roles of tpforward() and tpreturn() with AUTOTRAN

Called Service that Starts a New Explicit Transaction

If a communication call is made with TPNOTRAN, and the called service is not
automatically placed in transaction mode by a configuration option, the service c
define multiple transactions using explicit calls to tpbegin() , tpcommit() , and
tpabort() . As a result, the transaction can be completed before a call is issued
tpreturn() .

In this situation, the following facts apply:

� tpreturn() plays no transaction role; that is, the role of tpreturn() is always
the same, regardless of whether transactions are explicitly defined in the serv
routine.

� tpreturn() can return any value in rval , regardless of the outcome of the
transaction.

� Typically, the system returns processing errors, buffer type errors, or applicat
failure, and follows the normal rules for TPESVCFAIL, TPEITYPE/TPEOTYPE, and
TPESVCERR.

� The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.
Programming a BEA Tuxedo Application Using C11-29

11 Managing Errors

t

by

If
ll
es all

es all

 At
et left

 are

;
, too,
� The caller is vulnerable to the possibility that its own transaction may time ou
as it waits for its reply.

� If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.

BEA TUXEDO System-supplied Subroutines

The BEA Tuxedo system-supplied subroutines, tpsvrinit() , tpsvrdone()
tpsvrthrinit(3c) , and tpsvrthrdone(3c) , must follow certain rules when used
in transactions.

Note: tpsvrthrinit(3c) and tpsvrthrdone(3c) can be specified for
multithreaded applications only. tpsvrinit() and tpsvrdone() can be
specified for both threaded and non-threaded applications.

The BEA Tuxedo system server calls tpsvrinit() or tpsvrthrinit(3c) during
initialization. Specifically, tpsvrinit() or tpsvrthrinit(3c) is called after the
calling process becomes a server but before it starts handling service requests.
tpsvrinit() or tpsvrthrinit(3c) performs any asynchronous communication, a
replies must be retrieved before the function returns; otherwise, the system ignor
pending replies and the server exits. If tpsvrinit() or tpsvrthrinit(3c) defines
any transactions, they must be completed with all asynchronous replies retrieved
before the function returns; otherwise, the system aborts the transaction and ignor
outstanding replies. In this case, the server exits gracefully.

The BEA Tuxedo system server abstraction calls tpsvrdone() or
tpsvrthrdone(3c) after it finishes processing service requests but before it exits.
this point, the server’s services are no longer advertised, but the server has not y
the application. If tpsvrdone() or tpsvrthrdone(3c) initiates communication, it
must retrieve all outstanding replies before it returns; otherwise, pending replies
ignored by the system and the server exits. If a transaction is started within
tpsvrdone() or tpsvrthrdone(3c) , it must be completed with all replies retrieved
otherwise, the system aborts the transaction and ignores the replies. In this case
the server exits.
11-30 Programming a BEA Tuxedo Application Using C

Central Event Log

ion.
rvices

ould

,

ame

fix,
, if
ages are
Central Event Log

The central event log is a record of significant events in your BEA Tuxedo applicat
Messages about these events are sent to the log by your application clients and se
via the userlog(3c) function.

Any analysis of the central event log must be provided by the application. You sh
establish strict guidelines for the events that are to be recorded in the userlog(3c) .
Application debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows NT platform
refer to Using the BEA Tuxedo System on Windows NT.

Log Name

The application administrator defines (in the configuration file) the absolute path n
that is used as the prefix of the name of the userlog(3c) error message file on each
machine. The userlog(3c) function creates a date—in the form mmddyy,
representing the month, day, and year—and adds this date to the path name pre
forming the full filename of the central event log. A new file is created daily. Thus
a process sends messages to the central event log on succeeding days, the mess
written into different files.
Programming a BEA Tuxedo Application Using C11-31

11 Managing Errors

at

 by the
Log Entry Format

Entries in the log consist of the following components:

� Tag consisting of:

z Time of day (hhmmss)

z Machine name (for example, the name returned by the uname(1) command
on a UNIX system)

z Name, process ID, and thread ID (which is 0 on platforms that do not
support threads) of the thread calling userlog(3c)

z Context ID of the thread calling userlog(3c)

� Message text

The text of each message is preceded by the catalog name and number of th
message.

� Optional arguments in printf (3S) format

For example, suppose that a security program executes the following call at
4:22:14pm on a UNIX machine called mach1 (as returned by the uname command):

userlog("Unknown User ’%s’ \n", usrnm);

The resulting log entry appears as follows:

162214.mach1!security.23451: Unknown User ’abc’

In this example, the process ID for security is 23451 , and the variable usrnm contains
the value abc .

If the preceding message was generated by the BEA Tuxedo system (rather than
application), it might appear as follows:

162214.mach1!security.23451: LIBSEC_CAT: 999: Unknown User ’abc’

In this case, the message catalog name is LIBSEC_CAT and the message number is 999 .
11-32 Programming a BEA Tuxedo Application Using C

Central Event Log

mode,
consist
rs
obal

 in the

 to
If the message is sent to the central event log while the process is in transaction
other components are added to the tag in the user log entry. These components
of the literal string gtrid followed by three long hexadecimal integers. The intege
uniquely identify the global transaction and make up what is referred to as the gl
transaction identifier, that is, the gtrid . This identifier is used mainly for
administrative purposes, but it also appears in the tag that prefixes the messages
central event log. If the system writes the message to the central event log in
transaction mode, the resulting log entry appears as follows:

162214.mach1!security.23451: gtrid x2 x24e1b803 x239:
 Unknown User ’abc’

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

� Assign the error message you wish to write to the log to a variable of type char

* and use the variable name as the argument to the call.

� Specify the literal text of the message within double quotes, as the argument
the userlog(3c) call, as shown in the following example.

.

.

.
/* Open the database to be accessed by the transactions.*/
if(tpopen() == -1) {
 userlog("tpsvrinit: Cannot open database %s,
tpstrerror(tperrno)");
 return(-1);
}
.
.
.

In this example, the message is sent to the central event log if tpopen(3c) returns -1.

The userlog(3c) signature is similar to that of the UNIX System printf (3S)
function. The format portion of both functions can contain literal strings and/or
conversion specifications for a variable number of arguments.
Programming a BEA Tuxedo Application Using C11-33

11 Managing Errors

olving.

ws

edures

is
ith
n
Debugging Application Processes

Although you can use userlog(3c) statements to debug application software, it is
sometimes necessary to use a debugger command for more complex problem s

The following sections describe how to debug an application on UNIX and Windo
NT platforms.

Debugging Application Processes on UNIX Platforms

The standard UNIX system debugging command is dbx (1). For complete information
about this tool, refer to dbx (1) in a UNIX system reference manual. If you use the -g
option to compile client processes, you can debug those processes using the proc
described on the dbx (1) reference page.

To run the dbx command, enter the following:

dbx client

To execute a client process:

1. Set any desired breakpoints in the code.

2. Enter the dbx command.

3. At the dbx prompt (*), type the run subcommand (r) and any options you want
to pass to the client program’s main() .

The task of debugging server programs is more complicated. Normally a server
started using the tmboot command, which starts the server on the correct machine w
the correct options. When using dbx , it is necessary to run a server directly rather tha
through the tmboot command. To run a server directly, enter the r (short for run)
subcommand after the prompt displayed by the dbx command.
11-34 Programming a BEA Tuxedo Application Using C

Debugging Application Processes

ns

th

by

e

soft

.0,
The BEA Tuxedo tmboot(1) command passes undocumented command-line optio
to the server’s predefined main() . To run a server directly, you must pass these
options, manually, to the r subcommand. To find out which options need to be
specified, run tmboot with the -n and -d 1 options. The -n option instructs tmboot
not to execute a boot; -d 1 instructs it to display level 1 debugging statements. By
default, the -d 1 option returns information about all processes. If you want
information about only one process, you can specify your request accordingly wi
additional options. For more information, refer to the BEA Tuxedo Command
Reference.

The output of tmboot -n -d 1 includes a list of the command-line options passed
tmboot to the server’s main() , as shown in the following example.

exec server -g 1 -i 1 -u sfmax -U /tuxdir/appdir/ULOG -m 0 -A

Once you have the list of required command-line options, you are ready to run th
server program directly, with the r subcommand of dbx (1). The following command
line is an example.

*r -g 1 -i 1 -u sfmax -U /tuxdir/appdir/ULOG -m 0 -A

You may not use dbx (1) to run a server that is already running as part of the
configuration. If you try to do so, the server exits gracefully, indicating a duplicate
server in the central event log.

Debugging Application Processes on Windows NT
Platforms

On a Windows NT platform, a graphical debugger is provided as part of the Micro
Visual C++ environment. For complete information about this tool, refer to the
Microsoft Visual C++ reference manual.

To invoke the Microsoft Visual C++ debugger, enter the start command as follows.

start msdev -p process_ID

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5
enter the start command as follows.

start msdev -p process_id
Programming a BEA Tuxedo Application Using C11-35

11 Managing Errors

ame

tem
sters,

.0,
To invoke the debugger and automatically enter a process, specify the process n
and arguments on the start command line, as follows.

start msdev filename argument

For example, to invoke the debugger and enter the simpcl.exe process with the
ConvertThisString argument, enter the following command.

start msdev simpcl.exe ConvertThisString

When a user-mode exception occurs, you are prompted to invoke the default sys
debugger to examine the location of the program failure and the state of the regi
stacks, and so on. By default, Dr. Watson is used in the Windows NT environment
uses as the default debugger for user-mode exception failures, while the kernel
debugger is used in the Win32 SDK environment.

To modify the default debugger used by the Windows NT system for user-mode
exception failures, perform the following steps:

1. Run regedit or regedt32 .

2. Within the HKEY_LOCAL_MACHINE subtree, navigate to
\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug

3. Double-click on the Debugger key to advance into the registry string editor.

4. Modify the existing string to specify the debugger of your choice.

For example, to request the debugger supplied with the Microsoft Visual C++
environment, enter the following command.

msdev.exe -p %ld -e %ld

Note: For versions of the Microsoft Visual C++ debugger that are earlier than 5
enter the following command.

msvc.exe -p %ld -e %ld
11-36 Programming a BEA Tuxedo Application Using C

Comprehensive Example

jor

nts

e
ent

cy level
rawn

4).

stion

ssful

t.
s line

ffer
nd the

 the

es
Comprehensive Example

Transaction integrity, message communication, and resource access are the ma
requirements of an Online-Transaction-Processing (OLTP) application.

This section provides a code sample that illustrates the ATMI transaction, buffer
management, and communication routines operating together with SQL stateme
that access a resource manager. The example is borrowed from the ACCT server that is
part of the BEA Tuxedo banking application (bankapp) and illustrates the
CLOSE_ACCT service.

The example shows how the set transaction statement (line 49) is used to set th
consistency level and access mode of the transaction before the first SQL statem
that accesses the database. (When read/write access is specified, the consisten
defaults to high consistency.) The SQL query determines the amount to be withd
in order to close the account based on the value of the ACCOUNT_ID (lines 50-58).

tpalloc() allocates a buffer for the request message to the WITHDRAWAL service, and
the ACCOUNT_ID and the amount to be withdrawn are placed in the buffer (lines 62-7
Next, a request is sent to the WITHDRAWAL service via a tpcall() call (line 79). An
SQL delete statement then updates the database by removing the account in que
(line 86).

If all is successful, the buffer allocated in the service is freed (line 98) and the
TPSVCINFO data buffer that was sent to the service is updated to indicate the succe
completion of the transaction (line 99). Then, if the service was the initiator, the
transaction is automatically committed. tpreturn() returns TPSUCCESS, along with
the updated buffer, to the client process that requested the closing of the accoun
Finally, the successful completion of the requested service is reported on the statu
of the form.

After each function call, success or failure is determined. If a failure occurs, the bu
allocated in the service is freed, any transaction begun in the service is aborted, a
TPSVCINFO buffer is updated to show the cause of failure (lines 80-83). Finally,
tpreturn() returns TPFAIL and the message in the updated buffer is reported on
status line of the form.

Note: When specifying the consistency level of a global transaction in a service
routine, take care to define the level in the same way for all service routin
that may participate in the same transaction.
Programming a BEA Tuxedo Application Using C11-37

11 Managing Errors
Listing 11-3 ACCT Server

001 #include <stdio.h> /* UNIX */
002 #include <string.h> /* UNIX */
003 #include <fml.h> /* BEA Tuxedo System */
004 #include <atmi.h> /* BEA Tuxedo System */
005 #include <Usysflds.h> /* BEA Tuxedo System */
006 #include <sqlcode.h> /* BEA Tuxedo System */
007 #include <userlog.h> /* BEA Tuxedo System */
008 #include "bank.h" /* BANKING #defines */
009 #include "bank.flds.h" /* bankdb fields */
010 #include "event.flds.h" /* event fields */
011
012
013 EXEC SQL begin declare section;
014 static long account_id; /* account id */
015 static long branch_id; /* branch id */
016 static float bal, tlr_bal; /* BALANCE */
017 static char acct_type; /* account type*/
018 static char last_name[20], first_name[20]; /* last name, first name */
019 static char mid_init; /* middle initial */
020 static char address[60]; /* address */
021 static char phone[14]; /* telephone */
022 static long last_acct; /* last account branch gave */
023 EXEC SQL end declare section;

024 static FBFR *reqfb; /* fielded buffer for request message */
025 static long reqlen; /* length of request buffer */
026 static char amts[BALSTR]; /* string representation of float */

027 code for OPEN_ACCT service

028 /*
029 * Service to close an account
030 */

031 void
032 #ifdef __STDC__
033 LOSE_ACCT(TPSVCINFO *transb)

034 #else

035 CLOSE_ACCT(transb)
036 TPSVCINFO *transb;
037 #endif

038 {
039 FBFR *transf; /* fielded buffer of decoded message */
11-38 Programming a BEA Tuxedo Application Using C

Comprehensive Example

040 /* set pointer to TPSVCINFO data buffer */
041 transf = (FBFR *)transb->data;

042 /* must have valid account number */
043 if (((account_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) ||
044 (account_id > MAXACCT)) {
045 (void)Fchg(transf, STATLIN, 0, "Invalid account number", (FLDLEN)0);
046 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
047 }

048 /* Set transaction level */
049 EXEC SQL set transaction read write;

050 /* Retrieve AMOUNT to be deleted */
051 EXEC SQL declare ccur cursor for
052 select BALANCE from ACCOUNT where ACCOUNT_ID = :account_id;
053 EXEC SQL open ccur;
054 EXEC SQL fetch ccur into :bal;
055 if (SQLCODE != SQL_OK) { /* nothing found */
056 (void)Fchg(transf, STATLIN, 0, getstr("account",SQLCODE), (FLDLEN)0);
057 EXEC SQL close ccur;
058 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
059 }

060 /* Do final withdrawal */

061 /* make withdraw request buffer */
062 if ((reqfb = (FBFR *)tpalloc("FML",NULL,transb->len)) == (FBFR *)NULL) {
063 (void)userlog("tpalloc failed in close_acct\n");
064 (void)Fchg(transf, STATLIN, 0,
065 "Unable to allocate request buffer", (FLDLEN)0);
066 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
067 }
068 reqlen = Fsizeof(reqfb);
069 (void)Finit(reqfb,reqlen);

070 /* put ID in request buffer */
071 (void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&account_id, (FLDLEN)0);

072 /* put amount into request buffer */
073 (void)sprintf(amts,"%.2f",bal);
074 (void)Fchg(reqfb,SAMOUNT,0,amts, (FLDLEN)0);

075 /* increase the priority of this withdraw */
076 if (tpsprio(PRIORITY, 0L) == -1)
077 (void)userlog("Unable to increase priority of withdraw");

078 /* tpcall to withdraw service to remove remaining balance */
Programming a BEA Tuxedo Application Using C11-39

11 Managing Errors
079 if (tpcall("WITHDRAWAL", (char *)reqfb, 0L, (char **)&reqfb,
080 (long *)&reqlen,TPSIGRSTRT) == -1) {
081 (void)Fchg(transf, STATLIN, 0,"Cannot make withdrawal", (FLDLEN)0);
082 tpfree((char *)reqfb);
083 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
084 }

085 /* Delete account record */

086 EXEC SQL delete from ACCOUNT where current of ccur;
087 if (SQLCODE != SQL_OK) { /* Failure to delete */
088 (void)Fchg(transf, STATLIN, 0,"Cannot close account", (FLDLEN)0);
089 EXEC SQL close ccur;
090 tpfree((char *)reqfb);
091 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
092 }
093 EXEC SQL close ccur;

094 /* prepare buffer for successful return */
095 (void)Fchg(transf, SBALANCE, 0, Fvals(reqfb,SAMOUNT,0), (FLDLEN)0);
096 (void)Fchg(transf, FORMNAM, 0, "CCLOSE", (FLDLEN)0);
097 (void)Fchg(transf, STATLIN, 0, " ", (FLDLEN)0);
098 tpfree((char *)reqfb);
099 tpreturn(TPSUCCESS, 0, transb->data, 0L, 0);
100 }
11-40 Programming a BEA Tuxedo Application Using C

	Copyright
	Contents
	1 Introduction to BEA Tuxedo Programming
	BEA Tuxedo Distributed Application Programming
	Communication Paradigms
	BEA Tuxedo Clients
	BEA Tuxedo Servers
	Basic Server Operation
	Servers as Requesters

	BEA Tuxedo API: ATMI

	2 Programming Environment
	Updating the UBBCONFIG Configuration File
	Setting Environment Variables
	Including the Required Header Files
	Starting and Stopping the Application

	3 Managing Typed Buffers
	Overview of Typed Buffers
	Allocating a Typed Buffer
	Putting Data in a Buffer
	Resizing a Typed Buffer
	Checking for Buffer Type
	Freeing a Typed Buffer
	Using a VIEW Typed Buffer
	Setting Environment Variables for a VIEW Typed Buffer
	Creating a View Description File
	Executing the VIEW Compiler

	Using an FML Typed Buffer
	Setting Environment Variables for an FML Typed Buffer
	Creating a Field Table File
	Creating an FML Header File

	Using an XML Typed Buffer
	Customizing a Buffer
	Defining Your Own Buffer Types
	Data Conversion

	4 Writing Clients
	Joining an Application
	Using Features of the TPINIT Typed Buffer
	Client Naming
	Unsolicited Notification Handling
	System Access Mode
	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	See Also

	Client Process Examples

	5 Writing Servers
	BEA Tuxedo System main()
	System-supplied Server and Services
	System-supplied Server: AUTHSVR()
	System-supplied Services: tpsvrinit() Function
	System-supplied Services: tpsvrdone() Function

	Guidelines for Writing Servers
	Defining a Service
	Example: Checking the Buffer Type
	Example: Checking the Priority of the Service Request

	Terminating a Service Routine
	Sending Replies
	Invalidating Descriptors
	Forwarding Requests

	Advertising and Unadvertising Services
	Advertising Services
	Unadvertising Services
	Example: Dynamic Advertising and Unadvertising of a Service

	Building Servers
	See Also

	Using a C++ Compiler
	Declaring Service Functions
	Using Constructors and Destructors

	6 Writing Request/Response Clients and Servers
	Overview of Request/Response Communication
	Sending Synchronous Messages
	Example: Using the Same Buffer for Request and Reply Messages
	Example: Testing for Change in Size of Reply Buffer
	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Example: Sending a Synchronous Message with TPNOTRAN Set
	Example: Sending a Synchronous Message with TPNOCHANGE Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Getting an Asynchronous Reply

	Setting and Getting Message Priorities
	Setting a Message Priority
	Getting a Message Priority

	7 Writing Conversational Clients and Servers
	Overview of Conversational Communication
	Joining an Application
	Establishing a Connection
	Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	Ending a Conversation
	Example: Ending a Simple Conversation
	Example: Ending a Hierarchical Conversation
	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events

	8 Writing Event-based Clients and Servers
	Overview of Events
	Unsolicited Events
	Brokered Events

	Defining the Unsolicited Message Handler
	Sending Unsolicited Messages
	Broadcasting Messages By Name
	Broadcasting Messages by Identifier

	Checking for Unsolicited Messages
	Subscribing to Events
	Unsubscribing from Events
	Posting Events
	Example of Event Subscription

	9 Writing Global Transactions
	What Is a Global Transaction?
	Starting the Transaction
	Suspending and Resuming a Transaction
	Suspending a Transaction
	Resuming a Transaction
	Example: Suspending and Resuming a Transaction

	Terminating the Transaction
	Committing the Current Transaction
	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Example: Testing for Participant Errors

	Implicitly Defining a Global Transaction
	Implicitly Defining a Transaction in a Service Routine

	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	See Also

	10 Programming a Multithreaded and Multicontexted Application
	Support for Programming a Multithreaded/Multicontexted Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications

	Planning and Designing a Multithreaded/Multicontexted Application
	What Are Multithreading and Multicontexting
	What Is Multithreading
	What Is Multicontexting
	Licensing a Multithreaded or Multicontexted Application

	Advantages and Disadvantages of a Multithreaded/Multicontexted Application
	Advantages of a Multithreaded/Multicontexted Application
	Disadvantages of a Multithreaded/Multicontexted Application

	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Work Phase
	Completion Phase

	How Multithreading and Multicontexting Work in a Server
	Start-up Phase
	Work Phase
	Completion Phase

	Design Considerations for a Multithreaded and Multicontexted Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting
	How Many Applications and Connections Do You Want
	What Synchronization Issues Need to Be Addressed
	Will You Need to Port Your Application
	Which Threads Model Is Best for You
	Interoperability Restrictions for Workstation Clients

	Implementing a Multithreaded/ Multicontexted Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application
	Prerequisites for a Multithreaded Application
	General Multithreaded Programming Considerations
	Concurrency Considerations

	Writing Code to Enable Multicontexting in a Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Implementing Security for a Multicontexted Client
	Synchronizing Threads Before a Client Termination
	Switching Contexts
	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted Application

	Writing Code to Enable Multicontexting and Multithreading in a Server
	Context Attributes
	Coding Rules for a Multicontexted Server
	Initializing and Terminating Servers and Server Threads
	Programming a Server to Create Threads
	Sample Code for Creating an Application Thread in a Multicontexted Server

	Writing a Multithreaded Client
	Coding Rules for a Multithreaded Client
	Initializing a Client to Multiple Contexts
	Context State Changes for a Client Thread
	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded Client
	Using Per-process Functions and Data Structures in a Multithreaded Client
	Using Per-thread Functions and Data Structures in a Multithreaded Client
	Sample Code for a Multithreaded Client

	Writing a Multithreaded Server
	Compiling Code for a Multithreaded/Multicontexted Application
	Testing a Multithreaded/Multicontexted Application
	Testing Recommendations for a Multithreaded/Multicontexted Application
	Troubleshooting a Multithreaded/Multicontexted Application
	Error Handling for a Multithreaded/Multicontexted Application

	11 Managing Errors
	System Errors
	Abort Errors
	BEA Tuxedo System Errors
	Call Descriptor Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	MIB Error
	No Entry Errors
	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Time-out Errors
	Transaction Errors
	Typed Buffer Errors
	Application Errors
	Handling Errors
	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Time-outs
	Effect on the tpcommit() Function
	Effect on the TPNOTRAN Flag

	tpreturn() and tpforward() Functions
	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Called Service that Starts a New Explicit Transaction

	BEA TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	Debugging Application Processes
	Debugging Application Processes on UNIX Platforms
	Debugging Application Processes on Windows NT Platforms

	Comprehensive Example

